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Foreword 

Apoptosis is a fascinating concept for the basic scientist. This is not only 
because of the multifaceted variety of proposed and discovered mechanisms, 
but because apoptosis represents a fundamental pathway for cell renewal. The 
study of apoptosis has resulted in an array of discoveries on signal transduc
tion and downstream effects that have facilitated and advanced many fields in 
biology, including research on cancer and other diseases. Thus, the apoptotic 
process can be viewed as the largest effort of the scientific community to 
understand how cells work and tissues assemble or remodel. The most direct 
consequence of this accumulated knowledge is a greater understanding of 
disease and pathological mechanisms. The end result of these efforts will be 
significant contributions to health and the adoption of new, never anticipated, 
therapeutic approaches. 

This book represents the summation of considerable effort from a 
significant group of contributors from all over the world as well as from its 
editors. In this fashion, many viewpoints have been collected and SUbjected to 
thorough academic discussion. The concepts contained in this medically 
important volume will stimulate and renew the ideas of scientists and indeed, 
will generate additional work to advance biological knowledge even further. 
The emphasis of this volume cements what has been established, adds 
what has not been explored fully, and creates a fertile ground for further 
hypotheses that will lead to a more complete understanding of the apoptotic 
process. 

Hence, the book is invaluable for both students and teachers of apopto
sis and for practitioners of cell biology, while representing an exemplary source 
of reference for the medical-scientific community. The quality of the assem
bled data will serve as the underpinnings for moving apoptosis to the next 
frontier: that is, the exploration of the role of cell renewal as a continuous 
process from birth to death, precisely the life events that motivated scientists 
to study it with such fervor and dedication. Should this book achieve these 
goals, it will realize the aspirations of its editors, Ross Cameron and George 
Feuer. 

The message contained in this book is well delineated and will serve as a 
comprehensive resume of factors influencing apoptosis. The authors are sin
cerely congratulated for their efforts and the editors, whose character and 
energy are evident from the quality of the book, will return to their toils with 
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the anticipation of further scholarly and new thematic synthesis in the not too 
distant future. 

FELIX DE LA IGLESIA, M.D. 
Department of Pathology and Experimental Toxicology, 

Parke-Davis Pharmaceutical Research 
Department of Pathology, School of Medicine, 
University of Michigan, Ann Arbor, MI, USA 



Preface 

Apoptosis is a prevalent type of cell death involving many aspects of human 
biology and medicine. This text is a comprehensive study of what is known 
about the process of apoptosis, at the molecular, cellular, tissue, and organism 
levels of analysis. Molecules specifically involved in apoptosis - including p53, 
Bcl-2, CD95, interleukins and other cytokines, caspases, ROS and protein 
kinase C - are described and their roles in the cell death of thymocytes, T 
and B lymphocytes, cosinophils, nerve cells, skin cells, liver cells, and cancer 
cells are examined in detail. At the center of these analyses is the synthesis 
and integration of the molecular and cellular findings with the ultimate goal 
of the understanding and treatment of human diseases by means of modula
tion of apoptosis. For example, in Chap. 5, the extensive depletion of periph
eral T lymphocytes by apoptosis as part of the chronic response to HIV 
infection is described. In Chap. 7, apoptosis of T cells is studied in the context 
of the imununosuppressive therapy used to prevent rejection following organ 
transplantation. The significance of apoptosis of various cell types is also 
explored in various chapters. Important human diseases in which apoptosis 
may play a role are discussed, including Alzheimer's disease, various 
malignancies, allergic diseases, psoriasis, autoimmune diseases, and chronic 
liver diseases. 

Throughout the text, the theme of apoptosis and its modulation by drugs 
is discussed. A wide variety of drugs and chemicals is evaluated as to their 
ability to modify apoptosis. This includes chemotherapeutic drugs, glucocorti
coids, p53, and deprenyl. Specific cell types are described with which these 
drugs and chemicals interact, and the nature of the interaction is specified, e.g., 
induction or inhibition of apoptosis. 

The understanding of the process of apoptosis appears to be important 
for the care and treatment of patients with a variety of human diseases and, 
as such, represents an important field of human biology and medicine for clin
icians and researchers alike. 

We would like to thank the librarians of the University of Toronto Medical 
Library for their support and encouragement, and one of us (G.F.) would like 
to thank the Parke Davis Research Institute for its support of his work on this 
project. We would also like to express our gratitude to Mrs. Doris Walker from 
Springer-Verlag for her ongoing support of our efforts. In addition, we are both 
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very pleased to have the opportunity to work closely together again on this 
important scientific and scholarly work. 

Toronto, Ontario, Canada 
Ross G. CAMERON, GEORGE FEUER 
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CHAPTER 1 

Incidence of Apoptosis and Its Pathological 
and Biochemical Manifestations 

R. CAMERON and G. FEUER 

A. Apoptosis: Characteristics and Scope 
This volume is dedicated to the study of apoptosis and its modulation by drugs. 
The purpose of the book is to present (a) the molecular mechanisms of cell 
death by apoptosis in a comprehensive and stimulating manner, (b) the poten
tial critical role of apoptosis in modifying selected diseases, and (c) a review 
of the effect of various drugs and chemicals on apoptosis. Studying apoptosis 
is a "hot" topic in research at present and it is applicable to many different 
areas of scientific and medical investigations. Contributors to this book are 
leading experts in this field, and the various papers attempt to synthesize views 
on basic mechanisms and molecular and genetic regulations. Several chapters 
present morphological changes through specific mediators, activators, and 
inhibitors, leading to final clinical end points of various diseases and to impor
tant diagnostic indicators of these conditions. 

In a healthy state, cell degeneration and cell death are ongoing phenom
ena in multicellular organisms. These processes are balanced by cell renewal. 
From the normal tissue, the affected cells are removed by apoptosis. Apopto
sis is connected with nuclear shrinkage and fragmentation (pyknosis) and 
condensation of cytoplasm. In the early stages, the cell membrane remains 
intact and the cytoplasmic and nuclear debris form granules termed apoptotic 
bodies. 

Apoptosis plays an important role in development and in tissue home
ostasis, and provides defense against oncogenesis and viral infection. The 
broad significance of this form of cell death is also related to the perception 
that it has an essential position in the onset of several illnesses. Apoptotic cells 
are often seen in many different disease conditions such as (a) autoimmune 
diseases, (b) HIV infections and acquired immunodeficiency diseases, (c) 
chronic viral hepatitis and recurrence of viral hepatitis in post-liver transplant, 
(d) organ transplant immunity and post-transplant rejection involving kidneys, 
lungs, heart, liver, and bone marrow, (e) cancer and chemotherapy of car
cinomas and leukemias, (f) neurodegenerative disorders and development of 
Alzheimer's disease, and (g) several inflammatory conditions. Apoptotic cells 
are often seen in malignant tissues of many different types, during the course 
of chronic viral disease in the liver, and during degenerative processes in the 
nervous system. The process of apoptosis is also integral to the induction of 
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tolerance in the immune system. Apoptosis caused by cytotoxins is considered 
as a defensive response that evolved to delete intracellular pathogens (VAUX 
et a1. 1995). 

B. Cell Death 
The basis of all diseases is an injury to the cell. If the injury is too great or 
extensive, this results in irreparable changes in structure and function, leading 
to death of the cell. Cell death has fundamental importance in most patho
logical processes and it also plays an essential role in the regulation of normal 
tissue turnover by eliminating all debris formed from aged and dying cells. 
Ultrastructural abnormalities shown in cells dying in a variety of circum
stances indicate two common patterns of morphological changes (WYLLIE 
1981; SEARLE et al. 1982; Walker et al. 1988). In the first, the cell death is initi
ated through reactions to defined stimuli, followed by a sequence of intra
cellular changes. These morphological changes include marked swelling of 
mitochondria and the appearance of dense strictures in their matrix followed 
by progressive dissolution of the entire cell. This type of cell death is named 
necrosis (McLEAN et al. 1965; KERR 1969, 1970, 1971). Necrosis refers to the 
progressive and complete degradation of cell structure that occurs after death. 
H represents an irreversible damage to cellular membranes associated with 
various injurious stimuli such as hypoxia, bacterial or viral infection, or cor
rosive chemicals, resulting in lysis (Fig. 1). 

The second form of cell death named apoptosis is characterized by cell 
shrinkage, rapid condensation of the cytoplasm and nuclear chromatin accom
panied by blebbing of the plasma membrane. This subsequently leads to the 
fragmentation of the cells into a cluster of membrane-bound structures, apop
totic granular bodies in which the integrity of various subcellular organelles is 
initially maintained. The apoptotic bodies are incorporated by phagocytes or 
neighboring cells, and DNA breaks up at the internucleosomal spaces 
into oligome fragments. This type of cell death is present in physiological 
conditions. 

Naturally occurring cell death, unrelated to any causative agent, is also 
found in almost all tissues. Various terms have been used to describe natural 
death such as physiological cell death or programmed cell death, to distinguish 
it from pathological death brought about by disease. In physiological circum
stances and during development, different sequences of events occur (KERR 
et al. 1972, 1987; WYLLIE et al. 1980). This involves prominent nuclear changes 
in response to hormonal stimuli and changes in other subcellular targets due 
to T cell or NK cell killing activities (Fig. 2). 

These two distinct forms of cell death show major differences. Necrosis is 
a degenerative process that is associated with irreversible injury (TRUMP et al. 
191-11, 191-12a). Apoptosis is connected with cellular self-destruction rather that 
degeneration (KERR 1971; WYLLIE et al. 1980; KERR et al. 1987) and requires 
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Fig. 1. Mechanism of cell death due to necrosis or apoptosis. In necrosis the first step 
is (a) an increase of intracellular volume, mitochondrial swelling (b) followed by 
vacuolization, dilatation of endoplasmic reticulum, blebbing, increased permeability, 
and condensed nuclei (pyknosis), (c) coagulation and karyolysis, (d) elimination of the 
cell by inflammation and phagocytosis. In apoptosis the first step is (e) shrinkage and 
pyknosis, (f) followed by budding and karyorrhexis and (g) break up and formation of 
apoptotic bodies which (h) may be destroyed by phagocytosis by macrophages. 
Adapted from WEEDON et al. (1973), and UEDA and SHAH (1994) 

protein synthesis and fusion of subcellular components for its execution 
(LIEBERMAN et al. 1970; GAUU et al. 1982; COHEN and DUKE 1984). The phe
nomenon of apoptosis is also implicated in the physiological process of regu
lating organ size. Morphologically apoptosis involves fragmentation of the 
nucleus, and fusion of the nuclear chromatin and cytoplasm resulting in 



4 R. CAMERON and G. FEUER 

Fig.2. Example of cell death by necrosis. This is a photomicrograph of liver tissue of 
a biopsy of a 36 year old man at about 65 h following an overdose of 30g or 400mg/kg 
of acetaminophen. There is cell death of all of the hepatocytes (pale cells) in the perive
nous zone (or zone 3) with sparing of hepatocytes (dark cells) in the periportal and 
mid-zones. Periodic acid Schiff stain, x200 

membrane-encapsulated bodies: granules (Table 1). The presence of these 
bodies interferes with normal cell function and these granules are disposed of 
by neighboring cells without inflammation. 

C. Features of Necrosis 
I. Occurrence 

Necrosis develops in various tissues due to severe hypoxia, ischemia, or during 
autolysis (JENNINGS and REIMER 1981; LAIHO et al. 1983; BORGES et al. 1987). 
It also occurs as the consequence of complement-mediated damage of the cell 
membrane, trauma, or exposure to several toxins (TRUMP et al. 1982a; LAIHO 
et al. 1983; GROMKOWSKI et al. 1986). Metabolic inhibitors such as fluorocitrate, 
iodoacetate, or cyanide, reactive oxygen metabolites, a variety of toxic chem
icals, and the ionic pump inhibitor ouabain cause necrosis. Severe environ
mental conditions such as mild ischemia, hypoxia, and hyperthermia (BUCKLEY 
1972; McDOWELL 1973; HAWKINS et al. 1972; BISHOP et al. 1987) also provoke 
necrosis. 
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Table 1. Apoptotic bodies in physiological and pathological conditions 

Condition 

Disease 
Viral hepatitis 

Alzheimer's disease 

Parkinson's disease 
Hashimoto's thyroiditis 

Experimental 
Retinal degeneration 
Zinc deficiency 

II. Morphology 

Apoptotic Bodies 

Councilman bodies 
Yellow fever bodies 
Amyloid /3-protein granules 
Senile plaques 
Lewy bodies 
Ashkenasy cells 
Hurthle bodies 

Apoptotic bodies in retina 
Paneth cells 

Reversible injury of the cell often leads to loss of specialized surface struc
tures such as microvilli. These cells also show mild swelling of mitochondria. 
The glycogen stores are depleted, endoplasmic reticulum is dilated, ribosomes 
are detached, and chromatin is clumped irregularly at the nuclear membrane 
(TRUMP et al. 1981, 1982b). In the case of irreversible injury when necrosis sets 
in, the most characteristic effects occur in mitochondria (JENNINGS and REIMER 
1981). These include gross swelling and granular changes in the matrix, repre
senting the earliest ultrastructural changes associated with necrosis. Actually, 
mitochondria playa central role in the regulation of necrosis. These subcellu
lar organelles can trigger cell death in a number of ways: by releasing and acti
vating various proteins that mediate cell death, by the disruption of energy 
metabolism and electron transport, and by the alteration of cellular redox 
potential. Any or all of these mechanisms may give an explanation of how 
mitochondrial defects contribute to the pathogenesis of aging and of several 
human diseases (GREEN and REED 1998). During this process ribosomes are 
disintegrated and damage develops in the continuity of the plasma membrane 
and in the membranes of various subcellular organelles. Eventually the irreg
ularly clumped chromatin disappears (WALKER et al. 1988). 

By light microscopy the necrotic cells appear initially swollen, cytoplasm 
is eosinophilic, and nuclei show uniformly condensed chromatin (karyor
rhexis), or pyknosis. Later, there is a dissolution of the chromatin masses 
(karyolysis). Ultimately, the necrotic cells are removed by phagocytes, and 
accompanied by an inflammatory reaction (WALKER et al. 1988). 

III. Biochemistry 

The biochemical changes are associated with the occurrence of a marked 
increase in the permeability of mitochondria and plasma membranes (TRUMP 
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et al. 1982a). As a consequence, some components are leaving the cell and 
other electron-dense materials accumulate (HOFFSTEIN et al. 1975; WYLLIE 
et al. 1980). Trauma, toxic chemicals or a failure of the membrane pump con
nected with cellular energy depletion triggers off the move of cations from the 
cell and the accompanying fluid entry into the cell causes swelling (hydropic 
degeneration) (BUCKLEY 1972; SCHANNE et al.1979; TRUMP et al.1981; JENNINGS 
and REIMER 1981). When the electrolyte movement is severe, increased 
concentration of calcium activates membrane-bound phospholipases which 
metabolize phospholipid to lysophospholipid and fatty acids (TRUMP et al. 
1982a; CHIEN et al. 1978; FARBER et al. 1981). This effect disrupts membrane 
continuity directly and indirectly by the detergent-like action of long chain 
fatty acid derivatives (CHIEN et al. 1978). 

The accumulation of granular mitochondrial matrix residues is initiated 
by excess cytosolic calcium (TRUMP et al. 1982a). At the beginning of the injury 
this consists of inorganic calcium salt deposits and it also contains denatured 
matrix proteins in late stages of the evolution of necrosis. Following the loss 
of membrane integrity, cellular homeostasis is impaired and hydro lases are 
released from ruptured lysosomes. These potent enzymes cause a rapid accel
eration of cellular disintegration. Consequently the concentrations of phos
pholipid, protein, RNA, DNA, and triglycerides rapidly decrease and the 
amounts of free amino acids, phosphates and fatty acids increase (TRUMP et al. 
1981, 1982b). 

D. Features of Apoptosis 
I. Occurrence 

Apoptosis is involved in the programmed elimination of cells in physiological 
conditions. This is an irreversible mechanism for the elimination of excess or 
damaged cells. Apoptosis also occurs during embryonic and fetal development. 
In adult life apoptosis regulates the size of organs and tissues. In pathological 
conditions apoptosis is responsible for the reduction of cells in different types 
of atrophy and in the regression of hyperplasia. It develops spontaneously in 
cancer cells and it is increased in both neoplasm and during normal cell pro
liferation triggered by a variety of agents applied in cancer chemotherapy. 
Apoptosis is enhanced by cell-mediated immune reactions and various toxins 
that also produce necrosis. 

II. Morphology 

Apoptosis manifests in single cells scattered in the affected organ in an "asyn
chronous" (apparently random) fashion and it is not associated with inflamma
tion (WYLLIE et al. 1980; SEARLE et al. 1982; KERR et al. 1987; WALKER et al. 
1988). Electron microscopic studies show, at the earliest stage, that nuclear 
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chromatin is aggregated into dense masses attached to the nuclear membrane 
and that cytoplasm becomes concentrated. These changes are followed by 
further condensation of the cytoplasm and the nucleus breaks up into small 
fragments. The chromatin is segregated and some protuberances develop on 
the cell surface (blebbing). The pedunculated protuberances are separate and 
with bounded plasmalemmal sealing membrane apoptotic bodies are pro
duced. These dense masses have a different texture from the chromatin and 
are sometimes present in the lucent part of nuclei or in their fragments. The 
condensation of the cytoplasm is often associated with the formation of vac
uoles. The nuclear fragmentation and cellular budding usually characterize 
cells with a high nuclei-cytoplasm ratio such as in thymocytes (WYLLIE et al. 
1980). In the acinar cells of salivary gland and pancreas the rough endoplas
mic reticulum is rearranged into whorls before the cell becomes fragmented 
(WALKER 1987). 

The apoptotic bodies are usually quickly phagocytosed by neighboring 
cells and degraded with phagolysosomes. In epithelial and tumor cells similar 
processes manifest and specialized mononuclear phagocytes also participate 
in the degradation (WYLLIE et al. 1980; KERR et al. 1987). In lining epithelia 
the apoptotic bodies are extruded from the surface (SEARLE et al. 1975; DON 
et al. 1977; WYLLIE 1981). 

Light microscopic studies of apoptosis show diverse pictures. The shrink
age and budding of the cell is complete within a few minutes and discrete 
apoptotic bodies can be demonstrated at the end of the process (SANDERSON 
1976; MATTER 1979). The size of the apoptotic bodies varies considerably. They 
are round or oval, some represent a single relatively large nuclear fragment 
surrounded by a thin cytoplasmic rim, others mostly consist of cytoplasm with 
a variable number of nuclear fragments. 

III. Biochemistry 

Early investigations of apoptosis revealed that it is an active process rather 
than simply degeneration of the cell (KERR 1971). It is connected with cyto
plasmic and membrane surface changes, protein synthesis, and internucleo
some cleavage of DNA. 

The process of condensation observed by ultrastructural examinations and 
associated with an increased density suggest that the surface convolution and 
the removal of the apoptotic bodies are associated with redistribution of cyto
plasmic microfilaments (CLOUSTON and KERR 1979; WYLLIE and MORRIS 1982). 
The rapid uptake of apoptotic bodies by neighboring cells probably depends 
on carbohydrate changes on the surface of these bodies. It may be that the 
carbohydrate changes represent the consequences of incorporation into the 
plasmalemma of membranes surrounding the cytoplasmic vacuoles that are 
formed during the development of apoptotic bodies. Actually, a discharge of 
the vacuole content has been described (KERR 1969, 1970; GALILI et al. 1982). 
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In the early stages of apoptosis, lysosomes are intact and it is unlikely 
that lysosomal enzymes are involved in triggering of this type of cell death 
(KERR 1967, 1971). 

Protein synthesis seems to be a requirement in the formation of the apop
totic bodies. Inhibitors of protein synthesis suppress the occurrence of apop
tosis of thymocytes and chronic lymphocytic leukemia cells treated with 
glucocorticoids (GALILI et al. 1982; COHEN et al. 1984; WYLLIE et al. 1984). 
Protein synthesis inhibitors also reduce the formation of apoptotic bodies in 
T lymphocytes deprived of interleukin-2 (WYLLIE 1981), in epithelial cells at 
the plane of fusion of the palliative processes in normal rat embryo (PRATT 
and GREEN 1976), and in various cells exposed to radiation or to cytotoxic 
drugs (LIEBERMAN et al.1970; BEN-ISHAY and FARBER 1975; COHEN et al. 1985). 
All of these results indicate that protein synthesis is a required process in the 
development of apoptosis, but it is uncertain what the role of these proteins 
is. The synthesis of several proteins is increased following the treatment of thy
mocytes with glucocorticoids (VORIS and YOUNG 1981) but, in contrast, protein 
synthesis inhibitors do not block apoptosis induced by T lymphocytes (DUKE 
et al. 1983). 

Among the biochemical events of apoptosis the double-strand cleavage of 
nuclear DNA at the regions between nucleosomes is reported for all cell types. 
This cleavage produces oligonucleosome fragments and it is catalyzed by 
endonuclease enzyme (WYLLIE 1980; SHALKA et al. 1981; COMPTON and 
CIDLOWSKI 1986). The endonuclease activity and DNA breakdown is inhibited 
by zinc (DUVALL and WYLLIE 1986). Some papers have reported that zinc 
deficiency enhances apoptosis in gut crypts (ELMES 1977; ELMES and JONES 
1980). 

Several recent studies have shown that the activation of the interleukin
I-beta-converting enzyme/Ced-3 family of proteases represents the end point 
in apoptotic cell death (FRASER and EVAN 1996). Other investigations have 
indicated that the loss of mitochondrial membrane potential is the critical step 
in cell death (ZAMZAMI et al. 1996; HENKART and GRINSTEIN 1996). Many 
members of the Bcl-2 family of genes play major roles in the regulation of the 
programmed cell death in many systems (YANG and KORSMEYER 1996). This 
family, including Bcl-x], are potent inhibitors that modulate cell death through 
inhibition of activation of caspases, a family of cysteine proteases (FRASER and 
EVAN 1996; CHENG et al. 1997; NAWA et al. 1998). In this way Bcl-xi may facil
itate protection against cell death (CLEM et al. 1998). Bcl-xi can prevent apop
tosis and maintain cell viability by averting loss of mitochondrial membrane 
potential that occurs as a consequence of the interleukin 1f3-converting 
enzyme/Ced-3 protease activation (BOISE and THOMPSON 1998). The break
down of Bcl-xi during the execution phase of cell death converts it from a pro
tective to a lethal protein (CLEM et al. 1998). 

Apoptosis is involved in the death of hematopoietic progenitor cells after 
removal of the appropriate colony-stimulating factor. Pharmacological inves
tigations indicated the role of protein kinase C in the suppression of apopto-
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sis in interleukin-3 and granulocyte-macrophage-colony-stimulating factor 
dependent human myeloid cells (RAJOTIE et al. 1992; RINARDO et al. 1995). 
Overexpression of some protein kinase C isoform in factor-dependent human 
TF-1 cells enhances cell survival in the absence of cytokine. This affect is asso
ciated with an induction of Bcl-2 protein expression, an increase over the levels 
in empty vector transfections (GUBINA et al. 1998). 

E. Activation of Apoptosis 
The presence of apoptosis develops in four different phases. First, the pres
ence of genes regulates the occurrence of programmed cell death. This pre
requisite has been documented in developing organisms (ELLIS and HORVITZ 
1986; SCHWARTZ et al. 1990) and in cell cultures (EVAN et al. 1992). Second, 
various signals trigger off the genetic program or an unbalanced signaling 
system can prevent the action of repressors. Specific signaling molecules 
include calcium ions, glucocorticoid hormones, and sphingomyelin. Initiation 
can also occur by imbalanced signaling such as lack of a growth factor (KYPRI
ANOU and ISAACS 1988) or due to a toxicant action the signaling pathway is 
inhibited (Aw et al. 1990). Third, the progression of the condition leads to the 
expression of genes manifesting in structural alterations such as cytoskeletal 
changes, cell shrinkage, nuclear pyknosis, chromatin changes, and DNA frag
mentation (ARENDS and WYLLIE 1991). Fourth and finally, death and engulf
ment by phagocytosis of the whole cell or cell fragments terminates the 
apoptotic process (SAVILL et al. 1993) (Fig. 3). 

Apoptotic signaling cascades are expressed in most if not all cells, and they 
are usually present in inactive forms (WYLLIE et al. 1980; RAFF et al. 1993). 
Apoptosis can be triggered by a variety of physiological and stress stimuli 
which initiate one or several distinct signaling pathways (Fig. 4). The activa
tion of the specific pathway is dependent on the cell type and on the subcel
lular organelles, being the target of each type of stress. The various signaling 
pathways converge into a common final effector mechanism that disintegrates 
the dying cell (YUAN et al. 1993). The activation mechanism includes the 
ICE/Ced-3 family of cysteine proteases that reorganize subcellular structures 
in an orderly fashion. The integrity of plasma membrane is preserved and 
the disintegrated subcellular organelles are aggregated into membrane-bound 
vesicles called apoptotic bodies. Cellular fragments or dead cells are finally 
eliminated by neighboring cells or macrophages, by phagocytosis. The overall 
result of this process is that individual cells can be abolished without an 
inflammatory reaction producing tissue damage. 

Intracellular Ca2+ signals activate apoptosis (NICOTERA et al. 1994). 
Calcium overload can trigger several lethal processes including disruption of 
the cytoskeletal organization, DNA damage, and mitochondrial dysfunction. 
When Ca2+ accumulates within the cytoplasm or other intracellular compart
ments, sudden increase of intracellular Ca2+ can quickly lead to cell necrosis, 
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Fig.3. Example of cell death by apoptosis. This is a photomicrograph of tumor tissue 
of a liver biopsy of a 58 year old man who has a large metastatic neuroendocrine car
cinoma in the liver. This section shows only tumor cells and frequent apoptotic cells 
evident (dark nuclei) in all areas of the tumor tissue. Haematoxylin and eosin stain, 
x300 

and disturbances of Ca2+ signaling can also induce apoptosis (MCCONKEY et al. 
1990) (Fig. 5). Removal of extracellular Ca2+ can prevent nuclear changes man
ifest in apoptosis such as apoptotic body formation and DNA degradation, 
demonstrating Ca2+ requirement in apoptosis (NICOTERA et al. 1994). Trans
fection of WE HI 7.2 thymoma cells with calbindin, a Ca2+-binding protein, pre
vents apoptosis caused by calcium ionophore, cAMP, or glucocorticoids 
(DOWD et al. 1991). Several in vitro models of apoptosis are connected with a 
loss of the regulation of intracellular Ca2+ level and activation of Ca2+-depen
dent endonuclease activity (MCCONKEY et al. 1988). Ca2+-mediated endonu
clease activation is associated with the cytotoxicity of tributyltin and TCDD 
in thymocytes (MCCONKEY et al. 1988; Aw et al.1990). Ca2+ can induce endonu
clease activity and initiate apoptosis in malignant cells and in cells infected 
with viruses (NICOTERA et al. 1994). 

Several studies described the sphingomyelin signal transduction pathway 
as an essential part in the mediation of apoptosis related to environmental 
stresses and to several cell surface receptors (KOLESNTCK and GOLDE 1994; 
VERHEY et al. 1996). The sphingomyelin pathway is ubiquitous. Most, and prob
ably all, mammalian cells are capable of signaling through the sphingomyelin 
system. The functioning sphingomyelin pathway is connected with the forma-
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Fig. 4. Schematic illustration of various steps of apop
to sis. Scheme represents cell death due to apoptosis. 
Various stimuli such as radiation, thermal actions, 
steroids, withdrawal of trophic hormones, cytokines 
and other growth factors, oxidants and other cytotoxic 
chemicals, anticancer agents, autoimmune disease, cell
mediated immunity, viral infections, activated signaling 
agents, and caspase cascade via gene regulation leading 
to structural damage, death, and elimination of cell 
debris by phagocytosis, or by macrophages originating 
from neighboring cells 

Stimulus 

1 
Gene Regulation 

1 
Signaling 

1 
Expression of Genes 

1 
Structural Alterations 

1 
Phagocytosis 

DNA D,m~R"".'O~ 7~:::~""' g;:,,!:~w 
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Stiml'ation _ Inhibition .....-yiral Proteins 
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~ Actratio~ Cytotoxic Teells 

Cell Surface Endonuclease Cytoskeletal 
Activation Activation Damage 

1 . 
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Fig. 5. Schematic illustration of various phases of apoptosis. The contribution of apop
tosis to the pathogenesis of disease is rapid, leading to phagocytosis. Various stimuli 
affect the caspase cascade through signaling agents. The Bcl-2 family of proteins and 
some viral proteins such as crmA and p35 are known inhibitors of apoptosis. Although 
these events are important in the development of apoptosis, the mechanism of action 
of inhibition and the targets for the caspase cascade have not yet been identified 
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tion of ceramide that acts as a secondary messenger by activating a variety of 
cell functions (SPIEGEL et al.1996; BALLON et al. 1996). Distinct receptors signal 
via the sphingomyelin pathway following ligand binding. Cerami de mediates 
apoptosis and several cellular functions, including differentiation of promye
locytes, proliferation of fibroblasts, and the survival of T9 glioma cells. The 
involvement of the sphingomyelin signaling system in apoptosis is associated 
with stress activation of acid sphingomyelinase to produce ceramide, and 
cerami de as a secondary messenger initiates apoptosis. Several environmental 
stresses that induce apoptosis such as ionizing radiation, heat shock, exposure 
to UV-C rays, and oxidative stress bring about rapid generation of ceramide 
through the activation of sphingomyelinase (HAIMOVITz-FRIEDMAN et al. 1994; 
VERHIRJ et al. 1996). Understanding the role of pro- and antiapoptotic signal
ing involved in apoptosis mediated by ceramide, including their mode of 
action, may provide an opportunity to develop pharmacological means for 
intervention in the process of apoptosis (HAIMOVITZ-FRIEDMAN et al. 1997). 

F. Incidence of Apoptosis 
I. Physiological Conditions 

1. Embryonic and Fetal Development 

Controlled cell death is part of normal development. Several morphological 
studies reported that apoptosis is involved in the programmed elimination of 
cells during the embryonic and fetal period such as the deletion of the redun
dant epithelium at the plane of fusion of the palatine processes (HASSEL 1975), 
in the differentiation of the gut mucosa (HARMON et al. 1984; PIPON and STERLE 
1986) and the retina (YOUNG 1984; PENFOLD and PROVIS 1986), and in the 
removal of interdigital webs (KERR et al. 1987). 

2. Cell Turnover in Adult Tissues 

Proliferating normal mammalian cells undergo spontaneous apoptosis, respon
sible for the continuous removal of the aged cells (KERR 1971; POTTER 1977; 
HUCKINS 1978; COLUMBANO et al. 1985; BURSCH et al. 1985; ALLAN et al. 1987). 
In the slowly proliferating cells apoptosis balances necrosis over a time period 
(WYLLIE et al. 1980), and the oscillation between these two processes may be 
regulated by soluble factors produced locally (LYNCH et al. 1986). In the rapidly 
proliferating cells the deletion of the cell is associated with movement from 
the site of production and apoptosis. These changes characterize the basal 
compartment of seminiferous tubules and gut crypts (POTTER 1977; ALLAN 
et al. 1987). 

During the normal terminal differentiation of cells, the double-strand 
cleavage of DNA shows great similarity to processes occurring in apoptosis. 
This is exemplified by the differentiation in the lens of the eye (ApPLEBY 
and MODAK 1977). Similarly, the residues of megakaryocytes remaining after 



Incidence of Apoptosis and Its Pathological and Biochemical Manifestations 13 

platelet release in bone marrow greatly resemble the typical ultrastructural 
changes associated with apoptosis (RADLEY and HALLER 1983). Apopto
tic bodies are found in lymphoid germinal centers of follicle cells due to 
apoptosis (SEARLE et al. 1982) and formed from macrophages in spleen 
(SWARTSENDHUBER and LONGDON 1963). 

3. Involution of Adult Tissues 

The growth of various cell populations is controlled by hormones and growth 
factors. Reduction or excess addition of these substances triggers off a rapid 
decrease of the cell number. In these circumstances, the fall of trophic hormone 
stimulation leading to cell deletion is connected with apoptosis. This occurs in 
the human premenstrual endometrium (HOPWOOD and LEVISON 1976), in 
the human breast towards the end of the menstrual cycle (FERGUSON and 
ANDERSON 1981), in the endometrium of the hamster at oestrus (SANDROW et al. 
1979), in the ewe endometrium following parturition (O'SHEA and WRIGHT 
1984), in the theca intern a of sheep ovarian follicles during atresia (O'SHEA 
et al.1978), and in the adrenal cortex of the neonatal rat (WYLLIE et al.1973). 

II. Pathological Conditions 

1. Regression of Hyperplasia 

In several cases in the processes of regression of hyperplasia, apoptosis is 
involved. This occurs after the removal of the proliferative stimulus produc
ing hyperplasia in hepatic parenchymal cells by phenobarbital, lead nitrate, or 
cyproterone acetate (COLUMBANO et al.1985; BURSCH et al.1986), bile duct pro
liferation brought about by a-naphthyl isothiocyanate or ligation of the main 
bile duct (BHATHAL and GALL 1985), or pancreatic hyperplasia induced by 
trypsin inhibitor (OATES et al.1986). In some cases hormone withdrawal is con
nected with the occurrence of apoptotic processes such as hormone-induced 
hyperplasia of the adrenal cortex (WYLLIE et al. 1980). Apoptosis is reported 
in renal parenchyma atrophy in hydronephrosis (KERR et al. 1984) and in 
hepatic atrophy brought about by mild ischemia (KERR et al. 1984). Apopto
sis occurs in many tissue regressions and, in normal animals, apoptosis is 
involved in the catagen involution of hair follicles (WEEDON and STRATTIN 
1981) and resorption of tissue around erupting teeth (SCHELLENS et al. 1982). 
Pancreas atrophy and salivary gland duct obstruction is associated with 
enhanced loss of secretory cells by apoptosis (POTTER 1977; MATHER 1979; 
WALKER 1987) and apoptotic changes in the vascular endothelial cells (POTTER 
1977). Apoptosis is involved in normal regression of the corpus luteum (AZMI 
and O'SHEA 1982). 

2. Pathological Atrophy 

This is frequently associated with increased levels or withdrawal of hormones, 
or with the reduction of growth factor. Increased progesterone levels bring 
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about apoptosis in cat oviduct lining (VERHAGE et al. 1984); increased gluco
corticoids induce apoptosis in chronic lymphocytic leukemia cells (GALILI et 
al. 1982), in the cells of some lymphoid lines (BREWITT et al. 1983), and in thy
mocytes (LAPUSHIN and DE HARVEN 1971). Castration leading to pathological 
atrophy of the rat prostate or withdrawal of testosterone stimulation are con
nected with apoptosis of the epithelial cells (KERR et al. 1973; STIENS et al. 1981; 
STANFORD et al. 1984). Withdrawal of adrenocorticotropic hormone by excess 
prednisone administration significantly increases apoptosis in the adrenal 
cortex of rats (WYLLIE et al. 1973). 

In T lymphocytes isolated from the blood of patients with infectious 
mononucleosis the withdrawal of the T lymphocyte growth factor, interleukin-
2, induces apoptosis (Moss et al. 1985; BISHOP et al. 1985). 

3. Drugs 

Many drugs induce apoptosis in experimental condition or as side effects 
(UREN and VAUX 1996). Some of these actions are direct and affect the death 
pathway and some drugs interfere with biochemical mechanisms, the effect 
indirectly leading to apoptosis; for example, azide administration inhibits 
ATP synthesis and diphtheria toxin interferes with protein synthesis and 
subsequently apoptosis is induced. Since various pharmacological agents 
provoke the same reaction, it may be that the effect of drugs is associated 
with a nonspecific stress response leading to the formation of apoptotic bodies 
(Table 2). 

4. Toxic Chemicals 

Chronic copper administration is connected with an increased hepatic apop
tosis in sheep (KING and BRENNER 1979). Acute lethal doses of copper or 
mercury in rainbow trout cause massive apoptosis in the gills (HOFF STEIN et 
al. 1975). Various hepatotoxins such as 1,1-dichloroethylene, albitocin, and 
heliotrine given to experimental animals in high doses produce zonal necro
sis, and administered in smaller doses they enhance apoptosis in less severely 
affected hepatic parenchyma (KERR 1967, 1969, 1970). Colchicine causes apop
tosis in gut crypt (DUNCAN and HEDDLE 1984), interphase lymphocytes (BoM
BASIREVIC et al. 1985), and affects microtubules. Toxic plant proteins, mycin, 
diphtheria toxin, and inhibitors of protein synthesis all induce apoptosis in 
the mouse colonic crypts (GRIFFITH et al. 1987). Apoptosis is also involved in 
the damage of the adrenal cortex of rats brought about by 9,l0-dimethyl-
1,2-benz(a)anthracene (KERR 1972). In acute mesodermal cell death, the 
apoptotic changes produced by the teratogenic compound 7-hydroxymethyl-
12-methylbenz(a)anthracene in the developing rat are probably the conse
quence of the site-specific induction of this condition in the embryo 
(CRAWFORD et al. 1972). Shiga toxin formed from Shigella dysenteriae causes 
apoptosis in the absorptive epithelial cells of the rabbit small intestine 
(KEENAN et al. 1986). 
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Table 2. Inducers of Apoptosis 

Physiological Factors 
Calcium 
Glucocorticoids 
Growth factor 

withdrawal 
Loss of matrix 

attachment 
Neurotransmitters 

Dopamine 
Glutamate 
N-Methyl-D-aspartate 

Toxins 
Abrin 
Albitocin 
j3-Amyloid peptide 
Aphidicolin 
Azide 
Colcemid 
Colchicine 
Copper salts 
1,1-Dichloroethylene 
Ethanol 
Heliotrine 
Mercury salts 
Mycin 
Raw soya flour 
Ricin 

Damage Inducers 
Antimetabolites 
Bacterial toxins 

Diphteria toxin 
Heliobacter 
pylori toxin 
Shiga toxin 

Cytotoxic T cells 
Free radicals 
Heat shock 
Nutrient deprivation 
Oncogenes 

MYC, rei, EIA 
Oxidants 
Viral infection 

Chemotherapeutic 
Drugs 

Adriamycin 
Bleomycin 
Cisplatin 
Cytosine arabinoside 

(Ara-C) 
Doxorubicin 
Etoposide 
Methotrexate 
Myleran 
Taxol 
Vincristine 

Cytotoxic Agents 
Actinomycin D 
Aphidicolin 
Bischlorethylnitrosourea 
Colcemide 
Cycloheximide 
Cyclophosphamide 
Dichlofenac sodium (Voltarol) 
5-Fluorouracil 
Hydroxyurea 
Isopropyl-methane sulphonate 
Mechlorethamine (nitrogen 

mustard) 
Mefenamic acid 
Mitomycin 
Triethylenethiophosphoramide 
[3H] Thymidine 

Cancer Causing Agents 
7,12-Dimethylbenz( a) anthracene 
9,1O-Dimethylbenz(a) anthracene 
1,2-Dimethylhydrazine 
7 -Hydroxymethylbenz( a ) anthracene 

Therapeutic Treatments 
Hyperthermia 
Gamma radiation 
Tritium beta particles 
UV radiation 
X-ray radiation 

Treatment of several cultured mammalian cells with cell cycle phase 
specific anti proliferative drugs commonly results in apoptosis (BARRY et al. 
1990). The cytotoxic outcome of low concentrations of colcemid, an anti
mitotic drug, on He La 53 cells is the induction of multipolar spindles and mul
tipolar divisions. Aphidicolin, an inhibitor of DNA synthesis, causes apoptosis 
which varies as a function of aphidicolin concentration. It occurs later after 
the cells have progressed through the S phase (SHERWOOD and SCHIMKE 1994). 
These results indicate that the target of drug action in the cell cycle differs 
with colcemid and aphidicolin, which is of secondary importance in the induc
tion of cytotoxicity and apoptosis. 

5. Chemical Carcinogens and Cancer Chemotherapy Agents 

Many different chemical carcinogens cause nuclear abnormalities associated 
with apoptotic body formation in proliferating epithelial cells in the gut of 
mice (MASKENS 1979; RONEN and HEDDLE 1984). Apoptosis is also involved in 
the action of several cancer-chemotherapeutic agents on normal proliferating 
cells and on neoplastic cell population (IRIJI and POTIER 1983; BENNETT et al. 
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1984). These substances included dimethylhydrazine, I-j3-d-arabinofurasonyl
cytosine (ara-C). The extent of apoptosis and subsequent cell death induced 
in proliferating tissues by these chemicals are not correlated with the rate of 
mitosis. Several cancer-chemotherapeutic agents produce more apoptotic 
bodies than occur in physiological conditions in normal highly proliferative 
tissues. The mechanism of action of these substances has not yet been estab
lished. It may be associated with their action on DNA, causing damage and 
affecting DNA turnover and repair. 

Apoptosis induced by the cancer chemotherapy drugs ara-C, taxol, or 
etoposide in human acute myelogenous leukemic HL-60 cells is inhibited by 
the overexpression of Bcl-2 or Bcl-xi. Taxol treatment brings about a molecu
lar cascade of apoptosis, represented by an increase of cytochrome c and 
poly(ADP-ribose) polymerase or the DNA fragmentation factor cleavage 
activity of caspase-3. Taxol also raises phosphorylation of Bcl-2. This action 
and the mobility shift is associated with the 60 amino acid loop domain of Bcl-
2 and Bcl-xi which contains the phosphorylation sites and participates in the 
negative regulation of the antiapoptotic action of these gene proteins (FANG 
et al. 1998). 

6. Radiation and Hyperthermia 

Ionizing radiation induced by gamma ray, X-ray, or exposure to ultraviolet 
light significantly increases apoptosis in lymphocytes of the mouse intestinal 
epithelium (PRATT and SODILEFF 1972; GUNN et al. 1979; DUNCAN et al. 1983; 
SZEKELY and LOBREU 1985). Ionizing radiation generates reactive oxygen 
species and damages DNA, and its production of apoptosis is possibly related 
to these conditions. These treatments also greatly enhance the formation of 
apoptotic bodies in normal proliferating fetal and adult cell popUlations 
(POTTER 1977, 1985; HENDRY et al.1982; ALLAN et al.1987). Radiation of tumor 
cells causes both necrosis and apoptosis and necrosis is more advanced in 
certain cases (IRIJI and POTTER 1983, 1984). Mild hyperthermia brings about 
DNA damage and an inhibition of the DNA repair mechanism associated with 
the formation of apoptotic bodies in micronuclei (FORRITSMA and KONINGS 
1986). 

III. Disease Conditions 

1. Cell-Mediated Immunity 

Apoptosis plays an important role in the function of the immune system. This 
process is essential in the control of immune responses, cytotoxic killing, and 
in the elimination of immune cells recognizing self-antigens (EKERT and VAUX 
1997). Several regulators of apoptosis have been identified such as the CD95 
(also called Fas-ligand), and the Bcl-2 family of gene proteins. Malfunctioning 
of the immune system may be associated with reduced or enhanced cell death. 
Abnormality in the regulation of the apoptotic processes may lead to a variety 
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of diseases including immunodeficiency and autoimmune disorders. The 
control of cell proliferation and the selection against autoreactive cells in the 
lymphoid system, i.e., the maintenance of homeostasis in the immune system 
is affected by the induction of apoptosis, e.g., autoreactive T cells are deleted 
by the process of apoptosis (OSBORNE 1996). 

Cell mediated immune reactions are intrinsically associated with apopto
sis. Apoptosis is the cause of programmed cell death (Fig. 6) in a great number 
of diseases where cell-mediated immune destruction of the tissues represents 
the underlying mechanism including acute and chronic hepatitis (KERR et al. 
1984). In these cases acidophilic or Councilman bodies consist of apoptotic 
bodies. Apoptosis is also involved in primary biliary cirrhosis (BERNAVAN et al. 
1981). The development of apoptosis has been reported following liver graft 
rejection (SEARLE et al. 1977), and in acute graft-versus-host disease in the 
human rectal epithelium (GALLUCCI et al. 1982). Features of apoptosis are 
present during cell death brought about by in vitro attachment of natural killer 
cells (BISHOP and WHITING 1983), K cells (SANDERSON and THOMAS 1977), or T 
cells (SANDERSON 1976a,b; LIEPINS et al. 1977; DON et al. 1977; MATTER 1979). 
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Fig.6. Schematic illustration of the control and execution of programmed cell deaths. 
This scheme represents the control and execution stage of programmed death. Signal
ization occurs by the action of signals such as elevation of Ca2+, glucocorticoids, and 
the sphingomyelin system, leading to the release of members of the caspase family 
through adaptors or connecting molecules such as RAIDD, FADD, or FLICE. The 
caspase cascade interacts with mitochondria on the large prodomain through the 
members of the Bel-2 family such as Bel-2, Bel-xl, CED-9 (Fas), BAD and Bax. This 
cascade is further amplified on the small prodomain through cytochrome C and AIF, 
leading to structural damage and death 
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The destruction of massive lymphoma cells in an in vitro culture by allogenic 
macro phages collected from the peritoneum of mice previously immunized 
with lymphoma is also associated with morphological changes characteristic 
of apoptosis. Biochemical investigations reported that in these circumstances 
the cleavage of nuclear DNA in the target cell is similar to apoptotic changes 
manifested in other conditions (COHEN et al. 1985; DUKE et al. 1983). 

Some autoimmune diseases are correlated with gene abnormalities asso
ciated with the induction of apoptosis. A rare lymphoproliferative disorder of 
autoimmune origin in children is due to a mutation in the gene for CD95 
(FISHER et al. 1995). An autoimmune disorder resembling systemic lupus ery
thematosus, reported in mice, is connected with the lack of functional CD95, 
or defects in Fas antigen that mediates apoptosis (WATANABE et al. 1992), or 
with the enforced expression of the Bcl-2 transgene in B-Iymphoid cells 
(STRASSER et al. 1991). 

The potent inflammatory cells, eosinophils, are involved in chronic aller
gic diseases (SIMON and BLASER 1995). Certain cytokines inhibit apoptosis of 
eosinophils causing tissue eosinophilia. This inhibition is expressed in the anti
apoptotic genes Bc-02, Bcl-xh and A), and spontaneous eosinophil apoptosis 
is connected with a decrease of protein and mRNA levels in Bcl-xl (DIBBERT 
et al. 1998). In the regulation of eosinophil apoptosis Fas ligand/Fas receptor 
molecular interactions have been suggested. It was also shown that tyrosine 
phosphorylation is an important step in the development of the Fas receptor
linked transmembrane death signal in eosinophils (SIMON et al. 1998). A new 
signaling protein that specifically binds to the Fas death domain has been 
identified (YANG et al. 1997). Overexpression of this protein enhances Fas 
mediated apoptosis. 

Fas-ligand induces apoptotic cell death in most cells that express its recep
tor (GREEN and WARE 1997). Fas-bearing cells include cells of the immune 
system and in this way tissues that naturally contain Fas-ligand kill infiltrating 
lymphocytes and inflammatory cells. Other roles of Fas in the body include 
the activation of cytotoxic T lymphocytes that often express high levels of 
Fas-ligand and hence the ability of Fas-ligand to kill cells bearing Fas accounts 
for some destructive effects mediated by these cells. Fas-ligand, therefore, not 
only protects tissues from immune assault but can also damage tissues express
ing Fas. 

2. Ischemia 

Some investigators revealed that during an ischemic attack, due to the loss of 
blood supply, not only necrosis manifests but apoptotic cell death also occurs 
(BARR and TOMEI 1994). Outside the central ischemic zone cells die over a more 
protracted time period by apoptosis (SCHUMER et al.1992). In a culture of both 
cardiac myocytes and neurons, ischemia induces apoptosis (GOTTLIEB et al. 
1994). Inhibitors of apoptosis (Table 3) limit the infarct size in vitro (SCHUMER 
et al. 1992). Reperfusion of ischemic tissue is also associated with apoptosis 
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Table 3. Inhibitors of apoptosis 

Physiological Factors Pharmacological Agents Viral Genes 

Androgens Calpain inhibitors Adenovirus E1B 
CD40 ligand 
Estrogen 
Extracellular matrix 
Growth factors 
Neutral amino acids 
Zinc salts 

Cystein protease inhibitors 
a-Hexochlorocyclohexane 
Phenobarbital 

African swine fever virus 
Baculovirus lAP 
Baculovirus p35 

PMA 
Miscellaneous drugs 

Cowpox virus 
Epstein-Barr virus 
Herpes virus 

Table 4. Diseases associated with increase or inhibition of apoptosis 

Increase 

Neurodegenerative disorders 
Alzheimer's disease 
Amyotrophic lateral sclerosis 
Cerebellar degeneration 
Parkinson's disease 
Retinitis pigmentosa 
Ischemic injury 
Myocardial infarction 
Reperfusion injury 
Stroke 
Viral infections 
AIDS 
Toxin-induced hepatic disease 
Alcohol 

Inhibition 

Autoimmune disorders 
Immune medicated glomerulonephritis 
Systemic lupus erythematosus 
Cancer 
Carcinomas with p53 mutations 
Follicular lymphomas 
Hormone-dependent tumours 
Breast cancer 
Ovarian cancer 
Prostate cancer 
Viral infections 
Adenoviruses 
Herpes viruses 
Pox viruses 

(SCHUMER et al. 1992; GOTTLIEB et al. 1994). This is connected with acute pro
duction of free radicals and flow of intracellular calcium, both potent induc
ers of apoptosis. 

3. Neurodegenerative Disorders 

A wide variety of neurodegenerative disorders are characterized by loss of 
neurons (IsAcsoN 1993). These include Parkinson's disease, Alzheimer's 
disease, spinal muscular atrophy, retinitis pigmentosa, amyotrophic lateral 
sclerosis, and various forms of cerebellar degeneration. In these diseases 
(Table 4) apoptotic cell death is suggested as the underlying mechanism. Many 
external and internal factors may contribute to the gradual loss of neurons 
such as calcium toxicity, excitatory toxicity, oxidative stress, mitochondrial 
lesions, deficiency of survival factors. Each of these factors contributes to the 
pathogenesis by predisposing the neurons to apoptosis (CHO! 1992; Zrv et al. 
1993). 
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The presence of Lewy bodies, eosinophilic inclusions, are consistently 
observed in Parkinson's disease (LANG and LOZANO 1998). Lewy bodies have 
a dense spherical hyaline core and a variety of other constituents: structural 
filament, enzymes such as kinase and phosphatase, and cytosolic proteins are 
trapped in the granules during their formation. The Lewy body may represent 
a non-specific feature of Parkinson's disease and be unrelated to its patho
genesis, since these bodies are found in small numbers in other neurodegen
erative diseases. 

In Alzheimer's disease, extracellular deposits of amyloid f3 protein accu
mulates progressively in the plaques. Cerebral formation of amyloid fibers is 
probably the first event in the pathogenesis of Alzheimer's disease and the 
amyloid f3protein may be responsible for the induction of apoptosis in neurons 
(Loo et al. 1993). Antioxidants can reverse the effect (LAFERLA et al. 1995). A 
recent experimental model of rat cerebellar granule neurons indicate that neu
ronal apoptosis is connected with an increase of metabolic products from 
amyloid f3 protein induced by f3-secretase cleavage (GALLI et al. 1998). 

Most cases of early-onset Alzheimer's disease are connected with muta
tions of genes encoding presenilin 1 and 2 proteins, which are processed by a 
regulated endoproteolysis. During apoptosis these proteins are cleaved by a 
caspase family protease, suggesting a potential role for apoptosis-associated 
breakdown of presenilins in the development of Alzheimer's disease (KIM 
et al. 1997). 

In patients with amyotrophic lateral sclerosis having the form of copper
zinc superoxide desmutase mutation, apoptosis is produced when they 
are exposed to free radicals. The superoxide-induced cell death can be in
hibited by treatment with antioxidants or survival growth factors (TROY and 
SHELANSKI 1994). 

Retinal degeneration is associated with the mutation of either rhodopsin, 
or peripherin, or f3 subunit of cyclic guanosine monophosphate phosphodi
esterase gene. Any of these three mutations can lead to photoreceptor 
apoptosis (CHANG et al. 1993). This condition is initiated by the accu
mulation of mutant proteins or altered functional properties of these 
proteins. 

Spinal muscular atrophies are characterized by progressive spinal cord 
motor neuron depletion. One of the genes associated with these disorders is 
the neuronal apoptosis inhibitory protein (RoY et al. 1995). In patients with 
spinal muscular atrophy, mutations in the gene may make motor neurons 
become more susceptible to apoptosis. 

4. Blood Cell Disorders 

The regulation of hematopoiesis is influenced by a number of growth factors 
including erythropoietin, thrombopoietin, stem cell factor, and colony
stimulating factors (FLEISCHMAN 1993). Hematopoietic growth factors are 
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also required to support the survival of their target cells. If growth factors 
are absent or present only in low concentrations, apoptosis is developed. 
Hematopoietic growth factors are also essential in the survival of postmitotic 
blood cells such as neutrophils. Hematopoietic growth factors control blood 
cell production partly by inhibiting the occurrence of apoptosis (FAIRBAIRN 
et al. 1993). 

Several hematological disorders are connected with reduced production 
of blood cells such as aplastic anemia, anemia associated with chronic disease, 
chronic neutropenia, and myelodysplastic syndromes. In some forms of these 
conditions, enhanced apoptotic cell death occurs in the bone marrow (BLACK
WELL and CRAWFORD 1992). Probably one cause of this condition is an activa
tion of genes that promote apoptosis. 

5. Malignant Neoplasms 

In a variety of malignant tumors apoptotic bodies are formed spontaneously, 
such as in squamous cell carcinoma (EL-LABBAN and Os ORIS-HERRERA 1986), 
basal cell carcinoma (KERR and SEARLE 1972), breast cancer (MENDELSOHN 
1960), leukemia (HUGGINS et al. 1974), and other malignancies (SEARLE et al. 
1973, 1975), sometimes resulting in significant loss of cells. Apoptotic bodies 
are usually present in a scattered fashion throughout the whole tumor. Exper
imental carcinogenesis studies in rat liver have revealed that apoptotic bodies 
are present in preneoplastic cells and in the subsequently formed overt carci
noma (BURSCH et al. 1984; COLUMBANO et al. 1984). It seems that environ
mental factors participate in the occurrence of apoptosis. These factors include 
cell mediated immune changes (CURSON and WEEDON 1979), release of tumor 
necrosis factor (SARRAF and BOWEN 1986), and mild ischemia (PAULUS et al. 
1979; SHERIDAN et al. 1984). But since apoptosis occurs at the early stages of 
cancer, it is likely this form of cell death is at least partly associated with intrin
sic autoregulatory mechanisms. 

6. Viral Infection 

Cellular immune reactions participate in the elimination of damaged cells 
brought about by infection caused by certain viruses such as choriomeningi
tis virus (ZINKERNAGEL and DOHERTY 1966). This response is necessary to elim
inate the infectious agent, but this process may also affect the transformed 
cells. Through these reactions the infection sometimes induces apoptosis. 
Apoptosis is enhanced in the epithelial cells of rectal crypts in patients with 
acquired immunodeficiency syndrome (KOTLER et al. 1986). The apoptotic 
bodies are associated with the elimination of the virus-infected cells by phago
cytosis and thus prevent the dissemination of the virus particles (CLOUSTON 
and KERR 1985; ARIESEN and CAPRON 1991; MEYNARD et al. 1992). Apoptosis 
associated with the HIV virus not only affects the virus-infected cells but unin
fected cells are also depleted (FINKEL et al. 1995). The mechanism of this action 
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is connected with a cross-linkage of a glycoprotein in the viral envelope with 
a receptor in the cell (CD4), this sensitizes T-cells, and the apoptotic process 
is activated (BORDA et al. 1992). An HIV-encoded transactivator of viral and 
cellular genes may be involved in the induction of apoptosis (LI et al. 1995) 
and potentiate the killing of the cells (WESTENDORP et al. 1995). In the retina 
of scrapie virus infected hamsters apoptotic bodies have been found (HOGAN 
et al. 1981). Apoptosis of virus-infected cells can interrupt the replication of 
viruses and prevent the spread of infection to other cells (CLEM and MILLER 
1993; LEVINE et al. 1993). 

Transformation of fibroblasts, based on the activation of specific onco
genes and the functional inactivation of tumor suppressor genes, leads to the 
induction of apoptosis by transforming growth factor (TGF-f3)-treated neigh
boring untransformed cells (WEINBERG 1989; FEARON and VOGELSTEIN 1990). 
However, fibroblasts transformed by bovine papillomavirus showed resistance 
against intercellular induction of apoptosis (MELCHINGER et al. 1996). In chem
ically transformed (methylcholanthrene) fibroblast cells apoptosis could be 
developed by TFG-f3 treatment. The bovine papillomavirus transformed cells 
were also resistant to the induction of apoptosis by reduction of the intra
cellular glutathione level. 

7. Expression of Apoptosis in Other Diseases 

A type II membrane protein, named Fas ligand, induces apoptotic cell death 
when bound to Fas antigen (SUDA et al. 1993). Fas ligand is expressed in the 
spleen, thymus, lung, small and large intestine, uterus, testis, prostate, seminal 
vesicle, and activated T cells (FRENCH et al. 1996). The membrane-bound Fas 
ligand is transformed by a metalloproteinase to a soluble form (KAYAGAKI et 
al. 1995). The soluble form of Fas ligand was found in the serum of patients 
with rheumatic diseases (NOSAWA et al. 1997), chronic congestive heart failure 
(NISHIGAKI et al. 1997), granular lymphocytic leukemia, and natural killer cell 
lymphoma (TANAKA et al. 1996). Human soluble Fas ligand binds to Fas
bearing cells such as cardiomyocytes and T cells, and produces apoptosis 
(TANAKA et al. 1995). It has been suggested that soluble Fas ligand may cause 
systemic tissue damage when released into circulation (NAGATA and GOLSTEIN 
1995; TANAKA et al. 1995, 1996) and the ongoing loss of myocytes exerts an 
essential role in the pathogenesis of arrhythmogenic right ventricular dyspla
sia (MALLAT et al. 1996) and in end-stage heart failure (NARUDA et al. 1996). 
Recently another mechanism of T-cell mediated cytotoxicity was also pub
lished, based on the role of perforin (KAGI et al. 1994). In myocarditis, the 
development of myocardial cell damage is associated with perforin (SEKO et 
al. 1991). It seems, therefore, that in the destruction of myocytes the perforin
based pathway is essential, whereas further myocardial cell damage is associ
ated with the Fas-based mechanism, because it is followed by apoptosis of 
myocytes (TOYOSAKI et al. 1998). 
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In ulcerative colitis, characterized by chronic inflammation, one form of 
epithelial injury is associated with apoptosis. In the active lesions, the propor
tion of apoptotic cells is enhanced in the epithelia of the colon (LEE 1993). Fas 
is expressed on the epithelia in normal colon as well as in the in the colon with 
ulcerative colitis lesion. Fas ligand mediated apoptosis probably takes part in 
the epithelial injury. Fas ligand transcripts are expressed only in the affected 
mucosa in patients with active ulcerative colitis and Fas ligand mRNA is 
strongly expressed in T lymphocytes that infiltrate into the lamina propria of 
the damaged mucosa (YEYAMA et al. 1998). The binding of Fas ligand on T lym
phocytes induces apoptosis in the colon epithelia that express Fas, resulting in 
severe inflammation. Fas ligand mRNA positive cells infiltrating ulcerative 
colitis lesion are largely CD3 T lymphocytes. It seems that CD3 T lymphocytes 
with surface Fas ligand may be associated in the development of ulcerative 
colitis. Several publications revealed that the cross-linking of Fas by anti-Fas 
stimulate the production of interleukin 8 in colon epithelium (ABREU-MARTIN 
et al. 1995). Interleukin 8 is a potent inducer of neutrophil and lymphocyte 
migration (LARSEN et al. 1989; LINDLEY et al. 1988). Thus the high expression 
of Fas ligand in ulcerative colitis may trigger interleukin 8 synthesis, release 
from the epithelium of the colon, and promote the activation and migration 
of neutrophils and lymphocytes. 

In Crohn's disease, another chronic inflammatory bowel disease, no Fas 
ligand transcripts were identified in the active phase. This finding suggests that 
Fas ligand is not involved in the inflammation associated with Crohn's disease. 
In ulcerative colitis, the disease is limited to the upper mucosal layer of the 
colon whereas in Crohn's disease the inflammatory lesion penetrates exten
sively transmurally through the digestive tract. Moreover, in Crohn's disease 
the skip lesions are not limited to the colon but spread segmentally to the 
ileum, jejunum, duodenum, and even further in the gastrointestinal tract, in 
contrast to ulcerative colitis which is limited to the colon. In active Crohn's 
condition, macrophages and not cytotoxic T lymphocytes have been thought 
to participate in the onset and progression of the lesions (ATTISON et al. 1988; 
MURCH et al. 1992). The cytotoxic T lymphocytes induced apoptosis is 
insignificant in Crohn's disease, indicating that the pathogenesis of Crohn's 
disease is different from that of ulcerative colitis. (YAYAMA et al. 1998). 

G. Conclusions 
Apoptosis is a well established process that plays an important role in a variety 
of physiological and pathological conditions. Apoptosis represents a process 
of cell death that manifests in all multicellular organisms. The phenomenon of 
apoptosis varies with cell type and stimuli. The unique character of apoptotic 
cell death is that it is regulated developmentally and thus it is also called pro
grammed cell death (Fig. 6) (LOKSHIN and BEAULATON 1974). Cells dying 
during development undergo a unique and distinct set of structural changes 
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which are similar or identical with changes occurring in cells dying in a wide 
variety of circumstances outside of development such as normal cell turnover 
in several tissues and in tumors, T-cell killing, atrophy induced by endocrine 
and other physiological stimuli, negative selection within the immune system 
and cell turnover following exposure to some toxic compounds, chemother
apy, hypoxia, or low doses of ionizing radiation. The process of cell death by 
apoptosis is clearly different from necrosis which is the consequence of 
extreme alterations of the cellular microenvironment. 

The process of apoptosis can be divided into several steps - (a) the stim
ulus that initiates the cell death response, (b) the pathway by which the 
message is transferred to the cell, and (c) the effector mechanisms that carries 
out the death program (KRAMMER et al. 1994). The dying cell separates from 
its neighbors with a loss of specialized membrane structures and undergoes a 
period of distortion. Diverse stimuli may trigger a different death response in 
the cell, but the pathways converge into the same effector mechanisms with 
several identical key components, including a family of proteases called 
caspases. Following the activation of these proteases, they are directly or 
indirectly responsible for the varying morphological or biochemical changes 
characteristic of apoptosis. Finally, the neighboring cells are very competent 
in the phagocytosis of the apoptotic cells. 

Apoptosis is a gene-regulated phenomenon, and great progress has been 
made to reveal the mechanism of this type of cell death. The occurrence of 
apoptotic cell death may provide a new insight into certain diseases. Further 
studies at the molecular level may lead to a clear view of the etiology and 
development of these diseases. A comprehensive understanding of the great 
variety of cellular processes undergone during apoptosis and further applica
tion of our knowledge concerning cell death can provide a solid basis for the 
development of novel therapeutic approaches and more effective ways of vac
cination or gene therapy (THOMPSON 1995; UREN and VAUX 1996). They may 
also open new avenues to the application of pharmacological substances in 
diseases associated with apoptotic cell death. 
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CHAPTER 2 

Molecular Cellular and Tissue Reactions 
of Apoptosis and Their Modulation by Drugs 

R. CAMERON and G. FEUER 

A. Introduction 
The process of cell death by apoptosis has been found to be regulated in a 
precise manner at the level of genes, and it is mediated by a complex series of 
molecules on the cell surface, in mitochondria, and in the cytosol. 

The apoptotic process, is critical to the homeostasis of the immune system, 
particularly activation-induced cell death (AICD). There is a tremendous 
expansion of numbers of lymphocytes in response to antigens which is balanced 
by AICD to reduce the excess of lymphocytes and regain normalcy (CAMERON 
and ZHANG, Chap. 7, this volume). The pattern and extent of immune responses 
varies with different types of inflammatory or immune antigenic stimuli and so 
does the pattern and extent of apoptosis of immune cells which follows. 

Apoptosis of immune cells is a constitutively (genetically) tightly regu
lated system that involves an interplay of different types of cells such as T and 
B lymphocytes, macrophages, eosinophils, and neutrophils. There is a network 
of specific receptors and ligands, costimulatory molecules, specific cytokines, 
inducers, and inhibitors that mediates the apoptotic process (SAVILL; DEFRANCE 
et al.; KOOPMAN, Chaps. 6, 16, and 17, respectively, this volume). 

Apoptosis of cells in the nervous system such as neuronal cells is depen
dent on similar types of molecules as responsible for immune cell apoptosis. 
However, the sequence and timing of molecular events of apoptosis of nerve 
cells is quite different (WOODGATE and DRAGUNOW, Chap. 8, this volume). 
Apoptosis of various cell types also has an important role to play in various 
medical conditions including inflammation, hypersensitivity, neurodegenera
tive diseases, malignancy such as leukemia, autoimmune disorders, chronic 
viral diseases such as chronic hepatitis C viral infection, and during allograft 
rejection following organ transplantation. Recent results showing that various 
pharmacological agents could modulate, induce, or inhibit various aspects of 
the apoptotic process have received increasing attention. 

B. Molecular Mediators of Apoptosis 
I. TNF Receptor Family 

The tumor necrosis factor receptor superfamily (TNFR) represents a family 
of proteins which share significant similarities in their extracellular ligand 
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binding domains and in the intercellular effector or death domains. These 
receptors appear to transmit their signals by a protein to protein interaction 
resulting in either a death or a survival signal (BAKER and REDDY 1998). The 
CD95 molecule is a cell surface receptor of the TNFR superfamily that 
includes various molecules in immune regulation such as the TNF receptors I 
and II, CD27, CD30, and CD40 (ARCH et al. 1998; DUCKETT and THOMPSON 
1997). The CD95 protein structure is characterized by three extracellular 
cystine rich domains found in all family members, a single transmembrane 
spanning region, highly homologous to the P55 TNFR. This intercellular death 
domain has been shown to transduce signals for apoptosis in the TNFR and 
the CD95 molecule (NAGATA 1997; PETER and KRAMMER 1998). The CD95 
ligand is a type II transmembrane protein produced by the activated T cells 
and constituently expressed in a variety of tissues. The CD95 receptor is found 
on many activated immune cells whereas the CD95 is more restricted to CD8+ 
and CD4+ cytotoxic T cells, NK cells, and antigen presenting cells (SUDA et al. 
1996). 

Activation induced cell death of T lymphocytes has been shown to be 
mediated by CD95. This type of cell death can be neutralized by anti-CD95 
antibodies (HARGREAVES et al. 1997). During the course of in vivo studies using 
transgenic mice which are FAS defective, namely the mlr/lpr mutant mice, 
their mature CD4+ T lymphocytes were resistant to activation induced cell 
death, i.e., they were dependent on FAS for apoptosis. The FAS gene in this 
model was shown to be essential for activation induced cell death in periph
eral T lymphocytes (ROUVIER et al. 1993; SINGER and ABBAS 1994; NAGATA and 
GOLSTEIN 1995). Expression of the CD95 ligand simultaneously induced resis
tance to the apoptosis by means of CD95 ligand in naive T cells. This resis
tance was induced in activated T cells but not in bystander cells. CD95 and 
TNFR1 mediated apoptosis occur in the presence of inhibitors of either RNA 
or protein synthesis and even enucleated cells undergo apoptosis upon CD95 
activation, suggesting that all components necessary for apoptotic signal trans
duction are present de novo and that CD95 activation simply triggers this 
machinery (NAGATA and GOLSTEIN 1995). Apoptosis occurs in various cells and 
various tissues and CD95 is found abundantly in cells of the thymus, liver, 
heart, and kidneys. Mature T cells from lpr or gld mice do not die after acti
vation and activated cells accumulate in the lymph nodes and spleens of these 
mice. When T cell hybridomas are activated in the presence of a CD95 neu
tralizing molecule they do not die. These results indicate that CD95 is involved 
in the activation induced cell death ofT lymphocytes and it is part of a down
regulation of the immune system (SINGER and ABBAS 1994; NAGATA and 
GOLSTEIN 1995). CON-A activated mature mouse T lymphocytes shows a 
specific resistance to CD95 induced apoptosis during the S phase of their cell 
cycle (DAO et al. 1997). 

A family ofTNF associated proteins which bind to the TNF receptors and 
promote intracellular signal transduction from inside the cytoplasm have been 
designated as TRAF proteins. These TRAF proteins modulate the ability of 
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receptors to trigger distinct signaling pathways that lead to phosphorylation 
and activation of protein kinases or to other transcription factors such as NF
KB (ARCH et al. 1998). One of these TNF type of receptors, CD30, serves as a 
binding site for TRAF proteins leading to the induction of NF-/(B (DUCKETT 
and THOMPSON 1997). One of these TRAF proteins, TRAF2, appears to have 
a critical regulation effect on cell proliferation. When these proteins are 
expressed in abundance or activation is induced cell death there is depletion 
of TRAF2 (DUCKETT and THOMPSON 1997). One group of TNF related apop
tosis inducing ligands or TRAIL has been found to induce apoptosis in tumor 
cells and some vir ally affected cells but has not as yet been found in normal 
cells (GOLSTEIN 1997; GRIFFITH and LYNCH 1998). The induction of NF-KB can 
lead to expression of genes that have an anti-apoptotic effect. Viruses that can 
induce NF-KB could therefore protect against apoptotic elimination of 
infected cells (BAEUERLE and BALTIMORE 1996; ASHKANAZI and DIXIT 1998; 
KASIBHATTA et al. 1999). 

CD95 and the CD95 ligand have been shown to play an important role in 
three types of physiologic apoptosis: (a) peripheral deletion of activated 
mature T cells at the end of an immune response, (b) killing of targets such as 
virus infected cells or cancer cells by cytotoxic T cells and by NK cells, and 
(c) killing inflammatory cells at immune privileged sites such as the eye 
(ASHKANAZI and DIXIT 1998). Many viruses express anti-apoptotic proteins 
including caspase inhibitors, Bcl-2 homologues, and death effector domain 
containing proteins that are termed FLIPs (TSCHOPP et al. 1998). Cellular 
FLIPs structurally resemble caspase 8 except that they lack proteolytic 
activity. 

Deficiencies in functional CD95 or its ligand manifest themselves in 
autoimmune syndromes. CD95-mediated apoptosis can be blocked by natu
rally occurring protein inhibitors which prevent apoptosis by serving as non
cleavable substrates for caspases (VARADHACHARY and SALGAME 1998). 

The expression of CD95 ligands was studied in tissue sections (STRATER 
et al. 1999) using immunohistochemical staining and it was found that CD95 
ligand was expressed in scattered lymphocytes, in lymphoid tissues of the 
thymus, lymph nodes, spleen, tonsil, and GI tract. A subset of plasma cells were 
prominent producers of CD95 ligand especially in the mucosa associated 
lymphoid tissue. 

II. Bcl-2 Gene Family 

Members of the Bcl-2 gene family encode proteins that function either to 
promote or inhibit apoptosis (TSUJIMOTO et al. 19985; VAUX et al. 1988; REED 
et al. 1990; REED 1998). Anti-apoptotic members such as Bcl-2 and Bcl-xl 
prevent programmed cell death with a wide variety of stimuli (CHENG et al. 
1996; CHAO and KORSMEYER 1997). Conversely pro-apoptotic proteins 
exemplified by Bax and Bak can accelerate death and in some instances they 
are sufficient to cause apoptosis independent of additional signals. Bcl-2 
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related proteins are localized to the outer mitochondrial, outer nuclear, and 
endoplasmic reticular membranes (VAUX et al. 1988; REED et al. 1990; CHAO 
and KORSMEYER 1997). The ability of Bcl-2 to prevent apoptosis was clearly 
shown in experiments with knockout mice which show apoptosis of thymo
cytes and spleen cells (VEIS et al. 1993). Down regulation of the Bcl-2 gene 
product as in cytokine deprived activated T cells leads to apoptosis (AKBAR et 
al. 1996). Bcl-2 was shown to block cell-mediated cytotoxicity by allospecific 
cytotoxic lymphocytes when apoptosis was induced by degranulation as in the 
action of perforin and granzymes but not with apoptosis induced by cytotoxic 
lymphocytes by means of the CD95 pathway (CHIU et al.1995). Bcl-2 has been 
documented to block apoptosis induced by chemotherapeutic drugs, ultra
violet radiation, free radicals, and some viruses such as the sindbis and 
baculoviruses (REED 1994, 1998). Bcl-2 inhibits CD95 induced apoptosis 
by preventing the event of cell death by inducing signaling complexes 
(KAWAHARA et al. 1998). 

Experiments by KROEMER (1997) have shown that an important mecha
nism of the anti-apoptotic effect of Bcl-2 is the prevention of mitochondrial 
permeability transition which involves the opening of a larger channel in the 
inner mitochondrial membrane leading to free radical generation, release of 
calcium into the cytosol, and caspase activation either by direct or indirect 
control of the mitochondrial pore openings. By the prevention of this mito
chondrial permeability transition, Bcl-2 also leads to free radical scavenging, 
ion efflux regulation, and caspase inhibition (KROEMER 1997; REED 1998). 
Other studies by KLUCK et al. (1997) and by YANG et al. (1997) had shown that 
overexpression of Bcl-2 prevented the efflux of cytochrome C from the mito
chondria and also prevented the initiation of apoptosis. Both Bax and Bcl-2 
were shown to insert into potassium chloride vesicles in a pH-dependent 
fashion and demonstrated microscopic ion efflux. Bcl-2 apoptotic regulators 
were shown by SCHLESINGER et al. 1997 to have the capacity to form ion 
channels in artificial lipid membranes. VANDER HEIDEN et al. (1997) also 
showed that Bcl-xl expressing cells adapted to growth factor withdrawal or 
staurosporine treatment by maintaining a decreased mitochondrial membrane 
potential. Bcl-xl expression also prevented mitochondrial swelling in response 
to agents that inhibited oxidative phosphorylation. 

The antioxidant activity of Bcl-2 was documented in experiments by 
HOCKENBERY et al. (1993) and KANE et al. (1993) who showed that overex
pression of Bcl-2 protected against H20 z and menidione induced oxidative 
apoptosis. KANE et al. (1993) also found that overexpression of Bcl-2 in the 
GT1-7 neural cell line prevented necrosis resulting from glutathione deple
tion associated with the generation of reactive oxygen species. Neuronal cells 
prepared from mice deficient in the Bax gene were shown to be resistant to 
apoptosis induced by glutamate and kainate (XIANG et al. 1998). These results 
showed that Bax was required for neuronal cell death in response to some 
forms of cytotoxic injury. In contrast, the anti-apoptotic effect of Bcl-xl was 
shown when cytotoxic injury was induced in macrophage cell line (OKADA et 
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al. 1998). In these studies, Bcl-xl but not Bcl-2 was highly inducible within 3h 
after stimulating macrophages with interferon gamma or LPS. Furthermore, 
Bcl-xl transfectants displayed substantial protection from toxic induced apop
tosis by means of nitric oxide generation. 

Structure-function analysis of Bcl-2 protein revealed conserved domains 
which were critical for homodimerization and heterodimerization between 
members of the Bcl-2 family of proteins (CHEN-LEAVY and CLEARY 1990; 
RADVANYI et al. 1990; HANADA et al. 1995; KELEKAR et al. 1997; SATTLER et al. 
1997). For example, the structure and binding affinities of mutant Bak pep
tides indicate that the Bak peptide adopts an amphipathic alpha helix that 
interacts with Bcl-xl through hydrophobic and electrostatic interactions. Muta
tions in full length Bak that disrupt either type of interaction inhibit the ability 
of Bak to heterodimerase with Bcl-xl (SATTLER et al. 1997). 

III. Caspases 

Caspases (cystinoaspartic acid specific proteases) are a family of cysteine pro
teases that cleave their target proteins at aspartic acid residues in a defined 
cascade sequence (RAWLINGS and BARRETT 1994; ALNEMRI 1997). There are 
more than 12 caspases known to date which are expressed as precursors that 
are activated in a cascade-like cleavage parade (MEDEMA et al.1997). This acti
vation involves cleaving the molecule to 10 and 20 kilodalton subunits which 
then heterodimerase and became disassociated into tetramers that constitute 
the active enzyme (ENARI et al. 1995; NUNEZ et al. 1998). This activation was 
also shown by using specific inhibitors of caspases that block cell death (ENARI 
et al. 1995). Caspase-l is the mammalian interleukin-1 p-converting enzyme 
which shows homology to the C. elegans cell death gene protein ced3, (YUAN 
et al. 1993; THORNBERRY et al. 1995; MARTIN et al. 1996; ThORNBERRY and 
LAZEBNIK 1998). Caspase-3 or the apoptotic protease CPP32 is one of the cas
pases involved in cytotoxic T cell induced apoptosis which is mediated by 
granzyme B (DARMAN et al. 1995; ENARI et al. 1996; AMARANTE-MENDES et al. 
1998; ZHENG et al. 1998). Caspase-8 or MACH is also involved in cytotoxic T 
lymphocyte induced apoptosis mediated by granzyme B (BOLDIN et al. 1996; 
MUZIO et al. 1996; MEDEMA et al. 1997). 

Noncaspase target proteins which are inactivated by caspases include: (a) 
proteins of the DNA repair system (TAMURA et al. 1995), e.g., the poly ADP 
ribose polymerase which catalyzes the attachment of ADP ribose to nuclear 
proteins such as histones; (b) cytoskeletal or structural proteins such as nuclear 
lamins, phodren, cytokeratin 18, actin, and catinin B (VAUX et al. 1997; GROSS 
et al. 1999); (c) oncoproteins degraded by caspases including RB and MDM2 
(VAUX et al. 1997); and (d) caspase activated DNA-ases such as DFF (Lm 
et al. 1997; SAMEJIMA et al. 1998) leading to chromosomal breakage (TAMURA 
et al. 1995). 

Caspases have been shown to playa role in cytotoxic T cell induced apop
tosis (DARMAN et al. 1995; TAMURA et al. 1995; MEDEMA et al. 1997), B lym-
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phocyte induced cell death mediated by the B cell receptor (DEFRANCE et aI., 
Chap. 16, this volume), and nerve cell death (WOODGATE and DRAGUNOW, Chap. 
8, this volume). In some studies, the activation of caspases such as caspase-2 
was found to be an early event in the apoptotic process (HARVEY et al. 1997). 

IV. Cytokines 

Cytokines such as IL-2 can increase or up-regulate Bcl-2 expression and 
prevent apoptosis in activated T cells. Using human IL-2 deprived activated T 
cells, it was possible to show that other cytokines such as IL-4, IL-7, and IL-
15 could also prevent apoptosis of activated T cells in the absence of IL-2 
(AKBAR et al. 1996). In contrast, sensitivity to the priming step for activation 
induced cell death was dependent on the cytokine interleukin-2 but not on 
cytokines IL-4, IL-7, or IL-15 (WANG et al. 1996). Furthermore, it was shown 
using transgenic mice which have a deficiency in the ability to use IL-2 that 
their T cells were resistant to CD95-mediated activation induced cell death, 
and that this defect could only be corrected by similar cytokines like IL-15 
(VAN PARIJS et al. 1997). The kinetics of IL-2 production are as follows: mes
senger RNA is detectable within 3-5h and cytokine protein is also seen at this 
early time, cytokine mRNA is rapidly down-regulated shortly after it reaches 
a peak level at 6-12h, and the amount of cytokine produced is at least tenfold 
that seen in naIve cells with the same receptor (SWAIN et al. 1996). TCR stim
ulation of T lymphocytes that are activated in cycline in the presence of IL-2 
leads to programmed cell death. This effect was shown to be mostly due to the 
ability of IL-2 to increase expression of mRNAs which encode ligands and 
receptors that mediate apoptosis (ZHENG et al. 1998). The pattern of cytokine 
production was shown to depend on the nature and dose of stimulation when 
T cell receptor complexes were used to elicit a diffuse array of effector activ
ities (hOH and GERMAIN 1997). For example, low concentrations ofTCR ligand 
elicited only interferon gamma production. Increasing ligand recruits more 
cells into the interferon gamma pool and increases interferon gamma pro
duction per cell as well as inducing IL-2. 

V. Co-Stimnlatory Molecules 

CD28 to B7 ligation provides co-stimulatory signals important for the devel
opment of T cell responses and CD28 is a principal co-stimulatory receptor 
for T cell activation. CD28 co-stimulation markedly enhances the production 
of lymphokines, especially of IL-2. In addition, CD28 sustains the late prolif
erative response of naIve T cell populations and enhances their long-term sur
vival (SPERLING et al. 1996; TAl et al. 1997). CD28 deficient T cells were shown 
to be enhanced in their long term survival by cultures with IL-4 (STACK et al. 
1998). In circulating T cells which express B7, a novel cell surface membrane 
protein was found; this is independent of co-stimulation by using anti CD28 
antibodies (SOARES et al. 1997). Further studies showed that in fact cells 
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expressing high levels of CD28 were entirely resistant to apoptosis by the 
CD95 pathway (McLEOD et al. 1998). C28 co-stimulation was also shown to 
promote T cell survival by enhancing the expression of Bcl-x, (BOISE et al. 
1995a,b; RADVANYI et aI. 1996). 

VI. Perforin and Granzyme B 

Cytotoxic T cell induced apoptosis has been shown to be mediated by the mol
ecular granzyme B (DARMAN et aI. 1995; ENARI et aI. 1996; BOLDEN et aI. 1996; 
MUZIO et aI. 1996; MEDEMA et aI. 1997; AMARANTE-MENDES et al. 1998; ZHENG 
et aI. 1998). 

Lytic granules in cytotoxic T cells carry proteins such as granzyme Band 
also perforin. Perforin molecules are a family of proteins which induce pores 
in the membranes of cells and are often connected with molecules such as 
granzyme B which enter the target cell and induce apoptosis. A role for per
forin was found by SPANER et aI. (1998) in the activation induced cell death 
of T cells. The role of perforin in the control of T cell cytotoxicity was first 
clarified by studies in perforin deficient knockout mice (KAGI et al. 1994). 
Apoptotic cell death of allografted tumor cells by activated macrophages was 
shown to be independent of perforin by YOSHIDA et aI. (1997). 

VII. Protein Kinase C 

Activation of protein kinase C blocks apoptosis and promotes cell survival of 
mature lymphocytes prone to apoptosis (LUCAS et al. 1994; LUCAS, Chap. 4, this 
volume). In addition, direct induction of cell apoptosis by ethanol is aug
mented by inhibiting protein kinase C which establishes a link between protein 
kinase C activity and ethanol toxicity and ethanol induced apoptosis (AROOR 
1997; LUCAS, Chap.4, this volume). Inhibitors of protein kinase C such as 
storosporine have been shown to enhance the cytotoxic effects of various anti
tumor agents (LOCH 1997; LUCAS, Chap. 4, this volume). Cycloheximide causes 
apoptosis in sublethal doses in the liver by means of induction of oncogenes, 
and the accumulation of sphingosine and cycloheximide is also an endogenous 
modulator of protein kinase C activity (AUSENKO 1997). 

VIII. Reactive Oxygen Species 

The generation of highly reactive oxygen species or ROS has been shown to 
induce apoptosis at different cell types (DELNESTE, Chap. 10, this volume; 
BAUER et aI., Chap. 11, this volume). Hydrogen peroxide produced by 
monocytes-macrophages and neutrophils can trigger the death of bacterial 
cells as well as bystander cells. The antineoplastic drug deoxyrubicine reacts 
by generating reactive oxygen species. Bcl-2, the potent anti-apoptotic mole
cule, was shown to possess anti-oxidant activity by HOCKENBERY et aI. (1993) 
and by KANE et aI. (1993). The anti-apoptotic cell death gene CED-9 of the 
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nematode worm has also been shown to have ROS regulatory activities (HEN
GARTNER and HORVITZ 1994). The apoptotic process was found to be regulated 
by the redox balance in a number of different cell types (DELNESTE, Chap. 10, 
this volume). 

IX. Glutathione 

Thiol antioxidants have been shown to protect cells against apoptosis. 
DELNESTE et a1. (1996) showed that N-acetylcysteine was able to protect 
human T cells from CD95-mediated apoptosis. CHIBA et a1. (1996) showed 
further that T cell sensitivity to CD95-mediated apoptosis was associated with 
low intracellular glutathione levels and that the cytoprotective effect of N
acetylcysteine was related to its ability to increase the intercellular glutathione 
levels. Antioxidants have also been found to modulate the generation of 
second messengers and the activation of transcription factors which are 
involved in the signaling pathways of apoptosis (DELNESTE, Chap. 10, this 
volume). As a consequence, anti-oxidants, especially the thiol anti-oxidants 
which have low pharmacological toxicity, have been proposed as treatments 
for patients shown to have diseases with altered redox status such as AIDS, 
cancer, or Alzheimer's disease (DELNESTE, Chap. 10, this volume). 

X. Inhibitor Polypeptides 

The inhibitor of apoptosis protein family (lAP) are widely expressed gene 
family of apoptotic inhibitors which appear to act to suppress apoptosis 
through direct caspase inhibition, primarily via caspase 3 and 7 and by mod
ulation of the transcription NF-Jd3 (LACASSE et a1. 1998). One particular lAP 
type of protein named survivin was shown to inhibit caspase directly (DUCKETT 
et a1. 1998; LACASSE et a1. 1998). The inhibitory effects of the lAP family of 
proteins on apoptosis appear to involve a wide spectrum of cell types and trig
gering mechanisms of apoptosis compared to the Bcl-2 family of inhibitors of 
apoptosis, suggesting that the site of activity of lAP proteins is further down
stream in the process than that of the Bcl-2 family (HARVEY et a1. 1997; 
DUCKETT et a1. 1997; LACASSE et a1. 1998). 

C. Cell-Specific Pathways of Apoptosis 
I. Immune System 

1. T Cells 

Apoptosis of T lymphocytes has an essential role in developmental, physio
logic, and pathological processes involving T cells including the deletion of T 
cell clones, the expression of self antigens in the thymus, elimination of T cells 
which are infected with viruses, and the homeostasis ofT cell populations that 
have expanded following high dose antigen exposures. T cell apoptosis is a 
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very precise and tightly regulated process which is coordinated by specific 
receptors and ligands such as CD95 and mediated by families of proteins such 
as caspases, interleukins, and various costimulatory molecules such as CD28 
and B7 (CAMERON and ZHANG, Chap. 7, this volume). The precision and regu
lation of molecules involved in apoptosis of T cells is best exemplified by the 
patterns of cytokine production (SWAIN et al. 1996). Two distinct T helper cell 
clonal populations can be identified, each with a unique cytokine pattern. THI 
cells produce interleukin-2, interferon gamma, and GN-CFS whereas TH2 
cells produce BSFl, a mast cell growth factor, and special T cell growth factor 
in addition to IL4, 5, and 6. In response to antigen stimulation, for example, 
there is a tenfold increase in IL2 production in THI cells within one to two 
days after exposure to antigen which is then rapidly down-regulated within 
hours (CAMERON and ZHANG, Chap. 7, this volume). 

Recent studies of cell death of thymocytes in vivo have shown that the 
molecular pattern of regulation of cell death in thymocytes is quite different 
from peripheral T cells (ITOH et al., Chap. 15, this volume). In their studies, 
using TUNEL electron microscopy and TUNEL flow cytometry, it was evident 
that most thymocytes died by pyknosis either in situ or after exposure to injec
tion of corticosteroids in vivo, and only showed DNA fragmentation follow
ing their phagocytosis by macrophages. 

2. B Cells (and Plasma Cells) 

The apoptosis of B cells in vivo is also a precise and tightly regulated process 
which most often takes place in the germinal centers of lymphoid tissues such 
as spleen and lymph nodes. Activated T cells express the ligand for CD95 
which is involved in the apoptosis of B cells. Ligation of the B cell receptor in 
B cells which are not actively cycling protects them from CD95-mediated 
apoptosis. B cell proliferation takes place in germinal centers or extrafollicu
lar foci in response to antigen stimulation and is coordinated with T cell pro
liferation. Prolonged or repeated exposure of cycling B cells to antigen and 
the concomitant decline of T helper cells leads to stimulation of apoptosis of 
B cells leading to the eventual downsizing of the responding B cell population 
(DEFRANCE et al. Chap. 16; KOOPMAN, Chap. 17 , both this volume). B cells of 
the germinal center are able to interact with antigen and the immunoglobulin 
receptor and the immune response in this location is coordinated by interac
tions between follicular dendritic cells, germinal center B cells, and T cells 
(KOOPMAN et al. 1994; KOOPMAN, Chap. 17, this volume). These studies also 
showed that initially the presentation of antigen and interaction with adhe
sion molecules helped to maintain B cell survival and B cell activation. The 
ligand of CD40 which is located on T cells was also found to contribute to the 
stabilization of these germinal center B cell populations and to allow for 
the maturation of germinal center B cells (KOOPMAN, Chap. 17, this volume). 

Morphologic studies of lymphoid cells within lymphoid tissues revealed 
that mature B cells were distinguished morphologically as plasma cells and 
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showed strong positive immunostaining for the CD95 ligand responsible for 
apoptosis (STRATER 1996, 1999). 

3. Macrophages (and Dendritic Cells) 

In vivo, the normal fate of cells undergoing apoptosis is uptake and degrada
tion of the intact dying cell by phagocytic cells such as macrophages, which 
serves to contain the toxic products of the dying cell and limit the extent of 
injury to surrounding tissues (SAVILL 1997; SAVILL, Chap. 6, this volume; BROWN 
and SAVILL 1999). A number of specific receptors have been identified on 
phagocytic cells involved in the uptake of apoptotic cells including phagocyte 
lectins, CD36, and the murine macrophage ABC-1 molecule (SAVILL 1997; 
SAVILL, Chap. 6, this volume). At sites where the numbers of apoptotic cells 
is abundant, such as in thymus, lymph node, bone marrow, liver, spleen, 
and inflammatory sites, it is common to find macrophages containing large 
numbers of apoptotic cells as part of their function in the degradation of large 
numbers of dying cells each day (SAVILL 1997). In addition, most tissues contain 
groups of resident macrophages such as in the kidney where glomerular 
mesangial cells can ingest apoptotic neutrophils as part of the resolution of 
glomerular inflammation (SAVILL et al. 1992; SAVILL, Chap. 6, this volume). In 
experiments studying the result of phagocytosis by monocyte macro phages, 
BROWN and SAVILL (1999) showed that, following the ingestion of opsonized 
zymosan, monocyte macrophages released CD95 ligand which triggered the 
CD95-mediated apoptosis of target neutrophils. 

Dendritic cells of the myeloid lineage also ingest apoptotic cells and 
process them for presentation to MHC Class 1 and Class 2 restricted T cells 
(ROUVIER et al. 1998). In the presence of defects in the clearance of apoptotic 
cells, such as in animals with a genetic deficiency of CIQ molecules, the per
sistence of apoptotic cells without phagocytosis may be sufficient to stimulate 
an autoimmune response such as a systemic lupus erythematosus type of 
disease (ROUVIER et al. 1998). Donor tissue derived dendritic cells have 
been identified in recipients of kidney and liver tissue and may be responsi
ble for a low level donor chimerism and an immunosuppressive effect post
transplantation (HART 1997). 

4. Eosinophils 

Apoptosis of eosinophils is an important process which decreases the numbers 
of eosinophils that have accumulated in tissues following inflammation, par
ticularly of the "allergic" type. Eosinophil apoptosis is mediated by CD95 and 
CD95 ligand with the induction of sphingomyelinase and tyrosine kinase 
pathways, and involves the cascade of caspases. Glucocorticoids have a pro
found effect in the stimulation of apoptosis of eosinophils. In situations where 
the phagocytosis of apoptotic eosinophils is impaired or delayed, or when 
eosinophils develop a resistance to CD95 stimulated apoptosis, then an unlim
ited expansion of eosinophils can occur such as in nasal polyp tissue during 
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allergic inflammation in chronic eosinophilic disorders (SIMON, Chap. 14, this 
volume). 

5. Neutrophils 

Granulocyte neutrophils are short-lived cells with half lives of less than 24h. 
In the absence of appropriate stimuli, neutrophils undergo characteristic 
changes indicative of programmed cell death or apoptosis, including cell 
shrinkage, nuclear chromatin condensation, and DNA fragmentation into 
nucleosome length fragments. As a first line of defense, neutrophils are rapidly 
recruited to inflammatory sites, where the expression of their apoptotic 
program can be modified by a number of agents such as interleukin-2 and LPS 
which have been shown to inhibit neutrophil apoptosis and prolong their func
tiona 1 lifespan (GAMBORELLI et al. 1998). Apoptosis of neutrophils is followed 
by recognition and uptake and ingestion by macrophages and this is associ
ated with a loss of neutrophil functions such as chemotaxis, phagocytosis, 
degranulation, and respiratory burst (GAMBORELLI et al. 1998; SAVILL, Chap. 6, 
this volume). From these studies it was apparent that the apoptosis of neu
trophils was critical in the resolution of inflammation and the limiting of tissue 
injury by dying neutrophils. Molecules involved in apoptosis of neutrophils 
include caspases and also calpains and proteosomes (KNEPPER-NICOLAI et al. 
1998). When apoptosis was accelerated by treatments with protein synthesis 
inhibitors in the studies of WHYTE et al. (1997) this was shown to promote an 
increased recognition and faster clearance by macrophages of the apoptotic 
neutrophils which had accumulated in human peripheral blood. 

II. Nervous System 

1. Neuronal Cells 

Apoptosis of neuronal cells is an important mechanism of cell death in the 
nervous system during brain development and also in neurodegenerative dis
eases, which is mediated by the C-jun/jnk pathway and involves activation of 
caspases (WOODGATE and DRAGUNOW, Chap. 8, this volume). Studies by WHYTE 
et al. (1998) showed that the pro-apoptotic molecule Bax was required for the 
cell death of sympathetic and motor neurons in the setting of trophic factor 
deprivation. Neurons saved from apoptosis in Bax null mutant mice survived 
but did not develop normal functional capabilities and in fact the resultant 
supernumerary neurons and axons were atrophic. 

III. Liver Cells 

1. Hepatocytes 

Studies of the apoptotic process in hepatocytes have been summarized by 
PESSAYRE et al. (Chap. 3, this volume). TNF alpha has been shown to have a 
strong pro-apoptotic action for hepatocytes in vitro and antibodies against 
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TNF alpha protect hepatocytes from apoptosis whereas glutathione depletion 
enhances apoptosis of hepatocytes. 

Hepatocytes from patients chronically infected by hepatitis B virus (HBY) 
produce TNF alpha and this production seems to depend on HBX protein. In 
the human, however, in vivo there does not appear to be a strong association 
between expression ofTNF alpha and apoptosis of hepatocytes in viral hepati
tis. CD95 and CD95 ligand seems to be important in apoptosis of human hepa
tocytes in viral hepatitis. 

2. Kupffer Cells 

Kupffer cells represent the resident macrophages of the liver and are the crit
ical cells for the phagocytosis of peripheral blood lymphocytes undergoing 
apoptosis such as after heat shock or cycloheximide treatments (FALASKA et 
al.1996). Kupffer cells have specific lectin-like receptors involved in the recog
nition of apoptotic lymphocytes and the in vitro process of phagocytosis of 
apoptotic lymphocytes is a very rapid one, completed in only a few minutes of 
incubation (DINI, Chap. 12, this volume). 

IV. Malignant Cells 

1. Leukemia (and Lymphoma) 

Hematopoietic cells require certain cytokines, including colony stimulating 
factors and interleukins, to maintain their viability and without these cytokines 
the program of apoptotic cell death is activated (LOTEM and SACHS 1996). Cells 
from many myeloid leukemias also require cytokines for viability and apop
tosis is also activated in these leukemic cells after cytokine withdrawal, result
ing in reduced leukemogenicity. This susceptibility of leukemic cells to the 
induction of apoptosis is regulated by the balance between apoptosis induc
ing genes such as the tumor suppresser wild type p53 and Bax and the apop
to sis suppresser genes such as the oncogene mutant p53 and Bcl-2. Modulation 
of expression of apoptosis regulating genes could also be useful for the anti
leukemia therapy (LOTEM and SACHS 1996). 

PAULLI et al. (1998) report evidence that apoptosis of normal and neo
plastic lymphoid cells is regulated by a network of cytokines and that expres
sion of CD95 is at high levels in all cutaneous CD30+ lymphomas which are 
significant due to their high rate of regression. Expression of Bcl-2 in lym
phoproliferative conditions as shown by immunohistochemistry was common 
in nonregressing lesions, suggesting a protective effect on the lymphoid tumor 
cells from apoptosis. 

2. Carcinoma 

Studies of the extent of apoptosis in various types of carcinomas by means of 
quantitation of apoptosis associated proteins directly in tissue sections by 
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SOINI et al. (1998) revealed that the apoptotic index in most carcinomas was 
between 1 and 5% and the Bcl-2 expression as high as 50% in many carcino
mas. A study of the expression of Bcl-2, Bax, and caspases in pancreatic car
cinomas by VIRKAJARVI et al. (1998) revealed a strong correlation between the 
apoptotic index and the expression of caspases 3, 6, and 8 on immunostains. 
In vitro studies of the effect of Bcl-xl antisense oligonucleotides on a human 
gastric cancer cell line by KONDO et al. (1998) showed that overexpression of 
the Bak protein induced sensitization to apoptosis in gastric cancer cells, sug
gesting that the Bcl-2 gene family may be an important modulator of apopto
sis for carcinoma cells. GORCZYCA et al. (1998) developed a technique which 
combined flow cytometry in conjunction with DNA strand break labeling 
assays and cell sorting for the study of solid tumors. They found that sponta
neous apoptotic cells in solid tumors did not always show the typical features 
of apoptosis seen in treated cultured cells. 

D. Tissue-Specific Reactions Involving Apoptosis 
I. Inflammation and Hypersensitivity 

Inflammatory and hypersensitivity reactions in tissues throughout the body 
are mediated by inflammatory and immune cells such as T and B lymphocytes 
and plasma cells, monocyte macrophages, eosinophils, and neutrophils. Apop
tosis of large numbers of these inflammatory or immune cells and phagocyto
sis of apoptotic lymphocytes, eosinophils, and neutrophils are critical to the 
resolution of inflammatory and immune processes, and the restitution of tissue 
to normal conditions. Delays or deficiencies in this process can result in more 
severe and prolonged tissue injuries, fibrosis, and even more serious conse
quences (SAVILL 1997; SAVILL, Chap. 6, this volume). 

Studies by SAVILL et al. (1992) of the glomerular cells of rats with experi
mental glomerulonephritis showed that apoptotic neutrophils were phagocy
tosed by inflammatory macrophages. In addition, they found that glomerular 
mesangial cells also had the ability to phagocytose apoptotic neutrophils. They 
also found that human mesangial cells in vitro ingested apparently intact 
human neutrophils which had been aged for 24h in culture but freshly isolated 
neutrophils were not ingested by the human mesangial cells in vitro. This 
phagocytic effect was inhibited by colchicine pretreatment confirming the 
active nature of the phagocytosis. This process would serve to limit the neu
trophil mediated glomerular injury and potentially would playa role in deter
mining whether there is resolution of glomerular inflammation. Failure of 
these mechanisms could lead to necrosis of neutrophils with direct release of 
toxic neutrophil contents such as lysosomes, further recruitment of leukocytes 
by chemotactic factors, and the development of fibrosis in tissue continually 
damaged prior to repair and restitution towards normal conditions (SAVILL, 
Chap. 6, this volume). 
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The importance of CD95 ligand induced apoptosis for the development 
of hepatitis was shown using various mouse models of hepatitis by KONDO et 
al. (1997). They report that cytotoxic T lymphocytes reactive against hepatitis 
B surface antigen caused an acute liver disease in hepatitis surface antigen 
positive transgenic mice. In the second model, mice were primed with P acnes 
and challenged with Ips which led to extensive apoptosis of hepatocytes 
which was prevented by the neutralization of CD95 ligand. CD95 null mice 
were resistant to Ips induced mortality. MIWA et al. (1998) showed that CD95 
ligand could induce the release of caspase 1 from peritoneal exudate cells 
and provoke the marked infiltration of neutrophils interperitoneally in Balb/c 
mice. 

GOUGEON (Chap. 5, this volume) was able to show that during HIV infec
tion CD4 T cell death was mediated, not only directly by HIV replication as a 
consequence of viral gene expression but also indirectly through priming of 
uninfected cells to apoptosis when triggered by different agents. This phe
nomenon was shown by a number of related studies. A variety of blood cells 
taken from a large cohort of HIV positive patients was shown to be primed 
for apoptosis and showed increased fragility upon short-term culture and these 
cells included not only T cells but also monocytes, B cells, natural killer cells, 
and granulocytes. When lymph nodes of HIV infected patients were examined 
with immunostains there was evidence of apoptosis, not only in CD4 T cells 
but also CD8 T cells, B cells, and dendritic cells. The proportion of CD95 
positive T lymphocytes in HIV infected patients increases as the disease pro
gresses towards AIDS. In fact, serum concentrations of soluble CD95 and anti
CD95 autoantibodies were found to be predictive markers for the progression 
to AIDS. CD4 T cells that express the HIV virus glycoprotein gp120 on 
their surface were shown to bind uninfected T cells leading to their apoptosis 
(GOUGEON and MONTAIGNER 1993; GOUGEON, Chap. 5, this volume). In addi
tion, they showed that a rapid cell death apparently independent of known 
caspases and lacking DNA fragmentation was triggered by HIV gp120 
interaction with the SDF -1 receptor, with the resultant cell death of 
normal CD4 T cells. In fact, it was found that the majority of immune cells 
which die as a result of HIV infection undergo apoptosis by an indirect 
mechanism. 

A series of studies have shown that viruses may act to promote their own 
intracellular persistence by enhancing the survival of virally infected cells by 
means of the anti-apoptotic properties of various viral gene products (LEVINE 

et al. 1993; YOUNG et al. 1997). For example, EB virus, adenovirus, and herpes 
virus produce gene products which are homologous to the anti-apoptotic pro
teins of Bcl-2. Baculovirus and cowpox virus produce proteins which inhibit 
caspases, and adenovirus and SV 40 virus produce proteins which inactivate 
p53 leading to inhibition of the cell death of vir ally infected cells. These anti
apoptotic mechanisms would facilitate the maintenance of persistent virally 
infected cells and promote the continued production of progeny virus (YOUNG 

et al. 1997). 
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II. Cancer (and Carcinogenesis) 

Since the initial discovery of the Bcl-2 gene in follicular lymphoma (SUJIMOTO 
et ai. 1984), and the demonstration by VAUX et ai. (1988) that Bcl-2 had anti
apoptotic properties, a large number of studies have demonstrated that human 
tumors often express Bcl-2 or alterations of the p53 gene. p53 has been shown 
to up-regulate the expression of the Bax protein which in turn forms het
erodimers with Bcl-2 and blocks the action of Bcl-2, thereby inducing apop
tosis (CHAO and KORSMEYER 1998). Alterations of the p53 gene are the most 
frequent genetic change in human cancer. In fact, it is estimated that about 
50% of all human malignancies contain inactivating mutations of the p53 gene 
(BELLAMY 1997; THIEDE et aI., Chap. 9, this volume). The ability of activation 
of p53 and the apoptosis of tumor cells has led to various strategies of cancer 
treatment such as gene therapy in which mutant p53 s are targeted or wild type 
p53 genes are introduced (AMUNDSON et ai. 1998; THIEDE et aI., Chap. 9, this 
volume). 

The balance between neoplastic and pre-neoplastic cell proliferation 
and apoptosis has been shown to be critical in the progression of cells dur
ing chemical carcinogenesis in rat liver by GRASL-KRAUPP et ai. (1997). 
By modifying the growth rate of rat hepatocytes of neoplastic and pre
neoplastic lesions with the drug nafenopin, they were able to show that, with 
cessation of the drug, cell proliferation decreased and cell elimination by 
apoptosis increased. Similar studies reported by LYONS and CLARKE 
(1997) indicated that whenever cells showed an impaired apoptosis, there 
was a strong selection for further lesions in genes controlling cell prolife
ration and, conversely, in cell populations with increased proliferative capac
ity, there was strong selection for lesions conferring impaired apoptosis. 
These authors suggested that malignant conversion of a cell was associated 
with a synergy of mutations affecting both processes of cell proliferation and 
of apoptosis. 

III. Nenrodegenerative Disorders 

Numerous studies have shown that toxins implicated in neurodegenerative 
diseases can trigger apoptotic death of neuronal cells in culture (WOODGATE 
and DRAGUNOW, Chap. 8, this volume). For example, beta amyloid, the major 
component of senile plaques in Alzheimer's disease, induces apoptosis in 
primary hippocampal and cortical cultures. Similar apoptotic neuronal cell 
death was induced by glutamate, hydrogen peroxide, and heavy metals. 
Inducible transcription factors such as fos and jun appear to be closely asso
ciated with neurodegenerative diseases such as Alzheimer's disease and also 
closely associated with apoptosis of neuronal cells. In addition, overexpression 
of a c-jun dominant negative mutant attenuates apoptosis triggered by nerve 
growth factor withdrawal in sympathetic neurons. 
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IV. Autoimmune Disorders 

Autoimmunity in mice has been shown to be related to single gene defects. 
For example, lpr and gld mice have spontaneous mutations which are autoso
mal recessive on mouse chromosomes 19 and 1 respectively and lead to an 
autoimmune disease (NAGATA and GOLSTEIN 1995). These mice show muta
tions in CD95 and CD95 ligand on the surface of their CD4 and CD8 T cells 
with the resultant failure of activation induced cell death and subsequent lym
phoproliferative disorder (NAGATA and GOLSTEIN 1995). 

E. Potential of Modulation of Molecular, Cellular or 
Tissue Reactions by Drugs 

I. Immunosuppressive Drugs 

Immunosuppressive drugs can act to modulate T cell apoptosis and induce 
transplantation tolerance by a number of mechanisms: (a) inhibition of CD95 
and CD95 ligand which is shown by 9-cisretinoic acid or glucocorticoids (YANG 
et aL 1995); (b) direct toxicity to specific cytotoxic T cells by the immunotoxin 
FN18-CRM9 (NEVILLE et aL 1996; FECHNER et aL 1997); (c) inhibition of IL-2 
expression by cyclosporine (SIGAL and DUMONT 1992; ZHANG et aL 1998; 
WALDMANN and O'SHEA 1998); (d) shift of cytokine pattern from Th1 to Th2 
expression by rapomycin, CTLA-4 immunoglobulin, anti-CD4 antibody, and 
cyclosporine (KABELITZ et aL 1998); and (e) induction of activation induced 
cell death in activated T cells by anti-CD3 antibody OKT3 or FK506 (SIGAL 
and DUMONT 1992; KABELlTZ 1998). 

II. Chemotherapeutic Drugs 

Chemotherapeutic drugs can cause apoptosis of many kinds of cancer cells in 
vitro including drugs such as cisplatin, mitomycin, methotrexate, doxorubicin, 
and bleomycin at concentrations present in the sera of patients during therapy 
by means of up-regulation of the CD95 receptor and CD95 ligand (MUELLER 
et aL 1998). BCND, an anti-cancer alkylating agent, could prevent apoptosis 
of human lymphoma cells by inhibiting caspases in vitro (PETAK et aL 1998). 
Daunorubicin was shown to cause apoptosis of leukemic cell lines in associa
tion with stimulation of sphingomyelin hydrolysis and cerami de generation 
(JAFFREZOU et al. 1996). 

III. Natural Substances 

A wide variety of naturally occurring substances of both plant and animal 
origin can induce apoptosis (PES SAYRE et aI., Chap. 3, this volume). 
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CHAPTER 3 

Hepatocyte Apoptosis Triggered by Natural 
Substances (Cytokines, Other Endogenous 
Molecules and Foreign Toxins) 

D. PES SAYRE, G. FELDMANN, D. HAOUZI, D. FAU, A. MOREAU, and M. NEUMAN 

A. Introduction 
The necessity of maintaining a close balance between cell birth and cell death 
has caused multicellular organisms to evolve into unforgiving societies where 
cells that are no longer needed are requested to commit suicide. 

For the doomed cells to disappear unobtrusively, a death programme is 
inserted in the genome of each cell (WHITE 1996). Cells constantly survey their 
external and internal milieus for survival signals (e.g., external growth factor, 
internal NF-K"B nuclear translocation) and death signals (e.g., external Fas 
ligand, internal p53 overexpression). The cell then integrates these conflicting 
signals, particularly in the mitochondria/caspases system, to decide whether to 
live or commit suicide (GREEN and KRaEMER 1998). 

For this cell suicide to proceed discreetly (without inflammation), the 
apoptotic cell dissociates from neighboring cells, wraps its contents in a cross
linked protein scaffold (formed by tissue transglutaminase), condenses its 
chromatin beneath the nuclear membrane, and fragments its DNA first into 
large fragments, then between nucleosomes (OBERHAMMER et al. 1993c; PATEL 
and GORES 1995; SCHULTE-HERMANN et al. 1995). The cell then cuts both its 
cytoplasm and its nucleus into membrane-bound apoptotic bodies that express 
phospatidylserine on the outer leaflet of their plasma membrane and are 
phagocytized and digested mainly by macrophages and also by neighboring 
parenchymal cells (PATEL and GORES 1995; SCHULTE-HERMANN et al. 1995). 

Like all other cells in the body, hepatocytes are subject to apoptosis (PATEL 
and GORES 1995; SCHULTE-HERMANN et al. 1995; FELDMANN 1997; GALLE 1997; 
JONES and GORES 1997). Apoptosis may play an important role in eliminating 
old hepatocytes, in decreasing liver mass when hepatic hyperplasia is no longer 
required, and in eliminating hepatocytes whose DNA has been damaged or 
which harbor viral proteins (COLUMBANO and SHINOZUKA 1996; JONES and 
GORES 1997). 

Hepatocytes appear to be particularly susceptible to apoptosis, in partic
ular apoptosis induced by Fas ligation (OGASAWARA et al. 1993). In many other 
cells, the expression of Bcl-2 exerts antiapoptotic effects as described below. 
It was thought, up to now, that Bcl-2 was not expressed in normal hepatocytes, 
explaining their sensitivity to Fas-mediated apoptosis (LACRONIQUE et al. 
1996). However, a recent study suggests that Bcl-2 might be present in the 
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inner membrane of rat liver mitochondria (MOTOYAMA et al. 1998). Further
more, some hepatoma cells may re-express Bcl-2 (SAITO et al. 1998). In addi
tion, hepatocytes may also slightly express Bcl-XL' an antiapoptotic analogue 
of Bcl-2, and this expression may be increased after exposure to hepatocyte 
growth hormone (KOSAI et al. 1998), after treating hepatoma cell lines with 
dexamethasone (YAMAMOTO et al. 1998), or during liver regeneration (TZUNG 
et al. 1997). 

Several endogenous or foreign compounds can trigger hepatocyte apop
tosis. Man-made chemicals that trigger hepatocyte apoptosis in vitro are con
sidered in Chap. 15. The aim of the present chapter is to review hepatocyte 
apoptosis induced by endogenous proteins and other natural substances. Par
ticular emphasis is placed on the Fas/Fas ligand system, due to its major rele
vance in viral hepatitis (the most common cause of liver disease) and several 
other forms of hepatic apoptosis. 

Due to the vast scope of this subject and space limitations, neither the 
topics covered by this review nor the list of references can be fully exhaustive. 

B. Fas-Mediated Apoptosis 
Cytolytic T lymphocytes cause apoptosis of target cells by several mechanisms, 
including the interaction of the Fas ligand expressed on the surface of T lym
phocytes with the Fas (receptor) expressed on target cells (KAGI et al. 1994). 

I. Fas Ligand 

Fas ligand (CD95 ligand) is a 40-kDa type II membrane glycoprotein which 
belongs to the tumor necrosis factor family (SUDA et al. 1993; SCHNEIDER et al. 
1997). Membrane bound Fas ligand can be cut by a matrix metalloproteinase, 
releasing the extracellular region of the Fas ligand, a 26-kDa glycoprotein 
called soluble Fas ligand (TANAKA et al. 1995). Soluble Fas ligand has little 
apoptogenic activity (SCHNEIDER et al. 1998) and can work as an inhibitor of 
membrane-bound Fas ligand toxicity against hepatocytes (TANAKA et al. 1998). 

Membrane-bound Fas ligand is mainly expressed by CD8+ cytotoxic T lym
phocytes and natural killer cells, and acts as a major effector of their cytotoxic 
effects (HANABUCHI et al. 1994; MONTEL et al.1995). Fas ligand is also expressed 
by parenchymal cells in immunoprivileged sites such as eyes, testes, brain, and 
placenta, where it may destroy activated lymphocytes and avoid immune reac
tions (GRIFFITH et al. 1996; LEE et al. 1997; SAAS et al. 1997; BAMBERGER et al. 
1997). 

In the liver, rat Kupffer cells and hepatic sinusoidal endothelial cells 
slightly express Fas ligand mRNA in the basal state, and this expression is 
further increased when lipopolysaccharide is added to the culture medium 
(MDsCHEN et al. 1998). In contrast, Fas ligand is not normally expressed in 
hepatocytes (GALLE et al. 1995). However, hepatocytes may express Fas ligand 
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mRNA after exposure to dexamethasone (MUSCHEN et al. 1998) and 
during several conditions causing oxidative stress, as reviewed later (GALLE 
et al. 1995; MULLER et al. 1997; HUG et al. 1997; STRAND et al. 1998). Hepato
carcinoma cells may escape immune surveillance either by downregulating 
Fas or by expressing Fas ligand (STRAND et al. 1996). Indeed, Fas ligand expres
sion appears to be a frequent mechanism by which diverse cancer cells can kill 
cytotoxic T lymphocytes or natural killer cells and can thus escape immune 
control. 

II. Fas 

Fas (also termed APO-l or CD95), a member of the tumor necrosis factor 
receptor superfamily, is a 45-kDa glycosylated type I-membrane protein 
(NAGATA 1997). The human Fas gene is composed of nine exons, all of which 
are conserved in the mRNA encoding the full-length Fas molecule (PAPOFF et 
al. 1996). Alternative splicing may produce several mRNA variants (PAPOFF et 
al. 1996). In the most abundant variant, exon 6 (which encodes the trans
membrane fragment) is deleted (FERENBACH et al. 1997). This mRNA encodes 
for a soluble form of Fas, called FasTMDel (PAPOFF et al. 1996) or FasEx06Dei 
(SCHUMANN et al. 1997). Extracellular FasTMDel acts as a decoy for the full 
length, membrane-bound Fas and decreases Fas-mediated apoptosis (PAPOFF 
et al. 1996). 

Fas is abundantly expressed in the liver, thymus, lymphocytes, polynuclear 
cells, heart, lung, kidney, and ovary and is also weakly expressed in many other 
tissues (NAGATA and SUDA 1995). In the liver, Fas is present in hepatocytes 
(OGASAWARA et al. 1993; GALLE et al. 1995), Kupffer cells, and sinusoidal 
endothelial cells (MUSCHEN et al. 1998). Fas may exhibit both cytoplasmic and 
plasma membrane expression in human hepatocytes (MOCHIZUKI et al. 1996) 
or human hepatocellular carcinoma cell lines (YANO et al. 1996). Human hepa
tocytes express both Fas, and, to a smaller extent, soluble Fas (KRAMS et al. 
1998). 

III. Fas Signal Transduction in Lymphoid Cells 

Transduction of the Fas signal has been mainly studied in lymphoid cells 
(NAGATA 1997). Fas ligation causes caspase activation, permeabilization of 
mitochondrial membranes, glutathione efflux, and other effects. 

1. Caspase Activation 

Binding of the trimeric Fas ligand causes trimerization of Fas (SCHNEIDER 
et al. 1997; NAGATA 1997) (Fig. 1). The trimerized cytoplasmic region of Fas 
recruits a protein called FADD (Fas-associated protein with death domain) 
or Mort-I, through homotypic interaction of the death domain of Fas with 
the death domain of FADD (NAGATA 1997). FADD also possesses a death 
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Fig.1. Direct activation of caspases by Fas ligation. Binding ofFas ligand (Fas L) causes 
the trimerization of Fas. The adaptor molecule, FADD recruits procaspase 8 which 
auto activates to caspase 8. The latter cuts pro-caspase 3 and other effector caspases. 
For simplicity, caspases are shown in their dime ric form, although they probably func
tion as tetramers formed of two small and two large subunits 

effector domain that serves as an adaptor molecule to recruit pro-caspase 8, 
also called FLICE (FADD-like interleukin-l converting enzyme), or MACH
I (Mort-I-associated CED-3) (NAGATA 1997). The prodomain of pro-caspase 
8 contains two death effector domains that bind to the death effector domain 
of FADD. 

Pro-caspase 8 is an initiator caspase that possesses intrinsic enzyme activ
ity (MUZIO et al. 1998). When approximated (and probably oligomerized) by 
binding to FADD molecule(s), it may autoprocess to the active tetrameric 
species associating two large and two small catalytic subunits (MUZIO et al. 
1998) (Fig. 1). 

The activated caspase 8 may then activate effector caspases, including 
caspase 3 (also called CPP32IYAMA) and caspase 7 (NAGATA 1997). All 
caspases are cysteine proteases that cut after aspartate (THORNBERRY and 
LAZEBNIK 1998). They are synthesized as inactive prozymogens comprising a 
prodomain, a large subunit (about 20kDa), and a small subunit (about 10kDa) 
(THORNBERRY and LAZEBNIK 1998). After being cut after several aspartates by 
other caspases (or by autoprocessing, in the case of caspase 8), they then form 
the active enzyme which lacks the pro domain but associates the large and 
small subunits (Fig. 1), probably in a tetramer of two large and two small sub
units (THORNBERRY and LAZEBNIK 1998). 

In addition to the FaslFas ligand system, activated cytotoxic T lymphocytes 
can kill target cells through the perforin/granzyme B system (KAGI et al.I994). 
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Perforin makes holes in the cell membrane and, possibly, in post-endosomal 
intracellular vesicles, which may respectively allow the entry of extracellular 
and endocytosed granzyme B into the cytosol (NAGATA 1997; PINKOSKI et al. 
1998). Although granzyme B is a serine protease, it also cuts proteins after 
aspartate (as do caspases) and can thus activate the caspase cascade (DARMON 
et al. 1995). Thus, the executioners of apoptosis are similar in the Fas/Fas ligand 
system and the perforin/granzyme B system (NAGATA 1997). 

Activated caspases can then disassemble cell structures by cutting actin, 
f3-catenin, and lamins (THORNBERRY and LAZEBNIK 1998). Lamins are inter
mediate filament proteins that form head-to-tail polymers under the nuclear 
membrane, forming a rigid structure (the nuclear lamina) that is involved in 
chromatin organization. The cleavage of lamins by caspases cause lamina to 
collapse, contributing to chromatin condensation (THORNBERRY and LAZEBNIK 
1998). Activated caspase 3 also cuts ICAD (inhibitor of caspase-activated 
deoxyribonuclease) (SAKAHIRA et al. 1998). This inhibitory protein maintains 
CAD (caspase-activated deoxyribonuclease) in an inactive cytosolic complex 
(SAKAHIRA et al. 1998) and/or nuclear complex (SUMEJIMA and EARNSHAW 
1998). Once ICAD has been cut, the liberated CAD may cause internucleo
somal DNA fragmentation (SAKAHIRA et al. 1998). Caspases also cut, inacti
vate, or deregulate several proteins involved in DNA repair, mRNA splicing, 
and DNA replication (THORNBERRY and LAZEBNIK 1998). Finally, caspases alter 
the mitochondrial structure as described below. 

2. Permeabilization of Mitochondrial Membranes 

Mitochondria have two membranes, limiting the central mitochondrial matrix 
and the intermembranous space, respectively (FROMENTY and PES SAYRE 1995) 
(Fig. 2). The respiratory chain is located in the inner membrane. The transfer 
of electrons along the respiratory chain is associated with the extrusion of 
protons from the matrix into the intermembranous space. This creates a large 
membrane potential across the inner membrane, which is secondarily utilized 
to synthesize ATP. When ATP is needed, protons re-enter the matrix through 
Fo-ATPase, and a rotary motor in F1-ATPase synthesizes ATP (Fig. 2). Fas
mediated caspase activation increases the permeability of both the inner and 
the outer mitochondrial membranes (GREEN and KROEMER 1998). 

Indeed, caspase activation may cause the mitochondrial permeability tran
sition, a phenomenon due to the opening of a large pore in the inner mito
chondrial membrane (Fig. 2). Wben human lymphoma cells are treated with 
an agonistic anti-Fas antibody, caspase activation precedes the disruption of 
the mitochondrial inner membrane potential (SUSIN et al. 1997). A synthetic 
caspase inhibitor prevents the collapse of the mitochondrial membrane poten
tial (SUSIN et al. 1997). Recombinant caspase 1, also called ICE (interleukin-
113 converting enzyme), causes a permeability transition-like swelling and 
disruption of the mitochondrial membrane potential in isolated rat liver 
mitochondria (SUSIN et al. 1997). These observations suggest that activated 
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Fig.2. Mitochondrial effects of Fas ligation. Activated caspase 8 cleaves BID. Trun
cated BID translocates to mitochondria and causes permeabilization of mitochondrial 
membrane(s). Bax has similar effects, whereas Bcl-2 and Bcl-XL protect mitochondria. 
Outer membrane rupture releases apoptosis inducing factor (AIF) and cytochrome c, 
both of which cause caspase activation. The opening of the inner membrane perme
ability transition pore allows re-entry of protons into the mitochondrial matrix. This 
decreases the mitochondrial membrane potential (A 'I'm) and ATP synthesis 

caspases may open the mitochondrial permeability transition pore (SUSIN 
et a1. 1997) (Fig. 2). 

The link between caspase activation and permeabilization of mitochon
drial membranes is provided by BID, a proapoptotic member of the Bcl-2 
family (LI et a1. 1998; Luo et a1. 1998). Activated caspase 8 cleaves BID, pro
ducing a truncated, C-terminal BID fragment that binds to mitochondria and 
induces release of cytochrome c (LI et a1. 1998; Luo et a1. 1998). Cytochrome 
c is normally present in the intermembranous space of mitochondria, where it 
is loosely associated with the inner membrane respiratory chain. The extru
sion of cytochrome c in the cytoplasm may be due to rupture of the outer 
membrane (VANDER HEIDEN et a1. 1997). lurkat cells treated with an agonis
tic anti-Fas antibody exhibit swollen mitochondria with outer membrane dis
continuities on electron microscopy. These damaged mitochondria release 
cytochrome c from the mitochondrial intermembranous space into the cytosol 
(VANDER HEIDEN et a1. 1997). 

It is not yet clear whether opening of the inner membrane mitochondrial 
transition pore causes outer membrane rupture or vice-versa. Due to the 
hyperosmolality of the mitochondrial matrix (GREEN and REED 1998), the 
opening of the mitochondrial permeability transition pore causes mitochon
drial swelling in whole cells (HOEK et a1. 1997). Whereas the inner mitochon
drial membrane has many folds and can accommodate an increased matrix 
volume, the spherical outer membrane can burst when the mitochondrion 
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swells (GREEN and KROEMER 1998; GREEN and REED 1998) (Fig. 2). The per
meability transition pore may initially affect only a few mitochondria and the 
pore may open and close successively in a single mitochondrion (HUSER et al. 
1998). Therefore, previous swelling bursts in some mitochondria may cause the 
rupture of some outer membranes, although the overall inner membrane 
potential (averaging all mitochondria) may be subnormal (VANDER HEIDEN 
et al. 1997; GREEN and KROEMER 1998). 

Alternatively, things may work the other way around (CAl and JONES 
1998). Caspase activation may initially damage the outer membrane and 
release cytochrome c from mitochondria. The decreased availability of this 
component of the respiratory chain within mitochondria may hamper electron 
flow through the respiratory chain, and cause over-reduction of components 
located upstream, such as coenzyme Q. This over-reduction may increase the 
mitochondrial formation of superoxide anion and other reactive oxygen 
species (CAl and JONES 1998). The latter may then open the permeability tran
sition pore (CAl and JONES 1998). 

Whatever the mechanism, cytochrome c release further activates caspases 
in a circular loop (REED 1997; GREEN and KROEMER 1998) (Fig. 2). Cytosolic 
cytochrome c binds apaf-1 (apoptotic protease activating factor-1), the human 
analogue of CED-4 (Cenorhabditis elegans death-4) (REED 1997; PAN et al. 
1998). In the presence of ATP, this may cause a conformational change in 
apaf-1 and allow it to bind to, and activate, caspase 9, which may then activate 
caspases 3 and 7, further increasing the apoptotic caspase (REED 1997; PAN 
et al. 1998) (Fig. 2). Fas activation also causes release of mitochondrial AIF 
(apoptosis-inducing factor) (SUSIN et al. 1997) (Fig. 2). This 57-kDa flavopro
tein causes further dissipation of the mitochondrial membrane potential and 
secondary release of cytochrome c (SUSIN et al. 1999). AIF translocates to the 
nucleus, and it induces large scale (50-kb fragments) DNA fragmentation and 
chromatin condensation (SUSIN et al. 1997, 1999). Thus, the initial activation 
of caspases by transduction of the Fas signal may permeabilize mitochondria, 
release cytochrome c and AIF, and further activate caspases (Fig. 2). 

Thus Fas ligation may activate caspases both directly (Fig. 1) and indirectly 
(Fig. 2). It has been suggested that different lymphoid cells may use these two 
pathways differently (SCAFFIDI et al. 1998). In some cells, Fas-mediated caspase 
activation may occur mainly by the direct (nonmitochondrial) pathway, while 
other cells may mainly activate caspases through the secondary (mitochond
rial) pathway (SCAFFIDI et al. 1998). 

3. Modulation by Caspase 8 Decoys (FLIPs), Cellular Inhibitors 
of Apoptosis (c-IAPs), Members of the Bcl-2 Family 
and Other Factors 

The autopotentiating loop described in Fig. 2 (caspases cause the release of 
cytochrome c which further activates caspases) would imply that any minimal 
caspase activation could rapidly kill all cells in a catastrophic caspase/mito-
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chondria/caspase reinforcing loop. This is not the case, thanks to several 
control mechanisms. 

Different cellular FLIPs (Fas-associated death-domain-like interleukin-1 
converting enzyme inhibitory proteins) resemble caspase 8, although they are 
themselves inactive (TSCHOPP et al. 1998). Through their death domain(s), 
these decoy proteins interact with FADD and caspase 8, preventing caspase 8 
activation (KATAOKA et al. 1998; TSCHOPP et al. 1998). 

Cellular lAPs (inhibitor of apoptosis), such as c-lAP-1, c-IAP-2, and lLP, 
directly bind to, and inhibit, several caspases (RoY et al. 1997; SUZUKI et al. 
1998b ). 

The antiapoptotic, mitochondrial membrane-associated protein, Bcl-XL' 
prevents the mitochondrial effects of Fas ligation in lurkat cells (VANDER 
HEIDEN et al. 1997) (Fig. 2). Bcl-XL may also have a more direct effect, as it 
completely inhibits apoptosis induced by microinjection of recombinant active 
caspase 8 in breast carcinoma cells (SRINIVASAN et al. 1998). Bcl-2, a close ana
logue of Bcl-XL' also associates with mitochondria and prevents the collapse 
of the mitochondrial membrane potential induced by other agents (SHIMIZU 
et al. 1998). Bcl-2 might act by enhancing H+ efflux from the mitochondrial 
matrix (SHIMIZU et al. 1998). In addition to its mitochondrial effect, Bcl-2 may 
also have several extramitochondrial effects. Indeed, Bcl-2 may increase the 
mRNA and protein of SERCA (sarcoplasmic/endoplasmic reticulum Ca2+

ATPase), thus preserving the endoplasmic reticulum calcium store (Kuo et al. 
1998). In addition, Bcl-2 may also cause proteasomal degradation of IKE and 
nuclear translocation of NF-KB (DE MOISSAC et al. 1998), whose antiapoptotic 
effects are discussed later (in the context of tumor necrosis factor-a-induced 
cytotoxicity). 

The overexpression of Bax (a proapoptotic analogue of the Bcl-2 family) 
has the opposite effects. Bax cooperates with the adenine nucleotide translo
cator to trigger the mitochondrial permeability transition (MARZO et al. 1998). 
Bax releases cytochrome c in isolated rat liver mitochondria (NARITA et al. 
1998) and activates caspases in lurkat cells (PASTORINO et al. 1998). Possibly 
because of the intrinsic toxicity of the mitochondrial permeability transition 
itself, Bax can kill mammalian cells whose caspases are inhibited (ADAMS 
and CORY 1998) or yeast cells which do not express caspases (GREEN and REED 
1998). 

In addition to caspases and members of the Bcl-2 family, several other 
factors modulate the opening of the mitochondrial permeability transition 
pore. Pore opening can be triggered by Ca2+, electrophilic compounds, or reac
tive oxygen species, all of which may trigger or aggravate apoptosis in differ
ent models (GREEN and KROEMER 1998). In contrast, pore opening may be 
prevented by various anti-oxidants that prevent apoptosis in several models 
(GREEN and KROEMER 1998). Thus the combination of mitochondria and cas
pases can be considered as the site where antiapoptotic and proapoptotic 
signals are integrated before the cell makes its decision to live or die (GREEN 
and KROEMER 1998). 
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4. Orientation of Cell Death Towards Apoptosis and/or Necrosis 

Mitochondria may also help decide whether the cell dies from necrosis, apop
tosis, or both (GREEN and KROEMER 1998). Opening of the mitochondrial mem
brane transition pore may cause both caspase activation and ATP depletion 
(Fig. 2). Indeed, opening of this pore causes re-entry of protons into the matrix 
and collapse of the mitochondrial membrane potential, which is normally used 
to synthesize ATP (Fig. 2). Therefore, immediate opening of the pore in all 
mitochondria suppresses mitochondrial ATP synthesis (Fig. 2). If the cell 
cannot derive enough energy from anaerobic glycolysis, cell ATP decreases. 
Apoptosis is an active, ATP-requiring process (LEIST et al. 1997b). At low ATP 
levels, apoptosis cannot proceed, and cells die from necrosis instead (LEIST et 
al. 1997b). This occurs whenever cells are exposed to high concentrations of 
compounds that directly open the mitochondrial permeability transition pore 
in all mitochondria. 

In contrast, if the pore only opens in some mitochondria, caspase activa
tion may occur without an immediate decrease in cell ATP, so that apoptotic 
lesions develop. In the case of Fas ligation, the "race" between caspase 
activation (causing apoptosis) and ATP depletion (causing necrosis) (GREEN 
and KROEMER 1998) may be won by caspases because the FaslFADD complex 
directly activates caspases (Fig. 1). However, secondary aggravation of mito
chondriallesions may then cause ATP depletion and secondary necrosis. 

5. Efflux of Reduced Glutathione and Other Effects 

Incubation of human lurkat T lymphocytes with an agonistic anti-Fas antibody 
causes a rapid and specific cellular efflux of reduced glutathione (VAN DEN 
DOBBELSTEEN et al. 1996). GSH levels modulate Fas-mediated apoptosis 
(CHJBA et al. 1996). N-Acetylcysteine (a glutathione precursor) prevents both 
the depletion of glutathione and apoptosis in human T cells exposed to an 
agonistic anti-Fas antibody (CHIBA et al. 1996). Buthionine sulfoximine (an 
inhibitor of glutathione synthesis) has the opposite effects (CHJBA et al. 1996). 

Although ceramide generation by cellular sphingomyelinases was initially 
proposed as an important mechanism for Fas-mediated apoptosis (CrFONE et 
al. 1995), more recent studies suggest that cerami de generation may only play 
a limited role in Fas-induced T cells apoptosis (WATTS et al. 1997; GAM EN et al. 
1998). One of the cerami de metabolites may open the mitochondrial perme
ability transition pore and hasten apoptosis. 

At least in human fibroblasts, Fas activation may also cause NF-TCB 
(nuclear factor K"B) activation, although less than tumor necrosis factor-a 
(RENSING-EHL et al. 1995). 

6. Fas Signaling Independent of Fas Ligand 

Through unknown mechanisms, UV light causes aggregation of both Fas and 
the tumor necrosis factor-a receptor (REHEMTULLA et al. 1997; ARAGANE et al. 
1998). UV light-induced Fas oligomerization recruits FADD, activates cas-
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pases, and causes apoptosis, without requiring Fas ligand (REHEMTULLA et al. 
1997; ARAGANE et al. 1998). Hydrophobic bile acids similarly cause Fas ligand
independent Fas aggregation, and trigger caspase activation and hepatocyte 
apoptosis in the absence of Fas ligand (FAUBION et al. 1999). 

IV. Role of Fas in the Control of the Immune System 

In lymphocytes, Fas ligand expression not only kills target cells but also acti
vated lymphocytes, thus avoiding uncontrolled (auto )immune reactions. 
Indeed, lymphoproliferation and autoimmune manifestations are the main 
manifestations in mice with genetic defects in the Fas/Fas ligand system. In lpr 
(lymphoproliferation) or gld (generalized lymphoproliferative disease) mice, 
homozygous mutations of the Fas gene (lpr mice) or the Fas ligand gene (gld 
mice) affect Fas-mediated elimination of autoreactive Band T lymphocytes 
(WATANABE-FuKADA et al. 1992; TAKAHASHI et al. 1994a). This causes both 
hypergammaglobulinemia and accumulation of nonmalignant CD4/CD8 
double negative T cells in lymphoid organs, leading to a generalized autoim-
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Fig.3. Different models of Pas-mediated apoptosis. Agonistic anti-Pas antibodies 
(AB) cause the oligomerization and activation of Pas, reproducing the effects of Pas 
ligand (Pas L). Activated lymphocytes express Pas ligand and may kill both their 
specific immunologic targets (expressing viral peptides on major histocompatibility 
class 1 molecules) and also bystander (noninfected) hepatocytes. In alcohol abuse, 
Wilson's disease, or after exposure to some anticancer drugs, oxidative stress may cause 
the expression of Pas L by hepatocytes, which can kill each other through fratricidal 
killing 
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mune disease, with autoantibody production, glomerulonephritis, arthritis, and 
vasculitis (WATANABE-FuKADA et al. 1992; TAKAHASHI et al. 1994a). Patients 
with the autoimmune lymphoproliferative syndrome also have defects in the 
Fas gene and exhibit clinical features similar to those of lpr mice (FISHER 
et al. 1995; RIEux-LAUCAT et al. 1995; KASAHARA et al.1998). 

v. Fas-Induced Hepatocyte Apoptosis 

Fas-mediated hepatocyte apoptosis has been demonstrated in diverse experi
mental models and several human conditions. It can be triggered by agonistic 
anti-Fas antibodies, activated lymphocytes, or hepatocytes expressing Fas 
ligand (Fig. 3). 

1. Agonistic Anti-Fas Antibodies 

The use of agonistic anti-Fas antibodies (causing Fas aggregation) is an 
easy way to study the apoptotic effects of Fas activation in vitro or in vivo 
(Fig. 4). 

Fig.4. Hepatic apoptosis induced by an anti-Fas antibody in mice. Mice were killed 4 
h after the intraperitoneal administration of an anti-mouse Fas antibody (8.ug/mouse). 
Two apoptotic hepatocytes are visible. Nuclear chromatin is condensed beneath the 
nuclear membrane. Mitochondria (m) are tightly packed around the nucleus (N), 
whereas the rough endoplasmic reticulum (r) is shifted towards the cell periphery 
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Human hepatocytes rapidly underwent apoptosis when they were cul
tured with an agonistic anti-human Fas antibody alone (20ng/ml) (GALLE et 
al. 1995). Apoptotic changes started after 5.5 h. All cells were dead at 7.5 h, and 
most were detached (GALLE et al. 1995). 

In contrast, when mouse hepatocytes were cultured for 24h with an 
agonistic anti-human Fas monoclonal antibody (l.ug/ml), apoptosis was not 
observed unless cycloheximide (lO.ug/ml) or H7 (Seikagaku Kogyo Company, 
Tokyo, Japan), a serine/threonine kinase inhibitor, was also added (ROUQUET 
et al. 1996). With the anti-Fas/cycloheximide treatment, 55% of cells exhibited 
apoptotic changes (ROUQUET et al. 1996). The percentage of apoptotic cells 
was increased by genistein and herbimycin A, two tyrosine kinase inhibitors 
(ROUQUET et al. 1996). Apoptosis was prevented by caspase inhibitors 
(ROUQUET et al. 1996). Sphingomyelinase was not activated, and ceramide was 
not released; furthermore, exogenous ceramide did not cause mouse hepato
cyte apoptosis (ROUQUET et al. 1996). 

Suspended mouse hepatocytes exhibited apoptosis within hours following 
the addition of an anti-mouse Fas antibody (J02, Pharmingen; 10ng/ml) alone, 
without requiring cycloheximide or H7 (JONES et al.1998). Apoptosis was asso
ciated with the processing of caspases 3 and 7, although poly(ADP-ribose) 
polymerase cleavage was not detected (JONES et al. 1998). In culture, however, 
these same hepatocytes also required cycloheximide to respond to the anti
Fas treatment (JONES et al. 1998). 

In vivo, the seminal study of OGASAWARA et al. (1993) showed that the 
intraperitoneal administration of a monoclonal anti-Fas antibody (lOO.ug/ 
mouse) rapidly killed wild-type mice but not lpr (lymphoproliferation) mice, 
which have Fas gene defects. In wild-type mice, few normal hepatocytes 
remained 2h after injection of the anti-Fas antibody (OGASAWARA et al.1993). 
Instead, most hepatocytes exhibited cytoplasm condensation and pyknosis of 
the nuclei, while condensed and fragmented nuclei were observed by electron 
microscopy (OGASAWARA et al. 1993). 

Despite this morphological evidence of apoptosis, serum transaminase 
activity was considerably increased, as early as 2-3 h after injection (OGA
SAWARA et al. 1993). Transaminase release might be caused by secondary liver 
necrosis (possibly caused by secondary ATP depletion as discussed above). 
However, a second mechanism might also be involved. In several other apop
tosis models, trans glutaminase activation creates a cross-linked protein scaf
fold that wraps cell contents and may prevent plasma membrane rupture and 
release of cell content (FESUS et al. 1996). In contrast, Fas receptor stimula
tion did not cause transglutaminase activation in thymocytes (SZONDY et al. 
1997). Hypothetically, failure of Fas to activate trans glutaminase (if it is also 
true for hepatocytes) might permit liver enzyme extrusion in Fas-induced 
hepatic apoptosis. 

Although Fas is expressed in many organs, administration of the anti-Fas 
antibody mainly damages the liver (OGASAWARA et al. 1993), possibly because 
hepatocytes do not express (or poorly express) Bcl-2. To determine whether 
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forced hepatocellular expression of Bcl-2 would protect hepatocytes, trans
genic mice were generated that expressed the human Bcl-2 gene product in 
their hepatocytes (LACRONIQUE et al. 1996). While administration of an anti
Fas antibody (10 ,ug/mouse) caused hepatic apoptosis and death in nontrans
genic mice, hepatic apoptosis was both delayed and reduced in the Bcl-2 
transgenic mice, and 93% of them survived (LACRONIQUE et al. 1996). 

Human recombinant hepatocyte growth factor (100,ug) administered 6h 
and 0.5 h prior to, and 3 h after, an anti-Fas antibody (4,ug or 8,ug) increased 
Bcl-XL expression in hepatocytes and prevented hepatic apoptosis and death 
in mice (KosAI et al. 1998). IL-15 also prevented Fas-induced hepatic apop
tosis, although the mechanism is unknown (BULFONE-PAUS et al. 1997). 

2. Activated Lymphocytes 

Activated cytotoxic lymphocytes are recruited to virus-infected hepatocytes, 
through interaction between the T cell receptor and viral pep tides expressed 
on major histocompatibility complex class I molecules located on the surface 
of hepatocytes (Fig. 3). These virus-specific lymphocytes can kill the infected 
hepatocytes through Fas activation. A cytotoxic CD8+ T lymphocyte clone, 
specific for the hepatitis B surface antigen, was injected intravenously into 
transgenic mice that expressed the hepatitis B surface antigen in the liver 
(KONDO et al. 1997). The T cell clone caused hepatocyte apoptosis and killed 
most animals within 3 days. Coadministration of a soluble form of Fas pre
vented apoptosis, and all mice survived (KONDO et al. 1997). Studies in lpr, gld, 
and control mice showed that the Fas system also played a role in the rapid 
elimination of hepatocytes transfected with the defective adenoviral vectors 
that are used in experimental gene therapy (OKUYAMA et al. 1998). 

When present in large amounts, activated T cells may also kill uninfected 
hepatocytes in an antigen-independent manner, a phenomenon called 
"bystander killing" (Fig. 3). This phenomenon may involve both Fas ligand and 
tumor necrosis factor-a release. The role of Fas ligand was demonstrated in 
three models. In a first model, nontransgenic mice were primed with Propi
onibacterium acnes, which causes accumulation of macrophages and lym
phocytes in the liver (KONDO et al. 1997). A subsequent challenge with 
lipopolysaccharide induced liver injury and killed the mice (KONDO et al. 
1997). Neutralization of Fas ligand by administration of a soluble form of Fas 
decreased these effects (KONDO et al. 1997). In another model, concanavalin 
A, which activates T cells, caused severe hepatic injury in wild-type mice but 
mild injury in lpr and gld mice (SEINO et al. 1997; TAGAWA et al. 1998). A neu
tralizing antibody against Fas ligand reduced the aminotransferase increase 
(SEINO et al. 1997). In a third model, the transfer of lpr mouse spleen cells, 
which overexpress Fas ligand, to irradiated wild type mice caused hepatocyte 
apoptosis in vivo (BOBE et al. 1997). 

Patients with chronic hepatitis B overexpress the Fas antigen (MOCHIZUKI 
et al. 1996). This increased expression mainly occurs in periportal hepatocytes 
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that are close to the site of inflammatory cell infiltrates which are elective 
targets for immune destruction (MOCHIZUKI et al. 1996). In patients with 
chronic hepatitis C, periportal hepatocytes also overexpress Fas (HIRAMATSU 
et al. 1994), while liver-infiltrating mononuclear cells express Fas ligand (MITA 
et al. 1994). Increased serum concentrations of soluble Fas have been reported 
in patients with liver cirrhosis due to the hepatitis C virus (SEISHIMA et al. 
1997). 

Hepatitis C virus-specific, human cytotoxic T lymphocyte lines were pre
pared from the peripheral blood lymphocytes of a patient who had cleared 
hepatitis C virus infection while on interferon therapy (ANDO et al. 1997). 
These T cell clones killed Ag-bearing cells in vitro, by mechanisms involving 
Fas ligand, perforin, and tumor necrosis factor-a (ANDO et al. 1997). The T cell 
clones also killed non antigen bearing, bystander cells, although less efficiently 
(ANDO et al. 1997). 

3. Fratricidal Killing 

Hepatocytes do not normally express Fas ligand, which prevents them from 
killing their neighbors. However, the Fas ligand promoter contains NF-KE 
binding sites (TAKAHASHI et al. 1994b). Normally, NF-KE is maintained in the 
cytoplasm by h:B. However, reactive oxygen intermediates causes phospho
rylation, ubiquitination, and proteasomal degradation of IKE, allowing nuclear 
translocation of NF-K"B (NAUMANN and SCHEIDEREIT 1994). Conditions which 
increase reactive oxygen intermediates may thus cause Fas ligand expression 
by hepatocytes (STRAND et al. 1998). At the same time, the increased forma
tion of reactive oxygen intermediates might damage DNA, overexpress p53, 
and increase Fas expression by hepatocytes (MULLER et al. 1997). The Fas 
ligand of a first hepatocyte may then interact with Fas on another hepatocyte, 
causing fratricidal killing. This form of cell death may occur under three 
conditions. 

The first condition involves alcoholism, which increases the formation of 
reactive oxygen species and causes oxidative stress in the liver (LETTERON et 
al. 1993; MANSOURI et al. 1997a). Fas ligand messenger RNA was detected by 
in situ hybridization in the hepatocytes of patients with alcoholic liver damage 
(GALLE et al. 1995). At the same time, Fas was overexpressed in some 
hepatocytes. 

The second condition involves Wilson's disease, which is due to mutations 
in a copper transporting P-type ATPase whose defects cause copper accumu
lation in the liver (STRAND et al. 1998). Due to its ability to cycle between Cuz+ 

and Cu+, copper is a powerful generator of reactive oxygen species and causes 
oxidative stress in the liver (MANSOURI et al. 1997b). In patients with fulmi
nant hepatic failure due to Wilson's disease, high Fas protein expression was 
observed on the hepatocyte plasma membrane in some areas, while Fas ligand 
mRNA became apparent in the cytoplasm of some hepatocytes located in the 
vicinity of apoptotic cells (STRAND et al. 1998). When HepG2 hepatoma cells 
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were treated with copper, cell surface Fas protein, Fas ligand mRNA, and Fas 
ligand protein were all increased, and these cells underwent apoptosis which 
was partially prevented by a neutralizing anti-Fas antibody or a caspase 
inhibitor (STRAND et al. 1998). This suggested that hepatocytes killed each 
other by fratricidal killing (Fig. 3). 

The third condition involves the anti-cancer drug, bleomycin, which forms 
complexes with iron and other transition metals and produces reactive oxygen 
species (KANOFSKY 1986; HUG et al. 1997). Bleomycin increased the formation 
of reactive oxygen species and induced Fas ligand mRNA expression in 
HepG2 hepatoma cells (HUG et al. 1997). The latter effect was prevented by 
antioxidants and was reproduced by exposure to H20 2, suggesting that reac
tive oxygen intermediates were involved in the induction of Fas ligand (HUG 
et al. 1997). In another study, bleomycin and methotrexate (but not cisplatin) 
were shown to increase Fas ligand mRNA in HepG2 cells (MULLER et al.1997). 
Bleomycin and methotrexate caused HepG2 apoptosis when present alone 
(MULLER et al. 1997). It was suspected that this drug-induced apoptosis may 
be due, at least in part, to Fas signaling and fratricidal killing. Indeed, the 
bleomycin-induced apoptosis was almost completely inhibited by an F(ab)'z
anti-Fas antibody fragment known to interfere with Fas/Fas ligand interaction 
(MULLER et al. 1997). 

Bleomycin, methotrexate, and cisplatin also over expressed Fas mRNA 
and cell surface Fas protein in HepG2 cells (MULLER et al. 1997). This over
expression did not occur in hepatoma cells that did not express p53 or had a 
mutated p53, suggesting that wild-type p53 is somehow required for anticancer 
drug-induced enhancement of Fas expression (MULLER et al. 1997). To 
determine whether this enhanced Fas expression sensitizes hepatocytes to 
the effects of Fas ligation, HepG2 cells were first treated with bleomycin, 
methotrexate, or cisplatin alone for 48 h, and then in combination with an anti
Fas antibody (0.1.ug/ml) for another 24h (MULLER et al. 1997). To differenti
ate between the specific effects of the anti-Fas antibody and cell death induced 
by the anticancer drug alone, surviving cells were expressed as the fraction of 
residual living cells with the anticancer drug only. The anti-Fas antibody alone 
caused specific cell death in only 10% of control HepG2 cells (MULLER et al. 
1997). In contrast, in HepG2 cells treated with bleomycin, cisplatin, or 
methotrexate, the anti-Fas antibody caused specific apoptosis in 50%-75% of 
hepatocytes (MULLER et al. 1997). 

Thus, some anti-cancer drugs can directly cause fratricidal apoptosis by 
inducing both Fas and Fas ligand expression in hepatocytes, and can also sen
sitize hepatocytes to exogenous causes of Fas ligation (MULLER et al. 1997). 

4. Basal Hepatic Apoptosis 

In the "streaming liver" hypothesis, hepatocytes are born in the periportal area 
and slowly pushed, along the sinusoids towards the centrilobular zone where 
they undergo apoptosis (ARBER et al. 1988; BENEDETTI et al. 1988). Interest-
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ingly, liver hyperplasia is found both in Fas-knockout mice (ADACHI et al.1995) 
and in humans with mutated Fas (KASAHARA et al. 1998), suggesting a possi
ble role of Fas in the apoptotic elimination of old hepatocytes. 

C. Tumor Necrosis Factor-a.-Mediated Cell Death 
I. TNF-a 

TNF-a belongs to the same superfamily as Fas ligand, and exhibits 
homologies with this ligand (NAGATA and GOLSTEIN 1995; SMITH et al. 1994). 
The TNF-a gene is located on human chromosome 6 in the human leucocyte 
antigen (HLA) region (BEUTLER and CERAMI 1988). Two biallelic, single base 
(guanine to adenosine) polymorphisms have been described in the human 
TNF-a promoter, at nucleotide -308 and nucleotide -238, respectively 
(WILSON et al. 1997). Homozygosity for the rare -308A allele ("TNF2") 
increases TNF-a synthesis and predisposes to lethal cerebral malaria and sys
temic lupus erythematosus (SULLIVAN et al. 1997). Although the functional 
significance of the rare -238A ("TNFA-A") allele is uncertain, an excess in 
this allele has been reported in patients with alcoholic steatohepatitis (GROVE 
et al. 1997). 

The TNF-a gene promoter contains both NF-K"B and AP-l (activator 
protein-I) binding sites (ZWACKA et al. 1998). TNF-a is mainly produced by 
activated lymphocytes, monocytes, and macrophages, including Kupffer cells 
(TRACEY and CERAMI 1993). TNF-aproduction in macrophages or Kupffer cells 
is inhibited by dexamethasone and some prostaglandins (GONG et al. 1991) 
and is enhanced by viral infection (GREWE et al. 1994) or lipopolysaccharide 
(TRAN-THI et al. 1995). The latter increases the DNA-binding activity of both 
NF-K"B and AP-l (TRAN-THI et al. 1995). 

TNF-a is also expressed by hepatocytes, particularly under conditions of 
oxidative stress such as ethanol exposure (NEUMAN et al. 1998). Hepatocyte 
TNF-a is also overexpressed during, and is involved in, liver regeneration 
(AKERMAN et al. 1992). 

TNF-a is initially synthesized as a 26-kDa membrane-bound form of 
233 amino acids, which is then proteolytically cleaved between Ala76 and 
VaIn to the 17-kDa secreted form of 137 amino acids (TRACEY and CERAMI 
1993). Metalloproteinases, including TACE (TNF-a converting enzyme) and 
ADAM 17 (a disintegrin and metalloprotease 17) which are both members of 
the ADAM family of proteases, may cleave the membrane-bound cytokine at 
the cell surface (MOLHER et al. 1994; MCGEEHAN et al. 1994; GEARING et al. 
1994; BLACK et al. 1997). Secreted TNF-a is an unglycosylated polypeptide 
which is active in its trimeric form (SMITH and BAGLIONI 1988; JONES et al. 
1989). The cell surface, membrane-bound form ofTNF-a is also active (TRACEY 
and CERAMI 1993). In this case, TNF-a-bearing cells kill target cells through 
cell-to-cell contacts (KRIEGLER et al. 1988; PEREZ et al. 1990; DECOSTER et al. 
1995). 
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II. TNF-a Receptors and Signal Transduction 

TNF-a exerts its functions through two cell surface receptors which are 
expressed on most cells, including hepatocytes (VOLPES et al. 1992; VANDEN
ABEELE et al. 1995). TNFR1 has a molecular mass of 55kDa and is therefore 
also called TNFR-55, while the 75-kDa TNFR2 is also called TNFR75. 

These two TNF -a receptors belong to the same superfamily as Fas and the 
NGF, CD40, and CD30 receptors (NAGATA and GOLSTEIN 1995). Both TNFR1 
and TNFR2 are glycosylated transmembrane proteins and exhibit homologies 
in their extracellular domains (VANDENABEELE et al. 1995), which may explain 
why TNF-a binds to both receptors. This extracellular domain may be shed 
and may then act as a decoy receptor for TNF-a, thus decreasing the toxicity 
of circulating TNF-a (VAN ZEE et al. 1992). In contrast, the intracellular 
domains of TNFR1 and TNFR2 are completely different (VANDENABEELE 
et al. 1995), explaining why these receptors mediate different signals. 

TNFR2 may signal for the proliferation of both thymocytes and cytotoxic 
T cells but may have no direct signaling effects for TNF-a-mediated cytotox
icity (TARTAGLIA et al. 1991). Nevertheless, TNFR2 might have some indirect 
effect by being able to recruit TNF-a and then "pass" this ligand to TNFR1 
(ERICKSON et al. 1994). This might explain why TNFR2 -/- mice are less sus
ceptible to TNF-a-mediated necrosis and death than wild type mice (ERICK
SON et al. 1994). 

TNFR1 signaling is thought to mediate mainly the cytotoxic effects 
of TNF-a (TARTAGLIA et al. 1993; ASHKENAZI and DIXIT 1998). Indeed, gene
targeted mice lacking TNFR1 do not develop TNF-a induced apoptosis (LEIST 
1995b), while mice genetically deficient in Fas are susceptible (LEIST et al. 
1996). Binding of the trimeric TNF-a to the extracellular domain of TNFR1 
causes its trimerization. The trimerized intracellular domain then associates 
with the death domain of an adapter molecule, called TRADD (TNFR1-
Associated Death Domain) (VANDENABEELE et al. 1995; NAGATA 1997; NATOLI 
et al. 1998). TRADD then recruits diverse signaling molecules that have both 
death-promoting and death-preventing effects (ASHKENAZI and DIXIT 1998). 

Death-promoting effects are caused by the recruitment of FADD by 
TRADD. This causes the same proapoptotic effects as the recruitment of 
FADD by Fas. Briefly, FADD recruits procaspase 8 which autoactivates into 
the active caspase 8. The latter activates other caspases and also causes BID 
cleavage (GROSS et al. 1999). Translocation of truncated BID to mitochondria 
causes the release of mitochondrial cytochrome c into the cytosol. In the pres
ence of ATP and apaf-1, cytosolic cytochrome c activates caspase 9 causing 
amplification of the caspase cascade (CHINNAIYAN et al. 1995; LI et al. 1988; 
GROSS et al.1999). Indeed, two recent reports show that TNF-a induces apop
to sis by acting on hepatic mitochondria (ANGERMULLER et al. 1998; BRADHAM 
et al. 1998), with depolarization of the inner membrane, release of cytochrome 
c in the cytosol, and caspase activation (BRADHAM et al. 1998). Ultrastructural 
alterations of hepatic mitochondria appear before any nuclear change 
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(ANGERMULLER et al. 1998). Alterations of the outer mitochondrial membrane 
occur first, followed by protrusions of the inner membrane through the outer 
membrane gaps (ANGERMULLER et al. 1998). 

In addition to recruiting the proapoptotic FADD adaptor protein, 
TRADD also recruits RIP (receptor interacting protein) and TRAF2 (TNF 
Receptor-Associated Factor-2). These two polypeptides partly signal for anti
apoptotic effects (STANGER et al. 1995; Hsu et al. 1996; ASHKENAZI and DIXIT 
1998). Indeed, RIP and TRAF2 cause the phosphorylation and proteosomal 
degradation of IKB, an inhibitor of NF-KB that normally maintains NF-KB in 
an inactive, cytosolic complex (Hsu et al. 1995; REGNIER et al. 1997). The result
ing translocation of NF-KB into the nucleus may induce cell survival (BEG and 
BALTIMORE 1996; WANG et al. 1996) by suppressing some cell death signals (VAN 
ANTWERP et al. 1996), upregulating the expression of the c-IAPs (cellular 
inhibitors of apoptosis) (STEHLIK et al. 1998; WANG et al. 1998), and inhibiting 
caspase 8 activation (WANG et al. 1998). Second, TRAF2 activates the lun 
NHr kinase/AP-l system (ASHKENAZI and DIXIT 1998). Both NF-KB and AP
I activation cause the upregulation of mitochondrial Mn-SOD (manganese
containing superoxide dismutase) (BORRELLO and DEMPLE 1997), which exerts 
protective effects by decreasing the toxicity of reactive oxygen species (WONG 
et al.1989). In keeping with the antiapoptotic effects ofNF-KB nuclear translo
cation through the enhanced transcription of antiapoptotic genes (MnSOD, 
clAPs), NF-KB -knock-out mice exhibit liver apoptosis (BEG et al. 1995). 
Moreover, inhibiting the degradation of IKB and thus preventing the nuclear 
translocation of NF-KB also induces massive apoptosis in murine hepatocytes 
(BELLAS et al. 1997). 

Thus, TNF -a signaling involves both the immediate activation of proapop
totic caspases, and the secondary, NF-KB-mediated transcription of antiapop
totic genes. This dual effect may explain why TNF -a-induced cytotoxicity often 
requires artificial inhibition of gene transcription by concomitant administra
tion of transcriptional inhibitors. These inhibitors do not affect caspase 
activation by FADD, while they may prevent increased transcription of anti
apoptotic genes by NF-KB nuclear translocation. 

III. Hepatotoxicity of TNF -a in Experimental Models 

The cytotoxicity of TNF-a has been studied in normal mouse hepatocytes 
(LEIST et al. 1994, 1995b, 1996, 1997a; SENALDI et al. 1998) and cultured rat 
hepatocytes (SHINAGAWA et al. 1991). Freshly isolated mouse hepatocytes are 
essentially insensitive to TNF-a cytotoxicity, unless transcriptional inhibitors 
are also added, such as actinomycin D, a-amanitin (an RNA polymerase II 
inhibitor), or D-galactosamine (whose hepatic metabolism decreases hepatic 
uri dine nucleotide pool and causes liver-specific transcriptional arrest) 
(LEIST et al. 1994). In these sensitized cells, bleb formation, chromatin con
densation, and oligonucleosomal DNA fragmentation preceding LDH release 
all indicate that cell death is initially caused by an apoptotic process. As in 
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several (but not all) models of apoptosis, cycloheximide prevents cell 
death (LEIST et al. 1994), indicating that some ongoing synthesis of short-lived 
proteins is required. However, marked release of liver enzymes and necrosis 
may also occur (WANG et al. 1995). As discussed for Fas-mediated apoptosis, 
necrosis might be due to ATP depletion, and perhaps also to the noninduction 
of tissue transglutaminase during TNF-a-mediated apoptosis (LEIST et al. 
1995a). 

The proapoptotic action of TNF-a has been also investigated in HepG2 
cells, a human hepatoma cell line (HILL et al. 1995; LEIST et al. 1997a). Trans
lational inhibition by actinomycin D renders HepG2 cells susceptible to 
TNF-a-induced cytotoxicity. SV 40-immortalized rat hepatocytes that have 
integrated the HBV genome are also sensitive to TNF-a when HBV expres
sion is high, although the mechanism for this sensitization has not been 
clarified (GUILHOT et al. 1996). 

Anti-TNF-a antibodies protect hepatocytes from apoptosis induced by 
the cytokine (LEIST et al. 1994), while preexisting glutathione depletion 
enhances toxicity (Xu et al. 1998). Interferon-y also potentiates TNF-a 
proapoptotic action (SHINAGAWA et al.1991), while interleukin 1f3 (LEIST et al. 
1995a), or keratinocyte growth factor (SENALDI et al.1998) are protective. Pro
longed cultures of rat hepatocytes were insensitive to TNF-a but became 
apoptotic when dimethylsulfoxide (an antioxidant) was removed from the 
culture medium (BOUR et al. 1996). 

These in vitro observations have been confirmed by in vivo models (LEIST 
et al. 1994, 1995a, 1996, 1997a). Hepatocytes from mice receiving both TNF-a 
and actinomycin D exhibited chromatin condensation, apoptotic body for
mation, and significant oligonucleosomal DNA fragmentation that occurred 
before any increase in serum transaminase activity (LEIST et al. 1994; 
MORIKAWA et al. 1996). Necrosis, however, occurred at later times (LEIST et al. 
1995a). Z-VAD-fiuorometylketone, a caspase inhibitor, can protect mice from 
liver apoptosis induced by TNF-a (KONSTLE et al. 1997). 

In another model, administration of a small dose of lipopolysaccharide 
(which causes the release of TNF-a) induced massive hepatic necrosis at 24h 
in galactosamine-sensitized mice, but not in control mice (HISHINUMA et al. 
1990; LEIST et al. 1995a). Necrosis was prevented by an anti-TNF-a antibody 
(HISHINUMA et al. 1990; LEIST et al. 1995a). Similarly, administration of the 
Pseudomonas aeruginosa exotoxin A causes TNF-a release from T cells and 
hepatic apoptosis (SCHUMANN et al. 1998). 

A related in vivo experimental model is the Corynebacterium 
parvumlendotoxin model (HARBRECHT et al. 1994a). A single injection of 
killed C. parvum bacteria progressively causes macrophagic sinusoidal cell 
infiltrates and hepatic granulomas in rats (ARTHUR et al. 1985). When these 
rats or mice are then challenged, one week later, with a small dose of endo
toxin, the hepatic macrophages release TNF-a, causing massive liver injury 
(ARTHUR et al. 1985), unless an anti-TNF-a antibody is also administered 
(HARBRECHT et al. 1994a). 
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Yet another in vivo model ofTNF-a-mediated hepatocyte apoptosis is that 
of concanavalin A administration (TIEGS et al. 1992; LEIST et al. 1995a). This 
lectin activates CD4-positive lymphocytes (GANTNER et al. 1995). Their assem
bly in liver sinusoids increases the local production of several cytokines, 
particularly TNF-a. Although interferon-y(TAGAWA et al. 1997) and Fas ligand 
(SEINO et al. 1997; KSONTINI et al. 1998; TAGAWA et al. 1998) are also involved, 
TNF-a also seems to play a role in mediating both the liver apoptosis 
that occurs 4h after concanavalin A administration, and the secondary necro
sis that follows (GANTNER et al. 1995; KSONTINI et al. 1998; TRAUTWEIN et al. 
1998). Indeed, anti-TNF-a antibodies decrease liver injury (TRAUTWEIN et al. 
1998). 

IV. Role of TNF-a in Human Liver Injury 

Hepatocytes from patients chronically infected by HBV produce TNF-a 
(GONzALEZ-AMARO et al. 1996), and this production seems to depend on the 
HBX protein (LARA-PEZZI et al. 1998). Serum TNF-a is increased in chronic 
viral hepatitis (YOSHIOKA et al. 1989; SHERON et al. 1991). However, at least to 
our knowledge, no relationship has been reported between TNF-a serum 
levels and hepatocyte apoptosis in viral hepatitis. The current trend is to favor 
Fas-mediated rather than TNF-a-mediated apoptosis. In their model of HBV
transgenic mice, NAKAMOTO et al. (1997) demonstrated that hepatocytes were 
much less sensitive to destruction by TNF-a than by Fas ligand or interferon 
y. Furthermore, the hepatitis C virus core protein may even inhibit TNF-a
mediated apoptosis in vitro (RAY et al. 1998). 

Serum TNF-a is also increased in acute or chronic alcoholic liver disease 
(MCCLAIN and COHEN 1989; KHORUTS et al. 1991). Hypothetically, TNF-a might 
be involved in steatohepatitis (PES SAYRE et al. 1999). In rats, anti-TNF-a 
antibodies attenuate hepatic necrosis and inflammation caused by chronic 
exposure to ethanol (IIMURO et al. 1997). 

D. Transforming Gr~wth Factor-J3 and Activins 

TGF-j3 is a member of a large superfamily including the activins, inhibins, bone 
morphogenic proteins, and several other growth and differentiation factors 
(GRANDE 1997). Although there are five known (highly homologous) TGF-j3 
isoforms (named TGF-j31 to TGF-j35), only the first three are present in 
mammals. The most abundant, and the most extensively studied, isoform is 
TGF-j3l. 

TGF-j31 is initially synthesized as a 390-amino-acid precursor encompass
ing a signal peptide of 29 amino acids, then the latency associated peptide 
(LAP) of 249 amino acids, and then the C-terminal TGF-j31 peptide of 112 
amino acids (GRANDE 1997). After cleavage of the signal peptide, the pro
TGF-j31 is again cut (between two arginines) into LAP and TGF-j3. These 
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polypeptides, however, remain associated by noncovalent interactions. Dimer
ization and disulfide formation eventually produces an inactive complex called 
the "small latent complex." This complex consists of the noncovalent associa
tion of a disulfide-linked TGF-f31 homodimer and a disulfide-linked LAP 
homodimer. A "large latent complex" can also be formed through additional 
disulfide bonding of LAP with LTBP (latent TGF-f3 binding protein). After 
secretion, these latent, inactive complexes may be dissociated by extracellular 
proteins (including plasmin and thrombospondin), releasing the active TGF-
131 homodimer. 

TGF-f31 is synthesized in several cells and tissues (GRANDE 1997). In the 
liver, TGF-f31 is expressed in Kupffer cells, sinusoidal endothelial cells, and fat
storing, perisinusoidal cells (BEDOSSA and PARADIS 1995; DATE et al. 1998). 
Although normal hepatocytes in vivo, or freshly isolated hepatocytes in vitro 
may not express TGF-f31 message or protein, cultured hepatocytes and 
hepatoma cells may acquire the ability to express TGF-f3 mRNA and protein 
(BISSEL et al. 1995; CHUNFANG et al. 1996; GAO et al. 1996; GRESSNER et al. 1996; 
DATE et al. 1998). Similarly, in several diseases, hepatocytes may acquire the 
ability to synthesize TGF-f3, as discussed later on. Finally, it has been suggested 
that hepatocytes might be able to internalize the TGF-f3 synthesized by other 
cells (ROTH-EICHHORN et al. 1998). 

The cellular effects of TGF-f3s are mediated by cell surface receptors. 
TGF-f3 receptor type I (TGF-f3 R-I) and TGF-f3 receptor type II (TGF-f3 R
II) are transmembrane proteins with serine/threonine kinase activity in their 
intracellular domains (HELDIN et al. 1997). The dimeric TGF-f3 protein first 
binds to a dimer ofTGF-f3 R-II, which then associates with a TGF-f3 R-I dimer, 
and phosphorylates the cytoplasmic domains of the TGF-f3 R-I dimer. Thus, 
TGF-f3, TGF-f3 R-II, and TGF-f3 R-I form a ligand-bound, phosphorylated 
tetrameric receptor complex responsible for signal transduction (HELDIN et al. 
1997). Cytosolic Smad proteins seem to play an essential role in transducing 
the TGF-f3 signal into the nucleus (HELDIN et al. 1997; MASSAGUE et al. 1997). 

TGF-f31 has a wide range of effects (GRANDE 1997). It acts on cell and 
tissue differentiation, has a potent immunosuppressive effect on the immune 
system, and plays a major role in extra-cellular matrix synthesis and remod
eling (GRANDE 1997). TGF-f31 also inhibits the proliferation of several epithe
lial cells, including hepatocytes (NAKAMURA et al. 1985; RUSSELL et al. 1988); it 
may stimulate the production of pIS, a nuclear protein which binds to, and 
inhibits, the cyclin D-cdk4,6 complex (GRANDE 1997). Finally, TGF-f31 triggers 
apoptosis in a large variety of normal or tumor cells, including hepatocytes 
(GRANDE 1997). 

The first evidence that TGF-f31 can cause cell death in primary cultures of 
normal rat hepatocytes was reported by OBERHAMMER et al. (1991). In this first 
report, a small dose of TGF-f31 was used and there were no morphological 
signs of apoptosis or typical DNA fragmentation (OBERHAMMER et al. 1991). 
With a larger dose, LIN and CHOU (1992) provided convincing morphological 
and biochemical evidence that TGF-f31 can cause apoptosis in Hep3B cells (a 
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human hepatoma cell line ). OBERHAMMER and QIN (1995) and OBERHAMMER 
et al. (1992, 1993a,b) analyzed the proapoptotic role ofTGF-fJ1 in hepatic cells. 
They found that apoptosis occurs in normal cultured rat hepatocytes exposed 
to sufficient amounts of TGF-fJJ (OBERHAMMER et al. 1992) and demonstrated 
that the intravenous administration of TGF-fJ1 could provoke programmed 
cell death during the regressive phase of liver hyperplasia caused by prior 
treatment with cyproterone acetate in rats (OBERHAMMER et al. 1992, 1993a). 
Nafenopin, a peroxisome proliferator, partly inhibited TGF-fJ1-induced 
apoptosis (OBERHAMMER and QIN 1995), an observation which had also been 
reported by BAYLY et al. (1994) in rat hepatoma cell lines. 

The proapoptotic effects of TGF-fJ1 in normal adult or fetal, rat or 
mouse hepatocytes have been confirmed in several studies (BENEDETTI et al. 
1995; OHNO et al. 1995; CAIN et al. 1996; FAN et al. 1996; SANCHEZ et al. 1996; 
GRESSNER et al. 1997; INAYAT-HuSSAIN et al. 1997; SANCHEZ et al. 1997; GILL 
et al. 1998). TGF-fJ1 also causes apoptosis in human hepatoma cell lines, such 
as Hep3B cells (CHUANG et al. 1994; PONCHEL et al. 1994) or HuH7 cells 
(FAN et al. 1996), as well as rat or mouse hepatoma cell lines, such as 
Morris cells (FUKUDA et al. 1993; YAMAMOTO et al. 1996, 1998), or FaO cells 
(ARSURA et al. 1997; LIM et al. 1997; CHO! et al. 1998). In general, TGF
fil-induced apoptosis requires incubation with relatively large doses or, as we 
have observed in our laboratory, with repeated doses of TGF-fJ1. Insulin 
receptor substrate 1 overexpression prevents transforming growth factor 
fil-induced apoptosis in human hepatocellular carcinoma cells (TANAKA 
and WANDS 1996). 

The ability of TGF-fil to cause hepatocyte apoptosis in vivo was demon
strated in transgenic mice overexpressing hepatic TGF-fil (SANDERSON et al. 
1995). 

The initial mechanism(s) that trigger TGF-fJ1-induced hepatocyte apop
tosis are not completely understood. Although Smad molecules are involved 
in the transduction of the TGF-fJ1 signal (MASSAGUE et al. 1997), their possi
ble implication in TGF-fJ1-induced apoptosis has not been studied. TGF-fJ1 
may inhibit the NFKB/ReL factors which are known to promote cell survival 
(ARSURA et al. 1997). TGF-fJ1 may also decrease Bcl-XL' an antiapoptotic 
member of the Bcl-2 gene family, without changing the expression of proapop
totic Bax or Bad (YAMAMOTO et al. 1998). 

More is known about later events. TGF-fJ1-induced apoptosis is associated 
with the activation of several caspases, including caspase 1 (CAIN et al. 1996), 
caspase 2 (CHO! et al. 1997), and caspase 3 (INAYAT-HuSSAIN et al. 1997). 
Caspase inhibitors, such as ZVAD-FMK or ZDEV-FMK, prevent caspase 
activation and apoptosis (CAIN et al. 1996; INAYAT-HuSSAIN et al. 1997). The 
mouse tissue trans glutaminase promoter contains a TGF-fJ1 response element 
(RITTER and DAVIES 1998). Tissue transglutaminase is induced by TGF-fJ1 in a 
rat hepatoma cell line (FUKUDA et al. 1993), and causes extensive cross-linking 
of cytokeratin polypeptides (FUKUDA et al. 1991). TGF-fil-induced apoptosis 
in fetal rat hepatocytes is also associated with increased formation of reactive 
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oxygen species and lowered glutathione contents (SANCHEZ et al. 1997), and 
apoptosis can be inhibited by radical scavengers (SANCHEZ et al. 1997). The 
nongenotoxic hepatocarcinogen, nafenopin, suppresses rodent hepatocyte 
apoptosis induced by TGF-f31 or Fas, by unknown mechanisms (GILL et al. 
1998). 

A possible pathogenic role of TGF-f3 is suspected (but not proven) in 
human liver disease. In rats, chronic ethanol administration markedly increases 
TGF-/31 mRNA and protein in the perivenular region of the liver (FANG et al. 
1998). In humans, RT-PCR showed increased hepatic TGF-f3 transcripts in 
patients with alcohol-induced cirrhosis (LLORENTE et al. 1996). Hypothetically, 
TGF-f3 might be involved in several alcohol-induced steatohepatitis lesions 
(PESSAYRE et al. 1999). TGF-f3 can cause hepatocyte demise, and its ability to 
induce tissue transglutaminase and cross-link cytokeratins might be involved 
in the formation of Mallory bodies which are formed of cross-linked cytoker
atin monomers (ZATLOUKAL et al. 1991). Finally, TGF-f31 stimulates collagen 
production by perisinusoidal Ito cells (CASINI et al. 1993), an effect which 
might contribute to the development of perisinusoidal fibrosis in alcoholic 
steatohepatitis (PES SAYRE et al. 1999). 

Increased hepatic TGF-f3 transcripts are also found in patients with virus
induced cirrhosis (LLORENTE et al. 1996). Increased serum TGF-f31Ievels and 
TGF-f31 immunostaining of both infiltrating cells and hepatocytes are found 
in patients with autoimmune hepatitis (BAYER et al. 1998). 

It has also been suggested that hepatocarcinoma cells might cause the 
demise of surrounding normal hepatocytes by producing TGF-f3. Although 
they were resistant to TGF-/31-induced apoptosis, HepG2 cells produced 
TGF-f3 and caused apoptosis in nontumoral hepatocytes (GRESSNER et al. 
1997). Preliminary results have suggested that this might also occur in human 
hepatocarcinomas (LoTZ et al. 1998). 

Activins are members of the same family as TGF-f3, and also cause hepa
tocyte apoptosis in vitro and in vivo (SCHWALL et al. 1993; HULLY et al. 1994; 
DE BLESER et al. 1997). 

E. Small Endogenous Molecules 
I. Ceramide, Sphingosine-I-phosphate, and Phosphatidylserine 

In several extrahepatic cells, apoptosis triggered by diverse stimuli (Fas liga
tion, TNF-a, X-rays, or diverse anticancer agents) may be accelerated by 
ceramide generation (JAFFREZOU et al. 1996; VERHEIJ et al. 1996). Neutral and 
acidic sphingomyelinases hydrolyse plasma membrane and endosomal sphin
gomyelin into phosphocholine and ceramide. The latter (and/or its metabo
lites) can reproduce many of the signaling events caused by Fas ligand or 
TNF-a. Ceramide causes apoptosis in several extrahepatic cell lines. However, 
as discussed above (see Fas section), ceramide does not appear to cause apop
tosis in hepatocytes (ROUQUET et al. 1996), and it has been suggested that 
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ceramide generation may play no, or a limited, role in Fas-mediated hepato
cyte apoptosis (WATTS et al. 1997; GAMEN et al. 1998). 

Phosphatidylserine has been reported to induce apoptosis in the CHO 
(Chinese hamster ovary) cell line (UCHIDA et al. 1998), and sphingosine-1-
phosphate caused apoptosis in human hepatoma cells (HUNG and CHUANG 
1996). 

II. Retinoic Acid 

Vitamin A (all-trans-retinol) is metabolized first into retinal and then all
trans-retinoic acid (tretinoin), which partly isomerizes to 13-cis-retinoic acid 
(isotretinoin) (CULLUM and ZILE 1985). 

Retinoic acids exert gene-regulatory effects through three retinoic acid 
receptors (RARa, RARf3, and RARy) and at least two retinoid X receptors 
(RXRa and RXRf3) (ZHANG et al. 1995). Liganded homodimers or het
erodimers of these nuclear receptors then bind to responsive elements in the 
promoter regions of modulated genes (ZHANG et al.1995). Retinoic acids exert 
profound effects on embryonic development, cell growth, and differentiation 
(CHAMBON et al. 1996) and can either inhibit (ORITANI et al. 1992) or induce 
(Su et al. 1994) apoptosis. 

The proapoptotic effects of retinoic acid and other retinoids have been 
tested in cultured hepatocytes or hepatoma cells (NAKAMURA et al. 1995, 1996; 
KIM et al. 1996; FALASCA et al. 1998). All-trans-retinoic acid does not appear to 
induce apoptosis in normal adult rat hepatocytes (FALASCA et al. 1998), an 
observation also reported with acyclic retinoid (NAKAMURA et al. 1996). In con
trast, 10,umolll all-trans-retinoic acid provoked apoptosis in cultured, fetal rat 
hepatocytes (FALASCA et al. 1998), and 100,umolll all-trans-retinoic acid caused 
80% apoptosis in the Hep3B hepatoma cell line (KIM et al. 1996). A low con
centration (5,umol/l) of all-trans-retinoic acid did not induce apoptosis in the 
HUH-7 hepatoma cell line, while the same concentration of acyclic retinoid 
caused apoptosis (NAKAMURA et al. 1995). 

The mechanism for retinoic acid-induced apoptosis has not been thor
oughly investigated. However, retinoic acid causes RAR and RXR-mediated 
increases in the mRNA and protein of tissue transglutaminase (ZHANG et al. 
1995; JOSEPH et al. 1998). In rat tracheal epithelial cells, and human myeloma 
cell lines, tissue trans glutaminase induction was associated with apoptosis 
(ZHANG et al. 1995; JOSEPH et al. 1998). In contrast, in rat hepatocytes, despite 
marked induction of tissue transglutaminase, the intracellular activity of this 
enzyme was somewhat decreased, and apoptosis did not occur (PIANCENTINI 
et al. 1992). This suggested that tissue trans glutaminase was not activated in 
these hepatocytes. The intracellular activity of tissue transglutaminase is 
largely dependent on cytosolic calcium, and retinoic acid has been reported to 
decrease cell calcium in some epithelial cells (VARANI et al. 1991). 

In humans, isotretinoin (13-cis-retinoic acid) is used for acne, while 
acitretin (an aromatic analog of all-trans-retinoic acid) and etretinate (the 
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ethyl ester of acitretin) are used for psoriasis. All these retinoids are terato
genic in humans (LAMMER et al. 1985). The aromatized analogs (etretinate and 
acitretin) also cause cytolytic hepatitis in adults (FARRELL 1994). It is not 
known whether this adverse effect is related to the retinoid structure or, 
possibly, to metabolic activation of the phenyl ring. 

Hypervitaminosis A causes a different type of liver damage in man 
(ZAFRANI et al. 1984). This effect is attributed to vitamin A itself and its storage 
in perisinusoidal lipocytes. These engorged cells compress the sinusoidal 
lumen and secrete collagen into the space of Disse, further closing the lumen. 
Portal hypertension, perisinusoidal fibrosis, and, sometimes, cirrhosis may 
develop (ZAFRANI et al. 1984). 

III. Bile Acids 

Cholestasis (failure of bile to reach the duodenum) is caused by obstruction 
of the biliary tree by cancer or stones, or by impairment of hepatocellular bile 
secretion or bile duct integrity due to genetic, autoimmune, or drug-induced 
diseases. Whatever the initial mechanism, the retention of hydrophobic bile 
acids within cholestatic hepatocytes may result in progressive liver injury. 

Hydrophobic bile acids are toxic to mitochondria, where they uncouple 
state 4 respiration (LEE and WHITEHOUSE 1965), inhibit the respiratory chain 
(KRAHENBUHL et al. 1994b), increase the formation of reactive oxygen species 
(SOKOL et al. 1995), and open the mitochondrial membrane permeability 
transition pore (BOTLA et al. 1995). As explained above, pore opening causes 
either apoptosis (when enough ATP is maintained) or necrosis (when ATP is 
depleted). Indeed, hydrophobic bile acids cause ultrastructural apoptotic 
lesions and oligonucleosomal DNA fragmentation at low doses in vitro (PATEL 
et a1.1994) or in vivo (CHIECO et aI.1997), but induce ATP depletion and hepa
tocyte necrosis at higher doses (SPIVEY et al. 1993). 

Under numerous circumstances, a major mechanism in the opening of the 
mitochondrial permeability transition pore is increased formation of reactive 
oxygen species (LEMASTERS et al. 1998). Oxidant injury to mitochondria seems 
to playa major role in triggering bile acid-induced liver lesions. Indeed, the 
antioxidant lazaroid, U83836 E, inhibited lipid peroxidation and apoptosis in 
rat hepatocytes cultured with 50.umolll glycochenodeoxycholate (PATEL and 
GORES 1997). Pretreatment with vitamin E reduced both oxidant injury to 
mitochondria and hepatocellular necrosis after intravenous administration of 
a high dose (100.umollkg) of taurochenodeoxycholic acid to rats (SOKOL et al. 
1998). 

In addition to these mitochondrial effects, other bile acid-induced cell
destruction mechanisms have been demonstrated. In rat hepatocytes exposed 
to glycodeoxycholate (50.umolll), cell Ca2+ did not change, whereas Mg2+ 
increased twofold (PATEL et al. 1994). Incubation of cells in an Mg2+-free 
medium prevented this increase in Mg2+ and decreased nuclear DNA frag
mentation. These observations suggest that the increase in cell Mg2+ activates 
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Ca2+/Mg2+-dependent endonucleases that contribute to DNA fragmentation 
(PATEL et al. 1994). 

During glycochenodoxycholate-induced hepatocyte apoptosis, a decrease 
in nonnuclear serine-like protease activity coincided with an increase in 
nuclear activity, suggesting translocation of the protease from the cytosol to 
the nucleus (Kwo et al. 1995). A serine protease inhibitor indeed decreased 
DNA fragmentation and cell death (Kwo et al. 1995). 

Another protease which is translocated to the nucleus is cathepsin B 
(ROBERTS et al. 1997). This cysteine protease is located not only in lysosomes, 
but also in several other cell fractions. Cathepsin B exhibits trypsin-like and 
other protease activities (ROBERTS et al. 1997). In bile duct-ligated rats, a three
fold increase in apoptosis and a fourfold increase in trypsin-like nuclear 
protease activity were observed (ROBERTS et al. 1997). The purified nuclear 
protease activity was identified as cathepsin B. Inhibitors of cathepsin B 
blocked glycochenodeoxycholate-induced apoptosis in rat hepatocytes. Stable 
transfection of an antisense cathepsin B DNA reduced cathepsin B activity 
and glycochenodeoxycholate-induced apoptosis in McNtcp.24 cells expressing 
the Na/taurocholate cotransporting polypeptide involved in bile acid uptake. 
The cellular localization of cathepsin B during apoptosis was determined by 
nuclear immunoblots, immunocytochemistry, and by determining the location 
of fluorescence after expressing a cathepsin B fused to green fluorescent 
protein. All three approaches showed that cathepsin B was translocated from 
the cytoplasm to the nucleus during glycochenodeoxycholate-induced apop
tosis (ROBERTS et al. 1997). 

A recent report has establishes the role of Fas and caspase activation 
in bile acid-induced apoptosis (FAUBION et al. 1999). The toxic bile acid, gly
cochenodeoxycholate induced Fas oligomerization in the absence of Fas ligand 
(FAUBION et al. 1999). Fas oligomerization caused the activation of caspase 8 
and effector caspases, followed by cathepsin B activation and apoptosis 
(FAUBION et al. 1999). These effects were prevented in Fas-deficient (lpr) mice 
or after addition of caspase inhibitors (FAUBION et al. 1999). 

Other studies have determined the modulation of bile acid-induced apop
tosis by diverse agents. Bile acids have been shown to activate protein kinase 
C (PKC) (STRAVITZ et al. 1996), which modulates cell death in other apoptotic 
models. JONES et al. (1997) provided evidence for a role of PKC activation in 
glycochenodeoxycholate-induced apoptosis. Membrane-associated total PKC 
activity was increased in bile acid-treated hepatocytes. lmmunoblots demon
strated the translocation of PKC-a, PKC-8, and PKC-8 to hepatocyte mem
branes. Direct activation of PKC-a and PKC-8 by the bile acid was also 
demonstrated. The PKC inhibitors chelerythrine and Go-6976 reduced gly
cochenodeoxycholate-induced hepatocyte apoptosis, whereas phorbol 12-
myristate-13-acetate, a PKC agonist, had the opposite effects. Parallel changes 
occurred in cathepsin B activity, suggesting that PKC is somehow involved in 
cathepsin B activation (JONES et al. 1997). 

Another intracellular mediator which can modulate cell death in other 
apoptotic models is cyclic AMP (cAMP). WEBSTER and ANWER (1998) demon-
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strated that cAMP is protective against glycochenodeoxycholate-induced 
apoptosis in rat hepatocytes. Indeed, cAMP analogs or agents that increase 
intracellular cAMP (glucagon and a combination of forskolin and 3-isobutyl-
1-methylxanthine) inhibited apoptosis (WEBSTER and ANWER 1998). Evidence 
has also been provided that bile acids may activate mitogen activated protein 
kinase (MAPK) and that the cAMP-induced cytoprotection against bile acid
induced apoptosis may involve protein kinase A, MAPK, and phosphatidyl 
inositol-3-0H kinase (WEBSTER and ANWER 1998). 

Most interestingly, cholestasis itself induces adaptive changes that limit the 
mitochondrial toxicity and proapoptotic effects of hydrophobic bile acids 
(LIESER et al. 1998). The mitochondrial permeability transition induced by gly
cochenodeoxycholate was reduced in hepatic mitochondria from bile duct
ligated rats. In these rat hepatocytes, glycochenodeoxycholate barely affected 
cell viability, although it markedly decreased the viability of control hepato
cytes. Mitochondrial cardiolipin content was increased in bile duct-ligated rats. 
If these rats were fed a fatty acid-deficient diet, this cardiolipin increase was 
prevented and the susceptibility of mitochondria and hepatocytes to undergo 
bile acid-induced permeability transition and cell death was restored. Thus, 
under chronic cholestatic conditions, hepatocytes adapt to and resist the mito
chondrial permeability transition (LIESER et al. 1998). This adaptive mecha
nism may explain the slow progression of liver injury under these conditions. 

Whereas hydrophobic bile acids may cause cell death by inducing the 
mitochondrial permeability transition and by causing Fas ligand-independent 
Fas aggregation, in contrast the hydrophilic bile acid, ursodeoxycholic acid, 
seems to protect against the mitochondrial and apoptotic effects of hydro
phobic bile acids (KRAHENBUHL et al. 1994a; RODRIGUES et al. 1998). 
Co-incubation with tauroursodeoxycholic acid reduced apoptosis caused 
by glycochenodeoxycholic acid in rat hepatocytes (BENZ et al. 1998a,b). S
Adenosylmethionine also reduced bile acid-induced apoptosis, and the com
bination of tauroursodeoxycholate and S-adenosyl methionine had additive 
protective effects (BENZ et al. 1998a). 

In humans, administration of ursodeoxycholic acid slows disease progres
sion in primary biliary cirrhosis (Po UPON et al. 1987) and several other chronic 
cholestatic diseases (BEURS et al. 1998). Ursodeoxycholic acid may act by 
slightly reducing the ileal absorption of toxic, hydrophobic bile acids, by 
causing Ca2+ -stimulated insertion of transport proteins in the canalicular 
membrane, and by exerting the direct cytoprotective effects described above 
(BEURS et al. 1998). 

Primary biliary cirrhosis is an autoimmune liver disease causing slowly 
progressive bile duct injury and rarefaction. Biliary cells exhibit both necrosis 
and apoptosis (BERNUAU et al. 1981). The infiltrating lymphocytes that 
surround bile ducts cause the apoptotic death of biliary cells through Fas- and 
perforin/granzyme B-mediated apoptosis (HARADA et al. 1997). Because 
ursodeoxycholic acid slows disease progression, it is tempting to speculate that 
hydrophobic bile acids might aggravate bile duct lesions (BEURS et al. 1998). 
Indeed, ursodeoxycholate administration significantly decreased DNA 
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fragmentation in the biliary epithelial cells in patients with primary biliary 
cirrhosis (KOGA et al. 1997). Similarly, ursodeoxycholate feeding impedes the 
development of chronic cholestatic liver disease in mdr2-knock-out mice 
which lack the ability to secrete protective phospholipids into bile (VAN 
NIEUWKERK et al. 1996). 

IV. Extracellular ATP and Adenosine 

Extracellular ATP is toxic to hepatocytes through P2 purinoceptors (CHOW 
et al. 1997). Death occurs either by necrosis or apoptosis. 

External adenosine causes apoptosis through PI purinoceptors mostly in 
nonhepatic cells (CHOW et al. 1997). 

V. Nitric Oxide 

Nitric oxide has dual effects on hepatic apoptosis. On the one hand, nitric 
oxide can de-energize hepatic mitochondria, open the mitochondrial perme
ability transition pore, release mitochondrial calcium, and cause hepatocyte 
cell death, unless cytosolic Ca2+ is chelated (RICHTER et al. 1994). Macrophage
derived nitric oxide induces apoptosis of rat hepatoma cells in vivo (NISHIKAWA 
et al. 1998), and nitric oxide may be involved in the hepatic apoptosis caused 
by the concomitant administration of lipopolysaccharide, TNF-a, and antiox
idants (WANG et al. 1998). 

On the other hand, a first small dose of nitric oxide may prevent hepato
cyte death caused by a second, high dose of nitric oxide (KIM et al. 1995). 
Induction of resistance is prevented by cycloheximide, suggesting upregula
tion of protective protein(s) (KIM et al. 1995). Nitric oxide induced heat shock 
protein 70 expression and prevented apoptosis in hepatocytes cultured with 
tumor necrosis factor-a and actinomycin D (KIM et al. 1997a). Furthermore, 
nitric oxide caused S-nitrosylation and inactivation of caspases (KIM et al. 
1997b). This prevented the hepatocyte apoptosis caused by removal of growth 
factor or exposure to tumor necrosis factor-a or an anti-Fas antibody (KIM et 
al. 1997b). In vivo, delivery of nitric oxide to the liver blocks tumor necrosis 
factor-a-induced apoptosis and fulminant hepatic failure (SAAVEDRA et al. 
1997), while inhibition of nitric oxide production aggravates liver injury caused 
by endotoxin or hemorrhagic shock (HARBRECHT et al. 1994b, 1995; SZABO 
et al. 1994). 

F. Foreign Toxins 
Actractyloside is a toxic glucosidic component of Actractylis gummifera L., a 
plant that causes hypoglycemia, liver failure, and renal failure in North African 
children who use it as chewing-gum (LARREY 1997). Actractyloside binds to 
the mitochondrial adenine nucleotide translocator (which is part of the mito-
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chondrial permeability transition pore), opens this pore, and can trigger apop
tosis (ZAMZAMI et al. 1996). 

Apoptin is a small protein synthesized by the genome of the chicken 
anemia virus, which causes aplastic anemia and thymocyte destruction in 
young chickens (NOTEBORN and VAN DER EB 1998). Apoptin induces apopto
sis in diverse cancer cell lines, including hepatoma cells, but not in normal cells 
(although thymocytes and erythroblasts were not tested) (NOTEBORN and VAN 
DER EB 1998). The apoptotic effect is independent of p53 and is enhanced, 
rather than suppressed, by Bcl-2 expression, suggesting possible applications 
in cancer therapy (NOTEBORN and VAN DER EB 1998). 

Cocaine, an alcaloid from Erythroxylon coca, may cause liver damage in 
drug users (WANLESS et al.1990). Cocaine is transformed by cytochrome P450 
and flavin adenine nucleotide-dependent monoxygenases into electrophilic 
metabolites that covalently bind to proteins and/or undergo redox cycling, pro
ducing the superoxide anion and causing lipid peroxidation (BOELSTERLI and 
GODLIN 1991). Cocaine also impairs mitochondrial respiration, both in isolated 
rat liver mitochondria exposed to cocaine in vitro and in mitochondria from 
rats treated with cocaine in vivo (DEYI and CHAN 1997). In mice, cocaine 
administration causes early ultrastructural mitochondrial membrane disconti
nuities and late mitochondrial swelling (GOTTFRIED et al. 1986) and a combi
nation of early apoptosis and late necrosis (CASCALES et al. 1994). In humans, 
the liver lesions induced by cocaine include centrilobular necrosis, and 
microvesicular and macrovacuolar steatosis (WANLESS et al. 1990). 

Curcumin, a component of the plant Curcuma !onga, which is used as a 
spice and food preservative, elevates p53 and c-Myc proteins and causes apop
tosis in HepG2 cells (JIANG et al. 1996). 

Etoposide and its analog, GL33! (Genelabs, California) are two semisyn
thetic derivatives from the plant toxin, podophyllotoxin. These topoisomerase 
II inhibitors cause DNA strand breaks (CLARKE et al. 1993) and induce apop
tosis in Hep3B, HepG2, and other cell lines (HUANG et al.1996). Whereas wild 
type thymocytes undergo etoposide-induced apoptosis, in contrast, homozy
gous null p53 thymocytes are resistant (CLARKE et al. 1993). This might suggest 
that DNA damage may cause p53 overexpression, Bax upregulation, and 
caspase activation as described later in relation to germander. 

Fumonisin B, a mycotoxin product of Fusarium monilitorme, caused apop
tosis in mouse liver and kidney after repeated exposure (SHARMA et al. 1997). 

Germander (Teucrium chamaedrys L.) is a medicinal plant which has been 
used since ancient times for its alleged choleretic and antiseptic properties. 
Germander was generally considered safe, until germander capsules were mar
keted for use in weight control diets. This popular indication and the fad for 
natural medicine led to large scale utilization and to an epidemic of hepatitis 
in France (LARREY et al. 1992). 

Germander contains saponins, glycosides, flavonoids, and furano neo
clerodane diterpenoids (LARREY et al. 1992). These diterpenoids were shown 
to be responsible for the in vivo hepatotoxicity of germander in mice (LOEPER 
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et al. 1994). Hepatotoxicity was prevented by preadministration of a single 
dose of troleandomycin, a specific inhibitor of cytochrome P450 3 A, and was 
enhanced by pretreatment with either dexamethasone or clotrimazole, two 
cytochrome P4503A inducers (LOEPER et al. 1994). 

In vitro, the furano neo-clerodane diterpenoids of germander were acti
vated by cytochrome P4503 A into electrophilic metabolites that covalently 
bound to proteins, depleted cellular glutathione and protein thiols, increased 
cytosolic [Ca2+], activated Ca2+-dependent tissue transglutaminase (forming a 
cross-linked protein scaffold), and caused both internucleosomal DNA frag
mentation and typical ultrastructural apoptotic lesions in isolated rat hepa
tocytes (LEKEHAL et al. 1996; FAU et al. 1997). Although the germander 
diterpenoids also inhibited mitochondrial respiration, the loss of cell ATP was 
moderate (FAU et al. 1997). 

Formation of reactive metabolites may damage not only proteins but 
also DNA. DNA lesions activate protein kinases, such as DNA-PK (DNA
dependent protein kinase) and ATM (mutated in ataxia telangectasia) (EVAN 
and LITTLEWOOD 1998). These kinases may phosphorylate both p53 and Mdm-
2. Normally Mdm-2 interacts with p53 and signals its degradation. DNA
damage-induced phosphorylation of either p53 or Mdm-2 prevents the two 
proteins from interacting and thus stabilizes p53 (EVAN and LITTLEWOOD 1998). 
The overexpression of p53 upregulates Bax (CANMAN and KASTAN 1997). 
As explained above, Bax localizes in mitochondria, releases mitochondrial 
cytochrome c, activates caspases, and causes apoptosis (ROSSE et al. 1998). Ger
mander diterpenoids caused marked overexpression of p53 in hepatocytes 
from rats treated with dexamethasone, a cytochrome P450 3 A inducer 
which increases the formation of electrophilic metabolites (FAU et al. 1997). 
However, only mild p53 overexpression occurred in nonpretreated rat hepa
tocytes, although these hepatocytes also underwent apoptosis. This suggested 
that p53 overexpression was not the main mechanism of germander-induced 
apoptosis. Instead, it was concluded that electrophilic metabolites may stimu
late apoptosis by decreasing cellular thiols, increasing [Ca2+], and activating 
Ca2-dependent transglutaminase and endonucleases (FAU et al. 1997). In 
keeping with this hypothesis, apoptotic cell death was prevented by decreas
ing metabolic activation (with troleandomycin), preventing depletion of 
glutathione (with cystine), blocking activation of Ca2+-modulated enzymes 
(with calmidazolium), or inhibiting internucleosomal DNA fragmentation 
(with aurin tricarboxylic acid) (LEKEHAL et al. 1996; FAU et al. 1997). 

Related calcium-activated mechanisms may also cause liver cell necrosis 
(BELLOMO and ORRENIUS 1985). Whereas germander diterpenoids caused 
hepatocyte apoptosis in vitro, they mainly caused necrosis, with only a few 
apoptotic hepatocytes in vivo (FAU et al. 1997). The reasons for these in vitro/in 
vivo differences have not been elucidated (FAU et al. 1997). 

Administration of an aqueous extract of Teucrium stocksanium caused 
occasional hepatic apoptosis and cerebral neuron loss in rats (TANIR A et al. 
1996). 
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Microcystin-LR is a cyclic heptapeptide produced by the blue-green alga, 
Microcystis aeruginosa (SOLTER et a1. 1998). This toxic alga proliferates during 
the algae blooms caused by sewer and fertilizer runoffs. Microcystin-LR causes 
diverse liver lesions, including hepatic apoptosis in rats (SOLTER et a1. 1998). 
Administration of microcystin-LR increases serum bile acid concentrations 
in rats. Microcystin-LR is also a potent inhibitor of serine/threonine protein 
phosphatases and causes the hyperphosphorylation of several hepatic proteins 
(reviewed in SOLTER et a1. 1998). It would be interesting to know whether 
Bcl-2 and Bcl-XL are also phosphorylated. 

Paclitaxel (Taxol) and taxotere are microtubule-stabilizing, antineoplastic 
agents derived from the bark of the yew tree, Taxus brevi/olia. Paclitaxel 
inhibits mitochondrial respiration and is toxic to hepatocytes (MANZANO et a1. 
1996). Paclitaxel and taxotere were shown to activate caspases (SUZUKI et a1. 
1998a) and cause apoptosis in other cell lines, possibly due to decreased 
expression of Bcl-2 (Lm et a1. 1994) and increased phosphorylation of both 
Bcl-2 (HALDAR et al. 1996) and Bcl-XL (PORUCHYNSKY et al. 1998). However, 
the significance of this increased phosphorylation is not clear, since Bcl-2 phos
phorylation has been shown to prevent apoptosis in a recent study (RUVOLO 
et a1. 1998 and references therein). 

Perillyl alcohol, a monoterpene derived from lavender, was found to 
increase the apoptotic index, and decrease tumor weight, in rat liver tumors 
caused by previous diethylnitrosamine exposure (MILLS et a1. 1995). This 
apoptosis-enhancing effect was tentatively ascribed to an increased expression 
of transforming growth factor f3 receptors caused by perillyl alcohol (MILLS 
et a1. 1995). 

Prostaglandins PGAz and ~lZ_PGJ2 induce apoptosis in human hepato
carcinoma cell lines (LEE et a1. 1995; AHN et a1. 1998). 

Solamargine, a compound purified from the Chinese herb, Solanum 
incanum, initiated the apoptosis of hepatoma cells, possibly by triggering the 
expression of tumor necrosis factor-a receptors (Kuo et a1. 1997). 

Thapsigargin is a guaianolide component of the Mediterranean plant, 
Thapsia garganica L. (Linnaeus) (TREIMAN et al. 1998). Thapsigargin inhibits 
endoplasmic reticulum Ca2+-ATPases, empties endoplasmic reticulum Ca2+ 
stores, increases cytosolic and mitochondrial Ca2+, opens the mitochondrial 
permeability transition pore (HOEK et a1.1997), and causes apoptosis in several 
cell types (TREIMAN et a1. 1998), including hepatoma cells (TSUKAMATO and 
KANEKO 1993). 

Staurosporine, a bacterial alkaloid, is a potent inhibitor of protein 
kinase C and other cell cycle-dependent protein kinases (SWE and SIT 
1997). It induces telophase arrest and apoptosis in Chang liver cells (SWE 
and SIT 1997). In addition, p53 and c-Myc proteins are increased (JIANG et a1. 
1996). 

Vespa orientalis (Oriental hornet) venom, a complex of endonuclease and 
phospholipase, produces apoptosis in normal human hepatocytes (NEUMAN 
et a1. 1991) by inducing the mitochondrial permeability transition. 
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The hepatic apoptosis induced by administration of the plant lectin, 
concanavalin A, bacteriallipopolyssacharides, or the Pseudomona aeruginosa 
exotoxin A is mediated by TNF-a release and has been considered in the 
section Tumor Necrosis Factor-a-Mediated Cell Death. 

Many other natural substances have been shown to induce apoptosis in 
nonhepatic cells, although their effects remain to be tested in hepatocytes. 

G. Conclusions and Perspectives 
The progress made in the last ten years has revolutionized our earlier con
ceptions of cell life and death. Due to the rapid disappearance of apoptotic 
cells and the long persistence of necrotic cells, past descriptions of human liver 
lesions mainly reported necrosis, while apoptosis-like lesions were rarely 
mentioned. The programmed cell death occurring during embryogenesis or 
cellular turnover was opposed to the necrotic cell death caused by immune 
reactions, man-made chemicals, or foreign toxins. In the last ten years, 
however, we have learned that viral hepatitis and several forms of immune
mediated hepatitis may initially involve an apoptotic process (often associated 
with secondary or concomitant necrosis), whereas foreign molecules 
can induce apoptosis, necrosis, or both. Indeed, several plants are smart enough 
to use the apoptotic machinery of the cell to kill the animals that consume 
them. 

An ever increasing number of endogenous substances are being re
cognized as signaling proapoptotic or antiapoptotic messages in diverse, 
paracrine, autocrine, or intracellular pathways. We are also beginning to learn 
how the cell integrates these opposite signals. Whereas the mitochondrial per
meability transition was initially considered to be an in vitro oddity with little 
in vivo significance, the seminal works of Guido Kroemer and others have 
placed mitochondria at the center of the cell's decision either to live or to die, 
and to orient cell death either towards necrosis (through ATP depletion) or 
apoptosis (through the caspase/mitochondria/caspase reinforcing loop). We 
are also beginning to understand the several inhibitory molecules (FLICE, 
c-IAPs, Bcl-2, Bcl-XL ) that prevent this auto-potentiating loop from killing all 
cells as soon as any caspase is activated. 

The therapeutic applications that can be foreseen in the next ten years are 
even more fascinating. We already know how to prevent hepatocyte apopto
sis in several animal models, so that clinical applications should be forthcom
ing. Whereas prolonged inhibition of apoptosis would be dangerous (due to 
its beneficial role in tissue homeostasis, viral eradication, and cancer preven
tion), short-term inhibition of immune-mediated apoptosis might be life saving 
in immune-mediated, drug-induced fulminant hepatitis. In patients with viral
induced fulminant hepatitis, antiapoptotic strategies might be combined with 
anti-viral agents to avoid chronicity. 
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Indeed, whereas there may be too much apoptosis in fulminant viral 
hepatitis, there may not be enough in chronic viral hepatitis. Insufficient 
immunologic destruction of infected hepatocytes may allow viral persistence 
in these cases. After a period of anti-viral therapy alone, agents that would 
increase the apoptosis of infected hepatocytes might complete viral eradica
tion, without exposing the patient to the risk of fulminant hepatitis. 

In cancer, finally, some agents seem to kill neoplastic hepatocytes selec
tively without killing normal cells. Hopefully these agents will improve the 
presently disappointing management of unresectable hepatocarcinomas. 
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CHAPTER 4 

The Role of C-type Protein Kinases 
in Apoptosis 

M. LUCAS 

A. PKC Isozymes 
C-type protein kinases (PKCs) mediate a multitude of signal transduction 
pathways triggered by phospholipid hydrolysis. Diacylglycerol is the main acti
vator of PKCs, in addition to the modulation by Ca2+ of conventional PKC 
isozymes. The hydrolysis of phosphatidylinositol biphosphate by its specific 
phosphodiesterase provides both activators diacylglycerol and Ca2+ since 
inositol triphosphate releases Ca2+ from an intracellular, non-mitochondrial, 
calcium pool. 

PKC isozymes contain an amino terminal regulatory peptide and a 
carboxy terminal catalytic domain. Three subclasses of PKC can be 
differentiated: 

1. Conventional PKCs a, jJI, f3II and y, which are modulated by diacylglycerol, 
phosphatidylserine and Ca2+ 

2. Novel PKCs 8, e, 1] and e, which are regulated by diacylglycerol and 
phosphatidylserine 

3. Atypical PKCs S, l and A, which are stimulated by phosphatidylserine, but 
its regulation is poorly documented 

Given the diversity of PKC isozymes, the differential tissue expression and 
the relatively poor specificity for in vitro substrates, the subcellular distribu
tion and membrane targeting emerge as the main determinants of in vivo 
activity. In the presence of diacylglycerol, PKC binds membranes containing 
phosphatidylserine with high affinity. This changes the conformation of the 
protein and releases the auto-inhibitory substrate from the active site of the 
PKCs. 

The regulatory domain of PKCs contains: 

1. The pseudosubstrate, an auto inhibitory domain 
2. A cysteine-rich sequence that binds diacylglycerol and its functional 

analogue, phorbol esters 
3. A f3-sheet domain that binds acidic phospholipids and a Ca2+ binding 

pocket. 

The overall cycle of PKC activation includes (see NEWTON 1997): the 
association of newly synthesized protein kinases with the cytoskeleton; 
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phosphorylation by a PKC kinase, autophosphorylation and release into the 
cytosol; anchoring of PKCs to membrane-bound isozyme-specific proteins; 
binding of diacylglycerol, phosphatidylserine and Ca2+, which increases the 
affinity for phosphatidylserine; and interaction of the active form of PKC with 
targeting proteins that lead the enzyme to its substrate. 

In addition to the regulation by second messenger binding, a fine-tune 
mechanism regulates PKCs by phosphorylation, subcellular localization and 
interaction with specific targeting proteins. An interesting feature of the acti
vation process is that the treatment of cells with tumor-promoting phorbol 
esters results in the activation but then depletion of phorbol ester-responsive 
PKC isozymes. These data are consistent with a suicide model whereby acti
vation of PKC triggers its own degradation via the ubiquitin-proteasome 
pathway (Lu et al. 1998). 

Protein kinase C isozymes play distinct roles in cellular function in the 
balance proliferation/apoptosis/survival. Low PKC activity is associated with 
apoptosis (SANCHEZ et al. 1992) and the selective role of PKC isozymes in 
apoptosis has been documented in leukemia cells (MURRAY and FIELDS 1997). 
PKCa is important for cellular differentiation and PKCj3II is required for pro
liferation. PKCl has been described to have a role in cell survival (MURRAY 
and FIELDS 1997) and protects K562 cells against drug-induced apoptosis. K562 
cells, which are resistant to most apoptotic agents, undergo apoptosis when 
treated with the protein phosphatase inhibitor okadaic acid. Overexpression 
of PKCl leads to increased resistance to, whereas inhibition of PKCl expres
sion sensitizes cells to okadaic acid-induced apoptosis. Overexpression of 
the related atypical PKCS' has no protective effect, demonstrating that the 
effect is isozyme-specific. PKCl also protects K562 cells against taxol-induced 
apoptosis, indicating that it plays a general protective role against apoptotic 
stimuli. 

B. PKC and Apoptosis 
The death of cells in normal tissue turnover is called apoptosis or programmed 
cell death (KERR et al. 1972). Apoptosis occurs during fundamental physio
logical processes such as embryo morphogenesis, the development of immune 
tolerance, aging and tissue degeneration, as well as cell proliferation and 
tumorigenesis (MCCONKEY et al. 1990; FESUS et al. 1991; GOLSTEIN et al. 1991; 
GREEN and SCOT[ 1994; WRIGHT et al. 1994). Morphological and molecular 
events include chromatin condensation, formation of the apoptotic bodies, 
shrinkage, fragmentation of DNA into oligonucleosome-sized fragments and, 
at a later state, progressive cell degradation, swelling and membrane rupture 
(WYLLIE et al. 1980). Oncogenes and tumor suppressor genes are clearly 
involved. In fact, p53-dependent and independent pathways have been 
described (LOWE et al. 1993; CLARKE et al. 1993), as well as an altered expres
sion of oncogenes c-fos and c-myc (BUTTYAN et al. 1988; CLARK and GILLESPIE 
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1997), whereas a protein encoded by the oncogene Bcl-2 was shown to block 
programmed cell death (HOCKENBERRY et al. 1990). 

Agents or conditions inducing apoptosis show a variable degree of depen
dency on different pathways depending on the cell type, the state of the cell 
and the apoptosis-inducing agent (GOLSTEIN et al. 1991). The interpretation of 
the role of PKC in the apoptotic pathways was complicated by conflicting 
reports. It is conceivable that conflicting observations on the role of PKCs in 
the regulation of apoptosis reflect cell type-specific responses to triggering 
agents (GUBINA et al. 1998), as well as the tissue-specific expression of PKC 
isozymes. Most experiments supporting the role of PKCs in apoptosis can be 
classified into two groups: 1) the apoptotic effect of PKC inhibitors and 2) the 
protection against apoptosis and promotion of cell survival by activation of 
PKCs. 

1. PKC inhibitors trigger the apoptotic death in a number of cell types under 
several conditions: in mouse natural killer cells and cytotoxic T lympho
cytes (MIGLIORATI et al. 1994); in B cells where apoptosis is triggered by the 
PKC inhibitor chelerytrine (BONNEFOYBERARD et al. 1994); inhibition of 
PKC by staurosporine triggers apoptosis of insulin-secreting RIN m5F cells 
without raising cytosolic free calcium (SANCHEZ et al.1993); PKC inhibitors 
induce apoptosis in malignant glioma cells (COULDWELL et al. 1994); selec
tive PKC inhibitors block IL-2-mediated proliferation of murine T cells and 
cause apoptosis (GOMEZ et al. 1994); inhibitors of PKC block the prolon
gation of cell survival and induce DNA fragmentation in neutrophils 
(ADACHI et al. 1993); direct induction of cell apoptosis by ethanol is aug
mented by inhibiting protein kinase C and establishes a link between 
protein kinase C activity, ethanol toxicity and ethanol-induced apoptosis 
(AROOR and BAKER 1997). 

2. Data supporting the assertion that PKC activation blocks apoptosis are well 
documented: the activation of PKC promotes cell survival of mature lym
phocytes prone to apoptosis (LUCAS et al.1991; LUCAS et al. 1994); the com
bination of a calcium ionophore and a protein kinase activator (PMA) 
inhibits corticosterone-induced apoptosis in lymphocytes (ISEKI et al.1993); 
apoptosis of B cells in germinal centers can be arrested by protein kinase 
C-activating phorbol esters (KNOX et al. 1993); translocation of PKC from 
the cytosol mediates phosphatidyl inositol-dependent pathway of rescue 
germinal center B cells from apoptosis (KNOX and GORDON 1994); phorbol 
esters protect endothelial cells (HAIMOVITz-FRIEDMAN et al. 1994a) and pre
T cells (RADFORD 1994) against radiation-induced apoptosis; activation of 
tyrosine kinase by basic fibroblast growth factor causes the translocation of 
the PKCa isozyme into the membrane and arrests apoptosis (HAIMOVITZ
FRIEDMAN et al. 1994a). 

The selective dependency of some cell lines on specific PKC isozymes 
has been applied to the targeted apoptosis of tumor cells. The androgen
independent cells of prostate cancer have been proposed as a target for the 
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therapy (O'BRIAN 1998). PKCa allows the cells in androgen-independent 
prostate cancer to acquire a selective growth advantage through the over
expression of PKCa and this adaptive response renders the cells dependent 
on constitutively active PKCa for their survival. 

C. Caspases and PKC 
An intriguing feature of the apoptotic pathway is that the caspase type of cys
teine proteases, which drive the terminal effector events (THORNBERRY 1996), 
regulate the activity of c-type protein kinases. Indeed, 7-hydroxystaurosporine, 
a protein kinase C inhibitor, is a potent inducer of apoptosis in cell lines that 
lack p53 and are usually resistant to apoptosis. Caspases, triggered during 7-
hydroxystaurosporine-induced apoptosis (SHAO et al. 1997a), in turn regulate 
PKC in two ways: hyperphosphorylation of PKCa and proteolytic activation 
of PKC 0 and f3I (SHAO et al. 1997b). PKC a, {3I, {3Il, 0, and r; activities 
have been studied in HL60 cells challenged with 7-hydroxystaurosporine 
or the topoisomerase inhibitors, camptothecin and etoposide. 7-hydroxy
staurosporine has no effect on PKCr; and inhibits the kinase activity of PKC 
f3I, f3II, and O. PKCa activity is initially inhibited and subsequently increases 
as cells undergo apoptosis with 7-hydroxystaurosporine treatment. Camp
tothecin and etoposide also markedly enhance PKCa activity during apopto
sis in HL60 cells. Another target for specific proteolysis is PRK2, a protein 
kinase C-related kinase, which is cleaved by caspase during Fas- and stau
rosporine-induced apoptosis. The major apoptotic cleavage sites of PRK2 lie 
within its regulatory domain, suggesting that its activity may be deregulated 
by proteolysis (Cryns et al. 1997). 

D. Apoptosis Versus Mitosis 
Cyclin dependent kinases (CDKs) are key regulators in the cell cycle. CDKs 
control the major steps between different phases of the cell cycle through the 
phosphorylation of target proteins like his tones, cytoskeletal proteins, tumor 
suppressors, transcription factors and others. CDKs are faced with two main 
tasks: 1) the completion of cell cycle steps before others can start, and 2) the 
alternation of steps of the cell cycle in the proper sequence. Cyclins are the 
regulatory subunits of CDKs. While CDKs are synthesized at relatively con
stant rates, the level of cyclins varies significantly throughout the phases of the 
cell cycle (ELLEDGE 1996). The transition of cells through mid/late G1 is medi
ated by D-type cyclins in complex with CDK4 and CDK6. CDK2 and E-cyclin 
carry the cell to the end of the G 1 phase. CDK2/cyclin A drives the entry into 
S phase. During S phase, B-cyclin switches partners and associates with CDC2 
in late G2 phase. B-type cyclins associate with CDC2 kinases and program the 
passage of the cell through M phase. D-type cyclins are expressed throughout 
the cell cycle in response to mitogen activation. 
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The regulation of the cell cycle takes place at different levels: 

1. Modulation of the transcriptional activity of genes encoding cyclins. 
2. Direct covalent modification of CDK by CDK-activating kinases and phos

phatases. The holoenzymes can be negatively regulated by phosphorylation, 
so that even though the CDC2/cyclin B complexes are progressively formed 
as cyclin B accumulates, the kinase remains inactive and its catalytic 
activity is restricted to mitosis. 

3. Regulation by CDK inhibitors that bind CDK/cyclin complexes and block 
the kinase activity. The cyclin-kinase inhibitors (CKI) are a group of pro
teins acting as inhibitory subunits by binding CDK/cyclin complexes. Two 
main groups of CKI have been characterized: the INK4 group of pIS, p16, 
p18 and p19 are quite specific for G 1 CDKs; the group of p21, p27 and pS7 
has a wider action and associates with most CDK/cyclin complexes. 

4. Proteolysis-driven progression from G1 to S (via CDC34) and triggering of 
anaphase and exit from mitosis (via APC, anaphase promoting complex). 
Both CDC34 and APC encode ubiquitin-conjugating enzymes that degrade 
cyclins and inhibitors of the cell cycle transition (KING et al. 1996). 

During apoptosis, certain cell cycle regulatory proteins are inappropriately 
expressed, such as cyclin-dependent-kinase 4/cyclin D, and alterations in 
specific phosphorylation events, mediated by protein kinases and phos
phatases, have been described (DAVIS et al. 1997). Apoptosis is morphologi
cally related to premature mitosis, an aberrant form of mitosis. The uncoupling 
of timing for p34cdc2 activation and the completion of DNA replication causes 
the so-called "mitotic catastrophe" or premature mitosis that apparently 
results from mitosis during DNA replication (NURSE 1990; HEALD et al. 1993). 
p34cdc2 is a highly regulated serine-threonine kinase that controls entry into 
mitosis. The regulation of p34cdc2 is known to involve a network of kinases and 
phosphatases that may respond to the state of DNA replication, as well as 
forming complexes with cyclins (NURSE 1990). Entry into M phase is deter
mined by activation of p34cdC2 that requires p34cdc2 dephosphorylation of 
phospho tyrosine and phosphothreonine and association with cyclin B. The 
weel tyrosine kinase maintains mitotic timing and coordinates the transition 
between DNA replication and mitosis by protecting the nucleus from the cyto
plasmically activated cdc2 kinase (HEALD et al. 1993). The active form of the 
kinase leads to the phosphorylation of key substrates: HI histone, p60src, 
lamins, centrosomal proteins, and other proteins that need to be dis
placed from chromatin to allow chromosome condensation. The complex 
p34cdc2/cyclin B initiates the dissolution of the nuclear membrane and pro
motes chromatin condensation, events that take place during both mitosis and 
apoptosis (MEIKRANTZ et al. 1994). Premature p34cdc2 activation may be a 
general mechanism by which cells, induced to undergo apoptosis, initiate the 
disruption of the nucleus. This was deduced from experiments with fragmentin 
and with staurosporine, which induces dephosphorylation of p34cdC2 and apop
tosis in lymphoma and mammary carcinoma cell lines (SHI et al. 1994). This 
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hypothesis has been questioned since OBERHAMMER et al. (1994) showed 
that chromatin condensation during apoptosis appears to be due to a rapid 
proteolysis of nuclear matrix proteins which does not involve the p34cdc2 

kinase; in contrast to mitosis, dephosphorylation and activation of p34cdC2 does 
not occur in apoptotic cells. Nonetheless, different observations support the 
hypothesis that apoptosis may be due, in part, to an uncoordinated attempt by 
a nondividing cell to reenter and progress through the cell cycle (DAVIS et al. 
1997). 

E. Cell Cycle, CDK and PKC Inhibitors 
Several protein kinase inhibitors have demonstrated a potential for use in the 
therapy of human cancers. Staurosporine, a potent PKC inhibitor with broad 
specificity, enhances the cytotoxic effects of various antitumor agents with dif
ferent modes of action. Staurosporine potentiates apoptosis through events 
that occur downstream of DNA damage, and implicates the unscheduled acti
vation of cyclin A-dependent kinase during the inhibition of DNA synthesis 
as a possible cause (LOCK et al. 1997). Staurosporine induces not only apop
totic cell death in a wide variety of mammalian cells, but also premature ini
tiation of mitosis in cells arrested in S phase by DNA inhibitors. Chromosome 
condensation occurs in both staurosporine-induced apoptosis and premature 
mitosis. However, neither formation of mitotic spindles nor mitosis-specific 
phosphorylation of MPM-2 antigens is observed in apoptosis, unlike prema
ture mitosis. The p34cdc2 kinase activated in normal and prematurely mitotic 
cells remains inactive in the apoptotic cells, probably because the active cyclin 
B/p34cdc2 complex is almost absent in the S phase-arrested cells. Phosphoryla
tion of histones, which is associated with mitotic chromosome condensation, 
does not occur in the apoptotic cells. Therefore, staurosporine-induced apop
tosis and premature mitosis are different in their requirements for p34cdc2 

kinase activation and histone phosphorylation (YOSHIDA et al. 1997). The role 
of protein kinases in the staurosporine-mediated events during the progres
sion of the cell cycle remains to be studied. 

The inhibition of CDKs has raised considerable interest in apoptosis 
research in view of their essential role in the regulation of the cell cycle. 
Olomoucine (6-(benzylamino )-2-[(2-hydroxyethyl)amino ]-9-methylpurine), 
roscovitine (6-(benzylamino )-2(R)-{[1-(hydroxymethyl)propyl]amino )-9-iso
propylpurine), and other N6,2,9-trisubstituted adenines exert a strong 
inhibitory effect on the p34CdC2/cyclin B kinase. Inhibition of CDK with 010-

moucine and related compounds clearly arrests cell proliferation of many 
tumor cell lines at G liS and G2/M transitions and also triggers apoptosis in 
the target tumor cells in vitro and in vivo. Thus, from a pharmacological point 
of view, olomoucine may represent a model compound for a new class of 
antimitotic and antitumor drugs (HAVLICEK et al. 1997). The kinase specificity 
of roscovitine has been investigated using highly purified kinases (including 
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protein kinase A, G and C isozymes, myosin light-chain kinase, casein kinase 
2, insulin receptor tyrosine kinase, c-src, v-abl and CDKs). The high selectiv
ity of roscovitine for some cyclin-dependent kinases provides a useful antimi
totic reagent for cell cycle studies and may prove interesting for the control 
of cells with deregulated cdc2, cdk2 or cdk5 kinase activities (MEIJER et al. 
1997). 

Experiments on taxol-induced activation of p34cdc2 kinase and subsequent 
apoptosis (SHEN et al.1998) have shown the protective effect of PM A on taxol
induced apoptosis. The blocking effect of PMA appears to be mediated by pre
venting the dephosphorylation of the Tyr-15 residue of p34cdc2• Although the 
degree of specificity of the PMA effect was not established, this study focused 
interest on the possible relation of cell signals mediated by PKCs to cell cycle 
progression. 

Gliobastoma cells, whose proliferation is highly dependent on PKCa, are 
very resistant to drug induced apoptosis by an undefined pathway. The inhi
bition of PKC by a novel specific inhibitor, Ro 31-82-220 involves the accu
mulation of p53 and of insulin-like growth factor-l binding protein-3 (a 
pro-apoptotic protein), as well as the conversion of the retinoblastoma tumor 
suppressor protein to the hypophosphorylated and activated form (SHEN and 
GLACER 1998). These cells express PKCa at a high level and it is associated 
with a decreased synthesis of p53 protein, suggesting the regulation by PKCa 
of the apoptotic p53-dependent pathway. 

Many signals from DNA damage are funneled through the p53 protein 
which, in turn, shuts down the cell cycle in the early Gl phase (see Fig. 1). p53 
is known to induce the synthesis of p21 CDK inhibitor, which affects a variety 
of cyclin/CDK complexes and, therefore, can provoke at any point exit from 
the cell cycle (EL DEIRY et al. 1993). The retinoblastoma protein, pRB, in its 
hypophosphorylated form, constrains the advance of the cell cycle, while the 
formerly phosphorylated pRB losses its growth-suppressing power (BARTEK et 
al. 1996). The connection of PKC with p53, pRB and, therefore, with cell cycle 
regulation provides a cross-talk between signals mediating proliferation and 
apoptosis. 

F. Capacitative Calcium Entry and Apoptosis 
Bcl-2, first described as an inner mitochondrial membrane protein that blocks 
programmed cell death (HOCKENBERRY et al. 1990), is associated with the 
nuclear envelope and the endoplasmic reticulum, as well as the mitochon
drial membrane (JACOBSON et al. 1993). The inhibition, by the oncoprotein 
Bcl-2, of the apoptosis induced by withdrawal of interleukins was clearly asso
ciated with the repartitioning of intracellular calcium (BAFFY et al.1993). These 
observations were reinforced by experiments with thapsigargin, an inhibitor 
of the calcium pumping ATPase of the endoplasmic reticulum (Fig. 2) that 
causes persistent depletion of intracellular calcium stores and produces apop-
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Fig.t. Cell cyele, apoptosis and premature mitosis. Cyelin dependent kinases (CDK) 
complex with cyelins (A, B, D, E) and drive cell cycle phases from G 1 to mitosis (M). 
p53 functions as a transcription factor. MDM2 (the human homologue of mouse double 
minute 2) neutralizes p53 by binding to its DNA-binding domain. CDK inhibitors 
(CKl) block CDK/cyelin complexes; the gene encoding the CKI is a target for p53-
mediated regulation and is responsible for p53-mediated Gl arrest and apoptosis. 
Many signals from DNA damage are funneled through the p53 protein. PKCa and 
PKC inhibitors have been shown to regulate p53 action. The entry into the mitosis 
phase requires the activation of p34cdc2 (CDC2), foHowing dephosphorylation and asso
ciation with cyclins. The uncoupling of these events by p34cdc2 dephosphorylation via 
phosphatases (Pl' before DNA replication is completed, causes mitosis catastrophe and 
apoptosis. p34cdc dephosphorylation and activation mediate staurosporine- and taxol
induced apoptosis and both are blocked by phorbol-myristate acetate (PMA) 

tosis of hepatoma cell lines (KANEKO and Tsukamoto 1994). This apparent 
paradox (the association of calcium depletion and apoptosis) can be explained 
by taking into account the so-called "capacitative" model of calcium entry, 
which proposes that calcium concentration is regulated by the degree of deple
tion of the endoplasmic reticulum calcium pool. Interestingly, this store
operated calcium entry mechanism is inhibited by stimulants of protein kinase 
C, the phorbol esters (MONTERO et al. 1993). The inhibition of calcium entry 
should block the activation of calcium-dependent enzymes associated with the 
apoptotic reactions. In fact, LAM et al. (1994) explained the role of Bcl-2 in the 
repression of apoptosis as mediated through the regulation of endoplasmic 
reticulum-associated calcium fluxes. The induction of apoptosis by thapsigar
gin is blocked by Bcl-2 and may be explained by assuming that the oncopro
tein, by inhibiting calcium leaks from the endoplasmic reticulum, hinders the 
thapsigargin-induced "capacitative" calcium entry. This could also be a general 
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Fig. 2. ATPase activity in membranes of neutrophils. A crude membrane preparation 
was made by differential centrifugation of ultrasonically lysed neutrophils. ATPase 
activity was assayed by the release of [32P] from y[32p]ATP in the absence (circles) and 
in the presence (squares) of 0.5 pM thapsigargin. Free calcium concentrations, given as 
pCa values, were buffered in EGTA-containing medium 

mechanism of the abrogation of apoptosis by phorbol esters, since they too 
inhibit the capacitative calcium entry into the cytosol (MONTERO 
et a1. 1993). 

We have recently addressed the role of calcium and PKC in the activity 
of endonucleases and apoptosis (unpublished results). In human neutrophils 
thapsigargin produced a rapid rise of [Ca2+]j with a sustained second phase and 
activated the endonuclease leading to the breakdown of 60-80% of the DNA 
in 24h and apoptosis (Fig. 3). PMA inhibited the second phase of calcium entry 
and completely blocked the activation of the endonuclease induced by thap
sigargin. A similar profile of DNA breakdown can be reproduced in RIN m5F 
cells (Fig. 4). 

The regulation by calcium of the neutrophilic endonuclease could be 
achieved either directly, as a cofactor, or through the expression of an endonu
clease-encoding gene. In addition, it is worth pointing out the autoregulation 
by calcium ions of [Ca2+]j via the store-regulated capacitative calcium entry. 
Studies on calcium fluxes and phosphorylation experiments have shown that 
two plasma membrane proteins close to 50 and 64 kDa are phosphorylated in 
PMA-challenged neutrophils. Calcium entry by the capacitative mechanism is 
sensitive to the depletion of the intracellular calcium pool by thapsigargin. In 
resting neutrophils, the non-phosphorylated form of the protein allows basal 
calcium entry and in thapsigargin-challenged neutrophils, the depletion of the 
non-mitochondrial calcium pool, enhances the capacitative calcium entry. The 
phosphorylation of membrane-associated proteins by PMA inhibits calcium 
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Fig.3. Electron microscopy of thapsigargin-challenged neutrophils. Cells were incu
bated for 24 h in the presence of 0.5 pM thapsigargin, centrifuged and fixed for micro
scopic study. The photo shows nuclear chromatin condensation, apoptotic bodies and 
membrane alterations 

uptake by the neutrophils in both the resting and thapsigargin-activated 
cells and, therefore, blocks the triggering of the Ca2+-dependent endonuclease 
(Fig. 5). 

The relationship of the anti-apoptotic Bcl-2 family of proteins with the 
regulation of cytosolic calcium can be deduced directly from their conforma
tion and structural domains. The anti-apoptotic protein Bcl-XL has three 
domains in close spatial proximity which form an extended hydrophobic cleft. 
X-ray and NMR studies (MUNCHMORE et a1. 1996) have demonstrated that, in 
addition to the three domains, there are seven alpha helices in Bcl-XL which 
align in a conformation similar to the membrane insertion structure of bacte-
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Fig. 4. Internucleosomal breakdown of DNA in RINmSF cells. Lane 1, 100 bp molec
ular size marker; lane 2, control cells incubated for 24h; lane 3, cells incubated for 
24 h in medium containing 100 nM phorbol-myristate-acetate and O.5)1M thapsigargin; 
lane 4, cells incubated for 8h with O.S)1M thapsigargin; lane 5, cells incubated for 24h 
with O.S)1M thapsigargin. RINmSF cells were incubated for the indicated periods at 
37° C. DNA was extracted with phenol/chloroform, labeled with a[32P]dCTP using the 
Klenow fragment of the polymerase and the molecular size was analyzed by elec
trophoresis on a 1 % agarose gel followed by autoradiography 

rial toxins, raising the possibility for the formation of a pore or membrane 
channel. The formation of a regulatable ion pore in the endoplasmic reticu
lum and nuclear membrane supports the hypothesis that the regulation of 
intracellular calcium is the one of the main activities of the Bcl-2 protein. 

The phosphorylation of Bcl-2 has been suggested as a direct mechanism 
by which PKC might regulate apoptosis. It is worth noting that a direct effect 
of PKC on Bcl-2 has been described, indicating that hematopoietic growth 
factors inhibit apoptosis by phosphorylation of Bcl-2 (MAY et al. 1993). Indeed, 
Bcl-2 function is partly regulated by phosphorylation/dephosphorylation 
mechanisms via the PKC system, and phosphorylated Bcl-2 prevents the apop
tosis of lymphoma cells (MURATA et al. 1997). Bryostatin 1, which down
regulates PKC, as well as staurosporine and its 7-hydroxy derivative, which 
directly inhibit the enzyme, circumvent the resistance of Bcl-2-overexpressing 
leukemic cells to ara-C-induced apoptosis and activation of the protease 
cascade. These results highlighted the mediation by PKC of the anti-apoptotic 
effect of Bcl-2 and raised the possibility that modulation of the Bcl-2 phos
phorylation status contributes to this effect (WANG et al. 1997). 

PKC appears to regulate the expression of the Bcl-2 gene. Suppression of 
apoptosis by v-abl PTK is associated with PKC signaling and the upregulation 
of Bcl-XL (CHEN et al. 1997). Along this line, GUBINA et al. (1998) have 
recently reported that the epsilon isoform of PKC allows the survival of inter-
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Fig.5. Regulation by PKC of plasma membrane phosphorylation and capacitative 
calcium entry. Thapsigargin, by inhibiting the calcium pumping ATPase of the endo
plasmic reticulum, provokes the depletion of this intracellular calcium pool. Store
operated mechanisms regulate capacitative calcium entry in resting cells. Following the 
maturation, phosphorylation and cellular activation, PKC is released into the cytosol 
and moves to the plasma membrane. A PKC-binding protein (BP) facilitates the acti
vation by diacylglycerol and links PKC to a protein (p60kDa) that, upon phosphory
lation, inhibits calcium entry. By activating PKC, PMA (not shown) inhibits calcium 
entry and, therefore, the apoptosis-associated calcium-activated reactions such as the 
activation of endonucleases 

leukin-3 dependent cells in the absence of the cytokine. Overexpression of 
PKC8 persists during all phases of the cell cyele, induces the expression of Bel-
2 and suppresses apoptosis. Moreover, experiments in human erythropoietin 
cell lines showed that the cytokine receptor increases Bel-XL by a PKC
dependent pathway (TSUSHIMA et al. 1997). 

G. PKC Implication in the Sphingomyelin Pathway 
to Apoptosis 

The sphingomyelin pathway is a ubiquitous, evolutionarily conserved signal
ing system which is initiated through the hydrolysis of the plasma membrane 
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phospholipid, sphingomyelin, to generate ceramide. The generation of 
ceramide takes place via the action of sphingomyelinases, sphingomyelin
specific phospholipases that split sphingomyelin into ceramide and pho
sphory1choline. Sphingolipid breakdown products have anti-proliferative and 
tumor-suppressor properties (HANNUN and LINARDIC 1993), and the hydroly
sis of sphingomyelin and ceramide mediates the effects of tumor necrosis 
factor a (TNFa).A great variety of receptors, CD28 and CD95, and the recep
tors for TNFa, IL-1jJ, progesterone, y-interferon and glucocorticoids trigger 
the sphingomyelin pathway, generating ceramide and activating a variety of 
cellular functions (SPIEGEL et al. 1996). Most mammalian cells are sensitive to 
agents acting through the sphingomyelin pathway. 

Cerami de acts as a second messenger in activating the apoptotic cascade. 
Diverse cytokine receptors and environmental stresses utilize ceramide to 
signal apoptosis. In several cell systems ceramide is linked to the stress
activated protein kinase (SAPK)/c-jun kinase (JNK) cascade to signal 
apoptosis. Coordinated regulation of stress- and mitogen-activated protein 
kinases (SAPK and MAPK) are associated with the influence of ceramide and 
sphingosine because ceramide-mediated lethality is primarily associated with 
the strong stimulation of SAPK and weak inhibition of MAPK; and because 
sphingosine-mediated lethality is primarily associated with a weak stimulation 
of SAPK and strong inhibition of MAPK. The dominant basal influence of the 
MAPK cascade allows sustained proliferation, whereas redirection of this 
balance toward the SAPK cascade initiates apoptotic cell death (JARVIS et al. 
1997). 

The generation of ceramide and induction of apoptosis by environmental 
stresses, such as UV and ionizing radiation, may occur via different models. 
Ionizing radiation acts on cellular membranes of bovine and aortic endothe
lial cells to generate ceramide and initiate apoptosis, suggesting an alternative 
to the hypothesis that direct DNA damage mediates radiation-induced cell 
killing. HAIMOVITZ-FRIEDMAN et al. (1994b) indicated that PKC activation 
blocked both radiation-induced sphingomyelin hydrolysis and apoptosis. 
Radiation appears to utilize caspases which are downstream of cerami de gene
ration to execute apoptosis. Nonetheless, additional studies will be required to 
further define the mechanism of radiation-induced apoptosis since UV radia
tion activates a variety of cytokine receptors (LlU et al. 1996). 

One of the most striking features of apoptosis is that dying cells disappear 
from the tissue without generation of any inflammatory reaction. This con
trasts with necrosis where internal materials (mainly mitochondrial proteins) 
reach the extracellular space and cause an inflammatory reaction (WYLLIE 
1997). The mediation by ceramide of TNF signals is particularly interesting 
since it causes both pro-inflammatory and apoptotic processes. The 55 kDa 
TNF receptor initiates apoptosis via a death-domain adaptor protein complex 
downstream of acid sphingomyelinase. The proliferative and pro-inflammatory 
effects of TNF are mediated by the following events: (1) generation of 
cerami de by the neutral sphingomyelinase; (2) activation of ceramide-
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activated protein kinases (CAPK) and; (3) triggering of the extracellular reg
ulated kinase (ERK) (see HAIMOVITz-FRIEDMAN et al. 1997). Cerami de acts on 
different targets including: ceramide-activated protein kinase and phos
phatase, the guanine nucleotide exchange protein Vav, and the atypical protein 
kinase C isoform S. 

Ceramide induces programmed cell death (OBEID et al. 1993) as well as 
the activation of the sphingomyelin pathway (JARVIS et al.1994), processes that 
are inhibitable by the protein kinase C activators, phorbol-myristate acetate 
and synthetic diglycerides, suggesting opposite roles for diglyceride- and 
ceramide-mediated signals in the regulation of apoptosis. Ceramide is a pos
sible mediator of apoptosis in response to a number of agents, including inter
feron and hypoxia, that cause sphingomyelin hydrolysis. In addition, a 
ceramide-activated protein phosphatase can mediate the effects of ceramide 
(DOBROWSKY and HANNUN 1992). On the other hand, sphingosine, a break
down product of sphingolipids, is well known for its pharmacological inhibi
tion of PKC. The translocation of PKC to the plasma membrane is central to 
the accessibility for second messengers and substrates and to the regulation 
by ceramide that inactivates PKCa, probably by dephosphorylation. PKCs, 
in turn, inhibit ceramide-mediated apoptosis by activating sphingosine 
kinase (CUVILLIER et al.1996). The coincidence of both complementary events, 
through inhibition of the phosphorylation and activation of the phosphatase 
of target proteins, may argue in favor of PKC-regulated mechanisms in the 
sphingomyelin apoptotic pathway. 

The engagement of the sphingomyelin pathway in signaling apoptosis is 
tightly regulated by anti-apoptotic control mechanisms, and the balance 
between pro- and anti-apoptotic systems determines the magnitude of the 
apoptotic response in vitro and in vivo. Understanding both pro- and anti
apoptotic signaling involved in ceramide-mediated apoptosis and the mode of 
their coordinated functions may yield opportunities for pharmacological inter
ventions with potential for clinical applications (HAIMOVITz-FRIEDMAN et al. 
1997). 

The activation of caspase commits most cells to apoptosis and, therefore, 
resting cells may be equipped with appropriate suppressors of the proteolytic 
attack. The apoptotic pathway is poised between suppression and activation 
controlled by agents acting through a great variety of signals, both transcrip
tional and non-transcriptional. WYLLIE (1997) suggested that a variation of the 
suppression level might be very effective in turning on apoptosis. In resting 
cells, continuous synthesis of labile protective proteins seems to be required 
to restrain apoptosis. In fact, cycloheximide in sublethal doses causes apopto
sis in liver and induces expression of the c-myc, c-fos, c-jun and p53 genes 
and the accumulation of sphingosine, which might be important in mediating 
cycloheximide-induced apoptosis as an endogenous modulator of protein 
kinase C activity (ALESSENKO et al. 1997). The interactions of different apop
totic pathways depend on PKC activity in determining the fate of the cells in 
the balance of apoptosis, survival and proliferation. The targets of the kinase 
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activity seem to be widely distributed in the apoptotic pathways and work, in 
many instances, downstream of the main apoptotic steps. 
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CHAPTER 5 

How Does Programmed Cell Death Contribute 
to AIDS Pathogenesis? 

M.-L. GOUGEON 

A. Introduction 
I. The Pathogenesis of HIV Disease 

The pathogenesis of human immunodeficiency virus (HIV) infection is com
plex and multifactorial (Fig. 1). Primary infection with HIV is rapidly followed 
by dissemination of the virus to the lymphoid organs, in which high virus repli
cation occurs throughout the entire course of infection, even when the patient 
is clinically asymptomatic (PANTALEO et al. 1993). An intense cellular and 
humoral immune response is generated, which inhibits viral replication within 
weeks, but the virus almost invariably escapes from immune control, produc
ing a chronic and persistent infection, and leading to the development of AIDS 
in the absence of an efficient anti-retroviral therapy (FAUCI 1996). The targets 
of HIV infection are CD4 expressing cells, such as lymphocytes and mono
cytes, the first identified receptor for HIV being the CD4 molecule. All strains 
of HIV infect primary CD4+ T lymphocytes, and many primary isolates 
(referred to as M-tropic) also replicate well in monocytes, but not in trans
formed T cell lines. Other isolates that have been passaged in lymphoid cells 
in vitro infect primary CD4+ T lymphocytes, but not monocytes, and are 
referred to as T-tropic viruses. The viral determinant of cellular tropism maps 
to the gp120 subunit of the HIV-l Env protein and studies to delineate the 
molecular basis of cellular tropism led to the identification of co-receptors for 
HIY. The receptor CXCR4 was identified as the co-receptor responsible for 
the efficient entry of T-tropic strains of HIV-1 into target cells, and the f3-
chemokine receptor CCR5 was identified as the co-receptor for M-tropic 
HIV-l. As a corollary, the CXC chemokine SDF-1, the ligand for CXCR4, 
and the f3-chemokines RANTES, MIP-1a and MIP-1f3, ligands for CCR5, 
block infection by T-tropic or M-tropic HIV-l. Other co-receptors have been 
recently identified which seem to be used at later stages of the disease (FAUCI 
1996). 

CD4 T lymphocytes are the orchestrators of the immune system. First, 
through the production of cytokines, they help the effectors of innate immu
nity, such as natural killer cells (NK), y8 T lymphocytes or monocytes in the 
elimination of virus-infected cells. In addition, they are essential to the specific 
activation and maturation of B lymphocytes into antibody-secreting plas
mocytes, and they are required for the differentiation of CD8+ T cells into 



128 M.-L. GOUGEON 

HAART 

T CDS CTL 

IApoptosisl 

o 5 7 8 10 11 12 
Time (months) Time (years) 

Primo~infection Asymptomatic phase AIDS 

Fig.I. Kinetics of viral replication and immune response following infection by HIY. 
Primo-infection with HIV rapidly induces a specific immune response including the 
activation of CD4 T helper cells, the differentiation of anti-HIV cytotoxic T lympho
cytes (CTL) and the generation of HIV-specific neutralising antibodies. A progres
sive decline in CD4 T lymphocytes is observed, concomitant with an increased cell 
death by apoptosis of patients' lymphocytes. Following HAART (highly active anti
retroviral therapy), an efficient control of HIV replication occurs, accompanied by a 
rapid rise in CD4 T cell number and a drop in the level of apoptosis which reaches 
normal values 

virus-specific cytotoxic T lymphocytes (CTL). Finally, they are a source of 
chemokines, which are suppressor factors of HIV replication. Therefore, the 
progressive disappearance of CD4 T lymphocytes leads to the lack of control 
of HIV replication and to the development of severe immune deficiency 
responsible for the occurrence of opportunistic infections associated with 
AIDS. 

II. CD4 T Cell Homeostasis in HIV Infection 

CD4+ T lymphocyte depletion is the hallmark of HIV infection. CD4 T cell 
destruction can be mediated directly by HIV replication as a consequence of 
viral gene expression, or indirectly through priming of uninfected cells to 
apoptosis when triggered by different agents. In addition to these pathways, a 
complementary cytopathic effect is probably provided by the immune system, 
since infected cells may be killed by HIV-specific CTL or antibody-dependent 
cell-mediated cytotoxicity (ADCC). Despite years of investigation, the dy
namic basis for CD4 T cell depletion in HIV infection remains controversial. 
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Since 1995, a series of studies have increasingly challenged the paradigm that 
HIV infection induces high CD4 T cell production and turnover as the result 
of virus-induced T cell destruction. First, it was proposed that a large (109) 

number of CD4 T cells is infected and destroyed every day, and an equal 
number of CD4 T cells is produced to compensate for the loss (Ho et al. 1995; 
WET et al. 1995). The outcome of this process of massive production/destruc
tion of cells is the exhaustion of the T cell regenerative process resulting in 
the progressive depletion of CD4 T cells. However, this hypothesis is not com
patible with the very low frequency of productively HIV-infected T cells in 
lymphoid tissues (1/100 to 1/1000) (HAASE et al. 1996), or with the estimate of 
the turnover of CD4 T cells. This was performed by the analysis ofT cell telom
ere length, supposedly a marker for cellular replicative history. The turnover 
of T cells in the course of HIV infection was found to be considerably 
increased in CD8T cells, but much less in CD4 T cells from HIV-infected sub
jects (WOLTHERS et al. 1996). More recent studies have shown that CD4 T cell 
turnover is two- to threefold higher in HIV-infected, compared with HIV
negative, subjects (SACHSENBERG et al. 1998; HELLERSTEIN et al. 1999), and that 
CD4 T cell production in HIV-infected subjects is not significantly different 
from that in healthy donors (FLEURY et al. 1998; HELLERSTEIN et al. 1999). In 
fact, virus replication inhibits CD4 T cell production because, following highly 
active anti-retroviral therapy (HAART), a dramatic increase in CD4 T cell 
production is observed (HELLERSTEIN et al. 1999). Therefore, the current 
understanding of CD4 T cell homeostasis in the course of HIV infection is that 
the progressive depletion of CD4 T lymphocytes is the consequence of both 
their destruction by several mechanisms dependent on the virus, and the lack 
of compensation by the production of new CD4 T cells, because of a possible 
blockade of the CD4 T cell renewal machinery at the level of the bone marrow 
or of the thymus. In this review, the contribution of programmed cell death 
(PCD) by apoptosis to the destruction of CD4 T lymphocytes, the mechanisms 
involved in this process, and the consequences of excessive apoptosis on the 
effectors of the immune system are discussed. 

B. pen in HIV Infection 
I. Influence of HIV-l Genes on the Induction of Apoptosis 

Several HIV-l gene products can influence directly the survival of the infected 
cell or of bystander cells. Tat, a viral transcription factor, was found to up
regulate Bc1-2 expression, protecting cells from apoptosis (ZAULl et al. 1995). 
In contrast, establishment of stable Tat-expressing cell lines or addition of 
exogenous Tat has been reported to sensitise cells to CD95-, T-cell receptor 
(TCR)- or CD4-induced apoptosis (LI et al. 1995; WESTENDORP et al. 1995). In 
these studies, Tat alone was insufficient to induce apoptosis but it appeared to 
sensitise cells to apoptosis triggered by a second signal, such as CD95 or TCR 
signalling. The vpr gene was also found to induce apoptosis (STEWARD et al. 
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1997). The vpr protein is required for productive infection of non-dividing cells 
(HATTORI ct al. 1990) and it was recently shown to induce arrest of cells in the 
G2/M phase of the cell cycle. Following this arrest, vpr induces apoptosis in 
human T cells, peripheral blood lymphocytes and fibroblasts (BARTZ et al. 1996; 
YAO et al. 1998). Another HIV gene, vpu, was analysed for its influence on 
apoptosis of infected cells and it was found to increase the susceptibility of 
infected peripheral T cells and Jurkatt T cells to CD95-induced apoptosis 
(CASELLA et al. 1999). HIV replication in susceptible CD4 T or monocytic cell 
lines is also controlled by Bcl-2: infection first results in a decrease of Bcl-2, 
permitting an initial boost of replication, and then the replication is negatively 
controlled by Bcl-2 to reach a balance characterised by low virus production 
and a level of Bcl-2 compatible with cell survival (AILLET et al. 1998). Thus 
Bcl-2 is a critical cellular determinant in the tendency toward an acute or a 
persistent infection. 

Infection of CD4 T cell cultures with HIV is associated with a cytopathic 
effect of the virus, manifested by ballooning of cells and formation of syncy
tia, leading to the death by apoptosis of both infected and non-infected cells. 
Apoptosis is triggered by the viral envelope glycoprotein, gp160, expressed on 
the surface of infected cells, which binds to accessible CD4 receptors on the 
surface of neighbouring cells (LAURENT-CRAWFORD et al. 1991; TERAI et al. 
1991). During the fusion process, a specific region in the gp120-gp41 complex 
might become unmasked and thus mediate the onset of apoptosis. Both gp120 
and gp41 are required for triggering apoptosis and no other gene besides the 
envelope is involved (LAURENT-CRAWFORD et al. 1993). Thus, chronically HIV
infected cells can serve as effector cells to induce apoptosis in uninfected 
target CD4 T cells. During this process, which involves syncytial formation and 
cell-to-cell spread of HIV infection, the anti-retroviral drug AZT blocks the 
spread of HIV infection without any apparent effect on apoptosis. On the 
other hand, cyclosporin A, a powerful suppressor of the immune system, and 
cycloheximide, which inhibits protein synthesis, do not affect apoptosis. There
fore, by virtue of expression of the gp120-gp41 complex, HIV-producing cells 
should be considered as potent effector cells for two independent pathologi
cal consequences: the first is the cell-to-cell spread of HIV infection, which is 
inhibited by anti-retroviral drugs; the second is the triggering of apoptosis, 
which is not affected by AZT. Further studies on the apoptotic pathway 
involved in gp120-dependent apoptosis of uninfected CD4 T cells showed that 
it involved caspases, although it was not mediated by the CD95 or TNF-RI 
molecules (OHNIMUS et al. 1997). These observations have raised the impor
tant question in HIV-1 pathogenesis: is virus killing limited to infected T cells 
in vivo (GOUGEON and MONTAGNIER 1993)? 

II. Peripheral T Lymphocytes from HIV-Infected Subjects 
are Prematurely Primed for Apoptosis 

It was reported several years ago that peripheral blood T cells from HIV
infected persons were highly prone to apoptosis induced in vitro (GOUGEON 
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et al.1991, 1993a; GROUX et al.1992; MEYAARD et al.1992). Indeed, while freshly 
isolated peripheral blood mononuclear cells (PBMCs) from HIV-infected 
individuals showed a low level of apoptosis (measured by different approaches 
detecting alterations in membrane permeability, a drop in mitochondrial mem
brane potential, chromatin condensation or DNA fragmentation) comparable 
to that of control donors (GOUGEON et al. 1996), their incubation in medium 
alone induced a rapid spontaneous apoptosis which was detected after a few 
hours of culture. This premature cell death could affect more than 30% of 
the lymphocytes from an HIV-infected subject whereas it affected only 2-5% 
of lymphocytes from control subjects. Moreover, the rate of apoptosis in blood 
lymphocytes from HIV-infected persons could be significantly increased fol
lowing stimulation by various stimuli, including ionomycin, mitogens, super
antigens or anti-TCR antibodies, whereas these stimuli had a marginal effect 
on the majority of lymphocytes from control donors (GOUGEON et al. 1991, 
1993a; MEYAARD et al. 1992; GROUX et al. 1992). 

Although it was first reported that the increased priming for apoptosis 
in HIV infection exclusively concerned the CD4 subset (GROUX et al. 1992), 
it became rapidly clear that the CD8 subset is similarly primed for apoptosis 
(MEYAARD et al. 1992; GOUGEON et al. 1993a; LEWIS et al. 1994). In fact, a 
phenotypic study of apoptotic cells in a large cohort of HIV-positive patients 
revealed that not only T cells but all blood mononuclear cells, including B 
cells, T cells, NK cells, granulocytes and monocytes, had an increased fragil
ity upon short-term culture (GOUGEON et al. 1996). These observations were 
confirmed at the level of lymph nodes of HIV-infected patients, in which 
apoptosis was detected not only in CD4 but also in CD8 T cells, B cells and 
dendritic cells (MURO-CACHO et al. 1995; AMENDOLA et al. 1996), and in 
tonsillar tissue from HIV-infected donors, which showed increased apoptosis 
in both CD4 and CD8 T cells compared to uninfected donors (ROSOK et al. 
1998). 

The central paradox of HIV pathogenesis is that the viral burden, either 
free or cellular, seems too low to deplete the CD4 population by direct killing. 
The observation that an important fraction of T cells are prematurely 
primed for apoptosis in HIV-infected subjects prompted the hypothesis that 
some indirect mechanisms are responsible for inappropriate cell death and 
significantly contribute to CD4 T cell depletion (AMEISEN and CAPRON 1991) 
as well as to CD8 destruction in AIDS (GOUGEON 1995). This hypothesis was 
later supported by the observation that apoptotic T cells in lymph node sec
tions of HIV-infected children and SIV-infected macaques were dominant in 
uninfected bystander cells, whereas infected cells were not found to be apop
totic (FINKEL et al. 1995). This has been confirmed by studies highlighting the 
important number of apoptotic cells in lymph nodes of HIV-infected adults 
(MURO-CACHO et al. 1995) and revealing the great frequency of T lymphocytes 
in patients' lymph nodes and blood, which express the tissue transglutaminase 
(tTG), a Ca2+-dependent enzyme that cross-links intracellular proteins during 
the apoptotic process and whose expression underlines a pre-apoptotic stage 
(AMENDOLA et al. 1996). 
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III. Relationship Between Apoptosis and Immune Activation 

Homeostasis is maintained by an extremely complex set of regulatory 
processes that differ markedly in quiescent and activated cells. For example, 
during primary viral infection induced by EBV, measles or varicella-zoster 
virus, T cell lymphocytosis is rapidly detected in the blood, but it is transient 
as the absolute number of circulating T lymphocytes and the relative propor
tion of T cell subsets return to normal upon resolution of the disease. It prob
ably occurs via a rapid clearance by apoptosis of the majority of activated T 
cell blasts in vivo, since the apoptotic cells detected following a short-term 
culture of patients' lymphocytes express several activation markers (AKBAR et 
al. 1993; PIGNATA et al. 1998). Apoptosis thus plays a crucial role in the home
ostatic control of cell numbers following antigenic stimulation, ensuring the 
clearance of primed lymphocytes in order to terminate the immune response 
and to avoid autoimmune reactions (AKBAR and SALMON 1997). Nevertheless, 
this normal process of elimination of activated cells might be detrimental for 
the immune system in the case of a chronic infection such as that induced by 
HIY. 

A general state of immune activation is observed in the asymptomatic 
phase of HIV infection, both in lymphoid tissue and peripheral blood lym
phocytes, and persists throughout the entire course of HIV infection. This is 
reflected by follicular hyperplasia in lymphoid tissue and the expression of 
activation markers such as HLA-DR, CD45RO and CD38 in CD4 and CD8T 
cells in the lymph-nodes (BOFILL et al. 1995; MURO-CACHO et al. 1995) and in 
the peripheral blood (LEVACHER et al. 1992; GIORGI et al. 1993). Although HIV 
replication is dramatically down-regulated under the influence of the specific 
immune response, HIV is never eliminated, and its persistence associated with 
the unceasing expression of HIV antigens is probably the primary mechanism 
for the chronic stimulation of the immune system. In addition, exoge
nous factors, such as opportunistic pathogens, stimulate the production of 
proinflammatory cytokines, including TNFa, IL1,B and IL-6, which drive cel
lular activation and viral replication (BLANCHARD et al. 1997). 

This unbalanced immune activation might be the primary mechanism 
responsible for the premature cell death in AIDS. This is suggested by the fol
lowing observations: (1) apoptotic cells in patients' lymphoid tissues and in 
blood exhibit an activated phenotype (MURO-CACHO et al. 1995; GOUGEON et 
al. 1996); (2) there is a statistically significant correlation between the inten
sity of spontaneous or TCR-triggered apoptosis in both CD4 and CD8 subsets 
and their in vivo activation state (GOUGEON et al.1996); (3) recent studies per
formed in West Africa, comparing patients infected with HIV-1 or HIV-2, 
showed that the low pathogenicity of HIV-2 infection is associated with a 
lower level of immune activation and less T cell apoptosis (MICHEL et al. 1999); 
(4) the lack of chronic immune activation in the non-pathogenic HIV-l infec
tion in chimpanzees is associated with a very low level of T cell apoptosis 
(HEENEY et al. 1993; GOUGEON et al. 1993, 1997). At the molecular level, the 
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unbalanced immune activation in HIV-1-infected humans is responsible for 
the down-regulation of Bcl-2 expression (BOUDET et a1. 1996) which is associ
ated with an up-regulation of CD95 and CD95L expression (DEBATIN et a1. 
1994; KATSIKIS et al. 1995; BOUDET et al. 1996; MITRA et al. 1996; SLOAND et al. 
1997) and an alteration in cytokine production (CLERICI and SHEARER 1994), 
which favours the apoptotic pathway rather than lymphocyte survival. 

IV. Relevance of PCD to Disease Progression 
and AIDS Pathogenesis 

A series of observations reported in HIV-infected persons and in simian 
models of lentiviral infection argue for a correlation between the intensity of 
T cell apoptosis and the pathogenicity of the infection. First, the proportion 
of CD4 and CD8 T lymphocytes undergoing apoptosis spontaneously, or after 
ligation of the TCR or the CD95 receptor, is increasing with disease evolution 
as evaluated by the in vivo reduction of the CD4 T cell number (BOHLER et 
al. 1997; SLOAND et a1. 1997; GOUGEON et al. 1999). Second, there is a correla
tion between the intensity of lymphocyte apoptosis and resistance or suscep
tibility to AIDS development. Indeed, spontaneous T cell apoptosis is very low 
in lymphocytes of "long-term non-progressors", a group of persons infected 
with HIV for at least 8 years but who have maintained normal numbers of 
CD4 T cells and do not show AIDS-associated symptoms (LIEGLER et al. 1998); 
and conversely, T cell apoptosis is very high in "rapid progressors", who show 
a rapid drop in CD4 T cell numbers and develop AIDS within 2 years after 
HIV primo-infection (M.-L. GOUGEON and H. LECOEUR, unpublished observa
tions). Third, comparative studies in pathogenic models of lentiviral infection, 
including macaques infected with SIV (GOUGEON et a1. 1993; ESTAQUIER et a1. 
1994), cats infected with FlV (BISHOP et a1. 1993; HOLZNAGEL et al. 1998), 
murine AIDS (COHEN et al. 1993), versus non-pathogenic models, including 
SLY-infected African green monkeys (ESTAQUIER et al. 1994) or chimpanzees 
infected with HIV or SIVcpz (HEENEY et al. 1993; GOUGEON et al. 1993, 1997), 
revealed that increased lymphocyte apoptosis was only observed in pathogenic 
lentiviral infections. Interestingly, a recent study reported the case of two 
female chimpanzees, showing a progressive loss of CD4 T cells associated with 
high viral burdens and increased levels of CD4 T cell apoptosis following 
inoculation with HIV-1 which was isolated from a chimpanzee infected with 
the virus for 8 years. Lymph nodes from both animals revealed evidence of 
immune hyperactivation. By contrast, no apoptosis and no activation was 
observed in animals without loss of CD4 T cells (DAVIS et al. 1998). These 
observations provide additional evidence that a correlation exists between 
immune activation, T cell loss and apoptosis, and that apoptosis can 
significantly contribute to AIDS pathogenesis. As detailed below, it could be 
the mechanism responsible for the clearance of activated but healthy T cells, 
and consequently, could contribute to the impoverishment of the pool of effec
tors (Th and CTL) and antigen-presenting cells. 
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C. Molecular Control of HIV-Induced Apoptosis 
Regulation of cell survival and death is essential for T cell homeostasis during 
precursor cell development and termination of an immune response in the 
periphery. Cell survival may be regulated by default mechanisms in which the 
expression of anti-apoptotic genes, such as proteins of the Bcl-2 family, is reg
ulated by exogenous survival factors, e.g. cytokines such as IL-2 (BROOME 
et al. 1995; YANG and KORSMEYER 1996; REED 1997; KROEMER 1997). While the 
expression of survival genes seems to be critical for further development of 
precursor cells (positive selection) and T cell survival (VEIS et al. 1993; LINETTE 
et al. 1994), elimination of T cells in the periphery to down-regulate the 
immune response may rather involve the active induction of apoptosis through 
an interaction of death receptors with their respective ligands, including the 
CD95 system (NAGATA 1997; KRAMMER et al. 1994; DEBATIN 1996). 

I. Negative Regulation of Bcl-2 Expression. Consequences 
on the Anti-Viral Cytotoxic Function 

Bcl-2 and its homologous proteins playa key role in the control of cell death 
of T and B cell lineages during lymphoid development, ensuring their appro
priate selection (NUNEZ et al. 1994). In differentiated mature T lymphocytes, 
regulation of Bcl-2 expression might be crucial for the development and per
sistence of a memory T cell response following an immune activation (AKBAR 
et al. 1993; AKBAR and SALMON 1997). In order to determine whether the 
priming for apoptosis of lymphocytes from HIV-infected donors was associ
ated with a differential expression of Bcl-2, freshly isolated PBMCs from HIV
infected donors at different stages of the disease were analysed by FACS for 
intracellular Bcl-2 expression (BOUDET et al. 1996). A decreased Bcl-2 expres
sion was consistently detected ex vivo in a fraction of CD8 T lymphocytes 
from HIV-positive donors, whereas it was never observed in lymphocytes 
from control donors. Interestingly, the low expression of Bcl-2 molecule in 
CD8T lymphocytes primes them for spontaneous apoptosis after a short-term 
culture, and experiments performed on T lymphocytes from a series of patients 
showed that a significant correlation exists between the level of Bcl-2 expres
sion and the propensity to undergo apoptosis, either spontaneously or follow
ing CD95 ligation (BOUDET et al. 1996). Ex vivo phenotypic characteristics of 
the low Bcl-2-expressing CD8 T cells suggested that they were cytotoxic, since 
they were in an activated state and they expressed the TIA-l granules involved 
in the cytotoxic function (BOUDET et al. 1996). Interestingly, a parallel study 
performed by BOFILL et al. (1995) showed that this subset, characterized as 
CD8+ CD45RO+ TIA-1+and Bcl-2 low, is highly expressed in lymph nodes of 
HIV-infected patients. 

A strong HIV-specific cytotoxic response is generated rapidly after HIV 
infection and it persists during the chronic phase of the viral infection. 
However, this cytotoxic response was reported to be markedly lost with the 
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onset of symptoms (PANTALEO et al. 1990). The molecular mechanisms by 
which these cytotoxic lymphocytes could be deleted in vivo remain unknown. 
The lack of survival factors might contribute to the apoptosis of this subset. 
For example, IL-2 can upregulate in vitro Bcl-2 expression in lymphocytes 
from acutely EBV-infected patients (AKBAR et al. 1993) and also from chron
ically HIV-infected patients (GOUGEON et al.1993; NAORA and GOUGEON 1999). 
One of the hallmarks of HIV infection is the defective production of IL-2, 
which is linked to the progressive depletion of CD4 T cells, the major source 
of IL-2 (CLERICI et al. 1994; LEDRU et al. 1998). The in vivo deficiency in IL-2 
production would prevent the up-regulation of Bcl-2 molecules on cytotoxic 
T lymphocytes, which therefore could not be rescued from apoptosis. There
fore, the loss of anti-viral cytotoxic activity in the course of HIV infection 
might be related to an abnormal priming for apoptosis of CTL, consequent to 
both a persistent virus-driven immune stimulation and the gradual loss of sur
vival factors. 

II. Upregulation of the CD95 System 

The CD95 molecule is a cell surface receptor of the tumour necrosis factor 
receptor (TNFR) superfamily that includes various molecules involved in 
immune regulation, such as the TNF receptors I and II, CD27, CD30 and CD40 
(TRAUTH et al.1989; ITOH et al.1991; OEHM et al.1992). The CD95 protein struc
ture is characterized by three extracellular cysteine-rich domains (CRDs) 
found in all family members, a single transmembrane-spanning region and an 
intracellular part that contains a 70-amino acid region highly homologous 
to the p55 TNFR. This intracellular "death domain" has been shown to trans
duce signals for apoptosis through the TNFR and the CD95 molecule (NAGATA 
1997; PETER and KRAMMER 1998). The CD95 ligand (CD95L) is a type II trans
membrane protein produced by activated T cells and constitutively expressed 
in a variety of tissues. While the expression of CD95 is likely to be ubiquitous 
on activated immune cells (WATANABE-FuKUNAGA 1992), that of CD95L is 
more restricted to activated professional killer cells, such as CD8+ and CD4+ 
cytotoxic T cells, NK cells and antigen-presenting cells (APC) (SUDA et al. 
1995; OSHIMI et al. 1996; BADLEY et al. 1996). A soluble form of CD95L is pro
duced by proteolytic cleavage. A fundamental concept for the importance and 
the role of the CD95 system in growth control of peripheral T cells has been 
the demonstration of autocrine and paracrine mechanisms of CD95L
mediated death (DHEIN et al. 1995; ALDERSON et al. 1995; BRUNNER et al. 1995; 
Jv et al. 1995). T cell receptor triggering in activated peripheral T cells may 
induce apoptosis that involves autocrine suicide or paracrine death mediated 
via CD95 receptor/ligand interaction. The finding that CD95 and CD95L are 
mutated in mouse strains suffering from severe autoimmune diseases and lym
phoproliferation has greatly facilitated the understanding of the physiological 
role of the CD95 system in T cell homeostasis (NAGATA and SUDA 1995). Thus, 
mutations of the CD95 molecule in Ipr mice and mutations of the CD95L in 
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gld mice constitute the first genetically defined syndromes of defective apop
tosis. Human counterparts of the lpr mutation in mice have been identified 
(FISHER et al. 1995; RlEux-LAUCAT et al. 1995) and "deathless" CD4+ and CD8+ 
single-positive T lymphocytes from these patients fail to undergo apoptosis 
following stimulation via CD95 or T cell receptor triggering. On the other 
hand, the exacerbation of CD95-dependent apoptosis might be involved in 
tissue destruction during viral infections, including AIDS. 

The in vivo involvement of the CD95 pathway in T cell apoptosis during 
HIV infection is supported by a series of observations. An increased expres
sion of CD95 is detected in both CD4 and CD8 T lymphocytes from patients, 
and at the AIDS stage up to 80-90% of T cells are CD95+ (DEBATlN et al. 1994; 
KATSIKIS et al. 1995; BOUDET et al. 1996; GOUGEON et al. 1997). This is associ
ated with the existence in patients of cells susceptible to CD95-induced apop
tosis, whose proportion increases with disease progression (KATSIKIS et al. 
1995; GOUGEON et al. 1997; SLOAND et al. 1997). In addition, serum concentra
tions of soluble CD95 (MEDRANO et al. 1997) and anti-CD95 auto-antibodies 
(STRICKER et al. 1998) were found to be predictive markers for progression to 
AIDS. CD95L is also up-regulated in patients' lymphocytes: CD95L-encoding 
transcripts (BAUMLER et al. 1996) and CD95L cell surface molecules (SLOAND 
et al. 1997) are highly expressed on both CD4 and CD8 T cells from HIV
infected persons, thus becoming possible effectors of apoptosis. In addition, 
elevated levels of soluble CD95 and CD95L are detected in the plasma of 
patients, and soluble CD95 concentrations correlate with CD95 expression 
on apoptotic cells (HOSAKA et al. 1998). Finally, a significant increase in 
macrophage-associated CD95L is detected in lymphoid tissue from HIV
positive subjects, which is correlated with the degree of tissue apoptosis 
(DOCKRELL et al. 1998). All these observations suggest that significant dysreg
ulation of both CD95 and CD95L occurs in HIV infection. Experiments per
formed in HIV-infected chimpanzees, whose resistance to CD4 T cell 
depletion is associated with the lack of susceptibility of their T lymphocytes 
to CD95-induced apoptosis, argue for an involvement of the CD95 system in 
CD4 T cell depletion (GOUGEON et al. 1997). 

III. Possible Effectors of CD95-Mediated Apoptosis. 
Consequences on CD4 T Cell Depletion 

Several studies have contributed to the identification of potential effectors of 
CD95-induced apoptosis in HIV infection. The CD95-based cytotoxic activity 
could be mediated by both activated CD4 and CD8 T cells and also by HIV
infected APC. The up-regulation on CD4 T cells of CD95L expression through 
in vitro HIV infection (MITRA et al. 1996) or through the direct effect of viral 
proteins, such as gp120, Tat or Nef (WESTENDORP et al. 1995; BADLEY et al. 
1996), make them possible effectors in killing CD95-expressing cells. This 
is corroborated by the demonstration that activated CD4 T lymphocytes, 
expressing CD95L, can kill CD95-expressing CD8 T lymphocytes (PIAZZA et 
al. 1997). The possible cytotoxic function of macrophages was suggested by 
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studies reporting that CD95L expression was induced on APC either as a con
sequence of in vitro HIV infection (BADLEY et al. 1996) or following incuba
tion with HIV proteins, gp120 and Tat (WESTENDORP et al. 1995; BADLEY et al. 
1996). CD8+ lymphokine-activated killer (LAK) cells were also identified as 
killers of HIV-infected CD4 T cells in vitro. However, the involvement of the 
CD95 system in this cytotoxicity was not investigated (WANG et al. 1998). In a 
recent study, we have asked whether professional CTL, specific to HIV pep
tides, were potential effectors of the destruction of CD95-expressing activated 
lymphocytes. Indeed, an anti-Nef HLA class I restricted CTL clone, derived 
from an HIV-infected subject, was able to mediate both perforin- and 
Fas-mediated dependent cytotoxic activities on Nef-presenting target cells and 
on Fas-expressing compliant cells, respectively (GARCIA et al. 1997) (Fig. 2). 
The biological relevance of this observation in the context of the chronic active 
HIV infection must be discussed. The high plasmatic viral load (Ho et al. 1995; 
WEI et al. 1995) associated with active HIV replication in lymphoid organs 
(PANTALEO et al. 1993) does promote a strong anti-viral CTL response through
out HIV infection (RIVIERE et al. 1989; AUTRAN et al. 1996). Hence, the con
stant re-stimulation by viral antigens of CTL through the TCR might lead in 
vivo to the continuous expression of CD95L on these CTL, which then can 
kill not only HIV-infected cells but also non-infected activated CD95+ cells. 
Thus, in addition to being protective through the elimination of HIV-infected 
cells, anti-viral CTL could be deleterious through the destruction of CD95-
expressing cells, abundant in HIV-infected patients, because of the persistent 
stimulation of the immune system. 

I CYTOTOXICITY I I APOPTOSIS I 

I HIV nef specific I 
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Fig.2. Poten tial deleterious effect of HIV-specific CTL. A N ef-specific CTL clone, able 
to kill target cells which presenting a Nef peptide in the context of an HLA class I mol
ecule, can also kill CD95-positive activated but non-infected T cells. This CD95 pathway 
is independent of HIV antigen recognition and is not HLA-restricted 
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IV. Other Cell Death Genes Involved in HIV-Induced Apoptosis 

Several examples of CD95-independent apoptosis were reported in HIV infec
tion. In an in vitro system of direct infection with HIV of PBMC or T cell lines, 
it was observed that the majority of HIV-induced T cell death involves direct 
loss of infected cells rather than indirect effects on uninfected bystander 
cells, and this cell death was found to be independent of the CD95 pathway 
(GANDHI et a1. 1998). However, it was also reported that necrosis is the major 
mechanism involved in the direct killing of CD4 T cells by cytopathic HIV, 
whereas apoptosis is involved in immune cell-mediated killing (WANG et a1. 
1998). Thus, it cannot be excluded that in the study by GANDHI et a1. (1998), 
CD4 T cells were mostly dying by necrosis, which would explain the non
involvement of an apoptotic death factor such as CD95. Another example of 
CD95-independant apoptosis was reported in experiments in which primary 
uninfected CD4 T cells died of apoptosis when they were in contact with HIV
infected or HIV gp120-expressing cells. Apoptosis was blocked by inhibitors 
of caspases but not by CD95 or TNF-Rl molecules (OHNIMUS et a1. 1997). 
In fact, several recent studies suggested that, in addition to CD95L, other 
members of the TNF family are involved in HIV-induced apoptotic cell death. 
TRAIL (TNF-related-apoptosis-inducing-ligand) was identified as an apop
totic inducing factor in T cells from HIV-infected patients, but not in normal 
T cells even after prolonged activation in vitro (KATSIKIS et a1. 1997; JEREMIAS 
et a1. 1998). Apoptosis in CD8T cells was reported to involve the TNF/TNF
R system. Indeed, binding of HIV gp120 or SDF-l (stromal-derived factor 1), 
the physiologic ligand of the chemokine receptor CXCR4, induces the up
regulation of membrane TNF on macrophages and TNF-RII on peripheral 
CD8 T cells, leading to apoptosis of CD8 T cells. Apoptosis of CD8 T cells from 
HIV-infected patients can also be mediated by macrophages through the inter
action between membrane TNF and TNF-RII (HERBEIN et a1.1998). The SDF-
1 receptor CXCR4, when triggered by HIV gp120, was also found to induce a 
rapid cell death in normal CD4 T lymphocytes, which was independent 
of known caspases and lacked oligonucleosomal DNA fragmentation, but 
showed several features of apoptosis. Apoptosis triggered via CXCR4 was 
exclusively observed in CD4 but not in CD8T cells, was independent of CD95, 
and was inhibited by SDF-l (BERNDT et a1. 1998). The induction of apoptosis 
through CXCR4 by gp120 or SDF-l was also reported in human neuronal 
cells, in the absence of the CD4 molecule (HESSELGESSER et a1. 1998). 

D. Interrelation of HIV-Induced Apoptosis 
and Cytokines 

I. Dysregulation of Cytokine Synthesis in HIV Infection 

Alterations in cytokine production were first reported by CLERIC! and SHEARER 
(1993,1994) to occur in the course of HIV infection and to be associated with 
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disease progression. The synthesis of two functionally distinct families of 
cytokines was analysed: type 1 cytokines (IL-2, IFNy, IL-12, TNFa) mainly 
involved in cell-mediated immunity and in the destruction of intracellular par
asites, and type 2 cytokines (IL-4, IL-5, IL-6, IL-IO, IL-13) involved in con
trolling the activation and differentiation of B cell and of immunity against 
extracellular pathogens. The pattern of cytokines secreted by PBMC of HIV
infected donors in response to various stimuli, including antigens, mitogens 
or anti-TCR antibodies, was found altered in HIV-infected patients, since a 
progressive change in the balance of type 1 cytokines versus type 2 cytokines 
occurred, and this shift was suggested to contribute to AIDS susceptibility 
(CLERICI and SHEARER 1993,1994). However, depending on the methods used 
for cytokine detection and on the organs analysed, the Th1 to Th2 shift has 
not been systematically observed. For example, GRAZIOSI et al. (1994) analysed 
the mRNA expression ofThl or Th2 cytokines in lymph nodes of HIV-infected 
persons and the Th1-Th2 dichotomy was not found in these lymphoid organs. 
The pattern of cytokines produced by an effector population can now be 
analysed using a single cell analysis method which allows the enumeration of 
Thl/Th2 subsets derived from peripheral T cells stimulated in short-term cul
tures and the determination of the number and the phenotype of cells that are 
potentially capable of producing a given cytokine. Applying this flow cytom
etry method, it was found that a differential alteration in representation ofTh1 
subsets, rather than a commitment of T cells to secrete Th2 cytokines, occurs 
throughout HIV infection. A significant decrease in the number of IL-2 
or TNF-a-producing T cells was observed, whereas those producing IFNy 
remained preserved (LEDRU et al. 1998). The disappearance of IL-2-producing 
T cells was correlated with the progressive shrinkage of the naive 
CD45RA+CD4+T cell compartment and it was a good indicator of disease pro
gression (LEDRU et al. 1998). With that experimental approach, no increase in 
the proportion of T cells producing the Th2 cytokines IL-4, IL-5, IL-6, IL-13 
was observed in HIV-infected patients compared to control donors, although 
some HIV-positive patients with hyper-IgE syndrome showed an increased 
number of IL-IY T cells. These observations do not exclude the possibility of 
an increased production of type 2 cytokines such as IL-6 and IL-10 by patients' 
monocytes, but at the T cell level, HIV infection is rather associated with an 
alteration of type 1 cytokines, and particularly IL-2, than an imbalance in Thl 
and Th2 subsets. 

II. The Disappearance of Thl cells Is Related to Their Priming 
for Apoptosis 

Because the rate of T cell apoptosis is increased early in HIV infection, we 
have asked whether alteration in the representation of some Thl subsets was 
the consequence of a differential susceptibility to activation-induced apopto
sis. This was performed by a multiparametric flow cytometry approach, com
bining at the single-cell level the detection of intracellular cytokines and 
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apoptosis (LECOEUR et al. 1998). Exogeneous cytokines can modulate the sus
ceptibility of lymphocytes to the apoptotic process (AKBAR and SALMON 1997), 
and we have found that the intrinsic capacity of lymphocytes to produce a 
given cytokine upon activation can also influence their survival. Indeed, T lym
phocytes committed to IFN yor TNF ex production were more sensitive to acti
vation-induced apoptosis than lymphocytes committed to IL-2-production 
(LEDRU et al. 1998). This gradient of susceptibility to activation-induced apop
to sis (IL-2 < IFNy< TNFex) was detected in both CD4 and CD8 subsets, as 
well as in control donors and HIV-infected patients. The differential intrinsic 
apoptosis susceptibility of Th1 effectors was found to be tightly regulated by 
Bcl-2 expression. In HIV-infected persons, an increased susceptibility to apop
tosis was observed in IL-2 producers, which was related to a down-regulation 
of Bcl-2 expression. The progressive decrease in the proportion of IL-2 
synthesising T cells was found correlated with their susceptibility to activation
induced apoptosis and disease progression (LEDRU et al. 1998). These correla
tions were also observed forTNFexproducers. These observations indicate that 
the exacerbation of PCD in HIV infection probably contributes to the disap
pearance of Th 1 effectors. 

III. Regulation of HIV-Induced Apoptosis by Cytokines 

Because cytokines can regulate the survival of activated cells, several groups 
have tested the influence of type 1 versus type 2 cytokines on PCD in T cells 
of HIV-infected patients. The addition of type 1 cytokine IL-2 was found to 
block in vitro spontaneous apoptosis (GOUGEON et al. 1993) and activation
induced apoptosis (CLERICI et al. 1994; ESTAQUIER et al. 1996) of T cells from 
patients. Tn contrast, the type 2 cytokines, TL-4 and IL-10, either had no effect 
or enhanced apoptosis (CLERICI et al. 1994; ESTAQUIER et al. 1995). However, 
activation-induced apoptosis and CD95-mediated apoptosis could be blocked 
by antibodies against IL-4 and TL-10 and enhanced by anti-IL-12 antibodies 
(CLERICI et al. 1994; ESTAQUIER et al. 1995). Because IL-15 shares many bio
logical properties with IL-2, we examined the effects of exogenous IL-15 on 
lymphocytes of HIV-infected individuals (Fig. 3). Although IL-15 failed to 
inhibit CD3- and Fas-induced lymphocyte apoptosis in vitro, it could act as a 
potent survival factor in the prevention of spontaneous apoptosis. The greater 
potency of IL-15 in enhancing lymphocyte survival, as compared with IL-2 
when used at an equivalent concentration, was associated with its greater 
ability to up-regulate Bcl-2 expression. In addition, IL-15 was more potent 
than IL-2 in stimulating lymphocyte proliferation (NAORA and GOUGEON 
1999). These observations indicate that Th1 cytokines, such as IL-2 and IL-15, 
are able to prevent HIV-dependent apoptosis. IL-2 probably plays a pivotal 
role in anti-HIV immunity through its involvement in Th and CTL functions, 
and through its ability to prevent PCD and to promote T cell activation. The 
requirement of IL-2 for efficient control of HIV infection is suggested by 
studies performed in HIV-infected chimpanzees, indicating that this non-
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pathogenic infection was correlated with the maintenance ofT cells with a Th1 
phenotype, the proportion of IL-2-producing cells being similar in infected and 
non-infected animals (GOUGEON et al. 1997). Similarly, experiments performed 
in macaques infected with pathogenic SIV strains or with a Nef-deleted-non
pathogenic SIV strain showed that infection with the latter was associated with 
the development of a Th1 pattern in lymph nodes, which was predictive of 
disease outcome (Zou et al. 1997). The essential role of IL-2 in the control of 
HIV infection is confirmed by the benefits of in vivo IL-2 infusions into HIV
positive patients, resulting in both a clinical and an immunological improve
ment, and characterized by an important and stable rise in CD4 T cells 
(CONNORS et al. 1997). 

E. pcn and T Cell Renewal. Influence of HAART 
The main role of apoptosis is to maintain the homeostasis through the elimi
nation of activated cells and to limit the clonal expansion of lymphocytes 
during an immune response (LYNCH et al. 1995). As discussed in this review, a 
chronic stimulation induces the continuous expression of death factors which 
could turn lymphocytes, including CD4 T cells (PIAZZA et al. 1996), CTL 
(GARCIA et al. 1997) or APC (BADLEY et al. 1996), into effectors of apoptosis, 
leading to the destruction of healthy activated non-infected cells. Thus PCD 
would significantly contribute to peripheral T cell depletion in AIDS, particu
larly if the Th cell renewal is impaired. The renewal capacities of the immune 
system in the context of HIV infection are not known. It was proposed by 
HEENEY (1995) that the ability of chimpanzees to maintain immunological 
integrity in the face of persistent HIV infection was associated with the main
tenance of the primary and secondary lymphoid environments important for 
T cell renewal, considering that they are partly destroyed in infected humans. 
The recent availability of anti-retroviral therapies that reduce viral load to 
undetectable levels and concomitantly increase CD4 counts will help to deter
mine whether, in the absence of detectable virus in the blood, the immune 
system can regenerate. In fact, the increase in CD4 T cells is not observed in 
all patients, and the functional alterations in addition to the skewed TCR 
repertoire of the CD4 Th subset are only partially corrected under anti
retroviral therapy (KELLEHER et al. 1996; CONNORS et al. 1997). The mecha
nisms that account for the rise in CD4 T cells in the blood following HAART 
are currently not completely understood. The initial rise of CD4 T cells would 
be due to the migration of memory T cells from the lymphoreticular tissues, 
where they are no longer trapped by the virus, to the blood (PAKKER et al.1998) 
and after several weeks of HAART, the sustained rise in CD4 T cells would 
be the result of their peripheral proliferation, due both to the removal of HIV
induced suppression (HELLERSTEIN et al. 1999) and to the regulation of apop
to sis. Indeed, shortly after the initiation of HAART, an important drop in 
spontaneous, activation-induced and CD95-triggered apoptosis, is observed in 
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both CD4 and CD8T cells from all treated patients (GOUGEON et al. 1999). 
This occurs before the decrease in immune activation, and the resistance to 
CD95-induced apoptosis precedes the down-regulation of CD95 expression. 
Thus, suppression of the plasmatic viral load is associated with the regulation 
of apoptosis, which reaches normal values detected in T cells from healthy 
donors. 

F. Concluding Remarks 
A provocative question is asked quite often: is apoptosis the cause or the 
consequence of AIDS pathogenesis? The comparison of HIV infection in 
chimpanzees, which maintain immunologic integrity in the face of persistent 
lentiviral infection, and humans, who develop AIDS, provides part of the 
answer. As summarised in this review, premature apoptosis is the consequence 
of the chronicity of the lentiviral infection. Continuous production of viral pro
teins would induce apoptosis either directly, by triggering a cell death signal, 
or indirectly, by influencing activation of the immune system. In infected 
chimpanzees, owing to the efficient control of HIV replication, the immune 
system is not activated and, consequently, inappropriate apoptosis does not 
occur (GOUGEON et al. 1997). The suggested rapid turn-over of CD4 T cells in 
HIV-infected persons due to an active regenerative process may contribute 
significantly to the rate of apoptosis in patients. Owing to an absence of CD4 
depletion in chimpanzees, this rapid CD4 cell turnover might not occur in 
infected chimpanzees (HEENEY 1995). The impaired production of Thl 
cytokines, such as IL-2, would prevent cell rescue from apoptosis (GOUGEON 
et al. 1993; CLERICI et al. 1994; LEDRU et al. 1998). In chimpanzees, no 
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alteration of the Th1 subset was detected (GOUGEON et al. 1997). Inappropri
ate signalling by MHC class II APC may contribute to anergy and apoptosis 
ofT cells in infected humans (MEYAARD et al. 1994). While the integrity of the 
Th MHC class II microenvironment is altered in lymphoid tissues of infected 
humans, it is preserved in infected chimpanzees (HEENEY 1995). On the other 
hand, apoptosis can significantly contribute to AIDS pathogenesis. As dis
cussed here, because in vivo apoptosis involves mostly non-infected lympho
cytes (FINKEL et al. 1995), it could be the mechanism responsible for the 
clearance of activated but healthy T cells, such as CD4 Th1 cells, CTL, memory 
cells, dendritic cells, and consequently could contribute to the impoverish
ment of the pool of effectors and memory cells, leading to the collapse of the 
immune system (Fig. 4). 
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CHAPTER 6 

Apoptotic Cell Phagocytosis 

1. SAVILL and C. BEBB 

A. Introduction 
Given the enormous interest currently shown in apoptosis, it may seem 
remarkable that this form of cell death was overlooked for so long. However, 
apoptosis is histologically inconspicuous because of the speed and efficiency 
by which cells undergoing this programmed form of cell death are recognised, 
ingested and degraded by nearby phagocytes. Where the load of apoptotic cells 
is small the clearance job can be done by neighbouring cells of the same type 
acting as "semi-professional" phagocytes, but even where many cells are 
undergoing apoptosis these can be efficiently cleared by the professional 
phagocytes of the body, cells of the macrophage line. Indeed, recent studies 
have emphasised that the clearance of apoptotic cells may not only be "silent", 
preventing inflammation due to leakage from dying cells of injurious contents, 
but by re-programming phagocytes can also be actively anti-inflammatory. 
Nevertheless, it appears that there may also be circumstances by which par
ticular phagocyte types can incite potentially deleterious immune responses 
by presentation to T lymphocytes of antigens borne by ingested apoptotic cells. 
This chapter will therefore attempt to dissect this apparent paradox through 
a detailed discussion of the cellular and molecular mechanisms mediating 
phagocytic clearance of cells being eliminated by cell death. 

B. Tissue Consequences of Cell Death 
I. Necrosis and Incitement of Inflammatory Injury 

There is a general consensus that cell death by necrosis is not a safe means 
of cell clearance (WYLLIE et al. 1980). Where cells have been exposed to 
"murderous" stimuli such as extremes of temperature, severe hypoxia or high 
doses of ionising radiation, fields of stricken cells lose the ability to regulate 
membrane permeability, swell and then disintegrate. Presumably because 
local defence mechanisms such as antiproteases and neutral interstitial pH 
are overwhelmed or perturbed by sudden local release of noxious contents 
from necrotic cells, further tissue injury and inflammatory responses are 
triggered. Primary necrosis is clearly a messy and dangerous form of cell 
death. 
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Extensive study of cultured cells undergoing apoptosis also emphasises 
that cellular disintegration is an undesirable event in cell death. Although 
there is persuasive evidence that tissue transglutaminase irreversibly cross
links membrane proteins during apoptosis in some cell types (FEsus et al.1987, 
1989), suggesting that the contents of apoptotic cells may be safely sealed 
inside an insoluble keratin-like cocoon (PIREDDA et al. 1997), most cell types 
undergoing apoptosis in culture in the absence of phagocytes remain intact for 
only a few hours before undergoing "secondary necrosis", swelling and then 
leaking their contents (REN and SAVILL 1998). Indeed, in co-culture experi
ments in which macrophage phagocytosis of neutrophils undergoing apop
tosis was non-specifically blocked with colchicine, non-ingested apoptotic neu
trophils undergoing secondary necrosis released large quantities of potent 
degrative enzymes (such as elastase) which eluded endocytic clearance by 
macrophages (KAR et al. 1993). 

Furthermore, secondary necrosis of apoptotic cells may be doubly 
deleterious, not only causing direct local tissue injury through leakage of 
noxious contents but also stimulating macrophages to release cytokines 
capable of amplifying inflammatory responses. For example, cultured human 
monocyte-derived macrophages ingesting apoptotic eosinophils did not re
lease pro-inflammatory mediators, but large-scale release of such molecules 
occurred when macrophages were "fed" cell debris from eosinophils 
which had undergone secondary necrosis in culture (STERN et al.1996). To con
clude, it would appear that cellular necrosis, whether primary in previously 
healthy cells or secondary to apoptosis, threatens tissue injury by a number of 
mechanisms. 

II. Silent and Anti-Inflammatory Cell Clearance by Apoptosis 

A histological hallmark of cell death by apoptosis in living tissues is the com
plete absence of inflammation. This does not merely reflect a small "load" of 
dying cells in comparison with necrosis, because clearance of huge numbers of 
cells undergoing apoptosis can also occur without inciting inflammation, as 
exemplified by lymphoid organs in which "tingible body" macrophages are 
apparently stuffed with lymphoid cells undergoing apoptosis after failing 
selection (WYLLIE et al. 1980; SURH and SPRENT 1994)). Indeed, kinetic calcu
lations indicate that a very high proportion of would-be lymphocytes meet this 
fate, over 90% in the thymus. 

Therefore, on the basis of histological observations, it would appear that 
phagocytes taking up apoptotic cells are unlikely to make a pro-inflammatory 
response. We tested this hypothesis in vitro, employing various phagocyte 
types and various "target" cell types undergoing apoptosis. Our findings were 
similar whether we employed monocyte-derived macrophages as model "pro
fessional" phagocytes or glomerular mesangial cells to represent "semi
professional" phagocytes; uptake of apoptotic cells did not incite increased 
release of a range of pro-inflammatory mediators including eicosanoids, 
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granule enzymes or chemokines (MEAGHER et al. 1992; STERN et al. 1996; 
HUGHES et al. 1997). A recent report (KUROSAKA et al. 1998) asserting that 
there is release of IL-8 and IL-1 from a macrophage cell line after uptake of 
apoptotic cells probably reflects the use of dying cells in which a high pro
portion of ingested targets exhibited signs of necrosis. Indeed, in systems with 
minimal evidence of necrosis in the apoptotic "meal" we frequently observed 
a small but statistically significant suppression of mediator release compared 
with unstimulated phagocytes (MEAGHER et al. 1992). Nevertheless, we 
obtained definitive evidence that apoptotic cells were not a "poisoned meal". 
First, macrophages ingesting apoptotic cells were still able to mount vigorous 
pro-inflammatory responses to a subsequent meal of particles opsonised with 
immunoglobulin and complement. Second, when apoptotic neutrophils were 
deliberately opsonised and conditions altered so that phagocytosis was exclu
sively via macrophage Fc receptors, large-scale release of pro-inflammatory 
mediators was observed (MEAGHER et al. 1992). It was clear that suppression 
of background mediator release was not due to some non-specific toxic effect 
of ingested apoptotic cells. 

More recently, FADOK et al. (1998a) have extended these observations to 
emphasise that clearance of apoptotic cells by activated macrophages may be 
positively "anti-inflammatory" rather than merely silent. Both unstimulated 
and LPS-stimulated macrophages released the immunosuppressive cytokine 
transforming growth factor 131 (TGF-f31) after uptake of apoptotic cells, but 
the amount released was considerably greater when deliberately activated 
macrophages were used. Furthermore, stimulated release of the potent pro
inflammatory cytokine tumour necrosis factor-a (TNFa) was dramatically 
downregulated when activated macrophages took up apoptotic cells but not 
control particles. Inhibitor studies suggested that this specific down-regulation 
of pro-inflammatory responses occurred by a complex paracrine/autocrine sig
nalling loop involving macrophage release of TGF-f31, prostaglandin E2 and 
platelet activating factor. 

Indeed, Ferguson's group have recently presented data which argue that 
cells undergoing Fas-mediated apoptosis may actively synthesise the anti
inflammatory cytokine interleukin-IO (IL-lO), which can potently downregu
late pro-inflammatory responses from stimulated macrophages. The group had 
shown that when antigen-coupled cells were introduced into the immunolog
ically privileged eye, systemic tolerance to the antigen ensued if the tagged 
cells underwent Fas-mediated apoptosis (GRIFFITH et al.1996) but if the admin
istered apoptotic cells were from IL-IO "knockout" mice (but not controls) 
then tolerisation failed (GAO et al. 1998). Furthermore, lymphocytes undergo
ing Fas-mediated apoptosis expressed IL-IO. Whether these observations are 
generally applicable to a wide range of cell types undergoing apoptosis 
remains to be seen, but the data raise the intriguing concept that phagocyte 
clearance of apoptotic cells may result in the delivery to phagocytes (as if via 
a Trojan horse) of "packets" of IL-l O. Further developments are awaited with 
interest. 



154 1. SAVILL and C. BEBB 

Finally, however, the discovery that engagement of apoptosis may result 
in expression of IL-lO by the doomed cell could explain apparent differences 
between studies of FADoK et al. (1998a) and VOLL et al. (1997). Whereas both 
studies agreed that uptake of apoptotic cells by stimulated macrophages inhib
ited TNFa release from the phagocytes, only in the study by VOLL and col
leagues was there additional evidence of IL-10 release. Rather than reflecting 
secretion of this immunosuppressive cytokine from macrophages, the IL-10 
detected in the system of VOLL et al. (1997) may have been released from 
apoptotic cells losing viability in an assay system where dying targets and 
phagocytes were co-cultured for protracted periods. 

Nevertheless, despite nuances which may reflect experimental differences, 
a considerable body of in vitro evidence now emphasises that, in addition to 
being "silent", phagocytic clearance of apoptotic cells has the potential for 
active suppression of inflammatory and perhaps immune responses. Moreover, 
at least in the specialised system of the eye, there is in vivo evidence to support 
this concept. However, as we shall see, administration of apoptotic cells by an 
alternative route may have very different consequences. 

III. Provocation of Immune Responses During Clearance 
of Apoptotic Cells 

In addition to threatening direct tissue injury (Fig. 1), the contents of apop
totic cells have potential to incite (auto )immune responses. First, cleavage of 
internucleosomal DNA by apoptotic endonucleases yields oligonucleosomes 
within dying cells (WYLLIE 1980). Unscheduled release of oligonucleosomes 
from non-ingested cells is potentially deleterious, stimulating lymphocyte pro
liferation (BELL et al. 1991), triggering pro-inflammatory responses from 
phagocytes (EMLEN et al. 1992), and acting as a nidus for deposition of anti
body and complement in organs such as the glomerulus, where cationic his
tones in nucleosomes bind the anionic filtration structures (KOUTOUZOV et al. 
1996). Second, a series of beautiful studies by Rosen's group (CASCIO LA-ROSEN 
et al. 1994,1995,1996) have emphasised that the processes of apoptosis may 
not only redistribute nuclear autoantigens such as Ro and La into sites vul
nerable to leakage, such as cell surface blebs, but also have potential to gen
erate neoantigens by enzymatic cleavage of proteins. 

Furthermore, by contrast with studies where apoptotic cells were admin
istered into the immunologically privileged eye (GRIFFITH et al. 1996), intra
venous administration to normal mice of 107 syngeneic thymocytes, irradiated 
so as to trigger apoptosis, stimulated transient appearance in blood of nuclear 
autoantibodies, anticardiolipin and anti-single stranded DNA autoantibodies 
(MEVORACH et al. 1998a). Far lower levels of such autoantibodies were 
observed in animals receiving either viable non-apoptotic splenocytes or 
lysates from viable thymocytes as controls. Intriguingly, although animals 
receiving apoptotic thymocytes did not develop proteinuria, a high proportion 
exhibited IgG deposits in glomeruli several months later. Although this obser-
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Fig.i. Retention of cellular contents during apoptosis leading to phagocytic clearance. 
Electron micrograph (x13,OOO) of cultured glomerular mesangial cell (identifiable 
microfilaments are at F) which has ingested two apoptotic granulocytes (D); the 
example on the left is recently ingested and exhibits a full complement of granules; that 
on the right is at an advanced stage of degradation. A non-ingested apoptotic leuco
cyte fragment is seen at A 

vation emphasises the pathogenic potential of autoantibodies induced by 
intravenous administration of apoptotic cells, no consistent histological abnor
mality was observed in the kidney. Furthermore, neither the fate of adminis
tered apoptotic cells nor the mechanisms eliciting autoantibody production 
are yet apparent. 

How could clearance of apoptotic cells trigger immune responses? It now 
seems likely that an answer to this question may relate to the important dis
covery that apoptotic cells can be ingested by dendritic cells derived in culture 
from bone marrow (RUBARTELLI et al. 1997). Such phagocytes are well
established models of myeloid-derived dendritic cells, which are specialised 
for presentation of antigen to T lymphocytes by virtue of high expression of 
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MHC and co-stimulatory molecules (AUSTYN 1998). Furthermore, transloca
tion of CD83 from the cytoplasm to the cell surface has recently been 
identified as marking differentiation from an immature dendritic cell capable 
of antigen capture by retention of macrophage-like capacity for macropinocy
tosis and phagocytosis to a mature phenotype which excels at antigen pre
sentation, but exhibits diminished capacity to ingest fluid phase or particulate 
matter (ALBERT et al. 1998b). Immature dendritic cells exhibited capacity for 
large-scale phagocytosis of apoptotic cells and were able to present antigen 
derived from apoptotic cells to naive T cells in a co-culture system (ALBERT et 
al. 1998a). This was demonstrated by exploiting the propensity of influenza
infected monocytes to undergo apoptosis and thereby serve as an antigen
laden "meal" for maturing dendritic cells. The latter were then able to present 
'flu peptides via MHC Class I and thereby induce CD8-positive cytotoxic lym
phocytes (CTLs) specific for influenza. Importantly, CTLs were not induced 
when necrotic flu-infected monocytes were fed to dendritic cells, nor if uptake 
of apoptotic monocytes was blocked by cytochalasin D, emphasising depen
dence upon phagocytosis of apoptotic cells as a substrate for antigen pre
sentation. Furthermore, subsequent reports have documented MHC Class 
II-mediated presentation of apoptotic cell-derived antigens to CD4 positive T 
lymphocytes by phagocytic dendritic cells (INABA et al. 1998). 

Could phagocytes other than dendritic cells present antigen derived from 
apoptotic cells? One would predict that this is unlikely given the typically 
"silent" nature of cell clearance by apoptosis. Certainly, despite antigen
presenting capacity and expression of MHC Class I and Class II, it is reassur
ing that some observers find that macrophages are unable to present apop
totic cell-derived antigen to naive T cells (ALBERT et al. 1998a). Furthermore, 
although there is a report that "macrophages" can present antigen via this 
route to primed T cells, the phagocytes concerned were obtained by prolonged 
culture in GMCSF, which can promote differentiation into immature myeloid 
dendritic cells (BELLONE et al. 1997). Further work is obviously needed to 
pursue these exciting leads. Nevertheless, perhaps unexpectedly, there is now 
persuasive evidence to suggest that apoptotic cells can be cleared in such a 
way that (auto )immune responses ensue. Clearly, therefore, there is a need to 
reconcile these data with those indicating that the clearance of apoptotic cells 
may suppress inflammatory and immune responses. 

IV. Resolving the Clearance Paradox for Apoptotic Cells 

On first principles it would seem that immunogenic clearance of apoptotic cells 
ought to be an unusual consequence of this mode of cell death which, in turn, 
should be kept under tight control. Such regulation might be as simple as 
ensuring that dendritic cells are usually "hedged around" by efficient phago
cytes which do not elicit immune responses to antigens derived from apop
totic cells. For example, ALBERT et al. (1998a) included monocyte-derived 
macrophages in co-culture of dendritic cells and 'flu-infected apoptotic mono-
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cytes, and presentation of antigen was inhibited. In addition to ingesting 
apoptotic cells efficiently before these can be taken up by neighbouring den
dritic cells, release of immunosuppressive cytokines (such as TGF-,Bl) from 
macrophages that ingest apoptotic cells might serve either to downregulate 
antigen presentation by immature dendritic cells or to inhibit their maturation 
to full antigen-presenting capacity even if they are successful in taking up 
apoptotic cells. 

Control of dendritic cell responses by load of apoptotic cells is a poten
tially important regulatory mechanism suggested by the fascinating in vitro 
studies of ROVERE et al. (1998). Employing an experimental system in which 
immature dendritic cells taking up apoptotic cells were assessed for capacity 
to present antigen via either MHC Class I or Class II, they found that pre
sentation was increasingly efficient the greater the ratio of apoptotic cells to 
phagocytes, being greatest when this was 5 to 1. Furthermore, this correlated 
with increasing release from phagocytes of the pro-inflammatory cytokines 
TNFa and IL-I,B and associated maturation of dendritic cells evidenced by 
increased expression of CD86 etc. Interestingly, although both "early" 
and "late" apoptotic cells were able to sustain antigen presentation, frankly 
necrotic cells did not do so, as in other reports (ALBERT et al. 1998a,b). The 
group suggests that in situations where large numbers of cells undergo apop
tosis, perhaps overwhelming anti-inflammatory phagocyte defences, the scene 
is set for uptake by immature dendritic cells and autocrine/paracrine promo
tion of presentation of antigens from ingested cells via TNFalIL-l,B-driven 
maturation of phagocytic dendritic cells. These intriguing ideas need formal 
testing in vivo, but they suggest that presentation of antigens by dendritic cells 
may only occur when very large numbers of cells undergo apoptosis relatively 
synchronously. This might ultimately be desirable, for example in a viral infec
tion where beneficial cytotoxic responses might be promoted. 

The rate of IL-I0 release in co-cultures of apoptotic cells and myeloid cells 
might also impinge on the apparent paradox of anti-inflammatory vs immuno
genic cell clearance. Whether released from the dying cells (GAO et al. 1998) 
or the phagocytes (VOLL et al. 1997), ROVERE et al. (1998) detected small quan
tities of extracellular IL-lO when apoptotic cells were co-cultured with imma
ture dendritic cells at a ratio of 5: 1, and yet maturation of dendritic cells 
ensued (perhaps because of much larger release of TNFa) despite the 
reported capacity of this cytokine to inhibit such maturation (AUSTYN 1998). 
However, release of IL-I0 may explain the appearance of autoantibodies in 
mice receiving intravenous apoptotic cells (MEVORACH et al. 1998a) since IL-
10 augments B cell activation and is produced at high concentration in patients 
with autoimmune conditions such as systemic lupus erythematosus (SLE) 
(LLORENTE et al. 1995). Thus an apparently immunosuppressive and anti
inflammatory cytokine could contribute to B cell-mediated immunity. 

Finally, as we shall see later in this chapter, different recognition mecha
nisms could prove to be the molecular substrate for flexible or apparently 
contradictory responses made by phagocytes ingesting apoptotic cells. Never-
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theless, much work remains before we can be sure of the immune and 
inflammatory consequences of the phagocytic clearance of apoptotic cells in 
health and disease. 

C. Molecular Mechanisms by Which Phagocytes 
Recognise Cells Undergoing Apoptosis 

Over the last few years, in vitro studies have demonstrated that many cell 
surface molecules may mediate interaction between cells dying by apoptosis 
and phagocytes (Fig. 2). Because this large body of data has been extensively 
reviewed elsewhere (SAVILL 1997; FADOK et a1. 1998b) this chapter will focus 
in detail only on the newest data and points of controversy or growth in the 
field. 

I. "Eat Me" Signals Displayed by Apoptotic Cells 

Early scanning electron microscopy studies of cells undergoing apoptosis 
revealed dramatic structural changes including loss of microvilli and the devel
opment of "pits" or invaginations (MORRIS et a1. 1984). Such structural alter
ations obviously suggest biochemical changes likely to mark intact dying cells 
for removal by phagocytes. Although new protein synthesis appears to be a 
requirement for apoptosis in some systems, this is not generally the case 
(WYLLIE et a1. 1980), implying that synthesis and expression at the cell surface 
of new "eat me" proteins is unlikely to mediate recognition by phagocytes. By 
contrast, accumulating data point to modification or rearrangement of exist
ing plasma membrane components as the most likely way(s) to reveal "eat 
me" signals. These will now be considered in diminishing order of their degree 
of characterisation. 

1. Exposure of Phosphatidylserine 

Early studies of the phagocytosis by human monocyte-derived macrophages 
(M1/» of apoptotic neutrophils indicated that apoptotic cells exposed sites 
which were recognised by phagocytes (SAVILL et a1. 1989). Thus recognition 
was inhibited by cationic amino sugars, which pre-incubation studies and 
varying the pH of the interaction with M1/> showed to be acting by masking of 
anionic sites on the apoptotic cell. These sites were resistant to broad spec
trum proteases but were not characterised further. However, indirect evidence 
supports the candidacy of anionic phospholipids or sulfated lipids (on the 
grounds of involvement of bridging thrombospondin or phagocyte scavenger 
receptors/CD 14, as described below) or possibly oxidised lipids/proteins 
(implicated by involvement of phagocyte CD36 and CD68, see below). Nev
ertheless, the anionic phospholipid phosphatidylserine is well established as 
an "eat me" signal (FADOK et a1. 1998b). 
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Fig.2. Summary of molecules implicated in phagocytosis of apoptotic cells, Apoptotic 
cells display phosphatidylserine (PS), altered sugar side chains and, possibly, anionic 
phospholipids which may bind "bridging" thrombospondin (TSP), Some phagocyte 
receptors, such as GPI-linked CD14 and the class A scavenger receptor (SRA) may 
lack capacity to signal to the cytoskeleton and could function as "tethering" receptors; 
it is proposed that yet-to-be characterised lectins and phosphatidylserine receptors (not 
shown) may have similar properties. Bridging TSP binds the avf33 integrin and CD36, 
which can activate tyrosine kinases. Binding of Clq to apoptotic cells may bridge apop
totic cells to discrete Clq receptors on phagocytes (not shown) or, by activating the 
complement cascade to generate opsonic fragments such as iC3b (not shown), ligate 
either the am f32 integrin (CR3) or rxxf3z integrin (CR4) which can also signal phagocy
tosis. ABC-1 and ATP-binding cassette molecule may form a pore which also signals 
to the cytoskeleton; a possible intermediate is the CED-5/DOCK-180 molecule impli
cated in cytoskeletal reorganisation. (Adapted from SAVILL 1998) 
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Phosphatidylserine (PS) is normally confined to the inner leaflet of the 
plasma membrane bilayer of viable cells but is preferentially exposed on the 
surface of apoptotic cells as evidenced by procoagulant activity in the PS
dependent Russell viper venom assay (FADOK et al. 1992a). While care is 
needed to ensure that dying cells have not developed the leaky membranes of 
early necrosis (a typical criterion is exclusion of propidium iodide), the capac
ity of annexin V protein to bind to cell surface PS has been extensively 
exploited as an easy means of detecting PS exposure in cells undergoing apop
tosis in culture (KOOPMAN et al. 1994). Study of various cell types emphasises 
that PS exposure may be an early feature of apoptosis in some (MARTIN et al. 
1995a) but not all (HOMBERG et al. 1995) cell types, suggesting that recognition 
of PS by phagocytes (see below) in vivo could lead to removal of dying cells 
before these have the chance to display later morphological changes such as 
chromatin condensation. 

The mechanisms responsible for PS exposure during apoptosis appear to 
involve downregulation of an ATP-dependent aminophospholipid translocase, 
which normally directs PS to the inner membrane leaflet, and upregulation of 
calcium-dependent flippases which promote PS exposure (VERHOVEN et al. 
1995). In addition to calcium fluxes (BRAlTON et al. 1997), caspases (MARTIN 
et al. 1995b), and apoptosis inducing factor released from mitochondria 
(ZAMZANI et al. 1996; SUSIN et al. 1999) have been implicated in driving PS 
exposure, and cleavage of submembrane cytoskeletal elements such as fodrin 
may contribute to the preferential binding of annexin V to plasma membrane 
"blebs" (CASCIOLA-RoSEN et al. 1996). However, work with mitochondrial 
poisons such as antimycin has shown that there may be a discrete "membrane 
subprogram" in apoptosis which enables such reagents to inhibit exposure of 
annexin V binding sites and related recognition by phagocytes, whilst allow
ing activation of caspase 3 and chromatin condensation (ZHUANG et al. 1998). 
It therefore seems likely that much work remains to be done before we can 
understand how PS is exposed by apoptotic cells, and we will need to remem
ber that exposure of other anionic moieties may also be as important. 

2. Sites Which Bind "Bridging" Proteins 

In vivo, recognition of apoptotic cells is likely to take place in microenviron
ments which may communicate with interstitial fluid or plasma. Consequently, 
protein systems which have evolved to bind foreign or altered cell surfaces are 
candidates for "tagging" apoptotic cells for removal. Thrombospondin 1 
(TSP1), a trimeric glycoprotein secreted by many cell types and known to 
mediate the binding of activated platelets to monocytes (SILVERSTEIN et al. 
1992), binds apoptotic cells and "bridges" them to phagocytes (SAVILL et al. 
1992). Although the involvement of TSP1 in clearance of dying cells in vivo 
has yet to be demonstrated, it is intriguing that TSP1-/- "knockout" animals 
develop persistent inflammatory responses which could relate to impaired 
phagocytic clearance of apoptotic leucocytes (LAWLER et al. 1998). However, 
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although sulfated lipids (or "sulfatides") are known to bind TSP1 and are 
therefore attractive candidate TSP1-binding sites, there is very limited under
standing as to how TSP1 may bind selectively to apoptotic cells in such a way 
that phagocytosis is promoted through phagocyte receptors for TSP1 such as 
the a,f33 integrin and CD36 (see Sect. c.n.1, Thrombospondin Receptors: a,/JJ 
and CD36). 

While there is growing evidence that PS could be recognised directly by 
phagocyte receptors (see below), some data also suggest that PS could bind 
plasma proteins which then "bridge" PS to phagocyte receptors, including the 
plasma protein f3zGPI (PRICE et al. 1996; MANFREDI et al. 1998b) and opsonic 
complement fragments such as C3bi (MEVORACH et al. 1998b). Initial studies 
suggesting that PS on apoptotic cells may fix complement used target cell 
systems likely to contain a significant proportion of cells undergoing secondary 
necrosis (TAKIZAWA et al. 1996), but MEVORACH et al. (1998b) were careful to 
use apoptotic populations with very high viability as assessed by exclusion of 
vital dyes, implicating PS in activation of complement because annexin V could 
partially inhibit C3bi binding to apoptotic cells. The potential involvement of 
complement components in "bridging" may include mechanisms other than 
PS-mediated complement activation. KORB and AHEARN (1997) discovered 
that the first component of the classical pathway, Clq, can specifically and 
directly bind to cell surface blebs on apoptotic keratinocytes. While this might 
serve to activate complement via the classical pathway, there is also evidence 
of Clq receptors to which direct bridging might occur. Very intriguingly, 
Clq-/- "knockout" mice (see below) exhibited increased numbers of apop
totic cells in apparently normal glomeruli consistent with, but not definitively 
diagnostic of, impaired clearance of apoptotic cells in vivo (Borra et al. 1998). 
Lastly, activation of the coagulation cascade by PS might also result in coating 
of apoptotic cells by "sticky" proteins (CASCIOLA-RoSEN et al. 1996). 

3. Carbohydrate Changes on Apoptotic Cells 

However, even earlier than data pointing to a role for bridging TSP1 or 
exposed PS, Wyllie's group initiated studies which now support the possibility 
that apoptotic cells display changes in cell surface carbohydrates likely to 
promote clearance by phagocyte lectins. Initially, data obtained by using the 
tricky technique of cell micro-electrophoresis were consistent with loss of 
sialic acid from cells undergoing apoptosis leading to the unmasking of sugar 
residues such as N-acetylglucosamine and N-acetylgalactosamine, which could 
be recognised by phagocyte lectins (MORRIS et al. 1984). Furthermore, "apop
to tic envelopes", detergent-resistant intracellular structures formed during 
apoptosis by cross-linking of membrane proteins catalysed by tissue transglu
taminase (FESUS et al. 1989) selectively bound fluorescent lectins (DINI et al. 
1992). However, of more relevance to recognition of apoptotic cells by phago
cytes were subsequent data demonstrating lectin binding to the surface of 
intact apoptotic cells (DINI et al. 1995) and inhibition of phagocytosis by simple 



162 1. SAVILL and C. BEBB 

sugars (DINI et al. 1995; DUVALL et al. 1985). To date, the molecules bearing 
sugar rich chains in which residues are exposed remain obscure, but a candi
date is described in the next section. 

4. Intercellular Adhesion Molecule (ICAM)-3 

ICAM-3 is a transmembrane protein encoded by a member of the imm
unoglobulin (Ig) supergene family encoding five Ig-like extracellular domains. 
ICAM-3 is normally expressed by leucocytes and mediates well-characterised 
interactions with f3z integrins including aLf3z (LFA-1) and the novelleucointe
grin ad{32. Gregory's group screened a large panel of leucocyte antibodies for 
inhibition of the binding of apoptotic B lymphocytes to human Mcf> and found 
that two ICAM-3 mAbs, 3A9 and BU68, inhibited recognition (FLORA and 
GREGORY 1995; GREGORY et al. 1998). These mAbs were shown by epitope 
mapping to recognise similar epitopes on domain 1 of ICAM-3, and various 
approaches confirmed that the Mcf> counter-receptor for ICAM-3 on apoptotic 
cells was not a f3z integrin. ICAM-3 expression is generally limited to leuco
cytes, so it was possible to obtain definitive evidence of a role in recognition 
of apoptotic cells by transfecting 293 T kidney cells (usually ICAM-3 negative) 
with cDNA encoding ICAM-3. When such cells were triggered into apoptosis 
their recognition by Mcf> could be inhibited by the 3A9 and BU68 ICAM-3 
mAbs. Intriguingly, rather than being upregulated on apoptotic cells there 
seems to be a general reduction in ICAM-3 expression as leucocytes undergo 
apoptosis and display PS, suggesting that there is preferential exposure of the 
"recognition directing" epitope(s) defined by 3A9 or BU68 and distinct from 
those binding f3z integrins. Since ICAM-3 is heavily glycosylated it seems 
appropriate to pursue the possibility that ICAM-3 is a molecule displaying 
altered carbohydrate "eat-me" signals. 

II. Phagocyte Receptors for Apoptotic Cells 

Recent studies in vitro have identified a number of receptors expressed by 
phagocytes which are candidate mediators of the uptake of apoptotic cells 
(SAVILL 1997, 1998). Initially, the data suggested that apoptotic cells of differ
ent lineages may "look the same" to phagocytes, the differences in recognition 
mechanisms being attributable to the phagocyte, so that anyone phagocyte 
type predominantly used a single recognition mechanism (SAVILL et al. 1993; 
FADOK et al. 1992b,c). However, it has been suggested that such selectivity is 
illusory, merely reflecting different facets of a single mechanism (PRADHAN et 
al. 1997). Nevertheless, careful studies suggest that a particular phagocyte type 
may deploy a range of receptor types in different combinations to achieve an 
apparent specificity of recognition (FADOK et al. 1998c). Furthermore, there are 
indications that the lineage of the apoptotic target may influence the recogni
tion mechanism employed (HART et al. 1997; FADOK et al. 1998c). What seems 
to be emerging is a rich molecular substrate upon which phagocytes may be 
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able to draw in order to achieve a wide and flexible range of responses to the 
uptake of apoptotic cells. 

Nevertheless, an important limitation upon our understanding is the lack 
of in vivo data supporting a role for particular molecules in the clearance of 
apoptotic cells from mammalian tissues. Important insights are already arising 
from the characterisation of genes controlling clearance of cells undergoing 
developmental cell death in the nematode Caenorrhabditis elegans (ELLIS et 
al. 1991; and see below), but it should be noted that this organism does not 
possess professional phagocytes, so major mechanisms for clearance of apop
totic cells may have evolved in higher animals. Furthermore, establishing that 
there is a defect in clearance of apoptotic cells may be more difficult than we 
imagine. Thus, in the only mammalian model in which there is currently evi
dence of impaired clearance of apoptotic cells, the Clq-I- "knockout" mouse 
(BOTTO et al. 1998), there is evidence that deliberate induction of inflamma
tion in order to identify possible defects in leucocyte clearance results in initial 
recruitment of more leucocytes than in wild type animals, cells which are pro
grammed to die by apoptosis. This means that direct comparison of counts of 
apoptotic cells between Clq-I- and wild type animals may be misleading, so 
that methods will need to be developed to track the kinetics of leucocyte 
infiltration of tissues and the routes and rates of removal of leucocytes from 
the inflamed site. Much work remains to be done before we can be sure that 
particular phagocytic mechanisms are indeed involved in the clearance of 
apoptotic cells in vivo. 

1. Thromhospondin Receptors: lXv/3J and CD 36 

In addition to evidence that TSP1 may bind and "bridge" apoptotic cells to 
phagocytes, there is strong evidence (SAVILL et al. 1990, 1992) that, in human 
monocyte-derived Mcf> recognition of apoptotic neutrophils, TSP1 must be co
ordinately bound by the (Xvl33 "vitronectin receptor" integrin (in a manner 
dependent on the arg-gly-asp- [ROD] tripeptide in TSP1) and by the trans
membrane phagocyte monomer CD36 (which is ROD-independent). Indeed, 
transfection of CD36 into av/33 + ve CD36-ve human Bowes melanoma cells 
can reconstitute the avj33/TSPlICD36 recognition mechanism as defined by 
inhibitory peptides and mAbs (REN et al. 1995a). Furthermore, homologue 
substitution mutagenesis of CD36 indicates that, in order to confer capacity 
for phagocytosis of apoptotic cells, CD36 needs to bear a domain involved in 
low affinity binding of TSP1 (PuENTE-NAvAzo et al. 1996). The proposed 
av/33ITSPlICD36 recognition mechanism appears to be deployed by human 
monocyte-derived Mcf> and by murine bone marrow-derived Mcf> (although no 
blocking CD36 antibody is yet available in mice) in recognition of apoptotic 
cells of a number of different lineages (FAD OK et al. 1992b; REN et al. 1999). 

However, CD36 is not essential for avj33 ITSP1-mediated recognition. 
Olomerular mesangial cells, "semi-professional" phagocytes capable of taking 
up apoptotic cells more slowly and to a lower degree than Mcf>, employ a CD36-
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independent but aJ33 /TSP1-mediated recognition mechanism in uptake of 
apoptotic neutrophils (HUGHES et a1.1997). It is therefore attractive to propose 
that CD36 might be some form of "amplifying element" for aJ3r mediated 
recognition akin to CD47, the integrin associated protein which amplifies 
adhesive and phagocytic functions of this and other integrins (LINDBERG et a1. 
1993), but which is not involved in the uptake of apoptotic cells as evidenced 
by the use of blocking antibody and macrophages from CD47-/- mice (REN 
et a1. 1999). The idea of CD36 as an amplifying element gains credence from 
more than a functional analogy with CD47; there is strong evidence that CD36 
can associate with cytoplasmic tyrosine kinases of the src family (SILVERSTEIN 
et a1. 1992). However, recent studies (REN et a1. 1999) of the large-scale phago
cytosis by macrophages of defined populations of "late" apoptotic neutrophils, 
(HEBERT et a1. 1996) indicate that this is mediated by a CD36-independent 
mechanism involving avf33 and TSP1; clearly putative CD36-directed ampli
fication is not required in this model. 

An alternative role for CD36 in recognition of apoptotic cells could be to 
provide "suppressive" signals to the phagocyte which promote silent or anti
inflammatory clearance of apoptotic cells, since CD36 has been implicated 
in signalling the suppressive effects of TSP1 upon angiogenesis (SILVERSTEIN 
et a1. 1992) and antibody ligation of CD36 reduces TNFa secretion from 
LPS-stimulated macrophages (VOLL et a1. 1997). Indeed, this is in keeping 
with recent data indicating that CD36 may participate not only in RGD
dependent recognition of apoptotic cells via the avf33/TSP1/CD36 mech
anism (SAVILL et a1. 1992) but also in PS-dependent recognition (FADOK et a1. 
1998c), both of which have been implicated in "anti-inflammatory" clearance 
of apoptotic cells. However, "silent" clearance can occur without CD36, as 
exemplified by CD36-independent uptake of apoptotic cells by mesangial 
cells (HUGHES et a1. 1997). Furthermore, recent data indicate that CD36 par
ticipates in the pro-immunogenic uptake of apoptotic cells by dendritic 
cells (ALBERT et a1. 1998b), which appears coupled to pro inflammatory 
cytokine release (ROVERE et a1. 1998). However, this difference could reflect 
coupling of CD36 with avf3s rather than avf33 (ALBERT et a1. 1998b). Indeed, 
this theme of potential alternative partners for CD36 and av/33 gains support 
from the apparent dissociation of these two receptors in PS dependent recog
nition (which involves CD36 but not avf33) (FAD OK et a1.1998c), and the capac
ity of avf33 to co-operate with lectin-dependent recognition mechanisms in 
fibroblasts (HALL et a1. 1994) and, possibly, also macrophages (FADOK et a1. 
1998c). 

Clearly it will be of considerable interest to make a detailed study of 
phagocyte clearance of apoptotic cells in mice deleted for CD36 and av. 
Unfortunately, the latter exhibit neonatal lethality (BADER et a1. 1998), so 
alternative gene deletion strategies may be necessary. Nevertheless, useful 
information may come from genetic abnormalities/manipulation in non
mammalian species, such as Drosophila, since this fly has professional phago
cytes and a CD36 homologue demonstrated to function in vitro in phagocy-
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tosis of apoptotic cells and therefore dubbed "croquemort" (the "eater of 
death") (FRANC et al. 1996). 

2. Scavenger Receptors 

In addition to being a thrombospondin receptor, CD36 can also function as a 
so-called "class B" scavenger receptor (see below), being able to mediate 
endocytosis of oxidised low density lipoprotein (oxLDL) and free fatty acids 
(ENDEMANN et al. 1993). Indeed, in vitro studies of CD36 homologues such as 
SRB-1 emphasise dual functions in endocytosis of altered lipoproteins and 
uptake of apoptotic cells (FUKASAWA et al. 1996). Furthermore, a body of data 
points to a role for receptors that recognise oxidised cells and lipoproteins, 
one of which appears to be macrosialin or CD68 (SAMBRANO et al. 1994; 
SAMBRANO and STEINBERG 1995). Moreover, there is persuasive evidence that 
the classical ~220kD scavenger receptors (designated "class A" and exhibit
ing different specificity for poly anions to that of class B scavenger receptors) 
also mediate recognition of apoptotic cells by thymic and peritoneal 
macrophages. The data (PLATT et al. 1996) are particularly compelling; quite 
apart from specific inhibition of macrophage uptake of apoptotic cells by 
polyanion ligands of the scavenger receptor (SRA) and the anti-murine SRA 
mAb 2F8, macrophages from SRA-/- "knockout" mice exhibit ~50% less 
uptake of apoptotic cells than wild-type macrophages, and transfection of COS 
cells with SRA confers capacity for binding and uptake of apoptotic cells. 
However, although a candidate phosphatidylserine receptor, the specificity 
of inhibition by polyanions suggests that the SRA may provide additional 
phagocytic capacity. 

3. CD14 

The list of phagocyte receptors involved in uptake of apoptotic cells and 
having specificity for charged lipids has recently been extended by elegant 
studies from the Gregory laboratory, which implicate the myeloid lineage 
receptor for bacterial polysaccharide (LPS). In immunological terminology 
this is CD14, and its involvement in uptake of apoptotic cells is particularly 
interesting on two counts. First, this receptor is generally linked to highly 
efficient activation of myeloid phagocytes rather than the "silent" lack of 
response to CD14-mediated uptake of apoptotic cells made by human mono
cyte-derived M¢ from donors that do not employ the avf:i3/TSP1JCD36 recog
nition mechanism. Second, CD14 is not a transmembrane molecule - it is a 
GPI-linked receptor which might therefore represent a highly mobile "teth
ering" device available to M¢ for initial binding of apoptotic cells and ferry
ing to phagocytic receptors. Indeed, a "tethering" role for CD14 is suggested 
by the way its role in recognition of apoptotic cells was discovered. Employ
ing an assay of M¢ interaction with apoptotic lymphocytes in which a major 
component was tethering rather than phagocytosis, FLORA and GREGORY (1994) 
found that this was specifically blocked by mAb 61D3. Expression cloning of 
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the 61D3 antigen revealed it to be CD14 and another CD14 mAb sharing an 
epitope close to the LPS-binding site also inhibited binding of apoptotic cells 
by MI/>. Furthermore, expression of CD14 cDNA in COS cells specifically con
ferred capacity for interaction with apoptotic B cells (DEVITT et al. 1998). 
However, although CD14 may be involved in phagocytosis of apoptotic targets 
of non-lymphoid origin, some data point to a relative preference for lympho
cytes (FADOK et al. 1998c). 

4. Phosphatidylserine Receptors (PSRs) 

There is very strong evidence for the existence of stereospecific PSRs which 
mediate recognition of apoptotic cells by particular phagocyte types: murine 
thioglycollate-elicited peritoneal macrophages (FADOK et al. 1992b); human 
THP-1 monocytic cells induced with phorbol ester (FADOK et al. 1992b); vas
cular smooth muscle cells (BENNETT et al. 1995): murine bone marrow-derived 
macrophages stimulated with f3 glucan particles (FADOK et al. 1992c); and, most 
recently, human monocyte-derived macrophages stimulated with f3 glucan 
(FAD OK et al.1998c). Study of the latter, in which CD36 was blocked by mAbs 
or oxidised LDL, indicates that, although some data suggest that CD36 itself 
could act as a PSR (RYEOM et al. 1994), CD36 probably acts as a permissive 
partner to another molecule which is a "professional" PSR. The Fadok group 
are working hard to characterise PSR(s) and their findings are awaited with 
interest. While CD14 and class A and class B scavenger receptors are all can
didates, their polyanion specificity suggests that they may not be the quarry 
hunted. 

5. Complement Receptors 

As described above, there are both in vitro and in vivo data suggesting that 
the first component of the classical pathway of complement activation C1q 
may act as a "bridging" molecule in phagocyte recognition of apoptotic cells 
(KORB and AHEARN 1997; BOTTO et al. 1998). A direct interaction with phago
cyte Cl q receptors is an important candidate for the "residual eat" resistant 
to RGD peptide, PS liposomes and sugars described in ostensibly "serum
free" studies of human monocyte-derived MI/> recognition of apoptotic neu
trophils which had been cultured in heat-inactivated complement-depleted 
fetal calf serum (FADOK et al. 1998c). 

However, under serum-replete conditions in which complement compo
nents are available, a recent report indicates up to fourfold greater recogni
tion of apoptotic cells than under serum-free conditions (MEVORACH et al. 
1998b), although the assay employed seems to have included a large "tether
ing" component. In addition to demonstrating deposition of the opsonic com
plement fragment C3bi on apoptotic cells, antibody blockade experiments 
indicated that both f3z integrin complement receptors (aMf32 or CR3/Mac1 and 
axf32 or CR4/p150,95) mediated MI/> interaction with apoptotic cells. Intrigu
ingly, these findings may not be inconsistent with "silent" clearance since pre-
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vious studies have indicated that complement-mediated phagocytosis need not 
activate phagocytes (WRIGHT and SILVERSTEIN 1983; YAMAMOTO and JOHNSTON 
1984). Nevertheless, further work will be needed to reconcile these studies with 
reports that verified blockage of CR3 and CR4 had no effect on uptake of 
apoptotic cells (SAVILL et al. 1992), and that such phagocytosis proceeded 
apparently normally in macrophages from an individual with congenital f3z 
deficiency (DAVIES et al. 1991). While serum was not deliberately added to 
these systems, both cell types were cultured in serum beforehand. Clearly, 
studies in f3z -1- knockout mice may help resolve the debate, as may studies 
of inflammatory responses in f3z-deficient Leucocyte Adhesion Deficiency type 
1 (LAD-l) patients. In such individuals f3rindependent migration of leuco
cytes into the lung can occur (ANDERSON and SPRINGER 1987), so if CR3 and 
CR4 are indeed important in clearance of apoptotic cells, one would expect 
to see an excess of apoptosis in the inflammatory infiltrate. 

6. Murine ABCI and C. Elegans CED· 7 Proteins 

Murine macrophage ABC-1 is a member of the ATP-binding cassette super
family of membrane transporters, which includes the multi drug resistance 
P glycoprotein expressed by cancer cells. In development, ABC-l +ve 
macrophages cluster at sites of cellular apoptosis, and mAbs against the ATP
binding cytoplasmic domain of ABC-l introduced into elicited peritoneal MI/> 
inhibit uptake of apoptotic cells (LUCIANI and CHIMINI 1996). How ABC-l 
interacts with other receptors for dying cells in unclear, although one can spec
ulate that it acts as a conductance which provides a "second signal" to assist 
phagocytically competent receptors such as integrins to engage the cytoskele
ton. ABC-1 has an intriguing relationship to a homologous protein CED-7 in 
the nematode C. elegans. Mutations in the ced-7 gene result in diminished 
clearance by neighbours of cells undergoing apoptosis-like developmental cell 
death. However, in the nematode the evidence implies that wild type ced-7 
expression occurs on both the phagocyte and target (Wu and HORVITZ 1998b), 
reminding us that the aminophospholipid translocase inactivated in apoptotic 
cells is also a member of the ATP-binding cassette family. 

7. Intraphagocyte Signalling; CED-5 and CED-6 

Given the well-defined genetic abnormalities which affect phagocyte clearance 
of dying cells in C. elegans, there has been intense interest in cloning the seven 
genes believed to be responsible, which segregate into two potentially redun
dant groups (ELLIS et al. 1991). The first to be published was CED-5, which 
proved to be homologous with Myoblast City and DOCK-lim, two adaptor 
proteins bearing the SH2 domain "passport" for interaction with cytoplasmic 
tyrosine kinases and apparently involved in mediating downstream cytos
keletal reorganisation following kinase activation (Wu and HORVITZ 1998a; 
RUSHTON et al. 1995). CED-6 also proved to be an intracellular signalling mol
ecule bearing a phosphotyrosine-binding (PTB) domain (LIU and HENGART-
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NER 1998). While the role proteins play in phagocytosis remains speculative, 
these findings are a timely reminder that successful phagocytosis of apoptotic 
cells not only requires "eat me" signals on the dying cells and phagocyte recep
tors for these, but also involves dramatic cytoskeletal changes to enable the 
phagocyte to "swallow" dying cells. 

III. Why So Many Recognition Mechanisms? 

At the moment it would be conventional to invoke redundancy in explaining 
the growing number of phagocyte receptors and "eat me" signals being uncov
ered; one could argue that, because clearance of apoptotic cells is so essential 
to health, a range of mechanisms have evolved to ensure safe clearance of 
apoptotic cells. Nevertheless, the data hint at other "explanations". Some 
receptors, such as the GPI-linked CD14 in macrophages, may be specialised 
for "tethering" apoptotic cells before "handing" these on to phagocytic recep
tors such as integrins. CD14 may also be an example of a receptor which is 
relatively specialised for clearance of a particular cell type, in this case lym
phocytes (FADOK 1998c), although most other receptors seem not to be so 
choosy (FADOK et a1. 1992b). Another possibility is that cells dying by apopto
sis express a sequential series of "eat me" signals as they progress toward 
eventual secondary necrosis. Thus there is evidence of a very early caspase
dependent PS-independent "tethering" signal (KNEPPER-NICOLAI et a1. 1998), 
early exposure of PS recognisable to PS receptors (see section Exposure of 
Phosphatidylserine above) and, as a last resort, a v/33/TSP1-mediated recogni
tion of late apoptotic cells (REN et a1. 1999). We have already referred to the 
possibility that particular recognition mechanisms deliver different signals into 
phagocytes; compare av!NCD36 in macrophages (MEAGHER et a1. 1992; STERN 
et a1. 1996) with av!3s/CD36 in dendritic cells (ALBERT et a!. 1998b). But we 
must also consider that certain microenvironments demand particular recog
nition mechanisms - perhaps C1q is especially important in the high pres
sure/high flow glomerulus. Lastly, recognition mechanisms could act as 
"back-ups", being recruited into action when phagocytes are stimulated to 
increase efficiency of clearance; an example is the capacity of CD44 ligation 
to increase rapidly and specifically the uptake of apoptotic neutrophils by 
recruitment of a yet-to-be characterised recognition mechanism (HART et a1. 
1997). Ultimately it seems that we will only be able to understand the 
significance of the in vitro data when various combinations of receptors and 
"eat me" signals have been thoroughly characterised and targeted in animal 
models. Studies of C1q-/- and SRA-/- mice (BOTTO et a!. 1998; PLATT et a!. 
1990) point in the direction that this work will go. 

D. Perturbations of Clearance in Disease 
There are now tantalising indications of specific factors which could contribute 
to disease states by perturbing safe clearance of apoptotic cells. Until recently, 
workers in the field have speculated that relatively non-specific factors might 
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Fig. 3. Potential mechanisms and consequences of perturbed phagocyte clearance of 
cells undergoing apoptosis. Apoptotic cells are safely cleared by primed macrophages 
(M¢) and "back-up" semi-professional phagocytes such as glomerular mesangial cells 
without eliciting a pro-inflammatory response; furthermore primed M¢ can also take 
up intact "post-apoptotic" or "late apoptotic" cells without making such responses. 
Indeed, uptake of apoptotic cells by activated M¢ inhibits M¢ release of pro
inflammatory TNF a and may trigger release of anti-inflammatory IL-IO. Unsafe clear
ance of apoptotic cells leading to autoimmunigy and inflammation could occur by a 
number of mechanisms. For example, antiphospholipid autoantibodies binding apop
totic cells can opsonise apoptotic cells for M¢ Fc receptors and thereby trigger TNFa 
release, and such antibodies could also promote uptake of apoptotic cells by dendritic 
cells which may then present self (neo )antigens and fuel autoimmunity. Inflammation 
could also be exacerbated should factors such as poly anions, sugar moieties or ROD 
peptides block phagocyte receptors such as scavenger receptors, lectins and integrins, 
since this would lead to secondary necrosis and disintegration of non-ingested apop
totic cells with release of proinflammatory contents and/or indirect incitement of 
inflammation due to release of phlogistic mediators from M¢ ingesting cell debris. 
(Reproduced from REN and SAVILL 1998, with permission) 

inhibit safe clearance, such as micro environmental changes in pH (SAVILL 

et aL 1992) or accumulation of extracellular matrix protein fragments (SAVILL 

et aL 1990). These potential inhibitory mechanisms could still be important 
However, there now follows a description of specific factors, although their 
potential significance in disease remains uncertain. A summary of "safe" and 
"unsafe" clearance of apoptotic cells is shown in Fig. 3. 

I. Clq Deficiency 

Patients with Clq deficiency are at high risk of developing the multisystem 
autoimmune disorder systemic lupus erythematosus (SLE) in which circulat-
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ing oligonucleosomes strongly hint at failed clearance of apoptotic cells. As 
alluded to above, in keeping with abnormalities in humans with SLE, a pro
portion of Clq-/- mice develop severe crescentic glomerulonephritis. Given 
the capacity of Clq to bind apoptotic cells (KORB and AHEARN 1997), and the 
excess of apoptotic cells in apparently non-inflamed glomeruli of knockouts 
vs wild types (BOTTO et al. 1998), it is tempting to ascribe tissue injury and 
autoimmunity to failure of safe clearance, so that potentially injurious or anti
genic apoptotic cell contents leak and/or are presented to T-Iymphocytes by 
dendritic cells gaining access to apoptotic cells which slip past incompetent 
phagocytes. 

II. Antiphospholipid Autoantibodies 

Around 40% of patients with SLE develop autoantibodies to phospholipids 
(aPL), the specificity of which includes epitopes involving phosphatidylserine 
(PS) (HUGHES and KAMASHATA 1994).An important study from Levine's group 
has demonstrated that aPL specifically bind to the surface of apoptotic cells 
by a PS-dependent mechanism involving the abundant serum protein ~ gly
coprotein-I (~GPI) (PRICE et al. 1996). As one might expect, other workers 
discovered that aPL could opsonise apoptotic cells for macrophage Fc recep
tors so that uptake of dying cells triggered apparently undesirable release of 
pro-inflammatory TNF a from the phagocytes (MANFREDI et al. 1998a). Equally 
alarming is the capacity of aPL to promote uptake of apoptotic cells by den
dritic cells (MANFREDI et al. 1998b). However, aPL are clearly neither a "fast 
track" to multisystem autoimmune disease nor sufficient for the development 
of autoimmunity as demonstrated by patients with primary antiphospholipid 
antibody syndrome. Such individuals do not display conventional features of 
immune disease, but their tendency to thrombosis could still represent an 
undesirable consequence of a PL binding to apoptotic cells. Thus, should minor 
endothelial injury lead to exposure of PS by apoptotic endothelial cells, depo
sition of aPL and fixation of complement could amplify vascular injury and 
propagate thrombosis. 

E. Promotion of Safe Clearance 
In view of the growing evidence that clearance of apoptotic cells may be per
turbed in autoimmune and inflammatory disease states, attention has turned 
to the possible therapeutic applications of strategies aimed at promotion of 
safe clearance. However, it should be noted that there may be "spare clear
ance capacity" in some situations, an example being experimental eosinophilic 
airway inflammation (TSUYUKI et al. 1995). Administration to the airways of 
an aerosolised ligand for Fas on eosinophils resulted in a wave of eosinophil 
apoptosis which appeared to be safely cleared by the existing complement of 
macrophages. 
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I. Glucocorticoids 

Until recently, despite evidence of multiple anti-inflammatory effects and 
capacity to direct apoptosis in eosinophils and lymphoid cells, the influence of 
glucocorticoids on clearance of apoptotic cells was unknown. Nevertheless, 
with the caveat of spare clearance capacity, clinical observations in asthma 
hinted that glucocorticoids might co-ordinately delete infiltrating eosinophils 
and promote their safe clearance (WOOLLEY et al. 1996). We found in vitro that 
glucocorticoids were able to increase, by around fourfold, the capacity of 
various types of phagocyte (including professional macrophages and semi
professional glomerular mesangial cells) to ingest apoptotic leucocytes of both 
myeloid and lymphoid lineage (LIU et al. 1999). This effect of glucocorticoids 
was specific for apoptotic cells in that uptake of opsonised particles was not 
promoted and required the phagocyte glucocorticoid receptor. Furthermore, 
of particular importance was the observation that glucocorticoid enhancement 
was not bought at the cost of a pro-inflammatory response in that increased 
macrophage and mesangial cell uptake of apoptotic cells did not result in 
release of chemokines such as IL-8. The mechanisms mediating this potentially 
beneficial effect of glucocorticoids upon clearance of apoptotic cells require 
clarification since they might represent a new therapeutic target in inflamma
tory disease. 

II. Other Factors 

By contrast with glucocorticoids it seems unlikely that there is clinical effi
cacy in the capacity of granulocyte/macrophage colony stimulating factor 
(GMCSF) and other pro-inflammatory cytokines to increase macrophage 
uptake of apoptotic leucocytes (REN and SAVILL 1995b). Nevertheless, this 
observation suggests that increased clearance capacity may be programmed 
into the inflammatory response. However, proinflammatory cytokines and glu
cocorticoids take a few hours to begin to increase clearance capacity (REN and 
SAVILL 1995b; LIU et al. 1999). It will therefore be of great interest to dissect 
mechanisms mediating the much more rapid potentiation of macrophage 
ingestion of apoptotic cells which follows ligation of CD44, particularly since 
this effect apparently makes recruitment of a novel recognition mechanism 
with selectivity for apoptotic granulocytes (HART et al. 1997). Lastly, given that 
transfection of cDNAs for CD36, CD14 and SRA confers increased capacity 
for phagocytosis upon "amateur"/semi professional phagocytes (REN et al. 
1998; DEVITT et al. 1998; PLATT et al. 1996), it may not be outlandish to 
explore "pro-phagocytic gene therapy" approaches. 

F. Conclusions and Future Prospects 
Since the first descriptions of apoptosis, the potential importance of safe 
phagocytic clearance of dying cells has been evident. However, until relatively 
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recently there has been little interest in the mechanisms involved. As described 
in this contribution, this situation is changing as investigators realise that the 
fate of dying cells may be pivotal in regulating inflammatory and immune 
processes. 

Clearly we need to understand much more about phagocyte response to 
- and handling of - ingested apoptotic cells, and the potential for presentation 
of antigen requires careful dissection. The mechanisms mediating uptake of 
apoptotic cells may be central to governing phagocyte responses, but the dis
section now needs a "frame shift" from the culture dish to in vivo models. 
However, there are now exciting prospects that these lines of enquiry may 
yield new insights into the pathogenesis of inflammatory and immune disease. 
Furthermore new therapeutic approaches seem likely to arise. 
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CHAPTER 7 

T Cell Apoptosis and Its Role 
in Peripheral Tolerance 

R. CAMERON and L. ZHANG 

A. Introduction 
Apoptosis of T lymphocytes has a central role in developmental, physiologic 
and pathologic processes including deletion of T cell clones expressing self
antigens in the thymus, elimination of T cells which are infected with viruses, 
and homeostasis ofT cell populations that have expanded following high dose 
antigen exposures. In this chapter, we will analyze the mechanisms of apop
tosis of peripheral T lymphocytes, discuss the role of T cell apoptosis in the 
induction of transplantation tolerance, and suggest the possibility of modula
tion by drugs. 

B. Phenotypically Different Types of Apoptosis 
of T Lymphocytes 

I. Activation Induced Cell Death 

This type of apoptosis of T lymphocytes is a multi-step process involving acti
vation, clonal expansion of T cells, and cell death. Models to study this phe
nomenon have been developed both in vitro and in vivo. Activation involves 
a powerful immune stimulus such as bacterial super-antigen or the male HY 
antigen. Clonal expansion involves a marked clonal proliferation of antigen 
specific T cells. By 48-96h, there is clonal deletion which involves antigen 
specific T cells, especially the CD4+ and CD8+ T cells. Activation induced cell 
death or AICD is mediated by CD95 molecules. Following clonal deletion, 
there is a period of unresponsiveness or tolerance to specific antigens which 
lasts for 4-6 weeks (WEBB et al. 1990, 1994; MACDoNALD et al. 1991; ZHANG 
et al. 1992; MCCORMACK et al. 1993; MIETHKE et al. 1994; RHODE et al. 1996; 
WACK et al. 1997). 

II. Veto Cell Phenomenon 

Veto cells were identified as a sub population of T cells. This is a one-step 
process which involves the binding of cytotoxic lymphocyte precursor cells to 
the veto cell and direct apoptosis of the cytotoxic lymphocyte. The binding 
interaction of the veto cell and the cytotoxic lymphocyte is antigen specific 
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and also MHC restricted. The cytotoxic lymphocytes are only sensitive to 
the veto cell action at 24-48 h in culture and not after that time. The veto cell 
phenomenon has been studied primarily as an in vitro process (MILLER and 
DERRY 1979; MARASKA et aI. 1984; MILLER 1986; KIZIROGLU and MILLER 1991; 
SAMBHARA and MILLER 1991). 

III. Programmed Cell Death 

Programmed cell death is best exemplified in thymus in which immature thy
mocytes are deleted (COHEN 1991). This phenomenon has been studied both 
in vivo and in vitro. In some in vivo models, it has been noted that cell death 
involving CD4+CD8+ thymocytes, and B-cells in germinal centers is by pykno
sis and does not involve fragmentation of DNA directly, but only after the 
dead cells are phagocytosed by local macrophages (hOH et aI., Chap. 15, this 
volume). In addition, when caspase I and caspase III knockout mice were 
studied which show caspase deficiencies, there was a special type of cell death 
involving thymocytes which did not require the cooperation of caspases as well 
(KUIDA et aI. 1995, 1996). In addition, this type of cell death appears to be 
mediated by E2/CD99 molecules and not by CD95, and requires up to 18h to 
complete (BERNARD et aI. 1997). 

IV. Activation Induced Cell Death of Human Peripheral T Cells 

AICD involving human peripheral T cells is very similar in nature to AICD 
involving mouse T lymphocytes in that there is activation by exposure to 
antigen and clonal proliferation of antigen specific T cells followed by apop
to sis. This process has been studied in vivo. In the human, apoptosis of periph
eral T cells is CD2 mediated and involves CD58, CD59, and CD48 ligands 
(WESSELBORG et al. 1993; MOLLEREAU et al. 1996; LI-WEBER et al. 1998). 

C. Molecules Involved in T Cell Apoptosis 
I. TNF Receptor Family 

TNF receptor family molecules broadly consist of two groups of receptor mol
ecules, namely those such as CD40 and CD27 that either induce B-cell acti
vation or enhance T-cell proliferation, respectively (KOOPMAN, Chap. 17, this 
volume), and those molecules that carry "death domains" and induce apopto
sis (NAGATA 1997). Activation induced cell death of T lymphocytes has been 
shown to be mediated by the tumor necrosis factor or TNF family of recep
tors, most notably Fas or Apo-1 which has been named as CD95. This type of 
cell death can be neutralized by anti-CD95 antibodies (HARGREAVES et al. 
1997). During the course of in vivo studies using mice which are Fas defective, 
namely the mtr/lpr mutant mice, mature CD4+ T lymphocytes were resistant 
to activation induced cell death, i.e., dependent on Fas for apoptosis. There-
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fore, in this model, the Fas gene was shown to be essential for activation 
induced cell death in peripheral T lymphocytes (ROUVIER et al. 1993; SINGER 
and ABBAS 1994; NAGATA and GOLSTEIN 1995). The active component of the 
Fas ligand was shown to be a type II membrane protein which is predomi
nantly expressed in activated T cells (TANAKA et al. 1998). It was also shown 
that activation through the T cell receptor or TCR of peripheral T cells 
induced Fas ligand expression and simultaneously induced resistance to Fas 
ligand in naIve T cells. The activated T cells may use the Fas ligand to kill their 
targets such as virus infected cells. This mechanism also ensured that bystander 
T cells are not activated in an antigen nonspecific manner (SUDA et al. 1996). 
Fas and TNF Rl mediated apoptosis occur in the presence of inhibitors of 
either RNA or protein synthesis and even enucleated cells undergo apoptosis 
upon Fas activation, suggesting that all components necessary for apoptotic 
signal transduction are present de novo and that Fas activation simply triggers 
this machinery (Chap. 15, this volume). Apoptosis occurs in various cells and 
various tissues and Fas is found abundantly in cells in the thymus, liver, heart, 
and kidney. Fas ligand is predominantly expressed only in activated T lym
phocytes and natural killer cells (NAGATA 1997). Mature T cells from lpr or gld 
mice do not die after activation and activated cells accumulate in the lymph 
nodes and spleens of these mice. When T cell hybridomas are activated in the 
presence of a Fas neutralizing molecule, they do not die. These results indicate 
that Fas is involved in activation induced cell death of T lymphocytes and is 
part of the down-regulation of the immune reaction (SINGER and ABBAS 1994; 
NAGATA and GOLSTEIN 1995). Con A activated mature mouse T lymphocytes 
showed a specific resistance to CD95 or Fas induced apoptosis during the S 
phase of their cell cycle (DAO et al. 1997, 1998). 

II. BcI-2 Family 

Members of the Bcl-2 gene family encode proteins that function either to 
promote or to inhibit apoptosis (ADAMS and CORY 1998). Anti-apoptotic 
members such as Bcl-2 and Bcl-XL prevent programmed cell death in response 
to a wide variety of stimuli. Conversely, pro-apoptotic proteins, exemplified by 
Bax and Bak, can accelerate death and in some instances are sufficient to cause 
apoptosis independent of additional signals. Bcl-2 related proteins are local
ized to the outer mitochondrial, outer nuclear, and endoplasmic reticular 
membranes (CHAO and KORSMEYER 1997). The ability of Bcl-2 to prevent 
apoptosis was clearly shown in experiments with knockout mice which show 
apoptosis of thymocytes and spleen cells (VEIS et al. 1993). Up-regUlation of 
the Bcl-2 gene product as in cytokine deprived activated T cells leads to apop
tosis (AKBAR et al. 1996). Bcl-2 was shown to block cell-mediated cytotoxicity 
by allospecific cytotoxic lymphocytes when apoptosis was induced by degran
ulation as in the action of perforin and granzymes, but not with apoptosis 
induced by cytotoxic lymphocytes by means of the Fas pathway (CHIU et al. 
1995). 
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III. Caspases 

Caspases are a family of cysteine proteases that cleave their target proteins at 
aspartic acid residues in a defined cascade sequence. Caspase-3 and caspase-
8 are involved in cytotoxic T cell induced apoptosis, both of which are medi
ated by granzyme B (DARMAN et al. 1995; ENARI et al. 1996; BOLDIN et al.1996; 
MUZIO et al. 1996; MEDEMA et al. 1997; AMARANTE-MENDES et al. 1998). 
Caspase-8 can also induce apoptosis in response to the anti-cancer drugs 
betubinic acid and etoposide in the absence of CD95 receptor-ligand interac
tion, i.e., CD95-independent (PETER and KRAMMER 1998). Activated caspases 
cleave a multitude of cellular substrates and finally allow caspase-activated 
DNase to enter the nucleus to cut DNA between the nucleosomes (PETER and 
KRAMMER 1998; THORNBERRY and LAZEBNIK 1998). 

D. Regulators of T Cell Apoptosis 
I. Cytokines (IL-2, IL-4, Interferon gamma, etc.) 

Cytokines such as IL-2 can increase or up-regulate Bcl-2 expression and 
prevent apoptosis in activated T cells. Using human IL-2 deprived activated T 
cells, it was possible to show that other cytokines such as IL-4, IL-7, and IL-
15 could also prevent apoptosis of activated T cells in the absence of IL-2 
(AKBAR et al. 1996). In contrast, sensitivity to the priming step for activation 
induced cell death was dependent on the cytokine interleukin-2 but not on 
cytokines IL-4, IL-7, or IL-15 (WANG et al. 1996). Furthermore, it was shown, 
using transgenic mice which have a deficiency in the ability to use IL-2, that 
their T cells were resistant to Fas-mediated activation induced cell death and 
that this defect could only be corrected by similar cytokines like IL-15 (VAN 
PARIJS et al. 1997a,b). The kinetics of IL-2 production are as follows: messen
ger RNA is detectable within 3-5h and cytokine protein is also seen at this 
early time, cytokine mRNA is rapidly down-regulated shortly after it reaches 
a peak level at 6-12h, and the amount of cytokine produced is at least ten 
times that seen in naIve cells with the same receptor (SWAIN et al. 1996). TCR 
stimulation of T lymphocytes that are activated in cycline in the presence of 
IL-2 leads to programmed cell death. This effect was shown to be due mostly 
to the ability of IL-2 to increase expression of mRNAs which encode ligands 
and receptors that mediate apoptosis (ZHENG et al. 1998). 

II. Co-Stimulatory Molecules (B7, CD28, CTLA-4, etc.) 

C28/B7 ligation provides co-stimulatory signals important for the develop
ment of T cell responses and CD28 is a principal co-stimulatory receptor for 
T cell activation. CD28 co-stimulation markedly enhances the production of 
lymphokines, especially of IL-2. In addition, CD28 sustains the late prolifera
tive response of naiVe T cell populations and enhances their long-term sur-
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vival (SPERLING et al. 1996; TAl et al. 1997). CD28 deficient T cells were shown 
to be enhanced in their long term survival by cultures with IL-4 (STACK et al. 
1998). Circulating T cells which express B7, a novel cell surface glycoprotein, 
were found to be independent of co-stimulation by using anti CD28 antibod
ies (SOARES et al. 1997). Further studies showed that in fact cells expressing 
high levels of CD28 were entirely resistant to apoptosis by the CD95 pathway 
(McLEOD et al. 1998). CD28 co-stimulation was also shown to promote T cell 
survival by enhancing the expression of Bcl-xL (BOISE et al.1995a,b; RADVANYI 
et al. 1996). 

SIGAL et al. (1998) showed using monoclonal antibodies to B7-1 and B7-
2 co-stimulatory molecules in MHC class II-deficient mice lacking most CD4+ 
T cells compared to wild-type mice that the generation of viral Ag-specific 
CD8+ CTLs was Th cell independent and dependent on B7-co-stimulation for 
activation. In contrast to co-stimulatory actions of B7 or CD28 molecules, 
CTLA-4 acts as a negative regulator of T cells by binding to the TCR complex 
and inhibiting tyrosine, phosphoregulation after T cell activation (LEE et al. 
1998; ALEGRE et al. 1998). 

III. Effect of Viral Infection 

GOUGEON (Chap. 5, this volume) has shown that death of CD4+T lymphocytes 
in HIV infection can occur either directly by viral replication or indirectly 
through priming of uninfected T cells to apoptosis both in vitro and also 
observed in lymph node tissue of HIV-infected donors. The rate of apoptosis 
in non-infected blood lymphocytes from HIV-infected persons could be 
increased in response to drugs such as ionomycin, super antigens, or mitogens. 
Th1 effector cells were found to be more sensitive to activation-induced apop
tosis than Th2 cells, and this was controlled by down-regulation of Bcl-2 
expression. 

E. Mechanisms Involved in Peripheral Tolerance 
I. Clonal Deletion 

1. Bacterial Superantigen-Induced AICD 

WEBB et al. (1990) showed that exposure of mature (peripheral) T cells 
in vivo to a powerful immune stimulus, namely Mlsa antigen, led to marked 
clonal expansion of V /36+ T cells, followed by their deletion, and specific 
tolerance that persisted for at least six weeks. Similar results were found by 
MACDONALD et al. (1991) using SEB superantigen exposures to mice in vivo 
which led to marked clonal expansion of CD4+ and CD8+ T cells in lymphoid 
tissue at 2-4 days and then clonal deletion of V /38+ T cells, and tolerance that 
lasted at least 30days. 

WEBB et al. (1994) showed further that the elimination of mature T cells 
in vivo was correlated with strong high avidity T cell-APC interactions. 
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MCCORMACK et al. (1993) showed that chronic exposures to SEA super
antigen caused virtual complete deletion of Ag-reactive T cells, even if doses 
were as low as 1 mg of SEA. At chronic low dose exposures deletion of T cells 
occurred but clonal expansion by proliferation did not occur. 

MIETHKLE et al. (1994) exposed the clonally diverse T cells of normal mice 
to graded doses of SEB of 0.001-10 mg, and showed that V [38+ T cells became 
anergic within 6-16 h, and had three dose related patterns. 

Anergy induced by low concentrations of SEB (0.001-0.1 mg) was tran
sient and overcome by clonal growth. At higher concentrations of SEB 
(0.1-10mg) the anergy induced was long-lasting and resistant to the effects 
of cell cycle progression. At very high dose exposures to SEB of l-lOmg, 
most anergic V{38+ T cells down-regulated their TCR with loss of CD2, 4, 
and 8, and a subset, V {38 low CDY cells, underwent apoptosis within 1 h. 

2. Alloantigen-Induced AI CD 

Studies by ZHANG et al. (1992, 1995) followed the fate of mature Ag-specific 
T cells in vivo using female transgenic mice that contain a large population of 
male H-Y Ag-specific T cells. The number of Ag-reactive CD8+ transgenic T 
cells in the periphery began to decrease by two days of in vivo exposure to 
male Ag and remained low for at least six weeks. Non-deleted Ag-reactive 
CD8+ cells were fully responsive to repeat stimulation by male Ag in vitro. 
Their findings present evidence of the importance of the nature of the antigen
presenting cells (APCs) in determining the outcome, e.g., "stimulatory" APCs 
can initiate an active immune response whereas "functionally deleting" APCs 
act as veto cells to delete clonally Ag-reactive T cells. 

ZHANG et al. (1996a,b) showed that peripheral tolerance could be induced 
by means of clonal deletion with activation-induced apoptosis of antigen 
specific T cells in a transgenic mouse model. In this model, anti-major histo
compatibility complex Class I Ld' T cell or TCR transgenic cells were adop
tively transferred into severe combined immunodeficient mice which express 
the Ld+ antigen on all nucleated cells and the fate of transferred antigen 
specific T cells could be followed in vivo. Apoptotic antigen specific T cells 
could be identified in vivo using a technique developed by ZHANG et al. 
(1995b) which combined labeling with the cell surface marker to an apoptotic 
marker, namely in situ NICK translation assay. It was found that after encoun
tering antigen in vivo, the number of antigen specific T cells increased 10-15-
fold followed by a decline in number to a value that was still above the starting 
value. The expansion of antigen specific T cells could be prevented by block
ing CD28 co-stimulatory molecules on the T cells prior to the antigen stimu
lation. Using the double label technique for marking apoptotic specific T cells, 
it was found that the antigen specific T cells disappear from the periphery and 
died by activation induced apoptosis. Not all of the antigen specific T cells were 
killed by apoptosis and those that survived showed down-regulation of both 
their TCR and CD8 on their cell surface and were fully unresponsive when 
cultured with U+ cells, even in the presence of exogenous interleukin-2 and 
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ILA. These cells, however, were still susceptible to apoptosis when transferred 
into a secondary host to provide a new source of antigen and antigen
presenting cells. These studies indicated that peripheral T cell tolerance could 
be induced by multiple mechanisms in which activation induced antigen 
specific T cell apoptosis played a major role. Further studies by ZHANG et al. 
(1996b) showed that a possible mechanism for the survival of antigen specific 
T cells may be their expression of a high level of Th2 type of cytokines. In 
addition, these residual antigen specific T cells were able to suppress prolifer
ation of other antigen specific T cells, suggesting that they in fact prolong tol
erance in vivo. 

3. Clonal Anergy 

T-cell anergy is proposed by SCHWARTZ (1996) to occur in specific situations 
and to be defined by specific molecular mechanisms. The anergic state is 
induced by a TCR occupancy event that stimulates the production of several 
inhibitors, one that blocks p2pas activation and another (Nil-2a) that blocks 
cytokine transcription. These inhibitors prevent transcription of IL-2 and other 
cytokines, and they block proliferative pathways when the cell is reactivated. 
The induction of these inhibitors is normally antagonized by co-stimulation 
involving signaling through receptors such as CD28, and proliferation involved 
by signaling through the IL-2 receptor. Human T-cell clones respond to high 
concentration of peptides with down-modulation of the TCR and CD28 recep
tors and "calcium-blocked" anergy with inhibition of the calcium and cal
cineurin signaling. Co-stimulation (with B7 linked to CD28 receptor) can 
block anergy induction even 2 h after TCR occupancy. Unresponsiveness of T
cell clones induced by anergic pathways is not just a slow form of cell death 
since anergic cells can be recovered and activated by exposure to exogenous 
IL-2. Experiments by GROUX et al. (1996) have shown that IL-lO can promote 
the induction of anergy either by blocking co-stimulatory signals or inducing 
inhibitors of p21ras or Nil-2a. The critical biological question is what role do 
the anergic cells play in an immune response or in tolerance induction. Human 
T-cells in an anergic state fail to produce IL-2 but IL-4 and IFN-yproduction 
are similar in responsive or unresponsive T-cells. Recent experiments by VAN 
PARUS et al. (1997b) have clearly identified two processes that regulate the 
induction of clonal anergy in vivo. T-cell tolerance was induced in recipients 
of adoptively transferred T-cells, from T-cell receptor transgenic mice. The 
combination of IL-12, exogenous administration, and antibodies to CTLA A 
converted this tolerant state to an activated and immunogenic one. CTLA-4 
engagement promotes antigen-specific T-cell proliferation, whereas IL-12 
stimulates Tho conversion to Thl effector cells. 

II. Suppression, Regulatory (Suppressor) T Cells 

Peripheral tolerance can also be induced by active suppression by means of 
regulatory or suppressor T cells. In experiments by MILLER et al. (1992) the 
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low dose oral exposure to myelin basic protein as antigen was effective in 
inducing oral tolerance and in suppressing experimental autoimmune 
encephalomyelitis. They found that the T cells generated by oral tolerance 
mediated suppression both in vitro and in vivo by means of the release of the 
cytokine transforming growth factor beta. TGF f3 has been demonstrated to be 
secreted by a variety of cells including macrophages, natural killer cells, B cells, 
and both CD4+ and CD8+ T cells. Further studies by WEINER et al. (1993, 
1994) have shown that active suppression is mediated by regulatory T cells, 
including Th2 cells which secrete IL-4 and IL-lO and Th3 cells which secrete 
TGFf3. In more recent studies it was found that interleukin-4 cytokine could 
prevent regulatory T cells from apoptosis (ZHANG et al. 1999). 

During investigations of the responses of regulatory T cells after oral 
administration of low doses of myelin basic proteins, it was found that the reg
ulatory T cells induced by oral antigens would secrete antigen non-specific 
cytokines after being triggered by the fed antigen which would then suppress 
inflammation in the local environment (WEINER 1997). This bystander sup
pression has also been found in other experimental models of autoimmune 
disease including experimental autoimmune encephalomyelitis, arthritis, and 
diabetes. This process, whereby anti-inflammatory cytokines could be targeted 
to an organ and in so doing suppress inflammation in a local environment, has 
been proposed as a treatment of a variety of organ specific inflammatory con
ditions of either autoimmune or other type such as psoriasis, in which immune 
manipulation could induce Th2 or Th3 type of regulatory cells to suppress the 
inflammatory responses in these diseases (WEINER 1997). 

III. Immune Deviation (Thl to Th2 Switching) 

MOSMANN et al. (1986) characterized two distinct T helper cell clonal popula
tions, each with unique cytokine patterns, and each with differing sensitivity 
to apoptosis, e.g., Th1 > Th2 cells. Thl cells produce IL-2, IFN-yand GM-CSF 
whereas Th2 cells produce IL-4, 5, 6, and 10 (MOSMANN and COFFMAN 1989). 
A strong Th1 response results in enhancement of several cytotoxic mecha
nisms including macrophage activation, phagocytosis, and delayed type hyper
sensitivity reactions (MOSMANN and COFFMAN 1989). A predominant Th2 
response leads to high antibody levels, especially IgE, and proliferations of 
mast cells and eosinophils. 

SWAIN et al. (1996) have shown that in vivo patterns of cytokines can also 
be highly polarized as with Th1 and Th2 cells but individual T cells can still 
produce a broad range of cytokines. Within 1 to 2 days of antigen stimulation 
they found a lO-fold increase in IL-2 production and from 100 to 1000times 
increases in other cytokines, e.g., Th1 effector cells made 4000-6000units/ml 
of IFN-yin vitro compared to lOO-800units/ml by naIve T cells. This cytokine 
production is rapidly down-regulated within hours. They postulate that the 
selection of the cytokine pattern happens early on, during the primary 
response. 
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WONG et al. (1993) were able to show that the co-stimulator B7 was effec
tive in stimulating cytokine production of Th1 cells but not Th2 cells. RAMS
DELL et al. (1994) found Fas and Fas-L on Th1 cells and observed AICD of 
Th1 in culture, whereas Th2 cells did not express appreciable amounts of Fas, 
Fas-L and did not show AICD. 

LINTON et al. (1996) showed that aging mice had a shift in cytokine pro
duction and functional patterns of T cells with age. They found a shift towards 
the memory cell phenotype (CD44) but with hyporesponsiveness and low 
proliferative capacity to antigen, and reduced IL-4, IL-2, or IFN-y cytokine 
response to antigen stimulation. 

F. Role of T Cell Apoptosis in Oral Tolerance 
and Autoimmunity 

MILLER et al. (1992) gave 1 mg of myelin basic protein (MBP) of guinea pigs 
orally to rats every 2-3 days for 5 doses. Rat splenic T cells removed at 7-14 
days later were shown to suppress the development of experimental auto
immune encephalomyelitis (EAE) in vivo and to suppress proliferative 
responses to MBP in vitro (tolerance). Anti-sera against TGF-J3 could abro
gate these protective effects, suggesting that oral tolerance induction was 
dependent on TGF-J3 secretion by splenic T cells. 

In a double blind clinical trial reports by TRENTHAM et al. (1993), 28 
patients with active rheumatoid arthritis (RA) of about 10years duration were 
given "chick" type II collagen (100mg) for 3 months daily orally, and compared 
to 31 RA patients on placebo. Of the patients receiving oral collagen, most 
showed improvements in joint tenderness and joint swelling and four patients 
had complete remissions whereas no such effects were seen in RA patients on 
placebo. These data demonstrated the clinical efficacy of an oral toleration 
approach for treatment of the autoimmune disease rheumatoid arthritis. 

HANCOCK et al. (1993) showed that oral exposure to alloantigen prevented 
accelerated allograft rejection by selective intragraft Th2 cell activation in 
LEW rats. When these LEW rats received (LEW X BN) Fl hearts as trans
plants, then rejection occurs in 6-8 days. If they receive in addition BN skin 
grafts 7 days before, then rejection is accelerated to 1-2 days post heart trans
plant. Oral exposure to BN splenic T cells between skin and heart grafts pre
vents early rejection, and was shown to suppress Thl cells function as 
measured by increased IL-2 and IFN-yproduction. 

WEINER et al. (1994, 1997a,b) discusses immune mechanisms of oral toler
ance, and current usage in treatment of autoimmune diseases by oral admin
istration of autoantigens. He found that at low dose oral exposures to antigens, 
tolerance was by means of induction of "regulatory" TGF-J3 secreting cells 
and Th2 cells producing IL-4 and IL-lO. At high doses of antigens orally, tol
erance is by anergy and clonal deletion of Th1 cells, and cells which secrete 
TGF-J3 (Th3 cells) were resistant to deletion (CHEN et al. 1995a). 



188 R. CAMERON and L. ZHANG 

CHEN et al. (1995b) went further to show that oral tolerance induced by 
MBP could be modified in mice depleted of CD8+ T cells in vivo with anti
CD8 monoclonal antibodies but without significant changes in active sup
pression of oral tolerance suggesting a dominant role of CD4+ cells in oral 
tolerance. In a similar model in rats, KELLY and WHITACRE (1996) showed that 
oral tolerance to MBP could be reversed by exposures to IL-4 and IL-5 
cytokines. 

SODO et al. (1997) found the intestinal bacterial flora was essential to the 
health and competence of Th2 cells and their susceptibility to oral tolerance 
induction in mice. 

WEINER (1997b) describes "bystander suppression" in association with reg
ulatory cells (Th2 or Th3) induced by oral antigen in which anti-inflammatory 
cytokines act on organs distant to the organ-specific site of the autoantigen. 

STROBEL and MOWAT (1998) describe the details of immune response to 
dietary antigens and oral tolerance. Antigen-specific suppression induced by 
oral tolerance can be induced by 24h of a single feed, and with DTH responses 
can last up to 17 months. APCs must be fully competent for the induction of 
oral tolerance. Dose and frequency of antigen exposures is also critical to the 
outcome. 

G. Role of T Cell Apoptosis in Transplantation Tolerance 
I. Mechanisms of Transplantation Tolerance 

Transplants of organs or skin across a complete MHC mismatch are rejected 
unless the recipient is immunosuppressed. Passenger leukocytes within the 
graft are the main stimulators of this rejection. A local increase in the 
cytokines IL-2 and interferon yoccurs in the rejection of a transplant whereas 
a reduction in their expression is associated with graft tolerance (BISHOP et al. 
1997). The balance of graft rejection vs graft tolerance seems to be maintained 
by the conditions which would favor an immune response involving Th1 
cytokines such as interleukin-2 and interferon yor the Th2 cytokines (FIELD 
et al. 1997). A specific cytokine such as IL-12 appears to promote Th1 
responses and at the same time inhibit Th2 differentiation whereas cytokines 
such as IL-4 have a central role in the development of Th2 responses 
(PICCOTTI et al. 1997). FIELD et al. (1997) have developed a hypothetical model 
of how regulatory CD4+ cells maintain tolerance. Memory Th2 T cells of the 
CD4+ type regulate the ability of APCs to direct maturation of naIve CD4+ 
cells and effector CD8+ cytotoxic lymphocytes by altering the activation state 
of the APCs. Th2 T cells secrete anti-inflammatory cytokines IL-4, IL-10, TGF f3 
which interfere with expression of co-stimulatory molecules such as B7 and 
block the APC production of IL-12. These deactivated APCs fail to trigger 
naIve CD4+ cells to differentiate into Th1 cells and also promote Th2 differ
entiation. CD8+ cytotoxic lymphocytes fail to develop in the absence of the 
proper helper T cell or co-stimulatory function. 
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Liver transplants across major barriers of MHC break these general rules 
of rejection vs tolerance and Th1 and Th2 switching because they are often 
not rejected even in the absence of immunosuppression. In addition, liver pas
senger leukocytes seem to be required for this spontaneous form of graft 
acceptance which is accompanied by rapid immune activation shortly after 
liver transplant (BISHOP et al. 1996). BISHOP et al. (1996) further showed that 
spontaneous acceptance of liver grafts seems to be due to rapid migration of 
large numbers of donor cells to recipient lymphoid tissues followed by rapid 
immune activation in the lymphoid tissues giving rise to tolerance of the graft. 
This was felt to be akin to the high dose tolerance associated with exposure 
to Class I antigen in the soluble form which can prevent rejection by neutral
izing graft specific antibodies or by inhibiting graft reactive cytotoxic T cells 
(BISHOP et al. 1997). There are four lines of evidence to support this theory of 
high dose associated graft tolerance: (a) liver tolerance associated with greater 
cytokine production than liver rejection; (b) reduction of the immunostimu
latory cells of the graft (to the passenger leukocytes) causes rejection of livers 
that are otherwise tolerated; (c) treatment of tolerant strain combinations with 
hydrosteroids at the time of transplantation reduces tolerance; and (d) increas
ing the amount of kidney and heart tissue and donor leukocytes leads to accep
tance in these organs similar to that in the liver. GORCZYNSKI et al. (1997) made 
use of the concept of Th1 cytokines as playing a critical role in the induction 
of graft rejection and developed a model using gamma delta TCR+ hybridoma 
cells in which the infusion of anticytokines antibodies were used to decrease 
graft prolongation. When both anti-IL-lO and anti-TGF tJ antibodies were used 
together, graft prolongation was abolished and allograft rejection developed. 
Similar results were found in an MHC incompatible renal allograft model in 
mice (GORCZYNSKI et al. 1997). 

The concept of immunologic tolerance arose from bone marrow trans
plantation in neonatal or irradiated mice in which the predominant mecha
nism is clonal deletion of donor specific T cells by donor hematopoietic cells 
in the recipient thymus (QIN et al. 1989, 1993). A short term treatment with 
nonlytic CD4 and CD8 monoclonal antibodies can induce tolerance to tissue 
allografts or reversal of spontaneous autoimmunity (QIN et al. 1989, 1993). It 
was recently shown by BEMELMAN et al. (1998) that a large dose of donor bone 
marrow produces significant deletion of antigen reactive T cells whereas a 
much lower dose of bone marrow produces tolerance to the graft with little 
evidence of clonal deletion. It is this low dose tolerance which can be trans
ferred by CD4+ T cells and passed on to naIve T cells as if infectious, and can 
act to suppress rejection of third party antigens when linked on F1 grafts. 
SYKES et al. (1997) developed a method that allowed bone marrow engrafting 
without toxic or myelosuppressive host conditioning. B6 mice received deplet
ing anti-CD4 and anti-CD8 monoclonal antibodies, local thymic irradiation, 
and a high dose of major histocompatibility mismatched bone marrow cells 
spread over four days. This treatment was not associated with significant 
myelosuppression, toxicity or graft vs host disease. This was the first demon-
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stration that high levels of allogeneic hematopoietic repopulation and central 
deletional tolerance could be achieved with a conditioning regimen that 
excludes myelosuppressive treatment. 

II. Potential of Immunosuppressive Drugs to Modulate T Cell 
Apoptosis and Induce Transplantation Tolerance 

A number of drugs have been developed to date which suppress the immune 
response to an allograft and each of these drugs has been shown to function 
by interfering with a number of specific graft rejection mechanisms: (a) inhi
bition of activation-induced cell death or apoptosis by prevention of the up
regulation of Fas ligand and interaction with Fas as shown by 9-cis-retinoic 
acid or glucocorticoids (YANG et al. 1995); (b) toxicity to specific cytotoxic 
T lymphocyte populations in renal allograft recipients by the experimental 
immunotoxin FN18-CRM9 (NEVILLE et al. 1996; FECHNER et al. 1997); (c) inhi
bition of IL-2 expression by cyclosporine and daclizumab (SIGAL and DUMONT 
1992; ZHENG et al. 1998; (d) immune deviation with a shift from Th1 cytokine 
pattern to Th2 cytokine pattern by rapomycin, CTLA4 immunoglobulin, anti
CD4 antibody, and cyclosporine (cited in KABELITZ 1998); and (e) induction 
of activation-induced cell death in activated T cells by anti-CD3 antibody 
OKT3 or FK506 (SIGAL and DUMONT 1992; KABELITZ 1998). 

H. Apoptosis and Immune Privilege 
Immune privilege involves sites such as the eye, brain, and reproductive organs 
where immune responses either do not proceed, or proceed in a manner dif
ferent from other areas. This process is related not only to physical barriers 
such as the blood drained vascular barrier but also active processes such as 
apoptosis of lymphoid cells (GRIFFITH et al. 1995; FERGUSION and GRIFFITH 
1997). GRIFFITH et al. (1995) showed that the CD95 and CD95 ligand normally 
expressed on activated T cells was also constitutively expressed in cells of the 
eye and testes. It was found further that the apoptotic cells could be recog
nized phagocytosed and removed from these sites without the induction of 
inflammatory or immune reactions. WILDNER and THURAU (1995) found in 
experimental autoimmune uveoretinitis that, once inflammation had been ini
tiated in the retina, orally induced bystander suppression was not effective in 
suppressing inflammation in the eye. A prominent feature of immune privi
lege is T cell unresponsiveness which can be due to clonal deletion, clonal 
anergy, immune deviation, or T cell suppression (NIEDERKORN 1990; GRIFFITH 
et al. 1995; WILDNER and THURAU 1995; FERGUSON and GRIFFITH 1997). In addi
tion to T cell unresponsiveness, B cell regulation as well as mechanisms of 
innate immunity involving natural killer cells, macrophages, and complement 
are also important for the maintenance of immune privilege (FERGUSON and 
GRIFFITH 1997). 
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I. Conclusions 
Activation induced cell death or AICD ofT cells in the periphery is of central 
importance to homeostasis of the immune system. An effective response to 
foreign invaders, especially powerful antigenic stimuli such as bacterial super
antigens, is an extensive T cell proliferation with tremendous expansion of 
antigen-specific T cell clones and efficient immune-mediated clearance AI CD 
of the majority of these Ag-specific T cells then follow to return the numbers 
of T cells in the periphery back towards normal. 

A major objective of the study of T cell apoptosis is the practical appli
cation of knowledge to the prevention of graft rejection and the lasting induc
tion of transplantation tolerance. Existing immunosuppressive drugs do have 
specific effects on immune processes but in general are very broad in their 
actions and also inhibit protective functions of the immune system which 
allows opportunistic infections to appear. In addition, toxicity to immune reac
tive cells can lead in some instances to lymphoproliferative disorders and lym
phoma. The ideal immunosuppressive agent would be one that targets the 
specific part of the adaptive immune response responsible for causing the 
tissue injury. One approach which favors the switch from graft rejection to 
graft tolerance has been the manipulation of the cytokine environment from 
a Th) pattern expressing IL-2 to the Th2 pattern expressing IL-4 and IL-lO 
cytokines. 

Another major shortcoming of existing immunosuppressive therapy is 
that the effects of these drugs are only transient and require daily drug therapy 
for the lifetime of the graft. Optimal therapy would be to attempt to tolerize, 
delete, or anergize specific donor reactive T cells early in the transplantation 
process and thus avoid the need for chronic drug therapy. 
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CHAPTER 8 

Apoptosis of Nerve Cells 

A.-M. WOODGATE and M. DRAGUNOW 

A. Introduction 
One of the major challenges facing neuroscientists is to understand the mol
ecular basis of nerve cell death in the brain and spinal cord. This information 
will provide the basis for a rationale drug design strategy to treat acute (e.g., 
stroke, traumatic brain injury, status epilepticus, perinatal asphyxia) and 
chronic (e.g., Alzheimer's disease, Parkinson's disease, Huntington's disease, 
amyotrophic lateral sclerosis) neurodegenerative disorders. For many years it 
was thought that nerve cells die in these diseases by a passive necrotic lysis
type mechanism. More recently, data from a number of sources including 
human brain material, and in vitro and in vivo models, have suggested that 
degenerative nerve cell death might be caused by an active apoptotic mecha
nism (reviewed in DRAGUNOW et al. 1998). 

One of the first indications that neurons die via an active process came 
from in vitro studies which showed that RNA and protein synthesis inhibitors 
prevent the death of sympathetic neurons following deprivation of nerve 
growth factor (NGF, MARTIN et al. 1988). This result suggested that NGF pro
motes neuronal survival by suppressing an endogenous death program. BATIS
TATOU and GREENE (1991) then demonstrated that death of NGF-deprived 
sympathetic neurons and PC12 cells was associated with DNA cleavage and 
could be prevented with an endonuclease inhibitor. These studies were fol
lowed by a wealth of in vitro data which showed that neurons undergo apop
tosis in response to a variety of pathological insults (reviewed in DRAGUNOW 
and PRESTON 1995). Subsequently, evidence from in vivo studies has emerged 
which supports a role for apoptosis in status epilepticus, hypoxia-ischemia, 
and a number of neurodegenerative disorders (reviewed in DRAGUNOW and 
PRESTON 1995; DRAGUNOW et al. 1998). 

Apoptosis and necrosis can be distinguished on a morphological basis (for 
review see BAR 1996; KERR et al. 1972; LEIST and NICOTERA 1997; WEBB et al. 
1997; WYLLIE et al. 1980). Necrosis is characterized by cellular swelling, rapid 
loss of internal homeostasis, damage to organelles and, finally, cell lysis. The 
release of cytoplasmic components from the damaged cell provokes an 
inflammatory response which harms nearby, otherwise healthy tissue. In con
trast, during apoptotic death, the cytoplasm and nucleus of the dying cell con
dense with preservation of organellar structure. Other hallmarks include the 
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compaction of chromatin against the nuclear membrane, nuclear breakdown, 
plasma membrane bleb bing and the eventual "budding off" of membrane
bound fragments known as apoptotic bodies. The apoptotic bodies are rapidly 
phagocytosed by macrophages or parenchymal cells before they lose mem
brane integrity, enabling the cell death process to take place without inflamma
tion or damage to surrounding tissue. 

The morphological characteristics of apoptosis are frequently accom
panied by activation of calcium-dependent endonucleases which cleave the 
genome into equal-size fragments (COHEN and DUKE 1984; WYLLIE 
1980). While apoptosis is classically associated with fragmentation of DNA 
into 180-200 base pair multimers, recent studies suggest that breakdown into 
larger fragments (50 kb) takes place before internucleosomal cleavage 
(BROWN et al. 1993; WALKINSHAW and WATERS 1994; MACMANUS et al. 1997). 
The regularly degraded DNA fragments from apoptotic cells can be visualized 
as a characteristic DNA ladder following agarose gel electrophoresis. In con
trast, in necrotic cells the random degradation of DNA by lysosomes produces 
a smear on an agarose gel. Alternatively, DNA fragmentation can be detected 
using the TUNEL stain (TdT-mediated dUTP biotin nick end labeling), 
although it should be noted that this method, in some cases, labels necrotic as 
well as apoptotic cells (NISHIYAMA et al. 1996; THOMAS et al. 1995). 

Although evidence of DNA fragmentation has been observed in some 
neurodegenerative diseases, whether this process is an essential component of 
the apoptotic program remains controversial. Several studies have shown that 
inhibition of endonuclease activity using aurin tricarboxylic acid can attenuate 
apoptosis, suggesting that oligonucleosomal DNA fragmentation is critically 
involved in the cell death process (BATISTATOU and GREENE 1991; WALKINSHAW 
and WATERS 1994). In contrast, SCHULZ et al. (1998) found that DNA frag
mentation takes place in trophic factor-deprived rat cerebellar granule cells 
but is not absolutely required for apoptotic death. Furthermore, the morpho
logical characteristics of apoptosis in the absence of internucleosomal DNA 
cleavage has been reported in a mouse embryonal cell line following serum 
deprivation (COLLINS et al. 1992; TOMEI et al. 1993); in PC12 cells exposed to 
etoposide (SAURA et al. 1997), nerve growth factor withdrawal and serum 
deprivation (MESNER et al. 1992); and in cultured rat hippocampal neurons 
after glucocorticoid treatment (MASTERS et al. 1989). The issue is further con
founded by the finding that oligonucleosomal cleavage can take place follow
ing necrotic insults (TOMINAGA et al. 1993). Thus, these observations suggest 
that DNA fragmentation should not be used as the sole determinant of apop
tosis, but rather as an adjunct to support morphological observations. 

Apoptosis is frequently attributed to the expression of so-called "cell 
death" genes which subsequently cause the cells to self-destruct and, for this 
reason, is often equated with "programmed cell death" (PCD). In fact these 
terms should not be used interchangeably as apoptosis does not necessarily 
require de novo protein synthesis (MESNER et al. 1992; SCHWARTZ and OSBORNE 
1993; WElL et al. 1996). Furthermore, within the category of programmed cell 
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death, not all dying cells exhibit apoptotic morphology (SCHWARTZ and 
OSBORNE 1993). Thus, for the purposes of this review, the term apoptosis refers 
to a morphological description of cell death, whereas PCD indicates the 
involvement of de novo protein synthesis in the cell death process. 

I. Programmed Cell Death 

The term "programmed cell death" was first coined to describe the death of 
cells within a developmental context in response to the appearance or loss of 
an external signal, but more recently has been expanded to include all types 
of cell death which require activation of a genetic program. Although the genes 
which mediate programmed cell death have not been clearly defined in ver
tebrates, this process has been well characterized in the nematode C. elegans 
(ELLIS and HORVITZ 1986; HEDGECOCK et al. 1983). In the central nervous 
system, programmed cell death takes place extensively during development 
where a surplus of post-mitotic neurons compete for a limited supply of target
derived neurotrophic factors. Those neurons which acquire sufficient amounts 
will survive, while the unrequired nerve cells will die via an apoptotic mecha
nism. Support for the involvement of gene expression in this process is derived 
from studies in primary neuronal cultures, which show that trophic factor 
withdrawal-induced apoptosis is attenuated by inhibitors of transcription 
and translation (D'MELLO et al. 1993; MARTIN et al. 1988). As genetically "pro
grammed" apoptosis plays a key role in CNS development, it has been sug
gested that dysregulated activation of these pathways underlies the 
pathogenesis of degenerative neuronal loss. Indeed in support of this notion, 
mounting evidence in vivo implicates a role for apoptosis in a variety of neu
ropathological conditions. 

B. Apoptosis in the Brain 
I. Alzheimer's Disease 

Alzheimer's disease (AD) is a neurodegenerative disorder characterized clin
ically by personality changes, memory loss and deterioration of cognitive func
tion. The classic neuropathological symptoms include the presence of senile 
plaques and neurofibrillary tangles, as well as neuronal loss in regions of the 
brain associated with memory. Senile plaques represent extracellular deposits 
containing f3-amyloid protein, while the neurofibrillary tangles consist of 
paired helical filaments composed of the hyperphosphorylated microtubule
associated protein tau. 

Studies using in situ DNA end-labeling (TUNEL) have observed an 
increase in TUNEL-positive cells in post-mortem human AD hippocampus 
compared to that of non-AD controls (ANDERSON et al. 1996; DRAGUNOW et 
al. 1995; LASSMANN et al. 1995; LI et al. 1997; SMALE et al. 1995; Su et al. 1994). 
While this technique can, in some cases, detect necrosis, the morphology of at 
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least a portion of the positively stained cells is consistent with an apoptotic 
mechanism. Double labeling studies have demonstrated that the TUNEL
positive cells are a mixture of neuronal and glial cells, although some contro
versy surrounds which cell type predominates (LASSMANN et al. 1995; Lr et aL 
1997; SMALE et aL 1995; Su et al. 1994). Several attempts have been made to 
correlate TUNEL-positive cells with the pathological features of AD (senile 
plaques and neurofibrillary tangles). While immunohistochemical staining 
has shown that the majority of TUNEL-positive nuclei are not located 
within amyloid deposits or in tangle-bearing neurons (BANCHER et aL 1997; 
DRAGUNOW et aL 1998), BANCHER et al. (1997) reported a significant increase 
in DNA fragmentation in tangle-bearing neurons compared to non-tangle
bearing neurons, and in cells located within amyloid plaques compared to 
those in unaffected tissue. A recent study has shown that TUNEL-positive 
neurons are co-localized with nitrotyrosine (Su et aL 1997), suggesting that 
peroxynitrite-induced apoptosis may be involved in Alzheimer's disease. 
Other apoptotic markers, such as clusterin, which are expressed in senile 
plaques may be involved in the production of neurotoxic amyloid peptides 
(LAMBERT et aL 1998). Indeed, amyloid peptides may playa more general role 
in neuronal apoptosis since GALLI et aL (1998) found that these peptides were 
secreted by neurons during apoptosis. 

II. Parkinson's Disease 

Parkinson's disease (PD) is a neurodegenerative disorder characterized by 
tremor, rigidity and akinesia. These symptoms are generally attributed to loss 
of the dopaminergic neurons in the substantia nigra pars compacta. In con
trast to AD, TUNEL staining on human post-mortem PD tissue has yielded a 
mixture of positive and negative results (DRAGUNOW et aL 1995; KOSEL et aL 
1997; MOCHIZUKI et al. 1996; TOMPKINS et aI., 1997). While several studies have 
failed to observe TUNEL-positive nuclei in post-mortem PD substantia nigra 
(DRAGUNOW et aL 1995; KOSEL et aL 1997), others have reported a small 
increase in DNA fragmentation in the PD cases compared to controls 
(MOCHIZUKI et aL 1996; TOMPKINS et aL 1997). In support of a role for apop
tosis in PD, a recent ultrastructural study observed cellular shrinkage and chro
matin condensation in a small percentage of nigral neurons from post-mortem 
PD tissue, but no apoptotic-like changes in neurons from control brains 
(ANGLADE et aL 1997). The discrepancies between these results may reflect dif
ferent stages of the disease process. 

The pathological features of PD can be reproduced in vivo using the mito
chondrial complex I inhibitors, 60HDA and MPTP. However, studies based 
on these models have failed to clarify the cell death mechanism underlying 
PD. The absence of apoptotic morphology in nigral neurons has been observed 
after both 60HDA lesion (JEoN et aL ] 995) and MPTP treatment (JACKSON
LEWIS et aL 1995). In agreement with these results, TUNEL staining and 
agarose gel electrophoresis failed to detect evidence of apoptosis in the sub-
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stantia nigra following transection of the medial forebrain bundle (VENERO et 
al. 1997). However in contrast, TATTON and KISH (1997) observed apoptotic 
cells in mice following chronic exposure to low dose MPTP. Only a small 
number of apoptotic nuclei per section were observed at each time point, prob
ably a reflection of the short life span of apoptotic nuclei in vivo where they 
are rapidly engulfed by macrophages and phagocytosed (TATTON and KISH 
1997). 

III. Cerebral Ischemia 

Cerebral ischemia results from a blockage in the flow of blood to the brain. 
When a specific brain region is affected, the insult is classified as focal. In con
trast, in global ischemia the blood supply to the entire brain is obstructed. 
While ischemic nerve cell death is conventionally considered necrosis, recent 
evidence suggests that it has an apoptotic component. Indeed, a multitude of 
studies have reported TUNEL-positive cells in vulnerable neuronal popula
tions in models of both global and focal ischemia (BEILHARZ et al. 1995; 
CHARRIAUT-MARLANGUE et al. 1996; KIHARA et al. 1994; LI et al. 1995a; LINNIK 
et al. 1995; MACMANUS et al. 1993; MACMANUS et al. 1994; NITATORI et al. 1995; 
SCHMIDT-KASTNER et al. 1997; SEI et al. 1994). While not all studies have exam
ined the morphology of the positively stained cells, at least in some cases, chro
matin condensation, nuclear segmentation and apoptotic bodies have been 
reported (BEILHARZ et al. 1995; CHARRIAUT-MARLANGUE et al. 1996; LI et al. 
1995a; LI et al. 1995b; NITATORI et al. 1995). Further support for an apoptotic 
mechanism is derived from DNA fragmentation analysis which demonstrates 
the presence of oligonucleosomal-sized fragments in some model systems (LI 
et al. 1995a; LINNIK et al. 1995; BEILHARZ et al. 1995; MACMANUS et al. 1993; 
SEI et al. 1994), as well as the appearance of other markers such as clusterin 
and annexin V (WALTON et al. 1996, 1997). Evidence for apoptotic nerve cell 
death has also been reported in human brain after hypoxia (LOVE et al. 1998). 

The apoptotic component of ischemic nerve cell loss is thought to account 
primarily for the delayed death which occurs some hours after the initial insult. 
In support of this notion, signs of apoptosis have been reported at the penum
bra of a focal ischemic insult and thus may contribute to the development of 
the infarct (LI et al. 1995a). Furthermore, TUNEL-positive cells have been 
reported after moderate ischemia which activates a delayed cell death mech
anism (BEILHARZ et al. 1995; KIHARA et al. 1994). In contrast, necrotic death is 
observed following more severe insults which trigger rapid nerve cell loss 
(BEILHARZ et al. 1995). 

IV. Status Epilepticus 

Status epilepticus (SE) is characterized by prolonged or frequently repeated 
seizure activity. Studies based on several models of SE have found evidence 
of DNA fragmentation, as detected by TUNEL, and electrophoresis in selec-
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tively vulnerable populations (DRAGUNOW and PRESTON 1995; FILIPKOWSKI et 
al. 1994; POLLARD et al. 1994). 

V. Huntington's Disease 

Huntington's disease (HD) is an autosomal dominant neurodegenerative dis
order characterized by progressive loss of specific neuronal groups in the basal 
ganglia. Studies on human HD tissue have reported evidence of DNA frag
mentation in the striatum as shown by TUNEL staining and a correlation 
between TUNEL staining and the length of the polyglutamine repeat (BUT
TERWORTH et al. in press). However, the majority of TUNEL-positive cells are 
non-neuronal and do not exhibit apoptotic morphology (DRAGUNOW et al. 
1995; PORTERA-CAILLIAU et al. 1995; THOMAS et al. 1995). Thus, neuronal apop
tosis has been observed after exposure to 3-nitropropionic acid and quinolinic 
acid, two compounds which reproduce HD-like cell loss in vivo (DURE et al. 
1995; SATO et al. 1997). Some in vitro studies also support a role for apoptosis 
in HD (BEHRENS et al. 1995, 1996), although others implicate an excitotoxic 
mechanism (FINK et al. 1996; ZEEVALK et al. 1995). 

VI. Other Brain Disorders 

Apoptotic cells as identified by TUNEL (and the presence of p53, DE LA 
MONTE et al. 1998) have been observed in ALS, a disease characterized by pro
gressive degeneration of motoneurons (YOSHIYAMA et al. 1994). This form of 
cell death may also be involved in Creuzfeld-Jacob disease (LUCAS et al. 1997), 
HIV encephalitis (ADLE-BIASSETTE et al. 1995; GELBARD et al. 1995) and 
measles virus infection of the CNS (MCQUAID et al. 1997). In addition, cannabis 
has been recently shown to induce neuronal apoptosis (CHAN et al. 1998). 

Because of the wealth of evidence implicating a role for apoptosis in nerve 
cell death, research at present is directed towards unraveling the cell death 
pathways underlying this process in neurons. As mechanistic issues are difficult 
to address in vivo, a number of cell culture models of developmental and 
degenerative neuronal death have been established. 

C. Models of Neuronal Apoptosis 
I. Developmental Nerve Cell Death 

Developmental nerve cell death is reproduced in cell culture by removal of 
survival factors from the culture medium. The most extensively characterized 
paradigms are based on NGF withdrawal from cultured sympathetic neurons 
(DECKWERTH and JOHNSON 1993; DESHMUKH and JOHNSON JR 1997; EDWARDS 
et al. 1991; EDWARDS and TOLKOVSKY 1994), and potassium/serum withdrawal 
from cerebellar granule cells (D'MELLO et al. 1993; GALLI et al. 1995; MILLER 
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and JOHNSON 1996). Studies utilizing these model systems have shown that the 
morphological characteristics of apoptosis are first evident 8-18h after trophic 
factor withdrawal. At the 48 h timepoint, the majority of the neuronal popu
lation have died through an apoptotic mechanism. The cell death process is 
accompanied by oligonucleosomal DNA fragmentation and de novo protein 
synthesis. 

The molecular basis underlying NGF withdrawal-induced apoptosis has 
also been extensively investigated using a rat pheochromocytoma cell line, 
PC12 (MESNER et al. 1992, 1995; PITTMAN et al. 1993). Although they are not 
neuronal per se, PC12 cells differentiate like sympathetic nerve cells in 
response to NGF. Following NGF withdrawal, PC12 cells undergo genetically 
programmed apoptotic cell death with similar characteristics to sympathetic 
neurons. 

II. Degenerative Nerve Cell Death 

While the role of apoptosis in developmental nerve cell death is well estab
lished, it is not clear whether this process underlies the pathogenesis of 
neurodegeneration. However, numerous studies have shown that toxins impli
cated in neurodegenerative diseases can trigger apoptotic death in cell culture. 
For instance, fJ-amyloid, the major component of senile plaques in AD, induces 
apoptosis in primary hippocampal and cortical cultures but has no effect on 
GABAergic neurons, which are largely preserved in AD (ANDERSON et al. 
1995; COTMAN and ANDERSON 1995; ESTUS et al. 1997; FORLONI et al. 1993; Loo 
et al. 1993). It has been suggested that fJ-amyloid exerts its neurotoxic effect 
via tau phosphorylation (LE et al. 1997). The typical morphological and bio
chemical features of apoptosis are also observed in vitro following treatment 
with 60HDA and MPTP, toxins which reproduce PD-like cell loss in vivo 
(DIPASQUALE et al. 1991; HARTLEY et al. 1994; MOCHIZUKI et al. 1994; SHEEHAN 
et al. 1997; WALKINSHAW and WATERS 1994). In addition, cell culture studies 
have found that apoptotic nerve cell death can be induced by glutamate, 
hydrogen peroxide and heavy metals (ANKARCRONA et al. 1995; DESOLE et al. 
1996; WHITTEMORE et al. 1994), compounds implicated in a variety of neu
rodegenerative processes. The time course and magnitude of apoptosis in these 
paradigms varies depending on the cell type and the nature of the neurotoxic 
stimuli. However, the cell death process generally evolves over several days 
and is characterized by delayed membrane lysis, cellular shrinkage, com
paction of chromatin and DNA laddering. 

As studies based on in vitro models have shown that apoptosis can be 
attenuated by inhibition of transcription and translation, the cell death 
process, in many cases, appears to be dependent on the synthesis of new pro
teins. Although the precise signal transduction pathways underlying apoptosis 
remain unclear, a number of candidate "cell death" genes have been identified. 
Within the area of developmental and degenerative nerve cell death, most 
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studies implicate the involvement of four families, namely the inducible 
transcription factors, the caspases, the bcl-related genes, and the cell cycle 
regulators. 

D. Biochemical Apoptosis Pathways in Neurons 
I. The Inducible Transcription Factors 

Inducible transcription factors (ITFs) play an important role in the transduc
tion of extracellular signals into long-term changes in neuronal phenotype (for 
reviews see ANGEL and KARIN 1991; HUGHES and DRAGUNOW 1995; MORGAN 
and CURRAN 1991; RAHMSDORF 1996). Following stimulation of cell surface 
receptors, the activation of cytoplasmic second messenger systems triggers an 
early wave of ITF transcription. Once translated, these proteins re-enter the 
nucleus and regulate transcription by binding to specific sequences in the 
DNA of late response genes. In this way, ITF expression is rapid, transient and 
not dependent on de novo protein synthesis. 

The most extensively characterized ITFs are the Fos (c-Fos, Fra-1 and 
Fra-2) and Jun (c-Jun, JunD and JunB) proteins, which bind to the AP-l con
sensus sequence in the promoter region of target genes. As members of the 
leucine zipper superfamily, the transcriptional activity of Fos and Jun is 
dependent on the formation of homo- (Jun only) or heterodimeric complexes, 
deemed AP-1 complexes. The composition of the AP-l complex determines 
its DNA binding affinity and, thus, its transactivational potency. The most tran
scriptionally active complex is composed of a c-Fos/c-Jun heterodimer, while 
complexes of lower transcriptional efficacy are formed from dimerization of 
.c-Fos with either JunB or JunD, or Jun homodimers. The interaction between 
the AP-1 complex and its consensus sequence is modulated by several pro
teins such as IP-1 and CREB, which competitively antagonize AP-1 binding. 
Once bound to the AP-1 site, the activity of Fos and Jun proteins is further 
regulated by post-translational modifications which alter transcriptional 
ability. In addition, ITFs can dimerize with other transcription factor families 
such as the CREB/ATF family, MyoD and Rel/NFkB proteins. The resulting 
complexes have increased affinity for promoter sites other than AP-l, thereby 
expanding the array of potential target genes. Thus, the specificity of the ITF 
response is determined by a multitude of factors, including the stoichiometry 
of ITFs induced, the presence of other potential dimer partners and the avail
able target genes. 

II. The Role of the ITFs in Apoptosis 

1. During eNS Development 

c-Fos and c-Jun immunoreactivity in the developing rat brain temporally and 
spatially correlates with the distribution of cells destined to undergo apopto
sis, implicating a key role for these proteins in CNS development (FERRER et 
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al.1996; GONZALEZ-MARTIN et al.1992; SMEYNE et al.1992, 1993). However the 
finding that neuronal apoptosis occurs normally in c-Jun, c-Fos and c-Fos/c
Jun null mice (most c-Jun knockout mice die in mid-gestation) suggests that 
induction of these transcription factors is not an absolute requirement of 
developmental nerve cell death (ROFFLER-TARLOV et al. 1996). It is possible 
that the functions of c-Fos and c-Jun in knockout animals are assumed by other 
inducible transcription factors. 

2. Degenerative Nerve Cell Death 

A wealth of correlative evidence implicates the involvement of ITFs in 
various neuropathological conditions. For instance, studies on human post
mortem Alzheimer's disease tissue revealed a co-localization between c-Jun 
immunoreactivity with TUNEL-positive cells (ANDERSON et al. 1994), paired 
helical filaments (ANDERSON et al. 1996), and f)-amyloid plaques (FERRER et al. 
1996), suggesting that this protein is centrally involved in the disease pathol
ogy. However, while other studies support an increase in c-Jun immunoreac
tivity in AD brains (MACGIBBON et al. 1997), the expression of the remaining 
ITF family members in AD remains controversial (MACGIBBON et al. 1997). 

Numerous studies have reported induction of Jun and Fos family members 
following both global and focal ischemic insults (DRAGUNOW et al. 1993, 1994; 
GASS et al. 1992; GUBITS et al. 1993; Hsu et al. 1993; KIESSLING et al. 1993; 
NEUMANN-HAEFELIN et al. 1994; WESSEL et al. 1991). While there is consider
able variation in the ITF family members induced, c-Fos and c-Jun induction 
are observed in the majority of model systems. Whether ITF expression is asso
ciated with nerve cell death or survival in cerebral ischemia remains unclear. 
One study found that potassium channel openers concurrently reduce nerve 
cell death and ITF expression, providing correlative evidence that these two 
phenomenon are related (HEURTEAUX et al. 1993). DRAGUNOW et al. (1994) 
reported that severe hypoxia-ischemia, which caused mainly necrosis, did not 
induce ITF proteins, whereas a moderate insult which lead to apoptotic death 
produced extensive ITF protein expression in the selectively vulnerable areas, 
implicating a direct role for ITFs in apoptotic cell death processes (DRAGUNOW 
et al. 1994). However, in contrast, other studies have observed ITF expression 
in less vulnerable or resistant neuronal populations (FERRER et al. 1997; GASS 
and HERDEGEN 1995; KIESSLING et al. 1993). In addition to cerebral ischemia, 
induction of c-Fos and c-Jun has been reported in dying hippocampal neurons 
in two models of status epilepticus, suggesting that ITF expression is involved 
in seizure-related nerve cell death (DRAGUNOW and PRESTON 1995; DRAGUNOW 
et al. 1993). 

It has been suggested that the temporal pattern of ITF expression may be 
an important determinant of cellular fate (DRAGUNOW et al. 1994; DRAGUNOW 
and PRESTON 1995; KAMME et al. 1995). Indeed, several studies have observed 
a generalized transient wave of ITF expression in resistant neuronal popula
tions occurring rapidly after an ischemic insult or SE, followed by a delayed, 
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prolonged expression (24-72h) of, predominantly, c-Jun restricted to the 
neurons which subsequently undergo apoptosis. 

Thus, while ITFs are expressed in response to various neuropathological 
stimuli, the inconsistencies between studies prevents the establishment of a 
clear relationship between rTF induction and nerve cell death. Furthermore, 
as an array of ITFs are expressed in many paradigms, exactly which family 
members mediate the cell death process is unclear. These mechanistic issues 
have recently been addressed using well characterized in vitro models of neu
ronal apoptosis. 

3. Evidence of a Role for c-Jun and c-Fos in Apoptotic Nerve Cell Death 

The first study to propose a role for c-Jun in nerve cell death was based upon 
the observation that c-Jun was selectively induced in medial septal neurons 
after axotomy (DRAGUNOW 1992). Subsequently, this protein was implicated in 
delayed nerve cell death after status epilepticus and ischemia (DRAGUNOW et 
al. 1993). In support of these in vivo studies, mounting in vitro evidence has 
demonstrated a central role for c-Jun and, to a lesser extent, c-Fos in the apop
totic nerve cell death process. For instance, EsTUs et a1. (1994), found that 
injection of neutralizing antibodies specific for c-Jun protects rat sympathetic 
neurons against NGF withdrawal-induced apoptosis, whereas neutralization 
of JunD and JunB proteins was ineffective (ESTUS et a1.1994).As these authors 
also showed that Fos antibodies reduced NGF withdrawal-induced apoptosis, 
it is tempting to speculate that the combination of c-Jun and Fos mediate 
the cell death process. Along a similar vein, SCHLINGENSIEPEN et a1. (1994) 
demonstrated that inhibition of c-Jun expression using c-jun antisense 
oligonucleotides markedly increased survival of cultured hippocampal 
neurons, whereas suppression of JunB expression reduced survival (SCHLIN
GENSIEPEN et al. 1993, 1994). In addition, overexpression of a c-Jun dominant 
negative mutant attenuates apoptosis triggered by NGF withdrawal in sym
pathetic neurons (EILERS et a1. 1998; HAM et al. 1995) and pe12 cells (XIA et 
al. 1995), potassium/serum deprivation in cerebellar granule cultures (WATSON 
et al. 1998) and dopamine exposure in striatal nerve cells (Luo et al. 1998). 
Further support of a role for c-Jun and c-Fos in apoptosis is derived from trans
fection studies which show that overexpression of these proteins is sufficient 
to activate the cell death machinery in several neuronal and non-neuronal cell 
types (BOSSy-WETZEL et al. 1997; HAM et a1. 1995; PRESTON et al. 1996). 

4. How Might c-Jun Mediate Neuronal Apoptosis? 

a. Upstream Mediators 

Attempts to unravel the pathways which influence cellular death and survival 
have focused primarily on c-Jun and its upstream mediators. Indeed, a growing 
body of evidence suggests that the MEKKlISEKlIJNK pathway, which medi
ates c-Jun activation, is centrally involved in apoptotic nerve cell death. Recent 
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studies have shown that JNK inhibition blocks motoneuron apoptosis 
(MARONEY et al. 1998). Furthermore, JNK3 knockout mice are resistant 
towards kainic acid-induced apoptosis, a response which is associated with 
dephosphorylation of c-Jun (YANG et al. 1997). XIA et al. (1995) reported that 
expression of a constitutively active MEKK1 mutant markedly increased the 
number of apoptotic PC12 cells in the presence of NGF (XIA et al. 1995). The 
observation that the cell death process was blocked by a c-Jun dominant 
negative mutant implicates c-Jun as a downstream mediator of MEKK1-
induced apoptosis. Along a similar vein, EILERS et al. (1998) found that MEKK1 
increased apoptotic death and expression of c-Jun and phosphorylated c-Jun in 
sympathetic neurons via a SEK1-dependent mechanism (EILERS et al. 1998). 
Furthermore, another study reported that inhibition of SEK1 expression atten
uates dopamine-induced JNK activation and apoptosis in striatal nerve cell cul
tures (Luo et al. 1998). Thus, these results suggest that sequential activation of 
MEKK, SEK1 and JNK lead to c-Jun activation and, subsequently, apoptosis. 
Interestingly, it has recently been suggested that JNK3 can regulate neuronal 
apoptosis by phosphorylating MADD (ZHANG et al. 1998). 

The p38 kinase pathway, which increases c-jun transcription via phospho
rylation of activating transcription factor-2 (ATF-2), has also been implicated 
in nerve cell death. Studies with mutant forms of MKK3, a selective activator 
of the p38 signaling cascade have established that this pathway is involved in 
NGF withdrawal-induced apoptosis in PC12 cells (XIA et al. 1995). However, 
in contrast to these results, EILERS et al. (1998) found that this system was not 
activated in NGF-deprived sympathetic neurons. 

b. Downstream Mediators 

While these studies have shed some light on the upstream mediators of c-Jun 
expression in the apoptotic cell death cascades, the downstream targets of this 
protein have not been clearly established. As c-Jun expression is frequently 
accompanied by cleavage of ICE-like proteases in models of nerve cell death 
(ELDADAH et al. 1997; SCHULZ et al. 1996; STEFAN IS et al. 1996), it has been sug
gested that caspase activation is a downstream mediator of the c-Jun/JNK 
pathway. In support of this notion, several studies have observed that inhibi
tion of caspase activity prevents neuronal apoptosis but has no effect on c-Jun 
expression or JNK activation (DESHMUKH et al. 1996; PARK et al. 1996; STEFA
NIS et al. 1996). While a direct relationship between caspase activity and the 
c-Jun/JNK pathway has not yet been established in neuronal cultures, SEIMIYA 
et al. (1997) reported that JNK1 antisense prevents caspase activation and 
apoptosis in U937 cells. In addition, using a conditionally active c-Jun allele 
dependent on the presence of j)-estradiol, BOSSy-WETZEL et al. (1997) demon
strated that c-Jun-mediated apoptosis in NIH 3T3 cells involved cleavage of 
ICE-like proteases (BOSSy-WETZEL et al. 1997). It has been suggested that 
c-Jun regulates caspases by increasing their gene expression (WALTON et al. 
submitted). In cerebellar granule neurons, during low potassium-induced 
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apoptosis, the following apoptotic pathway has been proposed: induction 
and phosphorylation of c-Jun, activation of Bax, activation of caspase activity, 
DNA fragmentation and death (MILLER et al. 1997). Another sequence of 
events has been suggested by TANABE et al. (1998): c-Jun activation, de novo 
RNA synthesis, mitochondrial permeability transition, activation of caspase 3, 
nuclear shrinkage and death. 

As c-Jun has been implicated in cell cycle progression, it has been sug
gested that induction of this protein may trigger apoptosis by initiating an 
abortive attempt in post-mitotic neurons to re-enter the cell cycle. Indeed, 
induction of c-Jun in paradigms of neuronal apoptosis is frequently accompa
nied by increases in cell cycle regulatory proteins (FREEMAN et al. 1994; GAO 
and ZALENKA 1995; KRANENBURG et al. 1996). FREEMAN et al. (1994) demon
strated that the increase in c-Jun preceded induction of cyclin D1 in sympa
thetic neurons undergoing NGF withdrawal-induced apoptosis, indicating that 
the attempt to re-enter the cell cycle is downstream of c-Jun activation. Con
sistent with this hypothesis, PARK et al. (1996) found that inhibition of cell cycle 
progression prevents NGF withdrawal-induced death in PC12 cells, but has no 
effect on JNK activity (PARK et al. 1996, 1997). Although it is possible that acti
vation of c-Jun and cyclin Dl occur via separate pathways, HERBER et al. (1994) 
demonstrated the eyclin Dl gene is a potential target of c-Jun, as its promoter 
region contains potential API sites which are activated by c-Jun overexpres
sion. Another downstream target of c-Jun during apoptosis may be the 
amyloid precursor protein 751 (WALTON et al. in press). Interestingly, a recent 
study has implicated AP-1 activation in cell necrosis (Xu et al. 1997), further 
complicating and obscuring the distinction between apoptosis and necrosis. 

III. The Caspase Family 

The caspases (also known as ICE-related proteases) first gained attention as 
mammalian homologues of eed-3, the pro-apoptotic gene found in nematodes 
(for review see NICHOLSON and THORNBERRY 1997; SCHWARTZ and MILLIGAN 
1996). Like eed-3, caspases are synthesized as dormant pro-enzymes which, 
following proteolytic activation, cleave specific proteins at aspartate residues. 
Currently this family comprises ten members, which can be broadly divided 
into three subgroups based on structural similarities: (1) the eed-3-like sub
family, including CPP32 (also as caspase 3, apopain and Yama), Mch2, Mch3 
(also known as CMH-1 and ICE-LAP-3), and Mch4; (2) the ICE-like sub
family, including ICE, Tx (also known as ICE reI II and ICH-2), and ICE reI 
III; and (3) the MEDD-2 family members, including ICH-1, Nedd2 (murine) 
and Mch6 (also known as ICE-LAP6). Of these proteins, the most extensively 
characterized family members are CPP32, which cleaves poly(ADP-ribose) 
polymerase, and ICE, which cleaves and activates pIL-l,B to generate active 
IL-1,B. Numerous studies using a wide variety of cell types have reported that 
caspases are selectively cleaved during apoptosis and that inhibition of this 
process using peptide-based molecules or viral proteins, ermA and p35, atten-
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uates cell death (DRAGUNOW et al. 1998). These findings have lead researchers 
to suggest that the caspases are essential components of a proteolytic cascade 
which is triggered in response to an apoptotic stimuli. 

1. Evidence of a Role for Caspases in Apoptotic Nerve Cell Death 

a. Developmental Nerve Cell Death 

In vitro studies provided the first evidence of caspase involvement in devel
opmental nerve cell death. Using chick ganglion nerve cells, GAGLIARDINI 
et al. (1994) demonstrated that caspase inhibition by ermA suppressed nerve 
growth factor-withdrawal apoptosis (GAGLIARDINI et al. 1994). Similar findings 
were reported by MILLIGAN et al. (1995), who found that peptide inhibitors of 
ICE blocked programmed cell death of trophic factor-deprived motoneurons 
both in vitro and in vivo (MILLIGAN et al. 1995). Subsequently, studies on 
knockout mice further clarified the role of the caspase family in develop
mental nerve cell death. Mice deficient in CPP32 contained supernumerary 
neurons and exhibited disorganized brain structure, although other structures 
such as thymus were normal (KuIDA et al. 1996), whereas mice deficient in ICE 
showed no developmental abnormalities in any major organs including the 
brain, but had a deficit in the inflammatory response and IL-1f3 secretion (LI 
et al. 1995). Thus, these results implicate CPP32 as a key mediator of neuronal 
apoptosis during development, while ICE activity is, in contrast, not absolutely 
required. In support of this notion, Nr et al. (1997) recently reported the pres
ence of a caspase with high homology to CPP32 in neuron-rich regions of the 
developing and adult rat brain, although expression was profoundly down
regulated in the adult CNS (NI et al. 1997). 

b. Degenerative Nerve Cell Death 

Although the role of caspases in degenerative nerve cell death in vivo has not 
been extensively investigated, a growing body of evidence suggests that these 
enzymes are activated following ischemic brain injury. Several studies have 
reported up-regulation of CPP32 and Nedd2 mRNAs following ischemia and 
seizures (ASAHI et al. 1997; GILLARDON et al. 1997; NAMURA et al. 1998). Fur
thermore, inhibitors selective for CPP32 and ICE can decrease infarct size and 
oligonucleosomal DNA fragmentation (ENDRES et al. 1998; HARA et al. 1997). 
In addition, a number of studies have observed a reduction in ischemic brain 
injury in ICE-deficient mice compared to wild type (HARA et a1.1997; SCHIELKE 
et al. 1998). However, it is possible that the beneficial effects of ICE inhibi
tion in these paradigms is related to a decrease in the ICE-mediated inflam
matory response rather than to inhibition of apoptotic death. In support of 
this hypothesis, BHAT et al. (1996) observed selective localization of ICE in 
microglial cells, not neurons, following global forebrain ischemia. In addition 
to cerebral ischemia, activation of CPP32 has been observed during neuronal 
apoptosis induced by traumatic brain injury (YAKOVLEV et aI.1997). The admin-
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istration of a CPP32-selective inhibitor in this model markedly reduced the 
nerve cell death and improved neurological function. 

Although the expression of caspases and their cleavage products in 
neurodegenerative diseases is not well characterized, TETER et al. (1996) did 
observe PARP cleavage associated with apoptotic hippocampal neurons and 
neurofibrillary tangles in the AD brain. Furthermore, mutant forms of the pre
senilins, associated with early onset AD, are cleaved at alternative sites by cas
pases. As this alternative cleavage increases production of fJ-amyloid (1-42), 
it may contribute to the pathogenesis of AD (KIM et al. 1997). It has also been 
suggested that caspases are involved in Huntington's disease, as the Hunting
ton protein is a substrate for CPP32, with the extent of cleavage dependent 
on the length of the poly glutamine repeat (ROSEN 1996). 

2. Which Caspases Mediate Apoptotic Nerve Cell Death? 

In vitro studies have attempted to further clarify the role of the caspases in 
developmental and degenerative nerve cell death. To date, caspase activation 
has been associated with neuronal apoptosis due to a wide variety of stimuli 
including NGF withdrawal and 6-hydroxydopamine treatment in PC12 cells 
(HAVIV et al. 1997; OCHU et al. 1998; STEFANIS et al. 1996; STEFANIS et al. 1997; 
TROY et al. 1997), NGF withdrawal in sympathetic neurons (DESHMUKH et al. 
1996; STEFANIS et al. 1997; TROY et al. 1996), fJ-amyloid exposure in hippo
campal neurons (JORDAN et al. 1997), potassium/serum deprivation and MPTP 
exposure in cerebellar granule cells (ARMSTRONG et al. 1997; D'MELLO et al. 
1998; Du et al. 1997; ELDADAH et al. 1997) and staurosporine exposure in 
neuroblastoma cells (POSMANTUR et al. 1997). Furthermore, increased caspase 
activity is not observed in neuronal cultures following necrotic stimuli, indi
cating that this phenomenon is a specific biochemical marker of apoptosis 
(ARMSTRONG et al. 1997; Du et al. 1997; OCHU et al. 1998). Notably, not all 
apoptotic cell death pathways involve caspase activation, as MILLER et al. 
(1996) found that caspase inhibition only marginally reduced trophic factor 
withdrawal-induced apoptosis in cerebellar granule cells. 

As the majority of caspases are not well characterized, exactly which 
family members mediate apoptotic nerve cell death remains unclear. However, 
in line with the studies on knockout mice, considerable in vitro evidence impli
cates a central role for CPP32. For instance, cleavage of CPP32 and its sub
strate PARP, as well as a specific increase in CPP32 enzyme activity, has been 
reported in many paradigms (ARMSTRONG et al. 1997; ELDADAH et al. 1997; 
KEANE et al. 1997; NI et al. 1997; POSMANTUR et al. 1997; STEFANIS et al. 1996). 
Furthermore, inhibition of CPP32 using z-DEVD-fmk attenuates apoptosis 
due to trophic factor withdrawal and neurotoxin exposure (Du et al. 1997; 
ELDADAH et al. 1997; STEFANIS et al. 1996). Interestingly, however, D'MELLO et 
al. (1998) observed that DEVD-fmk decreased apoptosis in trophic factor
deprived cerebellar granule cells but had no effect on CPP32 or PARP cleav-
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age, indicating that the effects of this compound may, in some cases, be medi
ated by other members of the caspase family. 

In contrast to CPP32, ICE activity does not, for the most part, dramatically 
change following apoptotic stimulation, and inhibition of this enzyme is rela
tively ineffective against apoptotic nerve cell death (D'MELLO et al.1998; Du et 
al. 1997; ELDADAH et al. 1997; HAVIV et al. 1997; POSMANTUR et al. 1997; STEFA
NIS et al. 1996; TRoy et al. 1996). However, a recent study reported that ICE 
activity increased during j3-amyloid-induced apoptosis in hippocampal neurons 
(JORDAN et al. 1997), and that a selective ICE inhibitor,Ac-YVAD-CMK, pre
vented cell death in this paradigm. Similarly, Ac-YVAD-CMK attenuates 
apoptosis due to superoxide dismutase (SOD1) downregulation in PC12 cells 
(TROY et al. 1996). In addition, FRIEDLANDER et al. (1997) found that neurons 
cultured from ICE deficient mice were resistant towards trophic factor with
drawal-induced apoptosis. Nedd2 has also been implicated in some types of 
apoptotic nerve cell death (STEFANIS et al.1997; TROY et al.1997). Using Nedd2 
antisense oligonucleotides, TROY et al. (1997) found that inhibition of this 
protease blocked trophic factor withdrawal-induced apoptosis in sympathetic 
neurons and PC12 cells, but had no effect on SOD1 downregulation. Thus, while 
overwhelming evidence implicates the involvement of CPP32 in apoptosis, the 
observation that ICE and Nedd2 are key mediators of the cell death program 
in some paradigms supports the existence of parallel caspase pathways, which 
are selectively activated in response to specific stimuli. 

3. Regulation of Apoptosis by the Caspases 

Although the regulation of caspase activity is not well characterized, several 
studies support a role for the Bcl-2-related proteins. For instance, overexpres
sion of Bcl-2 prevents apoptosis and Nedd2 cleavage in the GTl-7 neuronal 
cell line (SRINIVASAM et al. 1996). Similarly, in trophic factor-deprived PC12 
cells, Bcl-2 blocks apoptotic death and the increase in CPP32 activity. In addi
tion, MILLER et al. (1997) found that potassium deprivation of Bax-deficient 
cerebellar granule cells failed to increase caspase activity or trigger apoptotic 
death. However, while these observations implicate the Bcl-2 family as 
upstream regulators of caspase activation, the pro-apoptotic genes, Bax and 
Bak, can induce apoptosis in the presence of caspase inhibitors, indicating that 
the effects of these proteins can be mediated via caspase-independent path
ways (MCCARTHY et al. 1997; XIANG et al. 1996). 

Interestingly, recent evidence suggests Bcl-2 family members can also act 
as caspase substrates. Several studies have shown that CPP32 cleaves Bcl-2, 
and its truncated version, Bcl-XL' during apoptosis, thereby converting these 
anti-apoptotic genes into potent cell death effectors (CHENG et al. 1997; CLEM 
et al. 1998). As the cleaved products further activate downstream caspases, it 
has been suggested that Bcl-2/Bcl-XL cleavage by CPP32 establishes a posi
tive feedback cycle which ensures the inevitability of cell death. 
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IV. The Bcl-2 Family 

The Bel-2-related proteins (for reviews see KROEMER 1997; MERRY and 
KORSMEYER 1997; REED 1994) are an expanding family of apoptosis regulatory 
genes which act as either death agonists (Bax, Bak, Bel-Xs, Bad, Bid, Bik and 
Hrk) or antagonists (Bel-2, Bel-XL, Bel-w, Bft-l, Brag-I, Mel-l and AI). The 
anti-apoptotic properties of the founding member, Bel-2, were first recognized 
by VAUX et al. (1988), who showed that Bel-2 overexpression prolonged sur
vival of immature B cells in the absence of interleukin-3 (IL-3). Subsequent 
studies, which demonstrated that Bel-2 decreased apoptosis of sympathetic 
and sensory neurons deprived of NGF and brain-derived neurotrophic factor 
(BDNF), confirmed its ability to act as a death suppressor gene (ALLSOPP et 
al. 1993; GARCIA et al. 1992). Since these initial discoveries, Bel-2 has been 
shown to block or markedly reduce cell death induced by a wide variety of 
stimuli, giving rise to the hypothesis that this protein inhibits the final common 
pathway leading to apoptosis (REED 1994). However, the failure of Bel-2 to 
protect cells in some paradigms supports the existence of Bel-2-independent, 
as well as dependent, cell death mechanisms. 

Apart from Bel-2 itself, the most extensively characterized Bel-2-related 
genes are Bax and Bel-X. Alternative splicing of Bel-X gives rise to three tran
scripts, Bel-Xs, Bel-XL, and Bel-X,B, which have opposing effects on cellular 
fate. Overexpression of Bel-XL and Bel-X,B attenuates trophic factor with
drawal-induced apoptosis, whereas, in contrast, Bel-Xs renders cells more 
susceptible to a death stimulus. Like Bel-Xs, Bax facilitates apoptosis when 
over-produced, and can antagonize the protective effect of Bel-2. 

1. Regulation of Bcl-2-Related Genes 

The effect of Bel-2-related proteins on cellular fate is determined, at least in 
part, by the relative abundance of pro-apoptotic and anti-apoptotic family 
members. An excess of cell death antagonists promotes survival, whereas an 
excess of death effectors renders cells more vulnerable to apoptosis. This life
death rheostat is mediated via competitive dimerization between selective 
pairs of agonists and antagonists (e.g. Bax/Bax, Bel-2/Bax, Bel-2/Bel-2). While 
it is not elear which dimer combinations determine whether a cell survives or 
dies, the most extensively characterized interaction involves Bax and Bel-
2/Bel-XL • The increased susceptibility towards apoptosis in response to Bax 
overexpression is generally attributed to formation of Bax/Bax homodimers, 
while Bel-2 is thought to suppress cell death through competitive inhibition of 
Bax homodimerization. In support of this model, several studies demonstrated 
that mutations in Bel-2 and Bel-XL, which interfere with their ability to bind 
Bax, also block their anti-apoptotic function (CHENG et al. 1996; YININ et al. 
1994). However, as other mutations in Bel-XL, which affect its interaction with 
Bax or Bak, do not abolish its anti-apoptotic activity, these cell death sup
pressor molecules can elearly function independently (CHENG et al. 1996). 
Consistent with this hypothesis, KNUDSON and KORSMEYER (1997) demon-
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strated, using transgenic mice, that the formation of Bel-2/Bax heterodimers 
is not required for either Bel-2 repression or Bax promotion of apoptosis. In 
addition to the Bel-2-related genes, Bel-2 and Bel-XL can dimerize with other 
proteins such as Raf-1, Ced-4 and ca1cineurin. However, the functional 
significance of these interactions is unelear. 

As the levels of Bcl-2 and Bax do not change in cells undergoing apopto
sis, exactly what regulates the ratio of Bcl-2-related genes is unclear. However, 
recent evidence suggests that the activity of Bcl-2-related proteins is regulated 
post-translationally. Indeed, it has been shown that the anti-apoptotic 
properties of Bel-2 are neutralized by phosphorylation at serine/threonine 
residues (HALDAR et al. 1996). Similarly, serine/threonine phosphorylation 
of Bad blocks its death effector activity by inhibiting dimerization with Bel
XL (ZHA et al. 1996). Taken together, these studies suggest that the Bcl-2-
related proteins are part of a complex system which is regulated at a variety 
of levels. 

2. Evidence of a Role for Bcl-2-Related Genes in the Nervous System 

a. Developmental Nerve Cell Death 

Immunocytochemical studies have characterized the pattern of Bel-2, Bel-X 
and Bax expression during central nervous system development. Bel-2 is 
expressed at high levels in the developing brain and is downregulated after 
birth (FERRER et al. 1994; MARTINOU et al. 1994; MERRY et al. 1994), whereas, in 
contrast, Bel-X expression increases postnatally, reaching peak levels in the 
adult brain (GONZALEZ-GARCIA et al. 1995). High levels of Bax mRNA are 
observed in the sympathetic cervical ganglion and motor neurons at a time 
when these neuronal populations are susceptible to apoptosis (DECLWERTH et 
al. 1996). In addition, Bax expression is apparent in the developing trigeminal 
motor nucleus and cerebellum. In the adult, widespread expression of Bax is 
observed in most neuronal populations, and it has been suggested that this 
protein may contribute to the vulnerability of post-mitotic neurons to a variety 
of insults (KRAJEWSKI et al. 1994). Studies with transgenic animals have shed 
some light on the functional roles of the Bcl-2-related genes during develop
ment. Despite the widespread expression of Bel-2 during CNS development, 
bcl-2-deficient mice show no overt abnormalities in developmental nerve cell 
death in the prenatal stage (VEIS et al. 1993). However progressive degenera
tion of sympathetic, sensory and motoneurons is observed postnatally, indi
cating that Bcl-2 is critical for the maintenance of certain neuronal populations 
(MICHAELIDIS et al. 1996). In contrast to Bel-2, bcl-X-deficient mice die at 
approximately embryonic day-13 and show widespread nerve cell loss. The cell 
death occurs mainly in differentiating neurons, which have not yet made 
synaptic connections, indicating that Bcl-X is absolutely required for neuronal 
survival during differentiation and maturation (MOTOYAMA et al. 1995). In 
accordance with its expression during neurogenesis, developmental sympa
thetic and motor neuronal death is reduced in Bax-deficient mice, implicating 
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Bax as a critical mediator of trophic factor withdrawal-induced apoptosis in 
these populations (DECKWERTH et al. 1996). 

b. Degenerative Nerve Cell Death 

In line with their opposing roles in apoptosis, a number of studies have 
observed differential regulation of Bax/Bel-Xs and Bel-2/Bel-XL after both 
global and focal ischemia. While there is some variation between models, up
regulation of Bax is generally observed in vulnerable neurons which subse
quently undergo apoptosis (CHEN et al. 1996; GILLARD ON et al. 1996; HARA et 
al. 1996; ISENMANN et al. 1998; KRAJEWSKI et al. 1995; MACGIBBON et al. 1997; 
MATSUSHITA et al. 1998). In contrast, Bel-2 expression is restricted to neuronal 
populations which survive the insult (CHEN et al. 1995; ISENMANN et al. 1998; 
MATSUSHITA et al. 1998). Interestingly, CHEN et al. (1997) reported an increase 
in bel-2 and bel-xl mRNA in both surviving and dying neurons following global 
ischemia, but had previously found that their proteins were expressed only in 
neurons destined to survive (CHEN et al. 1995). Based on these observations, 
it has been suggested that the failure to translate bel-2 and bel-xl mRNA con
tributes to the initiation of the apoptotic cell death program in vulnerable neu
ronal populations (CHEN et al. 1997). In addition to ischemia, an increase in 
Bax expression and a decrease in Bel-2 has been reported following kainic 
acid treatment in mice (GILLARD ON et al. 1995), and during ,B-amyloid-induced 
apoptosis in human neurons (PARADIS et al. 1996). Up-regUlation of Bax has 
also been associated with 6-hydroxydopamine toxicity in PC12 cells (BLUM et 
al. 1997) and MPTP treatment in mice (HASSOUNA et al. 1996). Taken together, 
these results suggest that alterations in the Bel-2/Bax ratio play a critical 
role in determining whether post-mitotic neurons survive or die. This notion, 
however, does not appear to extend to the developing brain as no change in 
levels of Bcl-2, Bax, Bel-Xs or Bel-XL were observed in 8-day-old rats follow
ing hypoxia-ischemia (FERRER et al. 1997). Furthermore, a recent study 
has shown Bax is necessary for apoptosis induced by low potassium, but not 
for NMDA receptor-mediated excitotoxicity of cerebellar granule cells 
(MILLER et al. 1997). While a decrease in Bel-2 protein in dying neurons has 
been observed in animal models of nerve cell death, studies using human 
post-mortem PD and AD tissue have observed elevated Bel-2 expression in 
affected neuronal populations (MARSHALL et al. 1997; MIGHELI et al. 
1994; MOGI et al. 1996; O'BARR et al. 1996; SATOU et al. 1995; Su et al. 1996). 
Since Bel-2 appears to prevent nerve cell death, it has been hypothesized 
that this increase reflects a compensatory mechanism instigated in response 
to cellular degeneration. In support of this notion, Su et al. (1996) co
localized Bel-2 expression with neurons exhibiting DNA fragmentation in 
post-mortem AD brains. These authors also demonstrated that Bcl-2 expres
sion was down-regulated in tangle-bearing neurons, implicating the loss of Bel-
2 protein in the formation of neurofibrillary tangles and subsequent nerve cell 
death. 
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The expression of Bax has also been investigated in post-mortem AD 
brains (MACGIBBON et al. 1997; Su et al. 1997). Although Bax is expressed at 
relatively high levels in neurologically normal brains, an increase in Bax 
immunoreactivity is apparent in neurons and microglia of AD hippocampi. 
Furthermore, co-localization studies demonstrated that Bax immunoreactiv
ity was associated with senile plaques, tau-positive tangles, and TUNEL
positive neurons, lending strong support to a role for this protein in the disease 
pathogenesis. However, as the activity of Bax (and Bcl-2) is strongly influenced 
by the presence of other Bcl-2-related genes, further research is required to 
elucidate the role of this system in degenerative nerve cell death. 

As Bcl-2 overexpression prevents nerve cell death induced by a variety of 
toxic stimuli in vitro (LAWRENCE et al. 1996; MYERS et al. 1995; OFFEN et al. 
1997; ZHONG et al. 1993), several studies have examined whether its protective 
effect extends to the in vivo situation. Indeed, a reduction in infarct size was 
observed in transgenic mice overexpressing Bcl-2 compared to wild type 
(MARTINOU et al. 1994). Furthermore, LAWRENCE et al. (1997) and LINNIK et al. 
(1995) found that delivery of a herpes simplex virus (HSV) expressing Bcl-2 
markedly reduced nerve cell loss following a focal ischemic insult, implicating 
a potential role for this protein in the treatment of stroke. 

3. How Does BcI-2 Exert Its Neuroprotective Effects? 

A multitude of theories have been formulated to account for the anti-apop
totic effects of Bcl-2, including free radical scavenging, ion flux regulation and 
caspase inhibition. Most recently, it has been suggested that Bcl-2 prevents the 
early mitochondrial changes associated with apoptosis, in particular the mito
chondrial permeability transition (KROEMER 1997; REED 1997). The mitochon
drial permeability transition, which occurs almost universally during apoptotic 
death, involves the opening of a large channel in the inner mitochondrial mem
brane. This alteration has a variety of consequences which may contribute to 
induction of apoptosis, including free radical generation, the release of stored 
Ca2+ and mitochondrial proteins into the cytosol, and subsequently caspase 
activation. Over expression studies have shown that Bcl-2 can inhibit the mito
chondrial permeability transition, whereas it is induced by Bax (SUSIN et al. 
1996; XIANG et al. 1996). Whether these proteins directly control pore opening 
or influence it indirectly by regulating other mitochondrial functions remains 
at present unclear. 

v. Cell Cycle Regulators 

It been suggested that cellular susceptibility to apoptosis results from dysreg
ulated expression of conflicting or inappropriate growth and survival signals. 
This hypothesis is based on the observation that cell cycle regulatory proteins 
such as p53 and the cyclin family are often induced in paradigms of apoptotic 
death. The p53 tumor suppressor gene encodes a nuclear phosphoprotein 
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which functions as an important regulator of cellular proliferation and apop
tosis (for reviews see BELLAMY 1997; HUGHES et al. 1997; WEBB et al. 1997). 
Often dubbed the "guardian of the genome", p53 accumulates via increased 
translation in cells in response to genotoxic damage and then enables DNA 
repair through inhibition of cell cycle progression at the late G j phase. If DNA 
damage is severe and irreversible, p53 induces the cell to undergo apoptosis, 
thereby preventing replication of a damaged genome. The anti-proliferative 
and pro-apoptotic actions of p53 are thought to be mediated via transcrip
tional regulation of a specific set of target genes including Bax, Gadd45 and 
WAF/p21, which contain a p53 consenSus sequence. p53 can also interact 
directly with cellular proteins and is, itself, the target of several viral proteins. 

Numerous studies have implicated p53 in the cellular apoptotic response 
to genotoxic damage (BELLAMY 1997). While p53-mediated apoptosis in this 
scenario is necessary to prevent tumorogenesis, it is possible that inappropri
ate accumulation of wild type p53 may induce undesirable cell death. Thus, the 
expression of this protein in paradigms of developmental and degenerative 
nerve cell death has recently been examined. 

1. Evidence of a Role for p53 in Neuronal Apoptosis 

Evidence derived from several sources suggests that p53 does not playa major 
part in developmental nerve cell death. Firstly, normal CNS development is 
observed in mice deficient in p53, although these animals are susceptible to 
spontaneous tumors (DONEHOWER et al. 1992). In addition, NGF withdrawal 
from sympathetic and sensory neurons cultured from p53 null embryos 
induces apoptosis in the usual fashion (DAVIES and RISENTHAL 1994). Fur
thermore, WOOD and YOULE (1995) observed that the cerebellar granule cells 
undergo normal developmental cell death in p53 null mice, but were not, 
unlike wild type, susceptible to y-irradiation-induced cell death, implicating the 
existence of p53-dependent and independent pathways in the CNS. 

While it does not appear to be involved in developmental nerve cell death, 
increased expression of p53 has been reported following a variety of neuro
toxic insults, including cerebral ischemia (CHOPP et al. 1992; LI et al. 1997), 
photochemical brain injury (MANEV et al. 1994), kainic acid-induced seizures 
(SAKHI et al. 1994, 1996), excitotoxic lesions (HUGHES et al. 1996) and adrena
lectomy (SCHREIBER et al. 1994). Although p53 immunoreactivity is frequently 
co-localized with cells containing fragmented DNA, it is not clear whether 
induction of this protein is a cause or result of DNA damage. However, as p53 
knockout mice are resistant towards neuronal injury in many of the afore
mentioned paradigms, it is likely that this gene plays a role in the apoptotic 
cell death program which subsequently leads to DNA breakdown (CRUMRINE 
et al. 1994; MORRISON et al. 1996; SAKHI et al. 1996; TRIMMER et al. 1996). In 
support of this notion, in vitro studies have provided direct evidence of a role 
for p53 in nerve cell death processes. XIANG et al. (1996) showed that both 
kainic acid and glutamate treatment triggered massive death in hippocampal 
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and cortical neurons containing at least one p53 allele but had no effect on 
p53 (-1-) cultures. However, re-introduction of p53 to the p53-deficient cul
tures was sufficient to promote nerve cell death, even in the absence of a toxin. 
Notably, it has been suggested that the effect of p53 is cell type-dependent, as 
overexpression of this protein does not induce apoptosis in sympathetic nerve 
cells (SADOUL et al. 1996). 

While the role of p53 in neurodegenerative diseases has not been exten
sively researched, several studies have observed increased p53 levels in 
post-mortem AD tissue compared to that of controls (DE LA MONTE et al. 
1997; KITAMURA et al. 1997). DE LA MONTE et al. (1997) found that p53 was 
associated with senile plaques and some, but not all, tau-positive neurites, 
while another study reported that p53 immunoreactivity was present in glial 
cells. In addition, an increase in p53 has been observed in PC12 cells follow
ing exposure to 6-hydroxydopamine, a neurotoxin implicated in PD (BLUM 
et al. 1997). 

2. How Does p53 Mediate Neuronal Apoptosis? 

Although the downstream mediators of p53 are not well characterized, it has 
been suggested that this protein triggers apoptosis by altering the Bcl-2/Bax 
ratio. Indeed, several studies have found that p53 can increase expression of 
Bax and decrease Bcl-2 levels (MIYASHITA et al. 1994; MIYASHITA and REED 
1995). Induction of Bax has been reported following p53 expression in apop
totic neurons after quinolinic acid treatment (HUGHES et al. 1997), and p53-
mediated apoptosis of hippocampal neurons is blocked in Bax deficient 
neurons (XIANG et al. 1998). In addition, expression of both p53 and Bax has 
been reported following cerebral ischemia (LI et al. 1997) and after 6-hydrox
ydopamine treatment in PC12 cells (BLUM et al. 1997). However, it should be 
noted that p53-mediated apoptosis can also occur in the absence of Bax induc
tion (ALLDAY et al. 1995; CAN MAN et al.1995). Furthermore, Bax-deficient mice 
show a normal p53-dependent apoptotic response to ionizing radiation 
(KNUDSON et al. 1995). Thus, these findings suggest that regulation of the Bcl-
2IBax family may be involved in some, but not all, forms of p53-mediated 
apoptosis. 

3. Cyelins and Cyelin-Dependent Kinases 

The cyclins regulate progression through the cell cycle by stimulating activity 
of the cyclin-dependent kinases. In vitro studies lend strong support to a role 
for this family in developmental nerve cell death. Induction of cyclins, in par
ticular cyclin D1 and cyclin-dependent kinases, has been observed following 
trophic factor withdrawal-induced apoptosis in PC12 cells, sympathetic 
neurons (FREEMAN et al. 1994; GAO and ZALENKA 1995) and N1E-115-derived 
nerve cells (KRANENBURG et al. 1996). Furthermore, agents which inhibit cell 
cycle progression at the G1/S phase promote neuronal survival in these para
digms (FARINELLI and GREENE 1996; KRANENBURG et al. 1996; PARK et al. 1997; 
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RYDEL and GREENE 1988). In addition, PARK et al. (1997) demonstrated that 
expression of dominant negative forms of cyclin-dependent kinases protects 
against NGF withdrawal-induced apoptosis in sympathetic neurons, suggest
ing that CDKs play an essential role in the cell death process. Interestingly, 
while cyclin D1 is a key mediator of trophic factor withdrawal-induced apop
tosis in sympathetic neurons and N1 E-115 nerve cells (FREEMAN et al. 1994; 
KRANENBURG et al. 1996), levels of this protein do not change following potas
sium/serum deprivation of cerebellar granule cells. Rather, a decrease in cyclin 
A mRNA and protein is observed in this paradigm, indicating that the cyclin 
proteins are differentially regulated during apoptotic death. 

Increased expression of various cyclins and cyclin-dependent kinases has 
been observed in vivo following quinolinic acid lesions (HENCH CLIFFE and 
BURKE 1997) and cerebral ischemia (KUROIWA et al. 1998; LI et al. 1997). 
However, it is not yet clear whether these proteins are associated with nerve 
cell death or survival. While KUROIWA et al. (1998) observed that cyclin D1 was 
preferentially expressed in dying cells, others have reported that this protein 
was localized to morphologically intact neurons (LI et al. 1997). Furthermore, 
WEISSNER et al. (1996) found increased levels of cyclin D1 in microglia, impli
cating a role for this protein in microglial proliferation, rather than nerve cell 
death processes. Several studies have also observed increased cyclin and 
cyclin-dependent kinase expression in AD brains compared to controls. While 
there is some variation in the cyclin family members induced, an increase in 
cyclin B is the most consistent change (BUSSER et al. 1998; NAGY et al. 1997; 
VINCENT et al. 1997). Thus, although cyclins are critical for proliferation in pre
mitotic cells, their expression in the aforementioned paradigms gives rise to 
the possibility that apoptosis results from an abortive attempt to activate the 
cell cycle in terminally differentiated neurons. 

E. Conclusion 
Apoptosis is clearly an important mechanism of cell death in the nervous 
system, both during brain development and in neurodegenerative diseases. 
Understanding the biochemical pathways responsible for nerve cell apoptosis 
will provide novel targets for drug development to treat brain diseases. 
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CHAPTER 9 

Use of p53 as Cancer Cell Target 
for Gene Therapy 

C. THIEDE, T.D. KIM, and A. NEUBAUER 

A. Introduction 
Cancer is the second most frequent cause of death in developed countries, with 
rising prevalence. There are, basically, three different types of cancer thera
pies, and these have not changed over the last 40 years: surgery, irradiation, 
and chemotherapy. While surgery can frequently cure cancer in the early 
stages, no treatment provides a certain cure for most advanced human cancers, 
except for rare forms such as testicular cancer or lymphomas. Most patients 
suffering from cancer will thus die from tumor progression. There was hope 
that a thorough knowledge of the genetics of human cancer would eventually 
lead to better cure rates. However, despite considerable success in the under
standing of the mechanisms leading to human cancer, therapeutic interven
tions based on this knowledge for specific approaches are limited to selected 
cancer types only. One example clearly is all-trans-retinoic acid therapy of 
acute promyelocytic leukemias carrying the translocation t(15;17) (RAELSON 
et al. 1996). Another paradigm is cure of H. pylori infection in early gastric 
lymphomas of the mucosa associated lymphoid tissue (WOTHERSPOON et al. 
1993; BAYERDORFFER et al. 1995). However, in most tumors, chemotherapy is 
still a result of empiric data, which are based on large clinical studies, rather 
than in vitro test results. 

Cancer is caused by genetic alterations affecting oncogenes and tumor 
suppressor genes. In adults, most of these genetic aberrations are not a result 
of inherited germ line mutations, but rather acquired during the life span of 
single cells and thus represent somatic mutations. During tumor progression, 
most human cancers additionally acquire defects in the cellular response 
towards chemotherapeutic substances, i.e., detection of DNA damage and 
apoptosis. Since chemotherapeutic agents induce cell death via induction of 
apoptosis, and regular induction of apoptosis is inhibited in cancer cells, under
standing the biology of apoptosis may eventually lead to better chemothera
peutic protocols for treatment of human cancer. Thus as a first step, one may 
try to correct the defects in apoptosis acquired in cancer cells during tumor 
progression via genomic instability. Restoring components of the normal 
response pathway in a cancer cell would represent an attractive goal in treat
ing cancer by correction of genetic defects. 
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One gene of particular interest is the tumor suppressor gene p53, which 
acts in several ways to protect normal cells from genotoxic hits. The following 
will focus on the role of gene therapy using the tumor suppressor gene p53 as 
a promising first step in this context. 

B. Genetic Changes in Tumor Development 
The last twenty years have seen important progress in the understanding of 
the cellular mechanisms important for tumor formation. According to these 
data, the process of tumor development in adults is a stepwise process char
acterized by the accumulation of multiple changes in oncogenes as well as 
tumor suppressor genes. KINZLER and VOGELSTEIN (1997) recently suggested 
that the genes important for oncogenesis may be divided into caretakers 
and gatekeepers. Whereas caretakers are mainly responsible for cellular DNA 
repair after respective injury, gatekeeper proteins may be much more impor
tant for tumorigenesis. Mutations in caretaker genes result in the accelerated 
accumulation in other, presumably critical genes, eventually leading to genetic 
instability. Examples of this group are the are the mismatch repair genes 
(hMLH1, hMSH2, hPMS1, hPMS2). Germ line mutations of these genes 
are found in patients suffering from the hereditary non-polyposis colorectal 
cancer syndrome (HNPCe) (PAPADOPOULOS and LINDBLOM 1997), which 
accounts for up to 10% of all colorectal cancer cases. In contrast, inactivation 
of gatekeeper proteins, i.e., genes that control keys steps in the growth control 
of a cell, is the first and most important step in the initiation of aberrant 
growth. An example for a typical gatekeeper protein is the adenomatosous 
polyposis coli (APe) gene on chromosome 5q. Alterations of this gene seem 
to be the first and most important lesion in colorectal cancer. Another impor
tant example is the p53 tumor suppressor gene. p53 plays important roles in 
different cellular pathways, all dealing with cellular reaction towards stress. 
Due to its decisive role in this context, this protein was termed guardian of 
the genome (LANE 1992) and became the "molecule of the year" in 1993 
(KOSHLAND 1993). 

C. The p53 Tumor Suppressor Gene 
I. p53: From Structure to Function 

The tumor suppressor gene p53 codes for a 53 kD nuclear phosphoprotein. 
The genomic sequence is organized in 11 exons and 10 introns and covers 
20 kb on the short arm of chromosome 17 band 13. The 393 amino acids of the 
protein can be subdivided into three major functional domains: (I) the amino
terminal transcriptional activation domain (AA 20-42); (II) the central region 
(AA 102-292), which is essential for sequence specific DNA binding and 
carries more than 90% of all missense point mutations; and (III) a multi-



Use of p53 as Cancer Cell Target for Gene Therapy 237 

functional c-terminal domain (AA 300-393), carrying motifs important for 
homodimerization and nuclear transport (Ko and PRIVES 1996). In principle, 
p53 can induce two major pathways: (i) cell cycle arrest; and (ii) induction of 
apoptosis. 

In addition to the SV 40 large T antigen, which was found to bind to p53 
at the first description 20 years ago (LANE and CRAWFORD 1979; LINZER and 
LEVINE 1979) numerous cellular and viral proteins have been shown to inter
act with specific parts of the p53-protein. The MDM-2 protein, the antagonist 
of p53 on the cellular level, binds to the NHz-terminal part ofTP53 and induces 
rapid degradation of the protein (HAUPT et al. 1997; KUBBUTAT et al. 1997; 
NIELSEN and MANEVAL 1998). This part of the p53 protein is important for the 
binding of several transcription factors as well as p300 and CREB binding 
protein (CBP), two proteins which have been shown to enhance p53 mediated 
transcription (SCOLNICK et al.1997). Other viral proteins include the oncogenic 
E6 and E7 proteins of the Human Papilloma virus (HPV) strains 16 and 18, 
which also bind the amino terminal part of p53 and induce degradation. In 
addition, several proteins of the adenoviral early region (E1B 55 kD, E4orf6) 
have been shown to interact with p53, thereby inactivating the protein and 
allowing viral replication (YEW and BERK 1992; STEEGENGA et al. 1998) (for 
details see below). 

As illustrated in Fig. 1, a number of stimuli can activate TP53 directly or 
indirectly. DNA damage, hypoxia, activation of cellular oncogenes, infection 
with several oncogenic viruses (HPV, HBV), oxidative stress, and depletion of 
cellular ribonucleotide pools have been shown to induce nuclear accumula
tion of p53 in normal cells (OIACCIA and KASTAN 1998). DNA damage, induced 
either by ionizing radiation, UV-light, or certain chemotherapeutic agents, 
is one of the best characterized mechanisms for p53 induction. Upon DNA 
damage, p53 accumulates rapidly through a posttranscriptional mechanism. 
p53 monomers homotetramerize to form the functional complex. This 
tetrameric complex is then translocated to the nucleus. Here the p53 binds to 
its recognition sequence and induces the transcription of downstream target 
genes which can then arrest the cell cycle at the critical transition step between 
the 01 and the S-phase. Table 1 gives a list of genes which are transcription
ally activated by wild-type (wt) p53. This list clearly illustrates that, besides 
mdm-2, which is part of a feedback loop to control its own function, most of 
the genes listed are either important in the process of cell cycle control, 
response to DNA damage, or are important in the process of apoptosis. 

One of the most important effector proteins for cell cycle arrest induced 
by p53 is the p21 WAFlICIPl gene. This gene belongs to the group of cyclin depen
dent kinase inhibitor (CDK-I) proteins. Besides p21, this family of CDK 
inhibitors includes p15INK4B/MTS2, p16INK4A/MTS\ p27K1P\ and p57K1P2 (KING and 
CIDLOWSKI 1998). Inactivation of these important regulators of the cell cycle 
is a common mechanism in cancer development. Upon induction, p21 binds 
to one of the cyclin/CDK complexes, which can no longer phosphorylate one 
of the members of the retinoblastoma (Rb) protein family of tumor suppres-
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Fig.l. Upstream events and major biological outcomes of p53 activation. For details 
see text 

Table 1. Genes transcriptionally induced by wt-p53 

Gene target 

mdm-2 
p21 (WAF1, CIP1) 

GADD45 
Bax 
IGF-BP3 
KILLERIDR5 
FAS/Apo-1 
PIG-3 

Function 

Regulation of p53 function 
Cell cycle control 

DNA-repair 
Apoptosis 
Apoptosis 
Apoptosis 
Apoptosis 
Apoptosis 

Reference 

BARAK et al. (1993) 
EL-DEIRY et al. (1994); 

XIONG et al. (1993) 
KASTAN et al. (1992) 
MIYASHITA and REED (1995) 
BUCKBINDER et al. (1995) 
Wu et al. (1997) 
OWEN-SCHAUB et al. (1995) 
POLYAK et al. (1997) 

sors (KING and CIDLOWSKI 1998). This phosphorylation is necessary to hinder 
Rb from the binding of the E2F-transcription factor, which would normally 
induce the transcription of genes which are necessary to enter the S-phase. 
Loss of p21 CIPlIWAFl function results in loss of p53 mediated G I-arrest. 
Furthermore, it has recently been shown that p21 is also important to sustain 
the G2-arrest (BUNZ et al. 1998). 

Recent data indicate that phosphorylation of serine residues (S15 and 
S37) in the c-terminal part of the protein is a critical event for activation of 
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p53. This modification alleviates binding by mdm2 (SHIEH et al. 1997), thus res
cuing p53 from degradation. Both the DNA-dependent protein kinase (Woo 
et al. 1998) and the Ataxia Teleangiectasia Mutated (ATM) (SILICIANO et al. 
1997; CANMAN et al. 1998) protein are responsible for this posttranslational 
modification. Only very recently has it been shown that another key molecule 
controlling this step is the p19ARF protein (POMERANTZ et al. 1998). 

II. p53 and Induction of Apoptosis 

Cancer, in many ways, is the result of a lack of equilibrium between cellular 
proliferation and senescence, or apoptosis. In recent years it has been recog
nized that lesions in genes playing crucial roles in the apoptotic process are 
frequently observed in cancer cells (EVAN and LITTLEWOOD 1998). 

Apoptosis or programmed cell death is one of the key mechanisms in 
maintaining the cellular homeostasis in multicellular organisms. It is an energy 
dependent process, which is characterized by several specific morphological 
and molecular changes, i.e., chromatin condensation, blebbing of the cell mem
brane, vesicularization of the cell contents, and finally internueleosomal frag
mentation of the DNA. The process of apoptosis is important in embryonal 
development, the maturation of the immune system, defense against viral 
infections, and the prevention of tumor formation. For instance, apoptosis 
plays a crucial role in the normal development of the lymphatic tissue; lym
phoid cells not fitting certain requirements (specific signals induced by anti
gens, bystander signals) must undergo death in order to protect the organism 
from cells which may be potentially harmful, i.e., autoreactive. 

Apoptosis requires the stepwise activation of proteins. Considerable 
progress has been made in the identification of proteins that regulate the apop
totic pathway at each level. Important proteins can be assigned to two major 
groups. The Bel-2 family of proteins and the proteins belonging to the TNF
receptor family. The Bel-2 family proteins can be subdivided into pro- (i.e., 
Bax, Bel-XS, Bad) and anti-apoptotic (Bel-2, Bel-XL, Mel-1) molecules; for 
recent review see CHAO and KORSMEYER (1998). The decision as to whether a 
cell will survive or enter the process of apoptosis is based on the quantity of 
either pro- and anti-apoptotic members of this family, which form homo or 
heterodimers via conserved domains. Bax appears to be a key player in the 
p53 mediated response towards chemotherapy, which will be discussed below. 

Another key molecule in this context is the Fas-receptor (APO-1, CD95) 
and its ligand (FasL). Fas belongs to the TNF-receptor protein family. Upon 
engagement of FAS by binding of the FAS-ligand molecule, Fas induces the 
downstream apoptotic program through activation of several proteins via 
binding to an 80 amino acid part of the protein, called the death domain, 
ineluding FADD and Flicellcaspase-8 (ZHANG et al. 1998). This binding acti
vates a branching cascade of other caspase proteins, i.e., caspases 3,6,7, finally 
inducing the characteristic changes seen in apoptosis; for recent review see 
KIDD (1998). 



240 C. THIEDE et al. 

As stated above, apoptosis is the key mechanism in chemotherapy. Many 
chemotherapeutic substances induce direct changes of the DNA, thus induc
ing gatekeepers like p53, which subsequently start the cellular program for 
apoptosis. The p53 tumor suppressor gene is involved in induction of apopto
sis in many ways. Wild type p53 induces the expression of the F AS/ APO 1 
protein (OWEN-SCHAUB et al.1995; SHEARD et al.1997) thereby sensitizing cells 
for autocrine or paracrine interaction with the FasL molecule and subsequent 
elimination. In addition, p53 upregulates the expression of the Bax protein, 
which in turn forms heterodimers with and blocks the antiapoptotic 
Bcl-2 protein, thereby inducing apoptosis (CHAO and KORSMEYER 1998). 
Bax-deficient cells show a reduction of about 50% in the rate of p53 induced 
apoptosis (MCCURRACH et al. 1997). Thus Bax is considered to be a tumor sup
pressor gene (YIN et al. 1997). In support of this, inactivating mutations of the 
Bax gene have been demonstrated in several human tumors (hematological 
malignancies) (MEIJERINK et al. 1998), colon (RAMPINO et al. 1997), and may 
explain the frequently observed resistance towards chemotherapy in these 
tumors. In addition, p53 upregulates the expression of the Bax protein 
(MIYASHITA and REED 1995). As another pathway, myc induced apoptosis 
seems to be dependent on p53 function and appears to be at least partly medi
ated via the p19ARF-interface (HERMEKING and EICK 1994), although there are 
reports indicating that myc can also induce apoptosis via p53 independent 
mechanisms (SAKAMURO et al. 1995). 

Besides this direct interference with apoptosis, wt-p53 also downregulates 
the expression of the multi drug resistance-1 (mdr) gene (CHIN et al. 1992; 
DE-KANT et al. 1996). The mdr-l gene codes for the multiple drug transporter 
glycoportein (P-GP). Overexpression of this protein prevents the intracellu
lar accumulation of many chemotherapeutic drugs and is responsible for the 
multi drug resistance phenotype observed in many cancers. 

III. Alterations of p53 in Human Cancers 

Alterations of the p53 gene are the most frequent genetic change in human 
cancer (HUSSAIN and HARRIS 1998). It is assumed, that about 50% of all human 
malignancies contain inactivating mutations of the p53 gene (HOLLSTEIN et al. 
1991). p53 mutations are common genetic alterations in tumors of the lung, 
the colorectum, the pancreas, the breast the stomach, and the prostate. Inac
tivation most frequently occurs via missense point mutations in the central 
part (AA 102-292) of the protein. These mutations frequently involve amino 
residues in evolutionary highly conserved domains, which are important for 
DNA-binding, e.g., AA 175,248, and 273. Loss of the remaining wt-p53 allele 
(loss of heterozygosity, LOH) seems to occur subsequently. In most cancers, 
inactivation of p53 is a late event in the multistep process of tumor develop
ment and, in the majority of the studies published to date, the presence of p53 
mutations has been associated with a significantly worse prognosis (KIRSCH 
and KASTAN 1998). However, the importance of p53 mutations in the patients' 
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outcome has to be seen in the tissue context. Conflicting results on the role of 
p53 mutations, for example in breast and colorectal cancer, may be sometimes 
caused by methodological problems. However, there are also reports indicat
ing that the presence of a p53 inactivation can be associated with increased 
sensitivity towards chemotherapy in certain malignancies (RUSSELL et al. 1995; 
HAWKINS et al. 1996; TADA et al. 1998), indicating that the complex role of p53 
in this context is still not fully understood. 

IV. p53 Homologues 

The p53 tumor suppressor gene was thought for a long time to be a unique 
protein. This, however, would have been quite unusual, the p53 pathway being 
central for cell survival. And, indeed, recent data indicate that p53 has several 
homologues capable of substituting its function, at least partially. P73 is located 
on chromosome 1p36, a region frequently deleted in neuroblastoma and other 
tumors (KAGHAD et al. 1997). This protein was shown to be able to induce the 
expression of p53 induced genes, e.g., p21 CIPI and apoptosis (JOST et al. 1997), 
and therefore closely resembles the function of p53. The group of p53 homol
ogous genes was recently extended to P40 (TRINK et al. 1998), P51 A and B 
(OSADA et al. 1998), and P63 (YANG et al. 1998). Future research must clarify, 
whether there is any tissue restriction or functional specificity, which may dis
tinguish these proteins from p53. 

D. pS3 and Gene Therapy 
I. Iutroduction 

As stated above, tumor development, especially solid tumors, is a process of 
accumulation of genetic defects. These changes also frequently involve genes 
which are important in the cellular processes of detection of DNA damage. 
Since many drugs currently used in cancer chemotherapy exert their beneficial 
effect via DNA damage, either directly or via interfering with the cellular 
nucleotide pool, cancer chemotherapy essentially relies on the presence of 
functional systems for the detection of DNA damage. Abrogation of these key 
control steps in the malignant cells may thus explain resistance to chemo
therapy which is frequently observed, especially in late stages of disease. 

Given these considerations, p53 is a very attractive target for gene replace
ment therapy. First, this protein is inactivated in about 50% of all human malig
nancies, making a potential therapy applicable for a wide variety of human 
cancer. Second, the essential function of TP53 in controlling such important 
tumor suppressive mechanisms like DNA repair, cell cycle control, and apop
tosis qualifies p53 and all downstream effectors (e.g., p21 Waf!, BAX) as ideal 
targets for intervention in tumor cells. Transfection of wt-p53 into tumor cell 
lines has shown to reverse many of the changes, thus making the cell respon
sive to anticancer therapy. 
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II. Gene Therapy: General Remarks 

The idea to restore a genetic defect has inspired genetic analysis for a long 
time. Gene transfer in general can be defined as the introduction of a DNA 
fragment (encoding either a foreign gene from another species or an endoge
nous gene, which is either defective or missing completely) into a cell. 
The expression of this gene would then either complement a missing normal 
protein or serve to facilitate treatment with selective drugs, e.g., use of herpes 
simplex thymi din kinase (TK) for treatment with gancyclovir. Gene therapy 
of genetic defects caused by a single genetic alteration (e.g., hemophilia or 
cystic fibrosis) can be achieved by expressing the missing gene. However, in 
diseases involving multiple genetic changes, like cancer, the achievement of 
similar effects may be more challenging. 

III. Rationale for p53-Targeting in Gene Therapy 

In principle, several approaches may be used for p53 based gene therapy. The 
most straightforward technique is the transfection of wt-p53 into tumor cells 
in order to restore the function of the wild type protein. The majority of cur
rently performed trials are focusing on this issue. Similarly, the function of p53 
can be restored using vectors expressing downstream effector proteins like 
p21 WAF!,CIP! (MENG et al. 1998). Expression of effector proteins may overcome 
a primary resistance of the tumor cells to cancer therapy, since the ultimate 
goal of p53-gene therapy must be the restoration of normal apoptotic response 
towards DNA-damage. Thus high expression of molecules necessary for this 
response is intended. A problem that may arise when p53 is restored in cancer 
cells, is the dominant negative effect of mutant p53 (MILNER and MEDCALF 
1991), which potentially may block the effects of wt-p53 expressed in the 
tumor cells. However, in vitro data indicate that the expression of wt-p53 in 
the tumor cells after transfection can overcome this dominant negative effect 
(GJERSET et al. 1995). Whether the level of expression plays a causal role is not 
known. An elegant approach to overcome this potential problem and to 
achieve a really selective targeting of cells carrying mutant p53 was recently 
published (BISCHOFF et al. 1996). This group used a human adenovirus lacking 
a functional E1B 55K-protein (see below). 

IV. Trials Reconstituting Wild-Type p53 

Although several potential targets have been identified in the p53 pathway, 
the most attractive approach for p53 based gene therapy is to reconstitute wt
p53 expression. Major problems in this context are to target specifically the 
tumor tissue, to transduce successfully the tumor cells with the p53 gene, and 
to achieve sufficient and lasting expression. All these factors are influenced by 
the type of delivery system used. These can be divided into viral and non-viral 
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systems. Most of the currently performed clinical trials aiming to reconstitute 
p53 expression in the tumor cells use viral approaches. 

1. Adenoviruses 

Recombinant adenoviral constructs are the most frequently used method for 
this purpose. For use in gene therapy, the viruses are rendered replication 
defective by deletion of the E1 A and B regions. The use of this DNA-virus 
has several advantages for cancer gene therapy; for a recent review see VERMA 
and SOMIA (1997). Adenoviruses can infect dividing and non-dividing cells 
and are usually not integrating into the host genome, thus avoiding the risk of 
insertional mutagenesis. In addition, adenoviruses can infect a wide variety of 
tissues. One of the most important advantages of adenoviruses compared to 
retroviruses is the possibility of producing high concentrations of infectious 
particles, which is important to achieve sufficient concentration at the tissue 
of interest. A major drawback in the use of adenoviral vectors is the fact that 
about 80% of humans react against adenoviral proteins. Although the pro
found immune reaction induced upon infection, consisting of specific humoral 
response and cytotoxic T-cells, may increase the primary antitumor effect in 
the patient, it may also limit the possibility of repeated use of this therapy. 
Efforts are currently being made to define further those parts of the viral 
genome which are important for eliciting the host reactivity, in order to design 
recombinant vectors which are less immunogenic. 

2. Retroviruses 

Retroviral vectors are the second transfection method frequently applied for 
p53 gene therapy. These vectors are used in many gene therapy protocols for 
non-malignant diseases currently performed; however they are less frequently 
taken for cancer gene therapy (ANDERSON 1998). Retrovirus vectors can infect 
only dividing cells, which has the advantage of conferring some degree of selec
tivity, since predominantly cancer cells are infected. Concerns are focused on 
the problem of insertional mutagenesis which may be problematic in geneti
cally highly unstable cancer cells. Furthermore, expression of the trans gene is 
frequently limited to only a few days, because cellular factors inhibit tran
scription of the inserted viral gene, presumably by DNA-hypermethylation. 

3. Non-Viral Gene Delivery Systems 

Non-viral methods for the transmission of genes have several potential advan
tages, most important being the ease of manufacturing and the safety issues, 
which will make them the preferred delivery system in the future (ANDERSON 
1998). However, up to now they have been rarely used for gene therapy 
targeting p53 due to the limitations in transfection efficacy and expression. 
LESOON et al. (1995) described the use of a liposome-p53 complex for systemic 
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therapy of nude mice challenged with breast carcinoma cells and reported 
significant reduction of the tumor size. Subsequent analysis revealed that 
transduction efficacy in this setting is only 5%; however, it appears that a 
bystander mechanism which significantly reduces tumor vascularization may 
be involved (Xu et al. 1997). On the basis of recently published results, trials 
are attempting to use this observation and to increase inhibition of tumor vas
cularization by cotransfection with a fragment of thrombospondin I (Xu et al. 
1998), showing synergistic effects in tumor growth inhibition. 

4. In Vitro Data and Preclinical Trials 

The applicability of these kind of constructs has been shown in several in vitro 
and animal models (BADIE et al. 1995; CIRIELLI et al. 1995; HARRIS et al. 1996; 
MUJoo et al. 1996; WILLS et al. 1994; YANG et al. 1995; FUJIWARA et al. 1994b; 
CARBONE and MINNA 1994); for an excellent recent review on this issue the 
reader is referred to NIELSEN and MANEVAL (1998). Transfection of wt-p53 into 
cell lines carrying p53 mutants induces growth arrest and apoptosis in a dose 
dependent manner in the majority of cell lines tested, including several epithe
lial malignancies (cervical-, head and neck-, bladder-, and skin cancer), ade
nocarcinomas (breast-, prostate-, and colorectal cancer), and lymphomas and 
leukemias. In contrast, no growth inhibitory effect was observed in the major
ity of normal tissues transfected with wt-p53 in hematopoietic stem cells (SETH 
et al. 1997; SCARDIGLl et al. 1997), fibroblasts (CLAYMAN et al. 1995), and 
mammary epithelium (KATAYOSE et al. 1995). 

In mouse xenograft models, a marked reduction of tumor growth and the 
induction of apoptosis was observed compared to mock transfected animals 
(CLAYMAN et al. 1995; EASTHAM et al. 1995; FUJIWARA et al. 1994a; NIELSEN 
et al. 1997; ZHANG et al. 1994). 

Recently, the efficiency of p53 gene transfer in combination with conven
tional chemotherapy was tested. NGUYEN et al. (1996) were able to demon
strate, that combination therapy with cisplatin could enhance the antitumor 
effect of an Ad-p53 construct. According to their data, the time of adminis
tration of cisplatin was essential for this effect, with no enhancement when 
given in parallel or after administration of Ad-p53, but with a pronounced 
effect when used 2-3 days prior to gene transfer. These results confirm pub
lished in vitro data on enhanced chemosensitivity when cells are preincubated 
with cisplatin prior to p53 transfer (FUJIWARA et al. 1994a). This approach 
might be useful to treat cancers that are frequently resistant towards 
chemotherapy, as recently demonstrated in the mouse model (OGAWA et al. 
1997). 

Another currently followed direction is the combination of genes for anti
cancer gene therapy. SANDIG et al. (1997) recently published results on the 
combination of the cell cycle inhibitory protein p16 INK4/CDKN2 and wt-p53 in 
an adenoviral vector. Using this construct, they were able to demonstrate 
enhanced apoptosis and reduced tumor growth in a nude mice model. Thus, 
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combining several genes in one vector might be an attractive tool to increase 
the effect of the therapy. 

5. Clinical Trials 

Based on these data, several clinical protocols using different settings to target 
tumor cells have been activated. Table 2 shows a summary of currently 
performed trials, which have been presented at the 1998 Meeting of the 
American Society of Clinical Oncology (ASCO). 

ROTH et al. (1996) were the first group reporting in vivo results of a phase 
I study using a retroviral wt-p53 construct. To achieve a wide expression of 
p53 in different tissues, this group used a f3-actin promoter to control the 
expression of the wt-p53 cDNA. Nine patients suffering from advanced non
small cell lung cancer (NSCLC) were treated in a phase I study by either 
bronchoscopic or percutaneous injections of the vector. The data indicate that 
this setting is feasible. No side effects attributable to the vector were seen, 
however, due to the way of administration complications were observed in the 
patients (pneumothorax, intubation, and mechanical ventilation). In this group 
of patients with progressed stages of disease, one patient had objective clini
cal evidence of tumor regression, whereas another three patients showed 
stable disease and one patient progressed under therapy. Although six of seven 
tumors showed evidence of increased apoptosis after therapy, arguing for p53 
mediated effects, no p53 expression was detected by reverse transcription 
polymerase chain reaction (RT-PCR), and the levels of transfection as docu
mented by in situ hybridization were quite low (1 %-3%). Thus, this group also 
switched to adenoviral vectors for phase II studies to achieve higher trans
fection rates of tumor tissues. 

CLAYMAN et al. (1998) published data on 33 patients with advanced recur
rent head and neck squamous cell carcinoma (HNSCC) who were treated by 
local injection with a recombinant Ad-p53 vector. The construct consisted of 
a replication defective adenovirus type 5 with a wt-p53 expression cassette 
replacing the E1 region. Delivery and in vivo expression of the wt-p53 con
struct was documented in the tumor. No adverse side effects were observed 
and in several patients a clinical response was seen in these end stage tumors, 
with one patient showing a complete remission. Data on a phase 1 trial in 
patients with advanced NSCLC were also published by SCHULER et al. (1998). 
This group treated 15 patients with a commercial preparation of a recombi
nant adenoviral vector containing wt-p53 under the control of a CMV pro
moter (rAd/p53, SCH 58500, Schering-Plough, Kenilworth NJ) by either 
bronchoscopic intratumoral injection or CT guided percutaneous intra tumoral 
injection. Increasing doses of vector were administered (107_1010 plaque 
forming units (PFU)). Expression of vector specific p53 cDNA was detected 
in six out of eight patients treated with doses of 109 and 101o PFU, although 
only in one out of six patients below this dose level, illustrating a clear dose 
relationship between the efficacy of the gene transfer and the concentration 



Table 2. Currently performed trials using p53 in different malignancies based on the ASCO-meeting 1998 

Institute/Company Vectora Tumor-Typeb Administration b patients Clinical CitationC 

(N)b Phaseh 

Schering-Plough (1) Repl. deficient Head and neck cancer Local 16 Phase I 1479 
adenovirus Colorectal cancer/ Locoregional 16 Phase I 1661 

(2) wt-p53 hepatic metastases 
(3) CMV-Promoter 
(4) SCH 58500 

ONYX (1) Mutant Adenovirus Pancreatic cancer Local 16 Phase I 815 
Pharmaceuticals group C (del 55KD 

ElB) 
(4) ONYX-015 Head and neck cancer Local 21 Phase II 1509 

Hep. metastasis of 01 Local 16 Phase I 814 
cancer 

Introgen-Therapeutics/ (1) repl. deficient NSCLC* local 52 Phase IIII 1660/1659 
Rhone Poulonc Rorer Adenovirus 

(2) wt-p53 
(4) INON 201 

a(l), virus; (2), insert; (3), promoter; (4), company name of product. 
bDetails of currently performed clinical trials using the vectors described in Vector column. 
cNumbers refer to respective abstract numbers as given in the Program and Proceedings of the 1998 Annual Meeting of the American 
Society of Clinical Oncology. 
* Non small cell lung cancer. 
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of vector used. Side effects with mild flu-like symptoms, fever, dyspnea, hyper
tension, and tachycardia were also more pronounced in the group of patients 
treated with these high titers. Due to the phase I design of this study, a clini
cal response was documented only in one patient showing a stable disease for 
6 months. 

Currently, this vector is being evaluated in phase I and II studies in 
patients with non-small cell lung cancer (NSCLC), bladder cancer, ovarian 
cancer, and pancreatic cancer. Introgen therapeutics/Rhone Poulonc Rorer 
also recently announced the onset of several trials based on wt-p53 transfer 
mediated by a recombination deficient adenovirus (Table 2). 

V. The ONYX-015 Virus 

As discussed above, a general problem of any somatic gene therapeutic 
approach is to reach as many cancer cells as possible. Another major con
cern is that, by introducing a tumor suppressor gene, the transfected cancer 
cells will have a growth disadvantage compared to their untransfected coun
terparts. Since cancer development is generally considered to be a process of 
microevolution, when selecting cancer cells for their ability to overcome 
growth control those cells without transfection will outgrow the transfected 
cells and thus will limit the efficacy of the whole therapy. McCormick and 
his group used an approach, which turns the advantage of the tumor cell, 
having a loss of p53-function, into a disadvantage in the process of cellular 
microevolution. 

The theoretical background of this setting is schematically depicted in 
Fig. 2. Adenovirus infection of a normal cell induces p53, which in turn inhibits 
replication of viral genes. The adenovirus EIB 55K binds to and inactivates 
wt-p53, thcreby allowing viral replication. BISCHOFF et al. (1996) constructed 
a mutant group C adenovirus lacking a functional EIB 55K protein. As a con
sequence, this virus (ONYX-0l5) should not be able to replicate in cells car
rying wt-p53. In contrast, tumor cells carrying mutant p53-protein would not 
be able to inhibit viral replication and would subsequently undergo viral lysis. 
A panel of tumor cell lines was tested for sensitivity to cytopathic effects 
induced by infection with ONYX-0l5 as compared to transfection of the wt
adenovirus as positive control. The ONYX-015 virus induced cytolysis com
parable to the wt-vector in all p53-deficient cell lines, including tumor cells of 
the brain, breast, cervix, colon, larynx, liver, lung, ovary, and pancreas. As an 
unexpected finding, however, seven out of ten tumor cell lines without evi
dence of p53 mutations were also sensitive to the ONYX-virus (HEISE et al. 
1997). Some recent reports (ROTHMANN et al. 1998; HALL et al. 1998) doubted 
the selectivity of ONYX-replication, since these groups showed that a func
tional p53 is necessary for efficient cell lysis, illustrating that not all mecha
nisms involved in this process have been fully understood yet. In contrast to 
these in vitro data, preliminary clinical data phase I and phase II trials using 
this vector in head and neck cancer squamous cell carcinoma (HNSCC) show 
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A: normal cell 

onyx-01S/ 

~" 
infection no viral replication cell survival , B: cancer cell 

infection viral replication cell lysis 

Fig.2. Illustration of ONYX-015 infection in cells with wt- and mutant p53. The 
ONYX-015 virus is a group C adenovirus carrying a deletion of the EIB 55 kD protein 
(EIB del). This renders normal cells (A) insensitive for ONYX-015 infection, since this 
protein is needed to inactivate wt-p53. However, cancer cells (B) with inactivating 
mutations of p53 (mut p53) are unable to block viral replication and are thus suscep
tible to the cytopathic effects induced by the virus 

encouraging results (KIRN et al. 1998). Further trials have to look for the 
applicability of this approach in the clinical situation. 

VI. Future Directions 

All p53 gene therapy approaches aiming to restore p53 function are limited 
because they can only be used for locoregional therapy. This limitation is due 
to the fact that the viral vectors expressing wt-p53 used so far do not have any 
specificity for the tumor tissue; extremely high amounts would be needed to 
transfect circulating cells or to use systemic therapy. Efforts to target specific 
cell types have centered on attempts to engineer the natural viral envelope 
proteins of retroviruses to confirm tissue specificity (ANDERSON 1998); 
however the results obtained so far are not sufficient, since engineering of the 
capsid proteins frequently alters the efficient uptake of the virus. 

Currently great efforts are made to develop novel vector constructs for 
efficient delivery and expression of genes. Adeno-associated viruses (AAV) 
are promising because they are non-pathogenic, have a small size, and can also 
target non-dividing cells. Furthermore, they integrate into the host genome 
and have been shown to induce long lasting gene expression. In contrast to 
retroviruses, AAV show preferential integration on the short arm of chromo
some 19, and thus may hold promise for a "safe" integrating virus (ANDERSON 
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1998). Constructs based on recombinant AAV are not immunogenic, since 
most of the viral genome can be deleted without effect on the transduction 
efficiency (BARTLEIT and SAMULSKI 1997). The principle feasibility of the use 
of these vectors for p53 gene therapy has recently been shown (QAzILBASH et 
a1. 1997). Problems which have to be overcome here are the frequent conta
mination with adenoviral particles and producing high titer stocks sufficient 
for transfection in vivo. 

Another virus which has the potential for future gene therapy approaches 
are the lentiviruses. These viruses also belong to the group of retroviruses, but 
can infect dividing and non-dividing cells (VERMA and SOMIA 1997). HIV is a 
well known example of a lentivirus. Editing its sequence renders these con
structs non-pathogenic. Furthermore, these vectors can be produced in higher 
titers compared to retroviruses and they have been shown to induce long term 
expression. 

Besides the engineering of the vector system used, other intriguing 
methods for delivery of p53 have been published by PHELAN et a1. (1998) who 
reported the use of a construct containing a Herpes Simplex Virus (HSV) tegu
ment protein, VP22, together with the wt-p53 gene. The principle is based on 
the observation, that the HSV-1 structural protein VP22 has the remarkable 
property of intercellular transport (ELLIOTT and O'HARE 1997).VP22 protein 
is exported from the cytoplasm of an infected cell and subsequently imported 
by neighboring cells, where it accumulates in the nucleus. It was shown that a 
chimeric protein containing the VP22 in conjunction with the entire p53 coding 
region produces a 90 kDa fusion protein which retains the abilities of the VP22 
protein. Furthermore, it was demonstrated that this protein readily accumu
lates in the nucleus of non-transfected cells in cell mixture experiments and 
these cells subsequently undergo cell cycle arrest and induction of apoptosis. 
The use of an approach like this would hold considerable potential, especially 
for cancer gene therapy. First, use of a vector containing the VP22 protein 
would reach cancer cells which had not transfected directly. In addition the 
use of this protein would probably allow for the design of constantly produc
ing cell lines, which are then given to the patient instead of trying to transduce 
the cancer cell itself, which would have great advantages with respect to fea
sibility and biosafety considerations. 

Besides these efforts to optimize gene transfer of p53 into the cell, there 
are also attempts being made to engineer the normal p53 coding sequence on 
the molecular level in order to obtain an artificial protein with specific func
tions. CONSEILLER et a1. (1998) constructed a p53-derived chimeric tumor 
suppressor gene (CTS1) with enhanced in vitro apoptotic properties. The con
struct contains the core domain of p53 (AA 75-325) and the VP16 transcrip
tion activation domain at the amino terminus as well as an optimized leucine 
zipper for homodimerization at the carboxy terminus. First in vitro data indi
cate that the chimeric protein is able to bind and induce transcription from a 
p53 response element, and that the chimeric protein is as least as functional 
as wt-p53 in the induction of cell cycle arrest and apoptosis. It is an advantage 
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that this protein is not inhibited by mutant p53 as well as the mdm-2 protein. 
Thus, CTS1 could potentially be useful in treating cancers like osteosarcomas, 
which frequently show amplification of the mdm-2 gene (OLINER et a1. 1992). 
The practicality of this very interesting approach in vivo has to be studied in 
detail using animal models. 

E. Summary 
The availability of novel techniques for the rapid and sensitive detection of 
p53 alterations with high throughput will make the detection of p53 alterations 
much easier in the near future. This will enable large scale studies in different 
tumor entities. First clinical data on the feasibility of gene therapy approaches 
targeting mutant p53 are encouraging, showing that this approach can be per
formed in the patient without severe side effects. It will now be a matter of 
larger Phase II and III trials to prove the clinical benefit. Due to the multiple 
changes that have accumulated in malignant tumors, introducing a wt -p53 gene 
will probably not be sufficient for cure of the disease. However, the availabil
ity of an agent specifically targeting a defect in cancer cells is a promising new 
approach and will extend our treatment options for multimodal strategies in 
the fight against malignancies. Future research must focus on the role of this 
kind of therapy in combination with conventional chemotherapy and in the 
situation of minimal residual disease. Here it will be important to develop 
novel kinds of delivery and to achieve sufficient gene transfer, not only locally 
but also in disseminated tumor cells. It will also be interesting to see whether 
the newly discovered p53-homologues are equally potent targets for gene 
therapy, and whether combinations of different gene therapy approaches have 
increased potential in vivo. 
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CHAPTER 10 

Antioxidants: Protection Versus Apoptosis 

Y. DELNESTE, E. ROELANDTS, l-y' BONNEFOY, and P. JEANNIN 

A. Introduction 
Tissue homeostasis is tightly regulated by both proliferation and cell death. 
These processes are crucial in embryogenesis during the development of the 
central nervous system (RAFF 1993; NARAYANAN 1997) and the development 
(VON BOEHMER 1992) and function of the immune system (COHEN and DUKE 
1992). The cell death associated with tissue turnover is called apoptosis or 
"programmed cell death" (PCD) and is distinct from necrosis, which results 
from tissue or cell injury, hypoxia or hyperthermia. Apoptosis is an active 
process requiring cell activation and is characterized by particular morpho
logical and biochemical changes (KERR et aL 1972), such as condensation of 
cytoplasm, membrane blebbing, nucleus segmentation and DNA fragmenta
tion into oligomers of 180-200bp (WYLLIE et al. 1980). 

The crucial role played by apoptosis in regulating a normal homeostasis 
is illustrated in pathologies which are associated with an excessive (graft rejec
tion, AIDS) or with a deficient (autoimmune disease, cancer) cell death. 
Autoimmune diseases result from the failure to regulate autoreactive T cells, 
which can be due to mutations in apoptosis-signaling molecules such as Fas 
(CD95) (FISHER et al. 1995; RIEux-LAUCAT et al.1995). Graft rejection is a con
sequence of the killing of engrafted cells (KABELITZ 1998). Cancer is charac
terized by the absence of death of uncontrolled proliferating cells. While tumor 
cell growth is a multiparameter mechanism, numerous studies have reported 
alterations of apoptosis-regulating molecules, such as mutations in the p53 
tumor suppressor gene, in tumor cells (PFEIFER and DENISSENKO 1998). More
over, the massive CD4+ T cell depletion in HIV-infected patients is induced 
by apoptosis (GROUX et al. 1992). 

Most of our knowledge of the cellular and molecular mechanisms that 
regulate apoptosis comes from the study of the immune system: apoptosis is 
involved in thymic selection (OGASAWARA et al. 1995), peripheral tolerance 
(WANG and LENARDO 1997) and regulation of the outcome of an immune 
response (Ju et al. 1995). Different external signals can induce apoptosis, 
including UV radiation, hypoxia, serum deprivation, and physiological induc
ers such as cytokines, for example, tumor necrosis factor alpha (TNFa) and 
membrane-associated molecules such as Fas ligand (Fas-L), following inter
action with their ligands, TNF-RI (CD120a) and TNF-RII (CD120b), or Fas, 
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respectively. Recent progress has been made in the identification of the intra
cellular signaling pathways responsible for apoptosis, showing that specific 
transduction molecules are responsible for the induction (i.e., FLICE; MUZIO 
et al. 1996) or inhibition (i.e., FLIP; IRMLER et al. 1997) of the apoptotic signal. 
Whatever the nature of the stimulus, signaling finally leads to a cascade of cat
alytic activation of caspases, culminating in apoptosis. Three different and 
non-exclusive biochemical processes have been suggested to be critical for 
apoptosis: cytoplasmic proteases (such as those belonging to the ICE family), 
endonucleases (responsible for the DNA degradation) and oxidative stress. 

Several studies have now clearly demonstrated that the intracellular redox 
status can influence apoptosis: numerous antioxidants, including natural intra
cellular enzymes, such as superoxide dismutase (SOD) or catalase, as well as 
chemical compounds with antioxidant properties, such as N-acetyl-L-cysteine 
(NAC) or dithiothreitol (DTT), can prevent apoptosis of different cell 
types. Antioxidants are of particular interest since some of them, such as 
vitamin C or NAC, are poorly toxic and usually used in humans. The aim of 
this review is: (1) to summarize arguments in favor of the redox regulation 
of apoptosis, and (2) to report data concerning the protective mechanisms of 
antioxidants. 

B. Apoptosis and the Cellular Redox Status 
Oxygen plays a key role in the metabolism of aerobic cells. The generation of 
highly reactive oxygen species (ROS), such as singlet oxygen (02), hydrogen 
peroxide (H20 2), the superoxide anion (02-) and the hydroxyl radical (OH), 
is associated with respiration. ROS are important in many physiological 
processes such as signal transduction. They can act as second messengers 
(SCHRECK and BAEUERLE 1991a) or in innate immunity (BARJA 1993). Indeed, 
ROS produced by neutrophils and monocytes/macrophages can kill 
pathogens. Nevertheless, ROS are highly reactive molecules and can, thus, 
cause extensive damages to macromolecules, including DNA. Different cellu
lar redox systems have thus been created during evolution to protect the 
intracellular reducing status in the face of the highly oxidizing extracellular 
environment. These systems involve enzymes, such as glutathione peroxidase, 
catalase and superoxide dismutase, and chemical compounds (carotenoids, 
a-tocopherol). Among these, reduced glutathione (OSH) is one of the most 
important antioxidants in the soluble compartment of the cell while a
tocopherol is mainly located in the membrane. 

Since several studies have demonstrated that the production of ROS and 
the modulation of the intracellular redox status participate in the apoptotic 
process (reviewed by BUTTKE and SANDSTROM 1994; POWIS et al. 1997), differ
ent authors have reported that, even if antioxidants protect some cell types 
against apoptosis, ROS are not involved in the apoptotic process. That oxida-
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tive stress is thought to be involved in the apoptotic process results essentially 
from the observation that physiological (glutathione) and nonphysiological 
reducing agents (NAC, DTT) can prevent cell death induced by oxidants 
(H20 2) and membrane molecule transducing apoptotic signals, such as Fas or 
TNF -R. In this section, we summarize the pro and con arguments regarding 
the role of ROS in apoptosis. 

I. Exogenous ROS or Oxidants can Trigger Apoptosis 

Numerous data have demonstrated that exogenous ROS or oxidants can 
induce apoptosis of different cell types and thus argue in favor of a direct 
role of ROS in cell death. H20 2 produced by monocytes/macrophages and neu
trophils (oxidative burst) can trigger the death of pathogens as well as 
bystander cells (SZATROWSKI and NATHAN 1991). Exogenous H20 2 induces in 
vitro apoptosis of different types of cells including tumor cell lines (LENNON 
et al. 1991), muscle cells (STANGEL et al. 1996), monocytes (LAOCHUMROONVO
RAPUNG et al. 1996), neurons (KAMATA et al. 1996) and mature effector T cells 
(ZETTL et al.1997). H20 r induced cell death can be inhibited by catalase, SOD, 
or desferrioxamine, and can exert its effect directly or via the generation of 
hydroxyl radical (OR") (LI et al. 1997). In addition to H20 2, nitric oxide (NO) 
also induces apoptosis of macrophages and monocytes (ALBINA et al. 1993). 
In a similar manner, UV and X-ray irradiation induce apoptosis through the 
generation of ROS. The antineoplastic drugs, doxorubicin (BENCHEKROUN et 
al. 1993) or ether-linked lipids (DIOMEDE et al. 1994), can induce apoptosis by 
eliciting the formation of ROS. Oxidizing agents such as diamide, which 
induces sulfhydryl oxidation, induces apoptosis ofT helper lymphocytes at 200 
pM and necrosis at 400 pM (SATO et al. 1995). The direct exposure of cells to 
oxidants increases intracellular levels of Ca2+, depletes ATP, and induces the 
oxidation of NADPH, glutathione and lipids. In a similar manner, oxidized low 
density lipoproteins and lipid hydroxyperoxides such as 15-hydroperoxye
icosatetraenoic acid (15HPETE) induce apoptosis (ESCARGUEIL et al. 1992). 

II. Apoptosis is Associated with an Alteration of the Redox Status 

Different experimental evidence suggests that the generation of ROS can be 
involved in most types of cell death: (1) antioxidants can protect or delay apop
to sis induced by stimuli other than oxidants; and (2) the modulation of endoge
nous antioxidants regulates cell sensitivity to apoptosis. 

In agreement with the hypothesis that apoptosis is associated with a 
decrease in antioxidant defenses, STEFANELLY et al. (1995) reported that 
glucocorticoid-induced thymocyte apoptosis is reduced when oxygen tension 
is lowered below 5%, suggesting that ROS generation could also be implicated 
in apoptosis induced by a nonoxidative stimulus. Dexamethasone-induced 
apoptosis is associated with a selective decrease in the mRNAs encoding SOD, 
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catalase, glutathione peroxidase or thioredoxin, the molecules responsible for 
the antioxidant defense. Primary cultured sympathetic neurons (PC12) die by 
apoptosis when deprived of nerve growth factor (NGF). Addition of NGF 
increases the levels of catalase and glutathione peroxidase, suggesting that 
growth factor withdrawal may involve a down-regulation of antioxidant 
defenses, resulting in an increase of ROS sensitivity produced during normal 
metabolism. Pre-apoptotic and apoptotic cells have lower GSH, protein 
sulfhydryl and a-tocopherol than do normal cells. Inhibition of GSH neo
synthesis using buthionine sulfoxymide (BSO), an irreversible inhibitor of r
glutamyl cysteine synthetase (HUANG et al. 1988), the enzyme responsible for 
glutathione synthesis, is unable to induce cell death but renders cells more sus
ceptible to oxidative stress-induced apoptosis (ZHONG et al. 1993). The anti
Fas mAb-induced cell death of lurkat cells is associated with a rapid efflux of 
intracellular levels of GSH with no increase of oxidized glutathione (GSSG), 
and survival is prolonged when cells are treated with GSH. The efflux of 
GSH level may thus be responsible for a breakdown in the maintenance of a 
reducing environment (VAN DEN DOBBELSTEEN et al. 1996). Primary cultured 
sympathetic neurons undergo apoptosis when deprived of NGF. Injection of 
Cu/Zn SOD, or transfection with the cDNA encoding for these molecules a 
few hours before deprivation, delays apoptosis (GREENLUND et al.1995). Trans
fection with MnSOD protects tumor cells against cytostatic and cytotoxic con
centrations ofTNF a or IL-1 a and against chemical (doxorubicin) and physical 
(irradiation) apoptotic inducers, suggesting that resistance to apoptosis is 
associated with the intracellular level of antioxidant defense (HIROSE et al. 
1993). In a similar manner, dexamethasone-induced cell death in thymomas 
is associated with an early decrease in the regulated expression of the pri
mary antioxidant defense enzymes prior to chromatin condensation (BRIEHL 
et al. 1995). 

III. The Antioxidant Activity of the Apoptosis Inhibitor 
Molecule BcI-2 

One of the most important arguments in favor of ROS involvement in apop
tosis comes from the observation that Bc1-2, one of the most potent anti
apoptotic intracellular molecules, has antioxidant activity (HocKENBERY et al. 
1993; Kane et al. 1993). Bc1-2 was originally described associated with the 
t(14;18) translocation (q32;q21) in B cell lymphomas (KoRSMEYER 1992). Bel-
2 is homologous to ced-9, a cell-death gene in the nematode worm Caenorhab
ditis elegans. Interestingly, ced-9 is part of a bi-cistronic gene co-encoding a 
protein similar to cytochrome b560 of complex II from the mitochondrial res
piratory chain, suggesting that Ced-9 may have redox or ROS-regulatory activ
ities (HENGARTNER and HORVITZ 1994). The evidence for involvement of Bc1-2 
in regUlating cell death comes from the observation that Bc1-2 knockout mice 
show apoptosis of thymocytes and spleen cells (VEIS et al. 1993). Due to its 
homology to Ced-9, Bc1-2 has been also suspected to have redox regulatory 
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properties and HOCKENBERRY et al. (1993) have shown that Bel-2 is an antiox
idant: overexpression of Bel-2 suppressed lipid peroxidation, which is induced 
by HzOz or t-butyl hydroperoxide, and protected against HzOz- and mena
dione-induced oxidative apoptosis. In a similar manner, overexpression of Bel-
2 in the GTI-7 neural cell line prevented necrosis resulting from glutathione 
depletion, which is normally associated with the generation of ROS (KANE et 
al. 1993). The treatment of cells with TNFa is followed by a decrease of Bel-
2 expression which precedes cell death (CHEN et al.1995). Moreover, the trans
fection of cells with Bel-2 renders breast carcinoma cells totally resistant to 
TNFa- or Fas-mediated apoptosis (JAATTELA et al. 1995). Similar results were 
observed with Bel-XL, a member of the Bel-2 family of apoptotic regulatory 
molecules, which protects WEHI-231 B cells from oxidant-induced apoptotic 
signals such as serum deprivation or gamma irradiation (FANG et al. 1995). 

IV. Are ROS Really Involved in Apoptosis? 

While several studies have reported the involvement of ROS in cell death 
(apoptosis or necrosis), many authors have presented evidence indicating that 
ROS are not involved in the apoptotic process. Cell death can occur at low 
oxygen tension where ROS are unlikely to be produced: apoptosis induced 
by different stimuli, such as anti-Fas mAb, IL-3 withdrawal (JACOBSON and 
RAFF 1995), dexamethasone and serum deprivation (MUSCHEL et al. 1995), can 
occur in near-anaerobic conditions. Under these conditions, apoptosis already 
occurred in response to ROS-generating compounds. Moreover, hypoxia can 
also induce apoptosis of the T lymphoma cell line WEHY7.1 (MUSCHEL et al. 
1995). It is also interesting to note that ROS are not involved in all types of 
cell death: apoptosis induced via Fas activation does not require the genera
tion of ROS (SCHULZE-OSTHOFF et al.1994). LEE and SHACTER (1997) reported 
that Bel-2 did not protect Burkitt's lymphoma cells against HzOz-induced 
apoptosis although it protected against ionomycin-induced cell death. 
Together, these results demonstrate that ROS can induce apoptosis but are 
not strictly required for the process of cell death. Moreover, the potential 
involvement of ROS in apoptosis can also be dependent on the nature of the 
target cell. Indeed, NAC protects endothelial cells but not L929 tumor cells 
from TNFa-mediated cell death (SCHRODER et al. 1993). 

Collectively, these data suggest that (1) ROS can be generated as a result 
of some apoptosis-inducing signals (such as TNFa) but not of others (Fas 
triggering) (HUG et al. 1994; SCHULZE-OSTHOFF et al. 1994), and (2) ROS are 
generated in some cell types but not others. As a consequence, it is now 
widely accepted that apoptosis is a redox-regulated mechanism, explaining 
why antioxidants can protect against apoptosis induced by several different 
stimuli. 
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c. Anti-Apoptotic Properties of Antioxidants: 
Mechanisms of Action 

I. ROS Scavenging and Reducing Activities of Antioxidants 

The main physiological function of antioxidants is to scavenge ROS, which can 
be involved in cell death of some cell types (JACOBSON and RAFF 1995). The 
production of ROS is one of the intracellular mechanisms induced by TNFa 
and antioxidants can prevent the TNFa-mediated cell death of different cell 
types. The antioxidants cysteine (LEE et al. 1995) and catalase (SANDSTROM 
and BUTTKE 1993) are spontaneously secreted by cells that inhibit apoptosis. 
Thioredoxin, an important intracellular thiol antioxidant (WOLLMAN et al. 
1988) protects glial cells during re-perfusion after ischemia (TOMIMOTO et al. 
1993), delays the onset of glucocorticoid-induced apoptosis of thymocytes 
(SLATER et al. 1995; WOLFE et al. 1994) and protects U937 cells against TNFa
induced apoptosis (MATSUDA et al. 1991). Vitamin E and catalase, two potent 
antioxidants, prevent dexamethasone-induced apoptosis (BAKER et al. 1996). 
Oxidative stress may lead to the formation of oxidized lipids in the cell 
membrane (HALLIWELL et al. 1988), which are potent inducers of apoptosis 
(SANDSTROM et al. 1994; ESCARGUEIL et al. 1992) and are suspected to be 
involved in TNFa-mediated cell death (LARRICK and WRIGHT 1990). 

The protective scavenging effect of antioxidants has also been sus
pected for the treatment of some neurodegenerative diseases, particularly in 
Alzheimer's disease (reviewed by DAVIS 1996). The generation of senile 
plaques is associated with the cytotoxic properties of j3-amyloid (j3A4) 
(YANKNER et al. 1990; BEHL et al. 1992), which induces the production of ROS. 
While the mechanism responsible for ROS production in j3A4-induced apop
tosis remains unclear (alteration of antioxidant defenses), it is interesting to 
note that ROS can be produced by j3A4 (HENSLEY et al. 1994). Antioxidants 
(such as vitamin E) have been shown to prevent j3A4-induced cell death (BEHL 
et al. 1992, 1994; MATTSON and GOODMAN 1995). In a similar manner, the trans
fection of catalase or glutathione peroxidase protects PC12 cells against j3A4-
induced apoptosis (SAGARA et al. 1996). 

II. Replenishment of Intracellular GSH Levels 

Cells must maintain a normal intracellular concentration of GSH, since it par
ticipates in numerous important physiological processes such as maintenance 
of the redox status, DNA and protein synthesis, drug detoxification, amino acid 
transport, and acts as a cofactor for several enzymes. In a normal situation, the 
ratio of GSH to GSSG is higher than 20. For example, a normal level of GSH 
correlates with the capacity of peripheral blood mononuclear cells to enter the 
cell cycle: low levels of GSH are associated with a decrease in cell cycle pro
gression from G1 to S phase (IWATA et al. 1994). Increasing intracellular levels 
of GSH by using NAC, a precursor of GSH neosynthesis, or GSH ethyl ester, 
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protects human peripheral blood T cells against Fas-mediated apoptosis (DEAS 
et al. 1997) as well as protecting against TNFa-mediated cell death of oligo
dendrocytes and L929 fibroblasts (MAYER and NOBLE 1994). The protective 
effect was (1) inhibited by BSO, demonstrating that maintaining the concen
tration of GSH is an important protective pathway against apoptosis, and (2) 
was observed with all the thiol-containing compounds used (cysteine, capto
pril, D-penicillamine and 2-mercaptoethanol) but not with non-thiol antioxi
dants (catalase, vitamin E), suggesting that the protection was not related to 
the scavenging of ROS. The stimulation of Jurkat cells with an agonistic anti
Fas mAb induces a rapid decrease of intracellular levels of GSH with no 
increase of GSSG, suggesting that apoptosis is associated with a rapid efflux 
of GSH (CRIBA et al. 1996). This efflux is responsible for the alteration of the 
intracellular reducing environment and can thus affect the scavenging of ROS. 
The survival of cells is prolonged when they are treated with permeable 
GSH-diethyl esters, which maintain normal intracellular levels of GSH. In a 
similar manner, cysteine starvation inhibits DNA synthesis and the cytotoxic 
activity of T cell clones; this mechanism can be mimicked by BSO (LIANG 
et al. 1991). In addition to protecting T cells against apoptosis, several 
papers have reported that thiols, and especially NAC, enhance T cell functions 
and/or T cell growth (LIANG et al. 1991; SMYTH 1991; EYLAR et al. 1993; YIM 
et al. 1994). 

The crucial role played by thiol antioxidants in protecting against apop
to sis has been clearly illustrated in HIV patients: these subjects, even when 
asymptomatic, present low levels of extracellular cystine and cysteine (ECK et 
al. 1989). Various authors have reported that (1) low levels of GSH (STAAL et 
al. 1992), in association with increased levels of GSSG (AUK RUST et al. 1995), 
follow HIV infection and promote HIV replication (STAAL et al. 1990); and (2) 
that disturbance of glutathione redox status is associated with a selective 
depletion of native CD4+ T cells (STAAL et al. 1992; AUKRUST et al. 1996). More
over, GSH deficiency has been associated with impaired survival in HIV 
disease (ROEDERER et al. 1991). Such alterations of the glutathione redox status 
have also been recently noted in synovial T cells of patients suffering from 
rheumatoid arthritis (MAURICE et al. 1997). 

III. Thiol Antioxidants Induce the Shedding of Membrane Fas 

Numerous studies have shown that antioxidants protect against Fas-mediated 
apoptosis. However, Fas-mediated apoptosis is not dependent on ROS pro
duction (HUG et al. 1994) and can act independently of extracellular Ca2+ 
(ROUVIER et al. 1993), suggesting that the ROS scavenging and metal ion 
chelating properties of antioxidants are not responsible for this protective 
effect. Moreover, NAC does not modulate the expression of the anti-apoptotic 
factor Bcl-2 (unpublished personal observation). Based on the role played by 
Fas and TNF-R in transducing the apoptotic signal, we have evaluated whether 
thiol antioxidants may directly affect their expression. 
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Molecules belonging to the NGF/TNF-R family playa crucial role in 
transducing an apoptotic signal following binding with their specific ligands. 
Among these molecules, Fas (CD95) has been extensively studied. Fas is a 48 
kDa cell surface glycoprotein expressed by several cell types, including imma
ture thymocytes and activated T cells. Fas transduces a death signal when trig
gered with an agonistic anti-Fas mAb, or following interaction with Fas-L. The 
couple Fas-Fas-L is important in maintaining homeostasis within the immune 
system and in preventing autoimmune diseases (KRAMMER et al. 1994), as 
indicated by animal models. Indeed, Fas- (lpr) and Fas-L-deficient mice (gld) 
present an excessive peripheral T cell proliferation and autoimmune disorders. 
TNF a is a pleiotropic cytokine expressed as a membrane protein (25 kDa); 
a soluble (17kDa) form results from the shedding of the membrane form. 
In addition to proinfiammatory properties, TNFa induces cell death of TNF
R expressing cells. TNFa-induced signaling is mediated by two receptors, 
TNF-RI (p55, CD120a) and TNF-RII (p75, CD120b). Soluble TNF-R are 
generated by shedding of the membrane forms and neutralize the activity of 
TNFa. 

We have demonstrated that thiols downregulate Fas membrane expres
sion on human T cells (DELNESTE et al. 1996). Fas expression was induced 
in peripheral blood T cells either by stimulation with anti-CD3 mAb or by 
culture in a medium containing a low concentration of fetal calf serum. The 
decrease of Fas expression was dependent on the concentration of NAC 
(significant with 5mM and maximal with 20mM) and was complete by 4h of 
incubation. Such an effect was only seen with the sulfhydryl-containing com
pounds tested (NAC, GSH, L- and D-cysteine, DTT and mercaptopropionic 
acid, MPA), but not with S-substituted (S-methyl cysteine, methionine) or oxi
dized thiols (GSSG), or with antioxidants lacking a thiol group (catalase, SOD, 
desferrioxamine and ascorbic acid). These data demonstrate that the thiol
induced decrease of Fas (1) requires a free SH group, (2) is not associated with 
the antioxidant properties of thiols and (3) does not require GSH neosyn
thesis. Interestingly, an NAC-induced decrease of Fas was correlated with the 
release of the shedded form. Indeed, an immunoreactive form of Fas was 
detected in the culture supernatants by ELISA and western blotting. As a con
sequence, thiol-treated T lymphocytes were resistant to anti-Fas mAb-induced 
cell death. Taken together, thiols protect against Fas-mediated apoptosis via 
both their own anti-apoptotic properties and their ability to induce the shed
ding of Fas. 

While inducing the shedding of membrane Fas, thiols increase both mem
brane TNF-RI and TNF-RII expression on activated human T lymphocytes 
(DELNESTE et al.1997).All the free thiol-containing compounds tested induced 
an early dose-dependent increase of membrane TNF-R on activated cells, 
suggesting that thiols may inhibit an enzyme responsible for their shedding. 
Thiols also increased the levels ofTNF-R mRNA later on, which could account 
for the late increase of membrane TNF-R expression observed. Thus, it is 
tempting to speculate that, under particular conditions (i.e., activation of the 
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target cells), thiols may increase the sensitivity to TNFa-induced cell death by 
increasing TNF-R expression. It is interesting to note that thiols may have 
opposite effects on the TNF-R-mediated cell death since (1) they increase 
TNF-R expression and thus the sensitivity to TNFa-induced apoptosis, and (2) 
they protect target cells against apoptosis. The thiol-mediated regulation of 
TNF-R expression has also been previously reported: ZANG and AGGARWAL 
(1994) showed that thiol-modifying reagents such as diamide and iodoac
etamide induced the shedding of TNF-RI and TNF-RII from a variety of cell 
types of both myeloid and epithelial origin. 

We have previously reported that thiol antioxidants (GSH, cysteine, NAC, 
DTT) potentiate the activation-induced membrane TNFa expression on 
human peripheral blood T cells (DELNESTE et al. 1997). In a similar manner, 
BAUER et al. (1998) recently showed that the antioxidants DTT and pyrroli
dine dithiocarbamate potentiate the expression of Fas-L on phorbol myristate 
acetate plus ionomycin-stimulated Jurkat cells. Both these studies clearly 
demonstrate that antioxidants may have opposite effects on the apoptotic 
process since they can protect target cells, but may increase the killing activ
ity of effector cells. 

IV. Thiol Antioxidants can Modulate the Generation 
of Second Messengers and the Expression-Activation 
of Transcription Factors 

1. Modulation of Signaling Molecules 

Antioxidants have been reported to modulate the generation of second mes
sengers and the activation of transcription factors which are involved in the 
signaling pathways of apoptosis. 

The apoptosis-signal regulator kinase (ASK) 1 belongs to the mitogen
activated protein kinase family whose molecules are involved in apoptotic 
signaling (FANGER et al. 1997): overexpression of ASK 1 induces apoptosis of 
epithelial cells cultured in low serum (IcHIJO et al. 1997). SAITOH et al. (1998) 
have reported that thioredoxin is a potent inhibitor of ASK1: the treatment 
of L929 cells with the apoptosis-inducing stimuli HzOz or TNFa activates 
ASK1 which is inhibited by NAC, suggesting a redox regulation of ASKl. 
Antioxidants can prevent apoptosis, at least in part, by inhibiting the 
oxidation-induced dissociation of thioredoxin from ASKl. 

As mentioned above, T cells from HIV-infected subjects have impaired 
biological functions and thiol antioxidants have been reported to protect these 
cells against activation-induced cell death. In a recent study, STEFANOVA et al. 
(1996) have shown that, in T cells from HIV-infected patients, an oxidation of 
the thiol groups is responsible for a conformational alteration of p56kk , Fyn 
and ZAP70, three molecules involved in the TCR signaling. The modifications, 
which impair the T cell functions, can be reversed by antioxidants such as 
DTT. The authors suggested that modification of the sulfhydryl groups might 
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be related to an alteration of the redox status associated with HIV infection. 
Interestingly, a similar decrease of CD3?, chain can be also observed in cancer 
patients (NAKAGOMI et al. 1993; GUNJI et al. 1994) but can be recovered after 
treatment with NAC (OTSUJI et al. 1996). Taken together, all these studies 
demonstrate that the oxidative stress induces T cell dysfunction through 
reduction of the CD3?, chain and/or the inactivation of kinases and that these 
modifications can be reversed by antioxidants. 

2. Modulation of Transcription Factors 

Antioxidants have been shown to modulate the activity of the transcription 
factors NF-KB and AP-1 which are involved in the induction of the apoptotic 
process. 

In non-stimulated cells, NF-KB is composed of two heterodimeric mole
cules (pSO and p7S) which form a complex with the inhibitory molecule IKE. 
Activation induces the phosphorylation and proteolysis of IKB, resulting in its 
dissociation from NF-KB (BEG et al. 1993). As a consequence, NF-KB is acti
vated and trans locates to the nucleus. The involvement of NF-KB in cell death 
is suggested by different observations: serum starvation, which induces apop
tosis of 293 cells, is associated with an activation of NF-KB (GRIMM et al. 1996), 
and the neurotoxic A beta is a potent activator of NF-KB in primary neurons 
(KALTSCHMIDT et al.1997). More recently, a direct role for NF-KB in the TNFa
mediated cell death has been clearly evidenced by using NF-KB-deficient mice 
in which TNFa-induced apoptosis is impaired (BEG and BALTIMORE 1996). 
Efficient activation of NF-KB-dependent genes following stimulation with 
PMA, IL-1 or TNFa requires an appropriate intracellular oxidized redox 
status (ISRAEL et al. 1992). Physiological concentrations of H 20 2 induce NF
KB specific DNA binding and transactivating activity in Jurkat cells. The 
antioxidants cysteine, NAC, j3-mercaptoethanol, nordihydroguaiaretic acid 
(NDGA), vitamin E analogs and a-lipoic acid inhibit the activation of NF-KB 
(STAAL et al. 1990; SCHRECK et al. 1991b; ISRAEL et al. 1992; SUZUKI et al. 1992; 
SUZUKI and PACKER 1993). The TPA-induced activation of NF-KB is inhibited 
by BSO, suggesting that antioxidants increase the activity of NF- KB by inhibit
ing GSSG formation (MlHM et al. 1995). Moreover, a partial depletion in intra
cellular GSH inhibits the activation and nuclear translocation of NF- KB in the 
human T cell line MOLT4 (MlHM et al. 1995). Nevertheless, different studies 
have reported that oxidizing conditions inhibit the DNA binding of NF-KB 
which can be recovered after treatment with j3-mercaptoethanol (TOLEDANO 
and LEONARD 1991). In a similar manner, thioredoxin potentiates the expres
sion of a NF-KB-linked reporter gene. All these results demonstrate that NF
KB is controlled at two levels: (1) the activation and nuclear translocation 
involves ROS and can be inhibited by thiol antioxidants such as NAC, and (2) 
the DNA binding activity of NF-KB is inhibited by oxidizing agents such as 
diamide and potentiated by thiol antioxidants (MlHM et al.199S). While antiox
idants can interfere directly with the molecule, others have suspected they can 
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modulate the activity of tyrosine kinase and phosphatases within the NF-/(B 
signal transduction pathway (ANDERSON et al. 1994). 

The transcription factor AP-l is comprised of two molecules, lun and 
Fos. The potential involvement of AP-1 in apoptosis results, essentially, from 
the observation that an AP-1 DNA binding site maps to a negative-response 
region in the promoter of the oncogene c-myc (SCHRIER and PELTENBURG 
1993), the expression of which has been associated with the initiation of T cell 
hybridoma apoptosis (SRI et al. 1992). The DNA binding and transactivation 
of AP-1 is induced by H20 2 (DEVARY et al. 1991). Moreover, treatment of cells 
with the antioxidant PDTC and the expression of thioredoxin activate AP-1 
(MEYER et al. 1993), which could interfere with the expression of c-myc. 

D. Conclusions and Therapeutic Perspectives 
Among the different molecules able to protect mammalian cells against apop
to sis, antioxidants are one of the most important groups because (1) they 
protect against a wide variety of apoptosis-inducing signals (chemical, physi
cal and physiological), and (2) they protect different type of cells, irrespective 
of their function or differentiation status. As such, the in vivo biological prop
erties of antioxidants with regard to cell viability and protection against apop
tosis have been extensively reported in the literature. It is important to note 
that the actual concept is that apoptosis requires an alteration of the intracel
lular redox status to be effective, which can be reverted by the antioxidants. 
More recently, several studies, focused on defining more precisely the cellular 
and molecular mechanisms responsible for the protective effects of antioxi
dants, showed that antioxidants can modulate the function of different crucial 
pathways required for the transduction of the apoptotic signal, such as trans
duction molecules, second messengers and transcription factors. 

As a consequence, antioxidants, and more precisely, the thiol antioxidants 
(due to their low toxicity) have been proposed for the treatment of patients 
suffering from pathologies associated with a disturbance of the redox status 
including AIDS (DROGE et al. 1992), cancer, Alzheimer's disease and amy
otrophic lateral sclerosis (characterized by a motor neuron death resulting 
from a mutation encoding for Cu/Zn SOD) (HACK et al. 1997). Interestingly, 
NAC has been shown to restore a normal level of CD4 + T lymphocytes in HIV 
patients, suggesting that this antioxidant may be useful in the treatment of 
AIDS. Taken together, all the in vitro and in vivo data show that antioxidants 
appear as useful drugs for the treatment of pathologies characterized by an 
abnormal apoptosis associated with an alteration of the redox status. 
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CHAPTER 11 

Reactive Oxygen Species and Apoptosis 

G. BAUER, S. DORMANN, 1. ENGELMANN, A. SCHULZ, and M. SARAN 

A. Introduction 
There is increasing evidence for the involvement of reactive oxygen species 
(ROS) in the regulation of central biological functions. Interaction between 
certain ROS and the generation of highly reactive ROS at desired locations, 
as well as their modulation by antioxidants and a variety of enzymes, warrant 
a hitherto unexpected degree of efficiency and specificity. ROS are involved 
in triggering and mediating apoptosis under physiological and pathophy
siological conditions. This paper summarizes the major interdependencies of 
ROS and their physiological sources, and critically reviews the data on the evi
dence for the role of ROS during induction and execution of apoptosis. The 
focus is on the action of superoxide anions, hydrogen peroxide, hydroxyl rad
icals, hypochlorous acid, nitric oxide and peroxynitrite. Glutathione represents 
one of the key elements during the regulation of apoptosis. It balances against 
ROS created by multiple signaling pathways, enzymatic reactions or mito
chondria, and it inhibits sphingomyelinase, the key enzyme for the generation 
of ceramide. This second messenger is intrinsically interwoven with the gen
eration of ROS and with activation of execution-caspases. Mitochondria are 
both the target and the source of ROS during induction and execution of apop
tosis. The control of the mitochondrial permeability transition pore is there
fore of central importance for the regulation of apoptosis. Tumor necrosis 
factor induces apoptosis through a versatile use of ROS. Similarly, ROS are 
involved in Apo/Fas-triggered or p53-mediated apoptosis at several distinct 
and synergistically acting steps. Direct apoptosis induction by TGF-beta 
depends on the action of ROS. Intercellular and intracellular ROS signaling 
is the basis for intercellular induction of apoptosis, a recently discovered 
system for the control of oncogenesis. It is based on specific apoptosis induc
tion in transformed cells by their non transformed neighbors. Superoxide 
anions released from transformed cells are the key for specific apoptosis 
induction. During intercellular signaling, a myeloperoxidase-analogous 
enzyme converts hydrogen peroxide (generated through dismutation of super
oxide anions) into hypochlorous acid. This compound reacts with superoxide 
anions at the membrane of the transformed cells to form the ultimate apop
tosis-inducing hydroxyl radical. The limited diffusion pathway of superoxide 
anions and the extreme reactivity of hydroxyl radicals ensure that apoptosis 
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induction is restricted to transformed cells. The same signaling principle seems 
to be used when nitric oxide, a long-ranging signal is converted to the reactive 
peroxynitrite by superoxide anions. These data indicate that natural antitumor 
mechanisms utilize similar signaling principles for specific apoptosis induction 
in transformed cells. 

B. Reactive Oxygen Species: Shotgun or Precision Tool? 
Oxygen radicals that arise from the disintegration of water after adsorption 
of ionizing radiation have originally been the main focus of radiation research. 
After it became clear that some of these species also play important roles in 
biological systems, the acronym reactive oxygen species (ROS) was introduced 
to encompass a much wider spectrum of reactive species. The term is now used 
for short-lived entities such as hydroxyl (-OH), alkoxyl (RO·) or peroxyl 
(ROO·) radicals, for some radical species of medium lifetime such as super
oxide (Oz~) or the nitroxyl radical (NO·) (also termed nitric oxide) and also 
includes non-radical end products like hydrogen peroxide (HzOz), organic 
hydroperoxides (ROOH) and hypochlorous acid (HOCI), and in some respect 
also peroxynitrite, the cross-product of NO· and Oz~. In a broader sense, those 
valency states of enzymes that use oxygen or hydrogen peroxide to bring the 
inactive metal in some activated form (i.e., ferryl-perferryl states of peroxi
dases, cytochrome P-450 enzyme, ribonucleotide reductase) may also be sub
sumed under the header ROS even though they do not exactly comply with 
the idea of being freely diffusible entities. For radio biologists, the destructive 
nature of ROS through interaction with cellular macromolecules, especially 
DNA, seemed to be of central importance. Therefore, it was not astonishing 
to find out that ROS were used by phagocytic cells for antimicrobial action, 
an effect that required specific recognition of the target by the phagocyte, but 
no obvious need for specific and balanced reactions during target destruction. 
Already in the late 1980s SARAN and BORS (1989) postulated the hypothesis 
that ROS may act as chemical messengers rather than being merely destruc
tive. This hypothesis was later verified, when it was shown that ROS may also 
be involved in signaling pathways (WOLIN 1996; SUZUKI et al. 1997a; JORDAN 
and IYENGAR 1998; LEE et al. 1998). Moreover, they act as specific activators 
or in activators of enzymes (YAO et al. 1996; Lr et al. 1995; ERMACORA et al. 1992; 
1994; WITTUNG and MALMSTROM 1996; SAARI et al. 1992), ion channels (Rup
PERSBERG et al. 1991), receptors (COFFER et al. 1995; KNEBEL et al. 1996; HUANG 
et al. 1996), cytokines (BARCELLOS-HoFF et al. 1996) or other regulatory mol
ecules such as transcription factors (SCHRECK et al.1991). The basis for specific 
ROS action lies in the ability of the cells to regulate their synthesis or release 
(e.g., of O2"'" by NADPH oxidase), to modulate their reactions through specific 
enzymes (e.g., formation of hydrogen peroxide from superoxide anions 
through SOD; generation of HOCI from hydrogen peroxide and chloride 
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through myeloperoxidase and related enzymes), and to counterbalance their 
action through antioxidants (like reduced glutathione) or enzymes (like cata
lase or SOD). The central secret for specific ROS action in biological systems 
seems, however, to depend on the right site of synthesis and the controlled 
conversion of less reactive species with a longer range of action to highly reac
tive species with a short range of action at the desired location. This principle 
- relevant for the understanding of the specific role of ROS - can be illus
trated by two recent papers dealing with the activation of latent TGF-beta 
(BARCELLOS-HoFF et al. 1996) or with the delicate balance of ROS during 
phagocyte antimicrobial action (SARAN et al. 1999). 

TGF-beta is involved in a multitude of biological functions. It is released 
from cells as an inactive complex consisting of a large latency-associated 
protein (LAP) and the smaller cytokine. A change in conformation of the LAP 
and subsequent release of the smaller cytokine leads to its activation. Con
formational change can be achieved by pH-shock, heat, protease cleavage or 
interaction with the carbohydrate moiety (summarized in HAUFEL et al.1999). 
The work of BARCELLOS-HoFF et al. (1996) showed that ROS can also mediate 
specific activation. Their model implies that relatively nonaggressive ROS 
members, form highly reactive hydroxyl radicals. These may oxidize sulfhydryl 
groups of cysteines and, thus, lead to a conformational change of the mole
cule, which is required for activation. Accordingly, site-specific generation of 
highly reactive and therefore short-ranged ROS represents an efficient and 
specific modulation of protein conformation with significant regulatory 
consequences. 

Analogous ideas have recently been proposed for the scenario of phago
cyte interaction with bacteria (SARAN et al. 1999). The specific task of the 
phagocyte is to perform an aggressive ROS attack on the microbe without 
damage to its own cellular membranes. This is achieved by the discharge of 
superoxide anions through a membrane-associated NADPH oxidase. The 
superoxide anions within the phagosome may either form hydrogen peroxide 
or remain for a while as superoxide anions. The concentrations of these two 
relatively nonaggressive members of the ROS family are too low to induce 
direct damage of either the microbe or the cell membrane. Concomitantly, 
myeloperoxidase released into the phagosome binds to bacteria and synthe
sizes hypochlorous acid using hydrogen peroxide and chloride anions. The 
binding of myeloperoxidase to the bacterium ensures that HOCI is synthe
sized where it is needed. HOCI is not the ultimate toxic substance, however. 
Highly reactive hydrogen radicals are produced through the interaction of 
hypochlorous acid with superoxide anions, as the phagosome is small enough 
to allow migration of free superoxide anions from the phagocytic membrane 
to the microbe. This interplay illustrates a complex and fascinating interaction 
of different members of the ROS family, based on their different reactivity 
and range of action, allowing an efficient defense system without the danger 
of damage to the effector cell. 
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C. Interdependencies of ROS 

Several recent reviews on the chemistry of ROS may be used for further ref
erence (WINTERBOURN 1995a, 1995b; HAMPTON et al. 1998; SARAN et al. 1998). 
Here we summarize only the major interdependencies of the various species 
which are essential for the understanding of the role of ROS during induction 
of apoptosis. 

Superoxide anions are mild oxidants but may also reduce compounds of 
adequate reduction potential, such as cytochrome c, for example. Their chem
ical half-life is unusually long for a radical and results in a diffusion path length 
of a few micrometers, i.e., of the order of magnitude of single cells (SARAN and 
BORS 1994). It is conceivable that superoxide anions pass through cellular 
membranes after reaction with protons. Superoxide anions dismutate sponta
neously or are driven by superoxide dismutase to form hydrogen peroxide, an 
oxidant that readily interacts with thiols. Hydrogen peroxide and chloride ions 
serve as substrates for myeloperoxidase, lactoperoxidase or eosinophilic 
peroxidase to form hypochlorous acid. In the presence of Fe++ or Cu++ ions, 
hydrogen peroxide forms hydroxyl radicals through the Fenton reaction 
(WINTERBOURN 1995b). 

Hydroxyl radicals represent the most reactive ROS, readily causing 
oxidation of thiols or lipid peroxidation. Their ability to react with the next 
suitable neighbor molecule results in an extremely short chemical half-life 
and range of action. However, hydroxyl radicals can readily react with 
chloride ions and start a cascade of reactions ultimately leading to the forma
tion of chlorine and hypochlorous acid (SARAN and BORS 1997; SARAN et al. 
1997, 1999). Reaction of superoxide anions with hypochlorous acid gen
erates hydroxyl radicals (RAMOS et al. 1992; CANDEIAS et al. 1993; HIPPEL! 
et al. 1997). 

HOCI is an oxidizing and chlorinating agent. Its oxidative attack on pro
teins is directed against sulfhydryl groups (Hu et al. 1993). During HOCI
mediated cartilage degradation, oligomeric polysaccharides are released from 
cartilage, N-acetyl side chains are degraded via a chlorinated transient product 
and an interaction of HOCI restrictively with alanine is measured (SCHILLER 
et al.1995). HOCI has no potency for direct lipid peroxidation (Hu et al.1993), 
but hydroxyl radicals derived from HOCl/superoxide anion interaction are 
powerful lipid peroxidants. HOCI and hydrogenperoxide can interact to form 
water, protons, chloride and molecular oxygen, thus neutralizing their oxida
tive potential and their biological effects (SARAN et al. 1999). 

Nitric oxide, a long-lived radical with a wide range of action is known as 
a regulator of a variety of biological processes. NO· can cause termination of 
lipid radical chains by formation of less reactive nitrogen-containing products 
(RUBBO et al. 1998) but can also form highly reactive radicals through several 
distinct pathways. NO' plus superoxide anions form peroxynitrite in a diffu
sion controlled reaction (SARAN et al. 1990; HUIE and PADMAJA 1993). This is a 
very efficient lipid peroxidant and can cause both nitration or oxidation of 
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proteins (RADI et al. 1991; ISCHIROPOULOS et al. 1992; SQUADRITO and PRYOR 
1998). Generation of peroxynitrite from NO· and superoxide anions can be 
inhibited by superoxide dismutase. NO can be oxidized to the nitrite anion, 
which is used by myeloperoxidase to form nitrogen dioxide (EISERICH et al. 
1998). Nitrylchloride can be formed by direct interaction of nitrite with 
hypochlorous acid. Interestingly, the reaction of NO with hydrogen peroxide 
(NAPPI and VASS 1998), as well as the decomposition of peroxynitrons acid 
(BECKMAN et al. 1990; RICHESON et al. 1998), can yield the highly reactive 
hydroxyl radical. 

For the demonstration of the functional role of ROS several enzymes, 
antioxidants and radical scavengers have been instrumental. Inhibition of a 
process by superoxide dismutases (either mitochondrial MnSOD or cytosolic 
Zn, CuSOD) implies a direct functional role of superoxide anions. Lack of 
inhibition may indicate that they have no direct role in a given process. 
However, since SODs catalyze the formation of hydrogen peroxide from 
superoxide anions, lack of inhibition by SOD may, therefore, alternatively indi
cate that superoxide anion-derived hydrogen peroxide is the essential member 
in the chain of reactions. In this case, addition of SOD would enhance the 
proccss through accelcration of hydrogcn peroxidc formation from superox
ide anions rather than inhibit it. Glutathione is the central antioxidant, react
ing with most of the ROS species except superoxide anions (GILLESSEN et al. 
1997). N-acetylcystein, which readily passes cell membranes, is a substrate for 
GSH, but also acts as an antioxidant itself, and seems to react with HOCl, 
hydrogen peroxide, hydroxyl radicals but not with superoxide anions (ARUOMA 
et al. 1989). The involvement of hydroxyl radicals can be either substantiated 
by prevention of the Fenton reaction through chelating iron and copper ions, 
or by the addition of hydroxyl radical scavengers like DMSO or mannitol. 
HOCI can be scavenged by taurine, an amino acid which specifically interacts 
with HOCl, but not with hydroxyl anions, superoxide anions or hydrogen per
oxide (ARUOMA et al. 1988; GRISHAM et al. 1984; SRI et al. 1997). Several specific 
enzyme inhibitors exist, such as diphenyleneiodonium (DPI) for NADPH 
oxidase, 4-aminobenzoic acid hydrazide (ABAH) for myeloperoxidase 
(KETTLE et al. 1995, 1997) or N-omega-nitro-L-arginine methyl ester (L
NAME) or N(G)-monomethyl-L-arginine (L-NMMA) for NO synthetase. 
Substances that release NO· (like sodium nitroprusside), or NO· plus super
oxide anions that instantly form peroxynitrite (like 3-morpholinosydnonimine 
hydrochloride [SIN-1]), have been very useful in elucidating the role of NO 
and its products in apoptosis induction. 

D. Physiological Sources of ROS 
For experimental purposes, radiation is still the classical method of generat
ing and investigating ROS. Within cellular systems, however, the contribution 
of radicals produced by background environmental radiation is negligible. In 
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contrast, other sources of radicals operate here. They may belong to different 
classes: (1) processes that liberate ROS as unwanted (but unavoidable) 
bypro ducts, e.g., electron leakage of mitochondria, redox cycling of quinoid 
compounds; (2) processes that generate ROS for teleologically intended pur
poses, e.g. the NADPH oxidase and myeloperoxidase of phagocytes; (3) 
processes that, during abnormal episodes of ROS generation, result in patho
logical processes such as the ischemialreperfusion syndrome. The main point 
is that none of these effects can be regarded separately. In particular, patho
logical processes connected with abnormal levels of free metals and those that 
occur with increases in hydrogen peroxide levels are intrinsically interwoven 
through the Fenton reaction. The hydroxyl radicals thus formed may, in turn, 
enter a chloride-dependent pathway since they have a greater chance to react 
with abundant chloride ions, initiating a sequence of events that leads to the 
formation of hypochlorous acid (SARAN and BORS 1997; SARAN et al. 1999). 
Hypochlorous acid may then cause hydroxyl radical formation after inter
action with superoxide anions. 

Superoxide anions can be generated by a multitude of systems (SEGAL 
1992; MCCORD and OMAR 1993; MOHAZZAB and WOLIN 1994; BABIOR 1995; 
MCCORD 1995; DARLEy-USMAR and HALLIWELL 1996; WOLIN et al.1996; SARAN 
et al. 1998, 1999). Xanthine and xanthine oxidase yield superoxide anions, a 
reaction which is often used experimentally. The major sources for superox
ide anions in vivo are, however, membrane NADPH oxidases and the mito
chondria. Membrane NADPH oxidases are central enzymes for the oxidative 
burst of phagocytes but are also connected to the function of protooncogenes 
and oncogenes (SUNDARESAN et al. 1996; IRANI et al. 1997; JORDAN and IYENGAR 
1998; DIEKMAN et al.1994; KNAUS et al. 1991). Superoxide anions are involved 
in the maintenance of ras-mediated transformation (IRANI et al. 1997). Many 
signals during apoptotic induction aim at mitochondria and cause hypergen
eration and release of superoxide anions after the opening of the permeabil
ity transition pore, and the disruption of the mitochondrial membrane 
potential. Fibroblasts possess a distinct NADPH oxidase on their membrane 
(MEIER et al. 1989, 1991, 1993; THANNICKAL and FANBURG 1995) which is regu
lated by cytokines. In addition to an inducible system, cells carry a NADPH 
oxidase system which is ready to respond to a signal as simple as the touch of 
an electrode (ARBAULT et al. 1997). This process has been discussed by the 
authors to mimic membrane interaction of intruding bacteria or viruses, 
and points out the involvement of NADPH oxidase in a cellular alert system. 
Superoxide anions can also be produced through cyclooxygenase (MOHAZZAB 
and WOLIN 1994) or microsomal cytochrome P 450 (JOSEPH and JAISWAL 
1998). 

Hydrogen peroxide can be formed either through dismutation of super
oxide anions (ZULUETA et al. 1995) or directly in enzymatic reactions like the 
oxidation of glucose by glucose oxidase (CHANCE et al. 1979). As mentioned 
above, hydroxyl radicals are either formed through the Fenton reaction 
(KOPPENOL 1993; WALLING 1995; WINTER BOURN 1995b; WARD MAN and 
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CANDEIAS 1996), through interaction of superoxide anions with hypochlorous 
acid (RAMOS et al. 1992; CANDEIAS et al. 1993; HIPPELI et al. 1997), through 
decay of peroxynitrons acid, or by interaction of NO· with hydrogenperoxide 
(BECKMAN et ai. 1990; CROW et al. 1994; RICHESON et al. 1998) . 

HOCI is synthesized by myeloperoxidase and related enzymes (KETTLE 
and WINTERBOURN 1997). This molecule has mainly been observed in the 
context of phagocytic activity. Recent evidence from our laboratory shows 
that HOCI can induce apoptosis in superoxide anion-producing transformed 
cells during the control of oncogenesis. Myeloperoxidase and superoxide 
anions arc the central players in this scenario (ENGELMANN et aI., in prepa
ration). This allows the speculation that the emerging role of myeloper
oxidase in a multitude of diseases (DAUGHERTY et al. 1994; NAGRA et al. 1997; 
WORLITZSCH et al. 1998; MOHAMMED et al. 1998) is possibly also due to HOCI
mediated apoptotic induction. This may be the basis for future therapeutic 
concepts. 

NO' is synthesized both by a constitutively expressed NO· synthetase, as 
well as by an inducible enzyme (iNOS). It can be synthesized by a variety of 
cells in the context of physiological reactions and is involved in antitumor 
defense mechanisms exerted by macrophages and granulocytes. Although pri
marily it has regulatory functions for the endothelium, NO· also plays a role 
in an endothelial defense mechanism against tumor cells (UMANSKY et aI.1997; 
EDMISTON et al. 1998) which may prevent tumor cells present in the blood
stream from entering tissues through the endothelium. Peroxynitrite, formed 
from NO· and superoxide anions in a diffusion controlled reaction (HuIE and 
PADMAJA 1993), may be the ultimate reacting ROS in this system. 

E. ROS and Apoptosis 
I. ROS-Dependent Apoptosis Under Physiological 

and Pathophysiological Conditions 

In 1987, BISHOP et al. tested whether reactive oxygen species might induce 
apoptosis. They used the xanthine/xanthine oxidase system (which generates 
superoxide anions) or the radiomimetic substance t-BOOH, known to cause 
lipid peroxidation (LANGLEY et al. 1993). Superoxide dismutase, which cat
alyzes the formation of hydrogen peroxide from superoxide anions, did not 
inhibit cell death induced by the xanthine/xanthine oxidase system, while cata
lase, which destroys hydrogen peroxide, attenuated cell death. Hydroxyl 
radical scavengers gave inconsistent results. Cell death was characterized as 
necrosis. From our present knowledge, we conclude that the authors did not 
observe ROS-dependent apoptotic induction, as the concentration of ROS 
applied was probably too high. Under these conditions, direct damage of the 
membrane may have led to necrosis or secondary necrosis might have been 
caused by the fast shut-down of cellular metabolism, masking the apoptotic 
process. (Similarly, the action of TNF, which induces apoptosis in tumor cells, 
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was originally described as necrosis. This observation even gave the cytokine 
its name). Based on the inhibitor data, hydrogen peroxide seemed to be the 
responsible molecule in this study. A few years later, hydrogen peroxide was, 
indeed, shown to induce apoptosis in blastocysts, establishing the role of ROS 
in the induction of apoptosis (PARCHMENT 1991; PIERCE et al. 1991). Since then, 
ROS-dependent apoptosis has been described in physiological processes like 
morphogenesis during mouse embryogenesis (SALAS VIDAL et al.1998), regres
sion of the tadpole tail (HANADA et al. 1997) and a multitude of pathological 
processes like neurodegenerative diseases (JENNER and OLANOW 1996; Luo et 
al. 1998), Downs syndrome (BUSCIGLIO and YANKNER 1995), atherosclerosis 
(DIMMELER et al. 1997a), heart disease (FERRAI et al. 1998), pesticide intoxica
tion (BAGCHI et al. 1995), pathological effects of asbestos (BROADDUS et al. 
1996), prion disease (KRETZSCHMAR et al. 1997), bacterial meningitis (LEIB et 
al. 1996) and HIV infection (DOBMEYER et al. 1997). In addition, ROS have 
been demonstrated to be central triggering and modulating elements during 
natural antitumor mechanisms such as the action of TNF, intercellular induc
tion of apoptosis (a novel regulatory system for the prevention of tumori
genesis based on the induction of apoptosis in transformed cells by their 
nontransformed neighbors) (JURGENSMEIER et al. 1994b; SCHAEFER et al. 1995; 
LANGER et al. 1996; BAUER 1996) and apoptotic induction through endothelial 
cells (UMANSKY et al. 1997; EDMISTON et al. 1998) - a mechanism perhaps espe
cially related to the control of metastasis. These effects of ROS will be dis
cussed later in separate chapters. 

II. Evidence for the Role of ROS During Induction 
and Execution of Apoptosis 

The role of ROS in triggering, mediating, and executing apoptosis is no longer 
questioned today. The following experiments justify this conclusion: certain 
ROS induced apoptosis, specific antioxidants, or antioxidant enzymes inhib
ited apoptosis, other apoptosis signal molecules triggered intracellular ROS 
generation, and antioxidants inhibited their effects. In addition, the modulat
ing effect of the cellular redox state on the efficiency of apoptosis and the 
interaction of cellular antioxidants with ROS and vice versa teach us a lot 
about ROS involvement during apoptosis. Thereby the reduction of cellular 
glutathione levels can sometimes be the cause, sometimes the consequence 
of ROS-mediated apoptosis. The basic question "Is apoptosis mediated by 
ROS?" has been incisively answered in the reviews by SARAFIAN and BREDESEN 
(1994); BUTTKE and SANDSTROM (1994); JACOBSON (1996); CLUTTON (1997). The 
role of the antioxidant defense has been clearly presented by BRIEHL and 
BAKER (1996); SLATER et al. (1996). 

The purpose of this review is to focus on systems where ROS act at 
different sites of the apoptosis scenario either sequentially or in parallel, 
and to demonstrate the well-balanced interaction of ROS during apoptosis 
induction. 
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Some selected papers on the functional or causative role of ROS for 
apoptosis shall be mentioned first. PIERCE et al. (1991) presented data on the 
apoptosis inducing capacity of hydrogen peroxide in blastocysts which was 
prevented by catalase. Their paper also states the important finding that the 
intracellular glutathione level opposes the apoptosis-triggering effect of ROS. 
Since then many papers have used the generation of ROS as a trigger for apop
tosis. Rollet Labelle et al. (1998) studied neutrophils that were subjected to 
either xanthine-xanthine oxidase (production of superoxide anions) or 
glucose oxidase (production of hydrogen peroxide) in the presence of various 
inhibitors. In their system, the presence of SOD had no inhibitory effect, indi
cating that superoxide anions were not directly involved in the induction of 
apoptosis (note that this result does not exclude the fact that that superoxide 
anions may have an indirect apoptosis-inducing effect after having formed 
hydrogen peroxide). Catalase prevented apoptosis induction by both systems, 
as well as spontaneous apoptosis, indicating that hydrogen peroxide had a 
functional role in this process. But hydrogen peroxide did not seem to be the 
ultimate mediating molecule, as prevention of hydroxyl radical formation 
through the addition of iron chelators prevented apoptosis. This paper demon
strates the sequence from superoxide anion over hydrogen peroxide and sug
gests the final highly reactive hydroxyl radical to be the ultimate oxidizing 
agent during apoptosis induction. The functional role of hydroxyl radicals 
during apoptosis induction has been elaborated in many systems (RAUEN and 
DE GROOT 1998; Aoshima et al. 1997; LI et al. 1997a; Xu et al. 1997). Superox
ide anions generated in abundance can lead to the sequence illustrated by 
Rollet Labelle et al. (1998); at lower concentrations they may serve other func
tions without being cytotoxic. Lr et al. (1997a) demonstrated that superoxide 
anions applied in a single exposure were mitogenic, whereas their repeated 
exposure at high concentrations or the direct generation of hydrogen perox
ide induced apoptosis - an impressive example of the differential effects of 
ROS and their concentration-dependent interaction. But superoxide anions 
may also have direct roles during apoptosis induction. The study by SUZUKI et 
al. (1997b) demonstrates that snake venom induces apoptosis in endothelial 
cells. This effect was prevented when MnSOD had been upregulated before 
treatment, indicating that superoxide anions were directly functional in this 
system. In addition, their paper clearly demonstrates that a decrease in intra
cellular glutathione levels by treatment with BSO accelerated apoptosis induc
tion, indicating the role of antioxidant defense during ROS-mediated 
apoptosis induction. In patients with familial amyotrophic lateral sclerosis the 
role of superoxide anions in apoptosis induction has been shown by GHADGE 
et al. (1997). In their study, the presence of mutant SOD causes a higher intra
cellular concentration of superoxide anions than that measured in the pres
ence of wild type enzyme. Inhibition of apoptosis by SOD may either indicate 
that superoxide anions trigger apoptosis without the need for the chemical 
sequence superoxide - hydrogen peroxide - hydroxyl radical, or that the 
generation of other reactive mediators has been inhibited. This may, for 
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example, be the formation of peroxynitrite from the interaction of superoxide 
anions with NO (KELLER et al. 1998) or interaction of superoxide anions 
with HOCI, yielding highly reactive hydroxyl radicals (ENGELMANN et aI., in 
preparation). 

There are numerous examples of the inhibition of apoptosis through 
antioxidative enzymes. Catalase prevented hydrogen peroxide-induced apop
tosis (SANDSTROM and BUTTKE 1993), SOD and catalase inhibited neutrophil 
apoptosis (OISHI and MACHTDA 1997). As shown before, the use of defined 
antioxidants can elaborate the sequence of ROS interactions and can describe 
their role. With this approach it has been shown that lipid hydroperoxides 
(products of lipid peroxidation which can be induced by hydroxyl radicals or 
peroxynitrite) can induce ROS production, finally leading to the most likely 
functional hydroxyl radical (AOSHIMA et al. 1997). This represents a fine 
example of how the primary reaction of a highly reactive but short-ranged 
ROS with the cell membrane can cause a sequence of ROS-mediated effects, 
ending in the production of intracellular hydroxyl radicals which mediate 
apoptosis. Similarly, hyperthermia causes generation of hydroxyl radicals func
tional in apoptosis (RAUEN and DE GROOT 1998) as shown by the inhibition of 
apoptosis through antioxidants. The same is shown for prevention of apopto
sis induction by oxidized low density lipoproteins through N-acetylcysteine 
(DEIGNER 1998). The effects of ROS are inhibited by antioxidants, together 
with the apoptosis-triggering effects of mediators as diverse as TNF, ceramides, 
orTGF-beta. Their interaction with ROS will be discussed later in this chapter, 
as they call for the presentation of rather complicated and interacting signal
ing pathways in apoptosis. The role of cellular antioxidant defense will also be 
discussed separately and in more detail. Here shall be mentioned only that 
reduction of the cellular glutathione concentration through inhibition of its de 
novo synthesis using BSO causes apoptosis which is prevented by antioxidants 
- another clear proof of the apoptosis inducing role of ROS (ZUCKER et al. 
1997a). 

Work in progress in our laboratory demonstrates that HOCI can induce 
apoptosis in transformed fibroblasts (ENGELMANN et aI., in preparation). The 
basis for this specificity is the production of superoxide anions at the mem
brane of transformed cells (a step necessary for the maintenance of their trans
formed state). As in the scenario discussed for phagocyte microbe interaction, 
the relatively nonreactive HOCI may form highly reactive hydroxyl radicals 
when confronted with superoxide anions. Apoptosis induction by HOCI can 
therefore be inhibited by SOD (which destroys the activating superoxide 
anion), by the specific hypochlorous acid scavenger taurine, and by the 
hydroxyl radical scavenger DMSO. This finding may be of relevance for the 
understanding of apoptosis induction by phagocytes. As discussed later, it is 
the central element during intercellular induction of apoptosis. Extending 
these findings, ENGELMANN et al. (in preparation) demonstrated that 
myeloperoxidase (MPO) added to transformed cells caused apoptosis, 
whereas nontransformed cells remained unaffected. Inhibitor studies revealed 
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that the transformed cells produced enough hydrogen peroxide (which is 
needed by MPO to form HOCl), as well as sufficient superoxide anions for 
activation of HOCI to hydroxyl radical generation. Myeloperoxidase
mediated apoptosis of transformed cells was inhibited by SOD, catalase, 
MPO inhibitors, and scavengers of HOCI as well as of hydroxyl radicals. 

III. Induction and Inhibition of Apoptosis by NO· 

NO·, which is relatively stable and can pass cellular membranes, is involved in 
a multitude of biological effects such as regulation of the vascular tone, 
antiplatelet and antileukocyte activity, and modulation of cell growth (LoPEz
FARRE et aL 1998). It has been implicated in the induction as well as the inhi
bition of apoptosis. Modulation of apoptosis by NO· can lead to physiological 
or pathophysiological consequences. NO· is involved in natural tumor defense 
mechanisms like the action of macrophages or NK cells (BRUENE et aL 1998), 
control of metastasis by endothelial cells (EDMISTON et aL 1998), and also in 
the intercellular induction of apoptosis (HEIGOLD et aI., in preparation). NO· 
readily reacts with superoxide anions to form peroxynitrite, a highly reactive 
molecule (SARAN et aL 1990; HUlE and PADJAMA 1993; SQUADRITO and PRYOR 
1998). The role of NO· and its derivative peroxynitrite are discussed separately, 
though some of the NO· effects are certainly due to peroxynitrite activity. 

Several reviews exist on the role of NO· in apoptosis (LoPEz-FARRE et aL 
1998; BRUENE et aL 1998; TURPAEV 1998; ALBINA and REICHNER 1998; XIE and 
FIDLER 1998; DIMMELER and ZEIHER 1997). NO· synthesis from arginine in 
macrophages causes apoptosis which can be inhibited by inhibitors of NO· syn
thetase (SARlH et aL1993; ALBINA et aL1993). Interleukin-1-beta induced NO· 
production in pancreatic cells and chondrocytes activated the apoptotic pro
cess (ANKARCRONA et aL 1994; BLANCO et aL 1995). NO'-induced apoptosis in 
macrophages was paralleled by p53 expression (MESSMER et aL 1994; BRUENE 
et aL 1995) and was antagonized by protein kinase C and protein kinase A
activating compounds (MESSMER et aL 1995). Later studies revealed evidence 
of p53-dependent and p53-independent signaling pathways during NO·
mediated apoptosis (MESSMER and BRUENE 1996). NO·-induced apoptosis has 
been shown in many cell systems such as colonic epithelial cells (SANDOVAL 
et aL 1995), mesangial cells (MUEHL et aL 1996), endothelial cells (LoPEz
FARRE et aL 1997), vascular smooth muscle cells (IWASHINA et aL 1998), non
lymphocytic leukemia cells (SHAMl et aL 1998), pancreatic carcinoma cells 
(GANSAUGE et aL 1998; HAJRI et aL 1998) and neurons (LEIST and NICOTERA 
1998). In the human promyeloid leukemia cell line HL-60, apoptosis can be 
induced by high doses of NO· (JUN et aL 1996) as well as by peroxynitrite (LIN 
et aL 1995). This illustrates the problem of differentiation between direct NO· 
effects and effects of its derivative. NO· is involved in antitumor mechanisms 
exerted by macrophages (SVEINBJORNSSON et aL 1996; CUI et aL 1994) or NK 
cells (FrLEP et aL 1996). Interestingly, it is used by endothelial cells to induce 
apoptosis in lymphoma cells (UMANSKY et al. 1997) and low metastatic colon 
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carcinoma cells (EDMISTON et al. 1998). The study by EDMISTON et al. (1998) 
indicates that endothelium-tumor cell interaction may be an important control 
step in the prevention of metastasis and, mechanistically, is based on apopto
sis induction. NO· is of central importance in their system but cannot adequa
tely induce apoptosis when the tumor cells are tested separately. Generation 
of superoxide anions is necessary in parallel, indicating that peroxynitrite is 
the effective molecule in apoptosis induction. As discussed in more detail later, 
superoxide anions produced by tumor cells might be the key to their own des
truction by endothelium-derived NO· by formation of peroxynitrite and subse
quent apoptosis induction. The same effect can be achieved when an inducible 
NO· synthetase gene is expressed in murine melanoma cells (XIE et al. 1995). 

NO· can be scavenged by reduced glutathione (ZHAO et al. 1997). Inac
tivation of GSH-dependent peroxidase has been discussed to contribute to 
NO·-mediated apoptosis (ASAHI et al. 1995), a finding that indicates that lipid 
peroxidation may be triggered by NO·. NO· upregulates the expression of the 
Apo/Fas receptor (FUKUO et al. 1996) and may thus enhance apoptosis induc
tion by this receptor mediated apoptotic pathway. Nitric oxide-mediated 
Apo/Fas-dependent apoptosis required activation of caspases (CHLlCHLIA et 
al. 1998). NO· was shown to inhibit mitochondrial cytochrome oxidase and 
thereby respiration (RICHTER 1997). Triggering of mitochondrial permeability 
transition (a step used by many apoptosis inducers) is efficiently used by NO· 
for apoptosis induction (HORTELANO et al. 1997). NO· triggers disruption of 
the mitochondrial transmembrane potential which is followed by hyperpro
duction of ROS. These and apoptogenic factors released from mitochondria 
control the following execution of apoptosis. Inhibition of NO·-mediated 
apoptosis by Bcl-2 (MESSMER et al. 1996; XIE et al. 1996) and downregulation 
of Bcl-2 during NO-triggered apoptosis (XIE et al. 1997; TAMATANI et al. 1998; 
BROCKHAUS and BRUENE 1998) fit into this scenario, as Bcl-2 is a key element 
for the control of the mitochondrial megachannel. 

NO· has been shown to possess both an apoptosis-inducing and an 
apoptosis-inhibitory effect (SHEN et al.1998). In some systems this may depend 
solely on its concentration (SHEN et al. 1998). NO· inhibits TNF- (SHEN al. 
1998) and LPS-mediated apoptosis (CENEVIVA et al. 1998). It represents a sur
vival factor for T lympocytes (SCIORATI et al. 1997) and inhibits Apo/Fas-medi
ated apoptosis (DIMMELER et al. 1998; HEBE STREIT et al. 1998; MANNICK et al. 
1997). Apoptosis inhibition by NO· can be achieved by two different strate
gies. One is based on the induction of heatshock proteins by NO· (KIM et al. 
1997a). This is redox-regulated and requires low concentrations of reduced 
GSH. As soon as sHsps are expressed, however, they cause a rise of GSH 
(ARRIGO 1998) which blocks ROS-dependent effects in the apoptosis signal
ing cascade and neutralizes the remaining NO,. The second strategy is rather 
direct: NO· causes nitrosylation of caspases and thus directly interferes with 
the execution of apoptosis (KIM et al. 1997b; LI et al. 1997b; TENNETI et al. 
1997; DIMMELER et al. 1997b). 
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IV. Peroxynitrite: An Efficient Apoptosis Inducer 

The highly reactive peroxynitrite is formed by the interaction of NO· with 
superoxide anions in a diffusion controlled way (SARAN et al. 1990; HUIE and 
PADMAJA 1993; SQUADRITO and PRYOR 1998). Its chemistry and role for apop
tosis induction have been reviewed (SZABO and OHSHIMA 1997; SQUADRITO 
and PRYOR 1998; REITER 1998; TURPAEV 1998). Under experimental conditions, 
peroxynitrite is generated either by substances like SIN-1 (3-morpholinosyd
nonimine hydrochloride) which release NO· and superoxide anions simulta
neously, or by the interaction of NO· with superoxide anions derived from 
cellular super oxide sources (PACKER et al. 1996). SHARPE and COOPER (1998) 
described a superoxide anion-independent way of peroxynitrite formation 
through NO and cytochrome c interaction, leading to nitroxyl anions (NO-) 
which can be oxidized by molecular oxygen to form peroxynitrite. Peroxyni
trite can pass membranes (DENICOLA et al. 1998) and is scavenged by glu
tathione (CUZZOCREA et al. 1998). The biological role of superoxide anions for 
peroxynitrite formation and the role of peroxynitrite for subsequent apopto
sis induction was elegantly demonstrated by KELLER et al. (1998). The authors 
show that overexpression of MnSOD suppresses peroxynitrite generation, 
lipid peroxidation, mitochondrial dysfunction, and apoptosis. An increased cel
lular concentration of glutathione peroxidase compensated for the increased 
hydrogen peroxide concentration caused by the action of SOD and thus pre
vented hydrogen-peroxide-dependent apoptosis (which otherwise would have 
masked the specific effect demonstrated). The work presented by GONZALES 
et al. (1998) or NOACK et al. (1998) leads to the same conclusion. Whereas 
overexpression of SOD inhibited peroxynitrite formation, downregulation of 
SOD (using antisense nucleotides) allowed peroxynitrite formation through 
increase of available superoxide anions (TROY et al. 1996). The same scenario 
is activated during experimental induction of colitis (SEO et al. 1995). Whereas 
NO· synthetase is induced and causes NO· production, SOD is downmodu
lated by the inducing drug 2,4,6-trinitrobenzenesulfonic acid. As a result, 
peroxynitrite is formed and causes tissue damage. To prevent peroxynitrite 
formation, NO· can inhibit superoxide production in neutrophils (RODEN AS 
et al. 1998) - a mechanism that could allow direct NO· effects without 
parallel peroxynitrite-induced apoptosis. 

10NNIDIS et al. (1998) demonstrated that NO· exhibited low cytotoxicity 
for endothelial cells, whereas peroxynitrite was highly toxic - a finding that 
leads to speculation that, in other systems of NO-mediated apoptosis induc
tion, peroxynitrite might have been the ultimately responsible molecule. For 
example, apoptosis induction in HL-60 cells has been reported for both NO· 
(JUN et al.1996) and peroxynitrite (LIN et al. 1995). Trophic factor deprivation 
of neuronal cells (i.e., deprivation of exogenous survival factors) causes apop
tosis (ESTEVEZ et al. 1998) which can be blocked either by inhibitors of NO· 
synthesis or scavengers of superoxide anions, indicating peroxynitrite forma-
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tion and its functional role. Apoptosis induction by peroxynitrite in neuronal 
cells may be the basis for its role in diseases like multiple sclerosis (CROSS et 
al. 1998), amyotrophic lateral sclerosis (LIU 1996), Alzheimers disease (VAN 
DYKE 1997), and Parkinson's disease (JENNER and OLANOW 1996). Peroxyni
trite also induces apoptosis in thymocytes (VIRAG et al. 1998a) and pulmonary 
cells (Gow et al. 1998). It may be involved in the pathogenesis of asthma 
(SALEH et al. 1998), rheumatic disease (CARSON and TAN 1995), and athero
sclerosis (DUSTING et al. 1998). During cardiac allograft rejection, cardiac 
myocyte apoptosis seems to be induced by peroxynitrite because iNOS is 
expressed and nitrated myocyte proteins can be detected (SZABOLCS et al. 
1998). LPS-challenged neutrophils, monocytes, and lymphocytes produce per
oxynitrate and thus contribute to the increased concentration of peroxynitrite 
during endotoxic shock (GAGNON et al. 1998). 

Peroxynitrite seems to have different modes of chemical reactions. Decom
position of peroxynitrite (BECKMAN et al. 1990; RICHESON et al. 1998) can yield 
hydroxyl radicals - effective oxidants for proteins and involved in lipid perox
idation, like peroxynitrite itself. Peroxynitrite can oxidize the essential zinc
thiolated moiety of enzymes (CROW et al.1995) as well as cause nitration or oxi
dation of tyrosine residues (MACMILLAN CROW et al. 1998; ZHANG et al. 1998; 
YAMAKURA et al. 1998; ROBERTS et al. 1998). Inactivation of MnSOD through 
peroxynitrite-mediated oxidation and nitration of tyrosines (MACMILLAN CROW 
et al. 1998) represents an interesting regulatory pathway to enhance peroxyni
trite formation by the increase of superoxide anion concentration. Glutathione 
peroxidase represents another target that is inactivated through peroxynitrite
dependent oxidation (PADMAJA et al. 1998). As this enzyme plays a crucial role 
in the inhibition of apoptosis (through removal of hydrogen peroxide and lipid 
peroxides, both involved in apoptosis induction), its inactivation might be one 
of the ways in which peroxynitrite induces apoptosis. As peroxynitrite increases 
the degradation of proteins by proteasomes (GRUNE et al. 1998), it might trigger 
apoptosis by removing inhibitors of the apoptosis signal pathways (opera
tionally defined as endogenous survival factors (DORMANN et al. 1999». Degra
dation of endogenous survival factors (molecules controlling a constitutively 
expressed apoptosis machinery) through the action of peroxynitrite represents 
a challenging idea waiting for experimental investigation. Interaction of per
oxynitrite with mitochondria, causing decreased mitochondrial potential and 
subsequent hyperproduction and release of ROS as well as apoptogenic 
factors, may be the mechanism where peroxynitrite action meets the activity of 
other intracellular apoptosis signals. In accordance with this assumption are the 
findings that: (i) peroxynitrite causes an increase of ROS (LIN et al. 1997a); (ii) 
peroxynitrite causes activation of caspase-3 (LIN et al. 1998); (iii) peroxynitrite 
causes cleavage of poly ADP-ribose polymerase (SZABO 1996; VIRAG et al. 
1998b); and (iv) these effects are blocked by Bcl-2 (MELKOVA et al. 1997; LIN et 
al. 1997b), which acts at the site of the mitochondrial megachannel. RICHTER 
(1998) showed that peroxynitrite and NO· have differential effects on mito
chondria during induction of apoptosis. 
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The combination of the long-lived, far-ranging signal molecule NO· 
(without a direct apoptosis-inducing effect at low concentrations) with the rel
atively nonreactive superoxide anion (with its limited diffusion area) yields 
formation of the reactive peroxynitrite. This allows precise apoptosis induc
tion in cells that release superoxide anions. This fascinating signaling strategy 
can be illustrated in the case of certain natural antitumor mechanisms; a trans
formed cell, generating superoxide anions and approaching a NO-releasing 
endothel, will suddenly encounter peroxynitrite formation close to and on its 
membrane (the site of superoxide anion generation), causing its destruction 
without endangering the endothel, which sends out NO but is not necessarily 
reached by superoxide anions. 

V. Glutathione: Key Element for the Regulation of Apoptosis 

Glutathione serves two major functions during the regulation of apoptosis. It 
balances against ROS created by multiple signaling pathways, enzymatic re
actions, or mitochondria and it inhibits sphingomyelinase, the key enzyme 
for the generation of ceramide, a second messenger which is intrinsically 
interwoven with the generation of ROS and with activation of execution
caspases. 

The metabolism of glutathione has been reviewed by MEISTER and ANDER
SON (1983) and MEISTER (1988). Decrease of intracellular glutathione has been 
shown to be an early event during apoptosis (BEAVER and WARING 1995; 
MACHO et al. 1997). The functional and causative role of glutathione depletion 
for induction and execution has been proven by several groups who demon
strated that experimental glutathione depletion causes apoptosis, being able 
to be inhibited by antioxidants (thUS in turn proving the role of ROS in this 
process) (ZUCKER et al. 1997a; RATAN et al. 1994a; DHANBHOORA and BABSON 
1992), enhancing the sensitivity of cells for other apoptosis inducers (CHRISTIE 
et al. 1994; DEAS et al. 1997; CHIBA et al. 1996; ZUCKER et al. 1997b) or abro
gating resistance against apoptosis induction (CHIBA et al. 1996). As expected, 
the augmentation of intracellular glutathione inhibited apoptosis (CHIBA et al. 
1996). 

The intracellular level of glutathione determines whether cells die from 
necrosis or apoptosis (FERNANDES and COTTER 1994). A decrease in intracel
lular reduced glutathione must not necessarily indicate its oxidation, but may 
be due to its active extrusion (GHIBELLI et al. 1995; VAN DEN DOBBELSTEEN et 
al. 1996), a mechanism that enhances ROS-dependent intracellular effects and 
allows ceramide generation. GHIBELLI et al. (1998) showed that cells can be 
rescued from apoptosis when extrusion of glutathione is inhibited. The same 
effect is achieved when inhibitors of macromolecular synthesis shunt cysteine 
from protein to glutathione synthesis (RAfAN et al. 1994b), when transaldolase 
is downregulated (BANKI et al. 1996), or when small stress proteins are induced 
(ARRIGO 1998). The finding that virus infection causes glutathione extrusion 
(CIRIOLO et al. 1997; SCHWARZ 1996) allows the speculation that this event is 
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the switch for induction of apoptosis of virus-infected cells. Thus glutathione 
extrusion may represent a sort of emergency trigger, causing apoptotic self
destruction of potentially hazardous cells through the action of ROS. Glu
tathione works as a redox sensor (MARCHETTI et a1. 1997) and as such controls 
apoptosis at two central steps: mitochondrial function and sphingomyelinase 
activity (Lru and HANNUN 1997; Lru et a1. 1998). Mitochondria are the source 
for massive ROS production and for the release of apoptogenic factors like 
cytochrome c or AIF, a protease involved in activation of execution caspases. 
Sphingomyelinase is the key enzyme for the regulation of the ceramide second 
messenger pathway. 

VI. Mitochondria: Target and Source for ROS 
During Apoptosis Induction 

The impressive work of several groups during the last few years has shown 
that mitochondria are the central element for the regulation of the execution 
phase of apoptosis (KROEMER et a1. 1995, 1997; KROEMER 1997; MIGNOTTE and 
VAYSSIERE 1998). The mitochondrial permeability transition pore seems to 
be the main switch that is activated during the induction phase of apoptosis 
through various stimuli (HIRSCH et a1. 1997a; BERNARDI 1996; MACHO et al. 
1998). In the context of our review, ICE-I-like caspases, as well as ROS, NO·, 
and ceramides, are the most important ones. Interaction of ICE-like caspases 
with the permeability transition pore is not inhibited by Bcl-2, but by crmA 
(a viral antiapoptotic gene), whereas the activity of ROS and ceramide is 
efficiently counteracted by Bcl-2 (SUSIN et a1. 1997; MARZO et a1. 1998), thus 
explaining the antiapoptotic activity of Bcl-2 in many apoptosis pathways 
(ZAMZAMI et a1. 1998a,b). As a consequence of increased gating of the pore, 
the mitochondrial transmembrane potential is disrupted, and the mitochon
dria release factors involved in caspase activation as well as ROS (KROEMER 
et a1. 1997; ZAMZAMI et a1. 1995; HIRSCH et a1. 1997b). As a consequence glu
tathione is depleted. 

Regarding the role of ROS for apoptosis, it is important to point out 
that mitochondria are both the target and the source of ROS (RICHTER et a1. 
1996; KROEMER 1997; BACKWAY et al. 1997). Oxidation of the mitochondrial 
megachannel pore represents a central event for ROS-dependent regulation 
of apoptosis (CROMPTON and ANDREEVA 1993; PETRONILLl et a1. 1994a,b; WEIS 
et al. 1994; BERNARDI 1996; CONSTANTIN I et al. 1996; MACHO et al. 1998; MARZO 
et al. 1998). Oxidation of at least two vicinal thiols increases the gating poten
tial of the pore (PETRONILLI et a1. 1994a,b). NO· has also been shown to induce 
apoptosis via triggering of mitochondrial permeability transition (HORTELANO 
et a1. 1997). It seems worthwhile to consider that NO· might have formed per
oxynitrite after contact with superoxide anions leaking from intact mitochon
dria and that peroxynitrite was the actually pore oxidizing agent. This scenario 
would explain why NO· entered the cell without interacting with other thiols 
and was able to induce specific oxidation of pore thiols. Oxidation of the pore 
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causes disruption of the mitochondrial membrane potential, hypergeneration 
and release of superoxide anions, as well as release of apoptogenic factors. 
There is controversy over whether ROS released from mitochondria playa 
role for the regulation of apoptosis, or whether caspase-3 activation through 
mitochondria-derived proteases and the resultant steps are sufficient for exe
cution of apoptosis (ZAMZAMT et a1. 1996). The existing literature does not 
permit clarification of this matter. If we oversimplify induction and execution 
of apoptosis as unidirectional and highly synchronized events, caspase activa
tion by other proteases may be the rate-limiting step for further events and 
ROS may be secondary. If, however, we imagine nonsynchronized and initially 
weak apoptosis stimuli (e.g., through suboptimal TNF action or other death 
receptor pathways) to cause release of ROS by opening just one mitochon
drial megachannel, this could initiate apoptosis through either oxidizing the 
pores of further mitochondria directly or activating the ceramide pathway 
(through GSH oxidation) (Fig. 1). Ceramide would then act in the same way 
as ROS and thus synergize its effect. This scenario of multiple interactions of 
ROS with mitochondria, release of ROS from mitochondria, generation of 
ceramides, and their synergistic action with ROS links the execution phase 
of apoptosis with the induction phase for the sake of signal amplification with 
the final effect of maximal release of mitochondrial proteases. 

VII. Ceramides: First Class Second Messengers 

Ceramides represent effective inducers of apoptosis (OBEID et a1. 1993; 
KOLESNICK et a1. 1994; HAIMOVITz-FRIEDMAN et a1. 1994). Generation of 
ceramides is redox-regulated and provides an initial signal transmitter from 
exogenous ROS as well as a signal amplifier within cells. Generation of 
ceramides occurs at the cell membrane where sphingomyelins are cleaved by 
sphingomyelinases (HAIMOVITZ-FRIEDMAN et a1. 1994). Mitochondria are the 
central target structure of ceramides where they directly interact with the 
mitochondrial permeability transition pore (DEcAuDIN et a1. 1998), causing a 
decrease of the mitochondrial membrane potential and release of ROS 
(QUILLET-MARY et a1. 1997) and apoptogenic factors from mitochondria. Ion
izing radiation as well as receptor-mediated apoptosis inducers like TNF-alpha 
or ApolFas utilize the cerami de pathway for apoptosis induction (KOLESNICK 
et a1. 1994). Defects in the sphingomyelin pathway cause resistance to radia
tion (BRUNO et a1. 1998; MICHAEL et a1. 1997; CHMURA et a1. 1997; SANTANA et 
a1. 1996). These findings prove the functional role of ceramides for apoptosis 
induction and indicate that the interaction of radiation-derived ROS with cel
lular membranes is the major cause of radiation-induced apoptosis. Activation 
of sphingomyelinase seems to be the rate-limiting step. This enzyme is inhib
ited by glutathione (Lm and HAN NUN 1997; Lm et a1. 1998). General or local 
depletion of glutathione through oxidation or extrusion therefore represents 
the initial step for ceramide generation. Intracellular ROS, generated by 
caspase activated mitochondria seems to be the mediator used by TNF or 
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Fig. I. Intracellular ROS-mediated signaling during apoptosis induction. TNF-trig
gered activation of an ICE-I-like caspase (inhibitable by crmA but not Bcl-2) causes 
opening of the mitochondrial permeability transition pore (PTP), depolarization of 
mitochondrial membrane potential, hypergeneration and release of ROS, in parallel to 
the release of apoptogenic factors (AF) like cytochrome c and AIF. ROS released from 
the first mitochondrium can either oxidatively activate the permeability transition pore 
of other mitochondria and thus enhance the primary signal or activate sphinglomyeli
nase (SMase) through local depletion of glutathione. As a result of sphinglomyelinase 
activation, ceramides are generated which activate the mitochondrial transition pore 
of further mitochondria. The model demonstrates that a first ROS-independent apop
to sis-inducing effect can be multiplied by ROS. The effects are nonsynchronous, pos
sibly repetitive and do not fit into a simple categorization of induction and execution 
phase 

ApolFas receptor signaling for ceramide generation (BRENNER et al. 1998; 
SUSIN et al. 1997). As an early consequence of receptor activation, ICE-I-like 
proteases activate the mitochondrial permeability transition pore (in a crmA
sensitive but Bc1-2-insensitive way), causing mitochondrial membrane depo
larization, release of apoptogenic factors, hypergeneration, and release of 
ROS. These may oxidize glutathione and thus contribute to further activation 
of sphingomyelinase, leading to ceramide generation. Ceramide in turn acts at 
the mitochondrial permeability transition pore and accelerates induction of 
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mitochondrial dysfunction, with the consequence of maximal ROS release and 
appearance of apoptogenic factors. 

F. Tumor Necrosis Factor: Apoptosis Induction 
Through Versatile Use of ROS 

TNF receptor activation causes a complex cascade of intracellular protein 
interaction (reviewed by WALLACH 1997; DAR NAY and AGGARWAL 1997) termi
nating in protein synthesis-independent cytotoxic as well as protein-synthesis
dependent protective mechanisms. The latter utilize NF-/(B, a redox-regulated 
transcription factor involved both in apoptotic and antiapoptotic signaling, 
dependent on the cell system. 

The protective effect of the antioxidant N-acetylcysteine on TNF-induced 
apoptosis pointed to the functional role of ROS during this process (TALLEY 
et al.1995; COSSARIZZA et al.I995). The role of mitochondria-derived ROS was 
soon established and superoxide anion production defined as the primary 
reactive species produced by mitochondria of TNF-treated cells (SCHULZE
OSTHOFF et al. 1992, 1993; HENNET et al. 1993) . The connection between the 
TNF-activated death receptors and mitochondria through ICE-I-like enzymes 
(inhibited by crmA but not by Bcl-2) has been established (SLOWIK et al. 1997; 
SUSIN et al. 1997); the consequences (opening of the mitochondrial megachan
nel, disruption of the mitochondrial membrane potential, hypergeneration and 
release of superoxide anions in parallel to apoptogenic factors) have been dis
cussed in the previous chapters. ROS released from mitochondria most prob
ably are the cause of glutathione depletion, sphingomyelinase activation, and 
ceramide generation (LIU et al. 1998) with the consequences already discussed. 
TNF receptor interaction thus represents an elaborate example of a complex 
network of ROS effects which trigger, enhance, and cause apoptosis. The TNF 
story is not only fascinating due to the versatile use of mechanisms to enhance 
ROS generation, but also due to the parallel induction of antiapoptotic mech
anisms (WONG and GOEDDEL 1989; WONG et al. 1989), using partially the same 
effector molecules, namely ROS. These activate NF-/(B, the redox-sensitive 
transcription factor already mentioned which is involved in protection against 
apoptosis (VAN ANTWERP et al. 1996; BEG and BALTIMORE 1996) as well as in 
apoptosis induction (MARINOVICH et al. 1996). Induction of MnSOD (WONG 
et al. 1989) represents one of the examples of antiapoptotic responses induced 
by TNF. The protective effect of this enzyme can be explained by removal of 
super oxide anions from the cycle of ROS-induced, ROS, and ceramide
mediated effects. The effect of MnSOD either indicates that superoxide anions 
have direct effects (which is difficult to conceive as superoxide anions do not 
oxidize glutathione directly) or that reaction products with super oxide anions 
are involved in the effects measured. It seems worthwhile to test whether cata
lase is induced in parallel to SOD, allowing inactivation of hydrogen peroxide 
produced from superoxide anions through the action of SOD. 
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G. ApolFas-Mediated Apoptosis: ROS Involved 
in Synergistic Pathways 

The Apo/Fas system of apoptosis induction (more recently termed CD 95 
pathway) represents a receptor controlled apoptosis system, involved in many 
physiological and pathophysiological processes. Reports on the role of ROS in 
this system are conflicting and therefore more interesting. In total, a complex 
system of ROS function in synergistically acting signaling pathways is emerg
ing. Whereas the first studies on ROS and Apo/Fas came to the conclusion that 
ROS are not involved in Apo/Fas mediated apoptosis induction (HuG et al. 
1994) and that the Apo/Fas pathway is different in this respect from TNF-trig
gered apoptosis (SCHULZE-OSTHOFF et al.1994), later studies indicate that ROS 
do playa role during Apo/Fas-mediated apoptosis induction (UM et al. 1996; 
GULBINS et al. 1996, 1997; RADRIZZANI et al. 1997; CHIBA et al. 1996). The latter 
conclusions are based on inhibition of Apo/Fas-mediated apoptosis induction 
by antioxidants and on the demonstration that ROS generation during 
Apo/Fas-mediated apoptosis has a functional role. The study by GULBINS et al. 
(1996) demonstrates that interference with ras-mediated superoxide anion 
production interferes with Apo/Fas-triggered apoptosis. In addition it has been 
shown that Apo/Fas activity causes glutathione extrusion (VAN DEN DOBBEL
STEEN et al. 1996), a process which will accelerate ROS-dependent steps during 
apoptosis induction. ROS have been shown to be involved in the induction of 
both Fas ligand (HuG et al. 1997; BAUER et al. 1998) and receptor (DELNESTE et 
al. 1996), as well as during the central apoptosis-inducing signating cascade 
(GULBINS et al. 1996; SUSIN et al. 1997). It is also known that Apo/Fas triggered 
apoptosis aims at the destabilization of mitochondria with the well known con
sequences of membrane potential breakdown, release of apoptosis-regulating 
factors, and further release of ROS. Ceramides also playa role in this complex 
system (SUSIN et al. 1997). Though there are conflicting results, the overall 
picture is a network with ROS acting at several steps in parallel, causing a syn
ergistic effect on apoptosis induction. Reasons for discrepancies between dif
ferent groups may depend on the different cell systems used and on the 
experimental strategies. In addition, there seem to exist multiple Apo/Fas
dependent apoptosis pathways (SCAFFIDI et al. 1998). 

H. p53-Mediated Apoptosis: ROS Action Through 
Several Subsequent Steps 

The p53 system of apoptosis induction represents an excellent example to 
demonstrate that, during ROS-dependent apoptosis, ROS may act at several 
subsequent steps, in different and specific ways. Let us assume radiation 
induced ROS generation inside or outside a cell, leading to DNA damage. At 
this step, ROS are the causative agents and the degree of the damage induced 
by it will be monitored by the p53 system, leading either to cell cycle arrest 
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and repair, or induction of apoptosis. Interestingly, p53 is a redox-controlled 
molecule itself (HAINAUT and MILNER 1993; SUN and OBERLEY 1996; RAINWA
TER et al. 1995). Apoptosis induction by p53 causes a downstream activation 
of ROS which is functional during the induction of apoptosis (JOHNSON et al. 
1996) . The impressing work by POLYAK et al. (1997) clarifies that p53 activa
tion as a first step causes induction of cellular enzymes involved in ROS gen
eration. These may interact with the mitochondrial megachannel, causing 
mitochondrial dysfunction, decrease of mitochondrial potential, release of 
cytochrome c and proteases involved in caspase activation as well as release 
of mitochondrial ROS. Based on our knowledge of other signaling pathways, 
it may be assumed that primary ROS generation can activate ceramide syn
thesis and thus establish a second signaling loop, aiming at the same central 
structure: the mitochondrion. 

The work by CAELLES et al. (1994) indicates the existence of a parallel 
protein synthesis-independent apoptosis pathway induced by p53. A role for 
ROS in this pathway has not been elucidated so far. 

I. TGF-Beta: Central Roles for ROS 

Apoptosis induction by TGF-beta is related to the action of ROS in many 
ways. As outlined before, TGF -beta activation can be controlled by ROS. TGF
beta and ROS are central players during intercellular induction of apoptosis, 
a process directed against transformed cells and involving TGF-beta as well 
as ROS action at different levels. TGF-beta also directly induces apoptosis in 
various cell systems such as hepatocytes (GRESSNER et al. 1997; INAYAT et al. 
1997; MULLAUER et al. 1996; OBERHAMMER et al. 1992; SANCHEZ et al. 1996), 
hepatoma cells (GRESSNER et al. 1997), tracheal epithelial cells (ANTOSHINA 
and OSTROWSKI 1997), glial cells (XIA et al. 1997; MARUSHIGE and MARUSHIGE 
1994), leukemic B cell precursors (BUSKE et al. 1997), prostatic epithelial cells 
(HSING et al. 1996), gastric cancer cells (YANAGIHARA et al. 1992; YAMAMOTO et 
al. 1996), colon adenoma cells (WANG et al. 1995) and ovarian carcinoma cells 
(LAFRON et al. 1996). Direct induction of apoptosis by TGF-beta seems to be 
mediated by the action of reactive oxygen species, as it can be inhibited by 
antioxidants (LAFRON et al. 1996; SANCHEZ et al. 1996). This finding is in line 
with the ability of TGF-beta to induce an increase in cellular ROS 
(THANNICKAL et al.1993, 1995; DAS and FANBURG 1991; OHBA et al.1994), either 
by inducing or activating ROS producing enzymes like NADH oxidase 
(THANNICKAL et al. 1995) or by decreasing the concentration of antioxidant 
enzyme systems like catalase or glutathione peroxidase (KAYONAKI et al. 1994; 
ISLAM et al. 1997). The exact signaling pathway of direct apoptosis induction 
by TGF-beta is not completely understood, but as it is inhibited by Bcl-2, 
induction of mitochondrial dysfunction followed by ROS release may be one 
of the key events. Inactivation of endogenous survival factors may be the final 
step during direct TGF-beta mediated apoptosis induction and may as well 
be the case for increased sensitivity of TGF-beta pretreated cells for other 
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apoptosis stimuli. The work by SANCHEZ et al. (1997) indicates that TGF-beta 
induces expression of proteins involved both in increase of ROS and decrease 
of reduced glutathione. Induction of p53 through the action of TGF-beta 
(TERAMOTO et al. 1998) connects the action of direct TGF-beta induced ROS 
production with the multiple ROS effects during p53-mediated apoptosis. 

ROS, Apoptosis and Tumorigenesis 
I. Intercellular Induction of Apoptosis: Elimination of Transformed 

Cells Through Diverse Extracellular and Intracellular 
ROS-Dependent Signaling Steps 

Coculture of transformed and nontransformed fibroblasts causes specific elim
ination of transformed cells (HOFLER et al. 1993; JURGENSMEIER et al. 1994; 
BAUER 1996). TGF-beta (all isoforms) as well as FGF are central regulatory 
molecules in this system (JURGENSMEIER et al. 1994; ECKERT and BAUER 1998): 
either added exogenously (to compensate the dilution of endogenous TGF
beta under cell culture conditions) or as shown for TGF-beta, derived from 
the transformed cells themselves (where they are involved in an autocrine 
TGF-beta loop to maintain the transformed state (WEHRLE et a1. 1994; 
HACKENJOS et al. 1996» the cytokines induce specific effects of nontrans
formed cells directed against their transformed neighbors. Elimination of the 
transformed cells is due to the induction of apoptosis, as demonstrated by 
membrane blebbing, chromatin condensation, nuclear fragmentation, and 
DNA strand breaks detectable by the TUNEL reaction (JURGENSMEIER et al. 
1994; PANSE et al. 1997; BECK et al. 1997). As shown by clonal analysis, all cells 
within a population of nontransformed cells are able to mediate apoptosis 
induction (PICHT et a1. 1995). Transformed fibroblasts are regularly sensitive 
for intercellular induction of apoptosis, no matter what the originally trans
forming principle had been (JDRGENSMEIER et al. 1994; BECK et a1. 1997; PANSE 
et al. 1997). Cells transformed by viruses, oncogenes, chemical carcinogens, UV 
light plus TGF-beta treatment, or spontaneously were equally sensitive for 
intercellular induction of apoptosis, indicating that sensitivity is a regular 
feature of transformed cells, which makes them accessible to this natural 
control mechanism (BAUER 1996). Sensitivity is causally related to the trans
formed state, as revertants lost sensitivity (BECK et al. 1997). Moreover, cells 
transformed by an inducible ras oncogene showed sensitivity as long as ras 
was expressed (SCHWIEGER et al., submitted), cells transiently transformed by 
the combined action of TGF-beta and EGF exhibited sensitivity as long as 
they showed the transformed phenotype (HAUFEL et al., submitted), and fusion 
products between transformed and non transformed cells lost both sensitivity 
and the transformed state (WILMSMEYER and BAUER, in preparation). Intercel
lular induction of apoptosis has been discussed to represent a hitherto unrec
ognized control step during oncogenesis (BAUER 1996). Tumor development 
should therefore require resistance against this mechanism (BAUER 1995, 1996, 
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1997). In line with this assumption ex vivo tumor cells were found to be resis
tant against intercellular induction of apoptosis, whereas in vitro transformed 
cells not challenged with the defense-mechanism of an organism were sensi
tive (ENGELMANN and BAUER, submitted). This finding indicates that tumor 
cells must express resistance mechanisms against intercellular induction of 
apoptosis during tumor development. This idea is further discussed by ENGEL
MANN and BAUER (submitted). p53 plays no role during intercellular induction 
of apoptosis, as transformed cells from p53 null/null mice were as sensitive as 
transformed cells from p53-positive controls and nontransformed cells from 
p53-negative animals were as efficient in apoptosis-induction as controls (HIPP 
and BAUER 1997). It was soon realized that antioxidants block intercellular 
induction of apoptosis (JURGENSMEIER et al. 1994b; SCHAEFER et al. 1995). The 
use of tissue culture inserts allowed distinct phases to be defined during inter
cellular induction of apoptosis which could be tested independently of each 
other for the involvement of ROS (LANGER et al.1996). Phase one is the inter
action of TGF-beta or FGF with nontransformed cells. Cells pretreated with 
either cytokine for two days exert their apoptosis inducing effect on trans
formed cells even if the cytokines have been removed. This shows that 
TGF-beta or FGF have induced a cellular program necessary for apoptosis 
induction by the nontransformed effector cells. The induction of this program 
in nontransformed cells can be blocked by antioxidants and therefore seems 
to depend on the action of ROS. CocuIture of cytokine-pretreated nontrans
formed cells and transformed cells represents phase two. If antioxidants or 
hydroxyl radical scavengers are present early in this step, apoptosis induction 
in transformed cells can be substantially inhibited. This points to a role of ROS 
during interaction of nontransformed and transformed cells and during apop
tosis induction in transformed cells. ROS-mediated processes in transformed 
cells are substantiated by the finding that a decrease of intracellular glu
tathione in transformed cells enhances their apoptosis during intercellular 
induction of apoptosis. Recent experiments reveal that signaling between non
transformed cells and transformed cells is mediated by a complex interaction 
of ROS (HERDERNER et al., in preparation; ENGELMANN et al., in preparation). 
The model which takes into account inhibitor data as well as the knowledge 
of diffusion ranges of different ROS is based on the synthesis of hypochlor
ous acid and its subsequent interaction with superoxide anions (Fig. 2). TGF
beta or FGF seem to induce the release of a myeloperoxidase analogous 
enzyme from nontransformed cells. The peroxidase generates HOCI in the 
vicinity of transformed cells, utilizing superoxide anion derived hydrogen per
oxide and chloride (and therefore, the reaction can be blocked by 4-aminoben
zoic acid hydrazide, a specific inhibitor of myeloperoxidase and signaling is 
abrogated by the specific HOCI scavenger taurine). Superoxide anions syn
thesized at the membrane of the transformed cell interact with HOCI to yield 
the highly reactive hydroxyl radical (and therefore intercellular signaling is 
blocked by superoxide dismutase as well as by hydroxyl radical scavengers). 
Formation of HOCI in the close vicinity of transformed cells and the small dif-
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Fig.2. Signaling during intercellular induction of apoptosis. TGF-beta (or FGF) uti
lized by transformed cells (triangle) for the maintenance of their transformed state 
induces nontransformed cells (in a ROS-dependent way) to express or activate a per
oxidase (enzymatically analogous to MPO but structurally different). This enzyme is 
released and synthesizes H OCl, utilizing hydrogen peroxide (derived from superoxide 
anions produced at the membrane of transformed cells) and abundant chloride anions. 
HOCI and further superoxide anions generate highly reactive hydroxyl anions at the 
membrane of the transformed cell. Lipid peroxidation by hydroxyl radicals is the 
first step to transmit a ROS signal into the transformed cells, resulting in apoptosis. 
Nontransformed cells (without superoxide anion production) are not challenged by 
HOC! 

fusion pathway of superoxide anion derived exclusively from transformed cells 
ensure that the ultimate signal (the hydroxyl radical) is generated directly at 
the membrane of the transformed target cell. Lipid peroxidation by hydroxyl 
radicals seems to be the critical step occurring at the cell membrane. It can be 
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mimicked by other lipid peroxidants like tertiary butylhydroxy peroxide, 
which causes apoptosis in our cell system as well. As Bcl-2 inhibits intercellu
lar induction of apoptosis (JURGENS MEIER et al. 1997a), mitochondrial perme
ability transition seems to playa functional role during apoptosis induction in 
transformed cells. This points to possible intracellular roles of ROS or 
ceramides or both. Endogenous survival factors (operationally defined control 
elements of the apoptosis machinery) seem to be the targets for endogenous 
ROS (DORMANN et al. 1999). Their inactivation releases the apoptosis machin
ery from negative control and leads to the onset of cell death. 

Intercellular induction of apoptosis thus represents a well defined system 
of specific ROS-dependent steps, both intracellular and intercellular in nature. 
Superoxide anion production by transformed cells performs an outstanding 
role in this scenario. It is the basis for hydrogen peroxide production, neces
sary as substrate for myeloperoxidase, and it is the critical radical that reacts 
with hypochlorous acid to form hydroxyl radicals. The low diffusion range 
of superoxide anions, the location of the peroxidase close to the transformed 
cells, and the generation of reactive hydroxyl radicals directly at the membrane 
of the transformed cells ensure specific apoptosis induction in transformed 
cells. This well-balanced set of interaction of different members of the ROS 
family resembles the scenario described for phagocyte-microbe interaction 
(SARAN et al. 1999). Recent experiments in our laboratory are in favor with 
the idea that macrophage/tumor cell interaction utilizes the same efficient 
chemistry and the same strategy of interaction of ROS. These findings on anal
ogous ROS chemistry utilized by different natural antitumor mechanisms 
allows the hypothesis that resistance against one of the mechanisms may auto
matically imply resistance against the other. This represents the negative view 
with respect to tumor formation. The positive view is based on the idea that 
unraveling of resistance mechanisms of tumor cells and their manipulation 
towards sensitivity may have the potential to render them sensitive for several 
natural antitumor mechanisms and may thus have therapeutic potential in the 
future, when combined with classical tumor treatment. 

II. NO-Mediated Control of Tumorigenesis 

NO· is used by macrophages and granulocytes for antitumor defense. It 
may be speculated that peroxynitrite formed through the interaction of NO· 
with superoxide anions abundant in the vicinity of these cells is the ultimate 
apoptosis inducer. In addition to these classical NO-utilizing systems, another 
system with an efficient NO-based antitumor defense mechanism has been 
characterized recently. Endothelial cells induce apoptosis in tumor cells 
through the action of NO·. The paper by EDMISTON et al. (1998) shows that 
induction of apoptosis in colon carcinoma cells of low metastatic potential 
through NO· derived from endothelial cells is inhibited by SOD, pointing to 
superoxide dependent peroxynitrite formation. The biological importance of 
the endothelial system is obvious: it is directed against migrating tumor cells. 
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The paper by Edmiston indicates that high metastatic potential implies resis
tance against this system. Intercellular induction of apoptosis as described in 
the preceding chapter and endothelial cell-dependent apoptosis induction 
seem to act in concert but at different levels: whereas intercellular induction 
of apoptosis seems to inhibit newly transformed cells (unless they possess 
resistance mechanisms that are the basis for further tumor formation), 
endothelial cell-dependent processes are more aggressive and have the poten
tial to induce apoptosis in tumor cells. Their efficiency ends when a high 
metastatic potential is acquired. The elucidation of resistance mechanisms 
against these natural antitumor systems bears exciting diagnostic and thera
peutic potential. 

III. Sensitivity of Transformed Cells Against Natural 
Antitumor Mechanisms 

Sensitivity of transformed cells for intercellular induction of apoptosis, a 
process with several ROS-mediated steps, depends on the production of super
oxide anions, leading to hydrogen peroxide formation, which is the basis for 
HOCI synthesis by an extracellular myeloperoxidase analogous enzyme 
released from TGF-beta treated nontransformed cells. Superoxide production 
is causally related to the maintenance of the transformed state (YAN et al. 1996; 
IRANI et al. 1997; JURGENSMEIER et al. 1997b) and thus fulfills an interesting 
double function for the transformed cell: maintenance of the transformed state 
as well as elimination of transformed cells. Sensitivity for NO-mediated apop
tosis through peroxynitrite formation depends on the same principle and 
therefore both pathways can act synergistically (Fig. 3). As shown in recent 
model experiments (HEIGOLD et aI., in preparation), nontransformed fibrob
lasts were insensitive to NO· but sensitive to apoptosis induction by perox
ynitrite, whereas transformed cells were sensitive to both agents. Apoptosis 
induction in transformed cells through NO' was inhibited by SOD, indicating 
that cell-derived superoxide anions are required to form the ultimate inducer 
peroxynitrite. Cells with an inducible ras oncogene were sensitive to NO· as 
long as ras was expressed; apoptosis induction was inhibited by SOD. These 
data demonstrate the link between oncogene expression, superoxide anion 
generation followed by the expression of the transformed state, as well as 
induction of processes directed against the transformed cell. 

The novel concept for intercellular ROS signaling during the control of 
oncogenesis depends on long-lived species with relatively low reactivity and 
wide range of action (like hypochlorous acid or NO·). These interact with the 
short-ranging superoxide anion and yield hydroxyl radicals or peroxynitrite -
molecules that are extremely reactive, short-lived and short-ranging. This trick 
allows the efficient monitoring of superoxide anion-producing transformed 
cells and their specific apoptosis induction. 

Selectivity ofTNF against transformed cells seems to be different and only 
relative. It is not based on a selective induction process as in the case of NO· 



Reactive Oxygen Species and Apoptosis 301 

TRANSFORMED CELL 

0"" 
~~ ), ~ 

H,O, CI-

r\' I ,p\ ------=-=-.--------
-')HOCI 

.dH) 
0"" 

ROS O,""l ____ ".". ___ ---N-O---

Peroxidase 

ROS ONOO-

I 
APOPTOSIS 

Fig.3. Superoxide anion production by transformed fibroblasts is the basis for specific 
recognition by natural antitumor mechanisms. Superoxide anion generation (as a con
sequence of oncogene activation and NADPH oxidase activity) allows HOCI synthe
sis through peroxidase (released from TGF-beta-treated nontransformed fibroblasts or 
derived from phagocytes, i.e., myeloperoxidase). The unspecific signal molecule HOCI 
is converted to a highly reactive hydroxyl radical at the membrane of the transformed 
cell through interaction with superoxide anions. This step warrants both efficiency and 
specificity of peroxidase-mediated antitumor effects. NO' released from endothelial 
cells, macrophages, granulocytes, NK cells, or fibroblasts represents a nontoxic signal 
molecule which may be converted to peroxynitrite through interaction with superox
ide anions derived from transformed cells. This scheme demonstrates one of the central 
principles for ROS-mediated signaling discussed in the text - conversion of a long
ranging, nonreactive signal molecule into a more reactive and extremely short-ranging 
effector molecule at the desired site. This strategy seems to be utilized by different 
natural antitumor mechanisms (intercellular induction of apoptosis, phagocytes, 
endothelial cells). Superoxide anions derived from transformed cells are the key ele
ments in this mechanism. Their short range of action ensures that the ultimate signal 
is generated close to the transformed cell. In this way specific apoptosis induction in 
transformed cells is warranted 

or HOCl, but reflects a differential response of transformed and nontrans
formed cells. As shown by SCHULZ AND BAUER (in preparation), TNF in an 
oxidative pathway downmodulates endogenous survival factors in both cell 
types, demonstrating that TNF signaling is functional in both. However, as 
non transformed cells possess higher concentrations of endogenous survival 
factors as transformed ones, downmodulation after TNF action is not com-
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plete and therefore the apoptosis machinery is still inhibited. In transformed 
cells the lower initial concentration of survival factors is completely destroyed 
and apoptosis starts. These data demonstrate that the decrease in survival 
factor concentration after oncogenic transformation has a direct biological rel
evance during control of tumorigenesis. In the case of HOCI- or NO-driven 
apoptosis, the differential concentration of survival factors has a modulating 
effect on the efficiency of the reaction, though it is not the decisive step. 

These findings open the way for a better understanding of ROS-depen
dent signaling pathways involved in the processes of transformation, tumor 
formation, and metastasis on one side and natural antitumor mechanisms on 
the other. The knowledge of these mechanisms may enable therapeutic inter
ference in the future. 
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CHAPTER 12 

Clearance of Apoptotic Lymphocytes 
by Human Kupffer Cells. Phagocytosis 
of Apoptotic Cells in the Liver: Role of Lectin 
Receptors and Therapeutic Advantages 

L. DINI 

A. Introduction 
This chapter (see also SAVILL and BEBB, Chap. 6, this volume,) deals with the 
removal of apoptotic cells. The engulfment of cells undergoing apoptosis can 
be considered a specialized form of phagocytosis, playing a major role in 
the general tissue homeostasis in physiological and pathological conditions. 
Phagocytic recognition of apoptotic cells is less well understood than the death 
program itself, but an increasing number of recent studies are highlighting its 
importance. A particular aspect of phagocytosis of apoptotic cells will be con
sidered: the Kupffer-cell-mediated removal of apoptotic lymphocytes. 

I. Apoptotic Cells: Fast Food for Phagocytes 

Apoptosis in vivo is followed almost inevitably by rapid uptake into adjacent 
phagocytic cells (SAVILL et al. 1993; SAVILL 1997). Condemned cells are swiftly 
identified and engulfed by phagocytes. The fact that "free" or "nonphagocy
tosed" dying cells are rarely observed in vivo because of their swift removal 
partly explains why apoptosis has been only recently identified as a frequent 
physiological event. 

Apoptotic cell removal by phagocytes is a key factor of the program of 
events associated with this type of cell death in diverse processes: during devel
opment favoring the remodeling of embryonic tissue, during physiological 
situations like thymic involution, for the maintaining of the normal tissue 
homeostasis, during pathological conditions and resolution of inflammatory 
response (MEAGHER et al. 1992; HASLETT et al. 1994; FADOK et al. 1998b; SAVILL 
1998). The fact that dead cells are ingested by neighboring ones during devel
opment suggests that this process serves as a fundamental homeostatic role 
in multicellular organisms (CLARKE 1990; ELLIS et al.1991a,b; NISHIKAWA et al. 
1998). Investigations of cell death in the nematode Coenorhabditis elegans and 
mutations that affect this process have been particularly enlightening (ELLIS 
et al. 1991b). Cells that die are phagocytosed not by specialized phagocytes, 
which are absent from this simple invertebrate, but by neighboring cells. Six 
mutants that perturb engulfment have been reported (ELLIS et al. 1991 b). 
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Phagocyte recognition of "apoptotic self" is also essential in protecting 
tissues from inflammatory injury due to leakage of noxious contents from 
dying cells and possibly limiting the development of auto-immune responses 
(REN and SAVILL 1998). Unlike other receptor-mediated phagocytic responses 
of macrophages, ingestion of apoptotic neutrophils does not lead to release of 
pro-inflammatory mediators (MEAGHER et al. 1992). In fact, the phagocytosis 
of apoptotic neutrophils, in contrast to Fc-receptor-mediated phagocytosis 
(RAVETCH 1994) and immunoglobulin G-opsonized apoptotic cells, actively 
inhibits the production of interleukin-1beta (IL-1,B), IL-8, IL-lO, granulocyte 
macrophage colony-stimulating factor (G-MCSF), and tumor necrosis factor
alpha (TNFa) , as well as leukotriene C4 and tromboxane B2, by human mono
cyte-derived macrophages (FADOK et al. 1998b). In contrast, production of 
transforming growth factor-beta 1 (TGF,B1), prostaglandin E2 or PAF results 
in inhibition of lipopolysaccharide (LPS)-stimulated cytokine production 
(FAD OK et al. 1998b). Leukocyte recruitment is apparently restricted to situa
tions in which phagocytic capacity is exceeded and apoptotic cells become sec
ondarily necrotic before clearance (OGASAWARA et al. 1993). 

The final intracellular fate of intact ingested cells undergoing apoptosis is 
the lysosomal enzyme destruction. However, little is known about signaling 
events downstream of apoptotic cell binding to specific receptors. Recently 
LID and HEN GARTNER (1998) cloned the ced-6 gene from C. elegans that is 
required for engulfment of apoptotic cells. It encodes a protein with a phos
photyrosine-binding domain and appears to be an adaptor molecule that func
tions within a specific signal-transduction pathway. 

But what are the mechanisms underlining the phagocytosis of apoptotic 
cells? Recent data indicate that apoptotic cells are marked for disposal by 
mechanisms which remain poorly understood. Investigations employing a 
variety of cell types and species imply that changes of the plasma membrane 
could include surface sugar and charge changes, and exposure of phos
phatidylserine (PS) leads to recognition by uncharacterized phagocyte recep
tors (SAVILL et al. 1993; HART et al. 1996; SAVILL 1997; FADOK et al. 1998a). 
Although several systems of recognition on the surface of the phagocyte have 
been proposed to trigger or execute the apoptotic engulfment, the nature of 
the molecules involved and their molecular roles are still ill defined. Available 
data have identified candidate phagocyte molecules for restraining apoptotic 
cells (i.e., lectins, thrombospondin (TPS), CD14, scavenger receptors), 
transmembrane signaling for phagocytosis (rxv,B3, CD36, ABC1, an ATP 
binding Cassette transporter, CED-6) and cytoskeletal reorganization (CED-
5) (SAVILL et al. 1990, 1992a; FAD OK et al. 1992a,b, 1998a; DINI et al. 1993, 1996; 
FLORA and GREGORY 1994; REN et al. 1995; LUCIANI and CHIMINI 1996; DEVITT 
et al. 1998; LID and HENGARTNER 1998; SAVILL 1998; Wu and HORVITZ 1998). 
These aberrant exposures, as well as several independent mechanisms, allow 
for the recognition of apoptotic cells by different phagocyte populations and 
by non-phagocytic cells such as fibroblasts and epithelial cells (SAVILL et al. 
1989, 1990). Therefore, individual phagocytes might employ parallel or redun-
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dant phagocytic receptor systems. It is conceivable that the several systems of 
recognition on the surface of the phagocyte proposed to trigger or execute the 
apoptotic engulfment may act sequentially, each recognizing cells at different 
stages of the death program. Indeed, data from the literature indicate that 
macrophages have evolved distinct mechanisms for safe recognition of late 
apoptotic neutrophils, complicating attempts to clarify this mechanism in vivo 
(SAVILL 1998). A full understanding of this complexity will require definition 
of recognition mechanisms which operate in vivo in higher organisms. In fact, 
an active phagocytosis of apoptotic cells and bodies exerted by the hepatic 
sinusoidal cells is observed in vivo during the massive liver involution gener
ated by a single injection of lead nitrate (DINI et al. 1996a). 

B. Recognizing Death: Phagocytosis of Apoptotic Cells 
in the Liver 

I. Liver Apoptosis 

Apoptosis is considered a process whereby organisms eliminate "unwanted" 
(damaged, precancerous, or excessive) cells. However, apoptosis is also the 
complement of mitosis, and in concert with it determines maintenance, growth, 
or involution of tissue (GERscHENSON and ROTELLO 1991). Although apopto
sis occurs at a negligible rate in the normal liver, a variety of physiological con
ditions, diseases, and xenobiotic treatments can cause this form of cell death. 
Regression of the liver during starvation is accompanied by an enhanced rate 
of apoptosis (BURSH et al. 1992). Cell loss through apoptosis has also been 
detected in liver during physiological cellular renewal, in cellular depletion 
after the "overshoot" of cell regeneration of animals subjected to partial hepa
tectomy (TESSITORE et al. 1989), and after stimulation with mitogens or hyper
plasia-inducing treatments (COLUMBANO et al. 1985; BURSCH et al. 1986). 
Moreover, apoptosis is also induced by stressful stimuli and by unfavorable 
environmental conditions (COLUMBANO et al. 1985; BURSCH et al. 1992; GRASL 
KRAUPP et al. 1994; LEDDA-COLUMBANO et al. 1996). Accordingly, a large 
number of toxins produce hepatocyte apoptosis. 

In the liver, like other organs, the apoptotic process can be divided into 
four phases, the first three being: an induction phase, the nature of which 
depends on the specific death-inducing signals; an effector phase, during which 
the "central executioner" is activated and the cell becomes committed to die; 
and a degradation phase, during which cell acquires the biochemical and mor
phological features of endstage apoptosis. In this cascade of events, the "point 
of no return" would be the step at which the cell becomes irreversibly com
mitted to the loss of essential cellular functions. The fourth, and last phase, is 
the engulfment of the dead corpse by macrophages and other "occasional" 
phagocytes. The apoptotic cells within an organ are not, however, easily 
detectable. Attempts to detect apoptotic cells in clinical samples are rarely suc
cessful. A hypothesis is that apoptotic cells are cleared from the circulation by 
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phagocytosis before they become detectable by conventional morphological 
or cytometric methods (DuRRIEU et al. 1998). DNR-treated K562 cells were 
eliminated by phagocytes while apoptosis was never observed by any of the 
above methods (DURRIEU et al. 1998). 

Phagocytosis, one of the peculiar functions of the liver, is beautifully oper
ated by the sinusoidal cells (i.e., endothelial and Kupffer cells) (SMEDSR0D 
et al. 1990, 1994; TOTH and 1HOMAS 1992). Endothelial and Kupffer cells have 
many specific functions that are essential for the preservation of homeostasis 
in liver under several conditions and the endocytosis is pivotal for this role. 
Endocytosis, and particularly receptor-mediated endocytosis that is a major 
route for protein or glycoconjugate ligand transport into liver cells, is not only 
essential for the removal of plasma proteins but also of particulate material 
from the blood such as apoptotic cells and/or bodies, that are produced at the 
end point of the apoptotic process (DTNT et al. 1996a). Due to their location in 
the sinusoids, and combined with the fact that they represent the majority of 
the body's fixed macrophages, Kupffer cells are predominant participants in 
this process. They are the first cells of the mononuclear phagocyte system to 
come into contact with particulate and immunoreactive materials coming from 
the blood, potentially noxious like apoptotic cells. However, the functions of 
these cells include not only the phagocytosis of foreign particles (JONES and 
SUMMERFIELD 1982) but also the removal of endotoxin (RUITER et al. 1981), 
tumor cells (Roos et al. 1978), and liposomes (ROERDINK et al. 1981), the pre
sentation of antigens mediating immune responses (RIFAI and MANNIK 1984), 
the metabolism of lipoproteins (VAN BERKEL et al. 1992), and the secretion of 
mediators such as oxygen-derived free radicals, nitrogen intermediates, several 
cytokines and arachidonate metabolites (SHIRATORY et al. 1993). Many of their 
phagocytic activities are mediated by specific receptors: carbohydrate-specific 
receptors (DINI and KOLB-BACHOFEN 1989), receptors for fibronectin and 
receptors for surface-bound fragments of C3 (WARDLE 1987; KEMPKA et al. 
1990) that enable Kupffer cells to bind and endocytose denaturated proteins 
and lipids (NENSTER et al. 1992; VAN BERKEL et al. 1992) and glycoproteins 
(STEER and CLARENBURG 1979), opsonized foreign particles (KOLB-BACHOFEN 
1992), bacteria, yeasts, and viruses (KIRN et al. 1982), apoptotic bodies (DINT 
et al. 1993), and immune complexes (WARDLE 1987). 

II. Hepatic Lectin-Like Receptors 

Among the several alternative mechanisms reported for removal of apoptotic 
cells, that are mainly related to the cell type and system used, it has been 
reported that in the liver recognition and phagocytosis of apoptotic cells are 
operated by means of hepatic lectin-like receptors (DINT et al. 1996a). The first 
demonstration that the asialoglycoprotein receptor (ASGPR) (likely in coop
eration with other carbohydrate receptors) is involved in the phagocytosis of 
apoptotic hepatocytes by healthy ones was performed on newborn hepatocyte 
cultures induced to undergo apoptosis by hormonal treatments (DINI et al. 
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1992). The apoptotic bodies, floating in the culture supernatants, were removed 
by the hepatocytes. The idea that the apoptotic cell surface might expose nor
mally masked sugar residues, rendering them available for interaction with 
lectin-like receptors on hepatocytes, was supported by the ability of the specific 
receptor antibodies and sugar moieties to block their binding and uptake by 
the living liver cells. Therefore hepatocyte recognition and internalization of 
apoptotic cells is due to the exposition of several glycans, in particular galac
toseIN-acetyl-galactosamine, on the surface of apoptotic cells (DINI et al. 
1992). The presence of galactose/N-acetyl-galactosamine, mannose/N-acetyl
glucosamine on the surface of apoptotic hepatocytes was observed on cells 
derived both from the supernatant of the cultures as well as isolated from 
livers of rat treated to induce apoptosis in vivo (DINI et al. 1992). 

In the liver the clearance of galactose-terminated particles from the cir
culation is performed by a galactose-specific uptake mechanism on Kupffer 
cells. This receptor shows a high affinity for particulate ligands that expose 
galactose groups, like desialylated erythrocyte (KOLB-BACHOFEN et al. 1982). 
It is worth noting that liver endothelial cells also reveal galactose-specific 
receptors on their surface (DINI et al. 1993) for receptor-mediated endocyto
sis of circulating modified glycoproteins and for engulfment of large-sized 
materials (STEFFAN et al. 1986). Moreover, liver endothelial and Kupffer cells 
take up a wide range of molecules with a net negative charge by the so-called 
scavenger receptor (VAN BERKER et al. 1992) and with mannose- and N-acetyl
glucosamine residues by lectin-like receptors. The presence of receptors that 
specifically interacted with mannose- and N-acetylglucosamine-terminated 
glycoproteins on sinusoidal liver cells was first described by STEER and 
CLARENBURG (1979). Liver endothelial cells are the primary site for uptake of 
these glycoproteins (HUBBARD et al. 1979). Although this receptor has been 
identified on Kupffer cells, it contributes to a much lower degree (sixfold 
lower) to the uptake of various mannose-exposing ligands from the circula
tion than with the endothelial cells (PRAANING-VAN DALEN et al. 1987). 

The above reported data shows that, due to exposing of several normally 
masked glycans on the surface of dead cells, all the main three liver cell types 
possess receptors that can potentially recognize apoptotic cells (MORRIS et al. 
1984; DUVALL et al. 1985; DINI et al. 1992; HALL et al. 1994). Therefore, liver 
cells are predictable actors in the recognition and subsequent engulfing of 
apoptosing cells, probably by means of specific carbohydrate-receptors. 

Modulation of cell surface molecules has been reported for cells under
going the process of apoptosis in different experimental conditions (EMOTO et 
al. 1997; SAVILL 1998) but very little is known about receptor molecules on 
dying cells or on neighboring healthy ones. On the surface of non-apoptotic 
liver cells (i.e., hepatocytes, Kupffer cells, endothelial cells), the expression of 
ASGP-R, galactose-specific receptor, and mannose-specific receptor is modu
lated (enhanced or decreased) during the entire process of apoptosis, induced 
in vivo by administration of a potent liver mitogen, lead nitrate (DINI et al. 
1993,1995). The number and distribution of binding sites is receptor and cell-
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type dependent during the days following the metal injection. However, the 
intensity and the persistence of the modulation are specific for the different 
liver cell types, thus indicating different (time and modality) involvement for 
hepatocytes, Kupffer cells, and endothelial cells during the process of apopto
sis. It is worth mentioning that a relationship of carbohydrate receptor expres
sion to the differentiated and/or metabolic state of liver cells has been well 
documented. The mechanism(s) responsible for this regulation has not yet 
been completely clarified, even though post-translational modulations are 
indicated (MASSIMI et al. 1996). 

Irrespective of the liver cell type, galactose and mannose receptors coop
erate for the removal of apoptotic cells: decrement of galactose binding sites 
are paralleled by mannose binding sites overexpression. In this way, carbohy
drate specific receptors are always expressed in great amounts on the cell 
surface. The meaning of all the above-mentioned changes has to be better 
understood. To this end we are currently studying the modification of hepatic 
membrane composition in relation to apoptosis. 

Hepatic membrane composition may be under the control of mitochon
dria. A single intravenous injection of lead nitrate was able to lower the activ
ity of the mitochondrial tricarboxylate carrier and the lipogenic enzymes as 
well as modify the lipid mitochondrial composition, but leaving unaltered the 
ultrastructure of the mitochondria (DINl et al. 1999). In particular, the reduced 
activities of cytosolic lipogenic enzymes could suggest a putative mitochondr
ial control of apoptotic membrane alterations through the tricarboxylate 
carrier (DINT et al. 1999) In fact, besides other functions, the tricarboxylate 
carrier plays an important role in fatty acid biosynthesis since it catalyzes the 
transport of acetyl-CoA, condensed with oxaloacetate in the form of citrate, 
from mitochondria to the cytosol of the cell, where lipogenesis occurs. Inter
estingly, in a recent paper CASTEDO et al. (1995) has shown that the mito
chondrial transmembrane potential disruption leads to phosphatidylserine 
exposure on the plasma membrane, thus causing alterations of the surface 
that will facilitate the phagocytic recognition and removal of cells en route to 
apoptosis. 

The use of an in vivo model of induction of apoptosis in the liver (COLUM
BANO et al. 1985) highlights the role of lectin-like receptors (in particular 
galactose- and mannose-specific receptors) in the recognition of dead cells 
(DINT et al. 1993). During the metabolic disorder of the liver, generated by lead 
nitrate treatment, sinusoidal liver cells (i.e., Kupffer and endothelial cells) acti
vate phagocyte apoptotic hepatocytes and circulating apoptotic cells by using 
both galactose and mannose-specific receptors, as suggested by inhibition 
uptake experiments. In particular, Kupffer cells at five and fifteen days from 
the lead nitrate injection are very active in internalizing apoptotic cells (two
to threefold the control), but phagosomes containing apoptotic hepatocytes 
are often seen inside the cytoplasm of parenchymal cells and endothelial cells. 
The ability of endothelial liver cells to recognize and internalize apoptotic 
cells and/or bodies (maintained even after isolation and cultivation) has been 



Clearance of Apoptotic Lymphocytes by Human Kupffer Cells 325 

already reported (DINI et al. 1995; DINI and CARLA 1998a) and it is in line with 
the capacity of the hepatic sinusoidal wall to interact with particulate materi
als (WARDLE 1987; DINI and KOLB-BACHOFEN 1989; KOLB-BACHOFEN 1992) and 
to operate as a protective barrier for the systemic circulation (TOTH and 
THOMAS 1993). Interestingly, apoptotic lymphocytes are retained by the sinu
soids in a heterogeneous distribution: apoptotic cells in the periportal tract are 
double those in the perivenous region (DINI and CARLA 1998a). The reason 
should be found in the differences existing between periportal and centrilob
ular endothelial cells regarding the fenestration pattern (MORIN et al. 1984) 
and to the uneven expression of galactose and mannose-specific receptors 
(ROCHA et al. 1993). 

Although the mannose receptor-mediated endocytosis is a characteristic 
of the endothelial cells as a whole, the uneven distribution down the length of 
the sinusoidal pathway of the mannose receptor (ROCHA et al. 1993) suggests 
that this function occurs preferentially in the periportal segment (ASUMENDI 
et al. 1996). Mannose receptor expression on the liver endothelium is up
regulated by IL-1 and is associated with increased removal of apoptotic cells 
and tumor cell adhesion (VIDAL-VANACLOCHA et al. 1994; DINI et al. 1995). The 
ability to recognize apoptotic lymphocytes has therefore been related to the 
amount of carbohydrate receptors expressed on the cell surface (DINI and 
CARLA 1998a). 

Summarizing, multiple data are in favor of the involvement of hepatic car
bohydrate receptors in the apoptotic cell and/or body clearance: (i) the cell 
surface of dead hepatocytes expresses great amounts of galactoseIN-acetyl
galactosamine/mannose residues; (ii) hepatocytes, Kupffer, and endothelial 
cells express on their cell surface the carbohydrate receptor systems; (iii) these 
receptors are modulated differently during the in vivo onset of apoptosis; (iv) 
during in vivo onset of apoptosis hepatocytes, Kupffer and endothelial cells 
show large phagosome containing apoptotic bodies; (v) LPS and IUJ3 stimu
lation of endothelial cells markedly enhances the phagocytosis of apoptotic 
lymphocytes, probably by increasing the carbohydrate receptors expressed on 
the cell surfaces; (vi) the removal of apoptotic cells is reduced by about 70% 
by addition of specific saccharide. 

III. Kupffer Cells Phagocytic Activity 

To accomplish phagocytosis of apoptotic cells, the recognition process must be 
followed by internalization (Figs. 1-3). This latter phenomenon needs cyto
plasmic movements that generate fine filamentous processes immediately 
adjacent to the particle, in which the cytoskeleton plays a major role 
(WATANABE 1988). Since endocytosis is a multistep process that includes cel
lular movements, in particular the extension of pseudopodia, a decrease in 
ruffling movements of the pseudopodia of Kupffer cells indicates an inhibition 
of phagocytic capacity (WATANABE et al. 1990). During some pathological con
ditions of the liver (such as adenoma and cirrhotic nodules) Kupffer cells pos-
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Fig. I. Schematic representation of the current understanding of the uptake pathway 
of apoptotic cells by phagocytes. The molecular modifications of the plasma membrane 
during apoptosis that lead to swift recognition represents those of human lymphocytes. 
The very early stages of apoptosis (2) are characterized by modification of the 
membrane lipid asymmetry and external exposition of phosphatidylserine; nuclear 
modifications are not yet visible; (3) The late stages of apoptosis are characterized by 
chromatin compacting, round shape, and eventual production of membrane-bounded 
apoptotic bodies. Normally hidden sugar residues are exposed on the extracellular face 
of the plasma membrane; (4) membrane modifications of apoptotic cells are necessary 
for their bound by receptors on phagocytes followed by later internalization. The 
"phagocyte" represents a combination of features that have been attributed to differ
ent cell types capable of phagocytosing apoptotic cells, including human Kupffer cells. 
These adhesions allow to interact with signaling pathway that allow apoptotic cells to 
reach their final fate within the phagocytes. To engulf the apoptotic cells cytoskeletal 
reorganizations are also necessary. Abbreviations: PS, phosphatidylserine; TPS, throm
bospondin; CD36/integrin/rxv/3:J, vitronectin receptor; ABCl, ATP binding cassette 
transporter; Ced5, Coenorabditis elegans gene; DOCK 180, adaptor/signaling mole
cules; SRA, scavenger receptor class A 
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Fig.2a-c. Light and transmISSIon electron micrographs of the interaction between 
apoptotic lymphocytes and cultured Kupffer cells (Ke) at different interval times. a 
Apoptotic lymphocytes when incubated with Kupffer cells at 37°C for 5, 10, 15, 30, or 
60min are promptly bound (arrowhead) and phagocytosed (arrow). x800. bAn apop
to tic lymphocyte (*), whose chromatin aggregates into dense masses and the nucleus 
is displaced to one edge of the cell, adhering closely to the plasma membrane of a 
human Kupffer cell (Kc) at 5 min of incubation. Within 5 min of coculture almost all 
the apoptotic lymphocytes are bound to the plasma membrane of Kupffer cells, while 
after 10min of incubation the majority of apoptotic cells are internalized by the Kupffer 
cells, thus suggesting a very rapid mechanism of recognition. c At longer times of cocul
tivation, phagosomes containing dark material, which represent residues of the par
tially digested apoptotic lymphocytes, are visible inside Kupffer cells (arrow). x5000. c 
Two phagolysosomes containing apoptotic lymphocytes remnants with still recogniz
able nuclear dense masses (arrowheads). Secondary lysosomes resulting from degra
dation of phagocytosed apoptotic cells are also visible (asterisk). x6500 



Fig.3a,b. Scanning transmission electron micrographs of cocultures of apoptotic lym
phocytes and human Kupffer cells. a Human Kupffer cells are characterized by promi
nent membrane ruffling with microvilli of variable length accompanied by numerous 
pseudopodia when cultured in normal condition. Conversely, apoptotic cells are rec
ognized by their round, smooth surface that is a consequence of the disappearance of 
microvilli during the apoptotic process (arrows). Apoptotic lymphocytes added to the 
culture medium adhere to the surface of the Kupffer cells. xlO,OOO. b A few minutes 
later Kupffer cells, that are very active in phagocytosis, have completely internalized 
the apoptotic lymphocytes. After 15 min of coculture round protusions (representing 
the internalized apoptotic lymphocytes) are often visible inside the cells. When Kupffer 
cells were incubated with the carbohydrate-specific receptor inhibitors (i.e., sugars or 
modified glycoproteins) before and during the incubation with apoptotic lymphocytes, 
their phagocytic activity was dramatically reduced. The addition of healthy lympho
cytes to the Kupffer cell cultures does not result in the recognition and internalization 
of the blood cells. x7000 
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sessing a flattened shape and few or nO pseudopodia have been described as 
hypoactive (BURT et a1. 1993), while during the process of activation both the 
number and length of the surface projections of the Kupffer cells usually 
increased. Conversely, activated Kupffer cells (i.e., LPS, Pb(N03)2, cytokine 
stimulation) show an enhanced phagocytic capacity toward apoptotic cells. 
Observations of phagocytosed particles have led to the proposal of several 
possible mechanisms through which internalization is achieved (SWANSON and 
BAER 1995). One model, "zippering", requires the sequential recruitment of 
cell-surface receptors on the extending pseudopodia into positions in which 
they can interact with appropriate ligands. Thus internalization of the particle 
requires sequential interactions between receptor and ligands in addition to 
those responsible for initial binding. A second model, "triggering", suggests 
that initial attachment is itself sufficient to initiate phagocytosis. The multitude 
of different receptors that have been implicated in apoptotic cell uptake could 
be consistent with the "zippering" mechanism, which requires sequential 
receptor recruitment (PLATT et a1. 1998). It is worth noting that the state of the 
phagocyte is also particularly important in the apoptotic recognition (SAVILL 
et a1. 1993). The particular mechanism employed by macrophages and/or other 
amateur phagocytes may be regulated by external influences. The exposure of 
human monocyte-derived macrophages to granulocyte-macrophage colony 
stimulating factor (GM-CSF), a cytokine known to be present at inflammation 
sites, increased the recognition of apoptotic human neutrophils (SAVILL et a1. 
1993). Cytokines implicated in repair of injured tissue (i.e., transforming 
growth factor, TGF-j3; platelet-derived growth factor, PDGF) and those 
involved in the initiation of inflammation (i.e., interferon gamma, IFN-y, inter
leukin-I,IL-l and tumor necrosis factor-a TNF-a) also stimulated TPS-depen
dent recognition of apoptotic neutrophils (SAVILL et a1. 1993). IL-5 modulates 
macrophage phagocytosis of apoptotic eosinophils (STERN et a1.1992). LPS and 
ILlj3 upregulate the man nose receptor expression of liver cells and conse
quently the phagocytic activity of sinusoidal cells (DINI et a1. 1995). 

Kupffer cells represent an useful tool for the studies of phagocytosis: they 
can be used in situ or can be isolated from the livers (different vertebrates 
including man) and maintained in suspension or in adhesion cultures (NEAUD 
et a1. 1995). The binding and the internalization activity of sugar-exposing 
ligands is present in situ as well as in vitro, but the amount of both binding 
sites and internalized ligands is dramatically different in the three experi
mental models, thus suggesting that different physiological states can be 
induced by different experimental conditions (DINI et a1. 1998b). However, the 
relative capacity of internalization is almost unchanged in the different 
systems if the rate of binding to internalization is considered. 

The altered morphology of isolated and cultured Kupffer cells, with 
few and shorter microvilli and pseudopodia compared to the in situ cells 
(whose traditional image is "stellate" due to the presence of microvillous 
projections, blebs, etc.), could be one of the reasons for the reduced phago
cytic activity of these cells, probably caused by decreasing the number of 
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specific receptors on their surfaces and by decreasing the number and the 
length of pseudopodia. 

A parallel decrement in carbohydrate receptor expression, phagocytosis 
of apoptotic cells, and microvillous projections is found. Therefore, Kupffer 
cells phagocytosis of apoptotic cells mediated by specific receptors are depen
dent on the extent to which these receptors are expressed and, in turn, on the 
physiological state of the cells. In fact, it has been described several times that 
the expression of the galactose-specific receptor is sensitive to the physiolog
ical and pathological condition of the cells (MASSIMI et al. 1995). 

C. Human Kupffer Cells Removal of Apoptotic 
Lymphocytes 

I. Lymphocyte Cell Surface Modifications 

In vivo, apoptotic lymphocytes are recognized and phagocytosed by 
macrophages (Kupffer cells included) well before the final stages of DNA 
degradation and cell lysis (PRADHAN et al. 1997). The recognition process is 
apparently triggered by modifications of the cell surface. On the surface of the 
apoptotic lymphocytes, fewer varieties of potential ligand have so far emerged, 
the leading contender being PS, closely followed by carbohydrate changes; 
other possibilities remain, for the present on the sidelines. What is most dis
appointing at the time of writing is that no macrophage receptor has yet been 
linked definitively to a ligand in an apoptotic lympocytes. 

Lymphocytes, like almost all other cell types, once induced to apoptosis 
by different apoptosing stimuli (mild hyperthermia, oxidative stress, chx, etc.) 
develop characteristic apoptotic morphological features that in turn depend 
on the specific biochemical events involved in the dead process (KUMAR 1995). 
Asymmetric distribution of phospholipids across the bilayer of lymphocytes 
plasma membrane (maintained by an ATP-dependent aminophospholipid 
translocase and dissipated by activation of a non-specific lipid flipsite) is lost 
as part of the program of cell death, by down regulation of the translocase and 
activation of the non-specific lipid flipsite. As a consequence, PS is exposed on 
the cell surface. In cells in which apoptosis is induced through the Fas system, 
such as HeLa cells (SHlRATSUCHl et al. 1998), T lymphocytes under activation
induced death (BRUNNER et al. 1995; DHEIN et al. 1995), acute lymphocytic 
leukemia cell lines treated with an anti-cancer drug, doxorubicin (FRIESEN 
et al. 1996), and influenza virus-infected cultured cells, PS externalization 
preceded other apoptotic events (STUART et al. 1998). Cells which have lost 
membrane asymmetry are recognized by macrophages (McEvoY et al. 1986; 
SCHLEGEL and WILLIAMSON 1987; PRADHAN et al. 1994), but it is still being 
debated whether PS externalization is sufficient for phagocytosis induction. PS 
externalization independent of apoptosis caused by N-ethylmaleimide treat
ment leads to PS-mediated phagocytosis and externalized PS by itself induces 
apoptosing cell phagocytosis before plasma membrane permeability increased 
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(SHIRATSUCHI et al. 1998). Moreover, that PS exposure has functional conse
quences is demonstrated by the ability of artificial lipid vesicles containing PS 
to inhibit enhanced phagocytosis of apoptotic lymphocytes by macrophages. 
Understanding the mechanisms that govern membrane lipid sidedness, includ
ing those that promote a collapse of phospholipid asymmetry, seems essential 
to the comprehension of the disease states in which this unwanted PS expo
sure, or lack of PS exposure, is observed (KUYPERS 1998). 

However, other signals besides PS are also involved in recognition of 
apoptotic lymphocytes. Studies with other inhibitors indicate that macro
phages also utilize integrin-mediated and lectin-like recognition systems, 
although each is restricted to either unactivated or activated macrophages, 
thus indicating that the signals for recognition of apoptotic lymphocytes are 
complex and involve multiple recognition systems (SCHLEGEL et al. 1996). 
During our studies, aimed at characterizing modifications of lymphocytes 
cell surface during the apoptotic process, we found that the glucidic residues 
of glycoproteins of plasma membrane were substantially changed in the apop
totic lymphocytes compared to normal cells (FALASCA et al. 1996). In particu
lar our binding experiments, using four different fluorescent conjugate-Iectins 
(Concanavalin-A, Phaseolus limensis, Ricinus communis, and Ulex europaeus) 
with different hapten sugar specificity, indicate that a relevant amount of desia
lylated glycans are exposed on the surface of apoptotic cells. The membranes 
of apoptotic lymphocytes express increased amount of N-acetyl-galac
tosamine, D-galactose, and mannose residues when compared with normal 
ones. In fact normal and apoptotic cells express the same amount of fucose 
residues. The same findings were confirmed at the ultrastructural level by 
labeling apoptotic lymphocytes with gold particles conjugated lectins (ConA
AU17 and PHA-Au17) that resulted in labeling as small aggregates distributed 
all over the cell surface of apoptotic cells. 

Interestingly, from our studies of cell surface glycoconjugates between 
normal and apoptotic lymphocytes isolated from different species (i.e., human, 
rat), it turns out that cell surface modifications of lymphocytes undergoing 
apoptosis are related to the species. In fact Dolichos bifiorus (DBA) (N-acetyl
D-galactosamine) binding is detectable only on rat apoptotic lymphocytes 
while Limulus polyphemus (LPA) (N-acetyl-D-galactosamine, N-acetyl-D
glucosamine, N-acetylneuramic acid) binds on human apoptotic lymphocytes. 
Moreover, PS, whose exposition precedes sugar modifications (personal com
munication), is also differently expressed on dying rat and human lympho
cytes. Rat apoptotic lymphocytes exhibit a higher intensity of Annexin V-FITC 
binding than human ones. These differences are attributed to the different rate 
of removal and internalization by murine sinusoidal liver cells (DIN! 1999). 
In addition, time course of cell surface glycoconjugates modifications during 
apoptosis show that normally masked sugar residues are exposed sequentially. 

All the above-mentioned plasma membrane changes correlate with the 
fact that apoptosis is accompanied by water loss, shrinkage of the cell, and 
enzymatic fixation of the membrane that leads to peCUliarities in the antigenic 
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make-up of the apoptotic cell membrane. CARBONARI et al. (1994), using dif
ferentiallight scattering analysis and identifying specific changes of apparent 
density of the same surface antigens, discriminated between viable, apoptotic, 
and necrotic lymphocytes. We do not know how these modifications of the cell 
surface carbohydrates could occur. Probably they are due to the exposure of 
new membranes derived from the fusion of endoplasmic reticulum or Golgi 
vesicles during the onset of apoptosis, or they may also be due to a possible 
desialylation process that causes the exposure of normally masked residues 
(MORRIS et al. 1984). This latter mechanism is responsible for the removal of 
aged erythrocytes by the liver (KOLB et al. 1981). 

II. Kupffer Cells Recognition and Phagocytosis 
of Apoptotic Lymphocytes 

Kupffer cells isolated from human liver biopsies recognize and phagocyte in 
a very efficient manner lymphocytes undergoing apoptosis, induced by differ
ent stimuli (heat-shock 43°C; cycloheximide), but not normal living ones 
(FALASCA et al. 1996). That this recognition is mediated by the carbohydrate 
specific receptors is strongly suggested by the contemporary presence of the 
galactose- and mannose-specific receptors on human Kupffer cells and the 
sugar residues on apoptotic lymphocytes. The hepatic removal of apoptotic 
cells, proposed in rats (DINT et al. 1996a) is therefore extended to human 
Kupffer cells. The atypical exposure of sugars is one of the molecular signals 
for the recognition of apoptotic lymphocytes by Kupffer cells. Phagocytosis is 
inhibited by sugar cocktail (glucose, N-acetyl-galactosamine, methyl
mannopyranoside, fucose) or, to a lesser extent, by desialylated glycoproteins 
(lactosylated bovine serum albumin, asialofetuin), but not by unmodified gly
coproteins (fetuin, bovine serum albumin). The use of single compounds or 
modified glycoproteins never reaches the level of inhibition achieved by the 
sugar cocktail, thus suggesting cooperation among galactose- and mannose
specific receptors. However, the use of diverse molecular mechanisms by 
human Kupffer cells in the removal of apoptotic cells different from those we 
assayed cannot be excluded. 

The multiple receptor ligand interactions (galactose and man nose ) 
required for recognition and binding of apoptotic lymphocytes is a clever way 
for safe phagocytosis of blood circulating dead cells. Moreover, the fact that 
the same receptor systems for the recognition of apoptotic cells are shared 
among the different liver cells (DINI et al. 1996) suggests a differential involve
ment of liver cells in this activity. We propose that, while hepatocytes accom
plish the selective removal of neighboring dying cells, Kupffer cells mediate 
the clearance of circulating apoptotic cells, which escape the removal by neigh
boring cells or derive from other body and/or cell districts. It is worth noting 
that the liver is the specialized site where T cells, undergoing apoptosis in vivo 
are eliminated (HUANG et al. 1994). However, the molecular mechanisms that 
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control the accumulation and apoptosis of activated T cells in the liver are still 
unknown (HUANG et al. 1994). 

The recognition of the apoptotic lymphocytes once added to human 
Kupffer cell cultures is a very rapid process, being almost entirely completed 
within a few minutes of incubation. Apoptotic cells immediately adhere to 
Kupffer cells and are detected as dark material inside large phagosomes (Figs. 
2 and 3). Kupffer cells were never able to bind and internalize non-apoptotic 
lymphocytes when added to the cultures, even at the longer incubation times. 
In addition, recognition of apoptotic rat lymphocytes was significantly reduced 
compared to those of human apoptotic lymphocytes. It is of note that, in vivo 
as well as in vitro, Kupffer cells phagocyte apoptotic lymphocytes faster than 
endothelial liver cells, which internalize apoptotic cells only after long times 
of incubation. This fact suggests that liver cells are sequentially recruited for 
the removal of apoptotic cells. In particular, it could be speculated that in vivo 
phagocytosis of apoptotic cells by endothelial cells is restricted to the situa
tion in which, due to the high number of circulating apoptotic cells, phagocytic 
capacity of Kupffer cells is exceeded. 

It has been repeatedly claimed in this review that, to signal their "edible" 
status, cells undergoing apoptosis exhibit qualitatively and quantitatively cell 
surface modifications (including PS and sugar expositions) that are generated 
in a complex and evolving pathway. However, PS and sugar residues are not 
the unique key signal for the removal of apoptotic lymphocytes: in fact, when 
Kupffer cells are incubated with apoptotic U937 cells, the recognition was 
impaired in spite of the exposition of both PS and sugar residues. The "signal" 
that discriminates between apoptotic lymphocytes and U937 cells is far from 
being familiar. It is tempting only to speculate that a swift recognition of apop
totic cells is lost for cell lines and, conversely, it is an important phenomenon 
in vivo to prevent the inflammatory response. 

It should also be borne in mind that the pathways to activation of apop
tosis can be different and there may be many triggers for a suicide pathway 
even in a single cell type (DINI et al. 1996b; COBB et al. 1996). It could there
fore be hypothesized that different signals coming from the environment (i.e., 
exposure to or withdrawal of a hormone or a growth factor, as in thymus 
atrophy after glucocorticoid administration, the response of cell damage to 
antitumoral drugs, oxidative stress, and heat shock) could determine the 
expression of different markers on the cell surface of dying cells to signal their 
presence. 

D. Concluding Remarks and Future Perspectives 
The importance of the phagocytosis of dying cells as a process in itself, rather 
than simply as the endpoint of programmed cell death, is finally being 
acknowledged; hence it is beginning to receive more attention and research 
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Fig. 4. Scanning transmission electron micrograph of human Kupffer cell incubated 
with apoptotic lymphocytes. The cell is showing an electron microscopy artifact of 
preparation that, however, is self explicating the reorganization of the cell during 
phagocytosis. The "donut" shape of the cell is due, after the glutaraldehyde fixation, to 
the loss of the lymphocyte before its definitive engulfment. x2S,OOO 

effort. The previous brief discussion of the recogmtIOn and ingestion of 
apoptotic cells by Kupffer cells and by other liver cells shows clearly that 
human liver macrophages are active participants in the removal of apoptotic 
cells and that this removal is swift and efficient without eliciting an inflamma
tory/immune response (Fig. 4). Indeed, phagocytosis of apoptotic cells is 
not simply passively non-inflammatory but is actively anti-inflammatory (VOLL 
et a1. 1997; FADOK et 1998b). A macrophage receptor, CD 14, that is involved 
in the recognition and non-phlogistic removal of apoptotic cells (DEVITT et a1. 
1998) was known as receptor for the bacterial endotoxin, lipopolysaccharide, 
which macrophage after binding elicits pro-inflammatory responses. Con
versely, at least one unfavorable effect on the phagocytosis of apoptotic cells 
has been reported in the development of AIDS (KORNBLUTH 1994). Although 
apoptosis is often assumed to be a biological dead end, linear, unintegrated 
retroviral DNA survives apoptosis in avian leukosis virus systems. The viral 
DNA in apoptotic debris might spontaneously transfect macrophages that are 
avidly phagocytosing apoptosing cells, and thus lead to the production of new 
virions. Such a hypothetical accessory infection pathway may explain why anti-
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HIV cytotoxic cells are unable to clear this virus from the body (KORNBLUTH 
1994). 

The presence of multiple molecular mechanism(s) involved in the recog
nition of apoptotic cells could probably be explained by the sequential recog
nition of cells at different stages of the apoptotic program and the existence 
of regional specialization in the recognition process. Cell clearance in vivo 
might depend upon more than one type of phagocyte, each developing a single 
mechanism as was found in the inflamed glomerulus where apoptotic neu
trophils can be taken up by both macrophages and glomerular mesangial cells 
(SAVILL et a1.1992b; MEAGHER et al. 1992). Possibly a cell undergoing apopto
sis displays multiple signals of its status so that the probability of its removal 
increases and consequently the margin of safety for the whole organism is 
increased. For example, fibroblasts recognize apoptotic neutrophils via a vit
ronectin interaction but an additional involvement of a lectin-like mechanism 
was suggested by the inhibitory effects of mannose and fucose (HALL et al. 
1994). Therefore, selection of one or more mechanisms for recognition of 
apoptotic cells by a particular cell type might depend upon the species, 
the lineage of the apoptotic cell, or the nature of the phagocyte involved 
(DINI1999). 

Other peculiarities are emerging in the complex field of the recognition 
mechanisms of apoptotic cells. In fact, cooperation in the removal of dead cells 
is restricted not only to the use of more than one cell surface receptor exposed 
on the phagocytic cells, but also to cooperation among different cellular type 
sharing the same receptor system for the recognition and removal of apop
totic cells. This fact is well illustrated in the liver where both hepatocytes, 
Kupffer as well as endothelial cells, operate the plasma clearance of apoptotic 
cells generated during the involuting phase of liver hyperplasia induced by a 
single injection of lead nitrate by means of a sugar recognition mechanism 
(DINI et al. 1993, 1995). These data, together with the fact that the phagocytic 
activity in endothelial cells can be enhanced in macrophage-depleted rats and 
that IL-1 induces in vitro overexpression of mannose-specific receptors on 
endothelial cells, suggest a cooperation with Kupffer cells in phagocytosis. 

It is worthwhile to note that the study of the mechanisms of the phago
cytosis during the process of apoptosis it is not merely a speculative exercise, 
since defects of phagocytosis of apoptotic cells might have deleterious conse
quences for neighboring healthy cells. The logical consideration of the impor
tance of phagocytosis leads to thoughts on the contribution of defective 
clearance as a factor in the pathogenesis of inflammatory diseases. The rele
vance of phagocytosis to the dysregulation of the immune system that under
lies specific pathological conditions requires examination: for example, 
whether compromising the capability to ingest apoptosing cells contributes to 
autoantibody production (BOTTO et al. 1998; HERMANN et al. 1998). 

Further investigations of the molecular mechanisms of recognition and 
ingestion of apoptotic cells will be important for the identification of the target 
structures present on apoptotic cells and for a better understanding of the fate 
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of apoptotic cells. This in turn may allow manipulation of phagocyte responses 
to apoptotic cell stimuli and the development of novel therapeutic strategies 
(for example, during tissue repair) as an effective anti-inflammatory and 
immunosuppressive strategy. Moreover, the investigation of the potential ther
apeutic use in administering agents to enhance, specifically, phagocytic clear
ance of apoptotic cells to remove unwanted cells (i.e., malignancy, targeted by 
apoptosis inducing treatments), should lead to the development of new ther
apeutics to overcome diseases for which effective medical treatment is not yet 
available. 
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CHAPTER 13 

Drug-Induced Apoptosis of Skin Cells 
and Liver 

M. NEUMAN, R. CAMERON, N. SHEAR, and G. FEUER 

A. Prevalence of Drug-Induced Apoptosis 
A variety of man-made and naturally occurring chemicals can induce apop
tosis in a number of cell types (CAMERON and FEUER, Chap. 1, this volume; 
PESSAYRE et aI., Chap. 3, this volume). Therapeutic agents which can cause 
apoptosis include glucocorticoids and a number of chemotherapeutic drugs 
including bleomycin, cisplatin, cytosine arabinoside, doxorubicin, methotrex
ate, nitrogen mustard, and vincristine (CAMERON and FEUER, Chap. 1, this 
volume). We have been studying the process of the induction of apoptosis by 
selected drugs in vitro and in vivo. The chemotherapeutic drug methotrexate 
induces apoptosis in skin cells and in liver cells in vitro and, in addition, apop
tosis of hepatocytes was observed in liver biopsies of patients treated with 
methotrexate for psoriasis. In a series of further studies, we also examined the 
drugs acetaminophen and valproic acid for their apoptotic inducing effects on 
hepatocytes in vitro. 

B. Methotrexate-Induced Apoptosis 
Methotrexate is an antimetabolite which binds to the enzyme dihydrofolate 
reductase. Methotrexate acts by inhibiting the synthesis of purine and pyrim
idine nucleotides and appears to exert its toxicity by means of DNA strand 
breakage in cells of the liver and skin (SANO et al. 1991). The mechanism 
of methotrexate toxicity to hepatocytes has been studied by a number of 
groups (VONEN and MORLAND 1984; MULLER et al. 1997, 1998; Los et al. 1997; 
RASHID et aI. 1999). It was suggested from these studies that one mechanism 
of apoptosis induction in hepatocytes is associated with the CD95 receptor 
ligand interaction. Methotrexate is known to up-regulate CD95 receptors. 
Methotrexate-induced apoptosis of hepatocytes was also shown to be medi
ated by caspases (Los et al. 1997). In our studies, we investigated the effect of 
methotrexate in normal neonatal primary skin cells, epidermal skin cells of the 
line A431, normal human primary hepatocytes, and human HepG2 cells. 
The presence of cytokines and the level of cytotoxicity in apoptosis were 
examined as well as cytoviability and glutathione content. Transmission elec
tron microscopy was used and we attempted to quantify the differences in 
morphology found in electron micrographs from liver biopsies of patients with 
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methotrexate toxicity. We also examined the effect of methotrexate in combi
nation with ethanol. We concluded that, at lower doses, methotrexate or 
ethanol will not cause cellular apoptosis, although ethanol produces oxidative 
stress which can then promote methotrexate-induced apoptosis. 

I. Apoptosis of Hepatocytes In Vivo 

Patients receiving methotrexate therapy, usually for the treatment of psoria
sis, are known to be at risk of liver disease including steatosis, hepatic fibrosis, 
and even cirrhosis (GILBERT et al. 1990; WHITING-O'KEEFE et al. 1991). 

We have studied liver changes in a group of 20 patients with psoriasis 
undergoing chronic methotrexate therapy by light and electron microscopy. In 
six patients, liver biopsy was performed using morphometric analysis. On each 
grid prepared for electron microscopy, a minimum of 500 hepatocytes were 
examined in each case. Magnification for the electromicrographs for mor
phometry was set at 2500x in each case in order to make relative comparisons 
between the patients exposed to methotrexate and a group of 51 control liver 
biopsies representing a group of patients with antibodies to hepatitis C virus 
with normal histology and no liver pathology. Quantitation was made of the 
number and size of lipid vesicles, size of mitochondria, number of apoptotic 
cells and of apoptotic bodies. Random photomicrographs were taken. In addi
tion, the length and axial ratio of mitochondria and lipid droplets were mea
sured. For each cell, the numerical density or number of lipid droplets per cell 
was quantified. The ultrastructural changes seen in the methotrexate treated 
patients were very striking compared to the controls with normal histology: 
(a) steatosis of both macrovesicular and microvesicular type involving 
25%-75% of all hepatocytes in the six patients examined; (b) marked dilata
tions of the smooth endoplasmic reticulum (SER) compared to controls; ( c) 
proliferation and microvesiculation of endoplasmic reticulum; (d) diffuse 
mitochondrial changes with increases in size and paracrystalline inclusions; 
and (e) the presence of scattered apoptotic hepatocytes (Fig. 1) as compared 
to control liver tissues which showed no apoptotic cells. These ultrastructural 
changes, including microvesicular steatosis, mitochondrial changes, and prolif
eration and dilatation of the SER, are not specific for methotrexate but rep
resent characteristic responses of the liver to drug toxicity (PHILLIPS et al. 1987; 
FEUER and DE LA IGLESIA 1996). A much wider group of drugs, however, such 
as chemotherapeutic drugs, seem to cause apoptosis in hepatocytes (CAMERON 
and FEUER, Chap. 1, this volume). 

II. Apoptosis of Hepatocytes In Vitro 

1. Initial Studies 

Human hepatocytes derive from two sources, namely human hepatoblastoma 
cells or HepG2 cells (Fig. 2) were obtained from the Wistar Institute, Philadel
phia, PA, and human normal primary hepatocytes were obtained from donor 
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Fig.I. Electron photomicrograph of liver biopsy of a 43-year-old male patient with 
psoriasis at two years post-treatment with methotrexate which shows an apoptotic 
hepatocyte nucleus, x8400 

livers (Fig. 3). These cells were used to analyze the in vitro toxicity to human 
hepatocytes of drugs such as methotrexate, methotrexate plus ethanol, aceta
minophen, and valproic acid. Our previous studies, and those by others, had 
shown that specific molecules had a critical effect on drug-induced hepato
toxicity in vitro including cytokines such as TNFa, glutathione (SHEAR et al. 
1995), and the effect of a sublethal and almost subtoxic level of ethanol in 
combination with a drug like methotrexate in vitro. 

2. Effects of Co-exposures of Hepatocytes with Methotrexate and Ethanol 

Methotrexate added alone at a dose of 10mmollL concentration caused some 
hepatocytes to enlarge and simulate mild steatosis with the appearance of lipid 
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Fig. 2. Electron photomicrograph of untreated HepG2 cells in vitro showing normal 
looking hepatocytic nuclei and cytoplasmic organelles, x4200 

droplets. Similarly, the addition of 40mmollL ethanol to hepatocytes for 24h 
in vitro showed few, if any, differences compared to control cells. We had pre
viously found that a dose of 80 mmollL ethanol to similar cells for 24 h had 
induced a number of toxic effects (Fig. 4) including changes in mitochondria, 
SER, and accumulation of abundant lipid vesicles (NEUMAN et a1. 1996). The 
addition of this subtoxic dose of ethanol of 40 mmollL with 10 mmollL of 
methotrexate in a combined form for 24h in vitro with hepatocytes resulted 
in a number of toxic manifestations including increases in numbers of lipid 
droplets, enlargement of the SER, and changes in mitochondria with a reduc
tion in the number of mitochondrial cristae. Similar effects were further 
accentuated if an additional dose of the same combination of ethanol and 
methotrexate were added for an additional 24h. There was an additional three
fold increase in the number of lipid vesicles, further ballooning of endoplas
mic reticulum, and further alterations in mitochondria. In addition, many 
hepatocytes became apoptotic as evidenced by the dense aggregations of 
nuclear chromatin. Image analysis of hepatocytes exposed to the ethanol and 
methotrexate in combination showed that these cells were much larger at 
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Fig. 3. Electron photomicrograph of untreated human hepatocytes in primary cultures 
showing features of normal hepatocytes, x4200 

6025 ± 345 microns compared to controls exposed only to plain media which 
were 4425 ± 525 microns in size. In addition, electron microscopic morphom
etry showed the hepatocytes exposed to methotrexate plus ethanol had a 
threefold increase in the length of mitochondria, a 2.5x increase in size diam
eter of lipid droplets, and a twofold increase in the number of lipid droplets 
per cell compared to control untreated hepatocytes in vitro. 

III. Apoptosis of Skin Cells In Vitro 

Methotrexate has been a commonly used and effective drug in the treatment 
of psoriasis, a skin condition which involves the formation of scaly and itchy 
plaques on the skin. HEENEN et al. (1998) had found that keratinocytes from 
psoriatic plaques were resistant to apoptosis. Psoriatic plaques had also been 
shown by WRONE-SMITH et al. (1997) to overexpress Bel-XL, an apoptosis
inhibiting protein. Methotrexate may serve to reduce the hyperplasia 
characteristic of psoriatic skin by means of the induction of apoptosis in ker
atinocytes (HEENEN et al. 1998). SNYDER (1988) had proposed that the mech-
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Fig.4. Electron photomicrograph of 
HepG2 cells exposed to 80mmolll 
ethanol for 24 h in vitro which shows 
steatosis and megamitochondria, x4200 

anism of methotrexate toxicity involved the depletion of cellular deoxynucle
oside triphosphate pools which affected the DNA excision repair process in 
cultured human fibroblasts. This same effect on DNA synthesis can lead to a 
deoxynucleotide pool imbalance and subsequently to apoptosis. Skin cells 
which were studied were obtained from two sources: one source was skin 
obtained of healthy neonates and the second were cultured skin cells of the 
epidermal cell line A431, obtained from Wistar Institute, Philadelphia, PA. 
When keratinocytes of the A431 cell line were exposed to a similar combina
tion of 40mmollL ethanol and 10mmollL methotrexate for two doses over 
48h in culture, multiple apoptotic skin cells were evident (Fig. 5), similar to 
what was seen with the hepatocytes in vitro. 

C. Acetaminophen-Induced Apoptosis of Hepatocytes 
and Skin Cells In Vitro 

Exposure of acetaminophen in vitro is cytotoxic to human hepatocytes, par
ticularly when there is depletion of glutathione. Protection against aceta-
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Fig.5. Electron photomicrograph of A431 skin cells exposed to subtoxic doses of 
ethanol of 40 mmollL together with methotrexate at 10 mmollL dose in vitro for 24 h 
shows apoptosis of an A431 skin cell, x8400 

minophen hepatotoxicity, therefore, could be induced by agents such as N
acetylcysteine. Acetylcysteine acts in a manner similar to glutathione by pre
venting the binding of the toxic metabolite of acetaminophen to liver cell 
macromolecules. Glutathione substrates are depleted in the process of detox
ification of acetaminophen and can be replenished by sulfhydryl compounds 
from the diet or by cystine-containing drugs such as N-acetylcysteine. The 
glutathione S transferase reaction is central to the detoxification of aceta
minophen. Apoptosis was observed in hepatocytes in vivo when high doses of 
acetaminophen were administered to ICR mice. DNA fragmentation began at 
2 h post treatment and extended to 24 h. The morphologic appearance of apop
tosis, namely the nuclear condensations, began as early as 2-6 h after exposure 
to acetaminophen. We have shown similar responses in vitro (Fig. 6). 
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Fig.6. Electron photomicrograph of A431 skin cells exposed to subtoxic dose of 
ethanol of 40mmollL combined with acetaminophen also at a subtoxic dose in vitro 
for 24h and it shows apoptosis of an A431 skin cell, x8400 

D. Valproic Acid-Induced Apoptosis of Hepatocytes 
In Vitro 

Valproic acid is a drug frequently used in the treatment of epilepsy. This drug 
has excellent therapeutic effects in the treatment of several forms of epilepsy 
but has been linked in rare cases to severe and fatal hepatotoxicity 
(ZIMMERMAN 1982). Anti-convulsants such as valproic acid are typically 
present with idiosyncratic hepatotoxicity, and with valproic acid the risk of 
fatal hepatotoxicity has been rare, being reported in one study as 1 in 50,000 
(DRElFUSS et al. 1989). This study also reported that 90% of patients with val
proic acid induced fatal hepatic failure were below the age of 20. 
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Fig. 7. Electron photomicrograph of HepG2 liver cells exposed to valproic acid alone 
in vitro for 24h which shows diffuse microvesicular steatosis, x4200 

Various studies have elucidated possible mechanisms of hepatotoxicity 
(ZIMMERMAN 1982; TAKEUCHI et al. 1988; KASSA HUN et al. 1994; JURIMA-RoMET 
et al. 1996; ZIMMERMAN and ISHAK 1996). One significant factor derived from 
these studies is the production of the toxic metabolite 4-en-valproate, which 
is the favored metabolite when the metabolism of valproic acid is shifted from 
the usual j3-oxidation to (O-oxidation. Induction of cytochrome P450 activity 
favors the shift towards this type of metabolism of valproic acid. The reactive 
metabolites formed by this pathway then bind to macromolecules, deplete glu
tathione, and inhibit fatty acid metabolism, resulting in hepatic microvesicu
lar steatosis (Fig. 7). Patients using valproic acid had low levels of the cofactors 
carnitine, coenzyme A, and acetyl-coenzyme, which are necessary for the [3-
oxidation of fatty acids. The carnitine deficiency may predispose these patients 
to hepatoxicity because of increasing serum fatty acid levels which then 
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promote the shift of metabolism of valproic acid towards the pathway which 
generates reactive intermediates. Studies by TAKEUCHI et al. (1988) showed 
that the administration of DL-carnitine and albumin reduced valproic acid 
hepatotoxicity. Studies by FISHER et al. (1994) showed that the toxicity of val
proic acid and its metabolites had a range of toxicity in liver slices from adult 
or weanling rats but similar toxicities in slices derived from human livers. A 
study by JURIMA-RoMET et al. (1996) found that levels of glutathione were crit
ical to valproic acid toxicity to rat hepatocytes in vitro and found a protective 
effect of anti-oxidants such as vitamins C and E. 

We have shown that valproic acid hepatotoxicity is enhanced in vitro by 
inducers of cytochrome p4502El (NEUMAN et al. 1999). Normal human hepa
tocytes in vitro, when treated with a combination of valproic acid and 
40mmollL ethanol for 24h, show apoptosis (Fig. 8). Cells treated with valproic 

~. 

J~ 

Fig. 8. Electron photomicrograph of HepG2liver cells exposed to ethanol at 40mmollL 
dose and valproic acid in combination in vitro for 24h which shows apoptosis of a 
HepG2 liver cell, x8400 
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acid alone, however, showed only microvesicular steatosis without apoptosis 
(Fig. 7). In contrast, liver cells exposed only to 40 mmoliL ethanol without val
proic acid showed only mild steatosis without apoptosis. 

E. Conclusion 
We have been able to show in a series of in vitro studies using skin cells and 
human liver cells that a variety of different drugs are able to induce apopto
sis in hepatocytes and skin cells, including methotrexate, acetaminophen, and 
valproic acid. The addition of tissue culture environments which add specific 
metabolic stresses to these cells, such as induction of specific cytochrome P450s 
or depletion of glutathione, have been shown to enhance the induction of 
apoptosis in vitro for skin cells and for human liver cells. Intracellular ATP 
levels in human Tcell lines have been shown by EGUCHI et al. (1997) to be 
critical in directing the process of cell death so that cells undergoing apopto
sis can be driven towards necrosis in ATP-depleting conditions. Apoptosis of 
hepatocytes was also observed in liver biopsies of patients treated with 
methotrexate for psoriasis. In summary, it has been possible to undertake 
mechanistic studies of the induction of apoptosis of human skin cells and 
human liver cells in vitro. 
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CHAPTER 14 

Apoptosis and Eosinophils 

H.-U. SIMON 

A. Introduction 
Apoptosis is the most common form of physiologic cell death. It is essential 
for organ developments during embryogenesis. After development comple
tion, a multicellular organism must renew many lineages. For instance, red and 
white blood cells are constantly generated from hematopoietic progenitor 
cells. Therefore, physiological cell death is a necessary process to maintain 
correct cell numbers. 

It is also clear that apoptosis is regulated by survival factors. Whereas most 
of these factors act on many cells of different lineage, only some are specific. 
For instance, interleukin-5 (IL-5) appears to be a specific survival factor for 
eosinophils, at least within the human system (BAGLEY et al. 1997). Therefore, 
and not surprisingly, eosinophilia and high IL-5 expression have often been 
associated, especially in chronic allergic disorders such as bronchial asthma 
and atopic dermatitis. Moreover, the phenomenon of delayed eosinophil apop
tosis has been demonstrated in nasal polyposis (SIMON et al. 1997a) and atopic 
dermatitis (WEDI et al. 1997). In addition, glucocorticoids appear to exert their 
effects in bronchial asthma in part due to the induction of eosinophil apopto
sis (WOOLLEY et al. 1996). These data suggest that dysregulated apoptosis of 
inflammatory cells such as eosinophils may represent an important pathogenic 
mechanism in chronic allergic responses. 

In this chapter we will summarize our current knowledge about the reg
ulation of eosinophil apoptosis and discuss the importance of these findings 
for the inflammatory process in allergic disorders. 

B. Characteristics and Measurements 
of Apoptotic Eosinophils 

Apoptosis is characterized by morphologic changes in the dying cell. This is 
also true in the case of eosinophils. The most readily observed morphologic 
features involve the nucleus, where the chromatin becomes extremely con
densed before a complete collapse of the nucleus, can be observed. Second, a 
loss of cell volume is clearly detectable. Figure 1A shows these two morpho
logic changes of apoptotic cells in eosinophils. In necrosis there are no changes 
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Fig.lA,B. Morphologic features of human eosinophils undergoing apoptosis in vitro. 
A Cells were stained with Giemsa-May-Griinwald. Apoptosis is associated with com
paction of the nuclear chromatin. Moreover, the cell volume decreases in apoptotic 
cells. In contrast, in necrosis, no change of nuclear morphology occurs. In addition, 
necrosis is associated with an increase of the cell volume because it is a lytic process. 
B Forward light scatter (FS) vs side light scatter (SS) analysis using a flow cytometer. 
Apoptosis is associated with a shift of the high FS/Iow SS population to the low FS/high 
SS population. In contrast, necrosis is not associated with low FS 

of the nucleus. Moreover, necrosis is characterized by rapid cell swelling and 
lysis. Therefore, the cell volume is increased. 

These morphologic differences between apoptotic and necrotic eosino
phils also allow the determination of the form of cell death by flow cyto
metric analysis using light scatter measurements. Viable eosinophils display 
relatively high forward light scatter (FS) and relatively low side light scatter 
(SS). Culturing of purified eosinophils is associated with the appearance of a 
second, clearly separated cell subpopulation with low FS and high SS. Stain
ing of the cells with a fluorescent dye demonstrates that the latter subpopula
tion represents apoptotic cells. Therefore, induction of eosinophil apoptosis 
results in a clear shift of the high FS/Iow SS population to the low FS/high SS 
population (Fig. lB). 
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Fig.2A-C. Different methods for detecting DNA fragmentation, a hallmark of apop
totic cells, in eosinophils. A Extracted DNA of purified eosinophils is analyzed by 
agarose gel electrophoresis. A typical DNA ladder is seen in apoptotic, but not in viable 
cells. B DNA of purified eosinophils is stained by propidium iodide. DNA fragmenta
tion is analyzed by flow cytometry. Fragmented DNA (black) can be discriminated from 
normal, high-molecular weight DNA (narrow peak). C In situ detection of apoptotic 
eosinophils in nasal polyp tissues. DNA fragmentation is detected by radioactive csS
dATP) in situ labeling. Eosinophils can also be identified by immunohistochemistry 
using an eosinophil specific mAb (e.g., anti-ECP mAb) 

Besides morphologic changes, DNA fragmentation is another hallmark of 
apoptotic cells. There are many different techniques to analyze DNA frag
mentation. The classical technique is DNA electrophoresis. This technique 
proves whether internuc1eosomal fragmentation has occurred, which is visu
alized by the appearance of a ladder pattern on gel electrophoresis (Fig.2A). 
However, although this method is specific, it does not give quantitative infor
mation about the amount of apoptosis. Another way to analyze DNA frag
mentation is based on the observation that cellular DNA of apoptotic cells is 
less stainable with fluorescent dyes. Measurements are performed by flow 
cytometry. The advantage of this technique is that apoptotic cells can be mea-



360 

.... 
c 
::s 
o 
U 

viable viable and 
apoptotic 

PS fluorescence 

H.-U. SIMON 

Fig.3. Apoptosis is associated with phosphatidylserine (PS) redistribution. PS is nor
mally confined to the inner plasma membrane leaflet. In contrast, PS appears on the 
external leaflet in apoptotic eosinophils. Annexin V is a PS-binding protein and can be 
used to detect apoptotic cells (right panel, black) 

sured quantitatively as a hypodiploid cell population (Fig. 2B). A further tech
nique to detect DNA fragmentation is the Terminal deoxynucleotidyl Trans
ferase (TdT) uridine triphosphate (UTP) Nick End Labeling (TUNEL) 
method. Using this technique, free 3' OH-ends of DNA fragments are labeled 
with FITC-dUTP (purified blood eosinophils, analysis by flow cytometry) or 
35S-dATP (tissue eosinophils, analysis by light microscopy, Fig. 2C). 

Apoptotic cells are removed by phagocytosis by neighboring cells, while 
retaining their intact plasma membrane. Several kinds of structural changes of 
the plasma membrane have been identified that lead to phagocyte recogni
tion. For instance, cell surface exposure of phosphatidylserine (PS) is one such 
event that can be easily monitored using FITC-conjugated Annexin V and flow 
cytometric analysis (Fig. 3). 

c. Role of Delayed Eosinophil Apoptosis for the 
Development of Eosinophilia in Allergic Tissues 

Previously published work suggested that, in allergic inflammation, eosino
phils specifically adhere to the endothelium and migrate into tissues with 
the help of eosinophil-specific chemoattractants (ROTHENBERG 1998). How
ever, these mechanisms alone cannot explain the selective accumulation of 
eosinophils in allergic inflammation (SIMON 1998a). This view is strongly sup
ported by observations in vivo. For instance, after antigen challenge, an 
increased initial, nonspecific recruitment of inflammatory cells, including neu
trophils, has been reported in murine and human models (KOH et al. 1993; 
LUKACS et al. 1995; RICHARDS et al. 1996; TERAN et al. 1997). 

Therefore, we suggested, based on well-documented in vitro studies 
(YAMAGUCHI et al. 1991; HER et al. 1991; STERN et al.I992), an additional mech
anism, namely the specific inhibition of eosinophil apoptosis by cytokines 
(SIMON and BLASER 1995). We have recently demonstrated that there is indeed 
a dramatic increase in the life span of eosinophils due to delayed apoptosis in 
nasal polyp compared to control nasal tissues (SIMON et al. 1997a). IL-5 is most 
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likely responsible for this phenomenon, since lymphocytes, mast cells, and 
eosinophils themselves were found to express high amounts of IL-5 protein. 
Moreover, treatment of the eosinophilic-infiltrated tissue with neutralizing 
anti-IL-5 antibody induced eosinophil apoptosis and decreased tissue 
eosinophilia (SIMON et al. 1997a). Therefore, IL-5 appears to be a key cytokine 
within allergic inflammatory sites, and inhibition of this cytokine may repre
sent an attractive approach to treat allergic disorders in the future. 

D. Role of Tyrosine Kinases Activation 
in Cytokine-Mediated Antiapoptosis 

The growth and differentiation of eosinophils are critically regulated by the 
three hematopoietins IL-3, IL-5, and GM-CSF. All three cytokines have over
lapping functions on eosinophils. The action of IL-5 is specific for eosinophils 
whereas that of IL-3 and GM-CSF is not. IL-3 and GM-CSF also affect the 
growth and differentiation of other granulocytes and macrophages. The mech
anisms of their overlapping functions are explained by the composition of their 
receptor complexes. All three cytokines have ligand-specific a receptor sub
units but they share a common f3 (f3c) subunit. The latter is considered the most 
important signaling receptor for these hematopoietins. The f3c receptor is phys
ically associated with the tyrosine kinases Lyn (PAZDRAK et al. 1995a; YOUSEFI 
et al. 1996), Jak1 (OGATA et al. 1998), and Jak2 (PAZDRAK et al. 1995b; VAN DER 
BRUGGEN et al. 1995; SIMON et al. 1997b; OGATA et al. 1998) (Fig. 4). This 
physical association occurs in basal conditions without growth factor stimula
tion. Stimulation of eosinophils with IL-5 or other hematopoietins results in 
tyrosine phosphorylation of these and other kinases. There are also reports 
of activation of Fes, Btk, and Fyn by the hematopoietins in myeloid cell 
lines. Whether these kinases are activated in eosinophils is unknown at this 
time. 

Jak kinases have a propensity to tyrosine phosphorylate and activate the 
Stat family of nuclear factors. Indeed, IL-5 activates Statl (PAZDRAK et al. 
1995b; VAN DER BRUGGEN et al. 1995), Stat3 (CALDENHOVEN et al. 1995), and 
Stat5 (Mur et al. 1995) nuclear factors (Fig. 4). The activation of other tyro
sine kinases results in the propagation of signals via a number of downstream 
signaling pathways including the Ras-Raf-MAP kinase (PAZDRAK et a1.1995a), 
the PI-3 kinase-c-akt (COFFER et al. 1998), and other pathways. The propaga
tion of signals via these pathways is facilitated by adapter proteins such as Shc, 
Grb2, and GTPase-activating proteins, e.g., Sos, as well as tyrosine phos
phatases such as SHP-1 and SHP-2. Indeed, in eosinophils, IL-5 has been 
shown to activate not only Shc and Grb2 (BATES et al. 1998), but also SHP-2 
(PAZDRAK et al. 1997) (Fig. 4). 

TGF-f3 is a pleiotropic immunoregulatory cytokine that, for instance, 
antagonizes the effects of IL-5 on eosinophils (ALAM et al. 1994). In addition 
to blocking the antiapoptotic effects of IL-5, it also inhibits eosinophil degran
ulation and cytokine production. The mechanisms of this inhibitory effect of 
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Fig. 4. Simplified scheme suggesting how cytokine-mediated antiapoptotic signals are 
transduced in eosinophils. Both Lyn- and Jak2-initiated pathways appear to be essen
tial for antiapoptosis. The MEK-MAP pathway does not seem to be involved in the 
regulation of apoptosis, but might be important for eosinophil secretion 

TGF-J3 is unknown. It has been demonstrated that TGF-J3 blocks tyrosine 
phosphorylation of Jak2 and Lyn tyrosine kinases (PAZDRAK et al. 1995c) (Fig. 
4). Furthermore, it inhibits the activation of ERK MAP kinase and Statl 
nuclear factor. However, the signaling molecules mediating these effects have 
not yet been identified. Tyrosine phosphatases have been studied but do not 
seem to be involved. It is possible that TGF-J3 activates some of the newly
described inhibitors of tyrosine kinases, which subsequently mediate its 
inhibitory effects (HELDIN et al. 1997). 

E. The MEK-ERK MAP Kinase Pathway Does Not 
Mediate Antiapoptotic Signals Initiated Via the 
IL-5 Receptor 

The importance of signaling molecules in the antiapoptotic effect of IL-5 has 
been investigated. Specific depletion of Lyn (YOUSEFI et al. 1996; PAZDRAK et 
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al. 1998), Syk (YOUSEFI et al. 1996), SHP-2 (PAZDRAK et al. 1997), and Raf-1 
(PAZDRAK et al. 1998) by antisense oligodeoxynucleotides results in complete 
abrogation of the antiapoptotic effects of IL-S and other hematopoietins. Sim
ilarly, the inhibition of Jak2 by the specific inhibitor AG490 also abrogates the 
effects of IL-S (SIMON et al. 1997b; PAZDRAK et al. 1998). The results suggest 
that these signaling molecules are involved in propagating antiapoptotic 
signals provided by IL-S. Interestingly, although ERK is activated by IL-S, the 
inhibition of ERK activation by the MEK inhibitor PD980S9 has minimal 
effects on eosinophil survival (R. ALAM, personal communication). Likewise, 
the specific inhibitor of p38 MAP kinase SB202S89 does not block the sur
vival-promoting effect of IL-S. These results are quite startling and provoca
tive since it has been described that Raf-1 is critical for eosinophil survival 
(PAZDRAK et al. 1998). At this point, we believe, that the survival-promoting 
signal provided by Raf-1 is not propagated via the MEK-ERK MAP kinase 
pathway as the existing dogma would imply, but rather contributes to the 
phosphorylation of BAD (WANG et al. 1996), a Bcl-2- and Bcl-xL-associated 
protein. 

Since Bcl-xL but not Bcl-2 is significantly expressed in eosinophils 
(DIBBERT et al. 1998), the phosphorylation of BAD via Raf-1 may enable Bcl
XL to homodimerize (WANG et al. 1996), thereby exerting its antiapoptotic 
effects in this cellular system. Moreover, there are reports on Raf-l activation 
by Jak2 kinase (XIA et al. 1996). Thus, it is possible that signals from Lyn, Jak2, 
Syk, and SHP-2 converge on Raf-1 to mediate activation and functional 
compartmentalization of Bcl-xL' In this scenario, signals are also transduced 
via the MEK-ERK pathway. However, the latter pathway appears to be 
redundant for survival, although it is likely to be important for other cellular 
functions. 

F. The Effects of Glucocorticoids 
on Eosinophil Apoptosis 

Glucocorticoids have been used for decades as clinical tools to suppress both 
the immune response and the process of inflammation. However, only recently, 
we have begun to understand the molecular mechanisms of the effects of 
glucocorticoids. For instance, administration of glucocorticoids to patients 
with eosinophilia results in a marked decline in the number of circulating 
eosinophils (ROTHENBERG 1998). The reduction of eosinophil numbers appears 
to be due to the induction of eosinophil apoptosis (WOOLLEY et al. 1996). 

What is the mechanism of the induction of eosinophil apoptosis by glu
cocorticoids in vivo? Asthma and other allergic disorders are characterized by 
T cell activation (McFADDEN and GILBERT 1992). T cells produce cytokines, 
among them eosinophil survival factors such as IL-S. It is now clear that glu
cocorticoids suppress the transcription of the IL-S and other cytokine genes. 
This inhibition of transcription is the consequence of inhibition of the potent 
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Fig.5. The effects of glucocorticoids in eosinophilic inflammation. Glucocorticoid 
therapy is often associated with a reduction of eosinophil numbers due to the induc
tion of apoptosis. Probably the most important mechanism responsible for this obser
vation is the decreased expression of eosinophil survival factors due to NF-/('B 
inhibition. Other possible mechanisms might be inhibition of signal transduction path
ways initiated by survival factors and/or direct induction of apoptosis in eosinophils 

infiammatory transcription factor NF-KB (SCHWIEBERT et al. 1996). Therefore, 
one possible mechanisms of how eosinophil apoptosis can be mediated by glu
cocorticoids is the reduced expression of eosinophil survival factors (Fig. 5). 

There is, however, the possibility that glucocorticoids could act directly on 
eosinophils. Indeed, there is experimental evidence that glucocorticoids inhibit 
the activity of eosinophil survival factors (WALLEN et al. 1991). Such inhibition 
of survival signals may be the consequence of disruption of signaling pathways 
(BAUS et al. 1996), although this has not formally been demonstrated in 
eosinophils. Recently, it has also been observed that glucocorticoids may also 
directly induce eosinophil apoptosis (MEAGHER et al. 1996) (Fig. 5). 

G. Role of CD95 LigandlCD95 Molecular Interactions 
in the Regulation of Eosinophil Apoptosis 

It is now clear that eosinophils do not only undergo apoptosis in the absence 
of survival factors, but can also be triggered to die via specific surface death 
receptors. One of these death receptors expressed by eosinophils is CD95 
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(Fas/APO-1) (MATSUMOTO et al.1995; TSUYUKI et al. 1995; DRUILHE et al.1996; 
HEBESTREIT et a1.1996). The ligand of CD95 (CD95L, FasL, APO-1L) is highly 
expressed by activated T cells (GREEN and WARE 1997). Thus, the same cells 
that produce eosinophil survival factors also express at least one death factor 
for eosinophils. Interestingly, activation of the CD95-mediated apoptotic 
pathway in eosinophils occurs even in the presence of eosinophil survival 
factors (MATSUMOTO et al. 1995; TSUYUKI et al. 1995). Therefore, the newly dis
covered additional possibility of actively inducing eosinophil apoptosis makes 
sense: CD95L1CD95 molecular interactions may serve to limit eosinophil 
expansion independently from eosinophil hematopoietin expression within 
inflammatory sites. 

Some of the intracellular signaling mechanisms initiated by survival and 
death signals have recently been identified in eosinophils. However, these 
studies revealed that the story is less simple than we thought. There is not only 
a passive and an active way to induce apoptosis in eosinophils. Moreover, not 
only cytokine-mediated delayed apoptosis but also CD95L-induced eosinophil 
death can be counterregulated, as discussed in greater detail below. 

H. Nitric Oxide, but Not Eosinophil Hematopoietins, 
Mediates CD95 Resistance 

Tissue eosinophils within inflammatory sites may not always undergo apopto
sis following CD95 stimulation (HEBE STREIT et al. 1996). This phenomenon, 
also called CD95 resistance, could result in an unlimited expansion of 
eosinophils. Indeed, in nasal polyp tissues, where CD95 resistance has been 
observed, an extraordinary infiltration of eosinophils is usually observed. Thus, 
CD95 resistance is of pathophysiological relevance in chronic eosinophilic dis
orders and, therefore, CD95 signal transduction studies in eosinophils appear 
to be important. 

The mechanisms of CD95 resistance has generated great interest in other 
cellular systems as well. Previously published data have provided evidence that 
mutations (FISHER et al. 1995; RIEux-LAUCAT et al. 1995) as well as splicing 
variants that lack intracellular (CASCINO et al. 1996) or transmembrane 
(CHENG et al. 1994; SIMON et al. 1996) parts of the death receptor are associ
ated with nonfunctional Fas receptors. Furthermore, lack of cell activation or 
costimulation via antigen (ROTHSTEIN et al. 1995) or cytokine (FOOTE et al. 
1996) receptors appears to decrease susceptibility to CD95-mediated apopto
sis. High levels of Bel-2 (ITOH et al. 1993), Bel-XL (BOISE and ThOMPSON 1997), 
viral (THOME et al. 1997) or cellular (IRMLER et al. 1997) FLIP, ALG-3 (LACANA 
et al. 1997), or IL-1f3 (TATS UTA et al. 1996) may also contribute to the devel
opment of CD95 resistance. In addition, the Abl kinase has been identified as 
a negative regulator of CD95-initiated signaling events (MCGAHON et al. 
1995). Thus, CD95 resistance may often be associated with unwanted cell 
expansion associated with disease. 
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What is the mechanism(s) of CD95 resistance in eosinophils? The obser
vation that eosinophil apoptosis following CD95 activation can be induced 
even in the presence of IL-5 or GM-CSF makes it unlikely that eosinophil 
survival factors account for this phenomenon. Meanwhile, we have recently 
observed that nitric oxide (NO) prevents CD95-mediated apoptosis in 
eosinophils (HEBE STREIT et al. 1998). This striking protective effect of NO 
appears to be of pathophysiological relevance since increased concentrations 
of NO are present within allergic inflammatory sites (BARNES and LIEW 1995). 

I. Role of Sphingomyelinase-Mediated Pathways 
in CD95 Signaling 

Activation of CD95 leads to stimulation of a proteases cascade, which, when 
started, is irreversible (NAGATA 1997; ThORNBERRY and LAZEBNIK 1998). These 
proteases belong to the interleukin-1-converting enzyme (ICE) family of cys
teine proteases, now called caspases (ALNEMRI et al. 1996), and appear to be 
directly responsible for the induction of apoptosis. However, other signaling 
events involving tyrosine phosphorylation (EISCHEN et al. 1994), sphin
gomyelinase (SMase)-ceramide (CIFONE et al. 1993), and Ras-Raf-1-MAP 
kinases (GOILLOT et al. 1997) pathways might be equally important. 

The availability of a natural inhibitor (NO) of Fas receptor signaling 
allowed us to determine the roles of several biochemical events for the induc
tion of apoptosis following death receptor activation in eosinophils. Ceramide, 
generated by activated SMase, triggers apoptosis in response to CD95 activa
tion (CrFONE et al. 1993; GULBINS et al. 1995; TEpPER et al. 1995) and many 
other death stimuli (HAIMOVITz-FRIEDMAN et al. 1994). We found that NO 
blocks the death signal distal to SMase. In contrast, activation of SMase was 
abrogated when the tetrapeptide YVAD was used to block caspases activity. 
Therefore, a caspase, such as caspase 8, appears to be proximal to SMase acti
vation (Fig. 6). 

Moreover, CD95 activation and ceramide induce activation of another, 
alternative MAP kinase pathway, resulting in Jun kinase (JNK) stimulation. 
JNK activation has been shown to be critical for induction of apoptosis in 
many systems. We observed that JNK is also activated following CD95 
crosslinking in eosinophils. In contrast, JNK activation is completely blocked 
in the presence of NO. These findings suggest that JNK activation is also nec
essary for CD95-mediated apoptosis in eosinophils, and NO may act at the 
level of, or proximal to, JNK activation to prevent eosinophil apoptosis (Fig. 
6). 

The observation that it is possible to block activation of SMase by using 
the YVAD inhibitor suggests that there is some caspases activation even 
in the presence of NO. We hypothesize at this point that the generation of 
cerami de and subsequent JNK activation may represent a signaling event 
responsible for amplification of the proteolytic cascade. Therefore, disruption 
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Fas receptor outside 

Apoptosis 

Fig. 6. A proposed model showing molecular interactions between caspases and sphi
nomyelinase (SMase) pathways in CD95 (Fas receptor, APO-l) -mediated apoptosis 
in eosinophils. In this model, caspases (FLICE, caspase 8) is, at least following stimu
lation, physically associated with the death receptor. Activation of this caspase (and, 
perhaps, other initiator caspases) appears to be essential for SMase activation. SMase 
generates cerami de and activates JNK that can be blocked by second messengers of 
NO (cGMP). Ceramide and/or further distal located signaling molecules activate 
either directly or indirectly (via mitochondria) effector caspases (e.g., CPP32, caspase 
3) leading to apoptotic death 

of cerami de-induced signals prevents further caspases activation. This idea is 
further supported by previously published reports demonstrating that the 
central effector caspase, caspase 3, is not only a target of initiator caspases 
(ENARI et al. 1996; THORNBERRY and LAZEBNIK 1998), but also of MAP kinase
and JNK-signaling pathways (GOILLOT et al. 1997; YANG et al. 1997). This 
process may involve cytochrome C release from mitochondria (Fig. 6). 

Taken together, activation of eosinophils via the CD95 molecule in the 
presence of NO leads to an immediate but limited activation of caspases able 
to degrade only a limited number of substrates. Probably, these substrates can 
be replaced without any damage to the cell. Obviously, under condition of NO 
presence, CD95-mediated caspase 8 activation is unable to activate effector 
caspases to induce apoptosis either directly or indirectly via the mitochondria 
(Fig. 6). In contrast, in the absence of NO, ceramide-mediated amplification of 
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the proteolytic cascade takes place and the apoptotic process initiated via 
CD95 proceeds, causing irreversible damage to the cells. 

Therefore, we have learned from the eosinophil system that the apopto
sis signal triggered by death receptors can be modulated by intracellular mech
anisms, at least in those cases where caspase 8 needs the mitochondrial 
amplification loop to activate effector caspases (GREEN 1998). Thus, the 
described data are relevant for the understanding of both the pathophysio
logical role of NO, a secretory product released in increased amounts within 
chronic eosinophilic inflammatory responses, and basic mechanisms of how 
the cell death machinery works. 

J. Role of Tyrosine Kinase Activation in CD95 Signaling 
Tyrosine phosphorylation has been shown to be involved in CD95 transmem
brane signaling in many cellular systems (EISCHEN et al. 1994), although it is 
still controversial whether tyrosine kinase activation is necessary for CD95-
mediated apoptosis (LATINIS and KORETZKY 1996). However, a role of tyrosine 
phosphorylation is supported by the observation that expression of SHP-1 is 
a prerequisite for CD95-induced apoptosis in several lymphoid cell lines (Su 
et al. 1995). Moreover, another tyrosine phosphatase, FAP-1, has been shown 
to associate with CD95 and to exert a negative influence on CD95 signal trans
duction (SATO et al. 1995). 

We have recently demonstrated that tyrosine phosphorylation is an impor
tant event involved in CD95 transmembrane signal transduction in human and 
mouse eosinophils (SIMON et al. 1998b). CD95 is physically associated with a 
number of tyrosine-phosphorylated proteins, as shown by co-immunoprecipi
tation studies. Moreover, phosphorylation of both tyrosine residues within the 
intracellular part of the human CD95 molecule has recently been demon
strated (GRADL et al. 1996). Interestingly, these two tyrosine residues are also 
present in the amino acid sequence predicted for the murine CD95 cDNA, 
consistent with the suggestion that these tyrosine residues are important for 
signal transduction. Furthermore, tyrosine kinase blockers inhibited CD95-
mediated apoptosis in both human and mouse eosinophils in vitro, and 
prevented, at least partially, CD95-mediated resolution of eosinophilic 
inflammation in a mouse in vivo model of lung eosinophilia (SIMON et al. 
1998b). Taken together, these results strongly implicate tyrosine kinase acti
vation as likely involved in the death response following CD95 crosslinking in 
eosinophils. 

The demonstration of tyrosine phosphorylation of CD95, which does not 
itself contain an intrinsic kinase activity, suggests that a cytoplasmic tyrosine 
kinase is associated with the receptor. We have identified Lyn as an important 
tyrosine kinase which transduces death signals via CD95 in eosinophils (SIMON 
et al. 1998b). These data are in agreement with previously published work 
demonstrating a reduced susceptibility to CD95-mediated death in B cells 
from Lyn-deficient mice (WANG et al. 1996). Thus, Lyn emerges as a signaling 
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molecule capable of inducing two mutually exclusive cellular functions, cell 
survival and cell death. Similar observations have been previously reported 
for other signaling molecules such as ceramide (KOLESNICK and FUKs 1995) or 
Ras (SATOH et al. 1991). It is possible that Lyn facilitates pro-apoptotic activ
ities when a concurrent activation of the Jak-STAT pathway does not occur, 
as seen following activation of IL-3/IL-5/GM-CSF receptors (SIMON et al. 
1997b; PAZDRAK et al. 1998). Moreover, the data confirm previously published 
work suggesting that Lyn may represent a common element involved in gran
ulocyte signaling following activation with widely different agonists (GAUDRY 
et al. 1995). 

While it is clear that CD95 activation results in increased tyrosine phos
phorylation, a requirement of tyrosine kinase activation for CD95-mediated 
apoptosis is controversial, especially in T cells (LATINIS and KORETZKY 1996). 
In contrast, tyrosine phosphorylation appears to modulate the functional 
death response in eosinophils, neutrophils, and B cells. One possible explana
tion for this discrepancy could be that the levels of CD95 surface expression 
seem to be critical for the efficacy of the death signal (CLEMENT and 
STAMENKOVIC 1994). Since the levels of CD95 surface expression are relatively 
low in eosinophils and neutrophils compared to T cells (HEBE STREIT et al. 
1996), it is possible that in granulocytes tyrosine kinase activation is also 
required for optimal signal transduction via CD95. In contrast, an optimal 
interaction between CD95 and second messengers molecules (e.g., caspase 8) 
might already be present in activated T cells and therefore the activation of 
tyrosine kinases might be not functionally relevant in these systems. Thus, in 
this model, the role of tyrosine kinase activation could be to decrease the 
threshold of needed receptor molecules per cell and/or caspase 8 intracellular 
activity for induction of apoptosis in granulocytes and B cells. This assumption 
is supported by the fact that tyrosine kinase activation appears to be inde
pendent from caspases since the caspase inhibitor, YVAD, completely blocked 
Fas receptor-mediated death, but did not abrogate the activation of Lyn in 
eosinophils. 

K. Concluding Remarks 
Since eosinophils are prominent in allergic inflammation, investigators became 
interested in how these cells accumulate in tissues and about their role within 
the inflammatory cascade. There is increasing evidence from several labora
tories that eosinophil numbers are regulated in vivo, not only by eosinophil 
production in the bone marrow, but also by the amount of eosinophil apop
tosis. Moreover, it has been directly demonstrated that eosinophil apoptosis is 
delayed in allergic inflammatory sites, and that this mechanism contributes to 
the expansion of these cells in tissue. 

Inhibition of eosinophil apoptosis can be achieved by at least two 
mechanisms - increased expression of eosinophil survival factors and disrup
tion of death signals. There are many urgent questions to be answered in the 
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near future. For instance, how long do eosinophils act as effector cells in aller
gic inflammation when they do not undergo apoptosis? Which other death 
receptors (in addition to CD95) are expressed in eosinophils? What is their 
function? Which caspases playa role? What are the differences in the apop
tosis regulation between eosinophils and neutrophils? How does a cell decide 
its outcome when it receives survival and death signals at the same time, a sit
uation that very likely occurs in vivo? Clearly, there is much more to learn 
about eosinophil apoptosis. 

Acknowledgements. Work of the author's laboratory is supported by the Swiss 
National Science Foundation (32-49210.96), OPO Foundation (Zurich), EMDO Foun
dation (Zurich), Saurer Foundation (Zurich), Foundation for Scientific Research 
(Zurich), and the Silva Casa Foundation (Bern). 

References 

Alam R, Forsythe P, Stafford S, Fukuda Y (1994) Transforming growth factor f3 abro
gates the effects of hematopoietins on eosinophils and induces their apoptosis. J 
Exp Med 179: 1 041-1045 

Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, 
Yuan J (1996) Human ICE/CED-3 protease nomenclature. Cell 87:171 

Bagley CJ, Lopez AF, Vadas MA (1997) New frontiers for IL-5. J Allergy Clin Immunol 
99:725-728 

Barnes PJ, Liew FY (1995) Nitric oxide and asthmatic inflammation. Immunol Today 
16:128-130 

Bates ME, Busse WW, Bertics PJ (1998) Interleukin 5 signals through Shc and Grb2 
in human eosinophils. Am J Respir Mol Cell Bioi 18:75-83 

Baus E, Andris F, Dubois PM, Urbain J, Leo 0 (1996) Dexamethasone inhibits the 
early steps of antigen receptor signaling in activated T lymphocytes. J Immunol 
156:4555-4561 

Boise LH, Thompson CB (1997) Bcl-xL can inhibit apoptosis in cells that have under
gone Fas-induced protease activation. Proc Natl Acad Sci USA 94:3759-3764 

Caldenhoven E, van Dijk T, Raaijmakers JA, Lammers JW, Koenderman L, de Groot 
RP (1995) Activation of the STAT3/acute phase rcsponsc factor transcription 
factor by interleukin-5. J Bioi Chern 270:25778-25784 

Cascino I, Papoff G, De Maria R, Testi R, Ruberti G (1996) Fas/ APO-l (CD95) recep
tor lacking the intracytoplasmic signaling domain protects tumor cells from Fas
mediated apoptosis. J Immunol 156:13-17 

Cheng J, Zhou T, Liu C, Shapiro Jp, Brauer MJ, Kiefer MC, Barr PJ, Mountz JD (1994) 
Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. 
Science 263:1759-1762 

Cifone MG, De Maria R, Roncaioli P, Rippo MR, Azuma M, Lanier LL, Santoni A, 
Testi R (1993) Apoptotic signaling through CD95 (Fas/APO-1) activates an acidic 
sphingomyelinase. J Exp Med 182:1545-1556 

Clement MV, Stamenkovic I (1994) Fas and tumor necrosis factor receptor-mediated 
cell death: similarities and distinctions. J Exp Med 180:557-567 

Coffer PJ, Schweizer RC, Dubois OR, Maikoe T, Lammers JW, Koenderman L (1998) 
Analysis of signal transduction pathways in human eosinophils activated by 
chemoattractants and T-helper 2-derived cytokines interleukin-4 and interleukin-
5. Blood 91 :2547-2557 

Dibbert B, Daigle I, Braun D, Schranz C, Weber M, Blascr K, Zangemeister-Wittke U, 
Akbar AN, Simon HU (1998) Role for Bcl-xL in delayed eosinophil apoptosis 



Apoptosis and Eosinophils 371 

mediated by granulocyte-macrophage colony-stimulating factor and interleukin-
5. Blood 92:778-783 

Druilhe A, Cai Z, Haile S, Chonaib S, Petrol ani M (1996) Fas-mediated apoptosis in 
cultured human eosinophils. Blood 87:2822-2830 

Eischen CM, Dick CJ, Leibson PJ (1994) Tyrosine kinase activation provides an early 
and requisite signal for Fas-induced apoptosis. J ImmunoI153:1947-1954 

Enari M, Talanian RV, Wong WW, Nagata S (1996) Sequential activation of ICE
like and CPP32-like proteases during Fas-mediated apoptosis. Nature 380:723-
726 

Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middelton LA, Lin AY, Strober W, 
Lenardo MJ, Puck JM (1995) Dominant interfering Fas gene mutations impair 
apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81:935-
946 

Foote LC, Howard RG, Marshak-Rothstein A, Rothstein TL (1996) IL-4 induces Fas 
resistance in B cells. J ImmunoI157:2749-2753 

Gaudry M, Gilbert C, BaraM F, Poubelle PE, Naccache PH (1995) Activation of Lyn 
is a common element of the stimulation of human neutrophils by soluble and par
ticulate agonists. Blood 86:3567-3574 

Goillot E, Raingeaud J, Ranger A, Tepper RI, Davis RJ, Harlow E, Sanchez I (1997) 
Mitogen-activated protein kinase-mediated Fas apoptotic signaling pathway. Proc 
Nat! Acad Sci USA 94:3302-3307 

Gradl G, Grandison P, Lindridge E, Wang Y, Watson J, Rudert, F (1996) The CD95 
(Fas/APO-1) receptor is phosphorylated in vitro and in vivo and constitutively 
associates with several cellular proteins. Apoptosis 1:131-140 

Green DR, Ware CF (1997) Fas-ligand: privilege and peril. Proc Nat! Acad Sci USA 
94:5986-5990 

Green DR (1998) Apoptotic pathways: the road to ruin. Cell 94:695-698 
Gulbins E, Bissonnette R, Mahboubi A, Martin S, Nishioka W, Brunner T, Baier G, 

Baier-Bitterlich G, Byrd C, Lang F, Kolesnick R, Altman A, Green D (1995) Fas
induced apoptosis is mediated via a ceramide-initiated RAS signaling pathway. 
Immunity 2:341-351 

Haimovitz-Friedman A, Kan C, Ehleiter D, Persaud R, McLoghlin M, Fuks Z, 
Kolesnick RN (1994) Ionizing radiation acts on cellular membranes to generate 
ceramide and initiate apoptosis. J Exp Med 180:525-535 

Hebestreit H, Yousefi S, Balatti I, Weber M, Crameri R, Simon D, Hartung K, 
Schapowal A, Blaser K, Simon HU (1996) Expression and function of the Fas 
receptor on human blood and tissue eosinophils. Eur J ImmunoI26:1775-1780 

Hebestreit H, Dibbert B, Balatti I, Braun D, Schapowal A, Blaser K, Simon HU (1998) 
Disruption of Fas receptor signaling by nitric oxide in eosinophils. J Exp Med 
187:415-425 

Heldin CH, Miyazomo K, ten Dijke P (1997) TGF-,B signaling from cell membrane to 
nucleus through SMAD proteins. Nature 390:465-471 

Her E, Frazer J, Austen KF, Owen WF Jr (1991) Eosinophil hematopoietins antagonize 
the programmed cell death of eosinophils. Cytokine and glucocorticoid effects on 
eosinophils maintained by endothelial cell-conditioned medium. J Clin Invest 
88:1982-1987 

Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, 
Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J (1997) Inhi
bition of death receptor signals by cellular FLIP. Nature 388:190-195 

Itoh N, Tsujimoto Y, Nagata S (1993) Effect of Bcl-2 on Fas antigen-mediated cell 
death. J ImmunoI151:621-627 

Koh YY, Dupuis R, Pollice M, Albertine KH, Fish JE, Peters SP (1993) Neutrophils 
recruited to the lungs by segmental antigen challenge display a reduced chemo
tactic response to leukotriene B4. Am J Respir Cell Mol Bioi 8:493-499 

Kolesnick R, Fuks Z (1995) Ceramide: a signal for apoptosis or mitogenesis? J Exp 
Med 181:1949-1952 



372 H.-U. SIMON 

Lacana E, Ganjei JK, Vito P, D'Adamio L (1997) Dissociation of apoptosis and acti
vation of IL-1f3-converting enzyme/Ced-3 proteases by ALG-2 and the truncated 
Alzheimer's gene ALG-3. 1 Immunol 158:5129-5135 

Latinis KM, Koretzky GA (1996) Fas ligation induces apoptosis and Jun kinase acti
vation independently of CD45 and Lck in human T cells. Blood 87:871-875 

Lukacs NW, Strieter RM, Kunkel SL (1995) Leukocyte infiltration in allergic airway 
inflammation. Am J Respir Cell Mol BioI 13:1-6 

Matsumoto K, Schleimer RP, Saito H, Iikura Y, Bochner BS (1995) Induction of apop
tosis in human eosinophils by anti-Fas antibody treatment in vitro. Blood 86:1437-
1443 

McFadden ER, Gilbert IA (1992) Asthma. N Engl J Med 327:1928-1937 
McGahon AJ, Nishioka WK, Martin SJ, Mahboubi A, Cotter TG, Green DR (1995) 

Regulation of the Fas apoptotic cell death pathway by Abl. J BioI Chern 
270:22625-22631 

Meagher LC, Cousin JM, Seckl JR, Haslett C (1996) Opposing effects of glucocorti
coids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes. 
J ImmunoI156:4422-4428 

Mui AL, Wakao H, O'Farrell AM, Harada N, Miyajima A (1995) IL-3, GM-CSF and 
IL-5 transduce signals through two Stat5 homo logs. EMBO J 14:1166-1175 

Nagata S (1997) Apoptosis by death factor. Cell 88:355-365 
Ogata N, Kuro T, Yamada A, Koike M, Hanai N, Ishikawa T, Takatsu K (1998) Jak2 and 

Jak1 constitutively associate with an interleukin-5 (IL-5) receptor IX and f3c 
subunit, respectively, and are activated upon IL-5 stimulation. Blood 91:2264-2271 

Pazdrak K, Schreiber D, Forsythe P, Justement L, Alam R (1995a) The signal trans-
duction mechanism of IL-5 in eosinophils: the involvement of Lyn tyrosine kinase 
and the ras-raf 1-MEK-MAP kinase pathway. J Exp Med 181:1827-1834 

Pazdrak K, Stafford S, Alam R (1995b) The activation of the Jak-STAT1 signaling 
pathway by IL-5 in eosinophils. J ImmunoI155:397-402 

Pazdrak K, Justement L, Alam R (1995c) Mechanism of inhibition of eosinophil acti
vation by transforming growth factor-f3. Inhibition of Lyn, MAp, Jak2 kinases and 
STATl nuclcar factor. 1 Immunol 155:4454-4458 

Pazdrak K,Adachi T,Alam R (1997) SHPTP2/SHP2 tyrosine phosphatase is a positive 
regulator of the interleukin-5 receptor signal transduction pathways leading to the 
prolongation of eosinophil survival. J Exp Med 186:561-568 

Pazdrak K, Olszewska-Pazdrak B, Stafford S, Garofalo RP, Alam R (1998) Lyn, Jak2 
and Raf-1 kinases are critical for the anti-apoptotic effect of interleukin-5, whereas 
only Raf-1 kinase is essential for eosinophil activation and degranulation. J Exp 
Med 188:421-429 

Richards 1M, Kolbasa KP, Hatfield CA, Winterrowd GE, Vonderfecht SL, Fidler SF, 
Griffin RL, BrashIer JR, Krzesicki RF, Sly LM, Ready KA, Staite ND, Chin lE 
(1996) Role of very late activation antigen-4 in the antigen-induced accumulation 
of eosinophils and lymphocytes in the lungs and airway lumen of sensitized brown 
Norway rats. Am J Respir Cell Mol Bioi 15:172-183 

Rieux-Laucat F, Le Deist F, Hivroz C, Roberts lAG, Debatin KM, Fischer A, de Vil
lartay JP (1995) Mutations in Fas associated with human lymphoproliferative syn
drome and autoimmunity. Science 268:1347-1349 

Rothenberg ME (1998) Eosinophilia. N Engl J Med 338:1592-1600 
Rothstein TL, Wang JKM, Panka DJ, Foote LC, Wang Z, Stanger B, Cui H, Ju ST, 

Marshak-Rothstein A (1995) Protection against Fas-dependent Th1-mediated 
apoptosis by antigen receptor engagement in B cells. Nature 374:163-165 

Sato T, Irie S, Kitada S, Reed JC (1995) FAP-1: a protein tyrosine phosphatase that 
associates with Fas. Science 268:411-415 

Satoh T, Nakafuku M, Miyajima A, Kaziro Y (1991) Involvement of ras p21 protein 
in signal transduction pathways from interleukin 2, interleukin 3, and 
granulocyte/macrophage colony-stimulating factor, but not from interleukin-4. 
Proc Natl Acad Sci USA 88:3314-3318 



Apoptosis and Eosinophils 373 

Schwiebert LA, Beck LA, Stellato C, Bickel CA, Bochner BS, Schleimer RP (1996) 
Glucocorticosteroid inhibition of cytokine production: relevance to antiallergic 
actions. J Allergy Clin ImmunoI97:143-152 

Simon HU, Blaser K (1995) Inhibition of programmed eosinophil death: a key patho
genic event for eosinophilia? Immunol Today 16:55-55 

Simon HD, Yousefi S, Dommann-Scherrer CC, Zimmermann DR, Bauer S, Barandun 
J, Blaser K (1996) Expansion of cytokine-producing T cells associated with abnor
mal Fas expression and hypereosinophilia. J Exp Med 183:1071-1082 

Simon HU, Yousefi S, Schranz C, Schapowal A, Bachert C, Blaser K (1997a) Direct 
demonstration of delayed eosinophil apoptosis as a mechanism causing tissue 
eosinophilia. J ImmunoI158:3902-3908 

Simon HU, Yousefi S, Dibbert B, Levi-Schaffer F, Blaser K (1997b) Anti-apoptotic 
signals of granulocyte-macrophage colony-stimulating factor are transduced via 
Jak2 tyrosine kinase in eosinophils. Eur J Immunol 27:3536-3539 

Simon HU (1998a) Eosinophil apoptosis in allergic diseases - an emerging new issue. 
Clin Exp Allergy 28:1321-1324 

Simon HU, Yousefi S, Dibbert B, Hebestreit H, Weber M, Branch DR, Blaser K, Levi
Schaffer F, Anderson GP (1998b) Role for tyrosine phosphorylation and Lyn tyro
sine kinase in Fas receptor-mediated apoptosis in eosinophils. Blood 92:547-557 

Stern M, Meagher L, Savill J, Haslett C (1992) Apoptosis in human eosinophils. Pro
grammed cell death in the eosinophils leads to phagocytosis by macrophages and 
is modulated by IL-5. J ImmunoI148:3543-3549 

Su X, Zhou T, Wang Z, Yang P, Jope RS, Mountz JD (1995) Defective expression of 
hematopoietic cell protein tyrosine phosphatase (HCP) in lymphoid cells blocks 
Fas-mediated apoptosis. Immunity 2:353-362 

Tatsuta T, Cheng J, Mountz JD (1996) Intracellular IL-1f3 is an inhibitor of Fas
mediated apoptosis. J ImmunoI157:3949-3957 

Tepper CG, Jayadev S, Liu B, Bielawska A, Wolff R, Yonehara S, Hannun YA, Seldin 
MF (1995) Role of ceramide as an endogenous mediator of Fas-induced cytotox
icity. Proc Nat! Acad Sci USA 92:8443-8447 

Teran LM, Campos MG, Begishvilli BT, Schroder JM, Djukanovic R, Shute JK, Church 
MK, Holgate ST, Davies DE (1997) Identification of neutrophil chemotactic actors 
in bronchoalveolar lavage fluid of asthmatic patients. Clin Exp Allergy 27:396-
405 

Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F, Mattmann C, 
Burns K, Bodmer JL, Schroter M, Scaffidi C, Krammer PH, Peter ME, Tschopp J 
(1997) Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by 
death receptors. Nature 386:517-521 

Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312-1316 
Tsuyuki S, Bertrand C, Erard F, Trifilieff A, Tsuyuki J, Wesp M, Anderson GP, Coyle 

AJ (1995) Activation of the Fas receptor on lung eosinophils leads to apoptosis 
and the resolution of eosinophilic inflammation of the airways. J Clin Invest 
96:2924-2931 

van der Bruggen T, Caldenhoven E, Kanters D, Coffer P, Raaijmakers JA, Lammers 
JW, Koenderman L (1995) Interleukin-5 signaling in human eosinophils involves 
JAK2 tyrosine kinase and STATla. Blood 85:1442-1448 

Wallen N, Kita H, Weiler D, Gleich GJ (1991) Gluocorticoids inhibit cytokine
mediated eosinophil survival. J ImmunoI147:3490-3495 

Wang HG, Rapp OR, Reed JC (1996) Bcl-2 targets the protein kinase Raf-1 to mito
chondria. Cell 87:629-638 

Wang J, Koizumi T, Watanabe T (1996) Altered antigen receptor signaling and impaired 
Fas-mediated apoptosis of B cells in Lyn-deficient mice. J Exp Med 184:831-
838 

Wedi B, Raap 0, Lewrick H, Kapp A (1997) Delayed eosinophil programmed cell death 
in vitro: a common feature of inhalant allergy and extrinsic and intrinsic dermati
tis. J Allergy Clin Immunol 100:536-543 



374 H.-V. SIMON 

Woolley KL, Gibson PG, Carty K, Wilson AJ, Twaddell SH, Woolley MJ (1996) 
Eosinophil apoptosis and its resolution of airway inflammation in asthma. Am J 
Respir Crit Care Med 154:237-243 

Xia K, Mukhopadhyay NK, Inhorn RC, Barber DL, Rose PE, Lee RS, Narsimhan RP, 
D'Andrea AD, Griffin JD, Roberts TM (1996) The cytokine-activated tyrosine 
kinase JAK2 activates Raf-1 in a p21ras-dependent manner. Proc Natl Acad Sci 
USA 93:11681-11686 

Yamaguchi Y, Suda T, Ohta S, Tominaga K, Miura Y, Kasahara T (1991) Analysis of the 
survival of mature eosinophils: interleukin-5 prevents apoptosis in mature human 
eosinophils. Blood 78:2542-2547 

Yang X, Khosravi-Far R, Chang HY, Baltimore D (1997) Daxx, a novel Fas-binding 
protein that activates JNK and apoptosis. Cell 89:1067-1076 

Yousefi S, Hoessli DC, Blaser K, Mills GB, Simon HU (1996) Requirement of Lyn and 
Syk tyrosine kinases for the prevention of apoptosis by cytokine in human 
eosinophils. J Exp Med 183:1407-1414 



CHAPTER 15 

Thymocyte and B-Cell Death Without 
DNA Fragmentation 

T. ITOH, M. NAKAMURA, H. YAGI, H. SOGA, and T. ISHII 

A. Introduction 
In mammals there are several cell renewal systems including the epidermis, 
the intestinal epithelium, and blood cells, in which a number of cells are gen
erated every day, while a similar number of cells are lost due to cell death. 
In the hematopoietic system, for example, most blood cells, once they mature, 
die at various intervals with different life-spans for each lineage cells; mature 
neutrophils die within 2-3 days, whereas denucleated mature erythrocytes are 
totally discarded every 120 days by splenic or liver macrophages. Among 
hematopoietic lineages, most lymphoid cells are also short-lived, indicating 
they have rather short life-spans, though some of them are long-lived memory 
cells. The most characteristic aspect of the lymphoid cell fate is their reper
toire generating mechanism. In both T and B lymphocytes, their extensively 
diversified repertoire is characteristically produced by their enormous prolif
erating activities and by consequent massive cell death, leaving only a minor 
population with an appropriately selected repertoire specificity. In T lympho
cytes, the site for repertoire generation is the thymus, and for B lymphocytes 
the bone marrow and the germinal center. In this chapter we carefully examine 
in situ cell death of thymocytes and B cells at the germinal center and discuss 
their cell death mechanism. 

B. Functional and Structural Characteristics 
of the Thymus 

I. Differentiation of Thymocytes 

Since the thymus is well known for its production of a tremendous amount of 
dead cells, the organ has been considered to be a useful model for investiga
tion of programmed cell death or apoptosis. 

Hematopoietic progenitors migrate from the bone marrow, via the blood 
vessels, and enter the thymus. Upon entering the thymus, they extensively 
proliferate at the subcapsular region of the thymus, gradually change the loca
tion toward the deep cortex after the cessation of the cell division, and through 
a series of complex selection processes they proceed along the differentia
tion pathway, finally reaching the vessels at the cortico-medullary junction, 
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Fig.I. A schematic representation of thymocyte differentiation defined by CD4 and 
CDS in flow cytometry. The most immature thymocytes do not bear either of the surface 
antigens, then they express both of them (double positive thymocytes), and finally a 
small number of double positive thymocytes differentiate into CD4 (ca. 10%) or CDS 
single positive (ca. 5%) mature thymocytes. The majority of double positive thymo
cytes undergo cell death within 3-4 days 

from where they presumably leave the thymus for the periphery. At first 
they do not bear any of the markers specific for mature T lymphocytes in
cluding CD4 and CD8, but gradually acquire the expression of both. On the 
other hand, they begin to express T cell receptor (TCR), and then thymocytes 
lose either of the coreceptors (CD4 or CD8) (Fig. 1). Some of them 
become capable of expressing TCR at high intensity (TCRhi), and ultimately 
only those thymocytes that are allowed to mature (positively selected; single 
positive for CD4 or CD8, and TCRhi) will leave the thymus for peripherallym
phatic tissues after the establishment of self tolerance (VON BOEHMER 1988, 
1992). 
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The thymic microenvironment is thus divided into several compartments: 
the subcapsular region, where massive proliferation of thymocytes takes place; 
the cortex, where nearly all thymocytes cease cell division and thymocyte dif
ferentiation as well as critical selection might occur; the cortico-medullary 
junction, with abundant venules with relatively wide lumen through which 
a number of thymocytes are considered to leave for the periphery; and the 
medulla, the site for the accumulation of mature thymocytes (RITTER and 
CRISPE 1994). Among these regions, the cortex is the most important in terms 
of thymocyte differentiation, selection, and/or death. 

II. Thymocyte Selection 

There may be at least two types of selection processes that might be inevitably 
related to thymocyte death. One such easily comprehensible type of selection 
is the deletion of self-reactive cells which is generated during the enormous 
repertoire formation (COHEN 1991; WILLIAMS 1994). Another type would be 
abortive generation of aberrant nonfunctional (non-selected) thymocytes with 
inappropriate TCR (COHEN 1991). Under a physiological condition, i.e., in the 
normal thymus, to produce immunologically competent T cell populations 
which are single-positive for CD4 or CD8 with high TCR, the progenitor 
population, first of all, likely generates a huge number of progenies, which 
include a small subset of thymocytes (CD4+8+) with a potential for productive 
differentiation, as well as a much larger subset of aberrant nonfunctional 
thymocytes (CD4+8+). This takes place, on the basis of probability, completely 
at random; the progenitor population first generates progenies without any 
apparent bias, and then the progenies undergo biased selection. A minor 
population has been considered to have the capability of interacting sur
rounding stromal cells with appropriate ligands for TCR and co receptors, 
thus transducing positive signals to thymocytes and eventually leading to pos
itive selection, whereas nonfunctional abortive thymocytes do not receive 
any triggers from the microenvironment, resulting in a large number of 
non-selected thymocytes which soon die (COHEN 1991; RITTER and CRISPE 
1994; VON BOEHMER 1988, 1992). Among a small positively selected population, 
a still smaller number would become self-reactive by chance; it is hypothesized 
that these cells are actively deleted in the thymus by a so far undefined 
process. 

III. Thymocyte Death 

As a result of the selection process of thymocytes to generate a large diver
sity of TCR repertoire, an extremely large fraction of thymocytes die within 
the thymus, even without leaving it (COHEN 1991). As discussed above, the 
number of dead cells resulting from aberrant nonfunctional thymocytes in the 
normal thymus is much larger than that from the extremely tiny population 
of self-reactive thymocytes. 
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Table 1. Reported definition of various cell deaths 

Types of cell DNA Chromatin Membrane Phagocytosis Enzymes 
death fragmentation condensation integrity involved 

Apoptosis 

Pyknosis 
Necrosis 

+ Peripheral + 

Heavy, overall + 

Later 

Later 

Caspases (cysteine 
proteases ), 
endonuclease 

Not reported 
Not reported 

As the thymus generates a huge number of dead cells, the organ has long 
been regarded as one of the best organs to perform investigations of "apop
to sis." Since the notion of apoptosis was first introduced into this field, numer
ous studies have been reported on thymocyte death. 

A couple of papers published more than ten years ago prompted us to 
undertake an investigation on thymocyte death (COHEN and DUKE 1984; 
KIZAKI et al. 1989); in the reports, death of thymocytes was induced in vitro 
and detected by a ladder pattern by electrophoresis, but the detection of thy
mocyte death in situ (or in vivo) was not presented. Quite surprisingly, even 
fresh thymocytes (immediately after the suspension was made) have fre
quently been used as a negative control for the ladder formation (COHEN and 
DUKE 1984; COSSARIZZA et al. 1994; KIZAKI et al. 1989; WALKER et al.1994). The 
ladder formation in electrophoresis is one means to detect DNA fragmenta
tion, which has often been recognized as the major hallmark of apoptosis 
(Table 1) (ARENDS and WYLLIE 1991; COHEN 1991; GOLDSTEIN et al.1991; RAFF 
1992). We therefore decided to carry out experiments to investigate in situ thy
mocyte death carefully and extensively under physiological conditions. Until 
the time we started the series of experiments, only a few reports had been pre
sented on thymocyte death in situ (SURH and SPRENT 1994). 

First of all we examined thymocyte death in situ by the terminal deoxynu
cleotidyl transferase dUTP-biotin nick end labeling (TUNEL) method 
(GAVRIELI et al.1992). This procedure allows us to detect DNA fragmentation 
on frozen sections. Only a few thymocytes (less than 1 %) could be detected 
by the TUNEL method in frozen sections (Fig. 2 and see also Fig. 8) 
(NAKAMURA et al.1995). This finding was entirely different from what a number 
of investigators had repeatedly postulated until then, i.e., thymocytes die by 
apoptosis, by definition, which should accompany DNA fragmentation (COHEN 
1991; WILLIAMS 1994). Since dead thymocytes detected in our studies by the 
TUNEL method have often been found to form clusters, we simultaneously 
performed staining of TUNEL and histochemistry to detect DNA fragmenta
tion and acid phosphatase (ACP) (BARKA and ANDERSON 1962) (Fig. 3). Acid 
phosphatase is an enzyme representative for lysosomes; lysosomes are char
acteristic organelles for macrophages. All TUNEL positive nuclei (pigmented 
brown by diaminobenzidine precipitation) were observed entirely overlapping 
with the red spots (where pararosaniline precipitated in acid phosphatase 
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Fig.2. A micrograph of the normal mouse thymus stained by the TUNEL method. 
Only a few (less than 1 %) thymocytes, scattered throughout the cortex, are stained. 
The bar indicates 100 f.1m 

reaction (BARKA and ANDERSON 1962)); DNA fragmentation was detected 
only within macrophages (NAKAMURA et al. 1995). This finding was further 
confirmed by TUNEL and Mac-2 double immunofluorescence staining (Fig. 
4). All green fluorescence signals (TUNEL staining) were encircled by red 
signals (Mac-2 staining) , suggesting that all DNA fragmented nuclei were 
present only inside Mac-2-positive phagocytes (macrophages). In plain trans
mission electron microscopy, macrophages ingesting several nuclei at various 
stages of digesting processes were in fact discerned (Fig. 5) (NAKAMURA et al. 
1995). 

Up to this point, though by circumstantial evidence, we confidently came 
to the conclusion that, under the normal physiological condition, nearly all 
(dying) thymocytes die by pyknosis, but not by apoptosis (NAKAMURA et al. 
1995). "Pyknosis," a type of cell death mainly defined by morphology, is char
acterized by heavy overall chromatin condensation, conventionally considered 
to occur in thymocytes (Table 1) (AREY 1974). To obtain more conclusive evi
dence, we applied the TUNEL method at the electron microscopic level. As 
shown in Fig. 6, positive signals for TUNEL were only detected in the nuclei 
present inside the phagocytes (macrophages); no matter how morphologically 
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Fig.3. The normal mouse thymus simultaneously stained for TUNEL and ACP. Posi
tive staining for the TUNEL method (thymocytes with fragmented DNA) is completely 
overlapping with ACP histochemical staining (macrophages). The bar indicates 20.um 

Fig.4. The normal mouse thymus subjected to double fluorescence staining with 
TUNEL (Texas Red) and Mac-2 (FITC). All TUNEL positive thymocytes are observed 
within Mac-2 positive cells. The bar indicates 35.urn 
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Fig.S. Transmission electron micrograph of a macrophage of the mouse thymus ingest
ing several dead cells (thymocytes). Thc bar indicates 2,um 

obvious the evidence for cell death is, i.e., by their pyknotic nuclei and by their 
extremely small cell size, the cells, unless they are phagocytosed, were TUNEL 
negative even when in the close vicinity of phagocytes. These results collec
tively indicate that thymocytes in the normal thymus do not die by apoptosis: 
thymocytes do not show DNA fragmentation, even though they are appar
ently dead before being phagocytosed (ISHII et al. 1997; NAKAMURA et al. 1995). 
DNA fragmentation was only detected in the nuclei which had been ingested 
by macrophages. Indeed, in transmission electron microscopy (TEM), rela
tively abundant (ca. 10%) extremely small (smaller than red blood cells), 
heavily chromatin-condensed pyknotic thymocytes could be seen, which 
should be considered to be dead (Fig. 7) (NAKAMURA et al. 1995). One can 
perform the TUNEL method by flow cytometry (KISHIMOTO et al. 1995; OJEDA 
et al. 1992). Figure 8 shows a representative result of the normal mouse thy
mocytes by TUNEL flow cytometry. Virtually no TUNEL positive thymocytes 
could be detected by flow cytometry (ISHII et al. 1997). Flow cytometry also 
demonstrated the presence of about 10% small dead cells at the time of cell 
preparation (Fig. 9); these apparently dead cells were negative for TUNEL 
staining. 
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Fig. 6. Electron micrograph of the mouse thymus stained by TUNEL method. At the 
center of this micrograph. one macrophage can be seen. Only an engulfed cell (a dead 
thymocyte) by this macrophage is stained heavily black (positive for TUNEL). whereas 
small pyknotic cells adhering to the macrophage. even though they are obviously dead 
by their morphological features (extremely small cell size and pyknotic nuclei), are neg
ative for TUNEL staining (arrows). The bar indicates 211m 

It is well established that corticosteroids induce rapid and massive cell 
death in thymocytes (CLAMAN 1972; COWAN and SORENSON 1964). It has also 
been demonstrated that, in vitro, corticosteroids caused apoptosis in thymo
cytes; DNA fragmentation could be detected by electrophoresis as a ladder 
pattern (CLARKE et a!. 1993; COHEN and DUKE 1984; PERANDONES et a!. 1993; 
WYLLIE 1980). Accordingly, we next set up experiments to determine whether 
immediate and extensive thymocyte death induced by in vivo injection of cor
ticosteroids is really apoptosis or not. Figure 10 shows the TUNEL staining of 
the mouse thymus 2h and 4h after steroid injection. Positive cells increased 
greatly in number, and apparently formed slightly larger clusters, all of which 
were colocalized with ACP positive cells (Fig. 11), again indicating that cells 
with DNA fragmentation were all phagocytosed. TEM showed that pyknotic 
cells became prominent 2h and 4h after the steroid injection (Fig. 12). TUNEL 
electron microscopy and TUNEL flow cytometry could not detect TUNEL
positive (free) cells even after the steroid treatment, when clusters ofTUNEL
positive cells within macrophages became prominent in frozen sections of the 
steroid-treated thymuses (Figs. 13 and 14). All these findings strongly suggest 
that even in the case of steroid treatment, thymocytes die by pyknosis, not by 
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Fig.7. A plain transmission electron micrograph of the normal mouse thymus. Small, 
heavily chromatin-condensed pyknotic thymocytes (arrows), apparently dead but not 
yet phagocytosed, are frequently (nearly 10% in this micrograph) observed. The bar 
indicates 7 fim 
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Fig.S. TUNEL flow cytometry of the normal mouse thymocytes. TUNEL positive thy
mocytes are not documented by this method beyond the detection limit 
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Fig.9A-C. Flow cytometric analysis of the 
normal mouse thymocytes: A at the time of 
preparation of the suspension, if the centri
fugation is not carried out, about 10% of small 
propidium iodide staining-positive dead cells are 
detected, consistent with the electron micro
scopic finding (see Fig. 7) that about 10% of dead 
cells are present in the normal thymus. The cen
trifugation (washing) is regularly performed to 
eliminate the dead cells for better presentation 
of the data; B two washes; C five washes 

typical apoptosis which has to be accompanied by DNA fragmentation (UEDA 
and SHAH 1994; WYLLIE 1980). 

Discrepancies would be pointed out. The most important point in our 
study is that we performed the entire experiments in vivo, not in vitro. Most 
studies on thymocyte death so far reported were set up in vitro (COHEN et a1. 
1992; COHEN and DUKE 1984; KIZAKI et al. 1989; MCCONKEY et a1. 1989; PEITSCH 
et a1. 1993). It would be desirable to carry out investigations in vivo as much 
as possible, especially if we find discrepancies between in vivo and in vitro 
studies. Second, we carried out the TUNEL method at the electron micro-



Thymocyte and B-Cell Death Without DNA Fragmentation 385 

A 

8 

Fig.l0A,B. The TUNEL staining of the mouse thymus treated with corticosteroid 
(hydrocortisone sodium phosphate, 250mg/kg): A 2h after treatment; B 4h after treat
ment. TUNEL positive cells are significantly prominent compared to the normal 
thymus, and they aggregate to form clusters. The number of TUNEL positive cells 
increases with time, and the size of aggregation also becomes larger with time. The bar 
indicates lOO.urn 
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Fig.H. The corticosteroid-treated mouse thymus simultaneously stained for TUNEL 
and ACP (2h after treatment) . TUNEL positive thymocytes are completely overlap
ping with positive cells for ACP histochemical staining. The bar indicates 20 pm 

scopic level. It has been impossible to determine by the light microscope alone 
whether all pyknotic cells conventionally detectable in normal thymus are 
truly phagocytosed or not, and consequently, whether they are TUNEL
positive or not. To address these issues, we undertook in vivo investigation of 
frozen sections of the mouse thymus by the TUNEL method at an electron 
microscopic level. As a result, it was clearly demonstrated that, under normal 
condition (NAKAMURA et al. 1995) and under a condition of steroid adminis
tration (ISHII et a1.1997; NAKAMURA et aI.1997), most thymocytes die by pykno
sis, not by typical apoptosis, which, by definition, must be accompanied by 
DNA fragmentation (PElTSCH et al. 1993; WYLLIE et al. 1980) prior to being 
phagocytosed by macrophages. 

C. Functional and Structural Characteristics 
of the Germinal Center 

I. Affinity Maturation of B Cells 

In mammals, B lymphocytes undergo the first half of differentiation in the 
bone marrow to the stage of mature B lymphocyte with surface expression of 
IgM and IgD, but at this stage in the bone marrow they have not yet encoun-
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Fig.12. A plain transmission electron micrograph of the corticosteroid-treated mouse 
thymus 2 h after the treatment. Small, pyknotic thymocytes (arrows), apparently dead 
but not yet phagocytosed, are substantially observed. The bar indicates 9 Jim 

tered foreign antigens. They emigrate from the bone marrow thereafter to the 
spleen, the lymph node, the tonsil, and the Peyer's patch, where they mature 
into terminally differentiated functional antibody-forming B cells or memory 
B cells. The second half of the B cell differentiation process, after they 
encounter foreign antigens and with the help of T cells (COHEN 1991; JACOB
SON et al.1974), that takes place in the germinal center of the spleen, the lymph 
node, the tonsil, or the Peyer's patch, can be regarded as "the fine tuning 
process". Meanwhile, B lymphocytes, already having rearranged the immuno
globulin genes and having expressed IgM and IgD on the surface, further 
mutate ("hypermutate") (JACOB et al. 1991; KALLBERG et al. 1994) their 
immunoglobulin genes into those producing and expressing immunoglobulins 
with higher affinity ("affinity maturation"; also called "somatic mutation") for 
the antigens they have recently encountered (Lm et al. 1992; PASCUAL et al. 
1994). 
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Fig.13. An electron micrograph of the corticosteroid-treated mouse thymus stained by 
the TUNEL method. A macrophage ingesting abundant dead cells can be seen. Phago
cytosed cells (dead thymocytes) are stained heavily black (positive for TUNEL), 
whereas small pyknotic apparently dead cells present in the close vicinity of the 
macrophage are negative for TUNEL staining (arrows). The bar indicates 3.um 
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Fig.14. TUNEL flow cytometry of the corticosteroid-treated mouse thymocytes (4h 
after treatment). In contrast to the finding with the transmission microscope (promi
nent pyknotic dead cells in a substantial amount), only an extremely small fraction of 
TUNEL positive thymocytes could be detected (2 %) 

The germinal center is a well-organized site for the affinity maturation 
(Fig. 15) (LIU and ARPIN 1997; LIU et al. 1992). Conventionally, the germinal 
center is divided into three compartmentalized regions - the dark region, the 
light region, and the follicular mantle. At the dark region, "virgin" mature B 
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Germinal Center 
Fig.IS. Diagram illustrating functional compartments of the typical germinal center in 
the lymph node. After the antigenic stimulation, oligoclonal B lymphocytes proliferate 
greatly in the dark region, then go through the selection process in the light region via 
the interaction with FDC, and ultimately terminally differentiate into plasma cells or 
memory B cells. Non-selected, abortive nonfunctional B cells are destined to die by 
pyknosis 

cells, after they meet the antigen, proliferate; at the light region, B cells, after 
they cease to proliferate, go through the selection process; finally, at the 
follicular mantle, only positively selected B cells are allowed to differentiate 
further into antibody-forming cells or memory B cells. The germinal 
center can thus be defined as the microenvironment for antibody formation; 
alternatively, it could be regarded as the site for terminal differentiation for B 
cells. 
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II. B-Cell Selection 

At the dark region, virgin mature B cells proliferate to make a large number 
of B cell clones with a diversified repertoire of B cell receptors (BCR = 
immunoglobulins). From the basal to the apical light region, multiclonal B 
cells are subjected to the selection process via the interaction with follicular 
dendritic cells (FDC), more exactly, through the interaction of newly formed 
(through the hypermutation process) BCR with the antigen adsorbed on the 
surface of FDC. B cells expressing BCR able to receive positive signals 
through the interaction with the antigen would further terminally differen
tiate into antibody-forming B cells or memory B cells. On the other hand, 
those expressing aberrant BCR unable to interact with the antigen on FDC 
("abortive" nonfunctional clones) could not proceed along the differentia
tion pathway, ultimately resulting in cell death. Self-reactive clones might be 
generated during these processes, but the number should be extremely 
low when one assumes that the process of the somatic mutation takes place 
randomly. 

III. B-Cell Death 

As discussed above, when the selection process of B cells in the germinal 
center was carefully examined, the process of B-cell selection turned out to be 
remarkably similar to the selection process of thymocytes as described earlier 
in this chapter, i.e., both T cell and B cells first proliferate, undergo selection 
processes, and, to generate a relatively minor population of positively selected 
competent cells, the majority of them are left behind without any interaction 
with critical ligand molecules in the selecting micro environments. Accordingly, 
we analyzed the cell death of the mouse germinal center with the same pro
cedure used to analyze thymocyte death (NAKAMURA et al. 1996). We hypoth
esized that the major dying population of the germinal center (aberrant 
nonfunctional clones), almost identically to thymocytes, would die by pykno
sis, not by apoptosis. Since "apoptosis" by definition requires DNA fragmen
tation prior to being phagocytosed, it is absolutely necessary, if the relevant 
cell death is postulated to be apoptosis, to demonstrate fragmented DNA in 
nuclei of cells apparently dead but not yet phagocytosed. 

The results presented in Figs. 16 and 17 clearly revealed that TUNEL pos
itive nuclei formed clusters in the light region, and that all TUNEL positive 
nuclei were surrounded by positive reaction for ACP (NAKAMURA et al. 1996), 
being in good accordance with thymocyte death. In the germinal center, frag
mented DNA were detected only within macro phages by TUNEL electron 
microscopy (Fig. 18). 

These observations on the cell death of the germinal center indicated that 
almost all dying cells in the germinal center die by pyknosis (NAKAMURA et al. 
1996). They never showed typical apoptosis pattern of DNA fragmentation 
prior to processing of dead cells by other cells (phagocytosis). Altogether, 
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Fig.16. TUNEL staining of the germinal center of the draining lymph node of the 
mouse immunized with sheep red blood cells (SRBC). Positive aggregates can be 
observed, mainly in the basal light region. The bar indicates 100 flm 

Fig.17. Micrographs of TUNEL + ACP staining of the germinal center of the drain
ing lymph node of the mouse immunized with SRBC. Colocalization of TUNEL pos
itive cells with ACP positive cells are clearly demonstrated. The bar indicates 20 flm 
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Fig.IS. Electron micrograph of the germinal center of the lymph node of the SRBC
injected mouse stained by the TUNEL method. Two macrophages ingesting dead cells 
can be seen. Phagocytosed cells (dead thymocytes) are stained heavily black (positive 
for TUNEL), whereas small pyknotic apparently dead cells (arrows) unphagocytosed 
and in the close vicinity of the macrophage, are negative for TUNEL staining. The bar 
indicates 5 11m 

findings are completely identical to those obtained from the cell death analy
sis on thymocytes. 

D. Summary 
The study of thymocyte death in the thymus and B-cell death of the germinal 
center demonstrated common features of cell death (Fig. 19). 

Both cells are destined to make a large repertoire of antigen receptors. To 
generate a repertoire, the first step (actually, really the first step for thymo
cytes and the first step for the second half of the differentiation process of B 
cells) for them to go through is cell division to produce a relatively large pop
ulation of progenies. Simultaneously, they rearrange or mutate their receptor 
genes; thymocytes rearrange TCR genes, and B cells hypermutate rearranged 
BCR genes. Through interaction with molecules (counter receptorslligands) 
expressed by stromal cells in the microenvironment, only thymocytes or B cells 
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Fig. 19. Common features of cell death mechanisms of the thymus and the germinal 
center. In both cell death processes: first thymocytes or B lymphocytes proliferate to 
generate the repertoire diversity; second they are subjected to selection processes 
based on the receptor repertoire - during the selection processes, some are positively 
selected while the majority of them are left behind without receiving any stimuli for 
further differentiation; finally the cells, unable to interact with the surrounding 
microenvironment, have to advance the death program (pyknosis). Dead cells are to 
be phagocytosed some times later, and their nuclei do not show signs of DNA frag
mentation until they are phagocytosed 

with receptors capable of receiving appropriate positive signals from sur
rounding environment would be positively selected (FARR et al. 1985; Kosco 
et al. 1992). Two types of cells which would not have been positively selected 
might be driven to death; self-reactive clones and aberrant nonfunctional 
clones. The number of cells of the latter population is far greater than that 
of the former, as discussed earlier. Nearly all dead cells detected both in the 
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thymus and the germinal center are abortively generated nonfunctional cells. 
As demonstrated, these dead cells do not show DNA fragmentation, despite 
the fact that some of them display apparent morphological features of cell 
death, prior to phagocytosis by professional phagocytes. Thymocytes and B 
cells of the germinal center showed DNA fragmentation only after they are 
phagocytosed by macrophages, thus strongly indicating that the cell death 
observed with thymocytes and B cells of the germinal center could not be 
regarded as typical apoptosis. 

E. Prospects 
Recently we also examined the interdigital tissues of the limb buds of devel
oping mice, whose PCD has been known for typical apoptosis with DNA frag
mentation. To our surprise it was also found that virtually all TUNEL positive 
cells were phagocytosed by either surrounding mesenchymal cells of the same 
lineage as dead cells or professional phagocytes bearing characteristic markers 
for macrophages (our unpublished observations). 

Findings presented in this study, together with our recent observations 
with interdigital tissue, strongly indicate that there might be in vivo other types 
of cell death than apoptosis. Thymocyte death (WYLLIE 1993), B-cell death 
(MANGENEY et al. 1991), and moreover cell death in the interdigital tissue 
(GARCIA-MARTINEZ et al.1993), all of which have long been attributed to apop
tosis, never showed DNA fragmentation when carefully examined. Therefore, 
although it has been widely accepted that in apoptosis the cell severs self DNA 
into oligonucleosomal subunits long before the dead cell is ingested by phago
cytes, it is necessary either to redefine the apoptosis or to reexamine the cell 
death in vivo; it is essential to determine whether prior DNA fragmentation 
should be a diagnostic sign for apoptosis, whether cell death without DNA 
fragmentation (before phagocytosis) should be designated as apoptosis (in this 
case, it would be extremely difficult to distinguish conventional cell death 
pyknosis or necrosis from special case death apoptosis), or whether we should 
essentially change our definition of apoptosis. 

Genes and enzymes have been extensively investigated in relation to 
apoptosis, and some of the candidates are now strongly suspected to be 
involved in apoptosis of various kinds of cells including mammalian cultured 
cells (MIURA et al. 1993; VAUX and STRASSER 1996) and those of nematodes 
(ELLIS and HORVITZ 1986; VAUX and STRASSER 1996). One such gene, ced-3, 
originally isolated in Caenorhabditis elegans (ELLIS and HORVITZ 1986), has 
been found to be homologous to the gene encoding interleukin-1f3 converting 
enzyme (ICE) of higher vertebrates (YUAN et al. 1993). Recently, these genes 
were collectively renamed as caspases (ALNEMRI et al. 1996; JACOBSON et al. 
1997). However, while trying to accumulate evidence on these death-related 
genes, controversial findings have also been reported. In either case of caspase-
1 (ICE) knockout mice (KUIDA et al. 1995) or caspase-3 (CPP32) knockout 
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mice (KUlDA et al. 1996), thymocyte death was regularly observed, indicating 
that these enzymes, although generally considered essentially to be involved 
in apoptosis, do not play fundamental roles in thymocyte "apoptosis." Accord
ingly, we should point out that the term "apoptosis" has become inappropri
ate in its original definition. From the results of death-related gene-knockout 
mice, either the concept that these death-related genes are deeply involved in 
apoptosis is incorrect, or if one assumes that the hypothesis for the death
related enzymes is correct, then, one must say that thymocytes, under normal 
conditions, do not undergo apoptosis. 

In any case, the first thing we should do is determine precisely whether or 
not the cell deaths in vivo in various organs or tissues really demonstrate DNA 
fragmentation, as one of their earliest signs prior to phagocytosis, not as later 
signs due to the degradation process by phagocytes. 
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CHAPTER 16 

Antigen Receptor-Induced Death 
of Mature B Lymphocytes 

T. DEFRANCE, M. BERARD, and M. CASAMAYOR-PALLEJA 

A. Introduction 
It is established that the antigen (Ag) receptors on lymphocytes can elicit 
either positive or negative responses. Elucidation of the molecular parameters 
which govern this bi-potentiality of the Ag receptor is obviously of critical 
importance for the development of future immunomodulatory-based thera
pies in several diseases including autoimmune disorders and cancer. The 
concept which has long prevailed is that the switch of the B cell Ag receptor 
(BCR) from a negative to a positive signaling function is developmentally reg
ulated and irreversible. This notion was essentially based on the contrasting 
responses elicited by Ag in immature (anergy or deletion) vs mature B lym
phocytes (activation and differentiation). This rather Manichean view of the 
BCR signaling has been challenged by several lines of evidence over the years, 
some originating from early studies, others coming from more recent work 
in which the fate of monoclonal B cells exposed to various forms of Ag at 
different stages of their development has been explored (see GOODNOW et al. 
1995 for review). 

To start with, the assumption that the BCR is definitely wired to a posi
tive (i.e., stimulatory) signaling pathway in mature B cells has always been at 
odds with the multiple reports describing that triggering of the Ag receptor 
on certain neoplastic mature B cells could induce their apoptosis. This point 
was first demonstrated by GREGORY et al. (1991) who reported that group 
I Burkitt lymphoma cell lines, characterized by their expression of a very 
restricted set of the EBV latent proteins, are susceptible to BCR-induced 
death. The ability of neoplastic B cells to undergo apoptosis upon ligation of 
their surface immunoglobulins (sIgs) was later extended to B cell lines derived 
from follicular lymphoma patients (ERAY et al. 1994). 

Next, it has long been known that most foreign Ag have the potentiality 
to elicit either a positive or a negative response depending on their molec
ular form, dose, and route and duration of administration. This is well 
exemplified by the fact that various protein Ag induce either a tolerogenic or 
an immunogenic response when administered under a soluble deaggregated 
or aggregated form, respectively (MITCHISON 1964; DRESSER and MITCHISON 
1968; CHILLER et al. 1971). 

Finally, the recent studies of Goodnow and colleagues have paved the way 
for understanding how a single receptor can bring about both positive and 
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negative responses in mature B cells. These authors have modeled the fate 
of B cells which encounter Ag during their early development in the bone 
marrow by using double transgenic mice bearing both a transgene-encoded 
Ag and a transgene-encoded BCR of the relevant specificity. This seminal 
work (see GOODNOW et al. 1995; HEALY and GOODNOW 1998 for review) has 
highlighted that multiple intrinsic and external parameters collectively decide 
whether the outcome of BCR triggering will be selection, deletion, or anergy, 
thus emphasizing the extraordinary plasticity of the Ag receptor. This model 
convincingly demonstrated that the BCR signaling, in addition to being sub
jected to developmental regulation, is influenced by external factors related 
to the physical properties of the Ag and to components of the innate and 
acquired immunity. 

In the present review, we will first document the importance of Ag-driven 
apoptosis for peripheral B cell tolerance. We will then explore the possibility 
that the Ag receptor switches from a positive to a negative signaling function 
during the course of a normal antibody (Ab) response to ensure that clonal 
expansion of Ag-specific B cells does not lead to hyperplasia. We will discuss 
the importance of Ag-induced apoptosis for the regulation of homeostasis in 
the mature B cell compartment and how this phenomenon relates to the 
concept of activation-induced cell death (AICD) (see GREEN and SCOTT 1994; 
RUSSEL 1995 for review). Finally, we will consider some of the elements which 
bear weight on the regulation and execution of the apoptotic program initi
ated by the Ag receptors in mature B cells. 

B. Antigen Receptor-Induced Death and Maintenance 
of Peripheral B Cell Tolerance 

I. BCR-Induced Apoptosis of Germinal Center B Cells 

The notion that the Ag receptor can exert an inhibitory function in B cells has 
been accepted for more than twenty years and originates from a series of early 
experiments describing that the responses of immature B cells or their tumoral 
counterparts are inhibited by surrogate Ags (Nos SAL and PIKE 1975; METCALF 
and KUNMAN 1976; CAMBIER et al. 1976; NOSSAL et al. 1979; KUNMAN et al. 
1981; BOYD and SCHRADER 1981). Diversity of the B cell repertoire is primar
ily generated through the rearrangement of germline gene segments which 
combine to compose DNA sequences encoding both heavy and light chain 
variable regions. Given the stochastic nature of this process, it might equally 
create Ab specificities against foreign and self components. The negative reg
ulatory function of the BCR towards developing B cells in the bone marrow 
serves the purpose of eliminating these self reactive B cells and maintaining 
central B cell tolerance. Nevertheless, diversification of the B cell repertoire 
also occurs in an Ag-driven fashion in the course ofT-dependentAb responses 
through the random introduction of point mutations in the VI-! and V L genes. 
This hypermutation process which takes place in the germinal centers (GC) 
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of secondary B cell follicles (JACOB et al. 1991; BEREK et al. 1991) can thus 
potentially induce the emergence of self-reactive B cells (RAY et al. 1996). 
Hence additional safeguard mechanisms are necessary to ensure B cell toler
ance in the periphery. 

Two groups have been particularly active in examining how self-reactive 
B cells, generated by the hypersomatic mutations process of V genes, are elim
inated from the post-immune repertoire. LINTON et al. (1991) cotransferred 
memory B cell precursors, defined by their low expression of HSA/CD24 
(LINTON et al. 1989), with hemocyanin-primed T helper cells into irradiated 
mice. A primary Ab response against the hapten DNP was then generated 
by exposing splenic fragments of the recipients to DNP-hemocyanin in vitro. 
These authors showed that addition of Ag coupled to a non-cognate carrier 
subsequently to a primary and secondary antigenic stimulation carried in a 
cognate system precluded their differentiation into Ab-secreting cells. This 
constituted the first demonstration that B cells can also be tolerized during 
the course of an ongoing immune response. However, this study could not 
define whether this "second window" of tolerance was associated or not with 
a peculiar stage of B cell development. This issue was clarified by PULENDRAN 
et al. (1994, 1995a), who showed that the tolerance to NP conjugates induced 
in mice by injection of a soluble deaggregated form of NP-human serum 
albumin was associated with a drastic reduction of the GC development. 
Finally, three concordant reports (PULENDRAN et al. 1995b; HAN et al. 1995; 
SHOKAT and GOODNOW 1995) revealed that apoptosis was underlying the toler
izing mechanism operating in the GC and thereby definitely established that 
the BCR can transduce negative signals in mature B lymphocytes. Basically, 
these observations documented that a secondary and massive injection of 
soluble Ag at the peak of the primary response induces dramatic B cell death 
in the Gc. Five important features of the Ag-driven B cell apoptosis in the 
GC were defined: 

1. It is unrelated to the carrier part of Ag and occurs both when the secondary 
antigenic stimulation is made with the carrier used for the primary immu
nization and with cross-reacting Ag lacking T cell recognition epitopes. It 
is therefore the direct consequence of B cell Ag receptor occupancy. 

2. It is strictly restricted to the GC as the secondary injection of soluble 
Ag does not perturb the development of Ag-specific B cells in the extra
follicular foci. 

3. It targets the high-affinity mutant B cell clones. This point was demon
strated by the underexpression of the VDJ rearrangement conferring high 
affinity to NP in GC B cells which survived prolonged exposure to NP
protein soluble conjugates. 

4. It is independent from the Fas signaling pathway since it can be reproduced 
in "lpr" mice. 

5. It is at least partially reversed by the transgene-encoded expression of 
Bcl-2. 
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Since GC constitute the only anatomical site where diversification and 
selection of the post-immune repertoire occur, it was postulated that the Ag
driven apoptotic pathway is instrumental in eliminating autoreactive B cell 
mutants generated incidentally by the somatic hypermutation process in Gc. 
The unexpected susceptibility of GC B cells to BCR-mediated killing was 
confirmed by two in vitro studies conducted on human B cells which showed 
that a surrogate Ag could induce apoptosis of isolated GC B cells provided 
that they had received an activation signal through CD40 (GAUBERT et al. 
1996; BILUAN et al. 1997). 

Collectively these findings led to the hypothesis that the central B cell tol
erance mechanism which allows for deletion of self-reactive immature B cells 
in the bone marrow is reactivated in the GC (KELSOE 1996; PULENDRAN et al. 
1997). A series of recent experimental data at first seemed to support the 
assumption that GC and immature B cells present functional similarities. First, 
it was reported that the products of the Rag 1 and Rag 2 genes are reexpressed 
in the GC (HAN et al. 1996). Second, it was demonstrated that the RAG pro
teins expressed by GC B cells are enzymatically active, thus implying that 
receptor editing operates in GC B cells (HAN et al. 1997; PAPAVASILIOU et al. 
1997; MEFFRE et al. 1998). Third, other molecules the expression of which was 
previously thought to be restricted to early B cell developmental stages, 
namely TdT, V-preB, and the A-like component of the human pre-B cell recep
tor, were also found on human GC B cells (MEFFRE et al. 1998). However the 
recent experiments of HERTZ et al. (1998) indicated that the comparison 
between GC and immature B cells has some limitation. As convincingly 
demonstrated by these authors, receptor editing in the GC opposed to the 
bone marrow is driven by low-affinity binding Ag and suppressed by high
affinity ligands. Hence, receptor editing in the GC, instead of maintaining self
tolerance can rather be envisaged as the last opportunity for low affinity 
mutants to improve their Ag-binding capacities. 

The mechanism whereby soluble Ag drives B cell apoptosis in the GC is 
not entirely clear. We will consider two hypotheses. 

The first contends that flooding established GC with massive doses of 
soluble Ag hampers the delivery of survival signals provided through physical 
interactions between B cells and follicular dendritic cells (FDCs). In this 
model, soluble Ag would merely operate by passively subtracting B cells from 
the influence of FDCs through its competition with the FDC-bound immune 
complexes. Alternatively, soluble Ag could fail to trigger efficiently the BCR 
and promote B cell survival because of its low degree of reticulation. What
ever the option, this hypothesis implies that elimination of GC B cells driven 
by injection of soluble Ag only models the fate of autoreactive mutants react
ing with soluble proteins and therefore not associated with the FDC network. 
If this assumption is correct, self-reactive B cells would undergo apoptosis in 
the GC as the result of deprivation of FDC-derived trophic factors. This situ
ation is schematically represented by the "passive deletion model" proposed 
in Fig. 1. 
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Fig.1. Putative models for the Ag-driven apoptosis of B cells in the germinal center. 
The passive deletion model postulates that costimulatory signals, possibly provided by 
the FDCs, complement those delivered via the BCR to ensure B cell survival. These 
additional stimuli could modulate the strength and quality of the signals transmitted 
by the BCR. They will not be provided if B cells recognize an Ag which is not associ
ated with the FDC network as it could be the case for a soluble self antigen. This model 
infers that GC B cells are committed to die unless they receive the appropriate anti
apoptotic signals. In this case the BCR does not direct apoptosis of auto reactive B 
cells and their demise is comparable to that induced by trophic factor deprivation. The 
active deletion model postulates that the BCR is constitutively connected to an apop
totic pathway in GC B cells and that undefined costimulatory signals can overcome its 
negative regulatory function. Self-reactive B cells would undergo apoptosis as the con
sequence of BCR cross-linking because they could not benefit from the protection 
afforded by the putative costimulatory receptors 
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The second hypothesis is compatible with the concept developed above 
that the BCR is wired to a death pathway in GC B cells as it is in immature 
B cells. It postulates that soluble Ag is actively driving elimination of GC B 
cells by delivering a death signal. On the one hand, an Ag-mediated deletion 
mechanism appears superfluous, as the lack of appropriate help from FDCs 
or T cells could be sufficient to secure censoring of self-reactive B cells in the 
Gc. On the other hand, it might be necessary to eradicate fully the danger of 
autoAb production due to bystander B cell activation. This cannot be ruled 
out since most of the T cell molecules exerting a B cell stimulatory function, 
including the CD40 ligand (CD40L), can be produced in a soluble form. 

This hypothesis naturally raises the vexing question of how engagement 
of the same receptor can exert two opposite effects, that is to promote sur
vival of high affinity mutants and induce apoptosis of autoreactive mutants. 
In a recent review dealing with this issue, HEALY and GOODNOW (1998) propose 
three external key parameters which might influence the nature of the 
response elicited by ligation of the BCR: (1) the physical properties of the Ag; 
(2) the duration of the antigenic stimulation; and (3) the association of Ag with 
costimuli. It cannot be completely excluded that self-components in the GC 
may structurally differ from exogenous Ag because they fail to reproduce the 
optimal spacing, organization, and reticulation of foreign Ag imposed by their 
immobilization on FDCs. However, there is no strong evidence to support the 
assumption that self and foreign Ag should necessarily differ by their quan
tity or avidity. The duration of stimulation is irrelevant to the present question 
of negative and positive selection of B cells in the Gc. The third possibility, 
which is that Ag promotes death of GC B cells unless they receive anti
apoptotic signals from their environment (schematically represented by the 
"active deletion model" in Fig. 1), deserves further examination. In this model, 
maintenance of B cell tolerance in the GC would require that these costimu
latory signals remain inaccessible to self-reactive B cells. The nature of these 
putative ancillary signals remains elusive to date. Adhesion molecules such as 
ICAM-1 and VCAM-1 on the FDCs can be considered since blocking these 
adhesive interactions inhibit the protective effect exerted by FDCs on the 
spontaneous apoptosis of GC B cells in vitro (KOOPMAN et al. 1994). However 
co-signals of that kind would spare the self-reactive mutants which recognize 
an Ag associated with FDCs. There is also some evidence that T cell-derived 
signals could fulfill this costimulatory function since activated T cells and IL4 
have been demonstrated to antagonize the BCR-induced apoptosis of CD40-
activated human GC B cells in vitro (GAUBERT et al.1996; BILUAN et al.1997). 
Finally, the B cell co-receptor complex CD19/CD21!TAPA-1 stands as an 
interesting candidate since: (1) it includes a receptor for activated products of 
complement C3 (CD21); (2) it amplifies B cell responses at low Ag concen
trations (for review, see TEDDER et al. 1997); and (3) foreign but not self-Ag 
are expected to be associated with the C3d component of complement and 
thus to engage this complex. This hypothesis will be discussed further in the 
following section. 
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Although the observations recalled above make a strong case for the sus
ceptibility of GC B cells to Ag-induced apoptosis, it remains that the devel
opment of Ag-specific GC is also impeded when the tolerogenic form of Ag 
(i.e., soluble de aggregated) is administered 4-7 days before immunization 
(KARVELAS and NOSSAL 1992). This implies that the tolerizing treatment 
inhibits the production of high affinity Abs in at least two different ways -
abortion of an established GC reaction and impairment of the process leading 
to the development of Gc. Whether Ag-driven B cell apoptosis is also respon
sible for the lack of GC in the latter situation is not known. Strikingly, extrafol
licular foci are preserved whatever the time schedule of injection of toleragen, 
indicating that the extrafollicular pathway is less sensitive to tolerization than 
the GC pathway (PULENDRAN et a1. 1995a, b). Whether or not this observation 
reflects the fact that tolerization susceptibility in the mature B cell compart
ment is developmentally regulated remains to be determined. 

II. BCR-Induced Apoptosis of Virgin and Memory B Cells 

Susceptibility to Ag-driven apoptosis should not be regarded as a unique prop
erty of GC B cells inasmuch as it is also clearly documented that Ag can exert 
a negative regulatory function at other stages of B cell development. The first 
evidence that virgin (IgD+/IgM+) B cells can be tolerized by anti-Ig Abs was 
provided by studies describing that crosslinking of sIgM on mature B cells can 
inhibit their subsequent proliferation and Ab secretion in response to a variety 
of stimulatory factors (KEARNEY et a1. 1978; MELCHERS et a1. 1980; ISAKSON et 
a1. 1980; MARUYAMA et a1. 1985). It was next demonstrated that the tolerizing 
effect of anti-Ig Abs on mature B cells is independent of the negative regula
tory pathway coupled to the Fcyreceptors as it can be obtained with F(ab')2 
fragments of anti-Ig Abs (GAUR et a1. 1993). At that time, the interpretation 
of these findings was that triggering of the BCR in the absence of T cell help 
either exerts a cytostatic effect or prevents the terminal maturation of B cells 
into Ig secreting cells. PARRY et a1. (1994a,b) were the first to demonstrate that 
the negative outcome of extensive BCR ligation on murine virgin B cell 
responses can also be correlated with their entry into apoptosis. It was at first 
believed that the capacity to transduce an inhibitory signal to virgin B cells 
was not equally shared by IgD and IgM molecules, and that only the latter 
isotype could exert a tolerizing effect (KIM et a1. 1992; GAUR et a1. 1993). 
However this notion was challenged by the work of PARRY et a1. (1994a) 
showing that anti-IgM and anti-IgD Abs equally promote apoptosis of murine 
virgin B cells when they are used in a highly polymerized form (immobilized 
on plastic or coupled to a biotin/avidin system). 

Resting memory B cells can also be tolerized. This point was first demon
strated by a study of JOHNSON and JEMMERSON (1992) using a model in which 
memory B cells were recovered 17 days after immunization of mice with 
cytochrome c (cyt c) conjugated to ovalbumin and transferred into hemo
cyanin (Hy)-primed irradiated recipients. Memory B cells were tested for their 
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ability to mount a recall Ab response to Hy-cyt c using the splenic focus 
assay. Exposition of resting memory B cells, isolated on the basis of their high 
density, to a tolerogenic polymerized form of cyt c before adoptive transfer 
strongly antagonized their subsequent response to a challenge injection made 
with the immunogenic form of the Ag. Efficient tolerization of memory B cells 
was prevented in three instances: (1) when the concentrations of cyt c polymer 
were lowered; (2) when monovalent cyt c was substituted for the polyvalent 
form of cyt c during the tolerizing phase; and (3) when T cells were artificially 
activated by anti-CD3 Abs. Consequently, this report confirmed that both the 
physical parameters linked to Ag itself (valency, concentration) and the avail
ability of cognate T cell help strongly influence the nature of the response 
elicited by ligation of the BCR on memory B cells. The study described above 
did not address the question of the molecular mechanism underlying toler
ization of resting memory B cells induced by a multivalent form of Ag. 
We have recently demonstrated (BERARD et al. 1999) that surrogate Ag can 
promote apoptosis of isolated human memory B cells in vitro. However, our 
experimental model differed from that described above on two points. Firstly, 
prior activation of human memory B cells with anti-Ig Abs or CD40L was 
mandatory to render them susceptible to BCR-mediated apoptosis. Secondly, 
extensive clustering of the Ag receptors was not required to deliver a death 
signal to activated human memory B cells. The implications of these contrast
ing observations are discussed in the following two sections. 

C. Antigen Receptor-Induced Death and Homeostatic 
Regulation of the Mature B Cell Compartment 

Lm et al. (1989) first reported that anti-Ig and anti-CD40 Abs deliver short
term and long-term survival signals to freshly isolated human GC B cells, 
respectively. This observation constituted the basis for a consensus model for 
selection of the post-immune repertoire in the Gc. This model postulates that 
selection of high affinity centrocytes is secured first through their binding to 
the immune complexes on FDCs followed by cognate interaction with helper 
T cells in the light zone of the Gc. However, anti-Ig Abs provoke a completely 
opposite cellular response when they are provided to GC B cells which have 
been stimulated by CD40L beforehand inasmuch as they induce their apop
to sis (GALIBERT et al. 1996; BILLIAN et al. 1997). A 24h preculture of GC B 
cells with CD40L was found to be sufficient to modify the outcome of BCR 
signaling on GC B cells (BILLLIAN et al. 1997). These data thus evoke the pos
sibility of an interplay between the CD40 and the BCR signaling pathways 
which could allow the latter to switch from a survival to a pro-apoptotic func
tion. Nevertheless, the relation between these in vitro findings and the concept 
proposed by Nossal, Goodnow, and Kelsoe of an Ag-driven negative selection 
process operating in the GC, is not entirely clear. The in vitro data imply that 
Ag-mediated elimination of self-reactive B cells could only occur after GC B 
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cells have received a CD40 signal. If one assumes that T cells are the princi
pal source of CD40-L in the GC, then it follows that the censoring mechanism 
for B cell autoreactivity would operate after, or concurrently with, the deliv
ery of T cell help. Such a hypothesis cannot be definitely ruled out but recent 
observations made in the laboratory (BERARD et al. 1999) question the assump
tion that susceptibility to BCR-mediated killing is a unique feature of acti
vated GC B cells. As mentioned previously, we found that CD40 stimulation 
or triggering of the BCR can also "prime" human memory B cells and to a 
lesser degree virgin B cells for subsequent BCR-mediated apoptosis. There
fore we believe that, rather than being the strict illustration of a negative selec
tion process, the susceptibility of CD40-activated B cells to BCR-induced 
apoptosis reflects a more generalized behavior applicable to any B cell devel
opmental stage. Based on our in vitro findings, we propose that at least two 
intrinsic properties of B cells can regulate the outcome of BCR signaling -
their maturational stage and their activation status. 

The notion that T lymphocytes can be sensitized by Ag or another primary 
activation stimulus to undergo apoptosis upon rechallenge of the Ag receptor 
has received a great deal of support and has led to definition of the concept 
of AICD (see GREEN and SCOTT 1994; RUSSEL 1995 for review). The term 
AI CD was originally coined after the description of the induction of death 
promoted by TCR agonists in T cell hybridomas (ASHWELL et al. 1987; UCKER 
et al. 1989; SHI et al. 1990). One of the most classical illustrations of this phe
nomenon is the biphasic development of the T cell response in mice injected 
with a bacterial super Ag (JONES et al. 1990; KAWABE and OCHI 1991; GONZALO 
et al. 1992). In this experimental model, T cells bearing the appropriate TCR 
(i.e., the particular Vf3 recognized by the super Ag) are expanded in the early 
phase of the response and are next deleted as the result of their apoptotic 
death. It is now admitted that repeated exposure to any Ag can induce death 
of both CD4+ and CD8+ T cells. Ag-induced apoptosis of activated T cells is 
considered to be a crucial feedback regulatory mechanism necessary for the 
immune system to limit the immune response within strict boundaries and 
prevent establishment of a pre-neoplastic stage. As such, AICD is instrumen
tal in preserving homeostasis of the mature T cell compartment. There is com
pelling evidence that the death pathway activated by rechallenge of the Ag 
receptor on cycling T cells is not directly connected to the TCR but involves 
the coordinated induction and triggering of the death receptors Fas (DHEIN 
et al. 1995; BRUNNER et al. 1995; Ju et al. 1995; ALDERSON et al. 1995) and TNF 
receptor type 2 (ZHENG et al. 1995). AI CD may result from both cell contact
dependent and independent mechanisms. In the first situation neighboring T 
cells are killed by armed T cells expressing one of the death ligands (Fas
ligand/Fas-L orTNF). In the second situation which can be seen as cell suicide, 
the soluble form of the death ligand is produced and consumed by the same 
cell. 

The BCR-induced apoptosis of CD40-activated human B cells therefore 
presents striking similarities with the phenomenon of AICD inasmuch as it is 
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induced by surrogate Ag and is critically dependent on the activation status 
of the cells. We have elements suggesting that the susceptibility of mature B 
cell subsets to AI CD is correlated with their cycling ability (BERARD et al. 1999, 
in press) and thus with the amplitude of the response they can generate as it 
has been previously demonstrated for T cells (BOEHME and LENARDO 1993; 
ZHU and ANASETTI 1995). In this context, the fact that activated GC and 
memory B cells are more prone to AICD than virgin B cells is coherent with 
the high proliferative potential of the former two B cell subsets. Accordingly, 
the feedback down-regulatory control exerted by Ag should apply with an 
increased force during the GC reaction and in the course of secondary Ab 
responses. This argues for the notion that AICD preserves homeostasis of the 
mature B cell compartment by preventing overexpansion of B cells when they 
are exposed to repeated or continuous antigenic stimulation. What function 
can we ascribe to AICD during GC development? One element of response 
comes from the observation that IL-4 protects CD40-activated human GC B 
cells from apoptosis induced by anti-Ig Abs (GAUBERT et al. 1996; BILUAN 
et al. 1997), thus suggesting that AICD might be impeded if T cell help is 
available. As reported by the group of MacLennan, the numbers of Ag
specific T cells in the GC rise during approximately the first 10days after 
immunization, reach a plateau, then fall by day 20 as the GC reaction vanishes 
(GULBRANSON-JUDGE and MACLENNAN 1996). Since the Ag stocks immobilized 
on the FDC are unlikely to be consumed during the GC reaction, it is con
ceivable that, at a certain stage of their development in the GC, B cells are 
exposed to Ag while T cell help gradually becomes limiting. We propose that 
this configuration might favor activation-induced death eventually causing the 
extinction of the GC reaction. The concept of B cell AICD could constitute 
the basis for an alternate interpretation of the massive B cell apoptosis in GC 
induced by administration of high doses of soluble Ag. Following this line of 
reasoning, it can be speculated that flooding established GC with soluble Ag 
might artificially render Ag accessible to a much larger fraction of the GC 
population than in the normal physiological situation. Under these experi
mental conditions, B cells which BCR has engaged might simply outnumber 
T cells and thus fail to receive efficient protection from AICD. 

D. Positive and Negative Signaling Through the BCR 
I. Biochemical Events Associated with the Alternative BCR 

Signaling Pathways 

In the present section, we will only provide an overall perspective of the para
meters which influence the nature of the response elicited by triggering of 
the BCR since this issue has been extensively discussed elsewhere (GOODNOW 
et al. 1995; HEALY and GOODNOW 1998). Basically, two distinct experimental 
approaches have been used to explore the biochemical modifications associ
ated with the transduction of a negative signal through the BCR. As we will 
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see below, none of these models truly meet the criteria required for elucida
tion of the transduction pathway evoked during Ag receptor-induced apopto
sis of mature B cells. Proper dissection of the opposing pathways connected 
to the BCR still awaits the availability of an in vitro model in which B 
cells could be induced to mount either a positive or a negative (apoptotic) 
response by exposure to different forms of a BCR agonist. However, they 
provide important clues on the set of downstream effector molecules suscep
tible to constitute regulatory points for the generation of differential signal
ing responses. 

In the first model, the murine immature B lymphoma cell line WEHI-231, 
which can only respond to BCR ligation by undergoing apoptosis, was used to 
analyze the signaling cascade coupled to the Ag receptor when it is wired 
to a death pathway. These studies demonstrated that certain proximal non
receptor-type protein-tyrosine kinase such as blk (YAO and SCOTT 1993) or 
some of their substrates such as the HS1 protein (YAMANASHI et al. 1997), are 
necessary for the apoptotic response of WEHI-231 to anti-IgM Abs. More
over, disruption by gene targeting of the genes encoding Syk, Lyn (TAKATA et 
al. 1994) or phospholipase C y2 (TAKATA et al. 1995) has demonstrated that 
these early elements of the BCR signaling pathway are crucial for BCR
induced apoptosis in a chicken B cell line model. However, as the second mes
sengers described above are equally recruited during positive and negative 
responses elicited by engagement of the BCR, they cannot account for the 
decision of the cells to engage either the activation or apoptosis pathway. So 
far, the only biochemical event which would be specifically correlated with the 
apoptotic outcome of BCR triggering in WEHI-231 is the activation of a sphin
gomyelinase and subsequent production of ceramide (GOTTSCHALK et al. 1995; 
WIESNER et al. 1997). Extrapolation of these findings to normal mature B lym
phocytes remains to be done with caution since WEHI-231 is a transformed 
immature B cell line. 

The second model, developed by the group of Goodnow is based on a 
comparative study of the biochemical events associated with BCR signaling 
in naive and tolerant B cells. These experiments have provided seminal infor
mation on the biochemical basis of B cell anergy but it should be stressed that 
they may not model exactly what is happening when Ag evokes a death signal 
in mature B cells. The experimental strategy used by these authors relies on 
the use of two types of transgenic mice carrying either a HEL-specific trans
gene-encoded BCR, or both the BCR anti-HEL transgene and a transgene 
encoding a soluble form of HEL. Naive anti-HEL B cells have never encoun
tered Ag during their early development. Their response to immunization with 
HEL is representative of positive BCR signaling. Tolerant B cells have been 
chronically exposed to a non-deletional (i.e., soluble) form of HEL during the 
pre immune phase of their development. Their response to HEL immunization 
is considered to be exclusively negative. These surveys have revealed that both 
the quality and the quantity of the second messengers recruited by the BCR 
have an impact on the nature of the subsequent cellular response. The differ-
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ences in signal quality following acute antigenic stimulation of naive and tol
erant B cells have been documented in the study of HEALY et al. (1997). They 
can be summarized in three points: (1) the amplitude of the calcium response 
is high in naive B cells, low in tolerant B cells; (2) the JNK MAP kinase is acti
vated in naive but not in tolerant B cells; and (3) NF-7d3 is activated in naive 
but not in tolerant B cells. 

The importance of the "quantity" or strength of the antigenic signal for 
determining the outcome of BCR triggering is best exemplified by the study 
conducted with the "moth-eaten" mutant mice, deficient in the protein tyro
sine phosphatase SHP-1, by OSTER and GOODNOW (1995). SHP-1 deficiency 
was found to exaggerate the intracellular calcium elevation consecutive to Ag 
binding and to convert the "anergizing" signal that soluble HEL provides to 
developing monoclonal anti-HEL B cells into an apoptotic signal. Interest
ingly, it was recently demonstrated that apoptosis is responsible for the growth 
inhibitory signal provided by crosslinking Fc)RII to sIgs in resting murine B 
cells (ASHMAN et al.1996). Since SHP-1 is recruited to the cytoplasmic domain 
of FcrRII under these experimental conditions (D'AMBROSIO et al. 1995), this 
suggests that the negative signaling function of the BCR may prevail when 
SHP-1 is retrieved from the BCR signaling pathway. Two other membrane 
receptors, CD22 (DOODY et al. 1995; LAW et al. 1996) and CDS (for B-1 cells) 
(BIKAH et al. 1996) can also recruit SHP-1 and as such are susceptible to tune 
the sensitivity threshold of the BCR. Accordingly, the phenotype of mice in 
which the CD22 gene has been disrupted (O'KEEFE et al. 1996; OTIPOBY et al. 
1996; SATO et al. 1996) is similar to that observed for SHP-1 deficient mice. 
Hence, the respective ligands of CD22 and CDS, i.e., proteins containing dl, 
6-sialylated sugars and CD72 respectively, may potentially affect the outcome 
of BCR signaling. 

II. Parameters Affecting the Outcome of BeR Signaling 

Based on the work of the group of Goodnow and others, we will now consider 
some of the external parameters which have an impact on the nature of the 
response elicited by engagement of the BCR. 

1. Physical Properties of the Ag 

The first parameter is the molecular form of Ag which encompasses variables 
such as its concentration, avidity, valency, association with Abs, and comple
ment. A typical illustration of this notion is the observation that protein 
Ag behaves as efficient toleragen when provided under a soluble deaggregated 
form while immunogenic when administered under an aggregated form 
(MITCHISON 1964; DRESSER and MITCHISON 1968; CHILLER et al. 1971). 
However, it seems difficult to make a strict correlation between Ag valency 
and the induction of a particular type of response. For example, extensive 
cross-linking of sIgs is mandatory for the induction of apoptosis in resting 
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murine B cells (PARRY et al. 1994a,b) while F(ab)' 2 fragments of anti-Ig 
Abs, unlikely to cause extensive clustering of the Ag receptors, induce apop
tosis of activated GC and memory B cells (BILLIAN et al. 1997; BERARD et al. 
1999). This assumption is also in agreement with a series of studies conducted 
by the group of Dintzis and documenting the immunosuppressive effect of 
highly reticulated forms of Ag obtained by coupling multiple hapten or 
peptidic groups to dextran polymers (DINTZIS and DINTZIS 1992; SYMER et al. 
1995; WATSON et al. 1996). The tolerizing effect of such polymerized Ag was 
shown to vary greatly depending on their molecular weight and hapten density. 
This implies that in addition to their valency, the geometry, mass and organi
zation of the antigenic molecules are crucial for the outcome of B cell 
responses. 

As mentioned above, activated B cells as opposed to resting B cells, do 
not require extensive Ag receptor clustering to undergo apoptosis in response 
to surrogate Ag. Owing to the role of SHP-1 in setting the BCR signaling 
threshold, it could be interesting to examine whether the enhanced vulnera
bility of activated B cells to BCR-induced apoptosis is correlated with a 
decreased expression of SHP-1 or SHP-1-recruiting molecules. It is still 
unclear whether the level of expression of SHP-1 can be modulated upon B 
cell activation but there is evidence that GC B cells, which are characterized 
by a high susceptibility to BCR-induced apoptosis, have a strongly reduced 
expression of this tyrosine phosphatase (DELIBRIAS et al. 1997). 

2. Costimulatory Signals 

a. Activated Complement Fractions 

The group of Fearon has provided compelling evidence for the potent cos
timulatory function of the CD19!CD21!TAPA-1 complex when the signal 
transmitted by the BCR is a positive one, i.e., when B cells are exposed to an 
immunogenic form of Ag (see FEARON and CARTER 1995 for review). By con
trast, the impact of these coreceptors on Ag-driven apoptosis is much less doc
umented and the literature on this subject is confusing. On the one hand, there 
is evidence that CD19 can potentiate negative signaling through the BCR. For 
example, concurrent engagement of CD19 has been reported to potentiate 
BCR-induced apoptosis both in the Burkitt lymphoma cell line Ramos and in 
human tonsillar B cells treated with a highly multivalent form of anti-Ig Abs 
(CHAOUCHI et al. 1995). Furthermore, overexpression of CD19 dramatically 
reduces the output of mature B cells from the bone marrow, presumably by 
enhancing clonal deletion (ZHOU et al. 1994; ENGEL et al. 1995). 

On the other hand, convincing data also argue for a protective function 
exerted by the CD19!CD21!TAPA-l co-receptor complex on BCR-induced 
apoptosis. In particular, exploration of the responses of CR2 (CD21!CD35)
deficient mice has provided support for this notion. FISCHER et al. (1998) have 
compared the responses of monoclonal anti-HEL transgenic B cells bred into 
either a CR2+ or a CR2- genetic background, after transfer into wild-type 
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recipients immunized with low- or high-affinity Ag variants. Although CR2- B 
cells could be found within GC following immunization with a high affinity 
Ag, they failed to participate in the GC reaction. One of the possible inter
pretation of these findings is that binding of Ag in the absence of ancillary 
signals from the complement receptors is detrimental to B cell survival in the 
Gc. In keeping with this, it is striking that both injection of a massive dose of 
soluble Ag (PULENDRAN et al. 1995b; HAN et al. 1995; SHOKAT and GOODNOW 
1995), unlikely to be complexed with complement fragments, and that of a 
soluble CR2 construct (FISCHER et al. 1998) similarly cause the disruption of 
established Gc. In addition, KOZONO et al. (1995) have shown that BCR
mediated killing of the immature B cell line WEHI-231 can be prevented by 
coligation of sIgs and complement receptors 1 (CD35) and 2 (CD21). Alto
gether these observations raise the possibility that complement receptors may 
direct connection of the BCR to a positive signaling pathway in GC B cells. 

b. T Cells and Microbial Factors 

It was documented long ago that mature B cells can be rendered tolerant if 
they are exposed to high Ag concentrations in the absence of T cell help (PIKE 
et al. 1981). The assumption that, in certain circumstances, a tolerogenic signal 
can be converted into an immunogenic one if cognate T cell help is available 
is supported by several lines of evidence. It has been demonstrated in various 
in vitro experimental models that the apoptotic signal provided by a surrogate 
Ag to resting or activated B cells can be reversed in the presence of activated 
T cells (BILUAN et al. 1997), T-cell-derived soluble factors such as IL-4 (PARRY 
et al. 1994a; GAUBERT et al. 1996; BILUAN et al. 1997), or membrane-bound 
effector molecules such as CD40-L (PARRY et al. 1994a; NOMURA et al. 1996) or 
CD5 (NOMURA et al. 1996). Death induced by extensive crosslinking of sIgs on 
mature B cells has also been shown to be prevented by thymo-independent 
Ag such as LPS or dextran sulfate (NOMURA et al. 1996). 

E. Molecular Control of the Apoptosis Sensitivity 
Threshold in Mature B Cells 

Apart from the external influences that we have reviewed above, the decision 
of the BCR to promote death can also be influenced by signals from within 
the cells, inherent in their activation status and maturational stage. One of the 
most important checkpoints on the road which leads to programmed cell death 
is that which decides whether the death sentence delivered by the apoptotic 
stimulus will be executed or not. This checkpoint is under the control of mul
tiple cytoplasmic regulatory molecules, exerting either an anti-apoptotic or a 
death-inducing function. Due to the increasing numbers of identified death 
regulators and to the complexity of their interactions, we do not pretend 
to draw an extensive and definitive picture of their respective implication in 
the regulation of B lymphocyte survival. Therefore, we will focus on six 
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regulatory molecules which have received particular attention from 
researchers interested in B cell physiology. Five of them belong to the BcI-2 
family (BcI-2, BcI-x, Bax, McI-1, and Bad), and the sixth one is the proto
oncogene c-Myc. 

I. Developmental Regulation of the Survival Genes 

BcI-2 is the founding member of a family of death regulatory genes which was 
initially isolated from the t(14, 18) chromosomal breakpoint constituting one 
of the hallmarks of follicular lymphomas (TSUJIMOTO et al. 1984). BcI-2 is con
sidered as the prototypic survival gene since its overexpression protects cells 
from a variety of apoptotic signals including growth factor deprivation, glu
cocorticoids, y-irradiation, among others (see CORY 1995; YANG and KORSMEYER 
1996 for review). In the past five years the BcI-2 family has expanded and now 
comprises both anti- and pro-apoptotic molecules. In mammals, the death 
antagonists include BcI-2, the long form of BcI-x (BcI-XL)' BcI-w, McI-1, and 
AI. The death inducers are: Bax, the short form of BcI-x (BcI-xs), Bak, Bik, 
Bid, Bad (see CHAO and KORSMEYER 1998 for review), and the recently 
identified Bim molecule (O'CONNOR et al. 1998). The various members of 
the BcI-2 family physically interact with each other to form homo- or hetero
dimers through conserved domains designated as BcI-2 homology regions 
(BH1 to BH3) (YIN et al. 1994; CHITTENDEN et al. 1995; ZHA et al. 1996). 
Whether molecules such as Bax possess a pro-apoptotic effector function per 
se or mainly act by preventing molecules such as BcI-2 from exerting their 
death inhibitory function is not entirely clear yet. However, there is general 
agreement on the notion that the relative cellular concentrations of the pro
and anti-apoptotic members of the BcI-2 family are determinant for the sur
vival of the cells. At least part of the pool of the BcI-2, BcI-x, and Bax polypep
tides is located at the junction between the inner and outer mitochondrial 
membranes (KROEMER 1997). Recent evidence indicates that these three mol
ecules interfere with some crucial elements of the mitochondrial function such 
as the fall in transmembrane potential, the production of reactive oxygen 
species, and the release of cytochrome c (KROEMER et al. 1997). 

The propensity of GC B cells to undergo spontaneous apoptosis in culture 
was first reported by LIU et al. (1989). Since Abs directed against sIgs or CD40 
were found to prevent programmed cell death of isolated GC B cells in vitro, 
it was postulated that these cells are committed to die unless they receive 
appropriate rescuing signals from Ag and T cells. It was next demonstrated 
that the increased death susceptibility of GC B cells was correlated with their 
lack of BcI-2 expression (LIU et al. 1991). These experiments constituted the 
first evidence for a strong positive correlation between increased death vul
nerability and the modulation of expression of a so-called survival gene. Since 
then, several studies have documented the distribution of other apoptosis reg
ulatory molecules in mature human B cell subsets. A summary of these results, 
shown in Table 1, emphasizes that expression of these molecules is develop-
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Table 1. Pattern of expression of six apoptosis regulators 
in human B cell subsets a 

Virgin Memory GC 

Bcl-2 + + 
BclxL + + 
Mcl-1 ± ± + 
Bax ± + 
Bad + 
c-Mycb + + 

+, strong expression; ±, low/intermediate levels of expres
sion; -, undetectable. 
aThis table is exclusively based on the analysis of tonsillar 
B cells by: (1) immunoenzymatic staining of tissue sections 
(KRAJEWSKI et al. 1994a,b), (2) immunoblot performed on 
isolated B cell subsets (OI-ITA et al. 1995; GHIA et al. 1998), 
and (3) RT-PCR in sorted B cell subsets (MARTINEZ
VALDEZ et al. 1996). 
hFor c-Myc, distribution of the transcript only, no data 
available on the expression of the protein. 

mentally regulated during the Ag-dependent maturation process of B cells. 
This assumption is exemplified by the observation that their constitutive 
expression in GC B cells is strikingly different from that observed in virgin 
and memory B cells. Although GC B cells are characterized by the extinction 
of the Bel-2 molecule, they are still positive for the expression of two other 
death repressors (Bel-XL and Mel-I). However, unlike virgin and memory B 
cells, they also constitutively express three death-inducing molecules (Bax, 
Bad, and c-Myc). This finding thus points towards the notion that the vulner
ability of mature B cells to apoptotic stimuli relies on the ratio between pro
and anti-apoptotic molecules. The validity of this concept was confirmed by a 
series of studies in which the equilibrium between death inducers and death 
repressors was artificially modified. These experiments involved testing the 
susceptibility to Ag receptor-induced apoptosis of various lymphoma cell lines 
in which genes encoding either anti-apoptotic (Bel-XL) or pro-apoptotic mol
ecules (Bax) have been overexpressed. This experimental approach demon
strated that overexpression of Bel-XL (MERINO et al. 1995; ISHIDA et al. 1995; 
CHOI et al. 1995; WIESNER et al.1997) but not that of Bcl-2 (CUENDE et al.1993; 
CHOI et al. 1995) protects the immature cell line WEHI-231 from cell death 
induced by anti-Ig Abs. Conversely, WEINMANN et al. (1997) showed that trans
fection of Bax could induce a Burkitt lymphoma cell line resistant to sIg
induced apoptosis to switch to a sensitive phenotype. In conelusion, these 
observations suggest that the Bcl-xdBax rather than the Bcl-2/Bax ratio plays 
a crucial role in defining the sensitivity threshold of B cells to BCR-induced 
apoptosis. 
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II. Activation-Induced Regulation of the Survival Genes 

In agreement with the data discussed above, biological stimuli, such as CD40L, 
which protect WE HI cells from BCR-induced apoptosis have been described 
to raise expression of the long form of Bel-x (ISHIDA et al. 1995; CHOI et al. 
1995; WANG et al. 1995). As expected from the transfection experiments 
showing that Bel-2 fails to protect WEHI cells from BCR-induced apoptosis, 
expression of the Bel-2 transcript and protein was not affected by engagement 
of CD40 on these cells (CHOI et al. 1995; WANG et al. 1995). In mature murine 
B cells, Abs to CD40 as well as other mitogenic stimuli such as LPS, soluble 
anti-IgM Abs, and combinations of phorbol esters and inonophores also 
enhance Bel-XL expression without affecting the constitutive expression of Bel-
2 (GRILLOT et al. 1996; CHOI et al. 1996). Hence, Bel-XL but not Bel-2 is likely 
to be involved in regulating the apoptosis susceptibility in activated B 
lymphocytes. 

To what extent can we extrapolate these findings to the process of BCR
induced death in mature B cells? Although the expression of the survival genes 
of the Bel-2 family has not yet been found during Ag receptor-induced apop
tosis of mature B cells, the study of GRILLOT et al. (1996) provides some infor
mation on the impact of Bel-2 and Bel-x on this process. They explored this 
question in an in vivo setting by injecting mice with anti-IgD Abs, thus re
producing at a polyelonal level the situation in which the Ag receptor is 
crosslinked in the absence of T cell help. The subsequent deletion of mature 
B cells was followed in the spleens of four types of mice; wild-type animals, 
mice carrying either a Bel-2 or a Bel-x trans gene, and mice carrying both Bel-
2 and Bel-x transgenes. Their results indicate that partial protection from anti
IgD-induced apoptosis of splenic B cells is afforded when mice carry both the 
Bel-x and Bel-2 transgenes but not when they express either one or the other 
of these transgenes alone. This suggests that full protection against the apop
totic signal delivered via the BCR in mature B cells most likely requires either 
collaboration between different survival molecules or the concomitant deeline 
of proapoptotic factors. 

Comparatively few studies have dealt with the expression of death
inducers following B cell activation. Activation-induced modulation of Bax 
was reported by OHTA et al. (1995) who showed that activation of human 
neonatal B cells by the T-independent Ag SAC and IL-2 increased expression 
of the Bax protein. This issue was also addressed by BARGOU et al. (1995) who 
demonstrated that sIgM-induced apoptosis of the Burkitt lymphoma cell line 
BL41 was preceded by a rise in the expression of the Bax protein. Finally, our 
own results (BERARD et al. 1999) have showed that three transcripts encoding 
pro-apoptotic molecules (Bax, c-Myc, and p53) are upregulated following lig
ation of the BCR or CD40 in human tonsillar B cells. However, these activa
tion stimuli had a differential impact on the Bel-xdBax ratio in virgin and 
memory B cells. In virgin B cells, engagement of either one or the other of 
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these membrane receptors led to a strong upregulation of the Bcl-xL mRNA 
but marginally affected the Bax transcript. In contrast, activated memory B 
cells were characterized by a prominent expression of the Bax transcript while 
the levels of expression of the Bcl-xL mRNA were only marginally affected. 
Altogether, these findings indicate that upregulation of pro-apoptotic mole
cules such as Bax can fulfill two distinct functions. First, as for anti-Ig-stimu
lated Burkitt lymphoma cell lines, it can be consecutive to the delivery of the 
apoptotic insult and directly initiate death. Second, as observed for human 
memory B cells, it can occur in response to stimuli which favor a mitogenic 
response rather than apoptosis. In this case, the rise in Bax expression and con
comitant downregulation of Bcl-XL would predispose B cells to undergo apop
tosis upon reexposure to Ag by lowering their threshold of death susceptibility. 

The available evidence suggests that c-Myc is involved in regulating apop
tosis mediated via the Ag receptor. In WEHI cells, ligation of sIgM induces a 
biphasic modulation of the c-Myc transcript, that is a transient increase within 
the first hour of stimulation, followed by a strong downregulation of its expres
sion (LEE et al. 1995). However, it is not yet clear whether it is the initial rise 
or the decline phase of c-Myc expression which is instrumental in BCR
induced apoptosis. On the one hand, blocking c-Myc function by the means of 
antisense oligodeoxynucleotides prevents the induction of apoptosis pro
moted by extensive crosslinking of sIgM on mature murine splenic B cells 
(SCOTT et al. 1996). On the other hand, signals which protect WE HI cells from 
anti-IgM-induced apoptosis (such as CD40 L) have been shown to sustain c
Myc expression (SCHAUER et al. 1996). However, since c-Myc is placed at the 
branching of the proliferation and apoptosis pathways it might influence cell 
survival in different ways. In other words, the intrinsic proapoptotic function 
of c-Myc (EVAN et al. 1992) and the proliferation block imposed by its down
regulation might be equally detrimental to cell survival. 

F. The Executioners of the BeR Apoptotic Pathway 
I. Early Transduction Events 

It is not the purpose of the present section to provide a detailed survey of the 
transduction pathway connected to the death domain (DD)-containing re
ceptors. However, we will briefly review the current knowledge in the field 
because these elements are important for the understanding of the possible 
relationship between the Fas and BCR apoptotic pathways. The DD
containing receptors belong to the TNF receptor superfamily. They all com
prise an homologous sequence of 80 amino acids in their intracytoplasmic 
portion which is referred to as the death domain because it is mandatory for 
transduction of the apoptotic signal. There are five cloned bona fide death 
receptors to date: the TNF receptor 1 (TNF-R1), Fas (CD95/APO-1), TRAMP 
(DR3/APO-3/WSLILARD), TRAIL-R1 (DR4/APO-2), and TRAIL-R2 
(DRS). The most proximal cytoplasmic element of transduction of the apop-
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totic signal via the DD-receptors is a so-called adapter molecule which binds 
to the oligomerized DD and recruits downstream mediators via a specific 
amino acid sequence located in its N-terminal region and designated as the 
death effector domain (DED). Treatment of sensitive cells with an agonistic 
anti-Fas Ab followed by immunoprecipitation of Fas has allowed for the 
identification of a group of four proteins responsible for the early steps of 
the death signal transduction (see SCHULZE-OSTHOFF et al. 1998 for review) 
via Fas. Two of them were identified as different molecular forms of the 
adapter molecule FADD, one of them is a caspase (see below) designated as 
caspase 8 (FLICE), and the fourth still awaits molecular characterization. The 
postulated scenario for the early biochemical events induced by Fas trigger
ing is the following: (1) trimerization of Fas in the membrane; (2) binding of 
FADD to the DD of Fas; (3) recruitment of FLICE by FADD via its DED; 
(4) activation, i.e., processing of the pro enzymatic form of FLICE; and (5) 
recruitment and activation by activated caspase 8 of other downstream second 
messengers. Adapter molecules in which this DED has been truncated can still 
bind to the DD ofFas but can no longer recruit the downstream caspases. Such 
a truncated form of FADD has been shown to function as a dominant nega
tive mutant and to protect the cells from Fas-mediated apoptosis. It can be 
used to study the Fas-dependency of certain signaling pathways. 

II. The Caspase Cascade 

Dissection of the distal molecular events responsible for the irrevocable deci
sion of the cell to die has been a matter of intensive research, probably because 
the key elements of the executor machinery of cell death are likely to be 
shared by most apoptotic pathways. In the nematode, the terminal irreversible 
effector step of cell death is controlled by the product of the Ced-3 gene. The 
mammalian equivalent of Ced-3 is the cytoplasmic cysteine protease inter
leukin-1j3 converting enzyme (ICE), required for processing of the IL-1j3 pre
cursor to the active cytokine (YUAN et al. 1993). ICE was the first identified 
member of a multigene family of proteolytic enzymes designated as Caspases 
(cysteinyl aspartic acid specific proteases) that all cleave their substrates at 
specific aspartate residues (see COHEN 1997; MILLER 1997 for reviews). Cas
pases are synthesized under an inactive proenzyme form (30-50kDa) which 
is processed to produce an enzymatically active complex composed of the 
shorter cleavage products of 10 kDa and 20 kDa, respectively. As caspases act 
in a stepwise fashion and behave as substrates for each other, their sequential 
activation during the apoptotic process is often referred to as the caspase 
cascade. Certain caspases like FLICE/Caspase 8 are proximal to the death
inducing receptors in the plasma membrane (BOLDIN et al. 1996; MUZIO et al. 
1996; MEDEMA et al.1997) while others act downstream of the core of the apop
totic pathway, i.e., the mitochondria (see SCHULZE-OSTHOFF et al. 1998 for 
review). At the distal end of the apoptotic pathway, caspases cleave various 
cellular substrates responsible for the nuclear and membrane degradations 
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which "sign" the execution of apoptosis. These substrates include inhibitors of 
DNAse, enzymes involved in DNA repair and gene maintenance such as 
poly(ADP-ribose) polymerase/PARP, cytoskeleton proteins, cell cycle regula
tors, etc. Recent studies have been conducted to determine whether caspases 
intervene in the apoptotic pathway coupled to the Ag receptor. These exper
iments which have been mostly performed on immature (ANDJELIC and LIOU 
1998) and mature B lymphoma cell lines (RICKERS et al. 1998; LENS et al. 1998) 
convincingly demonstrated that caspase 3 (CPP32/YAMA) is involved in 
BCR-induced killing. Since this caspase is also an element of the signaling 
cascade coupled to Fas, it suggests that the BCR and the Fas apoptotic path
ways might at least partially converge at a certain point. Nonetheless experi
ments conducted by the group of Van Lier (LENS et al. 1998) on a Burkitt 
lymphoma cell line suggest that the apoptosis effectors acting upstream of 
caspase 3 in the Fas and BCR signaling pathways are distinct. Their data can 
be summarized as follows. First, the cleavage products of caspase 3 generated 
during BCR or Fas-induced apoptosis differ by their size, suggesting that the 
caspases responsible for the processing of procaspase 3 along these two path
ways are distinct. Second, the activation of caspase 3 consecutive to BCR trig
gering is delayed as compared to the kinetics of caspase 3 activation following 
engagement of Fas. Third, transfection of a responding Burkitt lymphoma line 
with a dominant negative form of FADD (FADD-DN) does not affect BCR
induced apoptosis. This latter finding is coherent with previous reports docu
menting that Fas blocking reagents (soluble Fas, antagonistic Abs) do not 
affect the death signal provided through the BCR (DANIEL et al. 1997; BILLIAN 
et al.1997; BERARD et al. 1999) and that activated human B cells lack detectable 
expression of the transcript encoding Fas-L (DANIEL et al. 1997). Altogether, 
these findings demonstrate that, as opposed to the mechanism underlying acti
vation-induced death ofT cells, the Fas/Fas-L system is not involved in the Ag
receptor-induced apoptosis of mature B cells. However, the possibility that 
BCR-mediated killing operates through indirect triggering of another death 
domain-containing receptor cannot be formally excluded. Indeed, there is 
some redundancy at the level of the proximal transducing elements involved 
in the apoptotic pathway coupled to the DD-containing receptors. In fact, in 
addition to FADD, four other adapter molecules can be recruited by the DD
containing receptors - TRADD (Hsu et al. 1995), RIP (STANGER et al. 1995), 
RAIDD (DUAN and DIXIT 1997), and CRADD (AHMAD et al. 1997) - and 
promote apoptosis when overexpressed in model cell lines. Hence, the 
efficiency of a FADD DN protein for blocking a given apoptotic pathway will 
depend on the levels of endogenous expression of FADD and the other 
adapter molecules. 

Interestingly, SCAFFIDI et al. (1998) have established that Fas can be con
nected to two different death pathways, depending on the cell type considered. 
These authors distinguish type I cells, characterized by an early activation 
of caspase 8 (FLICE) at the level of the death-inducing signaling complex 
(DISC) and type II cells for which caspase 8 processing and activation occurs 
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later, downstream of the mitochondria. The pathway used by type I cells oper
ates independently of the perturbations of the mitochondrial functions, while 
the pathway used by type II cells is fully dependent upon mitochondrial activ
ity. Accordingly, the pathway used by type II but not by type I cells is blocked 
by Bcl-2 and Bcl-x which both interfere with permeability transition of the 
mitochondria. The transfection experiments conducted on the immature cell 
line WEHI-231 have also demonstrated that the BCR death pathway in these 
cells is sensitive to the anti-apoptotic effect of Bcl-XL (GOTTSCHALK et al. 1994; 
MERINO et al. 1995). In conclusion, the BCR apoptotic pathway certainly uses 
some of the downstream caspases (such as caspase 3) but mayor may not 
utilize the proximal components of the DD receptor signaling pathway. It is 
dependent on mitochondrial contribution and is also characterized by the late 
cleavage of caspase 3. Altogether, these elements raise the possibility that 
the death pathway connected to the BCR may present similarities with that 
coupled to Fas in type II cells. 

G. Concluding Remarks 
There are multiple pathways leading to apoptosis in B cells, and molecules 
such as FcyRII (ASHMAN et al. 1996), MHC class II (NEWELL et al. 1993; 
TRUMAN et al. 1994), and class I (GENESTIER et al. 1997) molecules, the BCR 
and Fas have all been reported to induce B cell death under certain circum
stances. Why is there such a profusion of receptors capable of inducing death? 
Why can some of them, beside their long-recognized immunostimulatory func
tion, also promote apoptosis? The precise answer to these questions is still 
elusive but it appears that the immune system has developed multiple strate
gies to prevent dysregulated expansion of the lymphoid cells which might oth
erwise lead to autoimmune, lymphoproliferative diseases and malignancies. 
This emphasizes the crucial importance of the negative control of the immune 
response to preserve integrity of the organism. 

Still, how can we reconcile the fact that BCR ligation protects mature B 
cells from Fas-mediated killing with the pro-apoptotic effect of BCR agonists 
reviewed in this chapter? Although the issue of the regulation of Fas-induced 
apoptosis in the B cell compartment is beyond the scope of this review, we 
would like to comment briefly on these two apparently opposing functions of 
the BCR. Our hypothesis is that Fas- and BCR-induced apoptosis do not serve 
identical purposes and intervene at distinct stages of the B cell maturation 
process. The model presented in Fig. 2 illustrates this point. The available data 
are consistent with the hypothesis that Fas-induced apoptosis plays an impor
tant role during the initiation phase of B cell responses, i.e., in the T zones of 
secondary lymphoid organs where T and B cells physically interact. At this 
stage, the BCR exerts an anti-apoptotic function by protecting Ag-specific B 
cells from Fas-mediated apoptosis. As we and others have proposed, this mech
anism could be instrumental in preventing CD40-mediated bystander B cell 
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Fig.2. Biological functions fulfilled by the BCR- and Fas-induced apoptosis during B 
cell responses. The B cell maturation pathway in response to antigenic stimulation is 
divided into three phases. The initiation phase occurs in the T zone of secondary lym
phoid organs and involves close physical interaction with activated T cells which have 
been primed by interdigitating dendritic cells. Activated T cells are expected to express 
both the ligands for CD40 and Fas and are equally armed to induce activation or apop
to sis of B cells. At this stage, ligation of the BCR on cells which are not yet actively 
cycling protects them from Fas-mediated killing. The expansion phase can take place 
both in the GC or in the extrafollicular foci where B cells have an intense mitogenic 
activity. Prolonged or repeated exposure of cycling B cells to Ag and the concomitant 
decline of T cell help would favor the feedback pro-apoptotic effect of Ag, thereby 
ensuring downsizing of the responding B cell population 

activation and in recruiting, among the diverse Ag-specific B cell clones, those 
which display the strongest Ag-binding capacities. Later, during the expansion 
phase, when B cells are actively cycling and Ag is non-limiting, the signaling 
program coupled to the BCR is redirected towards a pro-apoptotic function. 
At this stage, Ag itself plays an active part in downsizing the responsive B cell 
population in order to prevent hyperplasia. Other apoptotic mechanisms such 
as growth factor deprivation might take over at the terminal stage of the 
response when Ag becomes limiting. 
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CHAPTER 17 

Modulation of Apoptosis and Maturation 
of the B-Cell Immune Response 

G. KOOPMAN 

A. Introduction 
Apoptosis plays a central role in shaping both the T and B-cell immune reper
toire. Apoptosis is involved both in the positive selection of immunocompe
tent lymphocytes, via deletion of noncompetent cells, as well as in the negative 
selection of lymphocytes that, for instance, have an undesired reactivity against 
auto-antigens. The natural history of a B lymphocyte can be divided into two 
subsequent phases, with apoptosis playing a role in each of them (Fig. 1). The 
first phase, which takes place in the bone marrow, consists of the development 
of mature, immunocompetent B lymphocytes from the pluripotent stem cell. 
This phase is presumed to be largely independent of T lymphocytes and 
antigen and is guided by the recombination of immunoglobulin genes into a 
functional membrane immunoglobulin (Ig) receptor. During this phase posi
tive selection results in expansion of B cells that have successfully rearranged 
their Ig genes, while B cells with a faulty Ig receptor are deleted through apop
tosis. The second phase of B-cell development is antigen dependent and takes 
place in the secondary lymphoid organs such as lymph nodes, spleen, and 
mucosa associated lymphoid tissues. It is initiated by specific recognition of 
antigen by the B-cell Ig receptor and results in activation and proliferation, 
thereby enlarging the pool of B cells specific for a given antigen. Some of the 
B cells differentiate into soluble Ig producing plasma cells, others develop into 
memory B cells (Fig. 1). In contrast to mature B cells, which express IgM and 
IgD, memory B cells have undergone isotype switching and express IgA, IgG, 
or IgE receptors. In addition, the Ig receptor is modified through somatic 
mutation (see Sect. B.IlI) and the B cells are re-selected on the basis of the 
changed affinity of their Ig receptor, which results in generation of memory B 
cells with an increased binding affinity for antigen. Apoptosis plays a major 
role in this selection process. This chapter treats the regulation of B-cell 
apoptosis in this antigen dependent phase of the B-cell immune response. 
Discussed are: (1) the antigen driven B-cell maturational process in detail; (2) 
the molecules involved in this process; (3) the regulation of B-cell maturation; 
and (4) the regulation of B-cell survival. Finally, results are summarized 
within the framework of a recently proposed triple check model of B-cell 
maturation. 
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Fig.1. The natural history of B-cell development. This figure represents an overview 
of the process of B-cell development schematically divided into four maturation zones. 
In the bone marrow (zone 1) stem cells differentiate into mature B cells that migrate 
to the follicular mantle zone of the secondary lymphoid organs (zone 2). After antigen 
encounter these B cells interact with activated T cell in the T-cell area of the lymphoid 
tissues (zone 3) after which part of the B cclls maturc into IgM producing plasma cells 
while other B cells proliferate and form a germinal center (zone 4). In the germinal 
center B cells are further selected on the basis of the antigen binding affinity of their 
Ig receptors. The large majority of them die by apoptosis, while others undergo isotype 
class switching and differentiate into memory or plasma cells 

B. Antigen Dependent B-Cell Maturation in Secondary 
Lymphoid Organs 

I. Anatomical Organization of the B-Cell Immune Response 

The initiation of B-cell immune responses by thymus dependent antigens is a 
complex event requiring the close collaboration between antigen presenting 
dendritic cells, T cells, and B cells. The initial activation of antigen specific B 
cells is thought to take place in the T-cell area of secondary lymphoid organs, 
where antigen stimulated T cells provide help to the B cell (Fig. 1) 
(MACLENNAN and GRAY 1986; TEW et al. 1990). T cells stimulate B-cell prolif
eration and differentiation by release of cytokines like IL-2, IL-4, or IL-lO, 
and by direct cell-cell contact involving both adhesion molecules and cross 
linking of CD40 on the B cells by interaction with CD154 expressed on the T 
cell (see DURIE et al. 1994 for review). Subsequently part of the stimulated B 
cells proliferate and form the germinal center, which presents a specialized B
cell compartment where further maturation takes place. Other B cells mature 
into plasma cells, producing predominantly IgM antibodies. Binding of these 
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antibodies to antigen leads to the formation of immune complexes, some of 
which are trapped by follicular dendritic cells (FDC) , a cell type that is present 
in the germinal center which is essential to B-cell maturation. The B-cell 
maturation in the germinal center microenvironment is discussed below in 
detail. 

II. The Germinal Center Microenvironment 

1. Cellular Composition of the Germinal Center 

The main cellular constituents of the germinal center are activated B lym
phocytes, follicular dendritic cells (FDC), tingible body macrophages, and T 
lymphocytes (STEIN et al. 1982; BUTCHER et al. 1982; ROUSE et al. 1982). FDC 
are large cells with elongated cytoplasmic extensions that form the framework 
of the germinal center (NOSSAL et al. 1968; SZAKAL and HANNA 1968). FDC 
express Fc receptors as well as complement receptors, through which they can 
bind antigen-antibody complexes (GERDES et al. 1983; PETRASCH et al. 1990; 
SCHRIEVER et al. 1989). These complexes can remain bound to the FDC for 
long periods of time, in undegraded form, thereby forming an antigen reser
voir. Antigen on the FDC can be presented to the B cells either directly, or in 
the form of immune complex coated bodies, so-called iccosomes, that are 
released by the FDC (SZAKAL et al. 1988). 

T cells are essential to germinal center formation; in their absence germi
nal center formation, isotype switching, and B-memory cell generation do not 
take place (see NIEUWENHUIS et al. 1992 for review). In contrast to their 
non germinal center counterparts they are L-selectin (CD62L) negative and 
most of the cells express CDS7. 

2. B-Cell Subpopulations 

As stated earlier, the germinal center is essential to the antigen-dependent 
maturation and differentiation of B cells. During this maturational process B 
cells go through a sequence of phenotypic and functional alterations, ulti
mately resulting in the formation of B-memory cells as well as plasma cells. 
As a consequence, B cells in the secondary lymphoid tissues can be subdivided 
into a number of phenotypically distinct subpopulations that occupy different 
zones within the follicular B-cell compartment (Fig. 2) (HARDIE et al.1993; LIU 
et al. 1992; GRAY 1993). Thus upon antigenic challenge secondary follicles are 
formed that have a mantle zone comprised of mature IgM, IgD positive B cells 
and a germinal center containing activated IgD negative B cells (Fig. 2) 
(HARDIE et al. 1993; LIU et al. 1992; GRAY 1993). Mantle zone B cells can be 
further subdivided into resting cells that have not encountered antigen and B 
cells that have undergone their first activation and have upregulated CD23 
and HLA-II expression (Fig. 2) (DEFRANCO et al. 1984; CAMBIER and 
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Fig.2A,B. Schematic representation of germinal center architecture and B-cell matu
rational steps during an immune response: A B cells in the secondary lymphoid organs 
largely reside in follicles, where mature resting B cells are found in the mantle zone, 
while the activated B cells in part form a germinal center that consists of sub
compartments containing centroblasts or centrocytes and different subsets of FDCs; B 
during an immune response B cells go through a series of phenotypic changes which 
in part are associated with their transition through a germinal center reaction. Here 
they also undergo isotype class switching and somatic hypermutation 

CAMPBELL 1992; KLAUS et al. 1987; NOELLE et al. 1984). These cells then form 
centroblasts, which are rapidly proliferating cells that divide every 6-7h. This 
high proliferation rate is required for the formation of a germinal center, as it 
is estimated that each germinal center is formed out of only one to three 
antigen stimulated B cells (KROESE et al. 1987). Centroblasts are 
CD77+CDlO+CD38+CD2J+PNA+, while CD44, CD39, CD62L, 19 receptors, and 
Bc1-2 are downregulated (BUTCHER et al. 1982; KRAAL et al. 1982; MANGENEY 
et al. 1991; FEUILLARD et al. 1995; MAURER et al.1990; MAURER et al.1992). Fol-
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lowing the centroblast stage, B cells develop into centrocytes that show reex
pression of surface Ig receptors (Fig. 2) (LAGRESLE et al. 1993; Lm et al. 1989; 
KREMMIDIOTIS and ZOLA 1995; FEUILLARD et al. 1995). The majority of these 
cells have undergone Ig isotype switching and express IgG, IgA, or IgE. They 
have lost expression of CD77, but are otherwise, with regard to their surface 
markers, similar to centroblast, i.e., CDlO+CD38+CD2]+PNA+CD44-CD39-
CD62L-Bcl-2-. These cells do not proliferate further and readily undergo 
apoptosis (Lm et al. 1989). Finally, plasma cells producing either IgA, IgG, or 
IgE class antibodies and B-memory cells, expressing CD44, CD39, CD27, and 
negative for CD77, CD10, and CD38 are formed (LAGRESLE et al. 1993; Lm et 
al. 1995). The B-cell maturational stages described above are found in distinct 
subregions of the germinal center that also differ in FDC composition (Fig. 2) 
(Lm et al. 1992; HARDIE et al. 1993). The centroblasts reside in the dark 
zone of the germinal center. This region contains only few and relatively small 
FDC. It is assumed that in this region the B-cell Ig repertoire is further 
diversified through somatic mutation (see below). Subsequently the centro
cytes enter the light zone that is densely populated with FDC. The light zone 
is further subdivided into a basal light zone, where the FDC are strongly 
ICAM-1 (CD54) positive, and an apical light zone containing FDC with strong 
CD23 and moderate ICAM-1 expression (Lm et al. 1992; HARDIE et al. 1993). 
In the light zone the B cells, that now express Ig receptors that are modified 
by somatic hypermutation, are either selected for further differentiation or 
deleted through apoptosis. Apoptotic cells are degraded by local macrophages, 
described as tingible body macrophages. Finally, an outer zone has been 
postulated that contains CD75 positive B cells that might be traveling be
tween the diverse follicular compartments (Lm et al. 1992; HARDIE et al. 
1993). 

Several subsets have been described that, on the basis of their phenotype, 
are thought to span the gap between the "activated" CD23+IgD+IgM+ positive 
B cell and the Ig negative germinal center B cell, i.e., the so-called "germinal 
center founder cell." Thus occasionally transitional, IgD positive, germinal 
centers are found (Lm et al. 1996a; LENS et al. 1996a). In Lm et al. (1996a) 
these cells were found to express the germinal center marker CD38. They 
could be further subdivided into an IgM positive and IgM negative subset (Fig. 
2) (Lm et al. 1996a). The IgM positive cells were found to be partly small non
cycling cells and partly blastoid KI67 positive, proliferating cells (LEBEcQuE et 
al. 1997). These cells were also shown to be extremely sensitive for apoptosis 
induction. Recently an additional IgD positive germinal center subset was 
described, characterized by expression of CD70 (LENS et al.1996a). These cells 
were found to carry the naive B-cell markers CD44 and CD39 as well as the 
germinal center/memory cell marker CD27, while they were negative for 
CD10 or CD38 (Fig. 2). These cells therefore seem to represent a mantle 
zone/germinal center intermediate preceding the IgD+,CD38+ cell type 
described above. All B-cell subpopulations described thus far are listed in Fig. 
2 in a sequential maturation order. As depicted also in Fig. 2, B cells with a 
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"founder" cell and centroblast phenotype are strongly proliferating, while 
propensity to undergo apoptosis is seen from the "founder" cell to the cen
trocyte stage of development. 

III. Ig Switching and Somatic Hypermutation 

The three most prominent changes that take place in B cells that go through 
a germinal center maturation phase are isotype switching, affinity maturation, 
and memory cell formation (Fig. 2) (GRAY 1993; MACLENNAN and GRAY 1986; 
NlEUWENHUIS et al. 1992; TEW et al. 1990; BEREK et al. 1991; BEREK 1992; BEREK 
et al. 1985; GRIFFITHS et al. 1984). As described above, naive B cells express 
IgM and IgD class surface Ig receptors, while memory cells typically express 
IgA, IgG, or IgE. Recently the switching process was studied in detail by Lm 
et al. (1996b), who investigated the appearance of sterile transcripts, which are 
transcripts containing an I ex on upstream of the S region and are found only 
during the first phase of the switching process, in tonsil B-cell subpopulations. 
These transcript were found to be present in centrocytes only, indicating that 
Ig class switching starts at the transition from the centroblast to the centro
cyte stage (Fig. 2). Interestingly, some of the centroblasts were found to have 
deleted their IgM locus and to express IgG or IgA transcripts, despite the 
absence of sterile transcript. This may indicate that some of these B cells have 
undergone Ig switching earlier during a previous germinal center cycle and 
are in fact representing reactivated memory cells going through an additional 
germinal center reaction. 

During an immune response there is an increase in the antigen binding 
affinity, a process called affinity maturation. Affinity maturation is the result 
of two distinct processes, somatic hypermutation and immune selection 
(GRIFFITHS et al. 1984; BEREK et al. 1985, 1991; BEREK 1992). Somatic hyper
mutation is a unique process through which random mutations are generated 
in the Ig heavy and light chains. Through this process further diversity, 
besides Ig gene rearrangement and junctional diversity occurring during B
cell lymphopoiesis in the bone marrow, is added to the B-cell Ig receptor. 
Somatic hypermutations are absent in IgD+, CD77-, CD3S- mantle zone B cells 
and are detected at a low level in the IgD\ IgM+, CD38+ germinal center 
"founder" cell and at high levels in all further maturated B-cell subpopula
tions (Lm et al. 1996a; PASCUAL et al. 1994). The majority of these mutations 
will result in defective V genes or in V genes that encode variable domains 
with a decreased affinity for the antigen. Only in a few cases will these muta
tions lead to an increase in affinity. High affinity B cells are then positively 
selected for further maturation into memory B cells or plasma cells, while the 
B cells with low affinity Ig receptors die through apoptosis (see Sects. D 
and E). 
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C. Cell Surface Molecules Involved in Regulation 
of B-Cell Maturation and Apoptosis 

As already stated, the immune repertoire is shaped by selection. Cells that are 
positively selected will mature into functional immune cells, while the 
superfluous nonselected cells are deleted through apoptosis. Often the 
processes of maturation and apoptosis are interrelated and in fact regulated 
by the same molecules. In this section, two groups of cell surface molecules, 
the TNF/NGF receptor family and adhesion molecules, that have been impli
cated in maturation/apoptosis regulation will be described. Because these fam
ilies contain a large number of different molecules, a description of which is 
beyond the scope of this chapter, only those molecules that have specifically 
been implicated in the regulation of apoptosis of B cells will be described in 
detail. Although cytokines are also important in the regulation of maturation 
and apoptosis they will not be described separately and are only referred to 
in Sects. D and E as these processes are described in detail. 

I. The TNFINGF Receptor Family 

The TNF/NGF receptor family, with the two exceptions T2 and A53R, are all 
type I membrane proteins with sequence homology confined to the extracel
lular region (SMITH et al. 1994; BAZZONI and BEUTLER 1996). Several cysteine
rich pseudorepeats are present in the extracellular region, each containing 
about 6 cysteines and 40 amino acids. These molecules are expressed on the 
cell surface, although many receptors are also released in soluble form by 
proteolysis. Molecules belonging to this family are, amongst others; TNFR I, 
TNFR II, NGFR, CD27, CD30, CD40, CD95, OX40, 4-lBB, TRAIL, 
TRANCE-LiRANK (BAZZONI and BEUTLER 1996; ANDERSON et al.1997; PAN 
et al. 1997; SHERIDAN et al. 1997; WONG et al. 1997a,b). Their ligands are also 
structurally related to each other and belong to the TNF family. All TNF family 
members, except LTawhich appears to be a secreted protein, are type II mem
brane proteins, with a sequence homology in the C-terminus extracellular 
region, which folds into a j3-plated sheet sandwich. Typically these molecules 
form trimeric molecular complexes. Binding between a TNF receptor family 
member and its trimeric ligand generally leads to trimerization of the TNF 
receptor molecule, which results in functional activation of the receptor. 
Broadly, TNF receptor family molecules can be subdivided into molecules that 
induce cell activation and proliferation and molecules that carry a so-called 
"death domain" and induce apoptosis. The most prominent TNF receptor mol
ecule involved in B-cell activation is CD40. CD40 is strongly expressed on B 
cells and dendritic cells, while its ligand CD154 is mainly expressed on 
activated CD4 T cells (Table 1) (ARMITAGE et al. 1992; LEDERMAN et al. 1992b; 
Lru et al. 1989; Roy et al. 1993). Triggering of CD40 has been implicated in 
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Table 1. Cell surface molecules involved in the regulation of apoptosis or maturation 
of B cells. The receptor/ligand pairs, family designation, function and expression 
pattern, within the lymphoid system, from a limited set of molecules that are referred 
to in this chapter are shown 

Receptor/Ligand Family Function Expression 

CD40lCD154 TNF-R/TNF B-cell proliferation, CD40: B, DC, FDC 
B-cell and DC 
maturation 

CD154: activated T 
CD27/CD70 TNF-R/TNF T- and B-cell CD27: T cell, 

proliferation activated B 
CD70: activated T 

and B 
CD95/CD95Ligand TNF-R/TNF T- and B-cell CD95: activated T 

apoptosis and B 
CD95L: CTL, Thl, 

NK cells 
CD134/0X40L TNF-R/TNF T-cell proliferation CD134: activated T 

B-cell proliferation OX40L: activated T 
and 19 secretion and B, DC 

TNF-R/TNFa TNF-R/TNF Apoptosis and DC TNF-R: broad 
maturation 

TNFa: macrophages. 
lymphocytes 

CDllaCD18/CD54 Intcgrin/Ig Adhesion, CDllaCD18: broad 
(LFAlIICAM-1) family proliferation 

CD54: B, activated T, 
DC,FDC 

CD49dCD29/CD106 Integrin/Ig Adhesion, CD49dCD29: Band 
(VLA -4N CAM -1) family proliferation T 

CD106: DC, FDC 
CD44/hyaiuronic acid Adhesion, proliferation CD44: broad 

DC, dendritic cell; FDC, follicular dendritic cell. 

B-cell proliferation induction, Ig class switching, and memory cell formation 
(GRAY et a1.1994; GAUBERT et al. 1996b; ALLEN et al.1993; CALLARD et a1.1993; 
LEDERMAN et al. 1992a, 1994; Lm et al. 1992; LANE et al. 1992; ARMITAGE et al. 
1992; NOELLE et al. 1992; SPRIGGS et al. 1992; ROUSSET et al. 1991; JABARA et al. 
1990). CD27 is present on T cells, activated B cells, germinal centers, and 
memory B cells, while its ligand CD70 is found on activated B cells, activated 
T cells, and some stromal cells in the thymus (HINTZEN et al. 1994, 1995). Trig
gering of CD27 has been shown to provide a co-stimulatory signal to T cells, 
enhancing proliferation, while more recently co-stimulation of B-cell prolifer
ation was also documented (AGEMATSU et al. 1994, 1995; GOODWIN et al. 1993; 
HINTZEN et al. 1995). Recently, cross linking of OX40Ligand, which is 
expressed on anti-IgD or anti-CD40 stimulated B cells, was shown to enhance 
B-cell proliferation and Ig production, while it had no effect on Ig class switch
ing (STUBER et al. 1995). 

Both CD95 and TNFR I and II carry a so-called death domain sequence 
within their cytoplasmic domain (SMITH et al. 1994; BAZZONI and BEUTLER 
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1996). Cross linking of these molecules through interaction with their counter 
receptors results in activation of an intracellular signal transduction cascade 
ultimately leading to initiation of a cell death program. Triggering of CD95 
has been implicated in initiation of both T- and B-cell death (KRAMMER et 
a1. 1994; NAGATA and GOLSTEIN 1995; TRAUTH et a1. 1989). CD95 is present on 
activated T-and B cells and strongly expressed on germinal center B cells 
(KRAMMER et a1. 1994; NAGATA and GOLSTEIN 1995; TRAUTH et a1. 1989; 
MIYAWAKI et a1. 1992; MOLLER et a1. 1993; ROTHSTEIN et a1. 1995; LAGRESLE et 
a1. 1995; DEBATIN et a1. 1990). Expression of CD95L is much more limited and 
only documented on cytotoxic T lymphocytes, T helper 1 cells, and NK cells 
(OSHIMI et a1. 1996; RAMSDELL et a1. 1994; NAGATA and GOLSTEIN 1995; SUDA 
et a1. 1993). The role of TN Fa, lymphotoxins, and the 55kD and 75kD TNF 
receptors in the regulation of B-cell proliferation and differentiation is less 
clear. However, the fact that germinal centers are absent in lymphotoxin a and 
in 55 kD TNF receptor deficient mice highlights their importance in the gen
eration of the secondary B-cell immune response (MATSUMOTO et a1. 1997). 
Interestingly, instead of inducing apoptosis, TNFa was recently shown to 
inhibit anti-Ig induced apoptosis in a Burkitt lymphoma cell line (LENS et a1. 
1996b). 

II. Adhesion Molecules 

Adhesion molecules are cell surface receptors that mediate the binding of cells 
to other cells or to the extracellular matrix (for reviews see SPRINGER 1990; 
HEMLER 1990; HEMLER and LOBB 1995; SPRINGER 1994). In this chapter only 
those adhesion molecules that have been shown to playa role in cell activa
tion, besides adhesion, will be discussed further. The role of the integrin family 
of adhesion molecules in cell activation is especially well documented. Inte
grins are heterodimeric membrane proteins that interact either with extracel
lular matrix proteins like collagen, laminin, or fibronectin, or cell surface 
bound counter receptors which generally belong to the Ig superfamily. 
The most widely studied of them, with regard to cell activation, are LFA-1 
(CDlla/CD18) that interacts with ICAM-1 (CD54), and VLA-4 
(CD49d/CD29) that binds to VCAM-1 (CD106) and fibronectin. LFA-1 has a 
broad tissue distribution, but is negative on FDC, while VLA-4 is expressed 
on T cells and B cells only (for reviews see SPRINGER 1990; HEMLER 1990; 
HEMLER and LOBB 1995; SPRINGER 1994). The LFA-1 counter receptor ICAM-
1 is found on B cells, activated T cells, dendritic cells, FDC, and endothelium, 
while the VLA-4 counter receptor VCAM-1 is positive on dendritic cells, FDC, 
and endothelium. Cross linking of LFA-1 or VLA-4 provides a co-stimulatory 
signal, enhancing anti-CD2 and anti-CD3 induced T-cell proliferation 
(SHIMIZU et a1. 1990; VAN SEVENTER et a1. 1990). Besides integrins, CD44, which 
forms a heterogeneous group of molecules that are all derived from a single 
transcript through alternative splicing, has been implicated in cell activation 
as it enhances both cell proliferation and cell adhesion (DENNING et a1. 1990; 
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HUET et al. 1989; KOOPMAN et al. 1990; SHIMIZU et al. 1989). CD44 can interact 
with extracellular matrix molecules like hyaluronic acid, collagen, fibronectin, 
and laminin (JALKANEN and JALKANEN 1992; LESLEY et al. 1990; MIYAKE et al. 
1990; UNDERHILL et al. 1987). 

D. Regulation of B-Cell Maturation 
The recognition of distinct B-cell subsets, that arise during an immune 
response, and the development of magnetic cell separation techniques, which 
has made it possible to purify these subsets in sufficient numbers from, for 
instance, inflamed human tonsils, has spurred research on the factors involved 
in the regulating B-cell maturation. Specifically the differentiation of mature 
resting B cells into centroblasts, of centroblasts into centrocytes, and of centro
cytes into either memory cells or plasma cells has been studied (Fig. 3). In 
vitro studies showed that CD40 in combination with cytokines including IL-2, 
ILA, and IL-lO is involved in many of these maturation steps (ARPIN et al. 
1995; LAGRESLE et al. 1995; Lru et al. 1989, 1991; GAUBERT et al. 1996b; 
CASAMAYOR-PALLEJA et al. 1996). Moreover, blocking of CD40-CD154 interac
tions in vivo with anti CD154 mAb was found to inhibit germinal center and 
memory B-cell formation (Foy et al. 1994; HAN et al. 1995a). However, in 
another study, blocking the same pathway with a CD40 construct did not 
prevent germinal center formation, although memory B-cell formation and Ig 
class switching were impaired (GRAY et al. 1994). The difference between these 
models lies in the fact that the anti-CD154 mAb may cross link CD154, besides 
blocking the CD40-CD154 interaction, and that it may in fact be this CD154 
cross linking that inhibits T cell activation and the release of soluble cytokines 
and thus thereby the signal necessary for germinal center formation (VAN 
ESSEN et al. 1995). However this may be, the CD40-CD154 pathway is central 
to many features associated with the B-cell immune response, as also evidenced 
by the severe immune perturbation in X-linked hyper IgM syndrome patients, 
who lack a functional CD40 molecule (ALLEN et al. 1993; CALLARD et al.1993) 
and as a consequence cannot switch their Ig genes. In vitro studies using 
purified follicular dendritic cells or a follicular dendritic-like cell line suggest 
that, besides their involvement in rescue from apoptosis, these cells are also 
important in the regulation of B-cell maturation (CHOE et al.1996, 1997; CLARK 
et al. 1995; KIM et al. 1995; LINDHOUT et al. 1994; GROUARD et al. 1995). 

I. The Initiation of the B-Cell Immune Response, 
Formation of Centroblasts 

Binding of antigen to the membrane Ig receptor results in B-cell activation. 
Some multivalent antigens that contain multiple identical epitopes can exten
sively cross link the Ig receptor and directly induce B-cell proliferation. These 
antigens are called thymus independent (TI). For the thymus dependent 



Fig. 3. Regulation of B-ceU maturation. Studies on purified B-cell subpopulations have 
identified the factors involved in the regulation of four subsequent steps in B-cell mat
uration during an immune response 

(TD) antigens, however, the induction of B-ceU proliferation and maturation 
requires co-stimulatory signals (help) provided by the T cell. The initial acti
vation of B cells therefore usually takes place in the T-cell areas of the lym
phoid tissues, where antigen is presented in the context of MHC molecules by 
dendritic cells to the T cell (MACLENNAN and GRAY 1986; TEW et a1. 1990; INABA 
and STEINMAN 1987; KING and KATZ 1989). Following their activation, T cells 
up regulate expression of the CD154 and CD54 cell surface molecules that 
interact with CD40 and CDlla/CD18 expressed on the B cell, resulting in B
cell activation (TOHMA et a1. 1991; NOELLE et a1. 1992; LANE et a1. 1992; 
LEDERMAN et a1. 1992b). In addition, T cells secrete B-cell stimulatory 
cytokines like IL-2, TL-4, and TL-10. These cytokines in combination with the 
antigenic stimulation and interaction of co-stimulatory cell surface molecules 
already mentioned drive B cells into cell cycle. In addition, triggering of CD40 
on the B cell induces CD23 and upregulates MHC class II expression, thereby 
generating an activated B-cell phenotype (DEFRANCO et a1. 1984; CAMBIER and 
CAMPBELL 1992; KLAUS et a1. 1987; NOELLE et a1. 1984). How a germinal center 
is formed from these activated B cells is still largely unclear. However, recently 
a possible role for migration inducing factors produced by FDC was proposed 
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(VAN DER VOORT et a1. 1997). Thus, FDC were found to produce the growth and 
motility factor hepatocyte growth factor/scatter factor. Its ligand c-met was 
found to be expressed on CD38+CD77+ centroblast phenotype B cells (VAN 
DER VOORT et a1. 1997). Another factor possibly involved in the regulation of 
B-cell migration to the germinal center is BCA-1, a CXC chemokine that 
is expressed in follicles and interacts with CXCR5 on the B cell (GUNN et a1. 
1998; LEGLER et a1. 1998). Recently, GAUBERT et a1. (1996b) studied the induc
tion of centroblast markers on nongerminal center, CD38 negative, tonsillar 
B cells. Stimulation of these B cells via CD40 and the Ig receptor was shown 
to induce expression of CD95, carboxy peptidase M, and CD38. In addition 
the cells became sensitive to apoptosis. CD38 expression could also be induced 
by IFNa or IFNy. However, the cells remained negative for CD10 and posi
tive for CD44, indicating that only a partial germinal center phenotype was 
generated. Moreover, the fact that these experiments were performed with 
CD38 negative cells, which comprise both naive IgD positive and memory IgD 
negative B cells, calls for caution in their interpretation. 

II. Differentiation of Centroblasts into Centrocytes 

As stated earlier, centroblasts are rapidly proliferating, apoptosis sensitive 
cells whose Ig V genes undergo somatic hypermutation (FEUlLLARD et a1. 1995; 
MANGENEY et a1. 1991; PASCUAL et a1. 1994; BurCHER et a1. 1982; KRAAL et al. 
1982). During this phase the few initially activated B cells are greatly 
expanded, while through somatic hypermutation a pool of related B cells with 
diversified Ig receptors is generated. These cells then differentiate into non
proliferating but still apoptosis sensitive centrocytes (LAGRESLE et a1.1993; Lru 
et a1. 1989; KREMMIDIOTIS and ZOLA 1995). Recently CHOE et al. (1997) showed 
that culturing centro blasts in the presence of CD154, an FDC like cell line, IL-
2, and IL-lO downregulated CD77 expression, which was further decreased 
by addition of anti-Ig, implicating these molecules in the regulation of cen
troblast to centrocyte differentiation. However, the same culture conditions 
resulted in up-regulation of CD44, which is not expressed on centrocytes but 
on further differentiated memory B cells. Therefore these molecules are not 
specifically involved in centrocyte formation but drive the entire differentia
tion route from centroblasts to memory cell. 

III. Differentiation of Centrocytes into Memory and Plasma Cells 

Centrocytes form the focal point in the germinal center reaction. The large 
majority of them die by apoptosis and only those cells whose mutated 19 recep
tor have a high affinity for the antigen are selected for further maturation. This 
selection process and the molecules involved in apoptosis regulation will be 
dealt with in Sect. E. Subsequently the selected B cells maturate further into 
either memory or plasma cells. In vitro studies indicate that CD40 also plays 
an important role in this phase of the B-celJ maturation. Thus, ARPIN et a1. 
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(1995) found that continuous stimulation of germinal center B cells via CD40 
in the presence of IL-4 and IL-10 resulted in the formation of memory phe
notype cells, while a two-phase culture system with initial activation via CD40 
plus IL-4 and IL-10 followed by culture with IL-4 and IL-lO in the absence of 
CD40 led to the formation of plasma cells. CASAMAYOR-PALLEJA et al. (1996) 
and LAGRESLE et al. (1995), however, found that triggering of CD40 induced 
only a partial memory phenotype and that instead addition of CD45RO+ 
T cells was required for downmodulation of, for instance, CD77 and 
CD23. Studies by CHOE et al. (1996) stressed the role of IL-10 in driving the 
differentiation of centrocytes into plasma cells. Triggering of CD21 on 
the B cell, via interaction with its counter receptor CD23, plus addition of 
IL-1a have also been shown to promote plasma cell formation (BJORCK et al. 
1993; Lm et al. 1991). Thus, in conclusion, despite mutual differences in these 
reports, T cells through expression of CD154 and secretion of cytokines 
are important in driving B-cell maturation in the germinal center. This 
point is further supported in studies (Kosco et al. 1988; Kosco 1991) which 
showed that in vitro proliferation of germinal center B cells isolated from 
immunized mice required help by autologous primed T cells. In a mixed 
culture system containing FDC, B cells, and T cells from immunized mice it 
was shown that antigen sequestered on the FDC is subsequently taken up by 
the B cells and presented by them to the T cells, which then provide B-cell 
help. 

CD154, the ligand of CD40, is expressed on activated CD4 T cells 
(ARMITAGE et al. 1992; LEDERMAN et al. 1992b). Importantly, preformed CD154 
was shown to be present in the cytoplasm of CD45RO memory T cells, and 
to be expressed on the cell surface within 5 min after TCR cross linking 
(CASAMAYOR-PALLEJA et al. 1995). Immunohistochemical studies have shown 
CD154 expressing T cells to be present in the T-cell area, where the immune 
response is started, and in the outer zone of the germinal center 
(CASAMAYOR-PALLEJA et al. 1995). The lack of CD154 expression in the light 
zone of the germinal center may indicate that triggering of CD40 only 
becomes important in the regulation of B-cell survival and maturation after 
an initial phase of B-cell selection in the germinal center light zone, thus at a 
point that the selected cells start migrating out of the germinal center. RT
PCR analysis of germinal center T cells, defined as CD57 expressing CD4 T 
cells, showed strong expression of IL-4 mRNA, while IL-2, IL-6, IL-10, TNFa, 
or IFN y mRNA was detected in the germinal center T cells of some tonsils 
only (BOWEN et al. 1991; BUTCH et al. 1993), stressing the importance of IL-4 
in the germinal center reaction. 

Another cell type, besides the T cell, that plays a central role in B-cell mat
uration is the follicular dendritic cell. As explained in Sect. B.II, FDC can bind 
antigen in its native form for long periods of time. Studies using anti-Ig as a 
surrogate for antigen have shown that cross linking of the Ig receptor on cen
trocytes mainly affects B-cell survival, while specific effects on centrocyte mat
uration have not been documented (Lm et al. 1989). However, anti-CD40 plus 
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cytokine induced germinal center B-cell proliferation and Ig production can 
be further enhanced by Ig receptor cross linking (LAGRESLE et al. 1993). 
Besides their function in the delivery of antigens to the B cell, FDC also have 
a more direct effect on B-cell maturation. Addition of purified FDC or an FDC 
cell line to anti-Ig or anti-CD40 stimulated B cells enhanced their prolifera
tion and in combination with IL-lO promoted plasma cell formation and Ig 
secretion (CHOE et al. 1996, 1997; CLARK et al. 1995; GROUARD et al. 1995; KIM 
ct al.I995). Using a trans well system this stimulatory effect by FDC was shown 
to involve soluble factors, while direct cell-cell contact also contributed to the 
proliferation stimulatory effect (KIM et al. 1995). The nature of these soluble 
factors is still unclear, especially because RT-PCR analysis on purified FDC 
has shown no expression of IL-la, IL-lj3, IL-2, IL-3, IL-4, IL-5, IL-6, IL-I0, 
TNFa, or IFNy(BUTcH et al. 1993). 

E. Regulation of B-Cell Survival 
In contrast to mature B cells and memory B cells, germinal center B cells spon
taneously undergo apoptosis upon in vitro culture (Lm et al. 1989). Germinal 
center B cells can be subdivided into centroblasts, which are rapidly prolifer
ating cells that initially form the germinal center and reside in the germinal 
center dark zone, and centrocytes that are nonproliferating and reside in the 
light zone (Lm et al. 1992; HARDIE et al. 1993). Importantly, while centroblasts 
have lost surface Ig expression the centrocytes are surface 19 positive and can 
therefore interact with antigen (LAGRESLE et al. 1993; KREMMIDIOTIS and ZOLA 
1995). The interaction between antigen and the Ig receptor is though to be the 
key determinant in the selection of these B cells. However, besides antigen 
other molecules have been described to affect germinal center B-cell survival. 
Antigen as well as these additional survival signals are delivered to the B cell 
via two cell types that are present in the germinal center - the follicular den
dritic cell and the T cell. 

I. Apoptosis Regulation by Antigen and Follicular Dendritic Cells 

The importance of antigen in apoptosis regulation can be inferred from in vitro 
studies where it was found that cross linking of the Ig receptor on purified 
germinal center B cells inhibited their entry into apoptosis (Lm et al. 1989). 
However, induction of apoptosis by excessive Ig cross linking in vitro as well 
as by injection of antigen in vivo shortly after initiation of an immune response 
has also been documented (GAUBERT et al. 1996a; HAN et al. 1995b; 
PULENDRAN et al. 1995; SHOKAT and GOODNOW 1995). Antigen induced 
apoptosis was found to be independent of CD95, as similar effects were seen 
in lpr mice, which do not express CD95 (SMITH et al. 1995). Importantly, 
excessive cross linking of Ig receptors did not induce apoptosis of mature B 
cells or memory B cells, indicating that only at the germinal center stage of 
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development are B cells sensitive to this effect (GAUBERT et al. 1996a). Thus, 
these studies indicate that the germinal center forms a site for both positive 
as well as negative selection and that only those B cells with an intermediate 
affinity for the antigen are selected for further maturation. 

FDC play an important role in bringing the germinal center B cells into 
contact with the antigen. FDC have been reported to express several Fc recep
tors (CD23, CDI6, and CD32) as well as complement receptors (CD35, CD21, 
CDllb) (GERDES et al. 1983; SCHRIEVER et al. 1989; PETRASCH et al. 1990) 
through which they can bind antigen-antibody complexes (TEW and MANDEL 
1979; KLAUS et al. 1980). Antigen on the FDC is either presented directly to 
the B cells, or in the form of iccosomes, which are released by the FDC 
(SZAKAL et aI.1988). The interaction between FDC and germinal center B cells 
and T cells is regulated by adhesion molecules (FREEDMAN et al. 1990; LOUIS 
et al. 1989; KOOPMAN et al. 1991; Kosco et al. 1992; RICE et al. 1991). FDC 
strongly express ICAM-l (CD54) and VCAM-l (CD106). Through these mol
ecules they can interact with LFA-l (CD11a/18) and VLA-4 (CD49d/CD29) 
on germinal center B cells. In vitro studies using purified FDC and germinal 
center B cells have shown that their interaction mainly involves the binding 
of LFA-l on the B cell to its counter receptor, ICAM-l, on the FDC (LOUIS 
et al.1989; KOOPMAN et al. 1991; Kosco et al. 1992). However, binding between 
VLA-4 on the B cell and VCAM-1 on the FDC also plays a role (FREEDMAN 
et al. 1990; KOOPMAN et a1.1991; Kosco et aI.1992). Binding of germinal center 
B cells to FDC inhibits their entry into apoptosis, while disruption of the 
FDc/B-cell binding by using mAb directed against these adhesion molecules 
promotes B-cell apoptosis (KIM et al. 1995; LINDHOUT et a1.1993, 1994). Besides 
the presentation of antigen, the adhesive interaction itself was also shown to 
contribute to inhibition of apoptosis (KOOPMAN et al. 1994). Thus, triggering of 
the adhesion receptors LFA-l and VLA-4 on the B cell, though binding to 
their ligands ICAM-l and VCAM-1 that were immobilized on plastic surfaces, 
prevented B-cell entry into apoptosis (KOOPMAN et al.1994). Importantly, anti
Ig stimulation and adhesion receptor triggering were found to act synergisti
cally. In vivo this synergy between signals delivered through antigen and 
adhesion receptors may be crucial for effective B-cell activation, as antigen 
levels in vivo might be too low to induce fully B-cell activation by itself. 
Indeed, similar to what has been described for the T cell, low levels of antigen 
may induce only a small initial activation that, however, may switch the LFA-
1 and VLA-4 receptors from an inactive into an active binding mode (DANG 
et al. 1990; DUSTIN and SPRINGER 1989; VAN KOOYK et al. 1989). Subsequent 
binding to their adhesive counter receptors will then provide additional stim
ulation leading to full cell activation (DRANSFIELD and HOGG 1989; KOOPMAN 
et al. 1992; VAN KOOYK et al. 1989; VAN NOESEL et al. 1988). In other cell cul
ture systems adhesion molecules have now also been implicated in apoptosis 
regulation. Thus binding of CHO cells via the integrin molecule CD4ge/CD29 
to fibronectin inhibited their entry into apoptosis under low serum culture con
ditions, and dexamethason or anti-CD3 induced apoptosis of a mouse T-cell 
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hybridoma was inhibited by binding via CD44 to hyaluronic acid (ZHANG 
et al. 1995; AYROLDI et al. 1995). 

II. Apoptosis Regulation by T Cells 

Several studies have shown that triggering of CD40 on germinal center B 
cells prevents their entry into apoptosis (ARPIN et al. 1995; LEDERMAN et al. 
1994; LENS et al. 1996b; LIU et al. 1989). As stated in Sect. D, CD154, the ligand 
of CD40, is found on T cells residing in the T-cell areas, where the B-cell 
immune response is initiated and in the outer zone of the germinal center 
(CASAMAYOR-PALLEJA et al.1995). Although hardly any information is available 
on the outer zone it was suggested to form a transitory compartment, where 
B cells are either driven back into the germinal center for another round 
of selection or differentiate further into memory or plasma cells and leave 
the germinal center (HARDIE et al. 1993; Lru et al. 1992). The role of CD40 
in apoptosis regulation in the germinal center may therefore be limited to 
this transition phase and linked to its function in the regulation of matura
tion of germinal center B cells (see Sect. D). Interestingly, part of the effect of 
CD40 on apoptosis inhibition may be mediated through adhesion molecules, 
as recently anti-CD40 mediated rescue from anti-IgM induced apoptosis 
in the B-cell line DND-39 was shown to be abolished by anti-LFA-1 and 
anti-ICAM-1 mAb (SUMIMOTO et al. 1994). Importantly, triggering of CD40 
has been shown to increase LFA-1 dependent cell adhesion (BARRETT et al. 
1991). 

CD95 is strongly expressed on germinal center B cells, while mature 
resting B cells are CD95 negative (GAUBERT et al. 1996b; LAGRESLE et al. 1995; 
MIYAWAKI et al. 1992; MOLLER et al. 1993). Expression of CD95 was shown to 
be induced on mature B cells by stimulation via CD40, while stimulation with 
anti-IgM did not upregulate CD95 expression (MOLLER et al. 1993; GARRONI' 
et al. 1995; LAGRI'SLE et al. 1995; ROTHSTEIN et al. 1995). These cells subse
quently became sensitive to anti-CD95 induced cell death (GARRONE et al. 
1995; LAGRESLE et al. 1995; ROTHSTEIN et al. 1995; NAKANISHI et al. 1996). 
Similar results have been reported using a Burkitt lymphoma cell line (LENS 
et al. 1996b). Thus, it seems that the initial CD40 mediated B-cell activation 
in the T-cell areas induces a state of CD95-dependent apoptosis sensitivity in 
their progeny, i.e., the germinal center B cells. However, purified germinal 
center B cells spontaneously die by apoptosis upon in vitro culture without 
additional triggering of the CD95 molecule (Lru et al. 1989). Conflicting data 
have been published regarding the effect of anti-CD95 on the level of germi
nal center B-cell apoptosis (CLEARY et al.1995; KOOPMAN et al.1997; LAGRESLI' 
et al. 1995; Lru et al. 1995). While CLEARY et al. (1995) found increased apop
tosis after lOh of culture, Lru et al. (1995) found that anti-CD95 increased the 
amount of apoptosis only after 4h of culture and not after 12h or 24h of 
culture, and LAGRESLE et al. (1995) found no change in apoptosis during a 2-12 
h culture period. We previously described no increase in apoptosis by addition 
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of anti-CD95 after 16 h or 48 h of culture (KOOPMAN et al. 1997). However, that 
anti-CD95 did have an effect on these cells was shown by the observation that 
using anti-CD95 in combination with anti-Ig or adhesion molecule mediated 
rescue signals did result in B-cell apoptosis, even when anti-Ig and adhesion 
molecules were used in combination (KOOPMAN et al. 1997). Thus although the 
CD95 molecule on germinal center B cells is functionally active, its involve
ment in the spontaneous apoptosis sensitivity of these B cells is still unclear. 
Indeed, lpr mice were shown to be able to generate a normal germinal center 
response following antigenic stimulation and memory B cells were formed that 
had gone through somatic hypermutation and selection (SMITH et al. 1995). 
However, studies in lpr mice have also shown CD95 to be required for elim
ination of auto-reactive B cells (RATHMELL et al. 1995). Possibly there are two 
phases in B-cell selection during a secondary immune response, i.e., (1) CD95-
independent apoptosis of centrocytes in the germinal center light zone and (2) 
CD95-dependent apoptosis at a later phase. Although at present it is unclear 
what other factors may regulate apoptosis of germinal center B cells, an inter
esting candidate might be TRAIL (APO-2 ligand), which induces apoptosis 
via binding to DR4 and DR5, while binding to the decoy receptor DcR1 
reduces apoptosis induction (JEREMIAS et al. 1998; PAN et al. 1997; SHERIDAN 
et al. 1997). 

Binding of germinal center B cells to FDC, which is known to prevent 
their entry into apoptosis, also prevented apoptosis of these cells in the pres
ence of anti-CD95 (KOOPMAN et al. 1997). In view of the results described 
above, this inhibition of CD95 mediated apoptosis could not be attributed to 
antigen presentation or adhesive interactions alone, and should involve other 
as yet unidentified factors. 

Conflicting data on apoptosis of germinal center B cells have been 
reported regarding the effect of combined triggering of CD40 and CD95 
(KOOPMAN et al. 1997; LAGRESLE et al. 1995; CLEARY et al. 1995). The outcome 
of these studies, apoptosis or survival, seems to be determined in part by the 
time course of the experiment. For instance, when germinal center cells 
were cultured in the presence of anti-CD40 plus anti-CD95, low amounts of 
apoptosis were found in a 10h experiment by CLEARY et al. (1995) and a 16h 
experiment performed by us (KOOPMAN et al. 1997), while high numbers of 
apoptotic cells were seen after 48h of culture (KOOPMAN et al. 1997; LAGRESLE 
et al. 1995). Thus, CD40 can only temporarily prevent CD95 mediated induc
tion of apoptosis. This transient nature of apoptosis inhibition conforms to 
the short time that B cells reside in the germinal center and the reported 
fast up-regUlation and down-regulation of CD154 expression on T cells 
(CASAMAYOR-PALLEJA et al. 1995; YELLIN et al. 1994). Both the CD40 mediated 
rescue signal and the CD95 mediated death signal could be delivered by T 
cells residing in the germinal center. However, while CD154 is expressed on 
T cells in the germinal center outer zone, expression of the ligand of CD95 
on germinal center T cells has so far not been described (CASAMAYOR-PALLEJA 
et al. 1995). 
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III. Triple Check Hypothesis of B-Cell Selection 

The amplification in magnitude and the increase in antigen binding affinity 
that occur during a B-cell immune response are potentially hazardous to the 
organism as they may amplify not only antigen specific responses but also reac
tions to the organism itself. The B-cell immune response is therefore under 
tight regulatory control. In a recent paper we proposed a triple check model 
where the appropriate reactivity of B cells to nonself molecules only is 
achieved by: (1) T~cell dependent stimulation by antigen specific T cells in the 
T-cell area during initiation of the immune response; (2) antigen dependent 
selection of B cells with mutated Ig genes in the germinal center light zone; 
and (3) T-cell dependent selection during the final stages of B-cell maturation 
(Fig. 4) (LINDHOUT et al. 1997). 

The germinal center reaction is a potentially dangerous event in the 
formation of a B-cell immune response as it generates high numbers of easily 
activated B cells that bear Ig receptors with a high antigen binding affinity. It 
is probable therefore that antigen recognition by a B cell is in itself not 
sufficient to drive a germinal center response and that help by antigen specific 
T cells is required. These helper T cells are activated in an MHC class II 
restricted manner by professional antigen presenting cells, thereby limiting the 
possibility of undesired reactions against for instance auto-antigens (Fig. 4). 
Subsequently the B cells that go through a germinal center reaction undergo 
somatic hypermutation in their IgV genes, thereby altering the specificity of 
their Ig receptors. As a consequence a second round of B-cell selection is nec
essary. We have proposed that this second round of selection not only involves 
recognition of antigen, that is presented by the FDC, but also additional help 
by antigen stimulated T cells. As discussed above, triggering of 19 receptors, 
CD40, adhesion receptors, and CD95 have all been implicated in the regula
tion of survival of germinal center B cells. Therefore, both FDC, that carry 
antigen and provide adhesive interactions, and T cells, that carry CD154 and 
potentially the CD95 ligand, seem to be involved. However, in the germinal 
center the FDC and CD154 positive T cells seem to reside in different com
partments, i.e., the light zone and outer zone respectively (CASAMAYOR-PALLEJA 

Fig.4. Triple check B-cell maturation model. The development of a B-cell immune 
response is under tight regulatory control. This model represents three separate phases 
where B cells are checked for their appropriate reactivity to the antigenic challenge. 
(1) During initial activation in the T-cell area antigen specific T cells stimulated by pro
fessional antigen presenting dendritic cells, provide help to antigen triggered B cells. 
(2) Within the light zone of the germinal center, B cells, that have mutated their Ig 
receptors, are selected on the basis of their antigen binding affinity. FDC provide both 
the antigen and co-stimulatory molecules. (3) Before leaving the germinal center, B 
cells undergo a final check in the outer zone, where T cells are encountered that can 
provide survival and differentiation signals via expression of CD154 that binds to CD40 
on the B cell or a death signal via expression of CD95 ligand that interacts with CD95 
on the B cell 
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et a1. 1995). We therefore think that there are two phases in the selection of 
germinal center B cells. First, B cells are selected by FDC on the basis of their 
antigen binding affinity (Fig. 4). In this phase B-cell selection is probably inde
pendent of the CD95 apoptosis pathway as germinal center formation and 
affinity maturation were found to be unperturbed in lpr mice (SMITH et a1. 
1995). Possibly, germinal center B cells harbor an active death program, which 
results in their spontaneous entry into apoptosis upon in vitro culture. Indeed, 
recently an NUC-18-like endonuclease activity was found to be present in 
nuclei that were extracted from germinal center B cells causing DNA 
fragmentation in the nuclei after incubation at 37 C (LINDHOUT et al. 1995). 
Importantly, it was found that, while triggering of CD40 could inhibit apopto
sis formation in whole germinal center B cells, it could not prevent the DNA 
fragmentation in subsequently purified nuclei. In contrast, interaction with 
FDC was found to reverse completely endonuclease activity in the nuclei 
(LINDHOUT et al. 1995). 

Notwithstanding their spontaneous entry into apoptosis, germinal center 
B cells are still sensitive to CD95 induced apoptosis (CLEARY et al. 1995; 
KOOPMAN et a1. 1997; LAGRESLE et al. 1995; LIU et al. 1995). Their fate may thus 
depend on the balance between CD40 mediated rescue and CD95 mediated 
death signals, which can both be provided by the T cell. We speculate that it 
is the specific recognition of antigen by these T cells, for instance, presented 
by the already activated B cells that are surrounding the T cells, that deter
mines whether rescue or death signals predominate. Indeed this would provide 
a second T cell, and therefore MHC restricted, check on the specificity of the 
via somatic hypermutation altered specificity of the B-cell Ig receptor. Impor
tantly, while CD95 is not required for germinal center formation, it does play 
a role in the elimination of self-reactive B cells (RATHMELL et al. 1995; 
TAKAHASHI et a1. 1994). Triggering of CD40 at this phase of the B-cell immune 
response may also be important because of its role in the differentiation of B 
cells into memory cells. 
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CHAPTER 18 

The Neuroprotective and Neuronal Rescue 
Effect of (-)-Deprenyl 

K. MAGYAR and B. SZENDE 

A. Summary 
(-)-Deprenyl treatment is able to increase the dopaminergic tone in the CNS 
by several mechanisms. It inhibits the normal metabolic degradation of 
dopamine and the metabolites formed from the drug reduce the uptake and 
promote the release of the transmitter. The age-related increase in MAO-B 
activity can also be blocked by (-)-deprenyl administration, which can 
decrease the resulting oxidative damage of the CNS. (-)-Deprenyl pre
treatment can inhibit the formation of toxins from pre-toxins and their 
selective uptake into the nerve endings. In small doses (-)-deprenyl is also 
effective in post-treatment schedules, having a neuronal rescue effect partly 
due to the inhibition of apoptosis of the neurones by the drug. (-)-Deprenyl 
is still the most widely used MAO inhibitor in the treatment of Parkinson's 
disease (PD). It is administered alone or in combination with levodopa. The 
treatment can postpone the need for levodopa or potentiate its effect. 
The usage of (-)-deprenyl treatment in Alzheimer's disease (AD) is less fre
quent than in PD, but some results indicate a mild improvement in cognitive 
functions of the patients with AD. 

B. Introduction 
Deprenyl (phenyl-isopropyl-methyl-propargylamine) was synthesized in 1962 
by Ecsery in the Chinoin Pharmaceutical Works, Hungary (PARNHAM 1993). 
The first paper regarding its pharmacological activity was published by KNOLL 
et al. (1965). Deprenyl and especially its (-)-optical isomer (selegiline) is a 
selective irreversible inhibitor of monoamine oxidase type B (MAO-B) 
(MAGYAR et al. 1967; KNOLL and MAGYAR 1972). Like most of the MAO 
inhibitors, it was developed as an antidepressant, but in a selective dose, 
needed to induce MAO-B inhibition, (-)-deprenyJ does not provide any anti
depressive activity (SANDLER 1981; MAGYAR 1993). As a selective irreversible 
inhibitor of MAO-B it is free from the "cheese reaction," which was frequently 
reported after the administration of MAO-A blockers to patients who had 
consumed foods rich in indirectly acting sympathomimetic amines, e.g., tyra
mine (YOUDIM and FINBERG 1987; PALFREYMAN et al. 1988; JARROTT and VAJDA 
1987). 
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(-)-Deprenyl has been used in the treatment in Parkinson's disease alone 
or in combination with levodopa, as a putative neuroprotective agent. Its 
mechanism of action is rather complex. It seems probable that the antioxidant 
and dopamine sparing activity, as well as the neuroprotective and neuronal 
rescue effect of the drug, cannot be explained solely by its irreversible enzyme 
inhibitory action (MAGYAR et aI.1996). Studies on laboratory animals indicated 
that (-)-deprenyl can protect dopaminergic neurones by a mechanism inde
pendent of MAO-B inhibition (TATTON et a1. 1997). 

C. Clinical Benefits of (-)-Deprenyl Treatment 
(-)-Deprenyl combined with levodopa was first used for the treatment of PD 
in 1977 (BIRKMAYER et a1. 1977). Birkmayer and his co-workers were also the 
first who reported on the basis of a retrospective study the neuroprotective 
effect of the combined (-)-deprenyl treatment in patients with advanced PD 
(1985). Morc recently, TETRUD and LANGSTON (1989) carried out a prospective 
double blind study on a small number of early Parkinsonians, comparing (-)
deprenyl with placebo. Their conclusion, drawn from these studies after a 
month wash-out period, was that (-)-deprenyl treatment delayed the need for 
levodopa therapy and apparently slowed down disease progression. The 
largest, and one of the most reliable, multicenter trials, analyzing the clinical 
benefits of (-)-deprenyl treatment in 800 patients, is known as the DATATOP 
study (deprenyl and tocopherol antioxidative therapy of Parkinsonism). It was 
a prospective, randomized, placebo controlled, double-blind trial, in which 
(-)-deprenyl monotherapy was analyzed in patients with early PD. The effects 
of (-)-deprenyl (10mg/day), tocopherol (vitamin E; 2000IU/day), and (-)
deprenyl plus tocopherol were compared with placebo in the mild form of PD. 
The end point of the trial was when the level of the disability of the patients 
required the introduction of levodopa therapy. In accordance with the former 
studies this trial has also proved that (-)-deprenyl delayed the development 
of disabilities necessitating levodopa therapy (PARKINSON STUDY GROUP 
1989a,b, 1993). In addition to the neuroprotective effect, (-)-deprenyl treat
ment has a significant symptomatic activity due to its dopamine sparing effect, 
i.e., the inhibition of dopamine metabolism and uptake (OLANOW 1996). Con
cerning uptake inhibition, the metabolites of (-)-deprenyl (amphetamine and 
methylamphetamine) are especially effective (TEKES et a1. 1988; MAGYAR 1994; 
MAGYAR et a1. 1996). The metabolites, in spite of being (-)-isomers, can also 
elicit some release of dopamine. The rise of phenylethylamine (PEA) con
centration in the central nervous system may also play a role in dopamine 
potentiation, because a high level of PEA, due to (-)-deprenyl treatment, can 
enhance dopaminergic activity (OLANOW and CALNE 1991). Nevertheless, 
findings experienced after a suitably long drug withdrawal at the end of the 
study support the view that (-)-deprenyl treatment can slow down disease pro
gression. When (-)-deprenyl was administered in a combined therapy, it led 



The Neuroprotective and Neuronal Rescue Effect of (-)-Deprenyl 459 

to the reduction of the dose of levodopa and a decrease in response fluctua
tions due to levodopa treatment (on-off, end of the dose dyskinesia) (WESSEL 
1993). 

D. Effect of (-)-Deprenyl Against Oxidative Stress 
(-)-Deprenyl treatment might protect neurones from oxidative damage and 
death by reducing the production of H20 2 due to the inhibition of the normal 
metabolism of dopamine by MAO-B (COHEN and SPINA 1989; OLANOW 1990). 
It is well known that in the presence of Fe++ ion, H20 2 can be converted to 
hydroxyl radicals (·OH) and hydroxyl ions (OH-). Reactive species, such as 
.02- and 'OH, can induce lipid peroxidation of the membrane and thereby may 
cause neuronal rupture and death (SIMONIAN and COYLE 1996). Studies on 
platelet MAO-B activity have shown that an age-dependent increase can be 
observed in the enzyme activity. It was also demonstrated that platelet MAO
B activity is higher in some neurodegenerative diseases, like PD and demen
tia of the Alzheimer type. The inhibition of the overproduction of H20 2 after 
a certain age or in neurodegenerative diseases might lead to neuroprotection 
(STROLIN-BENEDETTJ and DOSTERT 1989; BERRY et al. 1994). 

Some authors have shown that deprenyl in a concentration lower than 
needed to inhibit MAO-B can decrease the damage due to oxidative shock 
(Wu et al. 1993, 1994; CHIUEH et al. 1994). This protection could be due to the 
increase of scavenger mechanisms. Long term treatment with (-)-deprenyl can 
enhance the synthesis of Cu/Zn dependent superoxide dismutase (SODl) and 
Mn dependent superoxide dismutase (SOD2) or catalase (CARRILLO et al. 
1991, 1992, 1993; KNOLL 1988) in some experimental animals. The increased 
scavenger activity might also protect neurons from oxidative damage. It has 
been reported that (-)-deprenyl treatment increased the life span of labora
tory animals, rats, and mice (MILGRAM et al. 1990; YEN and KNOLL 1992; KITANI 
et al. 1993; FREIS LEBEN et al. 1994; KNOLL et al. 1994), but contradictory data 
were also published (GALLAGHER et al. 1998). A recent clinical trial of (-)
deprenyl found an increased mortality at five years after treatment (LEES 
1995). The methods of this study were seriously criticized by the authors of 
other clinical trials who found a decrease in mortality in Parkinsonian patients 
after (-)-deprenyl treatment (GERLACH et al. 1996; JELLINGER 1996; 
MAKI-IKOLA et al. 1996; OLANOW et al. 1996). 

E. Selegiline Induced Neuroprotection Against 
Toxic Insults 

The mechanism of neuroprotection was examined by using chemicals as selec
tive toxins in animal experiments. A selective injury can be documented in 
nerves that inactivate their natural transmitter by means of a membrane
bound, high-affinity, energy- and sodium-dependent monoamine transporter. 
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Structural analogues of the transmitters among these toxins can be taken up 
by the same carrier transport (BAUMGARTEN and ZIMMERMANN 1992). Selective 
toxins for the dopaminergic, noradrenergic, serotonergic, and cholinergic 
nerves are available which can degenerate these nerve endings. 

It has become apparent in recent years that (-)-deprenyl pre-treatment 
can protect neurones from a variety of toxins, which induce neurodegen
eration. The neuroprotective effect of (-)-deprenyl against MPTP (1-
methyl-4-phenyl-l,2,3,6-tetrahydropyridinc) (LANGSTON et al. 1983, 1984), 6-
hydroxydopamine (KNOLL 1987), and DSP-4 [N-(2-chloroethyl)-N-ethyl-
2-bromobenzylamine] has been widely demonstrated (Ross and RENYI 1976). 
Similar protection due to (-)-deprenyl pre-treatment was shown against a 
central cholinergic neurotoxin, AF64A (methyl-j3-acetoxyethyl-2-chloroethy
lamine) (RICCI et al. 1992). 

The mechanism of MPTP toxicity was excellently reviewed by GLOVER et 
al. (1986). The substance is a preferential substrate for MAO-B (SALACH et al. 
1984), as its oxidation is highly sensitive to inhibition by (-)-deprenyl. It 
inhibits MPTP oxidation to the toxic metabolite MPP+ (1-methyl-4-phenylpiri
dine), which is actively taken up by the dopaminergic nerve terminals via the 
DA re-uptake processes (JAVITCH et al. 1985). Since the formation of the neu
rotoxin MPP+ from MPTP is MAO-B dependent, all the selective inhibitors of 
MAO-B can potentially prevent MPTP-induced neurodegeneration in vivo. 

Inhibitors of DA uptake, like desipramine (DMI) and mazindol, are also 
capable of preventing MPTP-induced neurodegeneration. Since (-)-deprenyl 
- and mainly its metabolites (amphetamine and methylamphetamine) - are 
potent inhibitors of DA uptake (Tablel), all of them playa considerable role 
in the prevention of MPTP-induced neurotoxicity by inhibiting the re-uptake 
process (HARSING et al. 1979; MAGYAR 1991). The toxicity induced by MPTP, 
which is still the best primate model of Parkinsonian syndrome, is a two-step 
process (Fig. 1). 

The 6-hydroxydopamine (6-0H-DA) treatment induces nigro-striatal 
degeneration which can also be prevented by pre-treatment with (-)-deprenyl 
(KNOLL 1988). The mechanism underlying the neural degeneration depends 
on the formation of 6-hydroxyquinone from 6-0H-DA, this step being fol-

Tablel. The effect of deprenyl, methyl amphetamine (MA), on the synaptosomal 
uptake in vitro in rats 

Compounds 

(-)-deprenyl 
(+ )-deprenyl 
(-)-MA 
(+)-MA 

IC50 in molll" 

NA Hypothalamus 

5.1 X 10-5 

1.7 X 10-5 

3.5 X 10-6 

3.5 X 10-7 

aMethod: SNYDER and COYLE (1969). 

DA Striatum 

1.0 X 10-4 

2.4 X 10-5 

4.2 x 10-5 

6.0 X 10-7 

5-HT Hippocampus 

5.0 X 10-3 

3.6 x 10-2 

>1.0 X 10 2 

1.9 X 10 2 
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1. Transformation of pretoxins to toxins 

MAO-B 
MPTP • 

uptUkel dopanlloennc MPP+ • AhA 
neurone 

2. Selective uptake of the toxins 

uptakel noradrenergjc 
DSP-4 • neurone 

Fig.1. Models of the neurotoxic mechanisms 

lowed by an uptake into the dopaminergic nerve endings. 6-Hydroxyquinone 
initiates neural degeneration due to the generation of free radicals. The inhi
bition of MAO-B by (-)-deprenyl cannot play a significant role in the pre
vention of neurotoxicity, caused by this toxin (BERRY et al. 1994). (-)-Deprenyl 
is a weak inhibitor of noradrenaline (NA) and DA uptake. Nevertheless, the 
uptake inhibition elicited by the inhibitor, and mainly by the metabolites, can 
contribute to the protective effect of the drug, e.g., the inhibition of re-uptake 
appears to be the most probable effective mechanism against 6-0H-DA 
induced toxicity. 

DSP-4, originally described by Ross and RENYI (1976), is a beta-haloethy
lamine derivative of benzyl amine which interacts with the presynaptic com
ponents of the adrenergic synapse with a one-step process (Fig. 1). The toxin 
is an alkylating agent that forms covalent bonds with electrophilic centers on 
its site of action and exerts irreversible effects. The recovery from the irre
versible effect of DSP-4 is based on the synthesis of a new transport protein. 
The irreversible damage of the presynaptic nerve endings caused by DSP-4 
can be blocked by the coadministration of uptake inhibitors, such as DMI. The 
selectivity of the compound to the noradrenergic synapse is based on the selec
tive uptake into the noradrenergic nerve endings. The protection mechanism 
also requires a functional transporter system which can be competitively and 
reversibly inhibited by the protective agent. 

(-)-Deprenyl, but not the MDL 72974/A, another potent selective MAO 
inhibitor, was capable of preventing depletion of NA in the mouse hip
pocampus induced by DSP-4 (FINNEGAN et al. 1990). We reported as early as 
1972 that deprenyl and its optical isomers inhibit 3H-NA uptake into cerebral 
cortex slices of mice (KNOLL and MAGYAR 1972) and in the synaptosomal frac
tion of the rat brain (TEKES et al. 1988). Recent experiments revealed that not 
only the parent compound but also it metabolites are responsible for the inhi
bition of the synaptosomal uptake of NA and DA (MAGYAR 1994). Neither 
(-)-deprenyl nor its metabolites inhibit the synaptosomal uptake of serotonin. 
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SKF-525 A pre-treatment decreased the protective effect of (-)-deprenyl 
against the DSP-4 induced NA depletion, while the SKF-525 A treatment in 
itself, did not influence NA level of the hippocampus (MAGYAR et al. 1996; 
MAGYAR 1997). From these data it can be concluded that the inhibition of the 
metabolism of (-)-deprenyl decreases the protective capacity of the inhibitor 
against DSP-4. When (-)-deprenyl was administered in a dose of O.5-1mg/kg 
orally, it induced a marked degree of protection against DSP-4 toxicity 
(MAGYAR et al. 1996), comparable to that caused by 10mg/kg of (-)-deprenyl 
given intraperitoneally (FINNEGAN et al. 1990). This finding might be due to 
the intensive ("first pass") metabolism of (-)-deprenyl, occurring after oral 
administration. 

Although it is widely accepted that the inhibition of the carrier mediated 
re-uptake process of NA plays an essential role in the prevention of DSP-4 
induced neurotoxicity, some contradictory data are also cumulating in the lit
erature (BERRY et al. 1994). GIBSON (1987) reported that clorgyline, which 
has similar inhibitory properties to (-)-deprenyl on NA re-uptake, does not 
protect against DSP-4 toxicity. It has also been published that some relatively 
short chain aliphatic compounds, such as N-2-hexyl-N-methyl-propargylamine 
(2-HxMP), are potent selective inhibitors of MAO-B, with the lack of uptake 
inhibitory potency, and able to protect DSP-4 toxicity (Yu et al. 1994). It is 
apparent that the toxicity induced by DSP-4 is more complex than had been 
thought, but the role of the uptake inhibition in the protection cannot be ruled 
out. 

Exogenous neurotoxins are good models to elicit selective neurodegen
eration, but an endogenous neurotoxin which could be responsible for a 
common neurodegenerative disease, like PD or AD, has not been found yet 
in spite of extensive studies. 

In addition to the neuroprotective activity, (-)-deprenyl is also effective 
in post-treatment schedule in small doses. It elicits neuronal rescue effects in 
a dose too low to inhibit MOA-B activity. 

F. Apoptosis in Neurodegenerative Diseases 
Apoptosis or programmed active cell death is a basic feature of ontogenesis 
and also occurs in adult tissues such as bone marrow, intestinal mucosa, 
thymus, skin, etc. (WYLLIE et al. 1986). A series of physiological signals and also 
damaging agents (viruses, toxins, ionizing radiation, etc.) can induce or stimu
late apoptosis. Apoptosis has been thought to occur in cells which have entered 
either the G 1 or G2 phase. Neurons in the adult central nervous system do not 
undergo renewal. In spite of this, increasing evidence shows that neuronal 
apoptosis can result from a wide range of insults like trophic insufficiency, exci
tatory amino acids, metamphetamine, and others (TATTON and CHALMERS
REDMAN 1996). Apoptosis can be identified in neuronal cells, in culture, or in 
tissue by demonstration of nuclear and cytoplasmic shrinkage (fluorescent dye 
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methods; flow cytometry) and by showing cleavage of nuclear DNA (poly
acrylamide gel-electrophoresis to identify the "ladder" pattern of oligonucle
osomal DNA fragmentation; terminal deoxynucleotidyl-transferase-mediated 
dUTP-x nick-end labeling, also called the TUNEL method). 

Apoptosis contributes to neuronal loss in human neurodegenerative dis
eases, such as PD, AD, and amyotrophic lateral sclerosis (ALS). ANGLADE et 
al. (1995) reported apoptotic cell death of nigral dopaminergic neurons in PD. 
COTMAN and ANDERSON (1995) suggested a potential role for apoptosis in neu
rodegeneration and AD. Su et al. (1994) produced immunohistochemical evi
dence of apoptosis in AD. This finding correlates with the DNA damage and 
apoptosis described by ANDERSON et al. (1996), who also showed co
localization of apoptosis with c-Jun, using immunohistochemistry. 

LASSMANN et al. (1995) evaluated apoptotic cell death in AD by in situ 
end-labeling of fragmented DNA. The same was done by DRAGUNOW et al. 
(1995) in AD temporal lobes and Huntington's disease striatum. YOSHIYAMA 
et al. (1994) found that apoptosis-related antigen Le (Y) and nick-end label
ing are positive in spinal motor neurons in amyotrophic lateral sclerosis. More
over, according to the work of MULLER et al. (1992), the AIDS protein gp120 
of HIV-1 induces apoptosis in rat cortical cell cultures. 

G. Effect of Deprenyl on Neuronal Apoptosis 
The pharmacological effects of (-)-deprenyl are numerous and varied in their 
nature and the neuroprotective as well as neuronal rescue effect cannot be 
explained solely by the MAO-B inhibitory action of this compound. 

A series of both in vitro and in vivo studies has shown that (-)-deprenyl 
can reduce neuronal apoptosis caused by a variety of agents, without inhibit
ing MAO-B. 

The first data on the anti-apoptotic effect of (-)-deprenyl was published 
by TATTON et al. (1994a), who used serum and nerve growth factor withdrawal 
to induce apoptosis in cultured PC12 human pheochromocytoma cells. (-)
Deprenyl reduced both cell death and internucleosomal DNA degradation in 
a concentration-dependent manner and was effective at concentrations below 
1O-9 molil. These concentrations are too low to inhibit MAO-B, and a mode of 
action other than MAO-B inhibition should be implied regarding the anti
apoptotic effect of (-)-deprenyl. 

At the same time, (+ )-deprenyl did not increase survival of PC12 cells after 
serum and nerve growth factor withdrawal, neither did other MAO-B 
inhibitors. The apoptosis-reducing effect of (-)-deprenyl could be suspended 
by addition of cycloheximide or actinomycin D, i.e., transcriptional or transla
tional inhibitors of protein synthesis, pointing to the fact that new protein syn
thesis was required for the above-mentioned action of (-)-deprenyl. 

Regarding apoptosis induced by serum deprivation of PC12 cells, 
LINDENBOIM et al. (1995) reported that cells from all phases of the cell cycle 



464 K. MAGYAR and B. SZENDE 

are damaged upon serum deprivation and the apoptotic cell death of non-syn
chronized PCl2 cells may occur from each phase of the cell cycle. This finding 
also points to the possibility that the apoptosis-preventing action of (-)
deprenyl is also cell cycle independent. 

Decrease or complete loss of trophic support induces apoptotic death of 
most types of cells, and thus also of nerve cells. Crush or transection of nerves 
represent a fairly single model to induce neuronal apoptosis caused by depri
vation of target-derived trophic support. 

The studies of ANSARI et al. (1993a), Ju et al. (1994), SALO and TATTON 
(1992), and OH et al. (1993) revealed that (-)-deprenyl reduces the death of 
facial motoneurons of immature as well as adult rats, caused by axotomy. 
TATTON et al. (1994b) made the statement that reduction of nerve cell death 
by (-)-deprenyl occurs without monoamine oxidase inhibition. 

According to Buys et al. (1995), retinal ganglion cells which die by apop
tosis after damage to their axons caused by optic nerve crush can be at least 
partially rescued by administration of (-)-deprenyl, in vivo. The increased sur
vival of retinal ganglion cells is possibly caused through a transcriptionally
dependent blockade of apoptosis. 

The protective effects of (-)-deprenyl were examined by NAOI et al. (1998) 
on apoptotic DNA damage induced by an endogenous neurotoxin in human 
dopaminergic neuroblastoma (SH-SY5Y) cells. The DNA damage was quan
titatively measured by a single cell electrophoresis (COMET) assay. Pretreat
ment of the cells with (-)-deprenyl protected the cells from apoptosis, and the 
effects could be detected even after the washing out of (-)-deprenyl, suggest
ing that the intracellular process, such as synthesis of anti-oxidative proteins, 
may be induced by (-)-deprenyl. 

The anti-apoptotic effect of (-)-deprenyl has been investigated by our 
group (MAGYAR et al. 1996, 1998a,b; SZENDE and MAGYAR 1998) using two 
human melanoma cell lines (M-l and A-2058). Melanocytes are of neuroec
todermal origin like pheochromocytomas, and therefore the neuronal rescue 
exerted by (-)-deprenyl was assumed. According to the in vitro studies per
formed on melanoma cells, serum deprivation for five days resulted in an 
excessive number of apoptotic cells of the cell cultures. Apoptosis was verified 
by morphology of the cells, as well as by flow cytometry and by TUNEL assay. 
Very low doses - similar to those applied by TATTON et al. (1994a) in the case 
of PC12 cells - of (-)-deprenyl (10-7 molll to 10-13 molll) caused an approxi
mately two-day delay in the onset of apoptosis. At the same time, (+ )-deprenyl 
was ineffective (Figs. 2 and 3). This latter finding is also in accordance with the 
results of TATTON et al. (1994a) obtained on PC12 cells. 

In further experiments, (-)-deprenyl was administered in higher doses 
(10-2 molll to 10-4 molll) to A-2058 melanoma and HT-1080 fibrosarcoma cells 
in culture. In these experiments no serum deprivation was applied and the 
treatment was started 2h after plating. Total eradication of the A-2058 
melanoma cells was caused by 10-2 molll (-)-deprenyl. The type of cell death 
proved to be apoptosis. Subsequently 10-3 molll (-)-deprenyl resulted in 50% 
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Fig. 3. The effect of (+ )-deprenyl on apoptosis of Ml cell cultures. Apoptotic index 
apoptotic cells in % compared to control 

apoptosis 72 h after treatment. It should be mentioned that TArTON et al. 
(1994a) also found significant increase of apoptotic cell death of PC12 celis 
when (-)-deprenyl was applied at 10-3 molll in MEM. 

In the case of HT-1080 fibrosarcoma celis, 10-3 molll and 10-4 molll 
(-)-deprenyl also caused apoptotic cell death in a dose-dependent manner. 
However, 10-2 molll (-)-deprenyl administration resulted in non-apoptotic, so-
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called cytoplasmic, vacuolar, non-lysosomal active cell death (CLARKE 1990) 
24 h, 48 hand 72 h after (-)-deprenyl administration. These results indicate that 
(-)-deprenyl may influence apoptosis and other types of cell death in a dose
dependent manner. 

Most of the experimental work on the anti-apoptotic action of (-)
deprenyl has been carried out using cells of neuronal origin. FANG et al. (1995) 
investigated the effect of (-)-deprenyl in a non-neuronal cell model, namely 
apoptosis of mouse thymocytes induced by dexamethasone. (-)-Deprenyl did 
not exhibit any detectable protective effect on the thymocytes from apopto
sis. This important finding shows that (-)-deprenyl can selectively prevent 
apoptosis depending on cell types and the mechanism of apoptosis which may 
also depend on cell type. It is important that an anti-apoptotic agent that 
blocks neurodegeneration should not disturb programmed cell death in other 
tissues essential for maintaining normal physiology. 

H. Possible Mode of Action of (-)-Deprenyl 
on Apoptosis 

The fact that (-)-deprenyl can increase neuronal survival without inhibiting 
MAO-B leads to the conclusion that this compound or one of its metabolites 
interrupts a still unrecognized process that leads to the death of cate
cholaminergic neurons (TATTON and CHALMERS-REDMAN 1996). 

One of the main metabolites of (-)-deprenyl is (-)-desmethyl-deprenyl. 
This compound has been reported to reduce neuronal cell death by TATTON 
and CHALMERS-REDMAN (1996) and recently by NAOI et al. (1998) using the 
endogenous neurotoxin model. On the other hand, in the serum-deprived 
melanoma cell model SZENDE and MAGYAR (1998) did not find any protective 
effect of (-)-desmethyl-deprenyl. Moreover, in high doses (-)-desmethyl
deprenyl caused apoptotic cell death of both melanoma and fibrosarcoma cell 
cultures. 

In vivo, 20mg/kg daily subcutaneous treatment of A-2058 human 
melanoma xenografts growing in immune-deprived mice with (-)-desmethyl
deprenyl resulted in a significant growth-retardation of the melanoma. 

In their earlier studies, Tatton's group also found that (-)-deprenyl and 
not its major metabolites, rescued axotomized immature facial motoneurons 
(ANSARI et al. 1993b). Recently TATTON and CHALMERS-REDMAN (1996) 
claimed that the way of administration (oral or subcutaneous) may influence 
the metabolism of (-)-deprenyl, i.e., subcutaneously administered (-)
deprenyl is converted into (-)-desmethyl-deprenyl in higher amounts. 

With the accumulating data on the mechanism of apoptosis, a number 
of genes have been shown to be involved in the promotion or inhibition of 
apoptosis. 

The early events in apoptosis are controlled by the BAX/BCL family, 
which are positioned in the nucleus, endoplasmic reticulum, but mainly in the 
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mitochondrial membranes. Among these genes Ech, BclxL are anti-apoptotic 
and Bax as well as Bclx3 have pro-apoptotic properties (OLTVAI and KORSMEYER 
1994). Similarly, the interleukin-converting enzyme family (ICE) has pro
apoptotic (ICH-1 L) and anti-apoptotic (ICH-1s) members (TAKAHASHI and 
EARNSHAW 1996). It has also been shown that c-Jun when overexpressed, 
increases neuronal apoptosis and antisense oligonucleotides against c-Jun 
reduced neuronal apoptosis (SCHLINGENSIEPEN et al. 1994; HAM et al. 1995). 

The recent comprehensive studies of TATTON and CHALMERS-REDMAN 
(1996) provided evidence that mitochondria contribute to the initiation of 
neuronal apoptosis. When the permeability transition pore of the mitochon
drial membrane is opened, molecules like Bclxs and ICH-IL' and also holocy
to chrome c can escape the mitochondria and initiate apoptosis. 

Decrease in mitochondrial membrane potential is also a very early event 
of apoptosis in neurodegenerative models. It has also been shown by TATTON 
and CHALMERS-REDMAN (1996) and TATTON (1998) that (-)-deprenyl as well as 
(-)-desmethyl-deprenyl modifies apoptosis through a mitochondrial mecha
nism. (-)-Deprenyl alters the expression of genes that influence cell viability 
mainly by its capacity of maintaining mitochondrial membrane potential. The 
maintenance of mitochondrial membrane potential is at least partially caused 
by the increase in Bcl2 and BclxL' The increased activity of these two genes, as 
well as decreased Bax synthesis, can be achieved by the administration of 
(-)-deprenyl. Furthermore, Wu et al. (1993) showed the antioxidant effect of 
(-)-deprenyl on hydroxyl radical formation, in concentrations too low to 
inhibit MAO-B, indicating that (-)-deprenyl might act as a hydroxyl radical 
scavenger. This finding is important because reduction in apoptosis induced by 
Bcl2 overexpression is associated with decrease in oxidative radical levels and 
reduced peroxidation of membrane lipids (HOCKENBERY et al. 1993). 

The ongoing studies may elucidate more details with respect to the action 
of (-)-deprenyl and its metabolites on the apoptotic cascade, first of all in rela
tion to caspase activity. 
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