

C7718_fm.indd iiC7718_fm.indd ii 15/03/11 7:13 PM15/03/11 7:13 PM

This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

www.cengage.com/highered

PROGRAMMING WITH

MICROSOFT® VISUAL BASIC® 2010

C7718_fm.indd iC7718_fm.indd i 15/03/11 7:13 PM15/03/11 7:13 PM

This page intentionally left blank

PROGRAMMING

WITH MICROSOFT®

V ISUAL BAS IC® 2010

D I A N E Z A K

F I F T H E D I T I O N

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

C7718_fm.indd iiiC7718_fm.indd iii 15/03/11 7:13 PM15/03/11 7:13 PM

© 2012 Course Technology, Cengage Learning
ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be
reproduced, transmitted, stored or used in any form or by any means graphic, electronic,
or mechanical, including but not limited to photocopying, recording, scanning,
digitizing, taping, Web distribution, information networks, or information storage and
retrieval systems, except as permitted under Section 107 or 108 of the 1976 United
States Copyright Act, without the prior written permission of the publisher.

Library of Congress Control Number: 2011921828

ISBN-13: 978-1-111-52943-7
ISBN-10: 1-111-52943-4

Course Technology
20 Channel Center Street
Boston, MA 02210
USA

Some of the product names and company names used in this book have been
used for identifi cation purposes only and may be trademarks or registered
trademarks of their respective manufacturers and sellers.

Course Technology, a part of Cengage Learning, reserves the right to revise this
publication and make changes from time to time in its content without notice.

Example: Microsoft ® is a registered trademark of the Microsoft Corporation.

Cengage Learning is a leading provider of customized learning solutions
with offi ce locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local offi ce at:
www.cengage.com/global

Cengage Learning products are represented in Canada by
Nelson Education, Ltd.

To learn more about Course Technology, visit
www.cengage.com/coursetechnology

To learn more about Cengage Learning, visit www.cengage.com

Purchase any of our products at your local college store
or at our preferred online store www.cengagebrain.com

Programming with Microsoft® Visual Basic® 2010,
Fifth Edition
Diane Zak

Executive Editor: Marie Lee

Acquisitions Editor: Brandi Shailer

Freelance Product Manager: Tricia Coia

Associate Product Manager: Stephanie Lorenz

Marketing Manager: Shanna Shelton

Senior Content Project Manager: Jill Braiewa

Quality Assurance: Green Pen QA

Art Director: Faith Brosnan

Cover Designer: Cabbage Design Company

Text Designer: Shawn Girsberger

Print Buyer: Julio Esperas

Proofreader: Suzanne Huizenga

Indexer: Rich Carlson

Compositor: Integra Software Services

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

Printed in the United States of America
1 2 3 4 5 6 7 17 16 15 14 13 12 11

C7718_fm.indd ivC7718_fm.indd iv 15/03/11 7:13 PM15/03/11 7:13 PM

www.cengage.com/global
www.cengage.com/coursetechnology
www.cengage.com
www.cengagebrain.com

v

Brief Contents

 Preface . xvi i i

 Read This Before You Begin xxi i i

OVERVIEW An Introduct ion to Programming 1

CHAPTER 1 An Introduct ion to V isual Basic 2010 9

CHAPTER 2 Designing Appl icat ions 60

CHAPTER 3 Us ing Var iables and Constants 118

CHAPTER 4 The Select ion Structure 190

CHAPTER 5 More on the Select ion Structure 261

CHAPTER 6 The Repet i t ion Structure 327

CHAPTER 7 Sub and Funct ion Procedures 394

CHAPTER 8 Str ing Manipulat ion 446

CHAPTER 9 Arrays . 502

CHAPTER 10 Structures and Sequent ia l Access F i les 562

CHAPTER 11 C lasses and Objects 615

CHAPTER 12 Web Appl icat ions 681

CHAPTER 13 Work ing wi th Access Databases and L INQ 740

CHAPTER 14 Access Databases and SQL 796

C7718_fm.indd vC7718_fm.indd v 15/03/11 7:13 PM15/03/11 7:13 PM

vi

B R I E F C O N T E N T S

APPENDIX A Locat ing Syntax and Logic Errors 848

APPENDIX B GUI Design Guidel ines 858

APPENDIX C V isual Basic Convers ion Funct ions 863

APPENDIX D Appl icat ions wi th Mul t ip le Forms Online

 Index . 864

C7718_fm.indd viC7718_fm.indd vi 15/03/11 7:13 PM15/03/11 7:13 PM

vii

Contents

 Preface . xvi i i

 Read This Before You Begin xxi i i

OVERVIEW An Introduct ion to Programming 1

Programming a Computer . 2
The Programmer’s Job . 2
Do You Have What It Takes to Be a Programmer? 2
Employment Opportunities . 3

Visual Basic 2010 . 4
A Visual Basic 2010 Demonstration 4

Using the Chapters Effectively . 6
Summary . 7
Key Terms . 8

CHAPTER 1 An Introduct ion to V isual Basic 2010 9

LESSON A The Splash Screen Appl icat ion 11
Managing the Windows in the IDE 15
The Windows Form Designer Window 16
The Solution Explorer Window . 17
The Properties Window . 18

Properties of a Windows Form . 19
The Name Property . 20
The Text Property . 21
The StartPosition Property . 21
The Font Property . 21
The Size Property . 22

Setting and Restoring a Property’s Value 22
Saving a Solution . 23
Closing the Current Solution . 23
Opening an Existing Solution . 24
Exiting Visual Studio 2010 or Visual Basic 2010 Express 24
Lesson A Summary. 24
Lesson A Key Terms . 26
Lesson A Review Questions . 27
Lesson A Exercises . 28

LESSON B The Toolbox Window . . 31
The Label Tool . 32

Setting the Text Property . 34
Setting the Location Property . 34

C7718_fm.indd viiC7718_fm.indd vii 15/03/11 7:13 PM15/03/11 7:13 PM

viii

C O N T E N T S

Changing a Property for Multiple Controls 35
Using the Format Menu . 35
The PictureBox Tool . 36
The Button Tool . 38
Starting and Ending an Application 38
The Code Editor Window . 40

The Me.Close() Instruction. 42
Lesson B Summary . 44
Lesson B Key Terms . 45
Lesson B Review Questions . 46
Lesson B Exercises . 47

LESSON C Us ing the T imer Tool . 50
Setting the FormBorderStyle Property 52
The MinimizeBox, MaximizeBox, and ControlBox Properties 53
Printing the Application’s Code and Interface 54
Lesson C Summary . 55
Lesson C Key Terms . 56
Lesson C Review Questions . 56
Lesson C Exercises . 57

CHAPTER 2 Designing Appl icat ions 60

LESSON A Creat ing an Object -Or iented Appl icat ion 63
Planning an Object-Oriented Application 63

Identifying the Application’s Tasks 64
Identifying the Objects . 66
Identifying the Events . 67
Drawing a Sketch of the User Interface 69

Lesson A Summary. 71
Lesson A Key Terms . 72
Lesson A Review Questions . 72
Lesson A Exercises . 73

LESSON B Bui ld ing the User Inter face 75
Including Graphics in the User Interface 76
Selecting Fonts for the Interface 77
Adding Color to the Interface . 77
The BorderStyle and AutoSize Properties 78
Adding a Text Box Control to the Form 80

Locking the Controls on a Form . 80
Assigning Access Keys . 81
Controlling the Tab Order . 82
Lesson B Summary . 86
Lesson B Key Terms . 87
Lesson B Review Questions . 87
Lesson B Exercises . 88

LESSON C Coding the Appl icat ion. 90
Using Pseudocode to Plan a Procedure 91
Using a Flowchart to Plan a Procedure 92

C7718_fm.indd viiiC7718_fm.indd viii 15/03/11 7:13 PM15/03/11 7:13 PM

ix

Coding the btnClear Control’s Click Event Procedure 93
Assigning a Value to a Property During Run Time 94
Using the Focus Method . 96
Internally Documenting the Program Code 96

Writing Arithmetic Expressions . 98
Coding the Calculate Order Button. 100

The Val Function .102
The Format Function .103

Testing and Debugging the Application105
Assembling the Documentation .108
Lesson C Summary .109
Lesson C Key Terms .110
Lesson C Review Questions . .111
Lesson C Exercises .112

CHAPTER 3 Us ing Var iables and Constants 118

LESSON A Us ing Var iables to Store Informat ion 121
Selecting a Data Type for a Variable 122
Selecting a Name for a Variable 123
Declaring a Variable .124

Assigning Data to an Existing Variable125
The TryParse Method . .128
The Convert Class .130

The Scope and Lifetime of a Variable 131
Variables with Procedure Scope 132
Variables with Class Scope .134

Static Variables .136
Named Constants .138
Option Explicit, Option Infer, and Option Strict 141
Lesson A Summary. .144
Lesson A Key Terms .146
Lesson A Review Questions . .147
Lesson A Exercises .148

LESSON B Modi fy ing the Playt ime Cel lu lar Appl icat ion 152
Modifying the Calculate Order Button’s Code 153
Concatenating Strings .160
The InputBox Function .161
The ControlChars.NewLine Constant165
Designating a Default Button .166
Using the ToString Method to Format Numbers 167
Lesson B Summary .171
Lesson B Key Terms .171
Lesson B Review Questions . .172
Lesson B Exercises .174

LESSON C Modi fy ing the Load and Cl ick Event Procedures 178
Coding the TextChanged Event Procedure 181

Associating a Procedure with Different Objects and Events182

C7718_fm.indd ixC7718_fm.indd ix 15/03/11 7:13 PM15/03/11 7:13 PM

x

P R E FA C E

Lesson C Summary .185
Lesson C Key Terms .186
Lesson C Review Questions . .186
Lesson C Exercises .187

CHAPTER 4 The Select ion Structure 190

LESSON A Making Decis ions in a Program 192
Coding Single-Alternative and Dual-Alternative Selection Structures198
Comparison Operators .199

Using Comparison Operators: Swapping Numeric Values201
Using Comparison Operators: Displaying the Sum or Difference 204

Logical Operators .207
Using the Truth Tables .210
Using Logical Operators: Calculating Gross Pay211

Comparing Strings Containing Letters 213
Converting a String to Uppercase or Lowercase 215

Using the ToUpper and ToLower Methods: Displaying a Message 216
Comparing Boolean Values .219

Comparing Boolean Values: Determining Whether a String
Can Be Converted to a Number 219

Summary of Operators . .222
Lesson A Summary. .223
Lesson A Key Terms .223
Lesson A Review Questions . .225
Lesson A Exercises .227

LESSON B Creat ing the Month ly Payment Calcu lator Appl icat ion 231
Adding a Group Box to the Form231

Coding the Monthly Payment Calculator Application 233
Coding the btnCalc Control’s Click Event Procedure 234

Using the Financial.Pmt Method . .236
The MessageBox.Show Method .238
Lesson B Summary .243
Lesson B Key Terms .244
Lesson B Review Questions . .244
Lesson B Exercises .245

LESSON C Coding the KeyPress Event Procedures 248
Coding the Enter Event Procedures 251
Lesson C Summary .254
Lesson C Key Terms .254
Lesson C Review Questions . .255
Lesson C Exercises .256

CHAPTER 5 More on the Select ion Structure 261

LESSON A Nested Select ion Structures 264
The Voter Eligibility Application 265

Logic Errors in Selection Structures270
Using a Compound Condition Rather than a Nested
Selection Structure . .272
Reversing the Primary and Secondary Decisions 273
Using an Unnecessary Nested Selection Structure274

C O N T E N T S

C7718_fm.indd xC7718_fm.indd x 15/03/11 7:13 PM15/03/11 7:13 PM

xi

Multiple-Alternative Selection Structures 275
The Select Case Statement . .278

Specifying a Range of Values in a Case Clause 280
Lesson A Summary. .282
Lesson A Key Terms .283
Lesson A Review Questions . .283
Lesson A Exercises .286

LESSON B Creat ing the Math Pract ice Appl icat ion 290
Adding a Radio Button to the Form290
Adding a Check Box to the Interface292

Coding the Math Practice Application 294
Creating an Independent Sub Procedure 296

Generating Random Integers .298
Coding the Grade Radio Buttons’ Click Event Procedures 301
Coding the Operation Radio Buttons’ Click Event Procedures303
Coding the Form’s Load Event Procedure. 304
Lesson B Summary .306
Lesson B Key Terms .306
Lesson B Review Questions . .307
Lesson B Exercises .309

LESSON C Coding the Check Answer Button ’s Cl ick Event Procedure 312
Coding the Display Summary Check Box’s
Click Event Procedure .315
Lesson C Summary .319
Lesson C Key Term .319
Lesson C Review Questions . .320
Lesson C Exercises .320

CHAPTER 6 The Repet i t ion Structure 327

LESSON A Repeat ing Program Instruct ions 329
The Do . . . Loop Statement .333

Coding the Modified Quarter of a Million Club Application 336
Counters and Accumulators . .339

The Sales Express Company Application 340
Arithmetic Assignment Operators .347
The For . . . Next Statement .348

The Monthly Payment Calculator Application 351
Comparing the For . . . Next and Do . . . Loop Statements 354

Lesson A Summary. .355
Lesson A Key Terms .356
Lesson A Review Questions . .357
Lesson A Exercises .361

LESSON B Nested Repet i t ion Structures 365
The Refresh and Sleep Methods . .366
Revisiting the Monthly Payment Calculator Application367
Lesson B Summary .371
Lesson B Key Terms .371
Lesson B Review Questions . .371
Lesson B Exercises .372

C7718_fm.indd xiC7718_fm.indd xi 15/03/11 7:13 PM15/03/11 7:13 PM

xii

P R E FA C E

LESSON C Creat ing the Shoppers Haven Appl icat ion 374
Including a List Box in an Interface 375

Adding Items to a List Box .375
The Sorted Property .376

Coding the Shoppers Haven Application 377
The SelectedItem and SelectedIndex Properties379
The SelectedValueChanged and SelectedIndexChanged Events 381
Coding the btnCalc Control’s Click Event Procedure 381

Lesson C Summary .384
Lesson C Key Terms .385
Lesson C Review Questions . .385
Lesson C Exercises .386

CHAPTER 7 Sub and Funct ion Procedures 394

LESSON A More About Sub Procedures 396
Passing Variables .397

Passing Variables by Value .397
Passing Variables by Reference 400

Function Procedures .405
Lesson A Summary. .409
Lesson A Key Terms .410
Lesson A Review Questions . .410
Lesson A Exercises .414

LESSON B Inc luding a Combo Box in an Inter face 419
Lesson B Summary .423
Lesson B Key Terms .424
Lesson B Review Questions . .424
Lesson B Exercises .425

LESSON C Creating the Harvey Industries Application 427
Coding the FormClosing Event Procedure 428
Coding the btnCalc Control’s Click Event Procedure430

Creating the GetFwt Function .432
Completing the btnCalc Control’s Click Event Procedure436
Lesson C Summary .442
Lesson C Key Terms .442
Lesson C Review Questions . .443
Lesson C Exercises .443

CHAPTER 8 Str ing Manipulat ion 446

LESSON A Work ing wi th Str ings . 449
Determining the Number of Characters in a String 449
Removing Characters from a String 450

The Product ID Application .451
Inserting Characters in a String . .453

Aligning the Characters in a String453
The Net Pay Application . .455

Searching a String . .457
The City and State Application458

Accessing the Characters in a String 460
The Rearrange Name Application 460

C O N T E N T S

C7718_fm.indd xiiC7718_fm.indd xii 15/03/11 7:13 PM15/03/11 7:13 PM

xiii

Using Pattern-Matching to Compare Strings 463
Modifying the Product ID Application465

Lesson A Summary. .467
Lesson A Key Terms .468
Lesson A Review Questions . .468
Lesson A Exercises .471

LESSON B Adding a Menu to a Form 476
Assigning Shortcut Keys to Menu Items 479
Coding the Exit Menu Item .480

Lesson B Summary .481
Lesson B Key Terms .481
Lesson B Review Questions . .481
Lesson B Exercises .482

LESSON C Complet ing the Hangman Game Appl icat ion. 483
Coding the mnuFileNew Object’s Click Event Procedure 484

Lesson C Summary .495
Lesson C Key Terms .496
Lesson C Review Questions . .496
Lesson C Exercises .497

CHAPTER 9 Arrays . 502

LESSON A Arrays . . 504
One-Dimensional Arrays .505

Determining the Number of Elements and the Highest Subscript 508
Traversing a One-Dimensional Array 509

The For Each . . . Next Statement .511
Calculating the Total and Average Values512
Finding the Highest Value . .515
Arrays and Collections .518
Accumulator and Counter Arrays .522
Sorting a One-Dimensional Array .525
Lesson A Summary. .529
Lesson A Key Terms .530
Lesson A Review Questions . .530
Lesson A Exercises .534

LESSON B Para l le l One-Dimensional Arrays 539
Lesson B Summary .543
Lesson B Key Term .543
Lesson B Review Questions . .543
Lesson B Exercises .543

LESSON C Two-Dimensional Arrays . 546
Traversing a Two-Dimensional Array 549

Totaling the Values Stored in a Two-Dimensional Array550
Searching a Two-Dimensional Array 552
Lesson C Summary .556
Lesson C Key Term .556
Lesson C Review Questions . .556
Lesson C Exercises .558

C7718_fm.indd xiiiC7718_fm.indd xiii 15/03/11 7:13 PM15/03/11 7:13 PM

xiv

P R E FA C E

CHAPTER 10 Structures and Sequent ia l Access F i les 562

LESSON A Structures . . 565
Declaring and Using a Structure Variable566

Passing a Structure Variable to a Procedure 567
Creating an Array of Structure Variables 571

Lesson A Summary. .575
Lesson A Key Terms .576
Lesson A Review Questions . .576
Lesson A Exercises .577

LESSON B Sequent ia l Access F i les . 581
Writing Data to a Sequential Access File 581
Closing an Output Sequential Access File584
Reading Data from a Sequential Access File 585
Closing an Input Sequential Access File. 589

Lesson B Summary .592
Lesson B Key Terms .592
Lesson B Review Questions . .593
Lesson B Exercises .594

LESSON C Coding the CD Col lect ion Appl icat ion 598
Coding the Form’s Load Event Procedure599
Coding the btnAdd Control’s Click Event Procedure 601
Aligning Columns of Information 602
Coding the btnRemove Control’s Click Event Procedure 604
Coding the Form’s FormClosing Event Procedure 606

Lesson C Summary .609
Lesson C Key Terms .610
Lesson C Review Questions . .610
Lesson C Exercises .611

CHAPTER 11 C lasses and Objects 615

LESSON A Object -Or iented Programming Terminology 617
Creating a Class . .618
Example 1—A Class that Contains Public Variables Only620
Example 2—A Class that Contains Private Variables, Public Properties,
and Methods .624

Private Variables and Property Procedures 625
Constructors. .630
Methods Other than Constructors 631
Coding the Carpet Haven Application632

Example 3—A Class that Contains a Parameterized Constructor 636
Example 4—Reusing a Class .640
Lesson A Summary. .644
Lesson A Key Terms .645
Lesson A Review Questions . .646
Lesson A Exercises .648

LESSON B Example 5—A Class that Conta ins a ReadOnly Proper ty 654
Example 6—A Class that Contains Auto-Implemented Properties 658

C O N T E N T S

C7718_fm.indd xivC7718_fm.indd xiv 15/03/11 7:13 PM15/03/11 7:13 PM

xv

Example 7—A Class that Contains Overloaded Methods661
Lesson B Summary .667
Lesson B Key Terms .668
Lesson B Review Questions . .668
Lesson B Exercises .669

LESSON C Example 8—Using a Base Class and a Der ived Class 672
Lesson C Summary .678
Lesson C Key Terms .678
Lesson C Review Questions . .679
Lesson C Exercises .679

CHAPTER 12 Web Appl icat ions 681

LESSON A Web Appl icat ions . 684
Creating a Web Application .687
Adding the Default.aspx Web Page to the Application 689
Customizing a Web Page .690

Adding Static Text to a Web Page 691
Viewing a Web Page in Full Screen View 693
Adding Another Web Page to the Application 693
Adding a Link Button Control to a Web Page 694
Starting a Web Application .696
Adding an Image to a Web Page . .698
Closing and Opening an Existing Web Application 700
Repositioning a Control on a Web Page 701
Lesson A Summary. .702
Lesson A Key Terms .704
Lesson A Review Questions . .704
Lesson A Exercises .705

LESSON B Dynamic Web Pages . . 708
Coding the Submit Button’s Click Event Procedure 712
Validating User Input . .714
Lesson B Summary .716
Lesson B Key Term .717
Lesson B Review Questions . .717
Lesson B Exercises .718

LESSON C Creat ing the DJ Tom Appl icat ion 721
Creating a Columnar Layout. .722
Using an ASP Table .724

Dragging Controls in Source View 727
Adding Items to a DropDownList Control 729
Coding DJ Tom’s Web Page . .730

Using the
 Tag . .732
Lesson C Summary .734
Lesson C Key Terms .734
Lesson C Review Questions . .735
Lesson C Exercises .736

C7718_fm.indd xvC7718_fm.indd xv 15/03/11 7:13 PM15/03/11 7:13 PM

xvi

P R E FA C E

CHAPTER 13 Work ing wi th Access Databases and L INQ 740

LESSON A Database Terminology . . 743
Connecting an Application to a Microsoft Access Database 745

Previewing the Contents of a Dataset 748
Binding the Objects in a Dataset .749

Having the Computer Create a Bound Control750
The DataGridView Control . .753

Visual Basic Code .756
Handling Errors in the Code . .757

The Copy to Output Directory Property760
Binding to an Existing Control . .762

Coding the Next Record and Previous Record Buttons 764
Lesson A Summary. .767
Lesson A Key Terms .768
Lesson A Review Questions . .769
Lesson A Exercises .771

LESSON B Creat ing a Query . 773
Personalizing a BindingNavigator Control. 777
Using the LINQ Aggregate Operators 779
Lesson B Summary .782
Lesson B Key Terms .782
Lesson B Review Questions . .783
Lesson B Exercises .785

LESSON C Complet ing the Paradise Bookstore Appl icat ion 787
Coding the Paradise Bookstore Application789
Lesson C Summary .792
Lesson C Key Terms .792
Lesson C Review Questions . .792
Lesson C Exercises .793

CHAPTER 14 Access Databases and SQL 796

LESSON A Adding Records to a Dataset 799
Sorting the Records in a Dataset .804
Deleting Records from a Dataset .805
Lesson A Summary. .810
Lesson A Key Terms .810
Lesson A Review Questions . .811
Lesson A Exercises .812

LESSON B Structured Query Language 815
The SELECT Statement . .815
Creating a Query. .817
Lesson B Summary .823
Lesson B Key Terms .823
Lesson B Review Questions . .824
Lesson B Exercises .826

LESSON C Parameter Quer ies . 828
Saving a Query .831
Invoking a Query from Code. .833

C O N T E N T S

C7718_fm.indd xviC7718_fm.indd xvi 15/03/11 7:13 PM15/03/11 7:13 PM

xvii

The INSERT and DELETE Statements 836
Lesson C Summary .844
Lesson C Key Terms .844
Lesson C Review Questions . .845
Lesson C Exercises .845

APPENDIX A Locat ing Syntax and Logic Errors 848

APPENDIX B GUI Design Guidel ines 858

APPENDIX C V isual Basic Convers ion Funct ions 863

APPENDIX D Appl icat ions wi th Mul t ip le Forms Online

 Index . 864

C7718_fm.indd xviiC7718_fm.indd xvii 15/03/11 7:13 PM15/03/11 7:13 PM

xviii

Preface

Programming with Microsoft Visual Basic 2010, Fifth Edition uses Visual Basic
2010, an object-oriented language, to teach programming concepts. Th is book
is designed for a beginning programming course. However, it assumes students
are familiar with basic Windows skills and fi le management.

Organization and Coverage
Programming with Microsoft Visual Basic 2010, Fifth Edition contains an Over-
view and 14 chapters that present hands-on instruction; it also contains three
appendices (A through C). An additional appendix (Appendix D) covering
multiple-form applications and the FontDialog, ColorDialog, PrintForm, and
TabControl tools is available online at www.cengagebrain.com. In the chapters,
students with no previous programming experience learn how to plan and cre-
ate their own interactive Windows applications. GUI design skills and OOP
concepts are emphasized throughout the book. By the end of the book, students
will have learned how to use TOE charts, pseudocode, and fl owcharts to plan
an application. Th ey also will learn how to work with objects and write
Visual Basic statements such as If…Th en…Else, Select Case, Do…Loop,
For…Next, and For Each…Next. Students also will learn how to create and
manipulate variables, constants, strings, sequential access fi les, structures,
classes, and arrays. Chapter 12 shows students how to create both static and
dynamic Web applications. In Chapter 13, students learn how to connect an
application to a Microsoft Access database, and then use Language Integrated
Query (LINQ) to query the database. Chapter 14 continues the coverage of
databases, introducing the student to more advanced concepts and Structured
Query Language (SQL). Appendix A, which can be covered after Chapter 3,
teaches students how to locate and correct errors in their code. Th e appendix
shows students how to step through their code and also how to create break-
points. Appendix B recaps the GUI design rules mentioned in the chapters, and
Appendix C lists the Visual Basic conversion functions.

Approach
Programming with Microsoft Visual Basic 2010, Fifth Edition teaches program-
ming concepts using a task-driven rather than a command-driven approach.
By working through the chapters, which are each motivated by a realistic case,
students learn how to develop applications they are likely to encounter in the
workplace. Th is is much more eff ective than memorizing a list of commands
out of context. Th e book motivates students by demonstrating why they need to
learn the concepts and skills covered in each chapter.

C7718_fm.indd xviiiC7718_fm.indd xviii 15/03/11 7:13 PM15/03/11 7:13 PM

www.cengagebrain.com

xix

Organization and Coverage

Features
Programming with Microsoft Visual Basic 2010, Fifth Edition is an excep-
tional textbook because it also includes the following features:

READ THIS BEFORE YOU BEGIN Th is section is consistent with Course
Technology’s unequaled commitment to helping instructors introduce
technology into the classroom. Technical considerations and assumptions
about hardware, software, and default settings are listed in one place to help
instructors save time and eliminate unnecessary aggravation.

VISUAL STUDIO 2010 METHODS Th e book focuses on Visual Studio 2010
methods rather than on Visual Basic functions. Th is is because the Visual Stu-
dio methods can be used in any .NET language, whereas the Visual Basic func-
tions can be used only in Visual Basic. Exceptions to this are the Val and Format
functions, which are introduced in Chapter 2. Th ese functions are covered in
the book simply because it is likely that students will encounter them in existing
Visual Basic programs. However, in Chapter 3, the student is taught to use the
TryParse method and the Convert class methods rather than the Val function.
Also in Chapter 3, the Format function is replaced with the ToString method.

OPTION STATEMENTS All programs include the Option Explicit, Option
Strict, and Option Infer statements.

FIGURES Figures that introduce new statements, functions, or methods con-
tain both the syntax and examples of using the syntax. Including the syntax
in the fi gures makes the examples more meaningful.

CHAPTER CASES Each chapter begins with a programming-related problem
that students could reasonably expect to encounter in business, followed by
a demonstration of an application that could be used to solve the problem.
Showing the students the completed application before they learn how to
create it is motivational and instructionally sound. By allowing the students
to see the type of application they will be able to create after completing the
chapter, the students will be more motivated to learn because they can see
how the programming concepts they are about to learn can be used and,
therefore, why the concepts are important.

LESSONS Each chapter is divided into three lessons—A, B, and C. Lesson
A introduces the programming concepts that will be used in the completed
application. Th e concepts are illustrated with code examples and sample
applications. Th e user interface for each sample application is provided to the
student. Also provided are tutorial-style steps that guide the student on cod-
ing, running, and testing the application. Each sample application allows the
student to observe how the current concept can be used before the next con-
cept is introduced. In Lessons B and/or C, the student creates the application
required to solve the problem specifi ed in the Chapter Case.

APPENDICES Appendix A, which can be covered after Chapter 3, teaches
students how to locate and correct errors in their code. Th e appendix shows
students how to step through their code and also how to create breakpoints.
Appendix B summarizes the GUI design tips taught in the chapters, making it
easier for the student to follow the guidelines when designing an application’s
interface. Appendix C lists the Visual Basic conversion functions. Appendix D,
which is available online at www.cengagebrain.com, covers multiple-form appli-
cations and the FontDialog, ColorDialog, PrintForm, and TabControl tools.

C7718_fm.indd xixC7718_fm.indd xix 15/03/11 7:13 PM15/03/11 7:13 PM

www.cengagebrain.com

xx

P R E FA C E Organization and Coverage

GUI DESIGN TIP BOXES Th e GUI DESIGN TIP boxes contain guidelines
and recommendations for designing applications that follow Windows stan-
dards. Appendix B provides a summary of the GUI design guidelines covered
in the chapters.

TIP Th ese notes provide additional information about the current concept.
Examples include alternative ways of writing statements or performing tasks,
as well as warnings about common mistakes made when using a particular
command and reminders of related concepts learned in previous chapters.

SUMMARY Each lesson contains a Summary section that recaps the con-
cepts covered in the lesson.

KEY TERMS Following the Summary section in each lesson is a listing of the
key terms introduced throughout the lesson, along with their defi nitions.

REVIEW QUESTIONS Each lesson contains Review Questions designed to
test a student’s understanding of the lesson’s concepts.

EXERCISES Th e Review Questions in each lesson are followed by Exercises,
which provide students with additional practice of the skills and concepts
they learned in the lesson. Th e Exercises are designated as INTRODUC-
TORY, INTERMEDIATE, ADVANCED, Discovery, and Swat Th e Bugs.
Th e Discovery Exercises encourage students to challenge and independently
develop their own programming skills while exploring the capabilities of
Visual Basic 2010. Th e Swat Th e Bugs Exercises provide an opportunity for
students to detect and correct errors in an application’s code.

New to This Edition!
VIDEOS Th ese notes direct students to videos that accompany each chapter
in the book. Th e videos explain and/or demonstrate one or more of the chap-
ter’s concepts.

YOU DO IT! BOXES Th ese boxes provide simple applications that allow stu-
dents to demonstrate their understanding of a concept before moving on to
the next concept. Th e YOU DO IT! boxes are located almost exclusively in
Lesson A of each chapter.

COURSE NOTES QUICK REFERENCE CARD Th is card shows the syntax of
each command covered in the book and provides a quick reference for students.

START HERE ARROWS Th ese arrows indicate the beginning of a tutorial
steps section in the book.

DATABASES, LINQ, AND SQL Th e book now includes two chapters
 (Chapters 13 and 14) on databases. LINQ is covered in Chapter 13. SQL is
covered in Chapter 14.

LINE CONTINUATION CHARACTER In Chapter 3, the students learn how to
split a line of code without using a line continuation character.

ARITHMETIC ASSIGNMENT OPERATORS Th ese operators are covered
along with the repetition structure in Chapter 6.

CHAPTERS 4 AND 5 (THE SELECTION STRUCTURE AND MORE ON THE
SELECTION STRUCTURE) Both chapters now refer to the diff erent forms of the
selection structure as single-alternative, dual-alternative, and multiple-alternative.

START HERE

C7718_fm.indd xxC7718_fm.indd xx 15/03/11 7:13 PM15/03/11 7:13 PM

xxi

Instructor Resources and Supplements

CHAPTERS 6 (THE REPETITION STRUCTURE) Lesson A was revised to
include the following terms: looping condition and loop exit condition.

CHAPTER 8 (STRING MANIPULATION) Th e Insert and Remove methods
are now covered in Lesson A. Th e Replace method and Mid statements are
no longer covered in Lesson A; however, they are covered in Discovery Exer-
cises at the end of the lesson. Also covered in Lesson A’s Discovery Exercises
are the StartsWith, EndsWith, TrimStart, and TrimEnd methods. Lesson A
also contains a Discovery Exercise that shows students how to use the Trim
method to remove characters other than spaces.

CHAPTER 9 (ARRAYS) Th e Arrays chapter has been revised.

CHAPTER 11 (CLASSES AND OBJECTS) Parameterized constructors are
now covered in Lesson A. Coverage of auto-implemented properties was
added to Lesson B.

CHAPTER 12 (WEB APPLICATIONS) Lesson A now shows students how
to create a Web application that contains two Web pages. It also covers the
LinkButton tool.

APPENDIX D (APPLICATIONS WITH MULTIPLE FORMS) Th is appendix is
available online at www.cengagebrain.com. Th e appendix covers multiple-
form applications and the FontDialog, ColorDialog, PrintForm, and
 TabControl tools.

Instructor Resources and Supplements
All of the resources available with this book are provided to the instructor
on a single CD-ROM. Many also can be found at www.cengagebrain.com. At
the CengageBrain.com home page, search for the ISBN of your title (from
the back cover of your book) using the search box at the top of the page.
Th is will take you to the product page where free companion resources can
be found.

ELECTRONIC INSTRUCTOR’S MANUAL Th e Instructor’s Manual that
accompanies this textbook includes additional instructional material to assist
in class preparation, including items such as Sample Syllabi, Chapter Out-
lines, Technical Notes, Lecture Notes, Quick Quizzes, Teaching Tips, Dis-
cussion Topics, and Additional Case Projects.

EXAMVIEW® Th is textbook is accompanied by ExamView, a powerful testing
software package that allows instructors to create and administer printed,
computer (LAN-based), and Internet exams. ExamView includes hundreds
of questions that correspond to the topics covered in this text, enabling
students to generate detailed study guides that include page references for
further review. Th e computer-based and Internet testing components allow
students to take exams at their computers, and also save the instructor time
by grading each exam automatically.

POWERPOINT PRESENTATIONS Th is book off ers Microsoft PowerPoint
slides for each chapter. Th ese are included as a teaching aid for classroom
presentation, to make available to students on the network for chapter
review, or to be printed for classroom distribution. Instructors can add their
own slides for additional topics they introduce to the class.

C7718_fm.indd xxiC7718_fm.indd xxi 15/03/11 7:13 PM15/03/11 7:13 PM

www.cengagebrain.com
www.cengagebrain.com

xxii

P R E FA C E Acknowledgments

DATA FILES Data Files are necessary for completing the computer activi-
ties in this book. Th e Data Files are provided on the Instructor Resources
 CD-ROM and also may be found at www.cengagebrain.com.

SOLUTION FILES Solutions to the Lesson applications and the end-of-lesson
Review Questions and Exercises are provided on the Instructor Resources
CD-ROM and also may be found at www.cengagebrain.com. Th e solutions are
password protected.

DISTANCE LEARNING Course Technology off ers online WebCT, Black-
board, and Angel courses for this text to provide the most complete and
dynamic learning experience possible. When you add online content to one
of your courses, you’re adding a lot: automated tests, topic reviews, quick
quizzes, and additional case projects with solutions. For more information
on how to bring distance learning to your course, contact your local Course
Technology sales representative.

Acknowledgments
Writing a book is a team eff ort rather than an individual one. I would like
to take this opportunity to thank my team, especially Jill Braiewa (Senior
Content Project Manager), Tricia Coia (Freelance Product Manager),
Suzanne Huizenga (Proofreader), Nicole Ashton (Quality Assurance), and
the compositors at Integra. Th ank you for your support, enthusiasm, patience,
and hard work. Last, but certainly not least, I want to thank the following
reviewers for their invaluable ideas and comments: Tatyana Feofi laktova,
ASA College; Gary Marrer, Maricopa Community College; and David Brett,
North Shore Community College. And a special thank you to Sally Douglas
(College of Central Florida) for suggesting the YOU DO IT! boxes.

Diane Zak

C7718_fm.indd xxiiC7718_fm.indd xxii 15/03/11 7:13 PM15/03/11 7:13 PM

www.cengagebrain.com
www.cengagebrain.com

xxiii

Read This Before
You Begin

Technical Information

Data Files
You will need data fi les to complete the computer activities in this book. Your
instructor may provide the data fi les to you. You may obtain the fi les electroni-
cally at www.cengagebrain.com, and then navigating to the page for this book.

Each chapter in this book has its own set of data fi les, which are stored in a
separate folder within the VB2010 folder. Th e fi les for Chapter 1 are stored in
the VB2010\Chap01 folder. Similarly, the fi les for Chapter 2 are stored in the
VB2010\Chap02 folder. Th roughout this book, you will be instructed to open
fi les from or save fi les to these folders.

You can use a computer in your school lab or your own computer to complete
the steps and Exercises in this book.

Using Your Own Computer
To use your own computer to complete the computer activities in this book,
you will need the following:

 • A Pentium® 4 processor, 1.6 GHz or higher, personal computer running
Microsoft Windows. Th is book was written and Quality Assurance tested
using Microsoft Windows 7.

 • Either Microsoft Visual Studio 2010 or the Express Editions of Microsoft
Visual Basic 2010 and Microsoft Visual Web Developer 2010 installed on
your computer. Th is book was written using Microsoft Visual Studio 2010
Professional Edition, and Quality Assurance tested using the Express Editions
of Microsoft Visual Basic 2010 and Microsoft Visual Web Developer 2010. At
the time of this writing, you can download a free copy of the Express Editions
at www.microsoft.com/express/downloads (Visual Basic 2010 Express) and
www.microsoft.com/express/Downloads/#2010-Visual-Web-Developer (Visual
Web Developer 2010 Express). If necessary, use the following information
when installing the Professional or Express Editions of the software:

C7718_fm.indd xxiiiC7718_fm.indd xxiii 15/03/11 7:13 PM15/03/11 7:13 PM

www.cengagebrain.com
www.microsoft.com/express/downloads
www.microsoft.com/express/Downloads/#2010-Visual-Web-Developer

xxiv

P R E FA C E Technical Information

To confi gure Visual Studio 2010 or Visual Basic 2010 Express:

1. Start either Visual Studio 2010 or Visual Basic 2010 Express. If the
Choose Default Environment Settings dialog box appears when you
start Visual Studio, select the Visual Basic Development Settings option.

2. If you are using Visual Basic 2010 Express, click Tools on the menu
bar, point to Settings, and then click Expert Settings.

3. Click Tools on the menu bar and then click Options to open the
Options dialog box. If necessary, deselect the Show all settings check
box. Click the Projects and Solutions node. Use the information
shown in Figure 1-4 in Chapter 1 to select and deselect the appropri-
ate check boxes. (Your dialog box will look slightly diff erent if you are
using Visual Basic 2010 Express.). When you are fi nished, click the
OK button to close the Options dialog box.

To confi gure Visual Web Developer 2010 Express:

1. Start Visual Web Developer 2010 Express. Click Tools on the menu
bar, point to Settings, and then click Expert Settings.

2. Click Tools on the menu bar and then click Options to open the Options
dialog box. If necessary, select the Show all settings check box. Click the
Projects and Solutions node. Use the information shown in Figure 12-6
in Chapter 12 to select and deselect the appropriate check boxes. When
you are fi nished, click the OK button to close the Options dialog box.

Figures
Th e fi gures in this book refl ect how your screen will look if you are using
Microsoft Visual Studio 2010 Professional Edition and a Microsoft Windows
7 system. Your screen may appear slightly diff erent in some instances if you
are using another version of Microsoft Visual Studio, Microsoft Visual Basic,
or Microsoft Windows.

Visit Our Web Site
Additional materials designed for this textbook might be available at
www.cengagebrain.com. Search this site for more details.

To the Instructor
To complete the computer activities in this book, your students must use a
set of data fi les. Th e fi les are included on the Instructor’s Resource CD. Th ey
also may be obtained electronically at www.cengagebrain.com.

Th e material in this book was written using Microsoft Visual Studio 2010
Professional Edition on a Microsoft Windows 7 system. It was Quality Assur-
ance tested using the Express Editions of Microsoft Visual Basic 2010 and
Microsoft Visual Web Developer 2010 on a Microsoft Windows 7 system.

Course Technology Data Files
You are granted a license to copy the data fi les to any computer or computer
network used by individuals who have purchased this book.

C7718_fm.indd xxivC7718_fm.indd xxiv 15/03/11 7:13 PM15/03/11 7:13 PM

www.cengagebrain.com
www.cengagebrain.com

O V E R V I E W

An Introduction to
Programming

After studying the Overview, you should be able to:

 Defi ne the terminology used in programming

 Explain the tasks performed by a programmer

 Describe the qualities of a good programmer

 Understand the employment opportunities for programmers and
software engineers

 Run a Visual Basic 2010 application

 Understand how to use the chapters effectively

C7718_overview.indd 1C7718_overview.indd 1 14/03/11 7:27 PM14/03/11 7:27 PM

2

O V E R V I E W An Introduction to Programming

Programming a Computer
In essence, the word programming means giving a mechanism the directions
to accomplish a task. If you are like most people, you’ve already programmed
several mechanisms. For example, at one time or another, you probably pro-
grammed your digital video recorder (DVR) in order to schedule a timed
recording of a movie. You also may have programmed the speed dial feature
on your cell phone. Or you may have programmed your coff ee maker to
begin the brewing process before you wake up in the morning. Like your
DVR, cell phone, and coff ee maker, a computer also is a mechanism that can
be programmed. Th e directions given to a computer are called computer
programs or, more simply, programs. Th e people who write programs are
called programmers. Programmers use a variety of special languages, called
programming languages, to communicate with the computer. Some popular
programming languages are Visual Basic, C#, C++, and Java. In this book,
you will use the Visual Basic programming language.

The Programmer’s Job
When a company has a problem that requires a computer solution, typically
it is a programmer who comes to the rescue. Th e programmer might be an
employee of the company; or he or she might be a freelance programmer,
which is a programmer who works on temporary contracts rather than for a
long-term employer. First the programmer meets with the user, which is the
person (or persons) responsible for describing the problem. In many cases,
this person also will eventually use the solution. Depending on the complex-
ity of the problem, multiple programmers may be involved. Programming
teams often contain subject matter experts, who may or may not be pro-
grammers. For example, an accountant might be part of a team working on a
program that requires accounting expertise.

Th e programmer, or team of programmers, may need to meet with the user
several times to determine the exact problem and to agree on the desired
solution. After the programmer and user agree on the solution, the program-
mer begins converting the solution into a computer program. During the
conversion phase, the programmer meets periodically with the user to deter-
mine whether the program fulfi lls the user’s needs and to refi ne any details
of the solution. When the user is satisfi ed that the program does what he or
she wants it to do, the programmer rigorously tests the program with sample
data before releasing it to the user. In many cases, the programmer also pro-
vides the user with a manual that explains how to use the program. As this
process indicates, the creation of a good computer solution to a problem—in
other words, the creation of a good program—requires a great deal of inter-
action between the programmer and the user.

Do You Have What It Takes to Be a Programmer?
According to the 2008–09 Edition of the Occupational Outlook Handbook
(OOH), published by the U.S. Department of Labor’s Bureau of Labor Sta-
tistics, “When hiring programmers, employers look for people with the
necessary programming skills who can think logically and pay close atten-
tion to detail. Programming calls for patience, persistence, and the ability to
work on exacting analytical work, especially under pressure. Ingenuity and

C7718_overview.indd 2C7718_overview.indd 2 14/03/11 7:27 PM14/03/11 7:27 PM

3

Programming a Computer

creativity also are particularly important when programmers design solu-
tions and test their work for potential failures. . . . Because programmers are
expected to work in teams and interact directly with users, employers want
programmers who are able to communicate with nontechnical personnel.
Business skills are also important, especially for those wishing to advance
to managerial positions.” If this description sounds like you, then you prob-
ably have what it takes to be a programmer. But if it doesn’t sound like you,
it’s still worth your time to understand the programming process, especially
if you are planning a career in business. Knowing even a little bit about the
programming process will allow you, the manager of a department, to bet-
ter communicate your department’s needs to a programmer. It also will give
you the confidence to question the programmer when he or she claims that
the program modification you requested can’t be made. In addition, it will
help you determine whether the $9,000 quote you received from a freelance
programmer seems reasonable. Lastly, understanding the process a computer
programmer follows when solving a problem can help you solve problems
that don’t require a computer solution.

Employment Opportunities
But if, after reading this book, you are excited about the idea of working as
a computer programmer, here is some information on employment oppor-
tunities. When searching for a job in computer programming, you will
encounter ads for “computer programmers” as well as for “computer software
engineers.” Although job titles and descriptions vary, computer software
engineers typically are responsible for designing an appropriate solution to a
user’s problem, while computer programmers are responsible for translating
the solution into a language that the computer can understand. Th e process
of translating the solution is called coding. Keep in mind that, depending on
the employer and the size and complexity of the user’s problem, the design
and coding tasks may be performed by the same employee, no matter what
his or her job title is. In other words, it’s not unusual for a software engi-
neer to code her solution, just as it’s not unusual for a programmer to have
designed the solution he is coding. Typically, computer software engineers
are expected to have at least a bachelor’s degree in computer engineering
or computer science, along with practical work experience. Computer pro-
grammers usually need at least an associate’s degree in computer science,
mathematics, or information systems, as well as profi ciency in one or more
programming languages.

Computer programmers and software engineers are employed in almost
every industry, such as telecommunications companies, software publish-
ers, financial institutions, insurance carriers, educational institutions, and
government agencies. According to the May 2008 Occupational Employment
Statistics, programmers held about 394,230 jobs and had a mean annual wage
of $73,470. Software engineers, on the other hand, held about 494,160 jobs
with a mean annual wage of $87,900. Th e Bureau of Labor Statistics predicts
that employment of programmers will decline slowly, decreasing by 4% from
2006 to 2016. However, the employment of computer software engineers is
projected to increase by 38% over the same period. Th ere is a great deal of
competition for programming and software engineering jobs, so jobseek-
ers will need to keep up to date with the latest programming languages and
 technologies. More information about computer programmers and computer

C7718_overview.indd 3C7718_overview.indd 3 14/03/11 7:27 PM14/03/11 7:27 PM

4

O V E R V I E W An Introduction to Programming

software engineers can be found on the Bureau of Labor Statistics Web site at
www.bls.gov.

Visual Basic 2010
In this book, you will learn how to create programs using the Visual Basic
2010 programming language. Visual Basic 2010 is an object-oriented
 programming language, which is a language that allows the programmer
to use objects to accomplish a program’s goal. An object is anything that
can be seen, touched, or used. In other words, an object is nearly any thing.
Th e objects used in an object-oriented program can take on many diff erent
forms. Programs written for the Windows environment typically use objects
such as check boxes, list boxes, and buttons. A payroll program, on the
other hand, might utilize objects found in the real world, such as a time
card object, an employee object, and a check object. Every object used in an
object-oriented program is created from a class, which is a pattern that the
computer uses to create the object. Th e class contains the instructions that
tell the computer how the object should look and behave. An object created
from a class is called an instance of the class and is said to be instantiated
from the class. An analogy involving a cookie cutter and cookies is often
used to describe a class and its objects: the class is the cookie cutter, and the
objects instantiated from the class are the cookies. You will learn more about
classes and objects throughout this book.

Visual Basic 2010 is available either as a stand-alone product, called Visual
Basic 2010 Express, or as part of Visual Studio 2010. Both products include
an integrated development environment (IDE), which is an environment
that contains all of the tools and features you need to create, run, and test
your programs. However, unlike Visual Basic 2010 Express, which contains
only the Visual Basic language, Visual Studio 2010 contains four diff erent
 languages: Visual Basic, Visual C++, Visual C#, and Visual F#.

You can use Visual Basic to create programs, called applications, for the
 Windows environment or for the Web. A Windows application has a
 Windows user interface and runs on a personal computer. A user interface
is what the user sees and interacts with while an application is running.
 Examples of Windows applications include graphics programs, data-entry
systems, and games. A Web application, on the other hand, has a Web user
interface and runs on a server. You access a Web application using your
computer’s browser. Examples of Web applications include e-commerce
applications available on the Internet, and employee handbook applications
accessible on a company’s intranet. You also can use Visual Basic to create
applications for mobile devices, such as pocket PCs, cell phones, and PDAs
(personal digital assistants).

A Visual Basic 2010 Demonstration
In the following set of steps, you will run a Visual Basic 2010 application that
shows you some of the objects you will learn about in the chapters. For now,
it is not important for you to understand how these objects were created or
why the objects perform the way they do. Th ose questions will be answered
in the chapters.

You can
 download a free
copy of Visual
Basic 2010
Express at

www.microsoft.com/
express/downloads.

C7718_overview.indd 4C7718_overview.indd 4 14/03/11 7:27 PM14/03/11 7:27 PM

www.bls.gov
www.microsoft.com/express/downloads
www.microsoft.com/express/downloads

5

Visual Basic 2010

To run the Visual Basic 2010 application:

1. Press and hold down the Windows logo key on your keyboard as you
tap the letter r. Th e Run dialog box opens. Release the logo key.

2. Click the Browse button to open the Browse dialog box. Locate and
then open the VB2010\Overview folder on your computer’s hard disk
or on the device designated by your instructor.

3. Click Monthly Payment Calculator (Monthly Payment
 Calculator.exe) in the list of fi lenames. (Depending on how Windows
is set up on your computer, you may see the .exe extension on the
 fi lename.) Click the Open button. Th e Browse dialog box closes and
the Run dialog box appears again.

4. Click the OK button in the Run dialog box. After a few moments, the
Monthly Payment Calculator application shown in Figure 1 appears
on the screen. Th e interface contains a text box, list box, buttons,
radio buttons, and labels. You can use the application to calculate the
monthly payment for a car loan.

labels

text box

radio buttons

buttons

list box

Figure 1 Monthly Payment Calculator application

5. Use the application to calculate the monthly payment for a $20,000
loan at 6.75% interest for fi ve years. Type 20000 in the Principal text
box, and then click 6.75 % in the Interest list box. Th e radio button
corresponding to the fi ve-year term is already selected, so you just
need to click the Calculate button to compute the monthly payment.
Th e application indicates that your monthly payment would be
$393.67. See Figure 2.

START HERE

The Windows
logo key looks
like this: .

C7718_overview.indd 5C7718_overview.indd 5 14/03/11 7:27 PM14/03/11 7:27 PM

6

O V E R V I E W An Introduction to Programming

Figure 2 Computed monthly payment

6. Now determine what your monthly payment would be if you
 borrowed $10,000 at 8% interest for four years. Type 10000 in the
Principal text box. Scroll down the Interest list box and then click
8.00 %. Click the 4 years radio button and then click the Calculate
button. Th e Monthly payment box shows $244.13.

7. Click the Exit button to close the application.

Using the Chapters Effectively
Th is book is designed for a beginning programming course; however, it
assumes students are familiar with basic Windows skills and fi le manage-
ment. Th e chapters in this book will help you learn how to write programs
using Microsoft Visual Basic 2010. Th e chapters are designed to be used at
your computer. Begin by reading the text that explains the concepts. When
you come to the numbered steps, follow the steps on your computer. Read
each step carefully and completely before you try it. As you work, compare
your screen with the fi gures to verify your results. Th e fi gures in this book
refl ect how your screen will look if you are using the Professional Edition
of Visual Studio 2010 and a Microsoft Windows 7 system. Your screen may
appear slightly diff erent in some instances if you are using a diff erent edi-
tion of Visual Studio, if you are using Visual Basic Express, or if you are
using another version of Microsoft Windows. Don’t worry if your screen
display diff ers slightly from the fi gures. Th e important parts of the screen
display are labeled in each fi gure. Just be sure you have these parts on your
screen.

Do not worry about making mistakes; that’s part of the learning process.
Tip notes identify common problems and explain how to get back on
track. Th ey also provide additional information about a procedure—for
example, an alternative method of performing the procedure.

 Tip notes are
designated by
the icon.

C7718_overview.indd 6C7718_overview.indd 6 14/03/11 7:27 PM14/03/11 7:27 PM

7

Summary

Each chapter is divided into three lessons. You might want to take a break
between lessons. Following each lesson is a Summary section that lists the
important elements of the lesson. After the Summary section is a listing of
the key terms (including defi nitions) covered in the lesson. Following the Key
Terms section are questions and exercises designed to review and reinforce
the lesson’s concepts. You should complete all of the end-of-lesson questions
and several exercises before continuing to the next lesson. It takes a great
deal of practice to acquire the skills needed to create good programs, and
future chapters assume that you have mastered the information found in the
previous chapters. Some of the end-of-lesson exercises are Discovery exer-
cises, which allow you to both “discover” the solutions to problems on your
own and experiment with material that is not covered in the chapter. Some
lessons also contain one or more Debugging exercises. In programming, the
term debugging refers to the process of fi nding and fi xing any errors, called
bugs, in a program. Debugging exercises provide opportunities for you to
fi nd and correct the errors in existing applications. Appendix A, which can
be covered along with Chapter 3, guides you through the process of locating
and correcting two types of errors (bugs): syntax errors and logic errors.

Th roughout the book you will fi nd GUI (graphical user interface) design
tips. Th ese tips contain guidelines and recommendations for designing
 applications. You should follow these guidelines and recommendations so
that your applications follow the Windows standards.

Summary

 • Programs are the step-by-step instructions that tell a computer how to
perform a task.

 • Programmers use various programming languages to communicate with
the computer.

 • Th e creation of a good program requires a great deal of interaction
between the programmer and the user.

 • Programmers rigorously test a program with sample data before releasing
the program to the user.

 • All businesspeople should know at least a little about the programming
process.

 • It’s not unusual for the same person to perform the duties of both a
 software engineer and a programmer.

 • An object-oriented programming language, such as Visual Basic 2010,
allows programmers to use objects to accomplish a program’s goal. An
object is anything that can be seen, touched, or used.

 • Every object in an object-oriented program is instantiated (created) from a
class, which is a pattern that tells the computer how the object should look
and behave. An object is referred to as an instance of the class.

 • Th e process of locating and correcting the errors (bugs) in a program is
called debugging.

C7718_overview.indd 7C7718_overview.indd 7 14/03/11 7:27 PM14/03/11 7:27 PM

8

O V E R V I E W An Introduction to Programming

Key Terms
Applications—programs created for the Windows environment, the Web,
or mobile devices

Class—a pattern that the computer uses to create (instantiate) an object

Coding—the process of translating a solution into a language that the
 computer can understand

Computer programs—the directions given to computers; also called
programs

Debugging—the process of locating and correcting the errors (bugs) in
a program

IDE—integrated development environment

Instance—an object created (instantiated) from a class

Instantiated—the process of creating an object from a class

Integrated development environment—an environment that contains all of
the tools and features you need to create, run, and test your programs; also
called an IDE

Object—anything that can be seen, touched, or used

Object-oriented programming language—a programming language that
allows the programmer to use objects to accomplish a program’s goal

Programmers—the people who write computer programs

Programming—the process of giving a mechanism the directions to
 accomplish a task

Programming languages—languages used to communicate with a computer

Programs—the directions given to computers; also called computer
programs

User interface—what the user sees and interacts with while an application is
running

C7718_overview.indd 8C7718_overview.indd 8 14/03/11 7:27 PM14/03/11 7:27 PM

C H A P T E R 1
An Introduction to
Visual Basic 2010

Creating a Splash Screen

In this chapter, you will create a splash screen for the Country Charm Inn, a
small bed and breakfast located in rural Kentucky. You will create the splash
screen using Visual Basic 2010, Microsoft’s newest version of the Visual Basic
programming language. A splash screen is the fi rst image that appears when an
application is started. It is used to introduce the application and to hold the user’s
attention while the application is being read into the computer’s internal memory.

C7718_ch01.indd 9C7718_ch01.indd 9 14/03/11 7:39 PM14/03/11 7:39 PM

10

C H A P T E R 1 An Introduction to Visual Basic 2010

Previewing the Splash Screen
Before you start the fi rst lesson in this chapter, you will preview a completed
splash screen. Th e splash screen is contained in the VB2010\Chap01 folder.

To preview a completed splash screen:

1. Press and hold down the Windows logo key on your keyboard as you
tap the letter r. Th e Run dialog box opens. Release the logo key.

2. Click the Browse button to open the Browse dialog box. Locate and
then open the VB2010\Chap01 folder on your computer’s hard disk
or on the device designated by your instructor.

3. Click Splash (Splash.exe) in the list of fi lenames. (Depending on how
Windows is set up on your computer, you may see the .exe extension
on the fi lename.) Click the Open button. Th e Browse dialog box
closes and the Run dialog box appears again.

4. Click the OK button in the Run dialog box. After a few moments, the
splash screen shown in Figure 1-1 appears on the screen. Th e splash
screen closes when six seconds have elapsed.

Figure 1-1 Splash screen for the Country Charm Inn

Chapter 1 is designed to help you get comfortable with the Visual Studio
2010 integrated development environment. As you learned in the Overview,
an integrated development environment (IDE) is an environment that
 contains all of the tools and features you need to create, run, and test your
programs. As do all the chapters in this book, Chapter 1 contains three
 lessons. You should complete a lesson in full and do all of the end-of-lesson
questions and several exercises before continuing to the next lesson.

START HERE

The Windows
logo key looks
like this: .

C7718_ch01.indd 10C7718_ch01.indd 10 14/03/11 7:39 PM14/03/11 7:39 PM

11

The Splash Screen Application L E S S O N A

 ❚ LESSON A
After studying Lesson A, you should be able to:

 • Start and customize Visual Studio 2010 or Visual Basic 2010 Express

 • Create a Visual Basic 2010 Windows application

 • Manage the windows in the IDE

 • Set the properties of an object

 • Restore a property to its default setting

 • Save a solution

 • Close and open an existing solution

The Splash Screen Application
In this chapter, you will create a splash screen using Visual Basic 2010. As
mentioned in the Overview, Visual Basic 2010 is available as a stand-alone
product (called Visual Basic 2010 Express) or as part of Visual Studio 2010.
Before you can use Visual Basic 2010 to create an application, you fi rst must
start either Visual Studio 2010 or Visual Basic 2010 Express.

To start Visual Studio 2010 or Visual Basic 2010 Express:

1. Click the Start button on the Windows 7 taskbar and then point to
All Programs.

2. If you are using Visual Studio 2010, click Microsoft Visual Studio
2010 on the All Programs menu and then click Microsoft Visual
Studio 2010. If the Choose Default Environment Settings dialog box
appears, click Visual Basic Development Settings and then click
Start Visual Studio.
If you are using Visual Basic 2010 Express, click Microsoft Visual
Studio 2010 Express on the All Programs menu and then click
Microsoft Visual Basic 2010 Express.

3. Click Window on the menu bar, click Reset Window Layout,
and then click the Yes button. When you start Visual Studio 2010
 Professional, your screen will appear similar to Figure 1-2. When
you start Visual Basic 2010 Express, your screen will appear similar
to Figure 1-3.
Important note: To select a diff erent window layout, click Tools on
the menu bar. If you are using the Express edition, point to Settings.
Click Import and Export Settings, select the Reset all settings radio
button, click the Next button, select the appropriate radio button,
click the Next button, click the preferred settings collection, and then
click the Finish button.

The Ch01AVideo
fi le demonstrates
all of the steps
contained in

Lesson A. You can view
the video either before or
after completing the
lesson.

START HERE

C7718_ch01.indd 11C7718_ch01.indd 11 14/03/11 7:39 PM14/03/11 7:39 PM

12

C H A P T E R 1 An Introduction to Visual Basic 2010

Start Page window

Team Explorer
window’s tab

Solution Explorer window

Toolbox window’s tab

be sure these check
boxes are selected

Figure 1-2 Microsoft Visual Studio 2010 Professional startup screen

Start Page window

Toolbox window’s tab

Solution Explorer window

be sure these check
boxes are selected

Figure 1-3 Microsoft Visual Basic 2010 Express startup screen

Next, you will confi gure Visual Studio or Visual Basic Express so that your
screen agrees with the fi gures and tutorial steps in this book.

To confi gure Visual Studio or Visual Basic Express:

1. If you are using Visual Basic 2010 Express, click Tools on the menu
bar, point to Settings, and then click Expert Settings.

2. Click Tools on the menu bar and then click Options to open the
Options dialog box. If necessary, deselect the Show all settings check
box. Click the Projects and Solutions node. Use the information

START HERE

C7718_ch01.indd 12C7718_ch01.indd 12 14/03/11 7:39 PM14/03/11 7:39 PM

13

The Splash Screen Application L E S S O N A

shown in Figure 1-4 to select and deselect the appropriate check
boxes. (Your dialog box will look slightly diff erent if you are using
Visual Basic 2010 Express.) When you are fi nished, click the
OK button to close the Options dialog box.

select these five
check boxes

deselect these
three check
boxes

Figure 1-4 Options dialog box

Th e splash screen will be a Windows application, which means it will have
a Windows user interface and run on a desktop computer. Recall that a user
interface is what the user sees and interacts with while an application is run-
ning. Windows applications in Visual Basic are composed of solutions, proj-
ects, and fi les. A solution is a container that stores the projects and fi les for
an entire application. Although the solutions in this book contain only one
project, a solution can contain several projects. A project also is a container,
but it stores only the fi les associated with that particular project.

To create a Visual Basic 2010 Windows application:

1. Click File on the menu bar and then click New Project to open the
New Project dialog box.

2. If necessary, click Visual Basic in the Installed Templates list. If you
are using Visual Studio, expand the Visual Basic node (if necessary)
and then (if necessary) click Windows.

3. If necessary, click Windows Forms Application in the middle
 column of the dialog box.

4. Change the name entered in the Name box to Splash Project.

5. Click the Browse button to open the Project Location dialog box.
Locate and then click the VB2010\Chap01 folder. Click the Select
Folder button to close the Project Location dialog box.

6. If necessary, select the Create directory for solution check box in
the New Project dialog box. Change the name entered in the Solution
name box to Splash Solution. Figures 1-5 and 1-6 show the com-
pleted New Project dialog box in Visual Studio 2010 Professional and
Visual Basic 2010 Express, respectively. Th e drive letter will be dif-
ferent if you are saving to a device other than your computer’s hard
drive—for example, if you are saving to a fl ash drive.

START HERE

C7718_ch01.indd 13C7718_ch01.indd 13 14/03/11 7:39 PM14/03/11 7:39 PM

14

C H A P T E R 1 An Introduction to Visual Basic 2010

your drive letter
might be different

Figure 1-5 Completed New Project dialog box in Visual Studio 2010 Professional

your drive letter
might be different

Figure 1-6 Completed New Project dialog box in Visual Basic 2010 Express

7. Click the OK button to close the New Project dialog box. Th e
computer creates a solution and adds a Visual Basic project to the
solution. Th e names of the solution and project, as well as other
information pertaining to the project, are recorded in the Solution
Explorer window. See Figure 1-7. Notice that, in addition to the
windows shown earlier in Figures 1-2 and 1-3, three other windows
appear in the IDE: Windows Form Designer, Properties, and Data
Sources. (If you are using Visual Basic 2010 Express, your title bar will
say “Splash Solution – Microsoft Visual Basic 2010 Express. In addi-
tion, your screen will not have the Team Explorer window.)

C7718_ch01.indd 14C7718_ch01.indd 14 14/03/11 7:39 PM14/03/11 7:39 PM

15

The Splash Screen Application L E S S O N A

Auto Hide button

Properties window

solution and
project names
and information

Windows Form Designer window

Data Sources
window’s tab

Figure 1-7 Solution and Visual Basic project

Managing the Windows in the IDE
In most cases, you will fi nd it easier to work in the IDE if you either close
or auto-hide the windows you are not currently using. Th e easiest way to
close an open window is to click the Close button on the window’s title bar.
In most cases, the View menu provides an appropriate option for opening a
closed window. Rather than closing a window, you also can auto-hide it. You
auto-hide a window using the Auto Hide button (refer to Figure 1-7) on the
window’s title bar. Th e Auto Hide button is a toggle button: clicking it once
activates it, and clicking it again deactivates it. Th e Toolbox and Data Sources
windows in Figure 1-7 are auto-hidden windows.

To close, open, auto-hide, and display windows in the IDE:

1. Click the Close button on the Properties window’s title bar to
close the window. Now, click View on the menu bar and then click
Properties Window to open the window.

2. If your IDE contains the Team Explorer window, click the window’s
tab and then click the Close button on its title bar.

3. Click the Auto Hide (vertical pushpin) button on the Solution
Explorer window. Th e Solution Explorer window is minimized and
appears as a tab on the edge of the IDE.

4. To temporarily display the Solution Explorer window, place your
mouse pointer on the Solution Explorer tab. Th e Solution Explorer
window slides into view. Notice that the Auto Hide button is now a
horizontal pushpin rather than a vertical pushpin.

If you want to
widen the
Solution Explorer
window to match
Figure 1-7, posi-

tion your mouse pointer
on the window’s left bor-
der until the mouse
pointer becomes a sizing
pointer (a horizontal line
with an arrowhead at
each end), and then drag
the border to the left.

START HERE

C7718_ch01.indd 15C7718_ch01.indd 15 14/03/11 7:39 PM14/03/11 7:39 PM

16

C H A P T E R 1 An Introduction to Visual Basic 2010

5. Move your mouse pointer away from the Solution Explorer window.
Th e window is minimized and appears as a tab again.

6. To permanently display the Solution Explorer window, place your
mouse pointer on the Solution Explorer tab and then click the Auto
Hide (horizontal pushpin) button on the window’s title bar. Th e verti-
cal pushpin replaces the horizontal pushpin on the button.

7. On your own, close the Data Sources window.

8. Figure 1-8 shows the current status of the windows in the IDE. Only
the Windows Form Designer, Solution Explorer, and Properties win-
dows are open; the Toolbox window is auto-hidden. If necessary,
click Form1.vb in the Solution Explorer window. If the items in the
Properties window do not appear in alphabetical order, click the
Alphabetical button.

Alphabetical button

Figure 1-8 Current status of the windows in the IDE

In the next several sections, you will take a closer look at the Windows Form
Designer, Solution Explorer, and Properties windows. (Th e Toolbox window
is covered in Lesson B.)

The Windows Form Designer Window
Figure 1-9 shows the Windows Form Designer window, where you create
(or design) the graphical user interface, referred to as a GUI, for your project.
Only a Windows Form object appears in the designer window shown in the
fi gure. A Windows Form object, or form, is the foundation for the user inter-
face in a Windows application. You create the user interface by adding other
objects, such as buttons and text boxes, to the form. Notice that a title bar
appears at the top of the form. Th e title bar contains a default caption—in
this case, Form1—as well as Minimize, Maximize, and Close buttons. At
the top of the designer window is a tab labeled Form1.vb [Design]. [Design]
 identifi es the window as the designer window. Form1.vb is the name of the

To reset the win-
dow layout in the
IDE, click Window
on the menu bar,
click Reset

Window Layout, and then
click the Yes button.

C7718_ch01.indd 16C7718_ch01.indd 16 14/03/11 7:39 PM14/03/11 7:39 PM

17

The Splash Screen Application L E S S O N A

fi le (on your computer’s hard disk or on another device) that contains the
Visual Basic instructions associated with the form.

name of the disk file that
contains the instructions
associated with the form

title bar

form

Figure 1-9 Windows Form Designer window

As you learned in the Overview, all objects in an object-oriented program are
instantiated (created) from a class. A form, for example, is an instance of the
Windows Form class. Th e form is automatically instantiated for you when
you create a Windows application.

The Solution Explorer Window
Th e Solution Explorer window displays a list of the projects contained in the
current solution and the items contained in each project. Figure 1-10 shows
the Solution Explorer window for the Splash Solution, which contains one
project named Splash Project. Within the Splash Project are the My Project
folder and a fi le named Form1.vb. Th e project also contains other items,
which typically are kept hidden. However, you can display the additional
items by clicking the Show All Files button. You would click the button again
to hide the items. Th e .vb on the Form1.vb fi lename indicates that the fi le is a
Visual Basic source fi le. A source file is a fi le that contains program instruc-
tions, called code. Th e Form1.vb fi le contains the code associated with the
form displayed in the designer window. You can view the code using the
Code Editor window, which you will learn about in Lesson C.

Show All Files button

Figure 1-10 Solution Explorer window

Th e Form1.vb source fi le is referred to as a form file, because it contains the
code associated with a form. Th e code associated with the fi rst form included
in a project is automatically stored in a form fi le named Form1.vb. Th e code

Recall that a
class is a pattern
that the com-
puter uses to
create an object.

C7718_ch01.indd 17C7718_ch01.indd 17 14/03/11 7:39 PM14/03/11 7:39 PM

18

C H A P T E R 1 An Introduction to Visual Basic 2010

associated with the second form in the same project is stored in a form fi le
named Form2.vb, and so on. Because a project can contain many forms and,
therefore, many form fi les, it is a good practice to give each form fi le a more
meaningful name. Doing this will help you keep track of the various form fi les
in the project. You can use the Properties window to change the fi lename.

The Properties Window
As is everything in an object-oriented language, a fi le is an object. Each
object has a set of attributes that determine its appearance and behavior.
Th e attributes are called properties and are listed in the Properties window.
When an object is created, a default value is assigned to each of its
properties. Th e Properties window shown in Figure 1-11 lists the default
values assigned to the properties of the Form1.vb fi le. (You do not need
to widen your Properties window to match Figure 1-11.) As indicated in
the fi gure, the Properties window includes an Object box and a Properties
list. Th e Object box contains the name of the selected object. In this case,
it contains Form1.vb, which is the name of the form fi le. Th e Properties list
has two columns. Th e left column displays the names of the selected object’s
properties. You can use the Alphabetical and Categorized buttons to display
the names either alphabetically or by category, respectively. However, it’s
usually easier to work with the Properties window when the properties are
listed in alphabetical order, as they are in Figure 1-11. Th e right column in
the Properties list is called the Settings box and displays the current value (or
setting) of each of the properties. A brief description of the selected property
appears in the Description pane.

Object box

Categorized button

Description pane

Properties list

Alphabetical button

Settings box

Figure 1-11 Properties window

To use the Properties window to change the form fi le’s name:

1. Form1.vb should be selected in the Solution Explorer window. Click
File Name in the Properties list and then type Splash Form.vb.
Be sure to include the .vb extension on the fi lename; otherwise, the
 computer will not recognize the fi le as a source fi le.

2. Press Enter. Splash Form.vb appears in the Solution Explorer and
Properties windows and on the designer window’s tab, as shown
in Figure 1-12.

To display the
properties of the
Form1.vb form
fi le, Form1.vb
must be selected

in the Solution Explorer
window.

START HERE

C7718_ch01.indd 18C7718_ch01.indd 18 14/03/11 7:39 PM14/03/11 7:39 PM

19

Properties of a Windows Form L E S S O N A

form file’s name

form file’s nameform file’s name

Figure 1-12 Form fi le’s name shown in various locations

Properties of a Windows Form
Like a fi le, a Windows form also has a set of properties. Th e form’s proper-
ties will appear in the Properties window when you select the form in the
designer window.

To view the properties of the form:

1. Click the form in the designer window. Th e form’s properties appear
in the Properties window.

2. If the properties are not listed alphabetically, click the Alphabetical
button. Th e Properties window in Figure 1-13 shows a partial listing
of the properties of a Windows form.

class name
location of the
Form class

form name

Alphabetical
button

Figure 1-13 Properties window showing a partial listing of the form’s properties

Notice that Form1 System.Windows.Forms.Form appears in the
Object box in Figure 1-13. Form1 is the name of the form. Th e name is
 automatically assigned to the form when the form is instantiated (created).
In System.Windows.Forms.Form, Form is the name of the class used to
instantiate the form. System.Windows.Forms is the namespace that contains

You also can
change the File
Name property
by right-clicking
Form1.vb in the

Solution Explorer window
and then clicking Rename
on the context menu.

START HERE

C7718_ch01.indd 19C7718_ch01.indd 19 14/03/11 7:39 PM14/03/11 7:39 PM

20

C H A P T E R 1 An Introduction to Visual Basic 2010

the Form class defi nition. A class definition is a block of code that speci-
fi es (or defi nes) an object’s appearance and behavior. All class defi nitions in
Visual Basic 2010 are contained in namespaces, which you can picture as
blocks of memory cells inside the computer. Each namespace contains the
code that defi nes a group of related classes. Th e System.Windows.Forms
namespace contains the defi nition of the Windows Form class. It also con-
tains the class defi nitions for objects you add to a form, such as buttons and
text boxes. Th e period that separates each word in System.Windows.Forms.
Form is called the dot member access operator. Similar to the backslash (\)
in a folder path, the dot member access operator indicates a hierarchy, but of
namespaces rather than folders. In other words, the backslash in the path C:\
VB2010\Chap01\Splash Solution\Splash Project\Splash Form.vb indicates
that the Splash Form.vb fi le is contained in (or is a member of) the Splash
Project folder, which is a member of the Splash Solution folder, which is
a member of the Chap01 folder, which is a member of the VB2010 folder,
which is a member of the C: drive. Likewise, the name System.Windows.
Forms.Form indicates that the Form class is a member of the Forms
namespace, which is a member of the Windows namespace, which is a mem-
ber of the System namespace. Th e dot member access operator allows the
computer to locate the Form class in the computer’s internal memory, similar
to the way the backslash (\) allows the computer to locate the Splash Form.vb
fi le on your computer’s disk.

The Name Property
As you do to a form fi le, you should assign a more meaningful name to a
Windows form because doing so will help you keep track of the various
forms in a project. Unlike a fi le, a Windows form has a Name property rather
than a File Name property. You use the name entered in an object’s Name
property to refer to the object in code, so each object must have a unique
name. Th e name you assign to an object must begin with a letter and con-
tain only letters, numbers, and the underscore character. Th e name cannot
include punctuation characters or spaces. Th ere are several conventions for
naming objects in Visual Basic. In this book, you will use a naming conven-
tion called Hungarian notation. Names in Hungarian notation begin with
a three (or more) character ID that represents the object’s type, with the
remaining characters in the name representing the object’s purpose. For
example, using Hungarian notation, you might assign the name frmSplash
to the current form. Th e “frm” identifi es the object as a form, and “Splash”
reminds you of the form’s purpose. Hungarian notation names are entered
using camel case, which means you enter the ID characters in lowercase and
then capitalize the fi rst letter of each subsequent word in the name. Camel
case refers to the fact that the uppercase letters appear as “humps” in the
name because they are taller than the lowercase letters.

To change the name of the form:

1. Drag the scroll box in the Properties window to the top of the vertical
scroll bar. As you scroll, notice the various properties associated with
a form. Also notice that the items within parentheses appear at the
top of the Properties list.

START HERE

C7718_ch01.indd 20C7718_ch01.indd 20 14/03/11 7:39 PM14/03/11 7:39 PM

21

Properties of a Windows Form L E S S O N A

2. Click (Name) in the Properties list. Type frmSplash and press Enter.
An asterisk (*) appears on the designer window’s tab. Th e aster-
isk indicates that the form has been changed since the last time it
was saved.

The Text Property
In addition to changing the form’s Name property, you also should change
its Text property, which controls the text displayed in the form’s title bar. Th e
text also appears when you hover your mouse pointer over the application’s
button on the Windows 7 taskbar while the application is running. Form1 is
the default value assigned to the Text property of the fi rst form in a project.
In this case, “Country Charm Inn” would be a more descriptive value.

To set the Text property of the form:

1. Scroll down the Properties window until you see the Text property in
the Properties list and then click Text.

2. Type Country Charm Inn and press Enter. Th e new text appears in
the property’s Settings box and also in the form’s title bar.

Th e Name and Text properties of a Windows form should always be changed
to more meaningful values. Th e Name property is used by the programmer
when coding the application. Th e Text property, on the other hand, is read by
the user while the application is running.

The StartPosition Property
When an application is started, the computer uses the form’s StartPosition
property to determine the form’s initial position on the screen. Th e
 frmSplash form represents a splash screen, which typically appears in the
middle of the screen.

To center a form on the screen when the application is started:

1. Click StartPosition in the Properties list and then click the list
arrow in the Settings box.

2. Click CenterScreen in the list.

The Font Property
A form’s Font property determines the type, style, and size of the font used
to display the text on the form. A font is the general shape of the characters
in the text. Segoe UI, Tahoma, and Microsoft Sans Serif are examples of font
types. Font styles include regular, bold, and italic. Th e numbers 9, 12, and
18 are examples of font sizes, which typically are measured in points, with
one point equaling 1/72 of an inch. Th e recommended font for applications
created for systems running Windows 7 (or Windows Vista) is Segoe UI,
because it off ers improved readability. Segoe is pronounced SEE-go, and UI
stands for user interface. For most of the elements in the interface, you will
use a font size of 9-point. However, to make the fi gures in the book more
readable, some of the interfaces created in this book will use the 11-point
Segoe UI font.

START HERE

START HERE

C7718_ch01.indd 21C7718_ch01.indd 21 14/03/11 7:39 PM14/03/11 7:39 PM

22

C H A P T E R 1 An Introduction to Visual Basic 2010

To set the form’s Font property:

1. Click Font in the Properties list and then click the . . . (ellipsis) button
in the Settings box to open the Font dialog box.

2. Locate and then click the Segoe UI font in the Font box. Click 9 in
the Size box and then click the OK button. (Don’t be concerned that
the size of the form changed.)

The Size Property
As you can with any Windows object, you can size a form by selecting it and
then dragging the sizing handles that appear around it. You also can size an
object by selecting it and then pressing and holding down the Shift key as
you press the up, down, right, or left arrow key on your keyboard. In addi-
tion, you can set the object’s Size property.

To set the form’s Size property:

1. Click Size in the Properties list. Notice that the Size property con-
tains two numbers separated by a comma and a space. Th e fi rst num-
ber represents the width of the form, measured in pixels. Th e second
number represents the height, also measured in pixels. A pixel, which
is short for “picture element,” is one spot in a grid of thousands of
such spots that form an image either produced on the screen by a
computer or printed on a page by a printer.

2. Type 685, 460 in the Size property’s Settings box and press Enter.
Expand the Size property by clicking the arrow that appears next to
the property. Notice that the fi rst number listed in the property repre-
sents the width, and the second number represents the height. Click
the arrow again to collapse the property.

Setting and Restoring a Property’s Value
In the next set of steps, you will practice setting and then restoring a property’s
value. More specifi cally, you will set and then restore the value of the form’s
BackColor property, which determines the background color of the form.

To set and then restore the form’s BackColor property value:

1. Click BackColor in the Properties list and then click the list arrow in
the Settings box. Click the Custom tab and then click a red square to
change the background color of the form to red.

2. Now, right-click BackColor in the Properties list and then click
Reset on the context menu. Th e background color of the form
returns to its default setting. Figure 1-14 shows the status of the
form in the IDE.

START HERE

START HERE

START HERE

C7718_ch01.indd 22C7718_ch01.indd 22 14/03/11 7:39 PM14/03/11 7:39 PM

23

Closing the Current Solution L E S S O N A

the asterisk indicates that the form has
been changed since the last time it was saved

Figure 1-14 Status of the form in the IDE

Saving a Solution
Notice the asterisk (*) that appears on the designer window's tab in Figure 1-14.
Th e asterisk indicates that a change was made to the form since the last time it
was saved. It is a good practice to save the current solution every 10 or 15 min-
utes so that you will not lose a lot of your work if the computer loses power. You
can save the solution by clicking File on the menu bar and then clicking Save
All. You also can click the Save All button on the Standard toolbar. When you
save the solution, the computer saves any changes made to the fi les included in
the solution. Saving the solution also removes the asterisk that appears on the
designer window’s tab.

To save the current solution:

1. Click File on the menu bar and then click Save All. No asterisk
appears on the designer window’s tab, indicating that all changes
made to the form have been saved.

Closing the Current Solution
When you are fi nished working on a solution, you should close it. Closing a
solution closes all projects and fi les contained in the solution.

To close the Splash Solution:

1. Click File on the menu bar. Notice that the menu contains a Close
option and a Close Solution option. Th e Close option does not close
the solution; instead, it merely closes the designer window in the IDE.
Only the Close Solution option closes the solution.

2. Click Close Solution. Th e Solution Explorer window indicates that
no solution is currently open in the IDE.

START HERE

START HERE

C7718_ch01.indd 23C7718_ch01.indd 23 14/03/11 7:39 PM14/03/11 7:39 PM

24

C H A P T E R 1 An Introduction to Visual Basic 2010

Opening an Existing Solution
You can use the File menu to open an existing solution. If a solution is already
open in the IDE, it is closed before another solution is opened. Th e names of
solution fi les end with .sln.

To open the Splash Solution:

1. Click File on the menu bar and then click Open Project to open the
Open Project dialog box.

2. Locate and then open the VB2010\Chap01\Splash Solution folder.
Click Splash Solution (Splash Solution.sln) in the list of fi lenames
and then click the Open button.

3. Th e Solution Explorer window indicates that the solution is open. If
the designer window is not open, right-click Splash Form.vb in the
Solution Explorer window and then click View Designer.

Exiting Visual Studio 2010 or Visual
Basic 2010 Express
Finally, you learn how to exit Visual Studio 2010 or Visual Basic 2010
Express. You will complete the splash screen in the remaining two lessons.
You can exit Visual Studio or Visual Basic Express using either the Close but-
ton on the title bar or the Exit option on the File menu.

To exit Visual Studio 2010 or Visual Basic 2010 Express:

1. Click File on the menu bar and then click Exit.

Lesson A Summary

 • To start Visual Studio 2010 or Visual Basic 2010 Express:

If you are using Visual Studio 2010, click the Start button, point to All
Programs, click Microsoft Visual Studio 2010, and then click Microsoft
Visual Studio 2010. If you are using Visual Basic 2010 Express, click the
Start button, point to All Programs, click Microsoft Visual Studio 2010
Express, and then click Microsoft Visual Basic 2010 Express.

 • To confi gure Visual Studio or Visual Basic Express:

If you are using Visual Basic 2010 Express, click Tools, point to Settings,
and then click Expert Settings. Click Tools, click Options, deselect the
Show all settings check box, click the Projects and Solutions node, and
then use the information shown earlier in Figure 1-4 to select and deselect
the appropriate check boxes. Click the OK button.

 • To create a Visual Basic 2010 Windows application:

Start either Visual Studio 2010 or Visual Basic 2010 Express. Click File
and then click New Project. If necessary, click Visual Basic in the Installed
Templates list. If you are using Visual Studio, expand the Visual Basic node

START HERE

START HERE

C7718_ch01.indd 24C7718_ch01.indd 24 14/03/11 7:39 PM14/03/11 7:39 PM

25

Lesson A Summary L E S S O N A

(if necessary) and then (if necessary) click Windows. If necessary, click
Windows Forms Application. Enter an appropriate name and location in
the Name and Location boxes, respectively. Select the Create directory for
solution check box. Enter an appropriate name in the Solution name box
and then click the OK button.

 • To reset the window layout in the IDE:

Click Window, click Reset Window Layout, and then click the Yes button.

 • To close and open a window in the IDE:

Close the window by clicking the Close button on its title bar. Use the
appropriate option on the View menu to open the window.

 • To auto-hide a window in the IDE:

Click the Auto Hide (vertical pushpin) button on the window’s title bar.

 • To temporarily display an auto-hidden window in the IDE:

Place your mouse pointer on the window’s tab.

 • To permanently display an auto-hidden window in the IDE:

Click the Auto Hide (horizontal pushpin) button on the window’s title bar.

 • To set the value of a property:

Select the object whose property you want to set and then select the
appropriate property in the Properties list. Type the new property value
in the selected property’s Settings box, or choose the value from the list,
color palette, or dialog box.

 • To give a more meaningful name to an object:

Set the object’s Name property.

 • To control the text appearing in the form’s title bar, as well as the text that
appears when you hover your mouse pointer over the application’s button
on the Windows 7 taskbar while the application is running:

Set the form’s Text property.

 • To specify the starting location of the form:

Set the form’s StartPosition property.

 • To specify the type, style, and size of the font used to display text on the form:

Set the form’s Font property.

 • To size a form:

Drag the form’s sizing handles. You also can set the form’s Size, Height,
and Width values in the Properties window. In addition, you can select
the form and then press and hold down the Shift key as you press the up,
down, left, or right arrow key on your keyboard.

 • To change the background color of a form:

Set the form’s BackColor property.

C7718_ch01.indd 25C7718_ch01.indd 25 14/03/11 7:39 PM14/03/11 7:39 PM

26

C H A P T E R 1 An Introduction to Visual Basic 2010

 • To restore a property to its default setting:

Right-click the property in the Properties list and then click Reset.

 • To save a solution:

Click File on the menu bar and then click Save All. You also can click the
Save All button on the Standard toolbar.

 • To close a solution:

Click File on the menu bar and then click Close Solution.

 • To open an existing solution:

Click File on the menu bar and then click Open Project. Locate and then
open the application’s solution folder. Click the solution fi lename, which
ends with .sln. Click the Open button. If the designer window is not open,
right-click the form fi le’s name in the Solution Explorer window and then
click View Designer.

 • To exit Visual Studio 2010 or Visual Basic 2010 Express:

Click the Close button on the Visual Studio 2010 or Visual Basic 2010
Express title bar. You also can click File on the menu bar and then click Exit.

Lesson A Key Terms
Camel case—used when entering object names in Hungarian notation;
the practice of entering the object’s ID characters in lowercase and then
 capitalizing the fi rst letter of each subsequent word in the name

Class definition—a block of code that specifi es (or defi nes) an object’s
 appearance and behavior
Code—program instructions
Dot member access operator—a period; used to indicate a hierarchy
Form—the foundation for the user interface in a Windows application; also
called a Windows Form object
Form file—a fi le that contains the code associated with a Windows form
GUI—graphical user interface
Namespace—a block of memory cells inside the computer; contains the code
that defi nes a group of related classes
Object box—the section of the Properties window that contains the name of
the selected object
Point—used to measure font size; 1/72 of an inch
Properties—the attributes that control an object’s appearance and behavior
Properties list—the section of the Properties window that lists the names of the
properties associated with the selected object, as well as each property’s value
Properties window—the window that lists an object’s attributes (properties)

C7718_ch01.indd 26C7718_ch01.indd 26 14/03/11 7:39 PM14/03/11 7:39 PM

27

Lesson A Review Questions L E S S O N A

Settings box—the right column of the Properties list; displays each property’s
current value (setting)
Solution Explorer window—the window that displays a list of the projects
contained in the current solution and the items contained in each project
Source file—a fi le that contains code
Windows Form Designer window—the window in which you create an
 application’s GUI

Windows Form object—the foundation for the user interface in a Windows
application; referred to more simply as a form

Lesson A Review Questions

1. When a form has been modifi ed since the last time it was saved, what
appears on its tab in the designer window?

a. an ampersand (&)

b. an asterisk (*)

c. a percent sign (%)

d. a plus sign (+)

2. You use the window to set the characteristics that
control an object’s appearance and behavior.

a. Characteristics

b. Object

c. Properties

d. Toolbox

3. Th e window lists the projects and fi les included
in a solution.

a. Object

b. Project

c. Properties

d. Solution Explorer

4. Th e names of solution fi les in Visual Basic 2010 end with .

a. .prg

b. .sln

c. .src

d. .vb

C7718_ch01.indd 27C7718_ch01.indd 27 14/03/11 7:39 PM14/03/11 7:39 PM

28

C H A P T E R 1 An Introduction to Visual Basic 2010

5. Which of the following statements is true?

a. You can auto-hide a window by clicking the Auto Hide (vertical
pushpin) button on its title bar.

b. An auto-hidden window appears as a tab on the edge of the IDE.

c. You temporarily display an auto-hidden window by placing your
mouse pointer on its tab.

d. all of the above

6. Th e property controls the text displayed in a form’s title bar.

a. Caption

b. Text

c. Title

d. TitleBar

7. You give an object a more meaningful name by setting the object’s
 property.

a. Application

b. Caption

c. Name

d. Text

8. Th e property determines the initial position of a form
when the application is started.

a. InitialLocation

b. Location

c. StartLocation

d. StartPosition

9. Explain the diff erence between a form’s Text property and its Name
property.

10. Explain the diff erence between a form fi le and a form.

11. What does the dot member access operator indicate in the text
System.Windows.Forms.Label?

Lesson A Exercises

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express
and permanently display the Solution Explorer window. Use the File
menu to open the Charities Solution (Charities Solution.sln) fi le,
which is contained in the VB2010\Chap01\Charities Solution folder.

INTRODUCTORY

C7718_ch01.indd 28C7718_ch01.indd 28 14/03/11 7:39 PM14/03/11 7:39 PM

29

Lesson A Exercises L E S S O N A

If necessary, right-click the form fi le’s name in the Solution Explorer
window and then click View Designer. Change the form’s Name prop-
erty to frmMain. Change the form’s BackColor property to light blue.
Change the form’s Font property to Segoe UI, 9pt. Change the form’s
StartPosition property to CenterScreen. Change the form’s Text prop-
erty to Charities Unlimited. Click File on the menu bar and then click
Save All to save the solution. Click File on the menu bar and then
click Close Solution to close the solution.

2. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express and
permanently display the Solution Explorer window. Create a Visual
Basic Windows application. Use the following names for the solution,
project, and form fi le, respectively: Photo Solution, Photo Project, and
Main Form.vb. Save the application in the VB2010\Chap01 folder.
Change the form’s name to frmMain. Th e form’s title bar should say
Photos Incorporated; set the appropriate property. Th e form should
be centered on the screen when it fi rst appears; set the appropriate
property. Change the background color of the form to light blue.
Any text on the form should appear in the Segoe UI, 9pt font; set the
appropriate property. Save and then close the solution.

3. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express and
permanently display the Solution Explorer window. Create a Visual
Basic Windows application. Use the following names for the solution,
project, and form fi le, respectively: Yorktown Solution, Yorktown
Project, and Main Form.vb. Save the solution in the VB2010\Chap01
folder. Change the form’s name to frmMain. Th e form’s title bar
should say Yorktown Shopping Center; set the appropriate property
and then widen the form. Th e form should be centered on the screen
when it fi rst appears; set the appropriate property. Any text on the
form should appear in the Segoe UI, 9pt font; set the appropriate
property. Save and then close the solution.

Discovery

4. In this exercise, you learn about a form’s ControlBox, MaximizeBox,
and MinimizeBox properties. If necessary, start Visual Studio 2010
or Visual Basic 2010 Express and permanently display the Solution
Explorer window. Open the Greenwood Solution (Greenwood
Solution.sln) fi le contained in the VB2010\Chap01\Greenwood
Solution folder. If necessary, open the designer window.

a. Use the Properties window to view the properties of the form.
Click the ControlBox property. What is the purpose of this prop-
erty? (Hint: Refer to the Description pane in the Properties win-
dow.) Set the ControlBox property to False. How does this setting
aff ect the form? Set the ControlBox property to True.

b. Click the MaximizeBox property. What is the purpose of this
property? Set the MaximizeBox property to False. How does this
setting aff ect the form? Set the MaximizeBox property to True.

INTERMEDIATE

INTERMEDIATE

C7718_ch01.indd 29C7718_ch01.indd 29 14/03/11 7:39 PM14/03/11 7:39 PM

30

C H A P T E R 1 An Introduction to Visual Basic 2010

c. Click the MinimizeBox property. What is the purpose of this
property? Set the MinimizeBox property to False. How does this
setting aff ect the form? Set the MinimizeBox property to True.
Close the solution without saving it.

5. In this exercise, you research two properties of a form. If necessary,
start Visual Studio 2010 or Visual Basic 2010 Express and perma-
nently display the Solution Explorer window. Open the Greenwood
Solution (Greenwood Solution.sln) fi le contained in the VB2010\
Chap01\Greenwood Solution folder. If necessary, open the designer
window. Use the Properties window to view the properties of the
form. What property determines whether an icon is displayed in the
form’s title bar? What property determines whether the form appears
on the Windows taskbar when the application is running? Close the
solution without saving it.

C7718_ch01.indd 30C7718_ch01.indd 30 14/03/11 7:39 PM14/03/11 7:39 PM

31

The Toolbox Window L E S S O N B

 ❚ LESSON B
After studying Lesson B, you should be able to:

 • Add a control to a form
 • Set the properties of a label, picture box, and button control
 • Select multiple controls
 • Center controls on the form
 • Open the Project Designer window
 • Start and end an application
 • Enter code in the Code Editor window
 • Terminate an application using the Me.Close() instruction
 • Run the project’s executable fi le

The Toolbox Window
In Lesson A, you learned about the Windows Form Designer, Solution
Explorer, and Properties windows. In this lesson, you will learn about the
Toolbox window, referred to more simply as the toolbox. Th e toolbox contains
the tools you use when creating your application’s user interface. Each tool
represents a class from which an object, such as a button or text box, can be
instantiated. Th e instantiated objects, called controls, will appear on the form.

To open the Splash Solution from Lesson A and then display the
Toolbox window:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express and
open the Solution Explorer window.

2. Open the Splash Solution (Splash Solution.sln) fi le contained in
the VB2010\Chap01\Splash Solution folder. If necessary, open the
designer window.

3. Permanently display the Properties and Toolbox windows and then
auto-hide the Solution Explorer window.

4. Rest your mouse pointer on the word Label in the toolbox. Th e tool’s
purpose appears in a box. See Figure 1-15.

Figure 1-15 Toolbox window showing the purpose of the Label tool

The Ch01BVideo
fi le demonstrates
all of the steps
contained in

Lesson B. You can view
the video either before or
after completing the
lesson.

START HERE

C7718_ch01.indd 31C7718_ch01.indd 31 14/03/11 7:39 PM14/03/11 7:39 PM

32

C H A P T E R 1 An Introduction to Visual Basic 2010

The Label Tool
You use the Label tool to add a label control to a form. Th e purpose of a label
control is to display text that the user is not allowed to edit while the applica-
tion is running. In this case, for example, you do not want the user to change
the name of the inn or the welcome message. Th erefore, you will display the
information using two label controls.

To use the Label tool to instantiate a label control:

1. Click the Label tool in the toolbox, but do not release the mouse
button. Hold down the mouse button as you drag the mouse pointer
to the lower-left corner of the form. As you drag the mouse pointer,
you will see a solid box, as well as an outline of a rectangle and a plus
box, following the mouse pointer. Th e blue lines that appear between
the form’s left and bottom borders and the label’s left and bottom
 borders are called margin lines, because their size is determined by
the contents of the label’s Margin property. Th e purpose of the margin
lines is to assist you in spacing the controls properly on the form.
See Figure 1-16.

the length of the blue horizontal
and vertical lines is determined by
the label’s Margin property

Figure 1-16 Label tool being dragged to the form

2. Release the mouse button. A label control appears on the form. See
Figure 1-17. (If the wrong control appears on the form, right-click
the control, click Delete, and then repeat Steps 1 and 2.) Notice that
Label1 System.Windows.Forms.Label appears in the Object box in the
Properties window. (You may need to widen the Properties window
to view the entire contents of the Object box.) Label1 is the default
name assigned to the label control. System.Windows.Forms.Label
indicates that the control is an instance of the Label class, which is
defi ned in the System.Windows.Forms namespace.

Important note: You also can add a control to the form by clicking
a tool in the toolbox and then clicking the form. In addition, you can
click a tool in the toolbox, place the mouse pointer on the form, and
then press the left mouse button and drag the mouse pointer until
the control is the desired size. You also can double-click a tool in the
toolbox.

START HERE

C7718_ch01.indd 32C7718_ch01.indd 32 14/03/11 7:39 PM14/03/11 7:39 PM

33

The Label Tool L E S S O N B

Text property
value

Label object’s
name

location of the
Label class class name

Figure 1-17 Label control added to the form

Recall from Lesson A that a default value is assigned to each of an object’s
properties when the object is created. Label1 is the default value assigned to
the Text and Name properties of the fi rst label control added to a form. Th e
value of the Text property appears inside the label control, as indicated in
Figure 1-17.

To add another label control to the form:

1. Click the Label tool in the toolbox and then drag the mouse pointer
to the form, positioning it above the existing label control. (Do not
worry about the exact location.)

2. Release the mouse button. Label2 is assigned to the control’s Text and
Name properties.

Some programmers assign meaningful names to all of the controls in an
interface, while others do so only for controls that are either coded or
referred to in code; in subsequent chapters in this book, you will follow the
latter convention. In this chapter, however, you will assign a meaningful
name to each control in the interface. Th e three-character ID used for
naming labels is lbl.

To assign meaningful names to the label controls:

1. Click the Label1 control on the form. Th is selects the control and
displays its properties in the Properties window. Click (Name) in
the Properties list. Type lblName in the Settings box and then press
Enter.

2. Click the Label2 control on the form. Change the control’s name to
lblWelcome and then press Enter.

START HERE

START HERE

C7718_ch01.indd 33C7718_ch01.indd 33 14/03/11 7:39 PM14/03/11 7:39 PM

34

C H A P T E R 1 An Introduction to Visual Basic 2010

Setting the Text Property
As you learned earlier, a label control’s Text property determines the value
that appears inside the control. In this application, you want the words
“Country Charm Inn” to appear in the lblName control, and the words
“Welcome to peace and quiet!” to appear in the lblWelcome control.

To set each label control’s Text property:

1. Currently, the lblWelcome control is selected on the form. Click Text
in the Properties list. Type Welcome to peace and quiet! and then
press Enter. Th e new text appears in the Text property’s Settings box
and in the lblWelcome control. Notice that the designer automatically
sizes the lblWelcome control to fi t its current contents. Th is is
because the default setting of a Label control’s AutoSize property is
True. (You can verify that fact by viewing the AutoSize property in
the Properties window.)

2. Click the lblName control on the form. Change its Text property to
Country Charm Inn and then press Enter. Th e lblName control
stretches automatically to fi t the contents of its Text property.

Setting the Location Property
You can move a control to a diff erent location on the form by placing your
mouse pointer on the control until it becomes a move pointer, and then
dragging the control to the desired location. You also can select the control
and then press and hold down the Control (Ctrl) key as you press the up,
down, left, or right arrow key on your keyboard. In addition, you can set the
 control’s Location property, which specifi es the position of the upper-left
corner of the control.

To set each label control’s Location property:

1. Click the lblWelcome control to select it. Click Location in the
Properties list. Expand the Location property by clicking the arrow
that appears next to the property’s name. Th e X value specifi es the
number of pixels from the left border of the form to the left border
of the control. Th e Y property specifi es the number of pixels between
the top border of the form and the top border of the control. In other
words, the X value refers to the control’s horizontal location on the
form, whereas the Y value refers to its vertical location.

2. Type 190, 380 in the Location property and then press Enter. Th e
lblWelcome control moves to its new location. Click the arrow again
to collapse the property.

3. In addition to selecting a control by clicking it on the form, you
also can select a control by clicking its entry (name and class) in the
Object box in the Properties window. Click the list arrow in the
Properties window’s Object box, and then click lblName System.
Windows.Forms.Label in the list. Set the control’s Location
 property to 220, 350.

START HERE

The move pointer
looks like this: .

START HERE

C7718_ch01.indd 34C7718_ch01.indd 34 14/03/11 7:39 PM14/03/11 7:39 PM

35

Using the Format Menu L E S S O N B

Changing a Property for Multiple Controls
In Lesson A, you changed the form’s Font property to Segoe UI, 9pt. When
you add a control to the form, the control’s Font property is set to the same
value as the form’s Font property. Using object-oriented programming ter-
minology, the control “inherits” the Font attribute of the form. In this case,
for example, the lblName and lblWelcome controls inherit the form’s Font
property setting: Segoe UI, 9pt. At times, you may want to use a diff erent font
type, style, or size for a control’s text. One reason for doing this is to bring
attention to a specifi c part of the screen. In the splash screen, for example, you
can make the text in the two label controls more noticeable by increasing the
size of the font used to display the text. You can change the font size for both
controls at the same time by clicking one control and then pressing and hold-
ing down the Ctrl (Control) key as you click the other control on the form.
You can use the Ctrl+click method to select as many controls as you want. To
cancel the selection of one of the selected controls, press and hold down the
Ctrl key as you click the control. To cancel the selection of all of the selected
controls, release the Ctrl key, then click the form or an unselected control on
the form. You also can select a group of controls on the form by placing the
mouse pointer slightly above and to the left of the fi rst control you want to
select, and then pressing the left mouse button and dragging. A dotted rectan-
gle appears as you drag. When all of the controls you want to select are within
(or at least touched by) the dotted rectangle, release the mouse button. All of
the controls surrounded or touched by the dotted rectangle will be selected.

To select both label controls, and then set their Font property:

1. Verify that the lblName control is selected. Press and hold down the
Ctrl (Control) key as you click the lblWelcome control, and then
release the Ctrl key. Both controls are selected, as shown in Figure 1-18.

both label controls
are selected

Figure 1-18 Label controls selected on the form

2. Open the Font dialog box by clicking Font in the Properties list and
then clicking the . . . (ellipsis) button in the Settings box. Click 16 in
the Size box, and then click the OK button to close the Font dialog
box. Th e text in the two label controls appears in the new font size.

Using the Format Menu
Th e Format menu provides options for manipulating the controls on the
form. Th e Align option, for example, allows you to align two or more controls
by their left, right, top, or bottom borders. You can use the Make Same Size
option to make two or more controls the same width and/or height. Before
you can use the Format menu to change the alignment or size of two or
more controls, you fi rst must select the controls. Th e fi rst control you select
should always be the one whose size and/or location you want to match.
For example, to align the left border of the Label2 control with the left border

START HERE

To experiment
with the Align and
Make Same Size
options, com-
plete Discovery

Exercise 4 at the end of
this lesson.

C7718_ch01.indd 35C7718_ch01.indd 35 14/03/11 7:39 PM14/03/11 7:39 PM

36

C H A P T E R 1 An Introduction to Visual Basic 2010

of the Label1 control, you fi rst select the Label1 control and then select
the Label2 control. However, to make the Label1 control the same size as the
Label2 control, you must select the Label2 control before selecting the Label1
control. Th e fi rst control you select is referred to as the reference control.
Th e reference control will have white sizing handles, whereas the other
selected controls will have black sizing handles. Th e Format menu also has a
Center in Form option that centers one or more controls either horizontally
or vertically on the form. In the next set of steps, you will use the Center in
Form option to center the two label controls on the form.

To center the label controls horizontally on the form:

1. Click the form to deselect the two label controls, and then click the
lblName control. Click Format on the menu bar, point to Center in
Form, and then click Horizontally.

2. Use the Format menu to center the lblWelcome control horizontally
on the form.

3. Click File on the menu bar and then click Save All to save the
solution.

The PictureBox Tool
Th e splash screen you previewed at the beginning of the chapter showed an
image of a rural countryside. You can include an image on a form using a
 picture box control, which you instantiate using the PictureBox tool.

To add a picture box control to the form:

1. Click the PictureBox tool in the toolbox and then drag the mouse
pointer to the upper-left corner of the form. Release the mouse but-
ton. Th e picture box control’s properties appear in the Properties list,
and a box containing a triangle appears in the upper-right corner of
the control. Th e box is referred to as the task box because, when you
click it, it displays a list of the tasks associated with the control. Each
task in the list is associated with one or more properties. You can set
the properties using the task list or the Properties window.

2. Click the task box on the PictureBox1 control. See Figure 1-19.

task box

Figure 1-19 Open task list for a picture box

3. Click Choose Image to open the Select Resource dialog box. Th e
Choose Image task is associated with the Image property in the
Properties window.

START HERE

START HERE

C7718_ch01.indd 36C7718_ch01.indd 36 14/03/11 7:39 PM14/03/11 7:39 PM

37

The PictureBox Tool L E S S O N B

4. To include the image fi le within the project itself, the Project resource
fi le radio button must be selected in the Select Resource dialog box.
Verify that the radio button is selected, and then click the Import
button to open the Open dialog box.

5. Open the VB2010\Chap01 folder. Click Country Charm (Country
Charm.jpg) in the list of fi lenames and then click the Open button.
See Figure 1-20.

image file’s name

Figure 1-20 Completed Select Resource dialog box

6. Click the OK button to close the Select Resource dialog box. A small
portion of the image appears in the picture box control on the form,
and Splash_Project.My.Resources.Resources.Country_Charm appears
in the control’s Image property in the Properties window.

7. Click the list arrow in the Size Mode box in the task list and then
click StretchImage in the list. Click the picture box control to close
the task list.

8. Th e three-character ID used when naming picture box controls is pic. Use
the Properties window to change the picture box’s name to picCountry.

9. Place your mouse pointer on the sizing handle located in the
lower-right corner of the picture box. Drag the control to the size
shown in Figure 1-21 and then release the mouse button.

place your
mouse
pointer on
this sizing
handle and
drag

Figure 1-21 Image shown in the picture box

C7718_ch01.indd 37C7718_ch01.indd 37 14/03/11 7:39 PM14/03/11 7:39 PM

38

C H A P T E R 1 An Introduction to Visual Basic 2010

The Button Tool
Every application should give the user a way to exit the program. Most
Windows applications accomplish this task using either an Exit option on a File
menu or an Exit button. In this lesson, the splash screen will provide a button
for ending the application. In Windows applications, a button control is com-
monly used to perform an immediate action when clicked. Th e OK and Cancel
buttons are examples of button controls found in many Windows applications.

To add a button control to the form:

1. Use the Button tool in the toolbox to add a button control to the
form. Position the control in the lower-right corner of the form.

2. Th e three-character ID used when naming button controls is btn.
Change the button control’s name to btnExit.

3. Th e button control’s Text property determines the text that appears
on the button’s face. Set the button control’s Text property to Exit.

4. Save the solution.

Starting and Ending an Application
Now that the user interface is complete, you can start the splash screen
application to see how it will appear to the user. Before you start an application
for the fi rst time, you should open the Project Designer window and verify the
name of the startup form, which is the form that the computer automatically
displays each time the application is started. You can open the Project Designer
window by right-clicking My Project in the Solution Explorer window and then
clicking Open on the context menu. Or, you can click Project on the menu bar
and then click <project name> Properties on the menu.

To verify the name of the startup form:

1. Auto-hide the Toolbox and Properties windows. Temporarily
 display the Solution Explorer window. Right-click My Project in the
Solution Explorer window and then click Open to open the Project
Designer window.

2. If necessary, click the Application tab to display the Application
pane, which is shown in Figure 1-22. If frmSplash does not appear in
the Startup form list box, click the Startup form list arrow and then
click frmSplash in the list.

Application tab

Project Designer
window’s Close button

name of the
executable file

name of the
startup form

Figure 1-22 Application pane in the Project Designer window

START HERE

START HERE

C7718_ch01.indd 38C7718_ch01.indd 38 14/03/11 7:39 PM14/03/11 7:39 PM

39

Starting and Ending an Application L E S S O N B

You can start an application by clicking Debug on the menu bar and then
clicking Start Debugging. You also can press the F5 key on your keyboard or
click the Start Debugging button on the Standard toolbar. When you start a
Visual Basic application, the computer automatically creates a fi le that can be
run outside of the IDE (such as from the Run dialog box in Windows). Th e
fi le is referred to as an executable file. Th e executable fi le’s name is the same
as the project’s name, except it ends with .exe. Th e name of the executable
fi le for the Splash Project, for example, is Splash Project.exe. However, you
can use the Project Designer window to change the executable fi le’s name.
Th e computer stores the executable fi le in the project’s bin\Debug folder. In
this case, the Splash Project.exe fi le is stored in the VB2010\Chap01\Splash
Solution\Splash Project\bin\Debug folder. When you are fi nished with an
application, you typically give the user only the executable fi le, because it
does not allow the user to modify the application’s code. To allow someone to
modify the code, you need to provide the entire solution.

To change the name of the executable fi le, and then start and end
the application:

1. Th e Project Designer window should still be open. Change the fi le-
name in the Assembly name box to Splash. Save the solution and
then close the Project Designer window by clicking its Close button.
(Refer to Figure 1-22 for the location of the Close button.)

2. Click Debug on the menu bar and then click Start Debugging to
start the application. See Figure 1-23. (Do not be concerned about any
windows that appear at the bottom of the screen.)

startup form

form’s Close button

Figure 1-23 Result of starting the splash screen application

3. Recall that the purpose of the Exit button is to allow the user to end
the application. Click the Exit button on the splash screen. Currently,
the button will not work as intended, because you have not yet
entered the instructions that tell the button how to respond when
clicked.

The Start
Debugging
 button looks
like this: .

START HERE

C7718_ch01.indd 39C7718_ch01.indd 39 14/03/11 7:39 PM14/03/11 7:39 PM

40

C H A P T E R 1 An Introduction to Visual Basic 2010

4. Click the Close button on the form’s title bar to stop the application.
(You also can click the designer window to make it the active window,
then click Debug on the menu bar, and then click Stop Debugging.)

The Code Editor Window
After creating your application’s interface, you can begin entering the Visual
Basic instructions (code) that tell the controls how to respond to the user’s
actions. Th ose actions—such as clicking, double-clicking, or scrolling—are
called events. You tell an object how to respond to an event by writing an
event procedure, which is a set of Visual Basic instructions that are processed
only when the event occurs. You enter the procedure’s code in the Code
Editor window. In this lesson, you will write a Click event procedure for the
Exit button, which should end the application when it is clicked.

To open the Code Editor window:

1. Right-click the form and then click View Code on the context menu.
Th e Code Editor window opens in the IDE, as shown in Figure 1-24.
Th e Code Editor window contains the Class statement, which is used
to defi ne a class in Visual Basic. In this case, the Class statement
begins with the Public Class frmSplash clause and ends with
the End Class clause. Within the Class statement you enter the code
to tell the form and its objects how to react to the user’s actions.

click the minus box
to collapse the code

Code Editor
window’s tab

you can use this list box
to increase or decrease
the size of the code font

designer
window’s tab

Figure 1-24 Code Editor window opened in the IDE

If the Code Editor window contains many lines of code, you might want to
hide the sections of code that you are not presently working with or that
you do not want to print. You hide a section (or region) of code by clicking
the minus box that appears next to it. To unhide a region of code, you click
the plus box that appears next to the code. Hiding and unhiding code is also
referred to as collapsing and expanding the code, respectively.

To collapse and expand a region of code in the Code Editor window:

1. Click the minus box that appears next to the Public Class
 frmSplash clause in the Code Editor window. Doing this collapses
the Class statement, as shown in Figure 1-25.

START HERE

The Public
keyword in the
Class statement
indicates that the
class can be

used by code defi ned
outside of the class.

START HERE

C7718_ch01.indd 40C7718_ch01.indd 40 14/03/11 7:39 PM14/03/11 7:39 PM

41

The Code Editor Window L E S S O N B

click the plus box to
expand the code

Class Name list box Method Name list box

Figure 1-25 Code collapsed in the Code Editor window

2. Now click the plus box to expand the code.

As Figure 1-25 indicates, the Code Editor window contains a Class Name list
box and a Method Name list box. Th e Class Name list box lists the names of
the objects included in the user interface. Th e Method Name list box lists the
events to which the selected object is capable of responding. In object-oriented
programming (OOP), an event is considered a behavior of an object because it
represents an action to which the object can respond. In the context of OOP,
the Code Editor window “exposes” an object’s behaviors to the programmer.
You use the Class Name and Method Name list boxes to select the object and
event, respectively, that you want to code. In this case, you will select btnExit
in the Class Name list box and Click in the Method Name list box. Th is is
because you want the application to end when the Exit button is clicked.

To select the btnExit control’s Click event:

1. Click the Class Name list arrow and then click btnExit in the list.

2. Click the Method Name list arrow and then click Click in the list. A
code template for the btnExit control’s Click event procedure appears
in the Code Editor window. See Figure 1-26.

procedure header

procedure footer

insertion point

Figure 1-26 btnExit control’s Click event procedure

Th e Code Editor provides the code template to help you follow the rules of
the Visual Basic language. Th e rules of a programming language are called
its syntax. Th e fi rst line in the code template is called the procedure header,
and the last line is called the procedure footer. Th e procedure header begins
with the two keywords Private Sub. A keyword is a word that has a special
meaning in a programming language. Keywords appear in a diff erent color
from the rest of the code. Th e Private keyword in Figure 1-26 indicates that

START HERE

C7718_ch01.indd 41C7718_ch01.indd 41 14/03/11 7:39 PM14/03/11 7:39 PM

42

C H A P T E R 1 An Introduction to Visual Basic 2010

the button’s Click event procedure can be used only within the current Code
Editor window. Th e Sub keyword is an abbreviation of the term sub proce-
dure, which is a block of code that performs a specifi c task. Following the
Sub keyword is the name of the object, an underscore, the name of the event,
and parentheses containing some text. For now, you do not have to be con-
cerned with the text that appears between the parentheses. After the closing
parenthesis is Handles btnExit.Click. Th is part of the procedure header
indicates that the procedure handles (or is associated with) the btnExit con-
trol’s Click event. It tells the computer to process the procedure only when
the btnExit control is clicked.

Th e code template ends with the procedure footer, which contains the
keywords End Sub. You enter your Visual Basic instructions at the loca-
tion of the insertion point, which appears between the Private Sub and End
Sub clauses in Figure 1-26. Th e Code Editor automatically indents the line
between the procedure header and footer. Indenting the lines within a pro-
cedure makes the instructions easier to read and is a common programming
practice. In this case, the instruction you enter will tell the btnExit control to
end the application when it is clicked.

The Me.Close() Instruction
Th e Me.Close() instruction tells the computer to close the current form.
If the current form is the only form in the application, closing it terminates
the entire application. In the instruction, Me is a keyword that refers to the
current form, and Close is one of the methods available in Visual Basic.
A method is a predefi ned procedure that you can call (or invoke) when
needed. For example, if you want the computer to close the current form
when the user clicks the Exit button, you enter the Me.Close() instruction
in the button’s Click event procedure. Notice the empty set of parentheses
after the method’s name in the instruction. Th e parentheses are required
when calling some Visual Basic methods. However, depending on the
method, the parentheses may or may not be empty. If you forget to enter the
empty set of parentheses, the Code Editor will enter them for you when you
move the insertion point to another line in the Code Editor window.

To code the btnExit control’s Click event procedure:

1. You can type the Me.Close() instruction on your own or use the
Code Editor window’s IntelliSense feature. In this set of steps, you will
use the IntelliSense feature. Type me. (but don’t press Enter). When
you type the period, the IntelliSense feature displays a list of proper-
ties, methods, and so on from which you can select.

Important note: If the list of choices does not appear, the IntelliSense
feature may have been turned off on your computer system. To turn it
on, click Tools on the menu bar and then click Options. If necessary,
select the Show all settings check box. Expand the Text Editor node
and then click Basic. Select the Auto list members check box and then
click the OK button.

START HERE

C7718_ch01.indd 42C7718_ch01.indd 42 14/03/11 7:39 PM14/03/11 7:39 PM

43

The Code Editor Window L E S S O N B

2. If necessary, click the Common tab. Th e Common tab displays the
most commonly used items, whereas the All tab displays all of the
items. Type cl (but don’t press Enter). Th e IntelliSense feature high-
lights the Close method in the list. See Figure 1-27.

the box contains a
description of the
selected item

Figure 1-27 List displayed by the IntelliSense feature

3. Press Tab to include the Close method in the instruction and then
press Enter. See Figure 1-28.

Figure 1-28 Completed Click event procedure for the btnExit control

It’s a good programming practice to test a procedure after you have coded it.
By doing this, you’ll know where to look if an error occurs. You can test the
Exit button’s Click event procedure by starting the application and then click-
ing the button. When the button is clicked, the computer will process the
Me.Close() instruction contained in the procedure.

To test the Exit button’s Click event procedure and the executable fi le:

1. Save the solution and then press the F5 key to start the application.
Th e splash screen appears.

2. Click the Exit button to end the application. Close the Code Editor
window and then close the solution.

3. Press and hold down the Windows logo key on your keyboard as you
tap the letter r. Th e Run dialog box opens. Release the logo key.

4. Click the Browse button. Locate and then open the VB2010\Chap01\
Splash Solution\Splash Project\bin\Debug folder. Click Splash
(Splash.exe) and then click the Open button.

5. Click the OK button in the Run dialog box. When the splash screen
appears, click the Exit button.

START HERE

C7718_ch01.indd 43C7718_ch01.indd 43 14/03/11 7:39 PM14/03/11 7:39 PM

44

C H A P T E R 1 An Introduction to Visual Basic 2010

Lesson B Summary

 • To add a control to a form:

Click a tool in the toolbox, but do not release the mouse button. Hold
down the mouse button as you drag the mouse pointer to the form, and
then release the mouse button. You also can click a tool in the toolbox and
then click the form. In addition, you can click a tool in the toolbox, place
the mouse pointer on the form, and then press the left mouse button and
drag the mouse pointer until the control is the desired size. You also can
double-click a tool in the toolbox.

 • To display text that the user cannot edit while the application is running:

Use the Label tool to instantiate a label control. Set the label control’s Text
property.

 • To move a control to a diff erent location on the form:

Drag the control to the desired location. You also can set the control’s
Location property. In addition, you can select the control and then press
and hold down the Ctrl (Control) key as you press the up, down, right, or
left arrow key on your keyboard.

 • To specify the type, style, and size of the font used to display text in a control:

Set the control’s Font property.

 • To select multiple controls on a form:

Click the fi rst control you want to select, then Ctrl+click each of the other
controls you want to select. You also can select a group of controls on the
form by placing the mouse pointer slightly above and to the left of the fi rst
control you want to select, then pressing the left mouse button and drag-
ging. A dotted rectangle appears as you drag. When all of the controls
you want to select are within (or at least touched by) the dotted rectangle,
release the mouse button. All of the controls surrounded or touched by
the dotted rectangle will be selected.

 • To cancel the selection of one or more controls:

You cancel the selection of one control by pressing and holding down
the Ctrl key as you click the control. You cancel the selection of all of the
selected controls by releasing the Ctrl key and then clicking the form or an
unselected control on the form.

 • To center one or more controls on the form:

Select the controls you want to center. Click Format on the menu bar,
point to Center in Form, and then click either Horizontally or Vertically.

 • To align the borders of two or more controls on the form:

Select the reference control, and then select the other controls you want
to align. Click Format on the menu bar, point to Align, and then click the
appropriate option.

C7718_ch01.indd 44C7718_ch01.indd 44 14/03/11 7:39 PM14/03/11 7:39 PM

45

Lesson B Key Terms L E S S O N B

 • To make two or more controls on the form the same size:

Select the reference control, and then select the other controls you want
to size. Click Format on the menu bar, point to Make Same Size, and then
click the appropriate option.

 • To display a graphic in a control in the user interface:

Use the PictureBox tool to instantiate a picture box control. Use the task box
or Properties window to set the control’s Image and SizeMode properties.

 • To display a standard button that performs an action when clicked:

Use the Button tool to instantiate a button control.

 • To verify or change the names of the startup form and/or executable fi le:

Use the Application pane in the Project Designer window. You can open
the Project Designer window by right-clicking My Project in the Solution
Explorer window, and then clicking Open on the context menu. Or,
you can click Project on the menu bar and then click <project name>
Properties on the menu.

 • To start and stop an application:

You can start an application by clicking Debug on the menu bar and then
clicking Start Debugging. You also can press the F5 key on your keyboard
or click the Start Debugging button on the Standard toolbar. You can stop
an application by clicking the form’s Close button. You also can fi rst make
the designer window the active window, and then click Debug on the
menu bar and then click Stop Debugging.

 • To open the Code Editor window:

Right-click the form and then click View Code on the context menu.

 • To display an object’s event procedure in the Code Editor window:

Open the Code Editor window. Use the Class Name list box to select the
object’s name, and then use the Method Name list box to select the event.

 • To allow the user to close the current form while an application is running:

Enter the Me.Close() instruction in an event procedure.

 • To run a project’s executable fi le:

Open the Run dialog box in Windows. Click the Browse button. Locate
and then open the project’s bin\Debug folder. Click the executable fi le’s
name. Click the Open button to close the Browse dialog box, and then
click the OK button.

Lesson B Key Terms
Button control—the control commonly used to perform an immediate action
when clicked

Class Name list box—appears in the Code Editor window; lists the names of
the objects included in the user interface

Controls—objects (such as a label, picture box, or button) added to a form

C7718_ch01.indd 45C7718_ch01.indd 45 14/03/11 7:39 PM14/03/11 7:39 PM

46

C H A P T E R 1 An Introduction to Visual Basic 2010

Event procedure—a set of Visual Basic instructions that tell an object how to
respond to an event

Events—actions to which an object can respond; examples include clicking
and double-clicking

Executable file—a fi le that can be run outside of the Visual Studio IDE, such
as from the Run dialog box in Windows; the fi le has an .exe extension on its
fi lename

Keyword—a word that has a special meaning in a programming language

Label control—the control used to display text that the user is not allowed to
edit while an application is running

Method—a predefi ned Visual Basic procedure that you can call (invoke) when
needed

Method Name list box—appears in the Code Editor window; lists the events
to which the selected object is capable of responding

OOP—acronym for object-oriented programming

Picture box control—the control used to display an image on a form

Procedure footer—the last line in a procedure

Procedure header—the fi rst line in a procedure

Reference control—the fi rst control selected in a group of controls; this is the
control whose size and/or location you want the other selected controls to
match

Startup form—the form that appears automatically when an application is
started

Sub procedure—a block of code that performs a specifi c task

Syntax—the rules of a programming language

Toolbox—refers to the Toolbox window

Toolbox window—the window that contains the tools used when creating an
interface; each tool represents a class; referred to more simply as the toolbox

Lesson B Review Questions

1. Th e purpose of the control is to display text that the
user is not allowed to edit while the application is running.

a. Button

b. DisplayBox

c. Label

d. PictureBox

C7718_ch01.indd 46C7718_ch01.indd 46 14/03/11 7:39 PM14/03/11 7:39 PM

47

Lesson B Exercises L E S S O N B

2. Th e text displayed on a button’s face is stored in the button’s
 property.

a. Caption

b. Label

c. Name

d. Text

3. Th e Format menu contains options that allow you to .

a. align two or more controls

b. center one or more controls horizontally on the form

c. make two or more controls the same size

d. all of the above

4. You can use the instruction to terminate a running
application.

a. Me.Close()

b. Me.Done()

c. Me.Finish()

d. Me.Stop()

5. Defi ne the term “syntax.”

Lesson B Exercises

1. Open the Mechanics Solution (Mechanics Solution.sln) fi le contained
in the VB2010\Chap01\Mechanics Solution folder. If necessary, open
the designer window.

a. Change the form fi le’s name to Main Form.vb.

b. Change the form’s name to frmMain. Change its Font property to
Segoe UI, 9pt. Th e form’s title bar should say IMA; set the appro-
priate property. Th e form should be centered on the screen when
it fi rst appears; set the appropriate property.

c. Add a label control to the form. Th e label should contain the text
“International Mechanics Association” (without the quotation
marks); set the appropriate property. Display the label’s text in
italics using the Segoe UI, 12pt font. Th e label should be located
16 pixels from the top of the form, and it should be centered
 horizontally on the form.

INTRODUCTORY

C7718_ch01.indd 47C7718_ch01.indd 47 14/03/11 7:39 PM14/03/11 7:39 PM

48

C H A P T E R 1 An Introduction to Visual Basic 2010

d. Add a button control to the form. Change the button’s name
to btnExit. Th e button should display the text “Exit” (without
the quotation marks); set the appropriate property. Th e button
should be located 200 pixels from the left border of the form, and
180 pixels from the top of the form.

e. Open the Code Editor window. Enter the Me.Close() instruc-
tion in the btnExit control’s Click event procedure.

f. Display the Project Designer window. Verify that the name of
the startup form is frmMain. Also, use the Assembly name box
to change the executable fi le’s name to IMA. Close the Project
Designer window.

g. Save the solution and then start the application. Use the Exit
 button to stop the application. Close the Code Editor window
and then close the solution.

h. Use the Run dialog box to run the project’s executable fi le.

2. Create a Visual Basic Windows application. Use the following
names for the solution, project, and form fi le, respectively: Costello
Solution, Costello Project, and Main Form.vb. Save the application
in the VB2010\Chap01 folder. Create the user interface shown in
Figure 1-29. Change the form’s Font property to Segoe UI, 9pt. You
can use any font style and size for the label controls. Th e form should
be centered on the screen when the application is started. Code the
Exit button so that it closes the application when it is clicked. Use the
Project Designer window to verify that the name of the startup form is
correct, and to change the executable fi le’s name to Costello Motors.
Save the solution and then start the application. Use the Exit button to
stop the application. Close the Code Editor window and then close the
solution. Use the Run dialog box to run the project’s executable fi le.

lblName

frmMain

lblMessage

btnExit

Figure 1-29 User interface for the Costello Motors application

3. Create a Visual Basic Windows application. Use the following
names for the solution, project, and form fi le, respectively: Tabatha
Solution, Tabatha Project, and Main Form.vb. Save the application
in the VB2010\Chap01 folder. Create the user interface shown in
Figure 1-30. Change the form’s Font property to Segoe UI, 9pt. You
can use any font style and size for the label control. Th e form should

INTERMEDIATE

INTERMEDIATE

C7718_ch01.indd 48C7718_ch01.indd 48 14/03/11 7:39 PM14/03/11 7:39 PM

49

Lesson B Exercises L E S S O N B

be centered on the screen when the application is started. Assign
appropriate names to the form, label, button, and picture box. Th e
image is stored in the 00223754.gif fi le, which is contained in the
VB2010\Chap01 folder. Code the Exit button so that it closes the
application when it is clicked. Use the Project Designer window to
verify that the name of the startup form is correct, and to change the
executable fi le’s name to Tabatha. Save the solution and then start
the application. Use the Exit button to stop the application. Close the
Code Editor window and then close the solution. Use the Run dialog
box to run the project’s executable fi le.

Figure 1-30 User interface for the Tabatha’s Bed and Breakfast application

Discovery

4. In this exercise, you learn about the Format menu’s Align and Make
Same Size options.

a. Open the Jerrods Solution (Jerrods Solution.sln) fi le contained in
the VB2010\Chap01\Jerrods Solution folder. If necessary, open
the designer window.

b. Click one of the button controls on the form, and then press and
hold down the Ctrl (Control) key as you click the remaining two
button controls. Release the Ctrl key. Notice that the sizing handles
on the fi rst button you selected are white, while the sizing handles
on the other two buttons are black. Th e Align and Make Same Size
options on the Format menu use the control with the white siz-
ing handles as the reference control when aligning and sizing the
selected controls. First, you will practice with the Align option by
aligning the three buttons by their left borders. Click Format, point
to Align, and then click Lefts. Th e left borders of the last two buttons
you selected are aligned with the left border of the reference control.

c. Th e Make Same Size option makes the selected objects the same
height, width, or both. Here again, the fi rst object you select
determines the size. Click the form to deselect the three buttons.
Click Button2, Ctrl+click Button3, and then Ctrl+click Button1.
Click Format, point to Make Same Size, and then click Both. Th e
height and width of the last two controls you selected now match
the height and width of the reference control.

d. Click the form to deselect the buttons. Save and then close the
solution.

C7718_ch01.indd 49C7718_ch01.indd 49 14/03/11 7:39 PM14/03/11 7:39 PM

50

C H A P T E R 1 An Introduction to Visual Basic 2010

 ❚ LESSON C
After studying Lesson C, you should be able to:

 • Set the properties of a timer control

 • Delete a control from the form

 • Delete code from the Code Editor window

 • Code a timer control’s Tick event procedure

 • Prevent the user from sizing a form

 • Remove and/or disable a form’s Minimize, Maximize, and Close buttons

 • Print an application’s code and interface

Using the Timer Tool
In Lesson B, you added an Exit button to the splash screen created for the
Country Charm Inn. Splash screens usually do not contain an Exit button.
Instead, they use a timer control to automatically remove themselves from
the screen after a set period of time. In this lesson, you will remove the Exit
button from the splash screen and replace it with a timer control.

To open the Splash Solution from Lesson B:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express and
open the Solution Explorer window.

2. Open the Splash Solution (Splash Solution.sln) fi le contained in
the VB2010\Chap01\Splash Solution folder. If necessary, open the
designer window.

3. Permanently display the Properties and Toolbox windows, and then
auto-hide the Solution Explorer window.

You instantiate a timer control using the Timer tool, which is located in the
Components section of the toolbox. When you drag the Timer tool to the
form and then release the mouse button, the timer control will be placed in
the component tray rather than on the form. Th e component tray is a spe-
cial area of the IDE. Its purpose is to store controls that do not appear in the
user interface during run time, which occurs while an application is running.
In other words, the timer will not be visible to the user when the interface
appears on the screen.

Th e purpose of a timer control is to process code at one or more regular
intervals. Th e length of each interval is specifi ed in milliseconds and entered
in the timer’s Interval property. A millisecond is 1/1000 of a second; in other
words, there are 1000 milliseconds in a second. Th e timer’s state—either
running or stopped—is determined by its Enabled property, which can be
set to either the Boolean value True or the Boolean value False. When its
Enabled property is set to True, the timer is running; when it is set to False,
the timer is stopped. If the timer is running, its Tick event occurs each time
an interval has elapsed. Each time the Tick event occurs, the computer
processes the code contained in the Tick event procedure. If the timer is

The Ch01CVideo
fi le demonstrates
all of the steps
contained in

Lesson C. You can view the
video either before or after
completing the lesson.

START HERE

The Boolean
values (True and
False) are named
after the English
mathematician
George Boole.

C7718_ch01.indd 50C7718_ch01.indd 50 14/03/11 7:39 PM14/03/11 7:39 PM

51

Using the Timer Tool L E S S O N C

stopped, the Tick event does not occur and, therefore, the code entered in
the Tick event procedure is not processed.

To add a timer control to the splash screen:

1. If necessary, expand the Components node in the toolbox. Click the
Timer tool and then drag the mouse pointer to the form. (Do not
worry about the exact location.) When you release the mouse button, a
timer control appears in the component tray at the bottom of the IDE.

2. Th e three-character ID used when naming timer controls is tmr.
Change the timer’s name to tmrExit, and then set its Enabled
 property to True.

3. You will have the timer end the application after six seconds, which
are 6000 milliseconds. Set the timer’s Interval property to 6000 and
press Enter. See Figure 1-31.

Timer tool

timer control

component tray

Figure 1-31 Timer control placed in the component tray

You no longer need the Exit button, so you can delete it and its associated
code. You then will enter the Me.Close() instruction in the timer’s Tick
event procedure.

To delete the Exit button and its code, and then code and test the timer:

1. Auto-hide the Toolbox and Properties windows. Click the Exit button
to select it and then press Delete to delete the control from the form.

2. Deleting a control from the form does not delete the control’s code,
which remains in the Code Editor window. Open the Code Editor
window by right-clicking the form and then clicking View Code.
Select (highlight) the entire Click event procedure for the btnExit
control, including the blank line above the procedure, as shown in
Figure 1-32.

START HERE

START HERE

C7718_ch01.indd 51C7718_ch01.indd 51 14/03/11 7:39 PM14/03/11 7:39 PM

52

C H A P T E R 1 An Introduction to Visual Basic 2010

highlight (select)
the entire Click
event procedure,
including the
blank line above
the procedure

Figure 1-32 Exit button’s Click event procedure selected in the Code Editor window

3. Press Delete to delete the selected code from the Code Editor
window.

4. Use the Class Name and Method Name list boxes to open the
code template for the tmrExit control’s Tick event procedure. Type
Me.Close() and press Enter.

5. Save the solution and then start the application. Th e splash form
appears on the screen.

6. Place your mouse pointer on the form’s right border until it becomes
a horizontal sizing pointer, and then drag the form’s border to the
left. Notice that you can change the form’s size during run time.
Typically, a user is not allowed to change the size of a splash screen.
You can prevent the user from sizing the form by changing the form’s
FormBorderStyle property, which you will do in the next section.

7. When six seconds have elapsed, the application ends and the splash
form disappears. Click the Splash Form.vb [Design] tab to make the
designer window the active window.

Setting the FormBorderStyle Property
A form’s FormBorderStyle property determines the border style of the form.
For most applications, you will leave the property at its default setting,
Sizable. Doing this allows the user to change the form’s size by dragging its
borders while the application is running. When a form represents a splash
screen, however, you typically set the FormBorderStyle property to either
None or FixedSingle. Th e None setting removes the form’s border, whereas
the FixedSingle setting draws a fi xed, thin line around the form.

To change the FormBorderStyle property:

1. Click the form’s title bar to select the form. Temporarily display the
Properties window, and then set the FormBorderStyle property to
FixedSingle.

2. Save the solution and then start the application. Try to size the form
by dragging one of its borders. You will notice that you cannot size
the form using its border.

The horizontal
sizing pointer
looks like
this: .

START HERE

C7718_ch01.indd 52C7718_ch01.indd 52 14/03/11 7:39 PM14/03/11 7:39 PM

53

The MinimizeBox, MaximizeBox, and ControlBox Properties L E S S O N C

3. When six seconds have elapsed, the application ends. Start the
 application again. Notice that the splash screen’s title bar contains
a Minimize button, a Maximize button, and a Close button. As a
 general rule, most splash screens do not contain these elements. You
will learn how to remove the elements, as well as the title bar itself,
in the next section. Here again, the application ends after six seconds
have elapsed.

The MinimizeBox, MaximizeBox, and ControlBox
Properties
You can use a form’s MinimizeBox property to disable the Minimize button
that appears on the form’s title bar. Similarly, you can use the MaximizeBox
property to disable the Maximize button. You will experiment with both
properties in the next set of steps.

To experiment with the MinimizeBox and MaximizeBox properties:

1. If necessary, click the form’s title bar to select the form. First, you
will disable the Minimize button. Set the form’s MinimizeBox prop-
erty to False. Notice that the Minimize button appears dimmed
(grayed out) on the title bar. Th is indicates that the button is not
 available for use.

2. Now you will enable the Minimize button and disable the Maximize
button. Set the MinimizeBox property to True, and then set the
MaximizeBox property to False. Now only the Maximize button
appears dimmed (grayed out) on the title bar.

3. Now observe what happens if both the MinimizeBox and
MaximizeBox properties are set to False. Set the MinimizeBox
 property to False. (Th e MaximizeBox property is already set to False.)
Notice that when both properties are set to False, the buttons are not
disabled; instead, they are removed from the title bar.

4. Now return the buttons to their original state. Set the MinimizeBox
and MaximizeBox properties to True.

Unlike most applications, splash screens typically do not contain a title bar.
You can remove the title bar by setting the form’s ControlBox property to
False, and then removing the text from its Text property. You will try this next.

To remove the title bar from the splash screen:

1. Set the form’s ControlBox property to False. Doing this removes the
title bar elements (icon and buttons) from the form; however, it does
not remove the title bar itself. To remove the title bar, you must delete
the contents of the form’s Text property. Select the text in the Text
property. Press Delete and then press Enter.

2. Save the solution and then start the application. Th e splash screen
appears without a title bar. See Figure 1-33. Th e application ends after
six seconds have elapsed.

START HERE

START HERE

C7718_ch01.indd 53C7718_ch01.indd 53 14/03/11 7:39 PM14/03/11 7:39 PM

54

C H A P T E R 1 An Introduction to Visual Basic 2010

Figure 1-33 Completed splash screen

Printing the Application’s Code and Interface
You should always print a copy of your application’s code, because the print-
out will help you understand and maintain the application in the future. To
print the code, the Code Editor window must be the active (current) win-
dow. You also should print a copy of the application’s user interface. You can
print the interface during either design time or run time. In this chapter, you
will learn how to print the interface during design time. Printing the inter-
face during run time is covered in Appendix D (which is available at
www.cengagebrain.com).

To print the splash screen’s interface and code:

1. Th e designer window should be the active window. Press and hold
down the Alt key on your keyboard as you tap the Print Screen
(Prnt Scrn or PrtSc) key and then release the Alt key. Doing this
places a picture of the interface on the Clipboard. Start Microsoft
Word (or any application that can display a picture) and open a new
document (if necessary). Press Ctrl+v to paste the contents of the
Clipboard in the document. Press Ctrl+p to open the Print dialog
box. If your computer is connected to a printer, click the OK but-
ton; otherwise, click the Cancel button. Close Microsoft Word (or
the application you used to display the picture) without saving the
document.

2. Click the Splash Form.vb tab to make the Code Editor window
the active window. Click File on the menu bar, and then click Print
to open the Print dialog box. See Figure 1-34. Notice that you can
include line numbers in the printout. You also can choose to hide
the collapsed regions of code. Currently, the Hide collapsed regions
check box is grayed out because no code is collapsed in the Code
Editor window.

START HERE

C7718_ch01.indd 54C7718_ch01.indd 54 14/03/11 7:39 PM14/03/11 7:39 PM

www.cengagebrain.com

55dimmed (grayed out) because
no code is collapsed in the
Code Editor window

allows you to include
line numbers in the printout

Figure 1-34 Print dialog box

3. If your computer is connected to a printer, click the OK button to
begin printing; otherwise, click the Cancel button. If you clicked the
OK button, your printer prints the code.

4. Close the Code Editor window and then close the solution.

Lesson C Summary

 • To process code at specifi ed intervals of time:

Use the Timer tool to instantiate a timer control. Set the timer’s Interval
property to the number of milliseconds for each interval. Turn on the
timer by setting its Enabled property to True. Enter the timer’s code in its
Tick event procedure.

 • To delete a control:
Select the control you want to delete and then press Delete. If the control
contains code, open the Code Editor window and delete the code con-
tained in the control’s event procedures.

 • To control the border style of the form:
Set the form’s FormBorderStyle property.

 • To enable/disable the Minimize button on the form’s title bar:
Set the form’s MinimizeBox property.

 • To enable/disable the Maximize button on the form’s title bar:
Set the form’s MaximizeBox property.

 • To control whether the icon and buttons appear in the form’s title bar:
Set the form’s ControlBox property.

 • To print the user interface:
Make the designer window the active window. Press and hold down the
Alt key on your keyboard as you tap the Print Screen (Prnt Scrn or PrtSc)
key and then release the Alt key. Start an application that can display a

Lesson C Summary L E S S O N C

C7718_ch01.indd 55C7718_ch01.indd 55 14/03/11 7:39 PM14/03/11 7:39 PM

56

C H A P T E R 1 An Introduction to Visual Basic 2010

 picture (such as Microsoft Word) and open a new document (if necessary).
Press Ctrl+v to paste the contents of the Clipboard in the document. Press
Ctrl+p to open the Print dialog box. Click the OK button. Close the appli-
cation you used to display the picture.

 • To print the Visual Basic code:

Make the Code Editor window the active window. Collapse any code you
do not want to print. Click File on the menu bar and then click Print.
If you don’t want to print the collapsed code, select the Hide collapsed
regions check box. If you want to print line numbers, select the Include
line numbers check box. Click the OK button in the Print dialog box.

Lesson C Key Terms
Component tray—a special area in the IDE; stores controls that do not appear
in the interface during run time

Run time—the state of an application while it is running

Timer control—the control used to process code at one or more regular
intervals

Lesson C Review Questions

1. If a timer is running, the code in its event procedure is
processed each time an interval has elapsed.

a. Interval

b. Tick

c. Timed

d. Timer

2. Which of the following is false?

a. When you add a timer control to a form, the control appears in
the component tray.

b. Th e user can see a timer control during run time.

c. You stop a timer by setting its Enabled property to False.

d. Th e number entered in a timer’s Interval property represents the
number of milliseconds for each interval.

3. To disable the Minimize button on a form’s title bar, set the
form’s property to False.

a. ButtonMinimize

b. Minimize

c. MinimizeBox

d. MinimizeButton

C7718_ch01.indd 56C7718_ch01.indd 56 14/03/11 7:39 PM14/03/11 7:39 PM

57

Lesson C Exercises L E S S O N C

4. You can remove the Minimize, Maximize, and Close buttons from a
form’s title bar by setting the form’s property to False.

a. ControlBox

b. ControlButton

c. TitleBar

d. TitleBarElements

5. Explain how you delete a control that contains code.

Lesson C Exercises

1. In this exercise, you modify an existing form by replacing its Exit
 button with a timer.

a. Open the Jeff erson Solution (Jeff erson Solution.sln) fi le contained
in the VB2010\Chap01\Jeff erson Solution folder. If necessary,
open the designer window.

b. Delete the Exit button from the form and then delete the button’s
code from the Code Editor window.

c. Return to the designer window. Add a timer control to the form.
Change the timer’s name to tmrExit. Set the timer’s Enabled
property to True. Th e timer should end the application after eight
seconds have elapsed; set the appropriate property. Enter the
Me.Close() instruction in the appropriate event procedure in
the Code Editor window.

d. Save the solution and then start the application. When eight
 seconds have elapsed, the application ends.

e. Set the form’s FormBorderStyle property to FixedSingle. Also,
remove the elements (icon and buttons) and text from the form’s
title bar.

f. Save the solution and then start the application. Close the Code
Editor window and then close the solution.

2. Create a Visual Basic Windows application. Use the following names
for the solution, project, and form fi le, respectively: Horse Solution,
Horse Project, and Main Form.vb. Save the application in the
VB2010\Chap01 folder. Create the interface shown in Figure 1-35.
Th e images are stored in the abby.jpg and rascal.jpg fi les, which are
contained in the VB2010\Chap01 folder. Th e timer should end the
application after fi ve seconds have elapsed. Save the solution and then
start the application. Now, remove the icon and buttons from the
form’s title bar. Also, use the Project Designer window to change the
executable fi le’s name to Horse. Save the solution and then start the
application. Close the Code Editor window and then close the solu-
tion. Use the Run dialog box in Windows to run the Horse.exe fi le,
which is contained in the project’s bin\Debug folder.

INTRODUCTORY

INTERMEDIATE

C7718_ch01.indd 57C7718_ch01.indd 57 14/03/11 7:39 PM14/03/11 7:39 PM

58

C H A P T E R 1 An Introduction to Visual Basic 2010

Figure 1-35 Interface for the Horse Auction application

3. In this exercise, you design your own user interface. Create a Visual
Basic Windows application. Use the following names for the solution,
project, and form fi le, respectively: My Splash Solution, My Splash
Project, and My Splash Form.vb. Save the application in the VB2010\
Chap01 folder. Create your own splash screen. Save the solution and
then start the application. Close the Code Editor window and then
close the solution.

Discovery

4. In this exercise, you learn how to enter an assignment statement in an
event procedure. You also learn how to display a graphic on the face
of a button control.

a. Create a Visual Basic Windows application. Use the following
names for the solution, project, and form fi le, respectively: OnOff
Solution, OnOff Project, and Main Form.vb. Save the applica-
tion in the VB2010\Chap01 folder. Change the form’s name to
frmMain.

b. Add a picture box control and three buttons to the form. Th e
location and size of the controls are not important. Name the
controls picIcon, btnOn, btnOff , and btnExit. Include any graphic
in the picture box control. (You can use the Logo.bmp fi le
 contained in the VB2010\Chap01 folder.)

c. Th e captions for the three buttons should be On, Off , and Exit.
Change the appropriate property for each button.

d. Th e Exit button should end the application when clicked. Enter
the appropriate code in the Code Editor window.

INTERMEDIATE

C7718_ch01.indd 58C7718_ch01.indd 58 14/03/11 7:39 PM14/03/11 7:39 PM

59

Lesson C Exercises L E S S O N C

e. Open the code template for the btnOff control’s Click event proce-
dure. In the procedure, enter the instruction picIcon.Visible =
False. Th is instruction is called an assignment statement, because it
assigns a value to a container. In this case, the container is the Visible
property of the picIcon control. When you click the btnOff control,
the assignment statement will hide the picture box from view.

f. Open the code template for the btnOn control’s Click event pro-
cedure. In the procedure, enter an instruction that will display the
picture box.

g. Save the solution and then start the application. Use the Off but-
ton to hide the picture box, and then use the On button to display
the picture box. Finally, use the Exit button to end the application.
Close the Code Editor window.

h. You use a button’s Image property to specify the graphic you want
displayed on the face of the button. You use a button’s ImageAlign
property to specify the graphic’s alignment on the button. Set the On
button’s Image property to any small graphic fi le. (You can use the
Blue Lace 16.bmp fi le contained in the VB2010\Chap01 folder.) Set
the On button’s ImageAlign property to TopLeft. (Hint: When you
click the ImageAlign property’s list arrow, nine buttons will appear
in the list. Select the button in the upper-left corner.) Set the Image
and ImageAlign properties of the Off and Exit buttons. (Use any
small graphics for the Image properties.) Set each button’s TextAlign
property to MiddleRight. If necessary, resize the buttons and form.

i. Save the solution and then start and test the application. Close the
solution.

5. In this exercise, you learn how to display a tooltip. Open the ToolTip
Solution (ToolTip Solution.sln) fi le contained in the VB2010\Chap01\
ToolTip Solution folder. If necessary, open the designer window. Click
the ToolTip tool in the toolbox and then drag the mouse pointer to
the form. Notice that a tooltip control appears in the component tray
rather than on the form. Set the btnExit control’s ToolTip on ToolTip1
property to “Ends the application.” (without the quotation marks). Save
the solution and then start the application. Hover your mouse pointer
over the Exit button. Th e tooltip “Ends the application.” appears in a
tooltip box. Click the Exit button and then close the solution.

Swat The Bugs

6. Open the Debug Solution (Debug Solution.sln) fi le contained in the
VB2010\Chap01\Debug Solution folder. If necessary, open the designer
window. Start the application. Click the Exit button. Notice that the
Exit button does not end the application. Click the Close button on the
form’s title bar. Locate and then correct the error. Save the solution and
then start the application. Click the Exit button, which should end the
application. Close the Code Editor window and then close the solution.

C7718_ch01.indd 59C7718_ch01.indd 59 14/03/11 7:39 PM14/03/11 7:39 PM

C H A P T E R 2
Designing Applications

Creating the Playtime Cellular Application

In this chapter, you create an application for Playtime Cellular, a small company
that sells toy cell phones. The phones are priced at $25 each and are available in
two colors: blue and pink. The application will allow the salespeople to enter the
customer’s name and address, as well as the number of blue and pink phones
ordered. It then will calculate and display the total number of phones ordered and
the total price of the order.

C7718_ch02.indd 60C7718_ch02.indd 60 14/03/11 7:26 PM14/03/11 7:26 PM

61

Previewing the Playtime Cellular Application

Previewing the Playtime Cellular Application
Before you start the fi rst lesson in this chapter, you will preview the
 completed application. Th e application is contained in the VB2010\Chap02
folder.

To preview the completed application:

1. Use the Run dialog box to run the Playtime (Playtime.exe) fi le con-
tained in the VB2010\Chap02 folder. Th e interface shown in Figure 2-1
appears on the screen. In addition to the picture box, label, and button
controls that you learned about in Chapter 1, the interface contains
seven text boxes. A text box gives a user an area in which to enter data.

label

text box

Figure 2-1 Order screen for Playtime Cellular

2. Th e insertion point is located in the fi rst text box. Th e label control
to the left of the text box identifi es the information the user should
enter. In this case, the user should enter the customer’s name. Type
Ray’s Toys as the customer’s name, and then press Tab twice to move
the insertion point to the City text box.

3. Type Chicago as the city name and then press Shift+Tab (press and
hold down the Shift key as you tap the Tab key) to move the insertion
point to the Address text box.

4. Type 2467 Grove Avenue as the address, press Tab twice, type IL as
the state, and then press Tab.

5. Type 60634 as the ZIP code and then press Tab to move the inser-
tion point to the Blue phones ordered text box.

6. Type 10 as the number of blue phones ordered and then click the
Calculate Order button. Th e button’s Click event procedure calcu-
lates and displays both the total phones ordered (10) and the total
price ($250.00).

START HERE

To open the Run
dialog box, press
and hold down
the Windows logo
key as you tap

the letter r, and then
release the logo key.

C7718_ch02.indd 61C7718_ch02.indd 61 14/03/11 7:26 PM14/03/11 7:26 PM

62

C H A P T E R 2 Designing Applications

7. Click the Pink phones ordered text box, type 20, and then click the
Calculate Order button. Th e button’s Click event procedure recalcu-
lates both the total phones ordered (30) and the total price ($750.00).

8. Change the number of blue phones ordered from 10 to 35 and then
click the Calculate Order button. Th e total phones ordered and total
price are now 55 and $1,375.00, respectively. See Figure 2-2.

Figure 2-2 Completed order

9. Click the Clear Screen button to remove the customer’s informa-
tion from the order form. Finally, click the Exit button to end the
application.

Th e Playtime Cellular application is an object-oriented program, because
it uses objects (such as buttons and text boxes) to accomplish its goal. In
Lesson A, you will learn how a programmer plans an object-oriented pro-
gram. You will create the Playtime Cellular application in Lessons B and C.
Be sure to complete each lesson in full and do all of the end-of-lesson
questions and several exercises before continuing to the next lesson.

C7718_ch02.indd 62C7718_ch02.indd 62 14/03/11 7:26 PM14/03/11 7:26 PM

63

Planning an Object-Oriented Application L E S S O N A

 ❚ LESSON A
After studying Lesson A, you should be able to:

 • Plan an object-oriented Windows application in Visual Basic 2010

 • Complete a TOE (Task, Object, Event) chart

 • Follow the Windows standards regarding the layout and labeling of
controls

Creating an Object-Oriented Application
As Figure 2-3 indicates, the process a programmer follows when creating
an object-oriented (OO) application is similar to the process a builder fol-
lows when building a home. Like a builder, a programmer fi rst meets with
the client to discuss the client’s wants and needs. Both then create a plan for
the project. After the client approves the plan, the builder builds the home’s
frame, whereas the programmer builds the user interface, which is the appli-
cation’s frame. Once the frame is built, the builder completes the home by
adding the electrical wiring, walls, and so on. Th e programmer, on the other
hand, completes the application by adding the necessary code to the user
interface. When the home is complete, the builder makes a fi nal inspection
and corrects any problems before the customer moves in. Similarly, the pro-
grammer tests the completed application and fi xes any problems, called bugs,
before releasing the application to the user. Th e fi nal step in both processes is
to assemble the project’s documentation (paperwork), which then is given to
the customer/user.

A builder’s process A programmer’s process
1. Meet with the client 1. Meet with the client
2. Plan the home (blueprint) 2. Plan the application (TOE chart)
3. Build the frame 3. Build the user interface
4. Complete the home 4. Code the application
5. Inspect the home and fi x any problems 5. Test and debug the application
6. Assemble the documentation 6. Assemble the documentation

Figure 2-3 Processes used by a builder and a programmer

You will learn how to plan an OO application in this lesson. Steps three
through six of the process are covered in Lessons B and C.

Planning an Object-Oriented Application
As any builder will tell you, the most important aspect of a home is not its
beauty. Rather, it is how closely the home matches the buyer’s wants and
needs. Th e same is true of an OO application. For an application to fulfi ll the
wants and needs of the user, it is essential for the programmer to plan the
application jointly with the user. It cannot be stressed enough that the only
way to guarantee the success of an application is to actively involve the user

C7718_ch02.indd 63C7718_ch02.indd 63 14/03/11 7:26 PM14/03/11 7:26 PM

64

C H A P T E R 2 Designing Applications

in the planning phase. Th e steps for planning an OO application are listed
in Figure 2-4.

1. Identify the tasks the application needs to perform.
2. Identify the objects to which you will assign the tasks.
3. Identify the events required to trigger an object into performing its assigned tasks.
4. Draw a sketch of the user interface.

Figure 2-4 Steps for planning an OO application

You can use a TOE (Task, Object, Event) chart to record the application’s
tasks, objects, and events, which are identifi ed in the fi rst three steps of the
planning phase. In the next section, you begin completing a TOE chart for
the Playtime Cellular application. Th e fi rst step is to identify the application’s
tasks.

Identifying the Application’s Tasks
Realizing that it is essential to involve the user when planning the applica-
tion, you meet with the sales manager of Playtime Cellular, Ms. Garrison,
to determine her requirements. You ask Ms. Garrison to bring the form the
salespeople currently use to record the orders. Viewing the current forms
and procedures will help you gain a better understanding of the application.
You also can use the current form as a guide when designing the user inter-
face. Figure 2-5 shows the current order form used by the company.

Customer name:

Playtime Cellular Order Form

Address:
City:

Number of blue
phones ordered

Number of pink
phones ordered

Total number of phones ordered Total price

State: ZIP:

Figure 2-5 Current order form used by Playtime Cellular

When identifying the major tasks an application needs to perform, it is
 helpful to ask the questions italicized in the following bulleted items. Th e
answers pertaining to the Playtime Cellular application follow each question.

 • What information will the application need to display on the screen and/
or print on the printer? Th e Playtime Cellular application should display
the customer’s name, street address, city, state, ZIP code, number of blue
phones ordered, number of pink phones ordered, total number of phones
ordered, and total price of the order. In this case, the application does not
need to print anything on the printer.

C7718_ch02.indd 64C7718_ch02.indd 64 14/03/11 7:26 PM14/03/11 7:26 PM

65

Planning an Object-Oriented Application L E S S O N A

 • What information will the user need to enter into the user interface to
display and/or print the desired information? In the Playtime Cellular
application, the salesperson (the user) must enter the customer’s name,
street address, city, state, ZIP code, and number of blue and pink phones
ordered.

 • What information will the application need to calculate to display and/
or print the desired information? Th e Playtime Cellular application needs
to calculate the total number of phones ordered and the total price of the
order.

 • How will the user end the application? All applications should provide a
way for the user to end the application. Th e Playtime Cellular application
will use an Exit button for this task.

 • Will previous information need to be cleared from the screen before new
information is entered? After the salesperson enters and calculates an
order, he or she will need to clear the customer’s information from the
screen before entering the next order.

Figure 2-6 shows the Playtime Cellular application’s tasks listed in a TOE
chart. Th e tasks do not need to be listed in any particular order. In this case,
the data entry tasks are listed fi rst, followed by the calculation tasks, display
tasks, application ending task, and screen clearing task.

Task Object Event
Get the following order information from the user:
 Customer’s name
 Street address
 City
 State
 ZIP code
 Number of blue phones ordered
 Number of pink phones ordered

Calculate total phones ordered and total price

Display the following information:
 Customer’s name
 Street address
 City
 State
 ZIP code
 Number of blue phones ordered
 Number of pink phones ordered
 Total phones ordered
 Total price

End the application

Clear screen for the next order

Figure 2-6 Tasks entered in a TOE chart

You can draw
a TOE chart
by hand or use
the table feature
in a word

 processor (such as
Microsoft Word).

C7718_ch02.indd 65C7718_ch02.indd 65 14/03/11 7:26 PM14/03/11 7:26 PM

66

C H A P T E R 2 Designing Applications

Identifying the Objects
After completing the Task column of the TOE chart, you then assign each
task to an object in the user interface. For this application, the only objects
you will use besides the Windows form itself are the button, label, and text
box controls. As you already know, you use a label to display information that
you do not want the user to change while the application is running, and you
use a button to perform an action immediately after the user clicks it. You
use a text box to give the user an area in which to enter data.

Th e fi rst task listed in Figure 2-6 is to get the order information from the
user. For each order, the salesperson will need to enter the customer’s name,
address, city, state, and ZIP code, as well as the number of blue phones
ordered and the number of pink phones ordered. Because you need to pro-
vide the salesperson with areas in which to enter the information, you will
assign the fi rst task to seven text boxes—one for each item of information. Th e
three-character ID used when naming text boxes is txt, so you will name the
text boxes txtName, txtAddress, txtCity, txtState, txtZip, txtBlue, and txtPink.

Th e second task listed in the TOE chart is to calculate both the total number
of phones ordered and the total price. So that the salesperson can calculate
these amounts at any time, you will assign the task to a button named btnCalc.

Th e third task listed in the TOE chart is to display the order information, the
total number of phones ordered, and the total price. Th e order information
is displayed automatically when the user enters that information in the seven
text boxes. Th e total phones ordered and total price, however, are not entered
by the user. Instead, those amounts are calculated by the btnCalc control.
Because the user should not be allowed to change the calculated results, you
will have the btnCalc control display the total phones ordered and total price
in two label controls named lblTotalPhones and lblTotalPrice. Notice that
the task of displaying the total phones ordered involves two objects: btnCalc
and lblTotalPhones. Th e task of displaying the total price also involves two
objects: btnCalc and lblTotalPrice.

Th e last two tasks listed in the TOE chart are “End the application” and
“Clear screen for the next order.” You will assign the tasks to buttons named
btnExit and btnClear, respectively; doing this gives the user control over
when the tasks are performed. Figure 2-7 shows the TOE chart with the Task
and Object columns completed.

Task Object Event
Get the following order information from the user:
 Customer’s name txtName
 Street address txtAddress
 City txtCity
 State txtState
 ZIP code txtZip
 Number of blue phones ordered txtBlue
 Number of pink phones ordered txtPink

Calculate total phones ordered and total price btnCalc

Figure 2-7 Tasks and objects entered in a TOE chart (continues)

C7718_ch02.indd 66C7718_ch02.indd 66 14/03/11 7:26 PM14/03/11 7:26 PM

67

Planning an Object-Oriented Application L E S S O N A

Task Object Event
Display the following information:
 Customer’s name txtName
 Street address txtStreet
 City txtCity
 State txtState
 ZIP code txtZip
 Number of blue phones ordered txtBlue
 Number of pink phones ordered txtPink
 Total phones ordered btnCalc, lblTotalPhones
 Total price btnCalc, lblTotalPrice

End the application btnExit

Clear screen for the next order btnClear

Figure 2-7 Tasks and objects entered in a TOE chart

Identifying the Events
After defi ning the application’s tasks and assigning the tasks to objects in the
interface, you then determine which event (if any) must occur for an object
to carry out its assigned task. Th e seven text boxes listed in the TOE chart in
Figure 2-7 are assigned the task of getting and displaying the order informa-
tion. Text boxes accept and display information automatically, so no special
event is necessary for them to do their assigned task. Th e two label controls
listed in the TOE chart are assigned the task of displaying the total number of
phones ordered and the total price of the order. Label controls automatically
display their contents; so, here again, no special event needs to occur. (Recall
that the two label controls will get their values from the btnCalc control.) Th e
remaining objects listed in the TOE chart are the three buttons. You will have
the buttons perform their assigned tasks when the user clicks them. Figure 2-8
shows the completed TOE chart for the Playtime Cellular application.

Task Object Event
Get the following order information from the user:
 Customer’s name txtName None
 Street address txtAddress None
 City txtCity None
 State txtState None
 ZIP code txtZip None
 Number of blue phones ordered txtBlue None
 Number of pink phones ordered txtPink None

Calculate total phones ordered and total price btnCalc Click

Figure 2-8 Completed TOE chart ordered by task (continues)

(continued)

C7718_ch02.indd 67C7718_ch02.indd 67 14/03/11 7:26 PM14/03/11 7:26 PM

68

C H A P T E R 2 Designing Applications

Task Object Event
Display the following information:
 Customer’s name txtName None
 Street address txtStreet None
 City txtCity None
 State txtState None
 ZIP code txtZip None
 Number of blue phones ordered txtBlue None
 Number of pink phones ordered txtPink None
 Total phones ordered btnCalc, lblTotalPhones Click, None
 Total price btnCalc, lblTotalPrice Click, None

End the application btnExit Click

Clear screen for the next order btnClear Click

Figure 2-8 Completed TOE chart ordered by task

If the application you are creating is small, as is the Playtime Cellular appli-
cation, you can use the TOE chart in its current form to help you write the
Visual Basic code. When the application is large, however, it is often help-
ful to rearrange the TOE chart so that it is ordered by object rather than by
task. To do so, you list all of the objects in the Object column of a new TOE
chart, being sure to list each object only once. Th en list each object’s tasks
and events in the Task and Event columns, respectively. Figure 2-9 shows the
rearranged TOE chart ordered by object rather than by task.

Task Object Event
1. Calculate total phones ordered and total price btnCalc Click
2. Display total phones ordered and total price

in lblTotalPhones and lblTotalPrice

Clear screen for the next order btnClear Click

End the application btnExit Click

Display total phones ordered (from btnCalc) lblTotalPhones None

Display total price (from btnCalc) lblTotalPrice None

Get and display the order information txtName, None
 txtAddress,
 txtCity, txtState,
 txtZip, txtBlue,
 txtPink

Figure 2-9 Completed TOE chart ordered by object

After completing the TOE chart, the next step is to draw a rough sketch of
the user interface.

(continued)

C7718_ch02.indd 68C7718_ch02.indd 68 14/03/11 7:26 PM14/03/11 7:26 PM

69

Planning an Object-Oriented Application L E S S O N A

Drawing a Sketch of the User Interface
Although the TOE chart lists the objects to include in the interface, it does
not tell you where to place those objects on the form. While the design of an
interface is open to creativity, there are some guidelines to which you should
adhere so that your application is consistent with the Windows standards.
Th is consistency will make your application easier to both learn and use,
because the user interface will have a familiar look to it. Th e guidelines are
referred to as GUI (graphical user interface) guidelines.

Th e fi rst GUI guideline covered in this book pertains to the organization of the
controls in the interface. In Western countries, the user interface should be orga-
nized so that the information fl ows either vertically or horizontally, with the most
important information always located in the upper-left corner of the interface.
In a vertical arrangement, the information fl ows from top to bottom: the essen-
tial information is located in the fi rst column of the interface, while secondary
information is placed in subsequent columns. In a horizontal arrangement, on
the other hand, the information fl ows from left to right: the essential information
is placed in the fi rst row of the interface, with secondary information placed in
subsequent rows. Related controls should be grouped together using either white
(empty) space or one of the tools located in the Containers section of the tool-
box. Examples of tools found in the Containers section include the GroupBox,
Panel, and TableLayoutPanel tools. Th e diff erence between a panel and a group
box is that, unlike a group box, a panel can have scroll bars. However, unlike a
panel, a group box has a Text property that you can use to indicate the contents
of the control. Unlike the panel and group box controls, the table layout panel
control provides a table structure in which you place other controls.

Figures 2-10 and 2-11 show two diff erent sketches of the Playtime Cellular
interface. In Figure 2-10 the information is arranged vertically, and white
space is used to group related controls together. In Figure 2-11 the informa-
tion is arranged horizontally, with related controls grouped together using
tools from the Containers section of the toolbox. Each text box and button in
both fi gures is labeled so the user knows the control’s purpose. Th e “Name:”
label that identifi es the txtName control tells the user the type of informa-
tion to enter in the text box. Similarly, the “Calculate Order” caption on the
btnCalc control indicates the action the button will perform when it is clicked.

Name:

phone
image Playtime Cellular Order Form

Address:

City:

State: ZIP:

Blue phones ordered: Total phones:

Calculate Order

Clear Screen

Exit

Total price:Pink phones ordered:

Figure 2-10 Vertical arrangement of the Playtime Cellular application

Some companies
have their own
standards for
interfaces used
within the com-

pany. A company’s stan-
dards supersede the
Windows standards.

The Ch02AVideo
fi le demonstrates
how to use the
group box, panel,

and table layout panel
controls.

C7718_ch02.indd 69C7718_ch02.indd 69 14/03/11 7:26 PM14/03/11 7:26 PM

70

C H A P T E R 2 Designing Applications

Name: Address:

State: ZIP:

Order information

Playtime Cellular Order Form
phone
image

City:

Blue phones ordered:

Total phones:

Calculate Order Clear Screen Exit

Total price:

Pink phones ordered:

Figure 2-11 Horizontal arrangement of the Playtime Cellular application

Most times, program output (such as the result of calculations) is displayed
in a label control in the interface. Label controls that display program output
should be labeled to make their contents obvious to the user. In the inter-
faces shown in Figures 2-10 and 2-11, the “Total phones:” and “Total price:”
labels identify the contents of the lblTotalPhones and lblTotalPrice controls,
respectively. Th e text contained in an identifying label should be meaningful
and left-aligned within the label. In most cases, an identifying label should be
from one to three words only and appear on one line. In addition, the iden-
tifying label should be positioned either above or to the left of the control it
identifi es. An identifying label should end with a colon (:). Th e colon distin-
guishes an identifying label from other text in the user interface, such as the
heading text “Playtime Cellular Order Form”. Some assistive technologies,
which are technologies that provide assistance to individuals with disabilities,
rely on the colons to make this distinction. Th e Windows standard is to use
sentence capitalization for identifying labels. Sentence capitalization means
you capitalize only the fi rst letter in the fi rst word and in any words that are
customarily capitalized.

As you learned in Chapter 1, buttons are identifi ed by the text that appears
on the button’s face. Th e text is often referred to as the button’s caption. Th e
caption should be meaningful. In addition, it should be from one to three
words only and appear on one line. A button’s caption should be entered
using book title capitalization, which means you capitalize the fi rst letter in
each word, except for articles, conjunctions, and prepositions that do not
occur at either the beginning or end of the text. When the buttons are posi-
tioned horizontally, as they are in Figure 2-11, all the buttons should be the
same height; their widths, however, may vary if necessary. If the buttons are
stacked vertically, as they are in Figure 2-10, all the buttons should be the
same height and width. In a group of buttons, the most commonly used but-
ton typically appears fi rst—either on the left (in a horizontal arrangement) or
on the top (in a vertical arrangement).

C7718_ch02.indd 70C7718_ch02.indd 70 14/03/11 7:26 PM14/03/11 7:26 PM

71

Lesson A Summary L E S S O N A

When positioning the controls in the interface, place related controls close
to each other and be sure to maintain a consistent margin from the edges of
the form. Also, it’s helpful to align the borders of the controls wherever pos-
sible to minimize the number of diff erent margins appearing in the interface.
Doing this allows the user to more easily scan the information. You can align
the borders using the snap lines that appear as you are building the interface.
Or, you can use the Format menu to align (and also size) the controls.

In this lesson, you learned some basic guidelines to follow when sketching
a graphical user interface (GUI). You will learn more GUI guidelines in the
remaining lessons and in subsequent chapters. You can fi nd a complete list of
the GUI guidelines in Appendix B of this book.

GUI DESIGN TIP Layout and Organization of the User Interface

 • Organize the user interface so that the information flows either vertically
or horizontally, with the most important information always located in the
upper-left corner of the screen.

 • Group related controls together using either white (empty) space or one
of the tools contained in the Containers section of the toolbox.

 • Use a label to identify each text box in the user interface. Also use a
label to identify other label controls that display program output. The
label text should be meaningful. It also should be from one to three
words only and appear on one line. Left-align the text within the label, and
position the label either above or to the left of the control it identifies.
Enter the label text using sentence capitalization, and follow the label
text with a colon (:).

 • Display a meaningful caption on the face of each button. The caption
should indicate the action the button will perform when clicked. Enter the
caption using book title capitalization. Place the caption on one line and
use from one to three words only.

 • When a group of buttons are positioned horizontally, each button in
the group should be the same height. When a group of buttons are
positioned vertically, each button in the group should be the same height
and width. In a group of buttons, the most commonly used button is
typically the first button in the group.

 • Align the borders of the controls wherever possible to minimize the
number of different margins appearing in the interface.

Lesson A Summary

 • To create an OO application:

1. Meet with the client

2. Plan the application

C7718_ch02.indd 71C7718_ch02.indd 71 14/03/11 7:26 PM14/03/11 7:26 PM

72

C H A P T E R 2 Designing Applications

3. Build the user interface

4. Code the application

5. Test and debug the application

6. Assemble the documentation

 • To plan an OO application in Visual Basic 2010:

1. Identify the tasks the application needs to perform.

2. Identify the objects to which you will assign the tasks.

3. Identify the events required to trigger an object into performing its
assigned tasks.

4. Draw a sketch of the user interface.

 • To assist you in identifying the major tasks an application needs to
 perform, ask the following questions:

1. What information will the application need to display on the screen
and/or print on the printer?

2. What information will the user need to enter into the user interface
to display and/or print the desired information?

3. What information will the application need to calculate to display
and/or print the desired information?

4. How will the user end the application?

5. Will previous information need to be cleared from the screen before
new information is entered?

Lesson A Key Terms
Book title capitalization—the capitalization used for a button’s caption; refers
to capitalizing the fi rst letter in each word, except for articles, conjunctions,
and prepositions that do not occur at either the beginning or end of the
caption

Sentence capitalization—the capitalization used for identifying labels; refers
to capitalizing only the fi rst letter in the fi rst word and in any words that are
customarily capitalized

Text box—a control that provides an area in the form for the user to enter data

Lesson A Review Questions

1. When designing a user interface, the most important information
should be placed in the corner of the interface.

a. lower-left

b. lower-right

c. upper-left

d. upper-right

C7718_ch02.indd 72C7718_ch02.indd 72 14/03/11 7:26 PM14/03/11 7:26 PM

73

Lesson A Exercises L E S S O N A

2. A button’s caption should be entered using .

a. book title capitalization

b. sentence capitalization

c. either book title capitalization or sentence capitalization

3. Which of the following statements is false?

a. Th e text contained in identifying labels should be left-aligned
within the label.

b. An identifying label should be positioned either above or to the
left of the control it identifi es.

c. Identifying labels should be entered using book title capitalization.

d. Identifying labels should end with a colon (:).

4. Listed below are the four steps you should follow when planning an
OO application. Put the steps in the proper order by placing a num-
ber (1 through 4) on the line to the left of the step.

 Identify the objects to which you will assign the
tasks.

 Draw a sketch of the user interface.

 Identify the tasks the application needs to perform.

 Identify the events required to trigger an object into
performing its assigned tasks.

5. Listed below are the six steps you should follow when creating an
OO application. Put the steps in the proper order by placing a num-
ber (1 through 6) on the line to the left of the step.

 Test and debug the application

 Build the user interface

 Code the application

 Assemble the documentation

 Plan the application

 Meet with the client

Lesson A Exercises

1. Sarah Brimley is the accountant at Paper Products. Th e salespeople
at Paper Products are paid a commission, which is a percentage of
the sales they make. Sarah wants you to create an application that
will compute the commission after she enters the salesperson’s name,
sales, and commission rate (expressed as a decimal number). For
example, if Sarah enters 2000 as the sales and .1 (the decimal equiva-
lent of 10%) as the commission rate, the commission amount should

INTRODUCTORY

C7718_ch02.indd 73C7718_ch02.indd 73 14/03/11 7:26 PM14/03/11 7:26 PM

74

C H A P T E R 2 Designing Applications

be 200. Prepare a TOE chart ordered by task, and then rearrange the
TOE chart so that it is ordered by object. Draw a sketch of the user
interface.

2. RM Sales divides its sales territory into four regions: North, South,
East, and West. Robert Gonzales, the sales manager, wants an appli-
cation that allows him to enter the current year’s sales for each region
and the projected increase (expressed as a decimal number) for each
region. He wants the application to compute the following year’s pro-
jected sales for each region. As an example, if Robert enters 10000
as the current sales for the South region, and then enters .05 (the
decimal equivalent of 5%) as the projected increase, the application
should display 10500 as the next year’s projected sales. Prepare a TOE
chart ordered by task, and then rearrange the TOE chart so that it is
ordered by object. Draw a sketch of the user interface.

3. Open the Time Solution (Time Solution.sln) fi le contained in the
VB2010\Chap02\Time Solution folder. If necessary, open the designer
window. Lay out and organize the interface so it follows all of the GUI
design guidelines you have learned so far. (Refer to Appendix B for a
listing of the guidelines.) Code the Exit button’s Click event procedure
so it ends the application. Save the solution and then start the applica-
tion. Click the Exit button to end the application and then close the
solution.

INTERMEDIATE

INTERMEDIATE

C7718_ch02.indd 74C7718_ch02.indd 74 14/03/11 7:26 PM14/03/11 7:26 PM

75

Building the User Interface L E S S O N B

 ❚ LESSON B
After studying Lesson B, you should be able to:

 • Build the user interface using your TOE chart and sketch

 • Follow the Windows standards regarding the use of graphics, fonts,
and color

 • Set a control’s BorderStyle property

 • Add a text box to a form

 • Lock the controls on the form

 • Assign access keys to controls

 • Set the TabIndex property

Building the User Interface
In Lesson A, you planned the Playtime Cellular application. Planning the
application is the second of the six steps involved in creating an OO applica-
tion. You now are ready to tackle the third step, which is to build the user
interface. You use the TOE chart and sketch you created in the planning step
as guides when building the interface, which involves placing the appropri-
ate controls on the form and setting the applicable properties of the controls.
To save you time, the VB2010\Chap02\Playtime Solution folder contains a
partially completed application for Playtime Cellular. When you open the
solution, you will fi nd that most of the user interface has been created and
most of the properties have been set. You will complete the interface in
this lesson.

To open the partially completed application:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express and
open the Solution Explorer window.

2. Open the Playtime Solution (Playtime Solution.sln) fi le contained in
the VB2010\Chap02\Playtime Solution folder. If necessary, open the
designer window.

3. Permanently display the Properties and Toolbox windows and then
auto-hide the Solution Explorer window. Figure 2-12 shows the
partially completed interface, which resembles the sketch shown in
Figure 2-10 in Lesson A.

The Ch02BVideo
fi le demonstrates
all of the steps
contained in

Lesson B. You can view
the video either before or
after completing the
lesson.

START HERE

C7718_ch02.indd 75C7718_ch02.indd 75 14/03/11 7:26 PM14/03/11 7:26 PM

76

C H A P T E R 2 Designing Applications

Figure 2-12 Partially completed interface for the Playtime Cellular application

Th e application’s user interface follows the GUI guidelines covered in
Lesson A. Th e information is arranged vertically, and the controls are aligned
wherever possible. Each text box and button, as well as each label control that
displays program output, is labeled so the user knows the control’s purpose.
Th e text contained in the identifying labels is entered using sentence capi-
talization. In addition, the text ends with a colon and is left-aligned within
the label. Th e identifying labels are positioned to the left of the controls they
identify. Each button’s caption is entered using book title capitalization. Th e
button captions and identifying labels appear on one line and do not exceed
the three-word limit. Because the buttons are stacked in the interface, each
button has the same height and width, and the most commonly used button
(Calculate Order) is placed at the top of the button group.

When building the user interface, keep in mind that you want to create a
screen that no one notices. Interfaces that contain a lot of diff erent colors,
fonts, and graphics may get “oohs” and “aahs” during their initial use, but
they become tiresome after a while. Th e most important point to remember
is that the interface should not distract the user from doing his or her work.
Th e next three sections provide some guidelines to follow regarding the use
of these elements in an interface.

Including Graphics in the User Interface
Th e human eye is attracted to pictures before text, so use graphics sparingly.
Designers typically include graphics to either emphasize or clarify a portion
of the screen. However, a graphic also can be used merely for aesthetic pur-
poses, as long as it is small and placed in a location that does not distract the
user. Th e small graphic in the Playtime Cellular interface is included for aes-
thetics only. Th e graphic is purposely located in the upper-left corner of the
interface, which is where you want the user’s eye to be drawn fi rst anyway.
Th e graphic adds a personal touch to the order form without being distract-
ing to the user.

The graphics,
font, and color
guidelines do not
pertain to game
applications.

C7718_ch02.indd 76C7718_ch02.indd 76 14/03/11 7:26 PM14/03/11 7:26 PM

77

Building the User Interface L E S S O N B

GUI DESIGN TIP Adding Graphics

Use graphics sparingly. If the graphic is used solely for aesthetics, use a
small graphic and place it in a location that will not distract the user.

Selecting Fonts for the Interface
As you learned in Chapter 1, an object’s Font property determines the type,
style, and size of the font used to display the object’s text. Recall that Segoe
UI, Tahoma, and Microsoft Sans Serif are examples of font types. Font styles
include regular, bold, and italic. Th e numbers 9, 12, and 18 are examples of
font sizes. Some font types are serif, while others are sans serif. A serif is a
light cross stroke that appears at the top or bottom of a character. Th e char-
acters in a serif font have the light strokes, whereas the characters in a sans
serif font do not. (“Sans” is a French word meaning “without.”) Books use
serif fonts, because serif fonts are easier to read on the printed page. User
interfaces, on the other hand, use sans serif fonts, which are easier to read on
the screen. You should use only one font type for all of the text in the inter-
face, and use no more than two diff erent font sizes. In addition, avoid using
italics and underlining in an interface, because both font styles make text dif-
fi cult to read. Th e use of bold text should be limited to titles, headings, and
key items that you want to emphasize.

GUI DESIGN TIP Selecting Font Types, Styles, and Sizes

 • Use only one font type for all of the text in the interface. Use a sans serif
font, preferably the Segoe UI font.

 • Use no more than two different font sizes in the interface.

 • Avoid using italics and underlining, because these font styles make text
difficult to read.

 • Limit the use of bold text to titles, headings, and key items that you want
to emphasize.

Adding Color to the Interface
Th e human eye is attracted to color before black and white; therefore, use
color sparingly in an interface. It is a good practice to build the interface
using black, white, and gray fi rst, and then add color only if you have a good
reason to do so. Keep the following three points in mind when deciding
whether to include color in an interface:

1. Many people have some form of either color blindness or color
 confusion, so they will have trouble distinguishing colors.

2. Color is very subjective: a color that looks pretty to you may be
 hideous to someone else.

3. A color may have a diff erent meaning in a diff erent culture.

C7718_ch02.indd 77C7718_ch02.indd 77 14/03/11 7:26 PM14/03/11 7:26 PM

78

C H A P T E R 2 Designing Applications

Usually, it is best to use black text on a white, off -white, or light gray back-
ground, because dark text on a light background is the easiest to read. You
should never use a dark color for the background or a light color for the
text, because a dark background is hard on the eyes, and light-colored text
can appear blurry. If you are going to include color in an interface, limit the
number of colors to three, not including white, black, and gray. Be sure that
the colors you choose complement each other. Although color can be used
to identify an important element in the interface, you should never use it
as the only means of identifi cation. In the Playtime Cellular interface, for
example, the two colored text boxes help the salesperson quickly identify
where to enter the order for blue and pink phones. However, color is not the
only means of identifying the purpose of those text boxes; each also has an
 identifying label.

GUI DESIGN TIP Selecting Colors

 • Build the interface using black, white, and gray. Only add color if you
have a good reason to do so.

 • Use white, off-white, or light gray for the background. Use black for the text.

 • Never use a dark color for the background or a light color for the text. A dark
background is hard on the eyes, and light-colored text can appear blurry.

 • Limit the number of colors in an interface to three, not including white,
black, and gray. The colors you choose should complement each other.

 • Never use color as the only means of identification for an element in the
user interface.

The BorderStyle and AutoSize Properties
A control’s border is determined by its BorderStyle property, which can
be set to None, FixedSingle, or Fixed3D. Controls with a BorderStyle
property set to None have no border. Setting the BorderStyle property to
FixedSingle surrounds the control with a thin line, and setting it to Fixed3D
gives the control a three-dimensional appearance. In most cases, a text
box’s BorderStyle property should be left at its default setting: Fixed3D. Th e
BorderStyle property for each text box in the Playtime Cellular interface fol-
lows this convention. Th e appropriate BorderStyle property setting for a label
control depends on the control’s purpose. Label controls that identify other
controls (such as those that identify text boxes) should have a BorderStyle
property setting of None, which is the default setting. Th is is the setting for
each identifying label in the Playtime Cellular interface. Label controls that
display program output, such as those that display the result of a calculation,
typically have a BorderStyle property setting of FixedSingle. Th e BorderStyle
property of the lblTotalPrice control in the Playtime Cellular interface is set
to FixedSingle.

A label control’s AutoSize property determines whether the control automat-
ically sizes to fi t its current contents. Th e appropriate setting depends on the

You can change
the background
color of a text
box by setting its
BackColor
property.

C7718_ch02.indd 78C7718_ch02.indd 78 14/03/11 7:26 PM14/03/11 7:26 PM

79

Building the User Interface L E S S O N B

label’s purpose. Label controls that identify other controls use the default set-
ting, which is True. However, you typically set to False the AutoSize property
of label controls that display program output. In the next set of steps, you
will change the AutoSize and BorderStyle properties of the lblTotalPhones
control.

To change the properties of the lblTotalPhones control and then size the
control:

1. Click the lblTotalPhones control, which contains the text Label11.

2. Set the control’s AutoSize property to False, and then set its
BorderStyle property to FixedSingle.

3. Next, you will remove Label11 from the Text property. Click Text in
the Properties list and then select (highlight) Label11. Press Delete
and then press Enter.

4. Now you will tell the computer to center any text appearing in the
control. Click TextAlign in the Properties list and then click the list
arrow in the Settings box. Click the center button to change the
property’s setting to MiddleCenter.

5. Finally, you will make the lblTotalPhones control the same height as
the lblTotalPrice control. Click the lblTotalPrice control, and then
press and hold down the Ctrl key as you click the lblTotalPhones
control. Click Format on the menu bar, point to Make Same Size,
and then click Height.

6. Click the form to deselect the two labels.

GUI DESIGN TIP Setting the BorderStyle Property of a Text Box
or Label

 • Keep the BorderStyle property of text boxes at the default value,
Fixed3D.

 • Keep the BorderStyle property of labels that identify other controls at the
default value, None.

 • Set to FixedSingle the BorderStyle property of labels that display
program output, such as those that display the result of a calculation.

 • In Windows applications, a control that contains data that the user is not
allowed to edit does not usually appear three-dimensional. Therefore,
avoid setting a label control’s BorderStyle property to Fixed3D.

GUI DESIGN TIP Setting the AutoSize Property of a Label

 • Keep the AutoSize property of identifying labels at the default value, True.

 • In most cases, set to False the AutoSize property of label controls that
display program output.

START HERE

C7718_ch02.indd 79C7718_ch02.indd 79 14/03/11 7:26 PM14/03/11 7:26 PM

80

C H A P T E R 2 Designing Applications

Adding a Text Box Control to the Form
As mentioned earlier, a text box provides an area in the form for the user to
enter data. Missing from the Playtime Cellular interface is the text box for enter-
ing the city name. You will add the missing text box in the next set of steps.

To add the missing text box to the form:

1. Use the TextBox tool in the toolbox to add a text box to the form.
Position the text box immediately below the Address text box.

2. Change the text box’s name to txtCity and press Enter.

3. Next, you will make the City text box the same size as the Address
text box. Click the txtAddress control and then Ctrl+click the
 txtCity control. Click Format on the menu bar, point to Make Same
Size, and then click Both.

4. You can align the City text box using either the Format menu or the
snap lines. You will use the snap lines. Click the form to deselect the
City and Address text boxes. Place your mouse pointer on the txtCity
control, and then press and hold down the left mouse button as you
drag the control to the location shown in Figure 2-13. Th e blue snap
lines help you align the City text box with the Address text box. Th e
pink snap line allows you to align the text in the City text box with the
text in its identifying label.

blue snap line

blue snap line

pink snap line

Figure 2-13 Snap lines shown in the interface

5. When the City text box is in the correct location, release the mouse
button.

Locking the Controls on a Form
Once you have placed all of the controls in the desired locations on the form,
it is a good idea to lock the controls on the form. Locking the controls pre-
vents them from being moved inadvertently as you work in the IDE. You
can lock the controls by clicking the form (or any control on the form) and
then clicking the Lock Controls option on the Format menu; you can follow
the same procedure to unlock the controls. You also can lock and unlock the
controls by right-clicking the form (or any control on the form) and then

A text box is an
instance of the
TextBox class.

START HERE

A locked control
can be deleted.
It also can be
moved by setting
its Location
property.

C7718_ch02.indd 80C7718_ch02.indd 80 14/03/11 7:26 PM14/03/11 7:26 PM

81

Assigning Access Keys L E S S O N B

clicking Lock Controls on the context menu. When a control is locked, a
small lock appears in the upper-left corner of the control.

To lock the controls on the form and then save the solution:

1. Right-click the form and then click Lock Controls. A small lock
appears in the upper-left corner of the form.

2. Save the solution. Try dragging one of the controls to a diff erent
 location on the form. You will not be able to do so.

Assigning Access Keys
Th e text in many of the controls shown earlier in Figure 2-12 contains an under-
lined letter. Th e underlined letter is called an access key, and it allows the user
to select an object using the Alt key in combination with a letter or number.
In Visual Studio, for example, you can select the File menu by pressing Alt+F,
because the letter F is the File menu’s access key. Access keys are not case
sensitive; therefore, you can select the File menu by pressing either Alt+F
or Alt+f. Similarly, you can select the Exit button in the Playtime Cellular
interface by pressing either Alt+X or Alt+x. Depending on your system’s
settings, the access keys may or may not appear underlined while an applica-
tion is running. If you do not see the underlined access keys, you can show
them temporarily by pressing the Alt key. You can subsequently hide them by
pressing the Alt key again. (To always display access keys, see the Summary
section at the end of this lesson.)

You should assign access keys to each of the controls (in the interface) that
can accept user input. Examples of such controls include text boxes and
 buttons, because the user can enter information in a text box and click a
 button. Th e only exceptions to this rule are the OK and Cancel buttons,
which typically do not have access keys in Windows applications. It is impor-
tant to assign access keys for the following reasons:

1. Access keys allow a user to work with the application even when the
mouse becomes inoperative.

2. Access keys allow users who are fast typists to keep their hands on the
keyboard.

3. Access keys allow people with disabilities, which may prevent them
from working with a mouse, to use the application.

You assign an access key by including an ampersand (&) in the control’s
 caption or identifying label. If the control is a button, you include the
ampersand in the button’s Text property, which is where a button’s caption
is stored. If the control is a text box, you include the ampersand in the Text
property of its identifying label. (As you will learn later in this lesson, you
also must set the TabIndex properties of the text box and its identifying label
appropriately.) You enter the ampersand to the immediate left of the charac-
ter you want to designate as the access key. For example, to assign the letter C
as the access key for the Calculate Order button, you enter &Calculate Order
in the button’s Text property. To assign the letter N as the access key for the
txtName control, you enter &Name: in the Text property of its identifying
label. Notice that the Total phones: and Total price: labels in Figure 2-12 do
not have access keys. Th is is because the labels do not identify controls that
accept user input; rather, they identify other label controls. Recall that users

START HERE

C7718_ch02.indd 81C7718_ch02.indd 81 14/03/11 7:26 PM14/03/11 7:26 PM

82

C H A P T E R 2 Designing Applications

cannot access label controls while an application is running, so it is inappro-
priate to assign an access key to the controls.
Each access key in an interface should be unique. Th e fi rst choice for an
access key is the fi rst letter of the caption or identifying label, unless another
letter provides a more meaningful association. For example, the letter x is the
access key for an Exit button, because it provides a more meaningful associa-
tion than does the letter E. If you can’t use the fi rst letter (perhaps because it
already is used as the access key for another control) and no other letter pro-
vides a more meaningful association, then use a distinctive consonant in the
caption or label. Th e last choices for an access key are a vowel or a number.

To assign access keys to the btnCalc and txtCity controls:

1. Click the Calculate Order button. Change the button’s Text property
to &Calculate Order and then press Enter. Th e letter C in the but-
ton’s caption is now underlined.

2. Click the City: label, which identifi es the txtCity control. Th e let-
ter C would be a good choice for an access key; however, the letter
is already assigned to the Calculate Order button. (Recall that each
access key in an interface must be unique.) Th erefore, you will use the
letter t instead. Change the label’s Text property to Ci&ty: and then
press Enter. Th e letter t is now underlined.

GUI DESIGN TIP Assigning Access Keys

 • Assign a unique access key to each control that can accept user input.

 • When assigning an access key to a control, use the first letter of the
caption or identifying label, unless another letter provides a more
meaningful association. If you can’t use the first letter and no other letter
provides a more meaningful association, then use a distinctive consonant.
Lastly, use a vowel or a number.

Controlling the Tab Order
Most controls have a TabIndex property, which contains a number that
represents the order in which the control was added to the form. Th e fi rst
control added to a form has a TabIndex value of 0. Th e second control has
a TabIndex of 1, and so on. Th e TabIndex values determine the tab order,
which is the order in which each control receives the focus when the user
either presses the Tab key or employs an access key while an application is
running. A control whose TabIndex is 2 will receive the focus immediately
after the control whose TabIndex is 1. Likewise, a control with a TabIndex of 18
will receive the focus immediately after the control whose TabIndex is 17.
When a control has the focus, it can accept user input.
Most times, you will need to reset the TabIndex values for an interface, because
controls rarely are added to a form in the desired tab order. To determine
the appropriate TabIndex values, you fi rst make a list of the controls that can
accept user input. Th e list should refl ect the order in which the user will want
to access the controls. In the Playtime Cellular interface, the user typically will
want to access the txtName control fi rst, followed by the txtAddress control,

START HERE

When a text box
has the focus, an
insertion point
appears inside it.
When a button

has the focus, it has a
darkened border.

C7718_ch02.indd 82C7718_ch02.indd 82 14/03/11 7:26 PM14/03/11 7:26 PM

83

Controlling the Tab Order L E S S O N B

txtCity control, and so on. If a control that accepts user input is identifi ed by
a label control, you also include the label control in the list. (A text box is an
example of a control that accepts user input and is identifi ed by a label control.)
You place the name of the label control immediately above the name of the
control it identifi es in the list. In the Playtime Cellular interface, the Label2 con-
trol (which contains Name:) identifi es the txtName control. Th erefore, Label2
should appear immediately above txtName in the list. Th e names of controls
that do not accept user input and are not used to identify controls that do
should be listed at the bottom of the list; these names do not need to appear in
any specifi c order. After listing the control names, you then assign each control
in the list a TabIndex value, beginning with the number 0. If a control does not
have a TabIndex property, you do not assign it a TabIndex value in the list. You
can tell whether a control has a TabIndex property by viewing its Properties list.

Figure 2-14 shows the list of controls and TabIndex values for the Playtime
Cellular interface. Notice that the TabIndex value assigned to each text box’s
identifying label is one number less than the value assigned to the text box
itself. For example, the Label2 control has a TabIndex value of 0 and its corre-
sponding text box (txtName) has a TabIndex value of 1. For a text box’s access
key (which is defi ned in the identifying label) to work appropriately, you must
be sure to set the identifying label’s TabIndex property to a value that is one
number less than the value stored in the text box’s TabIndex property.

Controls that accept user input,
along with their identifying labels TabIndex value

Label2 (Name:) 0
txtName 1
Label3 (Address:) 2
txtAddress 3
Label4 (City:) 4
txtCity 5
Label5 (State:) 6
txtState 7
Label6 (ZIP:) 8
txtZip 9
Label7 (Blue phones ordered:) 10
txtBlue 11
Label8 (Pink phones ordered:) 12
txtPink 13
btnCalc 14
btnClear 15
btnExit 16

Other controls
Label1 (Playtime Cellular Order Form) 17
Label9 (Total phones:) 18
Label10 (Total price:) 19
lblTotalPhones 20
lblTotalPrice 21
PictureBox1 N/A

Figure 2-14 List of controls and TabIndex values

C7718_ch02.indd 83C7718_ch02.indd 83 14/03/11 7:26 PM14/03/11 7:26 PM

84

C H A P T E R 2 Designing Applications

You can set each control’s TabIndex property using either the Properties
window or the Tab Order option on the View menu. Th e Tab Order option is
available only when the designer window is the active window.

To set the TabIndex values and then verify the tab order:

1. Click the form to make the designer window the active window.
Click View on the menu bar and then click Tab Order. Th e current
TabIndex values appear in blue boxes on the form. (Th e picture box
control does not have a TabIndex property.)

 Important note: If the View menu does not contain the Tab Order
option, click Tools on the menu bar, point to Settings, and then click
Expert Settings.

2. You begin specifying the desired tab order by clicking the fi rst control
you want in the tab order. According to Figure 2-14, the fi rst control
in the tab order should be the Label2 control, which displays the
Name: text. Click the blue box that contains the number 1. (You
also can click the Label2 control directly.) Th e number 0 replaces the
number 1 in the box, and the color of the box changes from blue to
white to indicate that you have set the TabIndex value for that control.

3. Th e second control in the tab order should be the txtName control,
which currently has a TabIndex value of 6. Click the blue box that
contains the number 6. Th e number 1 replaces the number 6 in the
box, and the color of the box changes from blue to white.

4. Use the information shown in Figure 2-15 to set the TabIndex prop-
erties for the remaining controls, which have TabIndex values of
2 through 21. Be sure to set the values in numerical order. If you make
a mistake, press the Esc key to remove the TabIndex boxes from the
form, and then repeat Steps 1 through 4. When you have fi nished
 setting all of the TabIndex values, the color of the boxes will auto-
matically change from white to blue, as shown in Figure 2-15.

Figure 2-15 TabIndex boxes showing the correct TabIndex values

START HERE

 You also can
remove the
TabIndex boxes
using the Tab
Order option on
the View menu.

C7718_ch02.indd 84C7718_ch02.indd 84 14/03/11 7:26 PM14/03/11 7:26 PM

85

Controlling the Tab Order L E S S O N B

5. Press Esc to remove the TabIndex boxes from the form.

6. Save the solution and then start the application. When you start
an application, the computer sends the focus to the control whose
TabIndex is 0. In the Playtime Cellular interface, that control is the
Label2 (Name:) control. However, because label controls cannot
receive the focus, the computer sends the focus to the next control in
the tab order sequence. In this case, it sends the focus to the txtName
control. Th e blinking insertion point indicates that the text box has
the focus and is ready to receive input from you.

7. Type Toys For All in the txtName control. Th e information you
entered is recorded in the text box’s Text property.

8. In Windows applications, the Tab key moves the focus forward, and
the Shift+Tab key combination moves the focus backward. Press
Tab to move the focus to the txtAddress control, and then press
Shift+Tab to move the focus back to the txtName control.

9. Now use the Tab key to verify the tab order of the controls in the
interface. Press Tab, slowly, seven times. Th e focus moves to the
following controls: txtAddress, txtCity, txtState, txtZip, txtBlue,
 txtPink, btnCalc. Notice that when a button has the focus, its border
is darkened. Press Tab two more times to move the focus fi rst to the
 btnClear control and then to the btnExit control.

10. Pressing the Enter key when a button has the focus invokes the but-
ton’s Click event, causing the computer to process any code contained
in the Click event procedure. Press Enter to have the computer pro-
cess the btnExit control’s Click event procedure, which contains the
Me.Close() instruction. Th e application ends.

11. You also can move the focus using a text box’s access key. Start the
application. Press Alt+b to move the focus to the txtBlue control.
Now press Alt+n to move the focus to the txtName control. On your
own, try the access keys for the remaining text boxes in the interface.

12. Unlike pressing a text box’s access key, which moves the focus, press-
ing a button’s access key invokes the button’s Click event. Press Alt+x
to invoke the Exit button’s Click event, which ends the application.

13. Close the solution.

GUI DESIGN TIP Using the TabIndex Property to Control the Focus

 • Assign a TabIndex value (starting with 0) to each control in the interface,
except for controls that do not have a TabIndex property. The TabIndex
values should reflect the order in which the user will want to access the
controls.

 • To give users keyboard access to a text box, assign an access key
to the text box’s identifying label. Set the identifying label’s TabIndex
property to a value that is one number less than the value stored in the
text box’s TabIndex property.

C7718_ch02.indd 85C7718_ch02.indd 85 14/03/11 7:26 PM14/03/11 7:26 PM

86

C H A P T E R 2 Designing Applications

Lesson B Summary

 • To specify a control’s border:
Set the control’s BorderStyle property.

 • To specify whether a label control should automatically size to fi t its
 current contents:
Set the label control’s AutoSize property.

 • To lock/unlock the controls on the form:

Right-click the form or any control on the form and then select Lock
Controls on the context menu. You also can click the Lock Controls option
on the Format menu.

 • To assign an access key to a control:

Type an ampersand (&) in the Text property of the control or identifying
label. Th e ampersand should appear to the immediate left of the character
that you want to designate as the access key.

 • To provide keyboard access to a text box:

Assign an access key to the text box’s identifying label. Set the identifying
label’s TabIndex property to a value that is one number less than the text
box’s TabIndex value.

 • To employ an access key:

Press and hold down the Alt key as you tap the access key.

 • To set the tab order:

Set each control’s TabIndex property to a number (starting with 0) that
represents the order in which the control should receive the focus. You
can set the TabIndex property using either the Properties window or the
Tab Order option on the View menu.

 • To always display access keys:

To always display access keys in Windows 7, click the Start button on the
Windows 7 taskbar. Click Control Panel and then click Appearance and
Personalization. In the Ease of Access Center section, click Turn on easy
access keys. Select the Underline keyboard shortcuts and access keys
check box, and then click the OK button. Close the Control Panel window.

To always display access keys in Windows Vista, click Start on the
Windows Vista taskbar. Click Control Panel and then click Appearance
and Personalization. In the Ease of Access Center section, click Underline
keyboard shortcuts and access keys, and then select the Underline key-
board shortcuts and access keys check box. (You may need to scroll down
to view the check box.) Click the Save button and then close the Ease of
Access Center dialog box.

C7718_ch02.indd 86C7718_ch02.indd 86 14/03/11 7:26 PM14/03/11 7:26 PM

87

Lesson B Review Questions L E S S O N B

To always display access keys when using the Classic View in Windows
Vista, click the Start button on the Windows Vista taskbar. Click Control
Panel, double-click Ease of Access Center, click Make the keyboard easier
to use, and then select the Underline keyboard shortcuts and access keys
check box. Click the Save button and then close the Ease of Access Center
dialog box.

Lesson B Key Terms
Access key—the underlined character in an object’s identifying label or
 caption; allows the user to select the object using the Alt key in combination
with the underlined character

Focus—indicates that a control is ready to accept user input

Lesson B Review Questions

1. Which property determines the tab order for the controls in an
interface?

a. SetOrder

b. TabIndex

c. TabNumber

d. TabOrder

2. An Exit button’s access key is always the letter .

a. E

b. i

c. t

d. x

3. You assign an access key using a control’s property.

a. Access

b. Caption

c. Key

d. Text

4. Which of the following specifi es the letter D as the access key?

a. &Display

b. #Display

c. ^Display

d. D&isplay

5. Explain the method for providing keyboard access to a text box.

C7718_ch02.indd 87C7718_ch02.indd 87 14/03/11 7:26 PM14/03/11 7:26 PM

88

C H A P T E R 2 Designing Applications

Lesson B Exercises

1. Open the Paper Solution (Paper Solution.sln) fi le contained in
the VB2010\Chap02\Paper Solution folder. If necessary, open the
designer window. Figure 2-16 shows the completed interface. Finish
building the interface by adding a text box named txtName to the
form. Lock the controls on the form. Assign the access keys (shown
in the fi gure) to the text boxes and buttons. Set the TabIndex values
appropriately. Save the solution and then start the application. Verify
that the tab order is correct. Also verify that the access keys work
appropriately. Use the Exit button to end the application. Close the
solution. (You will code the Calculate Commission and Clear Screen
buttons in Lesson C’s Exercise 1.)

Figure 2-16 User interface for the Paper Products application

2. Open the RM Sales Solution (RM Sales Solution.sln) fi le contained in
the VB2010\Chap02\RM Sales Solution folder. If necessary, open the
designer window. Figure 2-17 shows the completed interface. Finish
building the interface by adding a label control named lblNorth to the
form. Lock the controls on the form. Change the label’s BorderStyle
property to the appropriate setting. Set the tab order to allow the user
to enter the North region’s sales and increase percentage before enter-
ing the South region’s sales and increase percentage, and so on. Save
the solution and then start the application. Verify that the tab order is
correct. Also verify that the access keys work appropriately. Use the
Exit button to end the application. Close the solution. (You will code
the Calculate Projected Sales and Clear Screen buttons in Lesson C’s
Exercise 2.)

INTRODUCTORY

INTERMEDIATE

C7718_ch02.indd 88C7718_ch02.indd 88 14/03/11 7:26 PM14/03/11 7:26 PM

89

Lesson B Exercises L E S S O N B

Figure 2-17 User interface for the RM Sales application

3. In this exercise, you modify the application from Lesson A’s Exercise 3.
Open the Time Solution (Time Solution.sln) fi le contained in the
VB2010\Chap02\Time Solution folder. If necessary, open the designer
window. Lock the controls on the form. Assign access keys to the con-
trols that can accept user input. Set each control’s TabIndex property.
Save the solution and then start the application. Verify that the tab
order is correct. Also verify that the access keys work appropriately.
Use the Exit button to end the application. Close the solution. (You
will code the Calculate Hours button in Lesson C’s Exercise 3.)

INTERMEDIATE

C7718_ch02.indd 89C7718_ch02.indd 89 14/03/11 7:26 PM14/03/11 7:26 PM

90

C H A P T E R 2 Designing Applications

 ❚ LESSON C
After studying Lesson C, you should be able to:

 • Code an application using its TOE chart

 • Plan an object’s code using pseudocode or a fl owchart

 • Write an assignment statement

 • Send the focus to a control during run time

 • Include internal documentation in the code

 • Write arithmetic expressions

 • Use the Val and Format functions

 • Locate and correct syntax errors

Coding the Application
In Lessons A and B, you created a TOE chart and user interface for the
Playtime Cellular application. Th e user interface and TOE chart are shown in
Figures 2-18 and 2-19, respectively. After planning an application and build-
ing its user interface, you then can begin coding the application. You code an
application so that the objects in the interface perform their assigned tasks
when the appropriate event occurs. Th e objects and events that need to be
coded, as well as the tasks assigned to each object and event, are listed in the
application’s TOE chart. Th e TOE chart in Figure 2-19 indicates that only the
three buttons require coding, as they are the only objects with an event listed
in the third column of the chart.

Figure 2-18 Playtime Cellular application’s interface

The Ch02CVideo
fi le demonstrates
all of the steps
contained in

Lesson C. You can view
the video either before or
after completing the
lesson.

C7718_ch02.indd 90C7718_ch02.indd 90 14/03/11 7:26 PM14/03/11 7:26 PM

91

Coding the Application L E S S O N C

Task Object Event
1. Calculate total phones ordered and total price btnCalc Click
2. Display total phones ordered and total price

in lblTotalPhones and lblTotalPrice

Clear screen for the next order btnClear Click

End the application btnExit Click

Display total phones ordered (from btnCalc) lblTotalPhones None

Display total price (from btnCalc) lblTotalPrice None

Get and display the order information txtName, None
 txtAddress,
 txtCity, txtState,
 txtZip, txtBlue,
 txtPink

Figure 2-19 Playtime Cellular application’s TOE chart (ordered by object)

Before you begin coding an object’s event procedure, you should plan it.
Many programmers use planning tools such as pseudocode or fl owcharts.
You do not need to create both a fl owchart and pseudocode for a procedure;
you need to use only one of these planning tools. Th e tool you use is really a
matter of personal preference. For simple procedures, pseudocode works just
fi ne. When a procedure becomes more complex, however, the procedure’s
steps may be easier to understand in a fl owchart. Th e programmer uses
either the procedure’s pseudocode or its fl owchart as a guide when coding
the procedure.

Using Pseudocode to Plan a Procedure
Pseudocode uses short phrases to describe the steps a procedure must take
to accomplish its goal. Even though the word “pseudocode” might be unfa-
miliar to you, you already have written pseudocode without even realizing
it. Consider the last time you gave directions to someone. You wrote each
direction down on paper, in your own words; your directions were a form of
pseudocode.

Figure 2-20 shows the pseudocode for the procedures that need to be
coded in the Playtime Cellular application. As the pseudocode indicates,
the btnCalc control’s Click event procedure will calculate the total phones
ordered and the total price, and then display the calculated results in the
 appropriate label controls in the interface. Th e btnClear control’s Click

C7718_ch02.indd 91C7718_ch02.indd 91 14/03/11 7:26 PM14/03/11 7:26 PM

92

C H A P T E R 2 Designing Applications

event procedure will prepare the screen for the next order by removing the
previous order’s information from the text boxes and two label controls. It
then will send the focus to the txtName control so the user can begin enter-
ing the next order. Th e btnExit control’s Click event procedure will simply
end the application.

btnCalc Click event procedure
1. calculate total phones ordered = blue phones ordered + pink phones ordered
2. calculate total price = total phones ordered * phone price
3. display total phones ordered and total price in lblTotalPhones and lblTotalPrice

btnClear Click event procedure
1. clear the Text property of the 7 text boxes
2. clear the Text property of the lblTotalPhones and lblTotalPrice controls
3. send the focus to the txtName control so the user can begin entering the

next order

btnExit Click event procedure
end the application

Figure 2-20 Pseudocode for the Playtime Cellular application

Using a Flowchart to Plan a Procedure
Unlike pseudocode, which consists of short phrases, a flowchart uses stan-
dardized symbols to show the steps a procedure must follow to reach its goal.
Figure 2-21 shows the fl owcharts for the procedures that need to be coded
in the Playtime Cellular application. Th e logic illustrated in the fl owcharts is
the same as the logic shown in the pseudocode in Figure 2-20. Th e fl owcharts
contain three diff erent symbols: an oval, a rectangle, and a parallelogram. Th e
oval symbol is called the start/stop symbol. Th e start and stop ovals indi-
cate the beginning and end, respectively, of the fl owchart. Th e rectangles are
called process symbols. You use the process symbol to represent tasks such
as making assignments and calculations. Th e parallelogram in a fl owchart is
called the input/output symbol and is used to represent input tasks (such as
getting information from the user) and output tasks (such as displaying infor-
mation). Th e parallelogram in Figure 2-21 represents an output task. Th e
lines connecting the symbols in a fl owchart are called flowlines.

C7718_ch02.indd 92C7718_ch02.indd 92 14/03/11 7:26 PM14/03/11 7:26 PM

93

Coding the btnClear Control’s Click Event Procedure L E S S O N C

Coding the btnClear Control’s Click Event
Procedure
According to its pseudocode and fl owchart, the btnClear control’s Click
event procedure should clear the Text property of the seven text boxes
and two of the labels in the interface. It then should send the focus to the
txtName control. You can clear the Text property of an object by assign-
ing a zero-length string to it. A string is defi ned as zero or more characters
enclosed in quotation marks. Th e word “Jones” is a string. Likewise, “45”
is a string, but 45 (without the quotes) is a number. “Jones” is a string with
a length of fi ve, because there are fi ve characters between the quotation
marks. “45” is a string with a length of two, because there are two characters
between the quotation marks. Following this logic, a zero-length string, also
called an empty string, is a set of quotation marks with nothing between
them, like this: "". Assigning a zero-length string to the Text property of an
object during run time removes the contents of the object. You also can clear
an object’s Text property by assigning the value String.Empty to it while an
application is running. When you do this, the computer assigns an empty
string to the Text property, thereby removing its contents.

You also can use
the Clear method
to clear the con-
tents of a text
box. The Clear

method is covered in
Discovery Exercise 12 at
the end of this lesson.

total phones ordered = blue phones
ordered + pink phones ordered

total price = total phones ordered
* phone price

display total phones ordered and
total price in lblTotalPhones
and lblTotalPrice

clear the Text property of
the 7 text boxes

start

btnCalc Click event procedure

btnClear Click event procedure

btnExit Click event procedure

clear the Text property of
the lblTotalPhones and
lblTotalPrice controls

send the focus to the
txtName control

start

end the application

start

stop

stop

stop

Figure 2-21 Flowcharts for the Playtime Cellular application

C7718_ch02.indd 93C7718_ch02.indd 93 14/03/11 7:26 PM14/03/11 7:26 PM

94

C H A P T E R 2 Designing Applications

Assigning a Value to a Property During Run Time
In Chapter 1, you learned how to use the Properties window to set an object’s
properties during design time, which is when you are building the interface.
You also can set an object’s properties during run time; you do this using an
assignment statement. An assignment statement is one of many diff erent
types of Visual Basic instructions. Its purpose is to assign a value to some-
thing (such as to the property of an object) while an application is running.
Th e syntax of an assignment statement that assigns a value to an object’s
property is object.property = expression. In the syntax, object and property
are the names of the object and property, respectively, to which you want the
value of the expression assigned. Th e expression can be a number, a string,
a calculation, or a keyword. You use a period to separate the object name
from the property name. Recall that the period is the dot member access
operator. In this case, the operator indicates that the property is a member
of the object. You use an equal sign between the object.property information
and the expression. Th e equal sign in an assignment statement is called the
 assignment operator.

When the computer processes an assignment statement, it assigns the value
of the expression that appears on the right side of the assignment opera-
tor to the object and property that appear on the left side of the assignment
operator. Th e assignment statement txtName.Text = String.Empty, for
example, assigns the empty string to the txtName control’s Text property.
Similarly, the assignment statement txtState.Text = "IL" assigns the
string “IL” to the Text property of the txtState control. You will use assign-
ment statements to code the btnClear control’s pseudocode.

To open the btnClear control’s Click event procedure:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express and
open the Solution Explorer window.

2. Open the Playtime Solution (Playtime Solution.sln) fi le from Lesson
B. Th e fi le is contained in the VB2010\Chap02\Playtime Solution
folder. If necessary, open the designer window.

3. Auto-hide the Solution Explorer window. If necessary, auto-hide the
Properties and Toolbox windows.

4. Open the Code Editor window. Notice that the btnExit control’s Click
event procedure has already been coded for you.

5. Use the Class Name and Method Name list boxes to open the code
template for the btnClear control’s Click event procedure.

6. Press Enter to insert a blank line below the procedure header.

Step 1 in the procedure’s pseudocode (shown earlier in Figure 2-20) is to
clear the Text property of the seven text boxes in the interface. You can do
this using either the textbox.Text = String.Empty instruction or the
textbox.Text = "" instruction, where textbox is the name of the appro-
priate text box. As you learned in Chapter 1, you can either type the Visual
Basic instructions on your own or use the IntelliSense feature that is built
into the Code Editor. In the next set of steps, you will use the IntelliSense
feature.

START HERE

C7718_ch02.indd 94C7718_ch02.indd 94 14/03/11 7:26 PM14/03/11 7:26 PM

95

Coding the btnClear Control’s Click Event Procedure L E S S O N C

To begin coding the btnClear control’s Click event procedure:

1. First, you will enter the txtName.Text = String.Empty
 assignment statement in the procedure. Type the two letters tx. Th e
IntelliSense feature lists the names of the seven text boxes.
See Figure 2-22.

Figure 2-22 Listing of text box names

2. Type tn to highlight txtName in the list and then press Tab to enter
txtName in the assignment statement.

3. Now type . (a period) to display a listing of the properties and meth-
ods of the txtName control. If Text is not highlighted in the list, type
te. At this point, you can either press the Tab key to enter the Text
choice in the assignment statement, or you can type the character
that follows Text in the statement. In this case, the next character
is the assignment operator. Type = to enter the Text choice in the
statement.

4. Next, type st to highlight String in the list, and then type .e to high-
light Empty. Press Enter. Th e txtName.Text = String.Empty
statement appears in the Code Editor window.

When entering code, you can type the names of commands, objects, and
properties in lowercase letters. When you move to the next line, the Code
Editor automatically changes your code to refl ect the proper capitalization
of those elements. Th is provides a quick way of verifying that you entered an
object’s name and property correctly, and that you entered the code using the
correct syntax. If the capitalization does not change, it means that the Code
Editor does not recognize the object, command, or property. In this book you
always will be given the complete instruction to enter, including the appro-
priate capitalization. Keep in mind that you can type the instruction on your
own, or you can use the IntelliSense feature to enter the instruction.

To continue coding the btnClear control’s Click event procedure:

1. Enter the following six assignment statements:

txtAddress.Text = String.Empty
txtCity.Text = String.Empty
txtState.Text = String.Empty
txtZip.Text = String.Empty
txtBlue.Text = String.Empty
txtPink.Text = String.Empty

START HERE

START HERE

C7718_ch02.indd 95C7718_ch02.indd 95 14/03/11 7:26 PM14/03/11 7:26 PM

96

C H A P T E R 2 Designing Applications

2. Th e second step in the procedure’s pseudocode is to clear the Text
property of the lblTotalPhones and lblTotalPrice controls. Enter the
following two assignment statements. Press Enter twice after typing
the last statement.

lblTotalPhones.Text = String.Empty
lblTotalPrice.Text = String.Empty

Th e last step in the procedure’s pseudocode is to send the focus to the
 txtName control. You can accomplish this task using the Focus method.
Recall that a method is a predefi ned Visual Basic procedure that you can
call (or invoke) when needed.

Using the Focus Method
You can use the Focus method to move the focus to a specifi ed control while
an application is running. As you learned in Lesson B, a control that has the
focus can accept user input. Th e Focus method’s syntax is object.Focus(), in
which object is the name of the object to which you want the focus sent.

To enter the Focus method in the btnClear control’s Click event procedure:

1. Type txtName.Focus() and press Enter.

2. Save the solution.

Internally Documenting the Program Code
It is a good practice to include comments, called internal documentation,
as reminders in the Code Editor window. Programmers use comments to
indicate a procedure’s purpose and also to explain various sections of a pro-
cedure’s code. Including comments in your code will make the code more
readable and easier to understand by anyone viewing it. You create a com-
ment in Visual Basic by placing an apostrophe (') before the text that repre-
sents the comment. Th e computer ignores everything that appears after the
apostrophe on that line. Although it is not required, some programmers use
a space to separate the apostrophe from the comment text.

To add comments to the btnClear control’s Click event procedure:

1. Click the blank line above the txtName.Text = String.Empty
statement. Type ' prepare the screen for the next order (be sure to
type the apostrophe followed by a space) and press Enter. Notice that
comments appear in a diff erent color from the rest of the code.

2. Click the blank line above the txtName.Focus() statement. Type
' send the focus to the Name text box. See Figure 2-23.

START HERE

START HERE

C7718_ch02.indd 96C7718_ch02.indd 96 14/03/11 7:26 PM14/03/11 7:26 PM

97

Coding the btnClear Control’s Click Event Procedure L E S S O N C

Figure 2-23 btnClear control’s Click event procedure

It is a good programming practice to test an object’s code before coding the
next object. Th is way, if something is wrong with the program, you know
exactly where to look for the error.

To test the btnClear control’s Click event procedure:

1. Save the solution and then start the application. Type your name and
address information (including the city, state, and ZIP) in the appro-
priate text boxes. Also type any numbers in the Blue phones ordered
and Pink phones ordered boxes.

2. Click the Clear Screen button. Th e computer processes the
 instructions contained in the button’s Click event procedure. Th e
instructions remove the contents of nine of the controls and then
send the focus to the Name text box. Click the Exit button to end
the application.

Many programmers also use comments to document the project’s name and
purpose, the programmer’s name, and the date the code was either created
or modifi ed. Such comments are placed above the Public Class clause in the
Code Editor window. Th e area above the Public Class clause is called the
General Declarations section.

To include comments in the General Declarations section:

1. Click before the letter P in the Public Class frmMain line and
then press Enter to insert a blank line. Now, click the blank line.

2. Type the comments shown in Figure 2-24 and then save the solution.
In the comments, replace <your name> and <current date> with your
name and the current date, respectively.

START HERE

START HERE

C7718_ch02.indd 97C7718_ch02.indd 97 14/03/11 7:26 PM14/03/11 7:26 PM

98

C H A P T E R 2 Designing Applications

enter these
four comments

General Declarations section

Figure 2-24 Comments entered in the General Declarations section

Before you can code the btnCalc control’s Click event procedure, you need to
learn how to write arithmetic expressions in Visual Basic.

Writing Arithmetic Expressions
Most applications require the computer to perform at least one calculation.
You instruct the computer to perform a calculation by writing an arithme-
tic expression, which is an expression that contains one or more arithmetic
operators. Figure 2-25 lists the most commonly used arithmetic opera-
tors available in Visual Basic, along with their precedence numbers. Th e
precedence numbers indicate the order in which the computer performs
the operation in an expression. Operations with a precedence number of 1
are performed before operations with a precedence number of 2, which are
performed before operations with a precedence number of 3, and so on.
However, you can use parentheses to override the order of precedence,
because operations within parentheses are always performed before opera-
tions outside parentheses.

Operator Operation Precedence number

^ exponentiation (raises a number to a power) 1

– negation 2

*, / multiplication and division 3

\ integer division 4

Mod modulus 5

+, – addition and subtraction 6

Figure 2-25 Most commonly used arithmetic operators

Although the negation and subtraction operators listed in Figure 2-25 use the
same symbol (a hyphen), there is a diff erence between both operators: the
negation operator is unary, whereas the subtraction operator is binary. Unary
and binary refer to the number of operands required by the operator. Unary
operators require one operand; binary operators require two operands.
For example, the expression –10 uses the negation operator to turn its one

C7718_ch02.indd 98C7718_ch02.indd 98 14/03/11 7:26 PM14/03/11 7:26 PM

99

Writing Arithmetic Expressions L E S S O N C

 operand (the positive number 10) into a negative number. Th e expression
8 – 2, on the other hand, uses the subtraction operator to subtract its second
operand (the number 2) from its fi rst operand (the number 8).

Two of the arithmetic operators listed in Figure 2-25 might be less familiar to
you: the integer division operator (\) and the modulus operator (Mod). You
use the integer division operator to divide two integers (whole numbers) and
then return the result as an integer. For instance, the expression 211 \ 4 results
in 52, which is the integer result of dividing 211 by 4. (If you use the standard
division operator [/] to divide 211 by 4, the result is 52.75 rather than 52.)
You might use the integer division operator in a program that determines the
number of quarters, dimes, and nickels to return as change to a customer. For
example, if a customer should receive 53 cents in change, you could use the
expression 53 \ 25 to determine the number of quarters to return; the expres-
sion evaluates to 2. Th e modulus operator also is used to divide two numbers,
but the numbers do not have to be integers. After dividing the numbers, the
modulus operator returns the remainder of the division. For instance, 211
Mod 4 equals 3, which is the remainder of 211 divided by 4. A common use
for the modulus operator is to determine whether a number is even or odd.
If you divide the number by 2 and the remainder is 0, the number is even; if
the remainder is 1, however, the number is odd. Figure 2-26 shows several
examples of using the integer division and Mod operators.

Examples Results
211 \ 4 52
211 Mod 4 3

53 \ 25 2
53 Mod 25 3

75 \ 2 37
75 Mod 2 1

100 \ 2 50
100 Mod 2 0

Figure 2-26 Examples of the integer division and Mod operators

You may have noticed that some of the operators listed in Figure 2-25 have
the same precedence number. For example, both the addition and subtrac-
tion operators have a precedence number of 6. When an expression contains
more than one operator having the same priority, those operators are evalu-
ated from left to right. In the expression 7 – 8 / 2 + 5, for instance, the
 division (/) is performed fi rst, then the subtraction (–), and then the addition
(+). Th e result of the expression is the number 8, as shown in Figure 2-27.
You can use parentheses to change the order in which the operators in an
expression are evaluated. For example, as Figure 2-27 shows, the expression
7 – (8 / 2 + 5) evaluates to –2 rather than to 8. Th is is because the parenthe-
ses tell the computer to perform the division fi rst, then the addition, and then
the subtraction.

C7718_ch02.indd 99C7718_ch02.indd 99 14/03/11 7:26 PM14/03/11 7:26 PM

100

C H A P T E R 2 Designing Applications

Original expression 7 – 8 / 2 + 5
The division is performed fi rst 7 – 4 + 5
The subtraction is performed next 3 + 5
The addition is performed last 8

Original expression 7 – (8 / 2 + 5)
The division is performed fi rst 7 – (4 + 5)
The addition is performed next 7 – 9
The subtraction is performed last –2

Figure 2-27 Expressions containing more than one operator having the same precedence

When entering an arithmetic expression in code, you do not enter a comma
or special characters, such as the dollar sign or percent sign. If you want to
include a percentage in an arithmetic expression, you do so using its decimal
equivalent; for example, you enter .05 rather than 5%.

Coding the Calculate Order Button
According to the Playtime Cellular application’s TOE chart (shown earlier in
Figure 2-19), the btnCalc control is responsible for calculating both the total
number of phones ordered and the total price of the order, and then display-
ing the calculated amounts in the lblTotalPhones and lblTotalPrice controls.
Th e instructions to accomplish the button’s tasks should be placed in the
button’s Click event procedure, because you want the instructions processed
when the user clicks the button. Th e pseudocode shown in Figure 2-28 lists
the steps the procedure must take to accomplish its tasks.

btnCalc Click event procedure
1. calculate total phones ordered = blue phones ordered + pink phones ordered
2. calculate total price = total phones ordered * phone price
3. display total phones ordered and total price in lblTotalPhones and lblTotalPrice

Figure 2-28 Pseudocode for the btnCalc control’s Click event procedure

Step 1 in the pseudocode is to calculate the total number of phones ordered
by adding together the number of blue phones ordered and the number of
pink phones ordered. Th e number of blue phones ordered is recorded in
the txtBlue control’s Text property as the user enters that information in the
interface. Likewise, the number of pink phones ordered is recorded in the
txtPink control’s Text property. You can use an assignment statement to add
together the Text property of the two text boxes, and then assign the sum to
the Text property of the lblTotalPhones control. Th e total phones ordered
calculation is illustrated in Figure 2-29.

C7718_ch02.indd 100C7718_ch02.indd 100 14/03/11 7:26 PM14/03/11 7:26 PM

101

Coding the Calculate Order Button L E S S O N C

Pseudocode: total phones ordered = blue phones ordered + pink phones ordered

Assignment statement: lblTotalPhones.Text = txtBlue.Text + txtPink.Text

Figure 2-29 Illustration of the total phones ordered calculation

Th e next step in the procedure’s pseudocode is to calculate the total price
of the order by multiplying the total number of phones ordered (which is
recorded in the lblTotalPhones control) by the phone price ($25). Th e total
price should be displayed in the lblTotalPrice control. Th e total price calcula-
tion is illustrated in Figure 2-30.

Pseudocode: total price = total phones ordered * phone price

Assignment statement: lblTotalPrice.Text = lblTotalPhones.Text * 25

Figure 2-30 Illustration of the total price calculation

Th e last step in the procedure’s pseudocode is to display the total phones
ordered and total price in the appropriate label controls. Th e assignment
statements shown in Figures 2-29 and 2-30 accomplish this task.

To code the btnCalc control’s Click event procedure and then test it:

1. Open the code template for the btnCalc control’s Click event proce-
dure. Type ' calculates number of phones ordered and total price
and press Enter twice.

2. Next, enter the following two assignment statements:

 lblTotalPhones.Text = txtBlue.Text + txtPink.Text
 lblTotalPrice.Text = lblTotalPhones.Text * 25

3. Save the solution and then start the application. Click the Blue
phones ordered text box. Type 5 and then press Tab. Type 10 as
the number of pink phones ordered and then click the Calculate
Order button. Th e button’s Click event procedure calculates the
total number of phones ordered and total price, displaying the
results in the two label controls. As Figure 2-31 indicates, the dis-
played results are incorrect. Instead of mathematically adding the
two order quantities together, giving 15, the second order quantity
was appended to the fi rst order quantity, giving 510. When the total
phones ordered amount is incorrect, the total price also will be
incorrect, because the total phones ordered amount is used in the
total price calculation.

START HERE

C7718_ch02.indd 101C7718_ch02.indd 101 14/03/11 7:26 PM14/03/11 7:26 PM

102

C H A P T E R 2 Designing Applications

both amounts
are incorrect

Figure 2-31 Interface showing the incorrect results of the calculations

4. Click the Exit button to end the application.

Even though you do not see quotation marks around the value, a value stored
in the Text property of an object is treated as a string rather than as a num-
ber. Adding strings together does not give you the same result as adding
numbers together. For example, adding the string “5” to the string “10” results
in the string “510”, whereas adding the number 5 to the number 10 results
in the number 15. To add together the contents of two text boxes, you need
to tell the computer to treat the contents as numbers rather than as strings.
You can do this using either the Val function or the TryParse method. In this
chapter (and only in this chapter), you will use the Val function, because it is
the easiest to learn. However, keep in mind that most programmers now use
the TryParse method, which you will learn about in Chapter 3.

The Val Function
A function is a predefi ned procedure that performs a specifi c task and then
returns a value after completing the task. Th e Val function, for instance, tem-
porarily converts a string to a number and then returns the number. Th e
number is stored in the computer’s internal memory only while the function
is processing. Th e syntax of the Val function is Val(string). Th e item within
the parentheses is called an argument and represents information that the
function needs to perform its task. In this case, the string argument repre-
sents the string you want treated as a number. Because the computer must
be able to interpret the string as a numeric value, the string cannot include a
letter, comma, or special character (such as the dollar sign or percent sign);
it can, however, include a period or a space. When the computer encounters
an invalid character in the Val function’s string, it stops converting the string
to a number at that point. Figure 2-32 shows some examples of how the Val
function converts various strings.

C7718_ch02.indd 102C7718_ch02.indd 102 14/03/11 7:26 PM14/03/11 7:26 PM

103

Coding the Calculate Order Button L E S S O N C

Val function Numeric result
Val("456") 456
Val("24,500") 24
Val("123X") 123
Val("25%") 25
Val(" 12 34 ") 1234
Val("$56.88") 0
Val("Abc") 0
Val("") 0

Figure 2-32 Examples of the Val function

To include the Val function in the btnCalc control’s code:

1. Change the two assignment statements as follows:

lblTotalPhones.Text = Val(txtBlue.Text) + Val(txtPink.Text)
lblTotalPrice.Text = Val(lblTotalPhones.Text) * 25

2. Save the solution. Th e changes made to the procedure are highlighted
in Figure 2-33.

Figure 2-33 Val function entered in the assignment statements

3. Start the application. Enter 5 as the number of blue phones ordered,
and then enter 10 as the number of pink phones ordered. Click the
Calculate Order button. Th e application correctly calculates and dis-
plays the total number of phones ordered (15) and total price of the
order (375). In the next section, you will improve the appearance of
the total price amount by including a dollar sign, a thousands separa-
tor, and two decimal places.

4. Click the Exit button.

The Format Function
You can use the Format function to improve the appearance of numbers in an
interface. Th e function’s syntax is Format(expression, style). Th e expression
argument specifi es the number, date, time, or string whose appearance you
want to format. Th e style argument can be a predefi ned Visual Basic format
style. It also can be a string containing special symbols that indicate how
you want the expression displayed. (You can display the Help screen for the
Format function to learn more about these special symbols.) In this case, you
will use one of the predefi ned Visual Basic format styles, some of which are
explained in Figure 2-34.

START HERE

C7718_ch02.indd 103C7718_ch02.indd 103 14/03/11 7:26 PM14/03/11 7:26 PM

104

C H A P T E R 2 Designing Applications

Format style Description

Currency Formats the number with a dollar sign, two decimal places, and
(if appropriate) a thousands separator; negative numbers are
enclosed in parentheses

Fixed Formats the number with at least one digit to the left and two digits
to the right of the decimal point

Standard Formats the number with at least one digit to the left of the decimal
point, two digits to the right of the decimal point, and (if appropriate)
a thousands separator

Percent Multiplies the number by 100 and then formats the result with
a percent sign and two digits to the right of the decimal point

Figure 2-34 Some of the predefi ned format styles in Visual Basic

To format the total price amount:

1. Click the blank line below the total price assignment statement, and
then enter the following statement:

lblTotalPrice.Text = Format(lblTotalPrice.Text, "Currency")

2. Save the solution. Th e change made to the procedure is highlighted
in Figure 2-35.

Figure 2-35 Format function entered in the procedure

3. Start the application. Enter 5 as the number of blue phones ordered,
and then enter 10 as the number of pink phones ordered. Click the
Calculate Order button. See Figure 2-36.

result of formatting the
total price to Currency

Figure 2-36 Formatted total price shown in the interface

4. Click the Exit button.

START HERE

You also can
include the
Format function
in the statement
that calculates

the total price, like this:
lblTotalPrice.Text =

Format(Val(lblTotal-

Phones.Text) * 25,

"Currency").

C7718_ch02.indd 104C7718_ch02.indd 104 14/03/11 7:26 PM14/03/11 7:26 PM

105

Testing and Debugging the Application L E S S O N C

You have completed the fi rst four of the six steps involved in creating an OO
application: meeting with the client, planning the application, building the
user interface, and coding the application. Th e fi fth step is to test and debug
the application.

Testing and Debugging the Application
You test an application by starting it and entering some sample data. Th e
sample data should include both valid and invalid data. Valid data is data that
the application is expecting the user to enter, whereas invalid data is data that
the application is not expecting the user to enter. Th e Playtime Cellular appli-
cation, for instance, expects the user to enter a numeric value in the txtBlue
control; it does not expect the user to enter a letter. In most cases, invalid
data is a result of a typing error made by the user. You should test an applica-
tion as thoroughly as possible. Doing this helps to ensure that the applica-
tion displays the correct output when valid data is entered, and does not end
abruptly when invalid data is entered.

Debugging refers to the process of locating and correcting the errors, called
bugs, in a program. Program bugs typically are caused by either syntax errors
or logic errors. As you learned in Chapter 1, the term “syntax” refers to the
set of rules you must follow when using a programming language. A syntax
error occurs when you break one of the language’s rules. Most syntax errors
are a result of typing errors that occur when entering instructions, such as
typing Me.Clse() instead of Me.Close(). Th e Code Editor detects most
syntax errors as you enter the instructions. Logic errors, on the other hand,
are much more diffi cult to fi nd because the Code Editor cannot detect them
for you. A logic error can occur for a variety of reasons, such as forgetting to
enter an instruction or entering the instructions in the wrong order. Some
logic errors occur as a result of calculation statements that are correct syn-
tactically but incorrect mathematically. For example, consider the statement
lblSquared.Text = Val(txtNum.Text) + Val(txtNum.Text),
which is supposed to square the number entered in the txtNum control.
Th e statement’s syntax is correct; however, the statement is incorrect
 mathematically, because you square a value by multiplying it by itself, not by
adding it to itself.

To test and debug the Playtime Cellular application:

1. Start the application. First, test the application by clicking the
Calculate Order button without entering any data. Th e application
displays 0 and $0.00 as the total number of phones ordered and total
price, respectively. (Recall that the Val function converts the empty
string to the number 0.)

2. Click the Clear Screen button to clear the calculated results from the
label controls. Enter the letter r as the number of blue phones ordered
and the letter p as the number of pink phones ordered. Click the
Calculate Order button. Th e application displays 0 and $0.00 as the
total number of phones ordered and total price, respectively. (Recall
that the Val function converts a letter to the number 0.)

START HERE

C7718_ch02.indd 105C7718_ch02.indd 105 14/03/11 7:26 PM14/03/11 7:26 PM

106

C H A P T E R 2 Designing Applications

3. Click the Clear Screen button. Now enter the following correct order:

Toys For All
123 Main Street
Chicago, IL, 60631
25 blue phones ordered
20 pink phones ordered

4. Click the Calculate Order button. See Figure 2-37.

Figure 2-37 Result of calculating the Toys For All order

5. Click the Clear Screen button and then practice with other entries to
see how the application responds. When you are fi nished testing the
application, click the Exit button to end the application.

In the following set of steps, you will introduce syntax errors in the applica-
tion’s code. You also will learn how to locate and correct the errors.

To introduce syntax errors in the code and also debug the code:

1. Change the statement in the btnExit control’s Click event procedure
to Me.Clse() and then click the blank line above the procedure
header. Th e jagged blue line indicates that the statement contains
a syntax error. Change the statement to Me.Close() and then click
the blank line above the procedure header. Th e jagged blue line
disappears.

2. In the btnCalc control’s Click event procedure, delete the ending
parenthesis in the last assignment statement and then click the blank
line below the statement. Th e jagged blue line indicates that the state-
ment contains a syntax error. Th e red rectangle indicates that the
Code Editor has some suggestions for fi xing the error.

3. Hover your mouse pointer over the red rectangle until you see the
Error Correction Options box, and then click the list arrow in the
box. A suggestion for fi xing the error appears in the Error Correction
window. See Figure 2-38.

START HERE

C7718_ch02.indd 106C7718_ch02.indd 106 14/03/11 7:26 PM14/03/11 7:26 PM

107

Testing and Debugging the Application L E S S O N C

Error Correction
Options box

Error Correction
window

Figure 2-38 Suggestion for fi xing the error

4. Move the scroll bar in the Error Correction window all the way to
the right. Th e window indicates that the missing parenthesis will be
inserted at the end of the assignment statement that contains the
 syntax error. You can type the missing parenthesis yourself. Or, you
can simply click the suggestion in the Error Correction window. Click
the Insert the missing ‘)’. suggestion to insert the missing parenthesis.

5. If you are not paying close attention to the Code Editor window, you
may not notice that a statement contains a syntax error. In this step,
you will observe what happens when you start an application whose
code contains a syntax error. First, delete the ending parenthesis in
the last assignment statement in the btnCalc control’s Click event
procedure, and then click the blank line below the statement. Save
the solution and then start the application. Th e message dialog box
shown in Figure 2-39 appears.

Figure 2-39 Message dialog box

6. Click the No button. Th e Error List window shown in Figure 2-40
opens at the bottom of the IDE. Th e window indicates that the code
contains one error. Th e window provides a description of the error
and the location of the error in the Code Editor window.

Error List window

Figure 2-40 Error List window in the IDE

C7718_ch02.indd 107C7718_ch02.indd 107 14/03/11 7:26 PM14/03/11 7:26 PM

108

C H A P T E R 2 Designing Applications

7. Double-click the error message in the Error List window. Th e Code
Editor opens the Error Correction window shown earlier in Figure
2-38. Click the Insert the missing ‘)’. suggestion to insert the missing
parenthesis. Th e Code Editor inserts the missing parenthesis and then
removes the error message from the Error List window.

8. Close the Error List window. Save the solution and then start the
application. Test the application to verify that it works correctly, and
then click the Exit button to end the application.

Assembling the Documentation
After you have tested an application thoroughly, you can move to the last
step involved in creating an OO application: assemble the documentation.
Assembling the documentation refers to putting your planning tools and a
printout of the application’s interface and code in a safe place, so you can
refer to them if you need to change the application in the future. Your plan-
ning tools include the TOE chart, a sketch of the user interface, and either
the fl owcharts or pseudocode.

To print the application’s interface and code:

1. Click the designer window’s tab. Press Alt+Print Screen (Prnt Scrn
or PrtSc) to place a picture of the interface on the Clipboard. Start
Microsoft Word (or any application that can display a picture) and open
a new document (if necessary). Press Ctrl+v to paste the contents of
the Clipboard in the document. Press Ctrl+p to open the Print dialog
box. If your computer is connected to a printer, click the OK button;
otherwise, click the Cancel button. Close Microsoft Word (or the appli-
cation you used to display the picture) without saving the document.

2. Click the Code Editor window’s tab. Click File on the menu bar and
then click Print. If necessary, select the Include line numbers check
box. If your computer is connected to a printer, click the OK button;
otherwise, click the Cancel button.

3. Close the Code Editor window and then close the solution.

Th e code for the Playtime Cellular application is shown in Figure 2-41.

 1 ' Name: Playtime Cellular Project
 2 ' Purpose: Calculates the total number of phones
 3 ' ordered and the total price of the order
 4 ' Programmer: <your name> on <current date>
 5
 6 Public Class frmMain
 7
 8 Private Sub btnExit_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnExit.Click
 9 Me.Close()
10 End Sub
11
12 Private Sub btnClear_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnClear.Click

Figure 2-41 Playtime Cellular application’s code (continues)

START HERE

C7718_ch02.indd 108C7718_ch02.indd 108 14/03/11 7:26 PM14/03/11 7:26 PM

109

Lesson C Summary L E S S O N C

13 ' prepare the screen for the next order
14
15 txtName.Text = String.Empty
16 txtAddress.Text = String.Empty
17 txtCity.Text = String.Empty
18 txtState.Text = String.Empty
19 txtZip.Text = String.Empty
20 txtBlue.Text = String.Empty
21 txtPink.Text = String.Empty
22 lblTotalPhones.Text = String.Empty
23 lblTotalPrice.Text = String.Empty
24 ' send the focus to the Name text box
25 txtName.Focus()
26
27 End Sub
28
29 Private Sub btnCalc_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnCalc.Click
30 ' calculates number of phones ordered and total price
31
32 lblTotalPhones.Text = Val(txtBlue.Text) +
 Val(txtPink.Text)
33 lblTotalPrice.Text = Val(lblTotalPhones.Text) * 25
34 lblTotalPrice.Text = Format(lblTotalPrice.Text,
 "Currency")
35
36 End Sub
37 End Class

Figure 2-41 Playtime Cellular application’s code

Lesson C Summary
 • To plan an object’s code:

Use pseudocode or a fl owchart.

 • To clear the text property of an object while an application is running:

Assign either the String.Empty value or the empty string ("") to the
object’s Text property.

 • To assign a value to an object’s property while an application is running:

Use an assignment statement that follows the syntax object.property =
expression.

 • To move the focus to an object while an application is running:

Use the Focus method. Th e method’s syntax is object.Focus().

 • To create a comment in Visual Basic:

Begin the comment text with an apostrophe (').

 • To divide two integers and then return the result as an integer:

Use the integer division operator (\).

(continued)

C7718_ch02.indd 109C7718_ch02.indd 109 14/03/11 7:26 PM14/03/11 7:26 PM

110

C H A P T E R 2 Designing Applications

 • To divide two numbers and then return the remainder as an integer:

Use the modulus operator (Mod).

 • To temporarily convert a string to a number:

Use the Val function. Th e function’s syntax is Val(string).

 • To improve the appearance of numbers in the user interface:

Use the Format function. Th e function’s syntax is Format(expression, style).

Lesson C Key Terms
Assignment operator—the equal sign in an assignment statement

Assignment statement—an instruction that assigns a value to something,
such as to the property of an object

Bugs—the errors in a program

Debugging—the process of locating and correcting the bugs (errors) in a
program

Empty string—a set of quotation marks with nothing between them (""); also
called a zero-length string

Flowchart—a planning tool that uses standardized symbols to show the steps
a procedure must take to accomplish its goal

Flowlines—the lines connecting the symbols in a fl owchart

Focus method—moves the focus to a specifi ed control during run time

Format function—used to improve the appearance of numbers in an interface

Function—a procedure that processes a specifi c task and returns a value

General Declarations section—the area above the Public Class clause in the
Code Editor window

Input/output symbol—the parallelogram in a fl owchart; used to represent
input and output tasks

Integer division operator—represented by a backslash (\); divides two
 integers and then returns the quotient as an integer

Invalid data—data that an application is not expecting the user to enter

Logic error—occurs when you neglect to enter an instruction or enter the
instructions in the wrong order; also occurs as a result of calculation state-
ments that are correct syntactically but incorrect mathematically

Modulus operator—represented by the keyword Mod; divides two numbers
and returns the remainder of the division

Process symbols—the rectangle symbols in a fl owchart; used to represent
assignment and calculation tasks

Pseudocode—a planning tool that uses phrases to describe the steps a proce-
dure must take to accomplish its goal

Start/stop symbol—the oval symbol in a fl owchart; used to indicate the
beginning and end of the fl owchart

C7718_ch02.indd 110C7718_ch02.indd 110 14/03/11 7:26 PM14/03/11 7:26 PM

111

Lesson C Review Questions L E S S O N C

String—zero or more characters enclosed in quotation marks

String.Empty—the value that represents the empty string in Visual Basic

Syntax error—occurs when an instruction in an application’s code breaks one
of a programming language’s rules

Val function—temporarily converts a string to a number and then returns the
number

Valid data—data that an application is expecting the user to enter

Zero-length string—a set of quotation marks with nothing between them
(""); also called an empty string

Lesson C Review Questions

1. Which of the following assignment statements will not calculate
correctly?

a. lblTotal.Text = Val(txtSales1.Text) +
Val(txtSales2.Text)

b. lblTotal.Text = Val(txtSales1.Text + txtSales2.Text)

c. lblTotal.Text = Val(txtQuantity.Text) * 2

d. lblTotal.Text = Val(lblTotal.Text) * 1.1

2. Th e function temporarily converts a string to a
number, and then returns the number.

a. Format

b. StringToNumber

c. Val

d. Value

3. Which symbol is used in a fl owchart to represent a calculation task?

a. circle

b. oval

c. parallelogram

d. rectangle

4. What value is assigned to the lblNum control when the
lblNum.Text = 73 \ 25 instruction is processed by
the computer?

5. What value is assigned to the lblNum control when the
lblNum.Text = 73 Mod 25 instruction is processed by
the computer?

C7718_ch02.indd 111C7718_ch02.indd 111 14/03/11 7:26 PM14/03/11 7:26 PM

112

C H A P T E R 2 Designing Applications

Lesson C Exercises
Important note: In several of the exercises in this lesson, you perform the
second through sixth steps involved in creating an OO application. Recall
that the six steps are:

1. Meet with the client.

2. Plan the application. (Prepare a TOE chart that is ordered by object,
and then draw a sketch of the user interface.)

3. Build the user interface. (Refer to Appendix B for a listing of the GUI
guidelines you have learned so far. To help you remember the names
of the controls as you are coding, print the application’s interface and
then write the names next to each object.)

4. Code the application. (Either write pseudocode or draw a fl owchart
for each of the objects that will be coded. Include appropriate com-
ments in the code.)

5. Test and debug the application.

6. Assemble the documentation (your planning tools and a printout of
the interface and code).

1. In this exercise, you complete the application saved in Lesson B’s
Exercise 1. Open the Paper Solution (Paper Solution.sln) fi le con-
tained in the VB2010\Chap02\Paper Solution folder. If necessary,
open the designer window.

a. Code the Calculate Commission button; be sure to use the Val
function. Use the Format function to display the commission
with a dollar sign, a thousands separator, and two decimal places.
Use the Focus method to send the focus to the Clear Screen
button.

b. Code the Clear Screen button. Send the focus to the Name text box.

c. Save the solution and then start the application. Test the applica-
tion using the following valid data: Pat Brown, 2000, and .1. Also
test the application using invalid data. Close the Code Editor
 window and then close the solution.

2. In this exercise, you complete the application saved in Lesson B’s
Exercise 2. Open the RM Sales Solution (RM Sales Solution.sln) fi le
contained in the VB2010\Chap02\RM Sales Solution folder. If neces-
sary, open the designer window.

a. Code the Calculate Projected Sales button; be sure to use the Val
function. Use the Format function to display the projected sales
using the Standard format style.

b. Code the Clear Screen button. Send the focus to the txtNorthSales
control.

INTRODUCTORY

INTRODUCTORY

C7718_ch02.indd 112C7718_ch02.indd 112 14/03/11 7:26 PM14/03/11 7:26 PM

113

Lesson C Exercises L E S S O N C

c. Save the solution and then start the application. Test the applica-
tion using valid and invalid data. Use the following information
for the valid data:

 North sales and percentage: 25000, .1

 South sales and percentage: 10000, .05

 East sales and percentage: 10000, .04

 West sales and percentage: 15000, .11

d. Close the Code Editor window and then close the solution.

3. In this exercise, you complete the application saved in Lesson B’s
Exercise 3. Open the Time Solution (Time Solution.sln) fi le contained
in the VB2010\Chap02\Time Solution folder. If necessary, open the
designer window. Code the Calculate Hours button; be sure to use the
Val function. Send the focus to the Monday text box. Save the solu-
tion and then start the application. Test the application using valid
and invalid data. Close the Code Editor window and then close the
solution.

4. John Lee wants an application that displays his ending balance after
he enters the following three pieces of information: his cash balance
at the beginning of the month, the amount of money he earned dur-
ing the month, and the amount of money he spent during the month.

a. Create a Visual Basic Windows application. Use the follow-
ing names for the solution, project, and form fi le, respectively:
JohnLee Solution, JohnLee Project, and Main Form.vb. Save the
application in the VB2010\Chap02 folder.

b. Assign the name frmMain to the form. Perform the steps involved
in creating an OO application. (See the Important note at the
beginning of the Exercises section.) Use the following valid and
invalid data when testing the application:

 Beginning cash balance: 5000 Earnings: 2500 Expenses: 3000
 Beginning cash balance: xyz Earnings: xyz Expenses: xyz

c. Close the Code Editor window and then close the solution.

5. In this exercise, you modify the Playtime Cellular application from the
chapter. Use Windows to make a copy of the Playtime Solution folder
contained in the VB2010\Chap02 folder. Rename the copy Modifi ed
Playtime Solution. Open the Playtime Solution (Playtime Solution.
sln) fi le contained in the Modifi ed Playtime Solution folder. Open the
designer window. Modify the interface so that it allows the user to
enter the phone price. Also modify the application’s code. Save the
solution and then start and test the application. Close the Code Editor
window and then close the solution.

6. Lana Jones wants an application that will display the average of any
three numbers she enters. Create a Visual Basic Windows application.
Use the following names for the solution, project, and form fi le,

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

C7718_ch02.indd 113C7718_ch02.indd 113 14/03/11 7:26 PM14/03/11 7:26 PM

114

C H A P T E R 2 Designing Applications

respectively: LanaJones Solution, LanaJones Project, and Main
Form.vb. Save the application in the VB2010\Chap02 folder. Assign
the name frmMain to the form. Perform the steps involved in creating
an OO application. (See the Important note at the beginning of the
Exercises section.) Use the valid and invalid data shown here when
testing the application. Close the Code Editor window and then close
the solution.

First Number: 27 Second Number: 9 Th ird Number: 18
First Number: A Second Number: B Th ird Number: C

7. Martha Arenso, the manager of Bookworms Inc., needs an inven-
tory application. Martha will enter the title of a book, the number of
paperback versions of the book currently in inventory, the number
of hardcover versions of the book currently in inventory, the cost of
the paperback version, and the cost of the hardcover version. Martha
wants the application to display the value of the paperback versions
of the book, the value of the hardcover versions of the book, the total
number of paperback and hardcover versions, and the total value
of the paperback and hardcover versions combined. Create a Visual
Basic Windows application. Use the following names for the solution,
project, and form fi le, respectively: Bookworms Solution, Bookworms
Project, and Main Form.vb. Save the application in the VB2010\
Chap02 folder. Assign the name frmMain to the form. Perform the
steps involved in creating an OO application. (See the Important
note at the beginning of the Exercises section.) Format the calculated
dollar amounts to show a dollar sign, thousands separator, and two
decimal places. Use the valid and invalid data shown here when test-
ing the application. Close the Code Editor window and then close the
solution.

Book Title: An Introduction to Visual Basic 2010
Paperback versions: 100 Paperback cost: 40
Hardcover versions: 50 Hardcover cost: 75

Book Title: Advanced Visual Basic 2010
Paperback versions: A Paperback cost: B
Hardcover versions: C Hardcover cost: D

8. Jackets Unlimited is having a 25% off sale. Th e store manager wants
an application that allows the clerk to enter the original price of a
jacket. Th e application should display the discount and new price.
Create a Visual Basic Windows application. Use the following
names for the solution, project, and form fi le, respectively: Jackets
Solution, Jackets Project, and Main Form.vb. Save the application in
the VB2010\Chap02 folder. Assign the name frmMain to the form.
Perform the steps involved in creating an OO application. (See the
Important note at the beginning of the Exercises section.) Format
the discount and new price using the Standard format style. Test the
application using valid and invalid data. Close the Code Editor win-
dow and then close the solution.

INTERMEDIATE

INTERMEDIATE

C7718_ch02.indd 114C7718_ch02.indd 114 14/03/11 7:26 PM14/03/11 7:26 PM

115

Lesson C Exercises L E S S O N C

9. Typing Salon charges $.10 per typed envelope and $.25 per typed
page. Th e company accountant wants an application to help her pre-
pare bills. She will enter the customer’s name, the number of typed
envelopes, and the number of typed pages. Th e application should
calculate and display the customer’s total bill. Create a Visual Basic
Windows application. Use the following names for the solution, proj-
ect, and form fi le, respectively: TypingSalon Solution, TypingSalon
Project, and Main Form.vb. Save the application in the VB2010\
Chap02 folder. Assign the name frmMain to the form. Perform the
steps involved in creating an OO application. (See the Important note
at the beginning of the Exercises section.) Format the total bill using
the Currency format style. Use the valid and invalid data shown here
when testing the application. Close the Code Editor window and then
close the solution.

Customer’s name: Alice Wong
Number of typed envelopes: 250 Number of typed pages: 200

Customer’s name: Alice Wong
Number of typed envelopes: $4 Number of typed pages: AB

10. Suman Gadhari, the payroll clerk at Sun Projects, wants an applica-
tion that displays the net pay for each of the company’s employees.
Suman will enter the employee’s name, hours worked, and rate of
pay. For this application, you do not have to worry about overtime,
because this company does not allow anyone to work more than
40 hours. Suman wants the application to calculate and display the
gross pay, the federal withholding tax (FWT), the Social Security tax
(FICA), the state income tax, and the net pay. Th e FWT is 20% of the
gross pay. Th e FICA tax is 8% of the gross pay. Th e state income tax is
2.5% of the gross pay. Create a Visual Basic Windows application. Use
the following names for the solution, project, and form fi le, respec-
tively: Sun Solution, Sun Project, and Main Form.vb. Save the applica-
tion in the VB2010\Chap02 folder. Assign the name frmMain to the
form. Perform the steps involved in creating an OO application. (See
the Important note at the beginning of the Exercises section.) Format
the calculated amounts using the Standard format style. Test the
application using valid and invalid data. Close the Code Editor win-
dow and then close the solution.

11. Colfax Industries needs an application that allows the shipping clerk
to enter the quantity of an item in inventory and the number of the
items that can be packed in a box for shipping. When the shipping
clerk clicks a button, the application should compute and display the
number of full boxes that can be packed and the number of items left
over. Create a Visual Basic Windows application. Use the following
names for the solution, project, and form fi le, respectively: Colfax
Solution, Colfax Project, and Main Form.vb. Save the application in
the VB2010\Chap02 folder. Assign the name frmMain to the form.
Perform the steps involved in creating an OO application. (See the
Important note at the beginning of the Exercises section.) Save the

INTERMEDIATE

ADVANCED

ADVANCED

C7718_ch02.indd 115C7718_ch02.indd 115 14/03/11 7:26 PM14/03/11 7:26 PM

116

C H A P T E R 2 Designing Applications

solution and then start the application. Colfax has 45 skateboards
in inventory. If six skateboards can fi t into a box for shipping, how
many full boxes can the company ship and how many skateboards will
remain in inventory? Close the Code Editor window and then close
the solution.

Discovery

12. In this exercise, you learn about the TabStop property and the Clear
method.

a. Use Windows to make a copy of the Playtime Solution folder from
the chapter. Rename the copy Discovery Playtime Solution.

b. Open the Playtime Solution (Playtime Solution.sln) fi le contained
in the Discovery Playtime Solution folder. Open the designer
window.

c. Most of Playtime Cellular’s customers reside in Illinois. Use
the Properties window to set the txtState control’s Text property
to IL.

d. Because the txtState control already contains IL, there is no
need for the user to tab into the control when entering data.
You can use the control’s TabStop property to bypass (or skip
over) the control. If the user wants to change the State value,
he or she can click the control or use the control’s access key.
Change the txtState control’s TabStop property to False. Save
the solution and then start the application. Verify that the
 txtState control is bypassed when you tab through the controls
in the interface.

e. Click the Clear Screen button. Notice that the button removes
the IL from the txtState control. Stop the application. Modify the
btnClear control’s Click event procedure to assign the string “IL”
(rather than the String.Empty value) to the txtState control.

f. Save the solution and then start the application. Click the txtState
control. Replace the IL in the control with TX and then click the
Clear Screen button. Th e button should assign the value IL to the
txtState control. Stop the application.

g. You can use a text box control’s Clear method to remove the con-
tents of the control while an application is running. Th e method’s
syntax is textbox.Clear(). Use the Clear method in the btnClear
control’s Click event procedure to remove the contents of the text
boxes (except the txtState text box). (You cannot use the Clear
method to remove the contents of label controls.)

h. Save the solution and then start the application. Enter an order
and then click the Calculate Order button. Click the Clear
Screen button. Close the Code Editor window and then close the
solution.

C7718_ch02.indd 116C7718_ch02.indd 116 14/03/11 7:26 PM14/03/11 7:26 PM

117

Lesson C Exercises L E S S O N C

Swat The Bugs

13. Open the Debug Solution (Debug Solution.sln) fi le contained in
the VB2010\Chap02\Debug Solution folder. If necessary, open the
designer window. Open the Code Editor window. Locate and then
correct the syntax errors in the code. Save the solution and then start
and test the application. Close the Code Editor window and then
close the solution.

C7718_ch02.indd 117C7718_ch02.indd 117 14/03/11 7:26 PM14/03/11 7:26 PM

C H A P T E R 3
Using Variables
and Constants

Revising the Playtime Cellular Application

In this chapter, you modify the Playtime Cellular application from Chapter 2. The
modifi ed application will calculate a 3% sales tax and then display the result in the
interface. It also will display the name of the salesperson who recorded the order.

C7718_ch03.indd 118C7718_ch03.indd 118 17/03/11 8:21 PM17/03/11 8:21 PM

119

Previewing the Modifi ed Playtime Cellular Application

Previewing the Modifi ed Playtime Cellular Application
Before you start the fi rst lesson in this chapter, you will preview the
 completed application. Th e application is contained in the VB2010\Chap03
folder.

To preview the completed application:

1. Use the Run dialog box to run the Playtime (Playtime.exe) fi le con-
tained in the VB2010\Chap03 folder. An order form similar to the one
created in Chapter 2 appears on the screen.

2. Enter the following customer information on the order form:

 Johansen’s
 3400 Esquire Drive
 Chicago, IL, 60654

3. Type 25 in the Blue phones ordered box and then type 5 in the Pink
phones ordered box.

4. Although the Calculate Order button does not have the focus, you
can select it by pressing the Enter key. Th is is because the Calculate
Order button is the default button in the user interface. You will
learn how to designate a default button in Lesson B. Press Enter to
 calculate the order. A Name Entry dialog box appears and requests
the salesperson’s name, as shown in Figure 3-1.

Figure 3-1 Name Entry dialog box

5. Type Harriet Nozinski as the salesperson’s name and then press
Enter to select the dialog box’s OK button. Th e application calculates
the order. Th e completed order form is shown in Figure 3-2. Notice
that the sales tax amount and the salesperson’s name appear on
the order form. Th e application uses string concatenation, which is
 covered in Lesson B, to display the information.

START HERE

To open the Run
dialog box, press
and hold down
the Windows logo
key as you tap

the letter r, and then
release the logo key.

C7718_ch03.indd 119C7718_ch03.indd 119 17/03/11 8:21 PM17/03/11 8:21 PM

120

C H A P T E R 3 Using Variables and Constants

Figure 3-2 Completed order form

6. Change the number of pink phones ordered to 10. Th e application
clears the contents of the label controls that display the total phones
ordered, total price, and message. In Lesson C, you will learn how to
clear the contents of a control when a change is made to the value
stored in a diff erent control.

7. Click the Calculate Order button to calculate the order. Th e Name
Entry dialog box appears and displays the salesperson’s name. Press
Enter to select the dialog box’s OK button. Th e application recalcu-
lates the total phones ordered, total price, and sales tax amount, and
then displays the information on the order form.

8. Click the Clear Screen button to clear the order information from
the form, and then click the Exit button to end the application.

In Lesson A, you will learn how to store information, temporarily, in memory
locations inside the computer. You will modify the Playtime Cellular application
in Lessons B and C. Be sure to complete each lesson in full and do all of the end-
of-lesson questions and several exercises before continuing to the next lesson.

C7718_ch03.indd 120C7718_ch03.indd 120 17/03/11 8:21 PM17/03/11 8:21 PM

121

Using Variables to Store Information L E S S O N A

 ❚ LESSON A
After studying Lesson A, you should be able to:

 • Declare variables and named constants

 • Assign data to an existing variable

 • Convert string data to a numeric data type using the TryParse method

 • Convert numeric data to a diff erent data type using the Convert class methods

 • Explain the scope and lifetime of variables and named constants

 • Explain the purpose of Option Explicit, Option Infer, and Option Strict

Using Variables to Store Information
All of the order information in the Playtime Cellular application from
Chapter 2 is temporarily stored in the properties of various controls on the
order form. For example, the numbers of blue and pink phones ordered are
stored in the Text properties of the txtBlue and txtPink controls, respectively.
Th e application uses the Text properties of those controls in the statement
that calculates the total phones ordered, like this: lblTotalPhones.
Text = Val(txtBlue.Text) + Val(txtPink.Text). Th e statement
assigns the calculated result to the Text property of the lblTotalPhones
control. Th e application then uses the lblTotalPhones control’s Text prop-
erty in the statement that calculates the total price of the order, like this:
 lblTotalPrice.Text = Val(lblTotalPhones.Text) * 25.

Besides storing data in the properties of controls, a programmer also can
store data, temporarily, in memory locations inside the computer. Th e mem-
ory locations are called variables, because the contents of the locations can
change as the application is running. It may be helpful to picture a variable
as a small box inside the computer. You can enter and store data in the box,
but you cannot actually see the box. One use for a variable is to hold infor-
mation that is not stored in a control on the form. For example, if you didn’t
need to display the total number of phones ordered on the Playtime Cellular
order form, you could eliminate the lblTotalPhones control from the form
and store the total number of phones ordered in a variable instead. You then
would use the value stored in the variable, rather than the value stored in the
Text property of the lblTotalPhones control, in the total price calculation.

You also can use a variable to store the data contained in a control’s property,
such as the data contained in a control’s Text property. Programmers typically
do this when the data is a numeric amount that will be used in a calculation.
As you will learn in the next section, assigning numeric data to a variable
allows you to control the preciseness of the data. It also makes your code run
more effi ciently, because the computer can process data stored in a variable
much faster than it can process data stored in the property of a control.

Every variable has a data type, name, scope, and lifetime. First, you will learn
how to select an appropriate data type for a variable.

C7718_ch03.indd 121C7718_ch03.indd 121 17/03/11 8:21 PM17/03/11 8:21 PM

122

C H A P T E R 3 Using Variables and Constants

Selecting a Data Type for a Variable
Each variable used in an application should be assigned a data type by the
programmer. Th e data type determines the type of data the variable can store.
Figure 3-3 describes most of the basic data types available in Visual Basic
2010. Each data type is a class, which means that each data type is a pattern
from which one or more objects—in this case, variables—are instantiated
(created). As the fi gure indicates, variables assigned the Integer, Long, or Short
data type can store integers, which are whole numbers—positive or nega-
tive numbers without any decimal places. Th e diff erences among these three
data types are in the range of integers each type can store and the amount of
memory each type needs to store the integer. Decimal, Double, and Single
variables, on the other hand, can store numbers containing a decimal place.
Here again, the diff erences among these three data types are in the range of
numbers each type can store and the amount of memory each type needs to
store the numbers. However, calculations involving Decimal variables are not
subject to the small rounding errors that may occur when using Double or
Single variables. In most cases, the small rounding errors do not create any
problems in an application. One exception to this is when the application con-
tains complex equations dealing with money, where you need accuracy to the
penny. In those cases, the Decimal data type is the best type to use.

Also listed in Figure 3-3 are the Char, String, Boolean, Date, and Object
data types. Th e Char data type can store one Unicode character, while the
String data type can store from zero to approximately two billion Unicode
 characters. Unicode is the universal coding scheme for characters. It assigns a
unique numeric value to each character used in the written languages of the
world. (For more information, see Th e Unicode Standard at www. unicode.org.)
You use a Boolean variable to store a Boolean value (either True or False),
and a Date variable to store date and time information. Th e Object data type
can store any type of data. However, your application will pay a price for this
fl exibility: it will run more slowly, because the computer has to determine the
type of data currently stored in an Object variable. It is best to avoid using
the Object data type.

C7718_ch03.indd 122C7718_ch03.indd 122 17/03/11 8:21 PM17/03/11 8:21 PM

www.unicode.org

123

Using Variables to Store Information L E S S O N A

Data type Stores Memory required

Boolean a logical value (True, False) 2 bytes

Char one Unicode character 2 bytes

Date date and time information 8 bytes
 Date range: January 1, 0001 to December 31, 9999
 Time range: 0:00:00 (midnight) to 23:59:59

Decimal a number with a decimal place 16 bytes
 Range with no decimal place:
 +/–79,228,162,514,264,337,593,543,950,335
 Range with a decimal place:
 +/–7.9228162514264337593543950335

Double a number with a decimal place 8 bytes
 Range: +/–4.94065645841247 X 10–324 to
 +/–1.79769313486231 X 10308

Integer integer 4 bytes
 Range: –2,147,483,648 to 2,147,483,647

Long integer 8 bytes
 Range: –9,223,372,036,854,775,808 to
 9,223,372,036,854,775,807

Object data of any type 4 bytes

Short integer 2 bytes
 Range: –32,768 to 32,767

Single a number with a decimal place 4 bytes
 Range: +/–1.401298 X 10–45 to +/–3.402823 X 1038

String text; 0 to approximately 2 billion characters

Figure 3-3 Basic data types in Visual Basic

Th e applications in this book will use the Integer data type for variables that
will store integers used in calculations, even when the integers are small
enough to fi t into a Short variable. Th is is because a calculation containing
Integer variables takes less time to process than the equivalent calculation
containing Short variables. Either the Decimal data type or the Double data
type will be used for numbers that contain decimal places and are used in
calculations. Th e applications will use the String data type for variables that
contain either text or numbers not used in calculations, and the Boolean data
type to store Boolean values.

Selecting a Name for a Variable
In addition to assigning a data type to an application’s variables, the pro-
grammer also must assign a name to each variable. Th e name, also called the
identifi er, should describe the contents of the variable. A good variable name
is one that is meaningful right after you fi nish a program and also years later

C7718_ch03.indd 123C7718_ch03.indd 123 17/03/11 8:21 PM17/03/11 8:21 PM

124

C H A P T E R 3 Using Variables and Constants

when you (or perhaps a co-worker) need to modify the program. Th ere are
several conventions for naming variables in Visual Basic. In this book, you
will use Hungarian notation, which is the same naming convention used for
controls. Variable names in Hungarian notation begin with a three-character
ID that represents the variable’s data type. Th e names of Integer variables
begin with int, while the names of Decimal and Double variables begin with
dec and dbl, respectively. String variable names begin with str, and Boolean
variable names begin with bln. Th e remaining characters in a variable’s name
represent the variable’s purpose. Using Hungarian notation, you might assign
the name intAge to an Integer variable that stores a person’s age, and the
name decGrossPay to a Decimal variable that stores the amount of an
employee’s gross pay. Like control names, variable names are entered using
camel case, which means you lowercase the ID and then uppercase the fi rst
letter of each word in the name. Figure 3-4 lists the rules for naming variables
and includes examples of valid and invalid variable names.

Rules for naming variables

1. The name must begin with a letter or an underscore.
2. The name can contain only letters, numbers, and the underscore character. No

punctuation characters, special characters, or spaces are allowed in the name.
3. Although the name can contain thousands of characters, 32 characters is the

recommended maximum number of characters to use.
4. The name cannot be a reserved word, such as Sub or Double.

Valid names
intJan_Sales, decSales2013, dblWestRegion, strFirstName, blnIsValid

Invalid names Problem
2ndQuarterSales the name must begin with a letter or an underscore
dblWest Region the name cannot contain a space
strFirst.Name the name cannot contain punctuation
decSales$North the name cannot contain a special character

Figure 3-4 Variable naming rules and examples

Declaring a Variable
Now that you know how to select an appropriate data type and name for a
variable, you can learn how to declare a variable in code. Declaring a variable
tells the computer to set aside a small section of its internal memory, and it
allows you to refer to the section by the variable’s name. Th e size of the sec-
tion is determined by the variable’s data type. You declare a variable using a
declaration statement. Figure 3-5 shows the syntax of a declaration statement
and includes examples of declaring variables. Th e {Dim | Private | Static}
portion of the syntax indicates that you can select only one of the keywords
appearing within the braces. In most instances, you declare a variable using
the Dim keyword. (You will learn about the Private and Static keywords
later in this lesson.)

VariableName and dataType in the syntax are the variable’s name and data
type, respectively. As mentioned earlier, a variable is considered an object

“Dim” comes
from the word
“dimension,”
which is how pro-
grammers in the

1960s referred to the
process of allocating the
computer’s memory.
“Dimension” refers to the
“size” of something.

C7718_ch03.indd 124C7718_ch03.indd 124 17/03/11 8:21 PM17/03/11 8:21 PM

125

Assigning Data to an Existing Variable L E S S O N A

in Visual Basic and is an instance of the class specifi ed in the dataType
i nformation. Th e Dim dblHoursWorked As Double statement, for exam-
ple, creates an object named dblHoursWorked; the object is an instance
of the Double class. InitialValue in the syntax is the value you want stored
in the variable when it is created in the computer’s internal memory. Th e
square brackets in the syntax indicate that the “= initialValue” part of a vari-
able declaration statement is optional. If you do not assign an initial value
to a variable when it is declared, the computer stores a default value in the
variable; the default value depends on the variable’s data type. A variable
declared using one of the numeric data types is automatically initialized
to—in other words, given a beginning value of—the number 0. Th e com-
puter automatically initializes a Boolean variable using the keyword False,
and a Date variable to 1/1/0001 12:00:00 AM. Object and String variables
are automatically initialized using the keyword Nothing. Variables initial-
ized to Nothing do not actually contain the word “Nothing”; rather, they
contain no data at all.

Variable declaration statement

Syntax
{Dim | Private | Static} variableName As dataType [= initialValue]

Example 1
Dim intHours As Integer
Dim dblPayRate As Double
declares an Integer variable named intHours and a Double variable named
dblPayRate; the variables are automatically initialized to 0

Example 2
Dim decDiscount As Decimal
declares a Decimal variable named decDiscount; the variable is automatically
initialized to 0

Example 3
Dim blnIsValid As Boolean = True
declares a Boolean variable named blnIsValid and initializes it using the keyword
True

Example 4
Dim strMessage As String = "Good Morning"
declares a String variable named strMessage and initializes it using the string
“Good Morning”

Figure 3-5 Syntax and examples of a variable declaration statement

Assigning Data to an Existing Variable
In Chapter 2, you learned how to use an assignment statement to assign a
value to a control’s property during run time. An assignment statement also
is used to assign a value to a variable during run time. Th e syntax for doing
this is variableName = expression, where expression can contain items such
as literal constants, object properties, variables, keywords, or arithmetic

 Recall that the
equal sign in an
assignment state-
ment is called the
assignment
operator.

C7718_ch03.indd 125C7718_ch03.indd 125 17/03/11 8:21 PM17/03/11 8:21 PM

126

C H A P T E R 3 Using Variables and Constants

operators. A literal constant is an item of data whose value does not change
while the application is running; examples include the string literal constant
“Mary” and the numeric literal constant 500. When the computer pro-
cesses an assignment statement, it assigns the value of the expression that
appears on the right side of the assignment operator to the variable (memory
 location) whose name appears on the left side of the assignment operator.
In other words, the computer evaluates the expression and then stores the
result in the variable.

Th e data type of the value assigned to a variable should be the same data
type as the variable itself. Figure 3-6 shows examples of assigning values to
variables having the same data type. Th e intQuantity = 500 assignment
statement in Example 1 stores the numeric literal constant 500 (an integer) in
an Integer variable named intQuantity. Similarly, the strFirstName =
"Mary" assignment statement in Example 2 stores the string literal constant
“Mary” in a String variable named strFirstName. Notice that string literal
constants are enclosed in quotation marks, but numeric literal constants and
variable names are not. Th e quotation marks diff erentiate a string from both
a number and a variable name. In other words, “500” is a string, but 500 is a
number. Similarly, “Mary” is a string, but Mary (without the quotation marks)
would be interpreted by the computer as the name of a variable. When the
computer processes an assignment statement that assigns a string to a String
variable, it assigns only the characters that appear between the quotation
marks; the computer does not assign the quotation marks themselves.

Th e strZipCode = txtZip.Text statement in Example 3 in Figure 3-6
assigns the string contained in the txtZip control’s Text property to a String
variable named strZipCode. Th e dblDiscountRate = .03 statement
in Example 4 assigns the Double number .03 to a Double variable named
dblDiscountRate. Th is is because a numeric literal constant that has a
decimal place is automatically treated as a Double number in Visual Basic.
When entering a numeric literal constant, you do not enter a comma or
special characters, such as the dollar sign or percent sign. If you want to
include a percentage in an assignment statement, you do so using its decimal
equivalent; for example, you enter .03 rather than 3%.

Th e decTaxRate = .05D statement in Example 5 in Figure 3-6 shows how
you convert a numeric literal constant of the Double data type to the Decimal
data type, and then assign the result to a Decimal variable. Th e D that fol-
lows the number .05 in the statement is one of the literal type characters in
Visual Basic. A literal type character forces a literal constant to assume a
data type other than the one its form indicates. In this case, the D forces the
Double number .05 to assume the Decimal data type. Th e dblCommission
= dblSales * .1 statement in Example 6 multiplies the contents of the
dblSales variable by the Double number .1 and then assigns the result to
the dblCommission variable. When an assignment statement’s expression
contains the name of a variable, the computer uses the value stored inside the
variable to evaluate the expression.

As you learned in
Chapter 2, the
value stored in
the Text property
of an object is

always treated as a
string.

You will learn
about another
literal type char-
acter, the letter
C, in Chapter 8.

C7718_ch03.indd 126C7718_ch03.indd 126 17/03/11 8:21 PM17/03/11 8:21 PM

127

Assigning Data to an Existing Variable L E S S O N A

Assigning values to variables having the same data type

Example 1
intQuantity = 500
assigns the integer 500 to the intQuantity variable

Example 2
strFirstName = "Mary"
assigns the string “Mary” to the strFirstName variable

Example 3
strZipCode = txtZip.Text
assigns the string contained in the txtZip control’s Text property to the strZipCode
variable

Example 4
dblDiscountRate = .03
assigns the Double number .03 to the dblDiscountRate variable

Example 5
decTaxRate = .05D
converts the Double number .05 to Decimal and then assigns the result to the
decTaxRate variable

Example 6
dblCommission = dblSales * .1
multiplies the contents of the dblSales variable by .1 and then assigns the result to
the dblCommission variable

Figure 3-6 Assignment statements in which the value’s data type matches the variable’s
data type

A variable can store only one value at any one time. When you use an
assignment statement to assign another value to the variable, the new
value replaces the existing value. To illustrate this point, assume that a
 button’s Click event procedure contains the following two lines of code: Dim
intNumber As Integer = 500 and intNumber = intNumber * 2.
When you start the application and click the button, the two lines of code
are processed as follows:

1. Th e declaration statement creates the intNumber variable in mem-
ory and initializes it to the number 500.

2. Th e assignment statement fi rst multiplies the contents of the
intNumber variable by the number 2, giving 1000. Th e assignment
statement then replaces the current contents of the intNumber vari-
able (500) with 1000. Notice that the calculation appearing on the
right side of the assignment operator is performed fi rst, and then the
result is assigned to the variable whose name appears on the left side
of the assignment operator.

C7718_ch03.indd 127C7718_ch03.indd 127 17/03/11 8:21 PM17/03/11 8:21 PM

128

C H A P T E R 3 Using Variables and Constants

In all of the assignment statements in Figure 3-6, the data type of the value
matches the data type of the variable to which the value is assigned. At
times, however, the value’s data type might be diff erent from the variable’s
data type. You can change the value’s data type to match the variable’s
data type using either the TryParse method or one of the methods in the
Convert class.

The TryParse Method
Like the Val function, which you learned about in Chapter 2, the TryParse
method converts a string to a number. However, unlike the Val function,
which always returns a Double number, the TryParse method allows the pro-
grammer to specify the number’s data type; for this reason, most program-
mers prefer to use the TryParse method. Every numeric data type in Visual
Basic has a TryParse method that converts a string to that particular data type.

Figure 3-7 shows the basic syntax of the TryParse method along with
examples of using the method. In the syntax, dataType is one of the numeric
data types available in Visual Basic. Th e dot member access operator in the
TryParse method’s syntax indicates that the method is a member of the
dataType class. Th e method’s arguments (string and numericVariableName)
represent information that the method needs to perform its task. Th e string
argument is the string you want converted to a number of the dataType type
and typically is either the Text property of a control or the name of a String
variable. Th e numericVariableName argument is the name of a numeric vari-
able in which the TryParse method can store the number. Th e numeric variable
must have the same data type as specifi ed in the dataType portion of the
syntax. In other words, when using the TryParse method to convert a string
to a Double number, you need to provide the method with the name of a
Double variable in which to store the number. Th e TryParse method parses
its string argument, which means it looks at each character in the string, to
determine whether the string can be converted to a number of the specifi ed
data type. If the string can be converted, the TryParse method converts the
string to a number and stores the number in the variable specifi ed in the
numericVariableName argument. If the TryParse method determines that
the string cannot be converted to the appropriate data type, it assigns the
number 0 to the variable.

You will learn
more about the
TryParse method
in Chapter 4.

Using the TryParse method

Basic syntax
dataType.TryParse(string, numericVariableName)

Example 1
Double.TryParse(txtSales.Text, dblSales)
If the string contained in the txtSales control’s Text property can be converted to a
Double number, the TryParse method converts the string and then stores the result in
the dblSales variable; otherwise, it stores the number 0 in the dblSales variable.

Figure 3-7 Basic syntax and examples of the TryParse method (continues)

C7718_ch03.indd 128C7718_ch03.indd 128 17/03/11 8:21 PM17/03/11 8:21 PM

129

Assigning Data to an Existing Variable L E S S O N A

Figure 3-8 shows how the TryParse method of the Double, Decimal, and
Integer data types would convert various strings. As the fi gure indicates, the
three methods can convert a string that contains only numbers. Th ey also
can convert a string that contains a leading sign, as well as one that contains
leading or trailing spaces. In addition, the Double.TryParse and Decimal.
TryParse methods can convert a string that contains a decimal point or a
comma. However, none of the three methods can convert a string that con-
tains a dollar sign, a percent sign, a letter, or a space within the string.

string Double.TryParse Decimal.TryParse Integer.TryParse

"62" 62 62 62

"–9" –9 –9 –9

"12.55" 12.55 12.55 0

"–4.23" –4.23 –4.23 0

"1,457" 1457 1457 0

" 33 " 33 33 33

"$5" 0 0 0

"7%" 0 0 0

"122a" 0 0 0

"1 345" 0 0 0

empty string 0 0 0

Figure 3-8 Results of the TryParse method for the Double, Decimal, and Integer
data types

(continued)

Example 2
Decimal.TryParse(txtGross.Text, decGross)
If the string contained in the txtGross control’s Text property can be converted
to a Decimal number, the TryParse method converts the string and then stores
the result in the decGross variable; otherwise, it stores the number 0 in the
decGross variable.

Example 3
Integer.TryParse(strNumber, intNumber)
If the string contained in the strNumber variable can be converted to an
Integer number, the TryParse method converts the string and then stores the
result in the intNumber variable; otherwise, it stores the number 0 in the
intNumber variable.

Figure 3-7 Basic syntax and examples of the TryParse method

C7718_ch03.indd 129C7718_ch03.indd 129 17/03/11 8:21 PM17/03/11 8:21 PM

130

C H A P T E R 3 Using Variables and Constants

The Convert Class
At times, you may need to convert a number (rather than a string) from one
data type to another. Visual Basic provides several ways of accomplishing
this task. One way is to use the Visual Basic conversion functions, which
are listed in Appendix C in this book. You also can use one of the methods
defi ned in the Convert class. In this book you will use the Convert class
methods, because they have an advantage over the conversion functions: the
methods can be used in any of the languages built into Visual Studio, whereas
the conversion functions can be used only in the Visual Basic language. Th e
more commonly used methods in the Convert class are the ToDecimal,
ToDouble, ToInt32, and ToString methods. Th e methods convert a value to
the Decimal, Double, Integer, and String data types, respectively.

Th e syntax for using the Convert class methods is shown in Figure 3-9. Th e
dot member access operator in the syntax indicates that the method is a
member of the Convert class. In most cases, the value argument is a numeric
value that you want converted either to the String data type or to a diff erent
numeric data type (for example, from Double to Decimal). Although you
can use the Convert methods to convert a string to a numeric data type, the
TryParse method is the recommended method to use for that task. Th is is
because, unlike the Convert methods, the TryParse method does not pro-
duce an error when it tries to convert the empty string; instead, the TryParse
method assigns the number 0 to its numericVariableName argument.

Also included in Figure 3-9 are examples of using the Convert class methods.
In the statement shown in Example 1, the Convert.ToDecimal method
converts the Double number .05 to Decimal. (Recall that a number with a
decimal place is automatically treated as a Double number in Visual Basic.)
Th e statement then assigns the result to the decTaxRate variable. You also
could write the statement in Example 1 as decTaxRate = .05D; however,
many programmers would argue that using the Convert.ToDecimal method,
rather than the literal type character (D), makes the code clearer. In Example
2’s statement, the Convert.ToString method converts the integer stored in the
intTotalScore variable to String before the statement assigns the result
to the lblTotal control’s Text property. Th e statement in Example 3 uses the
Convert.ToDecimal method to convert the Double number .1 to Decimal.
Th e statement multiplies the result by the contents of the decSales variable
and then assigns the product to the decCommission variable. You also could
write this statement as decCommission = decSales * .1D.

You can experi-
ment with the
Visual Basic con-
version functions
by completing

Discovery Exercise 5 at
the end of Lesson C.

Using the Convert class methods

Syntax
Convert.method(value)

Example 1
decTaxRate = Convert.ToDecimal(.05)
converts the Double number .05 to Decimal and then assigns the result to the
decTaxRate variable

Figure 3-9 Syntax and examples of the Convert class methods (continues)

C7718_ch03.indd 130C7718_ch03.indd 130 17/03/11 8:21 PM17/03/11 8:21 PM

131

The Scope and Lifetime of a Variable L E S S O N A

YOU DO IT 1!

Create a Visual Basic Windows application named YouDoIt 1. Save the
application in the VB2010\Chap03 folder. Add a text box, a label, and a
button to the form. The button’s Click event procedure should store the
contents of the text box in a Double variable named dblCost. It then
should display the variable’s contents in the label. Code the procedure. Save
the solution and then start and test the application. Close the solution.

The Scope and Lifetime of a Variable
Besides a name, data type, and initial value, every variable also has a scope
and a lifetime. A variable’s scope indicates where the variable can be used in
an application’s code, and its lifetime indicates how long the variable remains
in the computer’s internal memory. Variables can have class scope, procedure
scope, or block scope. However, most of the variables used in an application
will have procedure scope. Th is is because fewer unintentional errors occur
in applications when the variables are declared using the minimum scope
needed, which usually is procedure scope.

A variable’s scope and lifetime are determined by where you declare the vari-
able—in other words, where you enter the variable’s declaration statement.
Typically, you enter the declaration statement either in a procedure (such
as an event procedure) or in the Declarations section of a form. A form’s
Declarations section is not the same as the General Declarations section,
which you learned about in Chapter 2. Th e General Declarations section is
located above the Public Class clause in the Code Editor window, whereas the
form’s Declarations section is located between the Public Class and End Class
clauses. Variables declared in a form’s Declarations section have class scope.
Variables declared in a procedure, on the other hand, have either procedure
scope or block scope, depending on where in the procedure they are declared.
In the next two sections, you will learn about procedure scope variables and
class scope variables. Variables having block scope are covered in Chapter 4.

Variables also
can have
namespace
scope and are
referred to as

namespace variables,
global variables, or
 public variables. Such
variables can lead to
unintentional errors in a
program and should be
avoided, if possible. For
this reason, they are not
covered in this book.

(continued)

Example 2
lblTotal.Text = Convert.ToString(intTotalScore)
converts the integer stored in the intTotalScore variable to String and then
assigns the result to the lblTotal control’s Text property

Example 3
decCommission = decSales * Convert.ToDecimal(.1)
converts the Double number .1 to Decimal, then multiplies the result by
the contents of the decSales variable, and then assigns that result to the
decCommission variable

Figure 3-9 Syntax and examples of the Convert class methods

C7718_ch03.indd 131C7718_ch03.indd 131 17/03/11 8:21 PM17/03/11 8:21 PM

132

C H A P T E R 3 Using Variables and Constants

Variables with Procedure Scope
When you declare a variable in a procedure, the variable is called a
procedure-level variable and it has procedure scope, because only that pro-
cedure can use the variable. Procedure-level variables typically are declared
at the beginning of a procedure, and they remain in the computer’s internal
memory only while that procedure is running. Procedure-level variables are
removed from memory when the procedure in which they are declared ends.
In other words, a procedure-level variable has the same lifetime as the pro-
cedure that declares it. As mentioned earlier, most of the variables in your
applications will be procedure-level variables.

Th e Sales Tax Calculator application that you view next illustrates the use of
procedure-level variables. As the interface shown in Figure 3-10 indicates,
the application allows the user to enter a sales amount. It then calculates
and displays either a 2% sales tax or a 5% sales tax, depending on the button
selected by the user.

Figure 3-10 User interface for the Sales Tax Calculator application

Figure 3-11 shows the Click event procedures for the Calculate 2% Tax
and Calculate 5% Tax buttons. When the user clicks the Calculate 2% Tax
button in the interface, the Dim statements in the button’s Click event pro-
cedure create and initialize two procedure-level Double variables named
dblSales and dblTax2; both variables can be used only by that proce-
dure. Next, the TryParse method converts the sales amount entered in
the txtSales control to Double and then stores the result in the dblSales
variable. Th e fi rst assignment statement in the procedure multiplies the
contents of the dblSales variable by the Double number .02 and then
stores the result in the dblTax2 variable. Th e last assignment statement
in the procedure converts the contents of the dblTax2 variable to String,
assigning the result to the lblTax control’s Text property. When the proce-
dure ends, the computer removes the dblSales and dblTax2 variables
from memory. Th e variables will be created again the next time the user
clicks the Calculate 2% Tax button. A similar process is followed when the
user clicks the Calculate 5% Tax button, except the variable that stores the
tax amount is named dblTax5 and the tax is calculated using a rate of .05
rather than .02.

Procedure-level
variables are also
called local vari-
ables and their
scope is often

referred to as local
scope.

In the Static
Variables section
of this lesson,
you will learn how
to declare a pro-

cedure-level variable that
remains in the comput-
er’s memory even when
the procedure in which it
is declared ends.

C7718_ch03.indd 132C7718_ch03.indd 132 17/03/11 8:21 PM17/03/11 8:21 PM

133

The Scope and Lifetime of a Variable L E S S O N A

Private Sub btnCalcTax2_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalcTax2.Click
 ' calculates a 2% sales tax

 ' declare variables
 Dim dblSales As Double
 Dim dblTax2 As Double

 ' calculate and display the sales tax
 Double.TryParse(txtSales.Text, dblSales)
 dblTax2 = dblSales * 0.02
 lblTax.Text = Convert.ToString(dblTax2)
End Sub

Private Sub btnCalcTax5_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalcTax5.Click
 ' calculates a 5% sales tax

 ' declare variables
 Dim dblSales As Double
 Dim dblTax5 As Double

 ' calculate and display the sales tax
 Double.TryParse(txtSales.Text, dblSales)
 dblTax5 = dblSales * 0.05
 lblTax.Text = Convert.ToString(dblTax5)
End Sub

Figure 3-11 Click event procedures using procedure-level variables

procedure-level variables
in the btnCalcTax2 Click
event procedure

procedure-level variables
in the btnCalcTax5 Click
event procedure

Notice that both procedures in Figure 3-11 declare a variable named
 dblSales. When you use the same name to declare a variable in more than
one procedure, each procedure creates its own variable when the procedure
is invoked. Each procedure also destroys its own variable when the procedure
ends. In other words, although the dblSales variables in both procedures
have the same name, they are not the same variable. Rather, each refers to a
diff erent section in the computer’s internal memory, and each is created and
destroyed independently from the other.

To code and then test the Sales Tax Calculator application:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.
Open the Sales Tax Solution (Sales Tax Solution.sln) fi le contained in
the VB2010\Chap03\Sales Tax Solution-Procedure-level folder. If nec-
essary, open the designer window. Th e user interface shown earlier in
Figure 3-10 appears on the screen.

2. Open the Code Editor window. For now, do not be concerned about
the three Option statements that appear in the window. You will
learn about the Option statements later in this lesson. Replace <your
name> and <current date> in the comments with your name and the
current date, respectively.

3. Open the code template for the btnCalcTax2 control’s Click event
procedure. Also open the code template for the btnCalcTax5 control’s
Click event procedure. In the procedures, enter the comments and
code shown in Figure 3-11.

START HERE

C7718_ch03.indd 133C7718_ch03.indd 133 17/03/11 8:21 PM17/03/11 8:21 PM

134

C H A P T E R 3 Using Variables and Constants

4. Save the solution and then start the application. Type 1000 in the
Sales box and then click the Calculate 2% Tax button. Th e button’s
Click event procedure calculates and displays a tax of 20. Click the
Calculate 5% Tax button. Th e button’s Click event procedure calcu-
lates and displays a tax of 50.

5. Change the sales amount from 1000 to the letter a and then click the
Calculate 2% Tax button. Th e button’s Click event procedure calcu-
lates and displays a tax of 0. Click the Calculate 5% Tax button. Th e
button’s Click event procedure calculates and displays a tax of 0.

6. Click the Exit button. Close the Code Editor window and then close
the solution.

Variables with Class Scope
In addition to declaring a variable in a procedure, you also can declare a vari-
able in the form’s Declarations section, which begins with the Public Class
clause and ends with the End Class clause. When you declare a variable in
the form’s Declarations section, the variable is called a class-level variable
and it has class scope. Class-level variables can be used by all of the proce-
dures in the form, including the procedures associated with the controls con-
tained on the form, and they retain their values and remain in the computer’s
internal memory until the application ends. In other words, a class-level
variable has the same lifetime as the application itself. Unlike a procedure-
level variable, which is declared using the Dim keyword, you declare a class-
level variable using the Private keyword. You typically use a class-level
variable when you need more than one procedure in the same form to use
the same variable. However, a class-level variable also can be used when
a procedure needs to retain a variable’s value after the procedure ends.
Th e Total Sales application, which you view next, illustrates this use of a
 class-level variable. Th e application’s interface is shown in Figure 3-12. As
the interface indicates, the application displays the total of the sales amounts
entered by the user.

Figure 3-12 User interface for the Total Sales application

Figure 3-13 shows the Total Sales application’s code. Th e code uses a
 class-level variable named decTotal to accumulate (add together) the sales
amounts entered by the user. Class-level variables should be entered after
the Public Class clause, but before the fi rst Private Sub clause, in the form’s
Declarations section. When the user starts the Total Sales application, the
computer processes the Private decTotal As Decimal statement
in the form’s Declarations section. Th e statement creates and initializes a

Although you also
can use the Dim
keyword to
declare a class-
level variable,

most Visual Basic pro-
grammers use the
Private keyword so
that the scope is more
obvious to anyone read-
ing the code.

C7718_ch03.indd 134C7718_ch03.indd 134 17/03/11 8:21 PM17/03/11 8:21 PM

135

The Scope and Lifetime of a Variable L E S S O N A

Decimal variable named decTotal. Th e variable is created and initialized
only once, when the application starts. It remains in the computer’s internal
memory until the application ends. Each time the user clicks the Calculate
Total Sales button in the interface, the button’s Click event procedure cre-
ates and initializes a procedure-level variable named decSales. Next, the
TryParse method in the procedure converts the sales amount entered in
the txtSales control to Decimal, storing the result in the decSales vari-
able. Th e fi rst assignment statement in the procedure adds the contents of
the procedure-level decSales variable to the contents of the class-level
decTotal variable. At this point, the decTotal variable contains the sum
of all of the sales amounts entered so far. Th e last assignment statement in
the procedure converts the contents of the decTotal variable to String
and then assigns the result to the lblTotalSales control. Th e procedure
then sends the focus to the txtSales control. When the procedure ends,
the computer removes the procedure-level decSales variable from its
 memory; however, it does not remove the class-level decTotal variable.
Th e decTotal variable is removed from the computer’s memory only when
the application ends.

Public Class frmMain

 ' class-level variable used to store the total sales
 Private decTotal As Decimal

 Private Sub btnExit_Click ...

 Private Sub btnCalc_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnCalc.Click
 ' calculates the total sales

 ' declare variable
 Dim decSales As Decimal

 ' calculate and display the total sales
 Decimal.TryParse(txtSales.Text, decSales)
 decTotal = decTotal + decSales
 lblTotalSales.Text = Convert.ToString(decTotal)
 ' set the focus
 txtSales.Focus()
 End Sub
End Class

Figure 3-13 Code using a class-level variable

class-level variable
declared in the form’s
Declarations section

partial code

procedure-level variable declared in
the btnCalc Click event procedure

To code and then test the Total Sales application:

1. Open the Total Sales Solution (Total Sales Solution.sln) fi le contained
in the VB2010\Chap03\Total Sales Solution-Class-level folder. If nec-
essary, open the designer window. Th e user interface shown earlier in
Figure 3-12 appears on the screen.

2. Open the Code Editor window. Here again, do not be concerned
about the three Option statements that appear in the window. You
will learn about the Option statements later in this lesson. Replace
<your name> and <current date> in the comments with your name
and the current date, respectively.

START HERE

C7718_ch03.indd 135C7718_ch03.indd 135 17/03/11 8:21 PM17/03/11 8:21 PM

136

C H A P T E R 3 Using Variables and Constants

3. First, declare the class-level decTotal variable in the form’s
 Declarations section. Click the blank line below the ' class-level
 variable used to store the total sales comment and
then enter the following declaration statement:

Private decTotal As Decimal

4. Open the code template for the btnCalc control’s Click event
 procedure. In the procedure, enter the comments and code shown
in Figure 3-13.

5. Save the solution and then start the application.

6. Type 2000 as the sales amount and then click the Calculate Total
Sales button. Th e button’s Click event procedure calculates and
 displays the total sales: 2000.

7. Change the sales amount from 2000 to 4000 and then click the
Calculate Total Sales button. Th e number 6000 appears in the Total
sales box.

8. Change the sales amount from 4000 to 500 and then click the
 Calculate Total Sales button. Th e number 6500 appears in the
Total sales box.

9. Click the Exit button. Close the Code Editor window and then close
the solution.

Static Variables
Recall that you can declare a variable using the Dim, Private, or Static
keywords. You already know how to use the Dim and Private keywords
to declare procedure-level and class-level variables, respectively. In this
section, you will learn how to use the Static keyword to declare a special
type of procedure-level variable, called a static variable. A static variable
is a procedure-level variable that remains in memory, and also retains its
value, even when the procedure in which it is declared ends. Like a class-
level variable, a static variable is not removed from the computer’s internal
memory until the application ends. However, unlike a class-level variable,
which can be used by all of the procedures in a form, a static variable can
be used only by the procedure in which it is declared. In other words, a
static variable has a narrower scope than does a class-level variable. As
mentioned earlier, you can prevent many unintentional errors from
occurring in an application by declaring the variables using the minimum
scope needed.

In the previous section, you viewed the interface (Figure 3-12) and code
(Figure 3-13) for the Total Sales application. Recall that the application
uses a class-level variable to accumulate the sales amounts entered by the
user. Rather than using a class-level variable for that purpose, you also can
use a static variable. Figure 3-14 shows the Total Sales application’s code
using a static variable. Th e fi rst time the user clicks the Calculate Total

The Static
 keyword can be
used only in a
procedure.

C7718_ch03.indd 136C7718_ch03.indd 136 17/03/11 8:21 PM17/03/11 8:21 PM

137

Static Variables L E S S O N A

Sales button in the interface, the button’s Click event procedure creates
and initializes (to 0) a procedure-level variable named decSales and a
static variable named decTotal. Next, the TryParse method converts the
sales amount in the txtSales control to Decimal, storing the result in the
decSales variable. Th e fi rst assignment statement in the procedure adds
the contents of the decSales variable to the contents of the decTotal
variable. Th e last assignment statement in the procedure converts the
contents of the decTotal variable to String and assigns the result to the
lblTotalSales control. Th e procedure then sends the focus to the txtSales
control. When the procedure ends, the computer removes from its internal
memory the variable declared using the Dim keyword (decSales). But
it does not remove the variable declared using the Static keyword
(decTotal). Each subsequent time the user clicks the Calculate Total Sales
button, the computer re-creates and re-initializes the decSales variable
declared in the button’s Click event procedure. However, it does not
re-create or re-initialize the decTotal variable because that variable, as
well as its current value, is still in the computer’s memory. After re-creating
and re-initializing the decSales variable, the computer processes the
remaining instructions contained in the button’s Click event procedure.
Here again, each time the procedure ends, the decSales variable is
removed from the computer’s internal memory. Th e decTotal variable is
removed only when the application ends.

Public Class frmMain

 Private Sub btnExit_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnExit.Click
 Me.Close()
 End Sub

 Private Sub btnCalc_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnCalc.Click
 ' calculates the total sales

 ' declare variables
 Dim decSales As Decimal
 Static decTotal As Decimal

 ' calculate and display the total sales
 Decimal.TryParse(txtSales.Text, decSales)
 decTotal = decTotal + decSales
 lblTotalSales.Text = Convert.ToString(decTotal)
 ' set the focus
 txtSales.Focus()
 End Sub
End Class

Figure 3-14 Code using a static variable

modifi ed comment

static variable declared in the btnCalc
Click event procedure

C7718_ch03.indd 137C7718_ch03.indd 137 17/03/11 8:21 PM17/03/11 8:21 PM

138

C H A P T E R 3 Using Variables and Constants

To use a static variable in the Total Sales application:

1. Use Windows to make a copy of the Total Sales Solution-Class-level
folder contained in the VB2010\Chap03 folder. Rename the copy
Total Sales Solution-Static.

2. Open the Total Sales Solution (Total Sales Solution.sln) fi le contained
in the Total Sales Solution-Static folder. Open the designer window.
Th e user interface shown earlier in Figure 3-12 appears on the screen.

3. Open the Code Editor window. Delete the comment and Private
 declaration statement entered in the form’s Declarations section.

4. Modify the btnCalc control’s Click event procedure so that it uses a
static variable rather than a class-level variable. Use the code shown
in Figure 3-14 as a guide.

5. Save the solution and then start the application.

6. Type the following three sales amounts, one at a time. Click the
Calculate Total Sales button after typing each sales amount: 2000,
4000, and 500. Th e number 6500 appears in the Total sales box.

7. Click the Exit button. Close the Code Editor window and then close
the solution.

YOU DO IT 2!

Create a Visual Basic Windows application named YouDoIt 2. Save the
application in the VB2010\Chap03 folder. Add a label and a button to the
form. The button’s Click event procedure should add the number 1 to the
contents of a class-level Integer variable named intNumber. It then should
display the variable’s contents in the label. Code the application. Save the
solution and then start and test the application. Now change the class-level
variable to a static variable. Save the solution and then start and test the
application. Close the solution.

Named Constants
In addition to using literal constants and variables in your code, you also can
use named constants. Like a variable, a named constant is a memory loca-
tion inside the computer. However, unlike a variable’s value, a named con-
stant’s value cannot be changed while the application is running. You create a
named constant using the Const statement. Figure 3-15 shows the statement’s
syntax and includes examples of declaring named constants. To diff erenti-
ate the name of a constant from the name of a variable, many programmers
lowercase the three-character ID that represents the constant’s data type
and then uppercase the remaining characters in the name, as shown in the
examples in the fi gure. Th e Const statement stores the value of the expression
in the named constant. Th e expression’s value must have the same data type
as the named constant. Th e expression can contain a literal constant, another
named constant, or an arithmetic operator; however, it cannot contain a vari-
able or a method.

START HERE

C7718_ch03.indd 138C7718_ch03.indd 138 17/03/11 8:21 PM17/03/11 8:21 PM

139

Named Constants L E S S O N A

When entered in a procedure, the Const statements shown in the fi rst
three examples in Figure 3-15 create procedure-level named constants. To
create a class-level named constant, you precede the Const keyword with
the Private keyword, as shown in Example 4. In addition, you enter the
Const statement in the form’s Declarations section. At this point, you may
be wondering why the Convert.ToDecimal method was not used to convert
the Double number in Example 3 to the Decimal data type. Th is is because,
as mentioned earlier, the expression assigned to a named constant cannot
 contain a method.

Declaring a named constant

Syntax
[Private] Const constantName As dataType = expression

Example 1
Const dblPI As Double = 3.141593
declares dblPI as a Double named constant and initializes it to the Double
number 3.141593

Example 2
Const intMAX_HOURS As Integer = 40
declares intMAX_HOURS as an Integer named constant and initializes it to the
integer 40

Example 3
Const decTAX_RATE As Decimal = .05D
declares decTAX_RATE as a Decimal named constant and initializes it to the
Decimal number .05

Example 4
Private Const strHEADING As String = "ABC Company"
declares strHEADING as a String named constant and initializes it to the string
“ABC Company”

Figure 3-15 Syntax and examples of the Const statement

the D literal type character
changes the number to the
Decimal data type

Named constants make code more self-documenting and easier to modify,
because they allow you to use meaningful words in place of values that are
less clear. Th e named constant dblPI, for example, is much more meaningful
than the number 3.141593, which is the value of pi rounded to six decimal
places. Once you create a named constant, you then can use the constant’s
name, rather than its value, in the application’s code. Unlike the value stored
in a variable, the value stored in a named constant cannot be inadvertently
changed while the application is running. Using a named constant to
 represent a value has another advantage: if the value changes in the future,
you will need to modify only the Const statement in the program, rather
than all of the program statements that use the value. Th e Area Calculator
application that you view next illustrates the use of a named constant. Th e
application’s interface is shown in Figure 3-16. As the interface indicates, the
application allows the user to enter the radius of a circle. It then calculates

C7718_ch03.indd 139C7718_ch03.indd 139 17/03/11 8:21 PM17/03/11 8:21 PM

140

C H A P T E R 3 Using Variables and Constants

and displays the area of the circle. Th e formula for calculating the area of a
circle is πr2, where π stands for pi (3.141593).

Figure 3-16 User interface for the Area Calculator application

Figure 3-17 shows the code for the Calculate Area button’s Click event
 procedure. Th e declaration statements in the procedure declare and initial-
ize a named constant and two variables. Next, the TryParse method converts
(to Double) the radius value entered in the txtRadius control, and it stores
the result in the dblRadius variable. Th e fi rst assignment statement in the
procedure calculates the circle’s area using the values stored in the dblPI
named constant and dblRadius variable; it then assigns the result to the
dblArea variable. Th e second assignment statement displays the contents of
the dblArea variable (converted to String) in the lblArea control. When the
procedure ends, the computer removes the named constant and two vari-
ables from its internal memory.

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' calculates the area of a circle

 ' declare named constant and variables
 Const dblPI As Double = 3.141593
 Dim dblRadius As Double
 Dim dblArea As Double

 ' calculate and display the area
 Double.TryParse(txtRadius.Text, dblRadius)
 dblArea = dblPI * dblRadius * dblRadius
 lblArea.Text = Convert.ToString(dblArea)
End Sub

Figure 3-17 Calculate Area button’s Click event procedure

named constant
declaration statement

assignment
statement containing
the named constant

To code and then test the Area Calculator application:

1. Open the Area Calculator Solution (Area Calculator Solution.sln) fi le
contained in the VB2010\Chap03\Area Calculator Solution folder.
If necessary, open the designer window. Th e user interface shown
 earlier in Figure 3-16 appears on the screen.

2. Open the Code Editor window. Replace <your name> and <current
date> in the comments with your name and the current date,
respectively.

3. Open the code template for the btnCalc control’s Click event proce-
dure, and then enter the comments and code shown in Figure 3-17.

4. Save the solution and then start the application.

You also can
 calculate the
area using the
 expression
dblPI *

 dblRadius ˆ 2.

START HERE

C7718_ch03.indd 140C7718_ch03.indd 140 17/03/11 8:21 PM17/03/11 8:21 PM

141

Option Explicit, Option Infer, and Option Strict L E S S O N A

5. Type 10 in the Circle’s radius box and then click the Calculate Area
button. Th e button’s Click event procedure calculates and displays the
area: 314.1593.

6. Click the Exit button. Close the Code Editor window and then close
the solution.

Option Explicit, Option Infer, and Option Strict
It is important to declare the variables used in an application, because doing
so allows you to control their data type. It also makes the application more
self-documenting, which means it will be clearer and easier to understand
by anyone reading your code. A word of caution is in order at this point:
in Visual Basic you can create variables “on the fl y.” Th is means that if your
code contains the name of an undeclared variable, Visual Basic creates the
variable for you and assigns the Object data type to it. (An undeclared vari-
able is a variable that does not appear in a declaration statement, such as a
Dim statement.) Recall that the Object type is not a very effi cient data type,
and its use should be limited. Because it is so easy to forget to declare a vari-
able—and so easy to misspell a variable’s name while coding, thereby inad-
vertently creating an undeclared variable—Visual Basic provides a way that
prevents you from using undeclared variables in your code. You simply enter
the statement Option Explicit On in the General Declarations section of
the Code Editor window. Th e statement tells the Code Editor to alert you if
your code contains the name of an undeclared variable. When you also enter
the Option Infer Off statement in the General Declarations section, the
Code Editor ensures that every variable and named constant is declared with
a data type. In other words, the statement tells the computer not to infer (or
assume) a memory location’s data type based on the data assigned to the
memory location.

As you learned earlier, the data type of the value assigned to a memory
location (variable or named constant) should be the same as the data type
of the memory location itself. If the value’s data type does not match the
memory location’s data type, the computer uses a process called implicit type
 conversion to convert the value to fi t the memory location. For example,
when processing the statement Dim dblSales As Double = 9, the com-
puter converts the integer 9 to a Double number before storing the value
in the variable. It does this by appending a decimal point and the number 0
to the end of the integer. In this case, the integer 9 will be converted to the
Double number 9.0 before the number is assigned to the dblSales vari-
able. When a value is converted from one data type to another data type that
can store either larger numbers or numbers with greater precision, the value
is said to be promoted. In this case, if the dblSales variable is used subse-
quently in a calculation, the results of the calculation will not be adversely
aff ected by the implicit promotion of the number 9 to the number 9.0.

On the other hand, if you inadvertently assign a Double number to a memory
location that can store only integers—as does the statement Dim intScore
As Integer = 78.4—the computer converts the Double number to
an integer before storing the value in the memory location. It does this by
rounding the number to the nearest whole number and then truncating
(dropping off) the decimal portion of the number. In this case, the computer

Recall that the
General
Declarations
 section is located
above the Public

Class clause in the Code
Editor window.

C7718_ch03.indd 141C7718_ch03.indd 141 17/03/11 8:21 PM17/03/11 8:21 PM

142

C H A P T E R 3 Using Variables and Constants

converts the Double number 78.4 to the integer 78, which then is assigned
to the intScore variable. When a value is converted from one data type to
another data type that can store only smaller numbers or numbers with less
precision, the value is said to be demoted. If the intScore variable is used
subsequently in a calculation, the results of the calculation probably will be
adversely aff ected by the implicit demotion of the number 78.4 to the num-
ber 78. More than likely, the demotion will cause the calculated results to be
incorrect.

With implicit type conversions, data loss can occur when a value is converted
from one data type to a narrower data type, which is a data type with less
precision or smaller capacity. You can eliminate the problems that occur as
a result of implicit type conversions by entering the Option Strict On
statement in the General Declarations section of the Code Editor window.
When the Option Strict On statement appears in an application’s code,
the computer uses the type conversion rules listed in Figure 3-18. Th e fi gure
also includes examples of these rules.

According to the fi rst rule listed in Figure 3-18, the computer will not
implicitly convert a string to a number. As a result, the Code Editor will
issue the warning “Option Strict On disallows implicit conversions from
‘String’ to ‘Double’” when your code contains the statement dblHours =
txtHours.Text, because the statement tells the computer to store a string
in a Double variable. As you learned earlier, you should use the TryParse
method to explicitly convert a string to the Double data type before assigning
it to a Double variable. In this case, the appropriate statement to use is
Double.TryParse(txtHours.Text, dblHours).

According to the second rule listed in Figure 3-18, the computer will not
implicitly convert a number to a string. Th erefore, the Code Editor will
issue the warning “Option Strict On disallows implicit conversions from
‘Decimal’ to ‘String’” when your code contains the statement lblGross.
Text = decGrossPay, because the statement assigns a number to a string.
Recall that you can use the Convert class methods to explicitly convert a
number to the String data type. Th e appropriate statement to use here is
lblGross.Text = Convert.ToString(decGrossPay).

Th e third rule listed in Figure 3-18 states that wider data types will not be
implicitly demoted to narrower data types. A data type is wider than another
data type if it can store either larger numbers or numbers with greater preci-
sion. Because of this rule, a Double number will not be implicitly demoted
to the Decimal or Integer data types. If your code contains the statement
Dim decRate As Decimal = .05, the Code Editor will issue the “Option
Strict On disallows implicit conversions from ‘Double’ to ‘Decimal’” warning,
because the statement assigns a Double number to a Decimal variable. Th e
correct statement to use in this case is either Dim decRate As Decimal
= .05D or Dim decRate As Decimal = Convert.ToDecimal(.05).
According to the last type conversion rule listed in Figure 3-18, the computer
will implicitly convert narrower data types to wider data types. For example,
when processing the statement dblAverage = dblTotal / intNum, the

C7718_ch03.indd 142C7718_ch03.indd 142 17/03/11 8:21 PM17/03/11 8:21 PM

143

Option Explicit, Option Infer, and Option Strict L E S S O N A

computer will implicitly promote the integer stored in the intNum variable
to Double before dividing it into the contents of the dblTotal variable. Th e
result, a Double number, will be assigned to the dblAverage variable.

Type conversion rules

1. Strings will not be implicitly converted to numbers. The Code Editor will display a
warning message when a statement attempts to use a string where a number is
expected.

 Incorrect: dblHours = txtHours.Text
 Correct: Double.TryParse(txtHours.Text, dblHours)

2. Numbers will not be implicitly converted to strings. The Code Editor will display a
warning message when a statement attempts to use a number where a string is
expected.

 Incorrect: lblGross.Text = decGrossPay
 Correct: lblGross.Text = Convert.ToString(decGrossPay)

3. Wider data types will not be implicitly demoted to narrower data types. The Code Editor
will display a warning message when a statement attempts to use a wider data type
where a narrower data type is expected.

 Incorrect: Dim decRate As Decimal = .05
 Correct: Dim decRate As Decimal =.05D
 Correct: Dim decRate As Decimal = Convert.ToDecimal(.05)

4. Narrower data types will be implicitly promoted to wider data types.
 Correct: dblAverage = dblTotal / intNum

Figure 3-18 Rules and examples of type conversions

Figure 3-19 shows the three Option statements entered in the General
Declarations section of the Code Editor window. If a project contains more
than one form, the statements must be entered in each form’s Code Editor
window.

Option statements

General Declarations section

Figure 3-19 Option statements entered in the General Declarations section

C7718_ch03.indd 143C7718_ch03.indd 143 17/03/11 8:21 PM17/03/11 8:21 PM

144

C H A P T E R 3 Using Variables and Constants

Rather than entering the Option statements in the Code Editor window,
you also can set the options using either the Project Designer window or
the Options dialog box. However, it is strongly recommended that you
enter the Option statements in the Code Editor window, because doing so
ensures that the options are set appropriately; it also makes your code more
self-documenting. Th e steps for setting the options in the Project Designer
window and Options dialog box are listed in the Lesson A Summary
section.

YOU DO IT 3!

Create a Visual Basic Windows application named YouDoIt 3. Save the
application in the VB2010\Chap03 folder. Add a text box, a label, and a
button to the form. In the General Declarations section of the Code Editor
window, enter the following three Option statements: Option Explicit
On, Option Strict Off, and Option Infer Off. In the button’s
Click event procedure, declare a Double variable named dblNum. Use an
assignment statement to assign the contents of the text box to the Double
variable. Then, use an assignment statement to assign the contents of the
Double variable to the label. Save the solution and then start and test the
application. Now change the Option Strict Off statement to Option
Strict On, and then make the necessary modifications to the code. Save
the solution and then start and test the application. Close the solution.

Lesson A Summary
 • To declare a variable:

Th e syntax of a variable declaration statement is {Dim | Private | Static}
variableName As dataType [= initialValue]. Use camel case for a variable’s
name.

 • To declare a procedure-level variable:

Enter the variable declaration statement in a procedure; use the Dim
 keyword to declare a procedure-level variable that will be removed
from the computer’s internal memory when the procedure ends; use the
Static keyword to declare a procedure-level variable that remains in the
 computer’s internal memory until the application ends.

 • To declare a class-level variable:

Enter the variable declaration statement in a form’s Declarations section;
use the Private keyword.

 • To use an assignment statement to assign data to a variable:

Use the syntax variableName = expression.

In Visual Basic
2010, the default
setting for Option
Explicit and
Option Infer is

On, whereas the default
setting for Option Strict
is Off.

C7718_ch03.indd 144C7718_ch03.indd 144 17/03/11 8:21 PM17/03/11 8:21 PM

145

Lesson A Summary L E S S O N A

 • To force a Double literal constant to assume the Decimal data type:

Append the letter D to the end of the Double literal constant.

 • To convert a string to a numeric data type:

Use the TryParse method. Th e method’s syntax is dataType.
TryParse(string, numericVariableName).

 • To convert a numeric value to a diff erent data type:

Use one of the Convert class methods. Each method’s syntax is
Convert.method(value).

 • To create a named constant:

Use the Const statement. Th e statement’s syntax is Const constantName
As dataType = expression. Lowercase the three-character ID and then
uppercase the remainder of the name.

 • To create a procedure-level named constant:

Enter the Const statement in a procedure.

 • To create a class-level named constant:

Enter the Const statement, preceded by the keyword Private, in a form’s
Declarations section.

 • To prevent the computer from creating an undeclared variable:

Enter the Option Explicit On statement in the General Declarations
section of the Code Editor window.

 • To prevent the computer from inferring a variable’s data type:

Enter the Option Infer Off statement in the General Declarations sec-
tion of the Code Editor window.

 • To prevent the computer from making implicit type conversions that may
result in a loss of data:

Enter the Option Strict On statement in the General Declarations
 section of the Code Editor window.

 • To use the Project Designer window to set Option Explicit, Option Strict,
and Option Infer for an entire project:

Open the solution that contains the project. Right-click My Project in
the Solution Explorer window and then click Open to open the Project
Designer window. Click the Compile tab. Use the Option explicit, Option
strict, and Option infer boxes to set the options. Save the solution and
then close the Project Designer window.

 • To use the Options dialog box to set Option Explicit, Option Strict, and
Option Infer for all of the projects you create:

Click Tools on the Visual Studio menu bar and then click Options. When
the Options dialog box opens, expand the Projects and Solutions node and
then click VB Defaults. Use the Option Explicit, Option Strict, and Option
Infer boxes to set the options. Click the OK button to close the Options
dialog box.

C7718_ch03.indd 145C7718_ch03.indd 145 17/03/11 8:21 PM17/03/11 8:21 PM

146

C H A P T E R 3 Using Variables and Constants

Lesson A Key Terms
Class scope—the scope of a class-level variable; refers to the fact that the
variable can be used by any procedure in the form

Class-level variable—a variable declared in a form’s Declarations section; the
variable has class scope

Const statement—the statement used to create a named constant

Convert class—contains methods that return the result of converting a value
to a specifi ed data type

Data type—indicates the type of data a memory location (variable or named
constant) can store

Demoted—the process of converting a value from one data type to another
data type that can store only smaller numbers or numbers with less precision

Implicit type conversion—the process by which a value is automatically
 converted to fi t the memory location to which it is assigned

Lifetime—indicates how long a variable or named constant remains in the
computer’s internal memory

Literal constant—an item of data whose value does not change during
run time

Literal type character—a character (such as the letter D) appended to a
 literal constant for the purpose of forcing the literal constant to assume a dif-
ferent data type (such as Decimal)

Named constant—a computer memory location whose contents cannot be
changed during run time; created using the Const statement

Procedure scope—the scope of a procedure-level variable; refers to the fact
that the variable can be used only by the procedure in which it is declared

Procedure-level variable—a variable declared in a procedure; the variable has
procedure scope

Promoted—the process of converting a value from one data type to another
data type that can store either larger numbers or numbers with greater
precision

Scope—indicates where a memory location (variable or named constant) can
be used in an application’s code

Static variable—a procedure-level variable that remains in memory, and also
retains its value, until the application (rather than the procedure) ends

TryParse method—used to convert a string to a number of a specifi ed
data type

Unicode—the universal coding scheme that assigns a unique numeric value
to each character used in the written languages of the world

Variables—computer memory locations where programmers can temporarily
store data, as well as change the data, while an application is running

C7718_ch03.indd 146C7718_ch03.indd 146 17/03/11 8:21 PM17/03/11 8:21 PM

147

Lesson A Review Questions L E S S O N A

Lesson A Review Questions

1. Which of the following are computer memory locations that can
 temporarily store information?

a. literal constants

b. named constants

c. variables

d. both b and c

2. Which of the following is a data item whose value does not change
while the application is running?

a. literal constant

b. literal variable

c. named constant

d. variable

3. If both Option Explicit and Option Strict are off , which data type
will the computer assign to the intAge variable when processing the
statement Dim intAge?

a. Decimal

b. Integer

c. Object

d. String

4. You use the keyword to declare a class-level variable.

a. Class

b. Dimension

c. Global

d. Private

5. Which of the following statements declares a procedure-level variable
that retains its value until the application ends?

a. Dim Static intScore As Integer

b. Private Static intScore As Integer

c. Static intScore As Integer

d. both b and c

6. Which of the following declares a procedure-level String variable?

a. Dim String strCity

b. Dim strCity As String

C7718_ch03.indd 147C7718_ch03.indd 147 17/03/11 8:21 PM17/03/11 8:21 PM

148

C H A P T E R 3 Using Variables and Constants

c. Private strCity As String

d. String strCity

7. If Option Strict is on, you would use the statement to
assign the contents of the txtSales control to a Double variable named
dblSales.

a. dblSales = txtSales.Text

b. dblSales = txtSales.Text.Convert.ToDouble

c. Double.TryParse(txtSales.Text, dblSales)

d. TryParse.Double(txtSales.Text, dblSales)

8. Which of the following declares a named constant having the Double
data type?

a. Const dblRATE As Double = .09

b. Const dblRATE As Double

c. Constant dblRATE = .09

d. both a and b

9. If Option Strict is on, you would use the statement to
assign the sum of two Integer variables to the Text property of the
lblTotal control.

a. lblTotal.Text = Convert.ToInteger(intN1 + intN2)

b. lblTotal.Text = Convert.ToInt32(intN1 + intN2)

c. lblTotal.Text = Convert.ToString(intN1) +
Convert.ToString(intN2)

d. none of the above

10. Which of the following statements prevents data loss due to implicit
type conversions?

a. Option Explicit On

b. Option Strict On

c. Option Implicit Off

d. Option Convert Off

Lesson A Exercises

1. A procedure needs to store an item’s name and price (which may have
decimal places). Write the appropriate Dim statements to declare the
necessary procedure-level variables.

2. A procedure needs to store the name of an item in inventory and the
item’s height and weight. Th e height may have a decimal place; the

INTRODUCTORY

INTRODUCTORY

C7718_ch03.indd 148C7718_ch03.indd 148 17/03/11 8:21 PM17/03/11 8:21 PM

149

Lesson A Exercises L E S S O N A

weight will always be a whole number. Write the appropriate Dim
statements to declare the necessary procedure-level variables.

3. A procedure needs to store the name of an inventory item, the
 number of units in stock at the beginning of the current month,
the number of units purchased during the current month, the number
of units sold during the current month, and the number of units in
stock at the end of the current month. Th e number of units is always
a whole number. Write the appropriate Dim statements to declare the
necessary procedure-level variables.

4. Write an assignment statement that assigns Miami to a String vari-
able named strCity.

5. Write an assignment statement that assigns Desk to a String
 variable named strItemName. Also write assignment statements
that assign the numbers 40 and 20 to Integer variables named
intQuantityInStock and intQuantityOnOrder, respectively.

6. Write the statement to declare a procedure-level named constant
named decTAX_RATE whose value is .05.

7. Write the statement to store the contents of the txtUnits control in an
Integer variable named intNumberOfUnits.

8. Write the statement to assign the contents of an Integer variable
named intNumberOfUnits to the lblUnits control.

9. An application needs to store the part number of an item and its cost
(which may contain a decimal place). An example of a part number
for this application is A103. Write the appropriate Private statements
to declare the necessary class-level variables.

10. Write an assignment statement that adds together the contents of the
dblNorthSales and dblSouthSales variables and then assigns the
sum to the dblTotalSales variable.

11. Write an assignment statement that multiplies the contents of the
decSalary variable by the number 1.5 and then assigns the result to
the decSalary variable.

12. Write the statement to assign the sum of the values stored in the
decWestSales and decEastSales variables to a String variable
named strTotalSales.

13. Write the statement to declare a String variable that can be
used by two procedures in the same form. Name the variable
strEmployeeName. Also specify where you will need to enter the
statement in the Code Editor window and whether the variable is a
procedure-level or class-level variable.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

C7718_ch03.indd 149C7718_ch03.indd 149 17/03/11 8:21 PM17/03/11 8:21 PM

150

C H A P T E R 3 Using Variables and Constants

Discovery

14. In this exercise, you experiment with procedure-level and class-level
variables. Open the Scope Solution (Scope Solution.sln) fi le contained
in the VB2010\Chap03\Scope Solution folder. Th e Scope application
allows the user to calculate either a 5% or 10% commission on a sales
amount. It displays the sales and commission amounts in the lblSales
and lblCommission controls, respectively.

a. Open the Code Editor window and then open the code tem-
plate for the btnSales control’s Click event procedure. Code
the procedure so that it declares a variable named dblSales.
Th e procedure also should use an assignment statement to assign
the number 500 to the variable. In addition, the procedure should
 display the contents of the variable in the lblSales control on
the form.

b. Save the solution and then start the application. Click the Display
Sales button. What does the button’s Click event procedure dis-
play in the lblSales control? When the Click event procedure ends,
what happens to the dblSales variable? Click the Exit button.

c. Open the code template for the btnComm5 control’s Click event
procedure. In the procedure, enter an assignment statement that
multiplies a variable named dblSales by .05, assigning the result
to the lblCommission control. When you press the Enter key after
typing the assignment statement, a jagged line appears below
 dblSales in the instruction. Th e jagged line indicates that there
is something wrong with the code. To determine the problem, rest
your mouse pointer on the variable name, dblSales. Th e message
in the box indicates that the variable is not declared. In other words,
the btnComm5 control’s Click event procedure cannot locate the
variable’s declaration statement, which you previously entered in the
btnSales control’s Click event procedure. As you learned in Lesson
A, only the procedure in which a variable is declared can use the
variable. No other procedure is even aware that the variable exists.

d. Now observe what happens when you use the same name to
declare a variable in more than one procedure. Insert a blank line
above the assignment statement in the btnComm5 control’s Click
event procedure. In the blank line, type a statement that declares
the dblSales variable, and then click the assignment statement
to move the insertion point away from the current line. Notice
that the jagged line disappears from the assignment statement.
Save the solution and then start the application. Click the Display
Sales button. Th e value stored in the dblSales variable declared
in the btnSales control’s Click event procedure (500) appears in the
lblSales control. Click the 5% Commission button. Why does the
number 0 appear in the lblCommission control? What happens to
the dblSales variable declared in the btnComm5 control’s Click
event procedure when the procedure ends? Click the Exit button.
As this example shows, when you use the same name to declare
a variable in more than one procedure, each procedure creates

C7718_ch03.indd 150C7718_ch03.indd 150 17/03/11 8:21 PM17/03/11 8:21 PM

151

Lesson A Exercises L E S S O N A

its own procedure-level variable. Although the variables have the
same name, each refers to a diff erent location in memory.

e. Next, you use a class-level variable in the application. Click the blank
line above the btnExit control’s Click event procedure. Th e Class
Name and Method Name boxes show frmMain and (Declarations),
respectively. Press Enter to insert a blank line. In the blank line, type
a statement that declares a class-level variable named dblSales.

f. Delete the Dim statement from the btnSales control’s Click event
procedure. Also delete the Dim statement from the btnComm5
control’s Click event procedure.

g. Open the code template for the btnComm10 control’s Click event
procedure. In the procedure, enter an assignment statement that
multiplies the dblSales variable by .1, assigning the result to the
lblCommission control.

h. Save the solution and then start the application. Th e variable dec-
laration statement in the form’s Declarations section creates the
dblSales variable and initializes it to 0. Click the Display Sales
button. Th e button’s Click event procedure stores the number 500
in the dblSales variable and then displays the contents of the
variable (500) in the lblSales control. Click the 5% Commission
button. Th e button’s Click event procedure multiplies the contents
of the dblSales variable (500) by .05 and then displays the result
(25) in the lblCommission control. Click the 10% Commission but-
ton. Th e button’s Click event procedure multiplies the contents of
the dblSales variable (500) by .1 and then displays the result (50)
in the lblCommission control. As this example shows, any proce-
dure in the form can use a class-level variable. Click the Exit but-
ton. What happens to the dblSales variable when the application
ends? Close the Code Editor window and then close the solution.

Swat The Bugs

15. Open the Debug Solution (Debug Solution.sln) fi le contained in the
VB2010\Chap03\Debug Solution-Lesson A folder. Th e application is
supposed to display the number of times the Count button is pressed,
but it is not working correctly.

a. Start the application. Click the Count button. Th e message indi-
cates that you have pressed the Count button once, which is cor-
rect. Click the Count button several more times. Th e message still
displays the number 1. Click the Exit button.

b. Open the Code Editor window and study the code. What are
two ways that you can use to correct the code? Which way is the
preferred way? Modify the code using the preferred way. Save the
solution and then start the application. Click the Count button
several times. Each time you click the Count button, the message
should change to indicate the number of times the button was
pressed. Click the Exit button. Close the Code Editor window and
then close the solution.

C7718_ch03.indd 151C7718_ch03.indd 151 17/03/11 8:21 PM17/03/11 8:21 PM

152

C H A P T E R 3 Using Variables and Constants

 ❚ LESSON B
After studying Lesson B, you should be able to:

 • Include procedure-level and class-level variables in an application

 • Concatenate strings

 • Get user input using the InputBox function

 • Include the ControlChars.NewLine constant in code

 • Designate the default button for a form

 • Format numbers using the ToString method

Modifying the Playtime Cellular Application
Recall that your task in this chapter is to modify the Playtime Cellular applica-
tion created in Chapter 2. Th e modifi ed application will calculate and display
a 3% sales tax. It also will display the name of the salesperson who recorded
the order. Before making modifi cations to an application’s existing code, you
should review the application’s documentation and revise the necessary docu-
ments. In this case, you need to revise the Playtime Cellular application’s
TOE chart and also the pseudocode for the Calculate Order button, which is
responsible for making the application’s calculations. Th e revised TOE chart
is shown in Figure 3-20. Changes made to the original TOE chart, which is
shown in Chapter 2’s Figure 2-19, are shaded in the fi gure. (You will view the
revised pseudocode for the Calculate Order button later in this lesson.)

Task Object Event
1. Calculate total phones ordered and total price btnCalc Click
2. Display total phones ordered and total price

in lblTotalPhones and lblTotalPrice
3. Calculate the sales tax
4. Display the sales tax and salesperson’s name in lblMessage

Clear screen for the next order btnClear Click

End the application btnExit Click

Display total phones ordered (from btnCalc) lblTotalPhones None

Display total price (from btnCalc) lblTotalPrice None

Get and display the order information txtName, None
 txtAddress,
 txtCity, txtState,
 txtZip, txtBlue,
 txtPink

Get the salesperson’s name frmMain Load

Show the sales tax and salesperson’s name (from btnCalc) lblMessage None

Figure 3-20 Revised TOE chart for the Playtime Cellular application

C7718_ch03.indd 152C7718_ch03.indd 152 17/03/11 8:21 PM17/03/11 8:21 PM

153

Modifying the Calculate Order Button’s Code L E S S O N B

Notice that the btnCalc control’s Click event procedure has two additional
tasks to perform: it must calculate the sales tax and also display the sales tax
and salesperson’s name in the lblMessage control. Two additional objects
(frmMain and lblMessage) also are included in the revised TOE chart. Th e
frmMain Load event procedure, which occurs before the form is displayed the
fi rst time, is responsible for getting the salesperson’s name when the application
starts. Th e lblMessage control will show the sales tax and salesperson’s name.
As the revised TOE chart indicates, you need to change the code in the btnCalc
control’s Click event procedure, and you also need to code the form’s Load
event procedure. Th e lblMessage control, however, does not need to be coded.

To open the Playtime Cellular application:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.

2. Open the Playtime Solution (Playtime Solution.sln) fi le contained in
the VB2010\Chap03\Playtime Solution folder. If necessary, open the
designer window. Figure 3-21 shows the application’s user interface.

lblMessage

Figure 3-21 Playtime Cellular application’s user interface

Two modifi cations were made to the application created in Chapter 2:
the lblMessage control was added to the interface and the statement
lblMessage.Text = String.Empty was added to the btnClear control’s
Click event procedure. Th e statement will remove the contents of the
 lblMessage control when the user clicks the Clear Screen button.

Modifying the Calculate Order Button’s Code
Currently, the Calculate Order button uses the Val function and the Text
properties of controls to calculate the total phones ordered and total price. In
this lesson, you will modify the button’s code to use the TryParse method and
variables. Because you will be using variables, you will enter the three Option
statements in the Code Editor window.

The Ch03BVideo
fi le demonstrates
all of the steps
contained in

Lesson B. You can view
the video either before or
after completing the
lesson.

START HERE

C7718_ch03.indd 153C7718_ch03.indd 153 17/03/11 8:21 PM17/03/11 8:21 PM

154

C H A P T E R 3 Using Variables and Constants

To begin modifying the application’s code:

1. Open the Code Editor window. Replace <your name> and <current
date> with your name and the current date, respectively.

2. Click the blank line above the Public Class clause and then press
Enter to insert another blank line. Enter the following three
statements:

 Option Explicit On
 Option Strict On
 Option Infer Off

3. Scroll down the Code Editor window until the entire btnCalc_Click
procedure is visible. Notice that jagged blue lines appear below the
expressions in the two calculations. Th e jagged lines indicate that the
expressions contain an error.

4. Position your mouse pointer on the fi rst jagged blue line, as shown
in Figure 3-22. An explanation of the error appears in a box. Th e
error message says “Option Strict On disallows implicit conversions
from ‘Double’ to ‘String’.” You received this error message because the
assignment statement tells the computer to assign a Double number
to the Text property of a control. (As you learned in Lesson A, the Val
function returns a Double number.)

mouse pointer

Figure 3-22 Jagged blue lines indicate errors in the statements

5. Select the three lines of code and the blank line that appears below
them, as shown in Figure 3-23. Press Delete to remove the selected
lines from the procedure.

START HERE

highlight these lines

Figure 3-23 Lines to delete from the procedure

C7718_ch03.indd 154C7718_ch03.indd 154 17/03/11 8:21 PM17/03/11 8:21 PM

155

Modifying the Calculate Order Button’s Code L E S S O N B

Figure 3-24 shows the revised pseudocode for the btnCalc control’s Click
event procedure. Changes made to the original pseudocode, which is
shown in Figure 2-28 in Chapter 2, are shaded in the fi gure. Th e Click event
 procedure includes two additional calculations: one for a subtotal and
other for the sales tax. Th e subtotal is computed by multiplying the total
number of phones ordered by the phone price. Th e sales tax is computed
by multiplying the subtotal by the sales tax rate. Notice that the total price
equation has changed: it now adds the subtotal to the sales tax. Lastly, the
Click event procedure displays the sales tax and the salesperson’s name in the
lblMessage control.

btnCalc Click event procedure
1. calculate total phones ordered = blue phones ordered + pink phones ordered
2. calculate subtotal = total phones ordered * phone price
3. calculate sales tax = subtotal * sales tax rate
4. calculate total price = subtotal + sales tax
5. display total phones ordered and total price in lblTotalPhones and lblTotalPrice
6. display the sales tax and salesperson’s name in lblMessage

Figure 3-24 Revised pseudocode for the btnCalc control’s Click event procedure

Before you begin coding a procedure, you fi rst study the procedure’s pseudo-
code to determine the variables and named constants (if any) the procedure
will use. When determining the named constants, look for items whose value
will be the same each time the procedure is invoked. In the btnCalc control’s
Click event procedure, the phone price and sales tax rate will always be $25
and .03 (the decimal equivalent of 3%), respectively; therefore, you will assign
both values to Decimal named constants. At this point, you may be wonder-
ing why the phone price is assigned to a Decimal constant rather than to an
Integer constant. Although the phone price does not currently contain any
decimal places, it is possible that the price may include a decimal place in the
future. By using the Decimal data type now, you can change the constant’s
value to include a decimal place without having to remember to also change
its data type.

When determining a procedure’s variables, look in the pseudocode for items
whose value probably will change each time the procedure is processed. In
the btnCalc control’s Click event procedure, the numbers of blue and pink
phones ordered probably will be diff erent each time the procedure is pro-
cessed, and so will the total number of phones ordered, subtotal, sales tax,
and total price. Th erefore, you will assign those values to variables. Integer
variables are a good choice for storing the numbers of blue and pink phones
and the total phones, because a customer can order only a whole number of
phones. You will use Decimal variables to store the subtotal, sales tax, and
total price, because these amounts may contain a decimal place. Figure 3-25
lists the names and data types of the two named constants and six variables
you will use in the btnCalc control’s Click event procedure.

C7718_ch03.indd 155C7718_ch03.indd 155 17/03/11 8:21 PM17/03/11 8:21 PM

156

C H A P T E R 3 Using Variables and Constants

Named constant/ Variable Data type
decPHONE_PRICE Decimal
decTAX_RATE Decimal
intBluePhones Integer
intPinkPhones Integer
intTotalPhones Integer
decSubtotal Decimal
decSalesTax Decimal
decTotalPrice Decimal

Figure 3-25 List of named constants and variables

To declare the named constants and variables:

1. Th e insertion point should be located in the blank line above the End
Sub clause. If necessary, press Tab twice to align the blinking inser-
tion point with the apostrophe in the comment.

2. First, you will declare the named constants. When declaring named
constants and variables, be sure to enter the name using the exact
capitalization you want. Th en, any time you want to refer to the
named constant or variable in the code, you can enter its name
using any case. Th e Code Editor will automatically adjust the name
to match the case used in the declaration statement. Enter the fol-
lowing declaration statements. (For now, don’t be concerned about
the green jagged line that appears below each statement after you
press Enter.)

 Const decPHONE_PRICE As Decimal = 25D
 Const decTAX_RATE As Decimal = .03D

3. Next, enter the following six variable declaration statements. Press
Enter twice after typing the last statement.

 Dim intBluePhones As Integer
 Dim intPinkPhones As Integer
 Dim intTotalPhones As Integer
 Dim decSubtotal As Decimal
 Dim decSalesTax As Decimal
 Dim decTotalPrice As Decimal

4. Place your mouse pointer on the green jagged line that appears
below the last Dim statement. A box containing a message appears,
as shown in Figure 3-26. Th e message indicates that, although
the decTotalPrice variable has been declared, it has not been
used yet. In other words, the variable name does not appear in any
other statement in the code. Th e green jagged line will disappear
when you include the variable name in another statement in the
procedure.

START HERE

C7718_ch03.indd 156C7718_ch03.indd 156 17/03/11 8:21 PM17/03/11 8:21 PM

157

Modifying the Calculate Order Button’s Code L E S S O N B

After declaring the named constants and variables, you can begin coding
each step in the procedure’s pseudocode (shown earlier in Figure 3-24). Keep
in mind that some steps may require more than one line of code. Th e fi rst
step in the pseudocode is to calculate the total number of phones ordered.
Th e calculation is made by adding the number of blue phones ordered
(which is stored in the Text property of the txtBlue control) to the number
of pink phones ordered (which is stored in the Text property of the txtPink
control). You will use the TryParse method to convert the Text properties
of both text boxes to integers, which you will store in the intBluePhones
and intPinkPhones variables. You then will use an assignment statement
to add together the contents of both variables, assigning the sum to the
intTotalPhones variable.

To continue coding the btnCalc control’s Click event procedure:

1. Th e insertion point should be positioned as shown earlier in
 Figure 3-26. Enter the following comment and TryParse methods.
When you press Enter after typing each TryParse method, the
Code Editor removes the green jagged line that appears below the
 respective variable’s Dim statement.

 ' calculate the total number of phones ordered
 Integer.TryParse(txtBlue.Text, intBluePhones)
 Integer.TryParse(txtPink.Text, intPinkPhones)

2. Next, enter the following assignment statement, which calculates the
total number of phones ordered. Press Enter twice after typing the
assignment statement. (Notice that all of the variables in the assign-
ment statement have the same data type: Integer.)

 intTotalPhones = intBluePhones + intPinkPhones

3. Th e second step in the pseudocode is to calculate the subtotal by mul-
tiplying the total number of phones ordered by the phone price. You
will assign the subtotal to the decSubtotal variable. Enter the fol-
lowing comment and assignment statement. Press Enter twice after
typing the assignment statement. When processing the assignment
statement, the computer will implicitly convert the integer stored in
the intTotalPhones variable to Decimal before multiplying it by

START HERE

insertion point

Unused local
variable: 'decTotalPrice'

Figure 3-26 Const and Dim statements entered in the procedure

C7718_ch03.indd 157C7718_ch03.indd 157 17/03/11 8:21 PM17/03/11 8:21 PM

158

C H A P T E R 3 Using Variables and Constants

the decimal number stored in the decPHONE_PRICE constant. It then
will assign the result to the decSubtotal variable.

 ' calculate the subtotal
 decSubtotal = intTotalPhones * decPHONE_PRICE

4. Th e third step in the pseudocode is to calculate the sales tax by multi-
plying the subtotal by the sales tax rate. You will assign the sales tax to
the decSalesTax variable. Enter the following comment and assign-
ment statement. Press Enter twice after typing the assignment state-
ment. Notice that the variables and named constant in the assignment
statement have the same data type: Decimal.

 ' calculate the sales tax
 decSalesTax = decSubtotal * decTAX_RATE

5. Th e fourth step in the pseudocode is to calculate the total price by
adding together the subtotal and the sales tax. You will assign the
result to the decTotalPrice variable. Enter the following comment
and assignment statement. Press Enter twice after typing the assign-
ment statement. Notice that all of the variables in the assignment
statement have the same data type: Decimal.

 ' calculate the total price
 decTotalPrice = decSubtotal + decSalesTax

6. Step 5 in the pseudocode is to display the total phones ordered
and the total price in the lblTotalPhones and lblTotalPrice con-
trols, respectively. Th e total number of phones ordered is stored in
the intTotalPhones variable, and the total price is stored in the
 decTotalPrice variable. Because both variables have a numeric
data type, you will need to convert their contents to the String data
type before assigning the contents to the label controls. You can use
the ToString method of the Convert class to make the conversions.
Enter the following comment and assignment statements. Press
Enter twice after typing the last assignment statement.

 ' display total amounts
 lblTotalPhones.Text = Convert.ToString(intTotalPhones)
 lblTotalPrice.Text = Convert.ToString(decTotalPrice)

7. Th e last step in the pseudocode is to display the sales tax and the
salesperson’s name in the lblMessage control. For now, you will dis-
play only the sales tax. Enter the following comment and assignment
statement:

 ' display tax and salesperson’s name
 lblMessage.Text = Convert.ToString (decSalesTax)

8. Save the solution. Figure 3-27 shows the code entered in the btnCalc
control’s Click event procedure.

C7718_ch03.indd 158C7718_ch03.indd 158 17/03/11 8:21 PM17/03/11 8:21 PM

159

Modifying the Calculate Order Button’s Code L E S S O N B

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' calculates number of phones ordered and total price

 Const decPHONE_PRICE As Decimal = 25D
 Const decTAX_RATE As Decimal = 0.03D
 Dim intBluePhones As Integer
 Dim intPinkPhones As Integer
 Dim intTotalPhones As Integer
 Dim decSubtotal As Decimal
 Dim decSalesTax As Decimal
 Dim decTotalPrice As Decimal

 ' calculate the total number of phones ordered
 Integer.TryParse(txtBlue.Text, intBluePhones)
 Integer.TryParse(txtPink.Text, intPinkPhones)
 intTotalPhones = intBluePhones + intPinkPhones

 ' calculate the subtotal
 decSubtotal = intTotalPhones * decPHONE_PRICE

 ' calculate the sales tax
 decSalesTax = decSubtotal * decTAX_RATE

 ' calculate the total price
 decTotalPrice = decSubtotal + decSalesTax

 ' display total amounts
 lblTotalPhones.Text = Convert.ToString(intTotalPhones)
 lblTotalPrice.Text = Convert.ToString(decTotalPrice)

 ' display tax and salesperson's name
 lblMessage.Text = Convert.ToString(decSalesTax)

End Sub

Figure 3-27 Code entered in the btnCalc control’s Click event procedure

To start and then test the application:

1. Start the application. Enter 10 and 5 as the number of blue and pink
phones ordered, respectively. Click the Calculate Order button. Th e
total number of phones ordered, total price, and sales tax appear in the
interface, as shown in Figure 3-28. However, it’s not obvious to the user
that the 11.25 is the sales tax. You can fi x this problem by displaying the
message “Th e sales tax was” before the sales tax amount. Before you
can accomplish this task, you need to learn how to concatenate (link
together) strings. String concatenation is covered in the next section.

sales tax amount

Figure 3-28 Calculated amounts shown in the interface

START HERE

C7718_ch03.indd 159C7718_ch03.indd 159 17/03/11 8:21 PM17/03/11 8:21 PM

160

C H A P T E R 3 Using Variables and Constants

2. Click the Clear Screen button to clear the order form, and then click
the Exit button.

Concatenating Strings
You use the concatenation operator, which is the ampersand (&), to concat-
enate (connect or link together) strings. When concatenating strings, you
must be sure to include a space before and after the ampersand; otherwise,
the Code Editor will not recognize the ampersand as the concatenation oper-
ator. Figure 3-29 shows some examples of string concatenation.

Concatenating strings

Variables Contents
strFirstName Lucretia
strLastName Jackson
intAge 30

Concatenated string Result
strFirstName & strLastName LucretiaJackson
strFirstName & " " & strLastName Lucretia Jackson
strLastName & ", " & strFirstName Jackson, Lucretia
"She is " & Convert.ToString(intAge) & "!" She is 30!

Figure 3-29 Examples of string concatenation

You will use the concatenation operator to concatenate the following
three strings: “Th e sales tax was ”, the contents of the decSalesTax
 variable after it has been converted to a string, and “.” (a period). Using the
 examples shown in Figure 3-29 as a guide, the correct assignment
statement is lblMessage.Text = "The sales tax was " &
Convert.ToString(decSalesTax) & ".".

To concatenate the strings and then test the code:

1. Change the last assignment statement in the procedure as shown
in Figure 3-30.

space
include a space before and
after each ampersand

Figure 3-30 String concatenation included in the assignment statement

2. Save the solution and then start the application. Enter 10 and 5 as
the number of blue and pink phones ordered, respectively. Click
the Calculate Order button. Th e lblMessage control contains the
 sentence “Th e sales tax was 11.25.”, as shown in Figure 3-31.

You also can use
the plus sign (+)
to concatenate
strings. To avoid
confusion,

 however, you should use
the plus sign for addition
and the ampersand for
concatenation.

START HERE

C7718_ch03.indd 160C7718_ch03.indd 160 17/03/11 8:21 PM17/03/11 8:21 PM

161

The InputBox Function L E S S O N B

message and
sales tax amount

Figure 3-31 Concatenated strings displayed in the lblMessage control

3. Click the Exit button.

Recall that you also need to display the salesperson’s name in the lblMessage
control. You can use the InputBox function to obtain the name from the user.

The InputBox Function
Th e InputBox function displays an input dialog box, which is one of the stan-
dard dialog boxes available in Visual Basic. An example of an input dialog
box is shown in Figure 3-32. Th e input dialog box contains a message, an OK
button, a Cancel button, and an input area where the user can enter infor-
mation. Th e message in the dialog box should prompt the user to enter the
appropriate information in the input area. Th e user closes the dialog box by
clicking the OK button, Cancel button, or Close button. Th e value returned
by the InputBox function depends on the button the user chooses. If the user
clicks the OK button, the InputBox function returns the value contained in
the input area of the dialog box; the return value is always treated as a string.
If the user clicks either the Cancel button in the dialog box or the Close but-
ton on the dialog box’s title bar, the InputBox function returns an empty (or
zero-length) string.

Figure 3-32 Example of an input dialog box

Figure 3-33 shows the basic syntax of the InputBox function. Th e prompt
argument contains the message to display inside the dialog box. Th e optional
title and defaultResponse arguments control the text that appears in the dia-
log box’s title bar and input area, respectively. If you omit the title argument,
the project name appears in the title bar. If you omit the defaultResponse
argument, a blank input area appears when the dialog box opens. In the input
dialog box shown in Figure 3-32, “Enter a sales amount. Click Cancel to end.”
is the prompt, “Sales Entry” is the title, and “0.0” is the defaultResponse.
When entering the InputBox function in the Code Editor window, the
prompt, title, and defaultResponse arguments must be enclosed in quotation

C7718_ch03.indd 161C7718_ch03.indd 161 17/03/11 8:21 PM17/03/11 8:21 PM

162

C H A P T E R 3 Using Variables and Constants

marks, unless that information is stored in a String named constant or a
String variable. Th e Windows standard is to use sentence capitalization for
the prompt, but book title capitalization for the title. Th e capitalization (if
any) you use for the defaultResponse depends on the text itself. In most
cases, you assign the value returned by the InputBox function to a String
variable, as shown in the fi rst three examples in Figure 3-33.

Using the InputBox function

Syntax
InputBox(prompt [, title][, defaultResponse])

Example 1
strSales =
 InputBox("Enter a sales amount. Click Cancel to end.",
 "Sales Entry", "0.0")
Displays the input dialog box shown earlier in Figure 3-32. When the user
closes the dialog box, the assignment statement assigns the user’s response
to the strSales variable.

Example 2
strState = InputBox("State name:", "State")
Displays an input dialog box that shows State name: as the prompt, State in
the title bar, and an empty input area. When the user closes the dialog box, the
assignment statement assigns the user’s response to the strState variable.

Example 3
Const strPROMPT As String = "Enter the interest rate:"
Const strTITLE As String = "Interest Rate"
strRate = InputBox(strPROMPT, strTITLE, ".00")
Displays an input dialog box that shows the contents of the strPROMPT
constant as the prompt, the contents of the strTITLE constant in the title bar,
and .00 in the input area. When the user closes the dialog box, the assignment
statement assigns the user’s response to the strRate variable.

Example 4
Integer.TryParse(InputBox("How old are you?",
 "Discount Verification"), intAge)
Displays an input dialog box that shows How old are you? as the prompt,
Discount Verifi cation in the title bar, and an empty input area. When the user
closes the dialog box, the TryParse method converts the user’s response from
String to Integer and then stores the result in the intAge variable.

Figure 3-33 Basic syntax and examples of the InputBox function

GUI DESIGN TIP InputBox Function’s Prompt and Title Capitalization

Use sentence capitalization for the prompt, but book title capitalization for
the title.

The InputBox
function’s syntax
also includes
optional XPos
and YPos argu-

ments for specifying the
dialog box’s horizontal
and vertical positions,
respectively. If both argu-
ments are omitted, the
dialog box appears cen-
tered on the screen.

C7718_ch03.indd 162C7718_ch03.indd 162 17/03/11 8:21 PM17/03/11 8:21 PM

163

The InputBox Function L E S S O N B

You will use the InputBox function in the Playtime Cellular application to
prompt the salesperson to enter his or her name. Th e InputBox function
should be entered in the frmMain Load event procedure because that is
the procedure responsible for getting the salesperson’s name. Recall that a
form’s Load event occurs before the form appears on the screen. After the
Load event procedure obtains the salesperson’s name, you then will have the
 btnCalc control’s Click event procedure concatenate the name to the message
displayed in the lblMessage control.

Before entering the InputBox function in the Load event procedure, you
must decide where to declare the String variable that will store the function’s
return value. In other words, should the variable have procedure scope or
class scope? When deciding, consider the fact that the form’s Load event pro-
cedure needs to assign the InputBox function’s return value to the variable.
Th e Calculate Order button’s Click event procedure also needs to use the
variable, because the procedure must concatenate the variable to the message
displayed in the lblMessage control. Recall from Lesson A that when two
procedures in the same form need to use the same variable, you declare the
variable as a class-level variable. You do this by entering the variable declara-
tion statement in the form’s Declarations section.

To continue coding the Playtime Cellular application:

1. Scroll to the top of the Code Editor window. Click the blank line
immediately below the Public Class frmMain clause. When you
do so, frmMain and (Declarations) appear in the Class Name and
Method Name boxes, respectively. Press Enter to insert a blank line.

2. First, you will declare a class-level String variable named
 strSalesPerson. Enter the comment and declaration statement
shown in Figure 3-34.

enter this comment
and declaration
statement

Figure 3-34 Class-level variable declared in the form’s Declarations section

3. Now you will enter the InputBox function in the form’s Load event
procedure, so the function will be processed as soon as the salesper-
son starts the application. You access the form’s procedures by select-
ing (frmMain Events) in the Class Name list box. Click the Class
Name list arrow and then click (frmMain Events) in the list. Click the

START HERE

C7718_ch03.indd 163C7718_ch03.indd 163 17/03/11 8:21 PM17/03/11 8:21 PM

164

C H A P T E R 3 Using Variables and Constants

Method Name list arrow to view a list of the form’s procedures. Scroll
down the list until you see Load, and then click Load in the list. Th e
frmMain Load event procedure appears in the Code Editor window.

4. To make the assignment statement that contains the InputBox func-
tion shorter and easier to understand, you will create named con-
stants for the function’s prompt and title arguments, and then use the
named constants (rather than the longer strings) in the function. You
are using named constants rather than variables because the prompt
and title arguments will not change as the application is running.
Enter the comments and code shown in Figure 3-35.

enter these two
comments and
three lines of code

Figure 3-35 frmMain Load event procedure

5. Next, you will concatenate the strSalesPerson variable to the
message assigned to the lblMessage control. Locate the btnCalc
control’s Click event procedure. Click at the end of the last
 assignment statement in the procedure. Press the Spacebar and
then type & strSalesPerson. Th is changes the assignment statement
to lblMessage.Text = "The sales tax was " & Convert.
ToString(decSalesTax) & "." & strSalesPerson.

6. Save the solution and then start the application. Th e Name Entry
dialog box created by the InputBox function appears fi rst. See
Figure 3-36.

Figure 3-36 Dialog box created by the InputBox function

7. Type your name in the input area of the dialog box and then click
the OK button. Th e order form appears. Type 10 in the Blue phones
ordered box and then click the Calculate Order button. Notice that
your name appears much too close to the period in the lblMessage
control. You can correct the spacing problem in the lblMessage con-
trol by replacing the period (".") in the assignment statement with a
period and two spaces (". "). Or, you can use the ControlChars.New-
Line constant to display the salesperson’s name on the next line in the
lblMessage control. Click the Exit button.

C7718_ch03.indd 164C7718_ch03.indd 164 17/03/11 8:21 PM17/03/11 8:21 PM

165

The ControlChars.NewLine Constant L E S S O N B

The ControlChars.NewLine Constant
Th e ControlChars.NewLine constant instructs the computer to advance the
insertion point to the next line in a control. (You also can use it to advance
the insertion point in a fi le or on the printer.) Whenever you want to start a
new line, you simply type the ControlChars.NewLine constant at the appro-
priate location in your code. In this case, you want to advance to a new line
after displaying the period—in other words, before displaying the salesper-
son’s name. Th e appropriate assignment statement is lblMessage.Text
= "The sales tax was " & Convert.ToString(decSalesTax)
& "." & ControlChars.NewLine & strSalesPerson. Th e assign-
ment statement is rather long and, depending on the size of the font used in
the Code Editor window, you may not be able to view the entire statement
without scrolling the window. You can break a line of code into two or more
physical lines in the Code Editor window, as long as you break the line either
before a closing parenthesis or after one of the following: a comma, an open-
ing parenthesis, or an operator (arithmetic, assignment, comparison, logical,
or concatenation). If you want to break a line of code anywhere else, you will
need to use the line continuation character, which is an underscore (_) that is
immediately preceded by a space. If you use the line continuation character,
it must appear at the end of a physical line of code.

To display the salesperson’s name on a separate line in the lblMessage
control:

1. In the btnCalc control’s Click event procedure, modify the last
 assignment statement as indicated in Figure 3-37.

break the line of
code after each
concatenation
operator

add the constant, a space,
and the concatenation operator

Figure 3-37 Modifi ed assignment statement

2. Save the solution and then start the application. Th e Name Entry
dialog box created by the InputBox function appears fi rst. See
 Figure 3-38. Notice that the OK button in the dialog box has a
 darkened border, even though it does not have the focus. Th e input
area in the dialog box has the focus, as indicated by the position of the
insertion point. In Windows terminology, a button that has a high-
lighted border when it does not have the focus is called the default
button. You can select a default button by pressing Enter at any time.

The Control
Chars.
NewLine
 constant is an
intrinsic constant,

which is a named
 constant built into
Visual Basic.

START HERE

C7718_ch03.indd 165C7718_ch03.indd 165 17/03/11 8:21 PM17/03/11 8:21 PM

166

C H A P T E R 3 Using Variables and Constants

the input area
has the focus

the default button has
a darkened border

Figure 3-38 Name Entry input dialog box

3. Type Mary Jones in the input area of the dialog box. Th en, instead of
clicking the OK button, simply press Enter. Th e order form appears.

4. Type 5 in the Blue phones ordered box and then click the Calculate
Order button. Th e salesperson’s name now appears on a separate
line in the lblMessage control, as shown in Figure 3-39. Click the Exit
button.

the salesperson’s name
appears on a separate line

Figure 3-39 Salesperson’s name shown on the order form

Designating a Default Button
As you already know from using Windows applications, you can select
a button by clicking it or by pressing the Enter key when the button has
the focus. If you make a button the default button, you also can select it
by pressing the Enter key even when the button does not have the focus.
When a button is selected, the computer processes the code contained
in the button’s Click event procedure. An interface does not have to have
a default button. However, if one is used, it should be the button that is
most often selected by the user, except in cases where the tasks performed
by the button are both destructive and irreversible. For example, a button
that deletes information should not be designated as the default button.
If you assign a default button in an interface, it typically is the fi rst but-
ton, which means that it is on the left when the buttons are positioned
horizontally on the form, but on the top when the buttons are stacked
vertically. A form can have only one default button. You specify the default
button (if any) by setting the form’s AcceptButton property to the name of
the button.

A form’s
CancelButton
property speci-
fi es the button
whose Click

event procedure is pro-
cessed when the user
presses the Esc key. A
form can have only one
cancel button. You can
experiment with the
Cancel property by
 completing Discovery
Exercise 10 at the end of
this lesson.

C7718_ch03.indd 166C7718_ch03.indd 166 17/03/11 8:21 PM17/03/11 8:21 PM

167

Using the ToString Method to Format Numbers L E S S O N B

GUI DESIGN TIP Assigning a Default Button

The default button should be the button that is most often selected by the
user, except in cases where the tasks performed by the button are both
destructive and irreversible. In most interfaces, the default button is the
first button.

To make the Calculate Order button the default button:

1. Click the Main Form.vb [Design] tab to return to the designer
 window. Set the form’s AcceptButton property to btnCalc. A
 darkened border appears around the Calculate Order button.

2. Save the solution and then start the application. Type your name in
the Name Entry dialog box and then press Enter. Th e order form
appears.

3. Type 5 in the Blue phones ordered box and then press Enter to select
the Calculate Order button. Th e numbers 5 and 128.75 appear in the
Total phones and Total price boxes, respectively. In addition, the mes-
sage “Th e sales tax was 3.75.” and your name appear in the lblMessage
control. Click the Exit button.

Finally, you will modify the btnCalc control’s Click event procedure so
that it displays a dollar sign and comma (if appropriate) in the total price
amount.

Using the ToString Method to Format Numbers
Numbers representing monetary amounts are usually displayed with either
zero or two decimal places and may include a dollar sign and a thousands
separator. Similarly, numbers representing percentage amounts are usually
displayed with zero or more decimal places and a percent sign. Specifying the
number of decimal places and the special characters to display in a number is
called formatting. In Chapter 2, you learned how to use the Format function to
format a number for output as a string. Although you can still use the Format
function in Visual Basic 2010, many programmers now use the ToString
method because the method can be used in any of the languages built into
Visual Studio. Th e ToString method’s syntax is numeric VariableName.
ToString(formatString). In the syntax, numeric VariableName is the name of
a numeric variable. Th e ToString method formats the number stored in the
numeric variable and then returns the result as a string. Th e formatString
argument in the syntax specifi es the format you want to use. Th e formatString
argument must take the form “Axx”, where A is an alphabetic character
called the format specifi er, and xx is a sequence of digits called the precision
 specifi er. Th e format specifi er must be one of the built-in format characters.
Th e most commonly used format characters are listed in Figure 3-40. Notice
that you can use either an uppercase letter or a lowercase letter as the format
specifi er. When used with one of the format characters listed in Figure 3-40,
the precision specifi er controls the number of digits that will appear after
the decimal point in the formatted number. Also included in Figure 3-40 are
examples of using the ToString method.

START HERE

C7718_ch03.indd 167C7718_ch03.indd 167 17/03/11 8:21 PM17/03/11 8:21 PM

168

C H A P T E R 3 Using Variables and Constants

Using the ToString method to format a number

Syntax
numericVariableName.ToString(formatString)

Format specifi er (Name) Description
C or c (Currency) displays the string with a dollar sign;
 includes a thousands separator (if
 appropriate); negative values are enclosed
 in parentheses

N or n (Number) similar to the Currency format, but does
 not include a dollar sign and negative
 values are preceded by a minus sign

F or f (Fixed-point) same as the Number format, but does not
 include a thousands separator

P or p (Percent) multiplies the value by 100 and displays
 the result with a percent sign; negative
 values are preceded by a minus sign

Example 1
Dim intCommission As Integer = 1250
lblCommission.Text = intCommission.ToString("C2")
assigns the string “$1,250.00” to the lblCommission control’s Text property

Example 2
Dim decTotal As Decimal = 123.675D
lblTotal.Text = decTotal.ToString("N2")
assigns the string “123.68” to the lblTotal control’s Text property

Example 3
Dim dblRate As Double = .06
lblRate.Text = dblRate.ToString("P0")
assigns the string “6 %” to the lblRate control’s Text property

Figure 3-40 Syntax and examples of the ToString method

In the Playtime Cellular application, you will format the total price to include
a dollar sign, a thousands separator, and two decimal places.

To format the total price:

1. Click the Main Form.vb tab to return to the Code Editor window.
In the btnCalc control’s Click event procedure, change the
lblTotalPrice.Text = Convert.ToString(decTotalPrice)
statement as follows:

 lblTotalPrice.Text = decTotalPrice.ToString("C2")

2. Save the solution and then start the application. Type Perry Hormel
in the input area of the dialog box and then press Enter. Th e order
form appears.

START HERE

C7718_ch03.indd 168C7718_ch03.indd 168 17/03/11 8:21 PM17/03/11 8:21 PM

169

Using the ToString Method to Format Numbers L E S S O N B

3. Type 15 in the Blue phones ordered box, type 25 in the Pink phones
ordered box, and then press Enter to calculate the order. Th e total
price appears with a dollar sign, a thousands separator, and two deci-
mal places. See Figure 3-41.

formatted price

Figure 3-41 Formatted price shown on the order form

4. Click the Exit button. Close the Code Editor window and then close
the solution.

Figure 3-42 shows the application’s code at the end of Lesson B.

Figure 3-42 Playtime Cellular application’s code at the end of Lesson B (continues)

 1 ' Name: Playtime Cellular Project
 2 ' Purpose: Calculates the total number of phones
 3 ' ordered and the total price of the order
 4 ' Programmer: <your name> on <current date>
 5
 6 Option Explicit On
 7 Option Strict On
 8 Option Infer Off
 9
10 Public Class frmMain
11
12 ' declare class-level variable
13 Private strSalesPerson As String
14
15 Private Sub btnExit_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnExit.Click
16 Me.Close()
17 End Sub
18
19 Private Sub btnClear_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnClear.Click
20 ' prepare the screen for the next order
21
22 txtName.Text = String.Empty
23 txtAddress.Text = String.Empty
24 txtCity.Text = String.Empty
25 txtState.Text = String.Empty
26 txtZip.Text = String.Empty
27 txtBlue.Text = String.Empty
28 txtPink.Text = String.Empty
29 lblTotalPhones.Text = String.Empty
30 lblTotalPrice.Text = String.Empty

C7718_ch03.indd 169C7718_ch03.indd 169 17/03/11 8:21 PM17/03/11 8:21 PM

170

C H A P T E R 3 Using Variables and Constants

31 lblMessage.Text = String.Empty
32 ' send the focus to the Name text box
33 txtName.Focus()
34
35 End Sub
36
37 Private Sub btnCalc_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnCalc.Click
38 ' calculates number of phones ordered and total price
39
40 Const decPHONE_PRICE As Decimal = 25D
41 Const decTAX_RATE As Decimal = 0.03D
42 Dim intBluePhones As Integer
43 Dim intPinkPhones As Integer
44 Dim intTotalPhones As Integer
45 Dim decSubtotal As Decimal
46 Dim decSalesTax As Decimal
47 Dim decTotalPrice As Decimal
48
49 ' calculate the total number of phones ordered
50 Integer.TryParse(txtBlue.Text, intBluePhones)
51 Integer.TryParse(txtPink.Text, intPinkPhones)
52 intTotalPhones = intBluePhones + intPinkPhones
53
54 ' calculate the subtotal
55 decSubtotal = intTotalPhones * decPHONE_PRICE
56
57 ' calculate the sales tax
58 decSalesTax = decSubtotal * decTAX_RATE
59
60 ' calculate the total price
61 decTotalPrice = decSubtotal + decSalesTax
62
63 ' display total amounts
64 lblTotalPhones.Text = Convert.ToString(intTotalPhones)
65 lblTotalPrice.Text = decTotalPrice.ToString("C2")
66
67 ' display tax and salesperson's name
68 lblMessage.Text = "The sales tax was " &
69 Convert.ToString(decSalesTax) & "." &
70 ControlChars.NewLine & strSalesPerson
71
72 End Sub
73
74 Private Sub frmMain_Load(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Me.Load
75 ' gets the salesperson's name
76
77 Const strPROMPT As String = "Salesperson's name:"
78 Const strTITLE As String = "Name Entry"
79 ' assign the name to the class-level variable
80 strSalesPerson = InputBox(strPROMPT, strTITLE)
81
82 End Sub
83 End Class

Figure 3-42 Playtime Cellular application’s code at the end of Lesson B

(continued)

C7718_ch03.indd 170C7718_ch03.indd 170 17/03/11 8:21 PM17/03/11 8:21 PM

171

Lesson B Key Terms L E S S O N B

Lesson B Summary

 • To concatenate strings:

Use the concatenation operator (&). Be sure to include a space before and
after the ampersand.

 • To display an input dialog box:

Use the InputBox function. Th e function’s syntax is InputBox(prompt
[, title][, defaultResponse]). Th e prompt, title, and defaultResponse argu-
ments must be enclosed in quotation marks, unless the information is
stored in a String named constant or a String variable. Use sentence capi-
talization for the prompt, but book title capitalization for the title.

If the user clicks the OK button, the InputBox function returns the value
contained in the input area of the dialog box. Th e return value is always
treated as a string. If the user clicks either the Cancel button in the dialog
box or the Close button on the dialog box’s title bar, the InputBox function
returns an empty string.

 • To advance the insertion point to the next line:

Use the ControlChars.NewLine constant in code.

 • To break up a long instruction into two or more physical lines in the Code
Editor window:

Break the line after a comma, after an opening parenthesis, before a
 closing parenthesis, or after an operator (arithmetic, assignment, com-
parison, logical, or concatenation). You also can use the line continuation
character, which is an underscore (_). Th e line continuation character
must be immediately preceded by a space and appear at the end of a
 physical line of code.

 • To make a button the default button:

Set the form’s AcceptButton property to the name of the button.

 • To format a number for output as a string:

Use the ToString method. Th e method’s syntax is numericVariableName.
ToString(formatString).

Lesson B Key Terms
&—the concatenation operator

Concatenation operator—the ampersand (&); used to concatenate strings;
must be both preceded and followed by a space character

ControlChars.NewLine constant—used to advance the insertion point to the
next line

Default button—a button that can be selected by pressing the Enter key even
when the button does not have the focus

C7718_ch03.indd 171C7718_ch03.indd 171 17/03/11 8:21 PM17/03/11 8:21 PM

172

C H A P T E R 3 Using Variables and Constants

Formatting—specifying the number of decimal places and the special charac-
ters to display in a number

InputBox function—a Visual Basic function that displays an input dialog box
containing a message, OK and Cancel buttons, and an input area

Line continuation character—an underscore that is immediately preceded by
a space and located at the end of a physical line of code; used to split a long
instruction into two or more physical lines in the Code Editor window

ToString method—formats a number stored in a numeric variable and then
returns the result as a string

Lesson B Review Questions

1. Th e InputBox function displays a dialog box containing which of the
following?

a. input area

b. OK and Cancel buttons

c. prompt

d. all of the above

2. Which of the following is the concatenation operator?

a. @

b. &

c. $

d. #

3. Th e strRegion1 and strRegion2 variables contain the strings
“North” and “West”, respectively. Which of the following will display
the string “NorthWest” (one word) in the lblRegion control?

a. lblRegion.Text = strRegion1 & strRegion2

b. lblRegion.Text = "strRegion1" & "strRegion2"

c. lblRegion.Text = strRegion1 @ strRegion2

d. lblRegion.Text = strRegion1 # strRegion2

4. Th e strCity and strState variables contain the strings “Boston”
and “MA”, respectively. Which of the following will display the
string “Boston, MA” (the city, a comma, a space, and the state) in
the lblAddress control?

a. lblAddress.Text = strCity , & strState

b. lblAddress.Text = "strCity" & "," & "strState"

c. lblAddress.Text = strCity & ", " & strState

d. none of the above

C7718_ch03.indd 172C7718_ch03.indd 172 17/03/11 8:21 PM17/03/11 8:21 PM

173

Lesson B Review Questions L E S S O N B

5. Which of the following Visual Basic constants advances the insertion
point to the next line?

a. Advance

b. ControlChars.Advance

c. ControlChars.NewLine

d. ControlChars.NextLine

6. Which property of a form designates the form’s default button?

a. AcceptButton

b. DefaultButton

c. EnterButton

d. FocusButton

7. Which of the following statements correctly assigns the InputBox
function’s return value to a Double variable named dblNum?

a. Double.TryParse(InputBox(strMSG,
 "Number"), dblNum)

b. dblNum = Double.TryParse(
 InputBox(strMSG, "Number"))

c. dblNum = InputBox(strMSG, "Number")

d. TryParse.Double(InputBox(strMSG,
 "Number"), dblNum)

8. Which of the following statements correctly assigns the InputBox
function’s return value to a String variable named strCity?

a. String.TryParse(InputBox(strMSG,
 "City"), strCity)

b. strCity = String.TryParse(
 InputBox(strMSG, "City"))

c. strCity = InputBox(strMSG, "City")

d. none of the above

9. Th e InputBox function’s prompt argument should be entered
using .

a. book title capitalization

b. sentence capitalization

C7718_ch03.indd 173C7718_ch03.indd 173 17/03/11 8:21 PM17/03/11 8:21 PM

174

C H A P T E R 3 Using Variables and Constants

10. If the decSales variable contains the number 12345.89, which of the
following statements displays the number as 12,345.89?

a. lblSales.Text = decSales.ToString("C2")

b. lblSales.Text = decSales.ToString("N2")

c. lblSales.Text = decSales.ToString("D2")

d. lblSales.Text = decSales.ToString("F2")

Lesson B Exercises

1. Th e strCity and strState variables contain the strings “Madison”
and “WI”, respectively. Write an assignment statement to display the
string “Madison, WI” in the lblAddress control.

2. Th e strZip variable contains the string “53711”. Write an assignment
statement to display the string “My ZIP code is 53711.” in the lblMsg
control.

3. In this exercise, you modify the Playtime Cellular application from
this lesson. Use Windows to make a copy of the Playtime Solution
folder. Rename the copy Modifi ed Playtime Solution. Open the
Playtime Solution (Playtime Solution.sln) fi le contained in the
Modifi ed Playtime Solution folder. Open the designer window.
Modify the btnCalc control’s Click event procedure so that it displays
the sales tax amount with a dollar sign, two decimal places, and a
thousands separator (if necessary). Save the solution and then start
and test the application. Close the Code Editor window and then
close the solution.

4. Open the Commission Solution (Commission Solution.sln) fi le
contained in the VB2010\Chap03\Commission Solution folder. If
necessary, open the designer window. Th e application calculates
and displays a salesperson’s commission, using a commission rate
of 10%. Make the Calculate Commission button the default button.
Open the Code Editor window and review the code in the Calculate
Commission button’s Click event procedure. Modify the procedure’s
code to use variables. (Do not use the Val function.) Use a named
constant for the commission rate. Be sure to enter the Option
Explicit On, Option Strict On, and Option Infer Off
statements in the General Declarations section. Use the ToString
method to display the commission amount with a dollar sign, two
decimal places, and a thousands separator (if necessary). Save the
solution and then start the application. Test the application by cal-
culating the commission for sales of 7500. Th e commission should
be $750.00. Close the Code Editor window and then close the
solution.

5. Th e strCity and strState variables contain the strings “Madison”
and “WI”, respectively. Write an assignment statement to display the
string “Th e capital of WI is Madison.” in the lblMsg control.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

C7718_ch03.indd 174C7718_ch03.indd 174 17/03/11 8:21 PM17/03/11 8:21 PM

175

Lesson B Exercises L E S S O N B

6. Open the Mingo Solution (Mingo Solution.sln) fi le contained in
the VB2010\Chap03\Mingo Solution folder. If necessary, open the
designer window. Th e application allows the sales manager to enter
the sales made in three states. It then calculates and displays both the
total sales made and the total commission earned in the three states.

a. Make the Calculate button the default button.

b. Enter the appropriate Option statements in the Code Editor
window.

c. Code the Exit button so that it ends the application when it is
clicked.

d. Use the pseudocode shown in Figure 3-43 to code the Calculate
button’s Click event procedure. Be sure to use variables. (Do
not use the Val function.) Th e commission rate is 5%. Use the
ToString method to display a thousands separator (if neces-
sary) and two decimal places in the total sales and commission
amounts.

e. Save the solution and then start the application. Test the applica-
tion by calculating the total sales and commission for the follow-
ing amounts: New York sales of 15000, Maine sales of 25000, and
Florida sales of 10500.

f. Close the Code Editor window and then close the solution.

btnCalc Click event procedure
1. calculate total sales = New York sales + Maine sales + Florida sales
2. calculate commission = total sales * commission rate
3. display total sales and commission in lblTotalSales and lblCommission
4. send the focus to the txtNewYork control

Figure 3-43 Pseudocode for Exercise 6

7. In this exercise, you modify the Mingo Sales application from Exercise 6.
Use Windows to make a copy of the Mingo Solution folder. Rename
the copy Modifi ed Mingo Solution. Open the Mingo Solution (Mingo
Solution.sln) fi le contained in the Modifi ed Mingo Solution folder.
Open the designer window. Code the form’s Load event procedure so
that it uses the InputBox function to ask the user for the commission
rate before the form appears. Modify the code in the btnCalc control’s
Click event procedure so that it uses the commission rate entered
by the user. Save the solution and then start the application. When
you are prompted to enter the commission rate, type .1 (the decimal
equivalent of 10%) and then click the OK button. Test the applica-
tion using 26000 as the New York sales, 34000 as the Maine sales, and
17000 as the Florida sales. Close the Code Editor window and then
close the solution.

8. Open the IMY Solution (IMY Solution.sln) fi le contained in the
VB2010\Chap03\IMY Solution folder. If necessary, open the designer
window. Th e application calculates the new hourly pay for each of

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

C7718_ch03.indd 175C7718_ch03.indd 175 17/03/11 8:21 PM17/03/11 8:21 PM

176

C H A P T E R 3 Using Variables and Constants

three job codes, given the current hourly pay for each job code and
the raise percentage (entered as a decimal number). Th e application
should display the message “Raise percentage: XX %” in a label control
on the form. Th e XX in the message should be replaced by the actual
raise percentage.

a. Code the Exit button so that it ends the application when it is
clicked.

b. Before the form appears, use the InputBox function to prompt
the personnel clerk to enter the raise percentage. You will use the
raise percentage to calculate the new hourly pay for each job code.

c. Use the pseudocode shown in Figure 3-44 to code the Calculate
button’s Click event procedure. Create a named constant for the
“Raise percentage:” message. Format the new hourly pays using
the “N2” formatString. Format the raise rate (in the message)
using the “P0” formatString.

d. Save the solution and then start the application. When you are
prompted to enter the raise percentage, type .05 (the decimal
equivalent of 5%) and then click the OK button. Use the following
information to calculate the new hourly pay for each job code:

 Current hourly pay for job code 1: 5
 Current hourly pay for job code 2: 6.5
 Current hourly pay for job code 3: 8.75

e. Close the Code Editor window and then close the solution.

btnCalc Click event procedure
1. calculate each new hourly pay = current hourly pay * raise rate + current hourly pay
2. display the new hourly pays in the appropriate label controls
3. display the message and raise rate in the lblMessage control
4. send the focus to the txtCode1 control

Figure 3-44 Pseudocode for Exercise 8

9. In this exercise, you modify the IMY Industries application from
Exercise 8. Th e modifi ed application will allow the user to enter a
separate raise percentage for each job code. Use Windows to make
a copy of the IMY Solution folder. Rename the copy Modifi ed IMY
Solution. Open the IMY Solution (IMY Solution.sln) fi le contained in
the Modifi ed IMY Solution folder. Open the designer window.

a. Modify the application’s code so that it asks the personnel clerk to
enter the raise for each job code separately. Display the following
information on separate lines in the lblMessage control. Be sure to
replace the XX in each line with the appropriate raise percentage.
(You will need to change the size of the form and lblMessage
control.)

 Job Code 1: XX %
 Job Code 2: XX %
 Job Code 3: XX %

ADVANCED

C7718_ch03.indd 176C7718_ch03.indd 176 17/03/11 8:21 PM17/03/11 8:21 PM

177

Lesson B Exercises L E S S O N B

b. Save the solution and then start the application. When you are
prompted to enter the raise percentages for the job codes, use .03
for job code 1, .05 for job code 2, and .04 for job code 3. Use the
following information to calculate the new hourly pay for each
job code:

 Current hourly pay for job code 1: 5
 Current hourly pay for job code 2: 6.5
 Current hourly pay for job code 3: 8.75

c. Close the Code Editor window and then close the solution.

Discovery

10. In this exercise, you learn about the CancelButton property of a
Windows form. Open the Cancel Solution (Cancel Solution.sln) fi le
contained in the VB2010\Chap03\Cancel Solution folder. If necessary,
open the designer window.

a. Open the Code Editor window and review the existing code. Start
the application. Type your fi rst name in the text box and then
press Enter to select the Clear button, which is the form’s default
button. Th e Clear button removes your name from the text box.
Click the Undo button. Your name reappears in the text box. Click
the Exit button.

b. Return to the designer window. Set the form’s CancelButton prop-
erty to btnUndo. Doing this tells the computer to process the code
in the Undo button’s Click event procedure when the user presses
the Esc key. Save the solution and then start the application. Type
your fi rst name in the text box and then press Enter to select the
Clear button. Press Esc to select the Undo button. Your name
reappears in the text box. Close the Code Editor window and then
close the solution.

C7718_ch03.indd 177C7718_ch03.indd 177 17/03/11 8:21 PM17/03/11 8:21 PM

178

C H A P T E R 3 Using Variables and Constants

 ❚ LESSON C
After studying Lesson C, you should be able to:

 • Include a static variable in code

 • Code the TextChanged event procedure

 • Create a procedure that handles more than one event

Modifying the Load and Click Event Procedures
Currently, the Playtime Cellular application allows the user to enter the sales-
person’s name only when the application fi rst starts. In this lesson you will
modify the application’s code so that it asks for the salesperson’s name before
each order is calculated. By doing this, another salesperson will be able to use
the same computer to take an order without having to start the application
again. As you learned in Lesson B, you should review an application’s docu-
mentation and revise the necessary documents before making modifi cations
to the code. Figure 3-45 shows the revised TOE chart. Changes made to the
TOE chart from Lesson B are shaded in the fi gure. (Lesson B’s TOE chart is
shown in Figure 3-20.) Notice that the Calculate Order button’s Click event
procedure, rather than the frmMain Load event procedure, is responsible for
getting the salesperson’s name.

Task Object Event
1. Get the salesperson’s name btnCalc Click
2. Calculate total phones ordered and total price
3. Display total phones ordered and total price

in lblTotalPhones and lblTotalPrice
4. Calculate the sales tax
5. Display the sales tax and salesperson’s name in lblMessage

Clear screen for the next order btnClear Click

End the application btnExit Click

Display total phones ordered (from btnCalc) lblTotalPhones None

Display total price (from btnCalc) lblTotalPrice None

Get and display the order information txtName, None
 txtAddress,
 txtCity, txtState,
 txtZip, txtBlue,
 txtPink

Get the salesperson’s name frmMain Load

Show the sales tax and salesperson’s name (from btnCalc) lblMessage None

Figure 3-45 Revised TOE chart

C7718_ch03.indd 178C7718_ch03.indd 178 17/03/11 8:21 PM17/03/11 8:21 PM

179

Modifying the Load and Click Event Procedures L E S S O N C

Figure 3-46 shows the revised pseudocode for the Calculate Order button’s
Click event procedure. Changes made to the pseudocode from Lesson B are
shaded in the fi gure. (Lesson B’s pseudocode is shown in Figure 3-24.)

btnCalc Click event procedure
1. get the salesperson’s name
2. calculate total phones ordered = blue phones ordered + pink phones ordered
3. calculate subtotal = total phones ordered * phone price
4. calculate sales tax = subtotal * sales tax rate
5. calculate total price = subtotal + sales tax
6. display total phones ordered and total price in lblTotalPhones and lblTotalPrice
7. display the sales tax and salesperson’s name in lblMessage

Figure 3-46 Revised pseudocode for the Calculate Order button

First, you will open the Playtime Cellular application from Lesson B. You
then will move the code contained in the frmMain Load event procedure to
the btnCalc control’s Click event procedure.

To open the Playtime Cellular application and then move some of
the code:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.

2. Open the Playtime Solution (Playtime Solution.sln) fi le from Les-
son B. Th e fi le is contained in the VB2010\Chap03\Playtime Solution
folder. If necessary, open the designer window.

3. Open the Code Editor window. Locate the frmMain Load event
procedure, and then highlight the two Const statements in the
procedure. Press Ctrl+x to cut the two Const statements from the
procedure.

4. Locate the btnCalc control’s Click event procedure. Click the blank
line above the fi rst Const statement in the procedure, and then press
Enter to insert a new blank line. With the insertion point in the new
blank line, press Ctrl+v. Th e two Const statements that you cut from
the Load event procedure now appear in the Click event procedure.

5. Return to the frmMain Load event procedure. Highlight the second
comment and the assignment statement. Press Ctrl+x to remove the
comment and the assignment statement from the procedure.

6. Return to the btnCalc control’s Click event procedure. Click the
blank line below the last Dim statement, and then press Enter to
insert a new blank line. With the insertion point in the new blank line,
press Ctrl+v. Th e comment and assignment statement that you cut
from the Load event procedure now appear in the Click event pro-
cedure. Press Enter to insert a new blank line below the assignment
statement, and then delete the class-level text from the comment.

7. Return to the frmMain Load event procedure and then delete the
entire procedure from the Code Editor window.

Now that you have moved the InputBox function from the frmMain Load
event procedure to the btnCalc control’s Click event procedure, only one

The Ch03CVideo
fi le demonstrates
all of the steps
contained in

Lesson C. You can view
the video either before or
after completing the
lesson.

START HERE

C7718_ch03.indd 179C7718_ch03.indd 179 17/03/11 8:21 PM17/03/11 8:21 PM

180

C H A P T E R 3 Using Variables and Constants

procedure—the btnCalc control’s Click event procedure—needs to use the
strSalesPerson variable. Th erefore, you can move the statement that
declares the variable from the form’s Declarations section to the btnCalc con-
trol’s Click event procedure. In addition, you will need to change the keyword
in the declaration statement from Private to Dim. Recall that you use the
Private keyword to declare class-level variables, but you use the Dim key-
word to declare procedure-level variables.

To move the declaration statement and then modify it:

1. Delete the ' declare class-level variable comment
from the form’s Declarations section. Highlight the Private
strSalesPerson As String statement, and then press Ctrl+x
to cut the statement from the Declarations section.

2. Click the blank line below the last Dim statement in the btnCalc
control’s Click event procedure. Press Ctrl+v to paste the Private
statement in the procedure, and then press Enter to insert a blank
line below the statement.

3. Th e blue jagged line that appears below the Private keyword indi-
cates that there is something wrong with the statement. You can
determine the problem by resting your mouse pointer somewhere
on the word (or words) immediately above the jagged line. Rest your
mouse pointer on the Private keyword. Th e error message indicates
that the Private keyword is not valid on a local variable declaration.
Change Private in the variable declaration statement to Dim.

4. Save the solution and then start the application. Click the Calculate
Order button on the order form. Type your name in the Name Entry
dialog box and then press Enter. Th e message “Th e sales tax was
0.00.” and your name appear in the lblMessage control.

5. Click the Calculate Order button again. Notice that the Name Entry
dialog box requires the user to enter the salesperson’s name again.
It would be more effi cient for the user if the salesperson’s name
appeared as the default response the second and subsequent times
the Calculate Order button is clicked.

6. Click the Cancel button in the dialog box. No name appears in the
lblMessage control; this is because the InputBox function returns
an empty string when you click the Cancel button in the dialog box.
Click the Exit button.

To display the salesperson’s name in the dialog box when the Calculate
Order button is clicked the second and subsequent times, you can declare
the strSalesPerson variable as either a class-level variable or a static
variable, and then use the variable as the defaultResponse argument in the
InputBox function. In this case, a static variable is a better choice, because
static variables have a lesser scope than class-level variables. Recall that a
static variable is really just a special type of procedure-level variable. As you
learned in Lesson A, fewer unintentional errors occur in applications when
variables are declared using the minimum scope needed. In this case, for
example, only the btnCalc control’s Click event procedure needs to use the
strSalesPerson variable, so a variable with procedure scope is a much
better choice than one with class scope.

START HERE

C7718_ch03.indd 180C7718_ch03.indd 180 17/03/11 8:21 PM17/03/11 8:21 PM

181

Coding the TextChanged Event Procedure L E S S O N C

To declare the strSalesPerson variable as a static variable and then
 modify the InputBox function:

1. Change the Dim in the Dim strSalesPerson As String state-
ment in the btnCalc control’s Click event procedure to Static.

2. Now change the statement that contains the InputBox function as fol-
lows, and then click the blank line below the statement:

 strSalesPerson = InputBox(strPROMPT, strTITLE, strSalesPerson)

3. Save the solution and then start the application. Type 5 in the Blue
phones ordered box, type 10 in the Pink phones ordered box, and then
press Enter. Type your name in the Name Entry dialog box and then
press Enter. Th e application calculates and displays the total phones
ordered (15) and total price ($386.25). In addition, the message “Th e
sales tax was 11.25.” and your name appear in the lblMessage control.

4. Change the number of blue phones ordered to 20. At this point, the
calculated amounts on the order form are incorrect, because they
do not refl ect the change in the order of blue phones. To display the
correct amounts, you will need to recalculate the order by selecting
the Calculate Order button. Press Enter to select the Calculate Order
button. Your name appears highlighted in the input area of the Name
Entry dialog box.

5. Press Enter to select the OK button in the dialog box. Th e applica-
tion calculates and displays the total phones ordered (30) and total
price ($772.50). Th e message “Th e sales tax was 22.50.” and your name
appear in the lblMessage control. Click the Exit button.

Having the previously calculated amounts remain on the screen when a
change is made to the interface could be misleading. A better approach is
to clear the amounts when a change is made to either the number of blue
phones ordered or the number of pink phones ordered.

Coding the TextChanged Event Procedure
A control’s TextChanged event occurs when a change is made to the con-
tents of the control’s Text property. Th is can happen as a result of either the
user entering data into the control or the application’s code assigning data to
the control’s Text property. In the next set of steps, you will code the txtBlue
control’s TextChanged event procedure so that it clears the contents of the
lblTotalPhones, lblTotalPrice, and lblMessage controls when the user changes
the number of blue phones ordered.

To code the txtBlue control’s TextChanged event procedure:

1. Open the code template for the txtBlue control’s TextChanged event
procedure. Type the following comment and then press Enter twice:

 ' clears the total phones, total price, and message

2. Enter the following three assignment statements:

 lblTotalPhones.Text = String.Empty
 lblTotalPrice.Text = String.Empty
 lblMessage.Text = String.Empty

START HERE

START HERE

C7718_ch03.indd 181C7718_ch03.indd 181 17/03/11 8:21 PM17/03/11 8:21 PM

182

C H A P T E R 3 Using Variables and Constants

3. Save the solution and then start the application. Type 5 in the Blue
phones ordered box and then press Enter.

4. Type your name in the Name Entry dialog box and then press Enter.
Th e application calculates and displays the total phones ordered (5),
total price ($128.75), and sales tax (3.75).

5. Change the number of blue phones ordered to 3. When you make a
change to the number of blue phones ordered, the txtBlue control’s
TextChanged event procedure clears the total phones ordered, total
price, and message information from the form. Click the Exit button.

Recall that you also want to clear the calculated amounts when a change is made
to the number of pink phones ordered. You could code the TextChanged event
procedure for the txtPink control separately, as you did with the txtBlue control.
However, an easier way is simply to create one procedure for the computer to
process when the TextChanged event of either of the two controls occurs.

Associating a Procedure with Different Objects and Events
Th e Handles clause in an event procedure’s header indicates the object
and event associated with the procedure. Th e Handles txtBlue.
TextChanged clause in Figure 3-47, for example, indicates that the txtBlue_
TextChanged procedure is associated with the TextChanged event of the
txtBlue control. As a result, the procedure will be processed when the txtBlue
control’s TextChanged event occurs.

Private Sub txtBlue_TextChanged(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles txtBlue.TextChanged

Figure 3-47 txtBlue control’s TextChanged event procedure

procedure name

Handles keyword followed
by object and event names

Although an event procedure’s name contains the names of its associated
object and event, that is not a requirement. You can change the name of an
event procedure to almost anything you like, as long as the name follows the
same rules for naming variables. Unlike variable names, however, procedure
names are entered using Pascal case, which means you capitalize the fi rst
letter in the name and the fi rst letter of each subsequent word in the name.
For example, you can change the name of the procedure in Figure 3-47 from
txtBlue_TextChanged to ClearLabels and the procedure will still work cor-
rectly. Th is is because the Handles clause, rather than the event procedure’s
name, determines when the procedure is invoked.

You can associate a procedure with more than one object and event, as long
as each event contains the same parameters in its procedure header. To do so,
you list each object and event in the procedure’s Handles clause. You separate
the object and event with a period, like this: object.event. You use a comma to
separate each object.event from the next object.event. In the Playtime Cellular
application, you will change the name of the txtBlue_TextChanged procedure

C7718_ch03.indd 182C7718_ch03.indd 182 17/03/11 8:21 PM17/03/11 8:21 PM

183

Coding the TextChanged Event Procedure L E S S O N C

to ClearLabels. You then will associate the ClearLabels procedure with the
txtBlue.TextChanged and txtPink.TextChanged events.

To change the procedure’s name and then associate the procedure with
different objects and events:

1. Change txtBlue_TextChanged, which appears after Private Sub in
the procedure header, to ClearLabels.

2. In the ClearLabels procedure header, click immediately before the
letter H in the keyword Handles. Type _ (an underscore, which is
the line continuation character). Be sure there is a space between the
ending parenthesis and the underscore.

3. Press Enter to move the Handles clause to the next line in the
procedure.

4. Click immediately after TextChanged in the Handles clause. Th e Clear-
Labels procedure is already associated with the txtBlue.TextChanged
event. You just need to associate it with the txtPink.TextChanged event.
Type , (a comma). Scroll the list of object names until you see txtPink.
Click txtPink in the list, and then press Tab to enter the object name in
the procedure.

5. Type . (a period). Scroll the list of event names (if necessary) until
you see TextChanged. Click TextChanged and then press Tab.
Figure 3-48 shows the completed ClearLabels procedure.

Handles clause

line continuation
character

Figure 3-48 Completed ClearLabels procedure

6. Save the solution and then start the application. Type 15 in the Pink
phones ordered box and then press Enter.

7. Type your name in the Name Entry dialog box and then press Enter.
Th e application calculates the total phones ordered (15), total price
($386.25), and sales tax (11.25).

8. Change the number of pink phones ordered to 4. Th e ClearLabels
procedure clears the total phones ordered, total price, and message
information from the form.

9. Press Enter to select the Calculate Order button, and then press
Enter to select the OK button in the Name Entry dialog box. Th e
application calculates the total phones ordered (4), total price
($103.00), and sales tax (3.00).

START HERE

C7718_ch03.indd 183C7718_ch03.indd 183 17/03/11 8:21 PM17/03/11 8:21 PM

184

C H A P T E R 3 Using Variables and Constants

Figure 3-49 Playtime Cellular application’s code at the end of Lesson C (continues)

 1 ' Name: Playtime Cellular Project
 2 ' Purpose: Calculates the total number of phones
 3 ' ordered and the total price of the order
 4 ' Programmer: <your name> on <current date>
 5
 6 Option Explicit On
 7 Option Strict On
 8 Option Infer Off
 9
10 Public Class frmMain
11
12 Private Sub btnExit_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnExit.Click
13 Me.Close()
14 End Sub
15
16 Private Sub btnClear_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnClear.Click
17 ' prepare the screen for the next order
18
19 txtName.Text = String.Empty
20 txtAddress.Text = String.Empty
21 txtCity.Text = String.Empty
22 txtState.Text = String.Empty
23 txtZip.Text = String.Empty
24 txtBlue.Text = String.Empty
25 txtPink.Text = String.Empty
26 lblTotalPhones.Text = String.Empty
27 lblTotalPrice.Text = String.Empty
28 lblMessage.Text = String.Empty
29 ' send the focus to the Name text box
30 txtName.Focus()
31
32 End Sub
33
34 Private Sub btnCalc_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnCalc.Click
35 ' calculates number of phones ordered and total price
36
37 Const strPROMPT As String = "Salesperson's name:"
38 Const strTITLE As String = "Name Entry"
39 Const decPHONE_PRICE As Decimal = 25D
40 Const decTAX_RATE As Decimal = 0.03D
41 Dim intBluePhones As Integer
42 Dim intPinkPhones As Integer
43 Dim intTotalPhones As Integer
44 Dim decSubtotal As Decimal
45 Dim decSalesTax As Decimal
46 Dim decTotalPrice As Decimal
47 Static strSalesPerson As String

10. Type 2 in the Blue phones ordered box. Th e ClearLabels procedure
clears the total phones ordered, total price, and message information
from the form.

11. Click the Exit button. Close the Code Editor window and then close
the solution.

Figure 3-49 shows the application’s code at the end of Lesson C.

C7718_ch03.indd 184C7718_ch03.indd 184 17/03/11 8:21 PM17/03/11 8:21 PM

185

Lesson C Summary L E S S O N C

Figure 3-49 Playtime Cellular application’s code at the end of Lesson C

48
49 ' assign the name to the variable
50 strSalesPerson = InputBox(strPROMPT,
 strTITLE, strSalesPerson)
51
52 ' calculate the total number of phones ordered
53 Integer.TryParse(txtBlue.Text, intBluePhones)
54 Integer.TryParse(txtPink.Text, intPinkPhones)
55 intTotalPhones = intBluePhones + intPinkPhones
56
57 ' calculate the subtotal
58 decSubtotal = intTotalPhones * decPHONE_PRICE
59
60 ' calculate the sales tax
61 decSalesTax = decSubtotal * decTAX_RATE
62
63 ' calculate the total price
64 decTotalPrice = decSubtotal + decSalesTax
65
66 ' display total amounts
67 lblTotalPhones.Text = Convert.ToString(intTotalPhones)
68 lblTotalPrice.Text = decTotalPrice.ToString("C2")
69
70 ' display tax and salesperson's name
71 lblMessage.Text = "The sales tax was " &
72 Convert.ToString(decSalesTax) & "." &
73 ControlChars.NewLine & strSalesPerson
74
75 End Sub
76
77 Private Sub ClearLabels(ByVal sender As Object,
 ByVal e As System.EventArgs) _
78 Handles txtBlue.TextChanged, txtPink.TextChanged
79 ' clears the total phones, total price, and message
80
81 lblTotalPhones.Text = String.Empty
82 lblTotalPrice.Text = String.Empty
83 lblMessage.Text = String.Empty
84
85 End Sub
86 End Class

(continued)

Lesson C Summary
 • To process code when a change is made to the contents of a control’s Text

property:

Enter the code in the control’s TextChanged event procedure.

 • To associate a procedure with more than one object or event:

List each object and event (using the syntax object.event) after the
Handles keyword in the procedure header. Use a comma to separate an
object and event from the previous object and event.

C7718_ch03.indd 185C7718_ch03.indd 185 17/03/11 8:21 PM17/03/11 8:21 PM

186

C H A P T E R 3 Using Variables and Constants

Lesson C Key Terms
Pascal case—used when entering procedure names; the process of capital-
izing the fi rst letter in the name and the fi rst letter of each subsequent word
in the name

TextChanged event—occurs when a change is made to the contents of a
 control’s Text property

Lesson C Review Questions

1. A variable is a procedure-level variable that retains its
value after the procedure in which it is declared ends.

a. constant

b. static

c. stationary

d. term

2. Th e event occurs when the contents of a text box have
changed.

a. Change

b. Changed

c. TextChanged

d. TextChange

3. Which of the following Handles clauses indicates that a procedure
should be processed when the user clicks either the txtNum1 control
or the txtNum2 control?

a. Handles txtNum1.Click, txtNum2.Click

b. Handles txtNum1, txtNum2

c. Handles txtNum1.Click Or txtNum2.Click

d. Handles txtNum1_Click, txtNum2_Click

4. Which of the following statements declares a procedure-level variable
that retains its value after the procedure in which it is declared ends?

a. Const intCounter As Integer

b. Dim intCounter As Constant

c. Dim intCounter As Integer

d. Static intCounter As Integer

C7718_ch03.indd 186C7718_ch03.indd 186 17/03/11 8:21 PM17/03/11 8:21 PM

187

Lesson C Exercises L E S S O N C

Lesson C Exercises

1. Open the Name Solution (Name Solution.sln) fi le contained in the
VB2010\Chap03\Name Solution folder. Code the form’s Load event
procedure so that it uses two InputBox functions to prompt the user
to enter his or her fi rst name and last name. Assign the results of both
functions to variables. Code the Display button’s Click event proce-
dure so that it displays the user’s last name, a comma, a space, and the
user’s fi rst name in the lblName control. Save the solution and then
start the application. Test the application by entering your fi rst and
last names. Click the Display button. Close the Code Editor window
and then close the solution.

2. In this exercise, you create an application that converts American
dollars to British pounds and Mexican pesos. Create a Visual Basic
Windows application. Use the following names for the solution,
project, and form fi le, respectively: Currency Calculator Solution,
Currency Calculator Project, and Main Form.vb. Save the applica-
tion in the VB2010\Chap03 folder. Create the interface shown in
Figure 3-50. Make the Calculate button the default button. Code the
application appropriately. Calculate the number of pounds by mul-
tiplying the number of dollars by .56773. Calculate the number of
pesos by multiplying the number of dollars by 10.4682. Th e number
of pounds and pesos should be displayed with three decimal places.
Clear the number of pounds and pesos when a change is made to the
number of dollars. Save the solution and then start and test the appli-
cation. Close the Code Editor window and then close the solution.

Figure 3-50 Interface for Exercise 2

3. In this exercise, you create an application that allows your friend
Martin to enter the number of pennies he has in a jar. Th e applica-
tion should calculate the number of dollars, quarters, dimes, nick-
els, and pennies he will receive when he cashes in the pennies at a
bank. Create a Visual Basic Windows application. Use the following
names for the solution, project, and form fi le, respectively: Pennies
Solution, Pennies Project, and Main Form.vb. Save the application in
the VB2010\Chap03 folder. Create the interface shown in Figure 3-51.
Make the Calculate button the default button. Code the application

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

C7718_ch03.indd 187C7718_ch03.indd 187 17/03/11 8:21 PM17/03/11 8:21 PM

188

C H A P T E R 3 Using Variables and Constants

appropriately. (It might be helpful to review the information in
Figures 2-25 and 2-26 in Chapter 2.) Clear the calculated amounts
when a change is made to the number of pennies entered by the user.
Save the solution and then start the application. Test the application
twice, using the following data: 2311 pennies and 7333 pennies. Close
the Code Editor window and then close the solution.

Figure 3-51 Interface for Exercise 3

4. In this exercise, you create an application that can help students in
grades 1 through 6 learn how to make change. Th e application should
allow the student to enter the amount of money a customer owes and
the amount of money the customer paid. It then should calculate the
amount of change, as well as the number of dollars, quarters, dimes,
nickels, and pennies to return to the customer. For now, you do not
have to worry about the situation where the amount owed is greater
than the amount paid. You can assume that the customer pays either
the exact amount or more than the exact amount. Create a Visual
Basic Windows application. Use the following names for the solution,
project, and form fi le, respectively: Change Solution, Change Project,
and Main Form.vb. Save the application in the VB2010\Chap03
folder. Create the interface shown in Figure 3-52. Make the Calculate
Change button the default button. Code the application appropri-
ately. (It might be helpful to review the information in Figures 2-25
and 2-26 in Chapter 2.) Clear the calculated amounts when a change
is made to either the amount owed or amount paid. Save the solu-
tion and then start the application. Test the application three times,
using the following data: 75.33 as the amount owed and 80.00 as the
amount paid, 39.67 as the amount owed and 50.00 as the amount
paid, and 45.55 as the amount owed and 45.55 as the amount paid.
Close the Code Editor window and then close the solution.

Figure 3-52 Interface for Exercise 4

ADVANCED

C7718_ch03.indd 188C7718_ch03.indd 188 17/03/11 8:21 PM17/03/11 8:21 PM

189

Lesson C Exercises L E S S O N C

Discovery

5. In this exercise, you experiment with the Visual Basic conversion
functions listed in Appendix C. Open the Conversion Functions
Solution (Conversion Functions Solution.sln) fi le contained in the
VB2010\Chap03\Conversion Functions Solution folder. Modify the
code so that it uses the Visual Basic conversion functions listed in
Appendix C. For example, to convert the item price to Decimal, use
decPrice = CDec(txtPrice.Text). Save the solution and then
start and test the application. Close the Code Editor window and then
close the solution.

Swat The Bugs

6. Open the Debug Solution (Debug Solution.sln) fi le contained in the
VB2010\Chap03\Debug Solution-Lesson C folder. If necessary, open
the designer window. Start and then test the application. Locate and
correct any errors. When the application is working correctly, close
the Code Editor window and then close the solution.

C7718_ch03.indd 189C7718_ch03.indd 189 17/03/11 8:21 PM17/03/11 8:21 PM

C H A P T E R 4
The Selection Structure

Creating the Monthly Payment Calculator Application

While shopping for her dream car, Jennifer Johnston has noticed that many auto
dealers are offering buyers a choice of either a large cash rebate or an extremely
low fi nancing rate, much lower than the rate Jennifer would pay by fi nancing the
car through her local credit union. Jennifer is not sure whether to take the lower
fi nancing rate from the dealer, or take the rebate and then fi nance the car through
the credit union. In this chapter, you will create an application that Jennifer can use
to calculate and display her monthly car payment using both scenarios.

C7718_ch04.indd 190C7718_ch04.indd 190 17/03/11 9:36 PM17/03/11 9:36 PM

191

Previewing the Monthly Payment Calculator Application

Previewing the Monthly Payment Calculator Application
Before you start the fi rst lesson in this chapter, you will preview the completed
application. Th e application is contained in the VB2010\Chap04 folder.
To preview the completed application:

1. Use the Run dialog box to run the Monthly Payment (Monthly
 Payment.exe) fi le contained in the VB2010\Chap04 folder. Th e
 application’s user interface appears on the screen.

2. First, you will calculate the monthly payment on a $9000 loan at 5%
interest for 3 years. Type 9000 in the Principal box and type 5 in the
Rate box. Click the Calculate Monthly Payment button. Th e mes-
sage box shown in Figure 4-1 appears on the screen. You will learn
how to create a message box in Lesson B.

a message box appears
on top of the form

Figure 4-1 Message box

3. Click the OK button to close the message box. Type 3 in the Term (years)
box and then click the Calculate Monthly Payment button. Th e applica-
tion calculates and displays the monthly payment amount. See Figure 4-2.

 Figure 4-2 Monthly payment amount shown in the interface

4. Click the Exit button to end the application.

Th e Monthly Payment Calculator application uses the selection structure, which
you will learn about in Lesson A. In Lesson B, you will complete the application’s
interface and also begin coding the application. You will fi nish coding the appli-
cation in Lesson C. Be sure to complete each lesson in full and do all of the end-
of-lesson questions and several exercises before continuing to the next lesson.

START HERE

C7718_ch04.indd 191C7718_ch04.indd 191 17/03/11 9:36 PM17/03/11 9:36 PM

192

C H A P T E R 4 The Selection Structure

 ❚ LESSON A
After studying Lesson A, you should be able to:

 • Write pseudocode for the selection structure

 • Create a fl owchart to help you plan an application’s code

 • Write an If . . . Th en . . . Else statement

 • Include comparison operators and logical operators in a selection
 structure’s condition

 • Change the case of a string

 • Determine the success of the TryParse method

Making Decisions in a Program
All of the procedures in an application are written using one or more of
three basic control structures: sequence, selection, and repetition. Th e
procedures in the previous three chapters used the sequence structure
only. When one of the procedures was invoked during run time, the
computer processed its instructions sequentially—in other words, in
the order the instructions appeared in the procedure. Every procedure
you write will contain the sequence structure. Many times, however, a
procedure will need the computer to make a decision before selecting the
next instruction to process. A procedure that calculates an employee’s
gross pay, for example, typically has the computer determine whether the
number of hours the employee worked is greater than 40. Th e computer
then would select either an instruction that computes regular pay only or
an instruction that computes regular pay plus overtime pay. Procedures
that need the computer to make a decision require the use of the selection
structure (also called the decision structure). Th e selection structure
indicates that a decision (based on some condition) needs to be made,
followed by an appropriate action derived from that decision. Th ere are
three types of selection structures: single-alternative, dual-alternative,
and multiple-alternative. You will learn about single-alternative and
dual-alternative selection structures in this chapter. Multiple-alternative
selection structures are covered in Chapter 5.

Although the idea of using the selection structure in a procedure is new
to you, you already are familiar with the concept of the selection structure
because you use it each day to make hundreds of decisions. Figure 4-3 shows
examples of selection structures you might use today. Th e examples are
written in pseudocode. Each example contains a condition that specifi es the
decision you are making. Th e condition must be phrased so that it results
in either a true or false answer only. Th e selection structure in Example 1 is
a single-alternative selection structure, because it requires a specifi c set of
tasks to be performed only when the condition is true. Th e set of tasks to per-
form when the condition is true is called the true path. Example 2 contains
a dual-alternative selection structure, because it contains one set of tasks to
perform when the condition is true, but a diff erent set of tasks to perform
when the condition is false. Th e set of tasks to perform when the condition is
false is called the false path. When writing pseudocode, most programmers

C7718_ch04.indd 192C7718_ch04.indd 192 17/03/11 9:36 PM17/03/11 9:36 PM

193

Making Decisions in a Program L E S S O N A

use the words “if ” and “end if ” to denote the beginning and end, respectively,
of a selection structure, and the word “else” to denote the beginning of the
false path. Th ey also indent the instructions within the selection structure, as
shown in Figure 4-3.

Example 1 – single-alternative selection structure

if it is raining
 wear a raincoat
 bring an umbrella
end if

Example 2 – dual-alternative selection structure

if you have a test tomorrow
 study tonight
else
 watch a movie
end if

true path

true path

false path

condition

condition

Figure 4-3 Selection structures you might use today

But how does a programmer determine whether a procedure in an applica-
tion requires a selection structure? Th e answer to this question is by studying
the problem specifi cation. Th e fi rst problem specifi cation you will examine
in this chapter is for Kanton Boutique. Th e problem specifi cation is shown in
Figure 4-4.

Kanton Boutique wants an application that allows the store clerk to enter an item’s
price and the quantity purchased by a customer. The application should calculate the
total amount the customer owes by multiplying the price by the quantity purchased. It
then should display the total amount owed.

Figure 4-4 Problem specifi cation for Kanton Boutique

Figure 4-5 shows an appropriate interface for the Kanton Boutique applica-
tion, and Figure 4-6 shows the pseudocode for the Calculate button’s Click
event procedure. Th e procedure requires only the sequence structure. It does
not need a selection structure, because no decisions are necessary to calcu-
late and display the total amount owed.

C7718_ch04.indd 193C7718_ch04.indd 193 17/03/11 9:36 PM17/03/11 9:36 PM

194

C H A P T E R 4 The Selection Structure

Figure 4-5 Interface for the Kanton Boutique application

btnCalc Click event procedure
1. store user input (price and quantity purchased) in variables
2. total owed = price * quantity purchased
3. display total owed in lblTotal

Figure 4-6 Pseudocode containing only the sequence structure

Now we’ll make a slight change to the problem specifi cation from
Figure 4-4. Th is time, Kanton Boutique off ers a 10% discount when the
quantity purchased is over fi ve. Consider the changes you will need to make
to the Calculate button’s original pseudocode, which is shown in Figure 4-6.
Th e fi rst two steps in the original pseudocode are to store the user input in
variables and then calculate the total owed by multiplying the price by the
quantity purchased. Th e modifi ed pseudocode will still need both of these
steps. Step 3 in the original pseudocode is to display the total owed in the
lblTotal control. Before the modifi ed procedure can display the total owed,
it will need to make a decision regarding the number of items purchased.
More specifi cally, the modifi ed procedure will need to determine whether
the quantity purchased is over fi ve; if it is, the modifi ed procedure will need
to calculate the discount and then subtract the discount from the total
owed. Th e modifi ed problem specifi cation and pseudocode are shown in
Figure 4-7. Th e pseudocode contains a single-alternative selection structure.
In this case, a single-alternative selection structure is appropriate because
the procedure needs to perform a special set of actions only when the
 condition is true, which occurs when the customer purchases more than
fi ve of the item.

C7718_ch04.indd 194C7718_ch04.indd 194 17/03/11 9:36 PM17/03/11 9:36 PM

195

Making Decisions in a Program L E S S O N A

Kanton Boutique wants an application that allows the store clerk to enter an item’s
price and the quantity purchased by a customer. The application should calculate the
total amount the customer owes by multiplying the price by the quantity purchased
and then subtracting any discount. It then should display the total amount owed.
Kanton Boutique gives customers a 10% discount when the quantity purchased is
over fi ve.

btnCalc Click event procedure
1. store user input (price and quantity purchased) in variables
2. total owed = price * quantity purchased

3. if the quantity purchased is over 5
 discount = total owed * .1
 total owed = total owed – discount
 end if
4. display total owed in lblTotal

true path

condition

Figure 4-7 Modifi ed problem specifi cation and pseudocode containing a single-
alternative selection structure

Figure 4-8 shows the Calculate button’s Click event procedure in fl owchart
form. Recall that the oval in a fl owchart is the start/stop symbol, the rectan-
gle is the process symbol, and the parallelogram is the input/output symbol.
Th e diamond in a fl owchart is called the decision symbol, because it is used
to represent the condition (decision) in both the selection and repetition
structures. Th e diamond in Figure 4-8 represents the condition in a selection
structure. (You will learn how to use the diamond to represent a repetition
structure’s condition in Chapter 6.) Th e condition in Figure 4-8’s diamond
checks whether the customer purchased more than fi ve items. Notice that
the condition results in an answer of either true or false only. Also notice that
the diamond has one fl owline entering it and two fl owlines leaving it. One
of the fl owlines leading out of the diamond in a fl owchart should be marked
with a T (for true) and the other should be marked with an F (for false). Th e
T fl owline points to the next instruction to be processed when the condition
is true. In Figure 4-8, the next instruction calculates the 10% discount. Th e F
fl owline points to the next instruction to be processed when the condition is
false; in Figure 4-8, that instruction displays the total owed. Th e fl owchart in
Figure 4-8 illustrates a single-alternative selection structure, because only the
true path contains a special set of actions.

C7718_ch04.indd 195C7718_ch04.indd 195 17/03/11 9:36 PM17/03/11 9:36 PM

196

C H A P T E R 4 The Selection Structure

Figure 4-8 Single-alternative selection structure shown in a fl owchart

display total owed
in lblTotal

stop

btnCalc Click event procedure
start

store user input (price and quantity
purchased) in variables

total owed = price * quantity purchased

discount = total
owed * .1

total owed = total
owed – discount

TF quantity
purchased

over 5

Next, we’ll modify the Kanton Boutique problem specifi cation one more
time. In addition to the 10% discount for purchasing more than fi ve of an
item, Kanton Boutique is now off ering a 5% discount when the quantity
 purchased is fi ve or less. Th e modifi ed problem specifi cation and pseudocode
are shown in Figure 4-9, and the corresponding fl owchart is shown in
Figure 4-10. Th e pseudocode and fl owchart contain a dual-alternative selec-
tion structure. In this case, a dual-alternative selection structure is appropri-
ate because the procedure needs to perform one action when the condition is
true, but a diff erent action when the condition is false. Th e condition will be
true when the customer purchases more than fi ve of the item, and false when
the customer purchases fi ve or less of the item.

You also can
mark the fl ow-
lines leading out
of a diamond
with a Y and an N
(for yes and no).

C7718_ch04.indd 196C7718_ch04.indd 196 17/03/11 9:36 PM17/03/11 9:36 PM

197

Making Decisions in a Program L E S S O N A

Kanton Boutique wants an application that allows the store clerk to enter an item’s
price and the quantity purchased by a customer. The application should calculate the
total amount the customer owes by multiplying the price by the quantity purchased
and then subtracting any discount. It then should display the total amount owed.
Kanton Boutique gives customers a 10% discount when the quantity purchased is over
fi ve; otherwise, it gives a 5% discount.

btnCalc Click event procedure
1. store user input (price and quantity purchased) in variables
2. total owed = price * quantity purchased

3. if the quantity purchased is over 5
 discount rate = .1
 else
 discount rate = .05
 end if
4. discount = total owed * discount rate
5. total owed = total owed – discount
6. display total owed in lblTotal

Figure 4-9 Modifi ed problem specifi cation and pseudocode containing a dual-alternative
selection structure

condition

true path

false path

Figure 4-10 Dual-alternative selection structure shown in a fl owchart

btnCalc Click event procedure start

store user input (price and quantity
purchased) in variables

total owed = price * quantity purchased

quantity
purchased

over 5
discount rate = .1

total owed = total
owed – discount

display
total owed
in lblTotal

TF

stop

discount rate = .05

discount = total owed
* discount rate

C7718_ch04.indd 197C7718_ch04.indd 197 17/03/11 9:36 PM17/03/11 9:36 PM

198

C H A P T E R 4 The Selection Structure

Coding Single-Alternative and Dual-Alternative
Selection Structures
Visual Basic provides the If . . . Then . . . Else statement for coding single-
alternative and dual-alternative selection structures. Th e statement’s syntax
is shown in Figure 4-11. Th e square brackets in the syntax indicate that the
Else portion, referred to as the Else clause, is optional. Boldfaced items in a
statement’s syntax are required. In this case, the keywords If, Then, and End
If are required. Th e Else keyword is necessary only in a dual-alternative
selection structure. Italicized items in a statement’s syntax indicate where the
programmer must supply information. In the If . . . Th en . . . Else statement, the
programmer must supply the condition that the computer needs to evaluate
before further processing can occur. Th e condition must be a Boolean
expression, which is an expression that results in a Boolean value (either
True or False). Th e condition can contain variables, constants, properties,
methods, keywords, arithmetic operators, comparison operators, and logical
operators. (You will learn about comparison operators and logical operators
in this lesson.) Besides providing the condition, the programmer must
provide the statements to be processed in the true path and (optionally) in
the false path. Th e set of statements contained in each path is referred to as
a statement block. Also included in Figure 4-11 are two examples of using
the If . . . Th en . . . Else statement to code selection structures. Example 1 shows
how you use the statement to code the single-alternative selection structure
shown earlier in Figures 4-7 and 4-8. Example 2 shows how you use the
 statement to code the dual-alternative selection structure shown earlier in
Figures 4-9 and 4-10.

In Visual Basic, a
statement block
is a set of state-
ments terminated
by an Else, End

If, Loop, or Next clause.
You will learn about the
Loop and Next clauses in
Chapters 6 and 7.

Figure 4-11 Syntax and examples of the If . . . Then . . . Else statement (continues)

If . . . Then . . . Else statement

Syntax
If condition Then
 statement block to be processed when the condition is true
[Else
 statement block to be processed when the condition is false]
End If

Example 1
Dim dblPrice As Double
Dim intQuantity As Integer
Dim dblTotal As Double
Dim dblDiscount As Double
Double.TryParse(txtPrice.Text, dblPrice)
Integer.TryParse(txtQuantity.Text, intQuantity)

dblTotal = dblPrice * intQuantity
If intQuantity > 5 Then
 dblDiscount = dblTotal * .1
 dblTotal = dblTotal – dblDiscount
End If
lblTotal.Text = dblTotal.ToString("C2")

single-alternative
selection structure

C7718_ch04.indd 198C7718_ch04.indd 198 17/03/11 9:36 PM17/03/11 9:36 PM

199

Comparison Operators L E S S O N A

YOU DO IT 1!

Create a Visual Basic Windows application named YouDoIt 1. Save the
application in the VB2010\Chap04 folder. Add a text box, a label, and a
button to the form. The button’s Click event procedure should display the
string “Over 1” in the label when the value in the text box is greater than the
number 1; otherwise, it should display the string “Not Over 1”. Code the
procedure. Save the solution and then start and test the application. Close
the solution.

Comparison Operators
As mentioned earlier, the condition in an If . . . Th en . . . Else statement
can contain comparison operators. Th e operators are called comparison
 operators because they are used to compare two values. Th e comparison
always results in a Boolean value. Figure 4-12 lists the most commonly used
comparison operators in Visual Basic and includes examples of using the
operators in an If . . . Th en . . . Else statement’s condition.

Comparison
operators are
also referred to
as relational
operators.

(continued)

Figure 4-11 Syntax and examples of the If . . . Then . . . Else statement

Example 2
Dim dblPrice As Double
Dim intQuantity As Integer
Dim dblTotal As Double
Dim dblDiscount As Double
Dim dblDiscountRate As Double
Double.TryParse(txtPrice.Text, dblPrice)
Integer.TryParse(txtQuantity.Text, intQuantity)

dblTotal = dblPrice * intQuantity
If intQuantity > 5 Then
 dblDiscountRate = .1
Else
 dblDiscountRate = .05
End If
dblDiscount = dblTotal * dblDiscountRate
dblTotal = dblTotal – dblDiscount
lblTotal.Text = dblTotal.ToString("C2")

dual-alternative
selection structure

C7718_ch04.indd 199C7718_ch04.indd 199 17/03/11 9:36 PM17/03/11 9:36 PM

200

C H A P T E R 4 The Selection Structure

Figure 4-12 Listing and examples of commonly used comparison operators

Comparison operator Operation
= equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to
<> not equal to

Example 1
If decNorthSales = decSouthSales Then
The condition evaluates to True when both variables contain the same value;
otherwise, it evaluates to False.

Example 2
If intAge >= 21 Then
The condition evaluates to True when the value stored in the intAge variable is
greater than or equal to 21; otherwise, it evaluates to False.

Example 3
If decPrice < 67.89D Then
The condition evaluates to True when the value stored in the decPrice variable is
less than 67.89; otherwise, it evaluates to False. You also can write the condition as
decPrice < Convert.ToDecimal(67.89).

Example 4
If strState <> "KY" Then
The condition evaluates to True when the strState variable does not contain
the string “KY”; otherwise, it evaluates to False.

Unlike arithmetic operators, comparison operators do not have an order of
precedence. When an expression contains more than one comparison opera-
tor, the computer evaluates the comparison operators from left to right in the
expression, similar to what is done with arithmetic operators. Comparison
operators are evaluated after any arithmetic operators in an expression. For
example, when processing the expression 10 – 2 > 3 * 2, the computer will
evaluate the two arithmetic operators before it evaluates the comparison
operator. Th e result of the expression is the Boolean value True, as shown in
Figure 4-13.

Evaluation steps Result

Original expression 10 – 2 > 3 * 2
The multiplication is performed fi rst 10 – 2 > 6
The subtraction is performed next 8 > 6
The > comparison is performed last True

Figure 4-13 Evaluation steps for an expression containing arithmetic and comparison
operators

Keep in mind that
= is the opposite
of <>, > is the
opposite of <=,
and < is the
opposite of >=.

C7718_ch04.indd 200C7718_ch04.indd 200 17/03/11 9:36 PM17/03/11 9:36 PM

201

Comparison Operators L E S S O N A

YOU DO IT 2!

Create a Visual Basic Windows application named YouDoIt 2. Save the
application in the VB2010\Chap04 folder. Add a label and a button to the
form. The button’s Click event procedure should display the result of the
following expression: 8 + 3 – 6 + 85 < 5 * 26. Code the procedure.
Save the solution and then start and test the application. Close the solution.

In the next two sections, you will view two examples of procedures that
 contain a comparison operator in an If . . . Th en . . . Else statement’s condition.
Th e fi rst procedure uses a single-alternative selection structure, and the
 second procedure uses a dual-alternative selection structure.

Using Comparison Operators: Swapping Numeric Values
Figure 4-14 shows a sample run of an application that displays the lowest and
highest of two numbers entered by the user. Figures 4-15 and 4-16 show the
pseudocode and fl owchart, respectively, for the Display button’s Click event
procedure. Th e procedure contains a single-alternative selection structure
that determines whether the fi rst number entered by the user is greater than
the second number, and then takes the appropriate action if it is.

Figure 4-14 Sample run of the Lowest and Highest application

btnDisplay Click event procedure
1. store the text box values in two variables
2. if the number in the fi rst variable is greater than the number in the second variable
 swap both numbers so that the fi rst variable contains the lowest of the two numbers
 end if
3. display the lowest number and the highest number in lblMessage

Figure 4-15 Pseudocode containing a single-alternative selection structure

C7718_ch04.indd 201C7718_ch04.indd 201 17/03/11 9:36 PM17/03/11 9:36 PM

202

C H A P T E R 4 The Selection Structure

Figure 4-16 Flowchart containing a single-alternative selection structure

btnDisplay Click event procedure
start

store text box values in two variables

first variable’s
number > second
variable’s number

swap both numbers so
the first variable contains
the lowest of the two
numbers

display the lowest
number and the
highest number
in lblMessage

TF

stop

Figure 4-17 shows the code entered in the Display button’s Click event
 procedure. Th e intNum1 > intNum2 condition in the If clause compares
the contents of the intNum1 variable with the contents of the intNum2
variable. If the value in the intNum1 variable is greater than the value in the
intNum2 variable, the condition evaluates to True and the four instructions
in the If . . . Th en . . . Else statement’s true path swap both values. Swapping
the values places the smaller number in the intNum1 variable and places the
larger number in the intNum2 variable. If the condition evaluates to False,
on the other hand, the true path instructions are skipped over because the
intNum1 variable already contains a number that is smaller than (or possibly
equal to) the number stored in the intNum2 variable.

Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click
 ' displays the lowest and highest of two numbers

 Dim intNum1 As Integer
 Dim intNum2 As Integer

 ' store input in variables
 Integer.TryParse(txtFirst.Text, intNum1)
 Integer.TryParse(txtSecond.Text, intNum2)

Figure 4-17 Display button’s Click event procedure (continues)

C7718_ch04.indd 202C7718_ch04.indd 202 17/03/11 9:36 PM17/03/11 9:36 PM

203

Comparison Operators L E S S O N A

Study closely the instructions used to swap the values stored in the intNum1
and intNum2 variables. Th e fi rst instruction is a Dim statement that declares
a variable named intTemp. Like the variables declared at the beginning
of a procedure, variables declared within a statement block—referred to
as block-level variables—remain in memory until the procedure ends.
However, unlike variables declared at the beginning of a procedure,
block-level variables have block scope rather than procedure scope. As you
know, a variable that has procedure scope can be used anywhere within
the procedure. A variable that has block scope, however, can be used only
within the statement block in which it is declared. More specifi cally, it can
be used only below its declaration statement within the statement block. In
this case, the intNum1 and intNum2 variables can be used anywhere within
the Display button’s Click event procedure, but the intTemp variable can
be used only after its Dim statement within the If . . . Th en . . . Else statement’s
true path. You may be wondering why the intTemp variable is not declared
at the beginning of the procedure, along with the other variables. Although
there is nothing wrong with declaring all variables at the beginning of a
procedure, the intTemp variable is not needed unless a swap is necessary, so
there is no reason to create the variable ahead of time.

Th e second instruction in the If . . . Th en . . . Else statement’s true path assigns
the value in the intNum1 variable to the intTemp variable. If you do not
store the intNum1 variable’s value in the intTemp variable, the value will
be lost when the computer processes the next statement, intNum1 =
intNum2, which replaces the contents of the intNum1 variable with the
contents of the intNum2 variable. Finally, the intNum2 = intTemp
instruction assigns the intTemp variable’s value to the intNum2 variable;
this completes the swap. Figure 4-18 illustrates the concept of swapping,
assuming the user enters the numbers 14 and 3 in the txtFirst and txtSecond
controls, respectively.

 ' swap numbers, if necessary
 If intNum1 > intNum2 Then
 Dim intTemp As Integer
 intTemp = intNum1
 intNum1 = intNum2
 intNum2 = intTemp
 End If

 ' display lowest and highest numbers
 lblMessage.Text = "Lowest: " &
 Convert.ToString(intNum1) &
 ControlChars.NewLine & "Highest: " &
 Convert.ToString(intNum2)
End Sub

Figure 4-17 Display button’s Click event procedure

(continued)

comparison
operator

single-alternative
selection structure

C7718_ch04.indd 203C7718_ch04.indd 203 17/03/11 9:36 PM17/03/11 9:36 PM

204

C H A P T E R 4 The Selection Structure

 intNum1 intNum2 intTemp
values stored in the variables immediately before 14 3 0
the intTemp = intNum1 statement is processed

result of the intTemp = intNum1 statement 14 3 14

result of the intNum1 = intNum2 statement 3 3 14

result of the intNum2 = intTemp statement 3 14 14

Figure 4-18 Illustration of the swapping concept

the values were swapped

To code and then test the Lowest and Highest application:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.
Open the Lowest and Highest Solution (Lowest and Highest Solution.
sln) fi le contained in the VB2010\Chap04\Lowest and Highest
Solution folder. If necessary, open the designer window.

2. Open the Code Editor window. Replace <your name> and <current
date> in the comments with your name and the current date,
respectively.

3. Open the code template for the btnDisplay control’s Click event
 procedure. Enter the comments and code shown earlier in
Figure 4-17.

4. Save the solution and then start the application. Type 14 in the First
number box and then type 3 in the Second number box. Click the
Display button. Th e button’s Click event procedure displays the
 lowest and highest numbers, as shown earlier in Figure 4-14.

5. Click the Exit button. Close the Code Editor window and then close
the solution.

Using Comparison Operators: Displaying the Sum
or Difference
Figure 4-19 shows a sample run of an application that displays either the sum
of two numbers entered by the user or the diff erence between both numbers.
Figures 4-20 and 4-21 show the pseudocode and fl owchart, respectively,
for the Calculate button’s Click event procedure. Th e procedure uses a
dual-alternative selection structure to determine the appropriate operation
to perform.

START HERE

C7718_ch04.indd 204C7718_ch04.indd 204 17/03/11 9:36 PM17/03/11 9:36 PM

205

Comparison Operators L E S S O N A

Figure 4-19 Sample run of the Addition and Subtraction application

btnCalc Click event procedure
1. store operation, fi rst number, and second number in variables
2. if the user wants to perform addition
 calculate the sum by adding together the fi rst number and the second number
 display the message “Sum:” along with the sum in lblAnswer
 else
 calculate the difference by subtracting the second number from the fi rst number
 display the message “Difference:” along with the difference in lblAnswer
 end if

Figure 4-20 Pseudocode containing a dual-alternative selection structure

Figure 4-21 Flowchart containing a dual-alternative selection structure

btnCalc Click event procedure
start

store operation, first number,
and second number in variables

perform
addition?

sum = number 1 + number 2

display “Difference:”
and difference in
lblAnswer

TF

stop

difference = number 1 – number 2

display “Sum:”
and sum in
lblAnswer

Figure 4-22 shows the code entered in the Calculate button’s Click event
 procedure. Th e Dim statements in the procedure declare four procedure-level
variables. Th e next three statements store the contents of the text boxes in the
appropriate variables. Th e condition in the If clause compares the contents of
the strOperation variable with the string “1”. If the condition evaluates to

C7718_ch04.indd 205C7718_ch04.indd 205 17/03/11 9:36 PM17/03/11 9:36 PM

206

C H A P T E R 4 The Selection Structure

True, the statements in the selection structure’s true path calculate the sum of
the numbers entered by the user and then display the sum in the lblAnswer
control. If the condition evaluates to False, the statements in the selection
structure’s false path calculate the diff erence between both numbers and then
display the diff erence in the lblAnswer control.

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' calculates either a sum or a difference

 Dim strOperation As String
 Dim intNum1 As Integer
 Dim intNum2 As Integer
 Dim intAnswer As Integer

 ' store input in variables
 strOperation = txtOperation.Text
 Integer.TryParse(txtNum1.Text, intNum1)
 Integer.TryParse(txtNum2.Text, intNum2)

 ' calculate and display the sum or difference
 If strOperation = "1" Then
 intAnswer = intNum1 + intNum2
 lblAnswer.Text =
 "Sum: " & Convert.ToString(intAnswer)
 Else
 intAnswer = intNum1 - intNum2
 lblAnswer.Text =
 "Difference: " & Convert.ToString(intAnswer)
 End If
End Sub

Figure 4-22 Calculate button’s Click event procedure

comparison operator

dual-alternative
selection structure

To code and then test the Addition and Subtraction application:

1. Open the Addition and Subtraction Solution (Addition and
Subtraction Solution.sln) fi le contained in the VB2010\Chap04\
Addition and Subtraction Solution folder. If necessary, open the
designer window.

2. Open the Code Editor window. Replace <your name> and
 <current date> in the comments with your name and the current
date, respectively.

3. Open the code template for the btnCalc control’s Click event proce-
dure. Enter the comments and code shown earlier in Figure 4-22.

4. Save the solution and then start the application. Type 1 in the Enter
1 for Addition or 2 for Subtraction box, 76 in the First number box,
and 13 in the Second number box. Click the Calculate button. Th e
button’s Click event procedure displays the sum of both numbers, as
shown earlier in Figure 4-19.

5. Change the 1 in the Enter 1 for Addition or 2 for Subtraction box to 2
and then click the Calculate button. Th e button’s Click event proce-
dure displays the diff erence between both numbers.

6. Click the Exit button. Close the Code Editor window and then close
the solution.

START HERE

C7718_ch04.indd 206C7718_ch04.indd 206 17/03/11 9:36 PM17/03/11 9:36 PM

207

Logical Operators L E S S O N A

YOU DO IT 3!

Create a Visual Basic Windows application named YouDoIt 3. Save the
application in the VB2010\Chap04 folder. Add a text box, a label, and a
button to the form. If the user enters the number 1 in the text box, the
button’s Click event procedure should display the result of multiplying the
number 20 by the number 5; otherwise, it should display the result of
dividing the number 20 by the number 5. Code the procedure. Save the
solution and then start and test the application. Close the solution.

Logical Operators
An If . . . Th en . . . Else statement’s condition also can contain logical operators,
often referred to as Boolean operators. Visual Basic provides six logical
operators, which are listed along with their order of precedence in Figure 4-23.
Keep in mind, however, that logical operators are evaluated after any arithmetic
or comparison operators in an expression. All of the logical operators, with the
exception of the Not operator, allow you to combine two or more conditions,
called sub-conditions, into one compound condition. Th e compound condition
will always evaluate to either True or False. Also included in Figure 4-23 are
examples of using logical operators in the If . . . Th en . . . Else statement’s condition.

Logical Operation Precedence
operator number
Not reverses the truth-value 1
 of the condition; True becomes
 False, and False becomes True

And all sub-conditions must be 2
 true for the compound
 condition to evaluate to True

AndAlso same as the And operator, 2
 except performs short-circuit
 evaluation

Or only one of the sub-conditions 3
 needs to be true for the compound
 condition to evaluate to True

OrElse same as the Or operator, 3
 except performs short-circuit
 evaluation

Xor one and only one of the sub-conditions 4
 can be true for the compound condition
 to evaluate to True

Figure 4-23 Listing and examples of logical operators (continues)

C7718_ch04.indd 207C7718_ch04.indd 207 17/03/11 9:36 PM17/03/11 9:36 PM

208

C H A P T E R 4 The Selection Structure

As already mentioned, all expressions containing a logical operator evaluate to
a Boolean value: either True or False. Th e tables shown in Figure 4-24, called
truth tables, summarize how the computer evaluates the logical operators in an
expression. As the fi gure indicates, the Not operator reverses the truth-value of
the condition. If the value of the condition is True, then the value of Not condition
is False. Likewise, if the value of the condition is False, then the value of Not
condition is True. When you use either the And operator or the AndAlso operator
to combine two sub-conditions, the resulting compound condition evaluates to
True only when both sub-conditions are True. If either sub-condition is False or
if both sub-conditions are False, then the compound condition evaluates to False.
Th e diff erence between the And and AndAlso operators is that the And operator
always evaluates both sub-conditions, while the AndAlso operator performs a
short-circuit evaluation, which means it does not always evaluate sub-condition2.
Because both sub-conditions combined with the AndAlso operator need to be
True for the compound condition to evaluate to True, the AndAlso operator
does not evaluate sub-condition2 when sub-condition1 is False; this makes the
AndAlso operator more effi cient than the And operator.

As indicated in Figure 4-24, when you combine conditions using either the Or
operator or the OrElse operator, the compound condition evaluates to False
only when both sub-conditions are False. If either sub-condition is True or if

(continued)

Example 1
If Not blnIsInsured Then
The condition evaluates to True when the blnIsInsured variable contains
the Boolean value False; otherwise, it evaluates to False. The clause also could
be written as If Not blnIsInsured = True Then; or, more clearly as
If blnIsInsured = False Then.

Example 2
If dblHours > 0 AndAlso dblHours <= 40 Then
The compound condition evaluates to True when the value in the dblHours variable
is greater than 0 and, at the same time, less than or equal to 40; otherwise, it
evaluates to False.

Example 3
If strState = "TN" AndAlso decSales > 50000D Then
The compound condition evaluates to True when the strState variable contains the
string “TN” and, at the same time, the value in the decSales variable is greater than
50000; otherwise, it evaluates to False.

Example 4
If strState = "TN" OrElse decSales > 50000D Then
The compound condition evaluates to True when the strState variable contains
the string “TN” or when the value in the decSales variable is greater than 50000;
otherwise, it evaluates to False.

Example 5
If strCoupon1 = "USE" Xor strCoupon2 = "USE" Then
The compound condition evaluates to True when only one of the variables contains the
string “USE”; otherwise, it evaluates to False.

Figure 4-23 Listing and examples of logical operators

C7718_ch04.indd 208C7718_ch04.indd 208 17/03/11 9:36 PM17/03/11 9:36 PM

209

Logical Operators L E S S O N A

both sub-conditions are True, then the compound condition evaluates to True.
Th e diff erence between the Or and OrElse operators is that the Or operator
always evaluates both sub-conditions, while the OrElse operator performs a
short-circuit evaluation. In this case, because only one of the sub-conditions
combined with the OrElse operator needs to be True for the compound
condition to evaluate to True, the OrElse operator does not evaluate sub-
condition2 when sub-condition1 is True. As a result, the OrElse operator is
more effi cient than the Or operator. Finally, when you combine conditions
using the Xor operator, the compound condition evaluates to True only when
one and only one sub-condition is True. If both sub-conditions are True or
both sub-conditions are False, then the compound condition evaluates to False.

Truth table for the Not operator
value of condition value of Not condition
True False
False True

Truth table for the And operator
sub-condition1 sub-condition2 sub-condition1 And sub-condition2
True True True
True False False
False True False
False False False

Truth table for the AndAlso operator
sub-condition1 sub-condition2 sub-condition1 AndAlso sub-condition2
True True True
True False False
False (not evaluated) False

Truth table for the Or operator
sub-condition1 sub-condition2 sub-condition1 Or sub-condition2
True True True
True False True
False True True
False False False

Truth table for the OrElse operator
sub-condition1 sub-condition2 sub-condition1 OrElse sub-condition2
True (not evaluated) True
False True True
False False False

Truth table for the Xor operator
sub-condition1 sub-condition2 sub-condition1 Xor sub-condition2
True True False
True False True
False True True
False False False

Figure 4-24 Truth tables for the logical operators

C7718_ch04.indd 209C7718_ch04.indd 209 17/03/11 9:36 PM17/03/11 9:36 PM

210

C H A P T E R 4 The Selection Structure

Using the Truth Tables
A procedure needs to calculate a commission for each A-rated salesperson
whose monthly sales are more than $9000. Th e procedure uses the strRating
and dblSales variables to store the salesperson’s rating and sales amount,
respectively. Th erefore, you can phrase sub-condition1 as strRating = "A"
and phrase sub-condition2 as dblSales > 9000. Which logical operator
should you use to combine both sub-conditions into one compound
condition? You can use the truth tables from Figure 4-24 to help you answer
this question. For a salesperson to receive a commission, both sub-condition1
and sub-condition2 must be True at the same time. If either sub-condition is
False or if both sub-conditions are False, then the compound condition should
be False and the salesperson should not receive a commission. According
to the truth tables, the And, AndAlso, Or, and OrElse operators evaluate a
compound condition as True when both sub-conditions are True. However,
only the And and AndAlso operators evaluate the compound condition as
False when either one or both of the sub-conditions are False. Th e Or and
OrElse operators evaluate the compound condition as False only when
both sub-conditions are False. Th erefore, the correct compound condition
to use here is either strRating = "A" And dblSales > 9000 or
strRating = "A" AndAlso dblSales > 9000. However, remember
that the AndAlso operator is more effi cient than the And operator.

Now assume you want to send a letter to all A-rated salespeople and all
B-rated salespeople. If the rating is stored in the strRating variable, you
can phrase sub-condition1 as strRating = "A" and phrase sub-condition2
as strRating = "B". Now which logical operator should you use to com-
bine both sub-conditions? At fi rst it might appear that either the And or the
AndAlso operator is the correct one to use, because the example says to send
the letter to “all A-rated salespeople and all B-rated salespeople.” In everyday
conversations, people sometimes use the word “and” when what they really
mean is “or.” Although both words do not mean the same thing, using “and”
instead of “or” generally does not cause a problem, because we are able to
infer what another person means. Computers, however, cannot infer any-
thing; they simply process the directions you give them, word for word. In
this case, you actually want to send a letter to all salespeople with either an A
rating or a B rating (a salesperson can have only one rating), so you will need
to use either the Or or the OrElse operator. As the truth tables indicate, the
Or and OrElse operators are the only operators that evaluate the compound
condition as True when at least one of the sub-conditions is True. Th erefore,
the correct compound condition to use in this case is either strRating = "A"
Or strRating = "B" or strRating = "A" OrElse strRating = "B".
However, the OrElse operator is more effi cient than the Or operator.

Finally, assume that when placing an order, a customer is allowed to use
only one of two coupons. If a procedure uses the variables strCoupon1 and
strCoupon2 to keep track of the coupons, you can phrase sub-condition1
as strCoupon1 = "USE" and phrase sub-condition2 as strCoupon2 =
"USE". Now which operator should you use to combine both sub-condi-
tions? According to the truth tables, the Xor operator is the only operator
that evaluates the compound condition as True when one and only one
 sub-condition is True. Th erefore, the correct compound condition to use
here is strCoupon1 = "USE" Xor strCoupon2 = "USE".

C7718_ch04.indd 210C7718_ch04.indd 210 17/03/11 9:36 PM17/03/11 9:36 PM

211

Logical Operators L E S S O N A

Using Logical Operators: Calculating Gross Pay
A procedure needs to calculate and display an employee’s gross pay. To keep
this example simple, no one at the company works more than 40 hours per
week and everyone earns the same hourly rate, $11.55. Before making the
gross pay calculation, the procedure should verify that the number of hours
entered by the user is greater than or equal to zero, but less than or equal to
40. Programmers refer to the process of verifying that the input data is within
the expected range as data validation. In this case, if the number of hours is
valid, the procedure should calculate and display the gross pay; , it should
display an error message alerting the user that the input data is incorrect.

Figure 4-25 shows two ways of writing the procedure’s code; both contain a
dual-alternative selection structure whose compound condition includes a
logical operator. Th e compound condition in Example 1 uses the AndAlso
operator to determine whether the value stored in the dblHours variable is
greater than or equal to zero and, at the same time, less than or equal to 40.
If the compound condition evaluates to True, the selection structure’s true
path calculates and displays the gross pay; otherwise, its false path displays
the “Error” message. Th e compound condition in Example 2 uses the OrElse
operator to determine whether the value stored in the dblHours variable is
either less than zero or greater than 40. If the compound condition evaluates
to True, the selection structure’s true path displays the “Error” message;
 otherwise, its false path calculates and displays the gross pay. Both examples
in Figure 4-25 produce the same result and simply represent two diff erent
ways of performing the same task.

Procedures containing logical operators

Example 1 – using the AndAlso operator
Const dblRATE As Double = 11.55
Dim dblHours As Double
Dim dblGross As Double

Double.TryParse(txtHours.Text, dblHours)

If dblHours >= 0 AndAlso dblHours <= 40 Then
 ' calculate and display the gross pay
 dblGross = dblHours * dblRATE
 lblGross.Text = dblGross.ToString("C2")
Else
 ' display an error message
 lblGross.Text = "Error"
End If

Example 2 – using the OrElse operator
Const dblRATE As Double = 11.55
Dim dblHours As Double
Dim dblGross As Double

Figure 4-25 Examples of using the AndAlso and OrElse logical operators in a procedure
(continues)

C7718_ch04.indd 211C7718_ch04.indd 211 17/03/11 9:36 PM17/03/11 9:36 PM

212

C H A P T E R 4 The Selection Structure

Double.TryParse(txtHours.Text, dblHours)

If dblHours < 0 OrElse dblHours > 40 Then
 ' display an error message
 lblGross.Text = "Error"
Else
 ' calculate and display the gross pay
 dblGross = dblHours * dblRATE
 lblGross.Text = dblGross.ToString("C2")
End If

Figure 4-25 Examples of using the AndAlso and OrElse logical operators in a procedure

To code and then test the Gross Pay Calculator application:

1. Open the Gross Pay Solution (Gross Pay Solution.sln) fi le contained
in the VB2010\Chap04\Gross Pay Solution folder. If necessary, open
the designer window.

2. Open the Code Editor window. Replace <your name> and <current date>
in the comments with your name and the current date, respectively.

3. Locate the code template for the btnCalc control’s Click event proce-
dure. Enter the comments and code from either of the two examples
shown earlier in Figure 4-25.

4. Save the solution and then start the application. Type 20 in the Hours
worked box and then press Enter to select the Calculate button. Th e
button’s Click event procedure displays the gross pay amount in the
lblGross control. See Figure 4-26.

Figure 4-26 Sample run of the application using valid data

5. Change the number of hours worked to 52 and then press Enter. Th e
Calculate button’s Click event procedure displays the “Error” message
in the lblGross control. See Figure 4-27.

Figure 4-27 Sample run of the application using invalid data

START HERE

(continued)

C7718_ch04.indd 212C7718_ch04.indd 212 17/03/11 9:36 PM17/03/11 9:36 PM

213

Comparing Strings Containing Letters L E S S O N A

6. Click the Exit button. Close the Code Editor window and then close
the solution.

YOU DO IT 4!

Create a Visual Basic Windows application named YouDoIt 4. Save the
application in the VB2010\Chap04 folder. Add a text box, a label, and a
button to the form. If the user enters a number that is either less than 0
or greater than 100, the button’s Click event procedure should display the
string “Invalid number” in the label; otherwise, it should display the string
“Valid number”. Code the procedure. Save the solution and then start and
test the application. Close the solution.

In addition to comparing numeric values and numbers treated as strings, an
If . . . Th en . . . Else statement’s condition also can compare letters or Boolean
values. First, you will learn how to compare strings containing letters.

Comparing Strings Containing Letters
A procedure needs to display the word “Pass” when the user enters the letter P
(in either uppercase or lowercase) in the txtLetter control, and the word “Fail”
when the user enters anything else. Figure 4-28 shows four ways of writing
the procedure’s code. Th e strLetter = "P" OrElse strLetter = "p"
compound condition in Example 1 determines whether the value stored in the
strLetter variable is either the uppercase letter P or the lowercase letter p.
When the variable contains one of those two letters, the compound condition
evaluates to True and the selection structure displays the word “Pass” on the
screen; otherwise, it displays the word “Fail”. You may be wondering why you
need to compare the contents of the strLetter variable with both the upper-
case and lowercase forms of the letter P. As is true in many programming
languages, string comparisons in Visual Basic are case sensitive, which means
that the uppercase version of a letter is not the same as its lowercase counter-
part. So, although a human being recognizes P and p as being the same letter, a
computer does not; to a computer, a P is diff erent from a p. Th e reason for this
diff erentiation is that each character on the computer keyboard is stored using
a diff erent Unicode character in the computer’s internal memory.

In Example 2 in Figure 4-28, the compound condition strLetter <> "P"
AndAlso strLetter <> "p" determines whether the value stored in
the strLetter variable is not equal to either the uppercase letter P or the
 lowercase letter p. When the variable does not contain either of those two
letters, the compound condition evaluates to True and the selection structure
displays the word “Fail” on the screen; otherwise, it displays the word “Pass”.

Rather than using a dual-alternative selection structure, as in Examples 1
and 2, Example 3 uses two single-alternative selection structures. Although
the selection structures in Example 3 produce the same results as the ones in
Examples 1 and 2, they do so less effi ciently. To illustrate this point, assume
that the user enters the letter P in the txtLetter control. Th e compound con-
dition in the fi rst selection structure in Example 3 determines whether the
value stored in the strLetter variable is equal to either P or p. In this case,

C7718_ch04.indd 213C7718_ch04.indd 213 17/03/11 9:36 PM17/03/11 9:36 PM

214

C H A P T E R 4 The Selection Structure

the compound condition evaluates to True, because the variable contains the
letter P. As a result, the fi rst selection structure’s true path displays the word
“Pass”. Although the appropriate word (“Pass”) already appears in the inter-
face, the procedure still evaluates the second selection structure’s compound
condition to determine whether to display the “Fail” message. Th e second
evaluation is unnecessary and makes Example 3’s code less effi cient than the
code shown in Examples 1 and 2.

Finally, the selection structure in Example 4 in Figure 4-28 also contains a
string comparison in its condition. However, notice that the condition does
not use a logical operator; rather, it uses the ToUpper method. You will learn
about the ToUpper method in the next section.

Procedures containing string comparisons

Example 1 – using the OrElse operator
Dim strLetter As String
strLetter = txtLetter.Text
If strLetter = "P" OrElse strLetter = "p" Then
 lblMessage.Text = "Pass"
Else
 lblMessage.Text = "Fail"
End If

Example 2 – using the AndAlso operator
Dim strLetter As String
strLetter = txtLetter.Text
If strLetter <> "P" AndAlso strLetter <> "p" Then
 lblMessage.Text = "Fail"
Else
 lblMessage.Text = "Pass"
End If

Example 3 – correct, but less effi cient, solution
Dim strLetter As String
strLetter = txtLetter.Text
If strLetter = "P" OrElse strLetter = "p" Then
 lblMessage.Text = "Pass"
End If
If strLetter <> "P" AndAlso strLetter <> "p" Then
 lblMessage.Text = "Fail"
End If

Example 4 – using the ToUpper method
Dim strLetter As String
strLetter = txtLetter.Text
If strLetter.ToUpper = "P" Then
 lblMessage.Text = "Pass"
Else
 lblMessage.Text = "Fail"
End If

Figure 4-28 Examples of using string comparisons in a procedure

C7718_ch04.indd 214C7718_ch04.indd 214 17/03/11 9:36 PM17/03/11 9:36 PM

215

Converting a String to Uppercase or Lowercase L E S S O N A

Converting a String to Uppercase or Lowercase
As already mentioned, string comparisons in Visual Basic are case-sensitive,
which means that the string “Yes” is not the same as either the string “YES”
or the string “yes”. A problem occurs when a comparison needs to include a
string that is either entered by the user or read from a fi le, because you can-
not always control the case of the string. Although you can change a text
box’s CharacterCasing property from its default value of Normal to either
Upper (which converts the user’s entry to uppercase) or Lower (which con-
verts the user’s entry to lowercase), you may not want to change the case of
the user’s entry as he or she is typing it. And it’s entirely possible that you
may not be aware of the case of strings that are read from a fi le. Before using
a string in a comparison, you can convert it to either uppercase or lowercase
and then use the converted string in the comparison. Visual Basic provides
the ToUpper method for converting a string to uppercase, and the ToLower
method for converting a string to lowercase. Th e ToUpper and ToLower
methods aff ect only characters that represent letters of the alphabet, as these
are the only characters that have uppercase and lowercase forms.

Figure 4-29 shows the syntax of the ToUpper and ToLower methods and
includes examples of using the methods. In each syntax, string typically is either
the name of a String variable or the Text property of an object. Both methods
temporarily convert the string to the specifi ed case. When using the ToUpper
method in a comparison, be sure that everything you are comparing is upper-
case; otherwise, the comparison will not evaluate correctly. For example, the
condition strLetter.ToUpper = "p" is not correct: the condition will always
evaluate to False, because the uppercase letter P will never be equal to a lower-
case letter p. Likewise, when using the ToLower method in a comparison, be sure
that everything you are comparing is lowercase. You also can use the ToUpper
and ToLower methods to permanently convert the contents of either a String
variable or a control’s Text property to uppercase or lowercase, respectively. You
do this using an assignment statement, as shown in Example 6 in Figure 4-29.

ToUpper and ToLower methods

Syntax
string.ToUpper
string.ToLower

Example 1
If strLetter.ToUpper = "P" Then
compares the uppercase version of the string stored in the strLetter variable with
the uppercase letter P

Example 2
If strItem1.ToUpper = strItem2.ToUpper Then
compares the uppercase version of the string stored in the strItem1 variable with
the uppercase version of the string stored in the strItem2 variable

Figure 4-29 Syntax and examples of the ToUpper and ToLower methods (continues)

You will use the
CharacterCasing
property in
Discovery
Exercise 18 at the
end of this lesson.

C7718_ch04.indd 215C7718_ch04.indd 215 17/03/11 9:36 PM17/03/11 9:36 PM

216

C H A P T E R 4 The Selection Structure

Example 3
If strLetter.ToLower > "f" Then
compares the lowercase version of the string stored in the strLetter variable with
the lowercase letter f

Example 4
If "paris" = txtCity.Text.ToLower Then
compares the lowercase string “paris” with the lowercase version of the string stored
in the txtCity control’s Text property

Example 5
lblName.Text = strCustomer.ToUpper
assigns the uppercase version of the string stored in the strCustomer variable to
the lblName control’s Text property

Example 6
strName = strName.ToUpper
txtState.Text = txtState.Text.ToLower
changes the contents of the strName variable to uppercase, and changes the
contents of the txtState control’s Text property to lowercase

Figure 4-29 Syntax and examples of the ToUpper and ToLower methods

Using the ToUpper and ToLower Methods: Displaying
a Message
A procedure needs to display the message “We have a store in this state.”
when the user enters any of the following three state IDs: Il, In, Ky. When the
user enters an ID other than these, the procedure should display the message
“We don’t have a store in this state.” Figure 4-30 shows three ways of writing
the procedure’s code. When the computer processes the compound condi-
tion in Example 1, it temporarily converts the contents of the strState
variable to uppercase and then compares the result to the string “IL”. If the
comparison evaluates to False, the computer again temporarily converts the
contents of the variable to uppercase, this time comparing the result to the
string “IN”. If the comparison evaluates to False, the computer again converts
the contents of the variable to uppercase; this time, it compares the result to
the string “KY”. Notice that, depending on the result of each condition, the
computer might need to convert the contents of the strState variable to
uppercase three times.

Example 2 in Figure 4-30 provides a more effi cient way of writing Example 1’s
code. Th e strState = txtState.Text.ToUpper statement in Example
2 temporarily converts the contents of the txtState control’s Text property
to uppercase and then assigns the result to the strState variable. Th e
compound condition then compares the contents of the strState variable
(which now contains uppercase letters) to the string “IL”. If the comparison
evaluates to False, the computer compares the variable’s contents to the

(continued)

C7718_ch04.indd 216C7718_ch04.indd 216 17/03/11 9:36 PM17/03/11 9:36 PM

217

Converting a String to Uppercase or Lowercase L E S S O N A

string “IN”. If this comparison evaluates to False, the computer compares the
variable’s contents to the string “KY”. Notice that the value in the txtState
control’s Text property is converted to uppercase only once, rather than three
times. However, although the code shown in Example 2 is more effi cient than
the code shown in Example 1, there may be times when you will not want to
change the case of the string stored in a variable. For example, you may need
to display (on the screen or in a printed report) the variable’s contents using
the exact case entered by the user.

Th e strState = txtState.Text.ToLower statement in Example 3 in
Figure 4-30 assigns the contents of the txtState control’s Text property, in
lowercase, to the strState variable. Th e compound condition in Example
3 is processed similarly to the compound condition in Example 2. However,
the comparisons are made using lowercase letters rather than uppercase let-
ters, and the comparisons test for inequality rather than equality. Th e three
examples in Figure 4-30 produce the same result and simply represent diff er-
ent ways of performing the same task.

Procedures containing the ToUpper and ToLower methods

Example 1 – using the ToUpper method in a condition
Dim strState As String
strState = txtState.Text
If strState.ToUpper = "IL" OrElse
 strState.ToUpper = "IN" OrElse
 strState.ToUpper = "KY" Then
 lblMsg.Text = "We have a store in this state."
Else
 lblMsg.Text = "We don't have a store in this state."
End If

Example 2 – using the ToUpper method in an assignment statement
Dim strState As String
strState = txtState.Text.ToUpper
If strState = "IL" OrElse
 strState = "IN" OrElse strState = "KY" Then
 lblMsg.Text = "We have a store in this state."
Else
 lblMsg.Text = "We don't have a store in this state."
End If

Example 3 – using the ToLower method in an assignment statement
Dim strState As String
strState = txtState.Text.ToLower
If strState <> "il" AndAlso
 strState <> "in" AndAlso strState <> "ky" Then
 lblMsg.Text = "We don't have a store in this state."
Else
 lblMsg.Text = "We have a store in this state."
End If

Figure 4-30 Examples of using the ToUpper and ToLower methods in a procedure

C7718_ch04.indd 217C7718_ch04.indd 217 17/03/11 9:36 PM17/03/11 9:36 PM

218

C H A P T E R 4 The Selection Structure

To code and then test the Store Locator application:

1. Open the State Solution (State Solution.sln) fi le contained in the
VB2010\Chap04\State Solution folder. If necessary, open the designer
window.

2. Open the Code Editor window. Replace <your name> and <current
date> in the comments with your name and the current date,
respectively.

3. Open the code template for the btnToUpper1 control’s Click event
procedure. Enter the code shown in Example 1 in Figure 4-30.

4. Open the code template for the btnToUpper2 control’s Click event
procedure. Enter the code shown in Example 2 in Figure 4-30.

5. Open the code template for the btnToLower control’s Click event
 procedure. Enter the code shown in Example 3 in Figure 4-30.

6. Save the solution and then start the application. Type ky in the State
ID box and then click the ToUpper Example 1 button. Th e button’s
Click event procedure displays the appropriate message in the lblMsg
control. See Figure 4-31.

Figure 4-31 Message shown in the interface

7. Change the state ID to tn and then click the ToUpper Example 1
button. Th e button’s Click event procedure displays the “We don’t
have a store in this state.” message.

8. On your own, test the code for the ToUpper Example 2 and ToLower
Example 3 buttons.

9. When you are fi nished testing the code, click the Exit button. Close
the Code Editor window and then close the solution.

YOU DO IT 5!

Create a Visual Basic Windows application named YouDoIt 5. Save the
application in the VB2010\Chap04 folder. Add a text box, a label, and a
button to the form. If the user enters the letter A (in either uppercase or
lowercase), the button’s Click event procedure should display the string
“Addition” in the label; otherwise, it should display the string “Subtraction”.
Code the procedure. Save the solution and then start and test the
application. Close the solution.

START HERE

C7718_ch04.indd 218C7718_ch04.indd 218 17/03/11 9:36 PM17/03/11 9:36 PM

219

Comparing Boolean Values L E S S O N A

Comparing Boolean Values
You also can compare Boolean values in an If . . . Th en . . . Else statement’s
 condition, as shown in the examples in Figure 4-32. Each example uses a
Boolean variable named blnIsInsured. As you learned in Chapter 3,
a Boolean variable can store either the Boolean value True or the Boolean
value False. Th e blnIsInsured = True condition in Example 1 and the
blnIsInsured condition in Example 2 produce the same result: both
 conditions evaluate to True when the blnIsInsured variable contains the
Boolean value True. In the last two examples, the blnIsInsured = False
condition and the Not blnIsInsured condition also produce the same
result. In this case, both conditions evaluate to True when the blnIsInsured
variable contains the Boolean value False.

Boolean values used in a condition

Example 1
If blnIsInsured = True Then
The condition evaluates to True when the blnIsInsured variable contains the
Boolean value True; otherwise, it evaluates to False.

Example 2
If blnIsInsured Then
Same as Example 1.

Example 3
If blnIsInsured = False Then
The condition evaluates to True when the blnIsInsured variable contains the
Boolean value False; otherwise, it evaluates to True.

Example 4
If Not blnIsInsured Then
Same as Example 3.

Figure 4-32 Examples of using Boolean values in a condition

Comparing Boolean Values: Determining Whether a String
Can Be Converted to a Number
In Chapter 3, you learned how to use the TryParse method to convert a
string to a number of a specifi c data type. Recall that if the conversion is
successful, the TryParse method stores the number in the variable specifi ed
in the method’s numericVariableName argument; otherwise, it stores the
number 0 in the variable. In addition to storing a value in the variable, the
TryParse method also returns a Boolean value that indicates whether the
conversion was successful. It returns the Boolean value True when the string
can be converted to the specifi ed numeric data type, and returns the Boolean
value False when the string cannot be converted. You can assign the value
returned by the TryParse method to a Boolean variable, as shown in the syn-
tax and example in Figure 4-33. You then can use an If . . . Th en . . . Else state-
ment to take the appropriate action based on the result of the conversion.

As you learned
earlier in this
 lesson, the Not
operator
reverses the

truth-value of the condi-
tion. Therefore, if the
blnIsInsured vari-
able contains False, then
Not blnIsInsured
evaluates to True.

C7718_ch04.indd 219C7718_ch04.indd 219 17/03/11 9:36 PM17/03/11 9:36 PM

220

C H A P T E R 4 The Selection Structure

Using the Boolean value returned by the TryParse method

Syntax
booleanVariable = dataType.TryParse(string, numericVariableName)

Example
blnIsSalesOk = Double.TryParse(txtSales.Text, dblSales)
If the string contained in the txtSales control can be converted to a Double number,
the TryParse method converts the string and stores the result in the dblSales
variable. It also assigns the Boolean value True to the blnIsSalesOk variable. If
the string cannot be converted to a Double number, the TryParse method stores the
number 0 in the dblSales variable and also assigns the Boolean value False to the
blnIsSalesOk variable.

Figure 4-33 Syntax and an example of using the Boolean value returned by
the TryParse method

To use the TryParse method’s Boolean value in a procedure:

1. Open the New Pay Solution (New Pay Solution.sln) fi le contained in
the VB2010\Chap04\New Pay Solution folder. If necessary, open the
designer window.

2. Open the Code Editor window. Replace <your name> and <current
date> in the comments with your name and the current date,
respectively.

3. Locate the btnCalc control’s Click event procedure. Notice that
the code does not use the Boolean value returned by the TryParse
method. Before modifying the code, you will observe how the proce-
dure currently works. Start the application. Type 10 in the Old pay
box and then click the Calculate button. Even though no raise rate
was entered, the btnCalc control’s Click event procedure displays a
new pay amount in the lblNew control. In this case, it displays the old
pay amount ($10.00) as the new pay amount.

4. Type a in the Raise rate box and then click the Calculate button.
Here again, the procedure displays $10.00 as the new pay amount,
even though the raise rate is invalid. See Figure 4-34.

the procedure displays
the old pay amount

Figure 4-34 New pay displayed by the current Click event procedure

5. Change the raise rate to .05 and then click the Calculate button. Th e
procedure displays $10.50 as the new pay amount, which is correct.
Click the Exit button.

START HERE

C7718_ch04.indd 220C7718_ch04.indd 220 17/03/11 9:36 PM17/03/11 9:36 PM

221

Comparing Boolean Values L E S S O N A

6. Use the code shown in Figure 4-35 to modify the btnCalc control’s
Click event procedure. Th e modifi cations are shaded in the fi gure.

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' calculates and displays the new pay

 Dim dblOld As Double
 Dim dblRate As Double
 Dim dblNew As Double
 Dim blnIsOldOk As Boolean
 Dim blnIsRateOk As Boolean

 ' convert the input to numbers
 blnIsOldOk = Double.TryParse(txtOld.Text, dblOld)
 blnIsRateOk = Double.TryParse(txtRate.Text, dblRate)

 ' determine whether the conversions were successful
 If blnIsOldOk AndAlso blnIsRateOk Then
 ' calculate and display the new pay
 dblNew = dblOld + dblOld * dblRate
 lblNew.Text = dblNew.ToString("C2")
 Else
 lblNew.Text = "Invalid data"
 End If

 ' set the focus
 txtOld.Focus()
End Sub

Figure 4-35 Modifi ed btnCalc control’s Click event procedure

7. Save the solution and then start the application. Type 10 in the Old
pay box and then click the Calculate button. Because no raise rate
was entered, the procedure displays the “Invalid data” message in the
lblNew control.

8. Type .05 in the Raise rate box and then click the Calculate button.
Th e procedure calculates and displays $10.50 as the new pay amount,
which is correct.

9. Change the old pay to the letter a and then click the Calculate button.
Th e procedure displays the “Invalid data” message, which is correct.

10. Click the Exit button. Close the Code Editor window and then close
the solution.

YOU DO IT 6!

Create a Visual Basic Windows application named YouDoIt 6. Save the
application in the VB2010\Chap04 folder. Add a text box, a label, and a button
to the form. If the user enters a value that can be converted to an Integer, the
button’s Click event procedure should display the integer in the label; otherwise,
it should display the string “Can’t be converted”. Code the procedure. Save the
solution and then start and test the application. Close the solution.

C7718_ch04.indd 221C7718_ch04.indd 221 17/03/11 9:36 PM17/03/11 9:36 PM

222

C H A P T E R 4 The Selection Structure

Summary of Operators
Figure 4-36 shows the order of precedence for the arithmetic, concatena-
tion, comparison, and logical operators you have learned so far. Notice that
logical operators are evaluated after any arithmetic operators or comparison
operators in an expression. As a result, when the computer processes the
expression 30 > 75 / 3 AndAlso 5 < 10 * 2, it evaluates the arithmetic opera-
tors fi rst, followed by the comparison operators and then the logical opera-
tor. Th e expression evaluates to True, as shown in the example included in
Figure 4-36.

Operator Operation Precedence number

^ exponentiation (raises a number to a power) 1

– negation 2

*, / multiplication and division 3

\ integer division 4

Mod modulus 5

+, – addition and subtraction 6

& concatenation 7

=, >, >=, equal to, greater than, greater than or equal to, 8
<, <=, <> less than, less than or equal to, not equal to

Not reverses the truth-value of the condition; True 9
 becomes False, and False becomes True

AndAlso, And all sub-conditions must be True for the 10
 compound condition to evaluate to True

OrElse, Or only one of the sub-conditions needs to be True 11
 for the compound condition to evaluate to True

Xor one and only one of the sub-conditions can be 12
 True for the compound condition to evaluate
 to True

Example

Evaluation steps Result
Original expression 30 > 75 / 3 AndAlso 5 < 10 * 2
75 / 3 is evaluated fi rst 30 > 25 AndAlso 5 < 10 * 2
10 * 2 is evaluated second 30 > 25 AndAlso 5 < 20
30 > 25 is evaluated third True AndAlso 5 < 20
5 < 20 is evaluated fourth True AndAlso True
True AndAlso True is evaluated last True

Figure 4-36 Listing of arithmetic, concatenation, comparison, and logical operators

C7718_ch04.indd 222C7718_ch04.indd 222 17/03/11 9:36 PM17/03/11 9:36 PM

223

Lesson A Key Terms L E S S O N A

Lesson A Summary

 • To code single-alternative and dual-alternative selection structures:

Use the If . . . Th en . . . Else statement. Th e statement’s syntax is shown in
Figure 4-11.

 • To compare two values:

Use the comparison operators listed in Figure 4-12.

 • To swap the values contained in two variables:

Assign the fi rst variable’s value to a temporary variable. Assign the
 second variable’s value to the fi rst variable, and then assign the temporary
 variable’s value to the second variable.

 • To create a compound condition:

Use the logical operators listed in Figure 4-23. Th e truth tables for the
logical operators are shown in Figure 4-24.

 • To convert the user’s text box entry to either uppercase or lowercase as
the user is typing the text:

Change the text box’s CharacterCasing property from Normal to either
Upper or Lower.

 • To temporarily convert a string to uppercase:

Use the ToUpper method. Th e method’s syntax is string.ToUpper.

 • To temporarily convert a string to lowercase:

Use the ToLower method. Th e method’s syntax is string.ToLower.

 • To determine whether the TryParse method converted a string to a
 number of the specifi ed data type:

Use the syntax booleanVariable = dataType.TryParse(string,
 numericVariableName). Th e TryParse method returns the Boolean
value True when the string can be converted to the numeric dataType;
 otherwise, it returns the Boolean value False.

 • To evaluate an expression containing arithmetic, comparison, and logical
operators:

Evaluate the arithmetic operators fi rst, followed by the comparison
 operators and then the logical operators. Figure 4-36 shows the order of
precedence for the arithmetic, concatenation, comparison, and logical
operators you have learned so far.

Lesson A Key Terms
And operator—one of the logical operators; when used to combine two
 sub-conditions, the resulting compound condition evaluates to True only
when both sub-conditions are True

AndAlso operator—one of the logical operators; same as the And operator,
but more effi cient because it performs a short-circuit evaluation

C7718_ch04.indd 223C7718_ch04.indd 223 17/03/11 9:36 PM17/03/11 9:36 PM

224

C H A P T E R 4 The Selection Structure

Block scope—the scope of a variable declared within a statement block; a
variable with block scope can be used only within the statement block in
which it is declared, and only after its declaration statement

Block-level variables—variables declared within a statement block; the
 variables have block scope

Comparison operators—operators used to compare values in an expression;
also called relational operators

Condition—specifi es the decision you are making and must be phrased so
that it evaluates to a Boolean value: either True or False

Data validation—the process of verifying that a program’s input data is within
the expected range

Decision symbol—the diamond in a fl owchart; used to represent the
 condition in selection and repetition structures

Dual-alternative selection structure—a selection structure that requires one
set of actions to be performed when the structure’s condition evaluates to
True, but a diff erent set of actions to be performed when the structure’s
 condition evaluates to False

False path—contains the instructions to be processed when a selection
 structure’s condition evaluates to False

If . . . Then . . . Else statement—used to code single-alternative and dual-
alternative selection structures in Visual Basic

Logical operators—operators used to combine two or more sub-conditions
into one compound condition; also called Boolean operators

Not operator—one of the logical operators; reverses the truth-value of a condition

Or operator—one of the logical operators; when used to combine two
 sub-conditions, the resulting compound condition evaluates to False only
when both sub-conditions are False

OrElse operator—one of the logical operators; same as the Or operator, but
more effi cient because it performs a short-circuit evaluation

Selection structure—one of the three basic control structures; tells the
 computer to make a decision based on some condition and then select the
appropriate action; also called the decision structure

Short-circuit evaluation—refers to the way the computer evaluates two sub-
conditions connected by either the AndAlso or OrElse operators; when the
AndAlso operator is used, the computer does not evaluate sub-condition2
when sub-condition1 is False; when the OrElse operator is used, the
 computer does not evaluate sub-condition2 when sub-condition1 is True

Single-alternative selection structure—a selection structure that requires a
special set of actions to be performed only when the structure’s condition
evaluates to True

Statement block—in a selection structure, the set of statements terminated
by an Else or End If clause

ToLower method—temporarily converts a string to lowercase

C7718_ch04.indd 224C7718_ch04.indd 224 17/03/11 9:36 PM17/03/11 9:36 PM

225

Lesson A Review Questions L E S S O N A

ToUpper method—temporarily converts a string to uppercase

True path—contains the instructions to be processed when a selection
 structure’s condition evaluates to True

Truth tables—tables that summarize how the computer evaluates the logical
operators in an expression

Lesson A Review Questions

1. What is the scope of variables declared in an If . . . Th en . . . Else
 statement’s false path?

a. the entire application

b. the procedure in which the If . . . Th en . . . Else statement appears

c. the entire If . . . Th en . . . Else statement

d. only the false path in the If . . . Th en . . . Else statement

2. Which of the following is a valid condition for an If . . . Th en . . . Else
statement?

a. dblSales > 500 AndAlso < 800

b. dblCost > 100 AndAlso dblCost <= 1000

c. strState.ToUpper = "Alaska" OrElse
strState.ToUpper = "Hawaii"

d. none of the above

3. Which of the following conditions should you use in an
If . . . Th en . . . Else statement to compare the string contained in the
 txtName control with the name Bob? (Be sure the condition will
 handle Bob, BOB, bob, and so on.)

a. txtName.Text = ToUpper("BOB")

b. txtName.Text = ToUpper("Bob")

c. ToUpper(txtName.Text) = "BOB"

d. txtName.Text.ToUpper = "BOB"

4. Th e six logical operators are listed below. Indicate their order of pre-
cedence by placing a number (1, 2, and so on) on the line to the left
of the operator. (If two or more operators have the same precedence,
assign the same number to each.)

 Xor

 And

 Not

 Or

 AndAlso

 OrElse

C7718_ch04.indd 225C7718_ch04.indd 225 17/03/11 9:36 PM17/03/11 9:36 PM

226

C H A P T E R 4 The Selection Structure

5. An expression can contain arithmetic, comparison, and logical opera-
tors. Indicate the order of precedence for the three types of operators
by placing a number (1, 2, or 3) on the line to the left of the operator
type.

 Arithmetic

 Logical

 Comparison

6. Th e expression 3 > 6 AndAlso 7 > 4 evaluates to .

a. True

b. False

7. Th e expression 4 > 6 OrElse 10 < 2 * 6 evaluates to .

a. True

b. False

8. Th e expression 7 >= 3 + 5 OrElse 6 < 4 AndAlso 2 < 5
evaluates to .

a. True

b. False

9. Th e expression 5 * 2 > 5 * 3 AndAlso True evaluates
to .

a. True

b. False

10. Th e expression 5 * 3 > 3 ^ 2 evaluates to .

a. True

b. False

11. Th e expression 5 * 3 > 3 ^ 2 AndAlso True OrElse False
evaluates to .

a. True

b. False

 Use the selection structure shown in Figure 4-37 to answer Questions 12 and 13.

If intNumber <= 100 Then
 intNumber = intNumber * 2
Else
 intNumber = intNumber * 3
End If

Figure 4-37 Code for Review Questions 12 and 13

C7718_ch04.indd 226C7718_ch04.indd 226 17/03/11 9:36 PM17/03/11 9:36 PM

227

Lesson A Exercises L E S S O N A

12. If the intNumber variable contains the number 90, what value
will be in the variable after the selection structure in Figure 4-37 is
processed?

a. 0

b. 90

c. 180

d. 270

13. If the intNumber variable contains the number 1000, what value
will be in the variable after the selection structure in Figure 4-37 is
processed?

a. 0

b. 1000

c. 2000

d. 3000

14. If the txtPrice control contains the value 75, what value will the
Decimal.TryParse(txtPrice.Text, decPrice) method
return?

a. False

b. True

c. 75

d. 75.00

Lesson A Exercises

1. Draw the fl owchart corresponding to the pseudocode shown in
Figure 4-38.

if the hours are greater than 40
 display “Overtime pay”
else
 display “Regular pay”
end if

Figure 4-38 Pseudocode for Exercise 1

INTRODUCTORY

C7718_ch04.indd 227C7718_ch04.indd 227 17/03/11 9:36 PM17/03/11 9:36 PM

228

C H A P T E R 4 The Selection Structure

2. Write an If . . . Th en . . . Else statement that displays the string “Pontiac”
in the lblCarMake control when the txtCar control contains the string
“Grand Am” (in any case).

3. Write an If . . . Th en . . . Else statement that displays the string “Please
enter your ZIP code” in the lblMsg control when the txtZip control
does not contain any data.

4. Write an If . . . Th en . . . Else statement that displays the string “Entry
error” in the lblMsg control when the intUnits variable contains
a number that is less than 0; otherwise, display the string “Valid
number”.

5. Write an If . . . Th en . . . Else statement that displays the string “Reorder”
in the lblMsg control when the intQuantity variable contains a
number that is less than 10; otherwise, display the string “OK”.

6. Write an If . . . Th en . . . Else statement that assigns the number
10 to the intBonus variable when the dblSales variable contains
a number that is less than or equal to $250; otherwise, assign the
number 15.

7. Write an If . . . Th en . . . Else statement that displays the value 25 in the
lblShipping control when the strState variable contains the string
“Hawaii” (in any case); otherwise, display the value 50.

8. A procedure contains the blnIsSalesOk = Double.
TryParse(txtSales.Text, dblSales) statement. Write an
If . . . Th en . . . Else statement that displays the string “Please enter a
number” in the lblMsg control when the contents of the txtSales con-
trol cannot be converted to a Double number; otherwise, multiply the
contents of the dblSales variable by 10% and display the result in
the lblMsg control.

9. Write an If . . . Th en . . . Else statement that displays the string “Dog” in
the lblAnimal control when the strAnimal variable contains the let-
ter “D” (in any case); otherwise, display the string “Cat”. Also draw the
fl owchart.

10. A procedure should calculate a 3% sales tax when the strState vari-
able contains the string “Colorado” (in any case); otherwise, it should
calculate a 4% sales tax. Th e sales tax is calculated by multiplying the
tax rate by the contents of the dblSales variable. Store the sales tax
in the dblTax variable. Display the sales tax amount in the lblTax
control. Draw the fl owchart and then write the Visual Basic code.

11. A procedure should calculate an employee’s gross pay. Employees
working more than 40 hours receive time and one-half for the hours
over 40. Use the variables decHours, decHourRate, and decGross.
Display the contents of the decGross variable in the lblGross control.
Write the pseudocode and then write the Visual Basic code.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

C7718_ch04.indd 228C7718_ch04.indd 228 17/03/11 9:36 PM17/03/11 9:36 PM

229

Lesson A Exercises L E S S O N A

12. A procedure should calculate a 10% discount on desks sold to custom-
ers in Colorado. Use the variables strItem, strState, dblSales,
and dblDiscount. Format the discount using the “C2” format and
display it in the lblDiscount control. Write the Visual Basic code.

13. A procedure should calculate a 2% price increase on all red shirts,
but a 1% price increase on all other items. In addition to calculating
the price increase, the procedure also should calculate the new price.
You can use the variables strItemColor, strItem, decOrigPrice,
decIncrease, and decNewPrice. Format the original price, price
increase, and new price using the “N2” format. Display the original
price, price increase, and new price in the lblOriginal, lblIncrease, and
lblNewPrice controls, respectively. Write the Visual Basic code.

14. Write the Visual Basic code that swaps the values stored in the
decLowSales and decHighSales variables, but only if the value
stored in the decHighSales variable is less than the value stored in
the decLowSales variable.

15. In this exercise, you modify the Addition and Subtraction application
from this lesson. Use Windows to make a copy of the Addition and
Subtraction Solution folder. Rename the copy Modifi ed Addition and
Subtraction Solution. Open the Addition and Subtraction Solution
(Addition and Subtraction Solution.sln) fi le contained in the Modifi ed
Addition and Subtraction Solution folder. Open the designer window.
Change Label1’s text from “Enter 1 for Addition or 2 for Subtraction”
to “Enter A for Addition or S for Subtraction”. Open the Code Editor
window. Make the appropriate modifi cations to the btnCalc control’s
Click event procedure. (Th e user should be able to enter the opera-
tion letter in either uppercase or lowercase.) Save the solution and
then start and test the application. Close the Code Editor window and
then close the solution.

16. Open the Bonus Solution (Bonus Solution.sln) fi le contained in
the VB2010\Chap04\Bonus Solution folder. If necessary, open the
designer window. Th e btnCalc control’s Click event procedure should
calculate a 5% bonus and then display the result (formatted using the
“C2” format) in the lblBonus control. Calculate and display the bonus
only when the TryParse method is successful; otherwise, display the
message “Invalid sales” in the lblBonus control. Code the procedure.
Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

17. Open the Sum Solution (Sum Solution.sln) fi le contained in the
VB2010\Chap04\Sum Solution folder. If necessary, open the designer
window. Th e btnCalc control’s Click event procedure should calcu-
late the sum of the two values entered by the user, and then display
the result in the lblSum control. Calculate and display the sum only
when both values can be converted to the Integer data type; otherwise,
display the message “Please enter two integers” in the lblSum control.
Code the procedure. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

C7718_ch04.indd 229C7718_ch04.indd 229 17/03/11 9:36 PM17/03/11 9:36 PM

230

C H A P T E R 4 The Selection Structure

Discovery

18. In this exercise, you learn how to use a text box’s CharacterCasing
property. Open the CharCase Solution (CharCase Solution.sln) fi le
contained in the VB2010\Chap04\CharCase Solution folder. If neces-
sary, open the designer window.

a. Open the Code Editor window and study the code contained in
the btnDisplay control’s Click event procedure. Th e code com-
pares the text entered by the user with the strings “IL”, “IN”, and
“KY”. However, it does not convert the contents of the text box
to uppercase. Start the application. Enter ky as the state ID and
then click the Display button. Th e button’s Click event procedure
displays the “We don’t have a store in this state.” message, which is
incorrect. Click the Exit button.

b. Use the Properties window to change the txtState control’s
CharacterCasing property to Upper. Save the solution and then
start the application. Enter ky as the state ID. Notice that the let-
ters appear in uppercase in the text box. Click the Display button.
Th e button’s Click event procedure displays the “We have a store
in this state.” message, which is correct. Close the Code Editor
window and then close the solution.

C7718_ch04.indd 230C7718_ch04.indd 230 17/03/11 9:36 PM17/03/11 9:36 PM

231

Creating the Monthly Payment Calculator Application L E S S O N B

 ❚ LESSON B
After studying Lesson B, you should be able to:

 • Group objects using a GroupBox control
 • Calculate a periodic payment using the Financial.Pmt method
 • Create a message box using the MessageBox.Show method
 • Determine the value returned by a message box

Creating the Monthly Payment Calculator
Application
Recall that your task in this chapter is to create an application that calculates
and displays the monthly payment on a car loan. To make the calculation, the
application must know the loan amount (principal), the annual percentage
rate (APR) of interest, and the life of the loan (term) in years.

To open the partially completed Monthly Payment Calculator application:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.

2. Open the Payment Solution (Payment Solution.sln) fi le contained in
the VB2010\Chap04\Payment Solution folder. If necessary, open the
designer window. Missing from the interface is a group box control.

Adding a Group Box to the Form
You use the GroupBox tool to add a group box to the interface. Th e GroupBox
tool is located in the Containers section of the toolbox, because a group box
serves as a container for other controls. You can use a group box to visually
separate related controls from other controls on the form. Th e group box in
the Monthly Payment Calculator interface will visually separate the controls
relating to the principal, rate, and term information from the rest of the con-
trols. Th e group box and the controls contained in the group box are treated
as one unit. When you move the group box, the controls inside the group box
also move. Likewise, when you delete the group box, the controls inside the
group box also are deleted. You can include an identifying label on a group box
by setting the group box’s Text property. Labeling a group box is optional; but
if you do label it, the label should be entered using sentence capitalization.

GUI DESIGN TIP Labeling a Group Box

Use sentence capitalization for the optional identifying label, which is entered
in the group box’s Text property.

To utilize a group box in the interface:

1. If necessary, expand the Containers node in the toolbox. Click the
GroupBox tool and then drag the mouse pointer to the form. You
do not need to worry about the exact location. Release the mouse
 button. Th e GroupBox1 control appears on the form.

The Ch04BVideo
fi le demonstrates
all of the steps
contained in

Lesson B. You can view
the video either before or
after completing the
lesson.

START HERE

START HERE

C7718_ch04.indd 231C7718_ch04.indd 231 17/03/11 9:36 PM17/03/11 9:36 PM

232

C H A P T E R 4 The Selection Structure

2. Position and size the group box as shown in Figure 4-39.

Figure 4-39 Interface showing the location and size of the group box

3. Delete the contents of the group box’s Text property, because the
group box will not need an identifying label in this interface.

4. Next, you will drag the controls related to the principal, rate, and term
into the group box. You then will center the controls within the group
box. Select the following six controls: Label1 (Principal:), txtPrincipal,
Label2 (Rate:), txtRate, Label3 (Term (years):), and txtTerm. Place
your mouse pointer on one of the selected controls. Th e mouse
pointer turns into the move pointer. Press and hold down the left
mouse button as you drag the selected controls into the group box,
and then release the mouse button.

5. Use the Format menu to center the selected controls both hori-
zontally and vertically in the group box, and then click the form to
 deselect the controls.

6. Select the remaining two labels and buttons, and then move the
selected controls up so they are closer to the group box. In addition,
shorten the form. See Figure 4-40.

Figure 4-40 Completed interface

7. Now you will lock the controls in place and then set the tab order.
Right-click the form and then click Lock Controls. Click View on
the menu bar and then click Tab Order. Th e current TabIndex values
appear in blue boxes on the form. Notice that the TabIndex values of
the controls contained within the group box begin with the number
10, which is the TabIndex value of the group box itself. Th e number 10
indicates that the controls belong to the group box rather than to the

To select more
than one control,
click the fi rst con-
trol and then
press and hold

down the Ctrl (Control)
key as you click the
other controls you want
to select. The move
pointer mentioned in
Step 4 looks like this:

.

C7718_ch04.indd 232C7718_ch04.indd 232 17/03/11 9:36 PM17/03/11 9:36 PM

233

Coding the Monthly Payment Calculator Application L E S S O N B

form. As mentioned earlier, if you move or delete the group box, the
controls that belong to the group box also will be moved or deleted.
Th e numbers that appear after the period in the TabIndex values indi-
cate the order in which each control was added to the group box.

8. Use the information shown in Figure 4-41 to set each control’s
 TabIndex value. When you are fi nished, press Esc to remove the
 TabIndex boxes, and then save the solution.

Figure 4-41 Correct TabIndex values for the interface

Coding the Monthly Payment Calculator
Application
According to the application’s TOE chart, which is shown in Figure 4-42,
the Click event procedures for the two buttons need to be coded. Th e
TextChanged, KeyPress, and Enter events for the three text boxes also need
to be coded. When you open the Code Editor window, you will notice that
the btnExit control’s Click event procedure and the TextChanged event
procedures for the three text boxes have been coded for you. In this lesson,
you will code the btnCalc control’s Click event procedure. You will code the
KeyPress and Enter event procedures in Lesson C.

Task Object Event
1. Calculate the monthly payment btnCalc Click
2. Display the monthly payment in lblPayment

End the application btnExit Click

Display the monthly payment (from btnCalc) lblPayment None

Get and display the principal, rate, and term txtPrincipal, txtRate, None
 txtTerm

Clear the contents of lblPayment TextChanged

Allow the text box to accept only numbers, the KeyPress
period, and the Backspace key

Select the contents of the text box Enter

Figure 4-42 TOE chart for the Monthly Payment Calculator application

C7718_ch04.indd 233C7718_ch04.indd 233 17/03/11 9:36 PM17/03/11 9:36 PM

234

C H A P T E R 4 The Selection Structure

Coding the btnCalc Control’s Click Event Procedure
Th e btnCalc control’s Click event procedure is responsible for calculating the
monthly payment and then displaying the result in the lblPayment control. Th e
procedure’s pseudocode is shown in Figure 4-43. Notice that the user input
(principal, rate, and term) will be assigned to variables. Th is is because those
values probably will change each time the Click event procedure is invoked.

btnCalc Click event procedure
1. store user input (principal, rate, and term) in variables
2. if the rate >= 1
 divide the rate by 100 to get its decimal equivalent
 end if
3. if the term >= 1
 calculate the monthly payment using the principal, rate, and term information
 display the monthly payment
 else
 display the message “The term must be greater than or equal to 1.”
 end if

Figure 4-43 Pseudocode for the btnCalc control’s Click event procedure

To begin coding the btnCalc control’s Click event procedure:

1. Open the Code Editor window. Replace <your name> and <current date>
in the comments with your name and the current date, respectively.

2. Open the code template for the btnCalc control’s Click event proce-
dure. Type the following comment and then press Enter twice:

' calculates and displays a monthly payment

First, study the procedure’s pseudocode to determine any other variables or
named constants the procedure will use. When determining the named con-
stants, look for items whose value will be the same each time the procedure
is invoked. In the btnCalc control’s Click event procedure, the number 1 that
appears in Steps 2 and 3, as well as the number 100 in Step 2 and the message
in Step 3, will be the same each time the procedure is invoked. Although you
could create named constants for the numbers 1 and 100, doing so is unnec-
essary because those values are already self-documenting and are unlikely
to change. You will, however, create a named constant for the message. Th e
named constant will make the code easier to understand. In addition, it will
allow you (or another programmer) to quickly locate the message should it
need to be changed in the future. When determining the procedure’s vari-
ables, look in the pseudocode for items, other than the input items, whose
value probably will change each time the procedure is processed. In this case,
in addition to the input items (principal, rate, and term), the monthly pay-
ment amount probably will be diff erent each time the Calculate Monthly
Payment button is clicked; therefore, you will assign that value to a variable.

START HERE

C7718_ch04.indd 234C7718_ch04.indd 234 17/03/11 9:36 PM17/03/11 9:36 PM

235

Coding the Monthly Payment Calculator Application L E S S O N B

To continue coding the btnCalc control’s Click event procedure:

1. Enter the following Const and Dim statements. Press Enter twice
after typing the last Dim statement.

Const strMSG As String =
 "Th e term must be greater than or equal to 1."
Dim dblPrincipal As Double
Dim dblRate As Double
Dim dblTerm As Double
Dim dblMonthlyPayment As Double

2. Step 1 in the pseudocode is to store the input items in variables. Enter
the following TryParse methods. Press Enter twice after typing the
last TryParse method.

Double.TryParse(txtPrincipal.Text, dblPrincipal)
Double.TryParse(txtRate.Text, dblRate)
Double.TryParse(txtTerm.Text, dblTerm)

3. Next, you will use a selection structure to handle Step 2 in the pseudo-
code. Step 2 determines whether the interest rate needs to be converted
to its decimal equivalent. Th is is necessary because the user might enter
the rate as either a whole number or a decimal number. For example,
an interest rate of 5% might be entered as either 5 or .05. Enter the fol-
lowing comment and If clause. When you press Enter after typing the If
clause, the Code Editor will automatically enter the End If clause for you.

' convert the rate to decimal form, if necessary
If dblRate >= 1 Th en

4. Type dblRate = dblRate / 100 and then click at the end of the End
If clause. Press Enter twice to insert two blank lines after the clause.

5. Th e last step in the pseudocode is to determine whether the term
entered by the user is valid. To be valid, the term must be greater
than or equal to one year. Enter the following comment and If clause.
When you press Enter after typing the If clause, the Code Editor will
automatically enter the End If clause for you.

' verify that the term is valid
If dblTerm >= 1 Th en

6. Save the solution. Figure 4-44 shows the code currently entered in the
procedure.

START HERE

C7718_ch04.indd 235C7718_ch04.indd 235 17/03/11 9:36 PM17/03/11 9:36 PM

236

C H A P T E R 4 The Selection Structure

insertion point

Figure 4-44 Partially completed Click event procedure

If the term is valid, the procedure should calculate the monthly payment and
then display the result. You can calculate the monthly payment using the
Financial.Pmt method.

Using the Financial.Pmt Method
Th e Financial.Pmt method calculates a periodic payment on either a loan
or an investment, and it returns the calculated value as a Double num-
ber. Figure 4-45 shows the method’s basic syntax and lists the meaning of
each argument. Th e Rate and NPer (number of periods) arguments must
be expressed using the same units. If Rate is a monthly interest rate, then
NPer must specify the number of monthly payments. Similarly, if Rate is an
annual interest rate, then NPer must specify the number of annual payments.
Figure 4-45 also includes examples of using the Financial.Pmt method.
Example 1 calculates the annual payment for a loan of $9000 for 3 years at 5%
interest. As the example indicates, the annual payment rounded to the near-
est cent is –3304.88. Th is means that if you borrow $9000 for 3 years at 5%
 interest, you will need to make three annual payments of $3304.88 to pay off
the loan. Notice that the Financial.Pmt method returns a negative number.
You can change the negative number to a positive number by preceding the
method with the negation operator, like this: –Financial.Pmt(.05, 3,
9000). As you learned in Chapter 2, the purpose of the negation operator is
to reverse the sign of a number. A negative number preceded by the nega-
tion operator becomes a positive number, and vice versa. Th e Financial.Pmt
method shown in Example 2 calculates the monthly payment for a loan of
$12000 for 5 years at 6% interest. In this example, the Rate and NPer argu-
ments are expressed in monthly terms rather than in annual terms. You
change an annual rate to a monthly rate by dividing the annual rate by 12.
You change the term from years to months by multiplying the number of
years by 12. Th e monthly payment for the loan in Example 2, rounded to the
nearest cent and expressed as a positive number, is 231.99.

Using a blank line
to separate
related blocks of
code in the Code
Editor window

makes the code easier
to read and understand.

Exercise 3 at the
end of this lesson
uses the
Financial.Pmt
method to calcu-

late the amount you need
to save each period to
accumulate a specifi c
sum.

C7718_ch04.indd 236C7718_ch04.indd 236 17/03/11 9:36 PM17/03/11 9:36 PM

237

Using the Financial.Pmt Method L E S S O N B

Financial.Pmt method

Syntax
Financial.Pmt(Rate, NPer, PV)

Argument Meaning
Rate interest rate per period
NPer total number of payment periods (the term)
PV present value of the loan (the loan amount)

Example 1
Financial.Pmt(.05, 3, 9000)
Calculates the annual payment for a loan of $9000 for 3 years at 5% interest.
Rate is .05, NPer is 3, and PV is 9000. The annual payment (rounded to the nearest
cent) is –3304.88.

Example 2
–Financial.Pmt(.06 / 12, 5 * 12, 12000)
Calculates the monthly payment for a loan of $12000 for 5 years at 6% interest. Rate
is .06 / 12, NPer is 5 * 12, and PV is 12000. The monthly payment (rounded to the
nearest cent and expressed as a positive number) is 231.99.

Figure 4-45 Basic syntax and examples of the Financial.Pmt method

To continue coding the btnCalc control’s Click event procedure:

1. Th e insertion point should be positioned as shown earlier in Figure 4-44.
Enter the following comment and assignment statement. Be sure to
enter the negation operator before the Financial.Pmt method so that a
positive number is assigned to the dblMonthlyPayment variable.

' calculate and display the monthly payment
dblMonthlyPayment =
 –Financial.Pmt(dblRate/12, dblTerm * 12, dblPrincipal)

2. Next, you will format the monthly payment to show a dollar sign and
two decimal places, and then display the formatted amount in the
lblPayment control. Enter the following assignment statement:

lblPayment.Text = dblMonthlyPayment.ToString("C2")

3. Save the solution. Figure 4-46 shows the selection structure’s true
path coded in the procedure.

insertion point

negation operator

Figure 4-46 Selection structure’s true path coded in the procedure

You can use the
PMT function in
Microsoft Excel
to verify that the
payments shown

in Figure 4-45 are
correct.

START HERE

C7718_ch04.indd 237C7718_ch04.indd 237 17/03/11 9:36 PM17/03/11 9:36 PM

238

C H A P T E R 4 The Selection Structure

When the term entered by the user is not greater than or equal to 1, the
 procedure should display an appropriate message. In the next section, you
will learn how to display the message in a message box.

The MessageBox.Show Method
At times, an application may need to communicate with the user during run
time; one means of doing this is through a message box. You display a mes-
sage box using the MessageBox.Show method. Th e message box contains text,
one or more buttons, and an icon. Figure 4-47 shows the method’s syntax
and lists the meaning of each argument. Th e fi gure also includes examples of
using the method. Figures 4-48 and 4-49 show the message boxes created by
the two examples.

MessageBox.Show method

Syntax
MessageBox.Show(text, caption, buttons, icon[, defaultButton])

Argument Meaning
text text to display in the message box; use sentence capitalization

caption text to display in the message box’s title bar; use book title
 capitalization

buttons buttons to display in the message box; can be one of the following
 constants:
 MessageBoxButtons.AbortRetryIgnore
 MessageBoxButtons.OK (default setting)
 MessageBoxButtons.OKCancel
 MessageBoxButtons.RetryCancel
 MessageBoxButtons.YesNo
 MessageBoxButtons.YesNoCancel

icon icon to display in the message box; typically, one of the following
 constants:
 MessageBoxIcon.Exclamation

 MessageBoxIcon.Information

 MessageBoxIcon.Question

 MessageBoxIcon.Stop

defaultButton button automatically selected when the user presses Enter; can be
 one of the following constants:
 MessageBoxDefaultButton.Button1 (default setting)
 MessageBoxDefaultButton.Button2
 MessageBoxDefaultButton.Button3
Example 1
MessageBox.Show("Record deleted.", "Payroll",
 MessageBoxButtons.OK, MessageBoxIcon.Information)
displays an information message box that contains the message “Record deleted.”

Figure 4-47 Syntax and examples of the MessageBox.Show method (continues)

C7718_ch04.indd 238C7718_ch04.indd 238 17/03/11 9:36 PM17/03/11 9:36 PM

239

The MessageBox.Show Method L E S S O N B

Example 2
MessageBox.Show("Delete this record?", "Payroll",
 MessageBoxButtons.YesNo, MessageBoxIcon.Exclamation,
 MessageBoxDefaultButton.Button2)
displays a warning message box that contains the message “Delete this record?”

Figure 4-47 Syntax and examples of the MessageBox.Show method

the user can close an information
message box using either the OK
button or the Close button

Figure 4-48 Message displayed by the code in Example 1 in Figure 4-47

the Close button is
automatically disabled

the user must select one of
these two buttons to close
a warning message box

Figure 4-49 Message displayed by the code in Example 2 in Figure 4-47

GUI DESIGN TIP MessageBox.Show Method

 • Use sentence capitalization for the text argument, but book title
capitalization for the caption argument.

 • Display either the Exclamation icon or the Question icon to alert the user
that he or she must make a decision before the application can continue.
You can phrase the message as a question.

 • Display the Information icon along with an OK button in a message box
that displays an informational message.

 • Display the Stop icon to alert the user of a serious problem that must be
corrected before the application can continue.

 • The default button in the dialog box should be the one that represents
the user’s most likely action, as long as that action is not destructive.

After displaying the message box, the MessageBox.Show method waits for
the user to choose one of the buttons. It then closes the message box and
returns an integer indicating the button chosen by the user. Sometimes you

(continued)

C7718_ch04.indd 239C7718_ch04.indd 239 17/03/11 9:36 PM17/03/11 9:36 PM

240

C H A P T E R 4 The Selection Structure

are not interested in the value returned by the MessageBox.Show method.
Th is is the case when the message box is for informational purposes only,
like the message box shown in Figure 4-48. Many times, however, the button
selected by the user determines the next task performed by the computer.
Selecting the Yes button in the message box shown in Figure 4-49 tells the
application to delete the record; selecting the No button tells it not to delete
the record.

Figure 4-50 lists the integer values returned by the MessageBox.Show
method. Each value is associated with a button that can appear in a message
box. Th e fi gure also lists the DialogResult values assigned to each integer,
and the meaning of the integers and DialogResult values. As the fi gure
indicates, the MessageBox.Show method returns the integer 6 when the
user selects the Yes button. Th e integer 6 is represented by the DialogResult
value, DialogResult.Yes. When referring to the method’s return value
in code, you should use the DialogResult values rather than the integers,
because the values make the code more self-documenting and easier to
understand. Also included in Figure 4-50 are two examples of using the
MessageBox.Show method’s return value. In the fi rst example, the value
is assigned to a DialogResult variable named dlgButton. Th e selection
structure in the example compares the contents of the dlgButton variable
with the DialogResult.Yes value. In the second example, the method’s
return value is not stored in a variable. Instead, the method appears in the
selection structure’s condition, where its return value is compared with the
DialogResult.Yes value. Th e selection structure in Example 2 performs
one set of tasks when the user selects the Yes button in the message box,
but a diff erent set of tasks when the user selects the No button. It is a
good programming practice to document the Else portion of the selection
 structure as shown in Figure 4-50, because it makes it clear that the Else
portion is processed only when the user selects the No button.

MessageBox.Show method’s return values
Integer DialogResult value Meaning
1 DialogResult.OK user chose the OK button
2 DialogResult.Cancel user chose the Cancel button
3 DialogResult.Abort user chose the Abort button
4 DialogResult.Retry user chose the Retry button
5 DialogResult.Ignore user chose the Ignore button
6 DialogResult.Yes user chose the Yes button
7 DialogResult.No user chose the No button

Example 1
Dim dlgButton As DialogResult
dlgButton =
 MessageBox.Show("Delete this record?", "Payroll",
 MessageBoxButtons.YesNo, MessageBoxIcon.Exclamation,
 MessageBoxDefaultButton.Button2)
If dlgButton = DialogResult.Yes Then
 instructions to delete the record
End If

Figure 4-50 Values returned by the MessageBox.Show method (continues)

C7718_ch04.indd 240C7718_ch04.indd 240 17/03/11 9:36 PM17/03/11 9:36 PM

241

The MessageBox.Show Method L E S S O N B

Example 2
If MessageBox.Show("Play another game?", "Math Monster",
 MessageBoxButtons.YesNo,
 MessageBoxIcon.Exclamation) = DialogResult.Yes Then
 instructions to start another game
Else ' No button
 instructions to close the game application
End If

Figure 4-50 Values returned by the MessageBox.Show method

In the current application, the btnCalc control’s Click event procedure
should display a message box when the term entered by the user is not
greater than or equal to 1. Th e message box is for informational purposes
only. Th erefore, it should contain the Information icon and the OK button,
and you do not need to be concerned with its return value. Th e message to
display in the message box is stored in the strMSG constant.

To complete the btnCalc control’s Click event procedure and then test
the code:

1. Th e insertion point should be positioned in the blank line above the
End If clause, as shown earlier in Figure 4-46. Enter the following lines
of code:

Else
 MessageBox.Show(strMSG, "Monthly Payment Calculator",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)

2. If necessary, delete the blank line above the End If clause.

3. Save the solution and then start the application. First, calculate
the monthly payment for a loan of $12000 for 5 years at 6% inter-
est. Type 12000 as the principal, 6 as the rate, and 5 as the term.
Click the Calculate Monthly Payment button. Th e button’s Click
event procedure calculates and displays the monthly payment.
See Figure 4-51.

Figure 4-51 Monthly payment shown in the interface

START HERE

(continued)

C7718_ch04.indd 241C7718_ch04.indd 241 17/03/11 9:36 PM17/03/11 9:36 PM

242

C H A P T E R 4 The Selection Structure

4. Next, verify that the application works correctly when the user
enters an incorrect term. Change the term from 5 to 0 and then click
the Calculate Monthly Payment button. Th e message box shown in
Figure 4-52 appears.

Figure 4-52 Message box created by the MessageBox.Show method

5. Click the OK button to close the message box.

6. Now verify that the application works correctly when the user enters
the interest rate as a decimal number. Change the rate from 6 to
.06, and change the term from 0 to 5. Click the Calculate Monthly
Payment button. Th e button’s Click event procedure calculates and
displays a monthly payment of $231.99, which is the same monthly
payment shown in Figure 4-51.

7. Click the Exit button. Close the Code Editor window and then close
the solution.

Figure 4-53 shows the application’s code at the end of Lesson B.

 1 ' Name: Payment Project
 2 ' Purpose: Calculates the monthly payment on a loan
 3 ' Programmer: <your name> on <current date>
 4
 5 Option Explicit On
 6 Option Strict On
 7 Option Infer Off
 8
 9 Public Class frmMain
10
11 Private Sub btnExit_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnExit.Click
12 Me.Close()
13 End Sub
14
15 Private Sub ClearPayment(ByVal sender As Object,
 ByVal e As System.EventArgs
) Handles txtPrincipal.TextChanged,
 txtRate.TextChanged, txtTerm.TextChanged
16 lblPayment.Text = String.Empty
17 End Sub
18
19 Private Sub btnCalc_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnCalc.Click

Figure 4-53 Monthly Payment Calculator application’s code at the end of Lesson B
(continued)

C7718_ch04.indd 242C7718_ch04.indd 242 17/03/11 9:36 PM17/03/11 9:36 PM

243

Lesson B Summary L E S S O N B

Lesson B Summary

 • To group controls together using a group box:
Use the GroupBox tool to add a group box to the form. Drag controls
from either the form or the toolbox into the group box. To include an
optional identifying label on a group box, set the group box’s Text prop-
erty. Th e TabIndex value of a control contained within a group box is
composed of two numbers separated by a period. Th e number to the left
of the period is the TabIndex value of the group box itself. Th e number to
the right of the period indicates the order in which the control was added
to the group box.

 • To calculate a periodic payment on either a loan or an investment:

Use the Financial.Pmt method. Th e method’s basic syntax is Financial.
Pmt(Rate, NPer, PV). Refer to Figure 4-45 for a description of each argument,
as well as examples of using the method to calculate a periodic payment.

20 ' calculates and displays a monthly payment
21
22 Const strMSG As String =
23 "The term must be greater than or equal to 1. "
24 Dim dblPrincipal As Double
25 Dim dblRate As Double
26 Dim dblTerm As Double
27 Dim dblMonthlyPayment As Double
28
29 Double.TryParse(txtPrincipal.Text, dblPrincipal)
30 Double.TryParse(txtRate.Text, dblRate)
31 Double.TryParse(txtTerm.Text, dblTerm)
32
33 ' convert the rate to decimal form, if necessary
34 If dblRate >= 1 Then
35 dblRate = dblRate / 100
36 End If
37
38 ' verify that the term is valid
39 If dblTerm >= 1 Then
40 ' calculate and display the monthly payment
41 dblMonthlyPayment =
42 -Financial.Pmt(dblRate / 12,
 dblTerm * 12, dblPrincipal)
43 lblPayment.Text = dblMonthlyPayment.ToString("C2")
44 Else
45 MessageBox.Show(strMSG, "Monthly Payment Calculator",
46 MessageBoxButtons.OK,
47 MessageBoxIcon.Information)
48 End If
49 End Sub
50 End Class

Figure 4-53 Monthly Payment Calculator application’s code at the end of Lesson B

(continued)

C7718_ch04.indd 243C7718_ch04.indd 243 17/03/11 9:36 PM17/03/11 9:36 PM

244

C H A P T E R 4 The Selection Structure

 • To display a message box that contains text, one or more buttons, and an icon:

Use the MessageBox.Show method. Th e method’s syntax is MessageBox.
Show(text, caption, buttons, icon[, defaultButton]). Refer to Figure 4-47
for a description of each argument, as well as examples of using the
method to display a message box. Refer to Figure 4-50 for a listing and
description of the method’s return values.

Lesson B Key Terms
Financial.Pmt method—used to calculate a periodic payment on either a loan
or an investment

Group box—a control that is used to contain other controls; instantiated
using the GroupBox tool, which is located in the Containers section of the
toolbox

MessageBox.Show method—displays a message box that contains text, one
or more buttons, and an icon; allows an application to communicate with the
user while the application is running

Lesson B Review Questions

1. Which of the following statements is false?

a. When you delete a group box, the controls contained within the
group box remain on the form.

b. A group box’s identifying label should be entered using sentence
capitalization.

c. You can include an identifying label on a group box by setting the
group box’s Text property.

d. You can drag a control from the form into a group box.

2. Th e TabIndex value of a group box is 5. If the txtName control
was the fi rst control added to the group box, its TabIndex value
will be .

a. 1

b. 1.5

c. 5.0

d. 5.1

3. Which of the following calculates the monthly payment on a loan of
$5000 for 2 years at 4% interest? Payments should be expressed as a
positive number.

a. –Financial.Pmt(.04 / 12, 2 * 12, 5000)

b. –Financial.Pmt(24, .04 / 12, 5000)

c. –Financial.Pmt(5000, .04 / 12, 2 * 12)

d. none of the above

C7718_ch04.indd 244C7718_ch04.indd 244 17/03/11 9:36 PM17/03/11 9:36 PM

245

Lesson B Exercises L E S S O N B

4. Which of the following calculates the quarterly payment on a loan of
$6000 for 3 years at 9% interest? Payments should be expressed as a
negative number.

a. Financial.Pmt(.09 / 4, 3 * 12, 6000)

b. Financial.Pmt(.09 / 4, 3 * 4, 6000)

c. Financial.Pmt(.09 / 12, 3 * 12, 6000)

d. none of the above

5. You use the constant to include the Exclamation icon
in a message box.

a. MessageBox.Exclamation

b. MessageBox.IconExclamation

c. MessageBoxIcon.Exclamation

d. MessageBox.WarningIcon

6. If a message is for informational purposes only and does not require
the user to make a decision, the message box should display which of
the following?

a. an OK button and the Information icon

b. an OK button and the Exclamation icon

c. a Yes button and the Information icon

d. any button and the Information icon

7. If the user clicks the OK button in a message box, the message box
returns the number 1, which is equivalent to which value?

a. DialogResult.OK

b. DialogResult.OKButton

c. MessageBox.OK

d. MessageResult.OK

Lesson B Exercises

1. In this exercise, you create an application that calculates and displays
the quarterly payment on a loan. Create a Visual Basic Windows
application. Use the following names for the solution, project, and
form fi le, respectively: Quarterly Payment Solution, Quarterly
Payment Project, and Main Form.vb. Save the application in the
VB2010\Chap04 folder. Create the interface shown in Figure 4-54.
Code the application. Clear the quarterly payment when a change
is made to any of the text boxes. Convert the interest rate to its
decimal form, if necessary. Use the MessageBox.Show method to
display an appropriate message when the term is less than one year.
Save the solution and then start the application. Test the application

INTRODUCTORY

C7718_ch04.indd 245C7718_ch04.indd 245 17/03/11 9:36 PM17/03/11 9:36 PM

246

C H A P T E R 4 The Selection Structure

using 10000 as the loan amount, 4 as the interest rate, and 3 as the
term. Th e quarterly payment should be $888.49. Close the Code
Editor window and then close the solution.

Figure 4-54 Interface for Exercise 1

2. In this exercise, you code an application that calculates and displays a
customer's discount and the total amount the customer owes. Create
a Visual Basic Windows application. Use the following names for the
solution, project, and form fi le, respectively: Mingo Solution, Mingo
Project, and Main Form.vb. Save the application in the VB2010\
Chap04 folder. Create the interface shown in Figure 4-55. Th e user
will enter the quantity ordered and price (per unit) in the text boxes.
Code the Calculate button’s Click event procedure. Th e procedure
should verify that the text boxes contain valid data. (Hint: Use the
Boolean value returned by the TryParse method.) If both text boxes
contain valid data, the procedure should calculate and display both a
10% discount and the total amount the customer owes; otherwise, it
should display an appropriate message in a message box. Display the
discount with two decimal places. Display the total due with a dollar
sign and two decimal places. Th e discount and total due should be
removed from the interface when a change is made to the contents of
a text box. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

Figure 4-55 Interface for Exercise 2

INTRODUCTORY

C7718_ch04.indd 246C7718_ch04.indd 246 17/03/11 9:36 PM17/03/11 9:36 PM

247

Lesson B Exercises L E S S O N B

3. Open the Investment Solution (Investment Solution.sln) fi le con-
tained in the VB2010\Chap04\Investment Solution folder. If neces-
sary, open the designer window. Th e application should calculate
the amount you need to save each month to accumulate a specifi c
amount, given the term and interest rate. You can calculate this
amount using the Financial.Pmt method. However, you need to use
the following syntax: Financial.Pmt(Rate, NPer, PV, FV). As you
learned in this lesson, the Rate argument is the interest rate per
period, and the NPer argument is the total number of payment peri-
ods. Th e PV argument is the present value of the investment, which
is 0 (zero). Th e FV argument is the future value of the investment and
represents the amount you want to accumulate. Code the Calculate
button’s Click event procedure. Calculate the monthly amount only
when the three input items can be converted to numbers; otherwise,
display an appropriate message. Display the monthly amount as a pos-
itive number. Save the solution and then start the application. Test the
application by calculating the amount you need to save to accumulate
$40000 at the end of 20 years, assuming a 6% interest rate. Th e appli-
cation should show that you need to save $86.57 per month. Close the
Code Editor window and then close the solution.

4. In this exercise, you modify the Mingo Sales application from
Exercise 2. Use Windows to make a copy of the Mingo Solution folder.
Rename the copy Modifi ed Mingo Solution. Open the Mingo Solution
(Mingo Solution.sln) fi le contained in the Modifi ed Mingo Solution
folder. Open the designer and Code Editor windows. Before calcu-
lating the discount and total due, the btnCalc control’s Click event
procedure should display the message “Are you a wholesaler?” in a
message box. Only wholesalers receive the 10% discount. Make the
appropriate modifi cations to the btnCalc control’s Click event proce-
dure. Save the solution and then start the application. Test the appli-
cation by calculating the total due for a wholesaler ordering 4 units of
product at $10 per unit. Th en, test the application by calculating the
total due for a non-wholesaler ordering 2 units of product at $5 per
unit. Close the Code Editor window and then close the solution.

INTERMEDIATE

ADVANCED

C7718_ch04.indd 247C7718_ch04.indd 247 17/03/11 9:36 PM17/03/11 9:36 PM

248

C H A P T E R 4 The Selection Structure

 ❚ LESSON C
After studying Lesson C, you should be able to:

 • Prevent the entry of unwanted characters in a text box

 • Select the existing text in a text box

Coding the KeyPress Event Procedures
To complete the Monthly Payment Calculator application from Lesson B,
you need to code the KeyPress and Enter event procedures for the three text
boxes. You will code the KeyPress event procedures fi rst.

To open the Monthly Payment Calculator application:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.

2. Open the Payment Solution (Payment Solution.sln) fi le from Lesson
B. Th e fi le is contained in the VB2010\Chap04\Payment Solution
folder. If necessary, open the designer window.

Th e Monthly Payment Calculator application provides text boxes for the
user to enter the principal, rate, and term. Th e user should enter those items
using only numbers and the period. Th e items should not contain any letters,
spaces, punctuation marks (except for the period), or special characters.
Unfortunately, you can’t stop the user from trying to enter an inappropri-
ate character into a text box. However, you can prevent the text box from
accepting the character; you do this by coding the text box’s KeyPress event
procedure.

To view the code template for the txtPrincipal control’s KeyPress event
procedure:

1. Open the Code Editor window and then open the code template
for the txtPrincipal control’s KeyPress event procedure. See
Figure 4-56.

sender parameter e parameter

Figure 4-56 Code template for the txtPrincipal control’s KeyPress event
procedure

A control’s KeyPress event occurs each time the user presses a key while the
control has the focus. Th e procedure associated with the KeyPress event
has two parameters, which appear within the parentheses in the procedure
header: sender and e. A parameter represents information that is passed
to the procedure when the event occurs. When the KeyPress event occurs, a
character corresponding to the pressed key is sent to the KeyPress event’s e
parameter. For example, when the user presses the period (.) while entering
data into a text box, the text box’s KeyPress event occurs and a period is sent
to the event’s e parameter. Similarly, when the Shift key along with a letter

The Ch04CVideo
fi le demonstrates
all of the steps
contained in

Lesson C. You can view
the video either before or
after completing the
lesson.

START HERE

START HERE

C7718_ch04.indd 248C7718_ch04.indd 248 17/03/11 9:36 PM17/03/11 9:36 PM

249

Coding the KeyPress Event Procedures L E S S O N C

is pressed, the uppercase version of the letter is sent to the e parameter. To
prevent a text box from accepting an inappropriate character, you fi rst use
the e parameter’s KeyChar property to determine the pressed key. (KeyChar
stands for “key character.”) You then use the e parameter’s Handled property
to cancel the key if it is an inappropriate one. You cancel the key by setting
the Handled property to True, like this: e.Handled = True.

Figure 4-57 shows examples of using the KeyChar and Handled properties in
the KeyPress event procedure. Th e selection structure in Example 1 prevents
the txtSales control from accepting the dollar sign. It does this by fi rst com-
paring the contents of the KeyChar property with a dollar sign. If the condi-
tion evaluates to True, the e.Handled = True instruction cancels the $ key
before it is entered in the txtSales control. You can use the selection structure
in Example 2 to allow the text box to accept only numbers and the Backspace
key (which is used for editing). You refer to the Backspace key on your key-
board using Visual Basic’s ControlChars.Back constant.

Controlling the characters accepted by a text box

Example 1
Private Sub txtSales_KeyPress(ByVal sender As Object,
ByVal e As System.Windows.Forms.KeyPressEventArgs
) Handles txtSales.KeyPress
 ' prevents the text box from accepting the dollar sign

 If e.KeyChar = "$" Then
 e.Handled = True
 End If
End Sub

Example 2
Private Sub txtAge_KeyPress(ByVal sender As Object,
ByVal e As System.Windows.Forms.KeyPressEventArgs
) Handles txtAge.KeyPress
 ' allows the text box to accept only numbers
 ' and the Backspace key

 If (e.KeyChar < "0" OrElse e.KeyChar > "9") AndAlso
 e.KeyChar <> ControlChars.Back Then
 e.Handled = True
 End If
End Sub

Figure 4-57 Examples of using the KeyChar and Handled properties in the KeyPress
event procedure

According to the application’s TOE chart, each text box’s KeyPress event pro-
cedure should allow the text box to accept only numbers, the period, and the
Backspace key. All other keys should be canceled. (Th e TOE chart is shown
in Figure 4-42 in Lesson B.)

The KeyPress
event automati-
cally allows the
use of the Delete
key for editing.

C7718_ch04.indd 249C7718_ch04.indd 249 17/03/11 9:36 PM17/03/11 9:36 PM

250

C H A P T E R 4 The Selection Structure

To allow the three text boxes to accept only numbers, the period, and the
Backspace key:

1. Change txtPrincipal_KeyPress in the procedure header to CancelKeys.

2. Click immediately before the) (closing parenthesis) in the
 procedure header and then press Enter to move the parenthesis and
Handles clause to the next line in the procedure. Press the Backspace
key until the closing parenthesis is aligned with the letter a in
Private. (You can look ahead to Figure 4-58.)

3. Click at the end of the Handles clause. Type the following text and press
Enter. (Be sure to type the comma after txtPrincipal.KeyPress.)

, txtRate.KeyPress, txtTerm.KeyPress

4. Enter the following comments. Press Enter twice after typing the
 second comment.

' allows the text box to accept only numbers, the
' period, and the Backspace key

5. Enter the following If clause. When you press Enter after typing Th en,
the Code Editor will automatically enter the End If clause for you.

If (e.KeyChar < "0" OrElse e.KeyChar > "9") AndAlso
 e.KeyChar <> "." AndAlso
 e.KeyChar <> ControlChars.Back Th en

6. Enter the following comment and assignment statement:

' cancel the key
e.Handled = True

7. If necessary, delete the blank lines above the End If and End Sub
clauses. Figure 4-58 shows the completed CancelKeys procedure,
which is associated with each text box’s KeyPress event.

the procedure is
associated with
each text box’s
KeyPress event

Figure 4-58 CancelKeys procedure

In the next set of steps, you will test the CancelKeys procedure to verify that it
allows the text boxes to accept only numbers, the period, and the Backspace key.

To test the CancelKeys procedure:

1. Save the solution and then start the application.

2. Try entering a letter in the Principal box, and then try enter-
ing a dollar sign. Type 30000 in the Principal box and then press
Backspace to delete the last zero. Th e text box now contains 3000.

START HERE

START HERE

C7718_ch04.indd 250C7718_ch04.indd 250 17/03/11 9:36 PM17/03/11 9:36 PM

251

Coding the Enter Event Procedures L E S S O N C

3. Try entering a letter in the Rate box, and then try entering a percent
sign. Type .045 in the Rate box and then press Backspace to delete
the number 5. Th e text box now contains .04.

4. Try entering a letter in the Term box, and then try entering an amper-
sand. Type 20 in the Term box and then press Backspace to delete
the zero. Th e text box now contains 2.

5. Click the Calculate Monthly Payment button. Th e monthly pay-
ment is $130.27.

6. Press Tab twice to move the focus to the txtPrincipal control. Notice
that the insertion point appears at the end of the number 3000. It is
customary in Windows applications to have a text box’s existing text
selected (highlighted) when the text box receives the focus. You will
learn how to select the existing text in the next section. Click the Exit
button to end the application.

Coding the Enter Event Procedures
To complete the Monthly Payment Calculator application, you just need
to code the Enter event procedures for the three text boxes. A text box’s
Enter event occurs when the text box receives the focus, which can happen
as a result of the user tabbing to the control or using the control’s access
key. It also occurs when the Focus method is used to send the focus to the
control. In the current application, the Enter event procedure for each text
box is responsible for selecting (highlighting) the contents of the text box.
When the text is selected in a text box, the user can remove the text simply
by pressing a key on the keyboard, such as the letter n; the pressed key—in
this case, the letter n—replaces the selected text. Visual Basic provides the
SelectAll method for selecting a text box’s existing text. Th e method’s syntax
is shown in Figure 4-59 along with an example of using the method. In the
syntax, textbox is the name of the text box whose contents you want to select.

SelectAll method

Syntax
textbox.SelectAll()

Example
txtName.SelectAll()
selects the contents of the txtName control

Figure 4-59 Syntax and an example of the SelectAll method

You will use the SelectAll method to select the contents of the text boxes in
the Monthly Payment Calculator application. You will enter the method in
each text box’s Enter event procedure so that the method is processed when
the text box receives the focus.

To code each text box’s Enter event procedure and then test the procedures:

1. Open the code template for the txtPrincipal control’s Enter event pro-
cedure. Type the following comment and then press Enter twice:

' selects the contents when the text box receives the focus

START HERE

C7718_ch04.indd 251C7718_ch04.indd 251 17/03/11 9:36 PM17/03/11 9:36 PM

252

C H A P T E R 4 The Selection Structure

2. Type txtPrincipal.SelectAll().

3. Open the code template for the txtRate control’s Enter event procedure.
Copy the comment and SelectAll method from the txtPrincipal con-
trol’s Enter event procedure to the txtRate control’s Enter event proce-
dure. Change txtPrincipal in the SelectAll method to txtRate.

4. Open the code template for the txtTerm control’s Enter event proce-
dure. Copy the comment and SelectAll method from the txtPrincipal
control’s Enter event procedure to the txtTerm control’s Enter event
procedure. Change txtPrincipal in the SelectAll method to txtTerm.

5. Save the solution and then start the application. Type 10000 in the
Principal box, 8 in the Rate box, and 5 in the Term box. Click the
Calculate Monthly Payment button. A monthly payment amount of
$202.76 appears in the Monthly payment box.

6. Press Tab twice to move the focus to the txtPrincipal control. Th e
control’s Enter event procedure selects the contents of the text box, as
shown in Figure 4-60.

the existing text is
selected when the
text box receives
the focus

Figure 4-60 Existing text selected in the txtPrincipal control

7. Press Tab twice to move the focus to the txtRate and txtTerm con-
trols. Each control’s Enter event procedure selects the contents of its
associated text box.

8. Click the Exit button. Close the Code Editor window and then close
the solution.

Figure 4-61 shows the application’s code at the end of Lesson C.

 1 ' Name: Payment Project
 2 ' Purpose: Calculates the monthly payment on a loan
 3 ' Programmer: <your name> on <current date>
 4
 5 Option Explicit On
 6 Option Strict On
 7 Option Infer Off
 8
 9 Public Class frmMain
10
11 Private Sub btnExit_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnExit.Click

Figure 4-61 Monthly Payment Calculator application’s code at the end of Lesson C
(continues)

C7718_ch04.indd 252C7718_ch04.indd 252 17/03/11 9:36 PM17/03/11 9:36 PM

253

Coding the Enter Event Procedures L E S S O N C

12 Me.Close()
13 End Sub
14
15 Private Sub txtPrincipal_Enter(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles txtPrincipal.Enter
16 ' selects the contents when the text box receives
 the focus
17
18 txtPrincipal.SelectAll()
19 End Sub
20
21 Private Sub txtRate_Enter(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles txtRate.Enter
22 ' selects the contents when the text box receives
 the focus
23
24 txtRate.SelectAll()
25 End Sub
26
27 Private Sub txtTerm_Enter(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles txtTerm.Enter
28 ' selects the contents when the text box receives
 the focus
29
30 txtTerm.SelectAll()
31 End Sub
32
33 Private Sub CancelKeys(ByVal sender As Object,
 ByVal e As System.Windows.Forms.KeyPressEventArgs
34) Handles txtPrincipal.KeyPress, txtRate.KeyPress,
 txtTerm.KeyPress
35 ' allows the text box to accept only numbers, the
36 ' period, and the Backspace key
37
38 If (e.KeyChar < "0" OrElse e.KeyChar > "9") AndAlso
39 e.KeyChar <> "." AndAlso
40 e.KeyChar <> ControlChars.Back Then
41 ' cancel the key
42 e.Handled = True
43 End If
44 End Sub
45
46 Private Sub ClearPayment(ByVal sender As Object,
 ByVal e As System.EventArgs
) Handles txtPrincipal.TextChanged,
 txtRate.TextChanged, txtTerm.TextChanged
47 lblPayment.Text = String.Empty
48 End Sub
49
50 Private Sub btnCalc_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnCalc.Click
51 ' calculates and displays a monthly payment
52
53 Const strMSG As String =
54 "The term must be greater than or equal to 1. "
55 Dim dblPrincipal As Double

Figure 4-61 Monthly Payment Calculator application’s code at the end of Lesson C
(continues)

(continued)

C7718_ch04.indd 253C7718_ch04.indd 253 17/03/11 9:36 PM17/03/11 9:36 PM

254

C H A P T E R 4 The Selection Structure

Lesson C Summary

 • To allow a text box to accept only certain keys:

Code the text box’s KeyPress event procedure. Th e key the user pressed
is stored in the e.KeyChar property. You use the e.Handled = True
instruction to cancel the key pressed by the user.

 • To select the existing text in a text box:

Use the SelectAll method. Th e method’s syntax is textbox.SelectAll().

 • To process code when a control receives the focus:

Enter the code in the control’s Enter event procedure.

Lesson C Key Terms
ControlChars.Back constant—the Visual Basic constant that represents the
Backspace key on your keyboard

Enter event—occurs when a control receives the focus, which can happen as a
result of the user either tabbing to the control or using the control’s access key;
also occurs when the Focus method is used to send the focus to the control

56 Dim dblRate As Double
57 Dim dblTerm As Double
58 Dim dblMonthlyPayment As Double
59
60 Double.TryParse(txtPrincipal.Text, dblPrincipal)
61 Double.TryParse(txtRate.Text, dblRate)
62 Double.TryParse(txtTerm.Text, dblTerm)
63
64 ' convert the rate to decimal form, if necessary
65 If dblRate >= 1 Then
66 dblRate = dblRate / 100
67 End If
68
69 ' verify that the term is valid
70 If dblTerm >= 1 Then
71 ' calculate and display the monthly payment
72 dblMonthlyPayment =
73 -Financial.Pmt(dblRate / 12,
 dblTerm * 12, dblPrincipal)
74 lblPayment.Text = dblMonthlyPayment.ToString("C2")
75 Else
76 MessageBox.Show(strMSG, "Monthly Payment Calculator",
77 MessageBoxButtons.OK,
78 MessageBoxIcon.Information)
79 End If
80 End Sub
81 End Class

Figure 4-61 Monthly Payment Calculator application’s code at the end of Lesson C

(continued)

C7718_ch04.indd 254C7718_ch04.indd 254 17/03/11 9:36 PM17/03/11 9:36 PM

255

Lesson C Review Questions L E S S O N C

Handled property—a property of the KeyPress event procedure’s e parameter;
when assigned the value True, it cancels the key pressed by the user

KeyChar property—a property of the KeyPress event procedure’s e param-
eter; stores the character associated with the key pressed by the user

KeyPress event—occurs each time the user presses a key while a control has
the focus

Parameter—an item contained within parentheses in a procedure header;
represents information passed to the procedure when the procedure is
invoked

SelectAll method—used to select all of the text contained in a text box

Lesson C Review Questions

1. A control’s event occurs each time a user presses a key
while the control has the focus.

a. Key

b. KeyPress

c. Press

d. PressKey

2. When entered in the appropriate event, which of the following state-
ments cancels the key pressed by the user?

a. Cancel = True

b. e.Cancel = True

c. e.Handled = True

d. Key = Null

3. Which of the following If clauses determines whether the user
pressed the Backspace key?

a. If ControlChars.Back = True Then

b. If e.KeyChar = Backspace Then

c. If e.KeyChar = ControlChars.Backspace Then

d. If e.KeyChar = ControlChars.Back Then

4. Which of the following If clauses determines whether the user
pressed the $ key?

a. If ControlChars.DollarSign = True Then

b. If e.KeyChar = "$" Then

c. If e.KeyChar = Chars.DollarSign Then

d. If KeyChar.ControlChars = "$" Then

C7718_ch04.indd 255C7718_ch04.indd 255 17/03/11 9:36 PM17/03/11 9:36 PM

256

C H A P T E R 4 The Selection Structure

5. When a user tabs to a text box, the text box’s event
occurs.

a. Access

b. Enter

c. TabOrder

d. TabbedTo

6. Which of the following tells the computer to highlight all of the text
contained in the txtCity control?

a. txtCity.SelectAll()

b. txtCity.HighlightAll()

c. Highlight(txtCity)

d. SelectAll(txtCity.Text)

Lesson C Exercises

1. Open the State ID Solution (State ID Solution.sln) fi le contained in
the VB2010\Chap04\State ID Solution folder. If necessary, open the
designer window. Th e txtState control should accept only letters and
the Backspace key; code the appropriate procedure. When the txtState
control receives the focus, its existing text should be selected; code the
appropriate procedure. Save the solution and then start the application.
Test the application with both valid data (uppercase and lowercase
letters and the Backspace key) and invalid data (numbers and special
characters). Close the Code Editor window and then close the solution.

2. Use Windows to make a copy of the Playtime Solution folder con-
tained in the VB2010\Chap04 folder. Rename the copy Modifi ed
Playtime Solution. Open the Playtime Solution (Playtime Solution.
sln) fi le contained in the Modifi ed Playtime Solution folder. Open the
designer window. When a text box receives the focus, its existing text
should be selected; code the appropriate procedures. Th e txtBlue and
txtPink controls should accept only numbers and the Backspace key;
code the appropriate procedures. Save the solution and then start and
test the application. Close the Code Editor window and then close the
solution.

3. Open the MessageBox Value Solution (MessageBox Value Solution.
sln) fi le contained in the VB2010\Chap04\MessageBox Value Solution
folder. If necessary, open the designer window. Open the Code Editor
window. Th e btnCalc control’s Click event procedure should use the
MessageBox.Show method to ask whether the user wants to include a
dollar sign in the gross pay amount. Include Yes and No buttons in the
message box. If the user clicks the Yes button, the procedure should dis-
play the gross pay amount using the “C2” format. If the user clicks the
No button, the procedure should display the gross pay amount using
the “N2” format. Modify the btnCalc control’s code. In addition, when

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

C7718_ch04.indd 256C7718_ch04.indd 256 17/03/11 9:36 PM17/03/11 9:36 PM

257

Lesson C Exercises L E S S O N C

the text box receives the focus, its existing text should be selected; code
the appropriate procedure. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

4. In this exercise, you create an application for Micro Seminars. Th e
application displays the total amount a company owes for a seminar.
Th e seminar charge is $80 per person. Create a Visual Basic Windows
application. Use the following names for the solution, project, and
form fi le, respectively: Micro Solution, Micro Project, and Main
Form.vb. Save the application in the VB2010\Chap04 folder. Create
the interface shown in Figure 4-62. Code the application. Allow the
text box to accept only numbers and the Backspace key. When a
change is made to the number of registrants, clear the contents of the
label control that displays the total owed. When the text box receives
the focus, select its existing text. Th e Calculate button’s Click event
procedure should display an appropriate message when the number
of registrants is either less than 1 or greater than 50. It should display
the total owed with a dollar sign and two decimal places. Save the
solution and then start and test the application. Close the Code Editor
window and then close the solution.

Figure 4-62 Interface for Exercise 4

5. Open the Shipping Solution (Shipping Solution.sln) fi le contained in
the VB2010\Chap04\Shipping Solution folder. If necessary, open the
designer window. Code the Display Shipping Charge button’s Click
event procedure. Th e procedure should display $32.00 as the ship-
ping charge for the following ZIP codes: 60618, 60320, and 60544. All
other ZIP codes are charged $37.75 for shipping. Save the solution
and then start and test the application. Close the Code Editor window
and then close the solution.

6. In this exercise, you create an application designed to teach the
Spanish words for red, blue, and green. Th e Spanish words are rojo,
azul, and verde. Create a Visual Basic Windows application. Use the
following names for the solution, project, and form fi le, respectively:
Spanish Colors Solution, Spanish Colors Project, and Main Form.vb.
Save the application in the VB2010\Chap04 folder. Create the inter-
face shown in Figure 4-63. Th e interface contains three text boxes, fi ve
buttons, and one label. After entering the Spanish word correspond-
ing to a button’s color, the user should click the button to verify the
entry. If the Spanish word is correct, the button’s Click event proce-
dure should change the color of the text box to match the button’s
color. (Hint: Assign the button’s BackColor property to the text box’s
BackColor property.) Otherwise, the Click event procedure should

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

C7718_ch04.indd 257C7718_ch04.indd 257 17/03/11 9:36 PM17/03/11 9:36 PM

258

C H A P T E R 4 The Selection Structure

display the appropriate Spanish word in a message box. Th e Clear
button should change each text box’s background color to white,
using the Visual Basic constant Color.White; it also should clear
the contents of each text box. Save the solution and then start and
test the application. Close the Code Editor window and then close the
solution.

Figure 4-63 Interface for Exercise 6

7. In this exercise, you code an application that calculates a customer’s
water bill. Create a Visual Basic Windows application. Use the fol-
lowing names for the solution, project, and form fi le, respectively:
Allenton Solution, Allenton Project, and Main Form.vb. Save the
application in the VB2010\Chap04 folder. Create the interface shown
in Figure 4-64. Code the application so that it calculates and displays
the number of gallons of water used and the total charge for the water.
Th e charge for water is $1.75 per 1000 gallons, or .00175 per gallon.
Make the calculations only when the current meter reading is greater
than or equal to the previous meter reading; otherwise, display an
appropriate message in a message box. Display the total charge with
a dollar sign and two decimal places. Th e text boxes should accept
only numbers and the Backspace key. Clear the number of gallons
used and the total charge when a change is made to the contents of
a text box on the form. When a text box receives the focus, select its
existing text. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

Figure 4-64 Interface for Exercise 7

8. Create a Visual Basic Windows application. Use the following
names for the solution, project, and form fi le, respectively: Marcy
Solution, Marcy Project, and Main Form.vb. Save the application in

INTERMEDIATE

INTERMEDIATE

C7718_ch04.indd 258C7718_ch04.indd 258 17/03/11 9:36 PM17/03/11 9:36 PM

259

Lesson C Exercises L E S S O N C

the VB2010\Chap04 folder. Marcy’s Department Store is having a
BoGoHo (Buy One, Get One Half Off) sale. Th e application should
allow the user to enter the prices of two items. It then should calcu-
late and display the total owed. Th e half-off should always be taken
on the item having the lowest price. For example, if one item costs
$24.99 and the second item costs $12.50, the $12.50 item would be
half-off . (In other words, the second item would cost $6.25.) Th e total
owed would be $31.24 ($24.99 + $6.25). Create a suitable interface
and then code the application. Save the solution and then start and
test the application. Close the Code Editor window and then close the
solution.

9. Create a Visual Basic Windows application. Use the following names
for the solution, project, and form fi le, respectively: Novelty Solution,
Novelty Project, and Main Form.vb. Save the application in the
VB2010\Chap04 folder. Create the interface shown in Figure 4-65.
When the user clicks the Calculate Total button, the button’s Click
event procedure should add the item price to the total of the prices
already entered; this amount represents the subtotal owed by the
customer. Th e procedure should display the subtotal on the form. It
also should display a 3% sales tax, the shipping charge, and the grand
total owed by the customer. Th e grand total is calculated by adding
together the subtotal, the 3% sales tax, and a $15 shipping charge.
For example, if the user enters 26.75 as the price and then clicks the
Calculate Total button, the button’s Click event procedure should dis-
play 26.75 as the subtotal, 0.80 as the sales tax, 15.00 as the shipping
charge, and 42.55 as the grand total. If the user subsequently enters
30 as the price and then clicks the Calculate Total button, the button’s
Click event procedure should display 56.75 as the subtotal, 1.70 as the
sales tax, 15.00 as the shipping charge, and 73.45 as the grand total.
However, when the subtotal is at least $100, the shipping charge is
0.00. Code the application. Save the solution and then start and test
the application. Close the Code Editor window and then close the
solution.

Figure 4-65 Interface for Exercise 9

ADVANCED

C7718_ch04.indd 259C7718_ch04.indd 259 17/03/11 9:36 PM17/03/11 9:36 PM

260

C H A P T E R 4 The Selection Structure

Discovery

10. In this exercise, you learn how to specify the maximum number of
characters that can be entered in a text box. Open the Zip Solution
(Zip Solution.sln) fi le contained in the VB2010\Chap04\Zip Solution
folder. If necessary, open the designer window. Click the txtZip con-
trol. Look in the Properties list for a property that allows you to spec-
ify the maximum number of characters that can be entered in the text
box. When you locate the property, set its value to 10. Save the solu-
tion and then start the application. Test the application by trying to
enter more than 10 characters in the text box. Close the Code Editor
window and then close the solution.

Swat The Bugs

11. Open the Debug Solution (Debug Solution.sln) fi le contained in the
VB2010\Chap04\Debug Solution-Lesson C folder. Open the Code
Editor window and review the existing code. Th e btnCalc control’s
Click event procedure should calculate a 10% bonus when the code
entered by the user is either 1 or 2 and, at the same time, the sales
amount is greater than $10000; otherwise, the bonus rate is 5%. Also,
the CancelKeys procedure should allow the two text boxes to accept
only numbers and the Backspace key.

a. Start the application. Type the number 1 in the Code box and
then press the Backspace key. Notice that the Backspace key is not
working correctly. Stop the application and then make the appro-
priate change to the CancelKeys procedure.

b. Save the solution and then start the application. Type the number
12 in the Code box and then press the Backspace key to delete the
2. Th e Code box now contains the number 1.

c. Type 200 in the Sales amount box and then click the Calculate
Bonus button. A message box appears and indicates that the
bonus amount is $20.00 (10% of $200), which is incorrect; it
should be $10.00 (5% of $200). Close the message box. Stop the
application and then make the appropriate change to the btnCalc
control’s Click event procedure.

d. Save the solution and then start the application. Type the num-
ber 1 in the Code box. Type 200 in the Sales amount box and
then click the Calculate Bonus button. Th e message box should
indicate that the bonus amount is $10.00. Close the message box.
Close the Code Editor window and then close the solution.

C7718_ch04.indd 260C7718_ch04.indd 260 17/03/11 9:36 PM17/03/11 9:36 PM

C H A P T E R 5
More on the Selection
Structure

Creating the Math Practice Application

In this chapter, you create an application for Susan Chen, the principal of a
local primary school. The application will be used by the fi rst and second grade
students to practice both adding and subtracting numbers. The application should
display a math problem on the screen, and then allow the student to both enter
the answer and verify that the answer is correct. The application should give
the student as many chances as necessary to answer the problem correctly.
The math problems for fi rst grade students should use numbers from 1 through
10 only, whereas the ones for second grade students should use numbers from
10 through 99. Because the fi rst and second grade students have not learned
about negative numbers yet, the subtraction problems should never ask them to
subtract a larger number from a smaller one. Ms. Chen also wants the application
to keep track of the number of correct and incorrect responses made by the
student; this information will help her assess the student’s math ability. Finally,
she wants to be able to control the display of the assessment information to keep
students from being distracted or pressured by the number of right and wrong
answers.

C7718_ch05.indd 261C7718_ch05.indd 261 14/03/11 8:23 PM14/03/11 8:23 PM

262

C H A P T E R 5 More on the Selection Structure

Previewing the Math Practice Application
Before you start the fi rst lesson in this chapter, you will preview the
 completed application. Th e application is contained in the VB2010\Chap05
folder.

To preview the completed application:

1. Use the Run dialog box to run the Math (Math.exe) fi le contained in
the VB2010\Chap05 folder. Th e application’s user interface appears on
the screen. See Figure 5-1. Because the application displays random
numbers, the numbers on your screen may not match the ones shown
in the fi gure. Random numbers are covered in Lesson B along with
radio button and check box controls.

your numbers
may be different

radio button

check box

Figure 5-1 Math Practice application’s interface

2. Type the correct answer to the addition problem appearing in the
interface, and then press Enter to select the Check Answer but-
ton, which is the default button on the form. When you answer the
math problem correctly, a happy face icon appears in the picture box
located to the left of the Check Answer button, and a new problem
appears in the interface.

3. Click the Display summary check box to select it. A check mark
appears inside the check box, and a group box appears below the
check box. Th e label controls contained in the group box display the
number of correct and incorrect responses. In this case, you have
made 1 correct response and 0 incorrect responses. See Figure 5-2.

START HERE

C7718_ch05.indd 262C7718_ch05.indd 262 14/03/11 8:23 PM14/03/11 8:23 PM

263

Previewing the Math Practice Application

Figure 5-2 Number of correct and incorrect responses shown in the interface

4. Click the Subtraction radio button. A colored dot appears in the
 center of the Subtraction radio button to indicate that the radio
button is selected, and the math problem changes to one involving
subtraction.

5. Click the text box in which you enter the answer. Type an incor-
rect answer to the subtraction problem appearing on the screen and
then press Enter. Th e application replaces the happy face icon in the
picture box with an icon whose facial expression is neutral. It also
 displays the “Try again!” message in a message box.

6. Press Enter to close the message box. Th e application highlights the
incorrect answer in the text box and gives you another chance to
enter a correct response. Th e interface shows that you have made 1
correct response and 1 incorrect response.

7. Type the correct answer to the subtraction problem and then press
Enter. Th e happy face icon reappears in the picture box, and the
number of correct responses now says 2. In addition, a new math
problem appears in the interface.

8. Click the Display summary check box to deselect it. Th e application
removes the check mark from the check box and hides the group box
that contains the summary information. Click the Exit button to end
the application.

Th e Math Practice application uses a multiple-alternative selection structure,
which you will learn about in Lesson A. You also will learn about nested
selection structures. As mentioned earlier, random numbers and radio but-
ton and check box controls are covered in Lesson B. You will code the Math
Practice application in Lessons B and C. Be sure to complete each lesson in
full and do all of the end-of-lesson questions and several exercises before
continuing to the next lesson.

C7718_ch05.indd 263C7718_ch05.indd 263 14/03/11 8:23 PM14/03/11 8:23 PM

264

C H A P T E R 5 More on the Selection Structure

 ❚ LESSON A
After studying Lesson A, you should be able to:

 • Include a nested selection structure in pseudocode and in a fl owchart

 • Code a nested selection structure

 • Desk-check an algorithm

 • Recognize common logic errors in selection structures

 • Include a multiple-alternative selection structure in pseudocode and in a
fl owchart

 • Code a multiple-alternative selection structure

Nested Selection Structures
In Chapter 4, you learned that you use the selection structure when you want
the computer to make a decision and then select the appropriate path—
either the true path or the false path—based on the result. Both paths in a
selection structure can include instructions that declare variables, perform
calculations, and so on. In this chapter, you will learn that both paths also can
include other selection structures. When either a selection structure’s true
path or its false path contains another selection structure, the inner selection
structure is referred to as a nested selection structure, because it is contained
(nested) within the outer selection structure.

You already are familiar with the concept of nested selection structures,
examples of which are shown in Figure 5-3. Th e examples are written in
pseudocode. Example 1 contains an outer single-alternative selection struc-
ture and a nested dual-alternative selection structure. Th e outer selection
structure begins with “if the customer orders a cup of coff ee”, and it ends with
the last “end if ”. Th e nested selection structure begins with “if the customer
wants regular coff ee” and ends with the fi rst “end if ”. Th e “else” in Example 1
separates the nested selection structure’s true path from its false path. Notice
that the instructions in both paths are indented within the nested selection
structure. Indenting in this manner clearly indicates the instructions to be
followed when the condition is true, as well as the ones to be followed when
the condition is false.

Example 2 in Figure 5-3 contains an outer dual-alternative selection structure
and a nested dual-alternative selection structure. Th e outer selection struc-
ture begins with “if the video store has Inception in stock”, and it ends with
the last “end if ”. Th e fi rst “else” belongs to the outer selection structure. Th e
nested selection structure begins with “if the video store has Salt in stock”
and ends with the fi rst “end if ”. Th e second “else” belongs to the nested selec-
tion structure. Keep in mind that for a nested selection structure to work
correctly, it must be contained entirely within one of the paths in the outer
selection structure. Th e nested selection structure in Example 1, for instance,
appears entirely within the outer selection structure’s true path. Th e nested
selection structure in Example 2, on the other hand, appears entirely within
the outer selection structure’s false path.

C7718_ch05.indd 264C7718_ch05.indd 264 14/03/11 8:23 PM14/03/11 8:23 PM

265

Nested Selection Structures L E S S O N A

nested selection structure

Example 1 – nested selection structure in the true path

if the customer orders a cup of coffee
 ask the customer if he/she wants regular or decaffeinated coffee
 if the customer wants regular coffee
 pour regular coffee into a cup
 else
 pour decaffeinated coffee into a cup
 end if
end if

Example 2 – nested selection structure in the false path

if the video store has Inception in stock
 rent Inception
else
 if the video store has Salt in stock
 rent Salt
 else
 watch The Shining on DVR
 end if
end if

Figure 5-3 Selection structures you might use today

nested selection structure

The Voter Eligibility Application
Figure 5-4 shows the problem specifi cation for the Voter Eligibility appli-
cation. Th e application determines whether a person can vote and then
displays one of three diff erent messages. Th e appropriate message depends
on the person’s age and voter registration status. For example, if the person
is younger than 18 years old, the application should display the message
“You are too young to vote.” However, if the person is at least 18 years old,
the application should display one of two messages; the correct message is
determined by the person’s voter registration status. If the person is regis-
tered, then the appropriate message is “You can vote.”; otherwise, it is “You
must register before you can vote.” Notice that determining the person’s
voter registration status is important only after his or her age is determined.
Because of this, the decision regarding the age is considered the primary
decision, while the decision regarding the registration status is considered
the secondary decision, because whether it needs to be made depends on
the result of the primary decision. A primary decision is always made by an
outer selection structure, while a secondary decision is always made by a
nested selection structure.

C7718_ch05.indd 265C7718_ch05.indd 265 14/03/11 8:23 PM14/03/11 8:23 PM

266

C H A P T E R 5 More on the Selection Structure

The Scottsville city manager wants an application that determines voter eligibility
and displays one of three messages. The messages and criteria for displaying each
message are as follows:

Message Criteria
You are too young to vote. person is younger than 18 years old
You can vote. person is at least 18 years old and is registered to vote
You must register before person is at least 18 years old but is not
you can vote. registered to vote

Figure 5-4 Problem specifi cation for the Voter Eligibility application

Figure 5-5 shows a sample run of the Voter Eligibility application, and Figure
5-6 shows the fl owchart for the Display Message button’s Click event proce-
dure. Th e fi rst diamond in the fl owchart represents the outer selection struc-
ture’s condition, which checks whether the age entered by the user is greater
than or equal to 18. If the condition evaluates to False, it means that the
person is not old enough to vote. In that case, the outer selection structure’s
false path displays the “You are too young to vote.” message before the outer
selection structure ends. However, if the outer selection structure’s condition
evaluates to True, it means that the person is old enough to vote. In that case,
the outer selection structure’s true path fi rst asks whether the person is regis-
tered to vote. Th e nested selection structure then determines the appropriate
action to take based on the person’s registration status. Th e nested selection
structure’s condition is represented by the second diamond in Figure 5-6. If
the person is registered, the nested selection structure’s true path displays
the “You can vote.” message; otherwise, its false path displays the “You must
register before you can vote.” message. After the appropriate message is dis-
played, the outer and nested selection structures end. Notice that the nested
selection structure is processed only when the outer selection structure’s
condition evaluates to True.

Figure 5-5 Sample run of the Voter Eligibility application

C7718_ch05.indd 266C7718_ch05.indd 266 14/03/11 8:23 PM14/03/11 8:23 PM

267

Nested Selection Structures L E S S O N A

btnDisplay Click event procedure

store age in a variable

display “You
are too young
to vote.”

F T

F T

start

ask whether
person is
registered

stop

age >= 18

display “You must
register before
you can vote.”

display “You
can vote.”

registered

Figure 5-6 Flowchart showing the nested selection structure in the true path

Even small procedures can have more than one solution. Figure 5-7 shows
another version of the Display Message button’s Click event procedure, also
in fl owchart form. As in the previous solution, the outer selection structure
in this solution determines the age (the primary decision), and the nested
selection structure determines the voter registration status (the secondary
decision). In this solution, however, the outer selection structure’s condi-
tion checks whether the age is less than 18. In addition, the nested selection
structure appears in the outer selection structure’s false path in this solution,
which means it will be processed only when the outer selection structure’s
condition evaluates to False. Th e solutions in Figures 5-6 and 5-7 produce the
same result. Neither solution is better than the other. Each simply represents
a diff erent way of solving the same problem.

C7718_ch05.indd 267C7718_ch05.indd 267 14/03/11 8:23 PM14/03/11 8:23 PM

268

C H A P T E R 5 More on the Selection Structure

Figure 5-7 Flowchart showing the nested selection structure in the false path

btnDisplay Click event procedure

store age in a variable

ask whether
person is
registered

F T

F T

start

display “You
are too young
to vote.”

stop

age < 18

display “You must
register before
you can vote.”

display “You
can vote.”

registered

Figure 5-8 shows the code corresponding to the fl owcharts in Figures 5-6
and 5-7.

Code for the flowchart in Figure 5-6

Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click
 ' displays a message

 Const strMSG1 As String = "You are too young to vote."
 Const strMSG2 As String =
 "You must register before you can vote."
 Const strMSG3 As String = "You can vote."
 Const strPROMPT As String =
 "Are you registered to vote?"
 Dim intAge As Integer
 Dim dlgButton As DialogResult

 Integer.TryParse(txtAge.Text, intAge)

 If intAge >= 18 Then
 dlgButton = MessageBox.Show(strPROMPT,
 "Voter Eligibility",

Figure 5-8 Code for the fl owcharts in Figures 5-6 and 5-7 (continues)

C7718_ch05.indd 268C7718_ch05.indd 268 14/03/11 8:23 PM14/03/11 8:23 PM

269

Nested Selection Structures L E S S O N A

 MessageBoxButtons.YesNo,
 MessageBoxIcon.Exclamation)
 If dlgButton = DialogResult.Yes Then
 lblMsg.Text = strMSG3
 Else
 lblMsg.Text = strMSG2
 End If
 Else
 lblMsg.Text = strMSG1
 End If
End Sub

Code for the flowchart in Figure 5-7

Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click
 ' displays a message

 Const strMSG1 As String = "You are too young to vote."
 Const strMSG2 As String =
 "You must register before you can vote."
 Const strMSG3 As String = "You can vote."
 Const strPROMPT As String =
 "Are you registered to vote?"
 Dim intAge As Integer
 Dim dlgButton As DialogResult

 Integer.TryParse(txtAge.Text, intAge)

 If intAge < 18 Then
 lblMsg.Text = strMSG1
 Else
 dlgButton = MessageBox.Show(strPROMPT,
 "Voter Eligibility",
 MessageBoxButtons.YesNo,
 MessageBoxIcon.Exclamation)
 If dlgButton = DialogResult.Yes Then
 lblMsg.Text = strMSG3
 Else
 lblMsg.Text = strMSG2
 End If
 End If
End Sub

Figure 5-8 Code for the fl owcharts in Figures 5-6 and 5-7

To code and then test the Voter Eligibility application:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express. Open
the Voter Solution (Voter Solution.sln) fi le contained in the VB2010\
Chap05\Voter Solution folder. If necessary, open the designer window.

2. Open the Code Editor window. Replace <your name> and <current date>
in the comments with your name and the current date, respectively.

3. Open the code template for the btnDisplay control’s Click event
 procedure. Enter the comments and code shown in either of the
 procedures in Figure 5-8.

START HERE

(continued)

C7718_ch05.indd 269C7718_ch05.indd 269 14/03/11 8:23 PM14/03/11 8:23 PM

270

C H A P T E R 5 More on the Selection Structure

4. Save the solution and then start the application. Type 16 in the Age
box and then press Enter. Th e Display Message button’s Click event
procedure displays the “You are too young to vote.” message, as shown
earlier in Figure 5-5.

5. Change the age to 25 and then press Enter. A message box opens and
displays the “Are you registered to vote?” message. Press Enter to select
the Yes button. Th e “You can vote.” message appears in the interface.

6. Click the Display Message button and then click the No button
in the message box. Th e “You must register before you can vote.”
 message appears in the interface.

7. Click the Exit button. Close the Code Editor window and then close
the solution.

YOU DO IT 1!

Create a Visual Basic Windows application named YouDoIt 1. Save the
application in the VB2010\Chap05 folder. Add a label and two buttons
to the form. The application should display the price of a CD (compact
disc) in the label. The prices are shown here. Code the first button’s Click
event procedure using a nested selection structure in the outer selection
structure’s true path. Code the second button’s Click event procedure using
a nested selection structure in the outer selection structure’s false path.
Use message boxes to get the coupon information from the user. Save the
solution and then start and test the application. Close the solution.

 Price Criteria
 $12 customer does not have a coupon
 $10 customer has a $2 coupon
 $8 customer has a $4 coupon

Logic Errors in Selection Structures
In the next few sections, you will observe some of the common logic errors
made when writing selection structures. Being aware of these errors will help
prevent you from making them. In most cases, logic errors in selection struc-
tures are a result of one of the following three mistakes: using a compound
condition rather than a nested selection structure; reversing the primary
and secondary decisions; or using an unnecessary nested selection structure.
Th e XYZ Company’s bonus procedure will be used to demonstrate each of
these logic errors. Th e company pays its salespeople an 8% bonus on their
sales. However, salespeople having a sales code of X receive an additional
$150 bonus when their sales are greater than or equal to $10000; otherwise,
they receive an additional $125 bonus. Notice that the salesperson’s code is
a factor in determining whether the salesperson is eligible for the additional
bonus amount. If the salesperson is entitled to the additional bonus, then the
amount of his or her sales determines the appropriate additional amount. In
this case, the decision regarding the salesperson’s code is the primary deci-
sion, and the decision regarding the sales amount is the secondary decision,
because whether the sales amount decision needs to be made depends on the
result of the code decision. Th e pseudocode shown in Figure 5-9 represents

C7718_ch05.indd 270C7718_ch05.indd 270 14/03/11 8:23 PM14/03/11 8:23 PM

271

Logic Errors in Selection Structures L E S S O N A

a correct algorithm for the bonus procedure. An algorithm is the set of
 step-by-step instructions for accomplishing a task.

Correct algorithm for the bonus procedure
1. store user input (code and sales) in variables
2. calculate the bonus by multiplying the sales by .08
3. if the code is X
 if the sales are greater than or equal to 10000
 add 150 to the bonus
 else
 add 125 to the bonus
 end if
 end if
4. display the bonus

Figure 5-9 A correct algorithm for the bonus procedure

You can verify that the algorithm in Figure 5-9 works correctly by desk-
checking it. Desk-checking refers to the process of reviewing the algorithm
while seated at your desk rather than in front of the computer. Desk-checking
is also called hand-tracing, because you use a pencil and paper to follow each
of the algorithm’s instructions by hand. You desk-check an algorithm to ver-
ify that it is not missing any steps, and that the existing steps are correct and
in the proper order. Any errors you fi nd will need to be corrected before you
begin coding the algorithm.

Before you begin desk-checking an algorithm, you fi rst choose a set of sample
data for the input values, which you then use to manually compute the expected
output values. You will desk-check the algorithm in Figure 5-9 three times. For
the fi rst desk-check, you will use X as the code and $15000 as the sales amount.
Using this test data, the algorithm should display a bonus amount of $1350.
For the second desk-check, you will use X as the code and $9000 as the sales
amount; in this case, the algorithm should display a bonus amount of $845. For
the third desk-check, you will use A as the code and $13000 as the sales amount.
With this set of test data, the algorithm should display a bonus amount of $1040.

Using the fi rst set of test data (X and 15000), the algorithm multiplies the
sales amount by .08, giving 1200. Th e outer selection structure’s condition
then determines whether the salesperson’s code is X; it is, so the nested selec-
tion structure’s condition checks whether the sales amount is greater than or
equal to 10000. Th e sales amount is greater than 10000, so the nested selec-
tion structure’s true path adds 150 to the bonus amount, giving 1350, which
is correct. After doing this, both selection structures end. Th e last step in the
algorithm displays the bonus amount of 1350.

Using the second set of test data (X and 9000), the algorithm multiplies
the sales amount by .08, giving 720. Th e outer selection structure’s condi-
tion then determines whether the salesperson’s code is X; it is, so the nested
 selection structure’s condition checks whether the sales amount is greater
than or equal to 10000. Th e sales amount is not greater than or equal to
10000, so the nested selection structure’s false path adds 125 to the bonus
amount, giving 845, which is correct. After doing this, both selection struc-
tures end. Th e last step in the algorithm displays the bonus amount of 845.

You also can
write the nested
selection struc-
ture’s condition in
Figure 5-9 as

follows: if the sales are
less than 10000. You
then would reverse the
instructions in the true
and false paths.

C7718_ch05.indd 271C7718_ch05.indd 271 14/03/11 8:23 PM14/03/11 8:23 PM

272

C H A P T E R 5 More on the Selection Structure

Using the third set of test data (A and 13000), the algorithm multiplies the
sales amount by .08, giving 1040. Th e outer selection structure’s condition
then determines whether the salesperson’s code is X. Th e code is not X, so
the outer selection structure ends. Notice that the nested selection structure
is not processed when the outer selection structure’s condition is false. Th e
last step in the algorithm displays the bonus amount of 1040. Figure 5-10
shows the results of desk-checking the correct algorithm.

Desk-check Result
First: using X as the code and 15000 as the sales 1350
Second: using X as the code and 9000 as the sales 845
Third: using A as the code and 13000 as the sales 1040

Figure 5-10 Results of desk-checking the correct algorithm

Using a Compound Condition Rather than a Nested
Selection Structure
A common error made when writing selection structures is to use a com-
pound condition in the outer selection structure’s condition when a nested
selection structure is needed. Figure 5-11 shows an example of this error
in the bonus algorithm. Th e correct algorithm is included in the fi gure for
comparison. Notice that the incorrect algorithm uses one selection structure
rather than two selection structures, and the selection structure contains a
compound condition. Consider why the selection structure in the incorrect
algorithm cannot be used in place of the selection structures in the correct
algorithm. In the correct algorithm, the outer and nested selection structures
indicate that a hierarchy exists between the code and sales decisions: the
code decision is always made fi rst, followed by the sales decision (if neces-
sary). In the incorrect algorithm, the compound condition indicates that no
hierarchy exists between both decisions; each has equal weight and neither is
dependent on the other, which is incorrect.

Correct algorithm Incorrect algorithm
1. store user input (code and sales) in 1. store user input (code and sales) in
 variables variables
2. calculate the bonus by multiplying 2. calculate the bonus by multiplying
 the sales by .08 the sales by .08
3. if the code is X 3. if the code is X and the sales are
 if the sales are greater than or greater than or equal to 10000
 equal to 10000 add 150 to the bonus
 add 150 to the bonus else
 else add 125 to the bonus
 add 125 to the bonus end if
 end if 4. display the bonus
 end if
4. display the bonus

Figure 5-11 Correct algorithm and an incorrect algorithm containing the fi rst logic error

a logical operator used
rather than a nested
selection structure

C7718_ch05.indd 272C7718_ch05.indd 272 14/03/11 8:23 PM14/03/11 8:23 PM

273

Logic Errors in Selection Structures L E S S O N A

To better understand why the incorrect algorithm in Figure 5-11 will not
work correctly, you will desk-check it using the same test data used to desk-
check the correct algorithm. Using the fi rst set of test data (X and 15000),
the incorrect algorithm multiplies the sales amount by .08, giving 1200.
Th e selection structure’s compound condition is evaluated next. Th e com-
pound condition evaluates to True, because both sub-conditions are True.
Th erefore, the selection structure’s true path adds 150 to the bonus amount,
giving 1350. Th e incorrect algorithm then displays the bonus amount of
1350. Even though the algorithm’s selection structure is phrased incorrectly,
notice that the incorrect algorithm produces the same result as the correct
algorithm using the fi rst set of test data.

Using the second set of test data (X and 9000), the incorrect algorithm multi-
plies the sales amount by .08, giving 720. Th e selection structure’s compound
condition is evaluated next. Th e compound condition evaluates to False,
because the sales amount is not greater than or equal to 10000. Th erefore, the
selection structure’s false path adds 125 to the bonus amount, giving 845. Th e
incorrect algorithm then displays the bonus amount of 845. Here again, using
the second set of test data, the incorrect algorithm produces the same result
as the correct algorithm.

Using the third set of test data (A and 13000), the incorrect algorithm mul-
tiplies the sales amount by .08, giving 1040. Th e selection structure’s com-
pound condition is evaluated next. Th e compound condition evaluates to
False, because the salesperson’s code is not X. As a result, the selection struc-
ture’s false path adds 125 to the bonus amount, giving 1165. Th e incorrect
algorithm then displays the bonus amount of 1165. Notice that the incorrect
algorithm produces erroneous results for the third set of test data; it should
have displayed 1040 as the bonus amount. It is important to desk-check an
algorithm several times using diff erent test data. In this case, if you had used
only the fi rst two sets of data to desk-check the incorrect algorithm, you
would not have discovered the error. Figure 5-12 shows the results of desk-
checking the incorrect algorithm shown in Figure 5-11. As indicated in the
fi gure, the results of the fi rst and second desk-checks are correct, but the
result of the third desk-check is not correct.

Desk-check Result
First: using X as the code and 15000 as the sales 1350 (correct)
Second: using X as the code and 9000 as the sales 845 (correct)
Third: using A as the code and 13000 as the sales 1165 (incorrect)

Figure 5-12 Results of desk-checking the incorrect algorithm shown in Figure 5-11

Reversing the Primary and Secondary Decisions
Another common error made when writing a selection structure that con-
tains a nested selection structure is to reverse the primary and secondary
decisions—in other words, put the secondary decision in the outer selection
structure, and put the primary decision in the nested selection structure.
Figure 5-13 shows an example of this error in the bonus algorithm. Th e cor-
rect algorithm is included in the fi gure for comparison. Unlike the selec-
tion structures in the correct algorithm, which determine the code before

C7718_ch05.indd 273C7718_ch05.indd 273 14/03/11 8:23 PM14/03/11 8:23 PM

274

C H A P T E R 5 More on the Selection Structure

 determining the sales amount, the selection structures in the incorrect algo-
rithm determine the sales amount before determining the code. Consider
how this diff erence changes the algorithm. In the correct algorithm, the selec-
tion structures indicate that only salespeople who have a code of X receive an
additional bonus, which is correct. Th e selection structures in the incorrect
algorithm, on the other hand, indicate that the additional bonus is given to all
salespeople whose sales are greater than or equal to 10000, which is not cor-
rect. Figure 5-14 shows the results of desk-checking the incorrect algorithm.
As indicated in the fi gure, only the result of the fi rst desk-check is correct.

Correct algorithm Incorrect algorithm
1. store user input (code and sales) in 1. store user input (code and sales) in
 variables variables
2. calculate the bonus by multiplying 2. calculate the bonus by multiplying
 the sales by .08 the sales by .08
3. if the code is X 3. if the sales are greater than or
 if the sales are greater than or equal to 10000
 equal to 10000 if the code is X
 add 150 to the bonus add 150 to the bonus
 else else
 add 125 to the bonus add 125 to the bonus
 end if end if
 end if end if
4. display the bonus 4. display the bonus

primary and secondary
decisions reversed

Figure 5-13 Correct algorithm and an incorrect algorithm containing the second logic error

Desk-check Result
First: using X as the code and 15000 as the sales 1350 (correct)
Second: using X as the code and 9000 as the sales 720 (incorrect)
Third: using A as the code and 13000 as the sales 1165 (incorrect)

Figure 5-14 Results of desk-checking the incorrect algorithm shown in Figure 5-13

Using an Unnecessary Nested Selection Structure
Another common error made when writing selection structures is to include
an unnecessary nested selection structure. In most cases, a selection structure
containing this error still will produce the correct results; however, it will do so
less effi ciently than selection structures that are properly structured. Figure 5-15
shows an example of this error in the bonus algorithm. Th e correct algorithm is
included in the fi gure for comparison. Unlike the correct algorithm, which con-
tains two selection structures, the ineffi cient algorithm contains three selection
structures. Notice that the condition in the third selection structure determines
whether the sales are less than 10000 and is processed only when the condition
in the second selection structure is false. In other words, it is processed only
when the sales are not greater than or equal to 10000. However, if the sales are
not greater than or equal to 10000, then they would have to be less than 10000,
so the third selection structure is unnecessary. Figure 5-16 shows the results of
desk-checking the ineffi cient algorithm. As indicated in the fi gure, although the

C7718_ch05.indd 274C7718_ch05.indd 274 14/03/11 8:23 PM14/03/11 8:23 PM

275

Multiple-Alternative Selection Structures L E S S O N A

results of the three desk-checks are correct, the result of the second desk-check
is obtained in a less effi cient manner.

Correct algorithm Incorrect algorithm
1. store user input (code and sales) in 1. store user input (code and sales) in
 variables variables
2. calculate the bonus by multiplying 2. calculate the bonus by multiplying
 the sales by .08 the sales by .08
3. if the code is X 3. if the code is X
 if the sales are greater than or if the sales are greater than or
 equal to 10000 equal to 10000
 add 150 to the bonus add 150 to the bonus
 else else
 add 125 to the bonus if the sales are less
 end if than 10000
 end if add 125 to the bonus
4. display the bonus end if
 end if
 end if
 4. display the bonus

Figure 5-15 Correct algorithm and an incorrect algorithm containing the third logic error

unnecessary nested
selection structure

Desk-check Result
First: using X as the code and 15000 as the sales 1350 (correct)
Second: using X as the code and 9000 as the sales 845 (correct)
Third: using A as the code and 13000 as the sales 1040 (correct)

Figure 5-16 Results of desk-checking the incorrect algorithm shown in Figure 5-15

result obtained in a
less effi cient manner

Multiple-Alternative Selection Structures
At times, you may need to create a selection structure that can choose from
several alternatives. Such selection structures are referred to as multiple-
alternative selection structures. An example of this is a selection structure
that displays a message based on a letter grade entered by the user. Th e valid
letter grades and their corresponding messages are shown in Figure 5-17.
As the fi gure indicates, when the letter grade is an A, the selection struc-
ture should display the message “Excellent.” When the letter grade is a B, the
selection structure should display the message “Above Average,” and so on.

Letter grade Message
A Excellent
B Above Average
C Average
D Below Average
F Below Average

Figure 5-17 Letter grades and messages

Multiple-
alternative selec-
tion structures
are also called
extended selec-
tion structures.

C7718_ch05.indd 275C7718_ch05.indd 275 14/03/11 8:23 PM14/03/11 8:23 PM

276

C H A P T E R 5 More on the Selection Structure

Figures 5-18 and 5-19 show the pseudocode and fl owchart, respectively,
for the btnDisplay control’s Click event procedure, which uses a multiple-
alternative selection structure to display the appropriate letter grade. Th e
diamond in the fl owchart represents the multiple-alternative selection struc-
ture’s condition. As you already know, the diamond is also used to represent
the condition in both the single-alternative and dual-alternative selection
structures. However, unlike the diamond in both of those selection struc-
tures, the diamond in a multiple-alternative selection structure has several
fl owlines (rather than only two fl owlines) leading out of the symbol. Each
fl owline represents a possible path and must be marked appropriately, indi-
cating the value or values necessary for the path to be chosen.

btnDisplay Click event procedure
1. store the letter grade in a variable
2. if the letter grade is one of the following:
 A display “Excellent”
 B display “Above Average”
 C display “Average”
 D, F display “Below Average”
 else
 display “Incorrect Grade”
 end if

Figure 5-18 Pseudocode containing a multiple-alternative selection structure

Figure 5-19 Flowchart containing a multiple-alternative selection structure

btnDisplay Click event procedure

start

stop

letter
grade

A

store the letter grade
in a variable

B C Other

display
“Above
Average”

display
“Average”

display
“Below
Average”

display
“Incorrect
Grade”

D, F

display
“Excellent”

Figure 5-20 shows two versions of the code for the btnDisplay control’s Click
event procedure. Both versions use If…Th en…Else statements to code the
multiple-alternative selection structure. Both versions of the code produce
the same result. However, the second version contains a more convenient
way of writing a multiple-alternative selection structure.

C7718_ch05.indd 276C7718_ch05.indd 276 14/03/11 8:23 PM14/03/11 8:23 PM

277

Multiple-Alternative Selection Structures L E S S O N A

Version 1—multiple-alternative selection structure
Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click
 ' displays a message corresponding to a grade

 Dim strGrade As String

 ' display appropriate message
 strGrade = txtGrade.Text.ToUpper
 If strGrade = "A" Then
 lblMsg.Text = "Excellent"
 Else
 If strGrade = "B" Then
 lblMsg.Text = "Above Average"
 Else
 If strGrade = "C" Then
 lblMsg.Text = "Average"
 Else
 If strGrade = "D" OrElse strGrade = "F" Then
 lblMsg.Text = "Below Average"
 Else
 lblMsg.Text = "Incorrect Grade"
 End If
 End If
 End If
 End If
End Sub

Version 2—multiple-alternative selection structure
Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click
 ' displays a message corresponding to a grade

 Dim strGrade As String

 ' display appropriate message
 strGrade = txtGrade.Text.ToUpper
 If strGrade = "A" Then
 lblMsg.Text = "Excellent"
 ElseIf strGrade = "B" Then
 lblMsg.Text = "Above Average"
 ElseIf strGrade = "C" Then
 lblMsg.Text = "Average"
 ElseIf strGrade = "D" OrElse strGrade = "F" Then
 lblMsg.Text = "Below Average"
 Else
 lblMsg.Text = "Incorrect Grade"
 End If
End Sub

Figure 5-20 Two versions of the code containing a multiple-alternative selection structure

you get here when the
grade is not A, B, or C

you get here when
the grade is not
A, B, C, D, or F

four End If clauses
are required

you get here when
the grade is not A
and not B

you get here when
the grade is not A

only one End If
clause is required

To code and then test the Grade application:

1. Open the Grade Solution (Grade Solution.sln) fi le contained in the
VB2010\Chap05\Grade Solution-If folder. If necessary, open the
designer window.

2. Open the Code Editor window. Replace <your name> and <current date>
in the comments with your name and the current date, respectively.

START HERE

C7718_ch05.indd 277C7718_ch05.indd 277 14/03/11 8:23 PM14/03/11 8:23 PM

278

C H A P T E R 5 More on the Selection Structure

3. Open the code template for the btnDisplay control’s Click event
 procedure. Enter the code shown in Version 2 in Figure 5-20.

4. Save the solution and then start the application. Type the letter a and
then press Enter. Th e “Excellent” message appears in the interface.
See Figure 5-21.

Figure 5-21 Excellent message shown in the interface

5. On your own, test the application using the following grades: b, c, d,
x, and f. When you are fi nished testing, click the Exit button. Close
the Code Editor window and then close the solution.

YOU DO IT 2!

Create a Visual Basic Windows application named YouDoIt 2. Save the
application in the VB2010\Chap05 folder. Add a text box, a label, and a
button to the form. The button’s Click event procedure should display (in the
label) either the price of a concert ticket or an error message. The ticket
price is based on the code entered in the text box, as shown here. Code the
procedure. Save the solution and then start and test the application. Close
the solution.
 Code Ticket price
 1 $15
 2 $15
 3 $25
 4 $35
 5 $37
 Other Invalid code

The Select Case Statement
When a multiple-alternative selection structure has many paths from which
to choose, it is often simpler and clearer to code the selection structure using
the Select Case statement rather than several If…Th en…Else statements.
Th e Select Case statement’s syntax is shown in Figure 5-22. Th e fi gure also
shows how you can use the Select Case statement to code the multiple-
alternative selection structure from Figure 5-20. Th e statement begins
with the keywords Select Case, followed by a selectorExpression. Th e
selectorExpression can contain any combination of variables, constants,
keywords, functions, methods, operators, and properties. In the example in
Figure 5-22, the selectorExpression is a String variable named strGrade.
Th e Select Case statement ends with the End Select clause. Between the Select
Case and End Select clauses are the individual Case clauses. Each Case clause
represents a diff erent path that the computer can follow. It is customary to

C7718_ch05.indd 278C7718_ch05.indd 278 14/03/11 8:23 PM14/03/11 8:23 PM

279

The Select Case Statement L E S S O N A

indent each Case clause and the instructions within each Case clause, as
shown in the fi gure. You can have as many Case clauses as necessary in a
Select Case statement. However, if the Select Case statement includes a Case
Else clause, the Case Else clause must be the last clause in the statement.

Each of the individual Case clauses, except the Case Else clause, must contain
an expressionList, which can include one or more expressions. To include
more than one expression in an expressionList, you separate each expression
with a comma, as in the expressionList Case "D", "F". Th e selectorEx-
pression needs to match only one of the expressions listed in an expression-
List. Th e data type of the expressions must be compatible with the data type
of the selectorExpression. If the selectorExpression is numeric, the expres-
sions in the Case clauses should be numeric. Likewise, if the selectorExpres-
sion is a string, the expressions should be strings. In the example in Figure
5-22, the selectorExpression (strGrade) is a string, and so are the expres-
sions: “A”, “B”, “C”, “D”, and “F”.

Select Case statement

Syntax
Select Case selectorExpression
 Case expressionList1
 instructions for the fi rst Case
 [Case expressionList2
 instructions for the second Case]
 [Case expressionListN
 instructions for the Nth Case]
 [Case Else
 instructions for when the selectorExpression does not match any of the
 expressionLists]
End Select

Example
Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click
 ' displays a message corresponding to a grade

 Dim strGrade As String

 ' display appropriate message
 strGrade = txtGrade.Text.ToUpper
 Select Case strGrade
 Case "A"
 lblMsg.Text = "Excellent"
 Case "B"
 lblMsg.Text = "Above Average"
 Case "C"
 lblMsg.Text = "Average"
 Case "D", "F"
 lblMsg.Text = "Below Average"
 Case Else
 lblMsg.Text = "Incorrect Grade"
 End Select
End Sub

Figure 5-22 Syntax and an example of the Select Case statement

C7718_ch05.indd 279C7718_ch05.indd 279 14/03/11 8:23 PM14/03/11 8:23 PM

280

C H A P T E R 5 More on the Selection Structure

When processing the Select Case statement, the computer fi rst compares the
value of the selectorExpression with the values listed in expressionList1. If
a match is found, the computer processes the instructions for the fi rst Case,
stopping when it reaches either another Case clause or the End Select clause;
it then skips to the instruction following the End Select clause. For example,
if the strGrade variable contains the string “A”, the Select Case statement
in Figure 5-22 will assign the string “Excellent” to the lblMsg control before
the statement ends. If a match is not found in expressionList1, the computer
skips to the second Case clause, where it compares the selectorExpression
with the values listed in expressionList2. If a match is found, the computer
processes the instructions for the second Case clause and then skips to the
instruction following the End Select clause. If a match is not found, the com-
puter skips to the third Case clause, and so on.

If a Case clause contains more than one value, as does the Case "D", "F"
clause, the selectorExpression needs to match only one of the values. As a
result, the Select Case statement in Figure 5-22 will assign the string “Below
Average” when the strGrade variable contains either the string “D” or the
string “F”. If the selectorExpression does not match any of the values listed
in any of the expressionLists, the computer processes the instructions listed
in the Case Else clause (if there is one) and then skips to the instruction fol-
lowing the End Select clause. Keep in mind that if the selectorExpression
matches a value in more than one Case clause, only the instructions in the
fi rst match are processed.

To use the Select Case statement to code the Grade application:

1. Open the Grade Solution (Grade Solution.sln) fi le contained in the
VB2010\Chap05\Grade Solution-Select Case folder. If necessary, open
the designer window.

2. Open the Code Editor window. Replace <your name> and <current
date> in the comments with your name and the current date,
respectively.

3. Open the code template for the btnDisplay control’s Click event
 procedure. Enter the code shown in Figure 5-22.

4. Save the solution and then start the application. Type the letter a and
then press Enter. Th e “Excellent” message appears in the interface.

5. On your own, test the application using the following grades: b, c, d,
x, and f. When you are fi nished testing, click the Exit button. Close
the Code Editor window and then close the solution.

Specifying a Range of Values in a Case Clause
In addition to specifying one or more discrete values in a Case clause, you
also can specify a range of values, such as the values 1 through 4 or values
greater than 10. You do this using either the keyword To or the keyword Is.
You use the To keyword when you know both the upper and lower values in
the range. Th e Is keyword is appropriate when you know only one end of the
range (either the upper or lower end). Figure 5-23 shows the syntax for using
both keywords. It also contains an example of a Select Case statement that
assigns a price based on the number of items ordered. According to the price

START HERE

C7718_ch05.indd 280C7718_ch05.indd 280 14/03/11 8:23 PM14/03/11 8:23 PM

281

The Select Case Statement L E S S O N A

chart in Figure 5-23, the price for 1 to 5 items is $25 each. Using discrete
values, the fi rst Case clause would look like this: Case 1, 2, 3, 4, 5.
However, a more convenient way of writing that range of numbers is to use
the To keyword, like this: Case 1 To 5. Th e expression 1 To 5 specifi es
the range of numbers from 1 to 5, inclusive. Th e expression 6 To 10 in the
second Case clause specifi es the range of numbers from 6 through 10. Notice
that both Case clauses state both the lower (1 and 6) and upper (5 and 10)
values in each range.

Th e third Case clause, Case Is > 10, contains the Is keyword rather than
the To keyword. Recall that you use the Is keyword when you know only one
end of the range of values. In this case, you know only the lower end of the
range, 10. Th e Is keyword is always used in combination with one of the fol-
lowing comparison operators: =, <, <=, >, >=, <>. Th e Case Is > 10 clause
specifi es all numbers greater than the number 10. Because intOrdered is
an Integer variable, you also can write this Case clause as Case Is >= 11.
Th e Case Else clause in the example in Figure 5-23 is processed only when
the intOrdered variable contains a value that is not included in any of the
previous Case clauses.

Specifying a range of values in a Case clause
Syntax
Case smallest value in the range To largest value in the range
Case Is comparisonOperator value

Example
ABC Corporation Price Chart
Numbered ordered Price per item
1 – 5 $25
6 – 10 $23
More than 10 $20
Less than 1 $0

Select Case intOrdered
 Case 1 To 5
 intPrice = 25
 Case 6 To 10
 intPrice = 23
 Case Is > 10
 intPrice = 20
 Case Else
 intPrice = 0
End Select

Figure 5-23 Syntax and an example of specifying a range of values

To code and then test the ABC Corporation application:

1. Open the ABC Solution (ABC Solution.sln) fi le contained in the
VB2010\Chap05\ABC Solution folder. If necessary, open the designer
window.

2. Open the Code Editor window. Replace <your name> and <current date>
in the comments with your name and the current date, respectively.

If you neglect to
type the Is key-
word in an
expression—for
example, if you
enter Case >

10—the Code Editor will
change the clause to
Case Is > 10.

Be sure to test
your code thor-
oughly, because
the computer will
not display an
error message

when the value preceding
To in a Case clause is
greater than the value
following To. Instead, the
Select Case statement
will not give the correct
results.

START HERE

C7718_ch05.indd 281C7718_ch05.indd 281 14/03/11 8:23 PM14/03/11 8:23 PM

282

C H A P T E R 5 More on the Selection Structure

3. Locate the btnDisplay control’s Click event procedure. Click the
blank line below the ' determine the price per item comment
and then enter the Select Case statement shown in Figure 5-23.

4. Save the solution and then start the application. Type 3 in the
Number ordered box and then press Enter. $25.00 appears in the
Price per item box, as shown in Figure 5-24.

Figure 5-24 Price per item shown in the interface

5. On your own, test the application using 6, 11, and 0 as the number
ordered. When you are fi nished testing, click the Exit button. Close
the Code Editor window and then close the solution.

YOU DO IT 3!

Create a Visual Basic Windows application named YouDoIt 3. Save the
application in the VB2010\Chap05 folder. Add a text box, a label, and a
button to the form. The button’s Click event procedure should display (in the
label) either the price of a concert ticket or an error message. The ticket
price is based on the code entered in the text box, as shown here. Code the
procedure using the Select Case statement. Save the solution and then start
and test the application. Close the solution.
 Code Ticket price
 1 $15
 2 $15
 3 $25
 4 $35
 5 $37
 Other Invalid code

Lesson A Summary

 • To create a selection structure that evaluates both a primary and a
 secondary decision:

Place (nest) the secondary decision’s selection structure within either the
true or false path of the primary decision’s selection structure.

C7718_ch05.indd 282C7718_ch05.indd 282 14/03/11 8:23 PM14/03/11 8:23 PM

283

Lesson A Review Questions L E S S O N A

 • To verify that an algorithm works correctly:

Desk-check (hand-trace) the algorithm.

 • To code a multiple-alternative selection structure:

Use either If…Th en…Else statements or the Select Case statement.

 • To specify a range of values in a Select Case statement’s Case clause:

Use the To keyword when you know both the upper and lower values in
the range. Use the Is keyword when you know only one end of the range.
Th e Is keyword is used in combination with one of the following com-
parison operators: =, <, <=, >, >=, <>.

Lesson A Key Terms
Algorithm—a set of step-by-step instructions for accomplishing a task

Desk-checking—the process of manually walking through the steps in an
algorithm, using sample data; also called hand-tracing

Hand-tracing—another term for desk-checking

Multiple-alternative selection structures—selection structures that contain
several alternatives; also called extended selection structures; can be coded
using either If…Th en…Else statements or the Select Case statement

Nested selection structure—a selection structure that is wholly contained
(nested) within either the true or false path of another selection structure

Select Case statement—used to code a multiple-alternative selection
 structure in Visual Basic

Lesson A Review Questions
Use the code shown in Figure 5-25 to answer Review Questions 1 through 3.

If intNum <= 100 Then
 intNum = intNum * 2
ElseIf intNum > 500 Then
 intNum = intNum * 3
End If

Figure 5-25 Code for Review Questions 1 through 3

1. If the intNum variable contains the number 90, what value will be in
the variable after the code in Figure 5-25 is processed?

a. 0

b. 90

c. 180

d. 270

C7718_ch05.indd 283C7718_ch05.indd 283 14/03/11 8:23 PM14/03/11 8:23 PM

284

C H A P T E R 5 More on the Selection Structure

2. If the intNum variable contains the number 1000, what value will be
in the variable after the code in Figure 5-25 is processed?

a. 0

b. 1000

c. 2000

d. 3000

3. If the intNum variable contains the number 200, what value will be in
the variable after the code in Figure 5-25 is processed?

a. 0

b. 200

c. 400

d. 600

Use the code shown in Figure 5-26 to answer Review Questions 4 through 7.

If intId = 1 Then
 lblName.Text = "Janet"
ElseIf intId = 2 OrElse intId = 3 Then
 lblName.Text = "Mark"
ElseIf intId = 4 Then
 lblName.Text = "Jerry"
Else
 lblName.Text = "Sue"
End If

Figure 5-26 Code for Review Questions 4 through 7

4. What will the code in Figure 5-26 display when the intId variable
contains the number 2?

a. Janet

b. Jerry

c. Mark

d. Sue

5. What will the code in Figure 5-26 display when the intId variable
contains the number 4?

a. Janet

b. Jerry

c. Mark

d. Sue

C7718_ch05.indd 284C7718_ch05.indd 284 14/03/11 8:23 PM14/03/11 8:23 PM

285

Lesson A Review Questions L E S S O N A

6. What will the code in Figure 5-26 display when the intId variable
contains the number 3?

a. Janet

b. Jerry

c. Mark

d. Sue

7. What will the code in Figure 5-26 display when the intId variable
contains the number 8?

a. Janet

b. Jerry

c. Mark

d. Sue

8. A nested selection structure can appear in of another
selection structure.

a. only the true path

b. only the false path

c. either the true or false path

9. Which of the following Case clauses is valid in a Select Case
 statement whose selectorExpression is an Integer variable named
intCode?

a. Case Is > 7

b. Case 3, 5

c. Case 1 To 4

d. all of the above

Use the code shown in Figure 5-27 to answer Review Questions 10
through 12.

Select Case intId
 Case 1
 lblName.Text = "Janet"
 Case 2 To 4
 lblName.Text = "Mark"
 Case 5, 7
 lblName.Text = "Jerry"
 Case Else
 lblName.Text = "Sue"
End Select

Figure 5-27 Code for Review Questions 10 through 12

C7718_ch05.indd 285C7718_ch05.indd 285 14/03/11 8:23 PM14/03/11 8:23 PM

286

C H A P T E R 5 More on the Selection Structure

10. What will the code in Figure 5-27 display when the intId variable
contains the number 2?

a. Janet

b. Mark

c. Jerry

d. Sue

11. What will the code in Figure 5-27 display when the intId variable
contains the number 3?

a. Janet

b. Mark

c. Jerry

d. Sue

12. What will the code in Figure 5-27 display when the intId variable
contains the number 6?

a. Janet

b. Mark

c. Jerry

d. Sue

13. A procedure needs to display the appropriate fee to charge a golfer.
Club members are free. Non-members golfi ng on Monday through
Th ursday are charged $15. Non-members golfi ng on Friday through
Sunday are charged $25. In this procedure, which is the primary
 decision and which is the secondary decision? Why?

14. List the three errors commonly made when writing selection
 structures. Which error produces the correct results, but in a less
 effi cient way?

15. Explain the meaning of the term “desk-checking.”

Lesson A Exercises

1. Write the Visual Basic code for the algorithm shown in Figure 5-9
in this lesson. Th e salesperson’s code and sales amount are entered
in the txtCode and txtSales controls, respectively. Store the text box
values and bonus amount in variables. Display the appropriate bonus
amount in the lblMsg control. Format the bonus amount using the
“C2” format.

2. Write the Visual Basic code that displays the message “Highest honors”
when a student’s test score is 90 or above. When the test score is 70

INTRODUCTORY

INTRODUCTORY

C7718_ch05.indd 286C7718_ch05.indd 286 14/03/11 8:23 PM14/03/11 8:23 PM

287

Lesson A Exercises L E S S O N A

through 89, display the message “Good job”. For all other test scores,
display the message “Retake the test”. Th e test score is stored in the
intScore variable. Display the appropriate message in the lblMsg
control. Code the multiple-alternative selection structure using the
If…Th en…Else statement.

3. Rewrite the code from Exercise 2 using the Select Case statement.

4. Write the Visual Basic code that compares the contents of the
intQuantity variable with the number 10. When the variable con-
tains a number that is equal to 10, display the string “Equal” in the
lblMsg control. When the variable contains a number that is greater
than 10, display the string “Over 10”. When the variable contains a
number that is less than 10, display the string “Not over 10”. Code
the multiple-alternative selection structure using the If…Th en…Else
statement.

5. Rewrite the code from Exercise 4 using the Select Case statement.

6. Open the Animal Solution (Animal Solution.sln) fi le contained in
the VB2010\Chap05\Animal Solution folder. If necessary, open the
designer window.

a. Open the Code Editor window. Th e If…Th en…Else button’s
Click event procedure should display the string “Dog” when the
intAnimal variable contains the number 1, the string “Cat” when
the variable contains the number 2, and the string “Bird” when
the variable contains anything other than the numbers 1 or 2.
Display the appropriate string in the lblMsg control. Use the
If…Th en…Else statement to code the multiple-alternative
selection structure. Save the solution and then start the
application. Test the If…Th en…Else button’s code three times,
using the numbers 1, 2, and 5.

b. Th e Select Case button’s Click event procedure should display
the string “Dog” when the strAnimal variable contains either
the letter “D” or the letter “d”, the string “Cat” when the variable
contains either the letter “C” or the letter “c”, and the string “Bird”
when the variable contains anything other than the letters “D”, “d”,
“C”, or “c”. Display the appropriate string in the lblMsg control.
Use the Select Case statement to code the multiple-alternative
selection structure. Save the solution and then start the applica-
tion. Test the Select Case button’s code three times, using the
 letters D, c, and x.

c. Close the Code Editor window and then close the solution.

7. Code the partial fl owchart shown in Figure 5-28. Use an Integer
 variable named intCode and a Double variable named dblRate.
Display the rate formatted with a percent sign and no decimal places.
Use the Select Case statement to code the multiple-alternative
 selection structure in the fi gure.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

C7718_ch05.indd 287C7718_ch05.indd 287 14/03/11 8:23 PM14/03/11 8:23 PM

288

C H A P T E R 5 More on the Selection Structure

Figure 5-28 Flowchart for Exercise 7

code

1 2, 3, 4 5 Other

rate = .02 rate = .05 rate = .10

6, 7

rate = .15 rate = –1

rate = –1 TF

display rate in
lblRate

display
“Invalid code”

in lblRate

8. A procedure needs to display a shipping charge based on the state
name stored in the strState variable. Th e state name is stored using
uppercase letters. Write a Select Case statement that assigns the
 shipping charge to the dblShipping variable. Th e shipping charge
for Hawaii is $25. Th e shipping charge for Oregon is $30. Th e shipping
charge for California is $32.50. Display an appropriate message in the
lblMsg control when the strState variable contains a value that
is not one of these three states; also assign the number 0 to the
dblShipping variable. Display the shipping charge in the lblShipping
control. Format the shipping charge using the “N2” format.

9. Rewrite the code from Exercise 8 using the If…Th en…Else statement.

10. Th e price of a concert ticket depends on the seat location stored in the
strSeat variable. Th e seat location is stored using uppercase letters.
Write a Select Case statement that displays the ticket price in the lblPrice
control. Box seats are $75. Pavilion seats are $30. Lawn seats are $21.
Display an appropriate message in the lblPrice control when the strSeat
variable contains a value that is not one of these three seat locations.

11. Rewrite the code from Exercise 10 using the If…Th en…Else
statement.

12. Open the Month Solution (Month Solution.sln) fi le contained in
the VB2010\Chap05\Month Solution folder. If necessary, open the
designer window.

a. Open the Code Editor window. Th e If…Th en…Else button’s Click
event procedure should display the name of the month corre-
sponding to the number entered by the user. For example, if the
user enters the number 1, the procedure should display the string

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

C7718_ch05.indd 288C7718_ch05.indd 288 14/03/11 8:23 PM14/03/11 8:23 PM

289

Lesson A Exercises L E S S O N A

“January”. If the user enters an invalid number, which is one that
is not in the range 1 through 12, the procedure should display an
appropriate message. Display the month name or message in the
lblMsg control. Use the If…Th en…Else statement to code the mul-
tiple-alternative selection structure. Save the solution and then
start the application. Test the If…Th en…Else button’s code three
times, using the numbers 3, 7, and 20.

b. Now assume that the user will enter the fi rst three characters of
the month’s name (rather than the month number) in the text box.
Complete the Select Case button’s Click event procedure by writ-
ing a Select Case statement that displays the name of the month
corresponding to the characters entered by the user. For example,
if the user enters the three characters “Jan” (in any case), the proce-
dure should display the string “January”. If the user enters “Jun”, the
procedure should display “June”. If the three characters entered by
the user do not match any of the expressions in the Case clauses,
the procedure should display an appropriate message. Display the
appropriate month name or message in the lblMsg control. Save
the solution and then start the application. Test the Select Case
button’s code three times, using the following data: jun, dec, xyz.

c. Close the Code Editor window and then close the solution.

13. Open the Bonus Solution (Bonus Solution.sln) fi le contained in
the VB2010\Chap05\Bonus Solution folder. If necessary, open the
designer window. Open the Code Editor window. Th e Calculate
button’s Click event procedure should assign the number 25 to the
intBonus variable when the user enters a sales amount that is
greater than or equal to $100, but less than or equal to $250. When
the user enters a sales amount that is greater than $250, the procedure
should assign the number 50 to the variable. When the user enters a
sales amount that is less than $100, the procedure should assign the
number 0 as the bonus. Use the If…Th en…Else statement to code the
multiple-alternative selection structure. Save the solution and then
start the application. Test the Calculate button’s code three times,
using sales amounts of 100, 300, and 40. Close the Code Editor win-
dow and then close the solution.

14. Open the Seminar Solution (Seminar Solution.sln) fi le contained in
the VB2010\Chap05\Seminar Solution folder. If necessary, open the
designer window. Computer Workshop off ers programming seminars
to companies. Th e price per person depends on the number of people
the company registers. Th e fi rst 4 people registered are charged $100
per person. Registrants 5 through 10 are charged $80 per person.
Registrants 11 and over are charged $60 per person. For example, if
the company registers 7 people, then the total amount owed is $640.
Th e $640 is calculated by fi rst multiplying 4 by 100, giving 400. You
then multiply 3 by 80, giving 240. You then add the 400 to the 240,
giving 640. Display the total amount owed in the lblTotal control. Use
the Select Case statement to complete the Calculate button’s Click
event procedure. Save the solution and then start and test the applica-
tion. Close the Code Editor window and then close the solution.

INTERMEDIATE

ADVANCED

C7718_ch05.indd 289C7718_ch05.indd 289 14/03/11 8:23 PM14/03/11 8:23 PM

290

C H A P T E R 5 More on the Selection Structure

 ❚ LESSON B
After studying Lesson B, you should be able to:

 • Include a group of radio buttons in an interface
 • Designate a default radio button
 • Include a check box in an interface
 • Create and call an independent Sub procedure
 • Generate random numbers

Creating the Math Practice Application
Recall that Susan Chen, the principal of a local primary school, wants an
application that the fi rst and second grade students can use to practice both
adding and subtracting numbers. Th e application should display the math
problem on the screen and then allow the student to both enter the answer
and verify that the answer is correct. Th e application should give the student
as many chances as necessary to answer the problem correctly. Th e math
problems for the fi rst grade students should use numbers from 1 through
10 only. Th e math problems for the second grade students should use num-
bers from 10 through 99. Because the students have not learned about
negative numbers yet, the subtraction problems should never ask them to
subtract a larger number from a smaller one. Recall that Ms. Chen wants the
application to keep track of the number of correct and incorrect responses
made by the student, and she wants the ability to control the display of that
information.

To open the partially completed Math Practice application:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.

2. Open the Math Solution (Math Solution.sln) fi le contained in the
VB2010\Chap05\Math Solution folder. If necessary, open the designer
window. Th e interface contains one text box, two buttons, three radio
buttons, seven picture boxes, four group boxes, and various labels.
Missing from the interface are the Subtraction radio button and the
Display summary check box.

Adding a Radio Button to the Form
You use the RadioButton tool to add a radio button to a form. Radio buttons
allow you to limit the user to only one choice in a group of two or more
related but mutually exclusive choices. Th e radio buttons in the Math
Practice application will limit the user to one grade level selection and one
mathematical operation selection. During run time, you can determine
whether a radio button is selected or unselected by looking at the value in its
Checked property. If the property contains the Boolean value True, the radio
button is selected. If it contains the Boolean value False, the radio button is
not selected.

Each radio button in an interface should be labeled so that the user knows
its purpose. You enter the label using sentence capitalization in the radio

The Ch05BVideo
fi le demonstrates
all of the steps
contained in

Lesson B. You can view
the video either before or
after completing the
lesson.

START HERE

C7718_ch05.indd 290C7718_ch05.indd 290 14/03/11 8:23 PM14/03/11 8:23 PM

291

Creating the Math Practice Application L E S S O N B

 button’s Text property. Each radio button also should have a unique access
key, which allows the user to select the button using the keyboard. In the next
set of steps, you will add the missing Subtraction radio button to the form.

To add a radio button to the form:

1. Click the RadioButton tool in the toolbox and then drag the mouse
pointer into the Operation group box, placing it below the Addition
radio button. Release the mouse button. Th e RadioButton1 control
appears in the group box.

2. Th e three-character ID for a radio button’s name is rad. Change the
RadioButton1 control’s name to radSubtraction, and then change its
Text property to &Subtraction. Also change its AutoSize property to
False. Position and size the radio button as shown in Figure 5-29.

Figure 5-29 Subtraction radio button added to the Operation group box

Two groups of radio buttons appear in the Math Practice interface: one
group contains the two Grade radio buttons and the other contains the two
Operation radio buttons. To include two groups of radio buttons in an inter-
face, at least one of the groups must be placed within a container, such as a
group box. Otherwise, the radio buttons are considered to be in the same
group and only one can be selected at any one time. In this case, the radio
buttons pertaining to the grade choice are contained in the Grade group box,
and the radio buttons pertaining to the operation choice are contained in
the Operation group box. Placing each group of radio buttons in a separate
group box allows the user to select one button from each group.

Keep in mind that the minimum number of radio buttons in a group is two,
because the only way to deselect a radio button is to select another radio
button. Th e recommended maximum number of radio buttons in a group
is seven. It is customary in Windows applications to have one of the radio
buttons in each group already selected when the user interface fi rst appears.
Th e automatically selected radio button is called the default radio button and
is either the radio button that represents the user’s most likely choice or the
fi rst radio button in the group. You designate the default radio button by set-
ting the button’s Checked property to the Boolean value True. In the Math
Practice application, you will make the fi rst radio button in each group the
default radio button.

START HERE

C7718_ch05.indd 291C7718_ch05.indd 291 14/03/11 8:23 PM14/03/11 8:23 PM

292

C H A P T E R 5 More on the Selection Structure

To designate a default radio button in each group:

1. Click the Grade 1 (1-10) radio button and then set its Checked
property to True. When you set the Checked property to True in the
Properties window, a colored dot appears inside the button’s circle to
indicate that the button is selected.

2. Click the Addition radio button and then set its Checked property
to True. A colored dot appears inside the circle in the Addition radio
button.

GUI DESIGN TIP Radio Button Standards

 • Use radio buttons to limit the user to one choice in a group of related but
mutually exclusive choices.

 • The minimum number of radio buttons in a group is two and the
recommended maximum number is seven.

 • The label in the radio button’s Text property should be entered using
sentence capitalization.

 • Assign a unique access key to each radio button in an interface.

 • Use a container (such as a group box) to create separate groups of radio
buttons. Only one button in each group can be selected at any one time.

 • Designate a default radio button in each group of radio buttons.

Adding a Check Box to the Interface
You use the CheckBox tool in the toolbox to add a check box to a form. Like
radio buttons, check boxes can be either selected or deselected. Also like
radio buttons, you can determine whether a check box is selected by look-
ing at the value in its Checked property during run time: a True value indi-
cates that the check box is selected, whereas a False value indicates that it
is not selected. However, unlike radio buttons, check boxes provide one or
more independent and nonexclusive items from which the user can choose.
Whereas only one button in a group of radio buttons can be selected at any
one time, any number of check boxes on a form can be selected at the same
time. Each check box on a form should be labeled to make its purpose obvi-
ous. You enter the label using sentence capitalization in the check box’s Text
property. Each check box also should have a unique access key.

To add a check box to the interface:

1. Click the CheckBox tool in the toolbox and then drag the mouse pointer
onto the form, positioning it immediately above the grpSummary
control. (See Figure 5-30 for the location of the grpSummary control.)
Release the mouse button. Th e CheckBox1 control appears on the form.

2. Th e three-character ID for a check box’s name is chk. Change the
CheckBox1 control’s name to chkSummary, and then change its Text
property to &Display summary. Position the check box as shown in
Figure 5-30.

START HERE

START HERE

C7718_ch05.indd 292C7718_ch05.indd 292 14/03/11 8:23 PM14/03/11 8:23 PM

293

Creating the Math Practice Application L E S S O N B

chkSummary

grpSummary

Figure 5-30 Display summary check box added to the form

GUI DESIGN TIP Check Box Standards

 • Use check boxes to allow the user to select any number of choices from
a group of one or more independent and nonexclusive choices.

 • The label in the check box’s Text property should be entered using
sentence capitalization.

 • Assign a unique access key to each check box in an interface.

Now that you have completed the user interface, you can lock the controls in
place and then set each control’s TabIndex property.

To lock the controls and then set each control’s TabIndex property:

1. Right-click the form and then click Lock Controls on the context
menu.

2. Click View on the menu bar and then click Tab Order. Use the
information shown in Figure 5-31 to set the TabIndex values for the
controls. (As you learned in Chapter 2, picture boxes do not have a
TabIndex property.) When you are fi nished, press Esc to remove the
TabIndex boxes from the form.

Figure 5-31 Correct TabIndex values

START HERE

C7718_ch05.indd 293C7718_ch05.indd 293 14/03/11 8:23 PM14/03/11 8:23 PM

294

C H A P T E R 5 More on the Selection Structure

Next, you will start the application to observe how you select and deselect
radio buttons and check boxes.

To select and deselect radio buttons and check boxes:

1. Save the solution and then start the application. Notice that the Grade
1 (1-10) and Addition radio buttons are already selected. Also notice
that the four picture boxes located at the bottom of the form, as well as
the grpSummary control and its contents, do not appear in the inter-
face when the application is started. Th is is because the Visible prop-
erty of each of those controls is set to False in the Properties window.
You will learn more about a control’s Visible property in Lesson C.

2. You can select a diff erent radio button by clicking it. You can click
either the circle or the text that appears inside the radio button. Click
the Subtraction radio button. Th e computer selects the Subtraction
radio button as it deselects the Addition radio button. Th is is because
both radio buttons belong to the same group and only one radio but-
ton in a group can be selected at any one time.

3. Click the Grade 2 (10-99) radio button. Th e computer selects the
Grade 2 (10-99) radio button as it deselects the Grade 1 (1-10) radio
button. Here again, the Grade radio buttons belong to the same
group, so selecting one deselects the other.

4. After selecting a radio button in a group, you can use the up and
down arrow keys on your keyboard to select another radio button in
the group. Press the up arrow key to select the Grade 1 (1-10) radio
button, and then press the down arrow key to select the Grade 2 (10-
99) radio button.

5. Press Tab. Notice that the focus moves to the Subtraction radio but-
ton rather than to the Addition radio button. In a group of radio but-
tons, only the selected radio button receives the focus when the user
tabs to the group.

6. You can select a check box by clicking either the square or the text
that appears inside the control. Click the Display summary check
box to select it. A check mark appears inside the check box to indicate
that the check box is selected.

7. Click the Display summary check box to deselect it. Th e computer
removes the check mark from the check box.

8. When a check box has the focus, you can use the Spacebar on your
keyboard to select and deselect it. Press the Spacebar to select the
Display summary check box, and then press the Spacebar again to
deselect the check box. Click the Exit button.

Coding the Math Practice Application
According to the application’s TOE chart, which is shown in Figure 5-32, the
form’s Load event procedure and the Click event procedures for seven of the
controls need to be coded. In this lesson, you will code all but the Click event
procedures for the btnExit control (which has already been coded for you)
and the btnCheckAnswer and chkSummary controls (which you will code in
Lesson C).

START HERE

C7718_ch05.indd 294C7718_ch05.indd 294 14/03/11 8:23 PM14/03/11 8:23 PM

295

Coding the Math Practice Application L E S S O N B

Task Object Event

End the application btnExit Click

Display an addition problem frmMain Load

1. Display the plus sign in picOperator radAddition Click
2. Generate and display two random integers in lblNum1

and lblNum2

1. Display the minus sign in picOperator radSubtraction Click
2. Generate and display two random integers in lblNum1

and lblNum2

Generate and display two random integers in lblNum1 radGrade1, radGrade2 Click
and lblNum2

Show or hide the grpSummary control chkSummary Click

1. Calculate the correct answer to the math problem btnCheckAnswer Click
2. Compare the correct answer to the user’s answer
3. Display either the happy face or neutral face in picFace
4. If the user’s answer is correct, generate and display

two random integers in lblNum1 and lblNum2
5. If the user’s answer is incorrect, display the “Try again!” message
6. Add 1 to the number of either correct or incorrect responses
7. Display the number of correct and incorrect responses in

lblCorrect and lblIncorrect, respectively
8. Send the focus to txtAnswer

Display the number of correct responses (from lblCorrect None
btnCheckAnswer)

Display the number of incorrect responses (from lblIncorrect None
btnCheckAnswer)

Display two random integers (from radGrade1, lblNum1, lblNum2 None
radGrade2, radAddition, radSubtraction, btnCheckAnswer)

Display either the plus sign or the minus sign (from picOperator None
radAddition and radSubtraction)

Display either the happy face or neutral face (from picFace None
btnCheckAnswer)

Get and display the user’s answer txtAnswer None

Figure 5-32 TOE chart for the Math Practice application

Notice that the task of generating and displaying two random integers in the
lblNum1 and lblNum2 controls appears in the Task column for fi ve of the
controls. Th e task is listed as Step 2 for the radAddition and radSubtraction
controls. It is listed as the only task for the radGrade1 and radGrade2 con-
trols, and it also appears in Step 4 for the btnCheckAnswer control. Rather
than entering the appropriate code in the Click event procedures for each
of the fi ve controls, you will enter the code in an independent Sub proce-
dure. You then will have the fi ve Click event procedures call (invoke) the Sub
procedure.

C7718_ch05.indd 295C7718_ch05.indd 295 14/03/11 8:23 PM14/03/11 8:23 PM

296

C H A P T E R 5 More on the Selection Structure

Creating an Independent Sub Procedure
Th ere are two types of Sub procedures in Visual Basic: event procedures and
independent Sub procedures. Th e procedures coded in the previous chap-
ters were event procedures. An event procedure is a Sub procedure that is
 associated with a specifi c object and event, such as a button’s Click event or
a text box’s TextChanged event. Th e computer automatically processes an
event procedure when the event occurs. An independent Sub procedure, on
the other hand, is a procedure that is independent of any object and event.
An independent Sub procedure is processed only when called (invoked)
from code.

Programmers use independent Sub procedures for several reasons. First, they
allow the programmer to avoid duplicating code when diff erent sections of a
program need to perform the same task. Rather than enter the code in each
of those sections, the programmer can enter the code in a procedure and
then have each section call the procedure to perform its task when needed.
Second, consider an event procedure that must perform many tasks. To keep
the event procedure’s code from getting unwieldy and diffi cult to understand,
the programmer can assign some of the tasks to one or more indepen-
dent Sub procedures. Doing this makes the event procedure easier to code,
because it allows the programmer to concentrate on one small piece of the
code at a time. And fi nally, independent Sub procedures are used extensively
in large and complex programs, which typically are written by a team of pro-
grammers. Th e programming team will break up the program into small and
manageable tasks, and then assign some of the tasks to diff erent team mem-
bers to be coded as independent Sub procedures. Doing this allows more
than one programmer to work on the program at the same time, decreasing
the time it takes to write the program.

Figure 5-33 shows the syntax for creating an independent Sub procedure in
Visual Basic. It also includes an example of an independent Sub procedure,
as well as the steps for entering an independent Sub procedure in the Code
Editor window. Some programmers enter independent Sub procedures above
the fi rst event procedure, while others enter them below the last event proce-
dure. Still others enter them either immediately above or immediately below
the procedure from which they are invoked. In this book, the independent
Sub procedures will usually be entered above the fi rst event procedure in the
Code Editor window.

As the syntax in Figure 5-33 shows, independent Sub procedures have both
a procedure header and a procedure footer. In most cases, the procedure
header begins with the Private keyword, which indicates that the proce-
dure can be used only within the current Code Editor window. Following
the Private keyword is the Sub keyword, which identifi es the procedure
as a Sub procedure. After the Sub keyword is the procedure name. Th e rules
for naming an independent Sub procedure are the same as those for naming
variables; however, procedure names are usually entered using Pascal case.
Th e Sub procedure’s name should indicate the task the procedure performs.
It is a common practice to begin the name with a verb. For example, a good
name for a Sub procedure that clears the contents of three label controls is
ClearLabels.

When you enter a
procedure below
the last event
procedure in the
Code Editor win-

dow, be sure to enter it
above the End Class
clause.

Using Pascal
case, you capital-
ize the fi rst letter
in the procedure
name and the

fi rst letter of each subse-
quent word in the name.

C7718_ch05.indd 296C7718_ch05.indd 296 14/03/11 8:23 PM14/03/11 8:23 PM

297

Creating an Independent Sub Procedure L E S S O N B

Following the procedure name in the procedure header is a set of parentheses
that contains an optional parameterList. Th e parameterList lists the data
type and name of one or more parameters. As you learned in Chapter 4,
the parameters store the information passed to the procedure when it is
invoked. If the procedure does not require any information to be passed to
it, an empty set of parentheses follows the procedure name in the procedure
header. You will learn more about parameters in Chapter 7. A Sub procedure
ends with its procedure footer, which is always End Sub. Between the proce-
dure header and procedure footer, you enter the instructions to be processed
when the procedure is invoked.

Figure 5-33 Independent Sub procedure syntax, example, and steps

procedure header

procedure footer

clears the
contents of
the labels

Syntax
Private Sub procedureName([parameterList])
 statements
End Sub

Example
Private Sub ClearLabels()
 lblFirstName.Text = String.Empty
 lblLastName.Text = String.Empty
 lblAge.Text = String.Empty
End Sub

Steps
1. Click a blank line in the Code Editor window. The blank line can be anywhere

between the Public Class and End Class clauses. However, it must be outside
any other Sub or Function procedure.

2. Type the Sub procedure header and then press Enter. The Code Editor
automatically enters the End Sub clause for you.

Th e Math Practice application will use an independent Sub procedure named
GenerateAndDisplayIntegers. Th e procedure’s pseudocode is shown in
Figure 5-34.

GenerateAndDisplayIntegers procedure

1. declare variables to store the two random integers
2. if the Grade 1 radio button is selected
 generate two random integers from 1 through 10
 and store them in variables
 else
 generate two random integers from 10 through 99
 and store them in variables
 end if
3. if the Subtraction radio button is selected and the fi rst random integer
 is less than the second random integer
 swap the two random integers stored in the variables
 end if
4. display the random integers in the lblNum1 and lblNum2 controls

Figure 5-34 Pseudocode for the GenerateAndDisplayIntegers procedure

C7718_ch05.indd 297C7718_ch05.indd 297 14/03/11 8:23 PM14/03/11 8:23 PM

298

C H A P T E R 5 More on the Selection Structure

To begin coding the GenerateAndDisplayIntegers procedure:

1. Open the Code Editor window. Replace <your name> and <current
date> in the comments with your name and the current date,
respectively.

2. Click the blank line below the Public Class frmMain clause, and
then press Enter to insert another blank line. In the new blank line,
type the following procedure header and then press Enter. When
you press Enter, the Code Editor will automatically enter the End Sub
clause for you.

Private Sub GenerateAndDisplayIntegers()

3. Type the following comment and then press Enter twice:

' generates and displays two random integers

4. Th e procedure will use two Integer variables to store the two random
integers it generates. Enter the following two Dim statements. Press
Enter twice after typing the second Dim statement.

Dim intRandom1 As Integer
Dim intRandom2 As Integer

5. Step 2 in the pseudocode is a selection structure whose condition
determines whether the Grade 1 radio button is selected. Enter the
following comment and If clause:

' generate random integers
If radGrade1.Checked Th en

If the Grade 1 radio button is selected, then the GenerateAndDisplayIntegers
procedure should generate two random integers from 1 through 10.

Generating Random Integers
Most programming languages provide a pseudo-random number generator,
which is a device that produces a sequence of numbers that meet certain sta-
tistical requirements for randomness. Pseudo-random numbers are chosen
with equal probability from a fi nite set of numbers. Th e chosen numbers are
not completely random, because a defi nite mathematical algorithm is used
to select them. However, they are suffi ciently random for practical purposes.
Th e pseudo-random number generator in Visual Basic is an object whose
data type is Random.

Figure 5-35 shows the syntax for generating random integers in Visual Basic,
and it includes examples of using the syntax. As the fi gure indicates, you fi rst
create a Random object to represent the pseudo-random number generator.
You create the Random object by declaring it in a Dim statement. You enter
the Dim statement in the procedure that will use the number generator. After
the Random object is created, you can use the object’s Random.Next method

START HERE

You also can
write the If clause
in Step 5 as If
radGrade1.
Checked =
True Then.

In Discovery
Exercise 5 at the
end of this les-
son, you will
learn how to use

the Random.NextDouble
method to generate a
random number contain-
ing a decimal place.

C7718_ch05.indd 298C7718_ch05.indd 298 14/03/11 8:23 PM14/03/11 8:23 PM

299

Creating an Independent Sub Procedure L E S S O N B

to generate random integers. In the method’s syntax, randomObjectName is
the name of the Random object. Th e minValue and maxValue arguments in
the syntax must be integers, and minValue must be less than maxValue. Th e
Random.Next method returns an integer that is greater than or equal to min-
Value, but less than maxValue.

Generating random integers

Syntax
Dim randomObjectName As New Random
randomObjectName.Next(minValue, maxValue)

Example 1
Dim randomGenerator As New Random
intNumber = randomGenerator.Next(1, 51)
The Dim statement creates a Random object named randomGenerator. The
assignment statement generates a random integer that is greater than or equal to 1,
but less than 51, and then assigns the random integer to the intNumber variable.

Example 2
Dim randomGen As New Random
intNum = randomGen.Next(-10, 0)
The Dim statement creates a Random object named randomGen. The assignment
statement generates a random integer that is greater than or equal to –10, but less
than 0, and then assigns the random integer to the intNum variable.

Figure 5-35 Syntax and examples of generating random integers

To continue coding the GenerateAndDisplayIntegers procedure:

1. Click the blank line below the second Dim statement and then enter
the following Dim statement:

Dim randomGenerator As New Random

2. If the Grade 1 radio button is selected, the procedure should generate
two random integers from 1 through 10. To generate integers within
that range, you use the number 1 as the Random.Next method’s
minValue and the number 11 as its maxValue. Click the blank line
above the End If clause and then enter the following two assignment
statements:

intRandom1 = randomGenerator.Next(1, 11)
intRandom2 = randomGenerator.Next(1, 11)

3. If the Grade 1 radio button is not selected, then the Grade 2 radio
button must be selected. In that case, the procedure should generate
two integers from 10 through 99. Enter the additional code shown
in Figure 5-36 and then position the insertion point as shown in
the fi gure.

START HERE

C7718_ch05.indd 299C7718_ch05.indd 299 14/03/11 8:23 PM14/03/11 8:23 PM

300

C H A P T E R 5 More on the Selection Structure

position the
insertion point here

enter these three
lines of code

Figure 5-36 Random number generation code entered
in the procedure

4. Step 3 in the procedure’s pseudocode is another selection struc-
ture. Th is selection structure’s condition determines whether the
Subtraction radio button is selected and also whether the fi rst ran-
dom integer is less than the second random integer. If both sub-
conditions are true, then the procedure should swap (interchange)
the two random integers, because no subtraction problem should
result in a negative number. Enter the additional comments and code
shown in Figure 5-37 and then position the insertion point as shown
in the fi gure.

enter these comments
and six lines of code

position the insertion
point here

Figure 5-37 Additional comments and code entered in the procedure

5. Th e last step in the pseudocode is to display the random integers in
the lblNum1 and lblNum2 controls. Enter the following comment and
assignment statements and then save the solution:

' display integers
lblNum1.Text = Convert.ToString(intRandom1)
lblNum2.Text = Convert.ToString(intRandom2)

C7718_ch05.indd 300C7718_ch05.indd 300 14/03/11 8:23 PM14/03/11 8:23 PM

301

Coding the Grade Radio Buttons’ Click Event Procedures L E S S O N B

Coding the Grade Radio Buttons’ Click Event
Procedures
According to the application’s TOE chart (shown earlier in Figure 5-32), the
radGrade1 and radGrade2 controls should generate and display two random
integers when clicked. Th e code to generate and display the random integers
is entered in the GenerateAndDisplayIntegers procedure. Th e radio buttons
can use the procedure’s code by invoking the procedure. You can invoke an
independent Sub procedure using the Call statement. Th e statement’s syntax
is shown in Figure 5-38. In the syntax, procedureName is the name of the
procedure you are calling (invoking), and argumentList (which is optional)
is a comma-separated list of arguments you want passed to the procedure.
If you have no information to pass to the procedure that you are calling, as
is the case in the GenerateAndDisplayIntegers procedure, you include an
empty set of parentheses after the procedureName in the Call statement.
(You will learn how to pass information to a procedure in Chapter 7.)

Figure 5-38 also shows two examples of calling the GenerateAndDisplayIntegers
procedure from the Click event procedures for the radGrade1 and radGrade2
controls. In Example 1, the Call statement is entered in both Click event
procedures. In Example 2, the Call statement is entered in a procedure
named ProcessGradeRadioButtons. According to its Handles clause, the
ProcessGradeRadioButtons procedure is invoked when the Click event
occurs for either the radGrade1 or radGrade2 control. In this case, neither
example is better than the other; both simply represent diff erent ways of
 performing the same task.

Call Statement

Syntax
Call procedureName([argumentList])

Example 1
Private Sub radGrade1_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles radGrade1.Click
 Call GenerateAndDisplayIntegers()
End Sub

Private Sub radGrade2_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles radGrade2.Click
 Call GenerateAndDisplayIntegers()
End Sub

Example 2
Private Sub ProcessGradeRadioButtons(ByVal sender As Object,
 ByVal e As System.EventArgs
) Handles radGrade1.Click, radGrade2.Click
 Call GenerateAndDisplayIntegers()
End Sub

Figure 5-38 Syntax and examples of the Call statement

The Call key-
word is optional
when invoking a
Sub procedure.
Therefore, you
also can call the

procedure in Figure 5-38
using the statement
GenerateAndDisplay
Integers().

C7718_ch05.indd 301C7718_ch05.indd 301 14/03/11 8:23 PM14/03/11 8:23 PM

302

C H A P T E R 5 More on the Selection Structure

To call the GenerateAndDisplayIntegers procedure when either Grade
radio button is clicked:

1. Open the code template for the radGrade1 control’s Click event
procedure. Change radGrade1_Click in the procedure header to
ProcessGradeRadioButtons.

2. Modify the procedure header as shown in Figure 5-39. Be sure to add
the radGrade2 control’s Click event to the Handles clause. Also type
the Call statement shown in the fi gure.

Figure 5-39 Completed ProcessGradeRadioButtons procedure

When the user clicks either of the two Grade radio buttons, the computer
will process the Call statement contained in the ProcessGradeRadioButtons
 procedure. When processing the Call statement, the computer leaves the
ProcessGradeRadioButtons procedure, temporarily, to process the instruc-
tions contained in the GenerateAndDisplayIntegers procedure. When the
GenerateAndDisplayIntegers procedure ends, the computer returns to the
line below the Call statement in the ProcessGradeRadioButtons procedure.
Th e line below the Call statement is the End Sub clause, which ends the
ProcessGradeRadioButtons procedure. In the next set of steps, you will test
the code you have entered so far to verify that it is working correctly.

To test the code you have entered so far:

1. Save the solution and then start the application. Click the Grade
2 (10-99) radio button. Two random integers from 10 through
99 appear in the interface, as shown in Figure 5-40. Your random
 integers might be diff erent from the ones shown in the fi gure.

your random integers
might be different

Figure 5-40 Random integers shown in the interface

2. Click the Grade 1 (1-10) radio button. Two random integers from 1
through 10 appear in the interface. Click the Exit button.

START HERE

START HERE

C7718_ch05.indd 302C7718_ch05.indd 302 14/03/11 8:23 PM14/03/11 8:23 PM

303

Coding the Operation Radio Buttons’ Click Event Procedures L E S S O N B

Coding the Operation Radio Buttons’ Click Event
Procedures
According to the application’s TOE chart, the Click event procedures for
both Operation radio buttons should display the appropriate mathemati-
cal operator (either a plus sign or a minus sign) in the picOperator control.
Th e plus and minus signs are stored in the picPlus and picMinus controls,
respectively, which are located at the bottom of the form. Both procedures
also should generate two random integers and then display the integers in the
lblNum1 and lblNum2 controls.

To code the Click event procedures for the Operation radio buttons:

1. Open the code template for the radAddition control’s Click event
 procedure. Type the following comment and then press Enter twice:
' display the plus sign and random numbers

2. You can display the plus sign in the picOperator control by assigning the
value stored in the picPlus control’s Image property to the picOperator
control’s Image property. Enter the following assignment statement:
picOperator.Image = picPlus.Image

3. Now, enter the following Call statement:
Call GenerateAndDisplayIntegers()

4. Open the code template for the radSubtraction control’s Click event
procedure. Type the following comment and then press Enter twice:
' display the minus sign and random numbers

5. Next, enter the following assignment and Call statements:
picOperator.Image = picMinus.Image
Call GenerateAndDisplayIntegers()

6. Save the solution and then start the application. Notice that an
 addition problem does not automatically appear in the interface, even
though the Grade 1 and Addition radio buttons are selected. You will
fi x that problem in the next section.

7. Click the Subtraction radio button. A minus sign appears in the
 picOperator control, and two random integers from 1 through 10
appear in the interface.

8. Click the Addition radio button. A plus sign appears in the
 picOperator control, and two random integers from 1 through 10
appear in the interface.

9. Click the Grade 2 (10-99) radio button. Two random integers from
10 through 99 appear in the interface. Click the Exit button.

Th e application should automatically display an addition problem when
the Math Practice form fi rst appears on the screen. You can accomplish
this task in two ways: you can either use the Call statement to call the
GenerateAndDisplayIntegers procedure, or use the PerformClick method
to invoke the radAddition control’s Click event procedure. Whichever way
you choose, the appropriate code must be entered in the form’s Load event
procedure, which is the last procedure you code in this lesson.

START HERE

During run time,
you can remove
a graphic from a
picture box by
assigning the

keyword Nothing to
the picture box’s Image
property.

C7718_ch05.indd 303C7718_ch05.indd 303 14/03/11 8:23 PM14/03/11 8:23 PM

304

C H A P T E R 5 More on the Selection Structure

Coding the Form’s Load Event Procedure
As you learned in Chapter 3, a form’s Load event occurs when the application
is started and the form is displayed the fi rst time. Th e form does not appear
on the screen until all of the instructions in its Load event procedure are
processed. To automatically display an addition problem when the Math
Practice form appears, you can enter either one of the following statements
in the Load event procedure: Call GenerateAndDisplayIntegers()
or radAddition.PerformClick(). Th e latter statement uses the
PerformClick method to invoke the Addition radio button’s Click event,
which causes the computer to process the code contained in the Click event
procedure. Th e PerformClick method’s syntax is object.PerformClick(),
where object is the name of the object whose Click event you want invoked.

To automatically display an addition problem when the form fi rst appears:

1. Click the Class Name list arrow in the Code Editor window and
then click (frmMain Events) in the list. Click the Method Name list
arrow and then click Load in the list. Th e template for the frmMain
Load event procedure appears in the Code Editor window.

2. Type the following comment and then press Enter twice:

' display an addition problem

3. Next, enter the following PerformClick method:

radAddition.PerformClick()

4. Save the solution and then start the application. An addition problem
appears in the interface.

5. Click the Exit button. Close the Code Editor window and then close
the solution.

Figure 5-41 shows the application’s code at the end of Lesson B.

START HERE

 1 ' Name: Math Project
 2 ' Purpose: Displays math problems
 3 ' Programmer: <your name> on <current date>
 4
 5 Option Explicit On
 6 Option Strict On
 7 Option Infer Off
 8
 9 Public Class frmMain
10
11 Private Sub GenerateAndDisplayIntegers()
12 ' generates and displays two random integers
13
14 Dim intRandom1 As Integer
15 Dim intRandom2 As Integer
16 Dim randomGenerator As New Random
17
18 ' generate random integers
19 If radGrade1.Checked Then
20 intRandom1 = randomGenerator.Next(1, 11)
21 intRandom2 = randomGenerator.Next(1, 11)

Figure 5-41 Math Practice application’s code at the end of Lesson B (continues)

C7718_ch05.indd 304C7718_ch05.indd 304 14/03/11 8:23 PM14/03/11 8:23 PM

305

Coding the Form’s Load Event Procedure L E S S O N B

Figure 5-41 Math Practice application’s code at the end of Lesson B

22 Else
23 intRandom1 = randomGenerator.Next(10, 100)
24 intRandom2 = randomGenerator.Next(10, 100)
25 End If
26
27 ' swap integers if the subtraction problem
28 ' would result in a negative answer
29 If radSubtraction.Checked AndAlso
 intRandom1 < intRandom2 Then
30 Dim intTemp As Integer
31 intTemp = intRandom1
32 intRandom1 = intRandom2
33 intRandom2 = intTemp
34 End If
35
36 ' display integers
37 lblNum1.Text = Convert.ToString(intRandom1)
38 lblNum2.Text = Convert.ToString(intRandom2)
39
40 End Sub
41 Private Sub btnExit_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnExit.Click
42 Me.Close()
43 End Sub
44
45 Private Sub ProcessGradeRadioButtons(
 ByVal sender As Object,
46 ByVal e As System.EventArgs
47) Handles radGrade1.Click, radGrade2.Click
48 Call GenerateAndDisplayIntegers()
49 End Sub
50
51 Private Sub radAddition_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles radAddition.Click
52 ' display the plus sign and random numbers
53
54 picOperator.Image = picPlus.Image
55 Call GenerateAndDisplayIntegers()
56
57 End Sub
58
59 Private Sub radSubtraction_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles radSubtraction.Click
60 ' display the minus sign and random numbers
61
62 picOperator.Image = picMinus.Image
63 Call GenerateAndDisplayIntegers()
64
65 End Sub
66
67 Private Sub frmMain_Load(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Me.Load
68 ' display an addition problem
69
70 radAddition.PerformClick()
71
72 End Sub
73 End Class

(continued)

C7718_ch05.indd 305C7718_ch05.indd 305 14/03/11 8:23 PM14/03/11 8:23 PM

306

C H A P T E R 5 More on the Selection Structure

Lesson B Summary

 • To limit the user to only one choice in a group of two or more related but
mutually exclusive choices:

Use the RadioButton tool to add a radio button control to the form. To
include two groups of radio buttons on a form, at least one of the groups
must be placed within a container, such as a group box.

 • To allow the user to select any number of choices from a group of one or
more independent and nonexclusive choices:

Use the CheckBox tool to add a check box control to the form.

 • To create a collection of code that can be invoked from one or more places
in a program:

Create an independent Sub procedure. Th e Sub procedure’s name should
indicate the task performed by the procedure. Th e name typically begins
with a verb and is entered using Pascal case.

 • To generate random integers:

Create a Random object to represent the pseudo-random number
generator. Typically, the syntax for creating a Random object is
Dim randomObjectName As New Random. You then use the
Random.Next method to generate a random integer. Th e method’s syntax
is randomObjectName.Next(minValue, maxValue). Th e Random.Next
method returns an integer that is greater than or equal to minValue, but
less than maxValue.

 • To call (invoke) an independent Sub procedure:

Use the Call statement. Th e statement’s syntax is Call procedureName
([argumentList]). In the syntax, procedureName is the name of the proce-
dure you want to call, and argumentList (which is optional) contains the
information you want to send to the Sub procedure.

 • To invoke an object’s Click event from code:

Use the PerformClick method. Th e method’s syntax is object.PerformClick(),
in which object is the name of the object whose Click event you want invoked.

Lesson B Key Terms
Call statement—the Visual Basic statement used to invoke an independent
Sub procedure

Check boxes—controls used to off er the user one or more independent and
nonexclusive choices

Default radio button—the radio button that is automatically selected when an
interface fi rst appears

C7718_ch05.indd 306C7718_ch05.indd 306 14/03/11 8:23 PM14/03/11 8:23 PM

307

Lesson B Review Questions L E S S O N B

Independent Sub procedure—a procedure that is not associated with
any specifi c object or event and is processed only when invoked (called)
from code

PerformClick method—the method used to invoke a control’s Click event

Pseudo-random number generator—a device that produces a sequence of
numbers that meet certain statistical requirements for randomness; the
pseudo-random number generator in Visual Basic is an object whose data
type is Random

Radio buttons—controls used to limit the user to only one choice from a
group of two or more related but mutually exclusive choices

Random object—represents the pseudo-random number generator in Visual
Basic

Random.Next method—used to generate a random integer that is greater
than or equal to a minimum value, but less than a maximum value

Lesson B Review Questions

1. What is the minimum number of radio buttons in a group?

a. one

b. two

c. three

d. Th ere is no minimum number of radio buttons.

2. Th e text appearing in check boxes and radio buttons should be
entered using .

a. sentence capitalization

b. book title capitalization

c. either book title capitalization or sentence capitalization

3. It is customary in Windows applications to designate a default
check box.

a. True

b. False

4. A form contains six radio buttons. Th ree of the radio buttons are con-
tained in a group box. How many of the radio buttons in the interface
can be selected at the same time?

a. one

b. two

c. three

d. six

C7718_ch05.indd 307C7718_ch05.indd 307 14/03/11 8:23 PM14/03/11 8:23 PM

308

C H A P T E R 5 More on the Selection Structure

5. A form contains six check boxes. Th ree of the check boxes are con-
tained in a group box. How many of the check boxes can be selected
at the same time?

a. one

b. two

c. three

d. six

6. If a radio button is selected, its property contains the
Boolean value True.

a. Checked

b. On

c. Selected

d. Selection

7. Which of the following statements declares an object to represent the
pseudo-random number generator in a procedure?

a. Dim randGen As New RandomNumber

b. Dim randGen As New Generator

c. Dim randGen As New Random

d. Dim randGen As New RandomObject

8. Which of the following statements generates a random integer from 1
to 25, inclusive?

a. intNum = randGen.Next(1, 25)

b. intNum = randGen.Next(1, 26)

c. intNum = randGen(1, 25)

d. intNum = randGen.NextNumber(1, 26)

9. You can use the statement to invoke an independent
Sub procedure.

a. Call

b. Get

c. Invoke

d. ProcedureCall

C7718_ch05.indd 308C7718_ch05.indd 308 14/03/11 8:23 PM14/03/11 8:23 PM

309

Lesson B Exercises L E S S O N B

10. Which of the following statements invokes the radAlaska control’s
Click event?

a. radAlaska.Click()

b. radAlaska.ClickIt()

c. radAlaska.PerformClick()

d. PerformClick.radAlaska()

Lesson B Exercises

1. In this exercise, you modify the Math Practice application from this
lesson. Use Windows to make a copy of the Math Solution folder.
Rename the copy Math Solution-Call. Open the Math Solution (Math
Solution.sln) fi le contained in the Math Solution-Call folder. Open
the designer and Code Editor windows. Replace the radAddition.
PerformClick() statement in the form’s Load event procedure with
a Call statement that invokes the GenerateAndDisplayIntegers pro-
cedure. Save the solution and then start the application. An addition
problem automatically appears in the interface. Close the Code Editor
window and then close the solution.

2. In this exercise, you code an application that allows the user to select
the name of a state and the name of a city. After making both selec-
tions, the user can click the Verify Answer button to verify that the
selected city is the capital of the selected state. Open the Capitals
Solution (Capitals Solution.sln) fi le contained in the VB2010\Chap05\
Capitals Solution folder. If necessary, open the designer window.

a. Designate the fi rst radio button in each group as the default radio
button for the group.

b. Enter the code to invoke the Click event for the two default radio
buttons when the form fi rst appears on the screen.

c. Declare two class-level String variables named strCapital and
strChoice.

d. Th e Click event procedure for each State radio button should
assign the appropriate capital to the strCapital variable and
then remove the contents of the lblMsg control. Code each State
radio button’s Click event procedure.

e. Th e Click event procedure for each Capital radio button should
assign the selected capital to the strChoice variable and then
remove the contents of the lblMsg control. Code each Capital
radio button’s Click event procedure.

f. Th e Verify Answer button’s Click event procedure should com-
pare the correct capital with the capital chosen by the user. If the
user selected the correct capital, the procedure should display the
word “Correct” in the lblMsg control; otherwise, it should display
the word “Incorrect” in the lblMsg control. Code the button’s
Click event procedure.

INTRODUCTORY

INTRODUCTORY

C7718_ch05.indd 309C7718_ch05.indd 309 14/03/11 8:23 PM14/03/11 8:23 PM

310

C H A P T E R 5 More on the Selection Structure

g. Save the solution and then start the application. Test the
 application by selecting Illinois from the State group and Salem
from the Capital group. Click the Verify Answer button. Th e
word “Incorrect” should appear in the lblMsg control. Now select
Wisconsin from the State group and Madison from the Capital
group. Click the Verify Answer button. Th e word “Correct”
should appear in the lblMsg control. Close the Code Editor
 window and then close the solution.

3. Open the Juarez Solution (Juarez Solution.sln) fi le contained in
the VB2010\Chap05\Juarez Solution folder. If necessary, open the
designer window.

a. Th e Display Grade button’s Click event procedure should display
a letter grade. Th e appropriate letter grade is based on the average
of three test scores, as indicated in Figure 5-42. Each test is worth
100 points. Th e procedure should display an appropriate message
if any of the test scores cannot be converted to the Double data
type. Code the Click event procedure.

b. When the user makes a change to the contents of a text box, the
application should remove the contents of the lblGrade control.
Code the appropriate event procedures.

c. Th e application should select a text box’s existing text when
the text box receives the focus. Code the appropriate event
procedures.

d. Save the solution and then start and test the application. Use the
following scores for the fi rst test: 90, 95, and 100. Use the follow-
ing scores for the second test: 83, 72, and 65. Use the following
scores for the third test: 40, 30, and 20. Next, test the application
using letters, and then test it using an empty text box. Close the
Code Editor window and then close the solution.

Average Grade
90 – 100 A
80 – 89 B
70 – 79 C
60 – 69 D
Below 60 F

Figure 5-42 Grade information for Exercise 3

4. In this exercise, you create an application that allows the user to enter
both the number of calories and the number of grams of fat contained
in a specifi c food. Th e application should calculate and display two val-
ues: the food’s fat calories (the number of calories attributed to fat) and
its fat percentage (the ratio of the food’s fat calories to its total calories).
You calculate the number of fat calories in a food by multiplying the
number of fat grams contained in the food by the number 9, because
each gram of fat contains 9 calories. To calculate the fat percentage, you
divide the food’s fat calories by its total calories and then multiply the
result by 100. Th e application should display the message “Th is food is

INTERMEDIATE

INTERMEDIATE

C7718_ch05.indd 310C7718_ch05.indd 310 14/03/11 8:23 PM14/03/11 8:23 PM

311

Lesson B Exercises L E S S O N B

high in fat.” when the fat percentage is over 30%; otherwise, it should
display the message “Th is food is not high in fat.” Create a Visual Basic
Windows application. Use the following names for the solution, proj-
ect, and form fi le, respectively: Fat Calculator Solution, Fat Calculator
Project, and Main Form.vb. Save the application in the VB2010\Chap05
folder. Create the interface shown in Figure 5-43, and then code the
application. Display an appropriate message if the user’s entries cannot
be converted to numbers. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

Figure 5-43 Interface for Exercise 4

Discovery

5. In this exercise, you learn how to generate and display random numbers
containing decimal places. Open the Random Double Solution (Random
Double Solution.sln) fi le contained in the VB2010\Chap05\Random
Double Solution folder. If necessary, open the designer window.

a. You can use the Random.NextDouble method to return a random
number that is greater than or equal to 0.0, but less than 1.0. Th e
syntax of the Random.NextDouble method is randomObjectName.
NextDouble. Code the Display Random Number button’s Click
event procedure so that it displays a random number in the
lblNumber control. Save the solution and then start the application.
Click the Display Random Number button several times. Each time
you click the button, a random number that is greater than or equal
to 0.0, but less than 1.0, appears in the lblNumber control.

b. You can use the following formula to generate random
 numbers within a specifi ed range: (maxValue – minValue + 1)
* randomObjectName.NextDouble + minValue. For example,
assuming the Random object’s name is randGen, the formula
(10 – 1 + 1) * randGen.NextDouble + 1 generates
 random numbers that are greater than or equal to 1.0, but less
than 11.0. Modify the Display Random Number button’s Click
event procedure so that it displays a random number that is
greater than or equal to 25.0, but less than 51.0. Display two
decimal places in the number.

c. Save the solution and then start the application. Click the Display
Random Number button several times. Each time you click the
button, a random number that is greater than or equal to 25.0, but
less than 51.0, appears in the lblNumber control. Close the Code
Editor window and then close the solution.

C7718_ch05.indd 311C7718_ch05.indd 311 14/03/11 8:23 PM14/03/11 8:23 PM

312

C H A P T E R 5 More on the Selection Structure

 ❚ LESSON C
After studying Lesson C, you should be able to:

 • Code a check box’s Click event procedure

 • Show and hide a control

Coding the Check Answer Button’s Click Event
Procedure
To complete the Math Practice application from Lesson B, you need to code
the Click event procedures for the btnCheckAnswer and chkSummary con-
trols. You will code the btnCheckAnswer control’s Click event procedure
fi rst. Figure 5-44 shows the procedure’s pseudocode.

btnCheckAnswer Click event procedure
1. declare the necessary memory locations (variables and any named constants)
2. store the two random numbers and the user’s answer in variables
3. if the Addition radio button is selected
 calculate the correct answer by adding together the values in the
 lblNum1 and lblNum2 controls
 else
 calculate the correct answer by subtracting the value in the lblNum2
 control from the value in the lblNum1 control
 end if
4. if the user’s answer equals the correct answer
 display the happy face icon in the picFace control
 add 1 to the number of correct responses
 clear the contents of the txtAnswer control
 call the GenerateAndDisplayIntegers procedure to generate
 and display two random integers
 else
 display the neutral face icon in the picFace control
 add 1 to the number of incorrect responses
 display the “Try again!” message in a message box
 select the existing text in the txtAnswer control
 end if
5. send the focus to the txtAnswer control
6. display the number of correct and incorrect responses in lblCorrect and lblIncorrect

Figure 5-44 Pseudocode for the btnCheckAnswer control’s Click event procedure

Figure 5-45 lists the memory locations the procedure will use. Notice that
two of the variables will be declared as static variables. As you learned in
Chapter 3, a static variable is a procedure-level variable that retains its value
even when the procedure in which it is declared ends. In this case, the two
variables need to be static variables because they must keep a running tally of
the number of correct and incorrect responses.

The Ch05CVideo
fi le demonstrates
all of the steps
contained in

Lesson C. You can view
the video either before or
after completing the
lesson.

C7718_ch05.indd 312C7718_ch05.indd 312 14/03/11 8:23 PM14/03/11 8:23 PM

313

Coding the Check Answer Button’s Click Event Procedure L E S S O N C

Named constant Purpose
strMSG store the “Try again!” message

Variables Purpose
intNum1 store the random number contained in the lblNum1 control
intNum2 store the random number contained in the lblNum2 control
intUserAnswer store the user’s answer (from the txtAnswer control)
intCorrectAnswer store the correct answer
intCorrectResponses store the number of correct responses made by the user;
 declare as a static variable
intIncorrectResponses store the number of incorrect responses made by the user;
 declare as a static variable

Figure 5-45 Memory locations used by the btnCheckAnswer control’s Click event procedure

To begin coding the btnCheckAnswer control’s Click event procedure:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.

2. Open the Math Solution (Math Solution.sln) fi le from Lesson B.
Th e fi le is contained in the VB2010\Chap05\Math Solution folder. If
 necessary, open the designer window.

3. Open the Code Editor window and then open the code template
for the btnCheckAnswer control’s Click event procedure. Enter the
f ollowing comments. Press Enter twice after typing the last comment.

' calculates the correct answer and then compares
' the correct answer to the user's answer
' keeps track of the number of correct
' and incorrect responses

4. Next, enter the following Const, Dim, and Static statements. Press
Enter twice after typing the last Static statement.

Const strMSG As String = "Try again!"
Dim intNum1 As Integer
Dim intNum2 As Integer
Dim intUserAnswer As Integer
Dim intCorrectAnswer As Integer
Static intCorrectResponses As Integer
Static intIncorrectResponses As Integer

5. Step 2 in the procedure’s pseudocode is to store the random numbers
and the user’s answer in variables. Enter the following comment and
three assignment statements. Press Enter twice after typing the last
assignment statement.

' store random numbers and user's answer in variables
Integer.TryParse(lblNum1.Text, intNum1)
Integer.TryParse(lblNum2.Text, intNum2)
Integer.TryParse(txtAnswer.Text, intUserAnswer)

6. Step 3 in the pseudocode is a selection structure whose condition deter-
mines whether the Addition radio button is selected. If it is, the proce-
dure should add the two random numbers together. Otherwise, it should
subtract the second random number from the fi rst random number.

START HERE

C7718_ch05.indd 313C7718_ch05.indd 313 14/03/11 8:23 PM14/03/11 8:23 PM

314

C H A P T E R 5 More on the Selection Structure

Enter the comments and selection structure shown in Figure 5-46 and
then position the insertion point as shown in the fi gure.

enter these comments
and six lines of code

position the
insertion point here

Figure 5-46 Comments and selection structure entered in the procedure

7. Step 4 in the pseudocode is a selection structure whose condition
determines whether the user’s answer is correct. You can make this
determination by comparing the contents of the intUserAnswer
variable with the contents of the intCorrectAnswer variable. Enter
the following comment and If clause:

' determine whether the user's answer is correct
If intUserAnswer = intCorrectAnswer Th en

8. If the user’s answer is correct, the procedure should perform the follow-
ing four tasks: display the happy face icon in the picFace control, add 1
to the number of correct responses, clear the contents of the txtAnswer
control, and call the GenerateAndDisplayIntegers procedure to generate
and display two random integers. Enter the following four statements:

picFace.Image = picHappy.Image
intCorrectResponses = intCorrectResponses + 1
txtAnswer.Text = String.Empty
Call GenerateAndDisplayIntegers()

9. If the user’s answer is not correct, the procedure should perform
the following four tasks: display the neutral face icon in the picFace
control, add 1 to the number of incorrect responses, display the “Try
again!” message in a message box, and select the existing text in the
txtAnswer control. Enter the additional code shown in Figure 5-47
and then position the insertion point as shown in the fi gure.

position the
insertion point here

enter these seven
lines of code

Figure 5-47 Code entered in the selection structure’s false path

C7718_ch05.indd 314C7718_ch05.indd 314 14/03/11 8:23 PM14/03/11 8:23 PM

315

Coding the Display Summary Check Box’s Click Event Procedure L E S S O N C

10. Th e last two steps in the procedure’s pseudocode are to send the
focus to the txtAnswer control and then display the number of cor-
rect and incorrect responses in the appropriate label controls. Enter
the following three lines of code and then save the solution:

txtAnswer.Focus()
lblCorrect.Text = intCorrectResponses.ToString
lblIncorrect.Text = intIncorrectResponses.ToString

Coding the Display Summary Check Box’s Click
Event Procedure
Recall that the four picture boxes located at the bottom of the form do
not appear in the interface during run time. Th is is because their Visible
property is set to False in the Properties window. Th e Visible property of
the grpSummary control also is set to False, which explains why you do
not see the control and its contents when the form appears on the screen.
According to the application’s TOE chart (shown earlier in Figure 5-32), the
chkSummary control’s Click event procedure is responsible for both showing
and hiding the grpSummary control. Th e procedure should show the group
box when the user selects the check box, and it should hide the group
box when the user deselects the check box. Recall that you can determine
whether a check box was either selected or deselected during run time by
looking at the Boolean value in its Checked property. When it is coded,
the Click event procedure for a check box always will contain a selection
structure that determines whether the check box was selected or deselected
by the user. A selection structure is not necessary in a radio button’s Click
event procedure, because clicking a radio button always selects the button;
the user cannot deselect a radio button by clicking it.

To code the chkSummary control’s Click event procedure:

1. Open the code template for the chkSummary control’s Click event
procedure. Type the following comment and then press Enter twice:

' shows/hides the grpSummary control

2. If the user selects the check box, the procedure should display the
grpSummary control. Th is is accomplished by setting the control’s
Visible property to the Boolean value True. Enter the following If
clause and assignment statement:

If chkSummary.Checked Th en
 grpSummary.Visible = True

3. If the user deselects the check box, the procedure should hide the
grpSummary control. Th is is accomplished by setting the control’s
Visible property to the Boolean value False. Enter the following Else
clause and assignment statement:

Else
 grpSummary.Visible = False

4. If necessary, delete the blank line above the End If clause in the
procedure.

START HERE

You also can
write the If clause
in Step 2 as If
chkSummary.
Checked =
True Then.

C7718_ch05.indd 315C7718_ch05.indd 315 14/03/11 8:23 PM14/03/11 8:23 PM

316

C H A P T E R 5 More on the Selection Structure

5. Save the solution and then start the application. Type the correct
answer to the addition problem and then press Enter to select the
Check Answer button, which is the default button on the form. Th e
happy face icon and a new addition problem appear in the interface.

6. Click the Display summary check box to select it. A check mark
appears in the check box, and the grpSummary control and its con-
tents appear in the interface. Notice that the label controls within
the group box indicate that you have made 1 correct response and 0
incorrect responses.

7. Click the text box in which you enter the answer. Type an incorrect
answer to the current addition problem and then press Enter. A neu-
tral face icon appears in the interface, and a message box appears on
the screen, as shown in Figure 5-48.

Figure 5-48 Result of entering an incorrect response to the addition problem

8. Press Enter to close the message box. Th e number of incorrect
responses changes from 0 to 1, and the incorrect answer is selected in
the txtAnswer control. Type the correct answer to the current addi-
tion problem and then press Enter. Th e number of correct responses
changes from 1 to 2, and the happy face icon appears in the interface.

9. Click the Display summary check box to deselect it. Th e check mark
is removed from the check box, and the grpSummary control and its
contents are hidden.

10. Click the Exit button. Close the Code Editor window and then close
the solution.

Figure 5-49 shows the application’s code at the end of Lesson C.

C7718_ch05.indd 316C7718_ch05.indd 316 14/03/11 8:23 PM14/03/11 8:23 PM

317

Coding the Display Summary Check Box’s Click Event Procedure L E S S O N C

 1 ' Name: Math Project
 2 ' Purpose: Displays math problems
 3 ' Programmer: <your name> on <current date>
 4
 5 Option Explicit On
 6 Option Strict On
 7 Option Infer Off
 8
 9 Public Class frmMain
10
11 Private Sub GenerateAndDisplayIntegers()
12 ' generates and displays two random integers
13
14 Dim intRandom1 As Integer
15 Dim intRandom2 As Integer
16 Dim randomGenerator As New Random
17
18 ' generate random integers
19 If radGrade1.Checked Then
20 intRandom1 = randomGenerator.Next(1, 11)
21 intRandom2 = randomGenerator.Next(1, 11)
22 Else
23 intRandom1 = randomGenerator.Next(10, 100)
24 intRandom2 = randomGenerator.Next(10, 100)
25 End If
26
27 ' swap integers if the subtraction problem
28 ' would result in a negative answer
29 If radSubtraction.Checked AndAlso
 intRandom1 < intRandom2 Then
30 Dim intTemp As Integer
31 intTemp = intRandom1
32 intRandom1 = intRandom2
33 intRandom2 = intTemp
34 End If
35
36 ' display integers
37 lblNum1.Text = Convert.ToString(intRandom1)
38 lblNum2.Text = Convert.ToString(intRandom2)
39
40 End Sub
41 Private Sub btnExit_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnExit.Click
42 Me.Close()
43 End Sub
44
45 Private Sub ProcessGradeRadioButtons(
 ByVal sender As Object,
46 ByVal e As System.EventArgs
47) Handles radGrade1.Click, radGrade2.Click
48 Call GenerateAndDisplayIntegers()
49 End Sub
50
51 Private Sub radAddition_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles radAddition.Click
52 ' display the plus sign and random numbers
53
54 picOperator.Image = picPlus.Image

Figure 5-49 Math Practice application’s code at the end of Lesson C (continues)

C7718_ch05.indd 317C7718_ch05.indd 317 14/03/11 8:23 PM14/03/11 8:23 PM

318

C H A P T E R 5 More on the Selection Structure

 55 Call GenerateAndDisplayIntegers()
 56
 57 End Sub
 58
 59 Private Sub radSubtraction_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles radSubtraction.Click
 60 ' display the minus sign and random numbers
 61
 62 picOperator.Image = picMinus.Image
 63 Call GenerateAndDisplayIntegers()
 64
 65 End Sub
 66
 67 Private Sub frmMain_Load(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Me.Load
 68 ' display an addition problem
 69
 70 radAddition.PerformClick()
 71
 72 End Sub
 73
 74 Private Sub btnCheckAnswer_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnCheckAnswer.Click
 75 ' calculates the correct answer and then compares
 76 ' the correct answer to the user's answer
 77 ' keeps track of the number of correct
 78 ' and incorrect responses
 79
 80 Const strMSG As String = "Try again!"
 81 Dim intNum1 As Integer
 82 Dim intNum2 As Integer
 83 Dim intUserAnswer As Integer
 84 Dim intCorrectAnswer As Integer
 85 Static intCorrectResponses As Integer
 86 Static intIncorrectResponses As Integer
 87
 88 ' store random numbers and user's answer in variables
 89 Integer.TryParse(lblNum1.Text, intNum1)
 90 Integer.TryParse(lblNum2.Text, intNum2)
 91 Integer.TryParse(txtAnswer.Text, intUserAnswer)
 92
 93 ' calculate the correct answer
 94 Select Case True
 95 Case radAddition.Checked
 96 intCorrectAnswer = intNum1 + intNum2
 97 Case Else ' Subtraction radio button
 98 intCorrectAnswer = intNum1 - intNum2
 99 End Select
100
101 ' determine whether the user's answer is correct
102 If intUserAnswer = intCorrectAnswer Then
103 picFace.Image = picHappy.Image
104 intCorrectResponses = intCorrectResponses + 1
105 txtAnswer.Text = String.Empty
106 Call GenerateAndDisplayIntegers()
107 Else
108 picFace.Image = picNeutral.Image

Figure 5-49 Math Practice application’s code at the end of Lesson C (continues)

(continued)

C7718_ch05.indd 318C7718_ch05.indd 318 14/03/11 8:23 PM14/03/11 8:23 PM

319

Lesson C Key Term L E S S O N C

109 intIncorrectResponses = intIncorrectResponses + 1
110 MessageBox.Show(strMSG, "Math Practice",
111 MessageBoxButtons.OK,
112 MessageBoxIcon.Information)
113 txtAnswer.SelectAll()
114 End If
115
116 txtAnswer.Focus()
117 lblCorrect.Text = intCorrectResponses.ToString
118 lblIncorrect.Text = intIncorrectResponses.ToString
119
120 End Sub
121
122 Private Sub chkSummary_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles chkSummary.Click
123 ' shows/hides the grpSummary control
124
125 If chkSummary.Checked Then
126 grpSummary.Visible = True
127 Else
128 grpSummary.Visible = False
129 End If
130 End Sub
131 End Class

Figure 5-49 Math Practice application’s code at the end of Lesson C

(continued)

Lesson C Summary

 • To show or hide a control:

Set the control’s Visible property to the Boolean value True to show the
control. Set the control’s Visible property to the Boolean value False to
hide the control.

 • To code a check box’s Click event procedure:

Use a selection structure to determine whether the check box was either
selected or deselected by the user.

Lesson C Key Term
Visible property—determines whether a control is visible in the interface
while an application is running

C7718_ch05.indd 319C7718_ch05.indd 319 14/03/11 8:23 PM14/03/11 8:23 PM

320

C H A P T E R 5 More on the Selection Structure

Lesson C Review Questions

1. Which of the following statements will hide the picDivision control?

a. picDivision.Hide

b. picDivision.Hide = True

c. Hide.picDivision = True

d. none of the above

2. If a check box is deselected, its property contains the
Boolean value False.

a. Checked

b. Deselected

c. On

d. none of the above

3. When it is coded, a radio button’s Click event procedure always
will contain a selection structure that determines whether the radio
 button was selected or deselected by the user.

a. True

b. False

4. Like a check box, a radio button can be deselected by clicking it.

a. True

b. False

Lesson C Exercises

1. In this exercise, you modify the Math Practice application from this
lesson. Use Windows to make a copy of the Math Solution folder.
Rename the copy Modifi ed Math Solution. Open the Math Solution
(Math Solution.sln) fi le contained in the Modifi ed Math Solution
folder. Open the designer and Code Editor windows.

a. Change the If…Th en…Else statement in the chkSummary con-
trol’s Click event procedure to a Select Case statement.

b. Change the fi rst selection structure in the btnCheckAnswer con-
trol’s Click event procedure to an If…Th en…Else statement.

c. Change the second selection structure in the btnCheckAnswer
control’s Click event procedure to a Select Case statement.

d. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

INTRODUCTORY

C7718_ch05.indd 320C7718_ch05.indd 320 14/03/11 8:23 PM14/03/11 8:23 PM

321

Lesson C Exercises L E S S O N C

2. Open the Washington Solution (Washington Solution.sln) fi le
 contained in the VB2010\Chap05\Washington Solution folder. If
 necessary, open the designer window. Center the rank in the label
control. Set the text box’s MaxLength property so that the user can
enter only one character in the text box. Code the Display button’s
Click event procedure so that it displays the rank associated with the
code entered by the user. Th e codes and ranks are shown in Figure
5-50. Allow the text box to accept only the numeric keys 1, 2, 3, and
4 and the Backspace key. When a change is made to the code entered
in the text box, clear the contents of the label control that displays the
rank. Save the solution and then start and test the application. Close
the Code Editor window and then close the solution.

Code Rank
1 Freshman
2 Sophomore
3 Junior
4 Senior

Figure 5-50 Information for Exercise 2

3. Create a Visual Basic Windows application. Use the following names
for the solution, project, and form fi le, respectively: Lottery Solution,
Lottery Project, and Main Form.vb. Save the application in the
VB2010\Chap05 folder. Create the interface shown in Figure 5-51.
Th e Select Numbers button should display six lottery numbers. Each
lottery number can range from 1 to 54 only. (An example of six lot-
tery numbers would be: 4 8 35 15 20 3.) Code the application. For
now, do not worry if the lottery numbers are not unique. You will
learn how to display unique numbers in Chapter 9. Save the solution
and then start and test the application. Close the Code Editor window
and then close the solution.

Figure 5-51 Interface for Exercise 3

4. Open the Ferris Solution (Ferris Solution.sln) fi le contained in
the VB2010\Chap05\Ferris Solution folder. If necessary, open the
designer window. Ferris Seminars off ers computer seminars to vari-
ous companies. Th e owner of Ferris Seminars wants an application
that the registration clerks can use to calculate the registration fee for
a company. Th e clerk will enter the number registered for the semi-
nar and then select one of the Seminar radio buttons. If a company
is entitled to a 10% discount, the clerk will need to select the 10%

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

C7718_ch05.indd 321C7718_ch05.indd 321 14/03/11 8:23 PM14/03/11 8:23 PM

322

C H A P T E R 5 More on the Selection Structure

discount check box. Th e Calculate Total Due button should calculate
the total registration fee. Seminar 1 is $100 per person, and Seminar 2
is $120 per person. Code the application. Remove the total fee when
a change is made to the number registered, the seminar, or the dis-
count. Th e text box should accept only numbers and the Backspace
key. Save the solution and then start and test the application. Close
the Code Editor window and then close the solution.

5. In this exercise, you modify the Monthly Payment Calculator appli-
cation from Chapter 4. Use Windows to copy the Payment Solution
folder from the VB2010\Chap04 folder to the VB2010\Chap05 folder.
Open the Payment Solution (Payment Solution.sln) fi le contained in
the VB2010\Chap05\Payment Solution folder. Open the designer and
Code Editor windows. Delete the ClearPayment procedure and then
create an independent Sub procedure named ClearPayment. Th e inde-
pendent Sub procedure should clear the contents of the lblPayment
control. Call the independent Sub procedure when a change is made to
any of the three text boxes. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

6. Create a Visual Basic Windows application. Use the following names
for the solution, project, and form fi le, respectively: Health Solution,
Health Project, and Main Form.vb. Save the application in the
VB2010\Chap05 folder. Create the interface shown in Figure 5-52.
Th e application should calculate and display a health club member’s
monthly dues.

a. Declare a class-level variable to keep track of the additional
charges.

b. Each check box’s Click event procedure should add the appropri-
ate additional charge to the class-level variable when the check
box is selected, and subtract the additional charge from the class-
level variable when the check box is deselected. Th e additional
charges are $30 per month for tennis, $25 per month for golf, and
$20 per month for racquetball. Each check box’s Click event pro-
cedure also should display the contents of the class-level variable
in the Additional box, as well as clear the contents of the Monthly
dues box. Code the Click event procedures.

c. Code the Calculate button’s Click event procedure so that it cal-
culates the monthly dues. Th e dues are calculated by adding the
basic fee to the total additional charge. Display the total due with
a dollar sign and two decimal places.

d. When the user makes a change to the Basic fee box, the applica-
tion should clear the contents of the Monthly dues box. Code the
appropriate event procedure.

e. Th e Basic fee box should accept only numbers and the Backspace
key. Code the appropriate event procedure.

f. Save the solution and then start the application. Test the applica-
tion by entering 80 as the basic fee and then selecting the Golf
check box. Th e number 25 appears as the additional charge. Click
the Calculate button. Th e monthly dues are $105.00.

INTRODUCTORY

INTERMEDIATE

C7718_ch05.indd 322C7718_ch05.indd 322 14/03/11 8:23 PM14/03/11 8:23 PM

323

Lesson C Exercises L E S S O N C

g. Next, select the Tennis and Racquetball check boxes and deselect
the Golf check box. Th e number 50 appears as the additional
charge. Click the Calculate button. Th e monthly dues are $130.00.
Close the Code Editor window and then close the solution.

Figure 5-52 Interface for Exercise 6

7. Create a Visual Basic Windows application. Use the following names
for the solution, project, and form fi le, respectively: Barren Solution,
Barren Project, and Main Form.vb. Save the application in the
VB2010\Chap05 folder. Create the interface shown in Figure 5-53.
Th e application should display a seminar fee. Th e fee is based on
the membership status and age entered by the user. Th e fee for club
members younger than 65 years old is $10. Th e fee for club members
at least 65 years old is $5. Th e fee for non-members is $20. When
the user clicks a radio button, clear the contents of the label control
that displays the fee. Code the application. Save the solution and then
start and test the application. Close the Code Editor window and then
close the solution.

default button

Figure 5-53 Interface for Exercise 7

8. Create a Visual Basic Windows application. Use the following names
for the solution, project, and form fi le, respectively: Golf Pro Solution,
Golf Pro Project, and Main Form.vb. Save the application in the
VB2010\Chap05 folder. Create the interface shown in Figure 5-54. Each
salesperson at Golf Pro receives a commission based on the total of

INTERMEDIATE

INTERMEDIATE

C7718_ch05.indd 323C7718_ch05.indd 323 14/03/11 8:23 PM14/03/11 8:23 PM

324

C H A P T E R 5 More on the Selection Structure

his or her domestic and international sales. Th e commission rates are
shown in Figure 5-55. Th e text boxes should accept only numbers and
the Backspace key. Select the existing text when a text box receives the
focus. Clear the Commission box when the value in a text box changes.
Code the application. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

default button

Figure 5-54 Interface for Exercise 8

Sales ($) Commission
1 – 100,000.99 2% of sales
100,001 – 400,000.99 $2000 plus 5% of the sales over $100,000
400,001 and over $17000 plus 10% of the sales over $400,000

Figure 5-55 Commission rates for Exercise 8

9. Create a Visual Basic Windows application. Use the following
names for the solution, project, and form fi le, respectively: Marshall
Solution, Marshall Project, and Main Form.vb. Save the application in
the VB2010\Chap05 folder. Create the interface shown in Figure 5-56.
Each salesperson at Marshall Sales Corporation receives a commis-
sion based on the amount of his or her sales. Th e commission rates
are shown in Figure 5-57. Code the application. Be sure to code the
text box’s Enter, KeyPress, and TextChanged events. Save the solution
and then start and test the application. Close the Code Editor window
and then close the solution.

default button

Figure 5-56 Interface for Exercise 9

INTERMEDIATE

C7718_ch05.indd 324C7718_ch05.indd 324 14/03/11 8:23 PM14/03/11 8:23 PM

325

Lesson C Exercises L E S S O N C

Sales ($) Commission
1 – 100,000.99 2% of sales
100,001 – 200,000.99 4% of sales
200,001 – 300,000.99 6% of sales
300,001 – 400,000.99 8% of sales
400,001 and over 10% of sales

Figure 5-57 Commission rates for Exercise 9

10. Create a Visual Basic Windows application. Name the solution,
 project, and form fi le Willow Solution, Willow Project, and Main
Form.vb, respectively. Save the application in the VB2010\Chap05
folder. Create the interface shown in Figure 5-58. Th e application
should calculate and display the number of daily calories needed to
maintain your current weight. Use the information shown in Figure 5-59
when coding the application. Be sure to code the text box’s Enter and
KeyPress events. Clear the daily calories when the weight, gender, or
activity changes. Save the solution and then start and test the applica-
tion. Close the Code Editor window and then close the solution.

default button

Figure 5-58 Interface for Exercise 10

Moderately active female daily calories = weight * 12 calories per pound
Relatively inactive female daily calories = weight * 10 calories per pound
Moderately active male daily calories = weight * 15 calories per pound
Relatively inactive male daily calories = weight * 13 calories per pound

Figure 5-59 Daily calories information for Exercise 10

11. In this exercise, you create an application for Johnson Products. Th e
application calculates and displays the price of an order, based on the
number of units ordered and the customer’s status (either wholesaler
or retailer). Th e price per unit is shown in Figure 5-60. Create a Visual
Basic Windows application. Use the following names for the solu-
tion, project, and form fi le, respectively: Johnson Solution, Johnson

INTERMEDIATE

ADVANCED

C7718_ch05.indd 325C7718_ch05.indd 325 14/03/11 8:23 PM14/03/11 8:23 PM

326

C H A P T E R 5 More on the Selection Structure

Project, and Main Form.vb. Save the application in the VB2010\
Chap05 folder. Design an appropriate interface. Use radio buttons to
determine the customer’s status. Code the application. Save the solu-
tion and then start and test the application. Close the Code Editor
window and then close the solution.

 Wholesaler Retailer
Number of units Price per unit ($) Number of units Price per unit ($)
1–4 10 1–3 15
5 and over 9 4–8 14
 9 and over 12

Figure 5-60 Pricing chart for Exercise 11

Swat The Bugs

12. Th e purpose of this exercise is to demonstrate the importance of
testing an application thoroughly. Open the Debug Solution (Debug
Solution.sln) fi le contained in the VB2010\Chap05\Debug Solution-
Lesson C folder. If necessary, open the designer window. Open the
Code Editor window. Th e application displays a shipping charge,
which is based on the total price entered by the user. If the total price
is greater than or equal to $100 but less than $501, the shipping charge
is $10. If the total price is greater than or equal to $501 but less than
$1001, the shipping charge is $7. If the total price is greater than or
equal to $1001, the shipping charge is $5. No shipping charge is due if
the total price is less than $100. Start the application. Test the appli-
cation using the following total prices: 100, 501, 1500, 500.75, 30,
1000.33. Notice that the application does not always display the correct
shipping charge. Correct the application’s code. Save the solution and
then start and test the application again. Close the Code Editor win-
dow and then close the solution.

C7718_ch05.indd 326C7718_ch05.indd 326 14/03/11 8:23 PM14/03/11 8:23 PM

C H A P T E R 6
The Repetition Structure

Creating the Shoppers Haven Application

In this chapter, you create an application that allows the user to enter an item’s
original price and its discount rate. The discount rates range from 10% through
30% in increments of 5%. The application will calculate and display the amount of
the discount and also the discounted price.

C7718_ch06.indd 327C7718_ch06.indd 327 14/03/11 8:32 PM14/03/11 8:32 PM

328

C H A P T E R 6 The Repetition Structure

Previewing the Shoppers Haven Application
Before you start the fi rst lesson in this chapter, you will preview the
 completed application. Th e application is contained in the VB2010\Chap06
folder.

To preview the completed application:

1. Use the Run dialog box to run the Shoppers (Shoppers.exe) fi le
contained in the VB2010\Chap06 folder. Th e application’s user
interface appears on the screen. Th e interface contains a list box.
List box controls are covered in Lesson C.

2. Type 56.99 in the Original price box. Click 15 in the list of discount
rates and then click the Calculate button. Th e item’s discount and
discounted price appear in the interface. See Figure 6-1.

list box

Figure 6-1 Discount and discounted price shown in the interface

3. Click the Exit button to end the application.

Th e Shoppers Haven application uses the repetition structure, which is
 covered in Lessons A and B. You will code the Shoppers Haven applica-
tion in Lesson C. Be sure to complete each lesson in full and do all of the
 end-of-lesson questions and several exercises before continuing to the
next lesson.

START HERE

C7718_ch06.indd 328C7718_ch06.indd 328 14/03/11 8:32 PM14/03/11 8:32 PM

329

Repeating Program Instructions L E S S O N A

 ❚ LESSON A
After studying Lesson A, you should be able to:

 • Diff erentiate between a looping condition and a loop exit condition

 • Explain the diff erence between a pretest loop and a posttest loop

 • Include pretest and posttest loops in pseudocode and a fl owchart

 • Write a Do . . . Loop statement

 • Stop an infi nite loop

 • Utilize counters and accumulators

 • Explain the purpose of the priming and update reads

 • Abbreviate assignment statements using the arithmetic assignment
operators

 • Code a counter-controlled loop using the For . . . Next statement

Repeating Program Instructions
Recall that all of the procedures in an application are written using one
or more of three basic control structures: sequence, selection, and repeti-
tion. You learned about the sequence and selection structures in previous
chapters. Th is chapter covers the repetition structure. Programmers use
the repetition structure, referred to more simply as a loop, when they need
the computer to repeatedly process one or more program instructions. If
and for how long the instructions are repeated is determined by the loop’s
condition.

Like the condition in a selection structure, the condition in a loop must
evaluate to either True or False. Th e condition is evaluated with each
repetition (or iteration) of the loop and can be phrased in one of two ways:
it can specify either the requirement for repeating the instructions or the
requirement for not repeating them. Th e requirement for repeating the
instructions is referred to as the looping condition, because it indicates
when the computer should continue “looping” through the instructions.
Th e requirement for not repeating the instructions is referred to as the
loop exit condition, because it tells the computer when to exit (or stop) the
loop. An example may help illustrate the diff erence between the looping
condition and the loop exit condition. You’ve probably heard the old adage
“Make hay while the sun shines.” Th e “while the sun shines” is the looping
condition, because it tells you when to continue making hay. Th e adage
also could be phrased as “Make hay until the sun stops shining.” In this
case, the “until the sun stops shining” is the loop exit condition, because it
indicates when you should stop making hay. Every looping condition has
an opposing loop exit condition; in other words, one is the opposite of the
other. See Figure 6-2.

C7718_ch06.indd 329C7718_ch06.indd 329 14/03/11 8:32 PM14/03/11 8:32 PM

330

C H A P T E R 6 The Repetition Structure

Figure 6-2 Example of a looping condition and a loop exit condition

Make hay while the sun shines Make hay until the sun stops shining

a looping condition
specifies when
to continue

a loop exit condition
specifies when
to stop

Th e programmer determines whether a problem’s solution requires a loop by
studying the problem specifi cation. Th e fi rst problem specifi cation you will
examine in this chapter is for the Quarter of a Million Club. Th e problem
specifi cation is shown in Figure 6-3.

The Quarter of a Million Club wants an application that allows a club member to enter
two items: the amount of money deposited into a savings account at the beginning of
the year and the annual interest rate. The application should display the balance in the
savings account at the end of the year, assuming the interest is compounded annually
and no withdrawals or additional deposits are made.

Figure 6-3 Problem specifi cation for the Quarter of a Million Club application

Figure 6-4 shows a sample run of the Quarter of a Million Club application.
Th e .00 in the Annual interest rate (.00): label indicates that the user should
enter the interest rate in decimal form.

Figure 6-4 Sample run of the Quarter of a Million Club application

Figure 6-5 shows the pseudocode and Visual Basic code for the Calculate
button’s Click event procedure. Th e procedure requires only the sequence
structure. It does not need a selection structure or a loop, because no deci-
sions need to be made and no instructions need to be repeated to calculate
and display the account balance at the end of one year.

C7718_ch06.indd 330C7718_ch06.indd 330 14/03/11 8:32 PM14/03/11 8:32 PM

331

Repeating Program Instructions L E S S O N A

btnCalc Click event procedure
1. store deposit in balance variable
2. store rate in rate variable
3. interest = balance * rate
4. add interest to balance
5. display balance

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' display account balance

 Dim dblBalance As Double
 Dim dblRate As Double
 Dim dblInterest As Double

 Double.TryParse(txtDeposit.Text, dblBalance)
 Double.TryParse(txtRate.Text, dblRate)

 dblInterest = dblBalance * dblRate
 dblBalance = dblBalance + dblInterest

 lblBalance.Text = dblBalance.ToString("C2")
End Sub

Figure 6-5 Pseudocode and code containing only the sequence structure

Next, we’ll make a slight change to the problem specifi cation from Figure 6-3.
Th e Quarter of a Million Club application will now need to display the num-
ber of years required for the savings account to reach one-quarter of a million
dollars, and the balance in the account at that time. Consider the changes
you will need to make to the Calculate button’s original pseudocode. Th e fi rst
two steps in the original pseudocode are to store the input items (deposit
and interest rate) in variables; the modifi ed pseudocode will still need both
of these steps. Steps 3 and 4 are to calculate the interest and then add the
interest to the savings account balance. Th e modifi ed pseudocode will need
to repeat both of those steps either while the balance is less than one-quarter
of a million dollars (looping condition) or until the balance is greater than
or equal to one-quarter of a million dollars (loop exit condition). Notice that
the loop exit condition is the opposite of the looping condition. Th e loop in
the modifi ed pseudocode also will need to keep track of the number of times
the instructions in Steps 3 and 4 are processed, because each time represents
a year. Th e last step in the original pseudocode is to display the account bal-
ance. Th e modifi ed pseudocode will need to display the account balance and
the number of years.

Th e modifi ed problem specifi cation is shown in Figure 6-6 along with four
versions of the modifi ed pseudocode. (As mentioned in Chapter 5, even
small procedures can have more than one solution.) Only the loop is diff erent
in each version. In Versions 1 and 2, the loop is a pretest loop. In a pretest
loop, the condition is evaluated before the instructions within the loop are
processed. Th e condition in Version 1 is a looping condition, because it tells
the computer when to continue repeating the loop instructions. Version 2’s
condition, on the other hand, is a loop exit condition, because it tells the
computer when to stop repeating the instructions. Depending on the result of

C7718_ch06.indd 331C7718_ch06.indd 331 14/03/11 8:32 PM14/03/11 8:32 PM

332

C H A P T E R 6 The Repetition Structure

the evaluation, the instructions in a pretest loop may never be processed. For
example, if the user enters a deposit that is greater than or equal to 250,000
(one-quarter of a million), the looping condition in Version 1 will evaluate to
False and the loop instructions will be skipped over. Similarly, the loop exit
condition in Version 2 will evaluate to True, causing the loop instructions to
be bypassed.

Th e loops in Versions 3 and 4, on the other hand, are posttest loops. In a
posttest loop, the condition is evaluated after the instructions within the loop
are processed. Th e condition in Version 3 is a looping condition, whereas
the condition in Version 4 is a loop exit condition. Unlike the instructions
in a pretest loop, the instructions in a posttest loop will always be processed
at least once. In this case, if the user enters a deposit that is greater than or
equal to 250,000, the instructions in the two posttest loops will be processed
once before the loop ends. Posttest loops should be used only when you are
certain that the loop instructions should be processed at least once.

The Quarter of a Million Club wants an application that allows a club member to enter two items: the amount of
money deposited into a savings account at the beginning of the year and the annual interest rate. The application
should display the number of years required for the balance in the savings account to reach one-quarter of a million
dollars, assuming the interest is compounded annually and no withdrawals or additional deposits are made. It also
should display the account balance at that time.

Version 1 – pretest loop Version 2 – pretest loop
1. store deposit in balance variable 1. store deposit in balance variable
2. store rate in rate variable 2. store rate in rate variable
3. repeat while balance < 250,000 3. repeat until balance >= 250,000
 interest = balance * rate interest = balance * rate
 add interest to balance add interest to balance
 add 1 to number of years add 1 to number of years
 end repeat while end repeat until
4. display number of years and balance 4. display number of years and balance

Version 3 – posttest loop Version 4 – posttest loop
1. store deposit in balance variable 1. store deposit in balance variable
2. store rate in rate variable 2. store rate in rate variable
3. repeat 3. repeat
 interest = balance * rate interest = balance * rate
 add interest to balance add interest to balance
 add 1 to number of years add 1 to number of years
 end repeat while balance < 250,000 end repeat until balance >= 250,000
4. display number of years and balance 4. display number of years and balance

Figure 6-6 Modifi ed problem specifi cation and pseudocode containing a loop

looping condition
specifi es when to
continue

looping condition
specifi es when to
continue

loop exit condition
specifi es when
to stop

loop exit condition
specifi es when
to stop

Th e Visual Basic language provides three diff erent statements for coding
loops: Do . . . Loop, For . . . Next, and For Each . . . Next. Th e Do . . . Loop
 statement can be used to code both pretest and posttest loops, whereas the
For . . . Next and For Each . . . Next statements are used only for pretest loops.
You will learn about the Do . . . Loop and For . . . Next statements in this lesson.
Th e For Each . . . Next statement is covered in Chapter 9.

The condition
appears at the
beginning of a
pretest loop, but
at the end of a

posttest loop. For that
reason, pretest and post-
test loops are also called
top-driven and bottom-
driven loops, respectively.

 You can nest
loops, which
means you can
place one loop
within another
loop.

C7718_ch06.indd 332C7718_ch06.indd 332 14/03/11 8:32 PM14/03/11 8:32 PM

333

The Do . . . Loop Statement L E S S O N A

The Do . . . Loop Statement
You can use the Do . . . Loop statement to code both pretest and posttest loops.
Figure 6-7 shows two versions of the statement’s syntax: one for coding a pretest
loop and the other for coding a posttest loop. In both versions of the syntax, the
statement begins with the Do clause and ends with the Loop clause. Between
both clauses, you enter the instructions you want the computer to repeat. Th e
instructions between the Do and Loop clauses are referred to as the loop body.

Th e {While | Until} portion in each syntax indicates that you can select only
one of the keywords appearing within the braces. You follow the keyword
with a condition, which can be phrased as either a looping condition or a
loop exit condition. You use the While keyword in a looping condition to
specify that the loop body should be processed while (in other words, as long
as) the condition is true. You use the Until keyword in a loop exit condi-
tion to specify that the loop body should be processed until the condition
becomes true, at which time the loop should stop. Like the condition in an
If…Th en…Else statement, the condition in a Do . . . Loop statement can con-
tain variables, constants, properties, methods, keywords, and operators; it
also must evaluate to a Boolean value. Th e condition is evaluated with each
repetition of the loop and determines whether the computer processes the
loop body. Notice that the keyword (either While or Until) and the condi-
tion appear in the Do clause in a pretest loop, but they appear in the Loop
clause in a posttest loop. Also included in Figure 6-7 are examples of using
both syntax versions to display the numbers 1, 2, and 3 in message boxes.

Figure 6-7 Syntax versions and examples of the Do . . . Loop statement

Do . . . Loop statement

Syntax for a pretest loop
Do {While | Until} condition
 loop body instructions, which will be processed either
 while the condition is true or until the condition becomes true
Loop

Pretest loop example
Dim intNumber As Integer = 1
Do While intNumber <= 3
 MessageBox.Show(intNumber.ToString)
 intNumber = intNumber + 1
Loop

Syntax for a posttest loop
Do
 loop body instructions, which will be processed either
 while the condition is true or until the condition becomes true
Loop {While | Until} condition

Posttest loop example
Dim intNumber As Integer = 1
Do
 MessageBox.Show(intNumber.ToString)
 intNumber = intNumber + 1
Loop Until intNumber > 3

loop body

loop body

You can use the
Exit Do
 statement to exit
the Do . . . Loop
statement

 prematurely, which
means to exit it before
the loop has fi nished
 processing. You may
need to do this if the
computer encounters an
error when processing
the loop instructions.

C7718_ch06.indd 333C7718_ch06.indd 333 14/03/11 8:32 PM14/03/11 8:32 PM

334

C H A P T E R 6 The Repetition Structure

Figure 6-8 describes the way the computer processes the code shown in the
examples in Figure 6-7.

Processing steps for the pretest loop example
 1. The computer creates the intNumber variable and initializes it to 1.
 2. The computer processes the Do clause, which checks whether the value in the intNumber

variable is less than or equal to 3. It is.
 3. The MessageBox.Show method displays 1 (the contents of the intNumber variable).
 4. The intNumber = intNumber + 1 statement adds 1 to the contents of the

intNumber variable, giving 2.
 5. The computer processes the Loop clause, which returns processing to the Do clause (the

beginning of the loop).
 6. The computer processes the Do clause, which checks whether the value in the intNumber

variable is less than or equal to 3. It is.
 7. The MessageBox.Show method displays 2 (the contents of the intNumber variable).
 8. The intNumber = intNumber + 1 statement adds 1 to the contents of the

intNumber variable, giving 3.
 9. The computer processes the Loop clause, which returns processing to the Do clause.
10. The computer processes the Do clause, which checks whether the value in the intNumber

variable is less than or equal to 3. It is.
11. The MessageBox.Show method displays 3 (the contents of the intNumber variable).
12. The intNumber = intNumber + 1 statement adds 1 to the contents of the

intNumber variable, giving 4.
13. The computer processes the Loop clause, which returns processing to the Do clause.
14. The computer processes the Do clause, which checks whether the value in the intNumber

variable is less than or equal to 3. It isn’t, so the computer stops processing the Do . . . Loop
statement. Processing continues with the statement following the Loop clause.

Processing steps for the posttest loop example
 1. The computer creates the intNumber variable and initializes it to 1.
 2. The computer processes the Do clause, which marks the beginning of the loop.
 3. The MessageBox.Show method displays 1 (the contents of the intNumber variable).
 4. The intNumber = intNumber + 1 statement adds 1 to the contents of the

intNumber variable, giving 2.
 5. The computer processes the Loop clause, which checks whether the value in the

intNumber variable is greater than 3. It isn’t, so processing returns to the Do clause (the
beginning of the loop).

 6. The MessageBox.Show method displays 2 (the contents of the intNumber variable).
 7. The intNumber = intNumber + 1 statement adds 1 to the contents of the

intNumber variable, giving 3.
 8. The computer processes the Loop clause, which checks whether the value in the

intNumber variable is greater than 3. It isn’t, so processing returns to the Do clause.
 9. The MessageBox.Show method displays 3 (the contents of the intNumber variable).
10. The intNumber = intNumber + 1 statement adds 1 to the contents of the

intNumber variable, giving 4.
11. The computer processes the Loop clause, which checks whether the value in the intNumber

variable is greater than 3. It is, so the computer stops processing the Do . . . Loop statement.
Processing continues with the statement following the Loop clause.

Figure 6-8 Processing steps for the loop examples from Figure 6-7

C7718_ch06.indd 334C7718_ch06.indd 334 14/03/11 8:32 PM14/03/11 8:32 PM

335

The Do . . . Loop Statement L E S S O N A

Although it appears that the pretest and posttest loops produce the same
results—in this case, both examples in Figure 6-7 display the numbers 1
through 3—that will not always be the case. In other words, the two loops are
not always interchangeable. For instance, if the intNumber variable in the
pretest loop in Figure 6-7 is initialized to 10 rather than to 1, the instructions
in the pretest loop will not be processed because the intNumber <= 3
condition (which is evaluated before the instructions are processed)
evaluates to False. However, if the intNumber variable in the posttest loop in
Figure 6-7 is initialized to 10 rather than to 1, the instructions in the posttest
loop will be processed one time because the intNumber > 3 condition is
evaluated after (rather than before) the loop instructions are processed.

It’s often easier to understand loops when viewed in fl owchart form.
Figure 6-9 shows the fl owcharts associated with the loop examples from
Figure 6-7. Th e loop’s condition in a fl owchart is represented by the decision
symbol, which is a diamond. Inside each diamond is a comparison that
evaluates to either True or False only. Recall that the result of the comparison
determines whether the instructions within the loop are processed. Th e
diamonds in both fi gures have one fl owline entering the symbol and two
fl owlines leaving the symbol. Th e two fl owlines leading out of the diamond
should be marked so that anyone reading the fl owchart can distinguish the
true path from the false path. You mark the fl owline leading to the true path
with a T and the fl owline leading to the false path with an F. You also can
mark the fl owlines leading out of the diamond with a Y and an N (for yes
and no). In the pretest loop’s fl owchart, the fl owline entering the diamond,
along with the diamond and the symbols and fl owlines within the true path,
form a circle or loop. In the posttest loop’s fl owchart, the loop is formed
by all of the symbols and fl owlines in the false path. It is this loop, or circle,
that distinguishes the repetition structure from the selection structure in a
fl owchart.

Figure 6-9 Flowcharts for the loop examples from Figure 6-7

Pretest loop example Posttest loop example

start

assign 1 to a variable

add 1 to the variable’s value

variable’s
value <= 3

display variable’s
value

F

T stop

start

assign 1 to a variable

add 1 to the variable’s value

display variable’s
value

T

F stop

variable’s
value > 3

C7718_ch06.indd 335C7718_ch06.indd 335 14/03/11 8:32 PM14/03/11 8:32 PM

336

C H A P T E R 6 The Repetition Structure

YOU DO IT 1!

Create a Visual Basic Windows application named YouDoIt 1. Save the
application in the VB2010\Chap06 folder. Add two buttons to the form. Both
buttons should display the following numbers in message boxes: 1, 3, 5, and
7. Code the first button’s Click event procedure using a pretest loop. Code
the second button’s Click event procedure using a posttest loop. Save the
solution and then start and test the application. Close the solution.

Coding the Modifi ed Quarter of a Million Club Application
Figure 6-10 shows the pseudocode and Visual Basic code for the Calculate
button’s Click event procedure in the modifi ed Quarter of a Million Club
application. (Th e pseudocode is Version 1 from Figure 6-6.) Th e looping
condition in the Do . . . Loop statement tells the computer to repeat the loop
body as long as (or while) the number in the dblBalance variable is less
than 250,000, which is one-quarter of a million. Rather than using a looping
condition in the Do clause, you also can use a loop exit condition, as follows:
Do Until dblBalance >= 250000. (Recall that >= is the opposite of <.)
Figure 6-11 shows a sample run of the modifi ed application.

btnCalc Click event procedure
1. store deposit in balance variable
2. store rate in rate variable
3. repeat while balance < 250,000
 interest = balance * rate
 add interest to balance
 add 1 to number of years
 end repeat while
4. display number of years and balance

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' display account balance and number of years

 Dim dblBalance As Double
 Dim dblRate As Double
 Dim dblInterest As Double
 Dim intYears As Integer

 Double.TryParse(txtDeposit.Text, dblBalance)
 Double.TryParse(txtRate.Text, dblRate)

 Do While dblBalance < 250000
 dblInterest = dblBalance * dblRate
 dblBalance = dblBalance + dblInterest
 intYears = intYears + 1
 Loop

 lblBalance.Text = "You will have " &
 dblBalance.ToString("C2") &
 " in " & intYears.ToString & " years."
End Sub

Figure 6-10 Modifi ed pseudocode and code for the Calculate button’s Click event procedure

C7718_ch06.indd 336C7718_ch06.indd 336 14/03/11 8:32 PM14/03/11 8:32 PM

337

The Do . . . Loop Statement L E S S O N A

Figure 6-11 Sample run of the modifi ed Quarter of a Million Club application

To code and then test the modifi ed Quarter of a Million Club application:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.

2. Open the Million Solution (Million Solution.sln) fi le contained in
the VB2010\Chap06\Million Solution folder. If necessary, open the
designer window.

3. Open the Code Editor window. Replace <your name> and <current
date> in the comments with your name and the current date,
respectively.

4. Open the code template for the btnCalc control’s Click event
 procedure. Enter the comment and code shown earlier in Figure 6-10.

5. Save the solution and then start the application.

6. Enter 50000 as the deposit and .04 as the annual interest rate. Click
the Calculate button. Th e button’s Click event procedure displays the
message shown in Figure 6-11.

7. Now, delete the 50000 in the Deposit box and then click the
Calculate button. After a short period of time, the error message
box shown in Figure 6-12 appears. (It may take as long as 30 seconds
for the error message box to appear.) Place your mouse pointer on
intYears, as shown in the fi gure.

START HERE

C7718_ch06.indd 337C7718_ch06.indd 337 14/03/11 8:32 PM14/03/11 8:32 PM

338

C H A P T E R 6 The Repetition Structure

Figure 6-12 Error message box

error message box

place your mouse
pointer here

Th e error message informs you that an arithmetic operation—in this case,
adding 1 to the intYears variable—resulted in an overfl ow. An overfl ow
error occurs when the computer tries to store in a memory location a value
that is too large for the location’s data type. In this case, the intYears
variable already contains the highest value that can be stored in an Integer
variable (2,147,483,647). Th erefore, increasing the variable’s value by 1
causes the overfl ow error. But why does the intYears variable contain
2,147,483,647? In this case, because you didn’t provide the initial deposit
amount, the loop’s condition (dblBalance < 250000) always evaluated
to True; it never evaluated to False, which is required for stopping the loop.
A loop that has no way to end is called an infinite loop or an endless loop.
An infi nite loop also will occur if you enter an initial deposit that is less than
250,000, but you neglect to enter an interest rate. You can stop a program
that has an infi nite loop by clicking Debug on the menu bar and then
clicking Stop Debugging.

To continue testing the application:

1. Click Debug on the menu bar and then click Stop Debugging.

2. Add the shaded selection structure shown in Figure 6-13 to the
 btnCalc control’s Click event procedure.

The ranges of
values associ-
ated with the
different data
types are listed
in Figure 3-3 in
Chapter 3.

An overfl ow
error is similar to
trying to fi ll an 8
ounce glass
with 10 ounces
of water.

START HERE

C7718_ch06.indd 338C7718_ch06.indd 338 14/03/11 8:32 PM14/03/11 8:32 PM

339

Counters and Accumulators L E S S O N A

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' display account balance and number of years

 Dim dblBalance As Double
 Dim dblRate As Double
 Dim dblInterest As Double
 Dim intYears As Integer

 Double.TryParse(txtDeposit.Text, dblBalance)
 Double.TryParse(txtRate.Text, dblRate)

 If dblBalance > 0 AndAlso dblRate > 0 Then
 Do While dblBalance < 250000
 dblInterest = dblBalance * dblRate
 dblBalance = dblBalance + dblInterest
 intYears = intYears + 1
 Loop
 End If

 lblBalance.Text = "You will have " &
 dblBalance.ToString("C2") &
 " in " & intYears.ToString & " years."
End Sub

Figure 6-13 Selection structure added to the procedure

3. Save the solution and then start the application. Click the Calculate
button. Th e button’s Click event procedure displays the message “You
will have $0.00 in 0 years.”

4. Enter 50000 as the deposit and .04 as the annual interest rate. Click
the Calculate button. Th e button’s Click event procedure displays the
message shown earlier in Figure 6-11.

5. On your own, test the application using diff erent deposits and annual
interest rates. When you are fi nished, click the Exit button. Close the
Code Editor window and then close the solution.

Th e Click event procedure shown in Figure 6-13 used a counter to keep track
of the number of years, and an accumulator to keep track of the account bal-
ance. You learn about counters and accumulators in the next section.

Counters and Accumulators
Some procedures require you to calculate a subtotal, a total, or an average.
You make these calculations using a loop that includes a counter, an accu-
mulator, or both. A counter is a numeric variable used for counting some-
thing, such as the number of employees paid in a week. An accumulator is a
numeric variable used for accumulating (adding together) something, such
as the total dollar amount of a week’s payroll. Th e intYears variable in
the code shown earlier in Figure 6-13 is a counter, because it keeps track of
the number of years required for the account balance to reach 250,000. Th e
dblBalance variable in the code is an accumulator, because it adds together
the annual interest amounts.

C7718_ch06.indd 339C7718_ch06.indd 339 14/03/11 8:32 PM14/03/11 8:32 PM

340

C H A P T E R 6 The Repetition Structure

Two tasks are associated with counters and accumulators: initializing and
updating. Initializing means to assign a beginning value to the counter or
accumulator. Typically, counters and accumulators are initialized to the
number 0. However, they can be initialized to any number, depending on the
value required by the procedure. In Figure 6-13, the intYears variable is
initialized to 0 in the last Dim statement. Although the dblBalance variable
in the fi gure is also initialized to 0 in a Dim statement, it technically gets its
initial value in the fi rst TryParse method. Th e initialization task is performed
before the loop is processed, because it needs to be performed only once.

Updating, often referred to as incrementing, means adding a number to
the value stored in the counter or accumulator. Th e number can be either
positive or negative, integer or non-integer. A counter is always updated by a
constant value—typically the number 1—whereas an accumulator is updated
by a value that varies. Th e intYears variable in Figure 6-13 is updated by 1,
while the dblBalance variable is updated by the value in the dblInterest
variable. Th e assignment statement that updates a counter or an accumulator
is placed within the loop body, because the update task must be performed
each time the loop instructions are processed. Th e Sales Express Company
application, which you view next, uses both a counter and an accumulator.

The Sales Express Company Application
Figure 6-14 shows the problem specifi cation for the Sales Express Company
application, which uses a loop, a counter, and an accumulator to calculate
the average sales amount entered by the sales manager. Figure 6-15 shows
a sample run of the application, assuming the sales manager entered the
following four sales amounts: 7000, 15000, 4575, and 23400. Th e txtSales
control in the interface has its Multiline and ReadOnly properties set to
True, and its ScrollBars property set to Vertical. When a text box’s Multiline
property is set to True, the text box can both accept and display multiple
lines of text; otherwise, only one line of text can be entered in the text box.
Changing a text box’s ReadOnly property from its default value (False) to
True prevents the user from changing the contents of the text box during run
time. A text box’s ScrollBars property specifi es whether the text box has no
scroll bars (the default), a horizontal scroll bar, a vertical scroll bar, or both
horizontal and vertical scroll bars.

The Sales Express Company wants an application that displays the average amount
the company sold during the prior year. The sales manager will enter the amount
of each salesperson’s sales. The application will use a counter to keep track of the
number of sales amounts entered and an accumulator to total the sales amounts.
When the sales manager has fi nished entering the sales amounts, the application will
calculate the average sales amount by dividing the value stored in the accumulator
by the value stored in the counter. It then will display the average sales amount. If
the sales manager does not enter any sales amounts, the application will display the
message “N/A” (for “not available”).

Figure 6-14 Problem specifi cation for the Sales Express Company application

C7718_ch06.indd 340C7718_ch06.indd 340 14/03/11 8:32 PM14/03/11 8:32 PM

341

Counters and Accumulators L E S S O N A

Figure 6-15 Sample run of the Sales Express Company application

txtSales control

Figure 6-16 shows the pseudocode for the Average button’s Click event
procedure. Step 1 in the pseudocode is to remove the contents of the txtSales
control, and Step 2 is to get a sales amount from the user. Step 3 is a pretest
loop whose loop body is processed as long as the user enters a sales amount.
Th e fi rst instruction in the loop body adds the number 1 to the counter,
which keeps track of the number of sales amounts the user enters. Th e
second instruction adds the sales amount to the accumulator, which keeps
track of the total sales. Th e third instruction in the loop body displays the
sales amount in the txtSales control, and the fourth instruction requests
another sales amount from the user. Th e loop’s condition then checks
whether a sales amount was entered; this is necessary to determine whether
the loop body should be processed again.

When the user has fi nished entering sales amounts, the loop ends and
processing continues with Step 4 in the pseudocode. Step 4 is a selection
structure whose condition verifi es that the value stored in the sales counter
is greater than the number 0. Th is verifi cation is necessary because the fi rst
instruction in the selection structure’s true path uses the sales counter as the
divisor when calculating the average sales amount. Before using a counter
variable (or any variable) as the divisor in an expression, you always should
verify that the variable does not contain the number 0 because, as in math-
ematics, division by zero is not possible. Dividing by zero in a procedure will
cause the application to end abruptly with an error. As Step 4 indicates, if the
sales counter’s value is greater than 0, the average sales amount is calculated
and then displayed; otherwise, the string “N/A” is displayed.

C7718_ch06.indd 341C7718_ch06.indd 341 14/03/11 8:32 PM14/03/11 8:32 PM

342

C H A P T E R 6 The Repetition Structure

btnAvg Click event procedure
1. remove the contents of the txtSales control
2. get a sales amount from the user
3. repeat while the user entered a sales amount
 add 1 to the number of sales counter
 add the sales amount to the total sales accumulator
 display the sales amount in the txtSales control
 get a sales amount from the user
 end repeat while
4. if the number of sales counter is greater than 0
 average sales = total sales accumulator / number of sales counter
 display average sales in lblAvg
 else
 display “N/A” in lblAvg
 end if

Figure 6-16 Pseudocode for the Average button’s Click event procedure

priming read

update read

Notice that the pseudocode in Figure 6-16 contains two “get a sales amount
from the user” instructions. One of the instructions appears above the loop,
and the other appears as the last instruction in the loop body. Th e “get a
sales amount from the user” instruction above the loop is referred to as the
priming read, because it is used to prime (prepare or set up) the loop. Th e
priming read initializes the loop condition by providing its fi rst value. In this
case, the priming read gets only the fi rst sales amount from the user. Because
the loop in Figure 6-16 is a pretest loop, the fi rst sales amount determines
whether the instructions in the loop body are processed at all.

If the loop body instructions are processed, the “get a sales amount from the
user” instruction in the loop body gets the remaining sales amounts (if any)
from the user. Th e “get a sales amount from the user” instruction in the loop
body is referred to as the update read, because it allows the user to update
the value of the input item (in this case, the sales amount) that controls the
loop’s condition. Th e update read is often an exact copy of the priming read.
Keep in mind that if you don’t include the update read in the loop body,
there will be no way to enter a value that will stop the loop after it has been
processed the fi rst time. Th is is because the priming read is processed only
once and gets only the fi rst sales amount from the user. As you learned
earlier, a loop that has no way to end is called an infi nite (or endless) loop.
Recall that you can stop an infi nite loop by clicking Debug on the menu bar
and then clicking Stop Debugging.

Figure 6-17 shows the Average button’s Click event procedure in fl owchart
form. Notice that the priming read’s parallelogram is located above the loop’s
condition, while the update read’s parallelogram is located at the end of the
loop body.

C7718_ch06.indd 342C7718_ch06.indd 342 14/03/11 8:32 PM14/03/11 8:32 PM

343

Counters and Accumulators L E S S O N A

Figure 6-17 Flowchart for the Average button’s Click event procedure

 btnAvg Click event procedure

start

remove contents of txtSales

F

F

T

T

stop

display “N/A” in
lblAvg

display average
sales in lblAvg

get a sales amount
from the user

sales amount
entered

number of sales
counter > 0

add 1 to number
of sales counter

add sales amount
to total sales
accumulator

average sales = total
sales accumulator /
number of sales counter

display sales amount
in txtSales

update read

priming read
get a sales amount
from the user

To open the Sales Express Company application:

1. Open the Sales Express Solution (Sales Express Solution.sln) fi le
 contained in the VB2010\Chap06\Sales Express Solution folder. If
 necessary, open the designer window.

2. Open the Code Editor window. Replace <your name> and <current
date> in the comments with your name and the current date,
respectively.

3. Locate the btnAvg control’s Click event procedure. Th e procedure
declares two named constants and fi ve variables. Th e named
 constants and strInputSales variable will be used, along with
the InputBox function, to get a sales amount from the user. Th e
 decSales variable will store the sales amount after it has been
converted to Decimal. Th e intNumSales variable will keep track
of the number of sales amounts entered, and the decTotalSales
variable will be used to accumulate the sales amounts. Th e
decAvgSales variable will store the average sales amount after it
has been calculated.

START HERE

C7718_ch06.indd 343C7718_ch06.indd 343 14/03/11 8:32 PM14/03/11 8:32 PM

344

C H A P T E R 6 The Repetition Structure

Recall that counters and accumulators must be initialized. Because the
Dim statement automatically assigns the number 0 to Integer and Decimal
variables when the variables are created, you do not need to enter any
additional code to initialize the intNumSales and decTotalSales
variables. In cases where you need to initialize a counter or accumulator to
a value other than 0, you can do so either in the Dim statement that declares
the variable or in an assignment statement. For example, to initialize the
intNumSales variable to the number 1, you could use either the declaration
statement Dim intNumSales As Integer = 1 or the assignment
statement intNumSales = 1 in your code. However, to use the assignment
statement, the intNumSales variable must already be declared.

To begin coding the Sales Express Company application:

1. Click the blank line below the ' get fi rst sales amount
 comment and then enter the following assignment statement:

 strInputSales = InputBox(strPROMPT, strTITLE, “0”)

2. Click the blank line below the ' repeat as long as the user
enters a sales amount comment and then enter the loop shown
in Figure 6-18.

Figure 6-18 Loop entered in the btnAvg control’s Click event procedure

enter these comments
and lines of code

Th e fi rst statement in the loop converts the string returned by the InputBox
function to the Decimal data type. Th e second statement, intNumSales =
intNumSales + 1, updates the counter variable by adding a constant
value of 1 to it. Notice that the counter variable appears on both sides of
the assignment operator. Th e statement tells the computer to add 1 to the
 contents of the variable and then place the result back in the variable. Th e
counter variable’s value will be incremented by 1 each time the loop is
processed.

Th e third statement in the loop, decTotalSales = decTotalSales +
decSales, updates the accumulator variable by adding the current sales
amount to it. Like the counter variable in the previous statement, the
 accumulator variable appears on both sides of the assignment operator. Th e
statement tells the computer to add the contents of the decSales variable to

As shown earlier
in Figure 6-13, an
accumulator also
can be initialized
in a TryParse
method. The

same is true for a
counter.

START HERE

You also can
write the loop
condition in
Figure 6-18 as
Do While

strInputSales
<> "".

C7718_ch06.indd 344C7718_ch06.indd 344 14/03/11 8:32 PM14/03/11 8:32 PM

345

Counters and Accumulators L E S S O N A

the contents of the accumulator variable and then place the result back in the
accumulator variable. Th e accumulator variable’s value will be incremented
by a sales amount, which will vary, each time the loop is processed.

Th e next statement in the loop displays the sales amount in the txtSales
control. Th e last statement in the loop prompts the user for another sales
amount and then assigns the user’s entry to the strInputSales variable.
Notice that the statement appears twice in the code: before the Do . . . Loop
statement and within the Do . . . Loop statement. (You can verify this in Figure
6-19.) As you learned earlier, the input instruction located above the loop
is referred to as the priming read, and its task is to get only the fi rst sales
amount from the user. Th e input instruction located within the loop gets
each of the remaining sales amounts (if any).

To complete the procedure and then test the code:

1. Click the blank line below the ' verify that the counter
is greater than 0 comment and then enter the following dual-
alternative selection structure:

If intNumSales > 0 Th en
 decAvgSales = decTotalSales / intNumSales
 lblAvg.Text = decAvgSales.ToString("C2")
Else
 lblAvg.Text = "N/A"
End If

2. Save the solution and then start the application. Click the Average
button, which opens the Sales Entry dialog box. Click the Cancel
button in the dialog box. Th e btnAvg control’s Click event procedure
displays N/A in the lblAvg control.

3. Click the Average button again. Use the Sales Entry dialog box to
enter the following four sales amounts, one at a time: 7000, 15000,
4575, and 23400.

4. Click the Cancel button in the dialog box. Th e btnAvg control’s Click
event procedure calculates and displays the average sales amount
($12,493.75), as shown earlier in Figure 6-15.

5. Click the Exit button. Close the Code Editor window and then close
the solution. Figure 6-19 shows the code entered in the btnAvg
 control’s Click event procedure.

START HERE

Private Sub btnAvg_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnAvg.Click
 ' calculates and displays the average sales amount

 Const strPROMPT As String =
 "Enter a sales amount. " &
 ControlChars.NewLine &
 "Click Cancel or leave blank to end."
 Const strTITLE As String = "Sales Entry"

Figure 6-19 btnAvg control’s Click event procedure (continues)

C7718_ch06.indd 345C7718_ch06.indd 345 14/03/11 8:32 PM14/03/11 8:32 PM

346

C H A P T E R 6 The Repetition Structure

YOU DO IT 2!

Create a Visual Basic Windows application named YouDoIt 2. Save the
application in the VB2010\Chap06 folder. Add three labels and a button to
the form. The button’s Click event procedure should allow the user to enter
one or more prices. It then should display (in the labels) the number of prices
entered, the total of the prices entered, and the average price entered. If the
user does not enter any numbers, the procedure should display the string
“None” in the three labels. Code the button’s Click event procedure using a
pretest loop and the InputBox function. Save the solution and then start and
test the application. Close the solution.

(continued)

 Dim strInputSales As String
 Dim decSales As Decimal
 Dim intNumSales As Integer
 Dim decTotalSales As Decimal
 Dim decAvgSales As Decimal

 ' remove contents of text box
 txtSales.Text = String.Empty

 ' get first sales amount
 strInputSales = InputBox(strPROMPT, strTITLE, "0")

 ' repeat as long as the user enters a sales amount
 Do While strInputSales <> String.Empty
 ' convert the sales amount to a number
 Decimal.TryParse(strInputSales, decSales)

 ' update the counter and accumulator
 intNumSales = intNumSales + 1
 decTotalSales = decTotalSales + decSales

 ' display the sales amount in the text box
 txtSales.Text = txtSales.Text &
 decSales.ToString("N2") & ControlChars.NewLine

 ' get next sales amount
 strInputSales = InputBox(strPROMPT, strTITLE)
 Loop

 ' verify that the counter is greater than 0
 If intNumSales > 0 Then
 decAvgSales = decTotalSales / intNumSales
 lblAvg.Text = decAvgSales.ToString("C2")
 Else
 lblAvg.Text = "N/A"
 End If
End Sub

Figure 6-19 btnAvg control’s Click event procedure

C7718_ch06.indd 346C7718_ch06.indd 346 14/03/11 8:32 PM14/03/11 8:32 PM

347

Arithmetic Assignment Operators L E S S O N A

Arithmetic Assignment Operators
In addition to the standard arithmetic operators listed in Figure 2-25 in
Chapter 2, Visual Basic also provides several arithmetic assignment operators.
Th e arithmetic assignment operators allow you to abbreviate an assignment
statement that contains an arithmetic operator, as long as the assignment
statement has the following format, in which variableName is the name of the
same variable: variableName = variableName arithmetic Operator value. For
example, you can use the addition assignment operator (+=) to abbreviate the
statement intAge = intAge + 1 as follows: intAge += 1. Both state-
ments tell the computer to add the number 1 to the contents of the intAge
variable and then store the result in the intAge variable. Figure 6-20 shows
the syntax of a Visual Basic statement that uses an arithmetic assignment
operator. Th e fi gure also lists the most commonly used arithmetic assign-
ment operators, and it includes examples of using arithmetic assignment
operators to abbreviate assignment statements. Notice that each arithmetic
assignment operator consists of an arithmetic operator followed immediately
by the assignment operator (=). Th e arithmetic assignment operators do not
contain a space. In other words, the multiplication assignment operator
is *=, not * =.

Arithmetic assignment operators

Syntax
variableName arithmeticAssignmentOperator value

Operator Purpose
+= addition assignment
–= subtraction assignment
*= multiplication assignment
/= division assignment

Example 1
Original statement: intAge = intAge + 1
Abbreviated statement: intAge += 1
Both statements add 1 to the number stored in the intAge variable and then
assign the result to the variable.

Example 2
Original statement: decPrice = decPrice - decDiscount
Abbreviated statement: decPrice –= decDiscount
Both statements subtract the number stored in the decDiscount variable
from the number stored in the decPrice variable and then assign the result
to the decPrice variable.

Example 3
Original statement: dblSales = dblSales * 1.05
Abbreviated statement: dblSales *= 1.05
Both statements multiply the number stored in the dblSales variable by
1.05 and then assign the result to the variable.

Figure 6-20 Syntax and examples of the arithmetic assignment operators (continues)

It’s easy to abbre-
viate an assign-
ment statement.
Simply remove
the variable name

that appears on the left
side of the assignment
operator (=) in the state-
ment, and then put the
assignment operator
immediately after the
arithmetic operator.

C7718_ch06.indd 347C7718_ch06.indd 347 14/03/11 8:32 PM14/03/11 8:32 PM

348

C H A P T E R 6 The Repetition Structure

To use the arithmetic assignment operators in the Sales Express Company
application:

1. Use Windows to make a copy of the Sales Express Solution folder.
Rename the copy Sales Express Solution-Arithmetic Assignment.

2. Open the Sales Express Solution (Sales Express Solution.sln) fi le
 contained in the Sales Express Solution-Arithmetic Assignment
folder. Open the designer window.

3. Open the Code Editor window. Locate the btnAvg control’s Click
event procedure. Modify the statements that update the counter and
accumulator variables as shown in Figure 6-21.

Figure 6-21 Modifi ed update statements using arithmetic assignment
operators

modify these two
statements as shown

4. Save the solution and then start the application. Click the Average
button. Use the Sales Entry dialog box to enter the following three
sales amounts: 10, 14, and 22. Click the Cancel button in the dialog
box. Th e btnAvg control’s Click event procedure displays $15.33 in
the lblAvg control.

5. Click the Exit button. Close the Code Editor window and then close
the solution.

The For . . . Next Statement
As already mentioned, Visual Basic provides three diff erent statements
for coding repetition structures (loops): Do . . . Loop, For . . . Next, and For
Each . . . Next. You learned about the Do . . . Loop statement earlier in this
lesson; recall that the statement can be used to code both pretest and
 posttest loops. In the remainder of this lesson, you will learn how to use the
For . . . Next statement to code a specifi c type of pretest loop, called a coun-
ter-controlled loop. A counter-controlled loop is just what its name implies:
It’s a loop whose processing is controlled by a counter. You use a counter-
controlled loop when you want the computer to process the loop instructions
a precise number of times. Although you also can use the Do . . . Loop state-
ment to code a counter-controlled loop, the For . . . Next statement provides a
more compact and convenient way of writing that type of loop.

START HERE

The For
Each . . . Next
statement is
 covered in
Chapter 9.

(continued)

Example 4
Original statement: dblNum = dblNum / 2
Abbreviated statement: dblNum /= 2
Both statements divide the number stored in the dblNum variable by 2 and
then assign the result to the variable.

Figure 6-20 Syntax and examples of the arithmetic assignment operators

C7718_ch06.indd 348C7718_ch06.indd 348 14/03/11 8:32 PM14/03/11 8:32 PM

349

The For . . . Next Statement L E S S O N A

Figure 6-22 shows the For . . . Next statement’s syntax and includes examples
of using the statement. You enter the loop body, which contains the instruc-
tions you want the computer to repeat, between the statement’s For and
Next clauses. Notice that counterVariableName appears in both clauses.
CounterVariableName is the name of a numeric variable that the computer
can use to keep track of (in other words, count) the number of times it
 processes the loop body. Although, technically, you do not need to specify
the name of the counter variable in the Next clause, doing so is highly
 recommended because it makes your code more self-documenting.

You can use the As dataType portion of the For clause to declare the counter
variable, as shown in the fi rst two examples in Figure 6-22. When you declare
a variable in the For clause, the variable has block scope and can be used
only within the For . . . Next loop. Alternatively, you can declare the counter
variable in a Dim statement, as shown in Example 3. As you know, a variable
declared in a Dim statement at the beginning of a procedure has procedure
scope and can be used within the entire procedure. When deciding where to
declare the counter variable, keep in mind that if the variable is needed only
by the For . . . Next loop, then it is a better programming practice to declare
the variable in the For clause. As mentioned in Chapter 3, fewer uninten-
tional errors occur in applications when the variables are declared using
the minimum scope needed. Block-level variables have the smallest scope,
followed by procedure-level variables, followed by class-level variables. You
should declare the counter variable in a Dim statement only when its value is
required by statements outside the For . . . Next loop in the procedure.

Th e startValue, endValue, and stepValue items in the For clause control the
number of times the loop body is processed. Th e startValue and endValue tell
the computer where to begin and end counting, respectively. Th e stepValue
tells the computer how much to count by—in other words, how much to add
to the counter variable each time the loop body is processed. If you omit the
stepValue, a stepValue of positive 1 is used. In Example 1 in Figure 6-22, the
startValue is 10, the endValue is 13, and the stepValue (which is omitted) is
1. Th ose values tell the computer to start counting at 10 and, counting by
1s, stop at 13—in other words, count 10, 11, 12, and 13. Th e computer will
 process the instructions in Example 1’s loop body four times.

Th e startValue, endValue, and stepValue items must be numeric and can
be either positive or negative, integer or non-integer. If the stepValue is a
positive number, the startValue must be less than or equal to the endValue
for the loop instructions to be processed. For instance, the For intNum
As Integer = 10 To 13 clause is correct, but the For intNum As
Integer = 13 To 10 clause is not correct because you cannot count
from 13 (the startValue) to 10 (the endValue) by adding increments of 1
(the stepValue). If, on the other hand, the stepValue is a negative number,
then the startValue must be greater than or equal to the endValue for
the loop instructions to be processed. As a result, the For intNum As
Integer = 5 To 1 Step -1 clause is correct, but the For intNum As
Integer = 1 To 5 Step -1 clause is not correct because you cannot
count from 1 to 5 by adding increments of negative 1. Adding increments
of a negative number is referred to as decrementing. In other words, adding
increments of negative 1 is the same as decrementing by 1. In addition to the
syntax and examples of the For . . . Next statement, Figure 6-22 also shows the
tasks performed by the computer when processing the statement.

You can use the
Exit For
 statement to exit
the For . . . Next
statement

 prematurely, which
means to exit it before
the loop has fi nished
 processing. You may
need to do this if the
computer encounters an
error when processing
the loop instructions.

C7718_ch06.indd 349C7718_ch06.indd 349 14/03/11 8:32 PM14/03/11 8:32 PM

350

C H A P T E R 6 The Repetition Structure

Figure 6-22 For . . . Next statement’s syntax, examples, and processing tasks (continues)

loop body

loop body

For . . . Next statement

Syntax
For counterVariableName [As dataType] = startValue To endValue [Step stepValue]
 loop body instructions

 If the stepValue is a positive number, the computer will process the loop
 body instructions while the counter variable’s value is less than or equal to
 the endValue. It will stop processing the instructions when the counter
 variable’s value is greater than the endValue.

 If the stepValue is a negative number, the computer will process the loop body
 instructions while the counter variable’s value is greater than or equal to
 the endValue. It will stop processing the instructions when the counter
 variable’s value is less than the endValue.
Next counterVariableName

Example 1
For intNum As Integer = 10 To 13
 MessageBox.Show(intNum.ToString)
Next intNum
displays 10, 11, 12, and 13 in message boxes

Example 2
Dim strCity As String
For intNum As Integer = 5 To 1 Step -1
 strCity = InputBox("City:", "City Entry")
 txtCities.Text = txtCities.Text &
 strCity & ControlChars.NewLine
Next intNum
displays fi ve city names in the txtCities control

Example 3
Dim dblRate As Double
For dblRate = .05 To .1 Step .01
 lblRates.Text = lblRates.Text &
 dblRate.ToString("P0") &
 ControlChars.NewLine
Next dblRate
displays 5 %, 6 %, 7 %, 8 %, 9 %, and 10 % in the lblRates control

Processing tasks
1. If the counter variable is declared in the For clause, the computer creates and

then initializes the variable to the startValue; otherwise, it just performs the
initialization task. This is done only once, at the beginning of the loop.

2. The computer evaluates the loop condition by comparing the value in the counter
variable with the endValue. If the stepValue is a positive number, the comparison
determines whether the counter variable’s value is greater than the endValue.
If the stepValue is a negative number, the comparison determines whether the
counter variable’s value is less than the endValue. Notice that the computer
evaluates the loop condition before processing the instructions within the loop.

loop body

C7718_ch06.indd 350C7718_ch06.indd 350 14/03/11 8:32 PM14/03/11 8:32 PM

351

The For . . . Next Statement L E S S O N A

Figure 6-23 describes the steps the computer follows when processing the
loop shown in Example 1 in Figure 6-22. As Step 2 indicates, the loop’s con-
dition is evaluated before the loop body is processed. Th is is because the loop
created by the For . . . Next statement is a pretest loop. Notice that the intNum
variable contains the number 14 when the For . . . Next statement ends. Th e
number 14 is the fi rst integer that is greater than the loop’s endValue of 13.

Processing steps for Example 1

1. The computer creates the intNum variable and initializes it to 10.
2. The computer checks whether the intNum variable’s value is greater than 13.

It’s not, so the computer displays the number 10 in a message box and then
increments the intNum variable’s value by 1, giving 11.

3. The computer again checks whether the intNum variable’s value is greater than
13. It’s not, so the computer displays the number 11 in a message box and then
increments the intNum variable’s value by 1, giving 12.

4. The computer again checks whether the intNum variable’s value is greater than
13. It’s not, so the computer displays the number 12 in a message box and then
increments the intNum variable’s value by 1, giving 13.

5. The computer again checks whether the intNum variable’s value is greater than
13. It’s not, so the computer displays the number 13 in a message box and then
increments the intNum variable’s value by 1, giving 14.

6. The computer again checks whether the intNum variable’s value is greater than
13. It is, so the computer stops processing the loop body. Processing continues
with the statement following the Next clause.

Figure 6-23 Processing steps for Example 1 in Figure 6-22

You will use the For . . . Next statement to code the Monthly Payment
Calculator application.

The Monthly Payment Calculator Application
Figure 6-24 shows the problem specifi cation for the Monthly Payment
Calculator application, and Figure 6-25 shows a sample run of the application.

Jacobsen Loans wants an application that displays the monthly payments on a car loan,
using a term of 5 years and annual interest rates of 5%, 6%, 7%, 8%, 9%, and 10%.

Figure 6-24 Problem specifi cation for the Monthly Payment Calculator application

(continued)

3. If the loop condition evaluates to True, the computer stops processing the loop;
processing continues with the statement following the Next clause. If the loop
condition evaluates to False, the computer processes the loop body and then
task 4 is performed.

4. Task 4 is performed only when the loop condition evaluates to False. In this task,
the computer adds the stepValue to the contents of the counter variable. It then
repeats tasks 2, 3, and 4 until the loop condition evaluates to True.

Figure 6-22 For . . . Next statement’s syntax, examples, and processing tasks

C7718_ch06.indd 351C7718_ch06.indd 351 14/03/11 8:32 PM14/03/11 8:32 PM

352

C H A P T E R 6 The Repetition Structure

Figure 6-25 Sample run of the Monthly Payment Calculator application

Figure 6-26 shows the pseudocode and fl owchart for the Calculate button’s
Click event procedure. Many programmers use a hexagon, which is a six-
sided fi gure, to represent the For clause in a fl owchart. Within the hexagon,
you record the four items contained in a For clause: counterVariableName,
startValue, endValue, and stepValue. Th e counterVariableName and
stepValue are placed at the top and bottom, respectively, of the hexagon.
Th e startValue and endValue are placed on the left and right side, respec-
tively. Th e hexagon in Figure 6-26 indicates that the counterVariableName
is dblRate, the startValue is 5%, the endValue is 10%, and the stepValue is
1%. Notice that a greater than sign (>) precedes the endValue in the hexa-
gon. Th e > sign indicates that the loop will stop when the counter variable’s
value is greater than 10%.

btnCalc Click event procedure

1. remove contents of lblPayments
2. store the principal in a variable
3. repeat for interest rates from 5% to 10% in increments of 1%
 calculate the monthly payment
 display the monthly payment in lblPayments
 end repeat for
4. send focus to txtPrincipal
5. select existing text in txtPrincipal

Figure 6-26 Pseudocode and fl owchart for the Calculate button’s Click event procedure
(continues)

C7718_ch06.indd 352C7718_ch06.indd 352 14/03/11 8:32 PM14/03/11 8:32 PM

353

The For . . . Next Statement L E S S O N A

btnCalc Click event procedure

start

remove contents of lblPayments

store the principal in a variable

calculate monthly
payment

F

T

stop

dblRate

1%

5% > 10%

select existing text in
txtPrincipal

send focus to txtPrincipal

display monthly
payment in
lblPayments

Figure 6-26 Pseudocode and fl owchart for the Calculate button’s Click event procedure

To code the Monthly Payment Calculator application:

1. Open the Payment Calculator Solution (Payment Calculator
Solution.sln) fi le contained in the VB2010\Chap06\Payment
Calculator Solution folder. If necessary, open the designer window.

2. Open the Code Editor window, which contains the following pro-
cedures: btnExit_Click, txtPrincipal_Enter, txtPrincipal_KeyPress,
 txtPrincipal_TextChanged, and btnCalc_Click.

3. Replace <your name> and <current date> in the comments with your
name and the current date, respectively.

4. Locate the btnCalc control’s Click event procedure. Th e procedure
declares an Integer named constant for the term. It also declares
two Double variables to store the principal and monthly payment
amounts. Next, the procedure clears the contents of the lblPayments
control. It then uses the TryParse method to convert the contents of
the txtPrincipal control to a Double number.

5. Click the blank line below the ' calculate and display
 payments comment and then enter the following For clause, which
tells the computer to repeat the instructions in the loop six times,

START HERE

(continued)

C7718_ch06.indd 353C7718_ch06.indd 353 14/03/11 8:33 PM14/03/11 8:33 PM

354

C H A P T E R 6 The Repetition Structure

using interest rates of .05, .06, .07, .08, .09, and .1. When you press
Enter after typing the For clause, the Code Editor automatically enters
the Next clause for you.

For dblRate As Double = .05 To .1 Step .01

6. Change the Next clause to Next dblRate.

7. Now enter the additional lines of code indicated in Figure 6-27.

enter these five
lines of code

Figure 6-27 Completed Calculate button’s Click event procedure

8. Save the solution and then start the application. Type 10000 in the
Principal box and then click the Calculate button. Th e button’s Click
event procedure displays the monthly payments in the Monthly pay-
ments box, as shown earlier in Figure 6-25.

9. Click the Exit button. Close the Code Editor window and then close
the solution.

Comparing the For . . . Next and Do . . . Loop Statements
As mentioned earlier, you can code a counter-controlled loop using either
the For . . . Next statement or the Do . . . Loop statement; however, the
For . . . Next statement is more convenient to use. Figure 6-28 shows an
example of using both loops to display the string “Hi” three times. Notice
that, when using the Do . . . Loop statement to code a counter-controlled
loop, you must include a statement to declare and initialize the counter vari-
able, as well as a statement to update the counter variable. In addition, you
must include the appropriate comparison in the Do clause. In a For . . . Next
statement, the declaration, initialization, update, and comparison tasks are
handled by the For clause.

C7718_ch06.indd 354C7718_ch06.indd 354 14/03/11 8:33 PM14/03/11 8:33 PM

355

Lesson A Summary L E S S O N A

For . . . Next statement Do . . . Loop statement
For intX As Integer = 1 To 3 Dim intX As Integer = 1
 MessageBox.Show("Hi") Do While intX <= 3
Next intX MessageBox.Show("Hi")
 intX = intX + 1
 Loop

Figure 6-28 Comparison of the For . . . Next and Do . . . Loop statements

declares and initializes the counter
variable

updates the counter variable (can
also be written as intX += 1)

compares the counter variable

declares, initializes, compares, and updates the counter variable

YOU DO IT 3!

Create a Visual Basic Windows application named YouDoIt 3. Save the
application in the VB2010\Chap06 folder. Add two labels and a button to the
form. The button’s Click event procedure should display (in the labels) the
number of integers from 14 through 23 and the sum of those integers. Code
the procedure using the For . . . Next statement. Save the solution and then
start and test the application. Close the solution.

Lesson A Summary

 • To have the computer repeatedly process one or more program
 instructions while the looping condition is true (or until the loop exit
 condition has been met):

Use a repetition structure (loop). You can code a repetition struc-
ture in Visual Basic using one of the following statements: For . . . Next,
Do . . . Loop, and For Each . . . Next. (Th e For Each . . . Next statement is cov-
ered in Chapter 9.)

 • To use the Do . . . Loop statement to code a loop:

Refer to Figure 6-7 for the two versions of the Do . . . Loop statement’s syn-
tax. Th e Do . . . Loop statement can be used to code both pretest and post-
test loops. In a pretest loop, the loop condition appears in the Do clause;
it appears in the Loop clause in a posttest loop. Th e loop condition must
evaluate to a Boolean value.

 • To represent the loop condition in a fl owchart:

Use the decision symbol, which is a diamond.

 • To stop an endless (infi nite) loop:

Click Debug on the menu bar and then click Stop Debugging.

C7718_ch06.indd 355C7718_ch06.indd 355 14/03/11 8:33 PM14/03/11 8:33 PM

356

C H A P T E R 6 The Repetition Structure

 • To use a counter:

Initialize (if necessary) and update the counter. Th e initialization is done
outside of the loop that uses the counter; the update is done within the
loop. You update a counter by incrementing (or decrementing) its value
by a constant amount, which can be either positive or negative, integer or
non-integer.

 • To use an accumulator:

Initialize (if necessary) and update the accumulator. Th e initialization is
done outside of the loop that uses the accumulator; the update is done
within the loop. You update an accumulator by incrementing (or decre-
menting) its value by an amount that varies. Th e amount can be either
positive or negative, integer or non-integer.

 • To abbreviate an assignment statement:

Use the arithmetic assignment operators listed in Figure 6-20. Th e
assignment statement you want to abbreviate must follow this format, in
which variableName is the name of the same variable: variableName =
variableName arithmeticOperator value.

 • To use the For . . . Next statement to code a counter-controlled loop:

Refer to Figure 6-22 for the For . . . Next statement’s syntax. Th e
statement can be used to code pretest loops only. In the syntax,
counterVariableName is the name of a numeric variable that the computer
uses to keep track of the number of times it processes the loop body. Th e
startValue, endValue, and stepValue items control the number of times
the loop body is processed. Th e startValue, endValue, and stepValue items
must be numeric and can be positive or negative, integer or non-integer. If
you omit the stepValue, a stepValue of positive 1 is used.

 • To fl owchart a For . . . Next loop:

Many programmers use a hexagon to represent the For clause. Inside
the hexagon, you record the counter variable’s name and its startValue,
stepValue, and endValue.

Lesson A Key Terms
Accumulator—a numeric variable used for accumulating (adding together)
something

Arithmetic assignment operators—composed of an arithmetic operator
 followed by the assignment operator; used to abbreviate an assignment
 statement that has the following format, in which variableName is the name
of the same variable: variableName = variableName arithmeticOperator value

Counter—a numeric variable used for counting something

Counter-controlled loop—a loop whose processing is controlled by a counter;
the loop body will be processed a precise number of times

Decrementing—adding increments of a negative number

Do . . . Loop statement—a Visual Basic statement that can be used to code
both pretest loops and posttest loops

C7718_ch06.indd 356C7718_ch06.indd 356 14/03/11 8:33 PM14/03/11 8:33 PM

357

Lesson A Review Questions L E S S O N A

Endless loop—a loop whose instructions are processed indefi nitely; also
called an infi nite loop

For . . . Next statement—a Visual Basic statement that is used to code a
 specifi c type of pretest loop, called a counter-controlled loop

Incrementing—another name for updating

Infinite loop—another name for an endless loop

Initializing—the process of assigning a beginning value to a memory location,
such as a counter or an accumulator variable

Loop—another name for the repetition structure

Loop body—the instructions within a loop

Loop exit condition—the requirement that must be met for the computer to
stop processing the loop body instructions

Looping condition—the requirement that must be met for the computer to
continue processing the loop body instructions

Multiline property—determines whether a text box can accept and display
only one line of text or multiple lines of text

Posttest loop—a loop whose condition is evaluated after the instructions in
its loop body are processed

Pretest loop—a loop whose condition is evaluated before the instructions in
its loop body are processed

Priming read—the input instruction that appears above the loop that it
 controls; used to get the fi rst input item from the user

ReadOnly property—controls whether the user is allowed to change the
 contents of a text box during run time

Repetition structure—the control structure used to repeatedly process one or
more program instructions; also called a loop

ScrollBars property—a property of a text box; specifi es whether the text box
has scroll bars

Update read—the input instruction that appears within a loop and is associ-
ated with the priming read

Updating—the process of adding a number to the value stored in a counter or
accumulator variable; also called incrementing

Lesson A Review Questions

1. Which of the following statements can be used to code a loop whose
instructions you want processed 10 times?

a. Do . . . Loop

b. For . . . Next

c. either a or b

C7718_ch06.indd 357C7718_ch06.indd 357 14/03/11 8:33 PM14/03/11 8:33 PM

358

C H A P T E R 6 The Repetition Structure

2. Th e instructions in a loop are always processed at least
once, whereas the instructions in a loop might not be
processed at all.

a. posttest, pretest

b. pretest, posttest

3. Which of the following clauses stops the loop when the value in the
intAge variable is less than the number 0?

a. Do While intAge >= 0

b. Do Until intAge < 0

c. Loop While intAge >= 0

d. all of the above

4. How many times will the MessageBox.Show method in the following
code be processed?

Dim intCount As Integer
Do While intCount > 3
 MessageBox.Show("Hello")
 intCount = intCount + 1
Loop

a. 0

b. 1

c. 3

d. 4

5. How many times will the MessageBox.Show method in the following
code be processed?

Dim intCount As Integer
Do
 MessageBox.Show("Hello")
 intCount += 1
Loop While intCount > 3

a. 0

b. 1

c. 3

d. 4

C7718_ch06.indd 358C7718_ch06.indd 358 14/03/11 8:33 PM14/03/11 8:33 PM

359

Lesson A Review Questions L E S S O N A

6. How many times will the MessageBox.Show method in the following
code be processed?

For intCount As Integer = 4 To 11 Step 2
 MessageBox.Show("Hello")
Next intCount

a. 3

b. 4

c. 5

d. 8

7. What value is stored in the intCount variable when the loop in
Review Question 6 ends?

a. 10

b. 11

c. 12

d. 13

8. A procedure allows the user to enter one or more values. Th e fi rst
input instruction will get the fi rst value only and is referred to as
the read.

a. entering

b. initializer

c. priming

d. starter

Refer to Figure 6-29 to answer Questions 9 through 12.

9. Which of the following control structures are used in fl owchart A in
Figure 6-29? (Select all that apply.)

a. sequence

b. selection

c. repetition

C7718_ch06.indd 359C7718_ch06.indd 359 14/03/11 8:33 PM14/03/11 8:33 PM

360

C H A P T E R 6 The Repetition Structure

A

C

F T

F T

T

F

F

F

T

T

D

B

Figure 6-29 Flowcharts for Review Questions 9 through 12

C7718_ch06.indd 360C7718_ch06.indd 360 14/03/11 8:33 PM14/03/11 8:33 PM

361

Lesson A Exercises L E S S O N A

10. Which of the following control structures are used in fl owchart B in
Figure 6-29? (Select all that apply.)

a. sequence

b. selection

c. repetition

11. Which of the following programming structures are used in fl owchart
C in Figure 6-29? (Select all that apply.)

a. sequence

b. selection

c. repetition

12. Which of the following programming structures are used in fl owchart
D in Figure 6-29? (Select all that apply.)

a. sequence

b. selection

c. repetition

Lesson A Exercises

1. Write a Visual Basic Do clause that processes the loop instructions
as long as the value in the intQuantity variable is greater than the
number 0. Use the While keyword. Now rewrite the Do clause using
the Until keyword.

2. Write a Visual Basic Do clause that stops the loop when the value
in the intInStock variable is less than or equal to the value in the
intReorder variable. Use the Until keyword. Now rewrite the Do
clause using the While keyword.

3. Write a Visual Basic Loop clause that processes the loop instructions
as long as the value in the strLetter variable is either Y or y. Use
the While keyword. Now rewrite the Loop clause using the Until
keyword.

4. Write a Visual Basic Do clause that processes the loop instructions as
long as the value in the strEmpName variable is not “Done” (in any
case). Use the While keyword. Now rewrite the Do clause using the
Until keyword.

5. What will the following code display in message boxes?

Dim intX As Integer
Do While intX < 5
 MessageBox.Show(intX.ToString)
 intX = intX + 1
Loop

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

C7718_ch06.indd 361C7718_ch06.indd 361 14/03/11 8:33 PM14/03/11 8:33 PM

362

C H A P T E R 6 The Repetition Structure

 6. What will the following code display in message boxes?

Dim intX As Integer
Do
 MessageBox.Show(intX.ToString)
 intX += 1
Loop Until intX > 5

 7. Write a Visual Basic assignment statement that updates the
intQuantity counter variable by 2.

 8. Write a Visual Basic assignment statement that updates the
decTotal accumulator variable by the value stored in the
decPurchase variable.

 9. Write a Visual Basic assignment statement that updates the
intTotal counter variable by –3.

10. Write a Visual Basic assignment statement that subtracts the contents
of the decReturns variable from the contents of the decSales
accumulator variable.

11. Write the Visual Basic code for a pretest loop that uses an Integer
variable named intEvenNum to display the even integers from 2
through 10 in the lblNumbers control. Use the For . . . Next statement.
Display each number on a separate line in the control.

12. Rewrite the pretest loop from Exercise 11 using the Do . . . Loop
statement.

13. Change the pretest loop from Exercise 12 to a posttest loop.

14. Write the Visual Basic code that corresponds to the fl owchart shown
in Figure 6-30. Display the calculated results on separate lines in the
lblCount control.

Figure 6-30 Flowchart for Exercise 14

T

F

start

initialize counter
to 10

counter < 100 display counter
multiplied by 2

stop

add 10 to
counter

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

C7718_ch06.indd 362C7718_ch06.indd 362 14/03/11 8:33 PM14/03/11 8:33 PM

363

Lesson A Exercises L E S S O N A

15. Write a For . . . Next statement that displays the numbers from 0
through 117, in increments of 9, in the lblNumbers control. Display
each number on a separate line in the control.

16. Write a For . . . Next statement that calculates and displays the squares
of the even numbers from 2 through 12. Display the results in the
lblNumbers control. Display each number on a separate line in the
control.

17. What will the following code display?

Dim intTotal As Integer
Do While intTotal <= 5
 MessageBox.Show(intTotal.ToString)
 intTotal += 2
Loop

18. What will the following code display?

Dim intTotal As Integer = 1
Do
 MessageBox.Show(intTotal.ToString)
 intTotal = intTotal + 2
Loop Until intTotal >= 3

19. In this exercise, you modify the Monthly Payment Calculator application
from this lesson. Use Windows to make a copy of the Payment Calculator
Solution folder. Rename the copy Modifi ed Payment Calculator Solution.
Open the Payment Calculator Solution (Payment Calculator Solution.sln)
fi le contained in the Modifi ed Payment Calculator Solution folder. Open
the designer and Code Editor windows. Change the For . . . Next statement
in the btnCalc control’s Click event procedure to a Do . . . Loop statement.
Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

20. In this exercise, you modify the Sales Express Company application
from this lesson. Use Windows to make a copy of the Sales Express
Solution folder. Rename the copy Modifi ed Sales Express Solution.
Open the Sales Express Solution (Sales Express Solution.sln)
fi le contained in the Modifi ed Sales Express Solution folder. Open
the designer and Code Editor windows. Each time the applica-
tion is started, the user will enter fi ve sales amounts. Change the
Do . . . Loop statement in the btnAvg control’s Click event procedure
to a For . . . Next statement. If a sales amount cannot be converted to
a number, use the Exit For statement to exit the loop. Calculate
the average only when the user enters fi ve valid sales amounts; oth-
erwise, display an appropriate message in a message box and the
number 0 in the lblAvg control. Save the solution and then start and
test the application. Close the Code Editor window and then close
the solution.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

ADVANCED

C7718_ch06.indd 363C7718_ch06.indd 363 14/03/11 8:33 PM14/03/11 8:33 PM

364

C H A P T E R 6 The Repetition Structure

Swat The Bugs

21. Th e following code should display a 10% bonus for each sales amount
that is entered, but it is not working correctly. Correct the code.

Dim strInput As String
Dim dblSales As Double
Dim dblBonus As Double
strInput = InputBox("Sales amount:", "Sales")
Do While strInput <> String.Empty
 Double.TryParse(strInput, dblSales)
 dblBonus = dblSales * .1
 MessageBox.Show(dblBonus.ToString("C2"))
Loop

22. Th e following code should display the numbers 1 through 4, but it is
not working correctly. Correct the code.

Dim intNumber As Integer = 1
Do While intNumber < 5
 MessageBox.Show(intNumber.ToString)
Loop

23. Th e following code should display the numbers 10 through 1, but it is
not working correctly. Correct the code.

Dim intNumber As Integer = 10
Do
 MessageBox.Show(intNumber.ToString)
Loop Until intNumber = 0

24. Th e following code should display a 5% commission for each sales
amount that is entered, but it is not working correctly. Correct the code.

Dim strInput As String
Dim dblSales As Double
Dim dblComm As Double
strInput = InputBox("Sales:", "Sales")
Double.TryParse(strInput, dblSales)
Do
 strInput = InputBox("Sales:", "Sales")
 Double.TryParse(strInput, dblSales)
 dblComm = dblSales * .05
 MessageBox.Show(dblComm.ToString("C2"))
Loop Until dblSales <= 0

C7718_ch06.indd 364C7718_ch06.indd 364 14/03/11 8:33 PM14/03/11 8:33 PM

365

Nested Repetition Structures L E S S O N B

 ❚ LESSON B
After studying Lesson B, you should be able to:

 • Nest repetition structures

 • Refresh the screen

 • Delay program execution

Nested Repetition Structures
Like selection structures, repetition structures can be nested. In other
words, you can place one loop (called the nested or inner loop) within
another loop (called the outer loop). Both loops can be pretest loops, or
both can be posttest loops. Or, one can be a pretest loop and the other a
posttest loop. You already are familiar with the concept of nested loops,
because a clock uses nested loops to keep track of the time. For simplic-
ity, consider a clock’s minute and second hands only. Th e second hand on
a clock moves one position, clockwise, for every second that has elapsed.
After the second hand moves 60 positions, the minute hand moves one
position, also clockwise. Th e second hand then begins its journey around
the clock again. Figure 6-31 shows the logic used by a clock’s minute and
second hands. Th e outer loop controls the minute hand, while the inner
(nested) loop controls the second hand. Notice that the entire nested loop is
contained within the outer loop; this must be true for the loop to be nested
and for it to work correctly.

repeat for minutes from 0 through 59
 repeat for seconds from 0 through 59
 move second hand 1 position, clockwise
 end repeat for seconds
 move minute hand 1 position, clockwise
end repeat for minutes

Figure 6-31 Logic used by a clock’s minute and second hands

nested loop

To code and then test the Clock application:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.
Open the Clock Solution (Clock Solution.sln) fi le contained in
the VB2010\Chap06\Clock Solution folder. If necessary, open the
designer window. See Figure 6-32.

START HERE

C7718_ch06.indd 365C7718_ch06.indd 365 14/03/11 8:33 PM14/03/11 8:33 PM

366

C H A P T E R 6 The Repetition Structure

Figure 6-32 Clock application’s interface

2. Open the Code Editor window. Replace <your name> and <current
date> in the comments with your name and the current date,
respectively.

3. Open the code template for the btnStart control’s Click event
 procedure. Th e procedure will use an outer loop to display the
 number of minutes, and a nested loop to display the number of
 seconds. For simplicity in watching the minutes and seconds tick
away, you will display minute values from 0 through 2, and display
second values from 0 through 5. Enter the following comments. Press
Enter twice after typing the last comment.

' displays minutes (from 0 through 2 only)
' and seconds (from 0 through 5 only)

4. Now enter the following outer and nested loops:

For intMinutes As Integer = 0 To 2
 lblMinutes.Text = intMinutes.ToString
 For intSeconds As Integer = 0 To 5
 lblSeconds.Text = intSeconds.ToString
 Next intSeconds
Next intMinutes

5. Save the solution and then start the application. Click the Start button.
Th e computer processes the code entered in the button’s Click event
procedure. However, it processes the code so quickly that you don’t get
a chance to see each of the values assigned to the label controls. Rather,
only the fi nal values (2 and 5) appear in the label controls. You can fi x
this problem by refreshing the interface and then delaying program
execution each time the value in the lblSeconds control changes.

The Refresh and Sleep Methods
You can refresh (or redraw) the interface using the form’s Refresh method.
Th e Refresh method ensures that the computer processes any previous lines
of code that aff ect the interface’s appearance. Th e Refresh method’s syntax
is Me.Refresh(), in which Me refers to the current form. To delay program
execution, you can use the Sleep method in the following syntax: System.
Th reading.Th read.Sleep(milliseconds). Th e milliseconds argument is the

C7718_ch06.indd 366C7718_ch06.indd 366 14/03/11 8:33 PM14/03/11 8:33 PM

367

Revisiting the Monthly Payment Calculator Application L E S S O N B

number of milliseconds to suspend the program. A millisecond is 1/1000 of a
second; in other words, there are 1000 milliseconds in a second. In the Clock
application, you will delay program execution for a half of a second, which is
500 milliseconds.

To include the Refresh and Sleep methods in the procedure and then test
the code:

1. Enter the additional comment and two lines of code indicated in
Figure 6-33.

enter this comment
and these two lines
of code

Figure 6-33 Refresh and Sleep methods added to the procedure

2. Save the solution and then start the application. Click the Start
button. Th e number 0 appears in the lblMinutes control, and the
numbers 0 through 5 appear (one at a time) in the lblSeconds con-
trol. Notice that the number of minutes is increased by 1 when the
number of seconds changes from 5 to 0. When the procedure ends,
the lblMinutes and lblSeconds controls contain the numbers 2 and 5,
respectively. (If you want to end the procedure prematurely, click the
form in the designer window, click Debug on the menu bar, and then
click Stop Debugging.)

3. Click the Exit button. Close the Code Editor window and then close
the solution.

Revisiting the Monthly Payment Calculator
Application
Figure 6-34 shows the modifi ed problem specifi cation for the Monthly
Payment Calculator application from Lesson A. Th e solution to this problem
will require two loops, one nested within the other. Th e outer loop will con-
trol the interest rates, which range from 5% to 10% in increments of 1%. Th e
inner loop will control the terms, which are 3 years, 4 years, and 5 years.

Jacobsen Loans wants an application that displays the monthly payments on a car
loan, using terms of 3, 4, and 5 years and annual interest rates of 5%, 6%, 7%, 8%,
9%, and 10%.

Figure 6-34 Modifi ed problem specifi cation for the Monthly Payment Calculator
application

START HERE

C7718_ch06.indd 367C7718_ch06.indd 367 14/03/11 8:33 PM14/03/11 8:33 PM

368

C H A P T E R 6 The Repetition Structure

To code and then test the modifi ed application:

1. Open the Payment Calculator Solution (Payment Calculator
Solution.sln) fi le contained in the VB2010\Chap06\Nested Payment
Calculator Solution folder. If necessary, open the designer window.

2. Open the Code Editor window, which contains the following
 procedures: btnExit_Click, txtPrincipal_Enter, txtPrincipal_KeyPress,
txtPrincipal_TextChanged, and btnCalc_Click. Replace <your name>
and <current date> in the comments with your name and the current
date, respectively.

3. Locate the code template for the btnCalc control’s Click event
 procedure. Click the blank line below the ' calculate and
 display payments comment. First, you will enter the loop that
controls the interest rates. Enter the following For clause:
For dblRate As Double = .05 To .1 Step .01

4. Change the Next clause to Next dblRate.
5. Click the blank line below the For clause. You will display the cur-

rent rate (formatted as a percentage) in the lblPayments control. Enter
the following lines of code. Be sure to include four spaces between the
last set of quotation marks. Press Enter twice after typing the last line.
lblPayments.Text = lblPayments.Text &
 dblRate.ToString("P0") & " "

6. Next, you will enter the loop that controls the term. Enter the
 following For clause:

For intTerm As Integer = 3 To 5
7. Change the Next clause to Next intTerm.
8. Click the blank line below the nested For clause. Now you will enter

the code to calculate and display the monthly payments. Type the
lines of code indicated in Figure 6-35. Be sure to include four spaces
between the last set of quotation marks.

enter these four
lines of code

Figure 6-35 Outer and nested loops entered in the procedure

9. Finally, you will display a blank line after each rate in the lblPayments
control. Click immediately after the letter m in the Next intTerm
clause and then press Enter twice. Enter the following assignment
statement:

lblPayments.Text =
 lblPayments.Text & ControlChars.NewLine

START HERE

Although both
loops in Figure
6-35 are pretest
loops, you also
can use two post-

test loops or a combina-
tion of a pretest and a
posttest loop.

C7718_ch06.indd 368C7718_ch06.indd 368 14/03/11 8:33 PM14/03/11 8:33 PM

369

Revisiting the Monthly Payment Calculator Application L E S S O N B

10. Save the solution and then start the application. Type 10000 in the
Principal box and then press Enter to select the Calculate button.
Th e button’s Click event procedure displays the monthly payments, as
shown in Figure 6-36.

Figure 6-36 Monthly payments shown in the interface

11. Click the Exit button. Close the Code Editor window and then close
the solution.

Figure 6-37 describes the way the computer processes the loops contained
in the Calculate button’s Click event procedure. Notice that when the inner
loop ends, the value stored in the intTerm variable is 6. When the outer
loop ends, the value stored in the dblRate variable is 0.11.

Processing steps for the loops in the btnCalc_Click procedure

1. The computer creates the dblRate variable and initializes it to 0.05.
2. The computer checks whether the value in the dblRate variable is greater than

0.1. It’s not, so the computer displays the current rate (5 %) in the lblPayments
control and then processes the inner loop as follows:
a. The computer creates the intTerm variable and initializes it to 3.
b. The computer checks whether the value in the intTerm variable is greater

than 5. It’s not, so the computer calculates the monthly payment (using 0.05
as the rate and 3 as the term) and then displays the result in the lblPayments
control.

c. The computer adds 1 to the intTerm variable, giving 4.
d. The computer again checks whether the value in the intTerm variable is

greater than 5. It’s not, so the computer calculates the monthly car payment
(using 0.05 as the rate and 4 as the term) and then displays the result in the
lblPayments control.

e. The computer adds 1 to the intTerm variable, giving 5.
f. The computer again checks whether the value in the intTerm variable is

greater than 5. It’s not, so the computer calculates the monthly car payment
(using 0.05 as the rate and 5 as the term) and then displays the result in the
lblPayments control.

g. The computer adds 1 to the intTerm variable, giving 6.
h. The computer again checks whether the value in the intTerm variable is

greater than 5. It is, so the computer removes the intTerm variable from
memory and then stops processing the inner loop. Processing continues with
the statement immediately below the Next intTerm clause.

Figure 6-37 Processing steps for the loops (continues)

C7718_ch06.indd 369C7718_ch06.indd 369 14/03/11 8:33 PM14/03/11 8:33 PM

370

C H A P T E R 6 The Repetition Structure

(continued)

 3. The statement immediately below the Next intTerm clause positions the
cursor on the next line in the lblPayments control.

 4. The computer adds 0.01 to the dblRate variable, giving 0.06.
 5. The computer again checks whether the value in the dblRate variable is

greater than 0.1. It’s not, so the computer displays the current rate (6 %) in
the lblPayments control. It then processes the inner loop as shown in Steps 2a
through 2h; however, this time it uses 0.06 as the rate.

 6. The statement immediately below the Next intTerm clause positions the
cursor on the next line in the lblPayments control.

 7. The computer adds 0.01 to the dblRate variable, giving 0.07.
 8. The computer again checks whether the value in the dblRate variable is

greater than 0.1. It’s not, so the computer displays the current rate (7 %) in
the lblPayments control. It then processes the inner loop as shown in Steps 2a
through 2h; however, this time it uses 0.07 as the rate.

 9. The statement immediately below the Next intTerm clause positions the
cursor on the next line in the lblPayments control.

10. The computer adds 0.01 to the dblRate variable, giving 0.08.
11. The computer again checks whether the value in the dblRate variable is

greater than 0.1. It’s not, so the computer displays the current rate (8 %) in
the lblPayments control. It then processes the inner loop as shown in Steps 2a
through 2h; however, this time it uses 0.08 as the rate.

12. The statement immediately below the Next intTerm clause positions the
cursor on the next line in the lblPayments control.

13. The computer adds 0.01 to the dblRate variable, giving 0.09.
14. The computer again checks whether the value in the dblRate variable is

greater than 0.1. It’s not, so the computer displays the current rate (9 %) in
the lblPayments control. It then processes the inner loop as shown in Steps 2a
through 2h; however, this time it uses 0.09 as the rate.

15. The statement immediately below the Next intTerm clause positions the
cursor on the next line in the lblPayments control.

16. The computer adds 0.01 to the dblRate variable, giving 0.1.
17. The computer again checks whether the value in the dblRate variable is

greater than 0.1. It’s not, so the computer displays the current rate (10 %) in
the lblPayments control. It then processes the inner loop as shown in Steps 2a
through 2h; however, this time it uses 0.1 as the rate.

18. The statement immediately below the Next intTerm clause positions the
cursor on the next line in the lblPayments control.

19. The computer adds 0.01 to the dblRate variable, giving 0.11.
20. The computer again checks whether the value in the dblRate variable is greater

than 0.1. It is, so the computer removes the dblRate variable from memory and
then stops the outer loop. Processing continues with the statement immediately
below the Next dblRate clause.

Figure 6-37 Processing steps for the loops

C7718_ch06.indd 370C7718_ch06.indd 370 14/03/11 8:33 PM14/03/11 8:33 PM

371

Lesson B Review Questions L E S S O N B

Lesson B Summary

 • To nest a repetition structure:

Place the entire inner loop within the outer loop.

 • To refresh the interface:

Use the Refresh method. Th e method’s syntax is Me.Refresh().

 • To pause program execution:

Use the Sleep method. Th e method’s syntax is System.Th reading.Th read.
Sleep(milliseconds).

Lesson B Key Terms
Refresh method—can be used to refresh (redraw) a form

Sleep method—can be used to delay program execution

Lesson B Review Questions

1. What will the following code display in the lblAsterisks control?

For intX As Integer = 1 To 2
 For intY As Integer = 1 To 3
 lblAsterisks.Text = lblAsterisks.Text & "*"
 Next intY
 lblAsterisks.Text = lblAsterisks.Text &
 ControlChars.NewLine
Next intX

a. ***

b. ***

c. **
**

 **

d. ***

C7718_ch06.indd 371C7718_ch06.indd 371 14/03/11 8:33 PM14/03/11 8:33 PM

372

C H A P T E R 6 The Repetition Structure

2. What will the following code display in the lblSum control?

Dim intSum As Integer
Dim intY As Integer
Do While intY < 3
 For intX As Integer = 1 To 4
 intSum = intSum + intX
 Next intX
 intY = intY + 1
Loop
lblSum.Text = Convert.ToString(intSum)

a. 5

b. 8

c. 15

d. 30

3. Which of the following statements pauses program execution for
1 second?

a. System.Threading.Thread.Pause(1000)

b. System.Threading.Thread.Pause(1)

c. System.Threading.Thread.Sleep(1000)

d. System.Threading.Thread.Sleep(100)

Lesson B Exercises

1. In this exercise, you modify the Clock application from this lesson.
Use Windows to make a copy of the Clock Solution folder. Rename
the copy Clock Solution-Introductory. Open the Clock Solution
(Clock Solution.sln) fi le contained in the Clock Solution-Introductory
folder. Open the designer and Code Editor windows. Change the
outer For . . . Next statement to a Do . . . Loop statement. Save the solu-
tion and then start and test the application. Close the Code Editor
window and then close the solution.

2. In this exercise, you modify the Monthly Payment Calculator
 application from this lesson. Use Windows to make a copy of the
Nested Payment Calculator Solution folder. Rename the copy Nested
Payment Calculator Solution-Introductory. Open the Payment
Calculator Solution (Payment Calculator Solution.sln) fi le contained
in the Nested Payment Calculator Solution-Introductory folder. Open
the designer and Code Editor windows. Change the For . . . Next state-
ment that controls the term to a Do . . . Loop statement. Save the solu-
tion and then start and test the application. Close the Code Editor
window and then close the solution.

INTRODUCTORY

INTRODUCTORY

C7718_ch06.indd 372C7718_ch06.indd 372 14/03/11 8:33 PM14/03/11 8:33 PM

373

Lesson B Exercises L E S S O N B

3. In this exercise, you modify the Clock application from this lesson.
Use Windows to make a copy of the Clock Solution folder. Rename
the copy Clock Solution-Intermediate. Open the Clock Solution
(Clock Solution.sln) fi le contained in the Clock Solution-Intermediate
folder. Open the designer and Code Editor windows. Change the
inner For . . . Next statement to a Do . . . Loop statement. Save the solu-
tion and then start and test the application. Close the Code Editor
window and then close the solution.

4. In this exercise, you modify the Monthly Payment Calculator appli-
cation from this lesson. Use Windows to make a copy of the Nested
Payment Calculator Solution folder. Rename the copy Nested
Payment Calculator Solution-Intermediate. Open the Payment
Calculator Solution (Payment Calculator Solution.sln) fi le contained
in the Nested Payment Calculator Solution-Intermediate folder. Open
the designer and Code Editor windows. Change both For . . . Next
statements to Do . . . Loop statements. Save the solution and then start
and test the application. Close the Code Editor window and then
close the solution.

5. Professor Arkins wants an application that allows him to assign
a grade to any number of students. Each student’s grade is based
on three test scores, with each test worth 100 points. Th e applica-
tion should total the test scores and then assign the appropriate
grade using the information shown in Figure 6-38. Open the Grade
Calculator Solution (Grade Calculator Solution.sln) fi le contained in
the VB2010\Chap06\Grade Calculator Solution folder. If necessary,
open the designer window. Code the application. Save the solution
and then start and test the application. Close the Code Editor window
and then close the solution.

Total points earned Grade
270–300 A
240–269 B
210–239 C
180–209 D
below 180 F

Figure 6-38 Grade information for Exercise 5

6. Open the Car Solution (Car Solution.sln) fi le contained in the
VB2010\Chap06\Car Solution folder. Th e Click Me button’s Click
event procedure should make the “I WANT THIS CAR!” message
blink 10 times. In other words, the message should disappear and
then reappear, disappear and then reappear, and so on. Use the
For . . . Next statement. Save the solution and then start and test
the application. Close the Code Editor window and then close
the solution.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

ADVANCED

C7718_ch06.indd 373C7718_ch06.indd 373 14/03/11 8:33 PM14/03/11 8:33 PM

374

C H A P T E R 6 The Repetition Structure

 ❚ LESSON C
After studying Lesson C, you should be able to:

 • Include a list box on a form

 • Select a list box item from code

 • Determine the selected item in a list box

Creating the Shoppers Haven Application
Recall that your task is to create an application that allows the user to enter
an item’s original price and its discount rate. Th e discount rates range from
10% through 30% in increments of 5%. Th e application will calculate and dis-
play the amount of the discount and also the discounted price. Figure 6-39
shows the application’s TOE chart.

Task Object Event
End the application btnExit Click

1. Calculate the discount and discounted price btnCalc Click
2. Display the discount and discounted price in

 lblDiscount and lblDiscountPrice

Get and display the original price txtOrigPrice None
Select the existing text Enter
Clear lblDiscount and lblDiscountPrice TextChanged

1. Fill lstRate with values frmMain Load
2. Select a default value in lstRate

Display the discount (from btnCalc) lblDiscount None

Display the discounted price (from btnCalc) lblDiscountPrice None

Get and display the discount rates lstRate None
Clear lblDiscount and lblDiscountPrice SelectedValueChanged

Figure 6-39 TOE chart for the Shoppers Haven application

To open the partially-completed Shoppers Haven application:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.

2. Open the Shoppers Haven Solution (Shoppers Haven Solution.sln)
fi le contained in the VB2010\Chap06\Shoppers Haven Solution folder.
If necessary, open the designer window. Missing from the interface is
a list box control.

The Ch06CVideo
fi le demonstrates
all of the steps
contained in

Lesson C. You can view
the video either before or
after completing the
lesson.

START HERE

C7718_ch06.indd 374C7718_ch06.indd 374 14/03/11 8:33 PM14/03/11 8:33 PM

375

Including a List Box in an Interface L E S S O N C

Including a List Box in an Interface
You add a list box to an interface using the ListBox tool in the toolbox. A list
box displays a list of choices from which the user can select zero choices,
one choice, or multiple choices. Th e number of choices the user can select
is controlled by the list box’s SelectionMode property. Th e default value for
the property is One, which allows the user to select only one choice at a time.
You can make a list box any size you want. However, the Windows standard
for list boxes is to display a minimum of three choices and a maximum of
eight choices at a time. If you have more items than can fi t into the list box,
the control automatically displays a scroll bar for viewing the complete list
of items. You should use a label control to provide keyboard access to the list
box. For the access key to work correctly, you must set the label’s TabIndex
property to a value that is one less than the list box’s TabIndex value.

To complete the user interface:

1. Click the ListBox tool in the toolbox and then drag the mouse
pointer to the form. Position the mouse pointer below the Discount
rate label and then release the mouse button.

2. Th e three-character ID for list box names is lst. Change the list
box’s name to lstRate. Do not be concerned that the list box’s name
appears inside the control. Th e name will not appear when the appli-
cation is started.

3. Set the list box’s Size property to 66, 64.

4. Lock the controls on the form and then use the information in Figure
6-40 to set the TabIndex values. When you are fi nished, press Esc to
remove the TabIndex boxes from the form and then save the solution.

Figure 6-40 Correct TabIndex values

Adding Items to a List Box
Th e items in a list box belong to a collection called the Items collection.
A collection is a group of individual objects treated as one unit. Th e fi rst item
in the Items collection appears as the fi rst item in the list box. Th e second
item in the collection appears as the second item in the list box, and so on.
A unique number called an index identifi es each item in the Items collection.
Th e fi rst item in the collection (which also is the fi rst item in the list box)

You can learn
more about the
SelectionMode
property in
Exercise 10 at

the end of this lesson.

If you have only
two choices to
offer the user,
you should use
two radio buttons

rather than a list box.

START HERE

C7718_ch06.indd 375C7718_ch06.indd 375 14/03/11 8:33 PM14/03/11 8:33 PM

376

C H A P T E R 6 The Repetition Structure

has an index of 0. Th e second item has an index of 1, and so on. You specify
each item to display in a list box using the Items collection’s Add method.
Figure 6-41 shows the method’s syntax and includes examples of using the
method. In the syntax, object is the name of the list box control, and the
item argument is the text you want to add to the control’s list. Th e three Add
methods in Example 1 will add the strings “Dog”, “Cat”, and “Horse” to the
lstAnimal control. In Example 2, the Add method appears in the body of
a pretest loop that repeats its instructions for intCode values of 100 through
105. As a result, the Add method will add the values 100, 101, 102, 103, 104,
and 105 (each converted to the String data type) to the lstCode control.
You also can write the Add method in Example 2 as follows:
lstCode.Items.Add(Convert.ToString(intCode)). In most cases,
you enter the Add methods in the Load event procedure of a form, because
you typically want the list box to display its values when the form fi rst
appears on the screen.

Add method (Items collection)

Syntax
object.Items.Add(item)

Example 1
lstAnimal.Items.Add("Dog")
lstAnimal.Items.Add("Cat")
lstAnimal.Items.Add("Horse")
adds Dog, Cat, and Horse to the lstAnimal control

Example 2
For intCode As Integer = 100 To 105
 lstCode.Items.Add(intCode.ToString)
Next intCode
adds 100, 101, 102, 103, 104, and 105 to the lstCode control

Figure 6-41 Syntax and examples of the Items collection’s Add method

Figure 6-42 shows the lstAnimal and lstCode controls after the computer
processes the code shown in Figure 6-41.

you can use the
scroll bar to view
the other codes

Figure 6-42 Result of processing the code from Figure 6-41

The Sorted Property
Th e position of an item in a list box depends on the value stored in the list
box’s Sorted property. When the Sorted property is set to False (the default
value), the item is added at the end of the list. Th e Sorted property of both
list boxes in Figure 6-42 is set to False. When the Sorted property is set to

To learn about
the Items collec-
tion’s Insert,
Remove,
RemoveAt, and

Clear methods, as well
as its Count property,
complete Exercise 11 at
the end of this lesson.

To learn how to
use the String
Collection Editor
window to add
items to a list

box, complete Exercise
12 at the end of this
lesson.

C7718_ch06.indd 376C7718_ch06.indd 376 14/03/11 8:33 PM14/03/11 8:33 PM

377

Coding the Shoppers Haven Application L E S S O N C

True, the item is sorted along with the existing items and then placed in its
proper position in the list. Visual Basic sorts the list box items in dictionary
order, which means that numbers are sorted before letters, and a lowercase
letter is sorted before its uppercase equivalent. Th e items in a list box are
sorted based on the leftmost characters in each item. As a result, the items
“Personnel”, “Inventory”, and “Payroll” will appear in the following order when
the lstDepartment control’s Sorted property is set to True: Inventory, Payroll,
Personnel. Likewise, the items 1, 2, 3, and 10 will appear in the following
order when the lstNumber control’s Sorted property is set to True: 1, 10, 2, 3.
Both list boxes are shown in Figure 6-43.

Figure 6-43 Examples of the list box’s Sorted property

Th e requirements of the application you are creating determine whether you
display the list box items in either sorted order or the order in which they are
added to the list box. If several list items are selected much more frequently
than other items, you typically leave the list box’s Sorted property set to False
and then add the frequently used items fi rst; doing this ensures that the items
appear at the beginning of the list. However, if the list box items are selected
fairly equally, you typically set the list box’s Sorted property to True, because
it is easier to locate items when they appear in a sorted order.

GUI DESIGN TIP List Box Standards

 • A list box should contain a minimum of three items.

 • A list box should display a minimum of three items and a maximum of
eight items at a time.

 • Use a label control to provide keyboard access to the list box. Set the
label’s TabIndex property to a value that is one less than the list box’s
TabIndex value.

 • List box items are either arranged by use, with the most used entries
appearing first in the list, or sorted in ascending order.

Coding the Shoppers Haven Application
When the Shoppers Haven interface appears on the screen, the appropriate
discount rates should be listed in the lstRate control. You can accomplish this
by entering the appropriate Add methods in the form’s Load event procedure.

C7718_ch06.indd 377C7718_ch06.indd 377 14/03/11 8:33 PM14/03/11 8:33 PM

378

C H A P T E R 6 The Repetition Structure

To specify the discount rates to display in the lstRate control:

1. Open the Code Editor window. Replace <your name> and <current
date> in the comments with your name and the current date,
respectively.

2. Click the Class Name list arrow and then click (frmMain Events).
Click the Method Name list arrow and then click Load. Type the fol-
lowing comment and then press Enter twice:

' fi ll the list box with values

3. Enter the For . . . Next loop shown in Figure 6-44, and then position
the insertion point as shown in the fi gure. (Be sure to change the Next
clause to Next dblRates.)

enter these three
lines of code

position the
insertion point here

Figure 6-44 For . . . Next loop entered in the Load event procedure

4. Save the solution and then start the application. Th e numbers 10, 15,
and 20 appear in the list box. (Depending on your screen’s resolution,
the number 25 also may appear in the list box.) Scroll down the list
box to verify that it also contains the numbers 25 and 30.

5. Scroll to the top of the list box and then click 15 in the list. See
Figure 6-45. When you select an item in a list box, the item appears
highlighted in the list. In addition, the item’s value (in this case, the
string “15”) is stored in the list box’s SelectedItem property, and the
item’s index (in this case, the number 1) is stored in the list box’s
SelectedIndex property. You will learn more about the SelectedItem
and SelectedIndex properties in the next section. Click the Exit
button.

the computer stores “15”
and 1 in the SelectedItem
and SelectedIndex
properties, respectively

Figure 6-45 Second item selected in the list box

START HERE

C7718_ch06.indd 378C7718_ch06.indd 378 14/03/11 8:33 PM14/03/11 8:33 PM

379

Coding the Shoppers Haven Application L E S S O N C

The SelectedItem and SelectedIndex Properties
You can use either the SelectedItem property or the SelectedIndex property
to determine whether an item is selected in a list box. When no item is
selected, the SelectedItem property contains the empty string, and the
SelectedIndex property contains the number –1 (negative 1). Otherwise, the
SelectedItem and SelectedIndex properties contain the value of the selected
item and the item’s index, respectively. Figure 6-46 shows examples of using
the SelectedItem and SelectedIndex properties.

SelectedItem and SelectedIndex properties

Example 1 (SelectedItem property)
lblAnimal.Text = Convert.ToString(lstAnimal.SelectedItem)
The assignment statement converts the item selected in the lstAnimal control to String
and then assigns the result to the lblAnimal control’s Text property.

Example 2 (SelectedItem property)
If Convert.ToInt32(lstCode.SelectedItem) = 103 Then
The If clause converts the item selected in the lstCode control to Integer and then
compares the result with the integer 103. The condition evaluates to True when item
103 is selected in the lstCode control; otherwise, it evaluates to False. You also can
convert the item to String and then compare the result with the string “103” as follows:
If Convert.ToString(lstCode.SelectedItem) = "103".

Example 3 (SelectedItem property)
If Convert.ToString(lstCode.SelectedItem) <> String.Empty Then
The If clause converts the item selected in the lstCode control to String and then
compares the result to the empty string. The condition evaluates to True when an item
is selected in the lstCode control; otherwise, it evaluates to False.

Example 4 (SelectedIndex property)
MessageBox.Show(lstAnimal.SelectedIndex.ToString)
The MessageBox.Show method displays (in a message box) the index of the
item selected in the lstAnimal control. You also can use the
MessageBox.Show(Convert.ToString(lstAnimal.SelectedIndex))
statement.

Example 5 (SelectedIndex property)
If lstCode.SelectedIndex = 0 Then
The If clause compares the index of the item selected in the lstCode control with
the number 0. The condition evaluates to True when the fi rst item in the list box is
selected; otherwise, it evaluates to False.

Figure 6-46 Examples of the list box’s SelectedItem and SelectedIndex properties

If a list box allows the user to make only one selection, it is customary in
Windows applications to have one of the list box items already selected
when the interface appears. Th e selected item, called the default list box
item, should be either the item selected most frequently or the fi rst item in
the list. You can use either the SelectedItem property or the SelectedIndex
property to select the default list box item from code, as shown in the exam-
ples in Figure 6-47. (Th e examples refer to the list boxes shown earlier in

C7718_ch06.indd 379C7718_ch06.indd 379 14/03/11 8:33 PM14/03/11 8:33 PM

380

C H A P T E R 6 The Repetition Structure

Figure 6-42.) In most cases, you enter the appropriate code in the form’s Load
event procedure.

Selecting the default list box item

Example 1 (SelectedItem property)
lstAnimal.SelectedItem = "Cat"
selects the Cat item in the lstAnimal control

Example 2 (SelectedItem property)
lstCode.SelectedItem = "101"
selects the 101 item in the lstCode control

Example 3 (SelectedIndex property)
lstCode.SelectedIndex = 2
selects the third item in the lstCode control

Figure 6-47 Examples of selecting the default list box item

To select a default item in the lstRate control:

1. Th e insertion point should be positioned two lines below the Next
dblRates clause in the form’s Load event procedure. Enter the
 following assignment statement:

lstRate.SelectedIndex = 0

2. Save the solution and then start the application. Th e form’s Load
event procedure fi lls the list box with the discount rates and then
selects the fi rst item in the list. See Figure 6-48. Click the Exit button.

the default item is
automatically selected

Figure 6-48 Default item selected in the list box

GUI DESIGN TIP Default List Box Item

If a list box allows the user to make only one selection, a default item should
be selected when the interface first appears. The default item should be
either the item selected most frequently or the first item in the list. However,
if a list box allows more than one selection at a time, you do not select a
default item.

START HERE

C7718_ch06.indd 380C7718_ch06.indd 380 14/03/11 8:33 PM14/03/11 8:33 PM

381

Coding the Shoppers Haven Application L E S S O N C

The SelectedValueChanged and SelectedIndexChanged
Events
Each time either the user or a statement selects an item in a list box, the list
box’s SelectedValueChanged event and its SelectedIndexChanged event
occur. You can use the procedures associated with these events to perform
one or more tasks when the selected item has changed. In the Shoppers
Haven application, you will code the lstRate control’s SelectedValueChanged
procedure so that it clears both the discount and discounted price amounts
whenever a change is made to the discount rate.

To code the list box’s SelectedValueChanged event procedure:

1. Open the code template for the lstRate control’s
SelectedValueChanged event. Type the following comment and then
press Enter twice:

' clear the calculated results

2. Now enter the following assignment statements:

lblDiscount.Text = String.Empty
lblDiscountPrice.Text = String.Empty

3. Save the solution.

Coding the btnCalc Control’s Click Event Procedure
To complete the Shoppers Haven application, you need to code the btnCalc
control’s Click event procedure. Th e procedure’s pseudocode is shown in
Figure 6-49.

btnCalc Click event procedure
1. store the user input (original price and discount rate) in variables
2. calculate the discount = original price * discount rate / 100
3. calculate the discounted price = original price – discount
4. display the discount and discounted price in the lblDiscount and lblDiscountPrice

controls

Figure 6-49 Pseudocode for the btnCalc control’s Click event procedure

To code and then test the btnCalc control’s Click event procedure:

1. Open the code template for the btnCalc control’s Click event
 procedure. Type the following comment and then press Enter twice:

' calculate the discount and discounted price

2. Recall that before you begin coding a procedure, you fi rst study the
procedure’s pseudocode to determine the variables and named con-
stants (if any) the procedure will use. In this case, the procedure will
not use any named constants; however, it will use four variables. Th e
dblOriginal variable will store the original price. Th e dblRate

START HERE

START HERE

C7718_ch06.indd 381C7718_ch06.indd 381 14/03/11 8:33 PM14/03/11 8:33 PM

382

C H A P T E R 6 The Repetition Structure

variable will store the discount rate. Th e dblDiscount and
 dblDiscountPrice variables will store the discount and discounted
price, respectively. Enter the following four Dim statements. Press
Enter twice after typing the last Dim statement.

Dim dblOriginal As Double
Dim dblRate As Double
Dim dblDiscount As Double
Dim dblDiscountPrice As Double

3. Th e fi rst step in the pseudocode is to store the user input (original
price and discount rate) in variables. Enter the following TryParse
methods. Press Enter twice after typing the second TryParse method.

Double.TryParse(txtOrigPrice.Text, dblOriginal)
Double.TryParse(lstRate.SelectedItem.ToString, dblRate)

4. Th e second step in the pseudocode is to calculate the discount
amount. Enter the following assignment statement:

dblDiscount = dblOriginal * dblRate / 100

5. Th e third step in the pseudocode is to calculate the discounted price.
Enter the following assignment statement:

dblDiscountPrice = dblOriginal – dblDiscount

6. Th e last step in the pseudocode is to display the discount and
 discounted price in the appropriate label controls. Enter the following
assignment statements:

lblDiscount.Text = dblDiscount.ToString("C2")
lblDiscountPrice.Text = dblDiscountPrice.ToString("C2")

7. Save the solution and then start the application. Type 100 in the
Original price box and then click 20 in the list of discount rates. Click
the Calculate button. Th e button’s Click event procedure displays the
discount and discounted price. See Figure 6-50.

Figure 6-50 Calculated amounts shown in the interface

8. Click 10 in the Discount rate list box. Th e list box’s
SelectedValueChanged procedure removes the discount and
 discounted price from the label controls.

C7718_ch06.indd 382C7718_ch06.indd 382 14/03/11 8:33 PM14/03/11 8:33 PM

383

Coding the Shoppers Haven Application L E S S O N C

9. Click the Calculate button. Th e button’s Click event procedure
displays $10.00 and $90.00 as the discount and discounted price,
respectively.

10. Click the Exit button. Close the Code Editor window and then close
the solution.

Figure 6-51 shows the application’s code.

 1 ' Name: Shoppers Haven Project
 2 ' Purpose: Displays the discount and discounted price
 3 ' Programmer: <your name> on <current date>
 4
 5 Option Explicit On
 6 Option Strict On
 7 Option Infer Off
 8
 9 Public Class frmMain
10
11 Private Sub btnExit_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnExit.Click
12 Me.Close()
13 End Sub
14
15 Private Sub txtOrigPrice_Enter(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles txtOrigPrice.Enter
16 txtOrigPrice.SelectAll()
17 End Sub
18
19 Private Sub txtOrigPrice_KeyPress(ByVal sender As Object,
 ByVal e As System.Windows.Forms.KeyPressEventArgs
) Handles txtOrigPrice.KeyPress
20 ' allows only numbers, the period, and the Backspace
21
22 If (e.KeyChar < "0" OrElse e.KeyChar > "9") AndAlso
23 e.KeyChar <> "." AndAlso
24 e.KeyChar <> ControlChars.Back Then
25 e.Handled = True
26 End If
27 End Sub
28
29 Private Sub txtOrigPrice_TextChanged(ByVal sender As Object,
 ByVal e As System.EventArgs
) Handles txtOrigPrice.TextChanged
30 ' clear the calculated results
31
32 lblDiscount.Text = String.Empty
33 lblDiscountPrice.Text = String.Empty
34 End Sub
35
36 Private Sub frmMain_Load(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Me.Load
37 ' fill the list box with values
38
39 For dblRates As Double = 10 To 30 Step 5
40 lstRate.Items.Add(dblRates.ToString)

Figure 6-51 Shoppers Haven application’s code (continues)

C7718_ch06.indd 383C7718_ch06.indd 383 14/03/11 8:33 PM14/03/11 8:33 PM

384

C H A P T E R 6 The Repetition Structure

41 Next dblRates
42
43 lstRate.SelectedIndex = 0
44
45 End Sub
46
47 Private Sub lstRate_SelectedValueChanged(
 ByVal sender As Object, ByVal e As System.EventArgs
) Handles lstRate.SelectedValueChanged
48 ' clear the calculated results
49
50 lblDiscount.Text = String.Empty
51 lblDiscountPrice.Text = String.Empty
52
53 End Sub
54
55 Private Sub btnCalc_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnCalc.Click
56 ' calculate the discount and discounted price
57
58 Dim dblOriginal As Double
59 Dim dblRate As Double
60 Dim dblDiscount As Double
61 Dim dblDiscountPrice As Double
62
63 Double.TryParse(txtOrigPrice.Text, dblOriginal)
64 Double.TryParse(lstRate.SelectedItem.ToString, dblRate)
65
66 dblDiscount = dblOriginal * dblRate / 100
67 dblDiscountPrice = dblOriginal - dblDiscount
68 lblDiscount.Text = dblDiscount.ToString("C2")
69 lblDiscountPrice.Text = dblDiscountPrice.ToString("C2")
70
71 End Sub
72 End Class

Figure 6-51 Shoppers Haven application’s code

(continued)

Lesson C Summary

 • To add a list box control to a form:

Use the ListBox tool in the toolbox.

 • To specify whether the user can select zero choices, one choice, or
 multiple choices in a list box:

Set the list box’s SelectionMode property.

 • To add items to a list box:

Use the Items collection’s Add method. Th e method’s syntax is
object.Items.Add(item). In the syntax, object is the name of the list
box control, and the item argument is the text you want to add to the
control’s list.

C7718_ch06.indd 384C7718_ch06.indd 384 14/03/11 8:33 PM14/03/11 8:33 PM

385

Lesson C Review Questions L E S S O N C

 • To automatically sort the items in a list box:

Set the list box’s Sorted property to True.

 • To determine the item selected in a list box, or to select a list box item
from code:

Use either the list box’s SelectedItem property or its SelectedIndex property.

 • To perform tasks when a diff erent item is selected in a list box:

Enter the code in either the list box’s SelectedValueChanged procedure or
its SelectedIndexChanged procedure.

Lesson C Key Terms
Add method—the Items collection’s method used to add items to a list box

Collection—a group of individual objects treated as one unit

Default list box item—the item automatically selected in a list box when the
interface appears on the screen

Items collection—the collection composed of the items in a list box

List box—a control used to display a list of choices from which the user can
select zero choices, one choice, or multiple choices

SelectedIndex property—stores the index of the item selected in a list box

SelectedIndexChanged event—occurs when an item is selected in a list box

SelectedItem property—stores the value of the item selected in a list box

SelectedValueChanged event—occurs when an item is selected in a list box

SelectionMode property—determines the number of items that can be
selected in a list box

Sorted property—specifi es whether the list box items should appear in the
order they are entered or in sorted order

Lesson C Review Questions

1. Which of the following methods allows you to add items to a list box?

a. Add

b. AddList

c. Item

d. ItemAdd

2. Th e items in a list box belong to the collection.

a. Items

b. List

c. ListItems

d. Values

C7718_ch06.indd 385C7718_ch06.indd 385 14/03/11 8:33 PM14/03/11 8:33 PM

386

C H A P T E R 6 The Repetition Structure

3. Which of the following properties stores the index of the item
selected in a list box?

a. Index

b. SelectedIndex

c. Selection

d. SelectionIndex

4. Which of the following statements selects the “Horse” item, which
appears third in the lstAnimal control?

a. lstAnimal.SelectedIndex = 2

b. lstAnimal.SelectedIndex = 3

c. lstAnimal.SelectedItem = 2

d. lstAnimal.SelectedItem = 3

5. Th e event occurs when the user selects a diff erent item
in a list box.

a. SelectionChanged

b. SelectedItemChanged

c. SelectedValueChanged

d. none of the above

Lesson C Exercises

1. In this exercise, you modify the Shoppers Haven application from this
lesson. Use Windows to make a copy of the Shoppers Haven Solution
folder. Rename the copy Modifi ed Shoppers Haven Solution. Open
the Shoppers Haven Solution (Shoppers Haven Solution.sln) fi le
 contained in the Modifi ed Shoppers Haven Solution folder. Open the
designer and Code Editor windows. Change the For . . . Next statement
in the form’s Load event procedure to a Do . . . Loop statement. Save
the solution and then start and test the application. Close the Code
Editor window and then close the solution.

2. In this exercise, you create an application that displays the telephone
extension corresponding to the name selected in a list box. Th e
names and extensions are shown in Figure 6-52. Create a Visual Basic
Windows application. Use the following names for the solution, proj-
ect, and form fi le, respectively: Phone Solution, Phone Project, and
Main Form.vb. Save the application in the VB2010\Chap06 folder.
Create the interface shown in Figure 6-53. Th e items in the list box
should be sorted; set the appropriate property. Code the applica-
tion. Th e form’s Load event procedure should add the names shown
in Figure 6-52 to the list box and then select the fi rst name in the

INTRODUCTORY

INTRODUCTORY

C7718_ch06.indd 386C7718_ch06.indd 386 14/03/11 8:33 PM14/03/11 8:33 PM

387

Lesson C Exercises L E S S O N C

list. Th e list box’s SelectedValueChanged event procedure should
assign the item selected in the list box to a variable. It then should
use the Select Case statement to display the telephone extension
 corresponding to the name. Save the solution and then start and test
the application. Close the Code Editor window and then close the
solution.

Name Extension
Smith, Joe 3388
Jones, Mary 3356
Adkari, Joel 2487
Lin, Sue 1111
Li, Vicky 2222

Figure 6-52 Information for Exercise 2

Figure 6-53 Interface for Exercise 2

3. In this exercise, you modify the application from Exercise 2. Use
Windows to make a copy of the Phone Solution folder. Rename the
copy Modifi ed Phone Solution. Open the Phone Solution (Phone
Solution.sln) fi le contained in the Modifi ed Phone Solution folder.
Open the designer and Code Editor windows. Modify the list box’s
SelectedValueChanged event procedure so that it assigns the index of
the item selected in the list box to a variable. Modify the Select Case
statement so that it displays the telephone extension corresponding to
the index stored in the variable. Save the solution and then start and
test the application. Close the Code Editor window and then close the
solution.

4. In this exercise, you create an application that displays a multi-
plication table similar to the one shown in Figure 6-54. Open the
Multiplication Solution (Multiplication Solution.sln) fi le contained in
the VB2010\Chap06\Multiplication Solution folder. Code the applica-
tion. Save the solution and then start and test the application. Close
the Code Editor window and then close the solution.

INTRODUCTORY

INTRODUCTORY

C7718_ch06.indd 387C7718_ch06.indd 387 14/03/11 8:33 PM14/03/11 8:33 PM

388

C H A P T E R 6 The Repetition Structure

Figure 6-54 Sample run of the Multiplication Table application

5. Powder Skating Rink holds a weekly ice-skating competition.
Competing skaters must perform a two-minute program in front of a
panel of judges. Th e number of judges varies from week to week. At
the end of a skater’s program, each judge assigns a score of 0 through
10 to the skater. Th e manager of the ice rink wants an application
that calculates and displays a skater’s average score. Th e application
also should display the skater’s total score and the number of scores
entered. Create a Visual Basic Windows application. Use the follow-
ing names for the solution, project, and form fi le, respectively: Powder
Solution, Powder Project, and Main Form.vb. Save the application in
the VB2010\Chap06 folder. Create the interface shown in Figure 6-55.
Code the application. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

Figure 6-55 Interface for Exercise 5

6. In this exercise, you create an application that allows the user to enter
the gender (either F or M) and GPA for any number of students.
Th e application should calculate the average GPA for all students,
the average GPA for male students, and the average GPA for female
students. Th e list box should list GPAs from 1.0 through 4.0 in incre-
ments of .1. (For example, 1.0, 1.1, 1.2, 1.3, and so on.) Create a Visual

INTERMEDIATE

INTERMEDIATE

C7718_ch06.indd 388C7718_ch06.indd 388 14/03/11 8:33 PM14/03/11 8:33 PM

389

Lesson C Exercises L E S S O N C

Basic Windows application. Use the following names for the solution,
project, and form fi le, respectively: GPA Solution, GPA Project, and
Main Form.vb. Save the application in the VB2010\Chap06 folder.
Create the interface shown in Figure 6-56. Code the application. Save
the solution and then start and test the application. Close the Code
Editor window and then close the solution.

Figure 6-56 Interface for Exercise 6

7. In this exercise, you code an application that allows the user 10
chances to guess a random number generated by the computer. Th e
random number should be an integer from 1 through 50, inclusive.
Each time the user makes an incorrect guess, the application should
display a message that tells the user either to guess a higher num-
ber or to guess a lower number. When the user guesses the random
number, the application should display a “Congratulations!” message.
However, if the user is not able to guess the random number after 10
tries, the application should display the random number in a message.
Open the Random Solution (Random Solution.sln) fi le contained in
the VB2010\Chap06\Random Solution folder. If necessary, open the
designer window. Code the application. Save the solution and then
start and test the application. Close the Code Editor window and then
close the solution.

8. In this exercise, you code an application that displays the fi rst 10
Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, and 55. Notice that,
beginning with the third number in the series, each Fibonacci number
is the sum of the prior two numbers. In other words, 2 is the sum of
1 plus 1, 3 is the sum of 1 plus 2, 5 is the sum of 2 plus 3, and so on.
Open the Fibonacci Solution (Fibonacci Solution.sln) fi le contained
in the VB2010\Chap06\Fibonacci Solution folder. If necessary, open
the designer window. Code the application. Display the numbers in
the lblNumbers control. Save the solution and then start and test
the application. Close the Code Editor window and then close the
solution.

ADVANCED

ADVANCED

C7718_ch06.indd 389C7718_ch06.indd 389 14/03/11 8:33 PM14/03/11 8:33 PM

390

C H A P T E R 6 The Repetition Structure

9. Th e accountant at Sonheim Manufacturing Company wants an
 application that calculates an asset’s annual depreciation. Th e accoun-
tant will enter the asset’s cost, useful life (in years), and salvage value
(which is the value of the asset at the end of its useful life). Use a list
box to display the useful life, which should range from 3 through
20 years. Th e application should use the double-declining balance
method to calculate the annual depreciation amounts; it then should
display the amounts in the interface. You can use the Financial.
DDB method to calculate the depreciation. Th e method’s syntax is
Financial.DDB(cost, salvage, life, period). In the syntax, the cost,
salvage, and life arguments are the asset’s cost, salvage value, and use-
ful life, respectively. Th e period argument is the period for which you
want the depreciation amount calculated. Th e method returns the
depreciation amount as a Double number. Figure 6-57 shows a sample
depreciation schedule for an asset with a cost of $1000, a useful life of
4 years, and a salvage value of $100. Create a Visual Basic Windows
application. Use the following names for the solution, project, and
form fi le, respectively: Sonheim Solution, Sonheim Project, and Main
Form.vb. Save the application in the VB2010\Chap06 folder. Create
the interface shown in Figure 6-57. Set the txtSchedule control’s
Multiline and ReadOnly properties to True, and set its ScrollBars
property to Vertical. Code the application. Save the solution and then
start and test the application. Close the Code Editor window and then
close the solution.

txtSchedule
control

Figure 6-57 Sample run of the Sonheim Manufacturing Company application

ADVANCED

C7718_ch06.indd 390C7718_ch06.indd 390 14/03/11 8:33 PM14/03/11 8:33 PM

391

Lesson C Exercises L E S S O N C

Discovery

10. In this exercise, you learn how to create a list box that allows the
user to select more than one item at a time. Open the Multi Solution
(Multi Solution.sln) fi le contained in the VB2010\Chap06\Multi
Solution folder. If necessary, open the designer window. Th e inter-
face contains a list box named lstNames. Th e list box’s Sorted and
SelectionMode properties are set to True and One, respectively.

a. Open the Code Editor window. Notice that the form’s Load event
procedure adds fi ve names to the lstNames control. Code the
btnSingle control’s Click event procedure so that it displays, in the
lblResult control, the item selected in the list box. For example,
if the user clicks Debbie in the list box and then clicks the Single
Selection button, the name Debbie should appear in the lblResult
control. (Hint: Use the Convert.ToString method.)

b. Save the solution and then start the application. Click Debbie in
the list box, then click Ahmad, and then click Bill. Notice that,
when the list box’s SelectionMode property is set to One, you can
select only one item at a time in the list.

c. Click the Single Selection button. Th e name Bill appears in the
lblResult control. Click the Exit button.

d. Change the list box’s SelectionMode property to MultiSimple.
Save the solution and then start the application. Click Debbie
in the list box, then click Ahmad, then click Bill, and then click
Ahmad. Notice that, when the list box’s SelectionMode property
is set to MultiSimple, you can select more than one item at a time
in the list. Also notice that you click to both select and deselect
an item. (You also can use Ctrl+click and Shift+click, as well as
press the Spacebar, to select and deselect items when the list box’s
SelectionMode property is set to MultiSimple.) Click the Exit
button.

e. Change the list box’s SelectionMode property to MultiExtended.
Save the solution and then start the application. Click Debbie in
the list, and then click Jim. Notice that, in this case, clicking Jim
deselects Debbie. When a list box’s SelectionMode property is set
to MultiExtended, you use Ctrl+click to select multiple items in
the list. You also use Ctrl+click to deselect items in the list. Click
Debbie in the list, Ctrl+click Ahmad, and then Ctrl+click Debbie.

f. Next, click Bill in the list, and then Shift+click Jim; this selects all
of the names from Bill through Jim. Click the Exit button.

C7718_ch06.indd 391C7718_ch06.indd 391 14/03/11 8:33 PM14/03/11 8:33 PM

392

C H A P T E R 6 The Repetition Structure

g. As you know, when a list box’s SelectionMode property is set to
One, the item selected in the list box is stored in the SelectedItem
property, and the item’s index is stored in the SelectedIndex
property. However, when a list box’s SelectionMode property is
set to either MultiSimple or MultiExtended, the items selected
in the list box are stored (as strings) in the SelectedItems prop-
erty, and the indices of the items are stored (as integers) in the
SelectedIndices property. Code the btnMulti control’s Click event
procedure so that it fi rst clears the contents of the lblResult con-
trol. Th e procedure should then display the selected names (which
are stored in the SelectedItems property) on separate lines in the
 lblResult control.

h. Save the solution and then start the application. Click Ahmad in
the list box, and then Shift+click Jim. Click the Multi-Selection
button. Th e fi ve names should appear on separate lines in the
 lblResult control. Close the Code Editor window and then close
the solution.

11. In this exercise, you learn how to use the Items collection’s Insert,
Remove, RemoveAt, and Clear methods. You also learn how to use
the Items collection’s Count property. Open the Items Solution (Items
Solution.sln) fi le contained in the VB2010\Chap06\Items Solution
folder. If necessary, open the designer window.

a. Th e Items collection’s Insert method allows you to add an item at
a desired position in a list box during run time. Th e Insert meth-
od’s syntax is object.Items.Insert(position, item), where position
is the index of the item. Code the Insert button’s Click event pro-
cedure so it adds your name as the fourth item in the list box.

b. Th e Items collection’s Remove method allows you to remove an
item from a list box during run time. Th e Remove method’s syn-
tax is object.Items.Remove(item), where item is the item’s value.
Code the Remove button’s Click event procedure so it removes
your name from the list box.

c. Like the Remove method, the Items collection’s RemoveAt
method also allows you to remove an item from a list box while
an application is running. However, in the RemoveAt method,
you specify the item’s index rather than its value. Th e RemoveAt
method’s syntax is object.Items.RemoveAt(index), where index is
the item’s index. Code the Remove At button’s Click event proce-
dure so it removes the second name from the list box.

d. Th e Items collection’s Clear method allows you to remove all
items from a list box during run time. Th e Clear method’s syntax
is object.Items.Clear(). Code the Clear button’s Click event
procedure so it clears the items from the list box.

C7718_ch06.indd 392C7718_ch06.indd 392 14/03/11 8:33 PM14/03/11 8:33 PM

393

Lesson C Exercises L E S S O N C

e. Th e Items collection’s Count property stores the number of items
contained in a list box. Code the Count button’s Click event pro-
cedure so it displays (in a message box) the number of items listed
in the lstNames control.

f. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

12. In this exercise, you learn how to use the String Collection Editor
window to fi ll a list box with values. Open the ListBox Solution
(ListBox Solution.sln) fi le contained in the VB2010\Chap06\ListBox
Solution folder. If necessary, open the designer window. Open the
Code Editor window. Remove the Add methods and the For . . . Next
statement from the form’s Load event procedure. Close the Code
Editor window. Click the lstAnimal control on the form. Click the
Items property in the Properties list and then click the ellipsis (. . .)
button in the Settings box. Th e String Collection Editor window
opens. Type Dog and then press Enter. Type Cat and then press Enter.
Finally, type Horse and then press Enter. Click the OK button to close
the dialog box. Use the String Collection Editor window to enter
the following codes in the lstCode control: 100, 101, 102, 103, 104,
and 105. Save the solution and then start the application. Close the
solution.

Swat The Bugs

13. Open the Debug Solution (Debug Solution.sln) fi le contained in the
VB2010\Chap06\Debug Solution-Lesson C folder. If necessary, open
the designer window. Open the Code Editor window and review the
existing code. Start and then test the application. Be sure to include
non-integers in your test data. (If you need to stop an endless loop,
click Debug on the menu bar and then click Stop Debugging.) Correct
any errors in the code. Save the solution and then start and test the
application again. Close the Code Editor window and then close the
solution.

C7718_ch06.indd 393C7718_ch06.indd 393 14/03/11 8:33 PM14/03/11 8:33 PM

C H A P T E R 7
Sub and Function
Procedures

Creating the Harvey Industries Application

In this chapter, you create an application for Jefferson Williams, the payroll
manager at Harvey Industries. Currently, Mr. Williams manually calculates each
employee’s weekly gross pay, federal withholding tax (FWT), Social Security and
Medicare (FICA) tax, and net pay. Making these calculations manually is both
time-consuming and prone to mathematical errors. Mr. Williams has asked you
to create an application that he can use to perform the payroll calculations both
effi ciently and accurately.

C7718_ch07.indd 394C7718_ch07.indd 394 14/03/11 8:35 PM14/03/11 8:35 PM

395

Previewing the Harvey Industries Application
Before you start the fi rst lesson in this chapter, you will preview the
 completed application. Th e application is contained in the VB2010\Chap07
folder.

To preview the completed application:

1. Use the Run dialog box to run the Harvey (Harvey.exe) fi le contained
in the VB2010\Chap07 folder. Th e application’s user interface appears
on the screen.

2. Type Kent Montara in the Name box and then click the Married
radio button.

3. Scroll down the Hours list box and then click 41.0 in the list. Scroll
down the Rate list box and then click 13.00 in the list.

4. Th e interface contains a combo box that allows you to either type the
number of withholding allowances or select the number from a list.
Click the list arrow in the Allowances combo box and then click 3 in
the list.

5. Click the Calculate button. Th e gross pay, taxes, and net pay appear
in the interface. See Figure 7-1.

combo box

Figure 7-1 Interface showing the payroll calculations

6. Click the Exit button. Th e “Do you want to exit?” message appears in
a message box. Click the No button. Notice that the form remains on
the screen. In Lesson C, you will learn how to prevent the computer
from closing a form.

7. Click the Exit button and then click the Yes button in the message
box. Th e application ends.

Th e Harvey Industries application uses a combo box and a Function
 procedure. You will learn about Function procedures in Lesson A. Combo
boxes are covered in Lesson B. You will code the Harvey Industries
 application in Lesson C. Be sure to complete each lesson in full and do all of
the end-of-lesson questions and several exercises before continuing to the
next lesson.

START HERE

Previewing the Harvey Industries Application

C7718_ch07.indd 395C7718_ch07.indd 395 14/03/11 8:35 PM14/03/11 8:35 PM

396

C H A P T E R 7 Sub and Function Procedures

 ❚ LESSON A
After studying Lesson A, you should be able to:

 • Explain the diff erence between a Sub procedure and a Function procedure

 • Create a procedure that receives information passed to it

 • Explain the diff erence between passing data by value and passing data by
reference

 • Create a Function procedure

More About Sub Procedures
As you learned in Chapter 5, there are two types of Sub procedures in
Visual Basic: event procedures and independent Sub procedures. An event
 procedure is a Sub procedure that is associated with a specifi c object and
event, such as a button’s Click event or a text box’s TextChanged event.
Th e computer automatically processes an event procedure when the event
occurs. An independent Sub procedure, on the other hand, is a procedure
that is independent of any object and event. An independent Sub procedure
is processed only when called (invoked) from code. You learned how to
 create an independent Sub procedure in Chapter 5. You also learned how to
use the Call statement to invoke a procedure. Figure 7-2 shows the syntax of
an independent Sub procedure, as well as the syntax of the Call statement.

Syntax of an independent Sub procedure
Private Sub procedureName([parameterList])
 statements
End Sub

Syntax of the Call statement
Call procedureName([argumentList])

Figure 7-2 Syntax of an independent Sub procedure and the Call statement

An independent Sub procedure can contain one or more parameters in its
procedure header. Each parameter has procedure scope and each stores an
item of data. Th e data is passed to the procedure through the argumentList
in the Call statement. Th e number of arguments in the Call statement’s
 argumentList should agree with the number of parameters in the procedure’s
parameterList. If the parameterList contains one parameter, then the argu-
mentList should have one argument. Similarly, a procedure that contains
three parameters requires three arguments in the Call statement. (Refer to
the Tip on this page for an exception to this general rule.) In addition to hav-
ing the same number of arguments as parameters, the data type and posi-
tion of each argument should agree with the data type and position of its
corresponding parameter. For example, if the fi rst parameter has a data type
of String and the second a data type of Double, then the fi rst argument in
the Call statement should have the String data type and the second should
have the Double data type. Th is is because, when the procedure is called,

Visual Basic
allows you to
specify that an
argument in the
Call statement is

optional. To learn more
about optional
 arguments, complete
Exercise 15 at the end of
this lesson.

C7718_ch07.indd 396C7718_ch07.indd 396 14/03/11 8:35 PM14/03/11 8:35 PM

397

Passing Variables L E S S O N A

the computer stores the value of the fi rst argument in the procedure’s fi rst
parameter, the value of the second argument in the second parameter, and
so on. An argument can be a literal constant, named constant, keyword, or
 variable; however, in most cases, it will be a variable.

Passing Variables
Every variable has both a value and a unique address that represents its
location in the computer’s internal memory. Visual Basic allows you to pass
either a copy of the variable’s value or the variable’s address to the receiving
procedure. Passing a copy of the variable’s value is referred to as passing
by value. Passing a variable’s address is referred to as passing by reference.
Th e method you choose—by value or by reference—depends on whether
you want the receiving procedure to have access to the variable in memory.
In other words, it depends on whether you want to allow the receiving
 procedure to change the variable’s contents.

Although the idea of passing information by value and by reference may
sound confusing at fi rst, it is a concept with which you already are familiar.
To illustrate, assume you have a savings account at a local bank. During a
conversation with your friend Melissa, you mention the amount of money
you have in the account. Sharing this information with Melissa is similar to
passing a variable by value. Knowing your account balance does not give
Melissa access to your bank account. It merely provides information that
she can use to compare to the balance in her savings account. Th e savings
account example also provides an illustration of passing information by refer-
ence. To deposit money to or withdraw money from your account, you must
provide the bank teller with your account number. Th e account number
represents the location of your account at the bank and allows the teller to
change the account balance. Giving the teller your bank account number
is similar to passing a variable by reference. Th e account number allows the
teller to change the contents of your bank account, similar to the way the
variable’s address allows the receiving procedure to change the contents of
the variable.

Passing Variables by Value
To pass a variable by value, you include the keyword ByVal before the name
of its corresponding parameter in the receiving procedure’s parameterList.
When you pass a variable by value, the computer passes a copy of the vari-
able’s contents to the receiving procedure. When only a copy of the contents
is passed, the receiving procedure is not given access to the variable in
memory. Th erefore, it cannot change the value stored inside the variable.
It is appropriate to pass a variable by value when the receiving procedure
needs to know the variable’s contents, but it does not need to change the
 contents. Unless you specify otherwise, variables in Visual Basic are auto-
matically passed by value. In the next set of steps, you will fi nish coding
the Pet Information application, which passes two variables by value to an
 independent Sub procedure.

The internal
memory of a
computer is simi-
lar to a large
post offi ce. Like

each post offi ce box,
each memory cell has a
unique address.

C7718_ch07.indd 397C7718_ch07.indd 397 14/03/11 8:35 PM14/03/11 8:35 PM

398

C H A P T E R 7 Sub and Function Procedures

To code and then test the Pet Information application:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.
Open the Pet Information Solution (Pet Information Solution.sln) fi le
contained in the VB2010\Chap07\Pet Information Solution folder. If
necessary, open the designer window.

2. Open the Code Editor window. Replace <your name> and <current date>
in the comments with your name and the current date, respectively.

3. Locate the btnDisplay control’s Click event procedure. Before the
event procedure ends, it will call an independent Sub procedure
named ShowMsg. Th e ShowMsg procedure will calculate the age of
the pet on his or her next birthday and then display the pet’s name
and updated age in the lblMsg control. Th e Click event procedure will
need to pass the pet’s name and current age to the ShowMsg proce-
dure. Th e pet’s name and age are stored in the strInputName and
intCurrentAge variables, respectively. You will pass both variables
by value, because the ShowMsg procedure will not need to change
their values. Click the blank line above the End Sub clause in the
Click event procedure and then enter the following Call statement:
Call ShowMsg(strInputName, intCurrentAge)

4. Now you will create the ShowMsg procedure. Th e procedure will
need to receive the two values passed to it: a string followed by an
integer. You will have the computer store the fi rst value in a parameter
named strName, and store the second value in a parameter named
intAge. Click the blank line below the Public Class frmMain
clause and then press Enter to insert another blank line. Enter the
 following procedure header and comments. Press Enter twice after
typing the last comment.
Private Sub ShowMsg(ByVal strName As String,
 ByVal intAge As Integer)
 ' calculates the age on the next birthday and
 ' then displays the name and updated age

5. Next, you will declare a variable that the procedure can use to update
the pet’s age. Enter the following Dim statement:
Dim intNextAge As Integer

6. Now you will perform the appropriate calculation. Enter the following
 assignment statement:
intNextAge = intAge + 1

7. Finally, you will display the name and updated age in the lblMsg
 control. Enter the additional lines of code indicated in Figure 7-3.

enter these three
lines of code

Figure 7-3 Additional lines of code entered in the ShowMsg procedure

START HERE

Recall that it is a
common practice
to begin a
 procedure’s
name with a verb

and to enter the name
using Pascal case.

C7718_ch07.indd 398C7718_ch07.indd 398 14/03/11 8:35 PM14/03/11 8:35 PM

399

Passing Variables L E S S O N A

8. Save the solution and then start the application. Click the Display
Message button. Type Chester in the Name Entry dialog box and
then press Enter. Type 6 in the Age Entry dialog box and then press
Enter. Th e message shown in Figure 7-4 appears in the lblMsg control.

Figure 7-4 Message displayed in the interface

9. Click the Exit button. Close the Code Editor window and then close
the solution.

Figure 7-5 shows the code entered in both the ShowMsg procedure and
 btnDisplay control’s Click event procedure. Notice that the number, data type,
and sequence of the arguments in the Call statement match the number, data
type, and sequence of the corresponding parameters in the ShowMsg procedure
header. Also notice that the names of the arguments do not need to be identi-
cal to the names of the corresponding parameters. In fact, to avoid confusion, it
usually is better to use diff erent names for the arguments and parameters.

Private Sub ShowMsg(ByVal strName As String,
 ByVal intAge As Integer)
 ' calculates the age on the next birthday and
 ' then displays the name and updated age

 Dim intNextAge As Integer
 intNextAge = intAge + 1
 lblMsg.Text = "On his or her next birthday, your pet " &
 strName & " will be " &
 intNextAge.ToString & " years old."

End Sub

Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click
 ' gets the pet information and then calls a procedure to
 ' display the information

 Dim strInputName As String
 Dim strInputAge As String
 Dim intCurrentAge As Integer

 strInputName = InputBox("Pet's name:", "Name Entry")
 strInputAge = InputBox("Pet's current age (years):",
 "Age Entry")
 Integer.TryParse(strInputAge, intCurrentAge)

 Call ShowMsg(strInputName, intCurrentAge)

End Sub

Figure 7-5 ShowMsg procedure and btnDisplay Click event procedure

parameterList

argumentList

The Call state-
ment does not
indicate whether
a variable is
being passed by

value or by reference. To
make that determination,
you need to look at the
receiving procedure’s
header.

C7718_ch07.indd 399C7718_ch07.indd 399 14/03/11 8:35 PM14/03/11 8:35 PM

400

C H A P T E R 7 Sub and Function Procedures

YOU DO IT 1!

Create a Visual Basic Windows application named YouDoIt 1. Save the application
in the VB2010\Chap07 folder. Add a text box, a label, and a button to the form.
The button’s Click event procedure should assign the text box value to a Double
variable and then pass a copy of the variable’s value to an independent Sub
procedure named ShowDouble. The ShowDouble procedure should multiply the
variable’s value by two and then display the result in the label control. Code the
button’s Click event procedure and the ShowDouble procedure. Save the solution
and then start and test the application. Close the solution.

Passing Variables by Reference
Instead of passing a copy of a variable’s value to a procedure, you can pass
the variable’s address. In other words, you can pass the variable’s location in
the computer’s internal memory. As you learned earlier, passing a variable’s
address is referred to as passing by reference, and it gives the receiving pro-
cedure access to the variable being passed. You pass a variable by reference
when you want the receiving procedure to change the contents of the vari-
able. To pass a variable by reference in Visual Basic, you include the keyword
ByRef before the name of its corresponding parameter in the receiving pro-
cedure’s header. Th e ByRef keyword tells the computer to pass the variable’s
address rather than its contents. In the next set of steps, you will fi nish cod-
ing the Gross Pay Calculator application, which passes three variables to an
independent Sub procedure: two by value and one by reference.

To code and then test the Gross Pay Calculator application:

1. Open the Gross Pay Solution (Gross Pay Solution.sln) fi le contained
in the VB2010\Chap07\Gross Pay Solution-Sub folder. If necessary,
open the designer window. Th e application will calculate and display
an employee’s gross pay, which is based on the hours worked and pay
rate entered by the user.

2. Open the Code Editor window. Replace <your name> and
 <current date> in the comments with your name and the current
date, respectively.

3. Locate the btnCalc control’s Click event procedure. Before displaying
the gross pay, the procedure will call an independent Sub procedure
named CalcGrossPay to calculate the gross pay. For the CalcGrossPay
procedure to perform its task, it needs to know the number of hours
worked and the pay rate; those values are stored in the dblHoursWkd
and dblRateOfPay variables, respectively. Th e CalcGrossPay pro-
cedure will not need to change the values stored in the variables, so
you will pass the variables by value. Th e CalcGrossPay procedure also
needs to know where to store the gross pay after it has been calcu-
lated. To have the procedure store the gross pay in the dblGrossPay
variable, you will need to pass it the variable’s address. In other words,
you will need to pass the variable by reference. Click the blank line
below the ' use a Sub procedure to calculate the gross

START HERE

C7718_ch07.indd 400C7718_ch07.indd 400 14/03/11 8:35 PM14/03/11 8:35 PM

401

Passing Variables L E S S O N A

pay comment in the Click event procedure and then enter the
 following Call statement:

Call CalcGrossPay(dblHoursWkd, dblRateOfPay, dblGrossPay)

4. Now you will create the CalcGrossPay procedure. Th e procedure will
need to receive a copy of the values stored in the dblHoursWkd and
dblRateOfPay variables, as well as the address of the dblGrossPay
variable. You will use dblHours, dblRate, and dblGross for the
names of the parameters. Click the blank line below the Public
Class frmMain clause and then press Enter to insert another blank
line. Enter the following procedure header and comment. Press Enter
twice after typing the comment.

Private Sub CalcGrossPay(ByVal dblHours As Double,
 ByVal dblRate As Double,
 ByRef dblGross As Double)
 ' calculates the gross pay

5. Th e gross pay is calculated by multiplying the hours worked by the
pay rate. Enter the following assignment statement:

dblGross = dblHours * dblRate

6. However, if the employee worked more than 40 hours, he or she
should receive overtime pay. In this application, overtime pay is an
additional half-time for the hours worked over 40. Enter the comment
and selection structure shown in Figure 7-6.

enter this comment and
selection structure

Figure 7-6 Comment and selection structure entered in the CalcGrossPay
procedure

7. Save the solution and then start the application. Locate and then click
43.0 in the Hours list box and 7.75 in the Rate list box. Click the
Calculate button. See Figure 7-7.

Figure 7-7 Gross pay shown in the interface

8. Click the Exit button. Close the Code Editor window and then close
the solution.

C7718_ch07.indd 401C7718_ch07.indd 401 14/03/11 8:35 PM14/03/11 8:35 PM

402

C H A P T E R 7 Sub and Function Procedures

Figure 7-8 shows the code entered in both the CalcGrossPay procedure and
btnCalc control’s Click event procedure. Here again, notice that the num-
ber, data type, and sequence of the arguments in the Call statement match
the number, data type, and sequence of the corresponding parameters in
the receiving procedure’s header. Also notice that the names of the argu-
ments are not identical to the names of their corresponding parameters. Th e
parameterList indicates that the fi rst two variables in the argumentList are
passed by value, and the third variable is passed by reference.

Private Sub CalcGrossPay(ByVal dblHours As Double,
 ByVal dblRate As Double,
 ByRef dblGross As Double)
 ' calculates the gross pay

 dblGross = dblHours * dblRate
 ' add overtime, if necessary
 If dblHours > 40 Then
 dblGross = dblGross +
 (dblHours - 40) * dblRate / 2
 End If
End Sub

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' calculates and displays a gross pay amount

 Dim dblHoursWkd As Double
 Dim dblRateOfPay As Double
 Dim dblGrossPay As Double

 Double.TryParse(lstHours.SelectedItem.ToString,
 dblHoursWkd)
 Double.TryParse(lstRate.SelectedItem.ToString,
 dblRateOfPay)

 ' use a Sub procedure to calculate the gross pay
 Call CalcGrossPay(dblHoursWkd, dblRateOfPay, dblGrossPay)

 lblGross.Text = dblGrossPay.ToString("C2")
End Sub

Figure 7-8 CalcGrossPay procedure and btnCalc control’s Click event procedure

parameterList

passed by value passed by reference

Desk-checking the procedures shown in Figure 7-8 will help clarify the dif-
ference between passing by value and passing by reference. When the user
clicks the Calculate button after selecting 43.0 and 7.75 as the hours and rate,
respectively, the Dim statements in the button’s Click event procedure create
and initialize three Double variables. Next, the two TryParse methods store
the hours and pay rate in the dblHoursWkd and dblRateOfPay variables.
Figure 7-9 shows the contents of the variables before the Call statement is
processed.

The Call state-
ment does not
indicate whether
a variable is
being passed by

value or by reference. To
make that determination,
you need to look at the
receiving procedure’s
header.

C7718_ch07.indd 402C7718_ch07.indd 402 14/03/11 8:35 PM14/03/11 8:35 PM

403

Passing Variables L E S S O N A

dblHoursWkd dblRateOfPay dblGrossPay
 0 0 0
 43.0 7.75

Figure 7-9 Desk-check table before the Call statement is processed

these variables belong to the btnCalc control's Click event procedure

the entries in the fi rst line
are the result of the Dim
statements

Th e computer processes the Call statement next. Th e statement invokes
the CalcGrossPay procedure, passing it three arguments. At this point, the
computer temporarily leaves the Click event procedure to process the code
contained in the CalcGrossPay procedure; the procedure header is pro-
cessed fi rst. Th e ByVal keyword indicates that the fi rst two parameters are
receiving values from the Call statement—in this case, copies of the num-
bers stored in the dblHoursWkd and dblRateOfPay variables. As a result,
the computer creates the dblHours and dblRate variables listed in the
parameterList, and stores the numbers 43.0 and 7.75, respectively, in the
variables. Th e ByRef keyword indicates that the third parameter is receiving
the address of a variable. When you pass a variable’s address to a procedure,
the computer uses the address to locate the variable in its internal memory.
It then assigns the parameter name to the memory location. In this case,
the computer locates the dblGrossPay variable in memory and assigns the
name dblGross to it. At this point, the memory location has two names:
one assigned by the btnCalc control’s Click event procedure and the other
assigned by the CalcGrossPay procedure, as indicated in Figure 7-10. Notice
that two of the variables in the fi gure belong strictly to the Click event proce-
dure, and two belong strictly to the CalcGrossPay procedure. One memory
location, however, belongs to both procedures. Although both procedures
can access the memory location, each procedure uses a diff erent name to do
so. Th e Click event procedure uses the name dblGrossPay, whereas the
CalcGrossPay procedure uses the name dblGross.

 dblGross [CalcGrossPay]
dblHoursWkd dblRateOfPay dblGrossPay [btnCalc Click]
 0.0 0 0
 43.0 7.75

dblHours dblRate
 43.0 7.75

Figure 7-10 Desk-check table after the Call statement and CalcGrossPay procedure
header are processed

these variables belong to the btnCalc
control’s Click event procedure

this memory location belongs
to both procedures

these variables belong to the
CalcGrossPay procedure

Although the
dblGrossPay
and dblGross
names refer to
the same loca-

tion in memory, the
dblGrossPay name is
recognized only within
the btnCalc control’s
Click event procedure,
and the dblGross
name is recognized only
within the CalcGrossPay
procedure.

C7718_ch07.indd 403C7718_ch07.indd 403 14/03/11 8:35 PM14/03/11 8:35 PM

404

C H A P T E R 7 Sub and Function Procedures

After processing the CalcGrossPay procedure header, the computer pro-
cesses the code contained in the procedure. Th e fi rst statement calculates
the gross pay by multiplying the contents of the dblHours variable (43.0)
by the contents of the dblRate variable (7.75), and then assigns the result
(333.25) to the dblGross variable. Figure 7-11 shows the desk-check table
after the calculation statement is processed. Notice that when the value in
the dblGross variable changes, the value in the dblGrossPay variable also
changes. Th is happens because the names dblGross and dblGrossPay
refer to the same location in the computer’s internal memory.

 dblGross [CalcGrossPay]
dblHoursWkd dblRateOfPay dblGrossPay [btnCalc Click]
 0.0 0 0
 43.0 7.75 333.25

dblHours dblRate
 43.0 7.75

Figure 7-11 Desk-check table after the fi rst statement in the CalcGrossPay procedure
is processed

changing the value in the dblGross
variable also changes the value in the
dblGrossPay variable

Th e dblHours variable contains a value that is greater than 40, so the state-
ment in the selection structure’s true path calculates the overtime pay (11.63)
and adds it to the regular pay (333.25). Th e statement assigns the result
(344.88) to the dblGross variable. Figure 7-12 shows the desk-check table
after the statement is processed.

 dblGross [CalcGrossPay]
dblHoursWkd dblRateOfPay dblGrossPay [btnCalc Click]
 0.0 0 0
 43.0 7.75 333.25
 344.88

dblHours dblRate
 43.0 7.75

Figure 7-12 Desk-check table after the statement in the selection structure’s true path
is processed

Th e CalcGrossPay procedure’s End Sub clause is processed next and ends the
procedure. At this point, the computer removes the dblHours and dblRate
variables from memory. It also removes the dblGross name from the
appropriate location in memory, as indicated in Figure 7-13. Notice that the
dblGrossPay memory location now has only one name: the name assigned
to it by the btnCalc control’s Click event procedure.

C7718_ch07.indd 404C7718_ch07.indd 404 14/03/11 8:35 PM14/03/11 8:35 PM

405

Function Procedures L E S S O N A

 dblGross [CalcGrossPay]
dblHoursWkd dblRateOfPay dblGrossPay [btnCalc Click]
 0.0 0 0
 43.0 7.75 333.25
 344.88

dblHours dblRate
 43.0 7.75

Figure 7-13 Desk-check table after the CalcGrossPay procedure ends

After the CalcGrossPay procedure ends, the computer returns to the line of
code below the Call statement in the btnCalc control’s Click event proce-
dure. In this case, it returns to the statement that displays the gross pay in
the lblGross control. Finally, the computer processes the Click event proce-
dure’s End Sub clause. When the Click event procedure ends, the computer
removes the procedure’s variables (dblHoursWkd, dblRateOfPay, and
dblGrossPay) from memory.

YOU DO IT 2!

Create a Visual Basic Windows application named YouDoIt 2. Save the
application in the VB2010\Chap07 folder. Add a text box, a label, and a
button to the form. The button’s Click event procedure should assign the text
box value to an Integer variable and then pass a copy of the variable’s value,
along with the address of a different Integer variable, to an independent Sub
procedure named CalcDouble. The CalcDouble procedure should multiply
the first Integer variable’s value by two and then store the result in the
second Integer variable. The button’s Click event procedure should display
the contents of the second Integer variable in the label control. Code the
button’s Click event procedure and the CalcDouble procedure. Save the
solution and then start and test the application. Close the solution.

Function Procedures
In addition to creating Sub procedures in Visual Basic, you also can cre-
ate Function procedures. Th e diff erence between both types of procedures
is that a Function procedure returns a value after performing its assigned
task, whereas a Sub procedure does not return a value. Function procedures
are referred to more simply as functions. Figure 7-14 shows the syntax for
creating a function in Visual Basic. Th e header and footer in a function are
almost identical to the header and footer in a Sub procedure, except the
function’s header and footer contain the Function keyword rather than
the Sub keyword. Also diff erent from a Sub procedure header, a function’s
header includes the As dataType section, which specifi es the data type of the
value returned by the function. As is true with a Sub procedure, a function
can receive information either by value or by reference. Th e information it
receives is listed in the parameterList in the header. Between the function’s

C7718_ch07.indd 405C7718_ch07.indd 405 14/03/11 8:35 PM14/03/11 8:35 PM

406

C H A P T E R 7 Sub and Function Procedures

header and footer, you enter the instructions to process when the function
is invoked. In most cases, the Return statement is the last statement within a
function. Th e statement’s syntax is Return expression, where expression rep-
resents the one and only value that will be returned to the statement invoking
the function. Th e data type of the expression must agree with the data type
specifi ed in the As dataType section of the header.

In addition to the syntax, Figure 7-14 also includes two examples of a func-
tion, as well as the steps you follow to enter a function in the Code Editor
window. As with Sub procedures, you can enter your functions above the
fi rst event procedure, below the last event procedure, or immediately above
or below the procedure from which they are invoked. In this book, you
usually will enter the functions above the fi rst event procedure. Like Sub
procedure names, function names are entered using Pascal case and typi-
cally begin with a verb. Th e name should indicate the task the function per-
forms. For example, a good name for a function that returns a new price is
GetNewPrice.

Syntax
Private Function procedureName([parameterList]) As dataType
 statements
 Return expression
End Function

Example 1
Private Function GetNewPrice(ByVal dblOld As Double) As Double
 ' increases current price by 5% and returns new price

 Dim dblNew As Double
 dblNew = dblOld * 1.05
 Return dblNew
End Function

Example 2
Private Function GetNewPrice(ByVal dblOld As Double) As Double
 ' increases current price by 5% and returns new price

 Return dblOld * 1.05
End Function

Steps
1. Click a blank line in the Code Editor window. The blank line can be anywhere

between the Public Class and End Class clauses. However, it must be outside any
other Sub or Function procedure.

2. Type the Function procedure header and then press Enter. The Code Editor
automatically enters the End Function clause for you.

Figure 7-14 Function procedure syntax, examples, and steps

specifi es the data type of the return value

returns the dblNew variable’s value to
the statement that invoked the function

calculates and returns the new price to
the statement that invoked the function

You can invoke a function from one or more places in an application’s
code. You invoke a function that you create in exactly the same way as
you invoke one of Visual Basic’s built-in functions, such as the InputBox

Using Pascal
case, you capital-
ize the fi rst letter
in the function
name and the

fi rst letter of each subse-
quent word in the name.

C7718_ch07.indd 406C7718_ch07.indd 406 14/03/11 8:35 PM14/03/11 8:35 PM

407

Function Procedures L E S S O N A

 function. You do this by including the function’s name and arguments (if
any) in a statement. Th e number, data type, and position of the arguments
should agree with the number, data type, and position of the function’s
parameters. In most cases, the statement that invokes a function assigns
the function’s return value to a variable. However, it also may use the return
value in a calculation or simply display the return value. Figure 7-15 shows
examples of invoking the GetNewPrice function from Figure 7-14. Th e
GetNewPrice(dblCurrentPrice) entry in each example invokes the
function, passing it the value stored in the dblCurrentPrice variable.

Example 1 – assigning the return value to a variable
dblNewPrice = GetNewPrice(dblCurrentPrice)

Example 2 – using the return value in a calculation
dblTotalDue = intQuantity * GetNewPrice(dblCurrentPrice)
the assignment statement multiplies the function’s return value by the value in the
intQuantity variable and then assigns the result to the dblTotalDue variable

Example 3 – displaying the return value
lblNewPrice.Text = GetNewPrice(dblCurrentPrice).ToString

Figure 7-15 Examples of invoking the GetNewPrice function

In the next set of steps, you will modify the Gross Pay Calculator application
that you completed in the previous section. Th e modifi ed application will use
a function (rather than a Sub procedure) to calculate and return the gross pay.

To modify the Gross Pay Calculator application to use a function:

1. Use Windows to make a copy of the Gross Pay Solution-Sub folder.
Rename the copy Gross Pay Solution-Function. Open the Gross Pay
Solution (Gross Pay Solution.sln) fi le contained in the Gross Pay
Solution-Function folder. Open the designer window.

2. Open the Code Editor window and then locate the btnCalc control’s
Click event procedure. Change the comment above the Call state-
ment to the following:

' use a function to calculate the gross pay

3. Th e Call statement will need to be replaced with a statement that
invokes the CalcGrossPay function (rather than the CalcGrossPay
Sub procedure). Th e statement will assign the function’s return
value, which is the gross pay, to the dblGrossPay variable. Like
the Sub procedure, the function will need the statement to pass the
values stored in the dblHoursWkd and dblRateOfPay variables,
because those values are needed to calculate the gross pay. However,
the function will not need the statement to pass the address of the
dblGrossPay variable, because the statement itself will store the
gross pay in the variable. Change the Call statement to the follow-
ing assignment statement and then click the blank line below the
statement:

dblGrossPay = CalcGrossPay(dblHoursWkd, dblRateOfPay)

START HERE

C7718_ch07.indd 407C7718_ch07.indd 407 14/03/11 8:35 PM14/03/11 8:35 PM

408

C H A P T E R 7 Sub and Function Procedures

4. Now you will change the CalcGrossPay Sub procedure to a function.
Locate the CalcGrossPay Sub procedure in the Code Editor window.
First, change the Sub keyword in the procedure header to Function
and then click the blank line above the procedure. Th e Code Editor
automatically changes the procedure’s footer to End Function.

5. Next, delete the third line in the function header. Th e third line con-
tains ByRef dblGross As Double). Now replace the comma in
the second line of the function header with) (a closing parenthesis).

6. Recall that the data type of the function’s return value is specifi ed
at the end of the function header. Th e insertion point should be
located after the closing parenthesis in the function header. Press the
Spacebar, type As Double, and then click the blank line below the
fi rst comment in the procedure.

7. Now that the function header no longer contains ByRef dblGross
As Double, which creates the dblGross variable, a jagged line
appears below each occurrence of dblGross in the function. Th e
jagged line indicates that the variable has not been declared. In order
to use the dblGross variable, the function will need to declare it in
a Dim statement. Th e insertion point should be located below the
' calculates the gross pay comment. Press Enter to insert
another blank line and then enter the following Dim statement:

Dim dblGross As Double

8. Finally, you need to tell the function to return the gross pay to the
statement that invoked the function. Click after the letter f in the
End If clause and then press Enter. Enter the following Return
statement:

Return dblGross

9. Save the solution and then start the application. Locate and then
click 43.0 in the Hours list box and 7.75 in the Rate list box. Click
the Calculate button. Th e gross pay is $344.88, as shown earlier in
Figure 7-7.

10. Click the Exit button. Close the Code Editor window and then close
the solution.

Figure 7-16 shows the code entered in the CalcGrossPay function and
 btnCalc control’s Click event procedure. Th e modifi ed lines of code are
shaded in the fi gure.

Private Function CalcGrossPay(ByVal dblHours As Double,
 ByVal dblRate As Double) As Double
 ' calculates the gross pay

 Dim dblGross As Double

 dblGross = dblHours * dblRate
 ' add overtime, if necessary

Figure 7-16 CalcGrossPay function and btnCalc control’s Click event procedure (continues)

C7718_ch07.indd 408C7718_ch07.indd 408 14/03/11 8:35 PM14/03/11 8:35 PM

409

Lesson A Summary L E S S O N A

YOU DO IT 3!

Create a Visual Basic Windows application named YouDoIt 3. Save the
application in the VB2010\Chap07 folder. Add a text box, a label, and a
button to the form. The button’s Click event procedure should assign the
text box value to an Integer variable and then pass a copy of the variable’s
value to a function named GetBonus. The GetBonus function should multiply
the integer it receives by 10% and then return the result. The button’s
Click event procedure should display the function’s return value in the label
control. Code the GetBonus function and the button’s Click event procedure.
Save the solution and then start and test the application. Close the solution.

Lesson A Summary

 • To create an independent Sub procedure:

Refer to the syntax shown in Figure 7-2.

 • To call an independent Sub procedure:

Use the syntax Call procedureName([argumentList]).

 If dblHours > 40 Then
 dblGross = dblGross +
 (dblHours - 40) * dblRate / 2
 End If
 Return dblGross

End Function

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' calculates and displays a gross pay amount

 Dim dblHoursWkd As Double
 Dim dblRateOfPay As Double
 Dim dblGrossPay As Double

 Double.TryParse(lstHours.SelectedItem.ToString, dblHoursWkd)
 Double.TryParse(lstRate.SelectedItem.ToString, dblRateOfPay)

 ' use a function to calculate the gross pay
 dblGrossPay = CalcGrossPay(dblHoursWkd, dblRateOfPay)

 lblGross.Text = dblGrossPay.ToString("C2")
End Sub

Figure 7-16 CalcGrossPay function and btnCalc control’s Click event procedure

(continued)

invokes the function and
assigns the return value to
the dblGrossPay variable

C7718_ch07.indd 409C7718_ch07.indd 409 14/03/11 8:35 PM14/03/11 8:35 PM

410

C H A P T E R 7 Sub and Function Procedures

 • To pass information to a Sub or Function procedure:

Include the information in the Call statement’s argumentList. In the
parameterList in the procedure header, include the names of memory
locations that will store the information. Th e number, data type, and
sequence of the arguments in the argumentList should agree with the
number, data type, and sequence of the parameters in the parameterList.

 • To pass a variable by value to a procedure:

Include the ByVal keyword before the parameter name in the procedure
header’s parameterList. Because only a copy of the value stored in the
 variable is passed, the receiving procedure cannot access the variable.

 • To pass a variable by reference:

Include the ByRef keyword before the parameter name in the procedure
header’s parameterList. Because the address of the variable is passed, the
receiving procedure can change the contents of the variable.

 • To create a Function procedure:

Refer to the syntax and steps shown in Figure 7-14.

Lesson A Key Terms
Function procedure—a procedure that returns a value after performing its
assigned task

Functions—another name for Function procedures

Passing by reference—the process of passing a variable’s address to a
 procedure so that the value in the variable can be changed

Passing by value—the process of passing a copy of a variable’s value to a
procedure

Return statement—the Visual Basic statement that returns a function’s value
to the statement that invoked the function

Lesson A Review Questions

1. Which of the following is false?

a. A function can return one or more values to the statement that
invoked it.

b. A procedure can accept one or more items of data passed to it.

c. Th e parameterList in a procedure header is optional.

d. At times, a memory location inside the computer’s internal
 memory may have more than one name.

C7718_ch07.indd 410C7718_ch07.indd 410 14/03/11 8:35 PM14/03/11 8:35 PM

411

Lesson A Review Questions L E S S O N A

2. Th e items listed in the Call statement are referred to
as .

a. arguments

b. parameters

c. passers

d. none of the above

3. Each memory location listed in the parameterList in the procedure
header is referred to as .

a. an address

b. a constraint

c. a parameter

d. a value

4. To determine whether a variable is being passed to a procedure by
value or by reference, you will need to examine .

a. the Call statement

b. the procedure header

c. the statements entered in the procedure

d. either a or b

5. Which of the following statements invokes the GetArea Sub proce-
dure, passing it two variables by value?

a. Call GetArea(dblLength, dblWidth)

b. Call GetArea(ByVal dblLength, ByVal dblWidth)

c. Invoke GetArea(dblLength, dblWidth)

d. GetArea(dblLength, dblWidth) As Double

6. Which of the following is a valid header for a procedure that receives
only a copy of the value stored in a String variable?

a. Private Sub DisplayName(ByContents strName As String)

b. Private Sub DisplayName(ByValue strName As String)

c. Private Sub DisplayName ByVal(strName As String)

d. none of the above

C7718_ch07.indd 411C7718_ch07.indd 411 14/03/11 8:35 PM14/03/11 8:35 PM

412

C H A P T E R 7 Sub and Function Procedures

7. Which of the following is a valid header for a procedure that receives
an integer followed by a number with a decimal place?

a. Private Sub GetFee(intBase As Integer, decRate As
Decimal)

b. Private Sub GetFee(ByRef intBase As Integer,
ByRef decRate As Decimal)

c. Private Sub GetFee(ByVal intBase As Integer,
ByVal decRate As Decimal)

d. none of the above

8. Which of the following is false?

a. Th e sequence of the arguments listed in the Call statement should
agree with the sequence of the parameters listed in the receiving
procedure’s header.

b. Th e data type of each argument in the Call statement should
match the data type of its corresponding parameter in the
 procedure header.

c. Th e name of each argument in the Call statement should be
 identical to the name of its corresponding parameter in the
 procedure header.

d. When you pass information to a procedure by value, the
 procedure stores a copy of each value it receives in a separate
memory location.

9. Which of the following instructs a function to return the contents of
the decStateTax variable?

a. Return decStateTax

b. Return ByVal decStateTax

c. Send decStateTax

d. SendBack decStateTax

10. Which of the following is a valid header for a procedure that receives
an integer followed by the address of a Decimal variable?

a. Private Sub GetFee(ByVal intBase As Integer,
ByAdd decRate As Decimal)

b. Private Sub GetFee(intBase As Integer, decRate As
Decimal)

c. Private Sub GetFee(ByVal intBase As Integer,
ByRef decRate As Decimal)

d. none of the above

C7718_ch07.indd 412C7718_ch07.indd 412 14/03/11 8:35 PM14/03/11 8:35 PM

413

Lesson A Review Questions L E S S O N A

11. Which of the following is a valid header for a procedure that is passed
the number 15?

a. Private Function GetTax(ByVal intRate As Integer)
As Decimal

b. Private Function GetTax(ByAdd intRate As Integer)
As Decimal

c. Private Sub CalcTax(ByVal intRate As Integer)

d. both a and c

12. If the statement Call CalcNet(decNetPay) passes the variable’s
address, the variable is said to be passed .

a. by address

b. by content

c. by reference

d. by value

13. Which of the following is false?

a. When you pass a variable by reference, the receiving procedure
can change its contents.

b. To pass a variable by reference in Visual Basic, you include the
ByRef keyword before the variable’s name in the Call statement.

c. When you pass a variable by value, the receiving procedure
 creates a procedure-level variable that it uses to store a copy of
the value passed to it.

d. Unless you specify otherwise, a variable in Visual Basic will be
passed by value.

14. A Sub procedure named GetEndingInventory is passed four Integer
variables named intBegin, intSales, intPurchases, and
intEnding. Th e procedure should calculate the ending inventory
using the beginning inventory, sales, and purchase amounts passed
to the procedure. Th e result should be stored in the intEnding
 variable. Which of the following procedure headers is correct?

a. Private Sub GetEndingInventory(ByVal intB As
Integer, ByVal intS As Integer, ByVal intP As
Integer, ByRef intFinal As Integer)

b. Private Sub GetEndingInventory(ByVal intB As
Integer, ByVal intS As Integer, ByVal intP As
Integer, ByVal intFinal As Integer)

c. Private Sub GetEndingInventory(ByRef intB As
Integer, ByRef intS As Integer, ByRef intP As
Integer, ByVal intFinal As Integer)

d. Private Sub GetEndingInventory(ByRef intB As
Integer, ByRef intS As Integer, ByRef intP As
Integer, ByRef intFinal As Integer)

C7718_ch07.indd 413C7718_ch07.indd 413 14/03/11 8:35 PM14/03/11 8:35 PM

414

C H A P T E R 7 Sub and Function Procedures

15. Which of the following statements should you use to call the
GetEndingInventory procedure from Review Question 14?

a. Call GetEndingInventory(intBegin, intSales,
intPurchases, intEnding)

b. Call GetEndingInventory(ByVal intBegin, ByVal
intSales, ByVal intPurchases, ByRef intEnding)

c. Call GetEndingInventory(ByRef intBegin, ByRef
intSales, ByRef intPurchases, ByRef intEnding)

d. Call GetEndingInventory(ByVal intBegin, ByVal
intSales, ByVal intPurchases, ByVal intEnding)

16. Th e memory locations listed in the parameterList in a procedure
header have procedure scope and are removed from the computer’s
internal memory when the procedure ends.

a. True

b. False

17. Which of the following statements invokes the GetDiscount function,
passing it the contents of two Decimal variables named decSales
and decRate? Th e statement should assign the function’s return
value to the decDiscount variable.

a. decDiscount = Call GetDiscount(decSales, decRate)

b. Call GetDiscount(decSales, decRate, decDiscount)

c. decDiscount = GetDiscount(decSales, decRate)

d. none of the above

18. Explain the diff erence between a Sub procedure and a Function
procedure.

19. Explain the diff erence between passing a variable by value and passing
it by reference.

20. Explain the diff erence between invoking a Sub procedure and
 invoking a function.

Lesson A Exercises

1. Write the code for a Sub procedure that receives an integer passed to
it. Th e procedure should divide the integer by 2 and then display the
result in the lblNum control. Name the procedure DivideByTwo. Th en
write a statement to invoke the procedure, passing it the number 87.

2. Write the code for a Sub procedure that prompts the user to enter the
name of a city and then stores the user’s response in the String variable
whose address is passed to the procedure. Name the procedure
GetCity and use strName as the parameter’s name. Th en write a
 statement to invoke the procedure, passing it the strCity variable.

INTRODUCTORY

INTRODUCTORY

C7718_ch07.indd 414C7718_ch07.indd 414 14/03/11 8:35 PM14/03/11 8:35 PM

415

Lesson A Exercises L E S S O N A

3. Write the code for a function that prompts the user to enter the name
of a state and then returns the user’s response. Name the function
GetState. Th en write a statement to invoke the GetState function.
Display the function’s return value in a message box.

4. Write the code for a Sub procedure that receives three Double
variables: the fi rst two by value and the last one by reference. Th e
procedure should divide the fi rst variable by the second variable
and then store the result in the third variable. Name the procedure
CalcQuotient.

5. Write the code for a function that receives a copy of the value stored
in an Integer variable. Th e function should divide the value by 2 and
then return the result, which may contain a decimal place. Name the
function GetQuotient. Th en write an appropriate statement to invoke
the function, passing it the intNumber variable. Assign the function’s
return value to the dblAnswer variable.

6. In this exercise, you experiment with passing variables by value and
by reference. Open the Passing Solution (Passing Solution.sln) fi le
contained in the VB2010\Chap07\Passing Solution folder. If neces-
sary, open the designer window.

a. Open the Code Editor window and review the existing code.
Notice that the strMyName variable is passed by value to the
GetName procedure. Start the application. Click the Display
Name button. When prompted to enter a name, type your name
and press Enter. Explain why the btnDisplay control’s Click event
procedure does not display your name in the lblName control.
Stop the application.

b. Modify the btnDisplay control’s Click event procedure so that
it passes the strMyName variable by reference to the GetName
procedure. Save the solution and then start the application. Click
the Display Name button. When prompted to enter a name, type
your name and press Enter. Th is time, your name appears in the
lblName control. Explain why the btnDisplay control’s Click event
procedure now works correctly. Close the Code Editor window
and then close the solution.

7. Write the Visual Basic code for a function that receives a copy of the
contents of four Integer variables. Th e function should calculate the
average of the four integers and then return the result, which may
contain a decimal place. Name the function CalcAverage. Th en write
a statement to invoke the function, passing it the intNum1, intNum2,
intNum3, and intNum4 variables. Assign the function’s return value
to the dblAverage variable.

8. Write the code for a Sub procedure that receives four Integer vari-
ables: the fi rst two by value and the last two by reference. Th e proce-
dure should calculate the sum of and the diff erence between the two
variables passed by value, and then store the results in the variables
passed by reference. When calculating the diff erence, subtract the

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

C7718_ch07.indd 415C7718_ch07.indd 415 14/03/11 8:35 PM14/03/11 8:35 PM

416

C H A P T E R 7 Sub and Function Procedures

contents of the second variable from the contents of the fi rst variable.
Name the procedure GetSumAndDiff . Th en write an appropriate
statement to invoke the procedure, passing it the intFirst,
intSecond, intSum, and intDifference variables.

9. Open the Temperature Solution (Temperature Solution.sln) fi le
 contained in the VB2010\Chap07\Temperature Solution-Sub folder. If
necessary, open the designer window. Code the application so that it
uses two independent Sub procedures: one to convert a temperature
from Fahrenheit to Celsius, and the other to convert a temperature
from Celsius to Fahrenheit. Save the solution and then start and test
the application. Close the Code Editor window and then close the
solution.

10. Open the Temperature Solution (Temperature Solution.sln) fi le con-
tained in the VB2010\Chap07\Temperature Solution-Function folder.
If necessary, open the designer window. Code the application so that
it uses two functions: one to convert a temperature from Fahrenheit
to Celsius, and the other to convert a temperature from Celsius to
Fahrenheit. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

11. Th e owner of Pine Lodge wants an application that calculates an
employee’s new hourly pay, given the employee’s current hourly pay
and raise rate. Create a Visual Basic Windows application. Use the
following names for the solution, project, and form fi le, respectively:
Pine Lodge Solution, Pine Lodge Project, and Main Form.vb. Save the
application in the VB2010\Chap07 folder. Create the interface shown
in Figure 7-17. Th e lstPay control should display amounts from 7.00
through 12.00 in increments of .50. Th e lstRate control should display
rates from 2 through 11 in increments of 1. Th e label that displays the
new pay should be cleared when a change is made to either list box.
Th e Calculate button’s Click event procedure should use a f unction
to calculate and return the new pay. Code the application. Save the
 solution and then start the application. Calculate the new pay based
on a current pay of 8.00 and a raise rate of 5. Th e answer should
be $8.40. Test the application using your own data. Close the Code
Editor window and then close the solution.

 Figure 7-17 Interface for Exercise 11

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

C7718_ch07.indd 416C7718_ch07.indd 416 14/03/11 8:35 PM14/03/11 8:35 PM

417

Lesson A Exercises L E S S O N A

12. In this exercise, you modify the application from Exercise 11. Use
Windows to make a copy of the Pine Lodge Solution folder. Rename
the copy Modifi ed Pine Lodge Solution. Open the Pine Lodge
Solution (Pine Lodge Solution.sln) fi le contained in the Modifi ed Pine
Lodge Solution folder. Open the designer and Code Editor windows.
Change the function to a Sub procedure and then make the necessary
modifi cations to the Calculate button’s Click event procedure. Save
the solution and then start and test the application. Close the Code
Editor window and then close the solution.

13. Create a Visual Basic Windows application. Use the following names
for the solution, project, and form fi le, respectively: Rainfall Solution,
Rainfall Project, and Main Form.vb. Save the application in the
VB2010\Chap07 folder. Create the interface shown in Figure 7-18.
Th e user will enter a monthly rainfall amount and then click the
Calculate button. Th e button’s Click event procedure should calculate
and display both the total and average of the rainfall amounts entered
so far. Th e event procedure should use a Sub procedure named
CalcTotalAndAverage to make the necessary calculations. Code the
application. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

default button

Figure 7-18 Interface for Exercise 13

14. In this exercise, you modify the Rainfall Calculator application from
Exercise 13. Use Windows to make a copy of the Rainfall Solution
folder. Rename the copy Modifi ed Rainfall Solution. Open the Rainfall
Solution (Rainfall Solution.sln) fi le contained in the Modifi ed Rainfall
Solution folder. Open the designer and Code Editor windows. Modify
the code to use two Function procedures (rather than one Sub pro-
cedure) to calculate the total and average rainfall amounts. Save the
solution and then start and test the application. Close the Code Editor
window and then close the solution.

Discovery

15. In this exercise, you learn how to specify that one or more arguments
are optional in a Call statement. Open the Optional Solution
(Optional Solution.sln) fi le contained in the VB2010\Chap07\
Optional Solution folder. If necessary, open the designer window.

a. Open the Code Editor window and review the existing code. Th e
btnCalc control’s Click event procedure contains two Call statements.
Th e fi rst Call statement passes three variables to the CalcBonus

INTERMEDIATE

ADVANCED

ADVANCED

C7718_ch07.indd 417C7718_ch07.indd 417 14/03/11 8:35 PM14/03/11 8:35 PM

418

C H A P T E R 7 Sub and Function Procedures

procedure. Th e second call statement, however, passes only two
variables to the procedure. (Do not be concerned about the jag-
ged line that appears below the second Call statement.) Notice that
the dblRate variable is omitted from the second Call statement.
You indicate that the dblRate variable is optional in the Call state-
ment by including the keyword Optional before the variable’s
 corresponding parameter in the procedure header; you enter the
Optional keyword before the ByVal keyword. You also assign a
default value that the procedure will use for the missing parameter
when the procedure is called. You assign the default value by enter-
ing the assignment operator and the default value after the corre-
sponding parameter in the procedure header. In this case, you will
assign the number .1 as the default value for the dblRate variable.
(Optional parameters must be listed at the end of the procedure
header.)

b. Change the ByVal dblBonusRate As Double in the pro-
cedure header appropriately. Save the solution and then start
the application. Enter a and 1000 in the Code and Sales boxes,
respectively. Click the Calculate button. Type .05 and press
Enter. Th e Call CalcBonus(dblSales, dblBonus, dbl-
Rate) statement calls the CalcBonus procedure, passing it
the number 1000, the address of the dblBonus variable, and
the number .05. Th e CalcBonus procedure stores the number
1000 in the dblTotalSales variable. It also assigns the name
 dblBonusAmount to the dblBonus variable and stores the
 number .05 in the dblBonusRate variable. Th e procedure then
multiplies the contents of the dblTotalSales variable (1000) by
the contents of the dblBonusRate variable (.05), assigning the
result (50) to the dblBonusAmount variable. Th e lblBonus.Text
= dblBonus.ToString("C2") statement then displays $50.00 in
the lblBonus control.

c. Now enter b and 2000 in the Code and Sales boxes, respectively.
Click the Calculate button. Th e Call CalcBonus(dblSales,
dblBonus) statement calls the CalcBonus procedure, passing
it the number 2000 and the address of the dblBonus variable.
Th e CalcBonus procedure stores the number 2000 in the
 dblTotalSales variable and assigns the name dblBonusAmount
to the dblBonus variable. Because the Call statement did not
 supply a value for the dblBonusRate parameter, the default value
(.1) is assigned to the variable. Th e procedure then multiplies the
contents of the dblTotalSales variable (2000) by the contents of
the dblBonusRate variable (.1), assigning the result (200) to the
dblBonusAmount variable. Th e lblBonus.Text = dblBonus.
ToString("C2") statement then displays $200.00 in the lblBonus
control. Close the Code Editor window and then close the solution.

C7718_ch07.indd 418C7718_ch07.indd 418 14/03/11 8:35 PM14/03/11 8:35 PM

419

Including a Combo Box in an Interface L E S S O N B

 ❚ LESSON B
After studying Lesson B, you should be able to:

 • Include a combo box in an interface

 • Add items to a combo box

 • Select a combo box item from code

 • Determine the item either selected or entered in a combo box

 • Code a combo box’s TextChanged event procedure

Including a Combo Box in an Interface
In many interfaces, combo boxes are used in place of list boxes. You use
the ComboBox tool in the toolbox to add a combo box to an interface. A
combo box is similar to a list box in that it allows the user to select from a list
of choices. However, unlike a list box, the full list of choices in a combo box
can be hidden, allowing you to save space on the form. Also unlike a list box,
a combo box contains a text fi eld. Depending on the style of the combo box,
the text fi eld may or may not be editable by the user.

Th ree styles of combo boxes are available in Visual Basic. Th e style is
 controlled by the combo box’s DropDownStyle property, which can be set
to Simple, DropDown (the default), or DropDownList. Each style of combo
box contains a text portion and a list portion. When the DropDownStyle
 property is set to either Simple or DropDown, the text portion of the combo
box is editable. However, in a Simple combo box the list portion is always
displayed, while in a DropDown combo box the list portion appears only
when the user clicks the combo box’s list arrow. When the DropDownStyle
property is set to the third style, DropDownList, the text portion of the
combo box is not editable and the user must click the combo box’s list arrow
to display the list of choices.

Figure 7-19 shows an example of each combo box style. You should use a
label control to provide keyboard access to the combo box, as shown in the
fi gure. For the access key to work correctly, you must set the label’s TabIndex
property to a value that is one less than the combo box’s TabIndex value. Like
the items in a list box, the items in the list portion of a combo box are either
arranged by use, with the most used entries listed fi rst, or sorted in ascending
order. To sort the items in the list portion of a combo box, you set the combo
box’s Sorted property to True.

C7718_ch07.indd 419C7718_ch07.indd 419 14/03/11 8:35 PM14/03/11 8:35 PM

420

C H A P T E R 7 Sub and Function Procedures

Figure 7-19 Examples of the combo box styles

Figure 7-20 shows the code used to fi ll the combo boxes in Figure 7-19 with
values. As you do with a list box, you use the Items collection’s Add method
to add an item to a combo box. You can use any of the following properties to
select a default item, which will appear in the text portion of the combo box:
SelectedIndex, SelectedItem, or Text. If no item is selected, the SelectedItem
and Text properties contain the empty string, and the SelectedIndex property
contains –1 (negative one).

Private Sub frmMain_Load(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Me.Load
 ' fills the combo boxes with values

 cboName.Items.Add("Amy")
 cboName.Items.Add("Beth")
 cboName.Items.Add("Carl")
 cboName.Items.Add("Dan")
 cboName.Items.Add("Jan")
 cboName.SelectedIndex = 0

 cboCity.Items.Add("London")
 cboCity.Items.Add("Madrid")
 cboCity.Items.Add("Paris")
 cboCity.SelectedItem = "Madrid"

 cboState.Items.Add("Alabama")
 cboState.Items.Add("Maine")
 cboState.Items.Add("New York")
 cboState.Items.Add("South Dakota")
 cboState.Text = "New York"
End Sub

Figure 7-20 Code associated with the combo boxes in Figure 7-19

you can use any of these
three properties to select the
default item in a combo box

GUI DESIGN TIP Combo Box Standards

 • Use a label control to provide keyboard access to a combo box. Set the
label’s TabIndex property to a value that is one less than the combo box’s
TabIndex value.

 • Combo box items are either arranged by use, with the most used entries
appearing first in the list, or sorted in ascending order.

You can use the
Items collection’s
Count property to
determine the
number of items

in the list portion of a
combo box, like this:
cboName.Items.
Count.

Like the fi rst item
in a list box, the
fi rst item in a
combo box has
an index of 0.

C7718_ch07.indd 420C7718_ch07.indd 420 14/03/11 8:35 PM14/03/11 8:35 PM

421

Including a Combo Box in an Interface L E S S O N B

It is easy to confuse a combo box’s SelectedItem property with its Text
 property. Th e SelectedItem property contains the value of the item selected
in the list portion of the combo box, whereas the Text property contains
the value that appears in the text portion. A value can appear in the text
portion as a result of the user either selecting an item in the list portion of
the control or typing an entry in the text portion itself. It also can appear
in the text portion as a result of a statement that assigns a value to the con-
trol’s SelectedIndex, SelectedItem, or Text property. If the combo box is a
DropDownList style, where the text portion is not editable, you can use the
SelectedItem and Text properties interchangeably. However, if the combo
box is either a Simple or DropDown style, where the user can type an entry
in the text portion, you should use the Text property; this is because the
Text property contains the value either selected or entered by the user.
When the value in the text portion of a combo box changes, the combo
box’s TextChanged event occurs. In the next set of steps, you will modify
one of the Gross Pay Calculator applications from Lesson A. Th e modifi ed
 application will use a combo box rather than a list box.

To modify one of the Gross Pay Calculator applications from Lesson A:

1. Use Windows to make a copy of the Gross Pay Solution-Function
folder from Lesson A. Rename the copy Modifi ed Gross Pay
Solution-Function.

2. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.
Open the Gross Pay Solution (Gross Pay Solution.sln) fi le contained
in the Modifi ed Gross Pay Solution-Function folder. Open the
designer window.

3. First, you will replace the Rate list box with a DropDownList combo
box. Unlock the controls on the form. Click the lstRate control on
the form and then press Delete. Click the ComboBox tool in the
toolbox and then drag the mouse pointer to the form. Position the
mouse pointer below the Rate label and then release the mouse
button. Change the combo box’s DropDownStyle property to
DropDownList.

4. Th e three-character ID used when naming combo boxes is cbo.
Change the combo box’s name to cboRate and then size the control
to match Figure 7-21.

5. Lock the controls on the form and then use the information shown in
Figure 7-21 to set the TabIndex values.

Figure 7-21 Correct TabIndex values

START HERE

C7718_ch07.indd 421C7718_ch07.indd 421 14/03/11 8:35 PM14/03/11 8:35 PM

422

C H A P T E R 7 Sub and Function Procedures

6. Press Esc to remove the TabIndex boxes from the form.

7. Open the Code Editor window. Locate the form’s Load event procedure.
Change lstRate in the second For . . . Next loop to cboRate. Also
change lstRate in the lstRate.SelectedIndex = 0 statement to
cboRate. In addition, change list boxes in the fi rst comment to a
list box and combo box.

8. Locate the btnCalc control’s Click event procedure. Replace
lstRate.SelectedItem.ToString in the second TryParse
method with cboRate.Text.

9. Locate the lstRate_SelectedValueChanged procedure and then delete
the entire procedure from the Code Editor window. Open the code
template for the cboRate control’s TextChanged event procedure and
then enter the following assignment statement:

lblGross.Text = String.Empty

10. Save the solution and then start the application. Click the list arrow
in the Rate combo box and then click 9.00 in the list. Click the
 Calculate button. Th e Gross Pay box shows $360.00. See Figure 7-22.

Figure 7-22 Gross pay amount shown in the interface

11. Click the Exit button. Close the Code Editor window and then close
the solution.

Figure 7-23 shows the code entered in the btnCalc control’s Click event
procedure, the form’s Load event procedure, and the cboRate control’s
TextChanged event procedure . Th e modifi ed lines of code are shaded in the
fi gure.

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' calculates and displays a gross pay amount

 Dim dblHoursWkd As Double
 Dim dblRateOfPay As Double
 Dim dblGrossPay As Double

Figure 7-23 Modifi ed code for the Gross Pay Calculator application (continues)

C7718_ch07.indd 422C7718_ch07.indd 422 14/03/11 8:35 PM14/03/11 8:35 PM

423

Lesson B Summary L E S S O N B

Lesson B Summary

 • To add a combo box to a form:

Use the ComboBox tool in the toolbox.

 • To specify the style of a combo box:

Set the combo box’s DropDownStyle property.

 • To add items to a combo box:

Use the Items collection’s Add method. Th e method’s syntax is
object.Items.Add(item), where object is the name of the combo box, and
item is the text you want added to the control.

 • To automatically sort the items in the list portion of a combo box:

Set the combo box’s Sorted property to True.

 Double.TryParse(lstHours.SelectedItem.ToString, dblHoursWkd)
 Double.TryParse(cboRate.Text, dblRateOfPay)

 ' use a function to calculate the gross pay
 dblGrossPay = CalcGrossPay(dblHoursWkd, dblRateOfPay)

 lblGross.Text = dblGrossPay.ToString("C2")
End Sub

Private Sub frmMain_Load(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Me.Load
 ' fills a list box and combo box with values, then
 ' selects a default item

 For dblHours As Double = 0.5 To 50 Step 0.5
 lstHours.Items.Add(dblHours.ToString("N1"))
 Next dblHours

 For dblRates As Double = 7.25 To 10.5 Step 0.25
 cboRate.Items.Add(dblRates.ToString("N2"))
 Next dblRates

 lstHours.SelectedItem = "40.0"
 cboRate.SelectedIndex = 0
End Sub

Private Sub cboRate_TextChanged(ByVal sender As Object,
ByVal e As System.EventArgs) Handles cboRate.TextChanged
 lblGross.Text = String.Empty

End Sub

Figure 7-23 Modifi ed code for the Gross Pay Calculator application

(continued)

C7718_ch07.indd 423C7718_ch07.indd 423 14/03/11 8:35 PM14/03/11 8:35 PM

424

C H A P T E R 7 Sub and Function Procedures

 • To select a combo box item from code:

Use the combo box’s SelectedIndex, SelectedItem, or Text property.

 • To determine the item either selected in the list portion of a combo box or
entered in the text portion:

Use the combo box’s Text property. However, if the combo box is a
DropDownList style, you also can use the SelectedIndex or SelectedItem
property.

 • To process code when the value in a combo box’s Text property changes:

Enter the code in the combo box’s TextChanged event procedure.

Lesson B Key Terms
Combo box—a control that allows the user to select from a list of choices and
also has a text fi eld that may or may not be editable

DropDownStyle property—determines the style of a combo box

Lesson B Review Questions

1. Which property is used to specify a combo box’s style?

a. ComboBoxStyle

b. DropDownStyle

c. DropStyle

d. Style

2. Th e items in a combo box belong to which collection?

a. Items

b. List

c. ListBox

d. Values

3. Which of the following selects the Cat item, which appears third in
the cboAnimal control?

a. cboAnimal.SelectedIndex = 2

b. cboAnimal.SelectedItem = "Cat"

c. cboAnimal.Text = "Cat"

d. all of the above

C7718_ch07.indd 424C7718_ch07.indd 424 14/03/11 8:35 PM14/03/11 8:35 PM

425

Lesson B Exercises L E S S O N B

4. Th e item that appears in the text portion of a combo box is stored in
which property?

a. SelectedText

b. SelectedValue

c. Text

d. TextItem

5. Th e event occurs when the user either types a value
in the text portion of a combo box or selects a diff erent item in the list
portion.

a. ChangedItem

b. ChangedValue

c. SelectedItemChanged

d. TextChanged

Lesson B Exercises

1. Use Windows to make a copy of the Gross Pay Solution-Sub folder
from Lesson A. Rename the copy Modifi ed Gross Pay Solution-Sub.
Open the Gross Pay Solution (Gross Pay Solution.sln) fi le contained
in the Modifi ed Gross Pay Solution-Sub folder. Open the designer
window. Replace the Hours list box with a DropDownList combo
box. Make the necessary modifi cations to the code. Save the solution
and then start and test the application. Close the Code Editor
 window and then close the solution.

2. In this exercise, you modify the Shoppers Haven application that you
created in Chapter 6’s Lesson C. Use Windows to make a copy of the
Shoppers Haven Solution folder, which is contained in the VB2010\
Chap06 folder. Save the copy in the VB2010\Chap07 folder. Open
the Shoppers Haven Solution (Shoppers Haven Solution.sln) fi le
contained in the VB2010\Chap07\Shoppers Haven Solution folder.
Open the designer window. Replace the Discount rate list box with
a DropDown combo box. Make the necessary modifi cations to the
code. Save the solution and then start and test the application. Close
the Code Editor window and then close the solution.

3. Create a Visual Basic Windows application. Use the following names
for the solution, project, and form fi le, respectively: Car Shoppers
Solution, Car Shoppers Project, and Main Form.vb. Save the appli-
cation in the VB2010\Chap07 folder. Create the interface shown in
Figure 7-24. Th e Interest rate combo box should have the DropDown
style and contain rates from .02 through .1 in increments of .01. Th e
Term combo box should have the DropDownList style and contain
terms of 2, 3, 4, and 5 years. Th e Calculate Payment button’s Click
event procedure should invoke a function that calculates and returns

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

C7718_ch07.indd 425C7718_ch07.indd 425 14/03/11 8:35 PM14/03/11 8:35 PM

426

C H A P T E R 7 Sub and Function Procedures

the monthly payment on a car loan. (Hint: Use the Financial.Pmt
method, which you learned about in Chapter 4, to calculate the
monthly payment.) Th e event procedure should display the return
value in the Monthly payment box. Th e application should use a Sub
procedure to clear the Monthly payment box when a change is made
to any of the text boxes or combo boxes. Code the application. Save
the solution and then start and test the application. Close the Code
Editor window and then close the solution.

Figure 7-24 Interface for Exercise 3

C7718_ch07.indd 426C7718_ch07.indd 426 14/03/11 8:35 PM14/03/11 8:35 PM

427

Creating the Harvey Industries Application L E S S O N C

 ❚ LESSON C
After studying Lesson C, you should be able to:

 • Prevent a form from closing

 • Round a number

Creating the Harvey Industries Application
Recall that your task is to create an application that calculates an employee’s
weekly gross pay, federal withholding tax (FWT), Social Security and
Medicare (FICA) tax, and net pay. Figure 7-25 shows the application’s TOE
chart.

Task Object Event
End the application btnExit Click

1. Calculate gross pay, FWT, FICA, and net pay btnCalc Click
2. Display calculated amounts in appropriate labels

Display calculated amounts (from btnCalc) lblGross, None
 lblFwt, lblFica,
 lblNet

Clear lblGross, lblFwt, lblFica, and lblNet txtName, TextChanged
 cboAllowances
 lstHours, SelectedValueChanged
 lstRate
 radMarried, Click
 radSingle

Select the existing text txtName Enter

Allow only numbers and the Backspace key cboAllowances KeyPress

Get and display the name, hours worked, pay rate, txtName, None
marital status, and withholding allowances lstHours, lstRate,
 radMarried,
 radSingle,
 cboAllowances

Fill lstHours, lstRate, and cboAllowances with frmMain Load
values and then select a default item

Verify that the user wants to close the FormClosing
application, and then take the appropriate action
based on the user’s response

Figure 7-25 TOE chart for the Harvey Industries application

The Ch07CVideo
fi le demonstrates
all of the steps
contained in

Lesson C. You can view
the video either before or
after completing the
lesson.

C7718_ch07.indd 427C7718_ch07.indd 427 14/03/11 8:35 PM14/03/11 8:35 PM

428

C H A P T E R 7 Sub and Function Procedures

To open the Harvey Industries application:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.

2. Open the Harvey Industries Solution (Harvey Industries Solution.sln)
fi le contained in the VB2010\Chap07\Harvey Industries Solution folder.
If necessary, open the designer window. See Figure 7-26.

cboAllowances

Figure 7-26 User interface for the Harvey Industries application

Th e interface in Figure 7-26 provides a text box for entering the employee’s
name, and radio buttons for entering his or her marital status. It also
 provides list boxes for specifying the hours worked and rate of pay. Th e
combo box in the interface allows the user to either select the number of
withholding allowances from the list portion of the control or type a number
in the text portion. To complete the Harvey Industries application, you will
need to code the btnCalc control’s Click event procedure and the form’s
FormClosing event procedure.

Coding the FormClosing Event Procedure
A form’s FormClosing event occurs when a form is about to be closed. In
most cases, this happens when the computer processes the Me.Close()
statement in the application’s code. However, it also occurs when the user
clicks the Close button on the form’s title bar. According to the TOE chart
shown earlier in Figure 7-25, the FormClosing event procedure is responsible
for verifying that the user wants to close the application, and then taking the
appropriate action based on the user’s response. Figure 7-27 shows the pro-
cedure’s pseudocode.

frmMain FormClosing event procedure
1. use a message box to ask the user whether he or she wants to exit the application
2. if the user does not want to exit the application
 prevent the form from closing
 end if

Figure 7-27 Pseudocode for the FormClosing event procedure

START HERE

C7718_ch07.indd 428C7718_ch07.indd 428 14/03/11 8:35 PM14/03/11 8:35 PM

429

Coding the FormClosing Event Procedure L E S S O N C

To begin coding the FormClosing event procedure:

1. Open the Code Editor window. Click the Class Name list arrow and
then click (frmMain Events) in the list. Click the Method Name list
arrow and then click FormClosing in the list. Th e code template for
the FormClosing event procedure appears above the Load event pro-
cedure in the Code Editor window.

2. Type the following comment and then press Enter twice:

' verify that the user wants to exit the application

3. Th e procedure will use the MessageBox.Show method to display the
appropriate message in a message box. Th e method’s return value will
be assigned to a variable named dlgButton. Enter the following Dim
statement:

Dim dlgButton As DialogResult

4. Th e message box will contain the “Do you want to exit?” message, Yes
and No buttons, and the Exclamation icon. Th e Yes button will be
designated as the default button. Enter the following statement. Press
Enter twice after typing the last line in the statement.

dlgButton =
 MessageBox.Show("Do you want to exit?",
 "Harvey Industries", MessageBoxButtons.YesNo,
 MessageBoxIcon.Exclamation,
 MessageBoxDefaultButton.Button1)

If the user selects the No button in the message box, the FormClosing proce-
dure should stop the computer from closing the form. You prevent the com-
puter from closing a form by setting the Cancel property of the FormClosing
event procedure’s e parameter to True.

To complete the FormClosing event procedure and then test it:

1. Enter the following comment and selection structure:

' if the No button was selected, don’t close the form
If dlgButton = DialogResult.No Th en
 e.Cancel = True
End If

2. Save the solution and then start the application. Click the Close
 button on the form’s title bar. Doing this invokes the FormClosing
event procedure, which displays the message box shown in
Figure 7-28.

START HERE

START HERE

C7718_ch07.indd 429C7718_ch07.indd 429 14/03/11 8:35 PM14/03/11 8:35 PM

430

C H A P T E R 7 Sub and Function Procedures

Figure 7-28 Message box displayed by the code in the
FormClosing event procedure

3. Click the No button in the message box. Notice that the form remains
on the screen.

4. Click the Exit button. Th is time, click the Yes button in the message
box. Th e application ends.

Coding the btnCalc Control’s Click Event
Procedure
According to the application’s TOE chart, the btnCalc control’s Click event
procedure is responsible for calculating and displaying the gross pay, FWT
(federal withholding tax), FICA tax, and net pay. Th e procedure’s pseudocode
is shown in Figure 7-29.

btnCalc Click event procedure
1. store user input (hours, pay rate, and allowances) in variables
2. if the Single radio button is selected
 assign “S” as the marital status
 else
 assign “M” as the marital status
 end if
3. if the number of hours is less than or equal to 40
 calculate the gross pay = hours * pay rate
 else
 calculate the gross pay = 40 * pay rate + (hours – 40) * pay rate * 1.5
 end if
4. invoke a function named GetFwt to calculate and return the FWT
5. calculate the FICA tax = gross pay * 7.65%
6. round the gross pay, FWT, and FICA tax to two decimal places
7. calculate the net pay = gross pay – FWT – FICA tax
8. display the gross pay, FWT, FICA tax, and net pay in the appropriate labels

Figure 7-29 Pseudocode for the btnCalc control’s Click event procedure

C7718_ch07.indd 430C7718_ch07.indd 430 14/03/11 8:35 PM14/03/11 8:35 PM

431

Coding the btnCalc Control’s Click Event Procedure L E S S O N C

To begin coding the btnCalc control’s Click event procedure:

1. Open the code template for the btnCalc control’s Click event
 procedure. Type the following comment and then press Enter twice:

' displays gross pay, taxes, and net pay

2. First, determine the variables and named constants (if any) the pro-
cedure will use. In this case, the procedure will use a named con-
stant for the FICA tax rate (7.65%). It also will use eight variables.
Th e strStatus variable will store either the letter S or the letter
M, depending on the radio button selected in the interface. Th e
 dblHours variable will store the number of hours worked, which is
selected in the lstHours control. Th e dblPayRate variable will store
the pay rate selected in the lstRate control. Th e intAllowances vari-
able will store the number of withholding allowances, which is either
selected or entered in the cboAllowances control. Th e dblGross,
dblFwt, dblFica, and dblNet variables will store the gross pay,
FWT, FICA, and net pay, respectively. Enter the following nine decla-
ration statements. Press Enter twice after typing the last declaration
statement.

Const dblFICA_RATE As Double = .0765
Dim strStatus As String
Dim dblHours As Double
Dim dblPayRate As Double
Dim intAllowances As Integer
Dim dblGross As Double
Dim dblFwt As Double
Dim dblFica As Double
Dim dblNet As Double

3. Step 1 in the procedure’s pseudocode is to store the user input in vari-
ables. Enter the following statements. Press Enter twice after typing
the last statement.

dblHours = Convert.ToDouble(lstHours.SelectedItem.ToString)
dblPayRate = Convert.ToDouble(lstRate.SelectedItem.ToString)
intAllowances = Convert.ToInt32(cboAllowances.Text)

4. Step 2 in the pseudocode is a selection structure whose condition
determines the employee’s marital status. Type the selection structure
shown in Figure 7-30 and then position the insertion point as indi-
cated in the fi gure.

enter this selection
structure

position the insertion
point here

Figure 7-30 Selection structure entered in the procedure

START HERE

C7718_ch07.indd 431C7718_ch07.indd 431 14/03/11 8:35 PM14/03/11 8:35 PM

432

C H A P T E R 7 Sub and Function Procedures

5. Th e next step in the pseudocode is a selection structure whose
 condition compares the number of hours worked with the number
40. If the number of hours worked is less than or equal to 40, the
 selection structure’s true path should calculate the gross pay by
 multiplying the number of hours worked by the pay rate. Enter the
following comment, If clause, and assignment statement:

' calculate gross pay
If dblHours <= 40 Th en
 dblGross = dblHours * dblPayRate

6. If the number of hours worked is greater than 40, the employee is
entitled to his or her regular pay rate for the hours worked up to
and including 40, and then time and one-half for the hours worked
over 40. Enter the Else clause and assignment statement shown in
Figure 7-31, and then save the solution.

enter the Else clause and
the assignment statement

Figure 7-31 Selection structure’s false path
entered in the procedure

Step 4 in the procedure’s pseudocode uses a function named GetFwt to
 calculate and return the FWT (federal withholding tax). Before entering the
appropriate instruction, you will create the function.

Creating the GetFwt Function
Th e amount of federal withholding tax (FWT) to deduct from an employee’s
weekly gross pay is based on the employee’s weekly taxable wages and his or
her fi ling status, which is either single (including head of household) or mar-
ried. You calculate the weekly taxable wages by fi rst multiplying the number
of withholding allowances by $70.19 (the value of a withholding allowance in
2010), and then subtracting the result from the weekly gross pay. For exam-
ple, if your weekly gross pay is $400 and you have two withholding allow-
ances, your weekly taxable wages are $259.62. Th e $259.62 is calculated by
multiplying 70.19 by 2 and then subtracting the result (140.38) from 400. You
use the weekly taxable wages, along with the fi ling status and the appropriate
weekly Federal Withholding Tax table, to determine the amount of FWT to
withhold. Th e weekly tax tables for the year 2010 are shown in Figure 7-32.

C7718_ch07.indd 432C7718_ch07.indd 432 14/03/11 8:35 PM14/03/11 8:35 PM

433

Coding the btnCalc Control’s Click Event Procedure L E S S O N C

FWT Tables – Weekly Payroll Period

Single person (including head of household)
If the taxable
wages are: The amount of income tax to withhold is:
Over But not over Base amount Percentage Of excess over
 $ 116 0
$ 116 $ 200 0 10% $ 116
$ 200 $ 693 $ 8.40 plus 15% $ 200
$ 693 $1,302 $ 82.35 plus 25% $ 693
$1,302 $1,624 $ 234.60 plus 27% $1,302
$1,624 $1,687 $ 321.54 plus 30% $1,624
$1,687 $3,344 $ 340.44 plus 28% $1,687
$3,344 $7,225 $ 804.40 plus 33% $3,344
$7,225 $2,085.13 plus 35% $7,225

Married person
If the taxable
wages are: The amount of income tax to withhold is
Over But not over Base amount Percentage Of excess over
 $ 264 0
$ 264 $ 471 0 10% $ 264
$ 471 $1,457 $ 20.70 plus 15% $ 471
$1,457 $1,809 $ 168.80 plus 25% $1,457
$1,809 $2,386 $ 256.60 plus 27% $1,809
$2,386 $2,789 $ 412.39 plus 25% $2,386
$2,789 $4,173 $ 513.14 plus 28% $2,789
$4,173 $7,335 $ 900.66 plus 33% $4,173
$7,335 $1,944.12 plus 35% $7,335

Figure 7-32 Weekly FWT tables

Each table in Figure 7-32 contains fi ve columns of information. Th e fi rst two
columns list various ranges, also called brackets, of taxable wage amounts.
Th e fi rst column (Over) lists the amount that a taxable wage in that bracket
must be over, and the second column (But not over) lists the maximum
amount included in the bracket. Th e remaining three columns (Base amount,
Percentage, and Of excess over) tell you how to calculate the tax for each
range. For example, assume that you are married and your weekly taxable
wages are $388.46. Before you can calculate the amount of your tax, you
need to locate your taxable wages in the fi rst two columns of the Married
table. Taxable wages of $388.46 fall within the $264 through $471 bracket.
After locating the bracket that contains your taxable wages, you then use
the remaining three columns in the table to calculate your tax. In this case,
you calculate the tax by fi rst subtracting 264 (the amount shown in the Of
excess over column) from your taxable wages of 388.46, giving 124.46. You
then multiply 124.46 by 10% (the amount shown in the Percentage column),
 giving 12.45. You add the amount shown in the Base amount column—in this
case, 0—to that result, giving $12.45 as your tax. Th e calculations are shown
in Figure 7-33.

C7718_ch07.indd 433C7718_ch07.indd 433 14/03/11 8:35 PM14/03/11 8:35 PM

434

C H A P T E R 7 Sub and Function Procedures

Taxable wages $388.46
Of excess over −264.00
 124.46
Percentage * .10
 12.45
Base amount + 0.00
Tax $ 12.45

Figure 7-33 FWT calculation for a married taxpayer whose weekly taxable wages
are $388.46

Now calculate the tax for a single taxpayer whose weekly taxable wages are
$600. Figure 7-34 shows how the tax amount is calculated.

Taxable wages $600.00
Of excess over −200.00
 400.00
Percentage * .15
 60.00
Base amount + 8.40
Tax $ 68.40

Figure 7-34 FWT calculation for a single taxpayer whose weekly taxable wages are
$600

To calculate the federal withholding tax, the GetFwt function needs to know
the employee’s gross pay amount, the number of his or her withholding
allowances, and his or her marital status. Th e gross pay amount and number
of withholding allowances are necessary to calculate the taxable wages,
and the marital status indicates the appropriate FWT table to use when
 calculating the tax. Th e function will receive the necessary information from
the btnCalc control’s Click event procedure, which will pass the information
when it invokes the function. Recall that the information is stored in the
 procedure’s dblGross, intAllowances, and strStatus variables. Figure
7-35 shows the function’s pseudocode.

GetFwt function
1. calculate the taxable wages = gross pay – number of withholding allowances * 70.19
2. if the marital status is Single
 calculate the FWT using the Single FWT table
 else
 calculate the FWT using the Married FWT table
 end if
3. return the FWT

Figure 7-35 Pseudocode for the GetFwt function

C7718_ch07.indd 434C7718_ch07.indd 434 14/03/11 8:35 PM14/03/11 8:35 PM

435

Coding the btnCalc Control’s Click Event Procedure L E S S O N C

To create the GetFwt function:

1. Scroll to the top of the Code Editor window. Click the blank line
below the Public Class frmMain clause and then press Enter to
insert another blank line.

2. When it invokes the GetFwt function, the btnCalc control’s
Click event procedure will need to pass the values stored in its
strStatus, intAllowances, and dblGross variables. You do not
want the GetFwt function to change the contents of the variables, so
you will pass a copy of each variable’s value (rather than its address).
You will store the values passed to the function in three parameters
named strMarital, intNumAllow, and dblWeekPay. Th e GetFwt
function will use the information it receives to calculate and return
the FWT as a Double number. Type the function header and com-
ment shown in Figure 7-36 and then position the insertion point as
indicated in the fi gure. (Notice that the Code Editor automatically
enters the procedure footer for you.)

enter the function header
and the comment

position the insertion
point here

Figure 7-36 GetFwt function header and footer

3. Th e function will use a named constant for the withholding allowance
amount ($70.19). It also will use two additional variables: one to store
the taxable wages and the other to store the FWT. Enter the following
declaration statements. Press Enter twice after typing the last decla-
ration statement.

Const dblONE_ALLOW As Double = 70.19
Dim dblTaxWages As Double
Dim dblTax As Double

4. Th e fi rst step in the function’s pseudocode calculates the taxable
wages. Enter the following comment and assignment statement. Press
Enter twice after typing the assignment statement.

' calculate taxable wages
dblTaxWages =
 dblWeekPay – intNumAllow * dblONE_ALLOW

5. Th e second step in the pseudocode is a selection structure whose
condition determines the marital status. Enter the following comment
and If clause:

' determine marital status and then calculate FWT
If strMarital = “S” Th en

START HERE

C7718_ch07.indd 435C7718_ch07.indd 435 14/03/11 8:35 PM14/03/11 8:35 PM

436

C H A P T E R 7 Sub and Function Procedures

6. If the strMarital variable contains the letter S, the selection
 structure’s true path should calculate the federal withholding tax
using the information from the Single tax table. You will fi nd the
appropriate code in the Single.txt fi le. Click File on the menu bar and
then click Open File. If necessary, open the Harvey Industries Project
folder. Click Single.txt in the list of fi lenames and then click the
Open button. Click Edit on the menu bar and then click Select All.
Press Ctrl+c to copy the selected text to the Windows Clipboard, and
then close the Single.txt window.

7. Th e insertion point should be in the blank line below the If clause in
the GetFwt function. Press Ctrl+v to paste the copied text into the
selection structure’s true path.

8. If the strMarital variable does not contain the letter S, the selec-
tion structure’s false path should calculate the federal withholding
tax using the information from the Married tax table. You will fi nd
the appropriate code in the Married.txt fi le. Click File and then click
Open File. Click Married.txt in the list of fi lenames and then click
the Open button. Click Edit and then click Select All. Press Ctrl+c
to copy the selected text to the Windows Clipboard, and then close
the Married.txt window.

9. Th e insertion point should be in the blank line below the End Select
clause. Type Else and then press Tab twice. Type ' strMarital = "M"
and then press Enter. Press Ctrl+v to paste the copied text into the
selection structure’s false path.

10. Th e last step in the function’s pseudocode returns the federal
 withholding tax amount to the statement that invoked the function.
Th e tax amount is stored in the dblTax variable. Click after the
 letter f in the End If clause and then press Enter twice. Type Return
dblTax and then click the blank line above the Return statement.
Save the solution. (You can look ahead to Figure 7-38 to view the
function’s code.)

Completing the btnCalc Control’s Click Event
Procedure
Now that you have created the GetFwt function, you can invoke the function
from the btnCalc control’s Click event procedure. Invoking the GetFwt
 function is the fourth step listed in the event procedure’s pseudocode (shown
earlier in Figure 7-29).

To continue coding the btnCalc control’s Click event procedure:

1. Locate the btnCalc control’s Click event procedure. Click after the
letter f in the second End If clause and then press Enter twice.

2. Recall that the procedure needs to pass to the GetFwt function a
copy of the values stored in the strStatus, intAllowances, and
dblGross variables. Th e value returned by the function will be

START HERE

C7718_ch07.indd 436C7718_ch07.indd 436 14/03/11 8:35 PM14/03/11 8:35 PM

437

Completing the btnCalc Control’s Click Event Procedure L E S S O N C

assigned to the dblFwt variable. Enter the following comment and
assignment statement. Press Enter twice after typing the assignment
statement.

' call a function to calculate the FWT
dblFwt = GetFwt(strStatus, intAllowances, dblGross)

3. Th e next step in the procedure’s pseudocode calculates the FICA tax
by multiplying the gross pay amount by the FICA rate. Enter the fol-
lowing comment and assignment statement. Press Enter twice after
typing the assignment statement.

' calculate FICA tax
dblFica = dblGross * dblFICA_RATE

4. Save the solution.

Next, the procedure should round the gross pay, FWT, and FICA tax
amounts to two decimal places. Rounding these amounts before making
the net pay calculation will prevent the “penny off ” error from occurring.
(You can observe the “penny off ” error by completing Exercise 1 at the end
of this lesson.) You can use the Math.Round function to return a number
rounded to a specifi c number of decimal places. Th e function’s syntax is
Math.Round(value[, digits]). In the syntax, value is a numeric expression,
and digits (which is optional) is an integer indicating how many places to the
right of the decimal point are included in the rounding. For example, Math.
Round(3.235, 2) returns the number 3.24, and Math.Round(3.234, 1)
returns the number 3.2. If the digits argument is omitted, the Math.Round
function returns an integer.

To complete the btnCalc control’s Click event procedure and then test
the application:

1. Enter the following comment and assignment statements. Press Enter
twice after typing the last assignment statement.

' round gross pay, FWT, and FICA tax
dblGross = Math.Round(dblGross, 2)
dblFwt = Math.Round(dblFwt, 2)
dblFica = Math.Round(dblFica, 2)

2. Next, the procedure should calculate the net pay by subtracting the
two tax amounts from the gross pay amount. Enter the following
comment and assignment statement. Press Enter twice after typing
the assignment statement.

' calculate net pay
dblNet = dblGross – dblFwt – dblFica

3. Th e last step in the procedure's pseudocode displays the calculated
amounts in the appropriate label controls. Enter the following com-
ment and assignment statements:

' display calculated amounts
lblGross.Text = dblGross.ToString("N2")
lblFwt.Text = dblFwt.ToString("N2")
lblFica.Text = dblFica.ToString("N2")
lblNet.Text = dblNet.ToString("N2")

START HERE

C7718_ch07.indd 437C7718_ch07.indd 437 14/03/11 8:35 PM14/03/11 8:35 PM

438

C H A P T E R 7 Sub and Function Procedures

4. Save the solution and then start the application. First, calculate the
weekly gross pay, taxes, and net pay for Kate Kaufman. Last week,
Kate worked 40 hours. She earns $10 per hour and her marital status
is Single. She claims one withholding allowance. Type Kate Kaufman
in the Name box. Locate and then click 10.00 in the Rate list box.
Click the list arrow in the Allowances combo box and then click 1 in
the list. Click the Calculate button. See Figure 7-37.

Figure 7-37 Payroll calculations shown in the interface

5. Now calculate the weekly gross pay, taxes, and net pay for Carl
Schmidt. Last week, Carl worked 39.5 hours. He earns $11.50 per
hour and his marital status is Married. He claims two withhold-
ing allowances. Change the name entered in the Name box to Carl
Schmidt. Click the Married radio button and then click 39.5 in the
Hours list box. Locate and then click 11.50 in the Rate list box. Press
Tab to move the focus to the Allowances combo box. In addition to
selecting the number of allowances in the list portion of the combo
box, the user also can type the number in the text portion. Type 2 and
then click the Calculate button. Th e application displays 454.25, 4.99,
34.75, and 414.51 as Carl’s gross pay, FWT, FICA tax, and net pay
amounts, respectively.

6. Click the Exit button and then click the Yes button. Close the Code
Editor window and then close the solution.

Figure 7-38 shows the application’s code.

 1 ' Name: Harvey Industries Project
 2 ' Purpose: Displays gross pay, taxes, and net pay
 3 ' Programmer: <your name> on <current date>
 4
 5 Option Explicit On
 6 Option Strict On
 7 Option Infer Off
 8
 9 Public Class frmMain
 10
 11 Private Function GetFwt(ByVal strMarital As String,
 12 ByVal intNumAllow As Integer,
 13 ByVal dblWeekPay As Double) As Double

Figure 7-38 Harvey Industries application’s code (continues)

C7718_ch07.indd 438C7718_ch07.indd 438 14/03/11 8:35 PM14/03/11 8:35 PM

439

Completing the btnCalc Control’s Click Event Procedure L E S S O N C

Figure 7-38 Harvey Industries application’s code (continues)

 14 ' calculates and returns the FWT
 15
 16 Const dblONE_ALLOW As Double = 70.19
 17 Dim dblTaxWages As Double
 18 Dim dblTax As Double
 19
 20 ' calculate taxable wages
 21 dblTaxWages =
 22 dblWeekPay - intNumAllow * dblONE_ALLOW
 23
 24 ' determine marital status and then calculate FWT
 25 If strMarital = "S" Then
 26 Select Case dblTaxWages
 27 Case Is <= 116D
 28 dblTax = 0D
 29 Case Is <= 200D
 30 dblTax = 0.1D * (dblTaxWages - 116D)
 31 Case Is <= 693D
 32 dblTax = 8.4D + 0.15D * (dblTaxWages - 200D)
 33 Case Is <= 1302D
 34 dblTax = 82.35D + 0.25D * (dblTaxWages - 693D)
 35 Case Is <= 1624D
 36 dblTax = 234.6D + 0.27D * (dblTaxWages - 1302D)
 37 Case Is <= 1687D
 38 dblTax = 321.54D + 0.3D * (dblTaxWages - 1624D)
 39 Case Is <= 33447D
 40 dblTax = 340.44D + 0.28D * (dblTaxWages - 1687D)
 41 Case Is <= 7225D
 42 dblTax = 804.4D + 0.33D * (dblTaxWages - 3344D)
 43 Case Else
 44 End Select
 45 Else ' strMarital = "M"
 46 Select Case dblTaxWages
 47 Case Is <= 264D
 48 dblTax = 0D
 49 Case Is <= 471D
 50 dblTax = 0.1D * (dblTaxWages - 264D)
 51 Case Is <= 1457D
 52 dblTax = 20.7D + 0.15D * (dblTaxWages - 471D)
 53 Case Is <= 1809D
 54 dblTax = 168.8D + 0.25D * (dblTaxWages - 1457D)
 55 Case Is <= 2386D
 56 dblTax = 256.6D + 0.27D * (dblTaxWages - 1809D)
 57 Case Is <= 2789D
 58 dblTax = 412.39D + 0.25D * (dblTaxWages - 2386D)
 59 Case Is <= 4173D
 60 dblTax = 513.14D + 0.28D * (dblTaxWages - 2789D)
 61 Case Is <= 7335D
 62 dblTax = 900.66D + 0.33D * (dblTaxWages - 4173D)
 63 Case Else
 64 dblTax = 1944.12D + 0.35D * (dblTaxWages - 7335D)
 65 End Select
 66 End If
 67
 68 Return dblTax
 69 End Function
 70

(continued)

C7718_ch07.indd 439C7718_ch07.indd 439 14/03/11 8:35 PM14/03/11 8:35 PM

440

C H A P T E R 7 Sub and Function Procedures

 71 Private Sub txtName_Enter(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles txtName.Enter
 72 ' select the existing text
 73
 74 txtName.SelectAll()
 75 End Sub
 76
 77 Private Sub cboAllowances_KeyPress(ByVal sender As Object,
 ByVal e As System.Windows.Forms.KeyPressEventArgs
) Handles cboAllowances.KeyPress
 78 ' allow only numbers and the Backspace key
 79
 80 If (e.KeyChar < "0" OrElse e.KeyChar > "9") AndAlso
 e.KeyChar <> ControlChars.Back Then
 81 e.Handled = True
 82 End If
 83 End Sub
 84
 85 Private Sub ClearLabels(ByVal sender As Object,
 ByVal e As System.EventArgs
) Handles lstHours.SelectedValueChanged,
 86 lstRate.SelectedValueChanged, radSingle.Click,
 radMarried.Click, txtName.TextChanged,
 cboAllowances.TextChanged
 87
 88 lblGross.Text = String.Empty
 89 lblFwt.Text = String.Empty
 90 lblFica.Text = String.Empty
 91 lblNet.Text = String.Empty
 92 End Sub
 93
 94 Private Sub frmMain_FormClosing(ByVal sender As Object,
 ByVal e As System.Windows.Forms.FormClosingEventArgs
) Handles Me.FormClosing
 95 ' verify that the user wants to exit the application
 96
 97 Dim dlgButton As DialogResult
 98 dlgButton =
 99 MessageBox.Show("Do you want to exit?",
100 "Harvey Industries", MessageBoxButtons.YesNo,
101 MessageBoxIcon.Exclamation,
102 MessageBoxDefaultButton.Button1)
103
104 ' if the No button was selected, don't close the form
105 If dlgButton = DialogResult.No Then
106 e.Cancel = True
107 End If
108 End Sub
109
110 Private Sub frmMain_Load(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Me.Load
111 ' fills the list boxes with values, then selects
 a default value
112
113 For dblHours As Double = 0 To 55 Step 0.5
114 lstHours.Items.Add(dblHours.ToString("N1"))
115 Next dblHours

Figure 7-38 Harvey Industries application’s code (continues)

(continued)

C7718_ch07.indd 440C7718_ch07.indd 440 14/03/11 8:35 PM14/03/11 8:35 PM

441

Completing the btnCalc Control’s Click Event Procedure L E S S O N C

116
117 For dblRates As Double = 7.5 To 15.5 Step 0.5
118 lstRate.Items.Add(dblRates.ToString("N2"))
119 Next dblRates
120
121 For intAllow As Integer = 0 To 10
122 cboAllowances.Items.Add(intAllow.ToString)
123 Next intAllow
124
125 lstHours.SelectedItem = "40.0"
126 lstRate.SelectedItem = "9.50"
127 cboAllowances.SelectedIndex = 0
128 End Sub
129
130 Private Sub btnExit_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnExit.Click
131 Me.Close()
132 End Sub
133
134 Private Sub btnCalc_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnCalc.Click
135 ' displays gross pay, taxes, and net pay
136
137 Const dblFICA_RATE As Double = 0.0765
138 Dim strStatus As String
139 Dim dblHours As Double
140 Dim dblPayRate As Double
141 Dim intAllowances As Integer
142 Dim dblGross As Double
143 Dim dblFwt As Double
144 Dim dblFica As Double
145 Dim dblNet As Double
146
147 dblHours = Convert.ToDouble(lstHours.SelectedItem.ToString)
148 dblPayRate = Convert.ToDouble(lstRate.SelectedItem.ToString)
149 intAllowances = Convert.ToInt32(cboAllowances.Text)
150
151 If radSingle.Checked Then
152 strStatus = "S"
153 Else
154 strStatus = "M"
155 End If
156
157 ' calculate gross pay
158 If dblHours <= 40 Then
159 dblGross = dblHours * dblPayRate
160 Else
161 dblGross = 40 * dblPayRate +
162 (dblHours - 40) * dblPayRate * 1.5
163 End If
164
165 ' call a function to calculate the FWT
166 dblFwt = GetFwt(strStatus, intAllowances, dblGross)
167
168 ' calculate FICA tax

Figure 7-38 Harvey Industries application’s code (continues)

(continued)

C7718_ch07.indd 441C7718_ch07.indd 441 14/03/11 8:35 PM14/03/11 8:35 PM

442

C H A P T E R 7 Sub and Function Procedures

(continued)

169 dblFica = dblGross * dblFICA_RATE
170
171 ' round gross pay, FWT, and FICA tax
172 dblGross = Math.Round(dblGross, 2)
173 dblFwt = Math.Round(dblFwt, 2)
174 dblFica = Math.Round(dblFica, 2)
175
176 ' calculate net pay
177 dblNet = dblGross - dblFwt - dblFica
178
179 ' display calculated amounts
180 lblGross.Text = dblGross.ToString("N2")
181 lblFwt.Text = dblFwt.ToString("N2")
182 lblFica.Text = dblFica.ToString("N2")
183 lblNet.Text = dblNet.ToString("N2")
184
185 End Sub
186 End Class

Figure 7-38 Harvey Industries application’s code

Lesson C Summary

 • To process code when a form is about to be closed:

Enter the code in the form’s FormClosing event procedure, which occurs
when the user clicks the Close button on a form’s title bar or when the
computer processes the Me.Close() statement.

 • To prevent a form from being closed:

Set the Cancel property of the FormClosing event procedure’s e parameter
to True.

 • To round a number to a specifi c number of decimal places:

Use the Math.Round function. Th e function’s syntax is Math.Round(value[,
digits]), where value is a numeric expression and digits (which is optional) is
an integer indicating how many places to the right of the decimal point are
included in the rounding. If the digits argument is omitted, the Math.Round
function returns an integer.

Lesson C Key Terms
Cancel property—a property of the e parameter in the form’s FormClosing
event procedure; when set to True, it prevents the form from closing

FormClosing event—occurs when a form is about to be closed, which can
happen as a result of the computer processing the Me.Close() statement or
the user clicking the Close button on the form’s title bar

Math.Round function—used to round a number to a specifi c number of
 decimal places

C7718_ch07.indd 442C7718_ch07.indd 442 14/03/11 8:35 PM14/03/11 8:35 PM

443

Lesson C Exercises L E S S O N C

Lesson C Review Questions

1. A form’s event is triggered when you click the Close
button on its title bar.

a. Close

b. CloseForm

c. FormClose

d. FormClosing

2. A form’s event is triggered when the computer
 processes the Me.Close() statement.

a. Close

b. Closing

c. FormClose

d. FormClosing

3. Which of the following statements prevents a form from being
closed?

a. e.Cancel = False

b. e.Cancel = True

c. e.Close = False

d. sender.Close = False

4. Which of the following rounds the contents of the intNum variable to
three decimal places?

a. Math.Round(3, intNum)

b. Math.Round(intNum, 3)

c. Round.Math(intNum, 3)

d. Round.Math(3, intNum)

Lesson C Exercises

1. In this exercise, you will remove the Math.Round function from the
payroll application created in the lesson; doing this will allow you to
observe the “penny off ” error. Use Windows to make a copy of the
Harvey Industries Solution folder. Rename the copy No Rounding
Harvey Industries Solution. Open the Harvey Industries Solution
(Harvey Industries Solution.sln) fi le contained in the No Rounding
Harvey Industries Solution folder. Open the designer and Code Editor
windows. Th e Math.Round function appears in three statements
in the btnCalc control’s Click event procedure. Type an apostro-
phe at the beginning of each of the three statements, making them

INTRODUCTORY

C7718_ch07.indd 443C7718_ch07.indd 443 14/03/11 8:35 PM14/03/11 8:35 PM

444

C H A P T E R 7 Sub and Function Procedures

comments. Save the solution and then start the application. Test the
application by clicking 38.5 in the Hours list box and 10.50 in the Rate
list box. Click the Calculate button. What is wrong with the calculated
amounts? Close the Code Editor window and then close the solution.

2. In this exercise, you modify one of the Gross Pay applications com-
pleted in Lesson A. Use Windows to make a copy of the Gross
Pay Solution-Sub folder. Rename the copy FormClosing Gross Pay
Solution-Sub. Open the Gross Pay Solution (Gross Pay Solution.sln)
fi le contained in the FormClosing Gross Pay Solution-Sub folder.
Open the designer and Code Editor windows. Code the form’s
FormClosing event procedure so that it asks the user whether he or
she wants to exit the application. Take the appropriate action based
on the user’s response. Save the solution and then start and test
the application. Close the Code Editor window and then close the
solution.

3. In this exercise, you modify the Harvey Industries application from
this lesson. Use Windows to make a copy of the Harvey Industries
Solution folder. Rename the copy Harvey Industries Solution-Sub.
Open the Harvey Industries Solution (Harvey Industries Solution.sln)
fi le contained in the Harvey Industries Solution-Sub folder. Open the
designer and Code Editor windows. Change the GetFwt function to
an independent Sub procedure and then modify the statement that
calls the procedure. Save the solution and then start and test the appli-
cation. Close the Code Editor window and then close the solution.

4. In this exercise, you modify the Harvey Industries application from
this lesson. Use Windows to make a copy of the Harvey Industries
Solution folder. Rename the copy Modifi ed Harvey Industries Solution.
Open the Harvey Industries Solution (Harvey Industries Solution.sln)
fi le contained in the Modifi ed Harvey Industries Solution folder.
Open the designer and Code Editor windows. Modify the code so that
the GetFwt function (rather than the btnCalc control’s Click event
procedure) determines the selected radio button. Save the solution
and then start and test the application. Close the Code Editor window
and then close the solution.

5. Create a Visual Basic Windows application. Use the following
names for the solution, project, and form fi le, respectively: Cable
Direct Solution, Cable Direct Project, and Main Form.vb. Save
the application in the VB2010\Chap07 folder. Create the inter-
face shown in Figure 7-39. Th e list boxes are named lstPremium
and lstConnections. Display numbers from 0 through 20 in the
 lstPremium control. Display numbers from 0 through 100 in the
 lstConnections control. Th e Calculate Total Due button’s Click event
procedure should calculate and display a customer’s cable bill. Th e
cable rates are shown in Figure 7-40. Business customers must have

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

ADVANCED

C7718_ch07.indd 444C7718_ch07.indd 444 14/03/11 8:35 PM14/03/11 8:35 PM

445

Lesson C Exercises L E S S O N C

at least one connection. Use two functions: one to calculate and
return the total due for business customers, and the other to calcu-
late and return the total due for residential customers. Th e form’s
FormClosing event procedure should verify that the user wants to
close the application. Code the application. Save the solution and then
start and test the application. Close the Code Editor window and then
close the solution.

Figure 7-39 User interface for Exercise 5

Residential customers:
 Processing fee: $4.50
 Basic service fee: $30
 Premium channels: $5 per channel

Business customers:
 Processing fee: $16.50
 Basic service fee: $80 for the fi rst 10 connections; $4 for each additional connection
 Premium channels: $50 per channel for any number of connections

Figure 7-40 Cable rates for Exercise 5

Swat The Bugs

6. Th e purpose of this exercise is to demonstrate a common error made
when using functions. Open the Debug Solution (Debug Solution.sln)
fi le contained in the VB2010\Chap07\Debug Solution-Lesson C
folder. If necessary, open the designer window. Open the Code Editor
window and review the existing code. Start the application. Click 20
in the Length list box and then click 30 in the Width list box. Click
the Calculate Area button, which should display the area of a rect-
angle having a length of 20 feet and a width of 30 feet. Notice that the
application is not working properly. Correct the application’s code.
Save the solution and then start and test the application again. Close
the Code Editor window and then close the solution.

C7718_ch07.indd 445C7718_ch07.indd 445 14/03/11 8:35 PM14/03/11 8:35 PM

C H A P T E R 8
String Manipulation

Creating the Hangman Game Application

Mr. Mitchell teaches second grade at Hinsbrook School. On days when the
weather is bad and the students cannot go outside to play, he spends recess
time playing a simplifi ed version of the Hangman game with his class. The game
requires two people to play. Currently, Mr. Mitchell thinks of a word that has fi ve
letters. He then draws fi ve dashes on the chalkboard—one for each letter in the
word. One student then is chosen to guess the word, letter by letter. When the
student guesses a correct letter, Mr. Mitchell replaces the appropriate dash or
dashes with the letter. For example, if the original word is moose and the student
guesses the letter o, Mr. Mitchell changes the fi ve dashes on the chalkboard
to –oo– –. If the student’s letter does not appear in the word, Mr. Mitchell begins
drawing the Hangman image, which contains nine lines and one circle. The game
is over when the student either guesses all of the letters in the word or makes 10
incorrect guesses, whichever comes fi rst.

C7718_ch08.indd 446C7718_ch08.indd 446 14/03/11 8:38 PM14/03/11 8:38 PM

447

Previewing the Hangman Game Application
Before you start the fi rst lesson in this chapter, you will preview the
 completed application. Th e application is contained in the VB2010\Chap08
folder.

To preview the completed application:

1. Use the Run dialog box to run the Hangman (Hangman.exe) fi le
 contained in the VB2010\Chap08 folder. Th e application’s user
 interface appears on the screen. As indicated in Figure 8-1, the
 interface contains a File menu. Menus are covered in Lesson B.

File menu

Figure 8-1 Hangman Game application’s interface

2. Click File on the menu bar and then click New Game. Th e Hangman
Game dialog box opens and prompts you to enter a fi ve-letter word.

3. Type puppy and then press Enter. Five dashes (hyphens) appear
in the Secret word box. Each dash represents a letter in the word
“puppy”. In addition, the Letter dialog box opens and prompts you to
enter a letter.

4. Type y and then press Enter. Th e application replaces the last dash in
the Secret word box with the letter Y. Th is indicates that the letter Y is
the last letter in the word.

5. Type x and then press Enter. Th e letter x does not appear in the
word “puppy”, so the application displays the letter X in the Incorrect
guesses box. It also displays the bottom line of the Hangman image.
Recall that the image contains nine lines and one circle.

6. Type a and then press Enter. Th e letter a does not appear in the
word “puppy”, so the application displays the letter A in the Incorrect
guesses box. It also displays another line in the Hangman image.

7. Type u and then press Enter. Th e application replaces the second
dash in the Secret word box with the letter U.

8. Next, you will guess the letters d, g, and b. Type d and then press
Enter. Type g and then press Enter. Type b and then press Enter.
Th e letters you entered do not appear in the word “puppy”, so the
application displays the letters in the Incorrect guesses box. It also
displays two additional lines and a circle in the Hangman image.

START HERE

Previewing the Hangman Game Application

C7718_ch08.indd 447C7718_ch08.indd 447 14/03/11 8:38 PM14/03/11 8:38 PM

448

C H A P T E R 8 String Manipulation

9. Type p and then press Enter. Th e application replaces the remaining
dashes in the Secret word box with the letter P. It then displays the
“Great guessing!” message in a message box. See Figure 8-2.

Figure 8-2 Result of guessing the word

10. Press Enter to close the message box. Click File on the menu bar and
then click Exit to end the application.

Before you can begin coding the Hangman Game application, you need to
learn how to both manipulate strings and create a menu in Visual Basic.
String manipulation is covered in Lesson A. You will learn about the
MenuStrip tool in Lesson B, and then use it to add a menu to the Hangman
Game application’s interface. You will code the application in Lessons B and
C. Be sure to complete each lesson in full and do all of the end-of-lesson
questions and several exercises before continuing to the next lesson.

C7718_ch08.indd 448C7718_ch08.indd 448 14/03/11 8:38 PM14/03/11 8:38 PM

449

Determining the Number of Characters in a String L E S S O N A

 ❚ LESSON A
After studying Lesson A, you should be able to:

 • Determine the number of characters in a string

 • Remove characters from a string

 • Insert characters in a string

 • Align the characters in a string

 • Search a string

 • Access characters in a string

 • Compare strings using pattern-matching

Working with Strings
Many times, an application will need to manipulate (process) string data in
some way. For example, it may need to look at the fi rst character in an inven-
tory part number to determine the part’s location in the warehouse. Or, it
may need to search an address to determine the street name. In this lesson,
you will learn several ways of manipulating strings in Visual Basic. You will
begin by learning how to determine the number of characters in a string.

Determining the Number of Characters in
a String
If an application expects the user to enter a seven-digit phone number or a
fi ve-digit ZIP code, you should verify that the user entered the required num-
ber of characters. Th e number of characters contained in a string is stored
as an integer in the string’s Length property. Figure 8-3 shows the syntax
of the Length property and includes examples of using the property. In the
syntax, string can be a String variable, a String named constant, or the Text
property of a control. Example 1 assigns the number 16 to the intNumChars
variable, because there are 16 characters in the strName variable. Example 2
assigns the number of characters in the txtZip control’s Text property to the
intNumChars variable. Example 3 continues prompting the user for a ZIP
code until the user enters exactly fi ve characters.

C7718_ch08.indd 449C7718_ch08.indd 449 14/03/11 8:38 PM14/03/11 8:38 PM

450

C H A P T E R 8 String Manipulation

Figure 8-3 Syntax and examples of the Length property

Determining the number of characters in a string

Syntax
string.Length

Example 1
strName = "Veronica Yardley"
intNumChars = strName.Length
assigns the number 16 to the intNumChars variable

Example 2
intNumChars = txtZip.Text.Length
assigns the number of characters in the txtZip control’s Text property to the
intNumChars variable

Example 3
Do
 strZip = InputBox("5-digit ZIP code", "ZIP")
Loop Until strZip.Length = 5
continues prompting the user for a ZIP code until the user enters exactly five characters

Removing Characters from a String
Visual Basic provides the Trim and Remove methods for removing char-
acters from a string. You can use the Trim method to remove (trim) any
space characters from both the beginning and end of a string. You can use
the Remove method, on the other hand, to remove a specifi ed number of
characters located anywhere in a string. Figure 8-4 shows the syntax of both
methods and includes examples of using the methods. In each syntax, string
can be a String variable, a String named constant, or the Text property of a
control. When processing the Trim and Remove methods, the computer fi rst
makes a temporary copy of the string in memory. It then performs the speci-
fi ed removal on the copy only. In other words, neither method removes any
characters from the original string. Both methods return a string with the
appropriate characters removed.

Th e startIndex argument in the Remove method is the index of the fi rst char-
acter you want removed from the copy of the string. A character’s index is an
integer that indicates the character’s position in the string. Th e fi rst character
in a string has an index of 0; the second character has an index of 1, and so
on. Th e optional numCharsToRemove argument is the number of characters
you want removed. To remove only the fi rst character from a string, you
use 0 as the startIndex and 1 as the numCharsToRemove. To remove the
fourth through eighth characters, you use 3 as the startIndex and 5 as the
 numCharsToRemove. If the numCharsToRemove argument is omitted, the
Remove method removes all of the characters from the startIndex position
through the end of the string, as shown in Example 3 in Figure 8-4.

The Trim method
also can remove
other characters
from the begin-
ning and end of a

string. To learn more
about the Trim method,
as well as its companion
TrimStart and TrimEnd
methods, complete
Exercises 17 and 18 at
the end of this lesson.

C7718_ch08.indd 450C7718_ch08.indd 450 14/03/11 8:38 PM14/03/11 8:38 PM

451

Removing Characters from a String L E S S O N A

Figure 8-4 Syntax and examples of the Trim and Remove methods

Removing characters from a string

Syntax
string.Trim
string.Remove(startIndex[, numCharsToRemove])

Example 1
strCity = txtCity.Text.Trim
assigns the contents of the txtCity control’s Text property, excluding any leading and
trailing spaces, to the strCity variable

Example 2
strName = "Joanne Hashem"
txtLast.Text = strName.Remove(0, 7)
assigns the string “Hashem” to the txtLast control’s Text property

Example 3
strName = "Penny Swanson"
txtFirst.Text = strName.Remove(5)
assigns the string “Penny” to the txtFirst control’s Text property; you also can write the
assignment statement as txtFirst.Text = strName.Remove(5, 8)

Example 4
strFirst = "John"
strFirst = strFirst.Remove(2, 1)
assigns the string “Jon” to the strFirst variable

The Product ID Application
You will use both the Length property and the Trim method in the Product
ID application. Th e application displays a listing of the product IDs entered
by the user. Each product ID must contain exactly fi ve characters.

To code and then test the Product ID application:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.
Open the Product Solution (Product Solution.sln) fi le contained in
the VB2010\Chap08\Product Solution folder. If necessary, open the
designer window. Th e interface provides a text box for entering the
product ID.

2. Open the Code Editor window. Replace <your name> and <cur-
rent date> in the comments with your name and the current date,
respectively.

3. Locate the btnAdd control’s Click event procedure. Before verify-
ing the product ID’s length, you will remove any leading and trailing
spaces from the ID. Click the blank line below the ' remove any
leading and trailing spaces comment and then enter the fol-
lowing assignment statement:

strId = txtId.Text.Trim

START HERE

C7718_ch08.indd 451C7718_ch08.indd 451 14/03/11 8:38 PM14/03/11 8:38 PM

452

C H A P T E R 8 String Manipulation

4. Now you will determine whether the ID contains exactly fi ve char-
acters. Click the blank line below the ' verify length comment
and then enter the following If clause:

If strId.Length = 5 Th en

5. If the ID contains exactly fi ve characters, the selection structure’s true
path should add the ID to the lstId control; otherwise, its false path
should display an appropriate message. Enter the fi ve lines of code
indicated in Figure 8-5.

Figure 8-5 btnAdd control’s Click event procedure

Private Sub btnAdd_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnAdd.Click
 ' adds a product ID to a list

 Dim strId As String

 ' remove any leading and trailing spaces
 strId = txtId.Text.Trim

 ' verify length
 If strId.Length = 5 Then
 lstId.Items.Add(strId.ToUpper)
 Else
 MessageBox.Show("The ID must contain 5 characters.",
 "Product ID", MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End If

 txtId.Focus()
End Sub

enter these fi ve
lines of code

Trim method

Length function

6. Save the solution and then start the application. First, you will enter
an ID that contains four characters. Type bcd2 as the product ID and
then click the Add to List button. A message box opens and displays
the message “Th e ID must contain 5 characters.” Close the message
box.

7. Now you will include two leading spaces in the ID. Click immediately
before the letter b in the text box. Press the Spacebar twice and
then type the letter a. Th e text box now contains two space characters
 followed by abcd2. Click the Add to List button. ABCD2 appears in
the listing of product IDs.

8. On your own, test the application using an ID that contains nine
characters. Also test it using an ID that contains both leading and
trailing spaces. When you are fi nished testing the application, click
the Exit button. Close the Code Editor window and then close the
solution.

C7718_ch08.indd 452C7718_ch08.indd 452 14/03/11 8:38 PM14/03/11 8:38 PM

453

Inserting Characters in a String L E S S O N A

YOU DO IT 1!

Create a Visual Basic Windows application named YouDoIt 1. Save the
application in the VB2010\Chap08 folder. Add a text box, a label, and a
button to the form. The button’s Click event procedure should remove
any leading or trailing spaces from the text entered in the text box. If
the remaining text contains more than four characters, the button’s Click
event procedure should display only the first four characters in the label;
otherwise, it should display the remaining text in the label. Code the
procedure. Save the solution and then start and test the application. Close
the solution.

Inserting Characters in a String
Visual Basic’s Insert method allows you to insert characters anywhere in
a string. Th e method’s syntax is shown in Figure 8-6 along with examples
of using the method. In the syntax, string can be a String variable, a String
named constant, or the Text property of a control. When processing the
Insert method, the computer fi rst makes a temporary copy of the string
in memory. It then performs the specifi ed insertion on the copy only. In
other words, the method does not aff ect the original string. Th e startIndex
argument in the Insert method is an integer that specifi es where in the
string’s copy you want the value inserted. Th e integer represents the char-
acter’s index—in other words, its position in the string. To insert the value
at the beginning of a string, you use a startIndex of 0, as shown Example 1
in Figure 8-6. To insert the value beginning with the eighth character in
the string, you use a startIndex of 7, as shown in Example 2. Th e Insert
method returns a string with the appropriate characters inserted.

Figure 8-6 Syntax and examples of the Insert method

Inserting characters in a string

Syntax
string.Insert(startIndex, value)

Example 1
strPhone = "111-2222"
txtPhone.Text = strPhone.Insert(0, "(877) ")
assigns the string “(877) 111-2222” to the txtPhone control’s Text property

Example 2
strName = "Joanne Hashem"
strName = strName.Insert(7, "C. ")
assigns the string “Joanne C. Hashem” to the strName variable

Aligning the Characters in a String
You can use Visual Basic’s PadLeft and PadRight methods to align the
 characters in a string. Th e methods do this by inserting (padding) the string
with zero or more characters until the string is a specifi ed length; each

C7718_ch08.indd 453C7718_ch08.indd 453 14/03/11 8:38 PM14/03/11 8:38 PM

454

C H A P T E R 8 String Manipulation

method then returns the padded string. Figure 8-7 shows the syntax of both
methods. In each syntax, string can be a String variable, a String named
constant, or the Text property of a control. When processing the PadLeft
and PadRight methods, the computer fi rst makes a temporary copy of the
string in memory; it then pads the copy only. Th e totalChars argument in
each syntax is an integer that represents the total number of characters you
want the string’s copy to contain. Th e optional padCharacter argument is the
character that each method uses to pad the string until it reaches the desired
number of characters. If the padCharacter argument is omitted, the default
padding character is the space character.

Th e PadLeft method pads the string on the left, which means it inserts the
padded characters at the beginning of the string; doing this right-aligns the
characters within the string. Th e PadRight method, on the other hand, pads
the string on the right, which means it inserts the padded characters at the
end of the string and left-aligns the characters within the string. Examples
of using both methods are included in Figure 8-7. Notice that Example 3’s
expression contains the ToString and PadLeft methods. Recall that when
an expression contains more than one method, the computer processes
the methods from left to right. In this case, the computer will process the
ToString method before processing the PadLeft method. Also notice the let-
ter c that appears at the end of the padCharacter argument in Example 3. Th e
letter c is one of the literal type characters in Visual Basic. As you learned in
Chapter 3, a literal type character forces a literal constant to assume a data
type other than the one its form indicates. In this case, the letter c forces the
"*" string in the padCharacter argument to assume the Char (character)
data type.

Figure 8-7 Syntax and examples of the PadLeft and PadRight methods

Aligning the characters in a string

Syntax
string.PadLeft(totalChars[, padCharacter])
string.PadRight(totalChars[, padCharacter])

Example 1
strNumber = "73"
txtNum.Text = strNumber.PadLeft(5)
assigns the string “ 73” to the txtNum control’s Text property

Example 2
strFirst = "Joe"
strFirst = strFirst.PadRight(10)
assigns the string “Joe ” to the strFirst variable

Example 3
dblNet = 543.65
strFormattedNet =
 dblNet.ToString("C2").PadLeft(10, "*"c)
assigns the string “***$543.65” to the strFormattedNet variable (Many companies
use this type of formatting on their employee paychecks, because it makes it more
difficult for someone to change the amount.)

three space characters

seven space characters
You learned
about another
literal type
 character in
Chapter 3: the

letter D. Recall that the
letter D forces a number
to assume the Decimal
data type.

C7718_ch08.indd 454C7718_ch08.indd 454 14/03/11 8:38 PM14/03/11 8:38 PM

455

Inserting Characters in a String L E S S O N A

The Net Pay Application
You will use the Insert and PadLeft methods in the Net Pay application. Th e
application allows the user to enter the amount of an employee’s net pay. It
then displays the net pay with a leading dollar sign, asterisks, and two deci-
mal places. For example, if the net pay is 500, the application will display the
net pay as $****500.00.

To code and then test the Net Pay application:

1. Open the Net Pay Solution (Net Pay Solution.sln) fi le contained in
the VB2010\Chap08\Net Pay Solution folder. If necessary, open the
designer window. Th e interface provides a text box for entering the
net pay.

2. Open the Code Editor window. Replace <your name> and <current
date> in the comments with your name and the current date,
respectively.

3. Locate the btnFormat control’s Click event procedure. First, you will
format the net pay to include two decimal places. Click the blank line
below the ' format the net pay with two decimal places
comment and then enter the following assignment statement:

strFormatted = decNet.ToString("N2")

4. Next, you will use the PadLeft method to pad the net pay with
 asterisks until it contains 10 characters. Click the blank line below the
' pad the net pay with asterisks until its length is 10
comment and then enter the following assignment statement:

strFormatted = strFormatted.PadLeft(10, "*"c)

5. Finally, you will insert a dollar sign at the beginning of the formatted
net pay. Click the blank line below the ' insert a dollar sign
as the fi rst character comment and then enter the assignment
statement indicated in Figure 8-8.

START HERE

Figure 8-8 btnFormat control’s Click event procedure (continues)

Private Sub btnFormat_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnFormat.Click
 ' format the net pay with two decimal places, then pad with
 ' asterisks and insert a dollar sign as the first character

 Dim decNet As Decimal
 Dim strFormatted As String

 Decimal.TryParse(txtNetPay.Text, decNet)

 ' format the net pay with two decimal places
 strFormatted = decNet.ToString("N2")

 ' pad the net pay with asterisks until its length is 10
 strFormatted = strFormatted.PadLeft(10, "*"c)

C7718_ch08.indd 455C7718_ch08.indd 455 14/03/11 8:38 PM14/03/11 8:38 PM

456

C H A P T E R 8 String Manipulation

6. Save the solution and then start the application. Type 1256 as the
net pay and then click the Format button. Th e button’s Click event
procedure displays $**1,256.00 in the interface, as shown in Figure 8-9.
Click the Exit button. Close the Code Editor window and then close
the solution.

Figure 8-9 Interface showing the formatted net pay

YOU DO IT 2!

Create a Visual Basic Windows application named YouDoIt 2. Save the
application in the VB2010\Chap08 folder. Add a text box, a label, and a
button to the form. Set the text box’s MaxLength property to 5. The button’s
Click event procedure should assign the contents of the text box to a String
variable; it then should remove any leading or trailing spaces from the string
stored in the variable. If the variable contains more than three characters,
the procedure should insert a number sign (#) as the second character
and then pad the variable’s value with asterisks until the variable contains
10 characters. Insert the asterisks at the end of the string stored in the
variable. Finally, the procedure should display the variable’s contents in the
label. Code the procedure. Save the solution and then start and test the
application. Close the solution.

Figure 8-8 btnFormat control’s Click event procedure

 ' insert a dollar sign as the first character
 strFormatted = strFormatted.Insert(0, "$")

 ' display the net pay, then set the focus
 lblFormatted.Text = strFormatted
 txtNetPay.Focus()
End Sub

(continued)

enter this assignment
statement

C7718_ch08.indd 456C7718_ch08.indd 456 14/03/11 8:38 PM14/03/11 8:38 PM

457

Searching a String L E S S O N A

Searching a String
If you need to determine whether a string contains a specifi c sequence
of characters, you can use either the Contains method or the IndexOf
method. Figure 8-10 shows the syntax of both methods. In each syntax,
string can be a String variable, a String named constant, or the Text prop-
erty of a control. When processing the Contains and IndexOf methods,
the computer fi rst makes a temporary copy of the string in memory. It then
performs the specifi ed search on the copy only. Th e subString argument
in each syntax represents the sequence of characters for which you are
searching. Both methods perform a case-sensitive search, which means the
case of the subString must match the case of the string in order for both to
be considered equal.

Th e Contains method returns the Boolean value True when the subString
is contained anywhere in the string; otherwise, it returns the Boolean value
False. Th e Contains method always begins the search with the fi rst charac-
ter in the string. Th e Contains method is used in Examples 1 through 3 in
Figure 8-10. Th e IndexOf method, on the other hand, returns an integer—
either –1 if the subString is not contained in the string or the character index
that represents the starting position of the subString in the string. Unless
you specify otherwise, the IndexOf method starts the search with the fi rst
character in the string. To specify a diff erent starting location, you use the
optional startIndex argument. Th e IndexOf method is used in Examples 4
through 6 in Figure 8-10. Notice that two methods appear in the expres-
sion in Example 3: ToUpper and Contains. Two methods also appear in the
expression in Example 6: ToLower and IndexOf. Recall that when an expres-
sion contains more than one method, the computer processes the meth-
ods from left to right. In this case, the computer will process the ToUpper
method before the Contains method in Example 3, and process the ToLower
method before the IndexOf method in Example 6.

the Contains method
performs a case-sensitive
search

Figure 8-10 Syntax and examples of the Contains and IndexOf methods (continues)

Searching a string

Syntax
string.Contains(subString)
string.IndexOf(subString[, startIndex])

Example 1
strCityState = "Nashville, TN"
blnIsContained = strCityState.Contains("TN")
assigns True to the blnIsContained variable because the string “TN” appears in the
strCityState variable

Example 2
strCityState = "Nashville, TN"
blnIsContained = strCityState.Contains("Tn")
assigns False to the blnIsContained variable because the string “Tn” does not
appear in the strCityState variable

C7718_ch08.indd 457C7718_ch08.indd 457 14/03/11 8:38 PM14/03/11 8:38 PM

458

C H A P T E R 8 String Manipulation

The City and State Application
You will use the IndexOf method in the City and State application. Th e appli-
cation allows the user to enter a string composed of a city name, followed by
a comma, a space, and a state name. It then displays the index of the comma
contained in the string.

To code and then test the City and State application:

1. Open the City State Solution (City State Solution.sln) fi le contained
in the VB2010\Chap08\City State Solution folder. If necessary, open
the designer window. Th e interface provides a text box for entering
the string.

2. Open the Code Editor window. Replace <your name> and <current
date> in the comments with your name and the current date,
respectively.

3. Locate the btnLocate control’s Click event procedure. Click the blank
line below the ' determine the comma’s index comment.

START HERE

(continued)

Figure 8-10 Syntax and examples of the Contains and IndexOf methods

Example 3
strAddress = "123 Elm Ave."
If strAddress.ToUpper.Contains("ELM AVE.") Then
the condition evaluates to True because the string “ELM AVE.” appears in the
strAddress variable when the variable’s contents are temporarily converted to
uppercase

Example 4
strCityState = "Nashville, TN"
intCharIndex = strCityState.IndexOf("TN")
assigns the number 11 to the intCharIndex variable because the string “TN”
appears in the strCityState variable, beginning with the character whose index
is 11

Example 5
strCityState = "Nashville, TN"
intCharIndex = strCityState.IndexOf("Tn")
assigns the number –1 to the intCharIndex variable because the string “Tn” does
not appear in the strCityState variable

Example 6
strAddress = "123 Elm Ave."
intCharIndex =
 strAddress.ToLower.IndexOf("elm ave.", 5)
assigns the number –1 to the intCharIndex variable because the string “elm ave.”
does not appear in the strAddress variable when the search starts with the character
whose index is 5 (the letter l)

the ToUpper method will
be evaluated before the
Contains method

the IndexOf method performs
a case-sensitive search

the ToLower method will be
evaluated before the IndexOf
method

character index 11

C7718_ch08.indd 458C7718_ch08.indd 458 14/03/11 8:38 PM14/03/11 8:38 PM

459

Searching a String L E S S O N A

4. To begin the search with the fi rst character in the string, you can use
either strCityState.IndexOf(",", 0) or strCityState.
IndexOf(","). You will assign the IndexOf method’s return value to
the intCommaIndex variable. Enter the additional assignment state-
ment shown in Figure 8-11.

Figure 8-11 btnLocate control’s Click event procedure

Private Sub btnLocate_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnLocate.Click
 ' locates the comma in a string and then
 ' displays its index

 Dim strCityState As String
 Dim intCommaIndex As Integer

 strCityState = txtCityState.Text

 ' determine the comma’s index
 intCommaIndex = strCityState.IndexOf(",")

 lblCommaIndex.Text = intCommaIndex.ToString
 txtCityState.Focus()
End Sub

enter this assignment
statement

5. Save the solution and then start the application. Type Nashville,
TN in the text box and then click the Locate the Comma button.
As Figure 8-12 shows, the comma’s index is 9. Click the Exit button.
Close the Code Editor window and then close the solution.

Figure 8-12 Interface showing the comma’s index

YOU DO IT 3!

Create a Visual Basic Windows application named YouDoIt 3. Save the
application in the VB2010\Chap08 folder. Add a text box, a label, and a
button to the form. The button’s Click event procedure should determine
whether the number 9 appears anywhere in the text box and then display
the result (either True or False) in the label. Code the procedure. Save the
solution and then start and test the application. Close the solution.

C7718_ch08.indd 459C7718_ch08.indd 459 14/03/11 8:38 PM14/03/11 8:38 PM

460

C H A P T E R 8 String Manipulation

Accessing the Characters in a String
Visual Basic provides the Substring method for accessing any number of
characters in a string. Figure 8-13 shows the method’s syntax and includes
examples of using the method. In the syntax, string can be a String variable,
a String named constant, or the Text property of a control. When processing
the Substring method, the computer fi rst makes a temporary copy of the
string in memory. It then accesses the specifi ed number of characters in the
copy only. Th e startIndex argument in the syntax is the index of the fi rst
character you want to access in the string’s copy. As you already know, the
fi rst character in a string has an index of 0. Th e optional numCharsToAccess
argument specifi es the number of characters you want to access. Th e
Substring method returns a string that contains the number of characters
specifi ed in the numCharsToAccess argument, beginning with the character
whose index is startIndex. If you omit the numCharsToAccess argument, the
Substring method returns all characters from the startIndex position through
the end of the string.

Figure 8-13 Syntax and examples of the Substring method

Accessing the characters in a string

Syntax
string.Substring(startIndex[, numCharsToAccess])

Example 1
strFull = "Jose Gutierez"
strFirst = strFull.Substring(0, 4)
strLast = strFull.Substring(5)
assigns the string “Jose” to the strFirst variable and the string “Gutierez” to the
strLast variable; you also can write the last assignment statement as strLast =
strFull.Substring(5, 8)

Example 2
strEmployeeNum = "38F45"
strDepartment = strEmployeeNum.Substring(2, 1)
assigns the string “F” to the strDepartment variable

character index 0 character index 5

character index 2

The Rearrange Name Application
You will use the Substring method in the Rearrange Name application. Th e
application’s user interface provides a text box for entering a person’s fi rst
name followed by a space and the person’s last name. Th e application rear-
ranges the name so that the last name comes fi rst, followed by a comma, a
space, and the fi rst name.

C7718_ch08.indd 460C7718_ch08.indd 460 14/03/11 8:38 PM14/03/11 8:38 PM

461

Accessing the Characters in a String L E S S O N A

To code and then test the Rearrange Name application:

1. Open the Rearrange Name Solution (Rearrange Name Solution.sln)
fi le contained in the VB2010\Chap08\Rearrange Name Solution
folder. If necessary, open the designer window.

2. Open the Code Editor window. Replace <your name> and <current
date> in the comments with your name and the current date,
respectively.

3. Locate the btnRearrange control’s Click event procedure. Th e proce-
dure assigns the name entered by the user, excluding any leading or
trailing spaces, to the strName variable.

4. Before you can rearrange the name stored in the strName variable,
you need to separate the fi rst name from the last name. To do this,
you fi rst search for the space character that appears between the
names. Click the blank line below the ' search for the space
in the name comment and then enter the following assignment
statement, being sure to include a space character between the quota-
tion marks:

intIndex = strName.IndexOf(" ")

5. If the value in the intIndex variable is not –1, it means that the
IndexOf method found a space character in the strName variable.
In that case, the selection structure’s true path should continue rear-
ranging the name; otherwise, its false path should display the “Invalid
name format” message. Notice that the statement to display the mes-
sage is already entered in the selection structure’s false path. Change
the If clause in the procedure to the following:

If intIndex <> –1 Th en

6. Now you will use the value stored in the intIndex variable to
separate the fi rst name from the last name. Click the blank line
below the ' separate the fi rst and last names comment.
All of the characters to the left of the space character represent
the fi rst name, and all of the characters to the right of the space
character represent the last name. Enter the following assignment
statements:

strFirstName = strName.Substring(0, intIndex)
strLastName = strName.Substring(intIndex + 1)

7. Finally, you will display the rearranged name in the interface. Click
the blank line above the Else clause. Enter the additional assignment
statement indicated in Figure 8-14. Be sure to include a space charac-
ter after the comma.

START HERE

C7718_ch08.indd 461C7718_ch08.indd 461 14/03/11 8:38 PM14/03/11 8:38 PM

462

C H A P T E R 8 String Manipulation

Figure 8-14 btnRearrange control’s Click event procedure

Private Sub btnRearrange_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnRearrange.Click
 ' rearranges and then displays a name

 Dim strName As String
 Dim strFirstName As String
 Dim strLastName As String
 Dim intIndex As Integer

 ' assign the input to a variable
 strName = txtName.Text.Trim

 ' search for the space in the name
 intIndex = strName.IndexOf(" ")

 ' if the input contains a space
 If intIndex <> –1 Then
 ' separate the first and last names
 strFirstName = strName.Substring(0, intIndex)
 strLastName = strName.Substring(intIndex + 1)

 ' display last name, comma, space, and first name
 lblRearrangedName.Text =
 strLastName & ", " & strFirstName

 Else ' the name does not contain a space
 MessageBox.Show("Invalid name format",
 "Rearrange Name",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End If
End Sub

enter this assignment
statement

8. Save the solution and then start the application. Type Suman Patel
as the name and then click the Rearrange Name button. Th e rear-
ranged name appears in the interface, as shown in Figure 8-15.
Click the Exit button. Close the Code Editor window and then close
the solution.

Figure 8-15 Interface showing the rearranged name

C7718_ch08.indd 462C7718_ch08.indd 462 14/03/11 8:38 PM14/03/11 8:38 PM

463

Using Pattern-Matching to Compare Strings L E S S O N A

YOU DO IT 4!

Create a Visual Basic Windows application named YouDoIt 4. Save the
application in the VB2010\Chap08 folder. Add a label and a button to the
form. The button’s Click event procedure should declare a String variable
named strMessage and initialize it to the 26 uppercase letters of the
alphabet. It then should use the Substring method to display only the letters
K, L, M, N, and O in the label. Code the procedure. Save the solution and
then start and test the application. Close the solution.

Using Pattern-Matching to Compare Strings
Th e Like operator allows you to use pattern-matching characters to deter-
mine whether one string is equal to another string. Figure 8-16 shows the Like
operator’s syntax. In the syntax, string can be a String variable, a String named
constant, or the Text property of a control. Pattern is a String expression con-
taining one or more of the pattern-matching characters listed in the fi gure. As
the fi gure indicates, the question mark (?) character in a pattern represents
one character only, whereas the asterisk (*) character represents zero or more
characters. To represent a single digit in a pattern, you use the number sign
(#) character. Th e last two pattern-matching characters listed in Figure 8-16
contain a characterList, which is simply a listing of characters. “[A9M]” is a
characterList that contains three characters: A, 9, and M. You also can include
a range of values in a characterList. You do this using a hyphen to separate the
lowest value in the range from the highest value in the range. For example, to
include all lowercase letters in a characterList, you use “[a-z]”. To include both
lowercase and uppercase letters in the characterList, you use “[a-zA-Z]”.

Th e Like operator compares the string to the pattern; the comparison is
case-sensitive. If the string matches the pattern, the Like operator returns the
Boolean value True; otherwise, it returns the Boolean value False. Examples
of using the Like operator are included in Figure 8-16.

Figure 8-16 Syntax and examples of the Like operator (continues)

Using pattern-matching to compare strings

Syntax
string Like pattern

Pattern-matching characters Matches in string
? any single character
* zero or more characters
any single digit (0 through 9)
[characterList] any single character in the characterList
 (for example, “[A5T]” matches A, 5, or T,
 whereas “[a-z]” matches any lowercase letter)
[!characterList] any single character not in the characterList
 (for example, “[!A5T]” matches any character
 other than A, 5, or T, whereas “[!a-z]” matches
 any character that is not a lowercase letter)

C7718_ch08.indd 463C7718_ch08.indd 463 14/03/11 8:38 PM14/03/11 8:38 PM

464

C H A P T E R 8 String Manipulation

Example 1
If strFirst.ToUpper Like "B?LL" Then
The condition evaluates to True when the string stored in the strFirst variable
(converted to uppercase) begins with the letter B followed by one character and then the
two letters LL; otherwise, it evaluates to False. Examples of strings that would make the
condition evaluate to True include “Bill”, “Ball”, “bell”, and “bull”. Examples of strings for
which the condition would evaluate to False include “BPL”, “BLL”, and “billy”.

Example 2
If txtState.Text Like "K*" Then
The condition evaluates to True when the value in the txtState control’s Text property
begins with the letter K followed by zero or more characters; otherwise, it evaluates
to False. Examples of strings that would make the condition evaluate to True include
“KANSAS”, “Ky”, and “Kentucky”. Examples of strings for which the condition would
evaluate to False include “kansas” and “ky”.

Example 3
Do While strId Like "###*"
The condition evaluates to True when the string stored in the strId variable begins
with three digits followed by zero or more characters; otherwise, it evaluates to False.
Examples of strings that would make the condition evaluate to True include “178” and
“983Ab”. Examples of strings for which the condition would evaluate to False include
“X34” and “34Z5”.

Example 4
If strFirst.ToUpper Like "T[OI]M" Then
The condition evaluates to True when the string stored in the strFirst variable
(converted to uppercase) is either “TOM” or “TIM”. When the variable does not contain
“TOM” or “TIM”—for example, when it contains “Tam” or “Tommy”—the condition
evaluates to False.

Example 5
If strLetter Like "[a-z]" Then
The condition evaluates to True when the string stored in the strLetter variable is
one lowercase letter; otherwise, it evaluates to False.

Example 6
For intIndex As Integer = 0 To strInput.Length – 1
 strChar = strInput.Substring(intIndex, 1)
 If strChar Like "[!a-zA-Z]" Then
 intNonLetter = intNonLetter + 1
 End If
Next intIndex
Compares each character contained in the strInput variable with the lowercase and
uppercase letters of the alphabet, and counts the number of characters that are not letters.

Example 7
If strInput Like "*.*" Then
The condition evaluates to True when a period appears anywhere in the strInput
variable; otherwise, it evaluates to False.

Figure 8-16 Syntax and examples of the Like operator (continues)

(continued)

C7718_ch08.indd 464C7718_ch08.indd 464 14/03/11 8:38 PM14/03/11 8:38 PM

465

Using Pattern-Matching to Compare Strings L E S S O N A

Modifying the Product ID Application
Earlier in this lesson, you coded the Product ID application, which displayed
a listing of the product IDs entered by the user. As you may remember, each
product ID contained exactly fi ve characters. In the following set of steps,
you will modify the application to ensure that the fi ve characters are three
letters followed by two numbers.

To modify and then test the Product ID application:

1. Use Windows to make a copy of the Product Solution folder. Save
the copy in the VB2010\Chap08 folder. Rename the copy Modifi ed
Product Solution.

2. Open the Product Solution (Product Solution.sln) fi le contained in
the Modifi ed Product Solution folder. Open the designer window.

3. Open the Code Editor window and locate the btnAdd control’s
Click event procedure. Change the ' remove any leading and
trailing spaces comment to the following:

' remove any leading and trailing spaces and
' then convert to uppercase

4. Change the strId = txtId.Text.Trim statement to the
following:

strId = txtId.Text.Trim.ToUpper

5. Replace the ' verify length comment with the following
comments:

' verify that the ID contains 3 letters
' followed by 2 numbers

6. Change the If clause to the following:

If strId Like "[A-Z][A-Z][A-Z]##" Th en

7. In the statement below the If clause, change strId.ToUpper to
strId. Finally, change the message in the MessageBox.Show method
to "Invalid product ID". Figure 8-17 shows the modifi ed Click
event procedure. Th e modifi ed comments and code are shaded in
the fi gure.

START HERE

(continued)

Figure 8-16 Syntax and examples of the Like operator

Example 8
If strInput.ToUpper Like "[A-Z][A-Z]##" Then
The condition evaluates to True when the value in the strInput variable (converted to
uppercase) is two letters followed by two numbers; otherwise, it evaluates to False.

C7718_ch08.indd 465C7718_ch08.indd 465 14/03/11 8:38 PM14/03/11 8:38 PM

466

C H A P T E R 8 String Manipulation

Private Sub btnAdd_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnAdd.Click
 ' adds a product ID to a list

 Dim strId As String

 ' remove any leading and trailing spaces and
 ' then convert to uppercase
 strId = txtId.Text.Trim.ToUpper

 ' verify that the ID contains 3 letters
 ' followed by 2 numbers
 If strId Like "[A-Z][A-Z][A-Z]##" Then
 lstId.Items.Add(strId)
 Else
 MessageBox.Show("Invalid product ID",
 "Product ID", MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End If

 txtId.Focus()
End Sub

Figure 8-17 Modifi ed Click event procedure for the btnAdd control

8. Save the solution and then start the application. First, you will test
the application using an invalid ID. Type abc2f as the product ID and
then click the Add to List button. Th e “Invalid product ID” message
appears in a message box. Close the message box.

9. Now you will enter a valid ID. Change the product ID to abc23 and
then click the Add to List button. ABC23 appears in the listing of
product IDs.

10. On your own, test the application using diff erent valid and invalid
IDs. When you are fi nished testing the application, click the Exit
 button. Close the Code Editor window and then close the solution.

YOU DO IT 5!

Create a Visual Basic Windows application named YouDoIt 5. Save the
application in the VB2010\Chap08 folder. Add a text box, a label, and a
button to the form. The button’s Click event procedure should display the
message “OK” when the text box contains two numbers followed by zero or
more characters; otherwise, it should display the message “Not OK”. Display
the message in the label control. Code the procedure. Save the solution and
then start and test the application. Close the solution.

C7718_ch08.indd 466C7718_ch08.indd 466 14/03/11 8:38 PM14/03/11 8:38 PM

467

Lesson A Summary

 • To manipulate strings in Visual Basic:

Use one of the string manipulation techniques listed in Figure 8-18.

Technique Syntax Purpose

Length property string.Length stores an integer that represents the
number of characters contained in a
string

Trim method string.Trim removes any spaces from both the
beginning and end of a string

Remove method string.Remove(startIndex[, numCharsToRemove]) removes characters from a string

Insert method string.Insert(startIndex, value) inserts characters in a string

Contains method string.Contains(subString) determines whether a string contains
a specifi c sequence of characters;
returns a Boolean value

IndexOf method string.IndexOf(subString[, startIndex]) determines whether a string contains
a specifi c sequence of characters;
returns either –1 or an integer that
indicates the starting position of the
characters in the string

Substring method string.Substring(startIndex[, numCharsToAccess]) accesses one or more characters in a
string

PadLeft method string.PadLeft(totalChars[, padCharacter]) pads the beginning of a string with
a character until the string has the
specifi ed number of characters; right-
aligns the string

PadRight method string.PadRight(totalChars[, padCharacter]) pads the end of a string with a
character until the string has the
specifi ed number of characters; left-
aligns the string

Like operator string Like pattern uses pattern-matching to compare
strings

Important note: The following additional techniques are covered in the Discovery Exercises at the end of this lesson:
the StartsWith and EndsWith methods, the Replace method, the full syntax of the Trim method, the TrimStart and
TrimEnd methods, and the Mid statement.

Figure 8-18 String manipulation techniques

Lesson A Summary L E S S O N A

C7718_ch08.indd 467C7718_ch08.indd 467 14/03/11 8:38 PM14/03/11 8:38 PM

468

C H A P T E R 8 String Manipulation

Lesson A Key Terms
Contains method—determines whether a string contains a specifi c sequence
of characters; returns a Boolean value

IndexOf method—determines whether a string contains a specifi c sequence
of characters; returns either –1 (if the string does not contain the sequence of
characters) or an integer that represents the starting position of the sequence
of characters

Insert method—inserts characters anywhere in a string

Length property—stores an integer that represents the number of characters
contained in a string

Like operator—uses pattern-matching characters to determine whether one
string is equal to another string

PadLeft method—right-aligns a string by inserting characters at the
 beginning of the string

PadRight method—left-aligns a string by inserting characters at the end of
the string

Remove method—removes a specifi ed number of characters located
 anywhere in a string

Substring method—used to access any number of characters contained in
a string

Trim method—removes spaces from both the beginning and end of a string

Lesson A Review Questions

1. Th e strState variable contains the string “MI ” (the letters M and I
followed by three spaces). Which of the following statements removes
the three spaces from the variable’s contents?

a. strState = strState.Trim

b. strState = Trim(strState)

c. strState = Trim(strState, String.Empty)

d. none of the above

2. Which of the following statements assigns the fi rst three characters in
the strPart variable to the strCode variable?

a. strCode = strPart.Assign(0, 3)

b. strCode = strPart.Sub(0, 3)

c. strCode = strPart.Substring(0, 3)

d. strCode = strPart.Assign(3, 1)

C7718_ch08.indd 468C7718_ch08.indd 468 14/03/11 8:38 PM14/03/11 8:38 PM

469

Lesson A Review Questions L E S S O N A

3. Th e strWord variable contains the string “Bells”. Which of the
 following statements changes the contents of the variable to “Bell”?

a. strWord = strWord.Trim(4)

b. strWord = strWord.Trim(5)

c. strWord = strWord.Remove(4)

d. strWord = strWord.Remove(5, 1)

4. Which of the following statements changes the contents of the
strZip variable from 60521 to 60721?

a. strZip = strZip.Insert(2, "7")

strZip = strZip.Remove(3, 1)

b. strZip = strZip.Insert(3, "7")

strZip = strZip.Remove(2, 1)

c. strZip = strZip.Remove(2, 1)

strZip = strZip.Insert(2, "7")

d. all of the above

5. Which of the following methods can be used to determine whether
the strAmount variable contains the dollar sign?

a blnResult = strAmount.Contains("$")

b. intResult = strAmount.IndexOf("$")

c. intResult = strAmount.IndexOf("$", 0)

d. all of the above

6. Which of the following statements changes the contents of the
strWord variable from “men” to “mean”?

a. strWord = strWord.AddTo(2, "a")

b. strWord = strWord.Insert(2, "a")

c. strWord = strWord.Insert(3, "a")

d. strWord = strWord.Insert(3, "a"c)

7. If the strMsg variable contains the string “Happy holidays”, what
value will the strMsg.IndexOf("day") method return?

a. –1

b. 0

c. 10

d. 11

C7718_ch08.indd 469C7718_ch08.indd 469 14/03/11 8:38 PM14/03/11 8:38 PM

470

C H A P T E R 8 String Manipulation

8. If the strWord variable contains the string “window”, which of the
following statements assigns the fi fth character in the variable to the
strLetter variable?

a. strLetter = strWord.Substring(4)

b. strLetter = strWord.Substring(4, 1)

c. strLetter = strWord(5).Substring

d. none of the above

9. Which of the following expressions evaluates to True when the
strPart variable contains the string “123X45”?

a. strPart Like "999[A-Z]99"

b. strPart Like "######"

c. strPart Like "###[A-Z]##"

d. none of the above

10. Which of the following changes the contents of the strCityState
variable from Boise Idaho to Boise, Idaho?

a. strCityState = strCityState.Insert(5, ",")

b. strCityState = strCityState.Insert(6, ",")

c. strCityState = strCityState.Insert(7, ",")

d. none of the above

11. If the strMsg variable contains the string “Today is Monday”, which
of the following assigns the number 9 to the intNum variable?

a. intNum = strMsg.Substring(0, "M")

b. intNum = strMsg.Contains("M")

c. intNum = strMsg.IndexOf("M")

d. intNum = strMsg.IndexOf(0, "M")

12. If the strName variable contains the string “John Jones”, which of the
following changes the contents of the variable to “John K. Jones”?

a. strName = strName.Insert(5, "K. ")

b. strName = strName.Insert(4, " K.")

c. strName = strName.InsertInto(4, " K.")

d. both a and b

13. Th e strAmount variable contains the string “76.89”. Which of the
 following statements changes the contents of the variable to “76.89!!!!”?

a. strAmount = strAmount.PadRight(4, "!"c)

b. strAmount = strAmount.PadRight(9, "!"c)

C7718_ch08.indd 470C7718_ch08.indd 470 14/03/11 8:38 PM14/03/11 8:38 PM

471

Lesson A Exercises L E S S O N A

c. strAmount= strAmount.PadLeft(4, "!"c)

d. none of the above

14. If the strAddress variable contains the string “34 Elm Street",
what will the strAddress.IndexOf("Elm") method return?

a. –1

b. 3

c. 4

d. True

15. If the strAddress variable contains the string “34 Elm Street”, what
will the strAddress.IndexOf("Elm", 4) method return?

a. –1

b. 3

c. 4

d. False

Lesson A Exercises

1. Write a Visual Basic statement that removes the leading and trailing
spaces from the txtAddress control.

2. Write a Visual Basic statement that uses the Insert method to change
the contents of the strWord variable from “men” to “women”.

3. Using the Insert and Remove methods, write the Visual Basic
 statements to change the contents of the strWord variable from
“dog” to “frog”.

4. Th e strPartNum variable contains the string “ABCD34G”. Write
a Visual Basic statement that assigns the string “CD34” from the
strPartNum variable to the strCode variable.

5. Write the Visual Basic statements to accomplish the following tasks:

a. Display in the lblSize control the number of characters contained
in the strMsg variable.

b. Remove the leading and trailing spaces from the strCity
variable.

c. Use the Insert and Remove methods to change the contents of the
strWord variable from “mouse” to “mouth”.

d. Use the Insert method to change the contents of the strWord
variable from “mend” to “amend”.

e. Change the contents of the strPay variable from “235.67” to
“****235.67”.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

C7718_ch08.indd 471C7718_ch08.indd 471 14/03/11 8:38 PM14/03/11 8:38 PM

472

C H A P T E R 8 String Manipulation

6. Th e strAmount variable contains the string “3,123,560”. Write the
Visual Basic statements to change the contents of the variable to
“3123560”; use the Remove method.

7. Write the Visual Basic statement that uses the Contains method to
determine whether the strAddress variable contains the string
“Maple Street” (entered in uppercase, lowercase, or a combination
of uppercase and lowercase). Assign the method’s return value to a
Boolean variable named blnIsContained.

8. Open the City Names Solution (City Names Solution.sln) fi le
 contained in the VB2010\Chap08\City Names Solution folder. If
necessary, open the designer window. Th e interface allows the user
to enter a city name. Code the Add Name button’s Click event
 procedure so that it removes any leading and/or trailing spaces from
the city name. If the city name contains at least one character, add the
name to the combo box. Th e procedure also should send the focus to
the combo box. Save the solution and then start the application. Test
the application by entering spaces before and after the following city
names: New York and Miami. Close the Code Editor window and
then close the solution.

9. Open the Item Prices Solution (Item Prices Solution.sln) fi le
 contained in the VB2010\Chap08\Item Prices Solution folder. If
 necessary, open the designer window. Open the Code Editor window.
Modify the form’s Load event procedure so that it right-aligns the
prices listed in the cboRight control and then selects the fi rst price.
Save the solution and then start the application. (Th e prices listed in
the cboLeft control should still be left-aligned.) Close the Code Editor
window and then close the solution.

10. Open the Date Solution (Date Solution.sln) fi le contained in the
VB2010\Chap08\Date Solution folder. If necessary, open the designer
window. Th e interface allows the user to enter a date. Code the
Change Date button’s Click event procedure so that it uses the Insert
method to change the year number from yy to 20yy before displaying
the year number in the lblDate control. Save the solution and then
start and test the application. Close the Code Editor window and then
close the solution.

11. Th e strAmount variable contains the string “3123560” . Write
the Visual Basic statements to change the variable’s contents to
“$3,123,560”.

12. Open the Sales Tax Solution (Sales Tax Solution.sln) fi le contained in
the VB2010\Chap08\Sales Tax Solution folder. Th e interface allows
the user to enter a sales amount and a tax rate. Open the Code
Editor window. Th e btnCalc control’s Click event procedure should
determine whether the tax rate ends with a percent sign. If it does,
the procedure should remove the percent sign from the rate. Make
the appropriate modifi cations to the code. Save the solution and
then start the application. Test the application using the following

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

C7718_ch08.indd 472C7718_ch08.indd 472 14/03/11 8:38 PM14/03/11 8:38 PM

473

Lesson A Exercises L E S S O N A

data: a sales amount of 1000 and a tax rate of 5%, and then a sales
amount of 5000 and a tax rate of 7. Close the Code Editor window
and then close the solution.

13. Open the Zip Solution (Zip Solution.sln) fi le contained in the
VB2010\Chap08\Zip Solution folder. Th e Display Shipping Charge
button’s Click event procedure should display the appropriate ship-
ping charge based on the ZIP code entered by the user. To be valid,
the ZIP code must contain exactly fi ve digits and the fi rst three digits
must be either “605” or “606”. Th e shipping charge for “605” ZIP codes
is $25. Th e shipping charge for “606” ZIP codes is $30. Display an
appropriate message if the ZIP code is invalid. Code the procedure.
Save the solution and then start the application. Test the application
using the following ZIP codes: 60677, 60511, 60344, and 7130. Close
the Code Editor window and then close the solution.

14. Open the Social Security Solution (Social Security Solution.sln) fi le
contained in the VB2010\Chap08\Social Security Solution-Remove
folder. Th e interface allows the user to enter a Social Security number.
Code the Remove Dashes button’s Click event procedure so that it
fi rst verifi es that the Social Security number contains three numbers
followed by a hyphen, two numbers, a hyphen, and four numbers. If
the Social Security number is in the correct format, the procedure
should remove the dashes from the number before displaying the
number in the lblNumber control. Save the solution and then start
and test the application. Close the Code Editor window and then
close the solution.

Discovery

15. Visual Basic provides the StartsWith and EndsWith methods for deter-
mining whether a specifi c sequence of characters occurs at the begin-
ning or end, respectively, of a string. Th e StartsWith method’s syntax
is string.StartsWith(subString), and the EndsWith method’s syntax is
string.EndsWith(subString). Open the City Solution (City Solution.sln)
fi le contained in the VB2010\Chap08\City Solution folder. Th e interface
provides a text box for the user to enter the name of a city. Th e Add
to List button’s Click event procedure should add the city name to
the list box, but only if the city name begins with either the letter L or
the letters Ch. Th e letters can be entered in uppercase, lowercase, or
a combination of uppercase and lowercase. Code the procedure. Save
the solution and then start and test the application. Close the Code
Editor window and then close the solution.

16. Visual Basic provides the Replace method for replacing a sequence of
characters in a string with another sequence of characters. Th e meth-
od’s syntax is string.Replace(oldValue, newValue). When processing
the Replace method, the computer makes a temporary copy of the
string in memory; it then replaces the characters in the copy only.
Th e Replace method returns a string with all occurrences of oldValue
replaced with newValue. Open the Social Security Solution (Social

INTERMEDIATE

INTERMEDIATE

C7718_ch08.indd 473C7718_ch08.indd 473 14/03/11 8:38 PM14/03/11 8:38 PM

474

C H A P T E R 8 String Manipulation

Security Solution.sln) fi le contained in the VB2010\Chap08\Social
Security Solution-Replace folder. Th e interface allows the user to
enter a Social Security number. Code the Remove Dashes button’s
Click event procedure so that it fi rst verifi es that the Social Security
number contains at least one dash (hyphen). If it does, the procedure
should remove all of the dashes from the number before displaying
the number in the lblNumber control. Save the solution and then
start and test the application. Close the Code Editor window and then
close the solution.

17. In this lesson, you learned how to use the Trim method to remove
space characters from both the beginning and end of a string. You also
can use the Trim method to remove other characters. Th e syntax for
doing this is string.Trim[(trimChars)]. Th e optional trimChars argu-
ment is a comma-separated list of characters that you want removed
(trimmed). For example, if the txtInput control contains the string
“#$456#”, you can remove the number signs and dollar sign from
the control’s Text property using the statement txtInput.Text =
txtInput.Text.Trim("#"c, "$"c). Open the Trim Method
Solution (Trim Method Solution.sln) fi le contained in the VB2010\
Chap08\Trim Method Solution folder. Open the Code Editor window
and code the btnTrim control’s Click event procedure. Save the solu-
tion and then start and test the application. Close the Code Editor
window and then close the solution.

18. Visual Basic provides the TrimStart and TrimEnd methods
for removing one or more characters from the beginning or
end, respectively, of a string. Th e TrimStart method’s syntax is
string.TrimStart[(trimChars)], and the TrimEnd method’s syntax
is string.TrimEnd[(trimChars)]. Th e optional trimChars argument
is a comma-separated list of characters that you want removed
(trimmed). For example, if the txtSales control contains the string
“$56.80”, you can remove the dollar sign from the control’s Text
 property using the statement txtSales.Text = txtSales.Text.
TrimStart("$"c). Th e default value for the trimChars argument
is the space character (“ ”c). When processing the TrimStart and
TrimEnd methods, the computer makes a temporary copy of the
string in memory; it then removes the characters from the copy only.
Open the Tax Calculator Solution (Tax Calculator Solution.sln) fi le
contained in the VB2010\Chap08\Tax Calculator Solution folder. Th e
Calculate button’s Click event procedure should calculate and display
the sales tax, using the amount entered in the text box and the rate
selected in the list box. Code the procedure. Save the solution and
then start and test the application. Close the Code Editor window and
then close the solution.

C7718_ch08.indd 474C7718_ch08.indd 474 14/03/11 8:38 PM14/03/11 8:38 PM

475

Lesson A Exercises L E S S O N A

19. Visual Basic provides the Mid statement for replacing a specifi ed
number of characters in a string with another string. Th e statement’s
syntax is Mid(targetString, start[, count]) = replacementString. In
the syntax, the targetString argument is the string in which you want
characters replaced, and replacementString contains the replacement
characters. Th e start argument is the position of the fi rst character
you want replaced in the targetString. Th e fi rst character in the tar-
getString is in position 1; the second is in position 2, and so on. Th e
optional count argument specifi es the number of characters to replace
in the targetString. If the count argument is omitted, the Mid state-
ment replaces the lesser of either the number of characters in the
replacementString or the number of characters in the targetString
from position start through the end of the targetString. Open the Area
Code Solution (Area Code Solution.sln) fi le contained in the VB2010\
Chap08\Area Code Solution folder. Th e interface allows the user to
enter a phone number, including the area code. Code the Change Area
Code button’s Click event procedure so that it fi rst verifi es whether
the phone number is in the proper format. If the format is valid, the
procedure should use the Mid statement to change the area code to
800 before displaying the phone number in the lblNew control. Save
the solution and then start and test the application. Close the Code
Editor window and then close the solution.

C7718_ch08.indd 475C7718_ch08.indd 475 14/03/11 8:38 PM14/03/11 8:38 PM

476

C H A P T E R 8 String Manipulation

 ❚ LESSON B
After studying Lesson B, you should be able to:

 • Include a MenuStrip control on a form

 • Add elements to a menu

 • Assign access keys to menu elements

 • Assign shortcut keys to commonly used menu items

 • Code a menu item’s Click event procedure

Adding a Menu to a Form
Th e Menus and Toolbars section of the toolbox contains a MenuStrip tool
for instantiating a menu strip control. You use a menu strip control to include
one or more menus on a Windows form. Each menu contains a menu title,
which appears on the menu bar at the top of the form. When you click a
menu title, its corresponding menu opens and displays a list of options, called
menu items. Th e menu items can be commands (such as Open or Exit),
 separator bars, or submenu titles. As in all Windows applications, clicking a
command on a menu executes the command, and clicking a submenu title
opens an additional menu of options. Each of the options on a submenu is
referred to as a submenu item. You can use a separator bar to visually group
together related items on a menu or submenu. Figure 8-19 identifi es the
 location of these menu elements. Although you can create many levels of
submenus, it is best to use only one level in your application, because too
many layers of submenus can be confusing to the user.

separator bar

Figure 8-19 Location of menu elements

Each menu element is considered an object; therefore, each has a set of
 properties associated with it. Th e most commonly used properties for a
menu element are the Name and Text properties. Th e programmer uses
the Name property to refer to the menu element in code. Th e Text property
stores the menu element’s caption, which is the text that the user sees when
he or she is working with the menu. Th e caption indicates the purpose of
the menu element. Examples of familiar captions for menu elements include
Edit, Save As, Copy, and Exit.

Menu title captions should be one word only, with the fi rst letter capitalized.
Each menu title should have a unique access key. Th e access key allows the
user to open the menu by pressing the Alt key in combination with the access
key. Unlike the captions for menu titles, the captions for menu items typically

C7718_ch08.indd 476C7718_ch08.indd 476 14/03/11 8:38 PM14/03/11 8:38 PM

477

Adding a Menu to a Form L E S S O N B

consist of one to three words. Th e Windows standard is to use book title
capitalization for the menu item captions. Each menu item should have an
access key that is unique within its menu. Th e access key allows the user to
select the item by pressing the access key when the menu is open. If a menu
item requires additional information from the user, the Windows standard
is to place an ellipsis (...) at the end of the caption. Th e ellipsis alerts the user
that the menu item requires more information before it can perform its task.

Th e menus included in your application should follow the standard Windows
conventions. For example, if your application uses a File menu, it should
be the fi rst menu on the menu bar. File menus typically contain commands
for opening, saving, and printing fi les, as well as exiting the application. If
your application requires Cut, Copy, and Paste commands, the commands
should be placed on an Edit menu, which typically is the second menu on the
menu bar.

Recall that your task in this chapter is to create an application that simulates
the Hangman game. Most of the application’s interface has been created for
you. To complete the interface, you just need to add a File menu to it. Th e
File menu will contain three menu items: a New Game command, a separator
bar, and an Exit command.

To complete the Hangman Game application’s interface:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.
Open the Hangman Game Solution (Hangman Game Solution.sln)
fi le contained in the VB2010\Chap08\Hangman Game Solution folder.
If necessary, open the designer, Toolbox, and Properties windows.
Th e interface contains four label controls, 10 picture boxes, and a
panel control. You create a panel control using the Panel tool, which is
located in the Containers section of the toolbox.

2. Click the MenuStrip tool, which is located in the Menus & Toolbars
section of the toolbox. Drag the mouse pointer to the form and then
release the mouse button. A MenuStrip control named MenuStrip1
appears in the component tray, and the words “Type Here” appear in
a box on the form’s title bar. See Figure 8-20.

type the first
menu title here

MenuStrip tool

a MenuStrip control appears
in the component tray

Figure 8-20 MenuStrip control added to the form

The Ch08BVideo
fi le demonstrates
all of the steps
contained in

Lesson B. You can view
the video either before or
after completing the
lesson.

START HERE

C7718_ch08.indd 477C7718_ch08.indd 477 14/03/11 8:38 PM14/03/11 8:38 PM

478

C H A P T E R 8 String Manipulation

3. Auto-hide the toolbox. Click the Type Here box on the menu bar
and then type &File. See Figure 8-21. You use the Type Here box that
appears below the menu title to add a menu item to the File menu.
You use the Type Here box that appears to the right of the menu title
to add another menu title to the menu bar.

Figure 8-21 Menu title included on the form

4. Press Enter and then click the File menu title. Scroll the Properties
window until you see the Text property; notice that the property
 contains &File.

5. Scroll to the top of the Properties window and then click (Name).
Type mnuFile and then press Enter.

6. Click the Type Here box that appears below the File menu title.
Type &New Game and then press Enter.

7. Click the New Game menu item. Change the menu item’s name to
mnuFileNew.

8. Next, you will add a separator bar to the File menu. Place your mouse
pointer on the Type Here box that appears below the New Game
menu item, but don’t click the box. Instead, click the list arrow that
appears inside the box. See Figure 8-22.

Figure 8-22 Drop-down list

9. Click Separator in the list. A horizontal line, called a separator bar,
appears below the New Game menu item.

10. Click the Type Here box that appears below the separator bar. Type
E&xit and then press Enter. Click the Exit menu item. Change the
menu item’s name to mnuFileExit.

C7718_ch08.indd 478C7718_ch08.indd 478 14/03/11 8:38 PM14/03/11 8:38 PM

479

Adding a Menu to a Form L E S S O N B

11. Save the solution and then start the application. Click File on the
menu bar. Th e File menu opens and off ers two options separated by a
separator bar. See Figure 8-23.

the Visible property of
each picture box in the
panel control is set to False

Figure 8-23 File menu opened during run time

12. Click the Close button on the form’s title bar.

Assigning Shortcut Keys to Menu Items
Commonly used menu items should be assigned shortcut keys. Th e short-
cut keys appear to the right of a menu item and allow the user to select the
item without opening the menu. Examples of familiar shortcut keys include
Ctrl+X and Ctrl+V. In Windows applications that have an Edit menu, Ctrl+X
and Ctrl+V are used to select the Cut and Paste commands, respectively,
when the Edit menu is closed. In the Hangman Game application, you will
assign shortcut keys to the New Game option on the File menu.

To assign shortcut keys to the New Game menu item:

1. Click the New Game menu item on the File menu. Click ShortcutKeys
in the Properties window and then click the list arrow in the Settings
box. A box opens and allows you to specify a modifi er and a key. In this
case, the modifi er and key will be Ctrl and N, respectively. Click the
Ctrl check box to select it, and then click the list arrow that appears in
the Key combo box. An alphabetical list of keys appears. Scroll the list
until you see the letter N, and then click N in the list. See Figure 8-24.

Figure 8-24 Shortcut key specifi ed in the ShortcutKeys box

2. Press Enter. Ctrl+N appears in the ShortcutKeys property in the
Properties list. It also appears to the right of the New Game menu
item.

A menu item’s
access key can
be used only
when the menu is
open. A menu

item’s shortcut key can
be used only when the
menu is closed.

START HERE

C7718_ch08.indd 479C7718_ch08.indd 479 14/03/11 8:38 PM14/03/11 8:38 PM

480

C H A P T E R 8 String Manipulation

3. Auto-hide the Properties window. Save the solution and then start the
application. Click File on the menu bar. See Figure 8-25.

shortcut keys

Figure 8-25 Location of the shortcut keys on the menu

4. Click the Close button on the form’s title bar.

GUI DESIGN TIP Menu Standards

 • Menu title captions should begin with a capital letter and be one word
only. Each menu title should have a unique access key.

 • Menu item captions can be from one to three words. Use book title
 capitalization and assign a unique access key to each menu item on the
same menu.

 • Assign unique shortcut keys to commonly used menu items.

 • If a menu item requires additional information from the user, place an
ellipsis (...) at the end of the item’s caption, which is entered in the item’s
Text property.

 • Follow the Windows standards for the placement of menu titles and
items.

 • Use a separator bar to separate groups of related menu items.

Coding the Exit Menu Item
When the user clicks the Exit option on the Hangman Game application’s
File menu, the option’s Click event procedure should end the application.

To code and then test the Exit menu item:

1. Open the Code Editor window. Replace <your name> and <current
date> in the comments with your name and the current date,
respectively.

2. Open the code template for the mnuFileExit item’s Click event
 procedure. Enter the following statement:

Me.Close()

START HERE

C7718_ch08.indd 480C7718_ch08.indd 480 14/03/11 8:38 PM14/03/11 8:38 PM

481

Lesson B Review Questions L E S S O N B

3. Save the solution and then start the application. Click File on the
Hangman Game application’s menu bar and then click Exit to end
the application. Close the Code Editor window and then close the
solution.

Lesson B Summary

 • To add a MenuStrip control to a form:

Use the MenuStrip tool, which is located in the Menus & Toolbars section
of the toolbox.

 • To create a menu:

Replace the words “Type Here” with the menu element’s caption. Assign a
meaningful name and a unique access key to each menu element, with the
exception of separator bars.

 • To include a separator bar on a menu:

Place your mouse pointer on a Type Here box and then click the list arrow
that appears inside the box. Click Separator on the list.

 • To assign shortcut keys to a menu item:

Set the menu item’s ShortcutKeys property.

Lesson B Key Terms
Menu strip control—used to include one or more menus on a form

Shortcut keys—appear to the right of a menu item and allow the user to
select the item without opening the menu

Lesson B Review Questions

1. Th e horizontal line in a menu is called .

a. a menu bar

b. a separator bar

c. an item separator

d. none of the above

2. Th e underlined letter in a menu element’s caption is
called .

a. an access key

b. a menu key

c. a shortcut key

d. none of the above

C7718_ch08.indd 481C7718_ch08.indd 481 14/03/11 8:38 PM14/03/11 8:38 PM

482

C H A P T E R 8 String Manipulation

3. Which of the following allows the user to access a menu item without
opening the menu?

a. an access key

b. a menu key

c. shortcut keys

d. none of the above

4. Which of the following is false?

a. Menu titles should be one word only.

b. Each menu title should have a unique access key.

c. You should assign shortcut keys to commonly used menu titles.

d. Menu items should be entered using book title capitalization.

5. Explain the diff erence between a menu item’s access key and its
 shortcut keys.

Lesson B Exercises

1. Open the Bonus Solution (Bonus Solution.sln) fi le contained in
the VB2010\Chap08\Bonus Solution folder. If necessary, open the
designer window. Add a File menu to the form. Th e File menu should
contain an Exit menu item that ends the application. Enter the
 appropriate code in the menu item’s Click event procedure. Save the
solution and then start the application. Use the Exit option on the File
menu to end the application. Close the Code Editor window and then
close the solution.

2. Open the Commission Solution (Commission Solution.sln) fi le
 contained in the VB2010\Chap08\Commission Solution folder.
If necessary, open the designer window. Add a File menu and a
Calculate menu to the form. Include an Exit menu item on the
File menu. Include two menu items on the Calculate menu: 2%
Commission and 5% Commission. Assign shortcut keys to the
Calculate menu’s items. When the user clicks the Exit menu item,
the application should end. When the user clicks the 2% Commission
menu item, the application should calculate and display a 2%
 commission on the sales entered by the user. When the user clicks
the 5% Commission menu item, the application should calculate and
display a 5% commission on the sales entered by the user. Enter the
appropriate code in each menu item’s Click event procedure. Save the
solution and then start and test the application. Close the Code Editor
window and then close the solution.

INTRODUCTORY

INTERMEDIATE

C7718_ch08.indd 482C7718_ch08.indd 482 14/03/11 8:38 PM14/03/11 8:38 PM

483

Completing the Hangman Game Application L E S S O N C

 ❚ LESSON C
After studying Lesson C, you should be able to:

 • Include the Length property in a procedure
 • Include the Substring method in a procedure
 • Include the Like operator in a procedure
 • Include the Remove method in a procedure
 • Include the Insert method in a procedure
 • Include the Contains method in a procedure

Completing the Hangman Game Application
Figure 8-26 shows the Hangman Game application’s TOE chart. You coded
the mnuFileExit object’s Click event procedure in Lesson B. In this lesson,
you will complete the application by coding the mnuFileNew object’s Click
event procedure.

Task Object Event

 1. Hide the 10 picture boxes mnuFileNew Click
 2. Get a fi ve-letter word from player 1
 3. Determine whether the word contains exactly 5 letters
 4. Display 5 dashes in lblWord
 5. Clear lblIncorrect
 6. Get a letter from player 2
 7. Search the word for the letter
 8. If the letter is contained in the word, replace the
 appropriate dashes
 9. If the letter is not contained in the word, display the letter
 in lblIncorrect, add 1 to the number of incorrect guesses,
 and show the appropriate picture box
10. If all of the dashes have been replaced, the game is over,
 so display the message “Great guessing!” in a message box
11. If the user makes 10 incorrect guesses, the game is over, so
 display an appropriate message and the word in a message box

End the application mnuFileExit Click

Display the Hangman images picBottom, None
 picPost,
 picTop,
 picRope,
 picHead,
 picBody,
 picRightArm,
 picLeftArm,
 picRightLeg,
 picLeftLeg
Display dashes and letters (from mnuFileNew) lblWord None

Display the incorrect letters (from mnuFileNew) lblIncorrect None

Figure 8-26 TOE chart for the Hangman Game application

The Ch08CVideo
fi le demonstrates
all of the steps
contained in

Lesson C. You can view
the video either before or
after completing the
lesson.

C7718_ch08.indd 483C7718_ch08.indd 483 14/03/11 8:38 PM14/03/11 8:38 PM

484

C H A P T E R 8 String Manipulation

To open the Hangman Game application from Lesson B:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.

2. Open the Hangman Game Solution (Hangman Game Solution.sln)
fi le contained in the VB2010\Chap08\Hangman Game Solution folder.
If necessary, open the designer window. See Figure 8-27.

Figure 8-27 Interface for the Hangman Game application from Lesson B

Coding the mnuFileNew Object’s Click Event Procedure
Th e mnuFileNew object’s Click event procedure is invoked when the user
clicks the New Game option on the File menu. Th e procedure should allow
player 1 to enter a fi ve-letter word and then allow player 2 to guess the word,
letter by letter. Th e game is over when player 2 either guesses all of the letters
in the word or makes 10 incorrect guesses, whichever comes fi rst. Th e proce-
dure’s pseudocode is shown in Figure 8-28.

START HERE

mnuFileNew Click event procedure
1. hide the 10 picture boxes
2. get a 5-letter word from player 1 and convert it to uppercase
3. if the word does not contain exactly 5 letters
 assign False to blnValidWord variable
 else
 if the word does not contain only letters
 assign False to blnValidWord variable
 end if
 end if
4. if the blnValidWord variable contains False
 display an appropriate message
 else
 display 5 dashes in lblWord
 clear lblIncorrect

 get a letter from player 2 and convert it to uppercase
 repeat while the user entered a letter and the game is not over
 repeat for each letter in the word
 if the current letter is the same as the letter entered by player 2

Figure 8-28 Pseudocode for the mnuFileNew object’s Click event procedure (continues)

C7718_ch08.indd 484C7718_ch08.indd 484 14/03/11 8:38 PM14/03/11 8:38 PM

485

Completing the Hangman Game Application L E S S O N C

To code the mnuFileNew object’s Click event procedure:

1. Open the Code Editor window and then open the code template for
the mnuFileNew object’s Click event procedure. Type the following
comment and then press Enter twice:

' simulates the Hangman game

2. Th e procedure will use six variables: two String variables, three
Boolean variables, and one Integer variable. Th e strWord and
 strLetter variables will store the word entered by player 1 and the
letter entered by player 2, respectively. Th e blnValidWord variable
will store a Boolean value that indicates whether the word entered

START HERE

 replace the appropriate dash in lblWord
 assign True to blnDashReplaced variable
 end if
 end repeat

 if the blnDashReplaced variable contains True
 if lblWord does not contain any dashes
 assign True to the blnGameOver variable
 display the “Great guessing!” message
 else
 assign False to the blnDashReplaced variable
 end if
 else
 display the incorrect letter in lblIncorrect
 add 1 to the number of incorrect guesses counter

 value of the number of incorrect guesses counter:
 1 show picBottom
 2 show picPost
 3 show picTop
 4 show picRope
 5 show picHead
 6 show picBody
 7 show picRightArm
 8 show picLeftArm
 9 show picRightLeg
 10 show picLeftLeg
 assign True to the blnGameOver variable
 display the “Sorry, the word is” message and the word
 end if

 if the blnGameOver variable contains False
 get another letter from the user
 end if
 end repeat
 end if

Figure 8-28 Pseudocode for the mnuFileNew object’s Click event procedure

(continued)

C7718_ch08.indd 485C7718_ch08.indd 485 14/03/11 8:38 PM14/03/11 8:38 PM

486

C H A P T E R 8 String Manipulation

by player 1 is valid. To be valid, the word must contain exactly fi ve
 letters. Th e blnDashReplaced variable will keep track of whether
a dash was replaced in the word, and the blnGameOver variable will
indicate whether the game is over. Th e intIncorrect variable will
keep track of the number of incorrect guesses made by player 2. Enter
the following Dim statements. Press Enter twice after typing the last
Dim statement.

Dim strWord As String
Dim strLetter As String
Dim blnValidWord As Boolean
Dim blnDashReplaced As Boolean
Dim blnGameOver As Boolean
Dim intIncorrect As Integer

3. Th e fi rst step in the pseudocode is to hide the 10 picture boxes. Enter
the following comment and assignment statements. Press Enter twice
after typing the last assignment statement.

' hide the picture boxes
picBottom.Visible = False
picPost.Visible = False
picTop.Visible = False
picRope.Visible = False
picHead.Visible = False
picBody.Visible = False
picRightArm.Visible = False
picLeftArm.Visible = False
picRightLeg.Visible = False
picLeftLeg.Visible = False

4. Th e next step is to get a fi ve-letter word from player 1 and convert it
to uppercase. Enter the following comment and lines of code. Press
Enter twice after typing the last line.

' get a 5-letter word from player 1 and convert to uppercase
strWord = InputBox("Enter a 5-letter word:",
 "Hangman Game").ToUpper

5. Now you need to verify that the word contains exactly fi ve letters.
Enter the comments and code indicated in Figure 8-29, and then
 position the insertion point as shown in the fi gure. Be sure to include
the exclamation point in the “[!A-Z]” characterList.

C7718_ch08.indd 486C7718_ch08.indd 486 14/03/11 8:38 PM14/03/11 8:38 PM

487

Completing the Hangman Game Application L E S S O N C

enter these
comments and
12 lines of code

position the
insertion
point here

Figure 8-29 Additional comments and code entered in the procedure

6. If the word does not contain exactly fi ve letters, the blnValidWord
variable will contain False. In that case, you should display an appro-
priate message. Enter the comment and code indicated in Figure 8-30,
and then position the insertion point as shown in the fi gure.

position the
insertion
point here

enter this comment and
these five lines of code

Figure 8-30 Comment and selection structure’s true path

7. However, if the word does contain exactly fi ve letters, you should dis-
play fi ve dashes in the lblWord control and then clear the lblIncorrect
control. Enter the following Else clause, comment, and assignment
statement. (Th e fi rst assignment statement assigns fi ve hyphens to the
lblWord control’s Text property.) Press Enter twice after typing the
last assignment statement.

Else
 ' display fi ve dashes in lblWord and clear lblIncorrect
 lblWord.Text = "-----"
 lblIncorrect.Text = String.Empty

8. Save the solution. Next, you need to get a letter from player 2 and
then convert it to uppercase. Enter the following comment and lines
of code. Press Enter twice after typing the last line.

' get a letter from player 2 and convert to uppercase
strLetter = InputBox("Enter a letter:",
 "Letter", "", 600, 400).ToUpper

C7718_ch08.indd 487C7718_ch08.indd 487 14/03/11 8:38 PM14/03/11 8:38 PM

488

C H A P T E R 8 String Manipulation

9. Th e next task in the pseudocode is a pretest loop that repeats its
instructions as long as both of the following conditions are true:
player 2 entered a letter and the game is not over. Enter the following
comments and Do clause:

' verify that player 2 entered a letter
' and that the game is not over
Do While strLetter <> String.Empty AndAlso
 blnGameOver = False

10. If the user entered a letter and the game is not over, you need
to determine whether the letter appears in the word. You can
 accomplish this using a counter-controlled loop that compares the
letter with each character in the word, character by character. Enter
the following comment and For clause:

' search the word for the letter
For intIndex As Integer = 0 To 4

11. Change the Next clause to Next intIndex.

12. According to the pseudocode, the loop should use a selection structure
to compare the current letter in the word with the letter entered by
player 2. If both letters are the same, the selection structure’s true
path should replace the appropriate dash in the lblWord control. It
also should assign the Boolean value True to the blnDashReplaced
variable to indicate that a dash was replaced in the label control. Enter
the comments and selection structure shown in Figure 8-31, and then
position the insertion point as shown in the fi gure.

enter these comments
and five lines of code

position the insertion
point here

Figure 8-31 Additional comments and selection structure entered in the
procedure

13. If a dash was replaced in the lblWord control, you need to determine
whether the control contains any more dashes. If there are no
more dashes in the control, it means that the user has guessed the
word and the game is over. In that case, you should assign True to
the blnGameOver variable and then display the “Great guessing!”
 message. However, if the lblWord control contains at least one dash,

C7718_ch08.indd 488C7718_ch08.indd 488 14/03/11 8:38 PM14/03/11 8:38 PM

489

Completing the Hangman Game Application L E S S O N C

you should reset the blnDashReplaced variable’s value to False.
Enter the comments and selection structures shown in Figure 8-32,
and then position the insertion point as shown in the fi gure.

enter these comments
and lines of code

position the insertion
point here

Figure 8-32 Additional comments and selection structures entered in the procedure

14. On the other hand, if no dash was replaced, it means that player 2’s
letter does not appear in the word. Th erefore, you should perform the
following tasks: display the incorrect letter in the lblIncorrect control,
update the intIncorrect variable by 1, and use the variable’s value
to display the appropriate picture box. Enter the following comments
and lines of code. Be sure to include a space between the quotation
marks in the statement that assigns a value to the lblIncorrect
 control’s Text property.

Else ' processed when no dash was replaced
 ' display the incorrect letter, then update
 ' the intIncorrect variable, then show
 ' the appropriate picture box
 lblIncorrect.Text = _
 lblIncorrect.Text & " " & strLetter
 intIncorrect = intIncorrect + 1
 Select Case intIncorrect
 Case 1
 picBottom.Visible = True
 Case 2
 picPost.Visible = True
 Case 3
 picTop.Visible = True
 Case 4
 picRope.Visible = True
 Case 5
 picHead.Visible = True
 Case 6
 picBody.Visible = True
 Case 7
 picRightArm.Visible = True

C7718_ch08.indd 489C7718_ch08.indd 489 14/03/11 8:38 PM14/03/11 8:38 PM

490

C H A P T E R 8 String Manipulation

 Case 8
 picLeftArm.Visible = True
 Case 9
 picRightLeg.Visible = True
 Case 10
 picLeftLeg.Visible = True
 blnGameOver = True
 MessageBox.Show("Sorry, the word is " &
 strWord & ".", "Game Over",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End Select

15. Save the solution. As the pseudocode shown earlier in Figure 8-28
indicates, the last task determines whether you need to get another
letter from the user. Another letter is necessary only when the game is
not over. Insert two blank lines above the Loop clause and then enter
the comment and selection structure shown in Figure 8-33.

enter this comment
and these four lines
of code

Figure 8-33 Final comment and selection structure entered in the
procedure

To test the application’s code:

1. Save the solution and then start the application. Click File on the
application’s menu bar and then click New Game. Th e Hangman
Game dialog box opens and prompts you to enter a fi ve-letter word.
Type cat in the dialog box and then press Enter. A message box
opens and informs you that fi ve letters are required. Press Enter to
close the message box.

2. Press Ctrl+n, which are the New Game option’s shortcut keys. Type
cats4 and then press Enter. A message box opens and informs you
that fi ve letters are required. Close the message box.

3. Click File and then click New Game. Type puppy and press Enter.
Th e Letter dialog box opens and prompts you to enter a letter. Type
p and press Enter. Th ree of the dashes in the Secret word box are
replaced with the letter P. See Figure 8-34.

START HERE

C7718_ch08.indd 490C7718_ch08.indd 490 14/03/11 8:38 PM14/03/11 8:38 PM

491

Completing the Hangman Game Application L E S S O N C

Figure 8-34 Dashes replaced with the letter P

4. Type a in the Letter dialog box and press Enter. Th e mnuFileNew
object’s Click event procedure displays the letter A in the Incorrect
guesses box and also makes the picBottom control visible. See
Figure 8-35.

the incorrect letter
appears here

the picBottom control
is now visible

Figure 8-35 Result of entering the fi rst incorrect letter

5. Type b in the Letter dialog box and press Enter. Th e letter B is added
to the contents of the Incorrect guesses box and the picPost control is
now visible.

6. Type u in the Letter dialog box and press Enter. Now, type y and
press Enter. Th e “Great guessing!” message appears in a message box.
If necessary, drag the message box down and to the right until you
can see the entire contents of the Secret word and Incorrect guesses
boxes. See Figure 8-36.

C7718_ch08.indd 491C7718_ch08.indd 491 14/03/11 8:38 PM14/03/11 8:38 PM

492

C H A P T E R 8 String Manipulation

Figure 8-36 Result of guessing the word

7. Close the message box. Now you will observe what happens when
you make 10 incorrect guesses. Press Ctrl+n. Type basic and press
Enter. Now type the following 12 letters, pressing Enter after typ-
ing each letter: d, c, e, f, g, h, a, j, k, x, y, z. Th e mnuFileNew object’s
Click event procedure displays the 10 incorrect letters and 10 picture
boxes, as well as a message box. Drag the message box to the location
shown in Figure 8-37.

Figure 8-37 Result of making 10 incorrect guesses

8. Close the message box. Click File on the application’s menu bar and
then click Exit. Close the Code Editor window and then close the
solution. Figure 8-38 shows the application’s code.

Figure 8-38 Hangman Game application’s code (continues)

 1 ' Name: Hangman Game Project
 2 ' Purpose: Simulates the Hangman game
 3 ' Programmer: <your name> on <current date>
 4
 5 Option Explicit On
 6 Option Strict On
 7 Option Infer Off
 8
 9 Public Class frmMain
10
11 Private Sub mnuFileExit_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles mnuFileExit.Click
12 Me.Close()

C7718_ch08.indd 492C7718_ch08.indd 492 14/03/11 8:38 PM14/03/11 8:38 PM

493

Completing the Hangman Game Application L E S S O N C

Figure 8-38 Hangman Game application’s code (continues)

13
14 End Sub
15
16 Private Sub mnuFileNew_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles mnuFileNew.Click
17 ' simulates the Hangman game
18
19 Dim strWord As String
20 Dim strLetter As String
21 Dim blnValidWord As Boolean
22 Dim blnDashReplaced As Boolean
23 Dim blnGameOver As Boolean
24 Dim intIncorrect As Integer
25
26 ' hide the picture boxes
27 picBottom.Visible = False
28 picPost.Visible = False
29 picTop.Visible = False
30 picRope.Visible = False
31 picHead.Visible = False
32 picBody.Visible = False
33 picRightArm.Visible = False
34 picLeftArm.Visible = False
35 picRightLeg.Visible = False
36 picLeftLeg.Visible = False
37
38 ' get a 5-letter word from player 1 and
 convert to uppercase
39 strWord = InputBox("Enter a 5-letter word:",
40 "Hangman Game").ToUpper
41
42 ' determine whether the word contains 5 letters
43 blnValidWord = True ' assume the word is valid
44 If strWord.Length <> 5 Then
45 blnValidWord = False
46 Else
47 Dim intIndex As Integer
48 Do While intIndex < 5 AndAlso blnValidWord = True
49 If strWord.Substring(intIndex, 1) Like
 "[!A-Z]" Then
50 blnValidWord = False
51 End If
52 intIndex = intIndex + 1
53 Loop
54 End If
55
56 ' if the word is not valid, display a message
57 If blnValidWord = False Then
58 MessageBox.Show("5 letters are required.",
59 "Hangman Game",
60 MessageBoxButtons.OK,
61 MessageBoxIcon.Information)
62
63 Else
64 ' display five dashes in lblWord and
 clear lblIncorrect

(continued)

C7718_ch08.indd 493C7718_ch08.indd 493 14/03/11 8:38 PM14/03/11 8:38 PM

494

C H A P T E R 8 String Manipulation

Figure 8-38 Hangman Game application’s code (continues)

 65 lblWord.Text = "-----"
 66 lblIncorrect.Text = String.Empty
 67
 68 ' get a letter from player 2 and
 convert to uppercase
 69 strLetter = InputBox("Enter a letter:",
 70 "Letter", "", 600, 400).ToUpper
 71
 72 ' verify that player 2 entered a letter
 73 ' and that the game is not over
 74 Do While strLetter <> String.Empty AndAlso
 75 blnGameOver = False
 76 ' search the word for the letter
 77 For intIndex As Integer = 0 To 4
 78 ' if the letter appears in the word, then
 79 ' replace the dash in lblWord and
 80 ' indicate that a replacement was made
 81 If strWord.Substring(intIndex, 1) =
 strLetter Then
 82 lblWord.Text =
 lblWord.Text.Remove(intIndex, 1)
 83 lblWord.Text =
 lblWord.Text.Insert(intIndex, strLetter)
 84 blnDashReplaced = True
 85 End If
 86 Next intIndex
 87
 88 ' determine whether a dash was replaced
 89 If blnDashReplaced = True Then
 90 ' if the word does not contain any dashes,
 91 ' the game is over because player 2
 92 ' guessed the word; otherwise, reset the
 93 ' blnDashReplaced variable for
 the next search
 94 If lblWord.Text.Contains("-") = False Then
 95 blnGameOver = True
 96 MessageBox.Show("Great guessing!",
 97 "Game Over",
 98 MessageBoxButtons.OK,
 99 MessageBoxIcon.Information)
100 Else
101 blnDashReplaced = False
102 End If
103 Else ' processed when no dash was
 replaced
104 ' display the incorrect letter, then update
105 ' the intIncorrect variable, then show
106 ' the appropriate picture box
107 lblIncorrect.Text =
108 lblIncorrect.Text & " " & strLetter
109 intIncorrect = intIncorrect + 1
110 Select Case intIncorrect
111 Case 1
112 picBottom.Visible = True
113 Case 2
114 picPost.Visible = True

(continued)

C7718_ch08.indd 494C7718_ch08.indd 494 14/03/11 8:38 PM14/03/11 8:38 PM

495

Lesson C Summary L E S S O N C

Lesson C Summary

 • To determine the length of a string:

Use the string’s Length property.

 • To access one or more characters in a string:

Use the Substring method.

 • To use pattern-matching to compare two strings:

Use the Like operator.

 • To remove a specifi ed number of characters located anywhere in a string:

Use the Remove method.

Figure 8-38 Hangman Game application’s code

115 Case 3
116 picTop.Visible = True
117 Case 4
118 picRope.Visible = True
119 Case 5
120 picHead.Visible = True
121 Case 6
122 picBody.Visible = True
123 Case 7
124 picRightArm.Visible = True
125 Case 8
126 picLeftArm.Visible = True
127 Case 9
128 picRightLeg.Visible = True
129 Case 10
130 picLeftLeg.Visible = True
131 blnGameOver = True
132 MessageBox.Show("Sorry,
 the word is " &
133 strWord & ".", "Game Over",
134 MessageBoxButtons.OK,
135 MessageBoxIcon.Information)
136 End Select
137 End If
138
139 ' determine whether to get another letter
140 If blnGameOver = False Then
141 strLetter = InputBox("Enter a letter",
142 "Letter", "", 600, 400).ToUpper
143 End If
144 Loop
145 End If
146 End Sub
147 End Class

(continued)

C7718_ch08.indd 495C7718_ch08.indd 495 14/03/11 8:38 PM14/03/11 8:38 PM

496

C H A P T E R 8 String Manipulation

 • To insert characters anywhere in a string:

Use the Insert method.

 • To determine whether a specifi c character is contained in a string:

Use the Contains method.

Lesson C Key Terms
Th ere are no key terms in Lesson C.

Lesson C Review Questions

1. Th e strName variable contains 10 characters. Which of the following
For clauses will access each character contained in the variable,
 character by character?

a. For intIndex As Integer = 0 To 10

b. For intIndex As Integer = 0 To strName.Length – 1

c. For intIndex As Integer = 1 To 10

d. For intIndex As Integer = 1 To strName.Length – 1

2. Which of the following changes the contents of the strName variable
from Carl to Carla?

a. strName = strName.Append(4, "a")

b. strName = strName.Append(5, "a")

c. strName = strName.Insert(4, "a")

d. strName = strName.Insert(5, "a")

3. If the strWord variable contains the string “Irene Turner”, what value
will the strWord.Contains("r") method return?

a. True

b. False

c. 1

d. 2

4. Th e strItem variable contains uppercase letters only. Which of the
following determines whether the variable contains either the word
“SHIRT” or the word “SKIRT”?

a. If strItem = "SHIRT" AndAlso strItem = "SKIRT" Then

b. If strItem = "S[HK]IRT" Then

c. If strItem Like "S[HK]IRT" Then

d. If strItem Like "S[H-K]IRT" Then

C7718_ch08.indd 496C7718_ch08.indd 496 14/03/11 8:38 PM14/03/11 8:38 PM

497

Lesson C Exercises L E S S O N C

5. Which of the following returns the Boolean value True when the
strPetName variable contains the string “Micki”?

a. strPetName.Contains("k")

b. strPetName Like "M*"

c. strPetName.Substring(2, 1) = "c"

d. all of the above

Lesson C Exercises

1. Open the Item Number Solution (Item Number Solution.sln) fi le con-
tained in the VB2010\Chap08\Item Number Solution folder. If neces-
sary, open the designer window. Open the Code Editor window. Th e
btnVerify control’s Click event procedure should determine whether
the user entered the item number in the required format: three digits,
a hyphen, a letter, a hyphen, and two digits. Display an appropriate
message indicating whether the format is correct or incorrect. Code
the procedure. Save the solution and then start and test the applica-
tion. Close the Code Editor window and then close the solution.

2. Open the Color Solution (Color Solution.sln) fi le contained in
the VB2010\Chap08\Color Solution folder. If necessary, open the
designer window. Th e Display Color button’s Click event procedure
should display the color of the item whose item number is entered by
the user. All item numbers contain exactly seven characters. All items
are available in four colors: blue, green, red, and white. Th e fourth
character in the item number indicates the item’s color, as follows: a B
or b indicates Blue, a G or g indicates Green, an R or r indicates Red,
and a W or w indicates White. If the item number does not contain
exactly seven characters, or if the fourth character is not one of the
valid color characters, the procedure should display an appropriate
message. Code the procedure. Save the solution and then start and
test the application. Close the Code Editor window and then close the
solution.

3. In this exercise, you modify the Hangman Game application com-
pleted in Lesson C. Use Windows to make a copy of the Hangman
Game Solution folder. Rename the copy Modifi ed Hangman Game
Solution. Open the Hangman Game Solution (Hangman Game
Solution.sln) fi le contained in the Modifi ed Hangman Game Solution
folder. Open the designer and Code Editor windows. Modify the code
to allow player 1 to enter a word that contains any number of letters,
up to a maximum of 10 letters. Also verify that the character entered
by player 2 is a letter of the alphabet. Save the solution and then start
and test the application. Close the Code Editor window and then
close the solution.

4. Open the Reverse Letters Solution (Reverse Letters Solution.sln) fi le
contained in the VB2010\Chap08\Reverse Letters Solution folder.
Th e interface provides a text box for the user to enter a word. Th e

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

C7718_ch08.indd 497C7718_ch08.indd 497 14/03/11 8:38 PM14/03/11 8:38 PM

498

C H A P T E R 8 String Manipulation

Reverse Letters button’s Click event procedure should display the
letters in reverse order. In other words, if the user enters the word
“Programming”, the procedure should display “gnimmargorP”. Code
the procedure. Save the solution and then start and test the applica-
tion. Close the Code Editor window and then close the solution.

5. Open the Proper Case Solution (Proper Case Solution.sln) fi le con-
tained in the VB2010\Chap08\Proper Case Solution folder. Th e
interface provides a text box for the user to enter a person’s fi rst and
last names. Th e Proper Case button’s Click event procedure should
display the fi rst and last names in the proper case. In other words,
the fi rst and last names should begin with an uppercase letter and the
remaining letters should be lowercase. Code the procedure. Save the
solution and then start and test the application. Close the Code Editor
window and then close the solution.

6. Open the Part Number Solution (Part Number Solution.sln) fi le con-
tained in the VB2010\Chap08\Part Number Solution folder. Th e inter-
face allows the user to enter a part number, which will consist of two
numbers followed by either one or two letters. Th e letter or letters rep-
resent the delivery method, as follows: MS represents Mail – Standard,
MP represents Mail – Priority, FS represents FedEx – Standard, FO
represents FedEx – Overnight, and U represents UPS. Code the Select
Delivery button’s Click event procedure so that it uses the Like opera-
tor to select the appropriate delivery method in the list box. Display
an appropriate message when the part number does not contain two
numbers followed by one or two letters, or when the letters do not
represent a valid delivery method. Save the solution and then start the
application. Test the application using the following data: 73mp, 34fs,
12u, 78h, 9FO, and 34ms. Close the Code Editor window and then
close the solution.

7. Before completing this exercise, you should complete Lesson A’s
Discovery Exercise 16. Open the Jacobson Solution (Jacobson
Solution.sln) fi le contained in the VB2010\Chap08\Jacobson Solution
folder. Th e interface provides a text box for entering a password. Th e
password can contain fi ve, six, or seven characters (but no spaces). Th e
Display New Password button should create and display a new pass-
word using the following three rules. First, replace all vowels (A, E, I,
O, and U) with the letter X. Second, replace all numbers with the letter
Z. Th ird, reverse the characters in the password. Code the procedure.
Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

8. Each salesperson at BobCat Motors is assigned an ID number that
consists of four characters. Th e fi rst character is either the letter F
or the letter P. Th e letter F indicates that the salesperson is a full-
time employee. Th e letter P indicates that he or she is a part-time
employee. Th e middle two characters are the salesperson’s initials,
and the last character is either a 1 or a 2. A 1 indicates that the

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

ADVANCED

C7718_ch08.indd 498C7718_ch08.indd 498 14/03/11 8:38 PM14/03/11 8:38 PM

499

Lesson C Exercises L E S S O N C

salesperson sells new cars, and a 2 indicates that the salesperson sells
used cars. Create a Visual Basic Windows application. Use the fol-
lowing names for the solution, project, and form fi le, respectively:
BobCat Motors Solution, BobCat Motors Project, and Main Form.
vb. Save the application in the VB2010\Chap08 folder. Create the
interface shown in Figure 8-39. Th e application should allow the sales
manager to enter the ID and number of cars sold for as many sales-
people as needed. Th e application should calculate and display the
total number of cars sold by each of the following four categories of
employees: full-time employees, part-time employees, employees sell-
ing new cars, and employees selling used cars. Code the application.
Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

default button

Figure 8-39 Sample interface for Exercise 8

9. Create a Visual Basic Windows application. Use the following
names for the solution, project, and form fi le, respectively: Pig Latin
Solution, Pig Latin Project, and Main Form.vb. Save the application
in the VB2010\Chap08 folder. Create an interface that allows the user
to enter a word. Th e application should display the word in pig latin
form. Th e rules for converting a word into pig latin form are shown
in Figure 8-40. Code the application. Save the solution and then start
and test the application. Close the Code Editor window and then
close the solution.

1. If the word begins with a vowel (A, E, I, O, or U), then add the string
“-way” (a dash followed by the letters w, a, and y) to the end of the word.
For example, the pig latin form of the word “ant” is “ant-way”.

2. If the word does not begin with a vowel, fi rst add a dash to the end of the
word. Then continue moving the fi rst character in the word to the end of
the word until the fi rst character is the letter A, E, I, O, U, or Y. Then add
the string “ay” to the end of the word. For example, the pig latin form of
the word “Chair” is “air-Chay”.

3. If the word does not contain the letter A, E, I, O, U, or Y, then add the
string “-way” to the end of the word. For example, the pig latin form of
“56” is “56-way”.

Figure 8-40 Pig latin rules for Exercise 9

ADVANCED

C7718_ch08.indd 499C7718_ch08.indd 499 14/03/11 8:38 PM14/03/11 8:38 PM

500

C H A P T E R 8 String Manipulation

10. Credit card companies typically assign a special digit, called a check
digit, to the end of each customer’s credit card number. Many meth-
ods for creating the check digit have been developed. One simple
method is to multiply every other digit in the credit card number
by two. You then add the products to the remaining digits to get the
total. Finally, you take the last digit in the total and append it to the
end of the credit card number, as illustrated in Figure 8-41. Create a
Visual Basic Windows application. Use the following names for the
solution, project, and form fi le, respectively: Georgetown Solution,
Georgetown Project, and Main Form.vb. Save the application in the
VB2010\Chap08 folder. Create the interface shown in Figure 8-42.
Th e interface allows the user to enter a fi ve-digit credit card number,
with the fi fth digit being the check digit. Th e Verify button’s Click
event procedure should use the method illustrated in Figure 8-41 to
verify that the credit card number is valid. Th e procedure should dis-
play appropriate messages indicating whether the credit card number
is valid or invalid. Code the procedure. Save the solution and then
start and test the application. Close the Code Editor window and then
close the solution.

Figure 8-41 Illustration of a check digit algorithm

Check Digit Algorithm

First four digits in credit card number: 1 3 5 7

Step 1: Multiply the second and fourth digits by 2: *2 *2

Result 1 6 5 14

Step 2: Add the numbers together: 1 + 6 + 5 + 14 = 26

Step 3: Take the last digit in the sum and append it to
 the first four digits, resulting in the final credit card number: 13576

default button

Figure 8-42 Sample interface for Exercise 10

ADVANCED

C7718_ch08.indd 500C7718_ch08.indd 500 14/03/11 8:38 PM14/03/11 8:38 PM

501

Lesson C Exercises L E S S O N C

11. Open the Count Solution (Count Solution.sln) fi le contained in the
VB2010\Chap08\Count Solution folder. Th e interface allows the user
to enter a string. Code the Search button’s Click event procedure so
that it prompts the user to enter the sequence of characters for which
he or she wants to search. Th e procedure should determine the num-
ber of times the sequence of characters appears in the string. Use the
IndexOf method to search the string for the sequence of characters.
Save the solution and then start the application. Enter the string “Th e
weather is beautiful!” (without the quotes) and then click the Search
button. Search for the two characters “ea” (without the quotes). Th e
two characters appear twice in the string. On your own, test the
application using other data. Close the Code Editor window and then
close the solution.

Swat The Bugs

12. Open the Debug Solution (Debug Solution.sln) fi le contained in the
VB2010\Chap08\Debug Solution-Lesson C folder. If necessary, open
the designer window. Open the Code Editor window and review the
existing code. Start and then test the application. Notice that the
application is not working correctly. Correct the application’s code.
Save the solution and then start and test the application again. Close
the Code Editor window and then close the solution.

ADVANCED

C7718_ch08.indd 501C7718_ch08.indd 501 14/03/11 8:38 PM14/03/11 8:38 PM

C H A P T E R 9
Arrays

Creating the Treasures Gift Shop Application

In this chapter, you will create an application for Takoda Tapahe, the owner of
a small gift shop named Treasures. The application will allow Takoda to enter a
product ID. It then will display the product’s price. A portion of the gift shop’s
price list is shown below.

Product ID Price

BX35 13

CR20 10

FE15 12

KW10 24

MM67 4

C7718_ch09.indd 502C7718_ch09.indd 502 14/03/11 8:42 PM14/03/11 8:42 PM

503

Previewing the Treasures Gift Shop Application
Before you start the fi rst lesson in this chapter, you will preview the
 completed application. Th e application is contained in the VB2010\Chap09
folder.

To preview the completed application:

1. Use the Run dialog box to run the Treasures (Treasures.exe) fi le
 contained in the VB2010\Chap09 folder. Th e application’s user
 interface appears on the screen.

2. Type bx35 in the Product ID box. Th e text box’s CharacterCasing
property is set to Upper, so the letters you enter appear in uppercase.
Click the Display Price button. Th e product’s price appears in the
Price box. See Figure 9-1.

Figure 9-1 Interface showing the product’s price

3. Try typing tr678 in the Product ID box. Th e text box’s MaxLength
property is set to 4, so the text box accepts only the fi rst four charac-
ters (tr67). Click the Display Price button. TR67 is not a valid ID, so
the application displays the message “Invalid ID” in a message box.

4. Close the message box and then click the Exit button.

Before you can begin coding the Treasures Gift Shop application, you need
to learn about arrays. One-dimensional arrays are covered in Lesson A, and
parallel one-dimensional arrays are covered in Lesson B. Lesson C covers
two-dimensional arrays. You will code two versions of the Treasures Gift
Shop application: one in Lesson B and the other in Lesson C. Be sure to
 complete each lesson in full and do all of the end-of-lesson questions and
several exercises before continuing to the next lesson.

START HERE

Previewing the Treasures Gift Shop Application

C7718_ch09.indd 503C7718_ch09.indd 503 14/03/11 8:42 PM14/03/11 8:42 PM

504

C H A P T E R 9 Arrays

 ❚ LESSON A
After studying Lesson A, you should be able to:

 • Declare and initialize a one-dimensional array

 • Store data in a one-dimensional array

 • Determine the number of array elements and the highest subscript

 • Traverse a one-dimensional array

 • Code a loop using the For Each . . . Next statement

 • Compute the total and average of a one-dimensional array’s contents

 • Find the highest value in a one-dimensional array

 • Associate a list box with a one-dimensional array

 • Use a one-dimensional array as an accumulator or a counter

 • Sort a one-dimensional array

Arrays
All of the variables you have used so far have been simple variables. A
simple variable, also called a scalar variable, is one that is unrelated to
any other variable in memory. At times, however, you will encounter situ-
ations in which some of the variables are related to each other. In those
cases, it is easier and more effi cient to treat the related variables as a group.
You already are familiar with the concept of grouping. Th e clothes in your
closet probably are separated into groups, such as coats, sweaters, shirts,
and so on. Grouping your clothes in this manner allows you to easily locate
your favorite sweater, because you just need to look through the sweater
group rather than through the entire closet. You also probably have your
CD (compact disc) collection grouped by either music type or artist. If your
 collection is grouped by artist, it will take only a few seconds to fi nd all of
your Garth Brooks CDs and, depending on the number of Garth Brooks CDs
you own, only a short time after that to locate a particular CD.

When you group together related variables, the group is referred to as an
array of variables or, more simply, an array. You might use an array of 50
variables to store the population of each U.S. state. Or, you might use an
array of eight variables to store the sales made in each of your company’s
eight sales regions. As you will learn in this lesson, the variables in an array
can be used just like any other variables. You can assign values to them, use
them in calculations, display their contents, and so on.

Storing data in an array increases the effi ciency of a program, because data
can be both stored in and retrieved from the computer’s internal memory
much faster than it can be written to and read from a fi le on a disk. In addi-
tion, after the data is entered into an array, which typically is done at the
beginning of a program, the program can use the data as many times as nec-
essary without having to enter the data again. Your company’s sales program,
for example, can use the sales amounts stored in an array to calculate the
total company sales and the percentage that each region contributed to the

It takes longer
for the computer
to access the
information
stored in a disk

fi le, because the com-
puter must wait for the
disk drive to fi rst locate
the needed information
and then read the infor-
mation into internal
memory.

C7718_ch09.indd 504C7718_ch09.indd 504 14/03/11 8:42 PM14/03/11 8:42 PM

505

One-Dimensional Arrays L E S S O N A

total sales. It also can use the sales amounts in the array either to calculate
the average sales amount or to simply display the sales made in a specifi c
region.

Th e most commonly used arrays in business applications are one-
dimensional and two-dimensional. You will learn about one-dimensional
arrays in this lesson, as well as in Lesson B. Two-dimensional arrays are
 covered in Lesson C. Arrays having more than two dimensions are used
mostly in scientifi c and engineering applications and are beyond the scope
of this book. At this point, it is important to point out that arrays are one
of the more challenging topics for beginning programmers. Th erefore, it is
 important for you to read and study each section in each lesson thoroughly
before moving on to the next section. If you still feel overwhelmed by the end
of the chapter, try reading each lesson again, paying particular attention to
the examples and procedures shown in the fi gures.

One-Dimensional Arrays
Th e variables in an array are stored in consecutive locations in the
 computer’s internal memory. Each variable in an array has the same name
and data type. You distinguish one variable in a one-dimensional array
from another variable in the same array using a unique number. Th e unique
 number, which is always an integer, is called a subscript. Th e subscript indi-
cates the variable’s position in the array and is assigned by the computer
when the array is created in internal memory. Th e fi rst variable in a one-
dimensional array is assigned a subscript of 0, the second a subscript of 1,
and so on. You refer to each variable in an array by the array’s name and the
variable’s subscript, which is specifi ed in a set of parentheses immediately
following the array name. To refer to the fi rst variable in a one-dimensional
array named strCities, you use strCities(0)—read “strCities sub
zero.” Similarly, to refer to the second variable in the strCities array, you
use strCities(1). If the strCities array contains four variables, you
refer to the fourth (and last) variable using strCities(3). Notice that the
last subscript in an array is always one number less than the total number of
variables in the array; this is because array subscripts start at 0. Figure 9-2
illustrates the variables contained in the one-dimensional strCities array.

Figure 9-2 Illustration of the one-dimensional strCities array

strCities(0)

strCities(1)

strCities(2)

strCities(3)

Boston

Chicago

Louisville

Tampa

Before you can use an array, you fi rst must declare (create) it. Figure 9-3
shows two versions of the syntax for declaring a one-dimensional array in
Visual Basic. Th e {Dim | Private | Static} portion in each version indicates

A subscript is
also called an
index.

C7718_ch09.indd 505C7718_ch09.indd 505 14/03/11 8:42 PM14/03/11 8:42 PM

506

C H A P T E R 9 Arrays

that you can select only one of the keywords appearing within the braces.
Th e appropriate keyword depends on whether you are creating a procedure-
level array or a class-level array. ArrayName is the name of the array, and
dataType is the type of data the array variables, referred to as elements, will
store. In Version 1 of the syntax, highestSubscript is an integer that specifi es
the highest subscript in the array. When the array is created, it will contain
one element more than the number specifi ed in the highestSubscript
 argument. Th is is because the fi rst element in a one-dimensional array has a
subscript of 0. In Version 2 of the syntax, initialValues is a comma-separated
list of values you want assigned to the array elements. Also included in
Figure 9-3 are examples of using both versions of the syntax.

Figure 9-3 Syntax versions and examples of declaring a one-dimensional array

Declaring a one-dimensional array

Syntax – Version 1
{Dim | Private | Static} arrayName(highestSubscript) As dataType

Syntax – Version 2
{Dim | Private | Static} arrayName() As dataType = {initialValues}

Example 1
Dim strNames(3) As String
declares a four-element procedure-level array named strNames; each element is
automatically initialized using the keyword Nothing

Example 2
Static intNumbers(5) As Integer
declares a static, six-element procedure-level array named intNumbers; each element
is automatically initialized to 0

Example 3
Dim strCities() As String = {"Boston", "Chicago",
 "Louisville", "Tampa"}
declares and initializes a four-element procedure-level array named strCities

Example 4
Private dblSales() As Double = {75.33, 9.65,
 23.55, 6.89, 4.5}
declares and initializes a fi ve-element class-level array named dblSales

When you use Version 1 of the syntax, the computer automatically initial-
izes each array element when the array is created. If the array’s data type is
String, each element in the array is initialized using the keyword Nothing.
As you learned in Chapter 3, variables initialized to Nothing do not actually
contain the word “Nothing”; rather, they contain no data at all. Elements in
a numeric array are initialized to the number 0, and elements in a Boolean
array are initialized using the Boolean keyword False. Date array elements
are initialized to 12:00 AM January 1, 0001.

Rather than having the computer use a default value to initialize each array
element, you can use Version 2 of the syntax to specify each element’s initial
value when the array is declared. Assigning initial values to an array is often

Like class-
level variables,
class-level arrays
are declared
in the form’s
Declarations
section.

C7718_ch09.indd 506C7718_ch09.indd 506 14/03/11 8:42 PM14/03/11 8:42 PM

507

One-Dimensional Arrays L E S S O N A

referred to as populating the array. You list the initial values in the initial-
Values section of the syntax, using commas to separate the values, and you
enclose the list of values in braces ({}). Notice that Version 2’s syntax does not
include the highestSubscript argument; instead, an empty set of parentheses
follows the array name. Th e computer automatically calculates the highest
subscript based on the number of values listed in the initialValues section.
Because the fi rst subscript in a one-dimensional array is the number 0, the
highest subscript is always one number less than the number of values listed
in the initialValues section. Th e Dim statement in Example 3 in Figure 9-3,
for instance, creates a four-element array with subscripts of 0, 1, 2, and 3.
Th e computer assigns the string “Boston” to the strCities(0) element,
“Chicago” to the strCities(1) element, “Louisville” to the strCities(2)
element, and “Tampa” to the strCities(3) element, as illustrated earlier in
Figure 9-2. Similarly, the Private statement in Example 4 in Figure 9-3 creates
a fi ve-element array with subscripts of 0, 1, 2, 3, and 4. It then uses the num-
bers in the initialValues section to populate the array.

After an array is declared, you can use another statement to store a diff erent
value in an array element. Examples of such statements include assignment
statements and statements that contain the TryParse method. Figure 9-4
shows examples of both types of statements.

Figure 9-4 Examples of statements used to store data in a one-dimensional array

Storing data in a one-dimensional array

Example 1
strCities(0) = "Madrid"
assigns the string “Madrid” to the fi rst element in the strCities array

Example 2
For intX As Integer = 1 To 6
 intNumbers(intX − 1) = intX ˆ 2
Next intX
assigns the squares of the numbers from 1 through 6 to the intNumbers array

Example 3
Dim intSubscript As Integer
Do While intSubscript <= 5
 intNumbers(intSubscript) = 0
 intSubscript += 1
Loop
assigns the number 0 to each element in the intNumbers array

Example 4
dblSales(1) = dblSales(1) * .1
multiplies the contents of the second element in the dblSales array by .1
and then assigns the result to the element; you also can write this statement as
dblSales(1) *= .1

Example 5
Double.TryParse(txtSales.Text, dblSales(2))
assigns either the value entered in the txtSales control (converted to Double) or the
number 0 to the third element in the dblSales array

C7718_ch09.indd 507C7718_ch09.indd 507 14/03/11 8:42 PM14/03/11 8:42 PM

508

C H A P T E R 9 Arrays

Determining the Number of Elements and the Highest
Subscript
Th e number of elements in a one-dimensional array is stored, as an integer,
in the array’s Length property. Figure 9-5 shows the property’s syntax and
includes an example of using the property.

Figure 9-5 Syntax and an example of a one-dimensional array’s Length property

Using a one-dimensional array’s Length property

Syntax
arrayName.Length

Example
Dim strNames(3) As String
Dim intNumElements As Integer
intNumElements = strNames.Length
assigns the number 4 to the intNumElements variable

You can determine the highest subscript in a one-dimensional array by sub-
tracting the number 1 from the array’s Length property. Th is is because the
highest subscript in a one-dimensional array is always one number less than
the number of array elements. You also can use the array’s GetUpperBound
method. Figure 9-6 shows the method’s syntax and includes an example of
using the method. Th e GetUpperBound method returns an integer that rep-
resents the highest subscript in the specifi ed dimension in the array. When
used with a one-dimensional array, the specifi ed dimension (which appears
between the parentheses after the method’s name) is always 0.

Figure 9-6 Syntax and an example of a one-dimensional array’s GetUpperBound method

Using a one-dimensional array’s GetUpperBound method

Syntax
arrayName.GetUpperBound(0)

Example
Dim strNames(3) As String
Dim intHighestSub As Integer
intHighestSub = strNames.GetUpperBound(0)
assigns the number 3 to the intHighestSub variable

the specifi ed dimension for a
one-dimensional array is always 0

C7718_ch09.indd 508C7718_ch09.indd 508 14/03/11 8:42 PM14/03/11 8:42 PM

509

One-Dimensional Arrays L E S S O N A

YOU DO IT 1!

Create a Visual Basic Windows application named YouDoIt 1. Save the
application in the VB2010\Chap09 folder. Add two labels and a button to
the form. The button’s Click event procedure should declare and initialize an
Integer array named intNums. Use the following numbers to initialize the
array: 2, 4, 6, 8, 10, and 12. The procedure should use the Length property
to display the number of array elements in one of the label controls. It should
use the GetUpperBound method to display the number of array elements in
the other label control. Code the procedure. Save the solution and then start
and test the application. Close the solution.

Traversing a One-Dimensional Array
At times, you may need to traverse an array, which means to look at each
array element, one by one, beginning with the fi rst element and ending
with the last element. You traverse an array using a loop. Figure 9-7 shows
two examples of loops that traverse the strCities array, displaying each
 element’s value in the lstCities control. Th e loop in Example 1 is coded using
the For . . . Next statement; Example 2’s loop uses the Do . . . Loop statement.

Figure 9-7 Examples of loops used to traverse a one-dimensional array

Traversing a one-dimensional array

Example 1—For . . . Next
Dim intHighSub As Integer = strCities.GetUpperBound(0)
For intSub As Integer = 0 To intHighSub
 lstCities.Items.Add(strCities(intSub))
Next intSub

Example 2—Do . . . Loop
Dim intHighSub As Integer = strCities.Length − 1
Dim intSub As Integer
Do While intSub <= intHighSub
 lstCities.Items.Add(strCities(intSub))
 intSub = intSub + 1
Loop

you also can use the Length
property, as shown in
Example 2

you also can use intSub += 1

you also can use the
GetUpperBound method, as
shown in Example 1

To code and then test the Cities application:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.
Open the Cities Solution (Cities Solution.sln) fi le contained in
the VB2010\Chap09\Cities Solution folder. If necessary, open the
designer window.

2. Open the Code Editor window. Replace <your name> and <current
date> in the comments with your name and the current date,
respectively.

START HERE

C7718_ch09.indd 509C7718_ch09.indd 509 14/03/11 8:42 PM14/03/11 8:42 PM

510

C H A P T E R 9 Arrays

3. Locate the code template for the form’s Load event procedure. Click
the blank line above the End Sub clause. Type the following array
declaration statement and then press Enter twice:

Dim strCities() As String = {"Boston", "Chicago",
 "Louisville", "Tampa"}

4. Next, you will fi ll the lstCities control with values. Enter the lines of
code shown in either Example 1 or Example 2 in Figure 9-7.

5. Now you will select the fi rst item in the list box. Insert a blank line
above the End Sub clause and then enter the following assignment
statement:

lstCities.SelectedIndex = 0

6. Save the solution and then start the application. Th e computer
 processes the code contained in the form’s Load event procedure,
which creates and initializes the strCities array. Th e fi rst time
the procedure’s loop is processed, the intSub variable contains the
 number 0. Th erefore, the Add method in the loop adds the contents
of the strCities(0) element, which is Boston, to the lstCities
control. Th e computer then increases the intSub variable’s value
by 1, giving 2. When the loop is processed the second time, the Add
method in the loop adds the contents of the strCities(1) element
(Chicago) to the lstCities control, and so on. Th e computer repeats
the loop instructions for each element in the strCities array.
Th e computer stops processing the loop when the intSub variable
 contains the number 4, which is one number more than the highest
subscript in the array. See Figure 9-8.

Figure 9-8 Result of starting the Cities application

7. Click Louisville in the list box. Louisville appears in the You selected
box.

8. Click the Exit button. Close the Code Editor window and then close
the solution.

Recall that Visual Basic provides three statements for coding a loop:
Do . . . Loop, For . . . Next, and For Each . . . Next. You already know how to
use the Do . . . Loop and For . . . Next statements. You will learn about the For
Each . . . Next statement in the next section.

C7718_ch09.indd 510C7718_ch09.indd 510 14/03/11 8:42 PM14/03/11 8:42 PM

511

The For Each . . . Next Statement L E S S O N A

The For Each . . . Next Statement
Visual Basic provides the For Each . . . Next statement for coding a loop
whose instructions you want processed for each element in a group, such
as for each variable in an array. An advantage of using the For Each . . . Next
statement to process an array is that your code does not need to keep track
of the array subscripts or even know the number of array elements. However,
unlike the loop instructions in a Do . . . Loop or For . . . Next statement, the
instructions in a For Each . . . Next statement can only read the array values;
they cannot permanently modify the values.

Figure 9-9 shows the For Each . . . Next statement’s syntax. Th e element-
VariableName that appears in the For Each and Next clauses is the name
of a variable that the computer can use to keep track of each element in the
group. Th e variable’s data type is specifi ed in the As dataType portion of the
For Each clause and must be the same as the group’s data type. A variable
declared in the For Each clause has block scope and is recognized only by the
instructions within the For Each . . . Next loop. You enter the loop body, which
contains the instructions you want the computer to repeat, between the For
Each and Next clauses. Th e example in Figure 9-9 shows how to write the
loops from Figure 9-7 using the For Each . . . Next statement.

Figure 9-9 Syntax and an example of the For Each . . . Next statement

For Each . . . Next statement

Syntax
For Each elementVariableName As dataType In group
 loop body instructions
Next elementVariableName

Example
For Each strCityElement As String In strCities
 lstCities.Items.Add(strCityElement)
Next strCityElement

To use the For Each . . . Next statement in the Cities application:

1. Open the Cities Solution (Cities Solution.sln) fi le contained in the
VB2010\Chap09\Cities Solution-ForEachNext folder. If necessary,
open the designer window.

2. Open the Code Editor window. Replace <your name> and <cur-
rent date> in the comments with your name and the current date,
respectively.

3. Locate the code template for the form’s Load event procedure. Click
the blank line above the assignment statement and then enter the
lines of code shown in the example in Figure 9-9.

4. Save the solution and then start the application. Th e four city names
appear in the list box, as shown earlier in Figure 9-8.

5. Click the Exit button. Close the Code Editor window and then close
the solution.

Although you do
not need to spec-
ify the element-
VariableName in
the Next clause,

doing so is highly recom-
mended because it
makes your code more
self-documenting.

START HERE

You learned
about block
scope in
Chapter 4.

C7718_ch09.indd 511C7718_ch09.indd 511 14/03/11 8:42 PM14/03/11 8:42 PM

512

C H A P T E R 9 Arrays

YOU DO IT 2!

Create a Visual Basic Windows application named YouDoIt 2. Save the
application in the VB2010\Chap09 folder. Add a button to the form. The
button’s Click event procedure should declare and initialize a one-dimensional
String array. Use any four names to initialize the array. The procedure
should display the contents of the array three times. First, it should use the
For Each . . . Next statement to display the four names in message boxes.
Second, it should use the Do . . . Loop statement to display the four names in
message boxes. Third, it should use the For . . . Next statement to display the
four names in message boxes. (Hint: The procedure will display 12 message
boxes.) Code the procedure. Save the solution and then start and test the
application. Close the solution.

Calculating the Total and Average Values
Figure 9-10 shows the problem specifi cation for the Sweet Tooth Chocolate
application. Th e application displays the total number of pounds of choco-
late sold during a six-month period and the average number of pounds sold
each month.

Figure 9-10 Problem specifi cation for the Sweet Tooth Chocolate application

The store manager at Sweet Tooth Chocolate wants an application that displays two
items: the total number of pounds of chocolate sold during a six-month period and the
average number of pounds sold each month. Last year, the monthly amounts were as
follows: 150.75, 300.5, 200, 225.5, 268.5, and 325.75. The application will store the
monthly amounts in a six-element one-dimensional array. It then will calculate the total
number of pounds sold during the six months and the average number of pounds sold
each month. The total number of pounds sold is calculated by accumulating the array
values. The average number of pounds sold each month is calculated by dividing the
total number of pounds sold by the number of array elements.

To begin coding the Sweet Tooth Chocolate application:

1. Open the Sweet Tooth Solution (Sweet Tooth Solution.sln) fi le
 contained in the VB2010\Chap09\Sweet Tooth Solution folder.
If necessary, open the designer window.

2. Open the Code Editor window. Replace <your name> and <current
date> in the comments with your name and the current date,
respectively.

3. Locate the btnCalc control’s Click event procedure. First, you will
declare a one-dimensional array to store the amounts sold during the
six-month period. Click the blank line above the End Sub clause.
Type the following Dim statement and then press Enter twice:

Dim dblMthlyPounds() As Double = {150.75, 300.5,
 200, 225.5,
 268.5, 325.75}

START HERE

C7718_ch09.indd 512C7718_ch09.indd 512 14/03/11 8:42 PM14/03/11 8:42 PM

513

Calculating the Total and Average Values L E S S O N A

Figure 9-11 shows three examples of code for the Calculate button’s Click
event procedure. In each example, a loop is used to traverse the array, adding
each array element’s value to the dblTotal variable. Th e loop in Example 1
is coded using the Do . . . Loop statement. Example 2’s loop is coded using
the For . . . Next statement, and Example 3’s loop is coded using the For
Each . . . Next statement. Th e code pertaining to each loop is shaded in the
fi gure. Notice that you need to specify the highest array subscript in the
Do . . . Loop and For . . . Next statements, but not in the For Each . . . Next state-
ment. Th e Do . . . Loop and For . . . Next statements also must keep track of the
array subscripts; this task is not necessary in the For Each . . . Next statement.
When each loop has fi nished processing, the dblTotal variable contains the
total number of pounds sold during the six-month period. After accumulat-
ing the array values, the code in each example calculates the average monthly
usage. Th e calculation is made by dividing the value stored in the dblTotal
variable by the number of array elements. Th e code in each example then
 displays the total and average amounts on the form.

Figure 9-11 Examples of code for the btnCalc_Click procedure (continues)

Example 1—Do . . . Loop
Dim intHighSub As Integer =
 dblMthlyPounds.GetUpperBound(0)
Dim dblTotal As Double
Dim dblAvg As Double
Dim intSub As Integer

' accumulate pounds sold
Do While intSub <= intHighSub
 dblTotal += dblMthlyPounds(intSub)
 intSub += 1
Loop

' calculate average
dblAvg = dblTotal / dblMthlyPounds.Length
' display total and average
lblTotal.Text = dblTotal.ToString("N1")
lblAvg.Text = dblAvg.ToString("N2")

Example 2—For . . . Next
Dim intHighSub As Integer =
 dblMthlyPounds.GetUpperBound(0)
Dim dblTotal As Double
Dim dblAvg As Double

' accumulate pounds sold
For intSub As Integer = 0 To intHighSub
 dblTotal += dblMthlyPounds(intSub)
Next intSub

' calculate average
dblAvg = dblTotal / dblMthlyPounds.Length
' display total and average
lblTotal.Text = dblTotal.ToString("N1")
lblAvg.Text = dblAvg.ToString("N2")

Example 3—For Each . . . Next
Dim dblTotal As Double
Dim dblAvg As Double

C7718_ch09.indd 513C7718_ch09.indd 513 14/03/11 8:42 PM14/03/11 8:42 PM

514

C H A P T E R 9 Arrays

To continue coding the Sweet Tooth Chocolate application:

1. In the btnCalc control’s Click event procedure, enter the comments
and code shown in any of the three examples from Figure 9-11.

2. Save the solution and then start the application. Click the Calculate
button. See Figure 9-12.

Figure 9-12 Total and average amounts shown in the interface

START HERE

Figure 9-11 Examples of code for the btnCalc_Click procedure

' accumulate pounds sold
For Each dblMonth As Double In dblMthlyPounds
 dblTotal += dblMonth
Next dblMonth

' calculate average
dblAvg = dblTotal / dblMthlyPounds.Length
' display total and average
lblTotal.Text = dblTotal.ToString("N1")
lblAvg.Text = dblAvg.ToString("N2")

(continued)

YOU DO IT 3!

Create a Visual Basic Windows application named YouDoIt 3. Save the
application in the VB2010\Chap09 folder. Add three labels and a button to
the form. The button’s Click event procedure should declare and initialize a
one-dimensional Integer array. Use any five integers to initialize the array.
The procedure should total the five integers and then display the result in
the labels. Use the Do . . . Loop statement to calculate the total to display in
the first label. Use the For Each . . . Next statement to calculate the total to
display in the second label. Use the For . . . Next statement to calculate the
total to display in the third label. Code the procedure. Save the solution and
then start and test the application. Close the solution.

The Ch09AVideo
fi le reviews what
you have learned
so far about
one-dimensional
arrays.

C7718_ch09.indd 514C7718_ch09.indd 514 14/03/11 8:42 PM14/03/11 8:42 PM

515

Finding the Highest Value L E S S O N A

Finding the Highest Value
Figure 9-13 shows the problem specifi cation for the Cycles Galore applica-
tion. Th e application displays the highest bonus amount earned during the
month and the number of salespeople who earned that amount.

Figure 9-13 Problem specifi cation for the Cycles Galore application

The sales manager at Cycles Galore wants an application that displays two items:
the highest bonus amount earned during the month and the number of salespeople
who earned that amount. Last month, the following bonus amounts were paid to the
10 salespeople: 500, 400, 1000, 400, 1000, 400, 850, 500, 780, and 890. The
application will store the bonus amounts in a 10-element one-dimensional array. It then
will examine each element in the array, looking for the highest bonus amount. It will use
a counter variable to keep track of the number of salespeople earning that amount.

To begin coding the Cycles Galore application:

1. Open the Cycles Galore Solution (Cycles Galore Solution.sln) fi le
contained in the VB2010\Chap09\Cycles Galore Solution folder. If
necessary, open the designer window.

2. Open the Code Editor window. Replace <your name> and <current date>
in the comments with your name and the current date, respectively.

3. Locate the btnGetHighest control’s Click event procedure. Th e
 procedure already contains the statement to declare and initialize the
10-element array. It also contains the statements to display the highest
bonus and the number of salespeople who earned that bonus.

4. First, you will declare a variable named intHighSub and initialize it
to the highest subscript in the array. Th e intHighSub variable will
be used by the For . . . Next statement to traverse the array. Click the
blank line below the array declaration statement and then enter the
following Dim statement:

Dim intHighSub As Integer =
 intBonusAmts.GetUpperBound(0)

5. Th e procedure will use a variable named intHighBonus to keep
track of the highest bonus amount in the array. When searching an
array for the highest (or lowest) value, it’s a common programming
practice to initialize the variable to the value stored in the fi rst array
element. In this case, you will initialize it to the value stored in the
intBonusAmts(0) element. Enter the following Dim statement:

Dim intHighBonus As Integer = intBonusAmts(0)

6. Next, you will declare and initialize a counter variable named
 intSalespeople. Th e counter variable will keep track of the num-
ber of salespeople whose bonus amount matches the value stored in
the intHighBonus variable. You will initialize the intSalespeople
variable to 1 because, at this point, one salesperson (the fi rst one) has
earned the bonus amount currently stored in the intHighBonus vari-
able. Type the following Dim statement and then press Enter twice:

Dim intSalespeople As Integer = 1

START HERE

C7718_ch09.indd 515C7718_ch09.indd 515 14/03/11 8:42 PM14/03/11 8:42 PM

516

C H A P T E R 9 Arrays

7. Now you will use the For . . . Next statement to traverse the second
through the last elements in the intBonusAmts array. Each element’s
value will be compared, one at a time, to the value stored in the
intHighBonus variable. You don’t need to look at the fi rst element
because its value is already contained in the intHighBonus variable.
Enter the following For clause:

For intX As Integer = 1 To intHighSub

8. Change the Next clause to Next intX.

9. Th e fi rst instruction in the loop will determine whether the value
stored in the current array element is equal to the value stored in the
intHighBonus variable. Click the blank line below the For clause
and then enter the following If clause:

If intBonusAmts (intX) = intHighBonus Th en

10. If both bonus amounts are equal, the selection structure’s true path
will add 1 to the intSalespeople counter variable. Enter the fol-
lowing assignment statement:

intSalespeople += 1

11. If both bonus amounts are not equal, the selection structure’s false
path will determine whether the value stored in the current array
 element is greater than the value stored in the intHighBonus
 variable. Enter the following Else and If clauses:

Else
 If intBonusAmts(intX) > intHighBonus Th en

12. If the value in the current array element is greater than the value in
the intHighBonus variable, the nested selection structure’s true
path should assign the higher value to the intHighBonus variable.
It also should reset the number of salespeople to 1 because, at this
point, only one salesperson has earned that bonus amount. Enter the
 assignment statements indicated in Figure 9-14.

enter these
two assignment
statements

Figure 9-14 Additional assignment statements entered in the procedure

13. Save the solution and then start the application. Click the Get
Highest Bonus button. See Figure 9-15.

C7718_ch09.indd 516C7718_ch09.indd 516 14/03/11 8:42 PM14/03/11 8:42 PM

517

Finding the Highest Value L E S S O N A

Figure 9-15 Calculated amounts shown in the interface

Figure 9-16 shows the code entered in the Get Highest Bonus button’s Click
event procedure.

Private Sub btnGetHighest_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnGetHighest.Click
 ' displays the highest bonus and the
 ' number who earned that amount

 Dim intBonusAmts() As Integer = {500, 400, 1000,
 400, 1000, 400,
 850, 500, 780, 890}
 Dim intHighSub As Integer =
 intBonusAmts.GetUpperBound(0)
 Dim intHighBonus As Integer = intBonusAmts(0)
 Dim intSalespeople As Integer = 1

 For intX As Integer = 1 To intHighSub
 If intBonusAmts(intX) = intHighBonus Then
 intSalespeople += 1
 Else
 If intBonusAmts(intX) > intHighBonus Then
 intHighBonus = intBonusAmts(intX)
 intSalespeople = 1
 End If
 End If
 Next intX

 lblHighest.Text = intHighBonus.ToString("C0")
 lblSalespeople.Text = intSalespeople.ToString
End Sub

search the second through
the last array elements

assign the fi rst element’s
value and the number 1 to
the intHighBonus and
intSalespeople variables,
respectively

Figure 9-16 Get Highest Bonus button’s Click event procedure

C7718_ch09.indd 517C7718_ch09.indd 517 14/03/11 8:42 PM14/03/11 8:42 PM

518

C H A P T E R 9 Arrays

YOU DO IT 4!

Create a Visual Basic Windows application named YouDoIt 4. Save the
application in the VB2010\Chap09 folder. Add a label and a button to the
form. The button’s Click event procedure should declare and initialize a one-
dimensional Double array. Use any six numbers to initialize the array. The
procedure should display (in the label) the lowest value stored in the array.
Code the procedure using the For . . . Next statement. Save the solution and
then start and test the application. Close the solution.

Arrays and Collections
It’s not uncommon for programmers to associate the items in a list box with the
values stored in an array. Th is is because the items in a list box belong to a col-
lection, and collections and arrays have several things in common. First, each is
a group of individual objects treated as one unit. Second, each individual object
in the group is identifi ed by a unique number. Th e unique number is called an
index when referring to a collection, but a subscript when referring to an array.
Th ird, both the fi rst index in a collection and the fi rst subscript in an array are 0.
Th ese commonalities allow you to associate the list box items and array elements
by their positions within their respective groups. In other words, you can asso-
ciate the fi rst item in a list box with the fi rst element in an array, the second item
with the second element, and so on. To associate a list box with an array, you
fi rst add the appropriate items to the list box. You then store each item’s related
value in its corresponding position in the array. You will use a list box and a
one-dimensional array in the Prairie Auditorium application, which you code
next. Figure 9-17 shows the application’s problem specifi cation.

Figure 9-17 Problem specifi cation for the Prairie Auditorium application

The theater manager at Prairie Auditorium wants an application that displays the price
of a ticket. The price is based on the seating section, as shown in the chart below. The
application’s interface will provide a list box from which the user can select the seating
section. The application will store the prices in a four-element one-dimensional array.
It will use the index of the item selected in the list box to access the appropriate price
from the array.

Section Price ($)

A 92.00

B 85.00

C 67.50

D 32.50

To begin coding the Prairie Auditorium application:

1. Open the Prairie Solution (Prairie Solution.sln) fi le contained in
the VB2010\Chap09\Prairie Solution folder. If necessary, open the
designer window.

2. Open the Code Editor window. Replace <your name> and <current date>
in the comments with your name and the current date, respectively.

Recall that the
items in a list box
belong to the
Items collection.

START HERE

C7718_ch09.indd 518C7718_ch09.indd 518 14/03/11 8:42 PM14/03/11 8:42 PM

519

Arrays and Collections L E S S O N A

3. First, you will fi ll the list box with values and then select the fi rst item
in the list. Open the code template for the form’s Load event proce-
dure and then enter the following lines of code:

lstSection.Items.Add("A")
lstSection.Items.Add("B")
lstSection.Items.Add("C")
lstSection.Items.Add("D")
lstSection.SelectedIndex = 0

4. As the problem specifi cation states, the ticket prices should be stored
in a one-dimensional array. You can declare the array in the list box’s
SelectedIndexChanged or SelectedValueChanged procedures, mak-
ing it a procedure-level array. Or, you can declare it in the form’s
Declarations section, making it a class-level array. In this case, you
will use a class-level array so that the array will not need to be cre-
ated each time the user clicks a diff erent item in the list box. Click
the blank line below the Public Class frmMain clause and then
press Enter to insert another blank line. Enter the following array
declaration statement:

Private dblPrices() As Double = {92, 85, 67.5, 32.5}

Notice that the array declaration statement initializes the fi rst array element
to 92, which is the price associated with the fi rst item in the list box (A).
Th e remaining array elements are initialized to the prices corresponding to
their list box items. Th e relationship between the list box items and the array
 elements is illustrated in Figure 9-18.

lstSection control dblPrices array

A 92

B 85

C 67.5

D 32.5

Figure 9-18 Illustration of the relationship between the list box and array

the indexes
are 0, 1, 2,
and 3

the subscripts
are 0, 1, 2,
and 3

To continue coding the Prairie Auditorium application:

1. When the user clicks an item in the list box, the application should
display the appropriate price in the Price box. You can accomplish this
task by coding either the list box’s SelectedIndexChanged procedure
or its SelectedValueChanged procedure. Open the code template for
the lstSection control’s SelectedIndexChanged procedure. Type the
following comment and then press Enter twice:

' displays the corresponding price from the array

2. Th e procedure will use the index of the item selected in the list box
to access the appropriate price from the dblPrices array. Enter the
 following Dim statement:

Dim intSub As Integer = lstSection.SelectedIndex

START HERE

C7718_ch09.indd 519C7718_ch09.indd 519 14/03/11 8:42 PM14/03/11 8:42 PM

520

C H A P T E R 9 Arrays

3. If the fi rst item is selected in the list box, the Dim statement you
entered in Step 2 will initialize the intSub variable to 0. If the sec-
ond item is selected, it will initialize the variable to 1, and so on. You
can use the intSub variable to access the appropriate price from the
array. Enter the following assignment statement:

lblPrice.Text = dblPrices(intSub).ToString("C2")

Figure 9-19 shows most of the code for the Prairie Auditorium application.

Private dblPrices() As Double = {92, 85, 67.5, 32.5}

Private Sub frmMain_Load(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Me.Load
 lstSection.Items.Add("A")
 lstSection.Items.Add("B")
 lstSection.Items.Add("C")
 lstSection.Items.Add("D")
 lstSection.SelectedIndex = 0

End Sub

Private Sub lstSection_SelectedIndexChanged(
ByVal sender As Object, ByVal e As System.EventArgs
) Handles lstSection.SelectedIndexChanged
 ' displays the corresponding price from the array

 Dim intSub As Integer = lstSection.SelectedIndex
 lblPrice.Text = dblPrices(intSub).ToString("C2")

End Sub

Figure 9-19 Most of the code for the Prairie Auditorium application

class-level array
declared in the form’s
Declarations section

uses the selected
item’s index as the
array subscript

To test the Prairie Auditorium application’s code:

1. Save the solution and then start the application. $92.00 appears in the
Price box, as shown in Figure 9-20.

Figure 9-20 Price displayed in the interface

2. On your own, test the application by clicking the remaining items in
the list box.

3. Click the Exit button.

START HERE

C7718_ch09.indd 520C7718_ch09.indd 520 14/03/11 8:42 PM14/03/11 8:42 PM

521

Arrays and Collections L E S S O N A

Before closing the Prairie Auditorium application, you will observe the run
time error that occurs when the computer tries to access a memory location
that is outside the bounds of the array. A run time error is an error that
occurs while an application is running.

To modify and then test the Prairie Auditorium application:

1. In the form’s Declarations section, delete , 32.50 from the array decla-
ration statement. Th e initialValues section of the statement now con-
tains only three values.

2. Save the solution and then start the application. Click D in
the Section list box. Because this seat section does not have a
 corresponding price in the dblPrices array, a run time error occurs.
An arrow points to the statement where the error was encountered,
and the statement is highlighted. In addition, a help box opens;
the help box provides information pertaining to the error. In this
case, the help box indicates that the statement is trying to access
an element that is outside the bounds of the array.

3. Place your mouse pointer on intSub in the highlighted statement,
as shown in Figure 9-21. Th e intSub variable contains the number 3,
which is not a valid subscript for the modifi ed array. Th e valid
 subscripts for the modifi ed array are 0, 1, and 2.

the array subscripts
are 0 through 2

the intSub variable
contains 3, which
is an invalid subscript

help box

Figure 9-21 Result of the run time error caused by an invalid subscript

4. Click Debug on the menu bar and then click Stop Debugging.

Before accessing an individual array element, you should verify that the
 subscript you are using is valid. You can do this using a selection structure
whose condition verifi es that the subscript is within the acceptable range.
Th e acceptable range would be a number that is greater than or equal to 0
but less than or equal to the highest subscript in the array.

START HERE

C7718_ch09.indd 521C7718_ch09.indd 521 14/03/11 8:42 PM14/03/11 8:42 PM

522

C H A P T E R 9 Arrays

To continue modifying and testing the Prairie Auditorium application:

1. Modify the lstSection control’s SelectedIndexChanged procedure by
adding the selection structure shown in Figure 9-22. Be sure to move
the lblPrice.Text = dblPrices(intSub).ToString("C2")
statement into the selection structure’s true path.

add this
selection
structure

Figure 9-22 Modifi ed SelectedIndexChanged procedure

2. Save the solution and then start the application. Click D in the
Section list box. Th is time, N/A appears in the Price box. Click the
Exit button.

3. In the form’s Declarations section, click immediately before } in the
array declaration statement and then type , 32.5. Th e initialValues
section of the statement now contains four values.

4. Save the solution and then start the application. Click D in the
Section list box. $32.50 appears in the Price box.

5. Click the Exit button. Close the Code Editor window and then close
the solution.

Accumulator and Counter Arrays
One-dimensional arrays are often used to either accumulate or count related
values; such arrays are commonly referred to as accumulator arrays and
counter arrays, respectively. You will use an accumulator array in the Warren
School application, which you fi nish coding next. Th e application’s problem
specifi cation is shown in Figure 9-23.

Warren School is having its annual Chocolate Fund Raiser event. Students sell the
following fi ve candies: Chocolate Bar, Chocolate Bar-Peanuts, Kit Kat, Peanut Butter
Cups, and Take 5 Bar. The school principal wants an application that she can use to
enter the amount of each candy sold by each student. The application should display
the total number sold for each candy. The interface will provide a list box for the
user to select the candy, and a text box for entering the amount sold by a student.
The application will use a fi ve-element one-dimensional array to accumulate the
amounts sold.

Figure 9-23 Problem specifi cation for the Warren School application

START HERE

C7718_ch09.indd 522C7718_ch09.indd 522 14/03/11 8:42 PM14/03/11 8:42 PM

523

Accumulator and Counter Arrays L E S S O N A

To open the Warren School application:

1. Open the Warren Solution (Warren Solution.sln) fi le contained in
the VB2010\Chap09\Warren Solution folder. If necessary, open the
designer window.

2. Open the Code Editor window, which already contains some code.
Replace <your name> and <current date> in the comments with your
name and the current date, respectively.

Th e form’s Load event procedure fi lls the list box with the fi ve candy types
and then selects the fi rst item in the list. To complete the application, you
just need to fi nish coding the btnAdd control’s Click event procedure, which
should accumulate the amounts sold by candy type. Th e procedure will
accomplish its task using an accumulator array: a one-dimensional array
named intCandiesSold. Th e array will have fi ve elements, each corre-
sponding to an item listed in the list box. Th e fi rst array element will corre-
spond to the Chocolate Bar item, the second array element to the Chocolate
Bar-Peanuts item, and so on. Each array element will be used to accumulate
the sales of its corresponding list box item.

To complete the btnAdd control’s Click event procedure:

1. Locate the btnAdd control’s Click event procedure. Click the blank
line below the ' declare array and variables comment.

2. First, you will declare the intCandiesSold array. Th e array will need
to retain its values until the application ends. You can accomplish this
by declaring the array in either the form’s Declarations section (using
the Private keyword to make it a class-level array) or in the btnAdd
control’s Click event procedure (using the Static keyword to make
it a static procedure-level array); you will use the latter approach. Like
static variables, which you learned about in Chapter 3, static arrays
remain in memory and retain their values until the application ends.
Enter the following declaration statement:

Static intCandiesSold(4) As Integer

3. Th e event procedure will also use two Integer variables: one to store
the amount sold and the other to store the index of the item selected
in the list box. Enter the following Dim statements. Press Enter twice
after typing the last Dim statement.

Dim intSold As Integer
Dim intSub As Integer

4. Now you will convert the contents of the txtSold control to Integer
and then store the result in the intSold variable. Enter the following
TryParse method:

Integer.TryParse(txtSold.Text, intSold)

5. Next, you will assign the index of the item selected in the list box to
the intSub variable. Enter the following assignment statement:

intSub = lstCandy.SelectedIndex

START HERE

START HERE

C7718_ch09.indd 523C7718_ch09.indd 523 14/03/11 8:42 PM14/03/11 8:42 PM

524

C H A P T E R 9 Arrays

6. Now you will use the number stored in the intSub variable to
update the appropriate array element. Click the blank line below
the ' update array value comment and then enter the fol-
lowing assignment statement. (If you prefer, you can enter the
intCandiesSold(intSub) = intCandiesSold(intSub) +
intSold statement instead.)

intCandiesSold(intSub) += intSold

7. Finally, you will enter the code to display the array values in the
 interface. Enter the following fi ve assignment statements:

lblChocBar.Text = intCandiesSold(0).ToString
lblChocBarPeanuts.Text = intCandiesSold(1).ToString
lblKitKat.Text = intCandiesSold(2).ToString
lblPeanutButCups.Text = intCandiesSold(3).ToString
lblTake5Bar.Text = intCandiesSold(4).ToString

Figure 9-24 shows the code entered in the btnAdd control’s Click event
procedure.

Private Sub btnAdd_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnAdd.Click
 ' add amount sold to the appropriate total

 ' declare array and variables
 Static intCandiesSold(4) As Integer
 Dim intSold As Integer
 Dim intSub As Integer

 Integer.TryParse(txtSold.Text, intSold)
 intSub = lstCandy.SelectedIndex

 ' update array value
 intCandiesSold(intSub) += intSold

 ' display array values
 lblChocBar.Text = intCandiesSold(0).ToString
 lblChocBarPeanuts.Text = intCandiesSold(1).ToString
 lblKitKat.Text = intCandiesSold(2).ToString
 lblPeanutButCups.Text = intCandiesSold(3).ToString
 lblTake5Bar.Text = intCandiesSold(4).ToString

 txtSold.Focus()
End Sub

Figure 9-24 btnAdd control’s Click event procedure

static procedure-level
array

uses the selected
item’s index as the
array subscript

To test the Warren School application:

1. Save the solution and then start the application. Click the Sold box,
type 100, and then press Enter to select the Add to Total button. Th e
number 100 appears in the Chocolate Bar label.

2. Click Kit Kat in the Candy list box. Change the 100 in the Sold box to
45 and then click the Add to Total button. Now change the 45 in the
Sold box to 36 and then press Enter. See Figure 9-25.

START HERE

C7718_ch09.indd 524C7718_ch09.indd 524 14/03/11 8:42 PM14/03/11 8:42 PM

525

Sorting a One-Dimensional Array L E S S O N A

Figure 9-25 Array values displayed in the interface

3. On your own, test the application using diff erent candy types and
sales amounts.

4. Click the Exit button. Close the Code Editor window and then close
the solution.

YOU DO IT 5!

Create a Visual Basic Windows application named YouDoIt 5. Save the
application in the VB2010\Chap09 folder. Add two list boxes and a button
to the form. The button’s Click event procedure should declare and initialize
a one-dimensional Integer array. Use any 10 numbers to initialize the array.
The procedure should use the For Each . . . Next statement to display the
contents of the array in the first list box. The procedure should then use the
For . . . Next statement to increase each array element’s value by 2. Finally,
it should use the Do . . . Loop statement to display the results in the second
list box. Code the procedure. Save the solution and then start and test the
application. Close the solution.

Sorting a One-Dimensional Array
In some applications, you might need to arrange the contents of an array in
either ascending or descending order. Arranging data in a specifi c order is
called sorting. When an array is sorted in ascending order, the fi rst element
in the array contains the smallest value and the last element contains the
largest value. When an array is sorted in descending order, on the other hand,
the fi rst element contains the largest value and the last element contains the
smallest value. You can use the Array.Sort method to sort a one-dimensional
array’s values in ascending order. To sort the values in descending order, you
fi rst use the Array.Sort method to sort the values in ascending order, and
then use the Array.Reverse method to reverse the values. Figure 9-26 shows
the syntax of both methods. In each syntax, arrayName is the name of a
one-dimensional array.

C7718_ch09.indd 525C7718_ch09.indd 525 14/03/11 8:42 PM14/03/11 8:42 PM

526

C H A P T E R 9 Arrays

Array.Sort and Array.Reverse methods

Syntax
Array.Sort(arrayName)
Array.Reverse(arrayName)

Example 1
Dim intScores As Integer = {78, 83, 75, 90}
Array.Sort(intScores)
sorts the contents of the array in ascending order, as follows: 75, 78, 83, and 90

Example 2
Dim intScores As Integer = {78, 83, 75, 90}
Array.Reverse(intScores)
reverses the contents of the array, placing the values in the following order: 90, 75,
83, and 78

Example 3
Dim intScores As Integer = {78, 83, 75, 90}
Array.Sort(intScores)
Array.Reverse(intScores)
sorts the contents of the array in ascending order and then reverses the contents,
placing the values in descending order as follows: 90, 83, 78, and 75

Figure 9-26 Syntax and examples of the Array.Sort and Array.Reverse methods

You will use the Array.Sort and Array.Reverse methods in the State
 application, which you fi nish coding in the next set of steps. Th e application
stores the names of fi ve states in a one-dimensional array named
strStates. Th e application allows the user to display the names in either
ascending or descending order.

To code the State application:

1. Open the State Solution (State Solution.sln) fi le contained in the
VB2010\Chap09\State Solution folder. If necessary, open the designer
window.

2. Open the Code Editor window. Replace <your name> and <current
date> in the comments with your name and the current date,
respectively.

3. Th e array in this application needs to be accessed by more than one
procedure. Th erefore, you will declare the array as a class-level array.
Click the blank line below the ' class-level array comment in
the form’s Declarations section. Enter the following array declaration
statement:

Private strStates(4) As String

4. Next, locate the btnEnter control’s Click event procedure. Click the
blank line below the lstStates.Items.Clear() statement,
which clears the contents of the list box in the interface. You will use a
loop and the InputBox function to get fi ve state names from the user,

START HERE

C7718_ch09.indd 526C7718_ch09.indd 526 14/03/11 8:42 PM14/03/11 8:42 PM

527

Sorting a One-Dimensional Array L E S S O N A

storing each state name in an array element. Press Enter to insert a
blank line, and then enter the following lines of code:

For intSub As Integer = 0 To strStates.GetUpperBound(0)
 strStates(intSub) =
 InputBox("State name", "State Names")
Next intSub

5. Now locate the btnAscending control’s Click event procedure. Click
the blank line below the lstStates.Items.Clear() statement
and then press Enter. Th e procedure should sort the array values in
ascending order and then display the values in the lstStates control.
Enter the following lines of code:

Array.Sort(strStates)
For Each strName As String In strStates
 lstStates.Items.Add(strName)
Next strName

6. Finally, locate the btnDescending control’s Click event procedure.
Click the blank line below the lstStates.Items.Clear()
 statement and then press Enter. Th e procedure should sort the array
values in descending order and then display the values in the lstStates
control. Enter the following lines of code:

Array.Sort(strStates)
Array.Reverse(strStates)
For Each strName As String In strStates
 lstStates.Items.Add(strName)
Next strName

Figure 9-27 shows the State application’s code.

Public Class frmMain

 ' class-level array
 Private strStates(4) As String

 Private Sub btnExit_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnExit.Click
 Me.Close()
 End Sub

 Private Sub btnEnter_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnEnter.Click
 ' stores five state names in the class-level
 ' strStates array

 lstStates.Items.Clear()

 For intSub As Integer = 0 To strStates.GetUpperBound(0)
 strStates(intSub) =
 InputBox("State name", "State Names")
 Next intSub
 End Sub

Figure 9-27 State application’s code (continues)

C7718_ch09.indd 527C7718_ch09.indd 527 14/03/11 8:42 PM14/03/11 8:42 PM

528

C H A P T E R 9 Arrays

 Private Sub btnAscending_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnAscending.Click
 ' displays the array values in ascending order

 lstStates.Items.Clear()

 Array.Sort(strStates)
 For Each strName As String In strStates
 lstStates.Items.Add(strName)
 Next strName
 End Sub

 Private Sub btnDescending_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnDescending.Click
 ' displays the array values in descending order

 lstStates.Items.Clear()

 Array.Sort(strStates)
 Array.Reverse(strStates)
 For Each strName As String In strStates
 lstStates.Items.Add(strName)
 Next strName
 End Sub
End Class

Figure 9-27 State application’s code

To test the State application:

1. Save the solution and then start the application. Click the Enter
State Names button. Type the following state names in the State
Names dialog box, pressing Enter after typing each name: Kentucky,
Tennessee, Alaska, New York, and Idaho.

2. Click the Ascending Sort button. Th e application displays the state
names in ascending order. See Figure 9-28.

Figure 9-28 State names displayed in ascending order

START HERE

(continued)

C7718_ch09.indd 528C7718_ch09.indd 528 14/03/11 8:42 PM14/03/11 8:42 PM

529

Lesson A Summary L E S S O N A

3. Click the Descending Sort button. Th e application displays the state
names in descending order.

4. Click the Exit button. Close the Code Editor window and then close
the solution.

Lesson A Summary

 • To refer to an element in a one-dimensional array:

Use the array’s name followed by the element’s subscript, which is
 specifi ed in a set of parentheses immediately following the array name.

 • To declare a one-dimensional array:

Use either of the syntax versions shown below. Th e highestSubscript
argument in Version 1 is an integer that specifi es the highest subscript in
the array. Using Version 1’s syntax, the computer automatically initializes
the array elements. Th e initialValues section in Version 2 is a list of values
separated by commas and enclosed in braces. Th e values are used to
initialize each element in the array.

Version 1: {Dim | Private | Static} arrayName(highestSubscript) As
dataType

Version 2: {Dim | Private | Static} arrayName() As dataType =
{initialValues}

 • To determine the number of elements in a one-dimensional array:

Use the array’s Length property in the following syntax: arrayName.Length.

 • To determine the highest subscript in a one-dimensional array:

Use the array’s GetUpperBound method in the following syntax:
arrayName.GetUpperBound(0). Alternatively, you can subtract the
 number 1 from the value stored in the array’s Length property.

 • To traverse (or look at) each element in a one-dimensional array:

Use a loop coded with one of the following statements: Do . . . Loop,
For . . . Next, or For Each . . . Next.

 • To process instructions for each element in a group:

Use the For Each . . . Next statement. Th e statement’s syntax is shown in
Figure 9-9.

 • To associate the items in a list box with the elements in an array:

Use each list box item’s index and each array element’s subscript.

 • To sort the elements in a one-dimensional array in ascending order:

Use the Array.Sort method. Th e method’s syntax is Array.Sort(arrayName).

 • To reverse the order of the elements in a one-dimensional array:

Use the Array.Reverse method. Th e method’s syntax is
Array.Reverse(arrayName).

C7718_ch09.indd 529C7718_ch09.indd 529 14/03/11 8:42 PM14/03/11 8:42 PM

530

C H A P T E R 9 Arrays

Lesson A Key Terms
Array—a group of related variables that have the same name and data type

Array.Reverse method—reverses the order of the elements in a one-
dimensional array

Array.Sort method—sorts the elements in a one-dimensional array in
 ascending order

Elements—the variables in an array

For Each . . . Next statement—used to code a loop whose instructions you
want processed for each element in a group

GetUpperBound method—returns an integer that represents the highest
 subscript in a specifi ed dimension, which is 0 for a one-dimensional array

Length property—one of the properties of an array; stores an integer that
 represents the number of array elements

One-dimensional array—an array whose elements are identifi ed by a unique
subscript

Populating the array—refers to the process of initializing the elements in an
array

Run time error—an error that occurs while an application is running

Scalar variable—another name for a simple variable

Simple variable—a variable that is unrelated to any other variable in the
 computer’s internal memory; also called a scalar variable

Sorting—the process of arranging data in a specifi c order

Subscript—a unique integer that identifi es the position of an element in an
array

Lesson A Review Questions

1. Which of the following declares a fi ve-element one-dimensional
array?

a. Dim dblAmounts(4) As Double

b. Dim dblAmounts(5) As Double

c. Dim dblAmounts(4) As Double =
 {3.55, 6.70, 8, 4, 2.34}

d. both a and c

C7718_ch09.indd 530C7718_ch09.indd 530 14/03/11 8:42 PM14/03/11 8:42 PM

531

Lesson A Review Questions L E S S O N A

2. Th e strItems array is declared as follows: Dim strItems(20) As
String. Th e intSub variable keeps track of the array subscripts and
is initialized to 0. Which of the following Do clauses will process the
loop instructions for each element in the array?

a. Do While intSub > 20

b. Do While intSub < 20

c. Do While intSub >= 20

d. Do While intSub <= 20

3. Th e intSales array is declared as follows: Dim intSales() As
Integer = {10000, 12000, 900, 500, 20000}. Th e state-
ment intSales(3) = intSales(3) + 10 will .

a. replace the 500 amount with 10

b. replace the 500 amount with 510

c. replace the 900 amount with 10

d. replace the 900 amount with 910

4. Th e intSales array is declared as follows: Dim intSales() As
Integer = {10000, 12000, 900, 500, 20000}. Which of the
following If clauses determines whether the intSub variable contains
a valid subscript for the array?

a. If intSales(intSub) >= 0 AndAlso
intSales(intSub) < 4 Then

b. If intSales(intSub) >= 0 AndAlso
intSales(intSub) <= 4 Then

c. If intSub >= 0 AndAlso intSub < 4 Then

d. If intSub >= 0 AndAlso intSub <= 4 Then

5. Th e intSales array is declared as follows: Dim intSales() As
Integer = {10000, 12000, 900, 500, 20000}. Which of
the following loops will correctly add 100 to each array element? Th e
intSub variable contains the number 0 before the loops are processed.

a. Do While intSub <= 4
 intSub = intSub + 100
 Loop

b. Do While intSub <= 4
 intSales = intSales + 100
 Loop

c. Do While intSub < 5
 intSales(intSub) =
 intSales(intSub) + 100
 Loop

d. none of the above

C7718_ch09.indd 531C7718_ch09.indd 531 14/03/11 8:42 PM14/03/11 8:42 PM

532

C H A P T E R 9 Arrays

6. Th e intNums array is declared as follows: Dim intNums() As
Integer = {10, 5, 7, 2}. Which of the following blocks of
code correctly calculates the average value stored in the array? Th e
intTotal, intSub, and dblAvg variables contain the number 0
before the loops are processed.

a. Do While intSub < 4
 intNums(intSub) = intTotal + intTotal
 intSub = intSub + 1
 Loop
 dblAvg = intTotal / intSub

b. Do While intSub < 4
 intTotal = intTotal + intNums(intSub)
 intSub = intSub + 1
 Loop
 dblAvg = intTotal / intSub

c. Do While intSub < 4
 intTotal = intTotal + intNums(intSub)
 intSub = intSub + 1
 Loop
 dblAvg = intTotal / intSub − 1

d. Do While intSub < 4
 intTotal = intTotal + intNums(intSub)
 intSub = intSub + 1
 Loop
 dblAvg = intTotal / (intSub − 1)

7. What will the code in Review Question 6’s answer a assign to the
dblAvg variable?

a. 0

b. 5

c. 6

d. 8

8. What will the code in Review Question 6’s answer b assign to the
dblAvg variable?

a. 0

b. 5

c. 6

d. 8

C7718_ch09.indd 532C7718_ch09.indd 532 14/03/11 8:42 PM14/03/11 8:42 PM

533

Lesson A Review Questions L E S S O N A

9. What will the code in Review Question 6’s answer c assign to the
dblAvg variable?

a. 0

b. 5

c. 6

d. 8

10. What will the code in Review Question 6’s answer d assign to the
dblAvg variable?

a. 0

b. 5

c. 6

d. 8

11. Which of the following statements sorts the intQuantities array in
ascending order?

a. Array.Sort(intQuantities)

b. intQuantities.Sort

c. Sort(intQuantities)

d. SortArray(intQuantities)

12. Which of the following statements assigns (to the intElements vari-
able) the number of elements contained in the intNums array?

a. intElements = Len(intNums)

b. intElements = Length(intNums)

c. intElements = intNums.Len

d. intElements = intNums.Length

13. Which of the following assigns the string “Rover” to the fi fth element
in a one-dimensional array named strPetNames?

a. strPetNames(4) = "Rover"

b. strPetNames[4] = "Rover"

c. strPetNames(5) = "Rover"

d. strPetNames.Items.Add(5) = "Rover"

C7718_ch09.indd 533C7718_ch09.indd 533 14/03/11 8:42 PM14/03/11 8:42 PM

534

C H A P T E R 9 Arrays

14. Which of the following assigns the number 1 to each element in a
fi ve-element, one-dimensional Integer array named intCounters?

a. For intSub As Integer = 0 To 4
 intCounters(intSub) = 1
 Next intSub

b. Dim intSub As Integer
 Do While intSub < 5
 intCounters(intSub) = 1
 intSub += 1
 Loop

c. For intSub As Integer = 1 To 5
 intCounters(intSub − 1) = 1
 Next intSub

d. all of the above

Lesson A Exercises

1. Write the statement to declare a procedure-level one-dimensional
array named intNumbers. Th e array should be able to store 20 inte-
gers. Th en write the statement to store the number 7 in the second
element.

2. Write the statement to declare a class-level one-dimensional array
named strProducts. Th e array should be able to store 10 strings.
Th en write the statement to store the string “Paper” in the third
element.

3. Write the statement to declare and initialize a procedure-level one-
dimensional array named dblRates. Use the following numbers to
initialize the array: 6.5, 8.3, 4, 2, 10.5.

4. Write the code to display the contents of the dblRates array from
Exercise 3 in the lstRates control. Use the For . . . Next statement.

5. Rewrite the code from Exercise 4 using the Do . . . Loop statement.

6. Rewrite the code from Exercise 4 using the For Each . . . Next
statement.

7. Write the statement to sort the dblRates array in ascending order.

8. Write the statement to reverse the contents of the dblRates array.

9. Open the Months Solution (Months Solution.sln) fi le contained in the
VB2010\Chap09\Months Solution-Introductory folder. If necessary,
open the designer window. Declare and initialize a one-dimensional
String array. Use the names of the 12 months to initialize the array.
Use the For Each . . . Next statement to display the contents of the

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

C7718_ch09.indd 534C7718_ch09.indd 534 14/03/11 8:42 PM14/03/11 8:42 PM

535

Lesson A Exercises L E S S O N A

array in the list box. Code the list box so that it displays (in the You
selected box) the name of the month selected in the list box. Save the
solution and then start and test the application. Close the Code Editor
window and then close the solution.

10. Open the Salary Code Solution (Salary Code Solution.sln) fi le con-
tained in the VB2010\Chap09\Salary Code Solution folder. If neces-
sary, open the designer window. Th e application should allow the
user to select a salary code from the list box; it then should display
the salary associated with the code. Th e salary codes and salaries are
listed in Figure 9-29. Code the application. Save the solution and then
start and test the application. Close the Code Editor window and then
close the solution.

Salary code Salary
101 25000

102 35000

103 55000

104 75000

105 80500

106 83000

107 90500

Figure 9-29 Salary codes and salaries for Exercise 10

11. In this exercise, you modify the Cycles Galore application coded
in the lesson. Use Windows to make a copy of the Cycles Galore
Solution folder. Rename the copy Modifi ed Cycles Galore Solution.
Open the Cycles Galore Solution (Cycles Galore Solution.sln) fi le
contained in the Modifi ed Cycles Galore Solution folder. Open
the designer window. In addition to displaying the highest bonus
amount and the number of salespeople earning that amount, the
modifi ed application should display the lowest bonus amount and the
number of salespeople earning that amount. Make the appropriate
modifi cations to the interface and code. Save the solution and then
start and test the application. Close the Code Editor window and then
close the solution.

12. Open the Sales Solution (Sales Solution.sln) fi le contained in the
VB2010\Chap09\Sales Solution folder. If necessary, open the designer
window. Th e interface allows the user to enter a sales amount. Th e
application should display the number of salespeople earning at least
that amount. Open the Code Editor window. Th e sales amounts are
stored in the intSales array. Finish coding the application. Save the
solution and then start and test the application. Close the Code Editor
window and then close the solution.

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

C7718_ch09.indd 535C7718_ch09.indd 535 14/03/11 8:42 PM14/03/11 8:42 PM

536

C H A P T E R 9 Arrays

13. Open the Months Solution (Months Solution.sln) fi le contained in the
VB2010\Chap09\Months Solution-Intermediate folder. If necessary,
open the designer window. Display the names of the 12 months in the
list box. Declare and initialize a one-dimensional Integer array named
intDaysInTheMonth. Use the following 12 integers to initialize the
array: 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, and 31. Code the list box
so that it displays (in the Days box) the number of days in the selected
month. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

14. Write the code to multiply by 3 the number stored in the fi rst element
in a one-dimensional array named intNumbers. Store the result in
the intResult variable.

15. Write the code to add together the numbers stored in the fi rst and
second elements in a one-dimensional array named intNumbers.
Display the sum in the lblSum control.

16. Write two versions of the code to subtract the number 1 from each
element in a one-dimensional Integer array named intQuantities.
Use the Do . . . Loop statement in the fi rst version. Use the For . . . Next
statement in the second version.

17. Open the Test Scores Solution (Test Scores Solution.sln) fi le
contained in the VB2010\Chap09\Test Scores Solution folder. If
necessary, open the designer window. Th e Average button’s Click
event procedure should display the number of test scores contained
in a one-dimensional array and also the average test score. Code the
procedure. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

18. Open the Update Prices Solution (Update Prices Solution.sln) fi le
contained in the VB2010\Chap09\Update Prices Solution folder. If
necessary, open the designer window. Th e Increase button’s Click
event procedure should ask the user for a percentage amount by
which each price stored in an array should be increased. It then should
increase each price by that amount, displaying each increased price
(right-aligned with two decimal places) in the list box. (Hint: You
can clear the contents of a list box using the Items collection’s Clear
method.) Save the solution and then start the application. Click the
Increase button. Increase each price by 5%. Close the Code Editor
window and then close the solution.

19. Open the Car Sales Solution (Car Sales Solution.sln) fi le contained in
the VB2010\Chap09\Car Sales Solution folder. If necessary, open the
designer window. Th e interface allows the user to enter the number
of each car type sold by each salesperson. Th e Add to Total button
should use an array to accumulate the numbers sold by car type. It
also should display (in the labels) the total number sold for each car
type. Save the solution and then start and test the application. Close
the Code Editor window and then close the solution.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

C7718_ch09.indd 536C7718_ch09.indd 536 14/03/11 8:42 PM14/03/11 8:42 PM

537

Lesson A Exercises L E S S O N A

20. In this exercise, you modify the application from Exercise 18. Th e
modifi ed application allows the user to update a specifi c price.
Use Windows to make a copy of the Update Prices Solution folder.
Rename the folder Modifi ed Update Prices Solution. Open the
Update Prices Solution (Update Prices Solution.sln) fi le contained
in the Modifi ed Update Prices Solution folder. Open the designer
window. Modify the Increase button’s Click event procedure so it also
asks the user to enter a number from 1 through 10. If the user enters
the number 1, the procedure should update the fi rst price in the
array. If the user enters the number 2, the procedure should update
the second price in the array, and so on. Save the solution and then
start the application. Click the Increase button. Increase the second
price by 10%. Click the Increase button again. Th is time, increase the
tenth price by 5%. (Th e second price in the list box should still refl ect
the 10% increase.) Close the Code Editor window and then close
the solution.

21. Open the Scores Solution (Scores Solution.sln) fi le contained in
the VB2010\Chap09\Scores Solution folder. If necessary, open the
designer window. Open the Code Editor window and then open the
code template for the btnDisplay control’s Click event procedure.
Declare a 20-element, one-dimensional Integer array named
intScores. Assign the following 20 numbers to the array: 88, 72, 99,
20, 66, 95, 99, 100, 72, 88, 78, 45, 57, 89, 85, 78, 75, 88, 72, and 88. Th e
procedure should prompt the user to enter a score from 0 through
100. It then should display (in a message box) the number of students
who earned that score. Code the procedure. Save the solution and
then start the application. Use the application to answer the following
questions, and then close the Code Editor window and the solution:

How many students earned a score of 72?
How many students earned a score of 88?
How many students earned a score of 20?
How many students earned a score of 99?

22. In this exercise, you modify the application from Exercise 21. Th e
modifi ed application allows the user to display the number of stu-
dents earning a score within a specifi c range. Use Windows to make a
copy of the Scores Solution folder. Rename the folder Modifi ed Scores
Solution. Open the Scores Solution (Scores Solution.sln) fi le con-
tained in the Modifi ed Scores Solution folder. Open the designer and
Code Editor windows. Modify the btnDisplay control’s Click event
procedure to prompt the user to enter both a minimum score and a
maximum score. Th e procedure then should display (in a message
box) the number of students who earned a score within that range.
Save the solution and then start the application. Use the application
to answer the following questions, and then close the Code Editor
window and the solution:

How many students earned a score from 70 through 79?
How many students earned a score from 65 through 85?
How many students earned a score from 0 through 50?

ADVANCED

ADVANCED

ADVANCED

C7718_ch09.indd 537C7718_ch09.indd 537 14/03/11 8:42 PM14/03/11 8:42 PM

538

C H A P T E R 9 Arrays

23. In this exercise, you code an application that generates and displays
six unique random numbers for a lottery game. Each lottery number
can range from 1 through 54 only. Open the Lottery Game Solution
(Lottery Game Solution.sln) fi le contained in the VB2010\Chap09\
Lottery Game Solution folder. If necessary, open the designer window.
Code the Display Lottery Numbers button’s Click event procedure
so that it displays six unique random numbers in the interface. (Hint:
Store the numbers in a one-dimensional array.) Save the solution and
then start the application. Click the Display Lottery Numbers button
several times. Each time you click the button, six unique random
numbers between 1 and 54 (inclusive) should appear in the interface.
Close the Code Editor window and then close the solution.

Discovery

24. In this exercise, you learn about the ReDim statement.

a. Research the Visual Basic ReDim statement. What is the purpose
of the statement? What is the purpose of the Preserve keyword?

b. Open the ReDim Solution (ReDim Solution.sln) fi le contained in
the VB2010\Chap09\ReDim Solution folder. If necessary, open
the designer window. Open the Code Editor window and locate
the btnDisplay control’s Click event procedure. Study the existing
code, and then modify the procedure so that it stores any number
of sales amounts in the intSales array. (Hint: Declare the array
using empty sets of parentheses and braces. Use the ReDim state-
ment to add an element to the array.)

c. Save the solution and then start the application. Click the Display
Sales button and then enter the following sales amounts, one at a
time: 700, 550, and 800. Click the Cancel button in the input box.
Th e three sales amounts should appear in the list box.

d. Click the Display Sales button again and then enter the follow-
ing sales amounts, one at a time: 5, 9, 45, 67, 8, and 0. Click the
Cancel button in the input box. Th is time, six sales amounts
should appear in the list box. Close the Code Editor window and
then close the solution.

ADVANCED

C7718_ch09.indd 538C7718_ch09.indd 538 14/03/11 8:42 PM14/03/11 8:42 PM

539

Parallel One-Dimensional Arrays L E S S O N B

 ❚ LESSON B
After studying Lesson B, you should be able to:

 • Explain the relationship between the elements in parallel one-dimensional
arrays

 • Create parallel one-dimensional arrays

 • Locate information in two parallel one-dimensional arrays

Parallel One-Dimensional Arrays
Recall that your task in this chapter is to create an application for Takoda
Tapahe, the owner of a small gift shop named Treasures. Th e application
should allow Takoda to enter a product ID. It then should display the
product’s price. Figure 9-30 shows a portion of the gift shop’s price list.

Product ID Price
BX35 13

CR20 10

FE15 12

KW10 24

MM67 4

Figure 9-30 A portion of the gift shop’s price list

Recall that all of the variables in an array have the same data type. So how
can you store a price list that includes a string (the product ID) and a
number (the price) in an array? One solution is to use two one-dimensional
arrays: a String array to store the product IDs and an Integer array to store
the prices. Both arrays, referred to as parallel arrays, are illustrated in
Figure 9-31.

Parallel arrays are two or more arrays whose elements are related by their
position in the arrays; in other words, they are related by their subscripts.
Th e strIds and intPrices arrays in Figure 9-31 are parallel because
each element in the strIds array corresponds to the element located in
the same position in the intPrices array. For example, the item whose
product ID is BX35 [strIds(0)] has a price of $13 [intPrices(0)].
Likewise, the item whose product ID is CR20 [strIds(1)] has a price
of $10 [intPrices(1)]. Th e same relationship is true for the remaining
elements in both arrays. To determine an item’s price, you locate the item’s
ID in the strIds array and then view its corresponding element in the
intPrices array.

C7718_ch09.indd 539C7718_ch09.indd 539 14/03/11 8:42 PM14/03/11 8:42 PM

540

C H A P T E R 9 Arrays

BX35 13

CR20 10

FE15 12

KW10 24

MM67 4

Figure 9-31 Illustration of two parallel one-dimensional arrays

intPrices(0)

intPrices(1)

intPrices(2)

intPrices(3)

intPrices(4)

strIds(0)

strIds(1)

strIds(2)

strIds(3)

strIds(4)

To use parallel one-dimensional arrays to code the Treasures Gift Shop
application:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.
Open the Treasures Solution (Treasures Solution.sln) fi le contained
in the VB2010\Chap09\Treasures Solution-Parallel folder. If neces-
sary, open the designer window. Th e text box’s CharacterCasing and
MaxLength properties are set to Upper and 4, respectively. Recall
that when a text box’s CharacterCasing property is set to Upper, any
letters the user types will appear in uppercase. When a text box’s
MaxLength property is set to 4, the user can enter a maximum of four
characters in the text box.

2. Open the Code Editor window. Replace <your name> and
 <current date> in the comments with your name and the current
date, respectively.

3. Locate the btnDisplay control’s Click event procedure. First, you will
declare and initialize the two parallel one-dimensional arrays. Click
the blank line above the ' assign the ID to a variable
 comment and then enter the following array declaration statements:

Dim strIds() As String =
 {"BX35", "CR20", "FE15", "KW10", "MM67"}
Dim intPrices() As Integer = {13, 10, 12, 24, 4}

4. Th e procedure will use a String variable to store the product ID
entered by the user. It also will use an Integer variable to keep track
of the array subscripts while the array is being searched. Enter the
 following two declaration statements:

Dim strSearchForId As String
Dim intSub As Integer

5. Now you will assign the product ID entered by the user to the
strSearchForId variable. Click the blank line below the
' assign the ID to a variable comment and then enter the
 following assignment statement:

strSearchForId = txtId.Text

START HERE

C7718_ch09.indd 540C7718_ch09.indd 540 14/03/11 8:42 PM14/03/11 8:42 PM

541

Parallel One-Dimensional Arrays L E S S O N B

6. Next, you will use a loop to search each element in the strIds array,
stopping either when the end of the array is reached or when the ID
is located in the array. Click the blank line below the ' the array
or the ID is found comment and then enter the following lines
of code:

Do Until intSub = strIds.Length OrElse
 strSearchForId = strIds(intSub)
 intSub = intSub + 1
Loop

7. Now you need to determine why the loop ended. You can do this
using a selection structure whose condition compares the value
stored in the intSub variable with the value stored in the strIds
array’s Length property. If the variable’s value is less than the number
of array elements, the loop ended because the ID was located in the
array. In that case, the selection structure’s true path should display
the price located in the same position in the intPrices array. On
the other hand, if the variable’s value is not less than the number of
array elements, the loop ended because it reached the end of the array
without fi nding the ID. In that case, the selection structure’s false path
should display the “Invalid ID” message in a message box. Click the
blank line below the ' determine whether the ID was found
comment and then enter the following lines of code:

If intSub < strIds.Length Th en
 lblPrice.Text = intPrices(intSub).ToString("C0")
Else
 MessageBox.Show("Invalid ID",
 "Treasures Gift Shop",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
End If

Figure 9-32 shows the btnDisplay control’s Click event procedure.

Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click
 ' displays the price associated with an ID

 Dim strIds() As String =
 {"BX35", "CR20", "FE15", "KW10", "MM67"}
 Dim intPrices() As Integer = {13, 10, 12, 24, 4}
 Dim strSearchForId As String
 Dim intSub As Integer

 ' assign the ID to a variable
 strSearchForId = txtId.Text

 ' search the strIds array for the ID
 ' continue searching until the end of
 ' the array or the ID is found

Figure 9-32 btnDisplay control’s Click event procedure using parallel one-dimensional
arrays (continues)

parallel one-dimensional arrays

C7718_ch09.indd 541C7718_ch09.indd 541 14/03/11 8:42 PM14/03/11 8:42 PM

542

C H A P T E R 9 Arrays

To test the Treasures Gift Shop application:

1. Save the solution and then start the application. Type cr20 in the
Product ID box and then click the Display Price button. $10 appears
in the Price box. See Figure 9-33.

Figure 9-33 Interface showing the price for product ID CR20

2. Type xx44 in the Product ID box and then click the Display Price
button. Th e “Invalid ID” message appears in a message box. Close the
message box.

3. On your own, test the application using other valid and invalid IDs.
When you are fi nished testing the application, click the Exit button.

4. Close the Code Editor window and then close the solution.

START HERE

 Do Until intSub = strIds.Length OrElse
 strSearchForId = strIds(intSub)
 intSub = intSub + 1
 Loop

 ' determine whether the ID was found
 If intSub < strIds.Length Then
 lblPrice.Text = intPrices(intSub).ToString("C0")
 Else
 MessageBox.Show("Invalid ID",
 "Treasures Gift Shop",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End If

 txtId.Focus()
End Sub

Figure 9-32 btnDisplay control’s Click event procedure using parallel one-dimensional
arrays

you also can use intSub += 1

displays the corresponding price
from the intPrices array

searches for the ID in the
strIds array

(continued)

C7718_ch09.indd 542C7718_ch09.indd 542 14/03/11 8:42 PM14/03/11 8:42 PM

543

Lesson B Exercises L E S S O N B

Lesson B Summary

 • To create parallel one-dimensional arrays:

Create two or more one-dimensional arrays. When assigning values to the
arrays, be sure that the value stored in each element in the fi rst array corre-
sponds to the values stored in the same elements in the other arrays.

Lesson B Key Term
Parallel arrays—two or more arrays whose elements are related by their sub-
scripts (position) in the arrays

Lesson B Review Questions

1. If the elements in two arrays are related by their subscripts, the arrays
are called arrays.

a. associated

b. coupled

c. matching

d. parallel

2. Th e strStates and strCapitals arrays are parallel arrays. If
Illinois is stored in the second element in the strStates array,
where is its capital (Springfi eld) stored?

a. strCapitals(1)

b. strCapitals(2)

Lesson B Exercises

1. Open the State Capitals Solution (State Capitals Solution.sln) fi le
contained in the VB2010\Chap09\State Capitals Solution folder. If
necessary, open the designer window. Open the Code Editor window.
Locate the btnDisplay control’s Click event procedure. Th e proce-
dure declares and initializes parallel one-dimensional arrays named
strStates and strCaps. Th e procedure should display the contents
of the arrays in the list box. Display the information in the following
format: the capital name followed by a comma, a space, and the state
name. Code the procedure. Save the solution and then start and test
the application. Close the Code Editor window and then close the
solution.

2. In this exercise, you code an application that allows Professor Carver
to display a grade based on the number of points he enters. Th e
grading scale is shown in Figure 9-34. Open the Carver Solution

INTRODUCTORY

INTERMEDIATE

C7718_ch09.indd 543C7718_ch09.indd 543 14/03/11 8:42 PM14/03/11 8:42 PM

544

C H A P T E R 9 Arrays

(Carver Solution.sln) fi le contained in the VB2010\Chap09\Carver
Solution-Parallel folder. If necessary, open the designer window.
Open the Code Editor window and then open the code template for
the btnDisplay control’s Click event procedure. Store the minimum
points in a one-dimensional Integer array named intPoints. Store
the grades in a one-dimensional String array named strGrades.
Th e arrays should be parallel arrays. Th e procedure should search
the intPoints array for the number of points entered by the user.
It then should display the corresponding grade from the strGrades
array. Save the solution and then start and test the application. Close
the Code Editor window and then close the solution.

Minimum points Maximum points Grade
0 299 F

300 349 D

350 399 C

400 449 B

450 500 A

Figure 9-34 Grading scale for Exercise 2

3. In this exercise, you modify the application from Exercise 2. Th e
modifi ed application will allow the user to change the grading scale
when the application is started. Use Windows to make a copy of the
Carver Solution-Parallel folder. Rename the folder Modifi ed Carver
Solution-Parallel. Open the Carver Solution (Carver Solution.sln) fi le
contained in the Modifi ed Carver Solution-Parallel folder. Open the
designer and Code Editor windows.

a. When the form is loaded into the computer’s memory, the
 application should use the InputBox function to prompt the user
to enter the total number of possible points—in other words, the
total number of points a student can earn in the course. Modify
the application’s code to perform this task.

b. Modify the application’s code to use the grading scale shown in
Figure 9-35. For example, if the user enters the number 500 in
response to the InputBox function, the code should enter 450
(90% of 500) as the minimum number of points for an A. If the
user enters the number 300, the code should enter 270 (90% of
300) as the minimum number of points for an A.

c. Save the solution and then start the application. Enter 300 as the
number of possible points, and then enter 185 in the Points text
box. Click the Display Grade button. A grade of D should appear
in the interface. Stop the application.

d. Start the application again. Enter 500 as the number of possible
points, and then enter 363 in the Points text box. Click the Display
Grade button. A grade of C should appear in the interface. Close
the Code Editor window and then close the solution.

INTERMEDIATE

C7718_ch09.indd 544C7718_ch09.indd 544 14/03/11 8:42 PM14/03/11 8:42 PM

545

Lesson B Exercises L E S S O N B

Minimum points Grade
0 F

60% of the possible points D

70% of the possible points C

80% of the possible points B

90% of the possible points A

Figure 9-35 Grading scale for Exercise 3

4. Open the Laury Solution (Laury Solution.sln) fi le contained in the
VB2010\Chap09\Laury Solution-Parallel folder. If necessary, open
the designer window. Open the Code Editor window and then open
the code template for the btnDisplay control’s Click event procedure.
Th e procedure should display a shipping charge that is based on the
number of items a customer orders. Th e order amounts and shipping
charges are listed in Figure 9-36. Code the procedure. Store the mini-
mum order amounts and shipping charges in parallel arrays. Display
the appropriate shipping charge with a dollar sign and two decimal
places. Save the solution and then start and test the application. Close
the Code Editor window and then close the solution.

Minimum order Maximum order Shipping charge
1 10 15

11 50 10

51 100 5

101 No maximum 0

Figure 9-36 Order amounts and shipping charges for Exercise 4

INTERMEDIATE

C7718_ch09.indd 545C7718_ch09.indd 545 14/03/11 8:42 PM14/03/11 8:42 PM

546

C H A P T E R 9 Arrays

 ❚ LESSON C
After studying Lesson C, you should be able to:

 • Declare and initialize a two-dimensional array

 • Store data in a two-dimensional array

 • Sum the values in a two-dimensional array

 • Search a two-dimensional array

Two-Dimensional Arrays
As you learned in Lesson A, the most commonly used arrays in business
applications are one-dimensional and two-dimensional. You can visualize a
one-dimensional array as a column of variables in memory. A two- dimensional
array, on the other hand, resembles a table in that the variables (elements)
are in rows and columns. You can determine the number of elements in a
two-dimensional array by multiplying the number of its rows by the number
of its columns. An array that has four rows and three columns, for example,
 contains 12 elements.

Each element in a two-dimensional array is identifi ed by a unique combina-
tion of two subscripts that the computer assigns to the element when the
array is created. Th e subscripts specify the element’s row and column posi-
tions in the array. Elements located in the fi rst row in a two-dimensional array
are assigned a row subscript of 0. Elements in the second row are assigned a
row subscript of 1, and so on. Similarly, elements located in the fi rst column
in a two-dimensional array are assigned a column subscript of 0. Elements in
the second column are assigned a column subscript of 1, and so on.

You refer to each element in a two-dimensional array by the array’s name
and the element’s row and column subscripts, with the row subscript listed
fi rst and the column subscript listed second. Th e subscripts are separated
by a comma and specifi ed in a set of parentheses immediately follow-
ing the array name. For example, to refer to the element located in the fi rst
row, fi rst column in a two-dimensional array named strProducts, you
use strProducts(0, 0)—read “strProducts sub zero comma zero.”
Similarly, to refer to the element located in the second row, third column, you
use strProducts(1, 2). Notice that the subscripts are one number less
than the row and column in which the element is located. Th is is because the
row and column subscripts start at 0 rather than at 1. You will fi nd that the last
row subscript in a two-dimensional array is always one number less than the
number of rows in the array. Likewise, the last column subscript is always one
number less than the number of columns in the array. Figure 9-37 illustrates
the elements contained in the two-dimensional strProducts array.

strProducts(0, 2)strProducts(0,0)

strProducts(1, 2)

strProducts(2, 1)

AC34 Shirt Red
BD12 Coat Blue

WhiteBlouseCP14

Figure 9-37 Names of some of the elements in the strProducts array

C7718_ch09.indd 546C7718_ch09.indd 546 14/03/11 8:42 PM14/03/11 8:42 PM

547

Two-Dimensional Arrays L E S S O N C

Figure 9-38 shows two versions of the syntax for declaring a two-dimensional
array in Visual Basic. In each version, arrayName is the name of the array
and dataType is the type of data the array variables will store. In Version 1’s
syntax, highestRowSubscript and highestColumnSubscript are integers that
specify the highest row and column subscripts, respectively, in the array.
When the array is created, it will contain one row more than the number
specifi ed in the highestRowSubscript argument and one column more
than the number specifi ed in the highestColumnSubscript argument. Th is
is because the fi rst row and column subscripts in a two-dimensional array
are 0. When you declare a two-dimensional array using the syntax shown
in Version 1, the computer automatically initializes each element in the
array when the array is created.

You would use Version 2’s syntax when you want to specify each variable’s
initial value. You do this by including a separate initialValues section,
enclosed in braces, for each row in the array. If the array has two rows, then
the statement that declares and initializes the array should have two initial-
Values sections. If the array has fi ve rows, then the declaration statement
should have fi ve initialValues sections. Within the individual initialValues
sections, you enter one or more values separated by commas. Th e number
of values to enter corresponds to the number of columns in the array. If the
array contains 10 columns, then each individual initialValues section should
contain 10 values. In addition to the set of braces enclosing each individual
initialValues section, Version 2’s syntax also requires all of the initialValues
sections to be enclosed in a set of braces.

When using Version 2’s syntax, be sure to include a comma within the paren-
theses that follow the array’s name. Th e comma indicates that the array is a
two-dimensional array. (Recall that a comma is used to separate the row sub-
script from the column subscript in a two-dimensional array.) Also included
in Figure 9-38 are examples of using both syntax versions.

Figure 9-38 Syntax versions and examples of declaring a two-dimensional array (continues)

Declaring a two-dimensional array

Syntax – Version 1
{Dim | Private | Static} arrayName(highestRowSubscript, highestColumnSubscript) As dataType

Syntax – Version 2
{Dim | Private | Static} arrayName(,) As dataType = {{initialValues}, . . . {initialValues}}

Example 1
Dim strNames(5, 2) As String
declares a six-row, three-column procedure-level array named strNames; each element is
automatically initialized using the keyword Nothing

Example 2
Static intNumbers(4, 3) As Integer
declares a static, fi ve-row, four-column procedure-level array named intNumbers; each
element is automatically initialized to 0

C7718_ch09.indd 547C7718_ch09.indd 547 14/03/11 8:42 PM14/03/11 8:42 PM

548

C H A P T E R 9 Arrays

Figure 9-38 Syntax versions and examples of declaring a two-dimensional array

Example 3
Dim strProducts(,) As String =
 {{"AC34", "Shirt", "Red"},
 {"BD12", "Coat", "Blue"},
 {"CP14", "Blouse", "White"}}
declares and initializes a three-row, three-column procedure-level array named
strProducts (the array is illustrated in Figure 9-37)

Example 4
Private dblSales(,) As Double = {{75.33, 9.65},
 {23.55, 6.89},
 {4.5, 89.3}}
declares and initializes a three-row, two-column class-level array named dblPrices

(continued)

After an array is declared, you can use another statement to store a diff erent
value in an array element. Examples of such statements include assignment
statements and statements that contain the TryParse method. Figure 9-39
shows examples of both types of statements.

Figure 9-39 Examples of statements used to store data in a two-dimensional array
(continues)

Storing data in a two-dimensional array

Example 1
strNames(0, 1) = "Sarah"
assigns the string “Sarah” to the element located in the fi rst row, second column in
the strNames array

Example 2
For intRow As Integer = 0 To 4
 For intColumn As Integer = 0 To 3
 intNumbers(intRow, intColumn) += 1
 Next intColumn
Next intRow
adds the number 1 to the contents of each element in the intNumbers array

Example 3
Dim intRow As Integer
Dim intCol As Integer
Do While intRow <= 2
 intCol = 0
 Do While intCol <= 1
 dblSales(intRow, intCol) = 100
 intCol = intCol + 1
 Loop
 intRow = intRow + 1
Loop
assigns the number 100 to each element in the dblSales array

C7718_ch09.indd 548C7718_ch09.indd 548 14/03/11 8:42 PM14/03/11 8:42 PM

549

Two-Dimensional Arrays L E S S O N C

Figure 9-39 Examples of statements used to store data in a two-dimensional array

Example 4
dblSales(2, 1) = dblSales(2, 1) * .1
multiplies the value contained in the third row, second column in the dblSales array
by .1 and then assigns the result to the element; you also can write this statement as
dblSales(2, 1) *= .1

Example 5
Double.TryParse(txtSales.Text, dblSales(0, 0))
assigns either the value entered in the txtSales control (converted to Double) or the
number 0 to the element located in the fi rst row, fi rst column in the dblSales array

(continued)

Earlier, you learned how to use the GetUpperBound method to deter-
mine the highest subscript in a one-dimensional array. You also can use
the GetUpperBound method to determine the highest row and column
 subscripts in a two-dimensional array, as shown in Figure 9-40.

Figure 9-40 Syntax and an example of a two-dimensional array’s GetUpperBound method

Using a two-dimensional array’s GetUpperBound method

Syntax to determine the highest row subscript
arrayName.GetUpperBound(0)

Syntax to determine the highest column subscript
arrayName.GetUpperBound(1)

Example
Dim strOrders(10, 3) As String
Dim intHighestRowSub As Integer
Dim intHighestColumnSub As Integer
intHighestRowSub = strOrders.GetUpperBound(0)
intHighestColumnSub = strOrders.GetUpperBound(1)
assigns the numbers 10 and 3 to the intHighestRowSub and
intHighestColumnSub variables, respectively

the row dimension is always 0

the column dimension is always 1

Traversing a Two-Dimensional Array
Recall that you use a loop to traverse a one-dimensional array. To traverse
a two-dimensional array, you typically use two loops: an outer loop and a
nested loop. One of the loops keeps track of the row subscript and the other
keeps track of the column subscript. You can code the loops using either
the For . . . Next statement or the Do . . . Loop statement. Rather than using
two loops, you also can traverse a two-dimensional array using one For
Each . . . Next loop. However, recall that the instructions in a For Each . . . Next
loop can only read the array values; they cannot permanently modify the val-
ues. Figure 9-41 shows examples of loops that traverse the strMonths array,
displaying each element’s value in the lstMonths control.

C7718_ch09.indd 549C7718_ch09.indd 549 14/03/11 8:42 PM14/03/11 8:42 PM

550

C H A P T E R 9 Arrays

Figure 9-41 Examples of loops used to traverse a two-dimensional array

Traversing a two-dimensional array

Private strMonths(,) As String =
 {{"Jan", "31"},
 {"Feb", "28"},
 {"Mar", "31"},
 {"Apr", "30"}}

Example 1
Dim intHighRow As Integer = strMonths.GetUpperBound(0)
Dim intHighCol As Integer = strMonths.GetUpperBound(1)
For intR As Integer = 0 To intHighRow
 For intC As Integer = 0 To intHighCol
 lstMonths.Items.Add(strMonths(intR, intC))
 Next intC
Next intR
displays the contents of the strMonths array in the lstMonths control; the contents
are displayed row by row, as follows: Jan, 31, Feb, 28, Mar, 31, Apr, and 30

Example 2
Dim intHighRow As Integer = strMonths.GetUpperBound(0)
Dim intHighCol As Integer = strMonths.GetUpperBound(1)
Dim intR As Integer
Dim intC As Integer
Do While intC <= intHighCol
 intR = 0
 Do While intR <= intHighRow
 lstMonths.Items.Add(strMonths(intR, intC))
 intR += 1
 Loop
 intC += 1
Loop
displays the contents of the strMonths array in the lstMonths control; the contents
are displayed column by column, as follows: Jan, Feb, Mar, Apr, 31, 28, 31, and 30

Example 3
For Each strElement As String In strMonths
 lstMonths.Items.Add(strElement)
Next strElement
displays the contents of the strMonths array in the lstMonths control; the contents
are displayed as follows: Jan, 31, Feb, 28, Mar, 31, Apr, and 30

Totaling the Values Stored in
a Two-Dimensional Array
Figure 9-42 shows the problem specifi cation for the Jenko Booksellers
 application. Th e application displays the total of the sales stored in a
two-dimensional array.

C7718_ch09.indd 550C7718_ch09.indd 550 14/03/11 8:42 PM14/03/11 8:42 PM

551

Totaling the Values Stored in a Two-Dimensional Array L E S S O N C

Figure 9-42 Problem specifi cation for the Jenko Booksellers application

Jenko Booksellers sells paperback and hardcover books in each of its three stores. The
sales manager wants an application that displays the total sales made in the previous
month. The sales amounts for the previous month are shown in the chart below. The
application will store the sales amounts in a two-dimensional array that has three rows
and two columns. Each row will contain the data pertaining to one of the three stores.
The sales amounts for paperback books will be stored in the fi rst column. The second
column will contain the sales amounts for hardcover books. The application will need to
total the values stored in the array.

Paperback sales ($) Hardcover sales ($)

Store 1 1200.33 2350.75

Store 2 3677.80 2456.05

Store 3 750.67 1345.99

To code and then test the Jenko Booksellers application:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.
Open the Jenko Booksellers Solution (Jenko Booksellers Solution.sln)
fi le contained in the VB2010\Chap09\Jenko Booksellers Solution folder.
If necessary, open the designer window.

2. Open the Code Editor window. Replace <your name> and <current date>
in the comments with your name and the current date, respectively.

3. Locate the btnCalc control’s Click event procedure. First, you will
declare and initialize a two-dimensional array to store the sales
amounts. Th e array will contain three rows (one for each store) and
two columns. Th e fi rst column in the array will contain the paperback
book sales, and the second column will contain the hardcover book
sales. Click the blank line immediately above the ' total the
sales amounts stored in the array comment and then enter
the following array declaration statement:

Dim dblSales(,) As Double = {{1200.33, 2350.75},
 {3677.8, 2456.05},
 {750.67, 1345.99}}

4. Now you will declare a Double variable named dblTotal. Th e
dblTotal variable will be an accumulator variable; it will accumulate
the sales amounts stored in the array. Enter the following declaration
statement:

Dim dblTotal As Double

5. Next, you will enter a loop that totals the values stored in the array.
Click the blank line below the ' total the sales amounts
stored in the array comment and then enter the following lines
of code:

For Each dblElement As Double in dblSales
 dblTotal = dblTotal + dblElement
Next dblElement

START HERE

C7718_ch09.indd 551C7718_ch09.indd 551 14/03/11 8:42 PM14/03/11 8:42 PM

552

C H A P T E R 9 Arrays

6. Finally, you will display the total sales, which is stored in the
 dblTotal variable. Insert a blank line below the Next dblElement
clause and then enter the additional assignment statement shown in
Figure 9-43.

Figure 9-43 btnCalc control’s Click event procedure

you also can use
dblTotal += dblElement

enter this additional
assignment statement

7. Save the solution and then start the application. Click the
Calculate button. $11,781.59 appears in the Total sales box, as
shown in Figure 9-44.

Figure 9-44 Total sales displayed in the interface

Searching a Two-Dimensional Array
In Lesson B, you coded the Treasures Gift Shop application. As you may
remember, the application stores the gift shop’s price list in two parallel one-
dimensional arrays: a String array for the product IDs and an Integer array
for the prices. It then searches the String array for the ID entered by the user.
If the ID is in the array, the application displays its corresponding price from
the Integer array; otherwise, it displays an appropriate message in a message
box. Instead of using two parallel one-dimensional arrays for the price list,
you can use a two-dimensional array. To do this, you store the product IDs
in the fi rst column of the array, and store the prices in the second column.
However, you will need to treat the prices as strings, because all of the data in
a two-dimensional array must have the same data type.

C7718_ch09.indd 552C7718_ch09.indd 552 14/03/11 8:42 PM14/03/11 8:42 PM

553

Searching a Two-Dimensional Array L E S S O N C

To use a two-dimensional array to code the Treasures Gift Shop
application:

1. Open the Treasures Solution (Treasures Solution.sln) fi le contained in
the VB2010\Chap09\Treasures Solution-Two-Dimensional folder. If
necessary, open the designer window. Th e text box’s CharacterCasing
and MaxLength properties are set to Upper and 4, respectively. Recall
that when a text box’s CharacterCasing property is set to Upper, any
letters the user types will appear in uppercase. When a text box’s
MaxLength property is set to 4, the user can enter a maximum of four
characters in the text box.

2. Open the Code Editor window. Replace <your name> and <current date>
in the comments with your name and the current date, respectively.

3. Locate the btnDisplay control’s Click event procedure. First, you will
declare and initialize the two-dimensional array. Click the blank line
above the ' assign the ID to a variable comment and then
enter the following array declaration statement:

Dim strProducts(,) As String = {{"BX35", "13"},
 {"CR20", "10"},
 {"FE15", "12"},
 {"KW10", "24"},
 {"MM67", "4"}}

4. Th e procedure will use a String variable to store the product ID
entered by the user. It also will use an Integer variable to keep track of
the row subscripts while the array is being searched. Enter the follow-
ing two declaration statements:

Dim strSearchForId As String
Dim intRowSub As Integer

5. Now you will assign the product ID entered by the user to the
strSearchForId variable. Click the blank line below the
' assign the ID to a variable comment and then enter the
following assignment statement:

strSearchForId = txtId.Text

6. Next, you will use a loop to search each element in the fi rst column
in the strProducts array, stopping either when the end of the array
is reached or when the ID is located in the array. Click the blank line
below the ' the array or the ID is found comment and then
enter the following lines of code:

Do Until intRowSub > strProducts.GetUpperBound(0) OrElse
 strSearchForId = strProducts(intRowSub, 0)
 intRowSub = intRowSub + 1
Loop

7. Now you need to determine why the loop ended. You can do
this using a selection structure whose condition determines
whether the value stored in the intRowSub variable is less than or
equal to the highest row subscript in the array. Click the blank line

START HERE

C7718_ch09.indd 553C7718_ch09.indd 553 14/03/11 8:42 PM14/03/11 8:42 PM

554

C H A P T E R 9 Arrays

below the ' determine whether the ID was found comment
and then enter the following If clause:

If intRowSub <= strProducts.GetUpperBound(0) Th en

8. If the value in the intRowSub variable is less than or equal to the
highest row subscript, the loop ended because the ID was located in
the fi rst column in the array. In that case, the selection structure’s true
path should display the price contained in the same row as the ID, but
in the second column in the array. For example, if the ID is contained
in the strProducts(3, 0) element, then its associated price is
contained in the strProducts(3, 1) element. However, recall that
the price is stored as a string in the strProducts array. In order to
use the ToString method to format the price with a dollar sign and
zero decimal places, you fi rst need to convert the price to a numeric
data type. (Recall that the ToString method is used with numeric vari-
ables.) Enter the following lines of code:

Dim intPrice As Integer
Integer.TryParse(strProducts(intRowSub, 1), intPrice)
lblPrice.Text = intPrice.ToString("C0")

9. On the other hand, if the value in the intRowSub variable is greater
than the highest row subscript, the loop ended because it reached
the end of the array without fi nding the ID. In that case, the selec-
tion structure’s false path should display the “Invalid ID” message in a
message box. Enter the following fi ve lines of code:

Else
 MessageBox.Show("Invalid ID",
 "Treasures Gift Shop",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)

10. If necessary, delete the blank line above the End If clause.

Figure 9-45 shows the btnDisplay control’s Click event procedure.

Figure 9-45 btnDisplay control’s Click event procedure using a two-dimensional array
(continues)

Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click
 ' displays the price associated with an ID

 Dim strProducts(,) As String = {{"BX35", "13"},
 {"CR20", "10"},
 {"FE15", "12"},
 {"KW10", "24"},
 {"MM67", "4"}}
 Dim strSearchForId As String
 Dim intRowSub As Integer

 ' assign the ID to a variable
 strSearchForId = txtId.Text

 ' search the strProducts array for the ID
 ' continue searching until the end of
 ' the array or the ID is found

two-dimensional array

C7718_ch09.indd 554C7718_ch09.indd 554 14/03/11 8:42 PM14/03/11 8:42 PM

555

Searching a Two-Dimensional Array L E S S O N C

To test the Treasures Gift Shop application:

1. Save the solution and then start the application. Type kw10 in the
Product ID box and then click the Display Price button. $24 appears
in the Price box. See Figure 9-46.

Figure 9-46 Interface showing the price for product ID KW10

2. Type xx44 in the Product ID box and then click the Display Price
button. Th e “Invalid ID” message appears in a message box. Close the
message box.

3. On your own, test the application using other valid and invalid IDs.
When you are fi nished testing the application, click the Exit button.

4. Close the Code Editor window and then close the solution.

START HERE

Figure 9-45 btnDisplay control’s Click event procedure using a two-dimensional array

 Do Until intRowSub > strProducts.GetUpperBound(0) OrElse
 strSearchForId = strProducts(intRowSub, 0)
 intRowSub = intRowSub + 1
 Loop

 ' determine whether the ID was found
 If intRowSub <= strProducts.GetUpperBound(0) Then
 Dim intPrice As Integer
 Integer.TryParse(strProducts(intRowSub, 1), intPrice)
 lblPrice.Text = intPrice.ToString("C0")
 Else
 MessageBox.Show("Invalid ID",
 "Treasures Gift Shop",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End If

 txtId.Focus()
End Sub

searches for the ID in
the fi rst column in the
strProducts arrayyou also can use intRowSub += 1

assigns the corresponding
price from the second column
in the strProducts array

(continued)

C7718_ch09.indd 555C7718_ch09.indd 555 14/03/11 8:42 PM14/03/11 8:42 PM

556

C H A P T E R 9 Arrays

Lesson C Summary

 • To declare a two-dimensional array:

Use either of the syntax versions shown below. Th e highestRowSubscript and
highestColumnSubscript arguments in Version 1 are integers that specify the
highest row and column subscripts, respectively, in the array. Using Version
1’s syntax, the computer automatically initializes the array elements. Th e
initialValues section in Version 2 is a list of values separated by commas and
enclosed in braces. You include a separate initialValues section for each row
in the array. Each initialValues section should contain the same number of
values as there are columns in the array.

Version 1: {Dim | Private | Static} arrayName(highestRowSubscript,
 highestColumnSubscript) As dataType

Version 2: {Dim | Private | Static} arrayName(,) As dataType =
{{initialValues}, . . . {initialValues}}

 • To refer to an element in a two-dimensional array:

Use the syntax arrayName(rowSubscript, columnSubscript).

 • To determine the highest row subscript in a two-dimensional array:

Use the GetUpperBound method as follows: arrayName.GetUpperBound(0).

 • To determine the highest column subscript in a two-dimensional array:

Use the GetUpperBound method as follows: arrayName.GetUpperBound(1).

Lesson C Key Term
Two-dimensional array—an array made up of rows and columns; each
 element has the same data type and is identifi ed by a unique combination of
two subscripts: a row subscript and a column subscript

Lesson C Review Questions

1. Which of the following declares a two-dimensional array that has
three rows and four columns?

a. Dim decNums(2, 3) As Decimal

b. Dim decNums(3, 4) As Decimal

c. Dim decNums(3, 2) As Decimal

d. Dim decNums(4, 3) As Decimal

C7718_ch09.indd 556C7718_ch09.indd 556 14/03/11 8:42 PM14/03/11 8:42 PM

557

Lesson C Review Questions L E S S O N C

2. Th e intSales array is declared as follows: Dim intSales(,) As
Integer = {{1000, 1200, 900, 500, 2000}, {350, 600,
700, 800, 100}}. Th e intSales(1, 3) = intSales(1, 3) +
10 statement will .

a. replace the 900 amount with 910

b. replace the 500 amount with 510

c. replace the 700 amount with 710

d. replace the 800 amount with 810

3. Th e intSales array is declared as follows: Dim intSales(,)
As Integer = {{1000, 1200, 900, 500, 2000}, {350,
600, 700, 800, 100}}. Th e intSales(0, 4) = intSales
(0, 4 - 2) statement will .

a. replace the 500 amount with 1200

b. replace the 2000 amount with 900

c. replace the 2000 amount with 1998

d. result in an error

4. Th e intSales array is declared as follows: Dim intSales(,) As
Integer = {{1000, 1200, 900, 500, 2000}, {350, 600,
700, 800, 100}}. Which of the following If clauses determines
whether the intRow and intCol variables contain valid row and col-
umn subscripts, respectively, for the array?

a. If intSales(intRow, intCol) >= 0 AndAlso
 intSales(intRow, intCol) < 5 Then

b. If intSales(intRow, intCol) >= 0 AndAlso
 intSales(intRow, intCol) <= 5 Then

c. If intRow >= 0 AndAlso intRow < 3 AndAlso
 intCol >= 0 AndAlso intCol < 6 Then

d. If intRow >= 0 AndAlso intRow < 2 AndAlso
 intCol >= 0 AndAlso intCol < 5 Then

5. Which of the following statements assigns the string “California”
to the element located in the third column, fi fth row in the
 two-dimensional strStates array?

a. strStates(3, 5) = "California"

b. strStates(5, 3) = "California"

c. strStates(4, 2) = "California"

d. strStates(2, 4) = "California"

C7718_ch09.indd 557C7718_ch09.indd 557 14/03/11 8:42 PM14/03/11 8:42 PM

558

C H A P T E R 9 Arrays

6. Which of the following assigns the number 0 to each element in a
two-row, four-column Integer array named intSums?

a. For intRow As Integer = 0 To 1
 For intCol As Integer = 0 To 3
 intSums(intRow, intCol) = 0
 Next intCol
 Next intRow

b. Dim intRow As Integer
 Dim intCol As Integer
 Do While intRow < 2
 intCol = 0
 Do While intCol < 4
 intSums(intRow, intCol) = 0
 intCol = intCol + 1
 Loop
 intRow = intRow + 1
 Loop

c. For intX As Integer = 1 To 2
 For intY As Integer = 1 To 4
 intSums(intX - 1, intY - 1) = 0
 Next intY
 Next intX

d. all of the above

7. Which of the following returns the highest column subscript in a
two-dimensional array named decPays?

a. decPays.GetUpperBound(1)

b. decPays.GetUpperBound(0)

c. decPays.GetUpperSubscript(0)

d. decPays.GetHighestColumn(0)

Lesson C Exercises

1. Write the statement to declare a procedure-level two-dimensional
array named intBalances. Th e array should have four rows and six
columns. Th en write the statement to store the number 100 in the
element located in the second row, fourth column.

2. Write the code to store the number 10 in each element in the
intBalances array from Exercise 1. Use the For . . . Next statement.

3. Rewrite the code from Exercise 2 using a Do . . . Loop statement.

4. Write the statement to assign the Boolean value True to the variable
located in the third row, fi rst column of a two-dimensional Boolean
array named blnAnswers.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

C7718_ch09.indd 558C7718_ch09.indd 558 14/03/11 8:42 PM14/03/11 8:42 PM

559

Lesson C Exercises L E S S O N C

5. Write the Private statement to declare a two-dimensional Integer
array named intOrders that has three rows and two columns. Use
the following values to initialize the array: 1, 2, 10, 20, 100, 200.

6. Write the code to display the contents of a two-dimensional
String array named strParts in the lstParts control. Use the For
Each . . . Next statement. Th en rewrite the code using two For . . . Next
statements to display the array’s contents, row by row.

7. Write the statements that determine the highest row and highest
column subscripts in a two-dimensional array named strTypes.
Th e statements should assign the subscripts to the intHighRow and
intHighCol variables, respectively.

8. Write the statement that determines the number of elements in a
two-dimensional array named strTypes. Th e statement should
assign the number to the intNumTypes variable.

9. Th e dblBonus array is a two-dimensional array. Write the statement
to total the numbers stored in the following three array elements: the
fi rst row, fi rst column; the second row, third column; and the third
row, fourth column. Assign the sum to the dblTotal variable.

10. Th e intQuantities array is a two-dimensional array. Write the
code to multiply each array element by 2. Use two For . . . Next
statements.

11. Open the Laury Solution (Laury Solution.sln) fi le contained in the
VB2010\Chap09\Laury Solution-TwoDimensional folder. If neces-
sary, open the designer window. Open the Code Editor window and
then open the code template for the btnDisplay control’s Click event
procedure. Th e procedure should display a shipping charge that is
based on the number of items a customer orders. Th e order amounts
and shipping charges are listed in Figure 9-47. Code the procedure.
Store the minimum order amounts and shipping charges in a two-
dimensional array. Display the appropriate shipping charge with a dol-
lar sign and two decimal places. Save the solution and then start and
test the application. Close the Code Editor window and then close the
solution.

Figure 9-47 Order amounts and shipping charges for Exercise 11

Minimum order Maximum order Shipping charge
1 10 15

11 50 10

51 100 5

101 No maximum 0

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

ADVANCED

C7718_ch09.indd 559C7718_ch09.indd 559 14/03/11 8:42 PM14/03/11 8:42 PM

560

C H A P T E R 9 Arrays

12. In this exercise, you code an application that allows Professor Carver
to display a grade based on the number of points he enters. Th e grad-
ing scale is shown in Figure 9-48. Open the Carver Solution (Carver
Solution.sln) fi le contained in the VB2010\Chap09\Carver Solution-
TwoDimensional folder. If necessary, open the designer window.
Open the Code Editor window and then open the code template for
the btnDisplay control’s Click event procedure. Store the minimum
points and grades in a two-dimensional array. Th e procedure should
search the array for the number of points entered by the user. It then
should display the corresponding grade from the array. Save the solu-
tion and then start and test the application. Close the Code Editor
window and then close the solution.

Figure 9-48 Grading scale for Exercise 12

Minimum points Maximum points Grade
0 299 F

300 349 D

350 399 C

400 449 B

450 500 A

13. Th e sales manager at Conway Enterprises wants an application that
she can use to display the total domestic, total international, and total
company sales made during a six-month period. Th e sales amounts
are shown in Figure 9-49. Create a Visual Basic Windows applica-
tion. Use the following names for the solution, project, and form fi le,
respectively: Conway Solution, Conway Project, and Main Form.vb.
Save the application in the VB2010\Chap09 folder. Create the interface
shown in Figure 9-50. Code the application. Store the sales amounts in
a two-dimensional array. Save the solution and then start and test the
application. Close the Code Editor window and then close
the solution.

Figure 9-49 Sales amounts for Exercise 13

Month Domestic sales ($) International sales ($)
1 100,000 150,000

2 90,000 120,000

3 75,000 210,000

4 88,000 50,000

5 125,000 220,000

6 63,000 80,000

ADVANCED

ADVANCED

C7718_ch09.indd 560C7718_ch09.indd 560 14/03/11 8:42 PM14/03/11 8:42 PM

561

Lesson C Exercises L E S S O N C

Figure 9-50 Interface for Exercise 13

14. Open the Harrison Solution (Harrison Solution.sln) fi le contained
in the VB2010\Chap09\Harrison Solution folder. Open the Code
Editor window. Th e btnDisplay control’s Click event procedure
should display the largest number stored in the fi rst column of the
intQuantities array. Code the procedure using the For . . . Next
statement. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

15. Open the Count Solution (Count Solution.sln) fi le contained in the
VB2010\Chap09\Count Solution folder. Code the Display button’s
Click event procedure so that it displays the number of times each
of the numbers from 1 through 9 appears in the intNumbers array.
(Hint: Store the counts in a one-dimensional array.) Save the solu-
tion and then start the application. Click the Display button to display
the nine counts. Close the Code Editor window and then close the
solution.

Swat The Bugs

16. Open the Debug Solution (Debug Solution.sln) fi le contained in the
VB2010\Chap09\Debug Solution-Lesson C folder. Open the Code
Editor window and review the existing code. Th e fi rst column in
the strNames array contains fi rst names, and the second column
contains last names. Th e btnDisplay control’s Click event procedure
should display the fi rst and last names in the lstFirst and lstLast con-
trols, respectively. Correct the code to remove the jagged lines. Save
the solution and then start the application. Click the Display but-
ton. Notice that the application is not working correctly. Correct the
errors in the application’s code. Save the solution and then start and
test the application. Close the Code Editor window and then close
the solution.

ADVANCED

ADVANCED

C7718_ch09.indd 561C7718_ch09.indd 561 14/03/11 8:42 PM14/03/11 8:42 PM

C H A P T E R 10
Structures and Sequential
Access Files

Creating the CD Collection Application

In this chapter, you will create an application that keeps track of a person’s
CD collection. More specifi cally, the application will save each CD’s name, the
artist’s name, and the CD price in a sequential access fi le named CDs.txt. When
the application is started, it will display the contents of the fi le in a list box. The
application will allow the user to add information to the fi le and also remove
information from the fi le.

C7718_ch10.indd 562C7718_ch10.indd 562 17/03/11 8:37 PM17/03/11 8:37 PM

563

Previewing the CD Collection Application
Before you start the fi rst lesson in this chapter, you will preview the completed
application. Th e application is contained in the VB2010\Chap10 folder.

To preview the completed application:

1. Use the Run dialog box to run the CD (CD.exe) fi le contained in the
VB2010\Chap10 folder. Th e application’s user interface appears on the
screen, with the contents of the CDs.txt fi le displayed in the list box.
Notice that the list box contains three columns. You will learn how to
align columnar information in Lesson C.

2. First, you will add a new CD to the list box. Click the Add button.
Type Breakout as the CD name and then press Enter. Type Miley
Cyrus as the artist name and then press Enter. Type 9 as the price
and then press Enter. Th e information you entered appears in the list
box. See Figure 10-1.

the CD information
you entered

Figure 10-1 CD information added to the list box

3. Now you will remove the Covers CD from the list box. Click Covers
in the list box and then click the Remove button. Th e information
pertaining to the Covers CD is removed from the list box.

4. Click the Exit button to end the application. Th e application saves the
contents of the list box in the CDs.txt sequential access fi le. You will
learn about sequential access fi les in Lesson B.

5. Use Windows to open the VB2010\Chap10 folder. Right-click
CDs.txt in the list of fi lenames. Point to Open with and then click
Notepad. Th e information contained in the CDs.txt fi le appears in a
window. See Figure 10-2.

Figure 10-2 Contents of the CDs.txt fi le

START HERE

Previewing the CD Collection Application

C7718_ch10.indd 563C7718_ch10.indd 563 17/03/11 8:38 PM17/03/11 8:38 PM

564

C H A P T E R 1 0 Structures and Sequential Access Files

6. Close the CDs.txt window. Start the application again. Th e list box
displays the current contents of the CDs.txt fi le, which includes the
Breakout CD information added in Step 2 but does not include the
Covers CD information removed in Step 3.

7. Click the Exit button to end the application.

In Lesson A, you will learn how to create a structure in Visual Basic. Lesson B
covers sequential access fi les. You will code the CD Collection application in
Lesson C. Be sure to complete each lesson in full and do all of the end-of-lesson
questions and several exercises before continuing to the next lesson.

C7718_ch10.indd 564C7718_ch10.indd 564 17/03/11 8:38 PM17/03/11 8:38 PM

565

Structures L E S S O N A

 ❚ LESSON A
After studying Lesson A, you should be able to:

 • Create a structure

 • Declare and use a structure variable

 • Pass a structure variable to a procedure

 • Create an array of structure variables

Structures
Th e data types used in previous chapters, such as the Integer and Double
data types, are built into the Visual Basic language. You also can create your
own data types in Visual Basic using the Structure statement. Data types
 created by the Structure statement are referred to as user-defined data
types or structures. Figure 10-3 shows the statement’s syntax. Between the
Structure and End Structure clauses, you defi ne the members included in the
structure. Th e members can be variables, constants, or procedures. However,
in most cases the members will be variables; such variables are referred to as
member variables.

Each member variable’s defi nition contains the keyword Public followed by
the variable’s name, which typically is entered using Pascal case. Following
the variable’s name is the keyword As and the variable’s dataType. Th e
dataType identifi es the type of data the member variable will store and can be
any of the standard data types available in Visual Basic; it also can be another
structure (user-defi ned data type). Th e Employee structure shown in the
example in Figure 10-3 contains four member variables: three String vari-
ables and one Double variable. In most applications, you enter the Structure
statement in the form’s Declarations section, which begins with the Public
Class clause and ends with the End Class clause.

Structure statement

Syntax
Structure structureName
 Public memberVariableName1 As dataType
 [Public memberVariableNameN As dataType]
End Structure

Example
Structure Employee
 Public strId As String
 Public strFirstName As String
 Public strLastName As String
 Public dblPay As Double
End Structure

Figure 10-3 Syntax and an example of the Structure statement

Most program-
mers use the
Class statement
(rather than the
Structure state-

ment) to create data
types that contain proce-
dures. You will learn
about the Class state-
ment in Chapter 11.

You also can
include an array
in a structure.
This topic is
explored in

Discovery Exercises 9
and 10 at the end of
the lesson.

C7718_ch10.indd 565C7718_ch10.indd 565 17/03/11 8:38 PM17/03/11 8:38 PM

566

C H A P T E R 1 0 Structures and Sequential Access Files

Th e Structure statement allows the programmer to group related items into
one unit: a structure. However, keep in mind that the Structure statement
merely defi nes the structure members; it does not reserve any memory loca-
tions inside the computer. You reserve memory locations by declaring a
structure variable.

Declaring and Using a Structure Variable
After entering the Structure statement in the Code Editor window, you then
can use the structure to declare a variable. Variables declared using a structure
are often referred to as structure variables. Th e syntax for creating a structure
variable is shown in Figure 10-4. Th e fi gure also includes examples of declar-
ing structure variables using the Employee structure from Figure 10-3.

Declaring a structure variable

Syntax
{Dim | Private} structureVariableName As structureName

Example 1
Dim hourly As Employee
declares a procedure-level Employee structure variable named hourly

Example 2
Private salaried As Employee
declares a class-level Employee structure variable named salaried

Figure 10-4 Syntax and examples of declaring a structure variable

Similar to the way the Dim intAge As Integer instruction declares an
Integer variable named intAge, the Dim hourly As Employee instruc-
tion in Example 1 declares an Employee variable named hourly. However,
unlike the intAge variable, the hourly variable contains four member
variables. In code, you refer to the entire structure variable by its name—in
this case, hourly. You refer to a member variable by preceding its name
with the name of the structure variable in which it is defi ned. You use the
dot member access operator (a period) to separate the structure variable’s
name from the member variable’s name. For instance, to refer to the member
variables within the hourly structure variable, you use hourly.strId,
hourly. strFirstName, hourly. strLastName, and hourly.dblPay.
Th e Private salaried As Employee instruction in Example 2 in
Figure 10-4 declares a class-level Employee variable named salaried.
Th e names of the member variables within the salaried variable are
 salaried.strId, salaried. strFirstName, salaried.strLastName,
and salaried.dblPay.

Th e member variables in a structure variable can be used just like any other
variables. You can assign values to them, use them in calculations, display
their contents, and so on. Figure 10-5 shows various ways of using the
 member variables created by the statements shown in Figure 10-4.

The dot member
access operator
indicates that
strId,
 strFirstName,

strLastName, and
dblPay are members
of the hourly and
salaried variables.

C7718_ch10.indd 566C7718_ch10.indd 566 17/03/11 8:38 PM17/03/11 8:38 PM

567

Declaring and Using a Structure Variable L E S S O N A

Using a member variable

Example 1
hourly.strLastName = "Yardley"
assigns the string “Yardley” to the hourly.strLastName member variable

Example 2
hourly.dblPay = hourly.dblPay * 1.05
multiplies the contents of the hourly.dblPay member variable by 1.05 and then
assigns the result to the member variable; you also can write the statement as
hourly.dblPay *= 1.05

Example 3
lblSalary.Text = salaried.dblPay.ToString("C2")
formats the value contained in the salaried.dblPay member variable and then
displays the result in the lblSalary control

Figure 10-5 Examples of using a member variable

Programmers use structure variables when they need to pass a group of
related items to a procedure for further processing, because it’s easier to pass
one structure variable rather than many individual variables. Programmers
also use structure variables to store related items in an array, even when the
members have diff erent data types. In the next two sections, you will learn
how to pass a structure variable to a procedure and also store a structure
variable in an array.

Passing a Structure Variable to a Procedure
Th e sales manager at Willow Pools wants an application that determines the
amount of water required to fi ll a rectangular pool. To perform this task, the
application will need to calculate the volume of the pool. You calculate the
volume by fi rst multiplying the pool’s length by its width and then multiply-
ing the result by the pool’s depth. Assuming the length, width, and depth are
measured in feet, this gives you the volume in cubic feet. To determine the
number of gallons of water, you multiply the number of cubic feet by 7.48,
because there are 7.48 gallons in one cubic foot.

To open and then test the Willow Pools application:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.
Open the Willow Pools Solution (Willow Pools Solution.sln) fi le
 contained in the VB2010\Chap10\Willow Pools Solution folder. If
necessary, open the designer window.

2. Start the application. Type 100 in the Length box, 30 in the Width
box, and 4 in the Depth box. Click the Calculate button. Th e
required number of gallons appears in the interface. See Figure 10-6.

START HERE

C7718_ch10.indd 567C7718_ch10.indd 567 17/03/11 8:38 PM17/03/11 8:38 PM

568

C H A P T E R 1 0 Structures and Sequential Access Files

Figure 10-6 Interface showing the required number of gallons

3. Click the Exit button to end the application, and then open the Code
Editor window.

Figure 10-7 shows the GetGallons function and the btnCalc control’s Click
event procedure. Th e event procedure calls the GetGallons function, passing
it three variables by value. Th e GetGallons function uses the values to calcu-
late the number of gallons required to fi ll the pool. Th e function returns the
number of gallons as a Double number to the event procedure, which assigns
the value to the dblGallons variable.

passes three
variables to the
GetGallons function

receives three
variables by value

declares three
variables to store
the input data

returns the number
of gallons

Public Function GetGallons(ByVal dblLen As Double,
 ByVal dblWid As Double,
 ByVal dblDep As Double) As Double
 ' calculates and returns the number of gallons

 Const dblGAL_PER_CUBIC_FOOT As Double = 7.48

 Return dblLen * dblWid * dblDep * dblGAL_PER_CUBIC_FOOT
End Function

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' displays the number of gallons

 Dim dblPoolLength As Double
 Dim dblPoolWidth As Double
 Dim dblPoolDepth As Double
 Dim dblGallons As Double

 Double.TryParse(txtLength.Text, dblPoolLength)
 Double.TryParse(txtWidth.Text, dblPoolWidth)
 Double.TryParse(txtDepth.Text, dblPoolDepth)

 dblGallons =
 GetGallons(dblPoolLength, dblPoolWidth, dblPoolDepth)
 lblGallons.Text = dblGallons.ToString("N0")

 txtLength.Focus()
End Sub

Figure 10-7 Code for the Willow Pools application (without a structure)

A more convenient way of coding the Willow Pools application is to use a
structure to group together the input items: length, width, and depth. It’s
logical to group the three items because they are related; each represents one

C7718_ch10.indd 568C7718_ch10.indd 568 17/03/11 8:38 PM17/03/11 8:38 PM

569

Declaring and Using a Structure Variable L E S S O N A

of the three dimensions of a rectangular pool. A descriptive name for the
structure would be Dimensions.

To use a structure in the Willow Pools application:

1. Replace <your name> and <current date> in the comments with your
name and the current date, respectively.

2. First, you will declare the structure in the form’s Declarations
 section. Click the blank line immediately below the Public Class
 frmMain clause and then press Enter to insert another blank line.
Enter the following Structure statement:

Structure Dimensions
 Public dblLength As Double
 Public dblWidth As Double
 Public dblDepth As Double
End Structure

3. Locate the btnCalc control’s Click event procedure. Th e procedure
will use a structure variable (rather than three separate variables) to
store the input items. Replace the fi rst three Dim statements with the
following Dim statement:

Dim poolSize As Dimensions

4. Now you will store each input item in its corresponding member
in the structure variable. In the three TryParse methods, change
dblPoolLength, dblPoolWidth, and dblPoolDepth to
 poolSize.dblLength, poolSize.dblWidth, and poolSize.dblDepth,
respectively.

5. Next, consider the changes you will need to make to the statement
that invokes the GetGallons function. Instead of sending three
 separate variables to the function, you now need to send only one
variable: the structure variable. When you pass a structure variable
to a procedure, all of its members are passed automatically. Although
passing one structure variable rather than three separate variables may
not seem like a huge advantage, consider the convenience of passing
one structure variable rather than 10 separate variables! Change the
statement that invokes the GetGallons function to dblGallons =
GetGallons(poolSize). Don’t be concerned about the jagged line that
appears below GetGallons(poolSize) in the statement. It will
 disappear when you modify the GetGallons function in the next step.

6. Locate the GetGallons function in the Code Editor window. Th e func-
tion will now receive a Dimensions structure variable rather than three
Double variables. Like the Double variables, the structure variable will
be passed by value, because the function does not need to change any
member’s value. Change the function’s header to the following:

Public Function GetGallons(ByVal pool As Dimensions) As Double

7. Now you will use the members of the structure variable to calculate
the number of gallons. Change the Return statement as follows:

Return pool.dblLength * pool.dblWidth *
 pool.dblDepth * dblGAL_PER_CUBIC_FOOT

START HERE

C7718_ch10.indd 569C7718_ch10.indd 569 17/03/11 8:38 PM17/03/11 8:38 PM

570

C H A P T E R 1 0 Structures and Sequential Access Files

Figure 10-8 shows the Structure statement, the GetGallons function, and
the btnCalc control’s Click event procedure. Th e event procedure calls the
GetGallons function, passing it a structure variable by value. Th e GetGallons
function uses the values contained in the structure variable to calculate the
number of gallons required to fi ll the pool. Th e function returns the number
of gallons as a Double number to the event procedure, which assigns the
value to the dblGallons variable.

passes the structure
variable to the
GetGallons function

entered in the form's
Declarations section

receives a structure
variable by value

declares a structure
variable to store the
input data

Structure Dimensions
 Public dblLength As Double
 Public dblWidth As Double
 Public dblDepth As Double
End Structure

Public Function GetGallons(ByVal pool As Dimensions) As Double
 ' calculates and returns the number of gallons

 Const dblGAL_PER_CUBIC_FOOT As Double = 7.48

 Return pool.dblLength * pool.dblWidth *
 pool.dblDepth * dblGAL_PER_CUBIC_FOOT
End Function

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' displays the number of gallons

 Dim poolSize As Dimensions
 Dim dblGallons As Double

 Double.TryParse(txtLength.Text, poolSize.dblLength)
 Double.TryParse(txtWidth.Text, poolSize.dblWidth)
 Double.TryParse(txtDepth.Text, poolSize.dblDepth)

 dblGallons = GetGallons(poolSize)
 lblGallons.Text = dblGallons.ToString("N0")

 txtLength.Focus()
End Sub

Figure 10-8 Code for the Willow Pools application (with a structure)

To test the modifi ed code:

1. Save the solution and then start the application. Type 100 in the
Length box, 30 in the Width box, and 4 in the Depth box. Press
Enter to select the Calculate button. Th e required number of gallons
appears in the interface, as shown earlier in Figure 10-6.

2. Click the Exit button. Close the Code Editor window and then close
the solution.

START HERE

C7718_ch10.indd 570C7718_ch10.indd 570 17/03/11 8:38 PM17/03/11 8:38 PM

571

Declaring and Using a Structure Variable L E S S O N A

YOU DO IT 1!

Create a Visual Basic Windows application named YouDoIt 1. Save the
application in the VB2010\Chap10 folder. Add two text boxes, a label, and a
button to the form. Open the Code Editor window. Create a structure named
Rectangle. The structure should have two members: one for the rectangle’s
length and the other for its width. The button’s Click event procedure should
declare a Rectangle variable named myRectangle. It then should assign
the text box values to the variable’s members. Next, the procedure should
pass the myRectangle variable to a function that calculates and returns
the area of the rectangle. Finally, the procedure should display the function’s
return value in the label. Code the procedure. Save the solution and then
start and test the application. Close the solution.

Creating an Array of Structure Variables
As mentioned earlier, another advantage of using a structure is that a structure
variable can be stored in an array, even when its members have diff erent data
types. Th e Treasures Gift Shop application from Chapter 9 can be used to illus-
trate this concept. As you may remember, you coded the application in two dif-
ferent ways. In Chapter 9’s Lesson B, you coded the application using two parallel
one-dimensional arrays (one having the String data type and the other having the
Integer data type). In Chapter 9’s Lesson C, you coded it using a two-dimensional
String array. In this chapter, you will code the application using a one- dimensional
array of structure variables. (Notice that there are many diff erent ways of solving
the same problem.) Each structure variable will contain two member variables: a
String variable for the ID and an Integer variable for the price.

To open the Treasures Gift Shop application:

1. Open the Treasures Solution (Treasures Solution.sln) fi le contained
in the VB2010\Chap10\Treasures Solution-Structure folder. If neces-
sary, open the designer window. Th e text box’s CharacterCasing and
MaxLength properties are set to Upper and 4, respectively.

2. Open the Code Editor window. Replace <your name> and
<current date> in the comments with your name and the current
date, respectively.

Figure 10-9 shows the code entered in the btnDisplay control’s Click event
procedure. Th e code does not use a structure.

START HERE

Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click
 ' displays the price associated with an ID

 Dim strIds() As String =
 {"BX35", "CR20", "FE15", "KW10", "MM67"}
 Dim intPrices() As Integer = {13, 10, 12, 24, 4}
 Dim strSearchForId As String
 Dim intSub As Integer

Figure 10-9 Code for the Treasures Gift Shop application (without a structure)
(continues)

parallel one-
dimensional arrays

C7718_ch10.indd 571C7718_ch10.indd 571 17/03/11 8:38 PM17/03/11 8:38 PM

572

C H A P T E R 1 0 Structures and Sequential Access Files

To begin modifying the code to use a structure:

1. First, you will declare the structure in the form’s Declarations section.
A descriptive name for the structure would be ProductInfo. Click the
blank line immediately below the Public Class frmMain clause
and then press Enter to insert another blank line. Enter the following
Structure statement:

Structure ProductInfo
 Public strId As String
 Public intPrice As Integer
End Structure

2. Locate the btnDisplay control’s Click event procedure. Rather than
using two parallel one-dimensional arrays to store the price list, the
procedure will use a one-dimensional array of ProductInfo structure
variables. Replace the two Dim statements that declare the strIds
and intPrices arrays with the following Dim statement:

Dim priceList(4) As ProductInfo

Next, you need to store the fi ve product IDs and prices in the priceList
array. Keep in mind that each element in the array is a structure variable,
and each structure variable contains two member variables: strId and
intPrice. You refer to a member variable in an array element using
the syntax arrayName(subscript).memberVariableName. For example,
 priceList(0).strId refers to the strId member contained in the fi rst
element in the priceList array. Likewise, priceList(4).intPrice refers

START HERE

(continued)

 ' assign the ID to a variable
 strSearchForId = txtId.Text

 ' search the strIds array for the ID
 ' continue searching until the end of
 ' the array or the ID is found
 Do Until intSub = strIds.Length OrElse
 strSearchForId = strIds(intSub)
 intSub = intSub + 1
 Loop

 ' determine whether the ID was found
 If intSub < strIds.Length Then
 lblPrice.Text = intPrices(intSub).ToString("C0")
 Else
 MessageBox.Show("Invalid ID",
 "Treasures Gift Shop",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End If

 txtId.Focus()
End Sub

Figure 10-9 Code for the Treasures Gift Shop application (without a structure)

C7718_ch10.indd 572C7718_ch10.indd 572 17/03/11 8:38 PM17/03/11 8:38 PM

573

Declaring and Using a Structure Variable L E S S O N A

to the intPrice member contained in the last element in the priceList
array. Figure 10-10 illustrates this naming convention.

priceList(0).strId

priceList(0).intPrice

priceList(3).strId

priceList(4).intPrice

BX35
13

CR20
10

FE15
12

KW10
24

MM67
4

Figure 10-10 Names of some of the member variables in the priceList array

To continue modifying the code:

1. Click the blank line below the Dim intSub As Integer instruc-
tion, and then press Enter to insert another blank line. Enter the
 following 10 assignment statements:

priceList(0).strId = "BX35"
priceList(0).intPrice = 13
priceList(1).strId = "CR20"
priceList(1).intPrice = 10
priceList(2).strId = "FE15"
priceList(2).intPrice = 12
priceList(3).strId = "KW10"
priceList(3).intPrice = 24
priceList(4).strId = "MM67"
priceList(4).intPrice = 4

2. Th e loop in the procedure now needs to search the priceList array
(rather than the strIds array). Change strIds in the ' search
the strIds array for the ID comment to priceList.

3. Th e loop should search each element in the priceList array, com-
paring the value contained in the current element’s strId member
with the value stored in the strSearchForId variable. Th e loop
should stop searching either when the end of the array is reached or
when the ID is found. Change the Do clause to the following:

Do Until intSub = priceList.Length OrElse
 strSearchForId = priceList(intSub).strId

4. Th e If…Th en…Else statement in the procedure determines why the
loop ended and then takes the appropriate action. Currently, the
statement’s condition compares the value contained in the intSub
variable with the value stored in the strIds array’s Length prop-
erty. Recall that a one-dimensional array’s Length property stores an
integer that represents the number of elements in the array. You will
need to modify the condition so that it compares the value contained

START HERE

You also can
write the fi rst
expression in
the Do loop’s
 condition as

intSub > priceList.
GetUpperBound(0).

C7718_ch10.indd 573C7718_ch10.indd 573 17/03/11 8:38 PM17/03/11 8:38 PM

574

C H A P T E R 1 0 Structures and Sequential Access Files

in the intSub variable with the value stored in the priceList
array’s Length property. Change strIds.Length in the If clause to
 priceList.Length.

5. If the value contained in the intSub variable is less than the number
of array elements, the loop ended because the ID was located in the
array; in that case, the selection structure’s true path should display
the corresponding price. Change the assignment statement below the
If clause as follows:

lblPrice.Text =
 priceList(intSub).intPrice.ToString(“C0”)

6. On the other hand, if the value in the intSub variable is not less than
the number of array elements, the loop ended because it reached the end
of the array without fi nding the ID. In that case, the selection structure’s
false path should display the “Invalid ID” message in a message box. Th e
appropriate code is already entered in the selection structure’s false path.

Figure 10-11 shows the Structure statement and the btnDisplay control’s
Click event procedure.

Structure ProductInfo
 Public strId As String
 Public intPrice As Integer
End Structure

Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click
 ' displays the price associated with an ID

 Dim priceList(4) As ProductInfo
 Dim strSearchForId As String
 Dim intSub As Integer

 priceList(0).strId = "BX35"
 priceList(0).intPrice = 13
 priceList(1).strId = "CR20"
 priceList(1).intPrice = 10
 priceList(2).strId = "FE15"
 priceList(2).intPrice = 12
 priceList(3).strId = "KW10"
 priceList(3).intPrice = 24
 priceList(4).strId = "MM67"
 priceList(4).intPrice = 4

 ' assign the ID to a variable
 strSearchForId = txtId.Text

 ' search the priceList array for the ID
 ' continue searching until the end of
 ' the array or the ID is found
 Do Until intSub = priceList.Length OrElse
 strSearchForId = priceList(intSub).strId
 intSub = intSub + 1
 Loop

Figure 10-11 Code for the Treasures Gift Shop application (with a structure)
(continues)

entered in the form’s
Declarations section

fi lls the member
variables in the array

declares an array of
structure variables

accesses the array’s
Length property

accesses the
strId member
in the current
array element

C7718_ch10.indd 574C7718_ch10.indd 574 17/03/11 8:38 PM17/03/11 8:38 PM

575

To test the application’s code:

1. Save the solution and then start the application. Type fe15 in the
Product ID box and then click the Display Price button. $12 appears
in the Price box, as shown in Figure 10-12.

Figure 10-12 Interface showing the price for product ID FE15

2. Click the Exit button. Close the Code Editor window and then close
the solution.

Lesson A Summary

 • To create a structure (user-defi ned data type):

Use the Structure statement. Th e statement’s syntax is shown in
Figure 10-3. In most applications, you enter the Structure statement in the
form’s Declarations section.

 • To declare a structure variable:

Use the following syntax: {Dim | Private} structureVariableName As
structureName.

START HERE

 ' determine whether the ID was found
 If intSub < priceList.Length Then
 lblPrice.Text =
 priceList(intSub).intPrice.ToString("C0")
 Else
 MessageBox.Show("Invalid ID",
 "Treasures Gift Shop",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End If

 txtId.Focus()
End Sub

Figure 10-11 Code for the Treasures Gift Shop application (with a structure)

accesses the intPrice
member in the current
array element

(continued)

Lesson A Summary L E S S O N A

C7718_ch10.indd 575C7718_ch10.indd 575 17/03/11 8:38 PM17/03/11 8:38 PM

576

C H A P T E R 1 0 Structures and Sequential Access Files

 • To refer to a member within a structure variable:

Use the syntax structureVariableName.memberVariableName.

 • To create an array of structure variables:

Declare the array using the structure as the data type.

 • To refer to a member within a structure variable stored in an array:

Use the syntax arrayName(subscript).memberVariableName.

Lesson A Key Terms
Member variables—the variables contained in a structure

Structure statement—used to create user-defi ned data types, called structures

Structure variables—variables declared using a structure as the data type

Structures—data types created by the Structure statement; allow the
 programmer to group related items into one unit; also called user-defi ned
data types

User-defined data types—data types created by the Structure statement; also
called structures

Lesson A Review Questions

1. Which statement is used to create a user-defi ned data type?

a. Declare

b. Defi ne

c. Structure

d. UserType

2. In most applications, the code to defi ne a user-defi ned data type is
entered in the form’s .

a. Declarations section

b. Defi nition section

c. Load event procedure

d. User-defi ned section

3. A structure variable named address contains a member variable
named strStreet. Which of the following statements assigns the
string “Maple” to the member variable?

a. address&strStreet = "Maple"

b. address.strStreet = "Maple"

c. strStreet.address = "Maple"

d. none of the above

C7718_ch10.indd 576C7718_ch10.indd 576 17/03/11 8:38 PM17/03/11 8:38 PM

577

Lesson A Exercises L E S S O N A

4. An array is declared using the statement Dim inventory(4) As
Product. Which of the following statements assigns the number 100
to the intQuantity member variable contained in the last array
element?

a. inventory.intQuantity(4) = 100

b. inventory(4).Product.intQuantity = 100

c. inventory(3).intQuantity = 100

d. none of the above

5. An application uses a structure named Employee. Which of the
 following statements declares a fi ve-element array of Employee
 structure variables?

a. Dim workers(4) As Employee

b. Dim workers(5) As Employee

c. Dim workers As Employee(4)

d. Dim workers As Employee(5)

Lesson A Exercises

1. Write a Structure statement that defi nes a structure named Book.
Th e structure contains three member variables named strTitle,
strAuthor, and decPrice. Th en write a Dim statement that
declares a Book variable named fiction.

2. Write a Structure statement that defi nes a structure named Tape.
Th e structure contains four member variables named strName,
strArtist, strSongLength, and intSongNum. Th en write a
Private statement that declares a Tape variable named blues.

3. An application contains the Structure statement shown here. Write
a Dim statement that declares a Computer variable named homeUse.
Th en, write an assignment statement that assigns the string “IB-50” to
the strModel member. Finally, write an assignment statement that
assigns the number 2400 to the dblCost member.

Structure Computer
 Public strModel As String
 Public dblCost As Double
End Structure

4. An application contains the Structure statement shown here. Write
a Dim statement that declares a MyFriend variable named school.
Th en, write assignment statements that assign the value in the
 txtFirst control to the strFirst member and assign the value in the
txtLast control to the strLast member. Finally, write assignment

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

C7718_ch10.indd 577C7718_ch10.indd 577 17/03/11 8:38 PM17/03/11 8:38 PM

578

C H A P T E R 1 0 Structures and Sequential Access Files

statements that assign the value in the strLast member to the
lblLast control and assign the value in the strFirst member to the
lblFirst control.

Structure MyFriend
 Public strLast As String
 Public strFirst As String
End Structure

5. An application contains the Structure statement shown here. Write
a Private statement that declares a 10-element one-dimensional
array of Computer variables. Name the array business. Th en,
write an assignment statement that assigns the string “HPP405” to
the strModel member contained in the fi rst array element. Finally,
write an assignment statement that assigns the number 3600 to the
decCost member contained in the fi rst array element.

Structure Computer
 Public strModel As String
 Public decCost As Decimal
End Structure

6. An application contains the Structure statement shown here. Write
a Dim statement that declares a fi ve-element one-dimensional array
of MyFriend variables. Name the array home. Th en, write an assign-
ment statement that assigns the value in the txtName control to the
strName member contained in the last array element. Finally, write
an assignment statement that assigns the value in the txtBirthday con-
trol to the strBirthday member contained in the last array element.

Structure MyFriend
 Public strName As String
 Public strBirthday As String
End Structure

7. In this exercise, you modify the Treasures Gift Shop application com-
pleted in the lesson. Use Windows to make a copy of the Treasures
Solution-Structure folder. Rename the folder Modifi ed Treasures
Solution-Structure. Open the Treasures Solution (Treasures Solution.
sln) fi le contained in the Modifi ed Treasures Solution-Structure
folder. Open the designer window. Th e modifi ed application should
display both the name and price corresponding to the product ID
entered by the user. Make the appropriate modifi cations to the
 interface and the code (including the Structure statement). Th e names
of the products are shown in Figure 10-13. Save the solution and then
start and test the application. Close the Code Editor window and then
close the solution.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

C7718_ch10.indd 578C7718_ch10.indd 578 17/03/11 8:38 PM17/03/11 8:38 PM

579

Lesson A Exercises L E S S O N A

Product ID Name

BX35 Necklace

CR20 Bracelet

FE15 Jewelry box

KW10 Doll

MM67 Ring

Figure 10-13 Product information for Exercise 7

8. Open the Carver Solution (Carver Solution.sln) fi le contained in
the VB2010\Chap10\Carver Solution folder. If necessary, open the
designer window. Th e application should display a grade based on the
number of points entered by the user. Th e grading scale is shown in
Figure 10-14. Open the Code Editor window. Create a structure that
contains two members: an Integer variable for the minimum points
and a String variable for the grades. Use the structure to declare a
fi ve-element one-dimensional array. Store the minimum points and
grades in the array. Th e application should search the array for the
number of points earned and then display the appropriate grade from
the array. Code the application. Save the solution and then start and
test the application. Close the Code Editor window and then close the
solution.

Minimum points Maximum points Grade

0 299 F

300 349 D

350 399 C

400 449 B

450 500 A

Figure 10-14 Grade information for Exercise 8

Discovery

9. Open the Average Solution (Average Solution.sln) fi le contained in
the VB2010\Chap10\Average Solution folder. If necessary, open the
designer window. Th e application should display a student’s name and
the average of fi ve test scores entered by the user.

a. Open the Code Editor window. Create a structure named
StudentInfo. Th e structure should contain two members: a String
variable for the student’s name and a Double array for the test
scores. An array contained in a structure cannot be assigned an
initial size, so you will need to include an empty set of parentheses
after the array name, like this: Dim dblScores() As Double.

INTERMEDIATE

C7718_ch10.indd 579C7718_ch10.indd 579 17/03/11 8:38 PM17/03/11 8:38 PM

580

C H A P T E R 1 0 Structures and Sequential Access Files

b. Open the code template for the btnCalc control’s Click event pro-
cedure. First, use the StudentInfo structure to declare a structure
variable. Next, research the Visual Basic ReDim statement. Use
the ReDim statement to declare the array’s size. Th e array should
have fi ve elements.

c. Th e btnCalc control’s Click event procedure should use the
InputBox function to get the student’s name. It also should use
a repetition structure and the InputBox function to get the fi ve
test scores from the user, storing each in the array. Th e procedure
should display the student’s name and average test score in the
lblAverage control.

d. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

10. In this exercise, you modify the application from Exercise 9. Use
Windows to make a copy of the Average Solution folder. Rename
the folder Modifi ed Average Solution. Open the Average Solution
(Average Solution.sln) fi le contained in the Modifi ed Average Solution
folder. Open the designer window. Change the font used in the
 lblAverage control to Courier New. Change the control’s TextAlign
property to TopLeft and then resize the control to display four lines
of text. Open the Code Editor window. Modify the application to
 calculate the average of fi ve test scores for each of four students.
(Hint: You will need to use an array of structure variables.) Display
each student’s name and average test score in the lblAverage control.
Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

C7718_ch10.indd 580C7718_ch10.indd 580 17/03/11 8:38 PM17/03/11 8:38 PM

581

Sequential Access Files L E S S O N B

 ❚ LESSON B
After studying Lesson B, you should be able to:

 • Open and close a sequential access fi le

 • Write data to a sequential access fi le

 • Read data from a sequential access fi le

 • Determine whether a sequential access fi le exists

 • Test for the end of a sequential access fi le

Sequential Access Files
In addition to getting data from the keyboard and sending data to the
 computer screen, an application also can get data from and send data to a
fi le on a disk. Getting data from a fi le is referred to as “reading the fi le,” and
 sending data to a fi le is referred to as “writing to the fi le.” Files to which data
is written are called output files, because the fi les store the output produced
by an application. Files that are read by the computer are called input files,
because an application uses the data in these fi les as input. Most input and
output fi les are composed of lines of text that are both read and written
sequentially. In other words, they are read and written in consecutive order,
one line at a time, beginning with the fi rst line in the fi le and ending with the
last line in the fi le. Such fi les are referred to as sequential access files, because
of the manner in which the lines of text are accessed. Th ey also are called text
files, because they are composed of lines of text. Examples of text stored in
sequential access fi les include an employee list, a memo, or a sales report.

Writing Data to a Sequential Access File
An item of data—such as the string “Harriet”—is viewed diff erently by a
human being and a computer. To a human being, the string represents
a person’s name; to a computer, it is merely a sequence of characters.
Programmers refer to a sequence of characters as a stream of characters. In
Visual Basic, you use a StreamWriter object to write a stream of characters
to a sequential access fi le. Before you create the StreamWriter object, you
fi rst declare a variable to store the object in the computer’s internal memory.
Figure 10-15 shows the syntax and an example of declaring a StreamWriter
variable. Th e IO in the syntax stands for Input/Output.

Declaring a StreamWriter variable

Syntax
{Dim | Private} streamWriterVariableName As IO.StreamWriter

Example
Dim outFile As IO.StreamWriter
declares a StreamWriter variable named outFile

Figure 10-15 Syntax and an example of declaring a StreamWriter variable

The Ch10BVideo
fi le demonstrates
all of the steps
contained in

Lesson B. You can view
the video either before or
after completing the
lesson.

C7718_ch10.indd 581C7718_ch10.indd 581 17/03/11 8:38 PM17/03/11 8:38 PM

582

C H A P T E R 1 0 Structures and Sequential Access Files

You will use a StreamWriter variable in the Game Show Contestants
 application, which you code in this lesson. Th e application will write the
names of contestants to a sequential access fi le. It also will subsequently
read the names and display them in a list box.

To begin coding the Game Show Contestants application:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.
Open the Contestant Solution (Contestant Solution.sln) fi le contained
in the VB2010\Chap10\Contestant Solution folder. If necessary, open
the designer window. See Figure 10-16.

Figure 10-16 Interface for the Game Show Contestants application

2. Open the Code Editor window. Replace <your name> and <current
date> in the comments with your name and the current date,
respectively.

3. Locate the code template for the btnWrite control’s Click event
 procedure. Click the blank line below the ' declare a
StreamWriter variable comment and then enter the following
declaration statement:

Dim outFile As IO.StreamWriter

After declaring a StreamWriter variable, you can use the syntax shown in
Figure 10-17 to create a StreamWriter object. As the fi gure indicates, creating a
StreamWriter object involves opening a sequential access fi le using one of two
methods: CreateText or AppendText. You use the CreateText method to open
a sequential access fi le for output. When you open a fi le for output, the com-
puter creates a new, empty fi le to which data can be written. If the fi le already
exists, the computer erases the contents of the fi le before writing any data to
it. You use the AppendText method to open a sequential access fi le for append.
When a fi le is opened for append, new data is written after any existing data in
the fi le. If the fi le does not exist, the computer creates the fi le for you. In addi-
tion to opening the fi le, both methods automatically create a StreamWriter
object to represent the fi le in the application. You assign the StreamWriter
object to a StreamWriter variable, which you use to refer to the fi le in code.

Also included in Figure 10-17 are examples of using the CreateText and
AppendText methods. When processing the statement in Example 1, the
computer searches for the employee.txt fi le in the Chap10 folder on the
F drive. If the fi le exists, its contents are erased and the fi le is opened for
output; otherwise, a new, empty fi le is created and opened for output.

START HERE

C7718_ch10.indd 582C7718_ch10.indd 582 17/03/11 8:38 PM17/03/11 8:38 PM

583

Sequential Access Files L E S S O N B

Th e statement creates a StreamWriter object and assigns it to the outFile
variable. Unlike the fi leName argument in Example 1, the fi leName argu-
ment in Example 2 does not contain a folder path. Th erefore, the computer
will search for the fi le in the default folder, which is the current project’s bin\
Debug folder. In this case, if the computer locates the report.txt fi le in the
default folder, it opens the fi le for append. If it does not fi nd the fi le, it cre-
ates a new, empty fi le and then opens the fi le for append. Like the statement
in Example 1, the statement in Example 2 creates a StreamWriter object and
assigns it to the outFile variable.

Creating a StreamWriter object

Syntax
IO.File.method(fileName)

method Description

CreateText opens a sequential access fi le for output

AppendText opens a sequential access fi le for append

Example 1
outFile = IO.File.CreateText("F:\Chap10\employee.txt")
opens the employee.txt file for output; creates a StreamWriter object and assigns it to
the outFile variable

Example 2
outFile = IO.File.AppendText("report.txt")
opens the report.txt file for append; creates a StreamWriter object and assigns it to the
outFile variable

Figure 10-17 Syntax and examples of the CreateText and AppendText methods

When the user clicks the Write to File button in the Game Show Contestants
interface, the name entered in the Name box should be added to the end of
the existing names in the fi le. Th erefore, you will need to open the sequen-
tial access fi le for append. A descriptive name for a fi le that stores the names
of contestants is contestants.txt. Although it is not a requirement, the
“txt” (short for “text”) fi lename extension is commonly used when naming
 sequential access fi les; this is because the fi les contain text.

To continue coding the btnWrite control’s Click event procedure:

1. Click the blank line below the ' open the fi le for append
comment and then enter the following statement:

outFile = IO.File.AppendText("contestants.txt")

After opening a fi le for either output or append, you can begin writing
data to it. You can write data to a sequential access fi le using either the
Write method or the WriteLine method; however, in most cases you will use
the WriteLine method. Th e diff erence between both methods is that the
WriteLine method writes a newline character after the data. Figure 10-18
shows the syntax and an example of both methods. As the fi gure indicates,
when using the Write method, the next character written to the fi le will
appear immediately after the letter o in the string “Hello”. When using the

Only specify the
folder path in the
fi leName argu-
ment when you
are sure that the

folder path will not
change. Keep in mind
that a USB drive may
have a different letter
designation on another
computer.

START HERE

C7718_ch10.indd 583C7718_ch10.indd 583 17/03/11 8:38 PM17/03/11 8:38 PM

584

C H A P T E R 1 0 Structures and Sequential Access Files

WriteLine method, however, the next character written to the fi le will appear
on the line immediately below the string. You do not need to include the fi le’s
name in either method’s syntax, because the data will be written to the fi le
associated with the StreamWriter variable.

Writing data to a sequential access file

Syntax
streamWriterVariableName.Write(data)
streamWriterVariableName.WriteLine(data)

Example 1
outFile.Write("Hello")

Result
Hello|

Example 2
outFile.WriteLine("Hello")

Result
Hello
|

Figure 10-18 Syntax and examples of the Write and WriteLine methods

the next character will
appear immediately
after the letter o

the next character will
appear on the next line

Each contestant’s name should appear on a separate line in the fi le, so you
will use the WriteLine method to write each name to the fi le.

To continue coding the btnWrite control’s Click event procedure:

1. Click the blank line below the ' write the name on a separate
line in the file comment and then enter the following statement:

outFile.WriteLine(txtName.Text)

Closing an Output Sequential Access File
You should use the Close method to close an output sequential access fi le
as soon as you are fi nished using it. Th is ensures that the data is saved and
it makes the fi le available for use elsewhere in the application. Th e syntax
to close an output sequential access fi le is shown in Figure 10-19 along
with an example of using the method. Here again, notice that you use the
StreamWriter variable to refer to the fi le in code.

Closing an output sequential access file

Syntax
streamWriterVariableName.Close()

Example
outFile.Close()
closes the file associated with the outFile variable

Figure 10-19 Syntax and an example of closing an output sequential access fi le

START HERE

C7718_ch10.indd 584C7718_ch10.indd 584 17/03/11 8:38 PM17/03/11 8:38 PM

585

Sequential Access Files L E S S O N B

To fi nish coding and then test the btnWrite control’s Click event procedure:

1. Click the blank line below the ' close the file comment and
then enter the following statement:

outFile.Close()

2. Save the solution and then start the application. Type Inez Harrison
in the Name box and then click the Write to File button. Use the
application to write the following four names to the fi le:

Clark Smith
Khalid Shaw
Joe Mendez
Sue Chang

3. Click the Exit button to end the application. Now you will open the
contestants.txt fi le to verify its contents. Click File on the menu bar
and then click Open File. Open the project’s bin\Debug folder. Click
contestants.txt in the list of fi lenames and then click the Open
 button. Th e contestants.txt window opens and shows the fi ve names
 contained in the fi le. See Figure 10-20.

each name appears on a
separate line in the file

Close button

Figure 10-20 Names contained in the contestants.txt fi le

4. Close the contestants.txt window by clicking its Close button.

Reading Data from a Sequential Access File
In Visual Basic, you use a StreamReader object to read data from a sequential
access fi le. Before creating the StreamReader object, you fi rst declare a variable
to store the object in the computer’s internal memory. Figure 10-21 shows the
syntax and an example of declaring a StreamReader variable. As mentioned
earlier, the IO in the syntax stands for Input/Output.

Declaring a StreamReader variable

Syntax
{Dim | Private} streamReaderVariableName As IO.StreamReader

Example
Dim inFile As IO.StreamReader
declares a StreamReader variable named inFile

Figure 10-21 Syntax and an example of declaring a StreamReader variable

START HERE

C7718_ch10.indd 585C7718_ch10.indd 585 17/03/11 8:38 PM17/03/11 8:38 PM

586

C H A P T E R 1 0 Structures and Sequential Access Files

To begin coding the Read from File button’s Click event procedure:

1. Locate the code template for the btnRead control’s Click event
procedure.

2. Click the blank line below the ' declare variables comment
and then enter the following declaration statement:

Dim inFile As IO.StreamReader

After declaring a StreamReader variable, you can use the OpenText method
to open a sequential access fi le for input; doing this automatically creates a
StreamReader object. When a fi le is opened for input, the computer can read
the lines of text stored in the fi le. Figure 10-22 shows the OpenText method’s
syntax along with an example of using the method. Th e fi leName argument
in the example does not include a folder path, so the computer will search for
the report.txt fi le in the current project’s bin\Debug folder. If the computer
fi nds the fi le, it opens the fi le for input; otherwise, a run time error occurs,
causing the application to end abruptly. You assign the StreamReader object
created by the OpenText method to a StreamReader variable, which you use
to refer to the fi le in code.

Creating a StreamReader object

Syntax
IO.File.OpenText(fileName)

Example
inFile = IO.File.OpenText("report.txt")
opens the report.txt file for input; creates a StreamReader object and assigns it to the
inFile variable

Figure 10-22 Syntax and an example of the OpenText method

You can use the Exists method to avoid the run time error that occurs when
the computer cannot locate the fi le you want opened for input. Figure 10-23
shows the method’s syntax and includes an example of using the method. If
the fi leName argument does not include a folder path, the computer searches
for the fi le in the current project’s bin\Debug folder. Th e Exists method
returns the Boolean value True if the fi le exists; otherwise, it returns the
Boolean value False.

Determining whether a sequential access file exists

Syntax
IO.File.Exists(fileName)

Example
If IO.File.Exists("report.txt") Then
determines whether the report.txt file exists in the current project’s bin\Debug folder; you
also can write the If clause as If IO.File.Exists("report.txt") = True Then

Figure 10-23 Syntax and an example of the Exists method

START HERE

C7718_ch10.indd 586C7718_ch10.indd 586 17/03/11 8:38 PM17/03/11 8:38 PM

587

Sequential Access Files L E S S O N B

To continue coding the btnRead control’s Click event procedure:

1. Click the blank line below the ' determine whether the file
exists comment and then enter the following If clause:

If IO.File.Exists("contestants.txt") Th en

2. If the fi le exists, you will use the OpenText method to open the fi le.
Enter the following comment and assignment statement. Press Enter
twice after typing the assignment statement.

' open the fi le for input
inFile = IO.File.OpenText("contestants.txt")

3. If the fi le does not exist, you will display an appropriate message.
Enter the additional lines of code shown in Figure 10-24.

enter these five
lines of code

Figure 10-24 Additional code entered in the procedure

After opening a fi le for input, you can use the ReadLine method to read the
fi le’s contents, one line at a time. A line is defi ned as a sequence (stream) of
characters followed by the newline character. Th e ReadLine method returns
a string that contains only the sequence of characters in the current line; the
string does not include the newline character at the end of the line. In most
cases, you assign the string returned by the ReadLine method to a String
variable. Figure 10-25 shows the ReadLine method’s syntax and includes
an example of using the method. Th e ReadLine method does not require
you to provide the fi le’s name, because it uses the fi le associated with the
StreamReader variable.

Reading a line of text from a sequential access file

Syntax
streamReaderVariableName.ReadLine

Example
Dim strMessage As String
strMessage = inFile.ReadLine
reads a line of text from the sequential access file associated with the inFile variable
and assigns the line, excluding the newline character, to the strMessage variable

Figure 10-25 Syntax and an example of the ReadLine method

START HERE

C7718_ch10.indd 587C7718_ch10.indd 587 17/03/11 8:38 PM17/03/11 8:38 PM

588

C H A P T E R 1 0 Structures and Sequential Access Files

In most cases, an application will need to read each line of text contained
in a sequential access fi le, one line at a time. You can do this using a loop
along with the Peek method. Th e Peek method “peeks” into the fi le to deter-
mine whether the fi le contains another character to read. If the fi le contains
another character, the Peek method returns the character; otherwise, it
returns the number −1 (a negative 1). Th e Peek method’s syntax is shown in
Figure 10-26 along with an example of using the method. Th e Do clause in
the example tells the computer to process the loop instructions until the Peek
method returns the number −1, which indicates that there are no more char-
acters to read. In other words, the Do clause tells the computer to process the
loop instructions until it reaches the end of the fi le.

Determining the end of the file

Syntax
streamReaderVariableName.Peek

Example
Dim strLineOfText As String
Do Until inFile.Peek = −1
 strLineOfText = inFile.ReadLine
 MessageBox.Show(strLineOfText)
Loop
reads each line of text from the sequential access file associated with the inFile
variable, line by line; each line (excluding the newline character) is assigned to the
strLineOfText variable and is then displayed in a message box

Figure 10-26 Syntax and an example of the Peek method

To continue coding the btnRead control’s Click event procedure:

1. First, you will declare a variable to store the string returned by the
ReadLine method. Click the blank line below the Dim statement.
Each line in the contestants.txt fi le represents a name, so you will call
the variable strName. Enter the following declaration statement:
Dim strName As String

2. Th e Do clause is next. Click the blank line below the statement that
opens the contestants.txt fi le. Enter the following comment and Do
clause, being sure to type the minus sign before the number 1:
' process loop instructions until end of fi le
Do Until inFile.Peek = −1

3. Now you will tell the computer to read a line of text and assign it
(excluding the newline character) to the strName variable. Enter the
following comment and assignment statement:
' read a name
strName = inFile.ReadLine

4. Next, you will add the name to the Contestants list box. Enter the
 following comment and statement:
' add name to list box
lstContestants.Items.Add(strName)

5. If necessary, delete the blank line above the Loop clause.

START HERE

C7718_ch10.indd 588C7718_ch10.indd 588 17/03/11 8:38 PM17/03/11 8:38 PM

589

Sequential Access Files L E S S O N B

Closing an Input Sequential Access File
Just as you do with an output sequential access fi le, you should use the Close
method to close an input sequential access fi le as soon as you are fi nished
using it. Doing this makes the fi le available for use elsewhere in the application.
Th e syntax to close an input sequential access fi le is shown in Figure 10-27
along with an example of using the method. Notice that you use the
StreamReader variable to refer to the fi le in code.

Closing an input sequential access file

Syntax
streamReaderVariableName.Close()

Example
inFile.Close()
closes the file associated with the inFile variable

Figure 10-27 Syntax and an example of closing an input sequential access fi le

To fi nish coding the btnRead control’s Click event procedure:

1. Click after the letter p in the Loop clause and then press Enter to
insert a blank line.

2. Enter the following comment and statement:

' close the fi le
inFile.Close()

Figure 10-28 shows the code entered in the Click event procedures for the
btnWrite and btnRead controls.

START HERE

Private Sub btnWrite_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnWrite.Click
 ' writes a name to a sequential access file

 ' declare a StreamWriter variable
 Dim outFile As IO.StreamWriter

 ' open the file for append
 outFile = IO.File.AppendText("contestants.txt")

 ' write the name on a separate line in the file
 outFile.WriteLine(txtName.Text)

 ' close the file
 outFile.Close()

 ' clear the list box and then set the focus
 lstContestants.Items.Clear()
 txtName.Focus()
End Sub

Figure 10-28 Click event procedures for the btnWrite and btnRead controls (continues)

C7718_ch10.indd 589C7718_ch10.indd 589 17/03/11 8:38 PM17/03/11 8:38 PM

590

C H A P T E R 1 0 Structures and Sequential Access Files

To test the application’s code:

1. Save the solution and then start the application. Click the Read from
File button. Th e fi ve names contained in the contestants.txt fi le
appear in the Contestants box. See Figure 10-29.

Figure 10-29 Five contestant names listed in the Contestants box

2. Type Opal Jones in the Name box and then click the Write to File
button.

START HERE

Private Sub btnRead_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnRead.Click
 ' reads names from a sequential access file
 ' and displays them in the interface

 ' declare variables
 Dim inFile As IO.StreamReader
 Dim strName As String

 ' clear previous names from the list box
 lstContestants.Items.Clear()

 ' determine whether the file exists
 If IO.File.Exists("contestants.txt") Then
 ' open the file for input
 inFile = IO.File.OpenText("contestants.txt")
 ' process loop instructions until end of file
 Do Until inFile.Peek = -1
 ' read a name
 strName = inFile.ReadLine
 ' add name to list box
 lstContestants.Items.Add(strName)
 Loop
 ' close the file
 inFile.Close()

 Else
 MessageBox.Show("Can't find the file",
 "Game Show Contestants",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End If
End Sub

Figure 10-28 Click event procedures for the btnWrite and btnRead controls

(continued)

C7718_ch10.indd 590C7718_ch10.indd 590 17/03/11 8:38 PM17/03/11 8:38 PM

591

Sequential Access Files L E S S O N B

3. On your own, add the following three names to the fi le:

Willow Smith
Hank Padito
Charize Baker

4. Click the Read from File button to display the nine names in the list
box. See Figure 10-30.

Figure 10-30 Nine contestant names listed in the list box

you can use the scroll bar
to view the other two names

5. Click the Exit button.

6. Next, you will modify the If clause in the btnRead control’s Click
event procedure. More specifi cally, you will change the fi lename in
the If clause from contestants.txt to contestant.txt. Doing this will
allow you to test the code entered in the selection structure’s false
path. Change contestants.txt in the If clause to contestant.txt.

7. Save the solution and then start the application. Click the Read from
File button. Because the contestant.txt fi le does not exist, the Exists
method in the If clause returns the Boolean value False. As a result,
the instruction in the selection structure’s false path is processed. Th e
instruction displays the “Can’t fi nd the fi le” message in a message box.
Close the message box and then click the Exit button.

8. Change contestant.txt in the If clause to contestants.txt. Save
the solution and then start the application. Click the Read from File
button, which displays the nine names in the list box.

9. Click the Exit button. Close the Code Editor window and then close
the solution.

YOU DO IT 2!

Create a Visual Basic Windows application named YouDoIt 2. Save the
application in the VB2010\Chap10 folder. Add a label and two buttons to the
form. The first button’s Click event procedure should allow the user to enter
one or more numbers, saving each to a sequential access file. The second
button’s Click event procedure should total the numbers contained in the
sequential access file and then display the total in the label control. Code the
procedures. Save the solution and then start and test the application. Close
the solution.

C7718_ch10.indd 591C7718_ch10.indd 591 17/03/11 8:38 PM17/03/11 8:38 PM

592

C H A P T E R 1 0 Structures and Sequential Access Files

Lesson B Summary

 • To write data to a sequential access fi le:

Declare a StreamWriter variable and then use either the CreateText
method or the AppendText method to open a sequential access fi le. Assign
the method’s return value to the StreamWriter variable. Use either the
Write method or the WriteLine method to write the data to the fi le. Close
the fi le using the Close method.

 • To read data from a sequential access fi le:

Declare a StreamReader variable. Use the Exists method to deter-
mine whether the sequential access fi le exists. If the fi le exists, use the
OpenText method to open the fi le. Assign the method’s return value to the
StreamReader variable. Use the ReadLine and Peek methods to read the
data from the fi le. Close the fi le using the Close method.

 • To determine whether a sequential access fi le exists:

Use the Exists method. Th e method’s syntax is IO.File.Exists(fi leName).
Th e method returns the Boolean value True if the fi le exists; otherwise, it
returns the Boolean value False.

 • To determine whether the end of a sequential access fi le has been reached:

Use the Peek method. Th e method’s syntax is streamReaderVariableName.
Peek. Th e method returns the number –1 when the end of the fi le has
been reached; otherwise, it returns the next character in the fi le.

Lesson B Key Terms
AppendText method—used with a StreamWriter variable to open a sequential
access fi le for append

Close method—used with either a StreamWriter variable or a StreamReader
variable to close a sequential access fi le

CreateText method—used with a StreamWriter variable to open a sequential
access fi le for output

Exists method—used to determine whether a fi le exists

Input files—fi les from which an application reads data

Line—a sequence (stream) of characters followed by the newline character

OpenText method—used with a StreamReader variable to open a sequential
access fi le for input

Output files—fi les to which an application writes data

Peek method—used with a StreamReader variable to determine whether a
fi le contains another character to read

ReadLine method—used with a StreamReader variable to read a line of text
from a sequential access fi le

C7718_ch10.indd 592C7718_ch10.indd 592 17/03/11 8:38 PM17/03/11 8:38 PM

593

Lesson B Review Questions L E S S O N B

Sequential access files—fi les composed of lines of text that are both read
and written sequentially; also called text fi les

Stream of characters—a sequence of characters

StreamReader object—used to read a sequence (stream) of characters from a
sequential access fi le

StreamWriter object—used to write a sequence (stream) of characters to a
sequential access fi le

Text files—another name for sequential access fi les

Write method—used with a StreamWriter variable to write data to a
s equential access fi le; diff ers from the WriteLine method in that it does not
write a newline character after the data

WriteLine method—used with a StreamWriter variable to write data to
a sequential access fi le; diff ers from the Write method in that it writes a
 newline character after the data

Lesson B Review Questions

1. Which of the following opens the states.txt fi le and allows the
 computer to write new data to the end of the fi le’s existing data?

 a. outFile = IO.File.AddText("states.txt")

 b. outFile = IO.File.AppendText("states.txt")

 c. outFile = IO.File.InsertText("states.txt")

 d. outFile = IO.File.OpenText("states.txt")

2. If the fi le to be opened exists, the method erases the
fi le’s contents.

 a. AppendText

 b. CreateText

 c. InsertText

 d. OpenText

3. Which of the following reads a line of text from a sequential access
fi le and assigns the line (excluding the newline character) to the
strText variable?

 a. inFile.Read(strText)

 b. inFile.ReadLine(strText)

 c. strText = inFile.ReadLine

 d. strText = inFile.Read(line)

C7718_ch10.indd 593C7718_ch10.indd 593 17/03/11 8:38 PM17/03/11 8:38 PM

594

C H A P T E R 1 0 Structures and Sequential Access Files

4. Th e Peek method returns when the end of the fi le is
reached.

 a. −1

 b. 0

 c. the last character in the fi le

 d. the newline character

5. Which of the following can be used to determine whether the
employ.txt fi le exists?

 a. If IO.File.Exists("employ.txt") Then

 b. If IO.File("employ.txt").Exists Then

 c. If IO.Exists("employ.txt") = True Then

 d. If IO.Exists.File("employ.txt") = True Then

6. Th e OpenText method creates a object.

 a. File

 b. SequenceReader

 c. StreamWriter

 d. none of the above

7. Th e AppendText method creates a object.

 a. File

 b. SequenceReader

 c. StreamWriter

 d. none of the above

Lesson B Exercises

1. Write the code to declare a variable named outFile that can be used
to write data to a sequential access fi le. Th en write the statement to
open a sequential access fi le named sales.txt for output.

2. Write the code to declare a variable named inFile that can be used
to read data from a sequential access fi le. Th en write the statement to
open a sequential access fi le named sales.txt for input.

3. Write the code to close the sequential access fi le associated with a
StreamWriter variable named outFile.

4. Write an If clause that determines whether a sequential access fi le
exists. Th e fi le’s name is sales.txt.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

C7718_ch10.indd 594C7718_ch10.indd 594 17/03/11 8:38 PM17/03/11 8:38 PM

595

Lesson B Exercises L E S S O N B

5. Write a Do clause that determines whether the end of a sequential
access fi le has been reached. Th e fi le is associated with a
StreamReader variable named inFile.

6. Open the Gross Pay Solution (Gross Pay Solution.sln) fi le contained
in the VB2010\Chap10\Gross Pay Solution folder. If necessary, open
the designer window. Th e interface provides a text box for enter-
ing a gross pay amount. Th e Save button should write the gross pay
amount to a sequential access fi le named gross.txt. Save the fi le in
the project’s bin\Debug folder. Th e Display button should read the
gross pay amounts from the gross.txt fi le and display each (formatted
with a dollar sign and two decimal places) in the list box. Right-align
the numbers in the list box. Open the Code Editor window. Code
the Click event procedures for the btnSave and btnDisplay controls.
Save the solution and then start the application. Write the following
10 gross pay amounts to the fi le: 600, 1250, 750.67, 350.75, 2000, 450,
125.89, 560, 1400, and 555.78. Click the Display button to display the
gross pay amounts in the interface. Close the Code Editor window
and then close the solution.

7. Open the Name Solution (Name Solution.sln) fi le contained in
the VB2010\Chap10\Name Solution folder. If necessary, open the
designer window. Open the Code Editor window. Open the names.txt
fi le contained in the project’s bin\Debug folder. Th e sequential access
fi le contains fi ve names. Close the names.txt window. Th e btnDisplay
control’s Click event procedure should read the fi ve names contained
in the names.txt fi le, storing each in a fi ve-element one-dimensional
array. Th e procedure should sort the array in descending order and
then display the contents of the array in the list box. Code the proce-
dure. Save the solution and then start and test the application. Close
the Code Editor window and then close the solution. (If you need
to recreate the names.txt fi le, open the fi le in a window in the IDE.
Delete the contents of the fi le and then type the following fi ve names,
pressing Enter after typing each name: Joanne, Zelda, Abby, Ben,
and Linda.)

8. Open the Salary Solution (Salary Solution.sln) fi le contained in
the VB2010\Chap10\Salary Solution folder. If necessary, open the
designer window. Open the Code Editor window and study the exist-
ing code. Th e btnDisplay control’s Click event procedure stores six
salary amounts in a one-dimensional array named intSalaries.
Each salary amount corresponds to a salary code from 1 through 6.
Code 1’s salary is stored in the intSalaries(0) element in the
array, code 2’s salary is stored in the intSalaries(1) element, and
so on. After storing the salary amounts in the array, the procedure
prompts the user to enter a salary code. It then displays the amount
associated with the code. Currently, the Dim statement assigns the
six salary amounts to the array. Modify the procedure so that it reads
the salary amounts from the salary.txt fi le and stores each in the array.
Th e salary.txt fi le is contained in the project’s bin\Debug folder. Save
the solution and then start and test the application. Close the Code
Editor window and then close the solution.

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

C7718_ch10.indd 595C7718_ch10.indd 595 17/03/11 8:38 PM17/03/11 8:38 PM

596

C H A P T E R 1 0 Structures and Sequential Access Files

9. Open the Test Scores Solution (Test Scores Solution.sln) fi le contained
in the VB2010\Chap10\Test Scores Solution folder. If necessary, open
the designer window. Open the Code Editor window. Th e btnSave con-
trol’s Click event procedure should allow the user to enter an unknown
number of test scores, saving each score in a sequential access fi le. Th e
btnCount control’s Click event procedure should display (in a message
box) the number of scores stored in the fi le. Code both procedures.
Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

10. In this exercise, you code an application that reads fi ve numbers from
a sequential access fi le and stores the numbers in a one-dimensional
array. Th e application then increases each number by 1 and writes the
numbers to the fi le. Th e application also displays the current contents
of the sequential access fi le. Open the Numbers Solution (Numbers
Solution.sln) fi le contained in the VB2010\Chap10\Numbers Solution
folder. If necessary, open the designer window. Open the Code Editor
window. Code the btnDisplay control’s Click event procedure so it reads
the fi ve numbers stored in the numbers.txt fi le and displays the num-
bers in the list box. Th e numbers.txt fi le is contained in the project’s
bin\Debug folder. Currently, the fi le contains the numbers 1 through 5.
Code the btnUpdate control’s Click event procedure so it reads the fi ve
numbers from the numbers.txt fi le and stores the numbers in an array.
It then should increase each number in the array by 1 and write the
array contents to an empty numbers.txt fi le. Save the solution and then
start the application. Click the Display button. Th e numbers 1 through
5 appear in the interface. Click the Update button and then click the
Display button. Th e numbers 2 through 6 appear in the interface. Close
the Code Editor window and then close the solution. (If you need to
recreate the numbers.txt fi le, open the fi le in a window in the IDE.
Delete the contents of the fi le and then type the numbers 1 through 5,
pressing Enter after typing each number.)

11. During July and August of each year, the Political Awareness
Organization (PAO) sends a questionnaire to the voters in its
 district. Th e questionnaire asks the voter for his or her political party
(Democratic, Republican, or Independent) and age. From the returned
questionnaires, the organization’s secretary tabulates the number of
Democrats, Republicans, and Independents in the district. Th e secre-
tary wants an application that she can use to save each respondent’s
information (political party and age) to a sequential access fi le. Th e
application also should calculate and display the number of voters
in each political party. Create a new Visual Basic Windows applica-
tion. Use the following names for the solution, project, and form fi le,
respectively: PAO Solution, PAO Project, and Main Form.vb. Save
the application in the VB2010\Chap10 folder. Create the interface
shown in Figure 10-31. Th e Party list box should contain three items:
Democratic, Republican, and Independent. Th e Age text box should
accept only numbers and the Backspace key. Code the Click event
procedures for the Write to File and Display Totals buttons without
using a structure. Save the solution and then start and test the applica-
tion. Close the Code Editor window and then close the solution.

INTERMEDIATE

INTERMEDIATE

ADVANCED

C7718_ch10.indd 596C7718_ch10.indd 596 17/03/11 8:38 PM17/03/11 8:38 PM

597

Lesson B Exercises L E S S O N B

Figure 10-31 Interface for Exercise 11

12. In this exercise, you modify the application from Exercise 11. Use
Windows to make a copy of the PAO Solution folder. Rename
the folder Modifi ed PAO Solution. Open the PAO Solution (PAO
Solution.sln) fi le contained in the Modifi ed PAO Solution folder.
Open the designer window and then open the Code Editor window.
Modify the code to use a structure in the btnDisplay control’s Click
event procedure. Save the solution and then start and test the applica-
tion. Close the Code Editor window and then close the solution.

Swat The Bugs

13. Open the Debug Solution (Debug Solution.sln) fi le contained in the
VB2010\Chap10\Debug Solution-Lesson B folder. Open the Code
Editor window and study the existing code. Start the application. Test
the application using Sue and 1000, and then using Pete and 5000.
A run time error occurs. Read the error message. Click Debug on
the menu bar and then click Stop Debugging. Open the bonus.txt
fi le contained in the project’s bin\Debug folder. Notice that the fi le
is empty. Close the bonus.txt window. Locate and correct the error
in the code. Save the solution and then start and test the application
again. Close the Code Editor window and then close the solution.

ADVANCED

C7718_ch10.indd 597C7718_ch10.indd 597 17/03/11 8:38 PM17/03/11 8:38 PM

598

C H A P T E R 1 0 Structures and Sequential Access Files

 ❚ LESSON C
After studying Lesson C, you should be able to:

 • Add an item to a list box while an application is running
 • Align columns of information
 • Remove an item from a list box while an application is running
 • Save list box items in a sequential access fi le
 • Write records to a sequential access fi le

Coding the CD Collection Application
Recall that your task in this chapter is to create an application that uses a sequen-
tial access fi le to keep track of a person’s CD collection. Th e application’s user
interface is shown in Figure 10-32, and its TOE chart is shown in Figure 10-33.

Figure 10-32 Interface for the CD Collection application

the list box uses the
Courier New font

Task Object Event

Read the CDs.txt fi le and assign its contents to lstCds frmMain Load
Save the contents of lstCds in the CDs.txt fi le FormClosing

End the application btnExit Click

1. Get CD name, artist name, and price btnAdd Click
2. Add CD name, artist name, and price to lstCds

Remove the selected line from lstCds btnRemove Click

Display the CD name, artist name, and price lstCds None

Figure 10-33 TOE chart for the CD Collection application

To open the CD Collection application and then view the CDs.txt fi le:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.
Open the CD Collection Solution (CD Collection Solution.sln) fi le
contained in the VB2010\Chap10\CD Collection Solution folder. If
necessary, open the designer window.

The Ch10CVideo
fi le demonstrates
all of the steps
contained in

Lesson C. You can view
the video either before or
after completing the
lesson.

START HERE

C7718_ch10.indd 598C7718_ch10.indd 598 17/03/11 8:38 PM17/03/11 8:38 PM

599

Coding the CD Collection Application L E S S O N C

2. Open the Code Editor window. Replace <your name> and <current date>
in the comments with your name and the current date, respectively.

3. Click File on the menu bar and then click Open File. Open the proj-
ect’s bin\Debug folder. Click CDs.txt in the list of fi lenames and then
click the Open button. Th e CDs.txt window shows the information
contained in the fi le. See Figure 10-34. Th e CD names are listed in
the fi rst column, the artist names in the second column, and the CD
prices in the third column.

Figure 10-34 CDs.txt window

CDs.txt window’s
Close button

4. Close the CDs.txt window by clicking its Close button.

Th e TOE chart indicates that fi ve procedures need to be coded. Th e Code
Editor window already contains the code for the btnExit control’s Click event
procedure. So you will need to code only the form’s Load and FormClosing
event procedures and the Click event procedures for the btnAdd and
 btnRemove controls. You will code the form’s Load event procedure fi rst.

Coding the Form’s Load Event Procedure
Figure 10-35 shows the pseudocode for the form’s Load event procedure.

frmMain Load event procedure
if the CDs.txt sequential access fi le exists
 open the fi le for input
 repeat until the end of the fi le
 read a line from the fi le
 add the line to the lstCds control
 end repeat
 close the fi le
 select the fi rst line in the lstCds control
else
 display the “Can’t fi nd the CDs.txt fi le” message
end if

Figure 10-35 Pseudocode for the form’s Load event procedure

C7718_ch10.indd 599C7718_ch10.indd 599 17/03/11 8:38 PM17/03/11 8:38 PM

600

C H A P T E R 1 0 Structures and Sequential Access Files

To code and then test the form’s Load event procedure:

1. As you learned in Lesson B, you use a StreamReader object to read
data from a sequential access fi le. Before creating the StreamReader
object, you fi rst declare a variable to store the object in the computer’s
internal memory. Locate the form’s Load event procedure. Click the
blank line below the ' declare variables comment and then
enter the following declaration statement:

Dim inFile As IO.StreamReader

2. Th e procedure also will need a variable to store the string returned by
the ReadLine method when reading the fi le. Type the following decla-
ration statement and then press Enter twice:

Dim strInfo As String

3. According to its pseudocode, the procedure needs to verify that the
CDs.txt fi le exists. If the fi le does not exist, the procedure should
 display an appropriate message. Enter the comment and selection
structure shown in Figure 10-36, and then position the insertion point
as shown in the fi gure.

Figure 10-36 Additional comment and code entered in the Load
event procedure

enter this comment and
selection structure

position the insertion
point here

4. If the fi le exists, the procedure should open the fi le for input. Enter
the following comment and assignment statement:

' open the fi le for input
inFile = IO.File.OpenText("CDs.txt")

5. Next, the procedure should use a loop to read each line from the fi le,
adding each to the list box. Enter the following comments and lines
of code:

' process loop instructions until end of fi le
Do Until inFile.Peek = −1
 ' read a line from the fi le
 strInfo = inFile.ReadLine
 ' add the line to the list box
 lstCds.Items.Add(strInfo)
Loop

START HERE

C7718_ch10.indd 600C7718_ch10.indd 600 17/03/11 8:38 PM17/03/11 8:38 PM

601

Coding the CD Collection Application L E S S O N C

6. After the loop ends, the procedure should close the fi le. Click after
the letter p in the Loop clause and then press Enter twice to insert
two blank lines. Enter the following comment and line of code:

' close the fi le
inFile.Close()

7. Th e last task in the selection structure’s true path is to select the fi rst
line in the list box. Enter the following comment and line of code:

' select the fi rst line in the list box
lstCds.SelectedIndex = 0

8. Save the solution and then start the application. Th e information
 contained in the CDs.txt fi le appears in the list box, as shown in
Figure 10-37.

Figure 10-37 Contents of the CDs.txt fi le shown in the list box

9. Click the Exit button.

Coding the btnAdd Control’s Click Event Procedure
According to the application’s TOE chart, the btnAdd control’s Click event
procedure should get a CD name, an artist name, and a price from the user,
and then display that information in the list box. Figure 10-38 shows the pro-
cedure’s pseudocode.

btnAdd Click event procedure
1. use the InputBox function to get the CD name, artist name, and price
2. concatenate the CD name, artist name, and price, and then add the concatenated
string to the lstCds control

Figure 10-38 Pseudocode for the btnAdd control’s Click event procedure

To begin coding the btnAdd control’s Click event procedure:

1. Locate the btnAdd control’s Click event procedure and then click the
blank line below the ' declare variables comment. Th e proce-
dure will use four String variables: three to store the input items and
one to store the concatenated string. It also will use a Double variable

START HERE

C7718_ch10.indd 601C7718_ch10.indd 601 17/03/11 8:38 PM17/03/11 8:38 PM

602

C H A P T E R 1 0 Structures and Sequential Access Files

to store the numeric equivalent of the CD price. Enter the following
fi ve declaration statements:

Dim strName As String
Dim strArtist As String
Dim strPrice As String
Dim strConcatenatedInfo As String
Dim dblPrice As Double

2. Now you will use the InputBox function to get the CD informa-
tion from the user. Click the blank line below the ' get the CD
information comment and then enter the following assignment
statements:

strName = InputBox("CD name:", "CD Collection")
strArtist = InputBox("Artist:", "CD Collection")
strPrice = InputBox("Price:", "CD Collection")

Step 2 in the procedure’s pseudocode is to concatenate the input items and
then add the concatenated string to the list box. Notice that each input item
appears in a separate column in the list box shown in Figure 10-37. Th e CD
names and artist names in the fi rst two columns are left-aligned within their
respective column. Th e prices in the third column, however, are right-aligned
within the column. In the next section, you will learn how to align columns
of information.

Aligning Columns of Information
In Chapter 8, you learned how to use the PadLeft and PadRight methods
to pad a string with a character until the string is a specifi ed length. Each
 method’s syntax is shown in Figure 10-39. Recall that when processing the
methods, the computer fi rst makes a temporary copy of the string in mem-
ory; it then pads the copy only. Th e totalChars argument in each syntax is an
integer that represents the total number of characters you want the string’s
copy to contain. Th e optional padCharacter argument is the character that
each method uses to pad the string until it reaches the desired number of
characters. If the padCharacter argument is omitted, the default padding
character is the space character.

You can use the PadLeft and PadRight methods to align columns of
 information, as shown in the examples in Figure 10-39. Example 1 aligns a
column of numbers by the decimal point. Notice that you fi rst format each
number in the column to ensure that each has the same number of digits to
the right of the decimal point. You then use the PadLeft method to insert
spaces at the beginning of the number (if necessary); this right-aligns the
number within the column. Because each number has the same number of
digits to the right of the decimal point, aligning each number on the right
will align each by its decimal point.

Example 2 in Figure 10-39 shows how you can align the second column of
information when the fi rst column contains strings with varying lengths.
First, you use either the PadRight or PadLeft method to ensure that each
string in the fi rst column contains the same number of characters. You then
concatenate the padded string to the information in the second column. Th e

C7718_ch10.indd 602C7718_ch10.indd 602 17/03/11 8:38 PM17/03/11 8:38 PM

603

Coding the CD Collection Application L E S S O N C

code in Example 2, for instance, uses the PadRight method to ensure that
each name in the fi rst column contains exactly 15 characters. It then concate-
nates the 15 characters with the string stored in the strCity variable before
writing the concatenated string to a sequential access fi le. Because each name
has 15 characters, each city entry will automatically appear beginning in
character position 16 in the fi le. Example 2 also shows how you can use the
Strings.Space method to include a specifi c number of space characters in a
string. Th e method’s syntax is Strings.Space(number), in which number is
an integer representing the number of spaces to include.

In Example 1,
you also need to
set the lstPrices
control’s Font
property to a

fi xed-spaced font, such
as Courier New. A fi xed-
spaced font uses the
same amount of space
to display each
character.

Aligning columns of information

Syntax
string.PadLeft(totalChars[, padCharacter])
string.PadRight(totalChars[, padCharacter])

Example 1
Dim strPrice As String
For dblPrice As Double = 9 To 11 Step 0.5
 strPrice = dblPrice.ToString("N2").PadLeft(5)
 lstPrices.Items.Add(strPrice)
Next dblPrice

Result
 9.00
 9.50
10.00
10.50
11.00

Example 2
Dim outFile As IO.StreamWriter
Dim strHeading As String =
 "Name" & Strings.Space(11) & "City"
Dim strName As String
Dim strCity As String

outFile = IO.File.CreateText("Example2.txt")
outFile.WriteLine(strHeading)

strName = InputBox("Enter name:", "Name")
Do While strName <> String.Empty
 strCity = InputBox("Enter city:", "City")
 outFile.WriteLine(strName.PadRight(15) & strCity)
 strName = InputBox("Enter name:", "Name")
Loop
outFile.Close()

Result (when the user enters the following: Janice, Paris, Sue, Rome)
Name City
Janice Paris
Sue Rome

Figure 10-39 Examples of aligning columns of information

contains the
Strings.Space
method

C7718_ch10.indd 603C7718_ch10.indd 603 17/03/11 8:38 PM17/03/11 8:38 PM

604

C H A P T E R 1 0 Structures and Sequential Access Files

To complete and then test the btnAdd control’s Click event procedure:

1. Click the blank line below the ' and 5 spaces for the price
comment. First, you will format the price to ensure that it contains
two decimal places. Enter the following lines of code:

Double.TryParse(strPrice, dblPrice)
strPrice = dblPrice.ToString("N2")

2. Now you will concatenate the three input items, reserving 40 char-
acters for the CD name, 25 characters for the artist name, and 5
characters for the price. You will left-align the fi rst two columns but
right-align the last column. Enter the following assignment statement:

strConcatenatedInfo = strName.PadRight(40) &
 strArtist.PadRight(25) & strPrice.PadLeft(5)

3. Now you will add the concatenated string to the list box. Click the
blank line below the ' add the information to the list
box comment and then enter the following line of code:

lstCds.Items.Add(strConcatenatedInfo)

4. Save the solution and then start the application. Click the Add
 button. Type Breakout as the CD name and then press Enter. Type
Miley Cyrus as the artist name and then press Enter. Type 8 as the
price and then press Enter. Th e Add button’s Click event procedure
adds the CD information to the list box. Th e list box’s Sorted property
is set to True, so the information you entered appears in the third line
of the list box. See Figure 10-40.

Figure 10-40 CD information added to the list box

the CD information you entered
appears in alphabetical order
by the CD name

5. Click the Exit button.

Coding the btnRemove Control’s Click Event Procedure
According to the application’s TOE chart, the btnRemove control’s Click
event procedure should remove the selected line from the lstCds control. Th e
procedure’s pseudocode is shown in Figure 10-41.

START HERE

C7718_ch10.indd 604C7718_ch10.indd 604 17/03/11 8:38 PM17/03/11 8:38 PM

605

Coding the CD Collection Application L E S S O N C

btnRemove Click event procedure
if a line is selected in the lstCds control
 remove the line from the control
end if

Figure 10-41 Pseudocode for the btnRemove control’s Click event procedure

You remove an item from a list box using either the Items collection’s
Remove method or its RemoveAt method. Figure 10-42 shows each meth-
od’s syntax and includes an example of using each method. In each syntax,
object is the name of the list box control. Th e Remove method removes the
item whose value is specifi ed in its item argument. Th e RemoveAt method
removes the item whose index is specifi ed in its index argument.

Remove and RemoveAt methods (Items collection)

Syntax
object.Items.Remove(item)
object.Items.RemoveAt(index)

Example 1 – Remove
lstAnimal.Items.Remove("Cat")
removes the Cat item from the lstAnimal control

Example 2 – RemoveAt
lstAnimal.Items.RemoveAt(0)
removes the fi rst item from the lstAnimal control

Figure 10-42 Syntax and examples of the Items collection’s Remove and RemoveAt
methods

To code and then test the btnRemove control’s Click event procedure:

1. Locate the btnRemove control’s Click event procedure and then click
the blank line below the second comment.

2. If a line is selected in the list box, the list box’s SelectedIndex property
will contain the line’s index; otherwise, it will contain −1. Th erefore,
if the SelectedIndex property does not contain the number −1, the
procedure should remove the selected line from the list box. Enter the
following selection structure:

If lstCds.SelectedIndex <> −1 Th en
 lstCds.Items.RemoveAt(lstCds.SelectedIndex)
End If

3. Save the solution and then start the application. Click Funhouse in
the list box and then click the Remove button. Th e button’s Click
event procedure removes the Funhouse CD from the list box.

4. Click the Exit button.

START HERE

C7718_ch10.indd 605C7718_ch10.indd 605 17/03/11 8:38 PM17/03/11 8:38 PM

606

C H A P T E R 1 0 Structures and Sequential Access Files

Coding the Form’s FormClosing Event Procedure
Th e last procedure you need to code is the form’s FormClosing event proce-
dure. According to the application’s TOE chart, the procedure is responsible
for saving the contents of the lstCds control in the CDs.txt fi le. Figure 10-43
shows the procedure’s pseudocode.

frmMain FormClosing event procedure
1. open the CDs.txt fi le for output
2. repeat for each line in the list box
 write the line to the fi le
 end repeat
3. close the fi le

Figure 10-43 Pseudocode for the form’s FormClosing event procedure

To code and then test the form’s FormClosing event procedure:

1. Locate the form’s FormClosing event procedure and then click the
blank line below the ' declare a StreamWriter variable
comment. As you learned in Lesson B, you use a StreamWriter
object to write data to a sequential access fi le. Before creating the
StreamWriter object, you fi rst declare a variable to store the object
in the computer’s internal memory. Enter the following declaration
statement:

Dim outFile As IO.StreamWriter

2. Step 1 in the pseudocode is to open the CDs.txt fi le for output. Click
the blank line below the ' open the file for output com-
ment and then enter the following line of code:

outFile = IO.File.CreateText("CDs.txt")

3. Th e next step in the pseudocode is a loop that will write each line
from the list box to the fi le. Click the blank line below the ' write
each line in the list box comment and then enter the
 following loop:

For intIndex As Integer = 0 To lstCds.Items.Count − 1
 outFile.WriteLine(lstCds.Items(intIndex))
Next intIndex

4. Th e last step in the pseudocode is to close the fi le. Click the blank
line below the ' close the file comment and then enter the
 following line of code:

outFile.Close()

5. Save the solution and then start the application. Click the Add
 button. Use the input boxes to enter the following CD name, artist,
and price: Breakout, Miley Cyrus, and 8. Th e Add button’s Click
event procedure adds the CD information to the list box.

6. Click the Exit button. Th e computer processes the Me.Close()
statement in the Exit button’s Click event procedure; doing this

START HERE

C7718_ch10.indd 606C7718_ch10.indd 606 17/03/11 8:38 PM17/03/11 8:38 PM

607

Coding the CD Collection Application L E S S O N C

invokes the form’s FormClosing event. Th e FormClosing event
 procedure saves the contents of the list box to the CDs.txt fi le.

7. Now you will verify that the CD information you entered was saved
to the CDs.txt fi le. Click File on the menu bar and then click Open
File. Open the project’s bin\Debug folder. Click CDs.txt in the list of
fi lenames and then click the Open button. Th e CD information you
entered appears in the third line in the fi le. Close the CDs.txt window
by clicking its Close button.

8. Start the application again. Click Breakout in the list box and then
click the Remove button. Th e button’s Click event procedure removes
the CD information from the list box.

9. Click the Exit button. Now you will verify that the CDs.txt fi le does
not contain the CD information you removed from the list box. Open
the CDs.txt fi le. Notice that the Breakout CD’s information does not
appear in the fi le. Close the CDs.txt window.

10. Close the Code Editor window and then close the solution.

Figure 10-44 shows the application’s code.

 1 ' Name: CD Collection Project
 2 ' Purpose: Allows the user to add and delete list box entries
 3 ' Reads CD information from a sequential access file
 4 ' Writes CD information to a sequential access file
 5 ' Programmer: <your name> on <current date>
 6
 7 Option Explicit On
 8 Option Strict On
 9 Option Infer Off
10
11 Public Class frmMain
12
13 Private Sub btnExit_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnExit.Click
14 Me.Close()
15 End Sub
16
17 Private Sub frmMain_FormClosing(ByVal sender As Object,
 ByVal e As System.Windows.Forms.FormClosingEventArgs
) Handles Me.FormClosing
18 ' save the list box information
19
20 ' declare a StreamWriter variable
21 Dim outFile As IO.StreamWriter
22
23 ' open the file for output
24 outFile = IO.File.CreateText("CDs.txt")
25
26 ' write each line in the list box
27 For intIndex As Integer = 0 To lstCds.Items.Count − 1
28 outFile.WriteLine(lstCds.Items(intIndex))
29 Next intIndex
30
31 ' close the file

Figure 10-44 Code for the CD Collection application (continues)

C7718_ch10.indd 607C7718_ch10.indd 607 17/03/11 8:38 PM17/03/11 8:38 PM

608

C H A P T E R 1 0 Structures and Sequential Access Files

(continued)

32 outFile.Close()
33
34 End Sub
35
36 Private Sub frmMain_Load(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Me.Load
37 ' fills the list box with data
38 ' stored in a sequential access file
39
40 ' declare variables
41 Dim inFile As IO.StreamReader
42 Dim strInfo As String
43
44 ' verify that the file exists
45 If IO.File.Exists("CDs.txt") Then
46 ' open the file for input
47 inFile = IO.File.OpenText("CDs.txt")
48 ' process loop instructions until end of file
49 Do Until inFile.Peek = −1
50 ' read a line from the file
51 strInfo = inFile.ReadLine
52 ' add the line to the list box
53 lstCds.Items.Add(strInfo)
54 Loop
55
56 ' close the file
57 inFile.Close()
58 ' select the first line in the list box
59 lstCds.SelectedIndex = 0
60
61 Else
62 MessageBox.Show("Can't find the CDs.txt file",
63 "CD Collection",
64 MessageBoxButtons.OK,
65 MessageBoxIcon.Information)
66 End If
67 End Sub
68
69 Private Sub btnAdd_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnAdd.Click
70 ' adds CD information to the list box
71
72 ' declare variables
73 Dim strName As String
74 Dim strArtist As String
75 Dim strPrice As String
76 Dim strConcatenatedInfo As String
77 Dim dblPrice As Double
78
79 ' get the CD information
80 strName = InputBox("CD name:", "CD Collection")
81 strArtist = InputBox("Artist:", "CD Collection")
82 strPrice = InputBox("Price:", "CD Collection")
83
84 ' format the price, then concatenate the
85 ' input items, using 40 spaces for the
86 ' CD name, 25 spaces for the artist name,

Figure 10-44 Code for the CD Collection application (continues)

C7718_ch10.indd 608C7718_ch10.indd 608 17/03/11 8:38 PM17/03/11 8:38 PM

609

Lesson C Summary L E S S O N C

 87 ' and 5 spaces for the price
 88 Double.TryParse(strPrice, dblPrice)
 89 strPrice = dblPrice.ToString("N2")
 90 strConcatenatedInfo = strName.PadRight(40) &
 91 strArtist.PadRight(25) & strPrice.PadLeft(5)
 92
 93 ' add the information to the list box
 94 lstCds.Items.Add(strConcatenatedInfo)
 95
 96 End Sub
 97
 98 Private Sub btnRemove_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles btnRemove.Click
 99 ' removes the selected line from the list box
100
101 ' if a line is selected, remove the line
102 If lstCds.SelectedIndex <> −1 Then
103 lstCds.Items.RemoveAt(lstCds.SelectedIndex)
104 End If
105 End Sub
106 End Class

(continued)

Figure 10-44 Code for the CD Collection application

Lesson C Summary

 • To align columns of information:

Use the PadLeft and PadRight methods.

 • To align a column of numbers by the decimal point:

Format each number in the column to ensure that each has the same
 number of digits to the right of the decimal point, and then use the
PadLeft method to right-align the numbers.

 • To include a specifi c number of spaces in a string:

Use the Strings.Space method. Th e method’s syntax is Strings.
Space(number), in which number is an integer that represents the
 number of spaces to include.

 • To remove an item from a list box:

Use either the Items collection’s Remove method or its RemoveAt method.
Th e Remove method’s syntax is object.Items.Remove(item), where item is
the value of the item you want to remove. Th e RemoveAt method’s syntax
is object.Items.RemoveAt(index), where index is the index of the item
you want removed.

C7718_ch10.indd 609C7718_ch10.indd 609 17/03/11 8:38 PM17/03/11 8:38 PM

610

C H A P T E R 1 0 Structures and Sequential Access Files

Lesson C Key Terms
Remove method—used to specify the value of the item to remove from a list
box

RemoveAt method—used to specify the index of the item to remove from a
list box

Strings.Space method—used to include a specifi c number of spaces in a
string

Lesson C Review Questions

1. Which of the following opens a sequential access fi le named
“MyFriends.txt” for input?

 a. inFile = IO.File.Input("MyFriends.txt")

 b. inFile = IO.InputFile("MyFriends.txt")

 c. inFile = IO.File.InputText("MyFriends.txt")

 d. inFile = IO.File.OpenText("MyFriends.txt")

2. Which of the following right-aligns the contents of the strNumbers
variable?

 a. strNumbers = strNumbers.PadLeft(10)

 b. strNumbers = strNumbers.PadRight(10)

 c. strNumbers = strNumbers.AlignLeft(10)

 d. strNumbers = strNumbers.RightAlign(10)

3. Which of the following removes the fourth item from the lstFriends
control?

 a. lstFriends.Items.Remove(4)

 b. lstFriends.Items.RemoveAt(4)

 c. lstFriends.Items.RemoveIndex(3)

 d. none of the above

4. Which of the following determines whether an item is selected in the
lstFriends control?

 a. If lstFriends.SelectedIndex >= 0

 b. If lstFriends.SelectedItem <> −1

 c. If lstFriends.IndexSelected = −1

 d. none of the above

5. Th e lstFriends control contains fi ve items. Which of the following
writes the last item to the fi le associated with the outFile variable?

C7718_ch10.indd 610C7718_ch10.indd 610 17/03/11 8:38 PM17/03/11 8:38 PM

611

Lesson C Exercises L E S S O N C

 a. outFile.WriteLine(lstFriends.Items(5))

 b. outFile.WriteLine(lstFriends.Items(4))

 c. outFile.WriteLine(lstFriends.Index(4))

 d. none of the above

Lesson C Exercises

1. In this exercise, you modify the CD Collection application coded
in the lesson. Use Windows to make a copy of the CD Collection
Solution folder. Rename the copy CD Collection Solution-Verify Save.
Open the CD Collection Solution (CD Collection Solution.sln) fi le
contained in the CD Collection Solution-Verify Save folder. Open the
designer and Code Editor windows. Th e FormClosing event proce-
dure should verify that the user wants to save the changes made to
the list box. It then should take the appropriate action based on the
user’s response. Modify the code accordingly. Save the solution and
then start and test the application. Close the Code Editor window and
then close the solution.

2. In this exercise, you modify the CD Collection application coded in
the lesson. Use Windows to make a copy of the CD Collection Solution
folder. Rename the copy CD Collection Solution-Verify Remove.
Open the CD Collection Solution (CD Collection Solution.sln) fi le
contained in the CD Collection Solution-Verify Remove folder. Open
the designer and Code Editor windows. Th e btnRemove control’s
Click event procedure should verify that the user wants to remove
the selected CD information from the list box. Use the message
“Do you want to remove the x CD?”, where x is the name of the CD.
Th e procedure should take the appropriate action based on the user’s
response. Modify the code accordingly. Save the solution and then start
and test the application. Close the Code Editor window and then close
the solution.

3. Open the Friends Solution (Friends Solution.sln) fi le contained in
the VB2010\Chap10\Friends Solution folder. If necessary, open the
designer window. Th e Add button should add the name entered in the
text portion of the combo box to the list portion, but only if the name
is not already in the list. Th e Remove button should remove (from
the list portion of the combo box) the name either entered in the text
portion or selected in the list portion. Th e form’s FormClosing event
procedure should save the combo box items in a sequential access fi le
named MyFriends.txt. Th e form’s Load event procedure should read
the names from the MyFriends.txt fi le and add each to the combo box.
Code the application. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

4. In this exercise, you modify the CD Collection application coded
in the lesson. Use Windows to make a copy of the CD Collection
Solution folder. Rename the copy CD Collection Solution-No

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

C7718_ch10.indd 611C7718_ch10.indd 611 17/03/11 8:38 PM17/03/11 8:38 PM

612

C H A P T E R 1 0 Structures and Sequential Access Files

Duplicate. Open the CD Collection Solution (CD Collection
Solution.sln) fi le contained in the CD Collection Solution-No
Duplicate folder. Open the designer and Code Editor windows.
Before getting the artist name and price, the btnAdd control’s Click
event procedure should determine whether the CD name is already
included in the list box. If the list box contains the CD name, the
 procedure should display an appropriate message and then not add
the CD to the list. Save the solution and then start and test the appli-
cation. Close the Code Editor window and then close the solution.

5. In this exercise, you modify the CD Collection application coded
in the lesson. Use Windows to make a copy of the CD Collection
Solution folder. Rename the copy CD Collection Solution-Undo.
Open the CD Collection Solution (CD Collection Solution.sln) fi le
contained in the CD Collection Solution-Undo folder. Open the
designer window. Add an Undo Remove button to the form. Th e
Undo Remove button’s Click event procedure should restore the last
line removed by the Remove button. Open the Code Editor window
and make the necessary modifi cations to the code. Save the solution
and then start and test the application. Close the Code Editor window
and then close the solution.

6. In this exercise, you modify the CD Collection application coded
in the lesson. Use Windows to make a copy of the CD Collection
Solution folder. Rename the copy CD Collection Solution-Structure.
Open the CD Collection Solution (CD Collection Solution.sln) fi le
contained in the CD Collection Solution-Structure folder. Open the
designer and Code Editor windows. Create a structure for the input
information and then use the structure in the btnAdd control’s Click
event procedure. Save the solution and then start and test the applica-
tion. Close the Code Editor window and then close the solution.

7. Glovers Industries stores the item numbers and prices of its products
in a sequential access fi le named ItemInfo.txt. Th e company’s sales
manager wants an application that displays the price corresponding to
the item selected in a list box.

a. Open the Glovers Solution (Glovers Solution.sln) fi le contained
in the VB2010\Chap10\Glovers Solution folder. If necessary, open
the designer window.

b. Open the Code Editor window. Open the ItemInfo.txt fi le, which
is contained in the project’s bin\Debug folder. Notice that the item
number and price appear on separate lines in the fi le. Close the
ItemInfo.txt window.

c. Defi ne a structure named Product. Th e structure should contain
two member variables: a String variable to store the item number
and a Double variable to store the price.

d. Declare a class-level array that contains fi ve Product structure
variables.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

C7718_ch10.indd 612C7718_ch10.indd 612 17/03/11 8:38 PM17/03/11 8:38 PM

613

Lesson C Exercises L E S S O N C

e. Th e form’s Load event procedure should read the item numbers
and prices from the ItemInfo.txt fi le and store them in the class-
level array. It also should add the item numbers to the list box.
Code the procedure.

f. When the user selects an item in the list box, the item’s price
should appear in the lblPrice control. Code the appropriate
procedure.

g. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

8. Each year, WKRK-Radio polls its audience to determine the best
Super Bowl commercial. Th e choices are as follows: Budweiser,
FedEx, E*Trade, and Pepsi. Th e station manager wants an application
that allows him to enter a caller’s choice. Th e choice should be saved
in a sequential access fi le. Th e application also should display the
number of votes for each commercial. Create a Visual Basic Windows
application. Use the following names for the solution, project, and
form fi le, respectively: WKRK Solution, WKRK Project, and Main
Form.vb. Create the interface shown in Figure 10-45, and then code
the application. Save the solution and then start and test the applica-
tion. Close the Code Editor window and then close the solution.

Figure 10-45 Interface for Exercise 8

9. Carlton Industries stores the item numbers and prices of the items
it sells in a sequential access fi le named ItemInfo.txt. Th e company’s
sales manager wants an application that displays the price corre-
sponding to the item selected in a list box.

a. Create a Visual Basic Windows application. Use the follow-
ing names for the solution, project, and form fi le, respectively:
Carlton Solution, Carlton Project, and Main Form.vb. Create the
interface shown in Figure 10-46.

b. Use Windows to copy the ItemInfo.txt fi le from the VB2010\
Chap10 folder to the project’s bin\Debug folder. Open the Code
Editor window and then open the ItemInfo.txt fi le contained in
the project’s bin\Debug folder. Each line contains an item’s num-
ber followed by a comma and the price. Close the ItemInfo.txt
window.

ADVANCED

ADVANCED

C7718_ch10.indd 613C7718_ch10.indd 613 17/03/11 8:38 PM17/03/11 8:38 PM

614

C H A P T E R 1 0 Structures and Sequential Access Files

c. Defi ne a structure named Item. Th e structure should contain two
member variables: a String variable to store the item number and
a Decimal variable to store the price.

d. Declare a class-level array that contains fi ve Item structure
variables.

e. Code the form’s Load event procedure so that it reads the item
numbers and prices from the ItemInfo.txt fi le. Th e procedure
should store the item numbers and prices in the class-level array.
It also should add the item numbers to the list box.

f. When the user selects an item in the list box, the item’s price
should appear in the lblPrice control. Code the appropriate
procedure.

g. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

Figure 10-46 Interface for Exercise 9

C7718_ch10.indd 614C7718_ch10.indd 614 17/03/11 8:38 PM17/03/11 8:38 PM

C H A P T E R 11
Classes and Objects

Creating the ABC Company Application

In this chapter, you will create an application that calculates and displays the gross
pay for salaried and hourly employees. Salaried employees are paid twice per
month. Therefore, each salaried employee’s gross pay is calculated by dividing his
or her annual salary by 24. Hourly employees are paid weekly. The gross pay for
an hourly employee is calculated by multiplying the number of hours the employee
worked during the week by his or her hourly pay rate. The application also will
display a report showing each employee’s number, name, and gross pay.

C7718_ch11.indd 615C7718_ch11.indd 615 17/03/11 8:45 PM17/03/11 8:45 PM

616

C H A P T E R 1 1 Classes and Objects

Previewing the ABC Company Application
Before you start the fi rst lesson in this chapter, you will preview the
 completed application. Th e application is contained in the VB2010\Chap11
folder.

To preview the completed application:

1. Use the Run dialog box to run the ABC (ABC.exe) fi le contained in
the VB2010\Chap11 folder. Th e application’s user interface appears on
the screen.

2. First, you will calculate the gross pay for Sarah Lopez. Sarah worked
38 hours and earns $9 per hour. Her employee number is 1234. Type
1234 in the Number box, press Tab, and then type Sarah Lopez in
the Name box. Click 38.0 in the Hours list box and then click 9.00 in
the Rate list box. Click the Calculate button. $342.00 appears in the
Gross pay box, and Sarah’s information appears in the Report box.
See Figure 11-1.

Figure 11-1 Interface showing Sarah’s gross pay and information

3. Now you will calculate the gross pay for a salaried employee earning
$30,000 per year. Type 9999 in the Number box, press Tab, and then
type Henry Jacoby in the Name box. Click the Salaried employee
radio button. Scroll the Annual salary list box and then click 30000
in the list. Click the Calculate button. $1,250.00 appears in the Gross
pay box, and Henry’s information appears below Sarah’s information
in the Report box.

4. Click the Exit button to end the application.

In Lesson A, you will learn about object-oriented programming (OOP). More
specifi cally, you will learn how to defi ne a class and how to use the class to
instantiate an object. You also will learn how to utilize the instantiated object
in an application. Lesson B will teach you how to include ReadOnly and auto-
implemented properties in a class. You also will learn how to overload a class
method. You will code the ABC Company application in Lesson B. Lesson C
covers an advanced OOP topic: inheritance. Be sure to complete each lesson
in full and do all of the end-of-lesson questions and several exercises before
continuing to the next lesson.

START HERE

C7718_ch11.indd 616C7718_ch11.indd 616 17/03/11 8:45 PM17/03/11 8:45 PM

617

Object-Oriented Programming Terminology L E S S O N A

 ❚ LESSON A
After studying Lesson A, you should be able to:

 • Explain the terminology used in object-oriented programming

 • Create a class

 • Instantiate an object

 • Add Property procedures to a class

 • Include data validation in a class

 • Create a default constructor

 • Create a parameterized constructor

 • Include methods other than constructors in a class

Object-Oriented Programming Terminology
As you learned in the Overview, Visual Basic 2010 is an object-oriented
 programming language, which is a language that allows the programmer to
use objects to accomplish a program’s goal. Recall that an object is anything
that can be seen, touched, or used. In other words, an object is nearly any
thing. Th e objects used in an object-oriented program can take on many
diff erent forms. Th e text boxes, list boxes, and buttons included in most
Windows applications are objects, and so are the application’s named con-
stants and variables. An object also can represent something found in real
life, such as a wristwatch or a car.

Every object used in an object-oriented program is created from a class,
which is a pattern that the computer uses to create the object. Using object-
oriented programming (OOP) terminology, objects are instantiated (created)
from a class, and each object is referred to as an instance of the class.
A button control, for example, is an instance of the Button class. Th e button
is instantiated when you drag the Button tool from the toolbox to the form.
A String variable, on the other hand, is an instance of the String class and is
instantiated the fi rst time you refer to the variable in code. Keep in mind that
the class itself is not an object. Only an instance of a class is an object.

Every object has attributes, which are the characteristics that describe the
object. Attributes are also called properties. Included in the attributes of
buttons and text boxes are the Name and Text properties. List boxes have a
Name property as well as a Sorted property. In addition to attributes, every
object also has behaviors. An object’s behaviors include methods and events.
Methods are the operations (actions) that the object is capable of performing.
For example, a button can use its Focus method to send the focus to itself.
Events are the actions to which an object can respond. A button’s Click event,
for instance, allows it to respond to a mouse click. A class contains—or, in
OOP terms, it encapsulates—all of the attributes and behaviors of the object
it instantiates. Th e term “encapsulate” means “to enclose in a capsule.” In the
context of OOP, the “capsule” is a class.

C7718_ch11.indd 617C7718_ch11.indd 617 17/03/11 8:45 PM17/03/11 8:45 PM

618

C H A P T E R 1 1 Classes and Objects

Creating a Class
In previous chapters, you instantiated objects using classes that are built into
Visual Basic, such as the TextBox and Label classes. You used the instantiated
objects in a variety of ways in many diff erent applications. In some applica-
tions, you used a text box to enter a name, while in other applications you
used it to enter a sales tax rate. Similarly, you used label controls to identify
text boxes and also to display the result of calculations. Th e ability to use an
object for more than one purpose saves programming time and money—an
advantage that contributes to the popularity of object-oriented program-
ming. You also can defi ne your own classes in Visual Basic and then create
instances (objects) from those classes. Like the Visual Basic classes, your
classes must specify the attributes and behaviors of the objects they create.

You defi ne a class using the Class statement, which you enter in a class fi le.
Figure 11-2 shows the statement’s syntax and lists the steps for adding a class
fi le to an open project. Although it is not a requirement, the convention is
to use Pascal case for the class name. Th e names of Visual Basic classes (for
example, Integer and TextBox) also follow this naming convention. Within
the Class statement, you defi ne the attributes and behaviors of the objects the
class will create. In most cases, the attributes are represented by Private vari-
ables and Public properties. Th e behaviors are represented by methods, which
can be Sub or Function procedures. Figure 11-3 shows an example of the
Class statement entered in a class fi le. Th e three Option statements included
in the fi gure have the same meaning in a class fi le as they have in a form fi le.

Class statement

Syntax
Public Class className
 attributes section
 behaviors section
End Class

Adding a class fi le to an open project
1. Click Project on the menu bar and then click Add Class. The Add New Item dialog

box opens with Class selected in the middle column of the dialog box.
2. Type the name of the class followed by a period and the letters vb in the Name

box, and then click the Add button.

Figure 11-2 Syntax of the Class statement

you enter the attributes and
behaviors sections here

Figure 11-3 Class statement entered in the TimeCard.vb class fi le

The creation of a
good class,
which is one
whose objects
can be used in a

variety of ways by many
different applications,
requires a lot of planning.

You also can
include Event
procedures in a
Class statement.
However, that

topic is beyond the
scope of this book.

C7718_ch11.indd 618C7718_ch11.indd 618 17/03/11 8:45 PM17/03/11 8:45 PM

619

Creating a Class L E S S O N A

After you defi ne a class, it then can be used to instantiate one or more
objects. Figure 11-4 shows two versions of the syntax for instantiat-
ing an object. In both versions, className is the name of the class, and
 variableName is the name of a variable that will represent the object. Th e
 diff erence between both versions relates to when the object is actually cre-
ated. Th e computer creates the object only when it processes the statement
containing the New keyword. (You will learn more about the New keyword
later in this lesson.) Also included in Figure 11-4 is an example of using
each version of the syntax. In Example 1, the Private hoursInfo As
TimeCard instruction creates a class-level variable that can represent a
TimeCard object; however, it does not create the object. Th e object isn’t
 created until the computer processes the hoursInfo = New TimeCard
statement, which uses the TimeCard class to instantiate a TimeCard
object. Th e statement assigns the object to the hoursInfo variable. In
Example 2, the Dim hoursInfo As New TimeCard instruction creates a
 procedure-level variable named hoursInfo. It also instantiates a TimeCard
object and assigns it to the variable.

Figure 11-4 Syntax and examples of instantiating an object from a class

Instantiating an object from a class

Syntax – Version 1
{Dim | Private} variableName As className
variableName = New className

Syntax – Version 2
{Dim | Private} variableName As New className

Example 1 (using syntax version 1)
Private hoursInfo As TimeCard
hoursInfo = New TimeCard
the Private instruction creates a TimeCard variable named hoursInfo; the
assignment statement instantiates a TimeCard object and assigns it to the
hoursInfo variable

Example 2 (using syntax version 2)
Dim hoursInfo As New TimeCard
the Dim instruction creates a TimeCard variable named hoursInfo and also
instantiates a TimeCard object, which it assigns to the hoursInfo variable

In the remainder of this lesson, you will view examples of class defi nitions,
as well as examples of code in which objects are instantiated and used. Th e
fi rst example is a class that contains attributes only, with each attribute
 represented by a Public variable.

C7718_ch11.indd 619C7718_ch11.indd 619 17/03/11 8:45 PM17/03/11 8:45 PM

620

C H A P T E R 1 1 Classes and Objects

Example 1—A Class that Contains Public
Variables Only
In its simplest form, the Class statement can be used in place of the Structure
statement, which you learned about in Chapter 10. Like the Structure state-
ment, the Class statement groups related items into one unit. However, the
unit is called a class rather than a structure. In the following set of steps,
you will modify the Willow Pools application from Chapter 10 to use a class
instead of a structure.

To open the Willow Pools application:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.
Open the Willow Pools Solution (Willow Pools Solution.sln) fi le
 contained in the VB2010\Chap11\Willow Pools Solution folder. If
necessary, open the designer window.

2. Open the Code Editor window. Figure 11-5 shows the Structure
statement, the GetGallons function, and the btnCalc control’s Click
event procedure. Th e Structure statement groups together the three
dimensions of a rectangular pool: length, width, and depth. Th e
event procedure declares a structure variable and then fi lls the vari-
able’s members with values. It then passes the structure variable to
the GetGallons function, which calculates and returns the number
of gallons required to fi ll the pool. Th e event procedure displays the
returned value in the lblGallons control.

START HERE

Structure Dimensions
 Public dblLength As Double
 Public dblWidth As Double
 Public dblDepth As Double
End Structure

Public Function GetGallons(ByVal pool As Dimensions) As Double
 ' calculates and returns the number of gallons

 Const dblGAL_PER_CUBIC_FOOT As Double = 7.48

 Return pool.dblLength * pool.dblWidth *
 pool.dblDepth * dblGAL_PER_CUBIC_FOOT
End Function

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' displays the number of gallons

 Dim poolSize As Dimensions
 Dim dblGallons As Double

Figure 11-5 Code for the Willow Pools application (with a structure) (continues)

entered in the form’s
Declarations section

receives a structure
variable by value

declares a structure
variable to store
the input data

C7718_ch11.indd 620C7718_ch11.indd 620 17/03/11 8:45 PM17/03/11 8:45 PM

621

Example 1—A Class that Contains Public Variables Only L E S S O N A

To add a class fi le to the project:

1. Click Project on the menu bar and then click Add Class. Th e Add
New Item dialog box opens with Class selected in the middle column
of the dialog box. Type RectangularPool.vb in the Name box. As
you learned in Chapter 1, the .vb in a fi lename indicates that the fi le
contains Visual Basic code.

2. Click the Add button. Th e computer adds the RectangularPool.vb fi le
to the project. It also opens the fi le, which contains the Class state-
ment, in the Code Editor window. Temporarily display the Solution
Explorer window, if necessary, to verify that the class fi le’s name
appears in the window.

3. Insert a blank line above the Class statement and then enter the com-
ments and Option statements shown in Figure 11-6. (Replace <your
name> and <current date> in the comments with your name and the
current date, respectively.) Also, position the insertion point as shown
in the fi gure.

enter these comments
and Option statements

position the insertion
point here

Figure 11-6 Comments and Option statements entered in the class fi le

A RectangularPool object has three attributes: length, width, and depth.
In the Class statement, each attribute will be represented by a Public vari-
able. When a variable in a class is declared using the Public keyword, it
can be accessed by any application that contains an instance of the class.

START HERE

Figure 11-5 Code for the Willow Pools application (with a structure)

 Double.TryParse(txtLength.Text, poolSize.dblLength)
 Double.TryParse(txtWidth.Text, poolSize.dblWidth)
 Double.TryParse(txtDepth.Text, poolSize.dblDepth)

 dblGallons = GetGallons(poolSize)
 lblGallons.Text = dblGallons.ToString("N0")

 txtLength.Focus()
End Sub

passes the structure
variable to the
GetGallons function

(continued)

C7718_ch11.indd 621C7718_ch11.indd 621 17/03/11 8:45 PM17/03/11 8:45 PM

622

C H A P T E R 1 1 Classes and Objects

Th e convention is to use Pascal case for the names of the Public variables in
a class, and to omit the three-character ID that indicates the variable’s data
type. Th is is because Public variables represent properties that will be seen
by anyone using an object created from the class. Th e properties of Visual
Basic objects—such as the Text and StartPosition properties—also follow this
 naming convention.

To enter the Public variables in the class defi nition:

1. Enter the following three Public statements:

Public Length As Double
Public Width As Double
Public Depth As Double

2. Save the solution.

Now you will modify the application’s code to use the RectangularPool class
rather than the Dimensions structure.

To modify the code to use the RectangularPool class:

1. Click the Main Form.vb tab to return to the form’s Code Editor
 window. Replace <your name> and <current date> in the comments
with your name and the current date, respectively.

2. First, delete the Structure statement from the form’s Declarations section.

3. Next, locate the btnCalc control’s Click event procedure. Th e
procedure will instantiate a RectangularPool object. Replace the
Dim poolSize As Dimensions instruction with the following
instruction:

Dim customerPool As New RectangularPool

4. Now you will modify the three TryParse methods to use the object’s
Public variables. Highlight (select) poolSize.dblLength in the fi rst
TryParse method. Type customerPool. and then click the Common
tab (if necessary). Th e Public variables appear in the IntelliSense list,
as shown in Figure 11-7.

IntelliSense list

Figure 11-7 Public variables included in the IntelliSense list

5. Click Length and then press Tab. Now change poolSize.dblWidth
and poolSize.dblDepth in the remaining TryParse methods to
customerPool.Width and customerPool.Depth, respectively.

START HERE

START HERE

C7718_ch11.indd 622C7718_ch11.indd 622 17/03/11 8:45 PM17/03/11 8:45 PM

623

Example 1—A Class that Contains Public Variables Only L E S S O N A

6. Th e procedure needs to pass the customerPool object (rather than the
poolSize structure) to the GetGallons function. Change poolSize
in the dblGallons = GetGallons(poolSize) statement to
customerPool.

7. Locate the GetGallons function. Th e function will need to receive a
RectangularPool object rather than a Dimensions structure. Change
Dimensions in the function header to RectangularPool.

8. Finally, change dblLength, dblWidth, and dblDepth in the Return
statement to Length, Width, and Depth, respectively.

Figure 11-8 shows the Class statement, the GetGallons function, and the
btnCalc control’s Click event procedure. Th e changes made to the original
function and procedure (both of which are shown earlier in Figure 11-5) are
shaded in the fi gure.

Public Class RectangularPool
 Public Length As Double
 Public Width As Double
 Public Depth As Double

End Class

Public Function GetGallons(ByVal pool As RectangularPool) As Double
 ' calculates and returns the number of gallons

 Const dblGAL_PER_CUBIC_FOOT As Double = 7.48

 Return pool.Length * pool.Width *
 pool.Depth * dblGAL_PER_CUBIC_FOOT
End Function

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' displays the number of gallons

 Dim customerPool As New RectangularPool
 Dim dblGallons As Double

 Double.TryParse(txtLength.Text, customerPool.Length)
 Double.TryParse(txtWidth.Text, customerPool.Width)
 Double.TryParse(txtDepth.Text, customerPool.Depth)

 dblGallons = GetGallons(customerPool)
 lblGallons.Text = dblGallons.ToString("N0")

 txtLength.Focus()
End Sub

Figure 11-8 Class defi nition, GetGallons function, and btnCalc control's Click event procedure

receives a
RectangularPool
object by value

instantiates a RectangularPool
object and assigns it to the
customerPool variable

fi lls the Public
variables with values

passes the
customerPool variable
to the GetGallons function

entered in the
RectangularPool.vb fi le

C7718_ch11.indd 623C7718_ch11.indd 623 17/03/11 8:45 PM17/03/11 8:45 PM

624

C H A P T E R 1 1 Classes and Objects

To test the modifi ed code:

1. Save the solution and then start the application. Type 60 in the
Length box, 30 in the Width box, and 5 in the Depth box. Click the
Calculate button to display the required number of gallons of water.
See Figure 11-9.

Figure 11-9 Interface showing the number of gallons

2. Click the Exit button to stop the application. Close the Main Form.vb
and RectangularPool.vb windows and then close the solution.

Example 2—A Class that Contains Private
Variables, Public Properties, and Methods
Although you can defi ne a class that contains only attributes represented
by Public variables—like the RectangularPool class shown in Figure 11-8—
that is rarely done. Th e disadvantage of using Public variables in a class is
that a class cannot control the values assigned to its Public variables. As a
result, the class cannot validate the values to ensure they are appropriate
for the variables. Furthermore, most classes contain not only attributes,
but behaviors as well. Th is is because the purpose of a class in OOP is
to encapsulate the properties that describe an object, the methods that
allow the object to perform tasks, and the events that allow the object to
respond to actions. In this section, you will create a class that contains
data validation code and methods. (Including events in a class is beyond
the scope of this book.) Th e class will be used in the Carpet Haven applica-
tion, which calculates and displays the number of square yards of carpet-
ing required to carpet a rectangular fl oor. It also calculates and displays the
cost of the carpet.

To add a class fi le to the Carpet Haven application:

1. Open the Carpet Haven Solution (Carpet Haven Solution.sln) fi le
contained in the VB2010\Chap11\Carpet Haven Solution folder. If
necessary, open the designer window. Th e interface allows the user to
enter the length and width of a room’s fl oor and the price of a square
yard of carpet. See Figure 11-10.

START HERE

START HERE

C7718_ch11.indd 624C7718_ch11.indd 624 17/03/11 8:45 PM17/03/11 8:45 PM

625

Example 2—A Class that Contains Private Variables, Public Properties, and Methods L E S S O N A

Figure 11-10 Interface for the Carpet Haven application

2. Click Project on the menu bar and then click Add Class. Type
Rectangle.vb in the Name box and then click the Add button. Insert a
blank line above the Class statement and then enter the comments and
Option statements shown in Figure 11-11. (Replace <your name> and
<current date> in the comments with your name and the current date,
respectively.) Also, position the insertion point as shown in the fi gure.

enter these comments
and Option statements

position the insertion
point here

Figure 11-11 Comments and Option statements entered in the class fi le

A room’s fl oor is an object. More specifi cally, it is a rectangular object that
has two attributes: length and width. Rather than using Public variables to
represent both attributes, the Rectangle class will use Private variables and
Property procedures.

Private Variables and Property Procedures
Unlike a class’s Public variables, its Private variables are not visible to appli-
cations that contain an instance of the class. Because of this, the names of
the Private variables will not appear in the IntelliSense list as you are coding,
nor will they be recognized within the application’s code. A class’s Private
variables can be used only by instructions within the class itself. Th e naming
convention for a class’s Private variables is to use the underscore as the fi rst
character in the name and then camel case for the remainder of the name.
Following this naming convention, you will use the names _dblLength and
_dblWidth for the Private variables in the Rectangle class.

C7718_ch11.indd 625C7718_ch11.indd 625 17/03/11 8:45 PM17/03/11 8:45 PM

626

C H A P T E R 1 1 Classes and Objects

To include Private variables in the Rectangle class:

1. Enter the following two Private statements. Press Enter twice after
typing the last statement.

Private _dblLength As Double
Private _dblWidth As Double

2. Save the solution.

When an application instantiates an object, only the Public members of
the object’s class are visible to the application; the application cannot access the
Private members of the class. Using OOP terminology, the Public members
are “exposed” to the application, whereas the Private members are “hidden”
from the application. For an application to assign data to or retrieve data from
a Private variable in a class, it must use a Public property. In other words, an
application cannot directly refer to a Private variable in a class. Rather, it must
refer to the variable indirectly, through the use of a Public property.

You create a Public property using a Property procedure. Figure 11-12 shows
the syntax of a Property procedure. In most cases, a Property procedure
header begins with the keywords Public Property. However, as the
 syntax indicates, the header also can include one of the following keywords:
ReadOnly or WriteOnly. Th e ReadOnly keyword indicates that the property’s
value can be retrieved (read) by an application, but the application cannot set
(write to) the property. Th e property would get its value from the class itself
rather than from the application. Th e WriteOnly keyword indicates that an
application can set the property’s value, but it cannot retrieve the value. In this
case, the value would be set by the application for use within the class.

Following the Property keyword in the header is the name of the property.
You should use nouns and adjectives to name a property and enter the name
using Pascal case, as in Side, Bonus, and AnnualSales. Following the property
name is an optional parameterList enclosed in parentheses, the keyword As,
and the property’s dataType. Th e dataType must match the data type of the
Private variable associated with the Property procedure.

Between a Property procedure’s header and footer, you include a Get block of
code, a Set block of code, or both Get and Set blocks of code. Th e appropri-
ate block or blocks of code to include depends on the keywords contained
in the procedure header. If the header contains the ReadOnly keyword,
you include only a Get block of code in the Property procedure. Th e code
contained in the Get block allows an application to retrieve the contents of
the Private variable associated with the property. In the Property procedure
shown in Example 2 in Figure 11-12, the ReadOnly keyword indicates that
an application can retrieve the contents of the Bonus property, but it cannot
set the property’s value. If the header contains the WriteOnly keyword, on
the other hand, you include only a Set block of code in the procedure. Th e
code in the Set block allows an application to assign a value to the Private
variable associated with the property. In the Property procedure shown in
Example 3 in Figure 11-12, the WriteOnly keyword indicates that an appli-
cation can assign a value to the AnnualSales property, but it cannot retrieve
the property’s contents. If the Property procedure header does not contain
the ReadOnly or WriteOnly keywords, you include both a Get block of
code and a Set block of code in the procedure, as shown in Example 1 in

START HERE

A one- dimensional
array’s Length
property is an
example of a
ReadOnly

 property. You learned
about the Length
 property in Chapter 9.

C7718_ch11.indd 626C7718_ch11.indd 626 17/03/11 8:45 PM17/03/11 8:45 PM

627

Example 2—A Class that Contains Private Variables, Public Properties, and Methods L E S S O N A

Figure 11-12. In this case, an application can both retrieve and set the Side
property’s value. A Public Property procedure creates a property that is
 visible to any application that contains an instance of the class.

Figure 11-12 Syntax and examples of a Property procedure

Property procedure

Syntax
Public [ReadOnly | WriteOnly] Property propertyName[(parameterList)] As dataType
 Get
 [instructions]
 Return privateVariable
 End Get
 Set(ByVal value As dataType)
 [instructions]
 privateVariable = {value | defaultValue}
 End Set
End Property

Example 1 – an application can both retrieve and set the Side property’s value
Private _intSide As Integer

Public Property Side As Integer
 Get
 Return _intSide
 End Get
 Set(ByVal value As Integer)
 If value > 0 Then
 _intSide = value
 Else
 _intSide = 0
 End If
 End Set
End Property

Example 2 – an application can retrieve, but not set, the Bonus property’s value
Private _dblBonus As Double

Public ReadOnly Property Bonus As Double
 Get
 Return _dblBonus
 End Get
End Property

Example 3 – an application can set, but not retrieve, the AnnualSales property’s value
Private _decAnnualSales As Decimal

Public WriteOnly Property AnnualSales As Decimal
 Set(ByVal value As Decimal)
 _decAnnualSales = value
 End Set
End Property

C7718_ch11.indd 627C7718_ch11.indd 627 17/03/11 8:45 PM17/03/11 8:45 PM

628

C H A P T E R 1 1 Classes and Objects

Th e Get block contains the Get statement, which begins with the keyword Get
and ends with the keywords End Get. Most times, you will enter only the
Return privateVariable instruction within the Get statement. Th e instruc-
tion directs the computer to return the contents of the Private variable associ-
ated with the property. In Example 1 in Figure 11-12, the Return _intSide
statement tells the computer to return the contents of the _intSide variable,
which is the Private variable associated with the Side property. Similarly, the
Return _dblBonus statement in Example 2 tells the computer to return
the contents of the _dblBonus variable, which is the Private variable associ-
ated with the Bonus property. Example 3 does not contain a Get statement,
because the AnnualSales property is designated as a WriteOnly property.

Th e Set block contains the Set statement, which begins with the keyword
Set and ends with the keywords End Set. Following the Set keyword is a
parameter enclosed in parentheses. Th e parameter begins with the keywords
ByVal value As. Th e keywords are followed by a dataType, which must
match the data type of the Private variable associated with the Property proce-
dure. Th e value parameter temporarily stores the value that is passed to the
property by the application. You can enter one or more instructions within the
Set statement. One of the instructions should assign the contents of the value
parameter to the Private variable associated with the property. In Example 3 in
Figure 11-12, the _decAnnualSales = value statement assigns the contents
of the property’s value parameter to the Private _decAnnualSales variable.

In the Set statement, you often will include instructions to validate the value
received from the application before assigning it to the Private variable. Th e
Set statement in Example 1 in Figure 11-12 includes a selection structure that
determines whether the side measurement received from the application is
valid. In this case, a valid side measurement is an integer that is greater than 0.
If the side measurement is valid, the _intSide = value instruction assigns
the integer stored in the value parameter to the Private _intSide variable.
Otherwise, the _intSide = 0 instruction assigns a default value (in this
case, 0) to the variable. Th e Property procedure in Example 2 in Figure 11-12
does not contain a Set statement, because the Bonus property is designated
as a ReadOnly property.

To enter a Property procedure for each Private variable in the Rectangle
class:

1. Th e insertion point should be positioned in the blank line above the
End Class clause. Enter the following Property procedure header and
Get clause. When you press Enter after typing the Get clause, the
Code Editor automatically enters the End Get clause, the Set state-
ment, and the End Property clause.
Public Property Length As Double
Get

2. Recall that, in most cases, the Get statement simply returns the con-
tents of the Private variable associated with the Property procedure.
Type the following statement, but don’t press Enter:

Return _dblLength
3. Th e Set statement should assign either the contents of its value

parameter or a default value to the Private variable associated with
the Property procedure. In this case, you will assign the integer stored

START HERE

C7718_ch11.indd 628C7718_ch11.indd 628 17/03/11 8:45 PM17/03/11 8:45 PM

629

Example 2—A Class that Contains Private Variables, Public Properties, and Methods L E S S O N A

in the value parameter only when the integer is greater than 0;
 otherwise, you will assign the number 0. Click the blank line above
the End Set clause and then enter the following selection structure:

If value > 0 Th en
 _dblLength = value
 Else
 _dblLength = 0
End If

4. Save the solution. Figure 11-13 shows the Length Property procedure
associated with the _dblLength variable.

Private variable

Public property associated
with the Private variable

Figure 11-13 Length Property procedure entered in the class

5. Now you will enter a Property procedure for the _dblWidth variable.
Insert two blank lines below the End Property clause. Enter the fol-
lowing Property procedure header and Get clause:

Public Property Width As Double
Get

6. Now type the following Return statement in the line below the Get
clause, but don’t press Enter:

Return _dblWidth

7. Click the blank line above the End Set clause and then enter the
 following selection structure:

If value > 0 Th en
 _dblWidth = value
Else
 _dblWidth = 0
End If

8. Save the solution.

You have fi nished entering the class’s Private variables and Property
 procedures. Th e class’s methods are next. Th e fi rst method you will learn
about is a constructor.

C7718_ch11.indd 629C7718_ch11.indd 629 17/03/11 8:45 PM17/03/11 8:45 PM

630

C H A P T E R 1 1 Classes and Objects

Constructors
Most classes contain at least one constructor. A constructor is a class
method, always named New, whose sole purpose is to initialize the class’s
Private variables. Constructors never return a value, so they are always Sub
procedures rather than Function procedures. Th e syntax for creating a con-
structor is shown in Figure 11-14. Notice that a constructor’s parameterList
is optional. A constructor that has no parameters, like the constructor in
Example 1 in Figure 11-14, is called the default constructor. A class can have
only one default constructor. A class that contains one or more parameters,
like the constructor in Example 2, is called a parameterized constructor.
A class can have as many parameterized constructors as needed; however,
the parameterList in each parameterized constructor must be unique within
the class. Th e method name (in this case, New) combined with its optional
parameterList is called the method’s signature.

When an object is instantiated, the computer uses one of the class’s
 constructors to initialize the class’s Private variables. If a class contains more
than one constructor, the computer determines the appropriate constructor
by matching the number, data type, and position of the arguments in the
statement that instantiates the object with the number, data type, and posi-
tion of the parameters listed in each constructor’s parameterList. Examples
of statements that will invoke the default constructor in Figure 11-14
include Dim fl oor As New Rectangle and fl oor = New Rectangle.
(Recall that the New keyword tells the computer to instantiate the object.)
Th e default constructor is used because neither of the statements contains
any arguments. Examples of statements that will invoke the parameterized
 constructor in Figure 11-14 include Dim fl oor As New Rectangle(10.5,
12.5) and fl oor = New Rectangle(dblRoomLen, dblRoomWid). In
this case, the parameterized constructor is used because both statements
contain two arguments whose data type is Double.

Figure 11-14 Syntax and examples of a constructor

Constructor

Syntax
Public Sub New([parameterList])
 instructions to initialize the class’s Private variables
End Sub

Example 1 (default constructor)
Public Sub New()
 _dblLength = 0
 _dblWidth = 0
End Sub

Example 2 (parameterized constructor)
Public Sub New(ByVal dblL As Double,
 ByVal dblW As Double)
 Length = dblL
 Width = dblW
End Sub

initializes the Private
variables directly

uses the Public properties
to initialize the Private
variables indirectly

The Dim ran-
domGenerator
As New
Random state-
ment from

Chapter 5 instantiates a
Random object and
invokes the class’s
default constructor.

C7718_ch11.indd 630C7718_ch11.indd 630 17/03/11 8:45 PM17/03/11 8:45 PM

631

Example 2—A Class that Contains Private Variables, Public Properties, and Methods L E S S O N A

As Figure 11-14 shows, a default constructor is allowed to initialize the class’s
Private variables directly. Th e default constructor in Example 1, for instance,
assigns the number 0 to the class’s Private _dblLength and _ dblWidth
variables. Parameterized constructors, on the other hand, should use the
class’s Public properties to access the Private variables indirectly. Th is is
because the values passed to a parameterized constructor come from the
application rather than from the class itself. Values that originate outside
of the class should always be assigned to the Private variables indirectly,
through the Public properties. Doing this ensures that the Property proce-
dure’s Set block, which typically contains validation code, is processed. Th e
parameterized constructor in Example 2 in Figure 11-14, for instance, uses
the Public Length property to initialize the Private _ dblLength variable,
thereby invoking the validation code in the Length property.

To include a default constructor in the Rectangle class:

1. Insert two blank lines below the Width property’s End Property
clause.

2. Enter the following default constructor:

Public Sub New()
 _dblLength = 0
 _dblWidth = 0
End Sub

Methods Other than Constructors
Except for constructors, which must be Sub procedures, the other methods
in a class can be either Sub procedures or Function procedures. Recall from
Chapter 7 that the diff erence between these two types of procedures is that
a Function procedure returns a value after performing its assigned task,
whereas a Sub procedure does not return a value. Figure 11-15 shows the
syntax for a method that is not a constructor. Like property names, method
names should be entered using Pascal case. However, unlike property
names, the fi rst word in a method name should be a verb, and any subse-
quent words should be nouns and adjectives. Figure 11-15 also includes two
examples of a method that allows a Rectangle object to calculate its area.
Notice that you can write the method as either a Function procedure or a
Sub procedure.

START HERE

C7718_ch11.indd 631C7718_ch11.indd 631 17/03/11 8:45 PM17/03/11 8:45 PM

632

C H A P T E R 1 1 Classes and Objects

Figure 11-15 Syntax and examples of a method that is not a constructor

Method that is not a constructor

Syntax
Public {Sub | Function} methodName([parameterList]) [As dataType]
 instructions
End {Sub | Function}

Example 1 (coded as a Function procedure)
Public Function GetArea() As Double
 Return _dblLength * _dblWidth
End Function

Example 2 (coded as a Sub procedure)
Public Sub GetArea(ByRef dblA As Double)
 dblA = _dblLength * _dblWidth
End Sub

To enter the GetArea method from Example 1:

1. Insert two blank lines below the default constructor’s End Sub clause
and then enter the following GetArea method:

Public Function GetArea() As Double
 Return _dblLength * _dblWidth
End Function

2. Th e Rectangle class defi nition is now complete. Save the solution.

Coding the Carpet Haven Application
Th e Calculate button’s Click event procedure is the only procedure you need
to code in the Carpet Haven application. Figure 11-16 shows the procedure’s
pseudocode.

Figure 11-16 Pseudocode for the Calculate button’s Click event procedure

btnCalc Click event procedure
1. instantiate a Rectangle object to represent the fl oor
2. declare variables to store the price per square yard, required number of square

yards, and carpet cost
3. assign the input data to the appropriate properties and variable
4. calculate the required number of square yards by dividing the fl oor’s area by 9
5. calculate the carpet cost by multiplying the price per square yard by the required

number of square yards
6. display the required number of square yards and the carpet cost

START HERE

C7718_ch11.indd 632C7718_ch11.indd 632 17/03/11 8:45 PM17/03/11 8:45 PM

633

Example 2—A Class that Contains Private Variables, Public Properties, and Methods L E S S O N A

To code the Calculate button’s Click event procedure:

1. Click the designer window’s tab and then open the Code Editor
window. Replace <your name> and <current date> in the comments
with your name and the current date, respectively.

2. Open the code template for the btnCalc control’s Click event
 procedure. Type the following comment and then press Enter twice:

' displays square yards and cost of carpet

3. Th e fi rst step in the pseudocode is to instantiate a Rectangle object
to represent the room’s fl oor. Type the following Dim statement and
then press Enter twice:

Dim fl oor As New Rectangle

4. Now you will declare variables to store the following items: the price
of a square yard of carpet, the number of square yards needed, and
the cost of the carpet. You won’t need variables to store the fl oor’s
length and width measurements, because the procedure will assign
those values to the Rectangle object’s Length and Width properties,
respectively. Enter the following three Dim statements. Press Enter
twice after typing the last Dim statement.

Dim dblPriceSqYd As Double
Dim dblSqYards As Double
Dim dblCost As Double

5. Next, you will assign the length and width entries to the Rectangle
object’s Length and Width properties, respectively. You also will
assign the price entry to the dblPriceSqYd variable. Enter the three
TryParse methods shown in Figure 11-17, and then position the
insertion point as shown in the fi gure. Notice that when you press the
period after typing fl oor in the fi rst two TryParse methods, the fl oor
object’s Length and Width properties appear in the IntelliSense list.

Figure 11-17 TryParse methods entered in the procedure

enter these TryParse
methods

position the insertion
point here

6. Th e fourth step in the pseudocode is to calculate the required number
of square yards by dividing the fl oor’s area (which is in square feet) by
the number 9. You need to divide by 9 because there are 9 square feet
in a square yard. You can use the Rectangle object’s GetArea method
to calculate and return the area of the fl oor. Enter the following com-
ment and assignment statement. Here again, notice that when you

START HERE

C7718_ch11.indd 633C7718_ch11.indd 633 17/03/11 8:45 PM17/03/11 8:45 PM

634

C H A P T E R 1 1 Classes and Objects

press the period after typing fl oor, the fl oor object’s GetArea method
appears in the IntelliSense list.

' calculate the required square yards
dblSqYards = fl oor.GetArea / 9

7. Th e next step is to calculate the cost of the carpet by multiplying the
price per square yard by the required number of square yards. Enter
the following comment and assignment statement. Press Enter twice
after typing the assignment statement.

' calculate the carpet cost
dblCost = dblPriceSqYd * dblSqYards

8. Th e last step in the pseudocode is to display the required number of
square yards and the carpet cost. Enter the following comment and
assignment statements:

' display square yards and carpet cost
lblSquareYards.Text = dblSqYards.ToString("N1")
lblCost.Text = dblCost.ToString("C2")

Figure 11-18 shows the Rectangle class defi nition contained in the Rectangle.vb
fi le. It also shows the btnCalc control’s Click event procedure contained in the
Main Form.vb. fi le.

Public Class Rectangle
 Private _dblLength As Double
 Private _dblWidth As Double

 Public Property Length As Double
 Get
 Return _dblLength
 End Get
 Set(ByVal value As Double)
 If value > 0 Then
 _dblLength = value
 Else
 _dblLength = 0
 End If
 End Set
 End Property

 Public Property Width As Double
 Get
 Return _dblWidth
 End Get
 Set(ByVal value As Double)
 If value > 0 Then
 _dblWidth = value

Figure 11-18 Rectangle class defi nition and btnCalc control's Click event procedure
(continues)

beginning of the class
defi nition (entered in
the Rectangle.vb fi le)

C7718_ch11.indd 634C7718_ch11.indd 634 17/03/11 8:45 PM17/03/11 8:45 PM

635

Example 2—A Class that Contains Private Variables, Public Properties, and Methods L E S S O N A

(continued)

 Else
 _dblWidth = 0
 End If
 End Set
 End Property

 Public Sub New()
 _dblLength = 0
 _dblWidth = 0
 End Sub

 Public Function GetArea() As Double
 Return _dblLength * _dblWidth
 End Function
End Class

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' displays square yards and cost of carpet

 Dim fl oor As New Rectangle

 Dim dblPriceSqYd As Double
 Dim dblSqYards As Double
 Dim dblCost As Double

 Double.TryParse(lstLength.SelectedItem.ToString, fl oor.Length)
 Double.TryParse(lstWidth.SelectedItem.ToString, fl oor.Width)
 Double.TryParse(lstPrice.SelectedItem.ToString, dblPriceSqYd)

 ' calculate the required square yards
 dblSqYards = fl oor.GetArea / 9
 ' calculate the carpet cost
 dblCost = dblPriceSqYd * dblSqYards

 ' display square yards and carpet cost
 lblSquareYards.Text = dblSqYards.ToString("N1")
 lblCost.Text = dblCost.ToString("C2")

End Sub

Figure 11-18 Rectangle class defi nition and btnCalc control's Click event procedure

beginning of the Calculate
button’s Click event
procedure (entered in the
Main Form.vb fi le)

assigns values to the
object’s Public properties

instantiates a
Rectangle object

invokes the object’s
GetArea method

To test the Carpet Haven application:

1. Save the solution and then start the application. Click 9.0 in the
Length list box and then click 8.0 in the Width list box. Click 7.50
in the Price list box and then click the Calculate button. Th e Dim
fl oor As New Rectangle instruction in the button’s Click event
procedure instantiates a Rectangle object. At this point, the computer
processes the class’s default constructor, which initializes the object’s
Private variables (_dblLength and _dblWidth) to the number 0.

START HERE

C7718_ch11.indd 635C7718_ch11.indd 635 17/03/11 8:45 PM17/03/11 8:45 PM

636

C H A P T E R 1 1 Classes and Objects

Th e next three Dim statements in the procedure create and initialize
three Double variables. Next, the TryParse methods assign the appro-
priate values to the Rectangle object’s Public properties and to the
dblPriceSqYd variable. Th e procedure then calculates the required
number of square yards of carpet, using the Rectangle object’s
GetArea method to calculate and return the area of the fl oor. Finally,
the procedure calculates the cost of the carpet and then displays both
the required number of square yards and the cost. See Figure 11-19.

Figure 11-19 Square yards and cost displayed in the interface

2. On your own, test the application using diff erent lengths, widths, and
prices. When you are fi nished, click the Exit button. Close the Main
Form.vb and Rectangle.vb windows and then close the solution.

YOU DO IT 1!

Create a Visual Basic Windows application named YouDoIt 1. Save the
application in the VB2010\Chap11 folder. Add a text box, a label, and
a button to the form. Add a class file named Circle.vb to the project.
Define a class named Circle. The class should contain one attribute: the
circle’s radius. It also should contain a default constructor and a method
that calculates and returns the circle’s area. Use the following formula
to calculate the area: 3.141592 * radius2. Open the form’s Code Editor
window. The button’s Click event procedure should display the circle’s area,
using the radius entered by the user. Code the procedure. Save the solution
and then start and test the application. Close the solution.

Example 3—A Class that Contains a
Parameterized Constructor
In this example, you will add a parameterized constructor to the Rectangle
class created in Example 2. Recall that a parameterized constructor is simply
a constructor that has parameters. You then will modify the Carpet Haven
application to use the parameterized constructor.

To add a parameterized constructor to the Rectangle.vb fi le:

1. Use Windows to make a copy of the Carpet Haven Solution folder
from Example 2. Rename the copy Modifi ed Carpet Haven Solution.
Open the Carpet Haven Solution (Carpet Haven Solution.sln) fi le
contained in the Modifi ed Carpet Haven Solution folder. Open the
designer window.

START HERE

C7718_ch11.indd 636C7718_ch11.indd 636 17/03/11 8:45 PM17/03/11 8:45 PM

637

Example 3—A Class that Contains a Parameterized Constructor L E S S O N A

2. Right-click Rectangle.vb in the Solution Explorer window and then
click View Code.

3. Locate the default constructor. Click the blank line below the default
constructor’s End Sub clause and then press Enter twice to insert two
blank lines. Press the up arrow key on your keyboard and then enter
the following parameterized constructor:

Public Sub New(ByVal dblL As Double, ByVal dblW As Double)
 Length = dblL
 Width = dblW
End Sub

4. Save the solution and then close the Rectangle.vb window.

Figure 11-20 shows the Rectangle class’s default and parameterized construc-
tors. Unlike the default constructor, which automatically initializes the Private
variables to 0 when a Rectangle object is created, a parameterized constructor
allows an application to specify the object’s initial values. In this case, the initial
values must have the Double data type because the constructor’s parameterList
contains two Double variables. You include the initial values, enclosed in a set
of parentheses, in the statement that instantiates the object. In other words,
you include them in the statement that contains the New keyword, such as the
Dim fl oor As New Rectangle(10.5, 12.5) statement or the fl oor =
New Rectangle(dblRoomLen, dblRoomWid) statement.

default
constructoraccesses the Private

variables directly

parameterized
constructoruses the Public properties

to access the Private variables

Figure 11-20 Default and parameterized constructors

To use the parameterized constructor in the modifi ed Carpet Haven
application:

1. Open the form’s Code Editor window. Locate the btnCalc control’s
Click event procedure.

2. Delete the New keyword from the fi rst Dim statement. Th e statement
should now say Dim fl oor As Rectangle.

3. Click the blank line below the Dim fl oor As Rectangle statement
and then enter the following two declaration statements:

Dim dblRoomLen As Double
Dim dblRoomWid As Double

4. In the fi rst TryParse method, replace fl oor.Length with
 dblRoomLen. Th en, in the second TryParse method, replace
fl oor.Width with dblRoomWid.

START HERE

C7718_ch11.indd 637C7718_ch11.indd 637 17/03/11 8:45 PM17/03/11 8:45 PM

638

C H A P T E R 1 1 Classes and Objects

5. Click the blank line below the last TryParse method and then press
Enter. Enter the following comment and assignment statement:

' instantiate and initialize a Rectangle object
fl oor = New Rectangle(dblRoomLen, dblRoomWid)

Figure 11-21 shows the modifi ed Rectangle class defi nition and modifi ed
 btnCalc control’s Click event procedure. Th e modifi cations made to the
original code (shown earlier in Figure 11-18) are shaded in Figure 11-21.
When the user clicks the Calculate button, the Dim fl oor As Rectangle
instruction in the button’s Click event procedure creates a variable that can
store a Rectangle object; but it does not create the object. Th e remaining
Dim statements create and initialize fi ve Double variables. Next, the TryParse
methods assign the input values to the dblRoomLen, dblRoomWid, and
dblPriceSqYd variables.

Th e next statement in the procedure, fl oor = New Rectangle(dblRoomLen,
dblRoomWid), instantiates a Rectangle object. Th e two Double arguments
in the statement tell the computer to use the class’s parameterized con-
structor (rather than its default constructor) to initialize the class’s Private
variables. In this case, the computer passes the two Double arguments (by
value) to the parameterized constructor, which stores them in its dblL and
dblW variables. Th e Length = dblL and Width = dblW instructions in
the constructor assign the values stored in the dblL and dblW parameters
to the Public Length and Width properties, respectively. When you assign
a value to a property, the computer passes the value to the property’s Set
statement, where it is stored in the Set statement’s value parameter. In
this case, the selection structure in the Length property’s Set statement
compares the value stored in the value parameter with the number 0. If
the value is greater than 0, the selection structure’s true path assigns the
value to the Private _dblLength variable; otherwise, its false path assigns
the number 0 to the variable. Similarly, the selection structure in the Width
property’s Set statement compares the value stored in the value parameter
with the number 0. If the value is greater than 0, the selection structure’s
true path assigns the value to the Private _dblWidth variable; otherwise,
its false path assigns the number 0 to the variable. Notice that a param-
eterized constructor uses the class’s Public properties to access the Private
variables indirectly. Th is is because the values passed to a parameterized
constructor come from the application rather than from the class itself. As
mentioned earlier, values that originate outside of the class should always
be assigned to the Private variables indirectly, through the Public proper-
ties. Doing this ensures that the Property procedure’s Set block, which
 typically contains validation code, is processed.

After the Rectangle object is instantiated and its Private variables are initial-
ized, the Click event procedure uses the object’s GetArea method to calculate
and return the area of the fl oor. Th e procedure uses the area to calculate the
required number of square yards of carpet. Finally, the procedure calculates
the cost of the carpet and then displays both the required number of square
yards and the cost.

C7718_ch11.indd 638C7718_ch11.indd 638 17/03/11 8:45 PM17/03/11 8:45 PM

639

Example 3—A Class that Contains a Parameterized Constructor L E S S O N A

Figure 11-21 Modifi ed Rectangle class defi nition and modifi ed btnCalc control's Click
event procedure (continues)

Public Class Rectangle
 Private _dblLength As Double
 Private _dblWidth As Double

 Public Property Length As Double
 Get
 Return _dblLength
 End Get
 Set(ByVal value As Double)
 If value > 0 Then
 _dblLength = value
 Else
 _dblLength = 0
 End If
 End Set
 End Property

 Public Property Width As Double
 Get
 Return _dblWidth
 End Get
 Set(ByVal value As Double)
 If value > 0 Then
 _dblWidth = value
 Else
 _dblWidth = 0
 End If
 End Set
 End Property

 Public Sub New()
 _dblLength = 0
 _dblWidth = 0
 End Sub

 Public Sub New(ByVal dblL As Double, ByVal dblW As Double)
 Length = dblL
 Width = dblW
 End Sub

 Public Function GetArea() As Double
 Return _dblLength * _dblWidth
 End Function
End Class

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' displays square yards and cost of carpet

parameterized
constructor

C7718_ch11.indd 639C7718_ch11.indd 639 17/03/11 8:45 PM17/03/11 8:45 PM

640

C H A P T E R 1 1 Classes and Objects

To test the modifi ed Carpet Haven application:

1. Save the solution and then start the application. Click 9.0 in the
Length list box and then click 8.0 in the Width list box. Click 7.50 in
the Price list box and then click the Calculate button. Th e required
number of square yards and the cost appear in the interface, as shown
earlier in Figure 11-19.

2. On your own, test the application using diff erent lengths, widths, and
prices. When you are fi nished, click the Exit button. Close the Main
Form.vb and Rectangle.vb windows and then close the solution.

Example 4—Reusing a Class
In Examples 2 and 3, you used the Rectangle class to create an object that
represented the fl oor in a room. In this example, you will use the Rectangle
class to represent a square pizza. A square is simply a rectangle that has
four equal sides. As mentioned earlier, the ability to use an object—in this
case, a Rectangle object—for more than one purpose saves programming
time and money, which contributes to the popularity of object-oriented
programming.

START HERE

 Dim fl oor As Rectangle
 Dim dblRoomLen As Double
 Dim dblRoomWid As Double

 Dim dblPriceSqYd As Double
 Dim dblSqYards As Double
 Dim dblCost As Double

 Double.TryParse(lstLength.SelectedItem.ToString, dblRoomLen)
 Double.TryParse(lstWidth.SelectedItem.ToString, dblRoomWid)
 Double.TryParse(lstPrice.SelectedItem.ToString, dblPriceSqYd)

 ' instantiate and initialize a Rectangle object
 fl oor = New Rectangle(dblRoomLen, dblRoomWid)

 ' calculate the required square yards
 dblSqYards = fl oor.GetArea / 9
 ' calculate the carpet cost
 dblCost = dblPriceSqYd * dblSqYards

 ' display square yards and carpet cost
 lblSquareYards.Text = dblSqYards.ToString("N1")
 lblCost.Text = dblCost.ToString("C2")

End Sub

Figure 11-21 Modifi ed Rectangle class defi nition and modifi ed btnCalc control's Click
event procedure

(continued)

declares a variable that can
store a Rectangle object

uses the parameterized
constructor to instantiate and
initialize a Rectangle object

C7718_ch11.indd 640C7718_ch11.indd 640 17/03/11 8:45 PM17/03/11 8:45 PM

641

Example 4—Reusing a Class L E S S O N A

To add the Rectangle.vb fi le to the Pizza Roma application:

1. Open the Pizza Roma Solution (Pizza Roma Solution.sln) fi le
 contained in the VB2010\Chap11\Pizza Roma Solution folder. If
 necessary, open the designer window. Th e interface provides text
boxes for entering the side measurement of the entire pizza, as well as
the side measurement of a slice of pizza. Th e application will use both
measurements to calculate the number of pizza slices that can be cut
from the entire pizza. See Figure 11-22.

Figure 11-22 Pizza Roma application’s interface

2. First, you will copy the Rectangle.vb class fi le from the modi-
fi ed Carpet Haven application to the Pizza Roma application. Use
Windows to copy the Rectangle.vb fi le from the VB2010\Chap11\
Modifi ed Carpet Haven Solution\Carpet Haven Project folder to
the Pizza Roma Solution\Pizza Roma Project folder. (If you did not
 complete the Carpet Haven application, you can copy the Rectangle.vb
fi le contained in the VB2010\Chap11 folder.)

3. Next, you will add the Rectangle.vb fi le to the Pizza Roma proj-
ect. Click Project on the menu bar and then click Add Existing
Item. Open the Pizza Roma Project folder (if necessary) and then
click Rectangle.vb in the list of fi lenames. Click the Add button.
Temporarily display the Solution Explorer window (if necessary) to
verify that the Rectangle.vb fi le was added to the project.

4. Open the Code Editor window. Replace <your name> and <cur-
rent date> in the comments with your name and the current date,
respectively.

5. Open the code template for the btnCalc control’s Click event proce-
dure and then enter the following two comments. Press Enter twice
after typing the last comment.

' displays the number of square pizza slices
' that can be cut from a square pizza

Figure 11-23 shows the pseudocode for the btnCalc control’s Click event
procedure.

START HERE

C7718_ch11.indd 641C7718_ch11.indd 641 17/03/11 8:45 PM17/03/11 8:45 PM

642

C H A P T E R 1 1 Classes and Objects

Figure 11-23 Pseudocode for the btnCalc control's Click event procedure

btnCalc Click event procedure
1. instantiate a Rectangle object to represent the entire square pizza
2. instantiate a Rectangle object to represent a square pizza slice
3. declare variables to store the area of the entire pizza, the area of a pizza slice,

and the number of slices
4. assign the input data to the properties of the appropriate Rectangle object
5. calculate the area of the entire pizza
6. calculate the area of a pizza slice
7. if the area of a pizza slice is > 0 then

 calculate the number of pizza slices by dividing the area of the
 entire pizza by the area of a pizza slice

 else
 assign 0 as the number of pizza slices

 end if
8. display the number of pizza slices

To code the btnCalc control’s Click event procedure:

1. Th e fi rst two steps in the pseudocode are to instantiate two Rectangle
objects to represent the entire pizza and a pizza slice. Enter the fol-
lowing Dim statements:

Dim entirePizza As New Rectangle
Dim pizzaSlice As New Rectangle

2. Th e third step in the pseudocode is to declare variables to store the
area of the entire pizza, the area of a pizza slice, and the number
of slices. You won’t need variables to store the side measurements
entered by the user, because the procedure will assign those values
to each Rectangle object’s Length and Width properties. Enter the
 following three Dim statements. Press Enter twice after typing the
last Dim statement.

Dim dblEntireArea As Double
Dim dblSliceArea As Double
Dim dblSlices As Double

3. Th e fourth step in the pseudocode is to assign the side measurements
to the properties of the appropriate Rectangle object. Enter the fol-
lowing four lines of code. Notice that when you press the period after
typing either entirePizza or pizzaSlice, the object’s Length and
Width properties appear in the IntelliSense list. Press Enter twice
after typing the last line.

Double.TryParse(txtEntirePizza.Text, entirePizza.Length)
Double.TryParse(txtEntirePizza.Text, entirePizza.Width)
Double.TryParse(txtPizzaSlice.Text, pizzaSlice.Length)
Double.TryParse(txtPizzaSlice.Text, pizzaSlice.Width)

START HERE

C7718_ch11.indd 642C7718_ch11.indd 642 17/03/11 8:45 PM17/03/11 8:45 PM

643

Example 4—Reusing a Class L E S S O N A

4. Th e fi fth and sixth steps in the pseudocode are to calculate the area of
the entire pizza and the area of a slice of pizza, respectively. You can
accomplish both tasks using the Rectangle object’s GetArea method.
Because the method already contains the code needed to calculate the
area of a rectangle, you do not need to waste time planning and then
reentering the code. Enter the following comment and assignment
statement:

' calculate area of entire pizza and pizza slice
dblEntireArea = entirePizza.GetArea
dblSliceArea = pizzaSlice.GetArea

5. Th e seventh step in the pseudocode is a selection structure that deter-
mines whether the pizza slice area is greater than 0. You need to make
this determination because the pizza slice area is used as the divisor
when calculating the number of pizza slices. If the area is greater than
0, the selection structure’s true path should calculate the number of
pizza slices; otherwise, its false path should assign 0 as the number of
pizza slices. Enter the following comment and selection structure:

' calculate number of slices
If dblSliceArea > 0 Th en
 dblSlices = dblEntireArea / dblSliceArea
Else
 dblSlices = 0
End If

6. Th e last step in the pseudocode is to display the number of pizza
slices. Insert a blank line below the End If clause and then enter the
following comment and assignment statement:

' display number of slices
lblSlices.Text = dblSlices.ToString("N1")

Th e btnCalc control’s Click event procedure is shown in Figure 11-24.

instantiates two
Rectangle objects

Figure 11-24 btnCalc control’s Click event procedure (continues)

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' displays the number of square pizza slices
 ' that can be cut from a square pizza

 Dim entirePizza As New Rectangle
 Dim pizzaSlice As New Rectangle
 Dim dblEntireArea As Double
 Dim dblSliceArea As Double
 Dim dblSlices As Double

 Double.TryParse(txtEntirePizza.Text, entirePizza.Length)
 Double.TryParse(txtEntirePizza.Text, entirePizza.Width)
 Double.TryParse(txtPizzaSlice.Text, pizzaSlice.Length)
 Double.TryParse(txtPizzaSlice.Text, pizzaSlice.Width)

assigns values to each
object’s Public properties

C7718_ch11.indd 643C7718_ch11.indd 643 17/03/11 8:45 PM17/03/11 8:45 PM

644

C H A P T E R 1 1 Classes and Objects

To test the application’s code:

1. Save the solution and then start the application. First, you will deter-
mine the number of 4-inch slices that can be cut from a 12-inch
pizza. Type 12 in the Entire square pizza box and then type 4 in the
Square pizza slice box. Click the Calculate button. As Figure 11-25
indicates, nine 4-inch square pizza slices can be cut from a 12-inch
square pizza.

Figure 11-25 Number of pizza slices shown in the interface

2. On your own, test the application using diff erent side measurements.
When you are fi nished, click the Exit button. Close the Code Editor
window and then close the solution.

Lesson A Summary

 • To defi ne a class:

Use the Class statement. Th e statement’s syntax is shown in Figure 11-2.

 • To add a class fi le to a project:

Click Project on the menu bar and then click Add Class. In the Name box,
type the name of the class followed by a period and the letters vb, and then
click the Add button.

START HERE

Figure 11-24 btnCalc control’s Click event procedure

 ' calculate area of entire pizza and pizza slice
 dblEntireArea = entirePizza.GetArea
 dblSliceArea = pizzaSlice.GetArea
 ' calculate number of slices
 If dblSliceArea > 0 Then
 dblSlices = dblEntireArea / dblSliceArea
 Else
 dblSlices = 0
 End If
 ' display number of slices
 lblSlices.Text = dblSlices.ToString("N1")

End Sub

(continued)

invokes each object’s
GetArea method

C7718_ch11.indd 644C7718_ch11.indd 644 17/03/11 8:45 PM17/03/11 8:45 PM

645

Lesson A Key Terms L E S S O N A

 • To instantiate (create) an object from a class:

Use either of the syntax versions shown in Figure 11-4.

 • To create a Property procedure:

Use the syntax shown in Figure 11-12. Th e Get block allows an application
to retrieve the contents of the Private variable associated with the Property
procedure. Th e Set block allows an application to assign a value to the
Private variable associated with the Property procedure.

 • To create a constructor:

Use the syntax shown in Figure 11-14. A constructor that has no param-
eters is called the default constructor. A class can have only one default
constructor. A constructor that has one or more parameters is called a
parameterized constructor. A class can have as many parameterized con-
structors as needed. All constructors are Sub procedures that are named
New. Each constructor must have a unique parameterList (if any) within
the class.

 • To create a method other than a constructor:

Use the syntax shown in Figure 11-15.

Lesson A Key Terms
Attributes—the characteristics that describe an object

Behaviors—an object’s methods and events

Class—a pattern that the computer follows when instantiating (creating) an
object

Class statement—the statement used to defi ne a class in Visual Basic

Constructor—a method whose instructions are automatically processed each
time the class is used to instantiate an object; its purpose is to initialize the
class’s Private variables; always a Sub procedure named New

Default constructor—a constructor that has no parameters; a class can have
only one default constructor

Encapsulates—an OOP term that means “contains”

Events—the actions to which an object can respond

Get block—the section of a Property procedure that contains the Get
statement

Get statement—appears in a Get block in a Property procedure; contains the
code that allows an application to retrieve the contents of the Private variable
associated with the property

Instance—an object created from a class

Instantiated—the process of creating an object from a class

Methods—the actions that an object is capable of performing

C7718_ch11.indd 645C7718_ch11.indd 645 17/03/11 8:45 PM17/03/11 8:45 PM

646

C H A P T E R 1 1 Classes and Objects

Object-oriented programming language—a programming language that
allows the use of objects to accomplish a program’s goal

OOP—an acronym for object-oriented programming

Parameterized constructor—a constructor that contains one or more
parameters

Property procedure—creates a Public property that an application can use to
access a Private variable in a class

ReadOnly keyword—used when defi ning a Property procedure; indicates that
the property’s value can only be retrieved (read) by an application

Set block—the section of a Property procedure that contains the Set
statement

Set statement—appears in a Set block in a Property procedure; contains
the code that allows an application to assign a value to the Private variable
 associated with the property; may also contain validation code

Signature—a method’s name combined with its optional parameterList

WriteOnly keyword—used when defi ning a Property procedure; indicates that
an application can only set the property’s value

Lesson A Review Questions

1. Th e name of a class fi le ends with .

a. .cla

b. .cls

c. .vb

d. none of the above

2. A constructor is .

a. a Function procedure

b. a Property procedure

c. a Sub procedure

d. either a Function procedure or a Sub procedure

3. Th e Product class contains a Private variable named _intPrice. Th e
variable is associated with the Public Price property. An application
instantiates a Product object and assigns it to a variable named item.
Which of the following can be used by the application to assign the
number 45 to the _intPrice variable?

a. _intPrice = 45

b. Price = 45

c. item._intPrice = 45

d. item.Price = 45

C7718_ch11.indd 646C7718_ch11.indd 646 17/03/11 8:45 PM17/03/11 8:45 PM

647

Lesson A Review Questions L E S S O N A

4. Th e Product class in Review Question 3 also contains a Public
method named GetNewPrice. Th e method is a Function procedure.
Which of the following can be used by the application from Review
Question 3 to invoke the GetNewPrice method?

a. intNewPrice = Call GetNewPrice

b. intNewPrice = Price.GetNewPrice

c. intNewPrice = item.GetNewPrice

d. intNewPrice = item.GetNewPrice(_intPrice)

5. Which of the following statements is false?

a. A class can contain only one constructor.

b. An example of a behavior is the SetTime method in a Time class.

c. An object created from a class is referred to as an instance of the
class.

d. An instance of a class is considered an object.

6. A Private variable in a class can be accessed directly by a Public
method in the same class.

a. True

b. False

7. An application can access the Private variables in a class .

a. directly

b. using properties created by Public Property procedures

c. through Private procedures contained in the class

d. none of the above

8. To expose a variable or method contained in a class, you declare the
variable or method using the keyword .

a. Exposed

b. Private

c. Public

d. Viewable

9. Which of the following is the name of the Animal class’s default
constructor?

a. Animal

b. AnimalConstructor

c. Default

d. none of the above

C7718_ch11.indd 647C7718_ch11.indd 647 17/03/11 8:45 PM17/03/11 8:45 PM

648

C H A P T E R 1 1 Classes and Objects

10. Which of the following instantiates an Animal object and assigns it to
the dog variable?

a. Dim dog As Animal

b. Dim dog As New Animal

c. Dim dog As Animal
 dog = New Animal

d. both b and c

11. If you need to validate a value before assigning it to a Private variable, you
enter the validation code in the block in a Property procedure.

a. Assign

b. Get

c. Set

d. Validate

12. Th e Return statement is entered in the statement in a
Property procedure.

a. Get

b. Set

13. A class contains a Private variable named _strCapital. Th e variable
is associated with a Public property named Capital. Which of the
 following is the best way for a parameterized constructor to assign the
value stored in its strCapName parameter to the variable?

a. _strCapital = strCapName

b. Capital = strCapName

c. _strCapital.Capital = strCapName

d. none of the above

Lesson A Exercises

1. A class contains more than one constructor. Explain how the
 computer determines the appropriate constructor to use when
 instantiating an object.

2. Write a Class statement that defi nes a class named Book. Th e class
contains three Public variables named Title, Author, and Cost. Th e
Title and Author variables are String variables. Th e Cost variable
is a Decimal variable. Th en use the syntax shown in Version 1 in
Figure 11-4 to declare a variable that can store a Book object; name
the variable fi ction. Also write a statement that instantiates the Book
object and assigns it to the fi ction variable.

INTRODUCTORY

INTRODUCTORY

C7718_ch11.indd 648C7718_ch11.indd 648 17/03/11 8:45 PM17/03/11 8:45 PM

649

Lesson A Exercises L E S S O N A

3. Rewrite the Class statement from Exercise 2 so that it uses Private
variables rather than Public variables. Be sure to include the Property
procedures and default constructor.

4. Write a Class statement that defi nes a class named Tape. Th e class
contains four Private String variables named _strName, _strArtist,
_strSongNumber, and _strLength. Name the corresponding
properties TapeName, Artist, SongNumber, and Length. Th en, use
the syntax shown in Version 2 in Figure 11-4 to create a Tape object,
assigning it to a variable named blues.

5. Th e Computer class defi nition is shown in Figure 11-26. Write a Dim
statement that uses the default constructor to instantiate a Computer
object in an application. Th e Dim statement should assign the object
to a variable named homeUse. Next, write assignment statements that
the application can use to assign the string “IB-50” and the number
2400 to the Model and Cost properties, respectively. Finally, write
an assignment statement that the application can use to invoke the
GetNewPrice function. Assign the function’s return value to a vari-
able named dblNewPrice.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Figure 11-26 Computer class defi nition (continues)

Public Class Computer
 Private _strModel As String
 Private _dblCost As Double

 Public Property Model As String
 Get
 Return _strModel
 End Get
 Set(ByVal value As String)
 _strModel = value
 End Set
 End Property

 Public Property Cost As Double
 Get
 Return _dblCost
 End Get
 Set(ByVal value As Double)
 _dblCost = value
 End Set
 End Property

 Public Sub New()
 _strModel = String.Empty
 _dblCost = 0
 End Sub

C7718_ch11.indd 649C7718_ch11.indd 649 17/03/11 8:45 PM17/03/11 8:45 PM

650

C H A P T E R 1 1 Classes and Objects

6. Using the Computer class shown in Figure 11-26, write a Dim
statement that uses the parameterized constructor to instantiate
a Computer object. Pass the parameterized constructor the string
“JK-75” and the number 899.99. Th e Dim statement should assign
the object to a variable named companyUse.

7. An application contains the statement Dim gaming As Computer.
Using the Computer class shown in Figure 11-26, write an assignment
statement that instantiates a Computer object and initializes it using
the strName and dblPrice variables. Th e statement should assign
the object to the gaming variable.

8. In this exercise, you modify the Pizza Roma application completed in
the lesson. Use Windows to make a copy of the Pizza Roma Solution
folder. Rename the copy Modifi ed Pizza Roma Solution. Open the
Pizza Roma Solution (Pizza Roma Solution.sln) fi le contained in the
Modifi ed Pizza Roma Solution folder. Open the designer and Code
Editor windows. Modify the btnCalc control’s Click event procedure
to use the Rectangle class’s parameterized constructor. Save the solu-
tion and then start and test the application. Close the Code Editor
window and then close the solution.

9. In this exercise, you modify the Willow Pools application completed in
the lesson. Use Windows to make a copy of the Willow Pools Solution
folder. Rename the copy Modifi ed Willow Pools Solution-Introductory.
Open the Willow Pools Solution (Willow Pools Solution.sln) fi le con-
tained in the Modifi ed Willow Pools Solution-Introductory folder.
Open the designer window and then open the RectangularPool.vb fi le.
Modify the RectangularPool class so that it uses Private variables and
Public Property procedures rather than Public variables. Include both
a default constructor and a parameterized constructor in the class.
Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

10. In this exercise, you modify the Willow Pools application from
Exercise 9. Use Windows to make a copy of the Modifi ed Willow
Pools Solution-Introductory folder. Rename the copy Modifi ed
Willow Pools Solution-Intermediate. Open the Willow Pools Solution

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

 Public Sub New(ByVal strM As String, ByVal dblC As Double)
 Model = strM
 Cost = dblC
 End Sub

 Public Function GetNewPrice() As Double
 Return _dblCost * 1.2
 End Function
End Class

(continued)

Figure 11-26 Computer class defi nition

C7718_ch11.indd 650C7718_ch11.indd 650 17/03/11 8:45 PM17/03/11 8:45 PM

651

Lesson A Exercises L E S S O N A

(Willow Pools Solution.sln) fi le contained in the Modifi ed Willow
Pools Solution-Intermediate folder.

a. Open the designer window. Add two labels to the form. Position
one of the labels below the Gallons: label, and then change its Text
property to Cost:. Position the other label below the lblGallons
control and then change its Name and TextAlign properties to
lblCost and MiddleCenter, respectively.

b. Open the RectangularPool.vb fi le. Add a method named
GetVolume to the RectangularPool class. Th e method should
calculate and return the volume of a RectangularPool object. Th e
formula for calculating the volume is length * width * depth. Save
the solution and then close the RectangularPool.vb window.

c. Open the form’s Code Editor window. Th e btnCalc control’s
Click event procedure should use the RectangularPool object’s
GetVolume method to determine the pool’s volume. It then
should pass only the pool’s volume to the GetGallons function.
Th e Click event procedure also should calculate and display the
cost of fi lling the pool with water. Th e charge for water is $1.75
per 1000 gallons (or .00175 per gallon). Make the necessary
 modifi cations to the code.

d. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

11. In this exercise, you create an application that can be used to estimate
the cost of laying sod on a rectangular piece of property.

a. Create a Visual Basic Windows application. Use the following
names for the solution, project, and form fi le, respectively: Kessler
Solution, Kessler Project, and Main Form.vb, respectively. Save
the application in the VB2010\Chap11 folder.

b. Use Windows to copy the Rectangle.vb fi le from the VB2010\
Chap11 folder to the Kessler Solution\Kessler Project folder. Use
the Project menu to add the Rectangle.vb class fi le to the project.

c. Create the interface shown in Figure 11-27.

d. Open the form’s Code Editor window and then code the applica-
tion. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

Figure 11-27 Interface for Exercise 11

INTERMEDIATE

C7718_ch11.indd 651C7718_ch11.indd 651 17/03/11 8:45 PM17/03/11 8:45 PM

652

C H A P T E R 1 1 Classes and Objects

12. In this exercise, you create an application that can be used to calculate
the cost of installing a fence around a rectangular area.

a. Create a Visual Basic Windows application. Use the following
names for the solution, project, and form fi le, respectively: Fence
Solution, Fence Project, and Main Form.vb. Save the application
in the VB2010\Chap11 folder.

b. Use Windows to copy the Rectangle.vb fi le from the VB2010\
Chap11 folder to the Fence Solution\Fence Project folder. Use
the Project menu to add the Rectangle.vb class fi le to the project.
Add a method named GetPerimeter to the Rectangle class. Th e
GetPerimeter method should calculate and return the perimeter
of a rectangle. To calculate the perimeter, the method will need to
add together the length and width measurements and then multi-
ply the sum by 2.

c. Create the interface shown in Figure 11-28.

d. Open the form’s Code Editor window and then code the applica-
tion, which should calculate and display the cost of installing the
fence.

e. Save the solution and then start the application. Test the applica-
tion using 120 feet as the length, 75 feet as the width, and 10 as
the cost per linear foot of fencing. Th e installation cost should be
$3,900.00. Close the Main Form.vb and Rectangle.vb windows
and then close the solution.

Figure 11-28 Interface for Exercise 12

13. In this exercise, you defi ne a Triangle class. You also create an applica-
tion that allows the user to display either a Triangle object’s area or
its perimeter. Th e formula for calculating the area of a triangle is 1/2 *
base * height. Th e formula for calculating the perimeter of a triangle is
a + b + c, where a, b, and c are the lengths of the sides.

a. Create a Visual Basic Windows application. Use the following
names for the solution, project, and form fi le, respectively: Math
Triangle Solution, Math Triangle Project, and Main Form.vb. Save
the application in the VB2010\Chap11 folder.

b. Create the interface shown in Figure 11-29.

c. Add a class fi le to the project. Name the class fi le Triangle.vb. Th e
Triangle class should verify that the dimensions are greater than
zero before assigning the values to the Private variables. Th e class

INTERMEDIATE

ADVANCED

C7718_ch11.indd 652C7718_ch11.indd 652 17/03/11 8:45 PM17/03/11 8:45 PM

653

Lesson A Exercises L E S S O N A

also should include a method to calculate the area of a triangle
and a method to calculate the perimeter of a triangle. Save the
solution and then close the Triangle.vb window.

d. Open the form’s Code Editor window. Use the InputBox function
to get the appropriate data from the user. Save the solution and
then start and test the application. Close the Code Editor window
and then close the solution.

Figure 11-29 Interface for Exercise 13

C7718_ch11.indd 653C7718_ch11.indd 653 17/03/11 8:45 PM17/03/11 8:45 PM

654

C H A P T E R 1 1 Classes and Objects

 ❚ LESSON B
After studying Lesson B, you should be able to:

 • Include a ReadOnly property in a class

 • Create an auto-implemented property

 • Overload a method in a class

Example 5—A Class that Contains a ReadOnly
Property
In Lesson A, you learned that a Property procedure’s header can include the
ReadOnly keyword. As you may remember, the ReadOnly keyword indi-
cates that the property’s value can be retrieved (read) by an application, but
the application cannot set (write to) the property. A ReadOnly property gets
its value from the class itself rather than from the application. In the next set
of steps, you will add a ReadOnly property to a class named CourseGrade.
You also will add the default constructor and a method that will assign the
appropriate grade to the Private variable associated with the ReadOnly
property. You will use the ReadOnly property and the method in the Grade
Calculator application, which you will fi nish coding in the second set of steps.
Th e application displays a grade based on two test scores entered by the user.

To modify the CourseGrade class:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.
Open the Grade Solution (Grade Solution.sln) fi le contained in the
VB2010\Chap11\Grade Solution folder. If necessary, open the designer
window. Th e interface provides list boxes for entering two test scores,
which can range from 0 to 100 points each. See Figure 11-30.

Figure 11-30 Interface for the Grade Calculator application

2. Right-click CourseGrade.vb in the Solution Explorer window and
then click View Code. Replace <your name> and <current date> in
the comments with your name and the current date, respectively.

3. Th e CourseGrade class should contain three attributes: two
test scores and a letter grade. Th e Private variable for the let-
ter grade is missing from the code. Click the blank line below the
Private _intScore2 As Integer statement and then enter the
following Private statement:

Private _strGrade As String

START HERE

C7718_ch11.indd 654C7718_ch11.indd 654 17/03/11 8:45 PM17/03/11 8:45 PM

655

Example 5—A Class that Contains a ReadOnly Property L E S S O N B

4. Now you will create a Public property for the Private _strGrade
variable. You will make the property ReadOnly so that the class
(rather than the Grade Calculator application) determines the appro-
priate grade. By making the property ReadOnly, the application will
only be able to retrieve the grade; it will not be able to change the
grade. Click the blank line immediately above the End Class clause
and then enter the following Property procedure header. Notice that
when you press Enter after typing the header, the Code Editor auto-
matically includes the Get block of code and the End Property clause
in the procedure. Th is is because the header contains the ReadOnly
keyword.

Public ReadOnly Property Grade As String

5. Type the following Return statement in the blank line below the Get
clause, but don’t press Enter:

Return _strGrade

6. Next, you will enter the default constructor in the class. Th e default
constructor will initialize the Private variables when a CourseGrade
object is instantiated. Insert two blank lines above the End Class
clause. Click the blank line immediately above the clause (if neces-
sary) and then enter the following default constructor:

Public Sub New()
 _intScore1 = 0
 _intScore2 = 0
 _strGrade = String.Empty
End Sub

7. Finally, you will enter the DetermineGrade method, which will assign
the appropriate letter grade to the _strGrade variable. Th e method
will be a Sub procedure, because it will not need to return a value to
the application that calls it. Insert two blank lines below the default
constructor’s End Sub clause. Click the blank line immediately above
the clause (if necessary) and then enter the following procedure header:

Public Sub DetermineGrade()

8. Now enter the following Select Case statement:

Select Case _intScore1 + _intScore2
 Case Is >= 180
 _strGrade = "A"
 Case Is >= 160
 _strGrade = "B"
 Case Is >= 140
 _strGrade = "C"
 Case Is >= 120
 _strGrade = "D"
 Case Else
 _strGrade = "F"
End Select

9. Save the solution. (Th e completed class defi nition is shown in
Figure 11-32.)

C7718_ch11.indd 655C7718_ch11.indd 655 17/03/11 8:45 PM17/03/11 8:45 PM

656

C H A P T E R 1 1 Classes and Objects

Now that you have fi nished defi ning the class, you can use the class to
 instantiate a CourseGrade object in the Grade Calculator application.

To complete the Grade Calculator application:

1. Click the designer window’s tab and then open the form’s Code
Editor window. Replace <your name> and <current date> in the
 comments with your name and the current date, respectively.

2. Locate the btnDisplay control’s Click event procedure. First, you will
instantiate a CourseGrade object. Click the blank line above the
second comment in the procedure and then enter the following Dim
statement:

Dim studentGrade As New CourseGrade

3. Now you will assign the test scores, which are selected in the list
boxes, to the object’s properties. Click the blank line below the
 second comment in the procedure and then enter the following
TryParse methods:

Integer.TryParse(lstTest1.SelectedItem.ToString,
 studentGrade.Score1)
Integer.TryParse(lstTest2.SelectedItem.ToString,
 studentGrade.Score2)

4. Next, you will use the object’s DetermineGrade method to determine
the appropriate grade. Click the blank line below the ' object's
DetermineGrade method comment and then enter the following
Call statement:

Call studentGrade.DetermineGrade()

5. Finally, you will display the grade, which is stored in the object’s
ReadOnly Grade property. Click the blank line below the
' object's ReadOnly property comment. Type the following
code, but don’t press Enter:

lblGrade.Text = studentGrade.

6. Click Grade in the IntelliSense list. If necessary, click the Common
tab. See Figure 11-31. Th e message that appears next to the
IntelliSense list indicates that the Grade property is ReadOnly.

the message indicates that the
Grade property is ReadOnly

Figure 11-31 ReadOnly property message

7. Press Tab to include the Grade property in the assignment statement.

Figure 11-32 shows the CourseGrade class defi nition and the btnDisplay con-
trol’s Click event procedure.

START HERE

C7718_ch11.indd 656C7718_ch11.indd 656 17/03/11 8:45 PM17/03/11 8:45 PM

657

Example 5—A Class that Contains a ReadOnly Property L E S S O N B

Public Class CourseGrade
 Private _intScore1 As Integer
 Private _intScore2 As Integer
 Private _strGrade As String

 Public Property Score1 As Integer
 Get
 Return _intScore1
 End Get
 Set(ByVal value As Integer)
 _intScore1 = value
 End Set
 End Property

 Public Property Score2 As Integer
 Get
 Return _intScore2
 End Get
 Set(ByVal value As Integer)
 _intScore2 = value
 End Set
 End Property

 Public ReadOnly Property Grade As String
 Get
 Return _strGrade
 End Get
 End Property

 Public Sub New()
 _intScore1 = 0
 _intScore2 = 0
 _strGrade = String.Empty
 End Sub

 Public Sub DetermineGrade()
 Select Case _intScore1 + _intScore2
 Case Is >= 180
 _strGrade = "A"
 Case Is >= 160
 _strGrade = "B"
 Case Is >= 140
 _strGrade = "C"
 Case Is >= 120
 _strGrade = "D"
 Case Else
 _strGrade = "F"
 End Select
 End Sub
End Class

Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click
 ' calculates and displays a letter grade

 Dim studentGrade As New CourseGrade

 ' assign test scores to object's properties

Figure 11-32 CourseGrade class defi nition and btnDisplay control's Click event
procedure (continues)

the class defi nition
begins here

the btnDisplay
control's Click event
procedure begins
here

C7718_ch11.indd 657C7718_ch11.indd 657 17/03/11 8:45 PM17/03/11 8:45 PM

658

C H A P T E R 1 1 Classes and Objects

To test the Grade Calculator application:

1. Save the solution and then start the application. Scroll the Test 1 list
box and then click 86 in the list. Scroll the Test 2 list box and then
click 95 in the list. Click the Display Grade button. Th e letter A
appears in the Grade box, as shown in Figure 11-33.

Figure 11-33 Grade displayed in the interface

2. On your own, test the application using diff erent test scores. When
you are fi nished, click the Exit button. Close the Main Form.vb and
CourseGrade.vb windows and then close the solution.

Example 6—A Class that Contains Auto-
Implemented Properties
A new feature in Visual Basic 2010, called auto-implemented properties,
enables you to specify the property of a class in one line of code, as shown in
Figure 11-34. When you enter the line of code in the Code Editor window,
Visual Basic automatically creates a hidden Private variable that it associ-
ates with the property; it also automatically creates hidden Get and Set
blocks. Th e Private variable’s name will be the same as the property’s name,
but it will be preceded by an underscore. For example, if you create an auto-
implemented property named City, Visual Basic will create a hidden Private
variable named _City. Th e auto-implemented properties feature provides a
shorter syntax for you to use when creating a class: You don’t need to create
the Private variable associated with a property, nor do you need to enter the

START HERE

 Integer.TryParse(lstTest1.SelectedItem.ToString,
 studentGrade.Score1)
 Integer.TryParse(lstTest2.SelectedItem.ToString,
 studentGrade.Score2)

 ' calculate the grade using the
 ' object's DetermineGrade method
 Call studentGrade.DetermineGrade()

 ' display the grade stored in the
 ' object's ReadOnly property
 lblGrade.Text = studentGrade.Grade
End Sub

calls the class’s
DetermineGrade
method

refers to the class’s
ReadOnly Grade
property

Figure 11-32 CourseGrade class defi nition and btnDisplay control's Click event procedure

(continued)

C7718_ch11.indd 658C7718_ch11.indd 658 17/03/11 8:45 PM17/03/11 8:45 PM

659

Example 6—A Class that Contains Auto-Implemented Properties L E S S O N B

property’s Get and Set blocks of code. However, keep in mind that you will
need to use the standard syntax if you want to add validation code to the Set
block, or if you want the property to be either ReadOnly or WriteOnly.

Auto-implemented property

Syntax
Public Property propertyName As dataType

Example 1
Public Property City As Integer
creates a Public property named City, a hidden Private variable named _City, and
hidden Get and Set blocks

Example 2
Public Property Sales As Integer
creates a Public property named Sales, a hidden Private variable named _Sales, and
hidden Get and Set blocks

Figure 11-34 Syntax and examples of creating an auto-implemented property

In the next set of steps, you will modify the CourseGrade class from
Example 5 to use two auto-implemented properties.

To modify the CourseGrade class:

1. Use Windows to make a copy of the Grade Solution folder from
Example 5. Rename the copy Modifi ed Grade Solution. Open the
Grade Solution (Grade Solution.sln) fi le contained in the Modifi ed
Grade Solution folder. Open the designer window.

2. Right-click CourseGrade.vb in the Solution Explorer window and
then click View Code.

3. First, replace the Private _intScore1 As Integer and
Private _intScore2 As Integer statements with the following
statements:

Public Property Score1 As Integer
Public Property Score2 As Integer

4. Next, delete the Score1 and Score2 Property procedures. (Don’t delete
the Grade property procedure.)

5. Now change _intScore1 and _intScore2 in the default construc-
tor to _Score1 and _Score2, respectively. (Recall that the name of the
Private variable associated with an auto-implemented property is the
property’s name preceded by an underscore.)

6. Finally, change _intScore1 and _intScore2 in the
DetermineGrade method to _Score1 and _Score2, respectively.

Figure 11-35 shows the modifi ed class defi nition. Th e code pertaining to the
two auto-implemented properties (Score1 and Score2) is shaded in the fi g-
ure. You cannot use the auto-implemented properties feature for the Grade
property because that property is ReadOnly.

START HERE

C7718_ch11.indd 659C7718_ch11.indd 659 17/03/11 8:45 PM17/03/11 8:45 PM

660

C H A P T E R 1 1 Classes and Objects

To test the modifi ed Grade Calculator application:

1. Save the solution and then start the application. Scroll the Test 1 list
box and then click 86 in the list. Scroll the Test 2 list box and then
click 95 in the list. Click the Display Grade button. Th e letter A
appears in the Grade box, as shown earlier in Figure 11-33.

2. On your own, test the application using diff erent test scores. When
you are fi nished, click the Exit button. Close the CourseGrade.vb
window and then close the solution.

START HERE

Public Class CourseGrade
 Public Property Score1 As Integer
 Public Property Score2 As Integer
 Private _strGrade As String

 Public ReadOnly Property Grade As String
 Get
 Return _strGrade
 End Get
 End Property

 Public Sub New()
 _Score1 = 0
 _Score2 = 0
 _strGrade = String.Empty
 End Sub

 Public Sub DetermineGrade()
 Select Case _Score1 + _Score2
 Case Is >= 180
 _strGrade = "A"
 Case Is >= 160
 _strGrade = "B"
 Case Is >= 140
 _strGrade = "C"
 Case Is >= 120
 _strGrade = "D"
 Case Else
 _strGrade = "F"
 End Select
 End Sub
End Class

Figure 11-35 Modifi ed CourseGrade class defi nition

auto-implemented
properties

a ReadOnly
property cannot
be an auto-
implemented
property

C7718_ch11.indd 660C7718_ch11.indd 660 17/03/11 8:45 PM17/03/11 8:45 PM

661

Example 7—A Class that Contains Overloaded Methods L E S S O N B

YOU DO IT 2!

Create a Visual Basic Windows application named YouDoIt 2. Save the
application in the VB2010\Chap11 folder. Add a text box, a label, and a
button to the form. Add a class file named Square.vb to the project. Define a
class named Square. The class should contain an auto-implemented property
that will store the side measurement of a square. It also should contain a
default constructor and a method that calculates and returns the square’s
perimeter. Use the following formula to calculate the perimeter: 4 * side.
Open the form’s Code Editor window. The button’s Click event procedure
should display the square’s perimeter, using the side measurement entered
by the user. Code the procedure. Save the solution and then start and test
the application. Close the solution.

Example 7—A Class that Contains Overloaded
Methods
In this example, you will use a class named Employee to instantiate an object.
Employee objects have the attributes and behaviors shown in Figure 11-36.

Attributes
employee number
employee name

Behaviors
1. An employee object can initialize its attributes using values provided by the class.
2. An employee object can initialize its attributes using values provided by the

application in which it is instantiated.
3. An employee object can calculate and return the gross pay for salaried

employees. The gross pay is calculated by dividing the salaried employee’s
annual salary by 24, because the salaried employees are paid twice per month.

4. An employee object can calculate and return the gross pay for hourly employees.
The gross pay is calculated by multiplying the number of hours the employee
worked during the week by his or her pay rate.

Figure 11-36 Attributes and behaviors of an Employee object

Figure 11-37 shows the Employee class defi ned in the Employee.vb fi le.
Th e class contains two auto-implemented properties and four methods. Th e
two New methods are the class’s constructors. Th e fi rst New method is the
default constructor and the second is a parameterized constructor. Notice
that the default constructor initializes the class’s Private variables directly,
while the parameterized constructor uses the class’s Public properties to
initialize the Private variables indirectly. As you learned in Lesson A, using
a Public property in this manner ensures that the computer processes any
validation code associated with the property. Even though the Number and
EmpName properties in Figure 11-37 do not have any validation code, it’s a
good programming practice to use the properties in the parameterized con-
structor in case validation code is added to the class in the future.

C7718_ch11.indd 661C7718_ch11.indd 661 17/03/11 8:45 PM17/03/11 8:45 PM

662

C H A P T E R 1 1 Classes and Objects

When two or more methods have the same name but diff erent parameters,
the methods are referred to as overloaded methods. Th e two constructors
in Figure 11-37 are considered overloaded methods, because each is named
New and each has a diff erent parameterList. You can overload any of the
methods contained in a class, not just constructors. Th e two GetGross meth-
ods in the fi gure also are overloaded methods, because they have the same
name but a diff erent parameterList.

Figure 11-37 Employee class defi nition

Public Class Employee
 Public Property Number As String
 Public Property EmpName As String

 Public Sub New()
 _Number = String.Empty
 _EmpName = String.Empty
 End Sub

 Public Sub New(ByVal strNum As String,
 ByVal strName As String)
 Number = strNum
 EmpName = strName
 End Sub

 Public Function GetGross(ByVal dblSalary As Double) As Double
 ' calculates the gross pay for salaried
 ' employees, who are paid twice per month

 Return dblSalary / 24
 End Function

 Public Function GetGross(ByVal dblHours As Double,
 ByVal dblRate As Double) As Double
 ' calculates the weekly gross pay for hourly employees

 Return dblHours * dblRate
 End Function
End Class

auto-implemented
properties

initializes the Private
variables directly

uses the Public
properties to initialize
the Private variables

overloaded
constructors

overloaded
GetGross methods

You already are familiar with overloaded methods, as you have used several
of the overloaded methods built into Visual Basic. Examples of such methods
include ToString, TryParse, Convert.ToDecimal, and MessageBox.Show. Th e
Code Editor’s IntelliSense feature displays a box that allows you to view a
method’s signatures, one signature at a time. Recall that a method’s signature
includes its name and optional parameterList. Th e box shown in Figure 11-38
displays the fi rst of the ToString method’s four signatures. You use the up and
down arrows in the box to display the other signatures. Th e IntelliSense fea-
ture also will display the signatures of the overloaded methods contained in
the classes you create.

C7718_ch11.indd 662C7718_ch11.indd 662 17/03/11 8:45 PM17/03/11 8:45 PM

663

Example 7—A Class that Contains Overloaded Methods L E S S O N B

Figure 11-38 First of the ToString method’s signatures

Overloading is useful when two or more methods require diff erent param-
eters to perform essentially the same task. Both overloaded constructors
in the Employee class, for example, initialize the class’s Private variables.
However, the default constructor does not need to be passed any informa-
tion to perform the task, whereas the parameterized constructor requires
two items of information (the employee number and name). Similarly, both
GetGross methods in the Employee class calculate and return a gross pay
amount. However, the fi rst GetGross method performs its task for salaried
employees and requires an application to pass it one item of information: the
employee’s annual salary. Th e second GetGross method performs its task
for hourly employees and requires two items of information: the number of
hours the employee worked and his or her rate of pay. Rather than using two
overloaded GetGross methods, you could have used two methods having dif-
ferent names, such as GetSalariedGross and GetHourlyGross. Th e advantage
of overloading the GetGross method is that you need to remember the name
of only one method.

You will use the Employee class when coding the ABC Company applica-
tion. As mentioned at the beginning of the chapter, the application displays
the gross pay for salaried and hourly employees. Salaried employees are paid
twice per month. Th erefore, each salaried employee’s gross pay is calculated
by dividing his or her annual salary by 24. Hourly employees are paid weekly.
Th e gross pay for an hourly employee is calculated by multiplying the num-
ber of hours the employee worked during the week by his or her hourly pay
rate. Th e application also displays a report showing each employee’s number,
name, and gross pay.

To view the class fi le contained in the ABC Company application:

1. Open the ABC Solution (ABC Solution.sln) fi le contained in the
VB2010\Chap11\ABC Solution folder. If necessary, open the designer
window. See Figure 11-39.

Figure 11-39 Interface for the ABC Company application

The Ch11BVideo
fi le demonstrates
all of the steps
for coding the

ABC Company
application. You can view
the video either before or
after completing the
lesson.

START HERE

C7718_ch11.indd 663C7718_ch11.indd 663 17/03/11 8:45 PM17/03/11 8:45 PM

664

C H A P T E R 1 1 Classes and Objects

2. Right-click Employee.vb in the Solution Explorer window and then
click View Code. Th e class defi nition from Figure 11-37 appears in
the Employee.vb window.

3. Replace <your name> and <current date> in the comments with your
name and the current date, respectively. Save the solution and then
close the Employee.vb window.

You will need to code only the Calculate button’s Click event procedure. Th e
procedure’s pseudocode is shown in Figure 11-40.

btnCalc Click event procedure
1. declare variables to store an Employee object, the annual salary, hours

worked, hourly pay rate, and gross pay
2. instantiate an Employee object to represent an employee; initialize the

object’s variables using the number and name entered in the text boxes
3. if the Hourly employee radio button is selected

 assign the hours worked and hourly pay rate to the appropriate variables
 use the Employee object’s GetGross method to calculate the gross pay
 for an hourly employee
else
 assign the annual salary to the appropriate variable
 use the Employee object’s GetGross method to calculate the gross pay
 for a salaried employee
end if

4. display the gross pay and the report
5. send the focus to the txtNum control

Figure 11-40 Pseudocode for the Calculate button’s Click event procedure

To code the Calculate button’s Click event procedure:

1. Open the form’s Code Editor window. Replace <your name> and
<current date> in the comments with your name and the current
date, respectively.

2. Locate the btnCalc control’s Click event procedure. First, you will
declare the necessary variables. Click the blank line below the sec-
ond comment in the procedure and then enter the following fi ve Dim
statements:

Dim abcEmployee As Employee
Dim dblAnnualSalary As Double
Dim dblHours As Double
Dim dblHourRate As Double
Dim dblGross As Double

3. Now you will instantiate an Employee object, using the text box val-
ues to initialize the object’s variables. Click the blank line below the
third comment in the procedure and then enter the following assign-
ment statement:

abcEmployee =
 New Employee(txtNum.Text, txtName.Text)

START HERE

C7718_ch11.indd 664C7718_ch11.indd 664 17/03/11 8:45 PM17/03/11 8:45 PM

665

Example 7—A Class that Contains Overloaded Methods L E S S O N B

4. Th e third step in the pseudocode determines the selected radio
 button and then takes the appropriate action. Click the blank line
below the ' determine the selected radio button comment
and then enter the following If clause:

If radHourly.Checked Th en

5. If the Hourly employee radio button is selected, the selection struc-
ture’s true path should use the Employee object’s GetGross method
to calculate the gross pay for an hourly employee. Enter the following
comment and lines of code:

' calculate the gross pay for an hourly employee
Double.TryParse(lstHours.SelectedItem.ToString, dblHours)
Double.TryParse(lstRate.SelectedItem.ToString, dblHourRate)
dblGross = abcEmployee.GetGross(dblHours, dblHourRate)

6. If the Salaried employee radio button is selected, the selection struc-
ture’s false path should use the Employee object’s GetGross method
to calculate the gross pay for a salaried employee. Enter the additional
comment and lines of code indicated in Figure 11-41.

enter this comment and
these lines of code

Figure 11-41 Additional comment and code entered in the false path

7. Next, you need to display the gross pay and the report. Click the
blank line below the ' display the gross pay and report
comment and then enter the following lines of code:

lblGross.Text = dblGross.ToString("C2")
txtReport.Text = txtReport.Text &
 abcEmployee.Number.PadRight(6) &
 abcEmployee.EmpName.PadRight(25) &
 dblGross.ToString("N2").PadLeft(9) & ControlChars.NewLine

8. Th e last step in the pseudocode is to set the focus. Th e code for this
step has already been entered in the Code Editor window.

Figure 11-42 shows the btnCalc control’s Click event procedure.

C7718_ch11.indd 665C7718_ch11.indd 665 17/03/11 8:45 PM17/03/11 8:45 PM

666

C H A P T E R 1 1 Classes and Objects

To test the ABC Company application:

1. Save the solution and then start the application. Type 120 in the
Number box, press Tab, and then type Peggy Milas in the Name
box. Click 8.00 in the Rate list box and then click the Calculate but-
ton. $320.00 appears in the Gross pay box, and Peggy’s information
appears in the Report box. See Figure 11-43.

START HERE

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' displays the gross pay and a report

 ' declare variables
 Dim abcEmployee As Employee
 Dim dblAnnualSalary As Double
 Dim dblHours As Double
 Dim dblHourRate As Double
 Dim dblGross As Double

 ' instantiate and initialize an Employee object
 abcEmployee =
 New Employee(txtNum.Text, txtName.Text)

 ' determine the selected radio button
 If radHourly.Checked Then
 ' calculate the gross pay for an hourly employee
 Double.TryParse(lstHours.SelectedItem.ToString, dblHours)
 Double.TryParse(lstRate.SelectedItem.ToString, dblHourRate)
 dblGross = abcEmployee.GetGross(dblHours, dblHourRate)
 Else
 ' calculate the gross pay for a salaried employee
 Double.TryParse(lstSalary.SelectedItem.ToString,
 dblAnnualSalary)
 dblGross = abcEmployee.GetGross(dblAnnualSalary)
 End If

 ' display the gross pay and report
 lblGross.Text = dblGross.ToString("C2")
 txtReport.Text = txtReport.Text &
 abcEmployee.Number.PadRight(6) &
 abcEmployee.EmpName.PadRight(25) &
 dblGross.ToString("N2").PadLeft(9) & ControlChars.NewLine

 ' set the focus
 txtNum.Focus()
End Sub

Figure 11-42 btnCalc control’s Click event procedure

declares a
variable to store
an Employee
object

instantiates
and initializes
an Employee
object

calculates the
gross pay for an
hourly employee

calculates
the gross pay
for a salaried
employee

C7718_ch11.indd 666C7718_ch11.indd 666 17/03/11 8:45 PM17/03/11 8:45 PM

667

Lesson B Summary L E S S O N B

Figure 11-43 Peggy’s gross pay and information shown in the interface

2. Type 9336 in the Number box, press Tab, and then type Jackie
Smith in the Name box. Click the Salaried employee radio button.
Scroll the Annual salary list box and then click 27000 in the list. Click
the Calculate button. Th e button’s Click event procedure displays
the gross pay amount ($1,125.00) in the Gross pay box. It also adds
Jackie’s information to the Report box. See Figure 11-44.

Figure 11-44 Jackie’s gross pay and information shown in the interface

3. Click the Exit button. Close the Code Editor window and then close
the solution.

Lesson B Summary

 • To create a property whose value can only be retrieved by an application:

Include the ReadOnly keyword in the Property procedure’s header.

 • To specify the property of a class in one line:

Create an auto-implemented property using the following syntax: Public
Property propertyName As dataType.

C7718_ch11.indd 667C7718_ch11.indd 667 17/03/11 8:45 PM17/03/11 8:45 PM

668

C H A P T E R 1 1 Classes and Objects

 • To include a parameterized method in a class:

Enter the parameters between the parentheses that follow the method’s name.

 • To create two or more methods that perform the same task but require
diff erent parameters:

Overload the methods by giving them the same name but diff erent
parameterLists.

Lesson B Key Terms
Auto-implemented properties—the Visual Basic 2010 feature that enables you
to specify the property of a class in one line

Overloaded methods—two or more class methods that have the same name
but diff erent parameterLists

Lesson B Review Questions

1. Two or more methods that have the same name but diff erent param-
eterLists are referred to as methods.

a. loaded

b. overloaded

c. parallel

d. signature

2. Th e method name combined with the method’s optional
 parameterList is called the method’s .

a. autograph

b. inscription

c. signature

d. statement

3. A class contains an auto-implemented property named Location.
Which of the following is the correct way for the default constructor
to assign the string “Unknown” to the variable associated with the
property?

a. _Location = "Unknown"

b. _Location.strLocation = "Unknown"

c. Location = "Unknown"

d. none of the above

4. A ReadOnly property can be an auto-implemented property.

a. True

b. False

C7718_ch11.indd 668C7718_ch11.indd 668 17/03/11 8:45 PM17/03/11 8:45 PM

669

Lesson B Exercises L E S S O N B

5. Th e Salesperson class contains a ReadOnly property named Bonus.
Th e property is associated with the Private _dblBonus variable. A
button’s Click event procedure instantiates a Salesperson object and
assigns it to the ourSalesperson variable. Which of the following is
valid in the Click event procedure?

a. lblBonus.Text =

 ourSalesperson.Bonus.ToString("C2")

b. ourSalesperson.Bonus = dblSales * .1

c. ourSalesperson._dblBonus = 500

d. none of the above

Lesson B Exercises

1. What are overloaded methods and why are they used?

2. Write the Property procedure for a ReadOnly property named
BonusRate. Th e property is associated with the _decBonusRate
variable.

3. Write the code for an auto-implemented property named
Commission. Th e property’s data type is Double.

4. Write the class defi nition for a class named Worker. Th e class should
include Private variables and Property procedures for a Worker
object’s name and salary. Th e salary may contain a decimal place. Th e
class also should contain two constructors: the default constructor
and a parameterized constructor.

5. Rewrite the code from Exercise 4 using auto-implemented properties.

6. Add a method named GetNewSalary to the Worker class from
Exercise 5. Th e method should calculate a Worker object’s new salary,
which is based on a raise percentage provided by the application
using the object. Before calculating the new salary, the method should
verify that the raise percentage is greater than or equal to zero. If
the raise percentage is less than zero, the method should assign the
 number 0 as the new salary.

7. Open the Willow Pools Solution (Willow Pools Solution.sln) fi le con-
tained in the VB2010\Chap11\Willow Pools Solution-Auto-Implemented
folder. Modify the RectangularPool class so that it uses Public auto-
implemented properties rather than Public variables. Include a default
constructor in the class. Save the solution and then start and test
the application. Close the Code Editor window and then close the
solution.

8. Open the Hire Date Solution (Hire Date Solution.sln) fi le contained
in the VB2010\Chap11\Hire Date Solution folder. Open the designer
window.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

C7718_ch11.indd 669C7718_ch11.indd 669 17/03/11 8:45 PM17/03/11 8:45 PM

670

C H A P T E R 1 1 Classes and Objects

a. Open the FormattedDate.vb fi le. Add a default constructor and a
parameterized constructor to the class. Also add a method that
returns the month and day numbers, separated by a slash (/).

b. Open the form’s Code Editor window. Th e Click event procedures
for the btnDefault and btnParameterized controls should display
the hire date in the following format: month/day. For example, if
the numbers 3 and 2 are selected in the Month and Day list boxes,
respectively, the Click event procedures should display 3/2 in the
Hire date box. Code the btnDefault control’s Click event proce-
dure using the FormattedDate class’s default constructor. Code
the btnParameterized control’s Click event procedure using the
class’s parameterized constructor.

c. Save the solution and then start and test the application. Close the
Main Form.vb and FormattedDate.vb windows and then close the
solution.

9. Open the Salary Solution (Salary Solution.sln) fi le contained in the
VB2010\Chap11\Salary Solution folder. Open the Worker.vb class fi le
and then enter the Worker class defi nition from Exercises 5 and 6.
Save the solution and then close the Worker.vb window. Open the
form’s Code Editor window. Use the comments in the btnCalc con-
trol’s Click event procedure to enter the missing instructions. Save the
solution and then start the application. Test the application by enter-
ing your name, a current salary amount of 54000, and a raise percent-
age of 10 (for 10%). Th e new salary should be $59,400.00. Close the
Code Editor window and then close the solution.

10. In this exercise, you modify the Grade Calculator application coded in
the lesson. Use Windows to make a copy of the Grade Solution folder.
Rename the copy Modifi ed Grade Solution-Intermediate. Open the
Grade Solution (Grade Solution.sln) fi le contained in the Modifi ed
Grade Solution-Intermediate folder. Open the designer window.

a. Open the CourseGrade.vb fi le. Modify the DetermineGrade method
so that it accepts the maximum number of points that can be
earned on both tests. (Currently, the maximum number of points
is 200: 100 points per test.) For an A grade, the student must earn
at least 90% of the total number of points. For a B, C, and D grade,
the student must earn at least 80%, 70%, and 60%, respectively. If the
 student earns less than 60% of the total points, the grade is F. Make
the appropriate modifi cations to the class and then save the solution.

b. Add a label control and a text box to the form. Change the label
control’s Text property to “&Maximum points”. Change the text
box's name to txtMax.

c. Open the form’s Code Editor window. Th e maximum number
allowed in the text box should be 400. Each list box should display
numbers from 0 through 200. Make the necessary modifi cations
to the code.

d. Save the solution and then start and test the application. Close the
CourseGrade.vb and Main Form.vb windows and then close the
solution.

INTERMEDIATE

INTERMEDIATE

C7718_ch11.indd 670C7718_ch11.indd 670 17/03/11 8:45 PM17/03/11 8:45 PM

671

Lesson B Exercises L E S S O N B

11. Each member of Glasgow Health Club must pay monthly dues that
consist of a basic fee and one or more optional charges. Th e basic
monthly fee for a single membership is $50; for a family member-
ship, it is $90. If the member has a single membership, the additional
monthly charges are $30 for tennis, $25 for golf, and $20 for racquet-
ball. If the member has a family membership, the additional monthly
charges are $50 for tennis, $35 for golf, and $30 for racquetball. Th e
application should display the member’s basic fee, additional charges,
and monthly dues. Create a Visual Basic Windows application. Use the
following names for the solution, project, and form fi le, respectively:
Glasgow Health Solution, Glasgow Health Project, and Main Form.vb.
Save the application in the VB2010\Chap11 folder. Create the interface
shown in Figure 11-45 and then code the application. Be sure to use a
class in your code. Save the solution and then start and test the appli-
cation. Close the Code Editor windows and then close the solution.

Figure 11-45 Interface for Exercise 11

12. Jeremiah Carter, the manager of the Accounts Payable department at
Franklin Calendars, wants an application that keeps track of the checks
written by his department. More specifi cally, he wants to record (in a
sequential access fi le) the check number, date, payee, and amount of
each check. Create a Visual Basic Windows application. Use the follow-
ing names for the solution, project, and form fi le, respectively: Franklin
Calendars Solution, Franklin Calendars Project, and Main Form.vb.
Save the application in the VB2010\Chap11 folder. Create the interface
shown in Figure 11-46 and then code the application. Be sure to use a
class in your code. Save the solution and then start and test the applica-
tion. Close the Code Editor windows and then close the solution.

Figure 11-46 Interface for Exercise 12

ADVANCED

ADVANCED

C7718_ch11.indd 671C7718_ch11.indd 671 17/03/11 8:45 PM17/03/11 8:45 PM

672

C H A P T E R 1 1 Classes and Objects

 ❚ LESSON C
After studying Lesson C, you should be able to:

 • Create a derived class

 • Refer to the base class using the MyBase keyword

 • Override a method in the base class

Example 8—Using a Base Class and
a Derived Class
You can create one class from another class; in OOP, this is referred to as
inheritance. Th e new class is called the derived class and it inherits the attri-
butes and behaviors of the original class, called the base class. You indicate
that a class is a derived class by including the Inherits clause in the derived
class’s Class statement. Th e Inherits clause is simply the keyword Inherits
followed by the name of the class whose attributes and behaviors you want
the derived class to inherit. You enter the Inherits clause immediately below
the Public Class clause in the derived class. You will use a base class named
Square and a derived class named Cube to code the Area Calculator applica-
tion. Th e application calculates and displays either the area of a square or the
surface area of a cube.

To open the Area Calculator application and then view the class fi le:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.
Open the Area Solution (Area Solution.sln) fi le contained in the
VB2010\Chap11\Area Solution folder. If necessary, open the designer
window. Th e interface provides a text box for entering the side mea-
surement. See Figure 11-47.

Figure 11-47 Interface for the Area Calculator application

2. Right-click Shapes.vb in the Solution Explorer window and then
click View Code. Replace <your name> and <current date> in the
comments with your name and the current date, respectively. Th e
Shapes.vb fi le contains the Square class defi nition. See Figure 11-48.

START HERE

C7718_ch11.indd 672C7718_ch11.indd 672 17/03/11 8:45 PM17/03/11 8:45 PM

673

Example 8—Using a Base Class and a Derived Class L E S S O N C

Th e Square class contains one Public property named Side, two construc-
tors, and a method named GetArea. Th e Side property represents an attri-
bute of a Square object: its side measurement. Each time a Square object is
instantiated, the computer will use one of the two constructors to initialize
the object. An application can use the class’s GetArea method to calculate
the area of a Square object. Notice that you calculate the area by raising the
Square object’s side measurement to the second power. Th e GetArea method
will return the area to the statement that invoked the method.

In this section, you will create a derived class from the Square class. Th e
derived class will inherit only the base class’s Side attribute and GetArea
method. It will not inherit the two constructors, because constructors are
never inherited. You will name the derived class Cube.

To create a derived class named Cube:

1. Click the blank line below the ' derived class comment and
then enter the following two lines of code. Press Enter twice after
typing the Inherits clause.

Public Class Cube
 Inherits Square

2. As already mentioned, the Cube class will not inherit the Square
class’s constructors. Th erefore, it will need its own constructors. Enter
the following procedure header for the default constructor:

Public Sub New()

START HERE

' Name: Shapes.vb
' Programmer: <your name> on <current date>

Option Explicit On
Option Strict On
Option Infer Off

' base class
Public Class Square
 Public Property Side As Double

 Public Sub New()
 _Side = 0
 End Sub

 Public Sub New(ByVal dblS As Double)
 Side = dblS
 End Sub

 Public Function GetArea() As Double
 ' returns the area of a square
 Return _Side ^ 2
 End Function
End Class

' derived class

Figure 11-48 Contents of the Shapes.vb fi le

Square class
defi nition

C7718_ch11.indd 673C7718_ch11.indd 673 17/03/11 8:45 PM17/03/11 8:45 PM

674

C H A P T E R 1 1 Classes and Objects

3. Insert two blank lines below the default constructor’s End Sub clause
in the Cube class. Click the blank line above the End Class clause
(if necessary) and then enter the following procedure header for the
parameterized constructor:

Public Sub New(ByVal dblS As Double)

Recall that when a Square object is instantiated, the computer uses one of
the Square class’s constructors to initialize the object. When a Cube object
is instantiated, its constructors will call upon the base class’s constructors to
initialize the object. You refer to the base class using the MyBase keyword.
For example, the MyBase.New() statement tells the computer to process the
code contained in the base class’s default constructor. Similarly, the MyBase.
New(dblS) statement tells the computer to process the code contained in
the base class’s parameterized constructor.

To fi nish coding the Cube class’s constructors:

1. Click the blank line below the default constructor’s procedure header
and then type the following statement, but don’t press Enter:

MyBase.New()

2. Click the blank line below the parameterized constructor’s proce-
dure header and then type the following statement, but don’t press
Enter:

MyBase.New(dblS)

Recall that the Square (base) class contains a method that calculates and
returns the area of a Square object; the method’s name is GetArea. You
also will include a GetArea method in the Cube (derived) class. However,
the Cube class’s GetArea method will calculate and return the surface
area of a Cube object. Th e formula for calculating the surface area is
sideMeasurement2 * 6. Th e GetArea method in the Cube class will use the
Square class’s GetArea method to calculate and return the fi rst part of the
formula: sideMeasurement2. It then will simply multiply the return value by
6 to get the surface area of a Cube object.

In order to use the same method name—in this case, GetArea—in both a
base class and a derived class, the method’s procedure header in the base
class will need to contain the Overridable keyword, and the method’s proce-
dure header in the derived class will need to contain the Overrides keyword.
Th e Overridable keyword in the base class indicates that the method can be
overridden by any class that is derived from the base class. In other words,
classes derived from the Square (base) class will provide their own GetArea
method. Th e Overrides keyword in the derived class indicates that the
method overrides (replaces) the same method contained in the base class.
In this case, for example, the GetArea method in the Cube class replaces the
GetArea method in the Square class.

To fi nish coding the Cube class:

1. Locate the GetArea function in the Square class. Replace the proce-
dure header with the following:

Public Overridable Function GetArea() As Double

START HERE

START HERE

C7718_ch11.indd 674C7718_ch11.indd 674 17/03/11 8:45 PM17/03/11 8:45 PM

675

Example 8—Using a Base Class and a Derived Class L E S S O N C

2. Locate the parameterized constructor in the Cube class. Insert two
blank lines below the parameterized constructor’s End Sub clause.
Click the blank line above the End Class clause (if necessary) and
then enter the following GetArea method:

Public Overrides Function GetArea() As Double
 Return MyBase.GetArea * 6
End Function

3. Save the solution.

Figure 11-49 shows the Square and Cube class defi nitions contained in the
Shapes.vb fi le.

' base class
Public Class Square
 Public Property Side As Double

 Public Sub New()
 _Side = 0
 End Sub

 Public Sub New(ByVal dblS As Double)
 Side = dblS
 End Sub

 Public Overridable Function GetArea() As Double
 ' returns the area of a square
 Return _Side ^ 2
 End Function
End Class

' derived class
Public Class Cube
 Inherits Square

 Public Sub New()
 MyBase.New()
 End Sub

 Public Sub New(ByVal dblS As Double)
 MyBase.New(dblS)
 End Sub

 Public Overrides Function GetArea() As Double
 Return MyBase.GetArea * 6
 End Function
End Class

Figure 11-49 Modifi ed Square class and Cube class defi nitions

the derived class
inherits from the
base class

invokes the base
class’s default
constructor

invokes the base
class’s parameterized
constructor

indicates that the
method overrides the
one in the base class

indicates that the
method can be
overridden in the
derived class

base class

To complete the Area Calculator application, you still need to code the Click
event procedures for the Square Area and Cube Surface Area buttons in the
interface. Th e Square Area button’s Click event procedure will calculate and
display the area of a square. Similarly, the Cube Surface Area button’s Click
event procedure will calculate and display the surface area of a cube. You will
code the Square Area button’s Click event procedure fi rst.

C7718_ch11.indd 675C7718_ch11.indd 675 17/03/11 8:45 PM17/03/11 8:45 PM

676

C H A P T E R 1 1 Classes and Objects

To code and then test the Square Area button’s Click event procedure:

1. Click the designer window’s tab and then open the form’s Code
Editor window.

2. Locate the btnSquare control’s Click event procedure and then click
the blank line immediately above the End Sub clause. First, you will
instantiate a Square object. Enter the following Dim statement:

Dim mySquare As New Square

3. Next, you will declare a variable to store the mySquare object’s area.
Type the following Dim statement and then press Enter twice:

Dim dblArea As Double

4. Now you will assign the side measurement, which is entered by the
user, to the mySquare object’s Side property. Type the following
TryParse method and then press Enter twice:

Double.TryParse(txtSide.Text, mySquare.Side)

5. Next, you will use the mySquare object’s GetArea method to calculate
the area. You will assign the method’s return value to the dblArea
variable. Enter the following comment and assignment statement:

' calculate the area
dblArea = mySquare.GetArea

6. Finally, you will display the area in the lblArea control. Enter the
 following comment and assignment statement:

' display the area
lblArea.Text = "Square: " & dblArea.ToString("N1")

7. Save the solution and then start the application. Type 10 in the Side
measurement box and then click the Square Area button. Th e mes-
sage “Square: 100.0” appears in the Area box. See Figure 11-50.

Figure 11-50 Interface showing the square’s area

8. Click the Exit button.

Finally, you will code the Cube Surface Area button’s Click event procedure.

START HERE

C7718_ch11.indd 676C7718_ch11.indd 676 17/03/11 8:45 PM17/03/11 8:45 PM

677

Example 8—Using a Base Class and a Derived Class L E S S O N C

To code and then test the Cube Surface Area button’s Click event
procedure:

1. Locate the btnCube control’s Click event procedure and then click
the blank line immediately above the End Sub clause. First, you will
instantiate a Cube object. Enter the following Dim statement:

Dim myCube As New Cube

2. Next, you will declare a variable to store the myCube object’s area.
Type the following Dim statement and then press Enter twice:

Dim dblArea As Double

3. Now you will assign the side measurement to the myCube object’s
Side property. Type the following TryParse method and then press
Enter twice:

Double.TryParse(txtSide.Text, myCube.Side)

4. Next, you will use the myCube object’s GetArea method to calculate
the area. You will assign the method’s return value to the dblArea
variable. Enter the following comment and assignment statement:

' calculate the area
dblArea = myCube.GetArea

5. Finally, you will display the area in the lblArea control. Enter the fol-
lowing comment and assignment statement:

' display the area
lblArea.Text = "Cube: " & dblArea.ToString("N1")

6. Save the solution and then start the application. Type 10 in the Side
measurement box and then click the Cube Surface Area button. Th e
message “Cube: 600.0” appears in the Area box.

7. Click the Exit button. Close the form’s Code Editor window and the
Shapes.vb window, and then close the solution.

Figure 11-51 shows the Click event procedures for the btnSquare and
 btnCube controls.

START HERE

Private Sub btnSquare_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnSquare.Click
 ' displays the area of a square

 Dim mySquare As New Square
 Dim dblArea As Double

 Double.TryParse(txtSide.Text, mySquare.Side)

 ' calculate the area
 dblArea = mySquare.GetArea
 ' display the area
 lblArea.Text = "Square: " & dblArea.ToString("N1")

End Sub

Figure 11-51 btnSquare and btnCube controls' Click event procedures (continues)

C7718_ch11.indd 677C7718_ch11.indd 677 17/03/11 8:45 PM17/03/11 8:45 PM

678

C H A P T E R 1 1 Classes and Objects

Lesson C Summary

 • To allow a derived class to inherit the attributes and behaviors of a base
class:

Enter the Inherits clause immediately below the Public Class clause in the
derived class. Th e Inherits clause is the keyword Inherits followed by
the name of the base class.

 • To refer to the base class:

Use the MyBase keyword.

 • To indicate that a method in the base class can be overridden (replaced) in
the derived class:

Use the Overridable keyword in the method’s header in the base class.

 • To indicate that a method in the derived class overrides (replaces) a
method in the base class:

Use the Overrides keyword in the method’s header in the derived class.

Lesson C Key Terms
Base class—the original class from which another class is derived

Derived class—a class that inherits the attributes and behaviors of a base class

Inheritance—the ability to create one class from another class

Inherits clause—entered immediately below the Public Class clause in a derived
class; specifi es the name of the base class associated with the derived class

MyBase—a keyword used in a derived class to refer to the base class

Overridable—a keyword that can appear in a method’s header in a base class;
indicates that the method can be overridden by any class that is derived from
the base class

Private Sub btnCube_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCube.Click
 ' displays the surface area of a cube

 Dim myCube As New Cube
 Dim dblArea As Double

 Double.TryParse(txtSide.Text, myCube.Side)

 ' calculate the area
 dblArea = myCube.GetArea
 ' display the area
 lblArea.Text = "Cube: " & dblArea.ToString("N1")

End Sub

Figure 11-51 btnSquare and btnCube controls' Click event procedures

(continued)

C7718_ch11.indd 678C7718_ch11.indd 678 17/03/11 8:45 PM17/03/11 8:45 PM

679

Lesson C Exercises L E S S O N C

Overrides—a keyword that can appear in a method’s header in a derived
class; indicates that the method overrides the method with the same name in
the base class

Lesson C Review Questions

1. Which of the following clauses allows a derived class named Dog to have
the same attributes and behaviors as its base class, which is named Animal?

a. Inherits Animal

b. Inherits Dog

c. Overloads Dog

d. Overrides Animal

2. A base class contains a method named GetBonus. Which of the fol-
lowing procedure headers can be used in the base class to indicate
that a derived class can provide its own code for the method?

a. Public Inherits Sub GetBonus()

b. Public Overloads Sub GetBonus()

c. Public Overridable Sub GetBonus()

d. Public Overrides Sub GetBonus()

3. A base class contains a method named GetBonus. Which of the fol-
lowing procedure headers can be used in the derived class to indicate
that it is providing its own code for the method?

a. Public Inherits Sub GetBonus()

b. Public Overloads Sub GetBonus()

c. Public Overridable Sub GetBonus()

d. Public Overrides Sub GetBonus()

4. Th e Salaried class is derived from a base class named Employee.
Which of the following statements can be used by the Salaried class
to invoke the Employee class’s default constructor?

a. MyBase.New()

b. MyEmployee.New()

c. Call Employee.New

d. none of the above

Lesson C Exercises

1. Open the Formula Solution (Formula Solution.sln) fi le contained in
the VB2010\Chap11\Formula Solution folder. If necessary, open the
designer window. Double-click Areas.vb in the Solution Explorer
window. Th e fi le contains the Parallelogram class defi nition. Th e class

INTRODUCTORY

C7718_ch11.indd 679C7718_ch11.indd 679 17/03/11 8:45 PM17/03/11 8:45 PM

680

C H A P T E R 1 1 Classes and Objects

contains two Public properties and two constructors. It also contains
a method that calculates the area of a parallelogram. Th e method’s
name is GetArea.

a. Create a derived class named Triangle. Th e derived class should
inherit the properties and GetArea method from the Parallelogram
class. However, the Triangle class’s GetArea method should calcu-
late the area of a triangle. Th e formula for calculating the area of a
triangle is base * height / 2. Be sure to include a default constructor
and a parameterized constructor in the derived class.

b. Th e Calculate button’s Click event procedure should display either
the area of a parallelogram or the area of a triangle. Th e appropri-
ate area to display depends on the radio button selected in the
interface. Code the button’s Click event procedure.

c. Save the solution and then start and test the application. Close the
form’s Code Editor window and the Areas.vb window, and then
close the solution.

2. Open the Kerry Sales Solution (Kerry Sales Solution.sln) fi le con-
tained in the VB2010\Chap11\Kerry Sales Solution folder. If nec-
essary, open the designer window. Double-click Payroll.vb in the
Solution Explorer window.

a. Create a base class named Commission. Th e class should contain
two Public properties: a String property named SalesId and a
Double property named Sales. Include a default constructor
and a parameterized constructor in the class. Also include a
GetCommission method (function) that calculates a salesperson’s
commission using the following formula: sales * .05.

b. Create a derived class named BonusCommission. Th e derived
class’s GetCommission method should calculate the commission as
follows: sales * .05 + (sales – 2500) * .01. Be sure to include a default
constructor and a parameterized constructor in the derived class.

c. Open the form’s Code Editor window and locate the btnCalc con-
trol’s Click event procedure. Finish coding the procedure, using
the comments as a guide.

d. Save the solution and then start and test the application. Close the
form’s Code Editor window and the Payroll.vb window, and then
close the solution.

Swat The Bugs

3. Open the Debug Solution (Debug Solution.sln) fi le contained in the
VB2010\Chap11\Debug Solution-Lesson C folder. If necessary, open
the designer window. Open the Code Editor windows for the form
and class fi le. Review the existing code. Correct the code to remove
the jagged lines in the Shape and Circle class defi nitions. Save the
solution and then start and test the application. Notice that the appli-
cation is not working correctly. Locate and correct the errors in the
code. Save the solution and then start and test the application again.
Close the Code Editor windows and then close the solution.

INTERMEDIATE

C7718_ch11.indd 680C7718_ch11.indd 680 17/03/11 8:45 PM17/03/11 8:45 PM

C H A P T E R 12
Web Applications

Creating the DJ Tom Application

In this chapter, you will create a Web application for DJ (disc jockey) Tom. Although
DJ Tom can be hired for any event, his specialty is weddings. Therefore, he has
requested a Web page that allows the user to enter the names of the bride and
groom, the wedding date, an e-mail address, and the name of the fi rst song to be
danced by the newly married couple. The Web page will provide a Submit button
that, when clicked, displays a message on the page. The message will contain the
information entered by the user.

C7718_ch12.indd 681C7718_ch12.indd 681 14/03/11 8:53 PM14/03/11 8:53 PM

682

C H A P T E R 1 2 Web Applications

Previewing the DJ Tom Application
Before you start the fi rst lesson in this chapter, you will preview the
 completed application. Th e application is contained in the VB2010\Chap12
folder.

To preview the completed application:

1. If necessary, start Visual Studio 2010 or Visual Web Developer 2010
Express.

2. Click File on the menu bar and then click Open Web Site. Th e Open
Web Site dialog box appears. If necessary, click the File System
 button. Click the DJTom-Preview folder contained in the VB2010\
Chap12 folder and then click the Open button. If the Default.aspx
Web page does not appear in the Document window, right-click
Default.aspx in the Solution Explorer window and then click
View Designer.

3. Press Ctrl+F5 to start the application. Th e Web page appears in a
browser window.

4. Click the Bride box and then type Melinda. Press Tab and then type
Pierre as the groom’s name.

5. Click any date in the calendar.

6. Click the E-mail box and then type anyEmail@domain.com.

7. Click the down arrow in the First song box and then click Th e Way
You Look Tonight.

8. Click the Submit button. A message appears in a purple box on the
Web page. See Figure 12-1. (Th e top of your browser window may
look slightly diff erent from the one shown in Figure 12-1.)

a message appears
in a purple box

Figure 12-1 Result of clicking the Submit button

START HERE

C7718_ch12.indd 682C7718_ch12.indd 682 14/03/11 8:53 PM14/03/11 8:53 PM

683

Previewing the DJ Tom Application

9. Close the browser window. Click File on the Visual Studio 2010
(Visual Web Developer 2010 Express) menu bar and then click Close
Solution. If you are asked whether you want to save the changes to
the DJTom-Preview.sln fi le, click the No button.

10. Click File and then click Exit to close Visual Studio 2010 (Visual Web
Developer 2010 Express).

In Lesson A, you will learn how to create static Web pages. Dynamic Web
pages are covered in Lessons B and C. You will code the DJ Tom application
in Lesson C. Be sure to complete each lesson in full and do all of the end-of-
lesson questions and several exercises before continuing to the next lesson.

C7718_ch12.indd 683C7718_ch12.indd 683 14/03/11 8:53 PM14/03/11 8:53 PM

684

C H A P T E R 1 2 Web Applications

 ❚ LESSON A
After studying Lesson A, you should be able to:

 • Defi ne basic Web terminology

 • Create a Web application

 • Add Web pages to an application

 • Customize a Web page

 • Add static text to a Web page

 • Format a Web page’s static text

 • View a Web page in full screen view

 • Add a link button and an image to a Web page

 • Start a Web application

 • Close and open a Web application

 • Reposition a control on a Web page

Web Applications
Th e Internet is the world’s largest computer network, connecting millions of
computers located all around the world. One of the most popular features of
the Internet is the World Wide Web, often referred to simply as the Web. Th e
Web consists of documents called Web pages that are stored on Web servers.
A Web server is a computer that contains special software that “serves up”
Web pages in response to requests from client computers. A client computer
is a computer that requests information from a Web server. Th e information
is requested and subsequently viewed through the use of a program called
a Web browser or, more simply, a browser. Currently, the two most popular
browsers are Microsoft Internet Explorer and Mozilla Firefox.

Many Web pages are static. A static Web page is a document whose purpose
is merely to display information to the viewer. Static Web pages are not inter-
active. Th e only interaction that can occur between static Web pages and
the user is through links that allow the user to “jump” from one Web page to
another. Figures 12-2 and 12-3 show examples of static Web pages created
for the Greenview Toy Store. Th e Web page in Figure 12-2 shows the store’s
name, address, and telephone number. Th e page also provides a link to the
Web page shown in Figure 12-3. Th at page shows the store’s business hours
and provides a link for returning to the fi rst Web page. You will create both
Web pages in this lesson.

C7718_ch12.indd 684C7718_ch12.indd 684 14/03/11 8:53 PM14/03/11 8:53 PM

685

Web Applications L E S S O N A

Figure 12-2 Example of a static Web page

Figure 12-3 Another example of a static Web page

Although static Web pages provide a means for a store to list its location
and hours, a company wanting to do business on the Web must be able to
do more than just list information: It must be able to interact with custom-
ers through its Web site. Th e Web site should allow customers to submit
inquiries, select items for purchase, and submit payment information. It also
should allow the company to track customer inquiries and process customer
orders. Tasks such as these can be accomplished using dynamic Web pages.

Unlike a static Web page, a dynamic Web page is interactive in that it can
accept information from the user and also retrieve information for the user.
Examples of dynamic Web pages that you might have already encountered

C7718_ch12.indd 685C7718_ch12.indd 685 14/03/11 8:53 PM14/03/11 8:53 PM

686

C H A P T E R 1 2 Web Applications

include forms for purchasing merchandise online and for submitting online
resumes. Figure 12-4 shows an example of a dynamic Web page that converts
American dollars to British pounds. To use the Web page, you enter the
number of American dollars in the American dollars box and then click the
Submit button. Th e button’s Click event procedure displays the correspond-
ing number of British pounds on the Web page. You will create the Currency
Converter Web page in Lesson B.

Figure 12-4 Example of a dynamic Web page

Th e Web applications created in this chapter use a technology called
ASP.NET 4.0. ASP stands for “active server page” and refers to the type of
Web page created by the ASP technology. All ASP pages contain HTML
(Hypertext Markup Language) tags that tell the client’s browser how to
render the page on the computer screen. For example, the instruction
<h1>Hello</h1> uses the opening <h1> tag and its closing </h1> tag to
display the word “Hello” as a heading on the Web page. Many ASP pages also
contain ASP tags that specify the controls to include on the Web page. In
addition to the HTML and ASP tags, dynamic ASP pages contain code that
tells the objects on the Web page how to respond to the user’s actions. In this
chapter, you will write the appropriate code using the Visual Basic program-
ming language.

When a client computer’s browser sends a request for an ASP page, the
Web server locates the page and then sends the appropriate HTML instruc-
tions to the client. Th e client’s browser uses the instructions to render the
Web page on the computer screen. If the Web page is a dynamic one, like
the Currency Converter page shown in Figure 12-4, the user can interact
with the page by entering data. In most cases, the user then clicks a but-
ton on the Web page to submit the data to the server for processing. When
the server receives the data, it executes the Visual Basic code associated
with the Web page. It then sends back the appropriate HTML, which now
includes the result of processing the code and data, to the client for render-
ing in the browser window. Using the Currency Converter Web page as
an example, the user fi rst enters the number of American dollars and then
clicks the Submit button, which submits the user’s entry to the Web server.

C7718_ch12.indd 686C7718_ch12.indd 686 14/03/11 8:53 PM14/03/11 8:53 PM

687

Creating a Web Application L E S S O N A

Th e server executes the Visual Basic code to convert the American dollars
to British pounds and then sends back the HTML, which now includes the
number of British pounds. Notice that the Web page’s HTML is interpreted
and executed by the client computer, whereas the program code is executed
by the Web server. Figure 12-5 illustrates the relationship between the client
computer and the Web server.

2. Web server returns HTML

1. client computer requests ASP page

3. client computer submits data

4. Web server executes code and returns HTML

Figure 12-5 Illustration of the relationship between a client computer and a Web server

In this lesson, you will create a Web application that contains static Web
pages. You will create applications containing dynamic Web pages in
Lessons B and C.

Creating a Web Application
You create a Web application in Visual Basic using Visual Web Developer
2010, which is available either as a stand-alone product (called Visual
Web Developer 2010 Express) or as part of Visual Studio 2010. You
can download a free copy of Visual Web Developer 2010 Express
from Microsoft’s Web site. At the time of this writing, the address is
http://www.microsoft.com/express/Downloads/#2010-Visual-Web-Developer.
Th e following steps show you how to confi gure Visual Web Developer 2010
Express. You should perform these steps only if you are using Visual Web
Developer 2010 Express.

To confi gure Visual Web Developer 2010 Express:

1. Click the Start button on the Windows 7 taskbar and then point to
All Programs.

2. Click Microsoft Visual Studio 2010 Express and then click
Microsoft Visual Web Developer 2010 Express.

3. Click Tools on the menu bar, and then click Options to open the
Options dialog box. If necessary, select the Show all settings check
box. Click the Projects and Solutions node. Use the information
shown in Figure 12-6 to select and deselect the appropriate check
boxes.

START HERE

C7718_ch12.indd 687C7718_ch12.indd 687 14/03/11 8:53 PM14/03/11 8:53 PM

http://www.microsoft.com/express/Downloads/#2010-Visual-Web-Developer

688

C H A P T E R 1 2 Web Applications

select these five
check boxes

deselect these
three check boxes

Figure 12-6 Options dialog box

4. Click the OK button to close the Options dialog box.

5. Click Tools on the menu bar and then point to Settings. If necessary,
click Expert Settings to select it.

In the next set of steps, you begin creating the Greenview Toy Store Web
application.

To begin creating the Web application:

1. If necessary, start Visual Studio 2010 or Visual Web Developer 2010
Express.

2. If necessary, open the Solution Explorer and Properties windows and
auto-hide the Toolbox window.

3. Click File on the menu bar and then click New Web Site to open
the New Web Site dialog box. If necessary, click Visual Basic in the
Installed Templates list. Click ASP.NET Empty Web Site in the
 middle column of the dialog box.

4. If necessary, change the entry in the Web location box to File System.
Th e File System selection allows you to store your Web application in
any folder on either your computer or a network drive.

5. In this chapter, you will be instructed to store your Web applications
in the F:\VB2010\Chap12 folder; however, you can use any loca-
tion. In the box that appears next to the Web location box, replace
the existing text with F:\VB2010\Chap12\Greenview. Figure 12-7
shows the completed New Web Site dialog box. Your New Web Site
dialog box will look slightly diff erent if you are using Visual Web
Developer 2010 Express.

START HERE

C7718_ch12.indd 688C7718_ch12.indd 688 14/03/11 8:53 PM14/03/11 8:53 PM

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

689

Adding the Default.aspx Web Page to the Application L E S S O N A

select this Visual
Basic template

Figure 12-7 New Web Site dialog box

6. Click the OK button to close the New Web Site dialog box. Th e com-
puter creates an empty Web application named Greenview.

Adding the Default.aspx Web Page
to the Application
After creating an empty Web application, you need to add a Web page to it.
Th e fi rst Web page added to an application is usually named Default.aspx.

To add the Default.aspx Web page to the application:

1. Click Website on the menu bar and then click Add New Item to
open the Add New Item dialog box. (If Website does not appear on
the menu bar, click the Web application’s location and name in the
Solution Explorer window.)

2. If necessary, click Visual Basic in the Installed Templates list and
then (if necessary) click Web Form in the middle column of the
dialog box. Verify that the Place code in separate fi le check box is
selected, and that the Select master page check box is not selected.
As indicated in Figure 12-8, the Web page will be named Default.aspx.

default name for
the Web page

Figure 12-8 Add New Item dialog box

START HERE

C7718_ch12.indd 689C7718_ch12.indd 689 14/03/11 8:53 PM14/03/11 8:53 PM

690

C H A P T E R 1 2 Web Applications

3. Click the Add button to display the Default.aspx page in the
Document window. If necessary, click the Design tab that appears
at the bottom of the IDE. When the Design tab is selected, the Web
page appears in Design view in the Document window, as shown
in Figure 12-9. You can use Design view to add text and controls to
the Web page. If the Formatting toolbar does not appear on your
screen, click View on the menu bar, point to Toolbars, and then
click Formatting. If the div tag does not appear in the Document
 window, click either the <div> button at the bottom of the IDE or the
 rectangle below the body tag.

Web page’s name

Web page’s name

location and
name of the
Web application

Document window

tabs

Formatting toolbar

Figure 12-9 Default.aspx Web page shown in Design view

4. Click the Source tab to display the Web page in Source view. Th is
view shows the HTML and ASP tags that tell a browser how to render
the Web page. Th e tags are automatically generated for you as you are
creating the Web page in Design view. Currently, the Web page con-
tains only HTML tags.

5. Click the Split tab to split the Document window into two parts. Th e
upper half displays the Web page in Source view, and the lower half
displays it in Design view.

6. Click the Design tab to return to Design view, and then auto-hide the
Solution Explorer window.

Customizing a Web Page
You can use the Properties window to customize a Web page. Th e properties
appear in the Properties window when you select DOCUMENT in the win-
dow’s Object box. A Web page’s Title property, for example, determines the
value that appears in the browser’s title bar and also on the page’s tab in the
browser window. Its BgColor property controls the page’s background color.

C7718_ch12.indd 690C7718_ch12.indd 690 14/03/11 8:53 PM14/03/11 8:53 PM

691

Customizing a Web Page L E S S O N A

To change the Title and BgColor properties:

1. Click the down arrow button in the Properties window’s Object box
and then click DOCUMENT in the list. (If DOCUMENT does not
appear in the Object box, click the Design tab.) Th e DOCUMENT
object represents the Web page.

2. If necessary, click the Alphabetical button in the Properties window
to display the properties in alphabetical order. Click Title in the
Properties list. Type Greenview Toy Store in the Settings box and
then press Enter.

3. Click BgColor in the Properties list and then click the . . . (ellipsis)
 button to open the More Colors dialog box. Click the hexagon
 indicated in Figure 12-10.

click this
hexagon

Figure 12-10 More Colors dialog box

4. Click the OK button to close the More Colors dialog box. Th e page’s
background color changes from white to a pale green.

5. Auto-hide the Properties window. Save the application by clicking
either the Save All button on the Standard toolbar or the Save All
option on the File menu.

Adding Static Text to a Web Page
All Web pages contain some text that the user is not allowed to edit, such as
a company name or the caption that identifi es a text box. Text that cannot be
changed by the user is referred to as static text. You can add static text to a
Web page by simply typing the text on the page itself; or, you can use a label
control that you dragged to the Web page from the Toolbox window. In this
lesson, you will type the static text on the Web page.

To add static text to the Web page:

1. If necessary, click inside the rectangle that appears below the div tag
at the top of the Document window. Th e div tag defi nes a division in
a Web page. (If the div tag does not appear in the Document window,
click the <div> button at the bottom of the IDE.)

START HERE

START HERE

C7718_ch12.indd 691C7718_ch12.indd 691 14/03/11 8:53 PM14/03/11 8:53 PM

692

C H A P T E R 1 2 Web Applications

2. Enter the following four lines of text. Press Enter twice after typing
the last line.

Greenview Toy Store
333 Main Street
Chicago, IL 60611
(111) 555-5555

3. Save the application.

You can use either the Format menu or the Formatting toolbar to format the
static text on a Web page. Figure 12-11 indicates some of the tools available
on the Formatting toolbar.

Block
Format box

Font
Name box

Font
Size box

Alignment
button

Foreground
Color button

Figure 12-11 Formatting toolbar

To use the Formatting toolbar to format the static text:

1. Select (highlight) the Greenview Toy Store text on the Web page.
Click the down arrow in the Block Format box on the Formatting
toolbar. Click Heading 1 <h1>. (If the Formatting toolbar does not
appear on your screen, click View on the menu bar, point to Toolbars,
and then click Formatting.)

2. Select the address and phone number text on the Web page. Click the
down arrow in the Block Format box and then click Heading 2 <h2>.

3. Now, you will use the Formatting toolbar’s Alignment button to center
all of the static text. Select all of the static text on the Web page and
then click the down arrow on the Alignment button. See Figure 12-12.

Alignment button

Figure 12-12 Result of clicking the Alignment button

START HERE

C7718_ch12.indd 692C7718_ch12.indd 692 14/03/11 8:53 PM14/03/11 8:53 PM

693

Adding Another Web Page to the Application L E S S O N A

4. Click Justify Center. Th e selected text appears centered, horizontally,
on the Web page. Click anywhere below the phone number to
deselect the text, and then save the application.

Viewing a Web Page in Full Screen View
While you are designing a Web page, you can periodically view the page in
full screen view to determine how it will appear to the user. You do this using
the Full Screen option on the View menu.

To view the Web page using the Full Screen option:

1. Click View on the menu bar and then click Full Screen on the menu.
See Figure 12-13. Although not identical to viewing in a browser
window, full screen view provides a quick and easy way to verify the
placement of controls and text on the Web page.

blinking insertion
point

Full Screen button

Figure 12-13 Default.aspx Web page displayed in full screen view

2. Click the Full Screen button to return to the standard view. (If you
mistakenly clicked the window’s Close button, click the Full Screen
button, right-click Default.aspx in the Solution Explorer window, and
then click View Designer.)

Adding Another Web Page to the Application
In the next set of steps, you will add a second Web page to the Greenview Toy
Store application. Th e Web page will display the store’s hours of operation.

To add another Web page to the application:

1. Click Website on the menu bar and then click Add New Item to
open the Add New Item dialog box. (If Website does not appear on
the menu bar, click the Web application’s location and name in the
Solution Explorer window.)

2. If necessary, click Visual Basic in the Installed Templates list and
then (if necessary) click Web Form in the middle column of the dia-
log box. Change the fi lename in the Name box to Hours and then
click the Add button. Th e computer appends the .aspx extension
on the fi lename and then displays the Hours.aspx Web page in the
Document window.

START HERE

START HERE

C7718_ch12.indd 693C7718_ch12.indd 693 14/03/11 8:53 PM14/03/11 8:53 PM

694

C H A P T E R 1 2 Web Applications

3. Temporarily display the Solution Explorer window. Notice that the
window now contains the Hours.aspx fi lename.

4. Temporarily display the Properties window. Click the down arrow
button in the Properties window’s Object box and then click
DOCUMENT in the list. (If DOCUMENT does not appear in
the Object box, click the Design tab.) Change the Web page’s Title
property to Greenview Toy Store. Also change its BgColor prop-
erty to the same color as the Default.aspx page. (If necessary, refer
back to Figure 12-10.) Click the OK button to close the More Colors
dialog box.

5. If necessary, click the Design tab and then click inside the rectangle
that appears below the div tag at the top of the Document window.
(If the div tag does not appear in the Document window, click either
the <div> button at the bottom of the IDE or the rectangle below
the body tag.) Type Please visit us during these hours: and press
Enter twice.

6. Now, enter the following three lines of text. Press Enter twice after
typing the last line.

Monday – Friday 8am – 10pm
Saturday 9am – 6pm
Closed Sunday

7. Select the Please visit us during these hours: text. Click the down
arrow in the Font Size box and then click x-large (24pt). Also click
the I (Italic) button on the Formatting toolbar.

8. Select the three lines of text that contain the store hours. Click the
down arrow in the Font Size box and then click large (18pt). Also
click the B (Bold) button on the Formatting toolbar.

9. Now, you will change the color of the selected text. Click the
Foreground Color button on the Formatting toolbar to open the
More Colors dialog box. Click any dark green hexagon and then
click the OK button.

10. Select all of the static text on the Web page. Click the down arrow on
the Alignment button and then click Justify Center.

11. Click the blank line below the store hours to deselect the text, and
then save the application.

Adding a Link Button Control to a Web Page
In addition to customizing a Web page by changing its properties and
formatting its static text, you also can add controls to the Web page. You do
this using the tools provided in the Toolbox window. In the next set of steps,
you will add a link button control to both Web pages. Th e link button control
on the Default.aspx page will display the Hours.aspx page. Th e link button
control on the Hours.aspx page will return the user to the Default.aspx page.

C7718_ch12.indd 694C7718_ch12.indd 694 14/03/11 8:53 PM14/03/11 8:53 PM

695

Adding a Link Button Control to a Web Page L E S S O N A

To add a link button control to both Web pages:

1. First, you will add a link button control to the Hours.aspx page.
Permanently display the Toolbox window and then click the
LinkButton tool. Drag your mouse pointer to the location shown
in Figure 12-14 and then release the mouse button.

LinkButton tool

Figure 12-14 Link button control added to the Hours.aspx Web page

2. Temporarily display the Properties window. Change the control’s Text
property to Home Page and press Enter. Click PostBackUrl in the
Properties list and then click the . . . (ellipsis) button to open the Select
URL dialog box. Click Default.aspx in the Contents of folder list. See
Figure 12-15.

Figure 12-15 Select URL dialog box

3. Click the OK button to close the dialog box and then click the Web page.

4. Now, you will add a link button control to the Default.aspx page. Click
the Default.aspx tab. Click the LinkButton tool. Drag your mouse
pointer to the location shown in Figure 12-16 and then release the
mouse button.

Figure 12-16 Link button control added to the Default.aspx Web page

START HERE

C7718_ch12.indd 695C7718_ch12.indd 695 14/03/11 8:53 PM14/03/11 8:53 PM

696

C H A P T E R 1 2 Web Applications

5. Temporarily display the Properties window. Change the control’s Text
property to Store Hours and press Enter. Change its PostBackUrl
property to Hours.aspx.

6. Click the OK button to close the dialog box and then click the Web
page. Save the application.

Starting a Web Application
Typically, you start a Web application either by pressing Ctrl+F5 or by click-
ing the Start Without Debugging option on the Debug menu. Th e method
you use—the shortcut keys or the menu option—is a matter of personal pref-
erence. If you prefer to use a menu option, you might need to add the Start
Without Debugging option to the Debug menu, because the option is not
automatically included on the menu in either Visual Studio or Visual Web
Developer Express. You can add the option to the menu by performing the
next set of steps. If you prefer to use the Ctrl+F5 shortcut keys, you can skip
the next set of steps.

To add the Start Without Debugging option to the Debug menu:

1. First, you will determine whether your Debug menu already contains
the Start Without Debugging option. Click Debug on the menu bar.
If the Debug menu contains the Start Without Debugging option,
close the menu by clicking Debug again, and then skip the remaining
steps in this set of steps.

2. If the Debug menu does not contain the Start Without Debugging
option, close the menu by clicking Debug again. Click Tools on the
menu bar and then click Customize to open the Customize dialog box.

3. Click the Commands tab. Th e Menu bar radio button should be
selected. Click the down arrow in the Menu bar list box. Scroll down
the list until you see Debug, and then click Debug.

4. Click the Add Command button to open the Add Command dialog
box, and then click Debug in the Categories list. Scroll down the
Commands list until you see Start Without Debugging, and then click
Start Without Debugging. Click the OK button to close the Add
Command dialog box.

5. Click the Move Down button three times. Th e completed Customize
dialog box is shown in Figure 12-17. After viewing the fi gure, click the
Close button to close the Customize dialog box.

START HERE

C7718_ch12.indd 696C7718_ch12.indd 696 14/03/11 8:53 PM14/03/11 8:53 PM

697

Starting a Web Application L E S S O N A

Figure 12-17 Customize dialog box

When you start a Web application in either Visual Studio 2010 or Visual Web
Developer 2010 Express, the computer creates a temporary Web server that
allows you to view your Web page in a browser. However, keep in mind that
your Web page will need to be placed on an actual Web server for others to
view it.

To start the Greenview Toy Store Web application:

1. Start the Web application either by pressing Ctrl+F5 or by clicking
the Start Without Debugging option on the Debug menu. Your
browser requests the Default.aspx page from the server. Th e server
locates the page and then sends the appropriate HTML instructions
to your browser for rendering on the screen. Notice that the value in
the page’s Title property appears in the browser’s title bar and on the
page’s tab in the browser window. See Figure 12-18.

START HERE

C7718_ch12.indd 697C7718_ch12.indd 697 14/03/11 8:53 PM14/03/11 8:53 PM

698

C H A P T E R 1 2 Web Applications

the Title property’s
value appears here

Figure 12-18 Default.aspx Web page displayed in a browser window

2. Click Store Hours to display the Hours.aspx page. See Figure 12-19.

Figure 12-19 Hours.aspx Web page displayed in a browser window

3. Click Home Page to display the Default.aspx page, and then close the
browser window.

Adding an Image to a Web Page
In the next set of steps, you will add an image to the Default.aspx page. Th e
image is stored in the Small_house.jpg fi le, which is contained in the VB2010\
Chap12 folder. Th e image fi le was downloaded from the Stock.XCHNG site
and was generously contributed by photographer Gerrit Schneider. (You can
browse and optionally download other free images at www.sxc.hu. However,
be sure to read the Web site’s copyright policies before downloading any
images.)

C7718_ch12.indd 698C7718_ch12.indd 698 14/03/11 8:53 PM14/03/11 8:53 PM

www.sxc.hu

699

Adding an Image to a Web Page L E S S O N A

To add an image to the Web page:

1. First, you will need to add the image fi le to the application. Click
Website on the menu bar and then click Add Existing Item. Open
the VB2010\Chap12 folder. Click the down arrow in the box that
controls the fi le types and then click All Files (*.*) in the list. Click
Small_house.jpg in the list of fi lenames and then click the Add
button.

2. If necessary, insert a blank line below the Store Hours link button
control. Click the blank line below the control and then press Enter
to insert another blank line. Click the Image tool in the toolbox. Drag
your mouse pointer to the location shown in Figure 12-20 and then
release the mouse button.

Figure 12-20 Image control added to the Default.aspx Web page

3. Temporarily display the Properties window. Click ImageUrl in the
Properties list and then click the . . . (ellipsis) button to open the Select
Image dialog box. Click Small_house.jpg in the Contents of folder
section and then click the OK button.

4. Next, you will put a colored border around the image control and also
change the border’s width to 10 pixels. Change the image control’s
BorderStyle property to Groove, and then change its BorderWidth
property to 10. Press Enter after typing the number 10.

5. Now, you will change the color of the image’s border to match the
Web page’s color. Click BorderColor in the Properties list and then
click the . . . (ellipsis) button. When the More Colors dialog box opens,
click the same hexagon as you did for the DOCUMENT’s BgColor.
(If necessary, refer back to Figure 12-10.) Click the OK button to close
the dialog box and then click the Web page.

6. Auto-hide the toolbox. Save and then start the application.
See Figure 12-21.

START HERE

C7718_ch12.indd 699C7718_ch12.indd 699 14/03/11 8:53 PM14/03/11 8:53 PM

700

C H A P T E R 1 2 Web Applications

Figure 12-21 Default.aspx Web page

7. Verify that the browser window is not maximized. Place your mouse
pointer on the window’s right border and then drag the border to the
left to make the window narrower. Notice that the text and image
remain centered in the visible portion of the window. Now, drag the
right border to the right to make the window wider. Here again, the
text and image remain centered in the visible portion of the window.

8. Close the browser window.

Closing and Opening an Existing Web Application
You can use the File menu to close and also open an existing Web application.

To close and then open the Greenview Toy Store application:

1. Click File on the menu bar and then click Close Solution to close the
application.

2. Now, you will open the application. Click File on the menu bar and
then click Open Web Site. Th e Open Web Site dialog box appears.
If necessary, click the File System button. Click the Greenview
folder, which is contained in the VB2010\Chap12 folder, and then
click the Open button. (If you need to open the Web page in the
Document window, right-click the Web page’s name in the Solution
Explorer window and then click View Designer.)

START HERE

C7718_ch12.indd 700C7718_ch12.indd 700 14/03/11 8:53 PM14/03/11 8:53 PM

701

Repositioning a Control on a Web Page L E S S O N A

Repositioning a Control on a Web Page
At times, you may want to reposition a control on a Web page. In this section,
you will move the image and link button controls to diff erent locations on the
Default.aspx Web page. First, however, you will create a new Web application
and then copy the Greenview fi les to the application.

To create a new Web application and then copy fi les to the application:

1. Close the Greenview application. Use the New Web Site option
on the File menu to create an empty Web application named
Greenview2. Save the application in the VB2010\Chap12 folder.

2. Close the Greenview2 application.

3. Use Windows to open the Greenview2 folder. Delete the web.confi g fi le.

4. Use Windows to open the Greenview folder. Select the folder’s
contents, which include six fi les (Default.aspx, Default.aspx.vb,
Hours.aspx, Hours.aspx.vb, Small_house.jpg, and web.confi g). Copy
the six fi les to the Greenview2 folder.

Now, you will open the Greenview2 application and move the two controls to
diff erent locations on the Default.aspx Web page.

To open the Greenview2 application and then move the controls:

1. Open the Greenview2 Web application. Right-click Default.aspx in
the Solution Explorer window and then click View Designer.

2. First, you will move the image control from the bottom of the Web
page to the top of the Web page. If necessary, click immediately
before the letter G in the Greenview Toy Store heading. Press Enter
to insert a blank line above the heading.

3. Click the image control on the Web page. Drag the image control to
the blank line immediately above the heading, and then release the
mouse button.

4. Next, you will move the link button control to the empty area below
the store’s name. Click the link button control. Drag the control to
the empty area below the store’s name, and then release the mouse
button.

5. Save and then start the application. See Figure 12-22.

START HERE

START HERE

C7718_ch12.indd 701C7718_ch12.indd 701 14/03/11 8:53 PM14/03/11 8:53 PM

702

C H A P T E R 1 2 Web Applications

Figure 12-22 Modifi ed Default.aspx Web page

6. Close the browser window and then close the application.

YOU DO IT 1!

Create an empty Web application named YouDoIt 1. Save the application
in the VB2010\Chap12 folder. Add two Web pages to the application: one
named Default.aspx and the other named Address.aspx. The Default.aspx
page should contain your name and a link button control. Change the link
button control’s Text property to Address. The control should display the
Address.aspx page. The Address.aspx page should contain your address
and a link button control. Change this link button control’s Text property
to Name. The control should display the Default.aspx page. Save the
application and then start and test it. Close the browser window and then
close the application.

Lesson A Summary

 • To create an empty Web application:

Start Visual Studio 2010 or Visual Web Developer 2010 Express. Click File
on the menu bar and then click New Web Site to open the New Web Site
dialog box. If necessary, click Visual Basic in the Installed Templates list.

C7718_ch12.indd 702C7718_ch12.indd 702 14/03/11 8:53 PM14/03/11 8:53 PM

703

Lesson A Summary L E S S O N A

Click ASP.NET Empty Web Site in the middle column of the dialog box. If
necessary, change the entry in the Web location box to File System. In the
box that appears next to the Web location box, enter the location where
you want the Web application saved. Also enter the application’s name.
Click the OK button to close the New Web Site dialog box.

 • To add a Web page to a Web application:

Open the Web application. Click Website on the menu bar and then click
Add New Item to open the Add New Item dialog box. (If Website does not
appear on the menu bar, click the Web application’s location and name
in the Solution Explorer window.) If necessary, click Visual Basic in the
Installed Templates list and then click Web Form in the middle column
of the dialog box. Verify that the Place code in separate fi le check box is
selected, and that the Select master page check box is not selected. Enter
an appropriate name in the Name box. Click the Add button to display the
Web page in the Document window. If necessary, click the Design tab that
appears at the bottom of the IDE.

 • To add a title to a Web page:

Set the DOCUMENT object’s Title property.

 • To change the background color of a Web page:

Set the DOCUMENT object’s BgColor property.

 • To add static text to a Web page:

Either type the text on the Web page or use a label control that you
dragged to the Web page from the Toolbox window.

 • To format the static text on a Web page:

Use either the Format menu or the Formatting toolbar.

 • To display a Web page in full screen view:

Click View on the menu bar and then click Full Screen on the menu.

 • To add a link button control to a Web page:

Use the LinkButton tool in the toolbox to drag a link button control to the
Web page, and then set the control’s Text and PostBackUrl properties.

 • To display a Web page in a browser window:

Start the Web application either by pressing Ctrl+F5 or by clicking the
Start Without Debugging option on the Debug menu.

 • To add an image fi le to an application:

Click Website on the menu bar and then click Add Existing Item. Open the
appropriate folder and then click the image fi lename. Click the Add button.

 • To add an image control to a Web page:

Use the Image tool in the toolbox to drag an image control to the Web
page, and then set the image control’s ImageUrl property.

 • To close a Web application:

Click File on the menu bar and then click Close Solution.

C7718_ch12.indd 703C7718_ch12.indd 703 14/03/11 8:53 PM14/03/11 8:53 PM

704

C H A P T E R 1 2 Web Applications

 • To open an existing Web application:

Click File on the menu bar and then click Open Web Site. If necessary,
click the File System button in the Open Web Site dialog box. Click the
name of the Web site and then click the Open button. If necessary, right-
click the Web page’s name in the Solution Explorer window and then click
View Designer.

 • To reposition a control on a Web page:

Drag the control to the new location.

Lesson A Key Terms
ASP—stands for “active server page”

Browser—a program that allows a client computer to request and view
Web pages

Client computer—a computer that requests information from a Web server

Dynamic Web page—an interactive document that can accept information
from the user and also retrieve information for the user

Link button control—allows the user to “jump” from one Web page to another

Static text—text that the user is not allowed to edit

Static Web page—a non-interactive document whose purpose is merely to
display information to the viewer

Web pages—the documents stored on Web servers

Web server—a computer that contains special software that “serves up” Web
pages in response to requests from client computers

Lesson A Review Questions

1. A computer that requests an ASP page from a Web server is called
a computer.

a. browser

b. client

c. requesting

d. none of the above

2. A is a program that uses HTML to render a Web page
on the computer screen.

a. browser

b. client

c. server

d. none of the above

C7718_ch12.indd 704C7718_ch12.indd 704 14/03/11 8:53 PM14/03/11 8:53 PM

705

Lesson A Exercises L E S S O N A

3. An online form used to purchase a product is an example of
a Web page.

a. dynamic

b. static

4. Th e fi rst Web page in an empty Web application is automatically
assigned the name .

a. Default.aps

b. Default1.vb

c. WebForm1.aspx

d. none of the above

5. Th e HTML instructions in a Web page are processed by
the .

a. client computer

b. Web server

6. Th e background color of a Web page is determined by the
property.

a. BackColor

b. BackgroundColor

c. BgColor

d. none of the above

Lesson A Exercises

1. Create an empty Web application named Johansen. Save the appli-
cation in the VB2010\Chap12 folder. Add a new Web page named
Default.aspx to the application. Change the DOCUMENT object’s
Title property to Johansen Pet Supplies. Create a Web page similar
to the one shown in Figure 12-23. Th e static text should be centered,
horizontally, on the page. Save and then start the application. Close
the browser window and then close the application.

INTRODUCTORY

C7718_ch12.indd 705C7718_ch12.indd 705 14/03/11 8:53 PM14/03/11 8:53 PM

706

C H A P T E R 1 2 Web Applications

Heading 1 <h1>

Heading 3 <h3>

large (18 pt)

Heading 2 <h2>, red
foreground, italics

Figure 12-23 Web page for Johansen Pet Supplies

2. Create an empty Web application named Winterland. Save the appli-
cation in the VB2010\Chap12 folder. Add a new Web page named
Default.aspx to the application. Change the DOCUMENT object’s
Title property to Winterland Farms. Change the DOCUMENT
object’s BgColor property to a light blue. Create a Web page similar to
the one shown in Figure 12-24. Th e winterland.jpg fi le is contained in
the VB2010\Chap12 folder. Save and then start the application. Close
the browser window and then close the application.

Figure 12-24 Web page for Winterland Farms

3. Create an empty Web application named Gutierrez. Save the appli-
cation in the VB2010\Chap12 folder. Add two new Web pages
named Default.aspx and Message.aspx to the application. Change
the DOCUMENT object’s Title property to Gutierrez Heating and
Cooling. Create Web pages similar to the ones shown in Figures 12-25
and 12-26. Th e static text and link button control on the Default.aspx
page should be centered, horizontally, on the page. As you are creat-
ing the Web pages, periodically view them in full screen view. Save
and then start the application. Close the browser window and then
close the application.

INTRODUCTORY

INTERMEDIATE

C7718_ch12.indd 706C7718_ch12.indd 706 14/03/11 8:53 PM14/03/11 8:53 PM

707

Lesson A Exercises L E S S O N A

Figure 12-25 Default.aspx Web page for Gutierrez Heating and Cooling

Figure 12-26 Message.aspx Web page for Gutierrez Heating and Cooling

C7718_ch12.indd 707C7718_ch12.indd 707 14/03/11 8:53 PM14/03/11 8:53 PM

708

C H A P T E R 1 2 Web Applications

 ❚ LESSON B
After studying Lesson B, you should be able to:

 • Add a text box, a label, and a button to a Web page

 • Code a control on a Web page

 • Use a RequiredFieldValidator control

Dynamic Web Pages
A dynamic Web page contains controls with which the user can interact. It
also contains code that tells the controls how to respond to the user’s actions.
In this lesson, you will create a dynamic Web page that allows the user to
enter the number of American dollars. When the user clicks the page’s
Submit button, the button’s Click event procedure will convert the dollars to
British pounds and then display the result.

To create the Currency Converter Web application:

1. If necessary, start Visual Studio 2010 or Visual Web Developer 2010
Express.

2. If necessary, open the Solution Explorer, Properties, and Toolbox
windows.

3. Use the New Web Site option on the File menu to create an empty
Web application named Currency. Save the application in the
VB2010\Chap12 folder.

4. Use the Add New Item option on the Website menu to add a Web
page named Default.aspx to the application. (If Website does not
appear on the menu bar, click the Web application’s location and
name in the Solution Explorer window.)

5. If necessary, click the Design tab. Change the DOCUMENT object’s
Title property to Currency Converter.

Before you add any text or controls to a Web page, you should plan the
page’s layout. Figure 12-27 shows a sketch of the Web page for the Currency
Converter application. Th e Web page will contain static text. It also will
 contain the following controls: an image, a text box, a label, and a button.

Image of the Currency Converter
American flag

American dollars:

British pounds:

Submit

Figure 12-27 Sketch of the Currency Converter application’s Web page

START HERE

C7718_ch12.indd 708C7718_ch12.indd 708 14/03/11 8:53 PM14/03/11 8:53 PM

709

Dynamic Web Pages L E S S O N B

To begin creating the Web page:

1. Click inside the rectangle that appears below the div (or body) tag
at the top of the Document window. Recall that the div tag defi nes
a division in a Web page. All of the text in this division will use
the Segoe UI font. If necessary, use the View menu to display the
Formatting toolbar. Click the down arrow in the Font Name box and
then scroll the list until you see Segoe UI. Click Segoe UI in the list.

2. Before dragging an image control to the Web page, you will add the
American fl ag image fi le to the application. Click Website on the
menu bar and then click Add Existing Item. Open the VB2010\
Chap12 folder. Click the down arrow in the box that controls the fi le
types and then click All Files (*.*) in the list. Click USfl ag.jpg in the
list of fi lenames and then click the Add button.

3. Drag an image control into the rectangle that appears below the div
tag and then release the mouse button. Change the image control’s
ImageUrl property to USfl ag.jpg and then click the OK button to
close the Select Image dialog box.

4. Click an empty area to the right of the fl ag to deselect the image
 control, and then press Enter twice.

5. Next, you will enter the Web page’s static text. Press Tab twice. Type
Currency Converter and then press Enter twice.

6. Press Tab twice. Type American dollars:, press the Spacebar twice,
and then press Enter twice.

7. Press Tab twice. Type British pounds:, press the Spacebar twice,
and then press Enter twice.

8. Press Tab twice. Figure 12-28 shows the image control and static text
on the Web page.

blinking
insertion point

Figure 12-28 Image control and static text on the Web page

START HERE

C7718_ch12.indd 709C7718_ch12.indd 709 14/03/11 8:53 PM14/03/11 8:53 PM

710

C H A P T E R 1 2 Web Applications

In addition to the image control and static text, the Web page will contain a
text box, a label, and a button. You will add those controls next.

To add a text box, a label, and a button to the page:

1. Drag a text box control to the Web page. Position the control immedi-
ately after the two spaces that follow the “American dollars:” text, and
then release the mouse button.

2. Unlike Windows controls, Web controls have an ID property rather
than a Name property. Use the Properties window to set the TextBox1
control’s ID property (which appears at the top of the Properties list)
to txtDollars. Also set its Width property to 90px.

3. Drag a label control to the Web page. Position the control immedi-
ately after the two spaces that follow the “British pounds:” text, and
then release the mouse button. Set the following properties for the
Label1 control:

ID lblPounds
BorderStyle Solid
BorderWidth 1px
Text 0
Width 90px

4. Change the label control’s BackColor property to a pale yellow.

5. Finally, drag a button control to the Web page. Position the control
two blank lines below the letter B in the “British pounds:” text, and
then release the mouse button. Set the following properties for the
Button1 control:

ID btnSubmit
Text Submit

6. Click a blank area on the Web page and then save the application.
See Figure 12-29.

Figure 12-29 Current status of the Web page

START HERE

C7718_ch12.indd 710C7718_ch12.indd 710 14/03/11 8:53 PM14/03/11 8:53 PM

711

Dynamic Web Pages L E S S O N B

Looking back at the sketch shown earlier in Figure 12-27, you will notice that
the heading text (Currency Converter) is larger than the other text on the
page. Also, the image control is positioned to the left of the static text and
other controls. You will make these modifi cations in the next set of steps.

To complete the Web page’s interface:

1. Auto-hide the Solution Explorer, Properties, and Toolbox windows.

2. Select (highlight) the Currency Converter text. Use the Font Size box
on the Formatting toolbar to change the font size to xx-large (36pt).
(You also can use the Font option on the Format menu to change the
font size.)

3. Click the image control. Click Format on the menu bar and then
click Position to open the Position dialog box. See Figure 12-30.

click this button to position the
image to the left of the static
text and other controls

Figure 12-30 Position dialog box

4. Th e image control should appear on the left side of the static text and
other controls. Click Left in the Wrapping style section, and then
click the OK button.

5. Position your mouse pointer on the image control’s lower-right sizing
handle, as shown in Figure 12-31. Drag the sizing handle until the
control is approximately the size shown in the fi gure. (Th e number
of pixels may be diff erent on your screen. Just be sure that all of the
static text and other controls appear to the right of the image control.)

START HERE

C7718_ch12.indd 711C7718_ch12.indd 711 14/03/11 8:53 PM14/03/11 8:53 PM

712

C H A P T E R 1 2 Web Applications

drag this sizing handle

Figure 12-31 Size and position of the image control

6. Click an empty area on the Web page to deselect the image control.
Save the application and then start it by pressing Ctrl+F5. Th e Web
page appears in a browser window. Close the browser window.

Coding the Submit Button’s Click Event Procedure
In the following set of steps, you will code the Submit button’s Click event
procedure so that it converts the number of American dollars to British
pounds and then displays the result on the Web page. At the time of this
writing, an American dollar was equivalent to approximately .64 British
pounds. As you do when coding a control on a Windows form, you enter the
code for a control on a Web page in the Code Editor window.

To code the Submit button’s Click event procedure:

1. Right-click the Web page and then click View Code on the context
menu. Th e Default.aspx.vb window opens. Recall that the .vb exten-
sion on a fi lename indicates that the fi le contains Visual Basic code.
In this case, the fi le is referred to as the code-behind fi le, because it
contains code that supports the Web page. Temporarily display the
Solution Explorer window. See Figure 12-32.

code-behind file

Code Editor
window

Figure 12-32 Code Editor and Solution Explorer windows

2. Enter the following comments above the Partial Class clause. Replace
<your name> and <current date> with your name and the current
date, respectively. Press Enter twice after typing the last comment.

' Name: Currency
' Purpose: Convert dollars to pounds
' Programmer: <your name> on <current date>

START HERE

C7718_ch12.indd 712C7718_ch12.indd 712 14/03/11 8:53 PM14/03/11 8:53 PM

713

Coding the Submit Button’s Click Event Procedure L E S S O N B

3. Now, enter the following Option statements:

Option Explicit On
Option Strict On
Option Infer Off

4. Open the btnSubmit control’s Click event procedure. Type the following
comment and then press Enter twice:

' converts dollars to pounds

5. Th e procedure will use a Double named constant to store the conver-
sion rate of .64. Enter the following Const statement:

Const dblPOUND_RATE As Double = .64

6. Th e procedure will use two Double variables to store the number of
American dollars and the number of British pounds. Enter the follow-
ing Dim statements. Press Enter twice after typing the second Dim
statement.

Dim dblDollars As Double
Dim dblPounds As Double

7. Th e procedure will store the user’s entry in the dblDollars variable.
Enter the following TryParse method:

Double.TryParse(txtDollars.Text, dblDollars)

8. Next, the procedure will convert the dollars to pounds and then store
the result in the dblPounds variable. Enter the following assignment
statement:

dblPounds = dblDollars * dblPOUND_RATE

9. Finally, the procedure will display the number of pounds in the
lblPounds control. Enter the following assignment statement:

lblPounds.Text = dblPounds.ToString("N2")

Figure 12-33 shows the code entered in the btnSubmit control’s Click event
procedure.

Figure 12-33 btnSubmit control’s Click event procedure

C7718_ch12.indd 713C7718_ch12.indd 713 14/03/11 8:53 PM14/03/11 8:53 PM

714

C H A P T E R 1 2 Web Applications

Now you will test the Currency Converter application to verify that it is
working correctly.

To test the Currency Converter application:

1. Save and then start the application. Your browser requests the
Default.aspx page from the server. Th e server locates the page and
then sends the appropriate HTML instructions to your browser for
rendering on the screen.

2. Click the American dollars box and then type 10. Click the Submit
button; doing this submits your entry to the server, along with
a request for additional services. Th e server processes the code
 contained in the button’s Click event procedure and then sends
the appropriate HTML to the browser for rendering on the screen.
See Figure 12-34.

Figure 12-34 Result of clicking the Submit button

3. Close the browser window and then close the Code Editor window.

Validating User Input
Th e Validation section of the toolbox provides several tools for validating
user input. Th e tools are referred to as validator tools. Th e name, purpose,
and important properties of each validator tool are listed in Figure 12-35. In
the Currency Converter application, you will use a RequiredFieldValidator
control to verify that the user entered the number of American dollars.

START HERE

C7718_ch12.indd 714C7718_ch12.indd 714 14/03/11 8:53 PM14/03/11 8:53 PM

715

Validating User Input L E S S O N B

Name Purpose Properties
CompareValidator compare an entry with a

constant value or the property
stored in a control

ControlToCompare
ControlToValidate
ErrorMessage
Type
ValueToCompare

CustomValidator verify that an entry passes the
specifi ed validation logic

ClientValidationFunction
ControlToValidate
ErrorMessage

RangeValidator verify that an entry is within
the specifi ed minimum and
maximum values

ControlToValidate
ErrorMessage
MaximumValue
MinimumValue
Type

RegularExpressionValidator verify that an entry matches
a specifi c pattern

ControlToValidate
ErrorMessage
ValidationExpression

RequiredFieldValidator verify that a control contains data ControlToValidate
ErrorMessage

ValidationSummary display all of the validation error
messages in a single location on a
Web page

DisplayMode
HeaderText

Figure 12-35 Validator tools

To verify that the user entered the number of American dollars:

1. If necessary, maximize the Visual Studio (Visual Web Developer)
window.

2. Click to the immediate right of the txtDollars control and then
press the Spacebar three times.

3. Temporarily display the Toolbox window. If necessary, expand the
Validation section. Click the RequiredFieldValidator tool and then
drag your mouse pointer to the Web page. Position your mouse
pointer to the right of the txtDollars control and then release the
mouse button.

4. Temporarily display the Properties window. Set the following proper-
ties for the RequiredFieldValidator1 control:

ControlToValidate txtDollars
ErrorMessage Required entry
ForeColor choose a red hexagon

5. Click an empty area of the Web page. Save the application and then
start it by pressing Ctrl+F5.

6. Click the Submit button without entering a value in the txtDollars
control. Th e RequiredFieldValidator control displays the “Required
entry” message, as shown in Figure 12-36.

START HERE

C7718_ch12.indd 715C7718_ch12.indd 715 14/03/11 8:53 PM14/03/11 8:53 PM

716

C H A P T E R 1 2 Web Applications

error message displayed by the
RequiredFieldValidator control

Figure 12-36 Result of clicking the Submit button when the American dollars
box is empty

7. Click the American dollars box and then type 20. Click the Submit
button. Th e error message is removed from the Web page and the
number 12.80 appears in the lblPounds control.

8. Close the browser window and then close the application.

YOU DO IT 2!

Create an empty Web application named YouDoIt 2. Save the application
in the VB2010\Chap12 folder. Add a Web page named Default.aspx to the
application. The Web page should contain a text box, a label, and a button.
When the user clicks the button, the application should multiply the number
entered in the text box by 2 and then display the result in the label. Include
a RequiredFieldValidator control on the Web page. Save the application and
then start and test it. Close the application.

Lesson B Summary

 • To wrap text and other controls around an image control:

Click the image control. Click Format on the menu bar and then click
Position. Click the Left button in the Wrapping style section to place the
image control on the left side of the text or controls. Click the Right but-
ton to place the image control on the right side of the text or controls.

 • To code a control on a Web page:

Enter the code in the Code Editor window.

 • To validate user input on a Web page:

Use one or more of the validator tools contained in the Validation section
of the toolbox. Th e tools are listed in Figure 12-35.

C7718_ch12.indd 716C7718_ch12.indd 716 14/03/11 8:53 PM14/03/11 8:53 PM

717

Lesson B Review Questions L E S S O N B

Lesson B Key Term
Validator tools—the tools contained in the Validation section of the toolbox;
used to validate user input on a Web page

Lesson B Review Questions

1. In code, you refer to a control on a Web page using the control’s
 property.

a. Caption

b. ID

c. Name

d. Text

2. If you want text to appear to the left of the selected image control on
a Web form, you would need to click the button in the
Position dialog box.

a. Align

b. AlignLeft

c. Left

d. Right

3. Th e Visual Basic code in a Web page is processed by
the .

a. client computer

b. Web server

4. You can use a control to verify that a control on a Web
page contains data.

a. RequiredFieldValidator

b. RequiredField

c. RequiredValidator

d. none of the above

5. You can use a(n) control to verify that an entry on a
Web page is within a minimum and maximum value.

a. MinMaxValidation

b. MaxMinValidation

c. EntryValidator

d. RangeValidator

C7718_ch12.indd 717C7718_ch12.indd 717 14/03/11 8:53 PM14/03/11 8:53 PM

718

C H A P T E R 1 2 Web Applications

Lesson B Exercises

1. In this exercise, you modify the Currency Converter application from
this lesson.

a. Create an empty Web application named CurrencyRangeValidator.
Save the application in the VB2010\Chap12 folder. Close the
CurrencyRangeValidator application.

b. Use Windows to open the CurrencyRangeValidator folder. Delete
the web.confi g fi le.

c. Use Windows to open the Currency folder. Select the folder’s con-
tents. Copy the selected contents to the CurrencyRangeValidator
folder.

d. Open the CurrencyRangeValidator Web site. Right-click
Default.aspx in the Solution Explorer window and then click View
Designer.

e. Add a RangeValidator control to the Web page. Change the control’s
Type property to Double. Th e control should display an appropriate
message when the number of American dollars is either less than 1
or greater than 100,000.

f. Save the application and then start and test it. Close the browser
window and then close the application.

2. Create an empty Web application named Multiplication. Save the
application in the VB2010\Chap12 folder.

a. Add a new Web page named Default.aspx to the application.
Change the DOCUMENT object’s Title property to
Multiplication Calculator. Create a Web page similar to the
one shown in Figure 12-37. Th e X image is contained in
the VB2010\Chap12\Times.jpg fi le.

b. Add two RequiredFieldValidator controls to the Web page. Th e
controls should verify that their respective text boxes contain data.

c. Open the Code Editor window. Use comments to document the
application’s name and purpose, as well as your name and the
 current date. Also enter the appropriate Option statements. Code
the Submit button’s Click event procedure so it multiplies the
value entered in the txtMultiplier control by the value entered
in the txtMultiplicand control and then displays the result in the
lblProduct control.

d. Save the application and then start and test it. Close the browser
window. Close the Code Editor window and then close the
application.

INTRODUCTORY

INTRODUCTORY

C7718_ch12.indd 718C7718_ch12.indd 718 14/03/11 8:53 PM14/03/11 8:53 PM

719

Lesson B Exercises L E S S O N B

txtMultiplier

txtMultiplicand

btnSubmit

lblProduct

Image1

Figure 12-37 Web page for Exercise 2

3. In this exercise, you create an application that displays the result of
converting British pounds to American dollars. Create an empty
Web application named PoundsToDollars. Save the application in
the VB2010\Chap12 folder. Add a new Web page named Default.
aspx to the application. Change the DOCUMENT object’s Title
property to Pounds to Dollars. Th e Default.aspx page should look
similar to the Currency Converter page from this lesson; however, it
should display the BritishFlag.jpg image fi le in the image control. Th e
image fi le is contained in the VB2010\Chap12 folder. Open the Code
Editor window. Use comments to document the application’s name
and purpose, as well as your name and the current date. Also enter
the appropriate Option statements. Code the Submit button’s Click
event procedure. Use 1.56 as the number of American dollars for each
British pound. Save the application and then start and test it. Close
the browser window. Close the Code Editor window and then close
the application.

4. Create an empty Web application named ZipCode. Save the appli-
cation in the VB2010\Chap12 folder. Add a new Web page named
Default.aspx to the application. Change the DOCUMENT object’s
Title property to ZIP Code Verifi er. Create a Web page similar to
the one shown in Figure 12-38. Use labels for the static text. Also,
use the Segoe UI font for the static text and controls. Verify that the
user entered the ZIP code and that the ZIP code is in the appropri-
ate format. (Hint: Use a RegularExpressionValidator control to verify
the format.) If the ZIP code is valid, the Submit button’s Click event
procedure should display the message “Your ZIP code is ” followed
by the ZIP code and a period. Save and then start the application.
Test the application by clicking the Submit button without entering a
ZIP code. Th en test it using the following ZIP codes: 60611, 606123,
60611-3456, and 60611-5. Close the browser window. Close the Code
Editor window and then close the application.

INTRODUCTORY

INTERMEDIATE

C7718_ch12.indd 719C7718_ch12.indd 719 14/03/11 8:53 PM14/03/11 8:53 PM

720

C H A P T E R 1 2 Web Applications

Figure 12-38 Web page for Exercise 4

5. In this exercise, you modify the Currency Converter application from
this lesson.

a. Create an empty Web application named CurrencyPesos.
Save the application in the VB2010\Chap12 folder. Close the
CurrencyPesos application.

b. Use Windows to open the CurrencyPesos folder. Delete the
web.confi g fi le.

c. Use Windows to open the Currency folder. Select the folder’s con-
tents. Copy the selected contents to the CurrencyPesos folder.

d. Open the CurrencyPesos Web site. Right-click Default.aspx in the
Solution Explorer window and then click View Designer.

e. Th e Default.aspx page also should display the result of convert-
ing the number of American dollars to Mexican pesos. Make the
appropriate modifi cations to the Web page and its code. Use 12.46
as the number of pesos for each American dollar.

f. Save the application and then start and test it. Close the browser
window. Close the Code Editor window and then close the
application.

INTERMEDIATE

C7718_ch12.indd 720C7718_ch12.indd 720 14/03/11 8:53 PM14/03/11 8:53 PM

721

Creating the DJ Tom Application L E S S O N C

 ❚ LESSON C
After studying Lesson C, you should be able to:

 • Make changes to the Web page in Source view

 • Create columns using the <div> tag

 • Utilize an ASP table in a Web page

 • Add a calendar to a Web page

 • Add a drop-down list box to a Web page

 • Create a new line using the
 tag

Creating the DJ Tom Application
Recall that your task is to create a Web application for DJ (disc jockey) Tom.
Th e application’s Web page should allow the user to enter the names of the
bride and groom, the wedding date, an e-mail address, and the name of the
fi rst song to be danced by the newly married couple. Th e Web page should
provide a Submit button that, when clicked, displays a message on the page.
Th e message should contain the names of the bride and groom, the wedding
date, the e-mail address, and the name of the fi rst song. A sketch of the
Web page is shown in Figure 12-39.

Your Wedding DJ

message Bride: DJ Tom logo

Groom:

Wedding:

E-mail:

First song: DropDownList

Submit

Calendar

Figure 12-39 Sketch of the DJ Tom application’s Web page

To create the DJ Tom Web application:

1. If necessary, start Visual Studio 2010 or Visual Web Developer 2010
Express.

2. If necessary, auto-hide the Solution Explorer, Properties, and Toolbox
windows.

3. Use the New Web Site option on the File menu to create an empty
Web application named DJTom. Save the application in the
VB2010\Chap12 folder.

START HERE

C7718_ch12.indd 721C7718_ch12.indd 721 14/03/11 8:53 PM14/03/11 8:53 PM

722

C H A P T E R 1 2 Web Applications

4. Use the Add New Item option on the Website menu to add a Web
page named Default.aspx to the application. (If Website does not
appear on the menu bar, click the Web application’s location and
name in the Solution Explorer window.)

5. If necessary, click the Design tab. Change the DOCUMENT object’s
Title property to DJ Tom.

First, you will set the font for the text in the Web page. You can do this
by switching to Source view and then setting one of the style attribute’s
properties in the <body> tag. More specifi cally, you set the style attribute’s
 font-family property.

To set the font for the text, and then continue creating the Web page:

1. Click the Source tab at the bottom of the IDE and then locate the
<body> tag.

2. You can use the style attribute’s font-family property to specify
one or more fonts to use for the Web page’s text. For example, the
style="font-family:Segoe UI, Arial, Sans-Serif" attri-
bute tells the browser to use the Segoe UI font when displaying text.
However, if the Segoe UI font is not available, the browser should use
the Arial font. If neither of those two fonts is available, the browser
should use an available sans serif font. Modify the <body> tag as
shown in Figure 12-40. Th e modifi cations are shaded in the fi gure.

Figure 12-40 Modifi ed <body> tag

3. Click the Design tab at the bottom of the IDE. If necessary, click
inside the rectangle that appears below the div tag at the top of
the Document window. (If the div tag does not appear on the Web
page, click the <div> button at the bottom of the IDE.) Type Your
Wedding DJ and press Enter.

4. If necessary, use the View menu to display the Formatting toolbar.
Select (highlight) the Your Wedding DJ text.

5. Click the down arrow in the Block Format box and then click
Heading 1 <h1> in the list. Click the Alignment button on the
Formatting toolbar and then click Justify Center. Click an empty
area of the Web page to deselect the text.

Creating a Columnar Layout
Th e content in many Web pages is laid out in a columnar format, similar to a
newspaper. Th e sketch of DJ Tom’s Web page (shown earlier in Figure 12-39)
indicates that the page contains three columns. Th e fi rst column displays a
message, the second column displays the data entry controls, and the third
column displays DJ Tom’s logo. You can divide a Web page into columns
using the <div> tag.

START HERE

C7718_ch12.indd 722C7718_ch12.indd 722 14/03/11 8:53 PM14/03/11 8:53 PM

723

Creating a Columnar Layout L E S S O N C

To divide DJ Tom’s Web page into three columns:

1. Click the Source tab and then click the blank line below the

tag. If necessary, press Tab to align the insertion point with the tag.

2. Th e fi rst column, which you will name “MessageColumn”, will occupy
30% of the page. You will change the column’s background color to
purple and then specify that the column should appear on the left
side of the page. Type <div>. Th e Source view editor automatically
enters the closing </div> tag for you. Click immediately after the
letter v in the <div> tag and then press the Spacebar. Complete the
tag by entering the text shaded in Figure 12-41, and then position the
insertion point as shown in the fi gure.

position the insertion
point here

Figure 12-41 Completed <div> tag for the fi rst column

3. Now you will use another <div> tag to create the second column. Th is
column will occupy 39% of the Web page and appear next to the fi rst
column. Type the following <div> tag:

<div id="ContentColumn" style="width:39%;
 fl oat:left"></div>

4. Click immediately after the </div> tag from Step 3 and then press
Enter. Th e third column will occupy 30% of the Web page and appear
on the right side of the page. Type the following <div> tag:

<div id="LogoColumn" style="width:30%;
 fl oat:right"></div>

5. Click the Design tab. Th ree columns appear in the Web page. See
Figure 12-42.

MessageColumn ContentColumn LogoColumn

Figure 12-42 Web page showing the three columns

6. Permanently display the Toolbox and Properties windows. Drag
a label control into the MessageColumn. Set the control’s ID and
ForeColor properties to lblMsg and White, respectively. Also remove
the contents of its Text property.

START HERE

C7718_ch12.indd 723C7718_ch12.indd 723 14/03/11 8:53 PM14/03/11 8:53 PM

724

C H A P T E R 1 2 Web Applications

7. Before dragging an image control to the Web page, you will add the
DJ Tom image fi le to the application. Click Website on the menu bar
and then click Add Existing Item. Open the VB2010\Chap12 folder.
Click the down arrow in the box that controls the fi le types and then
click All Files (*.*) in the list. Click DJ.jpg in the list of fi lenames and
then click the Add button.

8. Now drag an image control into the LogoColumn. Set the control’s
ImageUrl property to DJ.jpg and then click an empty area on the
Web page to deselect the control.

Using an ASP Table
Th e Table tool in the Standard section of the toolbox creates an ASP table
control. Th e control displays information in a row and column format, similar
to a spreadsheet, and is often used to align the information on a Web page.
Th e ASP table control you will use in DJ Tom’s Web page will have six rows
and two columns. Th e intersection of a row and a column in a table is called
a cell.

To add an ASP table to the Web page:

1. Click the Table tool located in the Standard section of the toolbox
and then drag a table control to the ContentColumn. (Th e HTML
section of the toolbox also has a Table tool. Be sure to use the Table
tool listed in the Standard section.) See Figure 12-43.

be sure to use the Table
tool in the Standard section

table control

Figure 12-43 ASP table control added to the ContentColumn

2. Set the table control’s CellSpacing property to 40. Th e CellSpacing
property controls the spacing between the table cells. Set the table
control’s HorizontalAlign property to Center.

3. Now you will begin defi ning the table rows. Click Rows in the
Properties window and then click the . . . (ellipsis) button in the
Settings box. Th e TableRow Collection Editor dialog box opens. Click
the Add button and then click (ID) in the list of TableRow properties.
Type tblRow1 and press Enter. See Figure 12-44.

START HERE

C7718_ch12.indd 724C7718_ch12.indd 724 14/03/11 8:53 PM14/03/11 8:53 PM

725

Using an ASP Table L E S S O N C

use this property to
specify the cells

TableRow Collection Editor dialog box

Figure 12-44 TableRow Collection Editor dialog box

4. Th e row will have two cells: one will contain the text “Bride:” and the
other will contain a text box for entering the bride’s name. Click Cells
in the list of TableRow properties and then click the . . . (ellipsis) button
in the Settings box. Th e TableCell Collection Editor dialog box opens.

5. Click the Add button. Change the cell’s Text property to Bride: and
press Enter. Change its ID property to tblRow1Col1 and press
Enter. See Figure 12-45.

TableCell Collection Editor dialog box

Figure 12-45 TableCell Collection Editor dialog box

6. Click the Add button again. Change the cell’s ID property to
tblRow1Col2 and press Enter. Click the OK button. Th e TableCell
Collection Editor dialog box closes and you are returned to the
TableRow Collection Editor dialog box.

C7718_ch12.indd 725C7718_ch12.indd 725 14/03/11 8:53 PM14/03/11 8:53 PM

726

C H A P T E R 1 2 Web Applications

7. Now you will defi ne the second row in the table. Click the Add
 button in the TableRow Collection Editor dialog box. Set the row’s ID
property to tblRow2 and press Enter.

8. Click Cells in the list of TableRow properties and then click
the . . . (ellipsis) button in the Settings box. Click the Add button.
Change the cell’s Text property to Groom: and press Enter. Change
its ID property to tblRow2Col1 and press Enter. Click the Add but-
ton again. Change the cell’s ID property to tblRow2Col2 and press
Enter. Click the OK button to close the TableCell Collection Editor
dialog box.

9. On your own, defi ne the third row in the table. Change the row’s
ID property to tblRow3. Th e row should have two cells named
tblRow3Col1 and tblRow3Col2. Th e tblRow3Col1 cell should contain
the text Wedding:. Close the TableCell Collection Editor dialog box.

10. On your own, defi ne the fourth row in the table. Change the row’s
ID property to tblRow4. Th e row should have two cells named
tblRow4Col1 and tblRow4Col2. Th e tblRow4Col1 cell should contain
the text E-mail:. Close the TableCell Collection Editor dialog box.

11. On your own, defi ne the fi fth row in the table. Change the row’s
ID property to tblRow5. Th e row should have two cells named
tblRow5Col1 and tblRow5Col2. Th e tblRow5Col1 cell should contain
the text First song:. Close the TableCell Collection Editor dialog box.

12. Finally, defi ne the last row in the table. Change the row’s ID property
to tblRow6. Th e row should have one cell named tblRow6Col1.

13. Click the OK button to close the TableCell Collection Editor dialog
box, and then click the OK button to close the TableRow Collection
Editor dialog box.

14. Auto-hide the Toolbox and Properties windows and then save the
application.

Figure 12-46 shows the table on the Web page.

Figure 12-46 Table containing six rows and two columns

C7718_ch12.indd 726C7718_ch12.indd 726 14/03/11 8:53 PM14/03/11 8:53 PM

727

Using an ASP Table L E S S O N C

Dragging Controls in Source View
In the next set of steps, you will open the Web page in Source view. You then
will drag the controls to the appropriate cells in the table.

To drag controls to the table in Source view:

1. Click the Your Wedding DJ text to deselect the table control and
then click the Source tab at the bottom of the IDE.

2. Permanently display the Toolbox window. First, you will drag a text
box into the cell located next to the Bride: text. Th at cell is located in
the second column of the fi rst row in the table. Locate the opening
tag for the tblRow1Col2 cell. Th e opening tag says <asp:TableCell
ID="tblRow1Col2" runat="server"></asp:TableCell>.
Click immediately before the cell’s closing tag (which says
</asp:TableCell>) and then press Enter. Click the TextBox tool
in the toolbox. Press and hold down the left mouse button as you drag
your mouse pointer to the location shown in Figure 12-47.

drag the
text box
to this
location

the text box will be placed
in the cell located in row 1,
column 2

Figure 12-47 Text box control being dragged in Source view

3. Release the mouse button. See Figure 12-48.

START HERE

4. In the <asp:TextBox> tag, change the text box control’s ID property
from "TextBox1" to "txtBride".

5. Click the Design tab. A text box control appears in the second cell in
row 1. See Figure 12-49.

text box
tags

Figure 12-48 Opening and closing text box tags added to the table instructions

C7718_ch12.indd 727C7718_ch12.indd 727 14/03/11 8:53 PM14/03/11 8:53 PM

728

C H A P T E R 1 2 Web Applications

text box control

Figure 12-49 Text box control shown in the table

6. Click the Your Wedding DJ text to deselect the table control and
then click the Source tab.

7. Now you will place a text box in the cell located in the second
row, second column in the table. Locate the opening tag for
the tblRow2Col2 cell. In this case, the opening tag will say
<asp:TableCell ID="tblRow2Col2" runat="server">
</asp:TableCell>. Click immediately before the cell’s closing
tag and then press Enter. Drag a text box control to the immediate
left of the closing tag and then release the mouse button. Change the
text box control’s ID property to "txtGroom".

8. Next, you will add a calendar control to the cell located in the second
column of the table’s third row. Locate the opening tag for the
tblRow3Col2 cell. Click immediately before the cell’s closing tag
and then press Enter. Click the Calendar tool in the toolbox. Drag
a calendar control to the immediate left of the closing tag and then
release the mouse button. Change the calendar control’s ID property
to "calWedding".

9. Now you will add a text box to the cell located in the second column
of the fourth row. Locate the opening tag for the tblRow4Col2 cell.
Click immediately before the cell’s closing tag and then press
Enter. Drag a text box control to the immediate left of the closing tag
and then release the mouse button. Change the text box control’s ID
property to "txtEmail".

10. Next, you will place a drop-down list control in the cell located in
the second column of the fi fth row. Locate the opening tag for the
tblRow5Col2 cell. Click immediately before the cell’s closing tag
and then press Enter. Click the DropDownList tool in the toolbox.
Drag a drop-down list control to the immediate left of the closing
tag and then release the mouse button. Change the drop-down list
control’s ID property to "ddlSongs".

11. Finally, you will add a button to the last row in the table. Locate the
opening tag for the tblRow6Col1 cell. Click immediately before
the cell’s closing tag and then press Enter. Drag a button control
to the immediate left of the closing tag and then release the mouse
button. Change the button’s ID property to "btnSubmit" and change
its Text property to "Submit".

C7718_ch12.indd 728C7718_ch12.indd 728 14/03/11 8:53 PM14/03/11 8:53 PM

729

Adding Items to a DropDownList Control L E S S O N C

12. Save the application. Auto-hide the toolbox and then click the
Design tab.

Figure 12-50 shows the controls added to the table.

Figure 12-50 Controls added to the table

Adding Items to a DropDownList Control
Currently, the drop-down list control on DJ Tom’s Web page does not
contain any items. You add items to a drop-down list control using the
<asp:ListItem> tag. In the next set of steps, you will add the following four
song titles to the drop-down list control: From Th is Moment On, At Last,
Because You Loved Me, and Th e Way You Look Tonight.

To add items to the drop-down list control:

1. Click the Source tab. Locate the <asp:DropDownList
ID="ddlSongs" runat="server"> tag. Click immediately after
the > in the tag and then press Enter.

2. Press Tab to indent the line and then type <asp:ListItem
Text="From Th is Moment On">. When you type the >
symbol, the Source view editor automatically enters the closing
</asp:ListItem> tag for you. See Figure 12-51.

START HERE

C7718_ch12.indd 729C7718_ch12.indd 729 14/03/11 8:53 PM14/03/11 8:53 PM

730

C H A P T E R 1 2 Web Applications

the closing tag is
automatically
entered for you

Figure 12-51 First song title added to the drop-down list control

3. Click after the > in the list item’s closing tag and then press Enter.
Enter the three additional <asp:ListItem> tags indicated in Figure 12-52.

enter these three
<asp:ListItem> tags

Figure 12-52 Remaining song titles added to the drop-down list control

4. Save the application and then click the Design tab. Start the applica-
tion and then click the down arrow in the drop-down list control.
Th e song titles appear as shown in Figure 12-53.

Figure 12-53 Song titles displayed in the drop-down list control

5. Close the browser window.

Coding DJ Tom’s Web Page
Now that the interface is complete, you can code the Web page’s Submit
button. Th e button’s Click event procedure will display a message in the
lblMsg control. Recall that the control is contained in the MessageColumn
on the Web page.

To code the Submit button’s Click event procedure:

1. Right-click the Web page and then click View Code to open the
Code Editor window. Enter the following comments. Replace <your
name> and <current date> with your name and the current date,
respectively. Press Enter twice after typing the last comment.

' Name: DJTom
' Purpose: Display a message
' Programmer: <your name> on <current date>

START HERE

C7718_ch12.indd 730C7718_ch12.indd 730 14/03/11 8:54 PM14/03/11 8:54 PM

731

Coding DJ Tom’s Web Page L E S S O N C

2. Now enter the following Option statements:

Option Explicit On
Option Strict On
Option Infer Off

3. Open the code template for the btnSubmit control’s Click event
 procedure. Type the following comment and then press Enter twice:

' displays the user's input in a message

4. First, you will declare variables to store the fi ve input items. Enter the
following Dim statements. Press Enter twice after typing the last Dim
statement.

Dim strBride As String
Dim strGroom As String
Dim strWedDate As String
Dim strEmail As String
Dim strSong As String

5. Now you will assign the names of the bride and groom to the appro-
priate variables. Enter the following assignment statements:

strBride = txtBride.Text.Trim
strGroom = txtGroom.Text.Trim

6. Next, you will assign the date selected in the Calendar control to the
strWedDate variable. Th e selected date is stored in the control’s
SelectedDate property. You can use the ToShortDateString method to
convert the date to the String data type and, at the same time, format
it as follows: mm/dd/yyyy. Enter the following assignment statement:

strWedDate = calWedding.SelectedDate.ToShortDateString

7. Now you will assign the e-mail address to the strEmail variable.
Enter the following assignment statement:

strEmail = txtEmail.Text.Trim

8. Next, you will assign the item selected in the drop-down list control
to the strSong variable. Th e selected item is stored in the control’s
SelectedItem property. Type the following assignment statement and
then press Enter twice:

strSong = ddlSongs.SelectedItem.ToString

9. Finally, you will display the user’s input in the lblMsg control. Enter
the following lines of code:

lblMsg.Text = "Th ank you " & strBride & " and " &
 strGroom & " for visiting my Web site. " &
 "Wedding date: " & strWedDate &
 "E-mail address: " & strEmail & "Song: " & strSong

Next, you will test the Submit button’s Click event procedure to verify that its
code is working correctly.

The Calendar
control also has a
ToLongDateString
method that
 formats the date

as follows: day of the
week, month name, day
 number, year number.

C7718_ch12.indd 731C7718_ch12.indd 731 14/03/11 8:54 PM14/03/11 8:54 PM

732

C H A P T E R 1 2 Web Applications

To test the Submit button’s Click event procedure:

1. Save and then start the application. Click the Bride box and then type
Pam. Press Tab and then type Nathan in the Groom box.

2. Click any date in the Calendar control. Click the E-mail box and then
type anyEmail@domain.com. Click the down arrow in the drop-
down list control and then click Because You Loved Me in the list.

3. Click the Submit button. Th e button’s Click event procedure displays
the message shown in Figure 12-54 in the lblMsg control. (Your mes-
sage may contain a diff erent date.) Notice that the message is diffi cult to
read. It would be better if the “Th ank you” message, the wedding date,
the e-mail address, and the song title appeared on separate lines in the
control. You will learn how to accomplish this in the next section.

lblMsg control

Figure 12-54 Message displayed in the lblMsg control

4. Close the browser window.

Using the
 Tag
At times, you may need to break the text on a Web page in a specifi c location.
You can do this using the
 tag. Th e “br” in the tag stands for “break.”
Th e
 tag in a Web page is similar to the ControlChars.NewLine con-
stant in a Windows form; both are used to create a new line. In DJ Tom’s
Web page, you will use the
 tag to separate the wedding date informa-
tion from the “Th ank you” message. You also will use it to display the e-mail
information and song information on separate lines in the lblMsg control.

To use the
 tag to separate the text in the lblMsg control:

1. Modify the assignment statement that displays the message in
the lblMsg control. Th e modifi cations are shaded in Figure 12-55.
(Although the
 tags appear at the beginning of the lines in
Figure 12-55, they can appear anywhere within a line.)

Figure 12-55 Modifi ed Click event procedure for the btnSubmit control (continues)

Protected Sub btnSubmit_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnSubmit.Click
 ' displays the user's input in a message

 Dim strBride As String
 Dim strGroom As String
 Dim strWedDate As String
 Dim strEmail As String
 Dim strSong As String

START HERE

START HERE

C7718_ch12.indd 732C7718_ch12.indd 732 14/03/11 8:54 PM14/03/11 8:54 PM

733

Coding DJ Tom’s Web Page L E S S O N C

Figure 12-55 Modifi ed Click event procedure for the btnSubmit control

 strBride = txtBride.Text.Trim
 strGroom = txtGroom.Text.Trim
 strWedDate = calWedding.SelectedDate.ToShortDateString
 strEmail = txtEmail.Text.Trim
 strSong = ddlSongs.SelectedItem.ToString

 lblMsg.Text = "Thank you " & strBride & " and " &
 strGroom & " for visiting my Web site. " &
 "

Wedding date: " & strWedDate &
 "
E-mail address: " & strEmail &
 "
Song: " & strSong

End Sub

2. Save and then start the application. Click the Bride box and then type
Kristy. Press Tab and then type James in the Groom box.

3. Click any date in the Calendar control. Click the E-mail box and
then type anyEmail@domain.com. Click the down arrow in the
drop-down list control and then click At Last in the list.

4. Click the Submit button. Th e button’s Click event procedure displays
the message shown in Figure 12-56 in the lblMsg control. (Your
message may contain a diff erent date.)

lblMsg control

Figure 12-56 Message displayed on separate lines in the lblMsg control

5. Close the browser window. Close the Code Editor window and then
close the application.

(continued)

C7718_ch12.indd 733C7718_ch12.indd 733 14/03/11 8:54 PM14/03/11 8:54 PM

734

C H A P T E R 1 2 Web Applications

Lesson C Summary

 • To set the font for the text on a Web page:
Assign one or more fonts to the style attribute’s font-family property in the
<body> tag.

 • To divide a Web page into columns:
Use the <div> tag. Use the id attribute to assign a name to the column.
Assign a percentage to the style attribute’s width property. Assign either
left or right to the style attribute’s fl oat property.

 • To use an ASP table:
Drag a table control from the Standard section of the toolbox. Th e table’s
CellSpacing property controls the spacing between the table cells. Its
HorizontalAlign property controls its horizontal alignment on the Web
page. Use the Rows property to add rows and columns (cells) to the table.
It’s helpful to set the ID property for each row and each cell.

 • To place a control in an ASP table:
Open the Web page in Source view. Drag the control to a location imme-
diately before the desired cell’s closing tag.

 • To add items to a drop-down list control:
Use a separate <asp:ListItem> tag for each item. In each tag, set the item’s
Text property. Place the tags between the opening <asp:DropDownList>
and closing </asp:DropDownList> tags.

 • To determine the date selected in a Calendar control:
Use the control’s SelectedDate property.

 • To format the date selected in a Calendar control:
Use the control’s ToShortDateString method to format the date as follows:
mm/dd/yyyy. Use the control’s ToLongDateString method to format the
date as follows: day of the week, month name, day number, year number.

 • To determine the item selected in a drop-down list control:
Use the control’s SelectedItem property.

 • To create a new line on a Web page from code:
Use the
 tag.

Lesson C Key Terms
<asp:ListItem> tag—used to add items to a drop-down list control

 tag—used to create a new line on a Web page or in a control
<div> tag—creates a division on a Web page; can be used to divide a Web
page into columns
ASP table control—displays information in a row and column format; can be
used to align information on a Web page

C7718_ch12.indd 734C7718_ch12.indd 734 14/03/11 8:54 PM14/03/11 8:54 PM

735

Lesson C Review Questions L E S S O N C

Cell—the intersection of a row and a column in a table

font-family property—a property of the style attribute in the <body> tag;
assigns one or more fonts to be used for text

Lesson C Review Questions

1. Which of the following specifi es the fonts to use for the text on a
Web page?

a. style="font-family:Segoe UI, Arial, Sans-Serif"

b. style="fonts:Segoe UI, Arial, Sans-Serif"

c. style:"font-family=Segoe UI, Arial, Sans-Serif"

d. style:"fonts=Segoe UI, Arial, Sans-Serif"

2. Which of the following specifi es that Col1 should occupy 15% of the
Web page and be positioned on the right?

a. <div id="Col1" "width:15%; position:right">

b. <div id="Col1" style="width:15%; fl oat:right">

c. <div id="Col1" "position:right; column:15%">

d. <div id="Col1" style="width:15%; position:right">

3. Which of the following adds the word “Dog” to a drop-down list
control?

a. <asp:ListItem Caption="Dog">

b. <asp:ListItem Item="Dog">

c. <asp:Item Text="Dog">

d. none of the above

4. Th e item selected in a drop-down list control is stored in the
control’s property.

a. Item

b. Selected

c. SelectedItem

d. none of the above

5. Th e date selected in a Calendar control is stored in the control’s
 property.

a. Date

b. SelectedDate

c. DateSelection

d. none of the above

C7718_ch12.indd 735C7718_ch12.indd 735 14/03/11 8:54 PM14/03/11 8:54 PM

736

C H A P T E R 1 2 Web Applications

6. You can use the tag to display text on the next line in a
control.

a.

b. <break>

c. <newline>

d. none of the above

Lesson C Exercises

1. In this exercise, you modify the DJ Tom application from this lesson.

a. Create an empty Web application named DJTomIntro1. Save the
application in the VB2010\Chap12 folder. Close the DJTomIntro1
application.

b. Use Windows to open the DJTomIntro1 folder. Delete the
web.confi g fi le.

c. Use Windows to open the DJTom folder. Select the folder’s con-
tents. Copy the selected contents to the DJTomIntro1 folder.

d. Open the DJTomIntro1 Web site. Right-click Default.aspx in the
Solution Explorer window and then click View Designer.

e. Drag a RegularExpressionValidator control to the Web page.
Don’t be concerned about the control’s location. Th e control will
verify the format of the e-mail address entered by the user. Click
ErrorMessage in the Properties window, press the Spacebar twice
and then type Invalid. Now, change the ValidationExpression
and ControlToValidate properties to Internet e-mail address and
txtEmail, respectively. Click the Source tab. Cut the control’s
asp tag and then paste the tag before the txtEmail control’s
</asp:TableCell> closing tag. Click the Design tab.

f. Save and then start and test the application. Close the browser
window and then close the application.

2. In this exercise, you modify the DJ Tom application from this lesson.

a. Create an empty Web application named DJTomIntro2. Save the
application in the VB2010\Chap12 folder. Close the DJTomIntro2
application.

b. Use Windows to open the DJTomIntro2 folder. Delete the
web.confi g fi le.

c. Use Windows to open the DJTom folder. Select the folder’s
 contents. Copy the selected contents to the DJTomIntro2 folder.

d. Open the DJTomIntro2 Web site. Right-click Default.aspx in the
Solution Explorer window and then click View Designer.

INTRODUCTORY

INTRODUCTORY

C7718_ch12.indd 736C7718_ch12.indd 736 14/03/11 8:54 PM14/03/11 8:54 PM

737

Lesson C Exercises L E S S O N C

e. Open the Web page in Source view. Add the titles of any four
additional songs to the drop-down list control.

f. Save and then start and test the application. Close the browser
window and then close the application.

3. In this exercise, you modify the DJ Tom application from this lesson.

a. Create an empty Web application named DJTomIntermediate.
Save the application in the VB2010\Chap12 folder. Close the
DJTomIntermediate application.

b. Use Windows to open the DJTomIntermediate folder. Delete the
web.confi g fi le.

c. Use Windows to open the DJTom folder. Select the folder’s contents.
Copy the selected contents to the DJTomIntermediate folder.

d. Open the DJTomIntermediate Web site. Right-click Default.aspx
in the Solution Explorer window and then click View Designer.

e. Open the Web page in Source view. Locate the asp tag for the
last table row. Change tblRow6 and tblRow6Col1 to tblRow8 and
tblRow8Col1, respectively. Add two rows to the table. Th e rows
should be added above the last row in the table. Both rows should
contain two cells. In the fi rst new row, enter the text “Father/
Daughter:” (without the quotes) in the fi rst column and then place
a drop-down list control in the second column. In the second new
row, enter the text “Mother/Son:” (without the quotes) in the fi rst
column and then place a drop-down list control in the second
 column. Add the titles of any four songs to the drop-down list
control in the fi rst new row. Add the titles of any three songs to
the drop-down list control in the second new row.

f. Save the application and then switch to Design view. Open
the Code Editor window and modify the code to display the
 additional user input in the lblMsg control.

g. Save and then start and test the application. Close the browser
window. Close the Code Editor window and then close the
application.

4. Create an empty Web application named MarketFoods. Save the
application in the VB2010\Chap12 folder. Add a new Web page
named Default.aspx to the application. Change the DOCUMENT
object’s Title property to Market Foods. Create a Web page similar
to the sketch shown in Figure 12-57. Th e DropDownList control
should contain the store numbers listed in Figure 12-58. When the
user clicks the Submit button, the button’s Click event procedure
should display the names of the manager and assistant manager on
the Web page. Open the Code Editor window. Enter the appropriate
 comments and Option statements. Code the Submit button’s Click

INTERMEDIATE

INTERMEDIATE

C7718_ch12.indd 737C7718_ch12.indd 737 14/03/11 8:54 PM14/03/11 8:54 PM

738

C H A P T E R 1 2 Web Applications

event procedure. Save and then start and test the application. Close
the browser window. Close the Code Editor window and then close
the application.

Market Foods

Store number: Submit

Manager:

Assistant:

DropDownList

Figure 12-57 Sketch for Exercise 4

Store number Manager Assistant manager
1001 Jeffrey Jefferson Paula Hendricks
1002 Barbara Millerton Sung Lee
1003 Inez Baily Homer Gomez
1004 Lou Chan Jake Johansen
1005 Henry Abernathy Ingrid Nadkarni

Figure 12-58 Store information for Exercise 4

5. Create an empty Web application named SalesTax. Save the appli-
cation in the VB2010\Chap12 folder. Add a new Web page named
Default.aspx to the application. Change the DOCUMENT object’s
Title property to Sales Tax Calculator. Create a Web page similar to
the sketch shown in Figure 12-59. Th e application should allow the
user to enter the sales. When the user clicks the Calculate button,
the button’s Click event procedure should calculate both a 5% sales
tax and a 6% sales tax. It then should display the calculated amounts
on the Web page. Code the procedure. Save and then start and test
the application. Close the browser window. Close the Code Editor
window and then close the application.

Sales Tax Calculator

Sale Rate Tax

5%

6%

Calculate

Figure 12-59 Sketch for Exercise 5

INTERMEDIATE

C7718_ch12.indd 738C7718_ch12.indd 738 14/03/11 8:54 PM14/03/11 8:54 PM

739

Lesson C Exercises L E S S O N C

6. Create an empty Web application named SkateAway. Save the appli-
cation in the VB2010\Chap12 folder. Add a new Web page named
Default.aspx to the application. Change the DOCUMENT object’s
Title property to Skate-Away Sales. Th e Skate-Away Sales company
sells skateboards by phone. Th e skateboards are priced at $100 each
and are available in two colors: yellow and blue. Th e application
should allow the salesperson to enter the customer’s name and the
number of blue and yellow skateboards ordered. It should calculate
the total number of skateboards ordered and the total price of the
order, including a 5% sales tax. Create a suitable Web page and then
code the application. Save and then start and test the application.
Close the browser window. Close the Code Editor window and
then close the application.

ADVANCED

C7718_ch12.indd 739C7718_ch12.indd 739 14/03/11 8:54 PM14/03/11 8:54 PM

C H A P T E R 13
Working with Access
Databases and LINQ

Creating the Paradise Bookstore Application

In this chapter, you will create an application for the Paradise Bookstore. The
application will display the records contained in a Microsoft Access database
named Books. The bookstore manager also can use the application to display only
the books written by the author whose name (or partial name) he or she enters.
He or she also can use the application to display the total value of the books in
the store.

C7718_ch13.indd 740C7718_ch13.indd 740 14/03/11 8:56 PM14/03/11 8:56 PM

741

Previewing the Paradise Bookstore Application
Before you start the fi rst lesson in this chapter, you will preview the
 completed application. Th e application is contained in the VB2010\Chap13
folder.

To preview the completed application:

1. Use the Run dialog box to run the Paradise (Paradise.exe) fi le con-
tained in the VB2010\Chap13 folder. Th e application’s user interface
appears on the screen. Th e interface contains a DataGridView control
that displays the 11 records stored in the Books database.

2. First, you will display only the books written by Carol Smith. Click the
Author text box and then type Smith, C (be sure to include a space
after the comma). Click the Go button. See Figure 13-1.

Author text box

DataGridView
control

Figure 13-1 Books written by Carol Smith

3. Now you will display all of the records again. Delete the contents of
the Author text box and then click the Go button. Th e 11 records
appear in the DataGridView control.

4. Finally, you will display the total value of the books in the store. Click
the Total Value button. Th e number $3,921.72 appears in a message
box, as shown in Figure 13-2.

START HERE

Previewing the Paradise Bookstore Application

C7718_ch13.indd 741C7718_ch13.indd 741 14/03/11 8:56 PM14/03/11 8:56 PM

742

C H A P T E R 1 3 Working with Access Databases and LINQ

Figure 13-2 Total value of the inventory

5. Click the OK button to close the message box. Click the Close button
on the form’s title bar to stop the application.

In Lesson A, you will learn how to connect an application to a Microsoft
Access database. Lesson B will show you how to query a database using
LINQ, which stands for Language Integrated Query. You will complete the
Paradise Bookstore application in Lesson C. Be sure to complete each lesson
in full and do all of the end-of-lesson questions and several exercises before
continuing to the next lesson.

C7718_ch13.indd 742C7718_ch13.indd 742 14/03/11 8:56 PM14/03/11 8:56 PM

743

Database Terminology L E S S O N A

 ❚ LESSON A
After studying Lesson A, you should be able to:

 • Defi ne basic database terminology

 • Connect an application to a Microsoft Access database

 • Bind table and fi eld objects to controls

 • Explain the purpose of the DataSet, BindingSource, TableAdapter,
TableAdapterManager, and BindingNavigator objects

 • Customize a DataGridView control

 • Handle errors using the Try . . . Catch statement

 • Position the record pointer in a dataset

Database Terminology
In order to maintain accurate records, most businesses store information
about their employees, customers, and inventory in computer databases. A
computer database is an electronic fi le that contains an organized collection
of related information. Many products exist for creating computer databases;
such products are called database management systems (or DBMS). Some
of the most popular database management systems are Microsoft Access,
Microsoft SQL Server, and Oracle. You can use Visual Basic to access the
data stored in databases created by these database management systems. As
a result, companies can use Visual Basic to create a standard interface that
allows employees to access information stored in a variety of database for-
mats. Instead of learning each DBMS’s user interface, the employee needs to
know only one interface. Th e actual format of the database is unimportant
and will be transparent to the user.

In this chapter, you will learn how to access the data stored in Microsoft
Access databases. Databases created using Microsoft Access are relational
databases. A relational database is one that stores information in tables
composed of columns and rows, similar to the format used in a spreadsheet.
Each column in a table represents a fi eld and each row represents a record.
A field is a single item of information about a person, place, or thing—such
as a name, a salary amount, a Social Security number, or a price. A record is
a group of related fi elds that contain all of the necessary data about a specifi c
person, place, or thing. Th e college you are attending keeps a student record
on you. Examples of fi elds contained in your student record include your
Social Security number, name, address, phone number, credits earned, and
grades earned. A group of related records is called a table. Each record in a
table pertains to the same topic and contains the same type of information.
In other words, each record in a table contains the same fi elds.

A relational database can contain one or more tables. A one-table database
would be a good choice for storing information about the college courses
you have taken. An example of such a table is shown in Figure 13-3. Each
record in the table contains four fi elds: an ID fi eld that indicates the depart-
ment name and course number, a course title fi eld, a fi eld listing the number

You do not have
to be a business
to make use of a
database. Many
people use data-

bases to keep track of
their medical records,
compact disc collec-
tions, and even golf
scores.

The databases
are called rela-
tional because
the information in
the tables can be

related in different ways.
The databases created
using SQL Server and
Oracle also are relational
databases.

C7718_ch13.indd 743C7718_ch13.indd 743 14/03/11 8:56 PM14/03/11 8:56 PM

744

C H A P T E R 1 3 Working with Access Databases and LINQ

of credit hours, and a grade fi eld. Most tables have a primary key, which is a
fi eld that uniquely identifi es each record. In the table shown in Figure 13-3,
you could use either the ID fi eld or the Title fi eld as the primary key, because
the data in those fi elds will be unique for each record.

ID Title Hours Grade

CIS100 Intro to Computers 3 A

ENG100 English Composition 3 B

PHIL105 Philosophy Seminar 2 C

CIS201 Visual Basic 2010 3 A

Figure 13-3 Example of a one-table relational database

You might use a two-table database to store information about a CD
(compact disc) collection. You would store the general information about
each CD (such as the CD’s name and the artist’s name) in one table, and
store the information about the songs on each CD (such as their title and
track number) in the other table. You then would use a common fi eld—for
 example, a CD number—to relate the records contained in both tables.
Figure 13-4 shows an example of a two-table database that stores CD infor-
mation. Th e fi rst table is referred to as the parent table, and the second
table is referred to as the child table. Th e CdNum fi eld is the primary key in
the parent table, because it uniquely identifi es each record in the table. Th e
CdNum fi eld in the child table is used solely to link the song title and track
information to the appropriate CD in the parent table. In the child table, the
CdNum fi eld is called the foreign key.

CdNum Name Artist

01 Western Way Dolly Draton

02 Midnight Blue Paul Elliot

CdNum SongTitle Track

01 Country 1

01 Night on the Road 2

01 Old Times 3

02 Lovely Nights 1

02 Colors 2

02 Blue Clouds 3

the two tables are related
by the CdNum fi eld

Figure 13-4 Example of a two-table relational database

Storing data in a relational database off ers many advantages. Th e computer
can retrieve data stored in a relational format both quickly and easily, and
the data can be displayed in any order. Th e information in the CD database,
for example, can be arranged by artist name, song title, and so on. You also
can control the amount of information you want to view from a relational
database. You can view all of the information in the CD database, only the
information pertaining to a certain artist, or only the names of the songs
 contained on a specifi c CD.

Parent and child
tables are also
referred to as
master and
detail tables,
respectively.

C7718_ch13.indd 744C7718_ch13.indd 744 14/03/11 8:56 PM14/03/11 8:56 PM

745

Connecting an Application to a Microsoft Access Database L E S S O N A

Connecting an Application to a Microsoft Access
Database
In this lesson, you will use a Microsoft Access database named Employees.
Th e Employees database is stored in the Employees.accdb fi le, which is located
in the VB2010\Chap13\Access Databases folder. Th e .accdb fi lename extension
stands for Access Database and indicates that the database was created using
Microsoft Access. Th e Employees database contains one table, which is named
tblEmploy. Figure 13-5 shows the table data displayed in a window in the IDE.
Th e table contains seven fi elds and 14 records. Th e Emp_Number fi eld is the
primary key, because it uniquely identifi es each record in the table. Th e Status
fi eld contains the employment status, which is either the letter F (for full-time)
or the letter P (for part-time). Th e Code fi eld identifi es the employee’s depart-
ment: 1 for Accounting, 2 for Advertising, 3 for Personnel, and 4 for Inventory.

table name

field names

records

Figure 13-5 Data contained in the tblEmploy table

In order to access the data stored in a database, an application needs to be
connected to the database. You can make the connection using the Data
Source Confi guration Wizard. Th e wizard allows you to specify the data you
want to access. Th e computer makes a copy of the specifi ed data and stores
the copy in its internal memory. Th e copy of the data you want to access is
called a dataset. In the following set of steps, you will connect the Morgan
Industries application to the Employees database.

To connect the Morgan Industries application to the Employees database:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.
Auto-hide the Properties window and permanently display the
Solution Explorer window.

2. Open the Morgan Industries Solution (Morgan Industries Solution.
sln) fi le contained in the VB2010\Chap13\Morgan Industries
 Solution-DataGridView folder. If necessary, open the designer window.

3. If necessary, click View on the menu bar and then click either Server
Explorer (Visual Studio) or Database Explorer (Visual Basic
Express) to open the Server (Database) Explorer window, which lists
the available connections.

To open a
 database table in
the IDE, fi rst con-
nect the data-
base to an

application, then right-
click the table’s name in
either the Server
Explorer (Visual Studio
2010) or Database
Explorer (Visual Basic
2010 Express) window,
and then click Retrieve
Data.

START HERE

In Visual Basic
2010 Express,
the Server
Explorer window
is called the

Database Explorer
window.

C7718_ch13.indd 745C7718_ch13.indd 745 14/03/11 8:56 PM14/03/11 8:56 PM

746

C H A P T E R 1 3 Working with Access Databases and LINQ

4. Click Data on the menu bar and then click Show Data Sources to
open the Data Sources window.

5. Click Add New Data Source in the Data Sources window to start the
Data Source Confi guration Wizard. If necessary, click Database on
the Choose a Data Source Type screen.

6. Click the Next button to display the Choose a Database Model
screen. If necessary, click Dataset.

7. Click the Next button to display the Choose Your Data Connection
screen. Click the New Connection button to open the Add
Connection dialog box. If Microsoft Access Database File (OLE DB)
does not appear in the Data source box, click the Change button to
open the Change Data Source dialog box, click Microsoft Access
Database File, and then click the OK button.

8. Click the Browse button in the Add Connection dialog box. Open the
VB2010\Chap13\Access Databases folder and then click Employees.
accdb in the list of fi lenames. Click the Open button. Figure 13-6
shows the completed Add Connection dialog box. (Th e dialog box in
the fi gure was widened to show the entire entry in the Database fi le
name box. It is not necessary for you to widen the dialog box.)

your drive letter
might be different

Figure 13-6 Completed Add Connection dialog box

9. Click the Test Connection button. Th e “Test connection succeeded.”
message appears in a message box. Close the message box.

10. Click the OK button to close the Add Connection dialog box.
Employees.accdb appears in the Choose Your Data Connection
screen. Click the Next button. Th e message box shown in Figure 13-7

C7718_ch13.indd 746C7718_ch13.indd 746 14/03/11 8:56 PM14/03/11 8:56 PM

747

Connecting an Application to a Microsoft Access Database L E S S O N A

opens. Th e message asks whether you want to include the database
fi le in the current project. By including the fi le in the current project,
you can more easily copy the application and its database to another
computer.

Figure 13-7 Message regarding copying the database fi le

11. Click the Yes button to add the Employees.accdb fi le to the appli-
cation’s project folder. Th e Save the Connection String to the
Application Confi guration File screen appears next. Th e name of
the connection string, EmployeesConnectionString, appears on the
screen. If necessary, select the Yes, save the connection as check
box.

12. Click the Next button to display the Choose Your Database Objects
screen. Expand the Tables node and then expand the tblEmploy node.
You use this screen to select the table and/or fi eld objects to include
in the dataset, which is automatically named EmployeesDataSet.

13. In this application, you need the dataset to include all of the fi elds.
Click the empty box next to tblEmploy. Doing this selects the table
and fi eld check boxes, as shown in Figure 13-8.

name of the
dataset

Figure 13-8 Objects selected in the Choose Your Database Objects screen

C7718_ch13.indd 747C7718_ch13.indd 747 14/03/11 8:56 PM14/03/11 8:56 PM

748

C H A P T E R 1 3 Working with Access Databases and LINQ

14. Click the Finish button. Th e computer adds the EmployeesDataSet
to the Data Sources window. Expand the tblEmploy node in the Data
Sources window. As shown in Figure 13-9, the dataset contains one
table object and seven fi eld objects.

table and field
objects in
the dataset

database name

Figure 13-9 Result of running the Data Source Confi guration Wizard

Previewing the Contents of a Dataset
After an application has been connected to a database, you can use the
Preview Data option on the Data menu to view the fi elds and records in the
dataset.

To view the contents of the EmployeesDataSet:

1. Click the form to make it the active window. Click Data on the menu
bar and then click Preview Data to open the Preview Data dialog
box.

2. Click the Preview button. As Figure 13-10 shows, the
EmployeesDataSet contains 14 records (rows), each having seven
fi elds (columns). Notice the information that appears in the Select an
object to preview box in the fi gure. EmployeesDataSet is the name
of the dataset in the application, and tblEmploy is the name of the
table included in the dataset. Fill and GetData are methods. Th e Fill
method populates an existing table with data, while the GetData
method creates a new table and populates it with data.

START HERE

C7718_ch13.indd 748C7718_ch13.indd 748 14/03/11 8:56 PM14/03/11 8:56 PM

749

Binding the Objects in a Dataset L E S S O N A

Select an object
to preview box

indicates the number of columns (fields)
and rows (records) in the dataset

Figure 13-10 Data displayed in the Preview Data dialog box

3. Click the Close button to close the Preview Data dialog box, and then
auto-hide the Server (Database) Explorer, Solution Explorer, and (if
necessary) Data Sources windows.

Binding the Objects in a Dataset
For the user to view the contents of a dataset while an application is running,
you need to connect one or more objects in the dataset to one or more
 controls in the interface. Connecting an object to a control is called binding,
and the connected controls are called bound controls. As indicated in
Figure 13-11, you can bind the object to a control that the computer creates
for you; or, you can bind it to an existing control in the interface. First, you
will learn how to have the computer create a bound control.

Figure 13-11 Ways to bind an object in a dataset

Binding an object in a dataset

To have the computer create a control and then bind an object to it:
In the Data Sources window, click the object you want to bind. If necessary, use the
object’s list arrow to change the control type. Drag the object to an empty area on the
form and then release the mouse button.

To bind an object to an existing control:
In the Data Sources window, click the object you want to bind. Drag the object to the
control on the form and then release the mouse button. Alternatively, you can click the
control on the form and then use the Properties window to set the appropriate property
or properties. (Refer to the Binding to an Existing Control section in this lesson.)

Bound controls
also are referred
to as data-aware
controls.

C7718_ch13.indd 749C7718_ch13.indd 749 14/03/11 8:56 PM14/03/11 8:56 PM

750

C H A P T E R 1 3 Working with Access Databases and LINQ

Having the Computer Create a Bound Control
When you drag an object from a dataset to an empty area on the form, the
computer creates a control and automatically binds the object to it. Th e icon
that appears before the object’s name in the Data Sources window indicates
the type of control the computer will create. Th e icon in Figure 13-12
indicates that a DataGridView control will be created when you drag the
tblEmploy table object to the form. A DataGridView control displays the table
data in a row and column format, similar to a spreadsheet. Each row in the
 control represents a record, and each column represents a fi eld. You will
learn more about the DataGridView control in the next section. Th e
icon shown in Figure 13-12 indicates that the computer will create a text box
when you drag a fi eld object to the form.

indicates a
DataGridView control

indicates a
TextBox control

Figure 13-12 Icons in the Data Sources window

When an object is selected in the Data Sources window, you can use the list
arrow that appears next to the object’s name to change the type of control
the computer creates. For example, to display the table data in separate text
boxes rather than in a DataGridView control, you click tblEmploy in the
Data Sources window and then click the tblEmploy list arrow, as shown
in Figure 13-13. Clicking Details in the list tells the computer to create a
 separate control for each fi eld in the table.

C7718_ch13.indd 750C7718_ch13.indd 750 14/03/11 8:56 PM14/03/11 8:56 PM

751

Binding the Objects in a Dataset L E S S O N A

Figure 13-13 Result of clicking the tblEmploy object’s list arrow

Similarly, to display the Last_Name fi eld’s data in a label control rather than
in a text box, you fi rst click Last_Name in the Data Sources window. You
then click the fi eld’s list arrow, as shown in Figure 13-14, and then click Label
in the list.

Figure 13-14 Result of clicking the Last_Name object’s list arrow

In the following set of steps, you will drag the tblEmploy object from the
Data Sources window to the form, using the default control type for a table.

C7718_ch13.indd 751C7718_ch13.indd 751 14/03/11 8:56 PM14/03/11 8:56 PM

752

C H A P T E R 1 3 Working with Access Databases and LINQ

To bind the tblEmploy object to a DataGridView control:

1. If necessary, click tblEmploy in the Data Sources window to select
the tblEmploy object.

2. Drag the tblEmploy object from the Data Sources window to the
form and then release the mouse button. Th e computer adds a
DataGridView control to the form, and it binds the tblEmploy object
to the control. See Figure 13-15.

BindingNavigator
control

component tray

DataGridView
control

Figure 13-15 Result of dragging the table object to the form

As Figure 13-15 shows, besides adding a DataGridView control to the form,
the computer also adds a BindingNavigator control. When an application is
running, you can use the BindingNavigator control to move from one record
to the next in the dataset, as well as to add or delete a record and save any
changes made to the dataset. Th e computer also places fi ve objects in the com-
ponent tray: a DataSet, BindingSource, TableAdapter, TableAdapterManager,
and BindingNavigator. As you learned in Chapter 1, the component tray stores
objects that do not appear in the user interface while an application is running.
An exception to this is the BindingNavigator object, which appears as the
BindingNavigator control during both design time and run time.

Th e TableAdapter object connects the database to the DataSet object,
which stores the information you want to access from the database. Th e
TableAdapter is responsible for retrieving the appropriate information from
the database and storing it in the DataSet. It also can be used to save to the
database any changes made to the data contained in the DataSet. However, in
most cases, you will use the TableAdapterManager object to save the changes,
because it can handle saving data to multiple tables in the DataSet. Th e
BindingSource object provides the connection between the DataSet and the
bound controls on the form. Th e TblEmployBindingSource in Figure 13-15
connects the EmployeesDataSet to two bound controls: a DataGridView
control and a BindingNavigator control. Th e TblEmployBindingSource
allows the DataGridView control to display the data contained in the
EmployeesDataSet. It also allows the BindingNavigator control to access
the records stored in the EmployeesDataSet. Figure 13-16 illustrates the

START HERE

C7718_ch13.indd 752C7718_ch13.indd 752 14/03/11 8:56 PM14/03/11 8:56 PM

753

Binding the Objects in a Dataset L E S S O N A

 relationships among the database, the objects in the component tray, and the
bound controls on the form.

Figure 13-16 Illustration of the relationships among the database,
the objects in the component tray, and the bound controls

DataSet

Database bound controls
on the form

BindingSourceTab
leA

dap
ter

Tab
leA

dap
ter

M
an

ag
er

If a table object’s control type is changed from DataGridView to Details,
the computer automatically provides the appropriate controls (such as text
boxes, labels, and so on) when you drag the table object to the form. It also
adds the BindingNavigator control to the form and the fi ve objects to the
component tray. Th e appropriate controls and objects are also automatically
included when you drag a fi eld object to an empty area on the form.

The DataGridView Control
Th e DataGridView control is one of the most popular controls for display-
ing table data, because it allows you to view a great deal of information at the
same time. Th e control displays the data in a row and column format, similar
to a spreadsheet. Each row represents a record, and each column represents a
fi eld. Th e intersection of a row and column in a DataGridView control is called
a cell. Like the PictureBox control, which you learned about in Chapter 1, the
DataGridView control has a task list. Th e task list is shown in Figure 13-17. Th e
fi rst three check boxes on the task list allow you to specify whether the user can
add, edit, or delete records during run time. Th e fourth check box allows you to
specify whether the user can reorder the columns in the DataGridView control
during run time. Figure 13-18 explains the purpose of each task on the task list.

task box

task list

Figure 13-17 DataGridView control’s task list

C7718_ch13.indd 753C7718_ch13.indd 753 14/03/11 8:56 PM14/03/11 8:56 PM

754

C H A P T E R 1 3 Working with Access Databases and LINQ

Task Purpose
Choose Data Source select a data source
Edit Columns open the Edit Columns dialog box (see Figure 13-19)
Add Column add a new column
Enable Adding allow/disallow the user to add data
Enable Editing allow/disallow the user to edit data
Enable Deleting allow/disallow the user to delete data
Enable Column Reordering allow/disallow the user to reorder the columns
Dock in Parent Container bind the borders of the control to its container
Add Query fi lter data from a dataset
Preview Data view the data bound to the control

Figure 13-18 Purpose of each task in the DataGridView’s task list

Figure 13-19 shows the Edit Columns dialog box, which opens when you
click Edit Columns on the DataGridView control’s task list. You can use
the Edit Columns dialog box during design time to add columns to the
DataGridView control, remove columns from the control, and reorder the
columns. You also can use it to set the properties of the bound columns. For
example, you can use the DefaultCellStyle property to format a column’s
data. You also can use the property to change the column’s width and
 alignment. You can use the HeaderText property, on the other hand, to
change a column’s heading.

Categorized
button

Alphabetical
button

use the scroll box to view
the remaining properties
for the selected column

use these buttons to
reorder the columns

Figure 13-19 Edit Columns dialog box

Some properties of a DataGridView control are listed only in the
Properties window. One such property is AutoSizeColumnsMode. Th e
AutoSizeColumnsMode property has seven diff erent settings that determine
the way the column widths are sized in the DataGridView control. Th e Fill
setting automatically adjusts the column widths so that all of the columns

C7718_ch13.indd 754C7718_ch13.indd 754 14/03/11 8:56 PM14/03/11 8:56 PM

755

Binding the Objects in a Dataset L E S S O N A

exactly fi ll the display area of the control. Th e ColumnHeader setting, on the
other hand, automatically adjusts the column widths based on the header text.

To improve the appearance of the DataGridView control:

1. Permanently display the Properties window, if necessary. Click
AutoSizeColumnsMode in the Properties list and then set the
 property to Fill.

2. Click the TblEmployDataGridView control’s task box and then
click Dock in Parent Container. Th e DataGridView control expands
to the size of the form. Th is is because the Dock in Parent Container
option anchors the control’s borders to the borders of its container,
which (in this case) is the form.

3. Next, you will change the header text on several of the columns. Click
Edit Columns in the task list. Click the Alphabetical button (shown
in Figure 13-19) to display the property names in alphabetical order.
Emp_Number is currently selected in the Selected Columns list.
Click HeaderText in the Bound Column Properties list and then type
Employee Number and press Enter.

4. Click Last_Name in the Selected Columns list and then change
the HeaderText property to Last Name. On your own, change the
First_Name column’s HeaderText property to First Name. Also
change the Rate column’s HeaderText property to Pay Rate.

5. Now you will have the DataGridView control format the pay rates to
show two decimal places. With Pay Rate selected in the Selected Columns
list, click DefaultCellStyle and then click the … (ellipsis) button to open
the CellStyle Builder dialog box. Click Format and then click the …
(ellipsis) button to open the Format String Dialog box. Click Numeric
in the Format type list and then verify that the number 2 appears in the
Decimal places box. Click the OK button to close the Format String
Dialog box. You are returned to the CellStyle Builder dialog box.

6. Next, you will have the DataGridView control align the pay rates in
the Pay Rate column. Click Alignment and then set the property to
MiddleRight. Figure 13-20 shows the completed CellStyle Builder
dialog box.

Format
property

Alignment
property

Figure 13-20 Completed CellStyle Builder dialog box

START HERE

C7718_ch13.indd 755C7718_ch13.indd 755 14/03/11 8:56 PM14/03/11 8:56 PM

756

C H A P T E R 1 3 Working with Access Databases and LINQ

7. Click the OK button to close the CellStyle Builder dialog box and
then click the OK button to close the Edit Columns dialog box.

8. Click the DataGridView control to close its task list. Auto-hide the
Properties window and then save the solution.

Figure 13-21 shows the DataGridView control after completing the previous
set of steps. You won’t see the eff ect of the formatting and aligning until the
application is started.

Figure 13-21 DataGridView control after setting some of its properties

Visual Basic Code
In addition to adding the appropriate controls and objects to the application
when a table or fi eld object is dragged to the form, the computer also enters
some code in the Code Editor window.

To view the code automatically entered in the Code Editor window:

1. Open the Code Editor window. Replace <your name> and <current date>
in the comments with your name and the current date, respectively.

2. Locate the two procedures shown in Figure 13-22. Both procedures
were automatically entered when the tblEmploy object was dragged
to the form. (In your Code Editor window, the procedure headers and
comments will appear on one line.)

Figure 13-22 Code automatically entered in the Code Editor window

START HERE

As you learned
in Chapter 1, the
keyword Me
refers to the
current form.

C7718_ch13.indd 756C7718_ch13.indd 756 14/03/11 8:56 PM14/03/11 8:56 PM

757

Visual Basic Code L E S S O N A

Th e fi rst event procedure, TblEmployBindingNavigatorSaveItem_Click,
is processed when you click the Save Data button (the disk) on the
BindingNavigator control. Th e procedure’s code validates the changes made
to the data before saving the data to the database. Two methods are involved
in the save operation: the BindingSource object’s EndEdit method and the
TableAdapterManager’s UpdateAll method. Th e EndEdit method applies any
pending changes (such as new records, deleted records, or changed records)
to the dataset. Th e UpdateAll method commits the dataset changes to the
database. Th e second event procedure in Figure 13-22 is the form’s Load
event procedure. Th is procedure uses the TableAdapter object’s Fill method
to retrieve the data from the database and store it in the DataSet object. In
most applications, the code to fi ll a dataset belongs in the form’s Load event
procedure. However, as the comments in the Load event procedure indicate,
you can either move or delete the code.

Because it is possible for an error to occur when saving data to a database, it
is a good programming practice to add error handling code to the Save Data
button’s Click event procedure.

Handling Errors in the Code
An error that occurs while an application is running is called an exception.
If you do not take deliberate steps in your code to handle the exceptions,
Visual Basic handles them for you. Typically, it does this by displaying an
error message and then abruptly terminating the application. You can pre-
vent your application from behaving in such an unfriendly manner by taking
control of the exception handling in your code; you can do this using the
Try…Catch statement. Figure 13-23 shows the statement’s basic syntax and
includes examples of using the syntax. Th e basic syntax contains a Try block
and a Catch block. Within the Try block, you place the code that could pos-
sibly generate an exception. When an exception occurs in the Try block’s
code, the computer processes the code contained in the Catch block; it then
skips to the code following the End Try clause. A description of the exception
that occurred is stored in the Message property of the Catch block’s ex
 parameter. You can access the description using the code ex.Message, as
shown in Example 2 in the fi gure.

When an error
occurs in a pro-
cedure’s code
during run time,
programmers

say that the procedure
“threw an exception.”

The Try…Catch
statement also
has a Finally
block. The code
in the Finally

block is processed
whether or not an
 exception is thrown
within the Try block.

Figure 13-23 Syntax and examples of the Try…Catch statement (continues)

Try…Catch Statement

Basic syntax
Try
 one or more statements that might generate an exception
Catch ex As Exception
 one or more statements to execute when an exception occurs
End Try

Example 1
Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click

C7718_ch13.indd 757C7718_ch13.indd 757 14/03/11 8:56 PM14/03/11 8:56 PM

758

C H A P T E R 1 3 Working with Access Databases and LINQ

To include a Try…Catch statement in the Save Data button’s Click event
procedure:

1. Insert two blank lines above the Me.Validate() statement in the
TblEmployBindingNavigatorSaveItem’s Click event procedure.

2. In the blank line above the Me.Validate() statement, type Try and
press Enter. Th e Code Editor automatically enters the Catch ex As
Exception and End Try clauses for you.

3. Select (highlight) the three statements that appear below the End
Try clause, as well as the blank line below the statements. Press
Ctrl+x to place the selected lines on the Clipboard. Click the blank
line below the Try clause and then press Ctrl+v.

4. If the three statements in the Try block do not produce (throw)
an exception, the Try block should display the “Changes saved”
 message; otherwise, the Catch block should display a description of
the exception. Enter the two MessageBox.Show methods shaded in
Figure 13-24.

START HERE

Figure 13-23 Syntax and examples of the Try…Catch statement

 Dim inFile As IO.StreamReader
 Dim strLine As String

 Try
 inFile = IO.File.OpenText("names.txt")
 Do Until inFile.Peek = -1
 strLine = inFile.ReadLine
 lstNames.Items.Add(strLine)
 Loop
 inFile.Close()
 Catch ex As Exception
 MessageBox.Show("File error", "JK's",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End Try
End Sub

Example 2
Private Sub TblSalesBindingNavigatorSaveItem_Click(
ByVal sender As System.Object, ByVal e As System.EventArgs
) Handles TblSalesBindingNavigatorSaveItem.Click
 Try
 Me.Validate()
 Me.TblSalesBindingSource.EndEdit()
 Me.TableAdapterManager.UpdateAll(Me.SalesDataSet)
 Catch ex As Exception
 MessageBox.Show(ex.Message, "Sales Data",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End Try
End Sub

(continued)

C7718_ch13.indd 758C7718_ch13.indd 758 14/03/11 8:56 PM14/03/11 8:56 PM

759

Visual Basic Code L E S S O N A

enter the shaded
MessageBox.Show method

enter the shaded
MessageBox.Show method

Figure 13-24 Completed Click event procedure for the Save Data button

5. Save the solution and then start the application. Th e statement in
the form’s Load event procedure (shown earlier in Figure 13-22)
retrieves the appropriate data from the Employees database and loads
the data into the EmployeesDataSet. Th e data is displayed in the
DataGridView control, which is bound to the tblEmploy table con-
tained in the dataset. See Figure 13-25.

TblEmployBindingNavigator
control

TblEmployDataGridView
control

access a record add, delete,
and save

Figure 13-25 Dataset displayed in the DataGridView control

6. You can use the arrow keys on your keyboard to move the highlight
to a diff erent cell in the DataGridView control. When a cell is
 highlighted, you can modify its contents by simply typing the new
data. Press the ↓ key to move the highlight to the next record, and
then press the ↑ key to move it to the next fi eld.

7. Th e BindingNavigator control provides buttons for accessing the fi rst,
last, previous, and next records in the dataset. Click the Move next
button to move the highlight to the next record. Click the Move

A tooltip appears
when you hover
your mouse
pointer over a
button on the

BindingNavigator control.
The tooltip indicates the
button’s purpose.

C7718_ch13.indd 759C7718_ch13.indd 759 14/03/11 8:56 PM14/03/11 8:56 PM

760

C H A P T E R 1 3 Working with Access Databases and LINQ

last button to move the highlight to the last record, and then click
the Move fi rst button to move the highlight to the fi rst record.

8. You also can use the BindingNavigator control to access a record by
its record number. Th e record number for the fi rst record in a dataset
is 1; the record number for the second record is 2; and so on. Click
the Current position box, which contains the number 1. Replace the
1 with a 6 and press Enter. Th e highlight moves to the sixth record.

9. Click the Close button on the form’s title bar to stop the application.

Th e BindingNavigator control also provides buttons for adding a new record
to the dataset, deleting a record from the dataset, and saving the changes
made to the dataset. You can add additional items (such as buttons and text
boxes) to a BindingNavigator control and also delete items from the control.
You will learn how to add items to and delete items from a BindingNavigator
control in the Personalizing a BindingNavigator Control section in Lesson B.

The Copy to Output Directory Property
When the Data Source Confi guration Wizard connected the Morgan
Industries application to the Employees database, it added the database fi le
(Employees.accdb) to the application’s project folder. (You can verify this
in the Solution Explorer window.) A database fi le contained in a project is
referred to as a local database fi le. Th e way Visual Basic saves changes to a
local database fi le is determined by the fi le’s Copy to Output Directory property.
Figure 13-26 lists the values that can be assigned to the property.

Copy to Output Directory property
Property setting Meaning
Do not copy the fi le in the project folder is not copied to the bin\Debug folder
 when the application is started

Copy always the fi le in the project folder is copied to the bin\Debug folder each
 time the application is started

Copy if newer when an application is started, the computer compares the date
 on the fi le in the project folder with the date on the fi le in the
 bin\Debug folder; the fi le from the project folder is copied to the
 bin\Debug folder only when its date is newer

Figure 13-26 Settings for the Copy to Output Directory property

When a fi le’s Copy to Output Directory property is set to its default setting,
Copy always, the fi le is copied from the project folder to the project folder’s
bin\Debug folder each time you start the application. In this case, the
Employees.accdb fi le is copied from the Morgan Industries Project folder
to the Morgan Industries Project\bin\Debug folder. As a result, the fi le will
appear in two diff erent folders in the solution. When you click the Save
Data button on the BindingNavigator control, any changes made in the
DataGridView control are recorded only in the fi le stored in the bin\Debug
folder; the fi le stored in the project folder is not changed. Th e next time you

C7718_ch13.indd 760C7718_ch13.indd 760 14/03/11 8:56 PM14/03/11 8:56 PM

761

The Copy to Output Directory Property L E S S O N A

start the application, the fi le in the project folder is copied to the bin\Debug
folder, overwriting the fi le that contains the changes. One way to fi x this
problem is to set the database fi le’s Copy to Output Directory property to
“Copy if newer.” Th e “Copy if newer” setting tells the computer to compare
the dates on both fi les to determine which fi le has the newer (more current)
date. If the database fi le in the project folder has the newer date, the com-
puter should copy it to the bin\Debug folder; otherwise, it shouldn’t copy it.

To change the Employees.accdb fi le’s Copy to Output Directory property:

1. Right-click Employees.accdb in the Solution Explorer window and
then click Properties. Change the Employees.accdb fi le’s Copy to
Output Directory property to Copy if newer.

2. Save the solution and then start the application.

3. Click the Add new button to add a new record to the end of the
DataGridView control. Type 114 as the employee number, press
Tab, and then type Jacobs as the last name. Press Tab and then type
Susan as the fi rst name. On your own, enter 8/9/2008, 10, P, and
3 in the Hired, Pay Rate, Status, and Code fi elds, respectively. Press
Enter after typing the number 3.

4. Click the Move fi rst button to move the highlight to the Code fi eld in
the fi rst record. When a cell is highlighted, you can modify its existing
data by simply typing the new data. Type 3 and press Enter to change
the entry in Jack Benton’s Code fi eld.

5. Click the Save Data button . Th e “Changes saved” message appears
in a message box. Click the OK button to close the message box,
and then click the Close button on the form’s title bar to stop the
application.

6. Start the application again. Th e DataGridView control now contains
the record you added, as well as the change you made to Jack Benton’s
Code fi eld. (You will need to scroll down the DataGridView control to
see the new record.)

7. Change Jack Benton’s Code fi eld from 3 to 2. Click the Move last
 button to move the highlight to the last record and then click the
Delete button to delete the record. Click the Save Data button.
Th e “Changes saved” message appears in a message box. Click the
OK button to close the message box, and then click the Close button
on the form’s title bar to stop the application.

8. Start the application again to verify that your changes were saved, and
then stop the application. Close the Code Editor window and then
close the solution.

START HERE

C7718_ch13.indd 761C7718_ch13.indd 761 14/03/11 8:56 PM14/03/11 8:56 PM

762

C H A P T E R 1 3 Working with Access Databases and LINQ

YOU DO IT 1!

Create a Visual Basic Windows application named YouDoIt 1. Save the
application in the VB2010\Chap13 folder. Connect the application to the CD
database. The database is stored in the CD.accdb file, which is contained in
the VB2010\Chap13\Access Databases folder. The database contains one
table named tblCds. The table contains 13 records. Each record contains
three fields: CdName, Artist, and Price. Display the records in a DataGridView
control. Include the Try…Catch statement in the Save Data button’s Click
event procedure. Also, change the database file's Copy to Output Directory
property appropriately. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

Binding to an Existing Control
As indicated earlier in Figure 13-11, you can bind an object in a dataset to
an existing control on a form. Th e easiest way to do this is by dragging the
object from the Data Sources window to the control. However, you also
can click the control and then set one or more properties in the Properties
window. Th e appropriate property (or properties) to set depends on the
control you are binding. For example, you use the DataSource property
to bind a DataGridView control. However, you use the DataSource and
DisplayMember properties to bind a ListBox control. To bind label and text
box controls, you use the DataBindings/Text property.

When you drag an object from the Data Sources window to an existing con-
trol, the computer does not create a new control; instead, it binds the object
to the existing control. Because a new control does not need to be created,
the computer ignores the control type specifi ed for the object in the Data
Sources window. Th erefore, it is not necessary to change the control type
in the Data Sources window to match the existing control’s type. In other
words, you can drag an object that is associated with a text box in the Data
Sources window to a label control on the form. Th e computer will bind the
object to the label, but it will not change the label to a text box.

In the following set of steps, you will open a diff erent version of the Morgan
Industries application. You will connect the application to the Employees
database and then bind objects from the dataset to existing label controls in
the interface. In this version of the application, you will not need to change
the database fi le’s Copy to Output Directory property to “Copy if newer,”
because the user will not be adding, deleting, or editing the records in
the dataset.

To bind controls using a different version of the Morgan Industries
application:

1. Open the Morgan Industries Solution (Morgan Industries Solution.
sln) fi le contained in the VB2010\Chap13\Morgan Industries
Solution-Labels folder. If necessary, open the designer window. See
Figure 13-27.

START HERE

C7718_ch13.indd 762C7718_ch13.indd 762 14/03/11 8:56 PM14/03/11 8:56 PM

763

Binding to an Existing Control L E S S O N A

lblLastNamelblNumber lblStatus lblCode

Figure 13-27 A different version of the Morgan Industries application

2. Temporarily display the Data Sources window and then click Add
New Data Source to start the Data Source Confi guration Wizard. If
necessary, click Database on the Choose a Data Source Type screen.

3. Click the Next button to display the Choose a Database Model
screen. If necessary, click Dataset.

4. Click the Next button to display the Choose Your Data Connection
screen. Click the New Connection button to open the Add
Connection dialog box. If Microsoft Access Database File (OLE DB)
does not appear in the Data source box, click the Change button to
open the Change Data Source dialog box, click Microsoft Access
Database File, and then click the OK button.

5. Click the Browse button in the Add Connection dialog box. Open the
VB2010\Chap13\Access Databases folder and then click Employees.
accdb in the list of fi lenames. Click the Open button. Click the Test
Connection button in the Add Connection dialog box. Th e “Test
connection succeeded.” message appears in a message box. Close the
message box.

6. Click the OK button to close the Add Connection dialog box. Click
the Next button on the Choose Your Data Connection screen and
then click the Yes button to add the Employees.accdb fi le to the appli-
cation’s project folder.

7. If necessary, select the Yes, save the connection as check box on
the Save the Connection String to the Application Confi guration File
screen. Click the Next button to display the Choose Your Database
Objects screen.

8. Expand the Tables node and then expand the tblEmploy node. In
this application, you will include only four fi elds in the dataset. Click
the empty box that appears next to each of the following four fi eld
names: Emp_Number, Last_Name, Status, and Code. Click the
Finish button. Th e computer adds the EmployeesDataSet to the Data
Sources window. Expand the tblEmploy node in the Data Sources
window. Th e dataset contains one table object and four fi eld objects.
See Figure 13-28.

C7718_ch13.indd 763C7718_ch13.indd 763 14/03/11 8:56 PM14/03/11 8:56 PM

764

C H A P T E R 1 3 Working with Access Databases and LINQ

Figure 13-28 Dataset in this version of the Morgan Industries application

9. Click Emp_Number in the Data Sources window and then drag the
fi eld object to the lblNumber control. Release the mouse button. Th e
computer binds the control and adds the DataSet, BindingSource,
TableAdapter, and TableAdapterManager objects to the component
tray. It also enters (in the Code Editor window) the Load event proce-
dure shown earlier in Figure 13-22. Recall that the procedure uses the
TableAdapter object’s Fill method to retrieve the data from the data-
base and store it in the DataSet object. Notice that when you drag an
object from the Data Sources window to an existing control, the com-
puter does not add a BindingNavigator object to the component tray,
nor does it add a BindingNavigator control to the form. You can use
the BindingNavigator tool in the toolbox to add a BindingNavigator
control and object to the application. You then would set the control’s
DataSource property to the name of the BindingSource object (in this
case, TblEmployBindingSource).

10. On your own, drag the Last_Name, Status, and Code fi eld objects to
the lblLastName, lblStatus, and lblCode controls, respectively.

11. Save the solution and then start the application. Only the fi rst record
in the dataset appears in the interface. Because the interface does not
contain a BindingNavigator control, which would allow you to move
from one record to the next, you will need to code the Next Record
and Previous Record buttons to view the remaining records. Click the
Exit button to stop the application.

Coding the Next Record and Previous Record Buttons
Th e BindingSource object uses an invisible record pointer to keep track of
the current record in the dataset. It stores the position of the record pointer
in its Position property. Th e fi rst record is in position 0; the second is in
position 1, and so on. Figure 13-29 shows the Position property’s syntax and
includes examples of using the property.

C7718_ch13.indd 764C7718_ch13.indd 764 14/03/11 8:56 PM14/03/11 8:56 PM

765

Binding to an Existing Control L E S S O N A

BindingSource object’s Position property

Syntax
bindingSourceName.Position

Example 1
intRecordNum = TblEmployBindingSource.Position
assigns the current record’s position to the intRecordNum variable

Example 2
TblEmployBindingSource.Position = 4
moves the record pointer to the fifth record in the dataset

Example 3
TblEmployBindingSource.Position += 1
moves the record pointer to the next record in the dataset

Figure 13-29 Syntax and examples of the BindingSource object’s Position property

Rather than using the Position property to position the record pointer in
a dataset, you also can use the BindingSource object’s Move methods. Th e
Move methods move the record pointer to the fi rst, last, next, or previous
record in the dataset. Figure 13-30 shows each Move method’s syntax and
includes examples of using two of the methods.

BindingSource object’s Move methods

Syntax
bindingSourceName.MoveFirst()
bindingSourceName.MoveLast()
bindingSourceName.MoveNext()
bindingSourceName.MovePrevious()

Example 1
TblEmployBindingSource.MoveFirst()
moves the record pointer to the first record in the dataset

Example 2
TblEmployBindingSource.MoveNext()
moves the record pointer to the next record in the dataset

Figure 13-30 Syntax and examples of the BindingSource object’s Move methods

To code the Next Record and Previous Record buttons:

1. Open the Code Editor window. Replace <your name> and <current
date> in the comments with your name and the current date,
respectively.

2. When the user clicks the Next Record button, the button’s Click event
procedure should move the record pointer to the next record in the

START HERE

C7718_ch13.indd 765C7718_ch13.indd 765 14/03/11 8:56 PM14/03/11 8:56 PM

766

C H A P T E R 1 3 Working with Access Databases and LINQ

dataset. Open the code template for the btnNext control’s Click event
procedure. Type the following comment and then press Enter twice:

' moves the record pointer to the next record

3. Now enter the following line of code:

TblEmployBindingSource.MoveNext()

4. When the user clicks the Previous Record button, its Click event
 procedure should move the record pointer to the previous record
in the dataset. Open the code template for the btnPrevious control’s
Click event procedure. Type the following comment and then press
Enter twice:

' moves the record pointer to the previous record

5. Now enter the following line of code:

TblEmployBindingSource.MovePrevious()

Figure 13-31 shows the application’s code.

code generated
by the computer

Figure 13-31 Application’s code

To test the application’s code:

1. Save the solution and then start the application. Click the Next
Record button to display the second record. Continue clicking the
Next Record button until the last record appears in the interface.

2. Click the Previous Record button until the fi rst record appears in the
interface, and then click the Exit button. Close the Code Editor win-
dow and then close the solution.

START HERE

C7718_ch13.indd 766C7718_ch13.indd 766 14/03/11 8:56 PM14/03/11 8:56 PM

767

YOU DO IT 2!

Create a Visual Basic Windows application named YouDoIt 2. Save the
application in the VB2010\Chap13 folder. Connect the application to the CD
database. The database is stored in the CD.accdb file, which is contained in
the VB2010\Chap13\Access Databases folder. The database contains one
table named tblCds. The table contains 13 records. Each record contains
three fields: CdName, Artist, and Price. Display the records, one at a time, in
label controls. Use a Next Record button and a Previous Record button (rather
than a BindingNavigator control). Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

Lesson A Summary

 • To connect an application to a database:

Use the Data Source Confi guration Wizard. To start the wizard, click Data
on the menu bar, click Show Data Sources, and then click Add New Data
Source in the Data Sources window.

 • To preview the data contained in a dataset:

Click the form to make it the active window. Click Data on the menu bar
and then click Preview Data. Click the Preview button in the Preview Data
dialog box.

 • To bind an object in a dataset:

Use either of the ways shown in Figure 13-11.

 • To have the columns exactly fi ll the display area in a DataGridView
control:

Set the DataGridView control’s AutoSizeColumnsMode property to Fill.

 • To anchor the DataGridView control to the borders of its container:

Click the Dock in Parent Container option in the DataGridView control’s
task list. You also can set the DataGridView control’s Dock property in the
Properties window.

 • To handle exceptions (errors) that occur during run time:

Use the Try…Catch statement.

 • To move the record pointer in a dataset during run time:

You can use a BindingNavigator control. You also can use either the
BindingSource object’s Position property or one of its Move methods.

Lesson A Summary L E S S O N A

C7718_ch13.indd 767C7718_ch13.indd 767 14/03/11 8:56 PM14/03/11 8:56 PM

768

C H A P T E R 1 3 Working with Access Databases and LINQ

Lesson A Key Terms
AutoSizeColumnsMode property—determines the way the column widths are
sized in a DataGridView control

Binding—the process of connecting an object in a dataset to a control on a
form

BindingNavigator control—can be used to move the record pointer from one
record to another in a dataset, as well as to add, delete, and save records

BindingSource object—connects a DataSet object to the bound controls on a
form

Bound controls—the controls connected to an object in a dataset

Cell—the intersection of a row and column in a DataGridView control

Child table—a table linked to a parent table

Computer database—an electronic fi le that contains an organized collection
of related information

Copy to Output Directory property—a property of a database fi le; determines
when and if the fi le is copied from the project folder to the project folder’s
bin\Debug folder

DataGridView control—displays data in a row and column format

Dataset—a copy of the data (database fi elds and records) that can be accessed
by an application

DataSet object—stores the information you want to access from a database

Exception—an error that occurs while an application is running

Field—a single item of information about a person, place, or thing

Foreign key—the fi eld used to link a child table to a parent table

Move methods—methods of a BindingSource object; used to move the record
pointer to the fi rst, last, next, or previous record in a dataset

Parent table—a table linked to a child table

Position property—a property of a BindingSource object; stores the position
of the record pointer

Primary key—a fi eld that uniquely identifi es each record in a table

Record—a group of related fi elds that contain all of the necessary data about
a specifi c person, place, or thing

Relational database—a database that stores information in tables composed
of columns (fi elds) and rows (records)

Table—a group of related records

TableAdapter object—connects a database to a DataSet object

TableAdapterManager object—handles saving data to multiple tables in a
dataset

Try…Catch statement—used for exception handling in a procedure

C7718_ch13.indd 768C7718_ch13.indd 768 14/03/11 8:56 PM14/03/11 8:56 PM

769

Lesson A Review Questions L E S S O N A

Lesson A Review Questions

1. Which of the following objects connects a database to a DataSet
object?

a. BindingSource

b. DataBase

c. DataGridView

d. TableAdapter

2. Th e property stores an integer that represents the
location of the record pointer in a dataset.

a. BindingNavigator object’s Position

b. BindingSource object’s Position

c. TableAdapter object’s Position

d. none of the above

3. If the record pointer is positioned on record number 5 in a dataset,
which of the following will move the record pointer to record
number 4?

a. TblBooksBindingSource.GoPrevious

b. TblBooksBindingSource.Move(4)

c. TblBooksBindingSource.MovePrevious()

d. TblBooksBindingSource.PositionPrevious

4. A is an organized collection of related information
stored in a computer fi le.

a. database

b. dataset

c. fi eld

d. record

5. Th e information in a database is stored in tables.

a. columnar

b. relational

c. sorted

d. tabular

C7718_ch13.indd 769C7718_ch13.indd 769 14/03/11 8:56 PM14/03/11 8:56 PM

770

C H A P T E R 1 3 Working with Access Databases and LINQ

6. Which of the following objects provides the connection between a
DataSet object and a control on a form?

a. Bound

b. Binding

c. BindingSource

d. Connecting

7. Which of the following statements retrieves data from the Friends
database and stores it in the FriendsDataSet?

a. Me.FriendsDataSet.Fill(Friends.accdb)

b. Me.TblNamesBindingSource.Fill(Me.FriendsDataSet)

c. Me.TblNamesBindingNavigator.Fill(Me.FriendsDataSet.
tblNames)

d. Me.TblNamesTableAdapter.Fill(Me.FriendsDataSet.
tblNames)

8. If an application contains the Catch ex As Exception clause,
which of the following can be used to access the exception’s
description?

a. ex.Description

b. ex.Exception

c. ex.Message

d. Exception.Description

9. If the current record is the second record in the dataset, which of
the following statements will position the record pointer on the fi rst
record?

a. TblEmployBindingSource.Position = 0

b. TblEmployBindingSource.Position =

TblEmployBindingSource.Position – 1

c. TblEmployBindingSource.MoveFirst()

d. all of the above

10. Th e fi eld that links a child table to a parent table is called
the .

a. foreign key in the child table

b. foreign key in the parent table

c. link key in the parent table

d. primary key in the child table

C7718_ch13.indd 770C7718_ch13.indd 770 14/03/11 8:56 PM14/03/11 8:56 PM

771

Lesson A Exercises L E S S O N A

11. Th e process of connecting a control to an object in a dataset is
called .

a. assigning

b. binding

c. joining

d. none of the above

12. Which of the following is true?

a. Data stored in a relational database can be retrieved both quickly
and easily by the computer.

b. Data stored in a relational database can be displayed in any order.

c. A relational database stores data in a column and row format.

d. all of the above

Lesson A Exercises

1. In this exercise, you will learn how to open a database table in
a window in the IDE. You also will modify one of the Morgan
Industries applications from the lesson.

a. Use Windows to make a copy of the Morgan Industries
 Solution-Labels folder. Rename the copy Modifi ed Morgan
Industries Solution-Labels. Open the Morgan Industries
Solution (Morgan Industries Solution.sln) fi le contained in the
Modifi ed Morgan Industries Solution-Labels folder. Open the
designer window.

b. Expand the Employees.accdb node in the Server (Database)
Explorer window, and then expand the Tables node. Right-click
tblEmploy and then click Retrieve Data. Th e table data appears
in a window in the IDE, as shown earlier in Figure 13-5. Close
the window.

c. Modify the Next Record and Previous Record buttons’ Click
event procedures to use the Position property rather than the
MoveNext and MovePrevious methods. Save the solution and
then start and test the application. Close the Code Editor window
and then close the solution.

2. Sydney Industries records the item number, name, and price of each
of its products in a database named Products. Th e Products database
is stored in the Products.accdb fi le, which is contained in the VB2010\
Chap13\Access Databases folder. Th e database contains a table named
tblProducts. Th e table contains 10 records, each composed of three
fi elds. Th e ItemNum and ItemName fi elds contain text; the Price fi eld
contains numbers. Open the Sydney Solution (Sydney Solution.sln)
fi le contained in the VB2010\Chap13\Sydney Solution-DataGridView
folder. If necessary, open the designer window. Connect the

INTRODUCTORY

INTRODUCTORY

C7718_ch13.indd 771C7718_ch13.indd 771 14/03/11 8:56 PM14/03/11 8:56 PM

772

C H A P T E R 1 3 Working with Access Databases and LINQ

application to the Products database. Change the database fi le’s Copy
to Output Directory property to “Copy if newer.” Bind the table to a
DataGridView control and then make the necessary modifi cations to
the control. Open the Code Editor window and enter the Try…Catch
statement in the Save Data button’s Click event procedure. Include
appropriate messages. Save the solution and then start and test
the application. Close the Code Editor window and then close the
solution.

3. Sydney Industries records the item number, name, and price of each
of its products in a database named Products. Th e Products database
is stored in the Products.accdb fi le, which is contained in the VB2010\
Chap13\Access Databases folder. Th e database contains a table named
tblProducts. Th e table contains 10 records, each composed of three
fi elds. Th e ItemNum and ItemName fi elds contain text; the Price fi eld
contains numbers. Open the Sydney Solution (Sydney Solution.sln)
fi le contained in the VB2010\Chap13\Sydney Solution-Labels folder.
If necessary, open the designer window. Connect the application to
the Products database. Bind the appropriate objects to the existing
label controls. Open the Code Editor window. Code the Click event
procedures for the Next Record and Previous Record buttons. Save
the solution and then start and test the application. Close the Code
Editor window and then close the solution.

4. In this exercise, you modify one of the Morgan Industries applications
from the lesson.

a. Use Windows to make a copy of the Morgan Industries Solution-
Labels folder. Rename the copy Morgan Industries Solution-
ListBox. Open the Morgan Industries Solution (Morgan
Industries Solution.sln) fi le contained in the Morgan Industries
Solution-ListBox folder. Open the designer window.

b. Unlock the controls and then delete the lblNumber control from
the form. Add a list box to the form. Name the list box lstNumber.
Modify the interface to make room for the list box. Lock the con-
trols and then set the tab order appropriately.

c. Set the lstNumber control’s DataSource and DisplayMember
properties to TblEmployBindingSource and Emp_Number,
respectively. Save the solution and then start and test the
 application. Close the solution.

INTRODUCTORY

INTERMEDIATE

C7718_ch13.indd 772C7718_ch13.indd 772 14/03/11 8:56 PM14/03/11 8:56 PM

773

Creating a Query L E S S O N B

 ❚ LESSON B
After studying Lesson B, you should be able to:

 • Query a dataset using LINQ

 • Customize a BindingNavigator control

 • Use the LINQ aggregate operators

Creating a Query
You can arrange the records stored in a dataset in any order. Th e records in
the EmployeesDataSet, for example, can be arranged by employee number,
pay rate, status, and so on. You also can control the number of records you
want to view at any one time. For example, you can view all of the records in
the EmployeesDataSet; or, you can choose to view only the records for the
part-time employees. You use a query to specify both the records to select
in a dataset and the order in which to arrange the records. You can cre-
ate a query in Visual Basic 2010 using a language feature called Language
Integrated Query or, more simply, LINQ.

Figure 13-32 shows the basic syntax of LINQ when used to select and
arrange records in a dataset. Th e fi gure also includes examples of using the
syntax. In the syntax, variableName and elementName can be any names
you choose, as long as the name follows the naming rules for variables. In
other words, there is nothing special about the records and employee
names used in the examples. Th e Where and Order By clauses are optional
parts of the syntax. You use the Where clause, which contains a condition, to
limit the records you want to view. Similar to the condition in the If…Th en…
Else and Do…Loop statements, the condition in a Where clause specifi es
a requirement that must be met for a record to be selected. Th e Order By
clause is used to arrange (sort) the records in either ascending (the default)
or descending order by one or more fi elds. Notice that the syntax does not
require you to specify the data type of the variable in the Dim statement.
Instead, the syntax allows the computer to infer the data type from the value
being assigned to the variable. However, for this inference to take place, you
must set Option Infer to On (rather than to Off , as you have been doing).
You can do this by entering the Option Infer On statement in the General
Declarations section of the Code Editor window.

Th e statement in Example 1 in Figure 13-32 selects all of the records in the
dataset and assigns the records to the records variable. Th e statement in
Example 2 performs the same task; however, the records are assigned in
ascending order by the Code fi eld. If you are sorting records in ascending
order, you do not need to include the keyword Ascending in the Order
By clause, because Ascending is the default. Th e statement in Example 3
assigns only the records for part-time employees to the records variable.
Th e statement in Example 4 uses the Like operator and the asterisk pattern-
matching character to select only records whose Last_Name fi eld begins with
the letter J. You learned about the Like operator and pattern-matching char-
acters in Chapter 8.

When used to
query a dataset,
LINQ is referred
to more specifi -
cally as LINQ to
Datasets.

As you will learn
later in this les-
son, you also can
use LINQ to per-
form arithmetic
calculations

(such as a sum or an
average) on the data
stored in a dataset.

C7718_ch13.indd 773C7718_ch13.indd 773 14/03/11 8:56 PM14/03/11 8:56 PM

774

C H A P T E R 1 3 Working with Access Databases and LINQ

Using LINQ to select and arrange records in a dataset

Basic syntax
Dim variableName = From elementName In dataset.table
 [Where condition]
 [Order By elementName.fieldName1 [Ascending | Descending]
 [, elementName.fieldNameN [Ascending | Descending]]]
 Select elementName

Example 1
Dim records = From employee In EmployeesDataSet.tblEmploy
 Select employee
selects all of the records in the dataset

Example 2
Dim records = From employee In EmployeesDataSet.tblEmploy
 Order By employee.Code
 Select employee
selects all of the records in the dataset and arranges them in ascending order by the
Code field

Example 3
Dim records = From employee In EmployeesDataSet.tblEmploy
 Where employee.Status.ToUpper = "P"
 Select employee
selects only the part-time employee records in the dataset

Example 4
Dim records = From employee In EmployeesDataSet.tblEmploy
 Where employee.Last_Name.ToUpper Like "J*"
 Order By employee.Code Descending
 Select employee
selects from the dataset only the employee records whose last name begins with the
letter J, and arranges them in descending order by the Code field

Figure 13-32 Basic LINQ syntax and examples for selecting and arranging records
in a dataset

Th e syntax and examples in Figure 13-32 merely select and/or
arrange the appropriate records. To actually view the records, you
need to assign the variable’s contents to the DataSource property of a
BindingSource object. Th e syntax for doing this is shown in Figure 13-33
along with an example of using the syntax.

Assigning a LINQ variable’s contents to a BindingSource object

Basic syntax
bindingSource.DataSource = variableName.AsDataView

Example
TblEmployBindingSource.DataSource = records.AsDataView
assigns the contents of the records variable (from Figure 13-32) to the
TblEmployBindingSource object

Figure 13-33 Syntax and an example of assigning a LINQ variable’s contents to a
BindingSource object

You learned
about the Like
operator and the
pattern-matching
characters in
Chapter 8.

C7718_ch13.indd 774C7718_ch13.indd 774 14/03/11 8:56 PM14/03/11 8:56 PM

775

Creating a Query L E S S O N B

To use LINQ to select specifi c records in the Morgan Industries
application:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.
Open the Morgan Industries Solution (Morgan Industries
Solution.sln) file contained in the VB2010\Chap13\Morgan
Industries Solution-LINQ folder. If necessary, open the designer
window. The Find Last Name button in the interface will display
records whose Last_Name field begins with one or more charac-
ters entered by the user.

2. Open the Code Editor window. Replace <your name> and <cur-
rent date> in the comments with your name and the current date,
respectively.

3. Th e btnFind control’s Click event procedure will use LINQ to select
the appropriate records. Th erefore, you will change the Option
Infer setting from Off to On. Locate the Option Infer Off state-
ment and then change Off to On. Press the Tab key and then type
' using LINQ.

4. Locate the btnFind control’s Click event procedure. Th e procedure
uses the InputBox function to prompt the user to either enter
one or more characters or leave the input area empty. Th e user’s
response is converted to uppercase and assigned to the strFindName
variable.

5. First, you will enter the LINQ statement to select the appropriate
records. Th e condition in the statement’s Where clause will use
the Like operator and the asterisk pattern-matching character to
compare the contents of each record’s Last_Name fi eld with the
user’s entry followed by zero or more characters. Click the blank
line below the last comment in the procedure and then enter the
following lines of code:

Dim records = From employee In EmployeesDataSet.tblEmploy
Where employee.Last_Name.ToUpper Like strFindName & "*"
Select employee

6. Now you will display the contents of the records variable in the
DataGridView control. You do this by assigning the variable to the
TblEmployBindingSource object’s DataSource property. Press Enter
and then enter the following assignment statement:

TblEmployBindingSource.DataSource = records.AsDataView

Figure 13-34 shows the code entered in the General Declarations section and
the btnFind control’s Click event procedure.

START HERE

C7718_ch13.indd 775C7718_ch13.indd 775 14/03/11 8:56 PM14/03/11 8:56 PM

776

C H A P T E R 1 3 Working with Access Databases and LINQ

Option Explicit On
Option Strict On
Option Infer On ' using LINQ

Private Sub btnFind_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnFind.Click
 ' selects records whose last name begins with the user's entry

 Const strPROMPT As String = "One or more letters " &
 "(leave empty to retrieve all records):"

 ' get the last name
 Dim strFindName As String =
 InputBox(strPROMPT, "Find Last Name").ToUpper

 ' select records matching the last name
 Dim records = From employee In EmployeesDataSet.tblEmploy
 Where employee.Last_Name.ToUpper Like strFindName & "*"
 Select employee

 TblEmployBindingSource.DataSource = records.AsDataView

End Sub

Figure 13-34 Code entered in the General Declarations section and btnFind Click event procedure

set Option Infer to
On in the General
Declarations section

LINQ code to select
the records

assigns the LINQ
variable to the
BindingSource object

To test the btnFind control’s code:

1. Save the solution and then start the application. Th e 14 records in the
dataset appear in the DataGridView control.

2. Click the Find Last Name button. First, you will fi nd all of the
records whose Last_Name fi eld begins with the letter S. Type s and
press Enter. Th ree records appear in the DataGridView control, as
shown in Figure 13-35.

Figure 13-35 Employees whose last name begins with the letter S

3. Now you will display all of the records. Click the Find Last Name
button and then press Enter.

START HERE

C7718_ch13.indd 776C7718_ch13.indd 776 14/03/11 8:56 PM14/03/11 8:56 PM

777

Personalizing a BindingNavigator Control L E S S O N B

4. You can click a column header to sort the records in order by the
associated fi eld. Click Code to sort the records in ascending order by
the Code fi eld. Now click Code again to sort the records in descend-
ing order by the Code fi eld.

5. Click the Exit button. Close the Code Editor window and then close
the solution.

Personalizing a BindingNavigator Control
As shown in Figure 13-25 in Lesson A, the BindingNavigator control con-
tains buttons that allow you to move to a diff erent record in the dataset, as
well as to add or delete a record and save any changes made to the dataset.
At times, you may want to include additional items—such as another button,
a text box, or a drop-down button—on the BindingNavigator control. Th e
steps for adding and deleting items are shown in Figure 13-36.

Figure 13-36 Manipulating the items on a BindingNavigator control

Adding items to and deleting items from a BindingNavigator control

To add an item to a BindingNavigator control:
1. Click the BindingNavigator control’s task box and then click Edit Items to open

the Items Collection Editor window.
2. If necessary, click the “Select item and add to list below” arrow.
3. Click the item you want to add to the BindingNavigator control and then click the

Add button.
4. If necessary, you can use the up and down arrows to reposition the item.

To delete an item from a BindingNavigator control:
1. Click the BindingNavigator control’s task box and then click Edit Items to open

the Items Collection Editor window.
2. In the Members list, click the item you want to remove and then click the X

button.

In the following set of steps, you will add a DropDownButton to the
BindingNavigator control in the Morgan Industries application.
The DropDownButton will display a menu that contains three
options: All Employees, Part-time Employees, and Full-time Employees.
The All Employees option will display the average pay rate for all
employees. The Part-time Employees and Full-time Employees options
will display the average pay rate for part-time and full-time employees,
respectively.

To add a DropDownButton to the BindingNavigator control:

1. Open the Morgan Industries Solution (Morgan Industries Solution.
sln) fi le contained in the VB2010\Chap13\Morgan Industries
Solution-Aggregate folder. Open the designer window.

2. Click an empty area on the TblEmployBindingNavigator control and
then click the control’s task box.

START HERE

C7718_ch13.indd 777C7718_ch13.indd 777 14/03/11 8:56 PM14/03/11 8:56 PM

778

C H A P T E R 1 3 Working with Access Databases and LINQ

3. Click Edit Items in the task list to open the Items Collection Editor
dialog box. Click the down arrow in the “Select item and add to list
below” box and then click DropDownButton in the list. Click the
Add button. See Figure 13-37.

DropDownButton
added to the list

Alphabetical button

Figure 13-37 Items Collection Editor dialog box

4. Click the Alphabetical button to display the property names in
alphabetical order. Click (Name) in the properties list and then type
ddbAverage and press Enter. Change the DisplayStyle property to
Text and then change the Text property to Average Pay Rate.

5. Click DropDownItems in the Properties list and then click the …
(ellipsis) button. Click the Add button to add a menu item to the
DropDownButton. Click the Alphabetical button to display the
property names in alphabetical order. Click (Name) in the proper-
ties list and then type mnuAverageAll and press Enter. Change the
DisplayStyle property to Text and then change the Text property to
All Employees.

6. Click the Add button to add another menu item to the
DropDownButton. Change the menu item’s Name, DisplayStyle,
and Text properties to mnuAveragePart, Text, and Part-time
Employees, respectively.

7. Click the Add button to add another menu item to the
DropDownButton. Change the menu item’s Name, DisplayStyle,
and Text properties to mnuAverageFull, Text, and Full-time
Employees, respectively.

8. Click the OK button to close the Items Collection Editor
(ddbAverage.DropDownItems) dialog box and then click the OK
 button to close the Items Collection Editor dialog box.

9. Save the solution. Click the down arrow on the Average Pay Rate
button. See Figure 13-38.

C7718_ch13.indd 778C7718_ch13.indd 778 14/03/11 8:56 PM14/03/11 8:56 PM

779

Using the LINQ Aggregate Operators L E S S O N B

Figure 13-38 DropDownButton added to the TblEmployBindingNavigator control

Using the LINQ Aggregate Operators
LINQ provides several aggregate operators that you can use when querying
a dataset. Th e most commonly used aggregate operators are Average, Count,
Max, Min, and Sum. An aggregate operator returns a single value from a
group of values. Th e Sum operator, for example, returns the sum of the values
in the group, whereas the Min operator returns the smallest value in the group.
You include an aggregate operator in a LINQ statement using the syntax
shown in Figure 13-39. Th e fi gure also includes examples of using the syntax.

LINQ aggregate operators

Syntax
Dim variableName [As dataType] =
 Aggregate elementName In dataset.table
 [Where condition]
 Select elementName.fieldName
 Into aggregateOperator()

Example 1
Dim dblAvgRate As Double =
 Aggregate employee In EmployeesDataSet.tblEmploy
 Select employee.Rate Into Average()
calculates the average of the pay rates in the dataset and assigns the result to the
dblAvgRate variable

Example 2
Dim dblMaxRate As Double =
 Aggregate employee In EmployeesDataSet.tblEmploy
 Where employee.Status.ToUpper = "P"
 Select employee.Rate Into Max()
finds the highest pay rate for a part-time employee and assigns the result to the
dblMaxRate variable

Example 3
Dim intCounter As Integer =
 Aggregate employee In EmployeesDataSet.tblEmploy
 Where employee.Code = 2
 Select employee.Emp_Number Into Count()
counts the number of employees whose department code is 2 and assigns the result to
the intCounter variable

Figure 13-39 Syntax and examples of the LINQ aggregate operators

C7718_ch13.indd 779C7718_ch13.indd 779 14/03/11 8:56 PM14/03/11 8:56 PM

780

C H A P T E R 1 3 Working with Access Databases and LINQ

In the following set of steps, you will code the three menu items on the
DropDownButton control. More specifi cally, you will use the Average
aggregate operator to calculate the average pay rate for all employees, part-
time employees, and full-time employees.
To code the menu items on the DropDownButton control:

1. Open the Code Editor window. Replace <your name> and <cur-
rent date> in the comments with your name and the current date,
respectively.

2. Open the code template for the mnuAverageAll item’s Click event
procedure. Type the following comment and then press Enter twice:

' displays the average pay rate for all employees

3. Enter the following three lines of code. Press Enter twice after typing
the last line.

Dim dblAverage As Double =
Aggregate employee In EmployeesDataSet.tblEmploy
Select employee.Rate Into Average()

4. Next, enter the following fi ve lines of code:

MessageBox.Show(" Average pay rate for all employees: " &
dblAverage.ToString("C2"),
"Morgan Industries",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

5. Open the code template for the mnuAveragePart item’s Click event
procedure. Type the following comment and then press Enter twice:

' displays the average pay rate for part-time employees

6. Enter the following four lines of code. Press Enter twice after typing
the last line.

Dim dblAverage As Double =
Aggregate employee In EmployeesDataSet.tblEmploy
Where employee.Status.ToUpper = "P"
Select employee.Rate Into Average()

7. Next, enter the following fi ve lines of code:

MessageBox.Show("Average pay rate for part-time employees: " &
 dblAverage.ToString("C2"),
 "Morgan Industries",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)

8. Open the code template for the mnuAverageFull item’s Click event
procedure. Type the following comment and then press Enter twice:

' displays the average pay rate for full-time employees

9. On your own, enter the appropriate LINQ statement and
MessageBox.Show method.

START HERE

C7718_ch13.indd 780C7718_ch13.indd 780 14/03/11 8:56 PM14/03/11 8:56 PM

781

Using the LINQ Aggregate Operators L E S S O N B

Figure 13-40 shows the code entered in each menu item’s Click event
procedure.

Private Sub mnuAverageAll_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles mnuAverageAll.Click
 ' displays the average pay rate for all employees

 Dim dblAverage As Double =
 Aggregate employee In EmployeesDataSet.tblEmploy
 Select employee.Rate Into Average()

 MessageBox.Show("Average pay rate for all employees: " &
 dblAverage.ToString("C2"),
 "Morgan Industries",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)

End Sub

Private Sub mnuAveragePart_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles mnuAveragePart.Click
 ' displays the average pay rate for part-time employees

 Dim dblAverage As Double =
 Aggregate employee In EmployeesDataSet.tblEmploy
 Where employee.Status.ToUpper = "P"
 Select employee.Rate Into Average()

 MessageBox.Show("Average pay rate for part-time employees: " &
 dblAverage.ToString("C2"),
 "Morgan Industries",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)

End Sub

Private Sub mnuAverageFull_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles mnuAverageFull.Click
 ' displays the average pay rate for full-time employees

 Dim dblAverage As Double =
 Aggregate employee In EmployeesDataSet.tblEmploy
 Where employee.Status.ToUpper = "F"
 Select employee.Rate Into Average()

 MessageBox.Show("Average pay rate for full-time employees: " &
 dblAverage.ToString("C2"),
 "Morgan Industries",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)

End Sub

Figure 13-40 Code entered in each menu item’s Click event procedure

calculates the average
pay rate for part-time
employees

calculates the average
pay rate for all employees

calculates the average
pay rate for full-time
employees

C7718_ch13.indd 781C7718_ch13.indd 781 14/03/11 8:56 PM14/03/11 8:56 PM

782

C H A P T E R 1 3 Working with Access Databases and LINQ

To test the code in each menu item’s Click event procedure:

1. Save the solution and then start the application. Click the down
arrow on the Average Pay Rate button and then click All Employees.
Th e average pay rate for all employees appears in a message box, as
shown in Figure 13-41.

Figure 13-41 Message box showing the average pay rate for all employees

2. Close the message box. Click the down arrow on the Average Pay
Rate button and then click Part-time Employees. Th e message indi-
cates that the average pay rate for part-time employees is $10.07.

3. Close the message box. Click the down arrow on the Average Pay
Rate button and then click Full-time Employees. Th e message indi-
cates that the average pay rate for full-time employees is $16.73.

4. Close the message box and then click the Close button on the form’s
title bar. Close the Code Editor window and then close the solution.

Lesson B Summary

 • To use LINQ to select and arrange records in a dataset:

Use the syntax shown in Figure 13-32.

 • To assign a LINQ variable’s contents to a BindingSource object:

Use the syntax shown in Figure 13-33.

 • To either add items to or delete items from a BindingNavigator control:

Follow the steps listed in Figure 13-36.

 • To use the LINQ aggregate operators:

Use the syntax shown in Figure 13-39.

Lesson B Key Terms
Aggregate operator—an operator that returns a single value from a group
of values; LINQ provides the Average, Count, Max, Min, and Sum aggregate
operators

Language Integrated Query—LINQ; the query language built into Visual
Basic 2010

START HERE

C7718_ch13.indd 782C7718_ch13.indd 782 14/03/11 8:56 PM14/03/11 8:56 PM

783

Lesson B Review Questions L E S S O N B

LINQ—an acronym for Language Integrated Query

Order By clause—used in LINQ to arrange the records in a dataset

Query—specifi es the records to select in a dataset and the order in which to
arrange the records

Where clause—used in LINQ to limit the records you want to view in a
dataset

Lesson B Review Questions

1. Which of the following will select only records whose LastName fi eld
begins with an uppercase letter A?

a. Dim records = From name In NamesDataSet.tblNames
 Where name.LastName Like "A*"
 Select name

b. Dim records = From NamesDataSet.tblNames
 Select LastName Like "A*"

c. Dim records = From tblNames
 Where tblName.LastName Like "A*"
 Select name

d. Dim records = From name In NamesDataSet.tblNames
 Where tblName.LastName Like "A*"
 Select name

2. Which of the following calculates the sum of the values stored in a
numeric fi eld named JulySales?

a. Dim dblTotal As Double =
 From sales In SalesDataSet.tblSales
 Select sales.JulySales
 Into Sum()

b. Dim dblTotal As Double =
 Aggregate sales In SalesDataSet.tblSales
 Select sales.JulySales
 Into Sum()

c. Dim dblTotal As Double =
 From sales In SalesDataSet.tblSales
 Aggregate sales.JulySales
 Into Sum()

d. Dim dblTotal As Double =
 From sales In SalesDataSet.tblSales
 Sum sales.JulySales

C7718_ch13.indd 783C7718_ch13.indd 783 14/03/11 8:56 PM14/03/11 8:56 PM

784

C H A P T E R 1 3 Working with Access Databases and LINQ

3. Which of the following statements selects all of the records in the
tblStates table?

a. Dim records =
 From state In StatesDataSet.tblStates
 Select All state

b. Dim records =
 From state In StatesDataSet.tblStates
 Select state

c. Dim records =
 Select state From StatesDataSet.tblStates

d. Dim records = From StatesDataSet.tblStates
 Select tblStates.state

4. Th e tblCities table contains a numeric fi eld named Population. Which
of the following statements selects all cities having a population that
exceeds 15000?

a. Dim records =
 From city In CitiesDataSet.tblCities
 Where Population > 15000
 Select city

b. Dim records =
 From city In CitiesDataSet.tblCities
 Select city.Population > 15000

c. Dim records =
 From city In CitiesDataSet.tblCities
 Where city.Population > 15000
 Select city

d. Dim records =
 Select city.Population > 15000
 From tblCities

5. Th e tblCities table contains a numeric fi eld named Population. Which
of the following statements calculates the total population of all of the
cities in the table?

a. Dim intTotal As Integer =
 Aggregate city In CitiesDataSet.tblCities
 Select city.Population
 Into Sum()

b. Dim intTotal As Integer =
 Sum city In CitiesDataSet.tblCities
 Select city.Population
 Into Total()

C7718_ch13.indd 784C7718_ch13.indd 784 14/03/11 8:56 PM14/03/11 8:56 PM

785

Lesson B Exercises L E S S O N B

c. Dim intTotal As Integer =
 Aggregate CitiesDataSet.tblCities.city
 Select city.Population
 Into Sum()

d. Dim intTotal As Integer =
 Sum city In CitiesDataSet.tblCities.Population

6. In a LINQ statement, the clause limits the records that
will be selected.

a. Limit

b. Order By

c. Select

d. Where

Lesson B Exercises

1. Th e tblMagInfo table contains three fi elds. Th e Code and Cost fi elds
are numeric. Th e Magazine fi eld contains text. Th e dataset’s name is
MagsDataSet.

a. Write a LINQ statement that arranges the records in descending
order by the Cost fi eld.

b. Write a LINQ statement that selects records having a code of 9.

c. Write a LINQ statement that selects records having a cost of $3 or
more.

d. Write a LINQ statement that selects the Daily Food Guide
magazine.

2. In this exercise, you modify one of the Morgan Industries applica-
tions from the lesson. Use Windows to make a copy of the Morgan
Industries Solution-Aggregate folder. Rename the copy Modifi ed
Morgan Industries Solution-Aggregate. Open the Morgan Industries
Solution (Morgan Industries Solution.sln) fi le contained in the
Modifi ed Morgan Industries Solution-Aggregate folder. Open the
designer window.

a. Click an empty area on the TblEmployBindingNavigator con-
trol and then click the control’s task box. Click Edit Items in the
task list to open the Items Collection Editor dialog box. Add a
DropDownButton to the control. Change the DropDownButton’s
name to ddbDepartment. Change its DisplayStyle and Text prop-
erties to Text and Department, respectively.

b. Use the DropDownItems property to add four menu items to
the DropDownButton: Accounting, Advertising, Personnel, and
Inventory. Be sure to change each menu item’s name, as well as its
DisplayStyle and Text properties.

INTRODUCTORY

INTRODUCTORY

C7718_ch13.indd 785C7718_ch13.indd 785 14/03/11 8:56 PM14/03/11 8:56 PM

786

C H A P T E R 1 3 Working with Access Databases and LINQ

c. Each menu item should display (in a message box) the number
of employees in the department. Code 1 is Accounting, Code 2 is
Advertising, Code 3 is Personnel, and Code 4 is Inventory. Open
the Code Editor window and code each menu item’s Click event
procedure.

d. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

3. Open the Magazine Solution (Magazine Solution.sln) fi le contained
in the VB2010\Chap13\Magazine Solution-Introductory folder. If
necessary, open the designer window. Th e application is connected
to the Magazines database, which is stored in the Magazines.accdb
fi le. Th e database contains a table named tblMagazine; the table
has three fi elds. Th e Cost fi eld is numeric. Th e Code and MagName
fi elds contain text. Start the application to view the records con-
tained in the dataset, and then stop the application. Open the Code
Editor window. Code the btnCode control’s Click event procedure
so that it displays the record whose Code fi eld contains PG24.
Code the btnName control’s Click event procedure so that it dis-
plays only the Java record. Code the btnAll control’s Click event
procedure to display all of the records. Save the solution and then
start and test the application. Close the Code Editor window and
then close the solution.

4. Using the information from Exercise 1, write a LINQ statement that
selects magazines whose names begin with the letter G (in either
uppercase or lowercase). Th en write a LINQ statement that calculates
the average cost of a magazine.

5. Open the Magazine Solution (Magazine Solution.sln) fi le contained
in the VB2010\Chap13\Magazine Solution-Intermediate folder. If
necessary, open the designer window. Th e application is connected
to the Magazines database, which is stored in the Magazines.accdb
fi le. Th e database contains a table named tblMagazine; the table has
three fi elds. Th e Cost fi eld is numeric. Th e Code and MagName
fi elds contain text. Start the application to view the records con-
tained in the dataset, and then stop the application. Open the Code
Editor window. Code the btnAll control’s Click event procedure so
that it displays all of the records. Code the btnCost control’s Click
event procedure so that it displays records having a cost of $4 or
more. Code the btnName control’s Click event procedure so that
it displays only magazines whose names begin with the letter C (in
either uppercase or lowercase). Code the btnAverage control’s Click
event procedure so that it displays the average cost of a magazine.
Display the average in a message box. Save the solution and then
start and test the application. Close the Code Editor window and
then close the solution.

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

C7718_ch13.indd 786C7718_ch13.indd 786 14/03/11 8:56 PM14/03/11 8:56 PM

787

Completing the Paradise Bookstore Application L E S S O N C

 ❚ LESSON C
After studying Lesson C, you should be able to:

 • Prevent the user from adding and deleting records

 • Remove buttons from a BindingNavigator control

 • Add a label, a text box, and a button to a BindingNavigator control

Completing the Paradise Bookstore Application
As you may remember, your task in this chapter is to create an applica-
tion for the Paradise Bookstore. Th e application will display the records
contained in a Microsoft Access database named Books. It also will allow
the store manager to enter an author’s name (or part of a name) and then
display only the books written by that author. You will accomplish this task
using a label, a text box, and a button, which you will add to the application’s
BindingNavigator control. In addition, the application will allow the store
manager to display the total value of the books in the store; you will provide a
button on the BindingNavigator control for this purpose.

Th e Books database is stored in the Books.accdb fi le, which is contained
in the VB2010\Chap13\Access Databases folder. Th e database contains
one table named tblBooks. Th e table has fi ve fi elds and 11 records. Th e
BookNumber, Price, and QuantityInStock fi elds are numeric. Th e Title and
Author fi elds contain text. Th e fi elds and records contained in the tblBooks
table are shown in Figure 13-42.

Figure 13-42 tblBooks table in the Books database

To modify the DataGridView and BindingNavigator controls in the Paradise
Bookstore application:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.
Open the Paradise Bookstore (Paradise Bookstore.sln) fi le contained
in the VB2010\Chap13\Paradise Bookstore Solution folder. If neces-
sary, open the designer window.

2. In this application, the user will not be allowed to add or delete
records. Click the TblBooksDataGridView control. (Be sure

START HERE

C7718_ch13.indd 787C7718_ch13.indd 787 14/03/11 8:56 PM14/03/11 8:56 PM

788

C H A P T E R 1 3 Working with Access Databases and LINQ

to click the TblBooksDataGridView control rather than the
TblBooksBindingNavigator control.) Click the control’s task box to
open its task list. Click the Enable Adding and Enable Deleting
check boxes to deselect both check boxes. Click the form’s title bar to
close the task list.

3. Click the TblBooksBindingNavigator control and then
click its task box. Click Edit Items on the task list. Click
BindingNavigatorAddNewItem in the Members list and then click
the X button to remove the item from the list. Th is also removes the
Add new button (the plus sign) from the TblBooksBindingNavigator
control.

4. BindingNavigatorDeleteItem should be selected in the Members list.
Click the X button to remove the item from the list. Th is also removes
the Delete button (the letter X) from the TblBooksBindingNavigator
control.

5. Now you will add a label, a text box, and a button for entering the
author’s name. Click the down arrow in the “Select item and add to
list below” box and then click Label in the list. Click the Add but-
ton. Click the Alphabetical button to display the property names in
alphabetical order. Click Text in the properties list (if necessary) and
then type &Author: and press Enter.

6. Click the down arrow in the “Select item and add to list below” box
and then click TextBox in the list. Click the Add button. Click (Name)
in the properties list and then type txtAuthor and press Enter.

7. Click the down arrow in the “Select item and add to list below” box
and then click Button in the list. Click the Add button. Change the
button’s name to btnGo. Also change its DisplayStyle and Text prop-
erties to Text and &Go, respectively.

8. Finally, you will add a button for displaying the total value of the
books. Click the Add button again to add another button to the
BindingNavigator control. Change the button’s name to btnTotal.
Also change its DisplayStyle and Text properties to Text and &Total
Value, respectively. See Figure 13-43.

label, text box, and
buttons added to the
BindingNavigator control

Figure 13-43 Completed Items Collection Editor dialog box

C7718_ch13.indd 788C7718_ch13.indd 788 14/03/11 8:56 PM14/03/11 8:56 PM

789

Coding the Paradise Bookstore Application L E S S O N C

9. Click the OK button to close the dialog box and then click the form’s
title bar. See Figure 13-44.

Figure 13-44 Completed TblBooksBindingNavigator control

Coding the Paradise Bookstore Application
Th e Go button’s Click event procedure should display only records whose
Author fi eld begins with the one or more characters entered in the txtAu-
thor control. If the text box is empty, the Go button should display all of the
records.

To code and then test the Go button’s Click event procedure:

1. Open the Code Editor window. Replace <your name> and <cur-
rent date> in the comments with your name and the current date,
respectively.

2. Open the code template for the btnGo control’s Click event proce-
dure. Type the following comment and then press Enter twice:

' display records for a specifi c author

3. You can use LINQ to select the appropriate records. Enter the follow-
ing lines of code. Press Enter twice after typing the last line.

Dim records = From book In BooksDataSet.tblBooks
Where book.Author.ToUpper Like
txtAuthor.Text.ToUpper & "*"
Select book

4. Now you will display the records in the DataGridView control. As you
learned in Lesson B, you do this by assigning the records variable to
the BindingSource object’s DataSource property. Enter the following
line of code:

TblBooksBindingSource.DataSource = records.AsDataView

5. Save the solution and then start the application. Click the
Author text box (or press Alt+a) and then type the letter s. Click the
Go button (or press Alt+g). Th e DataGridView control shows only
the books written by authors whose names begin with the letter s.
See Figure 13-45.

START HERE

C7718_ch13.indd 789C7718_ch13.indd 789 14/03/11 8:56 PM14/03/11 8:56 PM

790

C H A P T E R 1 3 Working with Access Databases and LINQ

Figure 13-45 Books written by authors whose names begin with s

6. Remove the letter s from the Author text box and then click the Go
button. All of the records appear in the DataGridView control.

7. Click the Close button on the form’s title bar to stop the application.

Th e Total Value button’s Click event procedure should display the total value
of the books in the store. Th e total value is calculated by multiplying the
quantity of each book by its price and then adding together the results.

To code and then test the Total Value button’s Click event procedure:

1. Open the code template for the btnTotal control’s Click event proce-
dure. Type the following comment and then press Enter twice:

' display the total value of the inventory

2. You can use the Sum aggregate operator to accumulate the results of
multiplying each book’s quantity by its price. Th e quantity and price
are stored in the QuantityInStock and Price fi elds, respectively. Enter
the following lines of code. Press Enter twice after typing the last line.

Dim dblTotal As Double =
 Aggregate book In BooksDataSet.tblBooks

Select book.QuantityInStock * book.Price
Into Sum()

3. Now display the total value in a message box. Enter the following lines
of code:

MessageBox.Show(" Total value: " &
dblTotal.ToString("C2"),
"Paradise Bookstore",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

START HERE

C7718_ch13.indd 790C7718_ch13.indd 790 14/03/11 8:56 PM14/03/11 8:56 PM

791

Coding the Paradise Bookstore Application L E S S O N C

4. Save the solution and then start the application. Click the Total Value
button (or press Alt+t). Th e total value of the inventory appears in a
message box. See Figure 13-46.

Figure 13-46 Message box showing the total value of the inventory

5. Close the message box and then click the Close button on the form’s
title bar to stop the application.

6. Close the Code Editor window and then close the solution.

Figure 13-47 shows the code entered in the btnGo and btnTotal Click event
procedures.

Private Sub btnGo_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnGo.Click
 ' display records for a specific author

 Dim records = From book In BooksDataSet.tblBooks
Where book.Author.ToUpper Like
txtAuthor.Text.ToUpper & "*"
Select book

 TblBooksBindingSource.DataSource = records.AsDataView

End Sub

Private Sub btnTotal_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnTotal.Click
 ' display the total value of the inventory

 Dim d blTotal As Double =
Aggregate book In BooksDataSet.tblBooks
Select book.QuantityInStock * book.Price
Into Sum()

 MessageBox.Show("Total value: " &
dblTotal.ToString("C2"),
"Paradise Bookstore",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

End Sub

Figure 13-47 Click event procedures for the btnGo and btnTotal controls

C7718_ch13.indd 791C7718_ch13.indd 791 14/03/11 8:56 PM14/03/11 8:56 PM

792

C H A P T E R 1 3 Working with Access Databases and LINQ

Lesson C Summary

 • To prevent the user from adding or deleting records in a DataGridView
control:

Click the DataGridView control’s task box and then deselect the Enable
Adding and Enable Deleting check boxes.

 • To delete items from a BindingNavigator control:

Click the BindingNavigator control’s task box and then click Edit Items. In
the Members list, click the item you want to remove. Click the X button.

 • To add controls to a BindingNavigator control:

Click the BindingNavigator control’s task box and then click Edit Items.
Use the “Select item and add to list below” box and Add button to add the
appropriate control.

Lesson C Key Terms
Th ere are no key terms in Lesson C.

Lesson C Review Questions

1. Th e Enable Adding check box in a control’s task list
determines whether a record can be added to the control.

a. BindingNavigator

b. DataGridView

c. BindingSource

d. DataBindingNavigator

2. Using the Books database from the lesson, which of the following will
select book number 224? Th e BookNumber fi eld is numeric.

a. Dim records = From book In BooksDataSet.tblBooks
 Where book.BookNumber = 224
 Select book

b. Dim records = From book In BooksDataSet.tblBooks
 Select book.BookNumber = 224

c. Dim records = From book In BooksDataSet.tblBooks
 Where book.BookNumber = "224"
 Select book

d. none of the above

C7718_ch13.indd 792C7718_ch13.indd 792 14/03/11 8:56 PM14/03/11 8:56 PM

793

Lesson C Exercises L E S S O N C

3. Using the Books database from the lesson, which of the following
determines the number of records in the tblBooks table?

a. Dim intNum As Integer =
 Aggregate book In BooksDataSet.tblBooks
 In Count()

b. Dim intNum As Integer =
 Aggregate book In BooksDataSet.tblBooks
 Into Counter()

c. Dim intNum As Integer =
 Aggregate book In BooksDataSet.tblBooks
 Into Sum()

d. none of the above

Lesson C Exercises

1. Open the Addison Playhouse Solution (Addison Playhouse Solution.
sln) fi le contained in the VB2010\Chap13\Addison Playhouse
Solution folder. If necessary, open the designer window. Connect the
application to a Microsoft Access database named Play. Th e database
is stored in the Play.accdb fi le, which is contained in the VB2010\
Chap13\Access Databases folder. Th e Play database contains one table
named tblReservations. Th e table has 20 records. Each record has
three fi elds: a numeric fi eld named Seat and two text fi elds named
Patron and Phone. Th e application should display the contents of
the Play database in a DataGridView control. It also should allow the
user to add, delete, modify, and save records. Enter the Try…Catch
statement in the Save Data button’s Click event procedure. Save the
solution and then start and test the application. Close the Code Editor
window and then close the solution.

2. Open the Sports Action Solution (Sports Action Solution.sln) fi le
contained in the VB2010\Chap13\Sports Action Solution folder. If
necessary, open the designer window. Connect the application to
a Microsoft Access database named Sports. Th e database is stored
in the Sports.accdb fi le, which is contained in the VB2010\Chap13\
Access Databases folder. Th e database contains one table named
tblScores. Th e table contains 10 records. Each record has fi ve fi elds
that store the following information: a unique number that identifi es
the game, the name of the opposing team, the date of the game, the
home team’s score, and the opposing team’s score. Th e application
should display each record contained in the Sports database, one at a
time, in label controls. Th e user should not be allowed to add, delete,
edit, or save records. Include a button on a BindingNavigator control
to allow the user to display the average of the home team’s scores.
Open the Code Editor window and code the application. Save the
solution and then start and test the application. Close the Code Editor
window and then close the solution.

INTRODUCTORY

INTRODUCTORY

C7718_ch13.indd 793C7718_ch13.indd 793 14/03/11 8:56 PM14/03/11 8:56 PM

794

C H A P T E R 1 3 Working with Access Databases and LINQ

3. Th e sales manager at JW Industries records the item number, name,
and price of the company’s products in a database named Items. Th e
Items database is stored in the Items.accdb fi le, which is contained
in the VB2010\Chap13\Access Databases folder. Th e database con-
tains one table named tblItems. Th e table contains 10 records, each
composed of three fi elds. Th e ItemNum and ItemName fi elds contain
text, and the Price fi eld contains numbers. Th e sales manager wants
an application that displays the records in a DataGridView control.
Th e application should not allow records to be added or deleted. Th e
application should allow the sales manager to display records whose
item number matches one or more characters he enters. In addition,
it should allow him to display the average price.

a. Create a Visual Basic Windows application. Use the following
names for the solution, project, and form fi le, respectively: JW
Solution, JW Project, and Main Form.vb. Save the application in
the VB2010\Chap13 folder.

b. Connect the application to the Items database and then drag the
tblItems object to the form. Make the appropriate modifi cations
to the DataGridView and BindingNavigator controls.

c. Open the Code Editor window and code the application. Save the
solution and then start and test the application. Close the Code
Editor window and then close the solution.

4. In this exercise, you use a Microsoft Access database named Courses.
Th e database is stored in the Courses.accdb fi le, which is contained in
the VB2010\Chap13\Access Databases folder. Th e database contains
one table named tblCourses. Th e table has 10 records. Each record
has the following four fi elds: ID, Title, CreditHours, and Grade. Th e
CreditHours fi eld is numeric; the other fi elds contain text.

a. Open the College Courses Solution (College Courses Solution.sln)
fi le contained in the VB2010\Chap13\College Courses Solution
folder. If necessary, open the designer window. Connect the appli-
cation to the Courses database. Drag the table into the group
box control and then dock the DataGridView control in its par-
ent container. (In this case, the parent container is the group box
control.) Use the task list to disable Adding, Editing, and Deleting.
Change the DataGridView control’s AutoSizeColumnsMode
property to Fill. Change its RowHeadersVisible property to False.

b. Remove the BindingNavigator control from the form by deleting
the BindingNavigator object from the component tray.

c. Open the Code Editor window. Delete the Save Data button’s
Click event procedure. Code the Next Record and Previous
Record buttons. Code the Grade Display button so it allows the
user to display either all the records or only the records matching
a specifi c grade.

d. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

INTERMEDIATE

INTERMEDIATE

C7718_ch13.indd 794C7718_ch13.indd 794 14/03/11 8:56 PM14/03/11 8:56 PM

795

Lesson C Exercises L E S S O N C

5. In this exercise, you modify the College Courses application from
Exercise 4. Use Windows to make a copy of the College Courses
Solution folder. Rename the copy Modifi ed College Courses Solution.
Open the College Courses Solution (College Courses Solution.sln) fi le
contained in the Modifi ed College Courses Solution folder. Open the
designer window. Add a Calculate GPA button to the form. Open the
Code Editor window. Code the Calculate GPA button’s Click event
procedure so it displays the student’s GPA. (An A grade is worth 4
points, a B is worth 3 points, and so on.) Display the GPA in a mes-
sage box. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

Swat The Bugs

6. Open the Debug Solution (Debug Solution.sln) fi le contained in the
VB2010\Chap13\Debug Solution-Lesson C folder. Th e application
is connected to the Friends database, which is stored in the
Friends.accdb fi le. Th e database contains one table named tblFriends.
Th e table contains nine records. Open the Code Editor window and
review the existing code. Correct the code to remove the jagged line
that appears below one of the lines of code. Save the solution and
then start and test the application. Notice that the application is not
working correctly. Correct the errors in the application’s code. Save
the solution and then start and test the application again. Close the
Code Editor window and then close the solution.

ADVANCED

C7718_ch13.indd 795C7718_ch13.indd 795 14/03/11 8:56 PM14/03/11 8:56 PM

C H A P T E R 14
Access Databases
and SQL

Creating the Academy Award Winners Application

In this chapter, you will create an application that uses a Microsoft Access
database to keep track of the Academy Award winners for Best Picture of the
Year. The Movies database will store the title of each movie, the year the movie
won the award, and the name of the company that produced the movie. The
application will allow the user to add records to the database and also delete
records from the database.

C7718_ch14.indd 796C7718_ch14.indd 796 14/03/11 8:59 PM14/03/11 8:59 PM

797

Previewing the Academy Award Winners Application
Before you start the fi rst lesson in this chapter, you will preview the
 completed application. Th e application is contained in the VB2010\Chap14
folder.

To preview the completed application:

1. Use the Run dialog box to run the Award (Award.exe) fi le contained
in the VB2010\Chap14 folder. Th e application’s user interface appears
on the screen. Th e interface contains a DataGridView control
that displays the eight records stored in the Movies database. See
Figure 14-1. Notice that the record for year number 2002 is missing
from the movie listing.

the record for year
2002 is missing

Figure 14-1 Academy Award Winners application

2. First, you will add the missing record to the database. Click the Year
won text box in the Add new record section of the interface. Type
2002 and then press Tab. Type Chicago as the movie title and then
press Tab. Type Miramax as the company name and then click the
Add button. Th e record you added appears in numerical order by the
year number. See Figure 14-2.

START HERE

Previewing the Academy Award Winners Application

C7718_ch14.indd 797C7718_ch14.indd 797 14/03/11 8:59 PM14/03/11 8:59 PM

798

C H A P T E R 1 4 Access Databases and SQL

the record you added

Figure 14-2 Result of adding the missing record

3. Next, you’ll verify that the record was saved to the database. Click
the Exit button to end the application, and then run the Award
(Award.exe) fi le again. Th e record for year number 2002 appears in
the DataGridView control.

4. Now, you’ll delete the record. Click 2002 in the fi rst column of the
DataGridView control; doing this highlights (selects) the entire
record. Notice that the value in the record’s YearWon fi eld appears
in the Year won box in the Delete record section. Click the Delete
 button. Th e “Delete winner from year 2002?” message appears in a
message box. Click the Yes button to delete the record. Th e computer
removes the record from the DataGridView control, the dataset, and
the database.

5. Click 2000 in the fi rst column of the DataGridView control, and then
click the Delete button. Th is time, click the No button in the Confi rm
Delete message box. Th e record remains in the DataGridView con-
trol, the dataset, and the database.

6. Click the Exit button to end the application, and then run the Award
(Award.exe) fi le again. Notice that the record you deleted in Step 4
does not appear in the DataGridView control.

7. Click the Exit button.

In Lesson A, you will learn how to add records to a dataset, delete records
from a dataset, and sort the records in a dataset. You also will learn how
to save (to a database) the changes made to a dataset. You will create the
Academy Award Winners application in Lesson A. Lessons B and C cover
SQL, which stands for Structured Query Language. Be sure to complete each
lesson in full and do all of the end-of-lesson questions and several exercises
before continuing to the next lesson.

C7718_ch14.indd 798C7718_ch14.indd 798 14/03/11 8:59 PM14/03/11 8:59 PM

799

Adding Records to a Dataset L E S S O N A

 ❚ LESSON A
After studying Lesson A, you should be able to:

 • Add records to a dataset

 • Delete records from a dataset

 • Sort the records in a dataset

Adding Records to a Dataset
In Chapter 13, you learned how to use a BindingNavigator control to add
records to a dataset and also delete records from a dataset. In this lesson,
you will learn how to perform both tasks without using a BindingNavigator
 control. Th e records will be added to and deleted from a Microsoft
Access database named Movies. Th e Movies database is stored in the
Movies.accdb fi le. Th e database contains one table named tblMovies. As
shown in Figure 14-3, the table contains nine records. Each record has three
fi elds. Th e YearWon fi eld is numeric; the Title and ProductionCo fi elds
contain text. Th e database keeps track of the movies that won an Academy
Award for Best Picture of the Year.

Figure 14-3 Data contained in the tblMovies table

To open the Academy Award Winners application:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.
Open the Academy Award Solution (Academy Award Solution.sln)
fi le contained in the VB2010\Chap14\Academy Award Solution
folder. If necessary, open the designer window. Th e Academy Award
Winners application is already connected to the Movies database.
Notice that the interface contains a DataGridView control named
TblMoviesDataGridView. Th e control is bound to the tblMovies
table in the dataset. Th e application also contains four objects in its
 component tray. See Figure 14-4.

START HERE

C7718_ch14.indd 799C7718_ch14.indd 799 14/03/11 8:59 PM14/03/11 8:59 PM

800

C H A P T E R 1 4 Access Databases and SQL

TblMoviesDataGridView

the component tray
contains four objects

Figure 14-4 Interface for the Academy Award Winners application

2. Start the application. Th e records in the dataset appear in the
TblMoviesDataGridView control. Th e control’s AutoSizeColumnsMode,
ReadOnly, and SelectionMode properties are set to Fill, True,
and FullRowSelect, respectively. Its AllowUserToAddRows,
AllowUserToDeleteRows, and RowHeadersVisible properties are set to
False. Notice that the number 2000 appears in the txtDeleteYear control.
Th is is because the control is bound to the YearWon fi eld in the dataset.
See Figure 14-5.

txtAddYear

txtTitle

txtCompany

txtDeleteYear

Figure 14-5 Records displayed in the TblMoviesDataGridView control

3. Press the down arrow key on your keyboard, slowly, several times.
Each time the highlight moves to a diff erent row in the DataGridView
control, the value in the current row’s YearWon fi eld appears in the
txtDeleteYear control.

4. Click the Exit button to end the application.

C7718_ch14.indd 800C7718_ch14.indd 800 14/03/11 8:59 PM14/03/11 8:59 PM

801

Adding Records to a Dataset L E S S O N A

Th e fi rst procedure you will code is the Add button’s Click event procedure.
Th e procedure should add the record entered in the txtAddYear, txtTitle, and
txtCompany controls to the MoviesDataSet. Visual Basic provides several
ways of adding records to a dataset. In this lesson, you will use the syntax
shown in Figure 14-6. Th e fi gure also includes examples of using the syntax.

Adding a record to a dataset

Syntax
dataSetName.tableName.AddtableNameRow(valueField1[,
 valueField2 . . . , valueFieldN])

Example 1
BooksDataSet.tblBooks.AddtblBooksRow(txtTitle.Text,
txtAuthor.Text)
adds a record to the BooksDataSet

Example 2
CDDataSet.tblCds.AddtblCdsRow("02", "Colors", 12.99)
adds a record to the CDDataSet

Figure 14-6 Syntax and examples of adding a record to a dataset

To begin coding the Add button’s Click event procedure:

1. Open the Code Editor window. Replace <your name> and
< current date> in the comments with your name and the current
date, respectively.

2. Locate the btnAdd control’s Click event procedure. Click the blank
line below the ' add a record to the dataset comment and
then press Enter.

3. Recall that the YearWon fi eld in the dataset is numeric. Th erefore, you
will need to convert the year entered in the txtAddYear control to a
number before storing it in the fi eld. Enter the following two state-
ments. Press Enter twice after typing the second statement.

Dim intYear As Integer
Integer.TryParse(txtAddYear.Text, intYear)

4. Now, you will use the syntax shown in Figure 14-6 to add the record
to the MoviesDataSet. Enter the following statement:

MoviesDataSet.tblMovies.AddtblMoviesRow(intYear,
 txtTitle.Text,
 txtCompany.Text)

5. Save the solution and then start the application. In the Add new
record section of the interface, type 2009 in the Year won box,
Th e Hurt Locker in the Movie title box, and Summit Entertainment
in the Company box. Click the Add button. Th e new record appears in
the DataGridView control, as shown in Figure 14-7.

START HERE

C7718_ch14.indd 801C7718_ch14.indd 801 14/03/11 8:59 PM14/03/11 8:59 PM

802

C H A P T E R 1 4 Access Databases and SQL

new record

Figure 14-7 New record added to the DataGridView control

6. Click the Exit button and then start the application again. Notice
that the new record is missing from the DataGridView control. Th is
is because the Add button’s Click event procedure contains only the
code for adding a record to a dataset. It does not yet contain the code
for actually saving the record to the Movies database. You will add
that code in the next set of steps. Click the Exit button.

For the changes made to a dataset to be permanent, you need to save the
changes to the database associated with the dataset. Here too, Visual Basic
provides several ways of performing this task. In this lesson, you will use
the TableAdapter object’s Update method. As you learned in Chapter 13,
the TableAdapter object connects the database to the DataSet object. Th e
Update method’s syntax is shown in Figure 14-8 along with examples of
using the syntax. Because it is possible for an error to occur when saving data
to a database, it’s a good programming practice to place the Update method
within the Try block of a Try . . . Catch statement, as shown in the examples.

Saving dataset changes to a database

Syntax
tableAdapterName.Update(dataSetName.tableName)

Example 1
Try
 TblBooksTableAdapter.Update(BooksDataSet.tblBooks)
Catch ex As Exception
 MessageBox.Show(ex.Message, "Books",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
End Try
saves (to the tblBooks table in the Books database) the changes made to the
BooksDataSet

Figure 14-8 Syntax and examples of saving dataset changes to a database (continues)

Figure 13-16 in
Chapter 13 illus-
trates the rela-
tionships among
the database,
the objects in the

component tray, and
the bound controls.

C7718_ch14.indd 802C7718_ch14.indd 802 14/03/11 8:59 PM14/03/11 8:59 PM

803

Adding Records to a Dataset L E S S O N A

Example 2
Try
 TblCdsTableAdapter.Update(CDDataSet.tblCds)
Catch ex As Exception
 MessageBox.Show(ex.Message, "CDs",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
End Try
saves (to the tblCds table in the CD database) the changes made to the CDDataSet

Figure 14-8 Syntax and examples of saving dataset changes to a database

To fi nish coding the Add button’s Click event procedure:

1. Enter the additional lines of code indicated in Figure 14-9.

enter these seven
lines of code

Figure 14-9 Add button’s Click event procedure

2. Save the solution and then start the application. In the Add new
record section of the interface, type 2009 in the Year won box, Th e
Hurt Locker in the Movie title box, and Summit Entertainment in
the Company box. Click the Add button. Th e new record appears in
the DataGridView control, as shown earlier in Figure 14-7.

3. Now, enter the following record: 1999, American Beauty,
DreamWorks. Click the Add button. Notice that the record for the
year 1999 appears as the last record in the DataGridView control. See
Figure 14-10.

START HERE

(continued)

C7718_ch14.indd 803C7718_ch14.indd 803 14/03/11 8:59 PM14/03/11 8:59 PM

804

C H A P T E R 1 4 Access Databases and SQL

new records

Figure 14-10 New records displayed in the DataGridView control

4. Click the Year Won header in the DataGridView control. Th e records
now appear in numerical order by the YearWon fi eld.

5. Click the Exit button and then start the application again. Th e two
new records appear in the DataGridView control. However, the
record for the year 1999 appears, once again, at the bottom of the
list. Th is is because the records are displayed in the order they appear
in the tblMovies table. Th e record for the year 1999 was the last
record entered into the table, so it appears as the last record in the
DataGridView control. You will fi x this problem in the next section.
Click the Exit button.

Sorting the Records in a Dataset
As you observed in the previous set of steps, you can sort the records in a
DataGridView control by clicking the appropriate header while the applica-
tion is running. You also can use the BindingSource object’s Sort method. Th e
method’s syntax is shown in Figure 14-11 along with examples of using the
syntax. If you want the records in a dataset to appear in a particular order
when the application is started, you enter the Sort method in the form’s Load
event procedure.

Sorting the records in a dataset

Syntax
bindingSourceName.Sort = fi eldName

Example 1
TblBooksBindingSource.Sort = "Author"
sorts the records by the Author fi eld

Example 2
TblCdsBindingSource.Sort = "Cost"
sorts the records by the Cost fi eld

Figure 14-11 Syntax and examples of sorting the records in a dataset

C7718_ch14.indd 804C7718_ch14.indd 804 14/03/11 8:59 PM14/03/11 8:59 PM

805

Deleting Records from a Dataset L E S S O N A

To sort the records by the YearWon fi eld:

1. Locate the form’s Load event procedure in the Code Editor window.
Click the blank line above the End Sub clause and then enter the
 following line of code:

TblMoviesBindingSource.Sort = "YearWon"

2. Save the solution and then start the application. Th e records appear in
numerical order by the YearWon fi eld, as shown in Figure 14-12.

new record

new record

Figure 14-12 Records sorted by the YearWon fi eld

3. Click the Exit button.

YOU DO IT 1!

Open the YouDoIt 1 (YouDoIt 1.sln) file contained in the VB2010\Chap14\
YouDoIt 1 folder. The application is connected to the Names database.
The database contains one table named tblNames. The table contains five
records. Each record contains two fields: FirstName and LastName. When
the application starts, the records should be displayed in order by the
LastName field. Add two text boxes and a button to the form. The button’s
Click event procedure should add the information entered in the text boxes
to the dataset, and then save the record in the database. Don’t add a record
unless both text boxes contain data. Save the solution and then start and test
the application. Close the Code Editor window and then close the solution.

Deleting Records from a Dataset
Th e last procedure you will code is the Delete button’s Click event procedure.
Th e procedure should search the dataset for the record whose YearWon fi eld
contains the value entered in the txtDeleteYear control. Before deleting the
record, the procedure should display a message that asks the user to confi rm
the deletion. You will use the MessageBox.Show method to both display the
message and get the user’s response.

START HERE

C7718_ch14.indd 805C7718_ch14.indd 805 14/03/11 8:59 PM14/03/11 8:59 PM

806

C H A P T E R 1 4 Access Databases and SQL

To begin coding the Delete button’s Click event procedure:

1. Locate the btnDelete control’s Click event procedure. Click the
blank line below the ' delete a record from the dataset
 comment and then press Enter.

2. Th e procedure will use a DialogResult variable to store the value
returned by the MessageBox.Show method. Enter the following
statement:

Dim dlgButton As DialogResult

3. Now, enter the MessageBox.Show method shown in Figure 14-13,
and then position the insertion point as indicated in the fi gure. Notice
that the message box will have Yes and No buttons.

enter these five
lines of code

position the insertion
point here

Figure 14-13 MessageBox.Show method entered in the btnDelete control’s Click event
procedure

4. Th e procedure will delete the record only when the user selects the
Yes button in the message box. Enter the following If clause:

If dlgButton = DialogResult.Yes Th en

5. Save the solution.

Before the Delete button’s Click event procedure can delete the record from
the dataset, it fi rst must locate the record. Visual Basic provides several ways
of locating records in a dataset. In this lesson, you will use the syntax shown
in Figure 14-14. Th e fi gure also includes examples of using the syntax.

Locating a record in a dataset

Syntax
dataRowVariable =
 dataSetName.tableName.FindByfi eldName(value)

Example 1
Dim row As DataRow
row = BooksDataSet.tblBooks.FindById(123)
The assignment statement searches the dataset for the record whose Id fi eld contains
123, and then assigns the record to the row variable.

Figure 14-14 Syntax and examples of locating a record in a dataset (continues)

START HERE

C7718_ch14.indd 806C7718_ch14.indd 806 14/03/11 8:59 PM14/03/11 8:59 PM

807

Deleting Records from a Dataset L E S S O N A

Example 2
Dim findRow As DataRow
findRow = CDDataSet.tblCds.FindByArtist("Cher")
The assignment statement searches the dataset for the record whose Artist fi eld
contains “Cher”, and then assigns the record to the fi ndRow variable.

Figure 14-14 Syntax and examples of locating a record in a dataset

To continue coding the Delete button’s Click event procedure:

1. First, enter the following declaration statement below the If clause:

Dim row As DataRow

2. As mentioned earlier, the YearWon fi eld in the dataset is numeric.
Th erefore, you will need to convert the year contained in the
 txtDeleteYear control to a number before searching for the record in
the dataset. Enter the following statements:

Dim intYear As Integer
Integer.TryParse(txtDeleteYear.Text, intYear)

3. Now, you will use the syntax shown in Figure 14-14 to locate the
appropriate record. Enter the following statement:

row =
 MoviesDataSet.tblMovies.FindByYearWon(intYear)

4. Save the solution.

After locating the appropriate record and assigning it to a DataRow variable,
you can use the variable’s Delete method to delete the record. Figure 14-15
shows the syntax of the Delete method and includes an example of using the
method.

Deleting a record from a dataset

Syntax
dataRowVariable.Delete()

Example
Dim row As DataRow
row = BooksDataSet.tblBooks.FindByTitle("Money")
row.Delete()
The Delete method deletes the record associated with the row variable.

Figure 14-15 Syntax and an example of deleting a record from a dataset

START HERE

(continued)

C7718_ch14.indd 807C7718_ch14.indd 807 14/03/11 8:59 PM14/03/11 8:59 PM

808

C H A P T E R 1 4 Access Databases and SQL

To fi nish coding the Delete button’s Click event procedure:

1. Enter the following statement:

row.Delete()

2. As you learned earlier, the changes made to a dataset are not perma-
nent until they are saved to the database associated with the dataset.
Recall that you can save the changes using the TableAdapter object's
Update method. Also recall that it’s a good programming practice to
enter the Update method within the Try block of a Try . . . Catch state-
ment. Enter the additional code shown in Figure 14-16.

enter these seven
lines of code

Figure 14-16 Additional code entered in the btnDelete control’s Click event
procedure

3. Save the solution and then start the application. Th e fi rst record is
highlighted in the DataGridView control, and the value of the record’s
YearWon fi eld—in this case, 1999—appears in the txtDeleteYear control.

4. Click the Delete button. Th e message box shown in Figure 14-17
appears on the screen.

Figure 14-17 Message box displayed by the btnDelete control’s
Click event procedure

5. Click the Yes button in the message box. Th e computer deletes the
record from the dataset, the DataGridView control, and the database.

6. Next, click 2005 in the Year Won column. Th e record for the year
2005 is highlighted in the DataGridView control, and 2005 appears in
the txtDeleteYear control. Click the Delete button, and then click the

START HERE

C7718_ch14.indd 808C7718_ch14.indd 808 14/03/11 8:59 PM14/03/11 8:59 PM

809

Deleting Records from a Dataset L E S S O N A

No button in the message box. Th e record remains in the dataset, the
DataGridView control, and the database.

7. Click the Exit button and then start the application again. Notice
that the 2005 record remains in the dataset, but the 1999 record was
deleted.

8. Click the Exit button to end the application. Close the Code Editor
window and then close the solution.

Figure 14-18 shows the form’s Load event procedure, the btnAdd control’s
Click event procedure, and the btnDelete control’s Click event procedure.
Keep in mind that the Click event procedures will produce a run time error if
the user tries to either add a duplicate record or delete a non-existent record.
To learn how to handle the run time error, complete Exercise 5 at the end of
this lesson.

Private Sub frmMain_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load
 'TODO: This line of code loads data into the
 'MoviesDataSet.tblMovies' table. You can move,
 or remove it, as needed.
 Me.TblMoviesTableAdapter.Fill(Me.MoviesDataSet.tblMovies)
 TblMoviesBindingSource.Sort = "YearWon"

End Sub

Private Sub btnAdd_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnAdd.Click
 ' add a record to the dataset

 Dim intYear As Integer
 Integer.TryParse(txtAddYear.Text, intYear)

 MoviesDataSet.tblMovies.AddtblMoviesRow(intYear,
 txtTitle.Text,
 txtCompany.Text)
 Try
 TblMoviesTableAdapter.Update(MoviesDataSet.tblMovies)
 Catch ex As Exception
 MessageBox.Show(ex.Message, "Add Record",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End Try
End Sub

Private Sub btnDelete_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDelete.Click
 ' delete a record from the dataset

 Dim dlgButton As DialogResult
 dlgButton =
 MessageBox.Show("Delete winner from year " &
 txtDeleteYear.Text & "?", "Confirm Delete",
 MessageBoxButtons.YesNo,
 MessageBoxIcon.Exclamation)

Figure 14-18 frmMain_Load, btnAdd_Click, and btnDelete_Click procedures (continues)

C7718_ch14.indd 809C7718_ch14.indd 809 14/03/11 8:59 PM14/03/11 8:59 PM

810

C H A P T E R 1 4 Access Databases and SQL

 If dlgButton = DialogResult.Yes Then
 Dim row As DataRow
 Dim intYear As Integer
 Integer.TryParse(txtDeleteYear.Text, intYear)
 row =
 MoviesDataSet.tblMovies.FindByYearWon(intYear)
 row.Delete()
 Try
 TblMoviesTableAdapter.Update(MoviesDataSet.tblMovies)
 Catch ex As Exception
 MessageBox.Show(ex.Message, "Delete Record",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End Try
 End If
End Sub

Figure 14-18 frmMain_Load, btnAdd_Click, and btnDelete_Click procedures

Lesson A Summary

 • To add a record to a dataset:

Use the syntax shown in Figure 14-6.

 • To save dataset changes to a database:

Use the TableAdapter object’s Update method. Th e method’s syntax is
shown in Figure 14-8.

 • To sort the records in a dataset:

Use the BindingSource object’s Sort method. Th e method’s syntax is
shown in Figure 14-11.

 • To locate a record in a dataset:

Use the syntax shown in Figure 14-14.

 • To delete a record from a dataset:

Use a DataRow variable’s Delete method. Th e syntax is shown in
Figure 14-15.

Lesson A Key Terms
Delete method—a method of a DataRow variable; used to delete a record
from a dataset

Sort method—a method of the BindingSource object; used to sort a dataset
in order by a specifi c fi eld

Update method—a method of the TableAdapter object; used to save a
 dataset’s changes to its associated database

(continued)

C7718_ch14.indd 810C7718_ch14.indd 810 14/03/11 8:59 PM14/03/11 8:59 PM

811

Lesson A Review Questions L E S S O N A

Lesson A Review Questions

1. Th e FriendsDataSet contains a table named tblFriends. Th e table
 contains two text fi elds named FName and LName. Which of the
 following will add a new record to the dataset?

a. FriendsDataSet.tblFriends.AddFriendsRow
(strF, strL)

b. FriendsDataSet.tblFriends.AddRowToFriends
(strF, strL)

c. FriendsDataSet.tblFriends.AddtblFriendsRow
(strF, strL)

d. FriendsDataSet.AddtblFriendsRow(strF, strL)

2. Two records were added to the FriendsDataSet from Review
Question 1. Which of the following will save the records in the
Friends database?

a. TblFriendsBindingSource.Save(FriendsDataSet.
tblFriends)

b. TblFriendsBindingSource.Update(FriendsDataSet.
tblFriends

c. TblFriendsTableAdapter.Save(FriendsDataSet.
tblFriends)

d. TblFriendsTableAdapter.Update(FriendsDataSet.
tblFriends)

3. Th e FriendsDataSet from Review Question 1 is associated with the
TblFriendsBindingSource and TblFriendsTableAdapter objects.
Which of the following will sort the records by the LName fi eld?

a. TblFriendsBindingSource.Sort = "LName"

b. TblFriendsBindingSource.Sort("LName")

c. TblFriendsTableAdapter.Sort = "LName"

d. none of the above

4. Using the FriendsDataSet from Review Question 1, which of the
 following will locate the record whose last name is Winkler, and then
assign the record to the row variable?

a. row =
FriendsDataSet.tblFriends.FindLName("Winkler")

b. row =
FriendsDataSet.tblFriends.FindByLName("Winkler")

c. row =
FriendsDataSet.tblFriends.Find("Winkler")

d. row =
FriendsDataSet.FindByLName("Winkler")

C7718_ch14.indd 811C7718_ch14.indd 811 14/03/11 8:59 PM14/03/11 8:59 PM

812

C H A P T E R 1 4 Access Databases and SQL

5. Which of the following will delete the record associated with a
DataRow variable named fi ndRow?

a. fi ndRow.Delete()

b. fi ndRow.Remove()

c. delete(fi ndRow)

d. none of the above

Lesson A Exercises

1. Open the HR Sales Solution (HR Sales Solution.sln) fi le contained in
the VB2010\Chap14\HR Sales Solution folder. If necessary, open the
designer window. Th e application is connected to the Sales database.
Th e database contains one table, which is named tblSales. Th e table
contains three fi elds and fi ve records. Th e three fi elds (YearNum,
MonthNum, and Sales) are numeric. Th e Add button’s Click event
procedure should allow the user to add records to the database, but
only when the three text boxes contain data. Th e records should
appear in numerical order by the year number. Code the application.
Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

2. Open the Sydney Solution (Sydney Solution.sln) fi le contained in
the VB2010\Chap14\Sydney Solution folder. If necessary, open the
designer window. Th e application is connected to the Products
 database. Th e database contains a table named tblProducts. Th e table
contains 10 records, each composed of three fi elds. Th e ItemNum
(primary key) and ItemName fi elds contain text; the Price fi eld
contains numbers. Th e Add button’s Click event procedure should
allow the user to add records to the database, but only when the three
text boxes contain data. Th e Delete button’s Click event procedure
should allow the user to delete records from the database. Th e records
should appear in order by the item number when the application is
started. Code the application. Save the solution and then start and test
the application. (Don't try to add a record that has a duplicate item
number.) Close the Code Editor window and then close the solution.

3. Open the Morgan Industries Solution (Morgan Industries Solution.sln)
fi le contained in the Morgan Industries Solution folder. Th e applica-
tion is connected to the Employees database. Th e database contains
one table, which is named tblEmploy. Th e table contains seven fi elds
and 14 records. Th e Emp_Number fi eld is the primary key. Th e Status
fi eld contains the employment status, which is either the letter F (for
full-time) or the letter P (for part-time). Th e Code fi eld identifi es the
employee’s department: 1 for Accounting, 2 for Advertising, 3 for
Personnel, and 4 for Inventory. Th e Add button’s Click event procedure
should allow the user to add records to the database, but only when
the user provides all of the employee information. Th e Delete button’s
Click event procedure should allow the user to delete records from the

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

C7718_ch14.indd 812C7718_ch14.indd 812 14/03/11 8:59 PM14/03/11 8:59 PM

813

Lesson A Exercises L E S S O N A

database. Th e records should appear in order by the employee number
when the application is started. Code the application. Be sure to code
each text box's Enter event procedure, as well as the KeyPress event
procedures for the Rate, Status, and Code text boxes. Save the solution
and then start and test the application. (Don't try to add a record that
has a duplicate employee number.) Close the Code Editor window and
then close the solution.

4. In this exercise, you modify the HR Sales application from Exercise 1.
Use Windows to make a copy of the HR Sales Solution folder. Rename
the copy HR Sales Solution-LINQ. Open the HR Sales Solution (HR
Sales Solution.sln) fi le contained in the HR Sales Solution-LINQ
folder. Open the designer window. Add a button to the form. Change
the button’s name to btnTotal. Change its Text property to &Total
Sales. Th e button’s Click event procedure should display the total
sales amount in a message box. (Hint: Use one of the aggregate
 operators available in LINQ.) Save the solution and then start and
test the application. Close the Code Editor window and then close the
solution.

5. In this exercise, you modify the Academy Award Winners application
from this lesson. Use Windows to make a copy of the Academy Award
Solution folder. Rename the copy Modifi ed Academy Award Solution.
Open the Academy Award Solution (Academy Award Solution.sln)
fi le contained in the Modifi ed Academy Award Solution folder. Open
the designer and Code Editor windows.

a. If the user attempts to add a record that has the same year
number as an existing record, a run time error will occur when
the computer processes the AddtblMoviesRow function in the
btnAdd control’s Click event procedure. Place the statement con-
taining the function in the Try block of a Try . . . Catch statement.
Th e Catch block should display a message alerting the user that
the record for that year already exists.

b. If the user attempts to delete a record that does not exist, a run
time error will occur when the computer processes the
row.Delete() statement. Before processing the statement,
you will have the computer determine whether the row variable
 contains a data row. Insert a blank line above the row.Delete()
statement. Type If row Is Nothing Then, press Enter twice,
type Else, and then press Enter. In the selection structure’s true
path, enter a MessageBox.Show method that displays the “No
record found.” message. Move the remaining code into the
 selection structure’s false path.

c. Save the solution and then start the application. Test the
 application by attempting to add a duplicate record. Also test it
by entering the number 0 in the txtDeleteYear control and then
 clicking the Delete button followed by the Yes button. Close the
Code Editor window and then close the solution.

INTERMEDIATE

ADVANCED

C7718_ch14.indd 813C7718_ch14.indd 813 14/03/11 8:59 PM14/03/11 8:59 PM

814

C H A P T E R 1 4 Access Databases and SQL

Discovery

6. In this exercise, you modify the HR Sales application from Exercise
1. Use Windows to make a copy of the HR Sales Solution folder.
Rename the copy HR Sales Solution-Discovery. Open the HR Sales
Solution (HR Sales Solution.sln) fi le contained in the HR Sales
Solution-Discovery folder. Open the designer and Code Editor win-
dows. Currently, the form's Load event procedure sorts the records
in numerical order by the year number. Modify the procedure so that
it sorts the records in numerical order by month number within year
number. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

C7718_ch14.indd 814C7718_ch14.indd 814 14/03/11 8:59 PM14/03/11 8:59 PM

815

The SELECT Statement L E S S O N B

 ❚ LESSON B
After studying Lesson B, you should be able to:

 • Query a database using the SQL SELECT statement

 • Create queries using the Query Builder dialog box

Structured Query Language
As you learned in Chapter 13, you use a query to specify both the records
to select from a database and the order in which to arrange the records.
In Chapter 13, you created the queries using LINQ (Language Integrated
Query). In this chapter, you will use a diff erent query language, called
SQL. You can pronounce SQL either as ess-cue-el or as sequel. SQL, which
stands for Structured Query Language, is a set of statements that allows
you to access and manipulate the data stored in many database manage-
ment systems on computers of all sizes, from large mainframes to small
microcomputers. You can use SQL statements—such as SELECT, INSERT,
and DELETE—to perform common database tasks. Examples of these tasks
include storing, retrieving, updating, deleting, and sorting data.

In this lesson, you will use the SQL SELECT statement to query the Movies
database from Lesson A. Th e database keeps track of the movies that won an
Academy Award for Best Picture of the Year. Th e database, which is stored
in the Movies.accdb fi le, contains one table named tblMovies. As shown
in Figure 14-19, the table contains nine records, with each record having
three fi elds. Th e YearWon fi eld is numeric; the Title and ProductionCo fi elds
 contain text.

Figure 14-19 tblMovies table in the Movies database

The SELECT Statement
Th e SELECT statement is the most commonly used statement in SQL. Th e
statement allows you to specify the fi elds and records you want to view, as
well as control the order in which the fi elds and records appear when they
are displayed. Figure 14-20 shows the statement’s basic syntax. In the syntax,
fi eldList is one or more fi eld names separated by commas, and tableName
is the name of the table containing the fi elds. Th e WHERE and ORDER BY
clauses are optional parts of the syntax. You use the WHERE clause, which
contains a condition, to limit the records you want to view. Similar to the
condition in the If. . .Th en. . .Else and Do. . .Loop statements, the condition in

C7718_ch14.indd 815C7718_ch14.indd 815 14/03/11 8:59 PM14/03/11 8:59 PM

816

C H A P T E R 1 4 Access Databases and SQL

a WHERE clause specifi es a requirement that must be met for a record to
be selected. Th e ORDER BY clause is used to arrange the records in either
ascending (the default) or descending order by one or more fi elds. Although
you do not have to capitalize the keywords SELECT, FROM, WHERE, ORDER BY,
and DESC in a SELECT statement, many programmers do so for clarity.

Also included in Figure 14-20 are examples of using the SELECT statement.
Th e SELECT statement in Example 1 tells the computer to select all of
the fi elds and records from the tblMovies table. Th e SELECT statement in
Example 2 uses the WHERE clause to limit the records that will be selected.
In this case, the statement tells the computer to select all of the fi elds, but
only from records for the year 2006 and later. Th e SELECT statement in
Example 3 tells the computer to select the YearWon fi eld, but only from
the Chicago record. At this point, you may be wondering why the word
“Chicago” in Example 3 appears in single quotes, but the number 2006 in
Example 2 does not. Th e single quotes around the value in the WHERE
clause’s condition are necessary only when you are comparing a text fi eld
with a literal constant. Recall that the Title fi eld contains text, whereas the
YearWon fi eld contains numbers. Text comparisons in SQL are not case-
sensitive. Th erefore, you also can write the WHERE clause in Example 3 as
WHERE Title = 'chicago'.

Th e SELECT statement in Example 4 in Figure 14-20 selects all of the fi elds
and records from the tblMovies table and then sorts the records in ascending
order by the Title fi eld. Th e SELECT statement in Example 5 shows how you
can use the LIKE operator along with the % (percent sign) wildcard character
in the WHERE clause. Th e statement tells the computer to select the Title
and ProductionCo fi elds from records whose title begins with the word “Th e”
followed by a space and zero or more characters. Th e statement then sorts
the records in descending order by the ProductionCo fi eld.

SELECT statement

Basic syntax
SELECT fi eldList FROM tableName
 [WHERE condition]
 [ORDER BY fi eldName [DESC]]

Example 1
SELECT YearWon, Title, ProductionCo FROM tblMovies
selects all of the fi elds and records in the tblMovies table

Example 2
SELECT YearWon, Title, ProductionCo FROM tblMovies
 WHERE YearWon >= 2006
selects all of the fi elds from records for the year 2006 and later

Example 3
SELECT YearWon FROM tblMovies WHERE Title = 'Chicago'
selects the YearWon fi eld from the Chicago record

Figure 14-20 Syntax and examples of the SELECT statement (continues)

C7718_ch14.indd 816C7718_ch14.indd 816 14/03/11 8:59 PM14/03/11 8:59 PM

817

Creating a Query L E S S O N B

Example 4
SELECT YearWon, Title, ProductionCo FROM tblMovies
 ORDER BY Title
selects all of the fi elds and records in the tblMovies table and then sorts the records
in ascending order by the Title fi eld

Example 5
SELECT Title, ProductionCo FROM tblMovies
 WHERE Title LIKE 'The %'
 ORDER BY ProductionCo DESC
selects the Title and ProductionCo fi elds from records whose title begins with the word
“The” followed by a space and zero or more characters, and then sorts the records in
descending order by the ProductionCo fi eld

Figure 14-20 Syntax and examples of the SELECT statement

Creating a Query
In the following set of steps, you will open the Academy Award Winners
application and then use it to test the SELECT statements from Figure 14-20.

To test the SELECT statements from Figure 14-20:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.
Open the Movie Awards Solution (Movie Awards Solution.sln) fi le
contained in the VB2010\Chap14\Movie Awards Solution-SQL folder.
If necessary, open the designer window. Th e application is already
connected to the Movies database.

2. Start the application. Th e dataset appears in the DataGridView
 control. See Figure 14-21.

 Figure 14-21 Contents of the dataset displayed in the DataGridView control

START HERE

(continued)

C7718_ch14.indd 817C7718_ch14.indd 817 14/03/11 8:59 PM14/03/11 8:59 PM

818

C H A P T E R 1 4 Access Databases and SQL

3. Click the Exit button to end the application. Right-click
MoviesDataSet.xsd in the Solution Explorer window. Th e .xsd
fi le is called the dataset’s schema fi le. Th e fi le contains informa-
tion about the tables, fi elds, records, and properties included in the
MoviesDataSet. Click Open to open the DataSet Designer window.
See Figure 14-22.

 Figure 14-22 DataSet Designer window

4. Right-click tblMoviesTableAdapter in the DataSet Designer window.
Point to Add on the shortcut menu and then click Query. (If Add does
not appear on the shortcut menu, click Add Query instead.) Doing this
starts the TableAdapter Query Confi guration Wizard. Th e Use SQL
statements radio button should be selected, as shown in Figure 14-23.

verify that this radio
button is selected

Figure 14-23 Choose a Command Type screen in the TableAdapter Query
Confi guration Wizard

5. Click the Next button to display the Choose a Query Type screen.
Th e “SELECT which returns rows” radio button should be selected, as
shown in Figure 14-24.

verify that this radio
button is selected

Figure 14-24 Choose a Query Type screen

C7718_ch14.indd 818C7718_ch14.indd 818 14/03/11 8:59 PM14/03/11 8:59 PM

819

Creating a Query L E S S O N B

6. Click the Next button to display the Specify a SQL SELECT
 statement screen. See Figure 14-25.

selects all of the fields
and records from the
tblMovies table

Query Builder button

Figure 14-25 Specify a SQL SELECT statement screen

7. You can either type the SELECT statement yourself or use the Query
Builder dialog box to construct the statement for you. In this case,
you will use the Query Builder dialog box. Click the Query Builder
 button to open the Query Builder dialog box. See Figure 14-26.
Notice that the table’s primary key appears boldfaced in the
Diagram pane.

Diagram paneprimary key

Grid pane

SQL pane

Results pane

Figure 14-26 Query Builder dialog box

C7718_ch14.indd 819C7718_ch14.indd 819 14/03/11 8:59 PM14/03/11 8:59 PM

820

C H A P T E R 1 4 Access Databases and SQL

8. Th e SQL pane contains the same SELECT statement shown in
Example 1 in Figure 14-20. Recall that the statement tells the
 computer to select all of the fi elds and records contained in the
tblMovies table. Click the Execute Query button to run the query.
Th e query results appear in the Results pane. See Figure 14-27. You
can use the scroll bar to view the remaining records.

Results pane

scroll bar

Figure 14-27 Records listed in the Results pane

9. Next, you will create a query that selects all of the fi elds, but only
from records for the year 2006 and later. In the Grid pane, click
the blank cell in the YearWon fi eld’s Filter column. Type >= 2006
and press Enter. Th e Filter column entry tells the Query Builder to
include the WHERE (YearWon >= 2006) clause in the SELECT
statement. Th e funnel symbol that appears in the Diagram pane indi-
cates that the YearWon fi eld is used to fi lter the records. Notice the
Query Changed message and icon that appear in the Results pane.
Th e message and icon alert you that the information displayed in the
Results pane is not from the current query. See Figure 14-28.

the funnel symbol indicates
that the YearWon field is
used to filter the records

indicates that the query
was changed since the
last time you selected the
Execute Query button

WHERE clause

Query Changed icon

used by the WHERE clause

Figure 14-28 SELECT statement containing a WHERE clause

Important note: For clarity, the Query Builder places the WHERE
clause’s condition in parentheses; however, the parentheses are not
required.

C7718_ch14.indd 820C7718_ch14.indd 820 14/03/11 8:59 PM14/03/11 8:59 PM

821

Creating a Query L E S S O N B

10. Click the Execute Query button to run the current query. If neces-
sary, scroll the Results pane to verify that it contains only the records
for the years 2006, 2007, and 2008.

11. Next, you will create a query that selects only the YearWon fi eld for the
Chicago record. Select (highlight) the >= 2006 entry in the YearWon
fi eld’s Filter column and then press Delete. Click the blank cell in the
Title fi eld’s Filter column. Type Chicago and press Enter. Th e Query
Builder changes the entry in the Filter column to = 'Chicago'. It
also enters the WHERE (Title = 'Chicago') clause in the SELECT
 statement.

12. Now, click the Title and ProductionCo check boxes in the Diagram
pane to remove the check marks. Th e Query Builder changes the
fi rst line in the SELECT statement to SELECT YearWon. Click the
 Execute Query button. See Figure 14-29.

the funnel symbol indicates
that the Title field is used to
filter the records

WHERE clause

used by the
WHERE clause

Figure 14-29 Result of executing the current query

13. Next, you will create a query that selects all of the fi elds and records
in the tblMovies table and then sorts them in ascending order by
the Title fi eld. Select the Title and ProductionCo check boxes in
the Diagram pane. Th e Query Builder changes the fi rst line in the
SELECT statement to SELECT YearWon, Title, ProductionCo.
Delete the = 'Chicago' entry from the Filter column in the Grid
pane and then press Enter. Th e Query Builder removes the WHERE
clause from the SELECT statement.

14. Now, click the blank cell in the Title fi eld’s Sort Type column and
then click the list arrow in the cell. Click Ascending and then press
Enter. Th e word “Ascending” appears as the Title fi eld’s Sort Type,
and the number 1 appears as its Sort Order. Th e number 1 indicates
that the Title fi eld is the primary fi eld in the sort. As a result, the
Query Builder adds the ORDER BY Title clause to the SELECT
statement. Click the Execute Query button. See Figure 14-30.

C7718_ch14.indd 821C7718_ch14.indd 821 14/03/11 8:59 PM14/03/11 8:59 PM

822

C H A P T E R 1 4 Access Databases and SQL

indicates an
ascending (A to Z) sort

ORDER BY clause

used by the ORDER
BY clause

Figure 14-30 Records displayed in ascending order by the Title fi eld

15. On your own, create a query that selects the Title and ProductionCo
fi elds from records whose title begins with the word “Th e” followed
by a space and zero or more characters. Th e query should sort the
records in descending order by the ProductionCo fi eld. Figure 14-31
shows the query along with the result of executing it.

Figure 14-31 Records displayed by the current query

16. Click the Cancel button in the Query Builder dialog box and then
click the Cancel button in the TableAdapter Query Confi guration
Wizard dialog box.

17. Save the solution. Close the MoviesDataSet.xsd window and then
close the solution.

C7718_ch14.indd 822C7718_ch14.indd 822 14/03/11 8:59 PM14/03/11 8:59 PM

823

Lesson B Key Terms L E S S O N B

Lesson B Summary

 • To query a database using SQL:

Use the SELECT statement. Th e statement’s syntax is shown in
Figure 14-20.

 • To limit the records you want to view:

Use the SELECT statement’s WHERE clause.

 • To sort the selected records:

Use the SELECT statement’s ORDER BY clause.

 • To open the DataSet Designer window:

Right-click the name of the dataset’s schema fi le in the Solution Explorer
window and then click Open. Th e schema fi lename ends with .xsd.

 • To start the TableAdapter Query Confi guration Wizard:

Open the DataSet Designer window and then right-click the table
 adapter’s name. Point to Add on the shortcut menu and then click Query.
If Add does not appear on the shortcut menu, click Add Query instead.

 • To open the Query Builder dialog box:

Start the TableAdapter Query Confi guration Wizard. Click the Next
 button and then click the Next button again to display the Specify a SQL
SELECT statement screen. Click the Query Builder button.

 • To represent zero or more characters in the WHERE clause’s condition:

Use the % wildcard.

Lesson B Key Terms
%—a wildcard character used in the condition in a SELECT statement’s
WHERE clause; represents zero or more characters

LIKE operator—an operator used along with a wildcard character in the con-
dition in a SELECT statement’s WHERE clause

ORDER BY clause—used in a SELECT statement to sort the selected records

SELECT statement—the SQL statement that allows you to specify the fi elds
and records to select, as well as the order in which the fi elds and records
appear when displayed

SQL—an acronym for Structured Query Language

Structured Query Language—SQL; a set of statements that allows you to
access and manipulate the data stored in a database

WHERE clause—used in a SELECT statement to limit the records to be
selected

C7718_ch14.indd 823C7718_ch14.indd 823 14/03/11 8:59 PM14/03/11 8:59 PM

824

C H A P T E R 1 4 Access Databases and SQL

Lesson B Review Questions

1. SQL stands for .

a. Select Query Language

b. Semi-Quick Language

c. Structured Quick Language

d. Structured Query Language

2. Which of the following SELECT statements will select the First and
Last fi elds from the tblNames table?

a. SELECT First AND Last FROM tblNames

b. SELECT First OR Last FROM tblNames

c. SELECT First, Last FROM tblNames

d. SELECT ONLY First, Last FROM tblNames

3. Which of the following SELECT statements will select the SSN fi eld
from the tblPayInfo table, and then sort the records in descending
order by the SSN fi eld?

a. SELECT SSN FROM tblPayInfo DESC

b. SELECT SSN FROM tblPayInfo
 ORDER BY SSN DESC

c. SELECT SSN FROM tblPayInfo
 WHERE SSN DESC

d. SELECT SSN FROM tblPayInfo
 SORT SSN DESC

4. Which of the following SELECT statements will select only records
whose Status fi eld contains the letter A? Th e Status fi eld is contained
in the tblWorker table.

a. SELECT Id, Name, Status FROM tblWorker
 WHERE Status = 'A'

b. SELECT Id, Name, Status FROM tblWorker
 ORDER BY Status = 'A'

c. SELECT Id, Name, Status FROM tblWorker
 FOR Status = 'A'

d. SELECT Id, Name, Status FROM tblWorker
 SELECT Status = 'A'

C7718_ch14.indd 824C7718_ch14.indd 824 14/03/11 8:59 PM14/03/11 8:59 PM

825

Lesson B Review Questions L E S S O N B

5. Th e tblState table contains a text fi eld named State. Which of the
 following SELECT statements will select the State and Capital fi elds
from only the Kansas and Kentucky records?

a. SELECT State, Capital FROM tblState
 WHERE State LIKE 'K'

b. SELECT State, Capital FROM tblState
 WHERE State LIKE 'K*'

c. SELECT State, Capital FROM tblState
 WHERE State LIKE 'K%'

d. SELECT State, Capital FROM tblState
 WHERE State LIKE 'K#'

6. Th e tblState table contains a numeric fi eld named Population. Which
of the following SELECT statements will select the State and Capital
fi elds from only states with populations that exceed 5,000,000?

a. SELECT State, Capital FROM tblState
 WHERE Population > 5000000

b. SELECT State, Capital FROM tblState
 WHERE Population > '5000000'

c. SELECT State, Capital FROM tblState
 WHERE Population > "5000000"

d. SELECT State, Capital FROM tblState
 SELECT Population > 5000000

7. In a SELECT statement, which clause is used to limit the records that
will be selected?

a. LIMIT

b. ORDER BY

c. ONLY

d. WHERE

8. If a funnel symbol appears next to a fi eld’s name in the Query Builder
dialog box, it indicates that the fi eld is .

a. used in an ORDER BY clause in a SELECT statement

b. used in a WHERE clause in a SELECT statement

c. the primary key

d. the foreign key

9. Th e SQL SELECT statement performs case sensitive comparisons.

a. True

b. False

C7718_ch14.indd 825C7718_ch14.indd 825 14/03/11 8:59 PM14/03/11 8:59 PM

826

C H A P T E R 1 4 Access Databases and SQL

Lesson B Exercises

1. Th e tblMagazine table contains three fi elds. Th e Cost fi eld is numeric.
Th e Code and MagName fi elds contain text.

a. Write a SQL SELECT statement that arranges the records in
descending order by the Cost fi eld.

b. Write a SQL SELECT statement that selects only the MagName
and Cost fi elds from records having a code of PG10.

c. Write a SQL SELECT statement that selects only the MagName
and Cost fi elds from records having a cost of $3 or more.

d. Write a SQL SELECT statement that selects the Visual Basic
record.

e. Write a SQL SELECT statement that selects only the MagName
fi eld from records whose magazine names begin with the letter C.

f. Open the Magazine Solution (Magazine Solution.sln) fi le contained
in the VB2010\Chap14\Magazine Solution folder. If necessary, open
the designer window. Th e application is connected to the Magazines
database, which is stored in the Magazines.accdb fi le. Start the
application to view the records contained in the dataset, and then
stop the application. Open the DataSet Designer window and then
start the TableAdapter Query Confi guration Wizard. Open the
Query Builder dialog box. Use the dialog box to test your SELECT
statements from Steps a through e.

g. Close the Query Builder dialog box and the TableAdapter Query
Confi guration Wizard dialog box. Save the solution. Close the
MagazinesDataSet.xsd window and then close the solution.

2. Th e tblEmploy table contains seven fi elds. Th e Emp_Number, Rate,
and Code fi elds are numeric. Th e Last_Name, First_Name, Hired, and
Status fi elds contain text. Th e Status fi eld contains either the letter F
(for full-time) or the letter P (for part-time). Th e Code fi eld identifi es
the employee’s department: 1 for Accounting, 2 for Advertising, 3 for
Personnel, and 4 for Inventory.

a. Write a SQL SELECT statement that selects all of the fi elds and
records in the table, and then sorts the records in ascending order
by the Code fi eld.

b. Write a SQL SELECT statement that selects only the Emp_Number,
Last_Name, and First_Name fi elds from all of the records.

c. Write a SQL SELECT statement that selects only the records for
full-time employees.

d. Write a SQL SELECT statement that selects the Emp_Number
and Rate fi elds for employees in the Personnel department.

e. Write a SQL SELECT statement that selects the Emp_Number
and Last_Name fi elds for employees having a last name of Smith.

INTRODUCTORY

INTRODUCTORY

C7718_ch14.indd 826C7718_ch14.indd 826 14/03/11 8:59 PM14/03/11 8:59 PM

827

Lesson B Exercises L E S S O N B

f. Write a SQL SELECT statement that selects the Emp_Number
and Last_Name fi elds for employees having a last name that
begins with the letter S.

g. Write a SQL SELECT statement that selects only the fi rst and
last names for part-time employees, and then sorts the records in
descending order by the Last_Name fi eld.

h. Open the Morgan Industries Solution (Morgan Industries
Solution.sln) fi le contained in the Morgan Industries Solution-
SQL folder. If necessary, open the designer window. Th e
 application is connected to the Employees database from Chapter
13. Th e database is contained in the Employees.accdb fi le. Start
the application to view the records contained in the dataset, and
then stop the application. Open the DataSet Designer window
and then start the TableAdapter Query Confi guration Wizard.
Open the Query Builder dialog box. Which fi eld in the table is the
 primary key? How can you tell that it is the primary key?

i. Use the Query Builder dialog box to test your SELECT statements
from Steps a through g.

j. Close the Query Builder dialog box and the TableAdapter Query
Confi guration Wizard dialog box. Save the solution. Close the
EmployeesDataSet.xsd window and then close the solution.

C7718_ch14.indd 827C7718_ch14.indd 827 14/03/11 8:59 PM14/03/11 8:59 PM

828

C H A P T E R 1 4 Access Databases and SQL

 ❚ LESSON C
After studying Lesson C, you should be able to:

 • Create a parameter query

 • Save a query

 • Invoke a query from code

 • Add records to a dataset using the SQL INSERT statement

 • Delete records from a dataset using the SQL DELETE statement

Parameter Queries
In Lesson B, you learned how to create queries that search for records meeting
a specifi c criteria, such as Title = 'Chicago' and YearWon >= 2006.
Most times, however, you will not know ahead of time the values to include
in the criteria. For example, the next time the user runs the query, he or she
may want to view the Gladiator record (Title = 'Gladiator') rather than
the Chicago record. Or, the user may want to view the movies that won the
Academy Award in the year 2007 and later (YearWon >= 2007). When you
don’t know the specifi c value to include in the criteria, you use a parameter
query. A parameter query is a query that uses the parameter marker in
place of the criteria’s value. Th e parameter marker is a question mark (?).
Figure 14-32 shows examples of parameter queries using the tblMovies table
from Lessons A and B.

Parameter queries

Example 1
SELECT YearWon, Title, ProductionCo FROM tblMovies
 WHERE Title = ?
selects all of the fi elds from the record whose title is represented by the parameter
marker

Example 2
SELECT YearWon, Title, ProductionCo FROM tblMovies
 WHERE YearWon >= ?
selects all of the fi elds from records whose YearWon fi eld contains a value that is
greater than or equal to the value represented by the parameter marker

Figure 14-32 Examples of parameter queries

In the following set of steps, you will open the Academy Award Winners
application and then use it to test the SELECT statements from Figure 14-32.

C7718_ch14.indd 828C7718_ch14.indd 828 14/03/11 8:59 PM14/03/11 8:59 PM

829

Parameter Queries L E S S O N C

To test the SELECT statements from Figure 14-32:

1. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express.
Open the Movie Awards Solution (Movie Awards Solution.sln) fi le
contained in the VB2010\Chap14\Movie Awards Solution-Parameter
Queries folder. If necessary, open the designer window. Th e
 application is already connected to the Movies database.

2. Start the application. Th e dataset appears in the DataGridView
 control. See Figure 14-33.

Figure 14-33 Records displayed in the DataGridView control

3. Click the Exit button to end the application. Right-click
MoviesDataSet.xsd in the Solution Explorer window and then click
Open to open the DataSet Designer window.

4. Right-click tblMoviesTableAdapter in the DataSet Designer
 window. Point to Add on the shortcut menu and then click Query
to start the TableAdapter Query Confi guration Wizard. (If Add does
not appear on the shortcut menu, click Add Query instead.) Verify
that the Use SQL statements radio button is selected. Click the Next
button to display the Choose a Query Type screen. Verify that the
“SELECT which returns rows” radio button is selected. Click the Next
button to display the Specify a SQL SELECT statement screen. Click
the Query Builder button to open the Query Builder dialog box.

5. First, you will create a query that selects only the Chicago record. In
the Grid pane, click the blank cell in the Title fi eld’s Filter column.
Type ? and press Enter. Th e Filter column entry tells the Query
Builder to include the WHERE (Title = ?) clause in the SELECT
statement.

6. Click the Execute Query button to run the query. Th e Query
Parameters dialog box opens. Type Chicago in the Value column.
See Figure 14-34.

START HERE

C7718_ch14.indd 829C7718_ch14.indd 829 14/03/11 8:59 PM14/03/11 8:59 PM

830

C H A P T E R 1 4 Access Databases and SQL

Figure 14-34 Query Parameters dialog box

7. Click the OK button to close the Query Parameters dialog box. Th e
Chicago record appears in the Results pane.

8. Now, you will run the query again. Th is time, however, you will select
the Gladiator record. Click the Execute Query button to run the
query. Type Gladiator in the Value column of the Query Parameters
dialog box and then click the OK button. Th e Gladiator record
appears in the Results pane.

9. Next, you will create a query that selects all of the fi elds, but only
from records for the year 2006 and later. Delete the = ? from the
Title fi eld’s Filter column. Now, type >= ? in the YearWon fi eld’s
Filter column and then press Enter. Click the Execute Query button
to run the query. Type 2006 in the Value column of the Query
Parameters dialog box and then click the OK button. Th ree records
appear in the Results pane.

10. Now, you will run the query again. Th is time, however, you will
select records for the year 2007 and later. Click the Execute Query
 button to run the query. Type 2007 in the Value column of the Query
Parameters dialog box and then click the OK button. Two records
appear in the Results pane.

11. Click the Cancel button in the Query Builder dialog box and then
click the Cancel button in the TableAdapter Query Confi guration
Wizard dialog box.

12. Save the solution. Close the MoviesDataSet.xsd window and then
close the solution.

C7718_ch14.indd 830C7718_ch14.indd 830 14/03/11 8:59 PM14/03/11 8:59 PM

831

Saving a Query L E S S O N C

Saving a Query
In order for an application to use a query during run time, you will need to
save the query and then invoke it from code. You save a query that contains
the SELECT statement by associating the query with one or more methods.
Th e TableAdapter Query Confi guration Wizard provides an easy way of per-
forming this task.

To use the TableAdapter Query Confi guration Wizard to save a query:

1. Open the Academy Award Solution (Academy Award Solution.sln)
fi le contained in the VB2010\Chap14\Academy Award Solution-
Parameter Query folder. If necessary, open the designer window. Th e
application is connected to the Movies database. Th e application
allows the user to display either all of the records or only the record
for the year entered in the txtYear control.

2. Save the solution and then start the application. Th e dataset appears
in the DataGridView control. See Figure 14-35.

txtYear

Figure 14-35 Interface for the Academy Award Winners application in Lesson C

3. Click the Exit button to end the application. Right-click
MoviesDataSet.xsd in the Solution Explorer window and then click
Open to open the DataSet Designer window.

4. Right-click tblMoviesTableAdapter in the DataSet Designer
 window. Point to Add on the shortcut menu and then click Query
to start the TableAdapter Query Confi guration Wizard. (If Add
does not appear on the shortcut menu, click Add Query instead.)
Verify that the Use SQL statements radio button is selected. Click
the Next button to display the Choose a Query Type screen. Verify
that the “SELECT which returns rows” radio button is selected. Click
the Next button to display the Specify a SQL SELECT statement
screen. Th e “What data should the table load?” box contains the
default query, which selects all of the fi elds and records in the
table. See Figure 14-36. You can invoke the default query using the
TableAdapter object’s Fill method.

START HERE

C7718_ch14.indd 831C7718_ch14.indd 831 14/03/11 8:59 PM14/03/11 8:59 PM

832

C H A P T E R 1 4 Access Databases and SQL

default query

Figure 14-36 Default query in the Specify a SQL SELECT statement screen

5. Click the Query Builder button to open the Query Builder dialog
box. Recall that the interface provides the txtYear control for the
user to enter a year number. You will create a parameter query that
allows the user to display the Academy Award winner for that year.
In the Grid pane, click the blank cell in the YearWon fi eld’s Filter
column. Type ? and press Enter. Th e Query Builder adds the WHERE
(YearWon = ?) clause to the SELECT statement.

6. Click the Execute Query button to run the query. Th e Query
Parameters dialog box opens. Type 2004 in the Value column and
then click the OK button to close the dialog box. Th e 2004 record
appears in the Results pane.

7. Click the OK button to close the Query Builder dialog box. Th e
parameter query appears in the “What data should the table load?”
box. See Figure 14-37.

parameter query

Figure 14-37 Parameter query in the Specify a SQL SELECT statement screen

8. Click the Next button to display the Choose Methods to Generate
screen. If necessary, select the Fill a DataTable and Return a
DataTable check boxes. Change the Fill a DataTable method’s name
from FillBy to FillByYear. Change the Return a DataTable method’s
name from GetDataBy to GetDataByYear. See Figure 14-38. As
the fi gure indicates, the FillByYear and GetDataByYear methods are
 associated with the parameter query you created. Th erefore, you can
use the methods to invoke the query during run time.

C7718_ch14.indd 832C7718_ch14.indd 832 14/03/11 8:59 PM14/03/11 8:59 PM

833

Invoking a Query from Code L E S S O N C

these methods are associated
with the parameter query from
Figure 14-37

Figure 14-38 Completed Choose Methods to Generate screen

9. Click the Next button to display the Wizard Results screen. See
Figure 14-39.

Figure 14-39 Wizard Results screen

10. Click the Finish button. Th e FillByYear and GetDataByYear methods
are added to the DataSet Designer window, as shown in Figure 14-40.

retrieves all of the records

retrieves only the record for
the year entered by the user

Figure 14-40 Method names included in the DataSet Designer window

11. Save the solution and then close the MoviesDataSet.xsd window.

Invoking a Query from Code
You can use the methods associated with a query to invoke the query during
run time. You do this by entering the methods in a procedure. In the next set
of steps, you will enter the appropriate methods in the Display button’s Click
event procedure.

C7718_ch14.indd 833C7718_ch14.indd 833 14/03/11 8:59 PM14/03/11 8:59 PM

834

C H A P T E R 1 4 Access Databases and SQL

To code the Display button’s Click event procedure:

1. Open the Code Editor window. Replace <your name> and
< current date> in the comments with your name and the current
date, respectively.

2. Locate the btnDisplay control’s Click event procedure. Click the
blank line below the comment and then press Enter to insert
another blank line.

3. If the All radio button is selected, the procedure will use the
TblMoviesTableAdapter object’s Fill method to select all of the
records. (Recall that the form’s Load event procedure also uses the Fill
method.) Enter the lines of code shown in Figure 14-41.

enter these
lines of code

Figure 14-41 If clause and Fill method entered in the procedure

4. If the All radio button is not selected, it means that the For Year
radio button is selected. In that case, the procedure will use the
TblMoviesTableAdapter object’s FillByYear method to select the
appropriate record. Th e record to select is the one whose YearWon
fi eld matches the year number entered in the txtYear control. First,
you will determine whether the control contains a value. If it does not
contain a value, you will display an appropriate message. Enter the
lines of code shown in Figure 14-42.

enter these
lines of code

Figure 14-42 Additional code entered in the procedure

5. Th e YearWon fi eld is numeric, so you will need to convert the text
box entry to a number. Enter the following lines of code:

Else
 Dim intYear As Integer
 Integer.TryParse(txtYear.Text, intYear)

START HERE

C7718_ch14.indd 834C7718_ch14.indd 834 14/03/11 8:59 PM14/03/11 8:59 PM

835

Invoking a Query from Code L E S S O N C

6. Next, you will invoke the TblMoviesTableAdapter object’s FillByYear
method. Because the method is associated with a parameter query,
you will need to include the parameter information in the method.
Enter the additional lines of code shown in Figure 14-43.

enter these
lines of code

year number for the
parameter query

Figure 14-43 Display button’s Click event procedure

7. Save the solution and then start the application. Click the For Year
radio button and then click the Display button. Th e “Please enter the
year.” message appears in a message box. Close the message box.

8. Type 2005 in the text box located below the For Year radio button
and then click the Display button. Only the 2005 record appears in
the DataGridView control. See Figure 14-44.

Figure 14-44 2005 record shown in the interface

9. Click the All radio button and then click the Display button. All of
the records appear in the DataGridView control.

10. Click the Exit button. Close the Code Editor window and then close
the solution.

C7718_ch14.indd 835C7718_ch14.indd 835 14/03/11 8:59 PM14/03/11 8:59 PM

836

C H A P T E R 1 4 Access Databases and SQL

The INSERT and DELETE Statements
In addition to using SQL to select records, you also can use it to insert
records into a database, as well as to delete records from a database. You use
the INSERT statement to insert records, and use the DELETE statement to
delete records. Figures 14-45 and 14-46 show the syntax and examples of the
INSERT and DELETE statements, respectively.

INSERT statement

Syntax
INSERT INTO tableName (fi eldName1, fi eldName2, . . . , fi eldNameN)
 VALUES (fi eld1Value, fi eld2Value, . . . , fi eldNValue)

Example 1
INSERT INTO 'tblMovies' ('YearWon', 'Title', 'ProductionCo')
 VALUES (1997, 'Titanic', 'Paramount, 20th Century Fox')

Example 2
INSERT INTO 'tblMovies' ('YearWon', 'Title', 'ProductionCo')
 VALUES (1994, 'Forrest Gump', 'Paramount')

Example 3—parameter query
INSERT INTO 'tblMovies' ('YearWon', 'Title', 'ProductionCo')
 VALUES (?, ?, ?)

Figure 14-45 Syntax and examples of the SQL INSERT statement

DELETE statement

Syntax
DELETE FROM tableName WHERE condition

Example 1
DELETE FROM tblMovies
 WHERE YearWon = 1997

Example 2
DELETE FROM tblMovies
 WHERE Title = 'Forrest Gump'

Example 3—parameter query
DELETE FROM tblMovies
 WHERE YearWon = ?

Figure 14-46 Syntax and examples of the SQL DELETE statement

C7718_ch14.indd 836C7718_ch14.indd 836 14/03/11 8:59 PM14/03/11 8:59 PM

837

The INSERT and DELETE Statements L E S S O N C

In the next set of steps, you will use the TableAdapter Query Confi guration
Wizard to create both an Insert query and a Delete query for the Movies
database in the Academy Award Winners application. An Insert query uses
the INSERT statement to add a record to a database. A Delete query uses the
DELETE statement to delete a record from a database.

To create Insert and Delete queries in the Academy Award Winners
application:

1. Open the Academy Award Solution (Academy Award Solution.sln)
fi le contained in the VB2010\Chap14\Academy Award Solution-
InsertDelete folder. If necessary, open the designer window. Th e
application is already connected to the Movies database. Start
the application to view the records contained in the dataset. See
Figure 14-47.

txtAddYear

txtTitle
txtCompany

txtDeleteYear

Figure 14-47 Records displayed in the TblMoviesDataGridView control

2. Click the Exit button to end the application. First, you will create the
Insert query. Right-click MoviesDataSet.xsd in the Solution Explorer
window and then click Open to open the DataSet Designer window.

3. Right-click tblMoviesTableAdapter in the DataSet Designer
 window. Point to Add on the shortcut menu and then click Query
to start the TableAdapter Query Confi guration Wizard. (If Add does
not appear on the shortcut menu, click Add Query instead.) Verify
that the Use SQL statements radio button is selected. Click the Next
 button to display the Choose a Query Type screen.

4. Click the INSERT radio button and then click the Next button to
 display the Specify a SQL INSERT statement screen, which con-
tains the default INSERT statement for the tblMovies table. See
Figure 14-48.

START HERE

C7718_ch14.indd 837C7718_ch14.indd 837 14/03/11 8:59 PM14/03/11 8:59 PM

838

C H A P T E R 1 4 Access Databases and SQL

Figure 14-48 Default INSERT statement for the tblMovies table

5. Click the Next button to display the Choose Function Name
screen. Change the function’s name to InsertRecordQuery.
See Figure 14-49.

Figure 14-49 Choose Function Name screen

6. Click the Next button to display the Wizard Results screen. See
Figure 14-50.

Figure 14-50 Wizard Results screen

7. Click the Finish button. Th e InsertRecordQuery function is added to
the DataSet Designer window, as shown in Figure 14-51.

InsertRecordQuery
function

Figure 14-51 InsertRecordQuery function

C7718_ch14.indd 838C7718_ch14.indd 838 14/03/11 8:59 PM14/03/11 8:59 PM

839

The INSERT and DELETE Statements L E S S O N C

8. Now, you will create the Delete query. Right-click
 tblMoviesTableAdapter in the DataSet Designer window. Click
Add Query on the shortcut menu to start the TableAdapter Query
Confi guration Wizard. (If Add Query does not appear on the shortcut
menu, point to Add and then click Query.) Verify that the Use SQL
statements radio button is selected. Click the Next button to display
the Choose a Query Type screen.

9. Click the DELETE radio button and then click the Next button to
 display the Specify a SQL DELETE statement screen, which contains
the default DELETE statement for the tblMovies table. Click the
Query Builder button. Change the statement in the SQL pane of
the Query Builder dialog box as shown in Figure 14-52.

Figure 14-52 SQL DELETE statement

10. Click the OK button, and then click the Next button to display
the Choose Function Name screen. Change the function’s name to
 DeleteRecordQuery, and then click the Next button to display
the Wizard Results screen. Click the Finish button to add the
 DeleteRecordQuery function to the DataSet Designer window. See
Figure 14-53.

DeleteRecordQuery function

Figure 14-53 DeleteRecordQuery function

11. Save the solution and then close the MoviesDataSet.xsd window.

In the next set of steps, you will code the Click event procedures for the Add
and Delete buttons. Th e Add button will use the InsertRecordQuery func-
tion to add a record to the Movies database. Th e Delete button will use the
DeleteRecordQuery function to delete a record from the Movies database.

To code the Add and Delete buttons:

1. Open the Code Editor window. Locate the btnAdd control’s Click
event procedure. Click the blank line below the comment and then
press Enter to insert another blank line. First, you will determine
whether the txtAddYear control contains data. If it doesn’t, the
 procedure should display an appropriate message. Enter the selection
structure shown in Figure 14-54.

START HERE

C7718_ch14.indd 839C7718_ch14.indd 839 14/03/11 8:59 PM14/03/11 8:59 PM

840

C H A P T E R 1 4 Access Databases and SQL

enter this selection
structure

Figure 14-54 Selection structure entered in the btnAdd control’s Click event
procedure

2. If the txtAddYear control contains data, you will need to convert the
data to a number, because the YearWon fi eld in the tblMovies table is
numeric. Enter the following lines of code:

Else
 Dim intYear As Integer
 Integer.TryParse(txtAddYear.Text, intYear)

3. Now, you will use the TblMoviesTableAdapter object’s
InsertRecordQuery function to add the record to the database.
You then will use the object’s Fill method to retrieve the appropriate
data from the database. Enter the additional lines of code shown in
Figure 14-55.

enter these four
lines of code

Figure 14-55 Additional lines of code entered in the btnAdd_Click procedure

4. Next, you will code the Delete button’s Click event procedure. Locate
the btnDelete control’s Click event procedure. Click the blank line
below the comment and then press Enter to insert another blank line.
First, you will determine whether the txtDeleteYear control contains
data. If it doesn’t, the procedure should display an appropriate mes-
sage. Enter the selection structure shown in Figure 14-56.

enter this selection
structure

Figure 14-56 Selection structure entered in the btnDelete control’s Click event
procedure

C7718_ch14.indd 840C7718_ch14.indd 840 14/03/11 8:59 PM14/03/11 8:59 PM

841

The INSERT and DELETE Statements L E S S O N C

5. If the txtDeleteYear control contains data, you will need to convert
the data to a number, because the YearWon fi eld in the tblMovies
table is numeric. Enter the following lines of code:

Else
 Dim intYear As Integer
 Integer.TryParse(txtDeleteYear.Text, intYear)

6. Before the procedure deletes the record, it will ask the user to
 confi rm the deletion. Enter the nested selection structure shown in
Figure 14-57.

enter this nested
selection structure

Figure 14-57 Nested selection structure entered in the procedure

7. If the user confi rms the deletion, you will use the
TblMoviesTableAdapter object’s DeleteRecordQuery function to
delete the record from the database. You then will use the object’s Fill
method to retrieve the appropriate data from the database. Enter the
additional lines of code shown in Figure 14-58.

enter these two
lines of code

Figure 14-58 Additional lines of code entered in the btnDelete_Click procedure

Figure 14-59 shows the code entered in the Click event procedures for the
btnAdd and btnDelete controls. It also shows the code entered in the form’s
Load event procedure.

Private Sub frmMain_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load
 'TODO: This line of code loads data into the
 'MoviesDataSet.tblMovies' table. You can move,
 or remove it, as needed.
 Me.TblMoviesTableAdapter.Fill(Me.MoviesDataSet.tblMovies)
 TblMoviesBindingSource.Sort = "YearWon"
End Sub

Figure 14-59 Most of the application’s code (continues)

C7718_ch14.indd 841C7718_ch14.indd 841 14/03/11 8:59 PM14/03/11 8:59 PM

842

C H A P T E R 1 4 Access Databases and SQL

Private Sub btnAdd_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnAdd.Click
 ' add a record to the dataset

 If txtAddYear.Text.Trim = String.Empty Then
 MessageBox.Show("Please enter the year.",
 "Add a Record",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 Else
 Dim intYear As Integer
 Integer.TryParse(txtAddYear.Text, intYear)
 TblMoviesTableAdapter.InsertRecordQuery(intYear,
 txtTitle.Text,
 txtCompany.Text)
 TblMoviesTableAdapter.Fill(MoviesDataSet.tblMovies)
 End If
End Sub

Private Sub btnDelete_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDelete.Click
 ' delete a record from the dataset

 If txtDeleteYear.Text.Trim = String.Empty Then
 MessageBox.Show("Please enter the year.",
 "Delete a Record",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 Else
 Dim intYear As Integer
 Integer.TryParse(txtDeleteYear.Text, intYear)
 If MessageBox.Show("Delete record for year " &
 intYear.ToString & "?",
 "Delete Confirmation",
 MessageBoxButtons.YesNo,
 MessageBoxIcon.Exclamation) =
 DialogResult.Yes Then
 TblMoviesTableAdapter.DeleteRecordQuery(intYear)
 TblMoviesTableAdapter.Fill(MoviesDataSet.tblMovies)
 End If
 End If
End Sub

Figure 14-59 Most of the application’s code

To test the Add and Delete buttons:

1. Save the solution and then start the application. Click the Add button.
Th e “Please enter the year.” message appears in a message box. Close
the message box.

2. Now, you will add two records to the database. Click the Year won box
in the Add new record section of the interface. Type 1990 and then
press Tab. Type Dances with Wolves, press Tab, type Orion, and then
click the Add button. Th e new record appears at the top of the list in the
DataGridView control. Th is is because the form’s Load event procedure

START HERE

(continued)

C7718_ch14.indd 842C7718_ch14.indd 842 14/03/11 8:59 PM14/03/11 8:59 PM

843

The INSERT and DELETE Statements L E S S O N C

contains the TblMoviesBindingSource.Sort = "YearWon"
 statement, which sorts the records in numerical order by the YearWon
fi eld. You learned about the BindingSource object’s Sort method in
Lesson A.

3. On your own, add the following record to the database: 2009, Forrest
Gump, Paramount. Th e record appears at the end of the list in the
DataGridView control. See Figure 14-60.

new record

new record

Figure 14-60 Two records added to the database

4. Click the Exit button to end the application, and then start the
application again to verify that both new records appear in the
DataGridView control.

5. Next, you will delete the record for the year 2009. Click 2009 in
the DataGridView control. Notice that 2009 now appears in the
 txtDeleteYear control. Th is is because the txtDeleteYear control is
bound to the YearWon fi eld in the dataset. Click the Delete button.
Th e “Delete record for year 2009?” message appears in a message box.
Click the Yes button to delete the record.

6. On your own, delete the record for the year 1990.

7. Click 2005 in the DataGridView control and then click the Delete
button. When the Delete Confi rmation dialog box appears, click the
No button. Th e record remains in the DataGridView control.

8. Click the Exit button to end the application, and then start the appli-
cation again to verify that only the records for the years 1990 and
2009 were deleted.

9. Click the Exit button to end the application. Close the Code Editor
window and then close the solution.

C7718_ch14.indd 843C7718_ch14.indd 843 14/03/11 8:59 PM14/03/11 8:59 PM

844

C H A P T E R 1 4 Access Databases and SQL

Lesson C Summary

 • To create a parameter query:

Use a question mark in place of the criteria’s value in the WHERE clause.

 • To save a query that contains the SELECT statement:

Use the TableAdapter Query Confi guration Wizard to associate the query
with one or more methods.

 • To save a query that contains either the INSERT statement or the DELETE
statement:

Use the TableAdapter Query Confi guration Wizard to associate the query
with a function.

 • To invoke a query from code:

Enter the query’s method or function in a procedure.

 • To use SQL to insert records into a database:

Use the INSERT statement.

 • To use SQL to delete records from a database:

Use the DELETE statement.

Lesson C Key Terms
?—the parameter marker in a parameter query

Delete query—a query that uses the DELETE statement to delete a record
from a database

DELETE statement—the SQL statement used to delete a record from a
database

Insert query—a query that uses the INSERT statement to add a record to a
database

INSERT statement—the SQL statement used to insert a record into a
database

Parameter marker—a question mark (?)

Parameter query—a query that uses the parameter marker (?) in place of the
criteria’s value

C7718_ch14.indd 844C7718_ch14.indd 844 14/03/11 8:59 PM14/03/11 8:59 PM

845

Lesson C Exercises L E S S O N C

Lesson C Review Questions

1. When used in a parameter query, which of the following WHERE
clauses selects the records for employees working more than 40
hours?

a. WHERE Hours >= 40

b. WHERE Hours > ?

c. WHERE Hours > #

d. WHERE Hours < ?

2. Th e FillByCity method is associated with a parameter query. Which
of the following invokes the method, passing it the contents of the
 txtCity control’s Text property?

a. TblCityTableAdapter.FillByCity(CityDataSet.
tblCity, txtCity.Text)

b. TblCityTableAdapter.FillByCity(txtCity.Text)

c. TblCityBindingSource.FillByCity(CityDataSet.
tblCity, txtCity.Text)

d. CityDataSet.FillByCity(txtCity.Text)

3. You can use the SQL statement to add a record to a
database.

a. ADD

b. ADD INTO

c. APPEND

d. INSERT

4. You can use the SQL statement to remove a record
from a database.

a. DELETE

b. DETACH

c. ERASE

d. REMOVE

Lesson C Exercises

1. In this exercise, you modify one of the Academy Award Winners
applications from this lesson. Use Windows to make a copy of the
Academy Award Solution-InsertDelete folder. Rename the copy
Modifi ed Academy Award-InsertDelete Solution. Open the Academy
Award Solution (Academy Award Solution.sln) fi le contained in the
Modifi ed Academy Award Solution-InsertDelete folder. Open the

INTRODUCTORY

C7718_ch14.indd 845C7718_ch14.indd 845 14/03/11 8:59 PM14/03/11 8:59 PM

846

C H A P T E R 1 4 Access Databases and SQL

designer and Code Editor windows. If the user attempts to add
a record that has the same year number as an existing record,
a run time error will occur when the computer processes the
InsertRecordQuery function in the btnAdd control’s Click event
procedure. Place the statement containing the function, as well
as the statement containing the Fill method, in the Try block of a
Try . . . Catch statement. Th e Catch block should display a message
alerting the user that the record for that year already exists. Save
the solution and then start the application. Test the application by
attempting to add a duplicate record. Close the Code Editor window
and then close the solution.

2. Open the JM Sales Solution (JM Sales Solution.sln) fi le contained in
the VB2010\Chap14\JM Sales Solution folder. If necessary, open the
designer window. Th e application is connected to the AnnualSales
database. Th e database contains one table, which is named tblSales.
Th e table contains two numeric fi elds (YearNum and Sales) and fi ve
records. Th e Add button’s Click event procedure should allow the
user to add records to the database. Th e Delete button’s Click event
procedure should allow the user to delete records from the database.
Use SQL to code the procedures. Save the solution and then start
and test the application. Be sure to try adding a record whose year
number matches an existing year number. Stop the application. Use a
Try . . . Catch statement to handle the run time error. (Refer to Exercise 1.)
Save the solution and then start and test the application again. Close
the Code Editor window and then close the solution.

3. Open the Addison Playhouse Solution (Addison Playhouse Solution.sln)
fi le contained in the VB2010\Chap14\Addison Playhouse Solution
folder. If necessary, open the designer window. Th e application is con-
nected to the Play database. Th e database contains one table named
 tblReservations. Th e table has 20 records. Each record has three fi elds:
a numeric fi eld named Seat and two text fi elds named Patron and Phone.
Th e application should allow the user to add records to the database and
also delete records (by seat number) from the database. It also should
allow the user to enter a seat number and then view the associated
record. In addition, it should allow the user to view the records whose
Patron fi eld begins with the one or more characters the user enters.
(Hint: Use LIKE ? & '%' as the fi lter.) Th e records should always
appear in order by the seat number. Code the application. Save the solu-
tion and then start and test the application. Close the Code Editor win-
dow and then close the solution.

4. Open the Polter Solution (Polter Solution.sln) fi le contained in
the VB2010\Chap14\Polter Solution folder. If necessary, open the
designer window. Th e application is connected to the Products
 database. Th e database contains a table named tblProducts. Th e table
contains 10 records, each composed of three fi elds. Th e ItemNum
and ItemName fi elds contain text; the Price fi eld contains numbers.
Th e application should allow the user to view the record associated
with a specifi c item number. It also should allow the user to enter a
price and then view the records whose prices are at least that amount.

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

C7718_ch14.indd 846C7718_ch14.indd 846 14/03/11 8:59 PM14/03/11 8:59 PM

847

Lesson C Exercises L E S S O N C

Th e records should appear in order by the item number when the
 application is started. Code the application. Save the solution and
then start and test the application. Close the Code Editor window and
then close the solution.

5. Open the Morgan Industries Solution (Morgan Industries Solution.sln)
fi le contained in the Morgan Industries Solution-Advanced folder. If
 necessary, open the designer window. Th e application is connected
to the Employees database. Th e database contains one table, which
is named tblEmploy. Th e table contains seven fi elds and 14 records.
Th e Emp_Number fi eld is the primary key. Th e Status fi eld contains
the employment status, which is either the letter F (for full-time) or
the letter P (for part-time). Th e Code fi eld identifi es the employee’s
 department: 1 for Accounting, 2 for Advertising, 3 for Personnel, and
4 for Inventory. Th e records should appear in order by the employee
number when the application is started. Th e application should allow
the user to display all of the records, only the part-time records, only
the full-time records, and only the records for a specifi c department.
Code the application. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

ADVANCED

C7718_ch14.indd 847C7718_ch14.indd 847 14/03/11 8:59 PM14/03/11 8:59 PM

A P P E N D I X A
Locating Syntax
and Logic Errors

In this appendix, you will learn how to locate and correct syntax and logic
errors. You also will learn how to use the Debug menu’s Step Into option, as
well as how to set and remove a breakpoint.

Finding Syntax Errors
As you learned in Chapter 2, a syntax error occurs when you break one of
a programming language’s rules. Most syntax errors are a result of typing
errors that occur when entering instructions, such as typing Me.Clse()
instead of Me.Close(). Th e Code Editor detects most syntax errors as you
enter the instructions. However, if you are not paying close attention to your
computer screen, you may not notice the errors. In the following set of steps,
you will observe what happens when you try to start an application that
 contains a syntax error.

To debug the Total Sales Calculator application:

1. Start Visual Studio 2010 or Visual Basic 2010 Express. Open the Total
Sales Solution (Total Sales Solution.sln) fi le contained in the VB2010\
AppA\Total Sales Solution folder. If necessary, open the designer
window. Th e application calculates and displays the total of the sales
amounts entered by the user.

2. Open the Code Editor window. Replace <your name> and <current
date> in the comments with your name and the current date, respec-
tively. Figure A-1 shows the code entered in the btnCalc control’s
Click event procedure. Th e jagged lines alert you that three lines
of code contain a syntax error. However, you may fail to notice the
 jagged lines if you are not paying really close attention to the code.

START HERE

C7718_appendixA.indd 848C7718_appendixA.indd 848 14/03/11 7:17 PM14/03/11 7:17 PM

849

Finding Syntax Errors

syntax error

syntax error

syntax error

Figure A-1 btnCalc control’s Click event procedure

3. Start the application. If the dialog box shown in Figure A-2 appears,
click the No button.

Figure A-2 Dialog box

4. Th e Error List window shown in Figure A-3 opens at the bottom of
the IDE. Th e Error List window indicates that the code contains three
errors. Th e window provides a description of each error and the loca-
tion of each error in the code. If you want to change the size of the
Error List window, position your mouse pointer on the window’s top
border until the mouse pointer becomes a sizing pointer. Th en press
and hold down the left mouse button while you drag the border either
up or down.

Figure A-3 Error List window

5. Double-click the fi rst error message in the Error List window.
A list of suggestions for fi xing the error appears in a box, as shown in
 Figure A-4. (If the suggestion box does not appear, hover your mouse

C7718_appendixA.indd 849C7718_appendixA.indd 849 14/03/11 7:17 PM14/03/11 7:17 PM

850

A P P E N D I X A Locating Syntax and Logic Errors

pointer over the thin red box that appears below the letter r. An
Error icon, which is a white exclamation point in a red circle, appears
along with a down arrow. If you don’t see the down arrow, hover your
mouse pointer over the Error icon until the down arrow appears.
Click the down arrow.)

Figure A-4 Result of double-clicking the fi rst error message

6. Th e fi rst error is nothing more than a typing error. In this case, the
programmer meant to type Integer. Click the Change 'Intger' to
'Integer'. suggestion. Th e Code Editor changes Intger to Integer
in the Dim statement and then removes the error from the Error List
window.

7. Double-click ')' expected. in the Error List window. Click Insert the
missing ')'. in the list of suggestions. Th e Code Editor inserts the
missing parenthesis and then removes the error message from the
Error List window.

8. Double-click the remaining error message in the Error List window.
Th e Code Editor off ers two suggestions for fi xing the error, as shown
in Figure A-5.

Figure A-5 Result of double-clicking the remaining error message

C7718_appendixA.indd 850C7718_appendixA.indd 850 14/03/11 7:17 PM14/03/11 7:17 PM

851

Locating Logic Errors

9. Neither suggestion shown in Figure A-5 is appropriate in this case.
Th e error’s description indicates that the Code Editor does not recog-
nize the name intTota. Th e unrecognized name appears on the left
side of an assignment statement, so it belongs to something that can
store information: either the property of a control or a variable. It’s
not the name of either a control or a property, so it must be the name
of a variable. Looking at the variable declarations at the beginning of
the procedure, you will notice that the procedure declares a variable
named intTotal. Obviously, the programmer mistyped the vari-
able’s name. Change intTota to intTotal in the assignment state-
ment and then move the insertion point to another line in the Code
Editor window. When you do this, the Code Editor removes the error
message from the Error List window.

10. Close the Error List window. Save the solution and then start the
application. Test the application using 2000 as the North sales, 3000
as the South sales, 1200 as the East sales, and 1800 as the West sales.
Click the Calculate button. Th e total sales are $8,000. See Figure A-6.

Figure A-6 Total sales shown in the interface

11. Click the Exit button to end the application. Close the Code Editor
window and then close the solution.

Locating Logic Errors
As you observed in the previous section, the Code Editor makes syntax
errors easy to fi nd and correct. A much more diffi cult type of error to locate,
and one that the Code Editor cannot detect, is a logic error. A logic error
can occur for a variety of reasons, such as forgetting to enter an instruction
or entering the instructions in the wrong order. Some logic errors occur
as a result of calculation statements that are correct syntactically, but
 incorrect mathematically. An example of this is the dblRadiusSquared =
 dblRadius + dblRadius statement. Th e statement’s syntax is correct, but
it is incorrect mathematically: you square a value by multiplying it by itself,
not by adding it to itself. In the remainder of this appendix, you will debug
two applications that contain logic errors.

To debug the Discount Calculator application:

1. Open the Discount Solution (Discount Solution.sln) fi le contained in
the VB2010\AppA\Discount Solution folder. If necessary, open the

START HERE

C7718_appendixA.indd 851C7718_appendixA.indd 851 14/03/11 7:17 PM14/03/11 7:17 PM

852

A P P E N D I X A Locating Syntax and Logic Errors

designer window. Th e application calculates and displays three dis-
count amounts, which are based on the price entered by the user.

2. Open the Code Editor window. Replace <your name> and <current
date> in the comments with your name and the current date, respec-
tively. Figure A-7 shows the code entered in the btnCalc control’s
Click event procedure.

Figure A-7 Code entered in the btnCalc control’s Click event procedure

3. Start the application. Type 100 in the Price box and then click the
Calculate button. Th e interface shows that each discount is 0.00,
which is incorrect. Click the Exit button to stop the application.

4. You’ll use the Debug menu to run the Visual Basic debugger, which
is a tool that helps you locate the logic errors in your code. Click
Debug on the menu bar. Th e menu’s Step Into option will start your
application and allow you to step through your code. It does this by
executing the code one statement at a time, pausing immediately
before each statement is executed. Click Step Into. Type 100 in the
Price box and then click the Calculate button. Th e debugger high-
lights the fi rst instruction to be executed. In this case, it highlights
the btnCalc _Click procedure header. In addition, an arrow points
to the instruction (as shown in Figure A-8) and the code’s execution
is paused. (If the interface still appears on the screen, click the Code
Editor window’s title bar.)

Figure A-8 Procedure header highlighted

C7718_appendixA.indd 852C7718_appendixA.indd 852 14/03/11 7:17 PM14/03/11 7:17 PM

853

Locating Logic Errors

5. To execute the highlighted instruction, you can use either the Debug
menu’s Step Into option or the F8 key on your keyboard. Press the
F8 key. After the computer processes the procedure header, the
debugger highlights the next statement to be processed—in this case,
the dblDisc10 = dblPrice * 0.1 statement—and then pauses
execution of the code. (Th e Dim statements are skipped over because
they are not considered executable by the debugger.)

6. While the execution of a procedure’s code is paused, you can view the
contents of properties and variables that appear in the highlighted
statement, as well as in the statements above it in the procedure.
Before you view the contents of a property or variable, however, you
should consider the value you expect to fi nd. Before the dblDisc10 =
dblPrice * 0.1 statement is processed, the dblDisc10 vari-
able should contain its initial value, 0. (Recall that the Dim state-
ment initializes numeric variables to 0.) Place your mouse pointer on
dblDisc10 in the highlighted statement. Th e variable’s name and
current value appear in a small box, as shown in Figure A-9. (Th e .0
indicates that the value’s data type is Double.) At this point, the
dblDisc10 variable’s value is correct.

variable’s name
and value

Figure A-9 Value stored in the dblDisc10 variable before the highlighted
statement is executed

7. Now consider the value you expect the dblPrice variable to contain.
Before the highlighted statement is processed, the dblPrice variable
should contain the number 100, which is the value you entered in the
Price box. Place your mouse pointer on dblPrice in the highlighted
statement. As Figure A-10 shows, the dblPrice variable contains 0.0,
which is its initial value. Consider why the dblPrice variable’s value
is incorrect. In this case, the value is incorrect because no statement
above the highlighted statement assigns the Price box’s value to the
variable. In other words, a statement is missing from the procedure.

variable’s name
and value

Figure A-10 Value stored in the dblPrice variable before the highlighted
statement is executed

C7718_appendixA.indd 853C7718_appendixA.indd 853 14/03/11 7:17 PM14/03/11 7:17 PM

854

A P P E N D I X A Locating Syntax and Logic Errors

8. Click Debug on the menu bar and then click Stop Debugging to
stop the debugger. Click the blank line below the last Dim statement
and then press Enter to insert another blank line. Enter the following
comment and TryParse method:

' assign price to a variable
Double.TryParse(txtPrice.Text, dblPrice)

9. Save the solution. Click Debug on the menu bar and then click Step
Into. Type 100 in the Price box and then click the Calculate button.
(If the interface still appears on the screen, click the Code Editor win-
dow’s title bar.) Press F8 to process the procedure header. Th e debug-
ger highlights the statement containing the TryParse method and
then pauses execution of the code.

10. Before the highlighted statement is processed, the txtPrice control’s
Text property should contain 100, which is the value you entered in
the control. Place your mouse pointer on txtPrice.Text in the
highlighted statement. Th e box shows that the Text property contains
the expected value. Th e 100 is enclosed in quotation marks because it
is considered a string.

11. Th e dblPrice variable should contain its initial value, 0.0. Place your
mouse pointer on dblPrice in the highlighted statement. Th e box
shows that the variable contains the expected value.

12. Press F8 to process the TryParse method. Th e debugger highlights
the dblDisc10 = dblPrice * 0.1 assignment statement
before pausing execution of the code. Place your mouse pointer on
dblPrice in the TryParse method, as shown in Figure A-11. Notice
that after the method is processed by the computer, the dblPrice
variable contains the number 100.0.

variable’s name
and value

Figure A-11 Value stored in the dblPrice variable after the TryParse method
is executed

13. Before the highlighted assignment statement is executed, the dblDisc10
variable should contain its initial value, and the dblPrice variable
should contain the value assigned to it by the TryParse method. Place
your mouse pointer on dblDisc10 in the highlighted statement. Th e
box shows that the variable contains 0.0, which is correct. Place your
mouse pointer on dblPrice in the highlighted statement. Th e box
shows that the variable contains 100.0, which also is correct.

14. After the highlighted statement is processed, the dblPrice variable
should still contain 100.0. However, the dblDisc10 variable should
contain 10.0, which is 10% of 100.0. Press F8 to execute the statement,
and then place your mouse pointer on dblDisc10 in the statement.
Th e box shows that the variable contains the expected value. On your
own, verify that the dblPrice variable in the statement contains the
appropriate value.

C7718_appendixA.indd 854C7718_appendixA.indd 854 14/03/11 7:17 PM14/03/11 7:17 PM

855

Setting Breakpoints

15. To continue program execution without the debugger, click Debug
on the menu bar and then click Continue. Th is time, the correct
 discount amounts appear in the interface, as shown in Figure A-12.

Figure A-12 Discount amounts shown in the interface

16. Click the Exit button to end the application. Close the Code Editor
window and then close the solution.

Setting Breakpoints
Stepping through code one line at a time is not the only way to search for logic
errors. You also can use a breakpoint to pause execution at a specifi c line in
the code. You will learn how to set a breakpoint in the following set of steps.

To debug the Hours Worked application:

1. Open the Hours Worked Solution (Hours Worked Solution.sln) fi le
contained in the VB2010\AppA\Hours Worked Solution folder. If
necessary, open the designer window. Th e application calculates and
displays the total number of hours worked during four weeks.

2. Open the Code Editor window. Replace <your name> and <current
date> in the comments with your name and the current date, respec-
tively. Figure A-13 shows the code entered in the btnCalc control’s
Click event procedure.

Figure A-13 Click event procedure for the btnCalc control

START HERE

C7718_appendixA.indd 855C7718_appendixA.indd 855 14/03/11 7:17 PM14/03/11 7:17 PM

856

A P P E N D I X A Locating Syntax and Logic Errors

3. Start the application. Type 4 in the Week 1 box, 1 in the Week 2 box,
5 in the Week 3 box, and 2 in the Week 4 box. Click the Calculate
button. Th e interface shows that the total number of hours is 11,
which is incorrect; it should be 12. Click the Exit button to stop the
application.

4. Obviously, something is wrong with the statement that calculates
the total number of hours worked. Rather than having the computer
pause before processing each line of code in the procedure, you will
have it pause only before processing the calculation statement. You
do this by setting a breakpoint on the statement. Right-click the
calculation statement, point to Breakpoint, and then click Insert
Breakpoint. (You also can set a breakpoint by clicking the statement
and then using the Toggle Breakpoint option on the Debug menu. Or,
you can simply click in the gray margin next to the statement.) Th e
debugger highlights the statement and places a circle next to it, as
shown in Figure A-14.

Figure A-14 Breakpoint set in the procedure

5. Start the application. Type 4 in the Week 1 box, 1 in the Week 2 box,
5 in the Week 3 box, and 2 in the Week 4 box. Click the Calculate
button. Th e computer begins processing the code contained in the
button’s Click event procedure. It stops processing when it reaches
the calculation statement, which it highlights. Th e highlighting
indicates that the statement is the next one to be processed. See
Figure A-15.

Figure A-15 Result of the computer reaching the breakpoint

6. Before viewing the values contained in each variable in the high-
lighted statement, consider the values you expect to fi nd. Before the
calculation statement is processed, the decTotal variable should
contain its initial value (0). Th e other four variables should contain
the numbers you entered in each text box: 4, 1, 5, and 2. Place your
mouse pointer on decTotal in the highlighted statement. Th e box
shows that the variable’s value is 0D, which is correct. (You can
verify the variable’s initial value by placing your mouse pointer on
decTotal in its declaration statement.) Don’t be concerned that 0D
appears rather than 0. As you learned in Chapter 3, the letter D is
one of the literal type characters in Visual Basic; it indicates that the
value’s data type is Decimal.

7. On your own, view the values contained in the decWeek1, decWeek2,
decWeek3, and decWeek4 variables. Notice that the decWeek1
and decWeek4 variables contain the appropriate values: 4D and 2D.

C7718_appendixA.indd 856C7718_appendixA.indd 856 14/03/11 7:17 PM14/03/11 7:17 PM

857

Setting Breakpoints

However, the values in the decWeek2 and decWeek3 variables are
incorrect: the decWeek2 variable contains 5D and the decWeek3
variable contains its initial value (0D).

8. Two of the TryParse methods are responsible for assigning values
to the decWeek2 and decWeek3 variables. Looking closely at the
TryParse methods in the procedure, you will notice that the third one
is incorrect. After converting the contents of the txtWeek3 control’s
Text property to a number, the method should assign the number to
the decWeek3 variable rather than to the decWeek2 variable. Click
Debug on the menu bar and then click Stop Debugging.

9. Change decWeek2 in the third TryParse method to decWeek3.

10. Now you can remove the breakpoint. Right-click the statement con-
taining the breakpoint, point to Breakpoint, and then click Delete
Breakpoint. (Or, you can simply click the breakpoint circle.)

11. Save the solution and then start the application. Type 4 in the Week
1 box, 1 in the Week 2 box, 5 in the Week 3 box, and 2 in the Week
4 box. Click the Calculate button. Th e total number of hours is 12,
as shown in Figure A-16.

Figure A-16 Total hours worked shown in the interface

12. On your own, test the application using other values for the hours
worked in each week. When you are fi nished testing, click the Exit
button. Close the Code Editor window and then close the solution.

C7718_appendixA.indd 857C7718_appendixA.indd 857 14/03/11 7:17 PM14/03/11 7:17 PM

A P P E N D I X B
GUI Design Guidelines

Chapter 1—Lesson C
FormBorderStyle, ControlBox, MaximizeBox, MinimizeBox, and
StartPosition Properties

 • A splash screen should not have Minimize, Maximize, or Close buttons,
and its borders should not be sizable. In most cases, a splash screen’s
FormBorderStyle property is set to either None or FixedSingle. Its
StartPosition property is set to CenterScreen.

 • A form that is not a splash screen should always have a Minimize button
and a Close button, but you can choose to disable the Maximize button.
Typically, the FormBorderStyle property is set to Sizable; however, it also
can be set to FixedSingle. Most times, the form’s StartPosition property is
set to CenterScreen.

Chapter 2—Lesson A
Layout and Organization of the User Interface

 • Organize the user interface so that the information fl ows either vertically
or horizontally, with the most important information always located in the
upper-left corner of the screen.

 • Group related controls together using either white (empty) space or one of
the tools contained in the Containers section of the toolbox.

 • Use a label to identify each text box in the user interface. Also use a label
to identify other label controls that display program output. Th e label text
should be meaningful. It also should be from one to three words only and
appear on one line. Left-align the text within the label, and position the
label either above or to the left of the control it identifi es. Enter the label
text using sentence capitalization, and follow the label text with a colon (:).

 • Display a meaningful caption on the face of each button. Th e caption
should indicate the action the button will perform when clicked. Enter the

C7718_appendixB.indd 858C7718_appendixB.indd 858 14/03/11 7:18 PM14/03/11 7:18 PM

859

Chapter 2—Lesson B

caption using book title capitalization. Place the caption on one line and
use from one to three words only.

 • When a group of buttons are positioned horizontally, each button in the
group should be the same height. When a group of buttons are positioned
vertically, each button in the group should be the same height and width.
In a group of buttons, the most commonly used button is typically the fi rst
button in the group.

 • Align the borders of the controls wherever possible to minimize the
 number of diff erent margins appearing in the interface.

Chapter 2—Lesson B
Adding Graphics

 • Use graphics sparingly. If the graphic is used solely for aesthetics, use a
small graphic and place it in a location that will not distract the user.

Selecting Font Types, Styles, and Sizes

 • Use only one font type for all of the text in the interface. Use a sans serif
font, preferably the Segoe UI font.

 • Use no more than two diff erent font sizes in the interface.

 • Avoid using italics and underlining, because these font styles make text
diffi cult to read.

 • Limit the use of bold text to titles, headings, and key items that you want
to emphasize.

Selecting Colors

 • Build the interface using black, white, and gray. Only add color if you have
a good reason to do so.

 • Use white, off -white, or light gray for the background. Use black for the text.

 • Never use a dark color for the background or a light color for the text. A dark
background is hard on the eyes, and light-colored text can appear blurry.

 • Limit the number of colors in an interface to three, not including white,
black, and gray. Th e colors you choose should complement each other.

 • Never use color as the only means of identifi cation for an element in the
user interface.

Setting the BorderStyle Property of a Text Box or Label

 • Keep the BorderStyle property of text boxes at the default value, Fixed3D.

 • Keep the BorderStyle property of labels that identify other controls at the
default value, None.

 • Set to FixedSingle the BorderStyle property of labels that display program
output, such as those that display the result of a calculation.

 • In Windows applications, a control that contains data that the user is not
allowed to edit does not usually appear three-dimensional. Th erefore,
avoid setting a label control’s BorderStyle property to Fixed3D.

C7718_appendixB.indd 859C7718_appendixB.indd 859 14/03/11 7:18 PM14/03/11 7:18 PM

860

A P P E N D I X B GUI Design Guidelines

Setting the AutoSize Property of a Label

 • Keep the AutoSize property of identifying labels at the default value, True.

 • In most cases, change to False the AutoSize property of label controls that
display program output.

Assigning Access Keys

 • Assign a unique access key to each control that can accept user input.

 • When assigning an access key to a control, use the fi rst letter of the caption
or identifying label, unless another letter provides a more meaningful
association. If you can’t use the fi rst letter and no other letter provides a
more meaningful association, then use a distinctive consonant. Lastly, use a
vowel or a number.

Using the TabIndex Property to Control the Focus

 • Assign a TabIndex value (starting with 0) to each control in the interface,
except for controls that do not have a TabIndex property. Th e TabIndex
values should refl ect the order in which the user will want to access the
controls.

 • To give users keyboard access to a text box, assign an access key to the
text box’s identifying label. Set the identifying label’s TabIndex property
to a value that is one number less than the value stored in the text box’s
TabIndex property.

Chapter 3—Lesson B
InputBox Function’s Prompt and Title Capitalization

 • Use sentence capitalization for the prompt, but book title capitalization for
the title.

Assigning a Default Button

 • Th e default button should be the button that is most often selected by the
user, except in cases where the tasks performed by the button are both
destructive and irreversible. In most interfaces, the default button is the
fi rst button.

Chapter 4—Lesson B
Labeling a Group Box

 • Use sentence capitalization for the optional identifying label, which is
entered in the group box’s Text property.

MessageBox.Show Method

 • Use sentence capitalization for the text argument, but book title capitaliza-
tion for the caption argument.

 • Display either the Exclamation icon or the Question icon to alert the user
that he or she must make a decision before the application can continue.
You can phrase the message as a question.

C7718_appendixB.indd 860C7718_appendixB.indd 860 14/03/11 7:18 PM14/03/11 7:18 PM

861

Chapter 6—Lesson C

 • Display the Information icon along with an OK button in a message box
that displays an informational message.

 • Display the Stop icon to alert the user of a serious problem that must be
corrected before the application can continue.

 • Th e default button in the dialog box should be the one that represents the
user’s most likely action, as long as that action is not destructive.

Chapter 5—Lesson B
Radio Button Standards

 • Use radio buttons to limit the user to one choice in a group of related but
mutually exclusive choices.

 • Th e minimum number of radio buttons in a group is two and the recom-
mended maximum number is seven.

 • Th e label in the radio button’s Text property should be entered using
 sentence capitalization.

 • Assign a unique access key to each radio button in an interface.

 • Use a container (such as a group box) to create separate groups of radio
buttons. Only one button in each group can be selected at any one time.

 • Designate a default radio button in each group of radio buttons.

Check Box Standards

 • Use check boxes to allow the user to select any number of choices from a
group of one or more independent and nonexclusive choices.

 • Th e label in the check box’s Text property should be entered using sentence
capitalization.

 • Assign a unique access key to each check box in an interface.

Chapter 6—Lesson C
List Box Standards

 • A list box should contain a minimum of three items.

 • A list box should display a minimum of three items and a maximum of
eight items at a time.

 • Use a label control to provide keyboard access to the list box. Set the
label’s TabIndex property to a value that is one less than the list box’s
TabIndex value.

 • List box items are either arranged by use, with the most used entries
appearing fi rst in the list, or sorted in ascending order.

Default List Box Item

 • If a list box allows the user to make only one selection, a default item
should be selected when the interface fi rst appears. Th e default item
should be either the item selected most frequently or the fi rst item in the

C7718_appendixB.indd 861C7718_appendixB.indd 861 14/03/11 7:18 PM14/03/11 7:18 PM

862

A P P E N D I X B GUI Design Guidelines

list. However, if a list box allows more than one selection at a time, you do
not select a default item.

Chapter 7—Lesson B
Combo Box Standards

 • Use a label control to provide keyboard access to a combo box. Set the
label’s TabIndex property to a value that is one less than the combo box’s
TabIndex value.

 • Combo box items are either arranged by use, with the most used entries
appearing fi rst in the list, or sorted in ascending order.

Chapter 8—Lesson B
Menu Standards

 • Menu title captions should begin with a capital letter and be one word
only. Each menu title should have a unique access key.

 • Menu item captions can be from one to three words. Use book title
 capitalization and assign a unique access key to each menu item on the
same menu.

 • Assign unique shortcut keys to commonly used menu items.

 • If a menu item requires additional information from the user, place an
ellipsis (. . .) at the end of the item’s caption, which is entered in the item’s
Text property.

 • Follow the Windows standards for the placement of menu titles and items.

 • Use a separator bar to separate groups of related menu items.

C7718_appendixB.indd 862C7718_appendixB.indd 862 14/03/11 7:18 PM14/03/11 7:18 PM

A P P E N D I X C
Visual Basic Conversion
Functions

Syntax Return data type Range for expression

CBool(expression) Boolean Any valid String or numeric expression

CByte(expression) Byte 0 through 255 (unsigned)

CChar(expression) Char Any valid String expression; value can be 0 through 65535 (unsigned);
only the fi rst character is converted

CDate(expression) Date Any valid representation of a date and time

CDbl(expression) Double –1.79769313486231570E+308 through –4.94065645841246544E-324
for negative values; 4.94065645841246544E-324 through
1.79769313486231570E+308 for positive values

CDec(expression) Decimal +/–79,228,162,514,264,337,593,543,950,335 for
zero-scaled numbers, that is, numbers with no decimal
places; for numbers with 28 decimal places, the range is
+/–7.9228162514264337593543950335; the smallest possible
non-zero number is .0000000000000000000000000001 (+/–1E-28)

CInt(expression) Integer –2,147,483,648 through 2,147,483,647; fractional parts are rounded

CLng(expression) Long –9,223,372,036,854,775,808 through 9,223,372,036,854,775,807;
fractional parts are rounded

CObj(expression) Object Any valid expression

CSByte(expression) SByte (signed Byte) –128 through 127; fractional parts are rounded

CShort(expression) Short –32,768 through 32,767; fractional parts are rounded

CSng(expression) Single –3.402823E+38 through –1.401298E-45 for negative values;
1.401298E-45 through 3.402823E+38 for positive values

CStr(expression) String Depends on the expression

CUInt(expression) UInt 0 through 4,294,967,295 (unsigned)

CULng(expression) ULng 0 through 18,446,744,073,709,551,615 (unsigned)

CUShort(expression) UShort 0 through 65,535 (unsigned)

C7718_appendixC.indd 863C7718_appendixC.indd 863 14/03/11 7:18 PM14/03/11 7:18 PM

% (percent sign), SQL wildcard, 823
? (question mark)

parameter (query) marker, 844
in pattern-matching, 463

<asp:ListItem> tag, 729, 734

 tag, 732–733, 734
<div> tag, 722, 734

A
ABC Company application, 615–616,

661–667
Academy Award Winners application,

796–810, 831–833
Access database, connecting

application to, 745–749
access keys, 81, 87

assigning, 81–82
GUI design guidelines, 860

accessing characters in strings, 460–462
accumulator arrays, 522–525
accumulators

and counters, using, 339–346
described, 339, 356

ActiveMdiChild property, D-25*,
D-35*

Add Connection dialog box, 746
Add method, 376, 385
adding

adding items to DropDownList
control, 729–730

check boxes to interfaces, 292–294
colors to user interfaces, 77–78
comments to program code, 96–98
controls to forms, 32–33
dollar signs, 168–170
graphics, 76–77
group boxes to forms, 231–233
images to Web pages, 698–700
items to BindingNavigator control,

777–779
link button controls to Web pages,

694–696
menus to forms, 476–479

picture box controls to forms, 36–37
radio buttons to forms, 290–292
records to datasets, 799–804
splash screens to applications,

D-4–D-6*
Start Without Debugging option,

696–698
static text to Web pages, 691–693
text box controls to forms, 80
Web pages to Web applications,

693–694
addition (+) operator, 222
aggregate operators

described, 779, 782
using, 779–782

algorithms
described, 271, 283
desk-checking, 271

Align option, Format menu, 35
aligning

characters in strings, 453–454
columns of information, 602–604

ampersand (&)
and access key assignments, 81
concatenation operator, 160, 171

And operator, 207, 208, 222, 223
AndAlso operator, 207, 208, 222, 223
apostrophes (’) and code comments, 96
AppendText method, 582, 592
applications, 4, 8

assembling the documentation,
108–109

connecting to Microsoft Access
database, 745–749

creating Visual Basic 2010
Windows, 13–14

with multiple forms, D-1–D-35*
object-oriented, 63–71
primary window, dialog boxes,

D-6–D-8*
running Visual Basic 2010, 5–6
starting and ending, 38–40
testing and debugging, 105–108

Area Calculator application, 139–141,
672–678

arithmetic assignment operators
described, 347, 356
using, 347–348

arithmetic expressions, 98–100
Array.Reverse method, 525, 530
arrays, 504, 530

accumulator, 522–525
and collections, 518–522
counter, 522–525
elements, 506
one-dimensional. See one-

dimensional arrays
parallel one-dimensional, 539–543
populating, 507, 530
of structure variables, creating,

571–575
two-dimensional. See

two-dimensional arrays
using, 504–505
using For Each . . . Next statements,

511
Array.Sort method, 525, 530
As keyword, 565
ASP, 686, 704
ASP table control, 724, 734
ASP tables, using, 724–729
assigning

access keys, 81–82
data to existing variables, 125–131
shortcut keys to menu items, 479–480
values to properties during run

time, 94–96
assignment operator (=), 94, 110, 125
assignment operators, arithmetic, 347,

356
assignment statements, 94, 110, 126
asterisks (*)

on designer window’s tab, 23
in pattern-matching, 463

attributes, 617, 645
auto-hiding windows in IDE, 15–16

Index

*Appendix D is available online at www.cengagebrain.com.
Note: Page numbers in boldface indicate key terms.

C7718_index.indd 864C7718_index.indd 864 14/03/11 9:03 PM14/03/11 9:03 PM

www.cengagebrain.com

865

auto-implemented properties, 658,
668

AutoSize property controls, 78–79
AutoSizeColumnsMode property, 754,

768

B
BackColor property, 22–23, 78
background colors, changing text box,

78
base classes

creating, 672–678
described, 672, 678

behaviors, 617, 645
binary operators, 98
binding, 749, 768

to existing controls, 762–766
objects in datasets, 749–756

BindingNavigator controls, 757, 759
described, 752, 768
personalizing, 777–779

BindingSource objects, 752, 768
block scope, 203, 224
block-level variables, 203, 224
bold text, using, 77
book title capitalization, 70, 72
Boole, George, 50
Boolean data types, 122–123
Boolean values, comparing, 219–221
borders

form, 52–53
GUI design guidelines, 859

BorderStyle property, for controls,
78–79

bottom-driven loops, 332
bound controls

creating, 750–753
described, 749, 768

breakpoints, setting in code, 855–857
browsers, 684, 704
bugs, 105, 110
button controls, 38, 45
Button tool, using, 38
buttons

designating default, 166–167
radio. See radio buttons
stacking, 76

ByRef keyword, 400, 403
ByVal keyword, 397

C
calculating

area of circles, 140
gross pay, 211–213
periodic payments, 236–237
total and average values, 512–514

Call keyword, 301
Call statements, 301, 306, 396–397
camel case, 20, 26
Cancel property, 429, 442
capitalization, 70, 72
captions, menu title, 476
Carpet Haven application, 624–636,

632–636

Case clause in Select Case statements,
280

CD Collection application, 562–564,
598–602

cells (ASP table), 724, 735
cells (DataGridView control), 753, 768
centering label controls, 36
changing

form fi les’ names, 18–19
form names, 20–21
properties for multiple controls, 35

chapters, using this book’s, 6–7
Char data types, 122–123
characters

accessing in strings, 460–462
aligning in strings, 453–454
determining number in string,

449–450
inserting in strings, 453–456
removing from strings, 450–452
stream of, 581, 593

charts, TOE. See TOE charts
check boxes, 292, 306

adding to interfaces, 292–294
determining whether checked, 315
GUI design guidelines, 861
selecting, 294
standards, 293

child tables, 744, 768
circles, calculating area of, 140
Cities application, 511
City and State application, 458–459
class defi nitions, 20, 26
Class Name list box, 41, 45
class scope, 134, 135, 146
Class statement, 565, 618, 645
classes, 4, 8, 17, 617, 645

See also specifi c class
creating generally, 618–619
reusing, 640–644

class-level variables, 134, 146
Clear method, 93
Click event, 41–42, 93–98, 155–159,

178–181
client computers, 684, 704
Clock application, 365–366
Close method, 584, 592
closing

current solution, 23
forms, 429
input sequential access fi les,

589–591
Web applications, 700
windows in IDE, 15–16

code, 17, 26
adding comments, 96–98
collapsing, expanding in Code

Editor window, 40–41
error-handling, 757–760
fi nding logic errors, 851–855
fi nding syntax errors, 848–851
internally documenting program,

96–98
invoking queries from, 833–835

printing splash screen’s, 54–55
and pseudocode, 91–92
setting breakpoints, 855–857
testing, 281
viewing Visual Basic, 756–757

Code Editor
and logic errors, 105
and syntax errors, 848–851

Code Editor window
exploring, 40–42, 54
and Option statements, 143–144,

154–160
viewing code with, 756–757

Code Editor’s IntelliSense feature, 662
coding, 3, 8
collections

arrays and, 518–522
described, 375, 385

Color dialog box, D-7*, D-35*
ColorDialog tool, D-35*
colors

adding to user interfaces, 77–78
and GUI design, 78, 859

columnar layouts, creating, 722–724
combo boxes, 419, 424

GUI design guidelines, 862
including in interfaces, 419–423

comments, adding to code, 96–98
comparing

Boolean values, 219–221
strings containing letters, 213–214
strings using pattern-matching,

463–466
comparison operators, 199, 224

See also specifi c operator
commonly used (fi g.), 200
displaying sum or diff erence,

204–206
swapping numeric values using,

201–204
component tray, IDE, 50, 56
compound conditions vs. nested

selection structures, 272–273
computer databases, 743, 768

See also databases
overview of, 740–741

computer programs, 2, 8
computers, programming, 2–3
concatenating strings, 160–161
concatenation (&) operator, 160, 171,

222
condition

described, 192, 224
in WHERE clauses, 815

confi guring Visual Studio, 12–13
Const keyword, 139
Const statement, 138, 146
constants

literal, 126, 146
named, 138–141, 146

constructors, 630, 645
Contains method, 457, 468
ControlBox property, 53
ControlChars.Back constant, 249, 254

C7718_index.indd 865C7718_index.indd 865 14/03/11 9:03 PM14/03/11 9:03 PM

866

I N D E X

ControlChars.NewLine constant,
165–166, 171

controls, 31, 45
See also specifi c control
adding to forms, 32–33
binding to existing, 762–766
BorderStyle, AutoSize properties,

78–79
changing properties for multiple, 35
controlling tab order, 82–85
data-aware, 749
dragging in Source view, 727–729
locking, 80–81, 232, 293
organizing in interface, 69–71
positioning on Web pages, 701–702
selecting several, 232
text box, adding to forms, 80

conversion functions, 130, 863
Convert class, 130–131, 146
converting

currency, D-29–D-34*
strings to uppercase, lowercase,

215–218
Convert.ToDecimal method, 139
Copy to Output Directory property,

760–761, 768
counter arrays, 522–525
counter variables, 349
counter-controlling loops, 348, 356
counters

and accumulators, using, 339–346
described, 339, 356

Country Charm Inn application,
D-4–D-6*

CreateText method, 582, 592
creating

Academy Award Winners application,
796–810, 831–833

arrays of structure variables,
571–575

base classes and derived classes,
672–678

bound controls, 750–753
CD Collection application, 562–

564, 598–602
class that contains a parameterized

constructors, 636–640
class that contains Private variables,

Public properties, and
methods, 624–636

class that contains Public variables,
620–624

classes generally, 618–619
classes that contains a ReadOnly

property, 654–658
classes that contains auto-

implemented properties,
658–660

columnar layouts, 722–724
dialog boxes, D-13*
DJ Tom application, 681–683,

721–733
dynamic Web pages, 708–712
GetFwt function, 432–436

GUI (graphic user interface), 16–17
Harvey Industries application,

394–395, 427–442
independent Sub procedures,

296–300
Math Practice application, 261–263,

290–295, 312–319
Monthly Payment Calculator

application, 231–254,
351–354

object-oriented applications, 63
Playtime Cellular application,

60–62, 75–80
Quarter of a Million club

application, 330–332,
336–339

queries, 773–777
Random objects, 298–299
Sales Express Company application,

340–346
SDI applications, D-3–D-35*
Shoppers Haven application, 327–

328, 374–384
SQL queries, 817–822
StreamWriter objects, 581–583
Treasure Gift Shop application,

502–503
variables on the fl y, 141
Visual Basic 2010 Windows

applications, 13–14
Web applications, 687–688

Currency Converter application, 686,
708–716, D-29–D-34*

customizing Web pages, 690–693

D
data

aligning columns of information,
602–604

assigning to existing variables,
125–131

invalid, 105, 110
reading from sequential access fi les,

585–588
valid, 105, 111
writing to sequential access fi les,

581–584
data types, 122, 146

promotion and demotion, 141–142
selecting for variables, 122–123
user-defi ned, 576

data validation, 211, 211–213, 224
Database Explorer window, 745
database management systems

(DBMSs), 743
databases

inserting, deleting records, 836–843
modifying records, 787–791
overview of, 740–741
queries, 773–777
using SQL, 815–822

DataGridView controls, 750, 753–756,
768

DataSet objects, 752, 768

datasets, 745, 768
adding records to, 799–804
binding objects in, 749–756
deleting records from, 805–810
previewing contents of, 748–749
sorting records in, 804–805

Date data types, 122–123
Debug menu, Start Without

Debugging option, 696–698
debugging, 7, 8, 105, 110

applications, 105–108
Discount Calculator application,

851–855
Hours Worked application, 855–857
Total Sales Calculator application,

848–851
Decimal data type, 122–123, 126
decision symbol, 195, 224, 335
decisions, making in programs,

192–198
decrementing, 340, 356
default button

described, 166, 171
designating, 166–167

default constructors, 630, 645
default list box item, 379, 385,

861–862
default radio buttons, 291, 306
Default.aspx Web pages, 689–690
Delete method, 807, 810
Delete query, 844
DELETE statement, 836, 836–843,

844
deleting

locked controls, 80
records from databases, 836–843
records from datasets, 805–810
TabIndex boxes, 84

demoted, 142, 146
derived classes

creating, 672–678
described, 672, 678

design guidelines, GUI, 858–862
desk-checking

algorithms, 271
described, 271, 283

detail tables, 744
dialog boxes in applications, D-13*,

D-6–D-8*
diamond (decision symbol), 195, 224,

335
digital video recorders (DVDs),

programming, 2
Dim keyword, 124
Dim statements, 298–299
Discount Calculator application,

debugging, 851–855
displaying

messages, 216–218
properties of form fi les, 18
Solution Explorer window, 16
sum or diff erence of numbers,

204–206
Toolbox window, 31

C7718_index.indd 866C7718_index.indd 866 14/03/11 9:03 PM14/03/11 9:03 PM

867

division operator, 98–99, 222
DJ Tom application, 681–683, 721–733
documentation, assembling

application’s, 108–109
documenting program code, 96–98
dollar signs ($), adding to value,

168–170
Do . . . Loop statements, 332, 333, 336,

345, 356
vs. For . . . Next statements, 354–355
using, 333–339

dot member access operator, 20, 26,
566

Double data type, 122–123, 126, 128,
141–142

downloading Visual Basic 2010
Express, 4

DropDownList control, adding items
to, 729–730

DropDownStyle property, 419, 424
dual-alternative selection structure,

192, 196–199, 205, 224, 264
dynamic Web pages

described, 685–686, 704
overview of, 708–712

E
earnings of computer programmers, 3
elements

described, 506, 530
determining number in arrays, 508

ellipsis (. . .) and menu title captions,
477

employment opportunities for
computer programmers, 3–4

empty strings, 93, 110
encapsulates, 617, 645
ending applications, 38–40
endless loops, 338, 357
Enter event, 251, 254
equal sign (=)

assignment operator (=), 110, 125
comparison operator, 200

error-handling in VB code, 757–760
errors

fi nding logic, 851–855
fi nding syntax, 848–851
overfl ow, 338

event procedures, 40, 46
events, 40, 46, 617, 645

associating procedures with,
182–185

identifying application’s, 67–68
including procedures in Class

statements, 618
exceptions, 757, 768
executable fi les

described, 39, 46
renaming, 39–40

Exists method, 586, 592
Exit . . . Do statements, 333
Exit . . . For statements, 349
exiting Visual Studio 2010, Visual Basic

2010 Express, 24

exponentiation (^) operator, 222
expressions, writing arithmetic,

98–100
extended selection structures, 275

F
false path, 192, 224, 264
fi elds, 743, 768
fi les, and Windows applications, 13
Finally block, 757
Financial.Pmt method

described, 236, 244
using, 236–237

fi xed-spaced fonts, 603
fl owcharts, 92, 110

charting loops in, 335
decision symbol, 195, 224
dual-alternative selection structure

(fi g.), 205
input/output symbol, 110
multiple-alternative selection

structure (fi g.), 276
nested selection structure (fi g.), 267,

268
planning procedures using, 92–93
single-alternative selection structure

(fi g.), 202
fl owlines, 92, 110
focus

and controlling tab order, 82–85,
860

described, 82, 87
Focus method

described, 87, 110
using, 96

Font and Color application, D-6–D-8*
Font dialog box, D-7*, D-35*
Font property, Windows form, 21–22
FontDialog tool, D-35*
font-family property, 722, 735
fonts

fi xed-spaced, 603
and GUI design, 77, 859

For Each . . . Next statements
described, 511, 530
using, 332, 511–514

foreign key, 744, 768
form fi les, 17–18

described, 26
properties of, 19–22

Format function
described, 103, 110
using, 103–105

Format menu, using, 35–36
format styles, some Visual Basic

predefi ned (table), 104
formatting

described, 167, 171
numbers using ToString method,

167–170
FormBorderStyle property, setting,

52–53
FormClosing event, 428, 442, 606,

D-17*

forms, 16, 26
adding controls to, 32–33
adding group boxes to, 231–233
adding menus to, 476–479
adding picture box controls, 36–37
adding radio buttons to, 290–292
adding text box controls to, 80
applications with multiple, D-1–D-35
check boxes on, 292
closing, 429
confi guring properties, 21–22
designating default button, 166–167
FormBorderStyle property, setting,

52–53
GUI design guidelines, 858
locking controls on, 80–81, 232
renaming, 20–21
Windows. See Windows forms

For . . . Next statements, 332, 348, 357
vs. Do . . . Loop statements, 354–355
using, 348–354

Friend keyword, D-14*, D-35*
frmMain Load event procedure, 153,

164, 178
full screen view, viewing Web pages in,

692–693
Function keyword, 405
Function procedures

described, 405, 410
using, 405–409

functions, 102, 110, 405, 410
See also specifi c function
conversion, 130, 863

G
Game Show Contestants application,

582–584
General Declarations section, 97, 110,

141
Get block, 626, 645
Get statement, 628, 645
GetFwt function, 432–436
GetUpperBound method, 508, 530,

549
global variables, 131
Grade Calculator application, 654–660
graphics

adding to user interfaces, 76–77
GUI design guidelines, 859

Greenview Toy Store Web application,
697–698, 700–702

group box, 231, 244
adding to forms, 231–233
GUI design guidelines, 860

grouping
radio buttons, 291–292
variables, 504

GUI (graphic user interface), 16, 26
assigning access keys, 82
check boxes standards, 293
combo box standards, 420
controlling focus with TabIndex

property, 85
default list box item, 380

C7718_index.indd 867C7718_index.indd 867 14/03/11 9:03 PM14/03/11 9:03 PM

868

I N D E X

design guidelines, 858–862
designating default button, 167
font types, styles, sizes, 77
guidelines, 69
InputBox function, 162
labeling group boxes, 231
list box standards, 377
MessageBox.Show method, 239
radio button standards, 292
selecting colors, 78

H
halting endless loops, 338
Handled property, 249, 255
Handles clause, in event procedures,

182
hand-tracing, 271, 283
Hangman Game application, 446–448,

477–480, 483–495
Harvey Industries application,

394–395, 427–442
Hide method, D-15*, D-35*
hiding

auto-hiding windows in IDE, 15–16
code region in Code Editor window,

40–41
horizontal sizing pointer, 52
Hours Worked application, debugging,

855–857
Hungarian notation, 20, 124
hyphen (-), negation and subtraction

operators, 98

I
IDE (integrated development

environment), 4, 8, 10
component tray, 56
managing windows in, 15–16

If . . . Th en . . . Else statement, 198, 201,
203, 207, 224, 573

images
adding to Web pages, 698–700
downloading free, 698

implicit type conversion, 141, 142, 146
incrementing, 340, 357
independent Sub procedures

creating, 296–300
described, 296, 307

indexes, 505
IndexOf method, 457, 468
infi nite loops, 338, 357
information, storing with variables,

121–125
inheritance, 672, 678
Inherits clause, 672, 678
initializing, 340, 357
input dialog boxes, 161–164
input fi les, 581, 592
InputBox function

described, 161, 171
using, 161–164, 860

input/output symbol, 92, 110
Insert method, 453, 468
Insert query, 844

INSERT statement, 836, 836–843, 844
inserting

characters in strings, 453–456
records in databases, 836–843

instances, 4, 8, 617, 645
instantiated, 4, 8, 617, 645
instantiating

label controls, 32–34
timer controls, 50–51

Integer data type, 122–123
integer division operator (), 99, 110
integers, generating random, 298
integrated development environment.

See IDE (integrated
development environment)

integrated development environment
(IDE), 8

IntelliSense feature, 662
interfaces

See also user interfaces
including combo box in, 419–423
printing during run time, D-11*

invalid data, 105, 110
Is keyword, 280–281
IsMdiContainer property, D-23*,

D-35*
italics, using, 77
Items collection, 375, 385

J
Jenko Booksellers application, 550–552
JotPad application, D-22–D-29*

K
KeyChar property, 249, 255
KeyPress events, 255

coding, 248–251
described, 248

keywords
with conditions, 333
described, 41, 46

L
label controls, 32, 46

instantiating, 32–34
naming, 33–34
setting Location, Text properties, 34
using, 67, 70

Label tool, instantiating label controls
with, 32–34

Language Integrated Query, 773, 782
layouts

creating columnar, 722–724
window, 11

lblMessage control, 153
Length property, 449, 450, 468, 508,

530, 626
lifetime

described, 131, 146
of variables, 131–136

light bulb icon, 6
Like operator, 463, 468, 774
LIKE operator, 816, 823
line, 587, 592

line continuation character, 165, 171
link button controls

adding to Web pages, 694–696
described, 694, 704

LINQ, 773, 775–777, 779–782, 783
list boxes, 375, 385

GUI design guidelines, 861
items, 518
using, 377–384

literal constants, 126, 146
literal type character, 126, 146
Load event procedure, 304–305,

599–601
local scope, 132
local variables, 132
Location property, 34, 80
locking controls, 80–81, 232, 293
logic errors, 105, 110

fi nding, 851–855
in selection structures, 270–275

logical operators, 207, 224
See also specifi c operator
calculating gross pay using, 211–213
commonly used (fi g.), 207–208
and truth tables, 209–210
using, 207–209

Long variables, 122–123
loop body, 333, 357
loop exit conditions, 329, 357
looping condition, 329, 357
loops, 329, 357

See also specifi c loop type
priming, and update reads, 342
and repeating program instructions,

329–332
stopping, 338

lowercase, converting strings to,
215–218

M
Make Same Size option, Format menu,

35
master tables, 744
Math Practice application, 261–263,

290–295, 312–319
Math.exe, 262
Math.Round function, 437, 442
MaximizeBox property, 53
MDI, D-1*, D-35*
MDI applications, D-2*, D-35*
MdiWindowListItem property, D-23*,

D-35*
Me.Close() instruction, 42–43, 51
member variables, 565, 576
memory addresses, 397
menu items

assigning shortcut keys to, 479–480
described, 476

menu strip controls, 476, 481
menus

See also specifi c menu
access keys, 81
adding to forms, 476–479
GUI design guidelines, 862

C7718_index.indd 868C7718_index.indd 868 14/03/11 9:03 PM14/03/11 9:03 PM

869

MenuStrip tool, 476, 477
MessageBox.Show method

described, 238, 244
using, 238–244, 860

messages, displaying, 216–218
Method Name list box, 41, 46
methods, 42, 46, 617, 645

See also specifi c method
other than constructors, 631–632
overloaded, 662, 668

Microsoft Access, connecting
application to database,
745–749

MinimizeBox property, 53
modulus operator, 99, 110, 222
Monthly Payment Calculator

application, 231–254, 351–354,
367–370

Morgan Industries application,
745–749, 760–761

Move methods, 765, 768
Multiline property, 340, 357
multiple-alternative selection

structures
described, 275, 283
using, 275–278

multiple-document interface, D-1*,
D-35*

multiple-form applications, D-4*,
D-35*

multiplication operator, 222
MyBase, 674, 678

N
Name property, Windows form,

20–21
named constants, 138, 146

intrinsic constants, 165
using, 138–141, 234

namespace
described, 20, 26
scope, 131

naming
See also renaming
classes, 618
label controls, 33–34
variables, 123–124

negation (-) operator, 98, 222
nested repetition structures, 365–366
nested selection structures, 264, 283

vs. compound conditions, 272–273
using, 264–270
using unnecessary, 274–275

New Project dialog box, 14
Not operator, 207, 208, 219, 222, 224
number sign (#) in pattern-matching,

463
numbers

displaying sum or diff erence,
204–206

formatting using ToString method,
167–170

generating random, 298–300
rounding, 437

O
Object box, Properties window, 18, 26
Object data types, 122–123, 141
object-oriented (OO) applications

creating, 63
planning, 63–71

object-oriented programming
languages, 4, 8, 617, 646

object-oriented programming
terminology, 617

objects, 4, 8
See also specifi c object
associating procedures with,

182–185
binding in datasets, 749–756
identifying application’s, 66–67
instantiated from classes, 17
and object-oriented programming

terminology, 617
Random, 298
random, 307

one-dimensional arrays, 505, 530
accumulator and counter arrays,

522–525
parallel, 539–543
sorting, 525–529
traversing, 509–510
using, 505–508

OOP, 617, 646
OOP (object-oriented programming),

41, 46
opening

databases in IDE, 745
existing solutions, 24
Run dialog box, 61, 119
Web applications, 700
windows in IDE, 15–16

OpenText method, 586, 592
operators

See also specifi c operator
most commonly used (table), 98
summary of, 222

Option Explicit, Option Infer, Option
Strict, 141–144, 154–160

Options dialog box, 13
Or operator, 207, 208, 209, 224
Oracle, 743
Order By clause, 773, 783
ORDER BY clause, 816, 823
order forms, 64–65
order of precedence (operators),

98–99, 222
OrElse operator, 207, 208, 209, 222,

224
outer loops, 365
output fi les, 581, 592
overfl ow errors, 338
overloaded methods, 662, 668
Overridable keyword, 674, 678
Overrides keyword, 674, 679

P
PadLeft method, 454, 468, 602
PadRight method, 454, 468, 602

Paradise Bookstore application,
740–742, 787–791

parallel arrays, 539, 543
parallel one-dimensional arrays,

539–543
parameter (query) marker, 828, 844
parameter queries

described, 828, 844
using, 828–830

parameterized constructors, 630,
636–640, 646

parameterList, 297
parameters, 248, 255
parent tables, 744, 768
parentheses (()) and expressions, 98
Pascal case, 182, 186, 296, 565
passing by reference, 397, 410
passing by value, 397, 410
passing structure variables to

procedures, 567–570
passing variables, 397–405
passing variables by reference,

400–405
passing variables by value, 397–399
pattern-matching, comparing strings

using, 463–466
Peek method, 588, 592
percent sign (%), SQL wildcard, 823
PerformClick method, 303, 304, 307
period (.) in expressions, 94
picture box controls

adding to forms, 36–37
described, 36, 46

PictureBox tool, 36–37
Pizza Roma application, 640–644
planning procedures using fl owcharts,

92–93
Playtime Cellular application, 60–62

building, 75–80
testing and debugging, 105–108
TOE charts, 65–68, 152, 178

PMT function, 237
points, 21, 26
populating the array, 507, 530
Position property, 764, 768
positioning controls on Web pages,

701–702
posttest loops, 332, 357, 368
Prairie Auditorium application,

518–522
precedence

of operators, 98–99
order of operators (table), 222

pretest loops, 331, 332, 357, 368
previewing

dataset contents, 748–749
splash screens, 10

primary key, 744, 768
priming read, 342, 357
PrintForm tool, D-11*, D-35*
printing

interfaces during run time, D-11*
splash screen interface and code,

54–55

C7718_index.indd 869C7718_index.indd 869 14/03/11 9:03 PM14/03/11 9:03 PM

870

I N D E X

Private keyword, 124, 139, 180, 296
Private variables, 625–629
procedure footers, 41, 46
procedure headers, 41, 46
procedure scope, 132, 146
procedure-level variables, 132, 146,

312
procedures

See also specifi c procedure
associating with diff erent objects,

events, 182–185
exceptions, 757
function, 405, 410
passing structure variables to,

567–570
planning using fl owcharts, 92–93

process symbols, 92, 110
Product ID application, 451–452,

465–466
programmers, 8

job of, 2
training, skills, employment

opportunities, 2–4
programming, 2, 8
programming languages, 2, 8
programs, 2, 8

making decisions in, 192–198
repeating program instructions,

329–332
projects, and Windows applications,

13
promoted, 141, 146
properties, 18, 26

See also specifi c property
assigning values during run time,

94–96
auto-implemented, 658, 668
changing for multiple controls, 35
confi guring form, 21–22
setting and restoring values,

22–23
Properties list

described, 18, 26
Settings box, 27

Properties window
described, 18–19, 26
Object box, 26

Property procedure, 626, 646
pseudocode

described, 91, 110
planning procedures using, 91–92

pseudo-random number generators,
298, 307

Public keyword, 40, 565
public variables, 131
Public variables, 620–624

Q
Quarter of a Million club application,

330–332, 336–339
queries, 773, 783

creating, 773–777
creating SQL, 817–822
invoking from code, 833–835

parameter, 844
saving, 831–833
using LINQ aggregate operators,

779–782
Query Builder, using, 819–822, 832
question mark (?)

parameter (query) marker, 844
in pattern-matching, 463

quotation marks (“)
string literal constants, 126
and strings, 93, 102
and zero-length strings, 111

R
radio buttons, 290, 307, 375

adding to forms, 290–292
default, 291, 306
GUI design guidelines, 861
selecting, 294

Random numbers, generating,
298–300

Random objects, 298, 307
Random.Next method, 299, 307
ranges, specifying in Case clauses,

280–281
ReadLine method, 587, 592
ReadOnly keyword, 626, 646
ReadOnly property, 340, 357, 626,

654–658
Rearrange application, 460–462
records (database), 743, 768

adding to datasets, 799–804
arranging in database, 773
deleting from datasets, 805–810
inserting, or deleting from

databases, 836–843
modifying, 787–791
sorting in datasets, 804–805

reference controls, 36, 46
Refresh method, 366–367, 371
relational databases, 743, 768
relational operators, 199
Remove method, 450, 451, 468, 605,

610
RemoveAt method, 605, 610
removing

See also deleting
characters from strings, 450–452
TabIndex boxes, 84

renaming
executable fi les, 39–40
form fi les, 18–19
forms, 20–21

repeating program instructions,
329–332

repetition structures
described, 329, 357
nested, 365–366

resetting windows layout in IDE, 16
restoring property values, 22–23
Return statements, 406, 410
reusing classes, 640–644
rounding numbers, 437
Run dialog box, 61, 119

run time, 50, 56
assigning values to properties

during, 94–96
printing interfaces during, D-11*

run time errors, 521, 530
running Visual Basic 2010

applications, 5–6

S
Sales Express Company application,

340–346
sans serif fonts, 77
saving

queries, 831–833
solutions, 23

scalar variables, 504, 530
Schneider, Gerrit, 698
scope, 131, 146

block, 203, 224
of variables, 131–136

ScrollBars property, 340, 357
SDI, D-1*, D-35*
SDI applications, D-1*, D-35*
searching

strings, 457–459
two-dimensional arrays, 552–555

Select Case statements
described, 278, 283
using, 278–282

SELECT statements, 815, 823
testing, 829–830
using, 815–817

SelectAll method, 251, 255
SelectedIndex property, 379, 385
SelectedIndexChanged event, 381,

385
SelectedItem property, 379, 385, 421
SelectedValueChanged event, 381,

385
selecting

controls, 232
radio buttons, check boxes, 294

selection structures, 192, 224, 488
logic errors in, 270–275
making decisions with, 192–198
nested, 264, 264–270, 283

SelectionMode property, 375, 385
sentence capitalization, 70, 72
sequential access fi les, 581, 593

closing input, 589–591
closing output, 584–585
reading data from, 585–588
writing data to, 581–584

Server Explorer window, 745
Set block, 626, 646
Set statement, 628, 646
Settings box, Properties list, 18, 27
Shoppers Haven application, 327–328,

374–384
Short variables, 122–123
short-circuit evaluation, 208, 224
shortcut keys

assigning to menu items, 479–480
described, 479, 481

C7718_index.indd 870C7718_index.indd 870 14/03/11 9:03 PM14/03/11 9:03 PM

871

Show method, D-15*, D-35*
ShowDialog method, D-7*
signatures, 630, 646
simple variables, 504, 530
Single data types, 122–123
single-alternative selection structure,

192, 193–196, 198–199, 202,
213, 224, 264

single-document interface, D-1*,
D-35*

Size property, Windows form, 22
Sleep method, 366–367, 371
Solution Explorer window, 17–18, 27

displaying, 16
using, 14–15

solutions
closing, 23
opening existing, 24
saving, 23
and Windows applications, 13

Sort method, 804, 810
Sorted property, 376–377, 385
sorting, 525, 530

one-dimensional arrays, 525–529
records in datasets, 804–805

source fi les, 17, 27
Source view, 727–729
splash screens

adding timer controls to, 51
adding to applications, D-4–D-6*
application described, 13
previewing, 10
printing interface and code, 54–55

SQL, 815, 823
SQL Server, 743
starting

applications, 38–40
Visual Studio, 11–12
Web applications, 696–698

StartPosition property, Windows
form, 21

start/stop symbol, 92, 110
startup forms, 38, 46
State application, 526–529
statement block, 198, 224
Static keyword, 124, 136
static text

adding to Web pages, 691–693
described, 691, 704

static variables, 181, 312
described, 136, 146
using, 136–138

static Web pages, 684, 704
stopping endless loops, 338
stream of characters, 581, 593
StreamReader object, 585, 593
StreamWriter object, 581, 593
String data types, 122–123
String.Empty, 93, 94–95, 111
strings, 93, 111

accessing characters in, 460–462
comparing using pattern-matching,

463–466
concatenating, 160–161

containing letters, comparing,
213–214

converting to uppercase, lowercase,
215–218

determining number of characters
in, 449–450

empty, 93, 110
inserting characters in, 453–456
removing characters from, 450–452
searching, 457–459

Strings.Space method, 603, 610
structure statements, 565, 576
structure variables, 566, 576

creating arrays of, 571–575
declaring, using, 566–566
passing to procedures, 567–570

Structured Query Language
creating queries, 817–822
described, 815, 823

structures, 565, 576
styles

combo box, 419–420
and GUI design, 77
predefi ned format VB (table), 104

Sub keyword, 296, 405
Sub procedures, 42, 46

independent, 296–300
using, 396–397

submenus, 476
subscripts

described, 505, 530
determining highest, 508

Substring method, 460, 468
subtraction (-) operator, 98, 99
Sweet Tooth Chocolate application,

512–514
syntax, 41, 46, 105
syntax errors, 106–107

described, 105, 111
fi nding, 848–851

T
tab order, controlling, 82–85
tabbed-document interface, D-1*,

D-35*
TabControl tool, D-35*, D-29
TabIndex property, 82–85, 293, 860
TableAdapter objects, 752, 768
TableAdapter Query Confi guration

Wizard, 831–833
TableAdapterManager objects, 752,

768
TableCell Collection Editor dialog box,

725
TableRow Collection Editor dialog

box, 725
tables (database)

described, 743, 768
using, 743–744

tasks, identifying application’s, 64–65
TDI, D-1*, D-29*, D-35*
TDI applications, D-3*, D-35*
testing

applications, 105–108

code, 281
connections, 746–747
timer, 51–52

text, using italics or bold, 77
text boxes, 66, 72

adding controls to forms, 80
changing background color of, 78
clearing contents of, 93
controlling characters accepted by,

248–251
controlling tab order, 82–85
Enter event procedures, 251–254

text fi les, 581, 593
Text property, 21, 34, 126, 421
TextBox class, 80
TextChanged events

coding procedure, 181–185
described, 181, 186

this book, using, 6–7
Tick events, 50–51
timer controls

described, 50, 56
instantiating, adding, 50–51

Timer tool, instantiating timer
controls, 50–51

tip notes (light bulb icon), 6
To keyword, 280–281
TOE charts

CD Collection application, 598
Hangman Game application, 483
Harvey Industries application, 427
Math Practice application, 295
Monthly Payment Calculator

application, 232
Playtime Cellular application,

65–68, 152, 178
Shoppers Haven application, 374

ToLower method, 457
described, 215, 224
using, 215–218

toolbox, 31, 46
Toolbox window, 31, 46
top-driven loops, 332
ToString method

described, 167, 171
formatting numbers using,

167–170
Total Sales Calculator application,

debugging, 848–851
ToUpper method, 214, 457

described, 215, 225
using, 215–218

traversing
arrays, 509–510
two-dimensional arrays, 549–550

Treasures Gift Shop application,
502–503, 539–542, 552–555,
571–575

Trim method, 450, 451, 468
TrimStart, TrimEnd methods, 450
true path, 192, 202, 225, 264
truth tables, 208, 225

for logical operators (fi g.), 209
using, 210

C7718_index.indd 871C7718_index.indd 871 14/03/11 9:03 PM14/03/11 9:03 PM

872

I N D E X

Try . . . Catch statements, 757,
758–760, 768

TryParse method, 219–220, 344
described, 128, 146
using, 128–129, 140

two-dimensional arrays, 505, 546, 556
declaring, 546–549
searching, 552–555
totaling values stored in, 550–552
traversing, 549–550

U
unary operators, 98
undeclared variables, 141
unhiding code region in Code Editor

window, 40–41
Unicode, 122, 146
Until keyword, 333
Update method, 802, 810
update read, 342, 357
updating, 340, 357
uppercase, converting strings to,

215–218
user input

controlling tab order, 82–85
designating default button, 166–167
InputBox function, 161–164
and MessageBox.Show method,

238–244
using text boxes for, 66
validating, 714–716

user interfaces, 4, 8
adding check boxes to, 292–294
adding color to, 77–78
adding graphics to, 76–77
building Playtime Cellular

application, 75–80
GUI design guidelines, 858–859
layout and organization, 71
sketching, 69–71

user-defi ned data types, 565, 576

V
Val function, 102, 103, 111, 153
valid data, 105, 111
validating user input, 714–716

validator tools, 714, 717
values

calculating total and average,
512–514

fi nding highest, 515–517
sorting in one-dimensional arrays,

525–529
totaling in two-dimensional arrays,

550–552
variables, 121, 146

See also specifi c type
assigning data to existing, 125–131
with class scope, 134–135
creating ‘on the fl y,’ 141
declaring, 124–125
grouping, 504
member, 565, 576
naming, 123–124
passing, 397–405
with procedure scope, 132–134
scope and lifetime of, 131
selecting data types for, 122–123
static. See static variables
storing information using, 121–125
undeclared, 141

viewing
Visual Basic code, 756–757
Web pages in full screen view,

692–693
Visible property, 315, 319
Visual Basic 2010

conversion functions, 863
demonstration of, 4–6
overview of, 4, 11
viewing code, 756–757

Visual Basic 2010 Express, 11
confi guring, 12–13
exiting, 24
starting, 11–12

Visual Studio 2010, 11
confi guring, 12–13
exiting, 24
starting, 11–12

Visual Web Developer 2010,
confi guring, 687–688

Voter Eligibility application, 264–270

W
wages of computer programmers, 3
Warren School application, 522–525
Web applications

adding Web pages to, 693–694
closing and opening, 700
creating, 687–688
overview of, 684–687
starting, 696–698

Web pages, 684, 704, 708–712
adding images to, 698–700
adding link button controls,

694–696
adding static text to, 691–693
ASP, 686
customizing, 690–693
dynamic. See dynamic Web pages
positioning controls on, 701–702
static, 684, 704
viewing in full screen view, 692–693

Web servers, 684, 704
Where clause, 773, 783
WHERE clause, 815, 823
While keyword, 333
Willow Pools application, 567–570,

620–624
windows

managing in the IDE, 15–16
resetting layout in IDE, 16
selecting layout, 11

Windows applications, 13
Windows Form Designer window,

16–17, 27
Windows Form objects, 16, 27
Windows forms, properties of form

fi les, 19–22
Write method, 583, 593
WriteLine method, 583, 593
WriteOnly keyword, 626, 646

X
Xor operator, 207, 209, 222

Z
Zappet application, D-13–D-21*
zero-length strings, 93, 111

C7718_index.indd 872C7718_index.indd 872 14/03/11 9:03 PM14/03/11 9:03 PM

	Cover
	Title Page
	Copyright
	Brief Contents
	Contents
	Preface
	Read This Before You Begin
	OVERVIEW: An Introduction to Programming
	Programming a Computer
	The Programmer’s Job
	Do You Have What It Takes to Be a Programmer?
	Employment Opportunities

	Visual Basic 2010
	A Visual Basic 2010 Demonstration

	Using the Chapters Effectively
	Summary
	Key Terms

	CHAPTER 1 An Introduction to Visual Basic 2010
	LESSON A: The Splash Screen Application
	Managing the Windows in the IDE
	The Windows Form Designer Window
	The Solution Explorer Window
	The Properties Window
	Properties of a Windows Form
	Setting and Restoring a Property’s Value
	Saving a Solution
	Closing the Current Solution
	Opening an Existing Solution
	Exiting Visual Studio 2010 or Visual Basic 2010 Express
	Lesson A: Summary
	Lesson A: Key Terms
	Lesson A: Review Questions
	Lesson A: Exercises

	LESSON B: The Toolbox Window
	The Label Tool
	Changing a Property for Multiple Controls
	Using the Format Menu
	The PictureBox Tool
	The Button Tool
	Starting and Ending an Application
	The Code Editor Window
	Lesson B: Summary
	Lesson B: Key Terms
	Lesson B: Review Questions
	Lesson B: Exercises

	LESSON C: Using the Timer Tool
	Setting the FormBorderStyle Property
	The MinimizeBox, MaximizeBox, and ControlBox Properties
	Printing the Application’s Code and Interface
	Lesson C: Summary
	Lesson C: Key Terms
	Lesson C: Review Questions
	Lesson C: Exercises

	CHAPTER 2 Designing Applications
	LESSON A: Creating an Object-Oriented Application
	Planning an Object-Oriented Application
	Lesson A: Summary
	Lesson A: Key Terms
	Lesson A: Review Questions
	Lesson A: Exercises

	LESSON B: Building the User Interface
	Including Graphics in the User Interface
	Selecting Fonts for the Interface
	Adding Color to the Interface
	The BorderStyle and AutoSize Properties
	Adding a Text Box Control to the Form
	Locking the Controls on a Form
	Assigning Access Keys
	Controlling the Tab Order
	Lesson B: Summary
	Lesson B: Key Terms
	Lesson B: Review Questions
	Lesson B: Exercises

	LESSON C: Coding the Application
	Using Pseudocode to Plan a Procedure
	Using a Flowchart to Plan a Procedure
	Coding the btnClear Control’s Click Event Procedure
	Writing Arithmetic Expressions
	Coding the Calculate Order Button
	Testing and Debugging the Application
	Assembling the Documentation
	Lesson C: Summary
	Lesson C: Key Terms
	Lesson C: Review Questions
	Lesson C: Exercises

	CHAPTER 3 Using Variables and Constants
	LESSON A: Using Variables to Store Information
	Selecting a Data Type for a Variable
	Selecting a Name for a Variable
	Declaring a Variable
	Assigning Data to an Existing Variable
	The Scope and Lifetime of a Variable
	Static Variables
	Named Constants
	Option Explicit, Option Infer, and Option Strict
	Lesson A: Summary
	Lesson A: Key Terms
	Lesson A: Review Questions
	Lesson A: Exercises

	LESSON B: Modifying the Playtime Cellular Application
	Modifying the Calculate Order Button’s Code
	Concatenating Strings
	The InputBox Function
	The ControlChars.NewLine Constant
	Designating a Default Button
	Using the ToString Method to Format Numbers
	Lesson B: Summary
	Lesson B: Key Terms
	Lesson B: Review Questions
	Lesson B: Exercises

	LESSON C: Modifying the Load and Click Event Procedures
	Coding the TextChanged Event Procedure
	Lesson C: Summary
	Lesson C: Key Terms
	Lesson C: Review Questions
	Lesson C: Exercises

	CHAPTER 4 The Selection Structure
	LESSON A: Making Decisions in a Program
	Coding Single-Alternative and Dual-Alternative Selection Structures
	Comparison Operators
	Logical Operators
	Comparing Strings Containing Letters
	Converting a String to Uppercase or Lowercase
	Comparing Boolean Values
	Summary of Operators
	Lesson A: Summary
	Lesson A: Key Terms
	Lesson A: Review Questions
	Lesson A: Exercises

	LESSON B: Creating the Monthly Payment Calculator Application
	Adding a Group Box to the Form
	Coding the Monthly Payment Calculator Application
	Using the Financial.Pmt Method
	The MessageBox.Show Method
	Lesson B: Summary
	Lesson B: Key Terms
	Lesson B: Review Questions
	Lesson B: Exercises

	LESSON C: Coding the KeyPress Event Procedures
	Coding the Enter Event Procedures
	Lesson C: Summary
	Lesson C: Key Terms
	Lesson C: Review Questions
	Lesson C: Exercises

	CHAPTER 5 More on the Selection Structure
	LESSON A: Nested Selection Structures
	The Voter Eligibility Application
	Logic Errors in Selection Structures
	Multiple-Alternative Selection Structures
	The Select Case Statement
	Lesson A: Summary
	Lesson A: Key Terms
	Lesson A: Review Questions
	Lesson A: Exercises

	LESSON B: Creating the Math Practice Application
	Adding a Radio Button to the Form
	Adding a Check Box to the Interface
	Coding the Math Practice Application
	Creating an Independent Sub Procedure
	Coding the Grade Radio Buttons’ Click Event Procedures
	Coding the Operation Radio Buttons’ Click Event Procedures
	Coding the Form’s Load Event Procedure
	Lesson B: Summary
	Lesson B: Key Terms
	Lesson B: Review Questions
	Lesson B: Exercises

	LESSON C: Coding the Check Answer Button’s Click Event Procedure
	Coding the Display Summary Check Box’s Click Event Procedure
	Lesson C: Summary
	Lesson C: Key Term
	Lesson C: Review Questions
	Lesson C: Exercises

	CHAPTER 6 The Repetition Structure
	LESSON A: Repeating Program Instructions
	The Do . . . Loop Statement
	Counters and Accumulators
	Arithmetic Assignment Operators
	The For . . . Next Statement
	Lesson A: Summary
	Lesson A: Key Terms
	Lesson A: Review Questions
	Lesson A: Exercises

	LESSON B: Nested Repetition Structures
	The Refresh and Sleep Methods
	Revisiting the Monthly Payment Calculator Application
	Lesson B: Summary
	Lesson B: Key Terms
	Lesson B: Review Questions
	Lesson B: Exercises

	LESSON C: Creating the Shoppers Haven Application
	Including a List Box in an Interface
	Coding the Shoppers Haven Application
	Lesson C: Summary
	Lesson C: Key Terms
	Lesson C: Review Questions
	Lesson C: Exercises

	CHAPTER 7 Sub and Function Procedures
	LESSON A: More About Sub Procedures
	Passing Variables
	Function Procedures
	Lesson A: Summary
	Lesson A: Key Terms
	Lesson A: Review Questions
	Lesson A: Exercises

	LESSON B: Including a Combo Box in an Interface
	Lesson B: Summary
	Lesson B: Key Terms
	Lesson B: Review Questions
	Lesson B: Exercises

	LESSON C: Creating the Harvey Industries Application
	Coding the FormClosing Event Procedure
	Coding the btnCalc Control’s Click Event Procedure
	Completing the btnCalc Control’s Click Event Procedure
	Lesson C: Summary
	Lesson C: Key Terms
	Lesson C: Review Questions
	Lesson C: Exercises

	CHAPTER 8 String Manipulation
	LESSON A: Working with Strings
	Determining the Number of Characters in a String
	Removing Characters from a String
	Inserting Characters in a String
	Searching a String
	Accessing the Characters in a String
	Using Pattern-Matching to Compare Strings
	Lesson A: Summary
	Lesson A: Key Terms
	Lesson A: Review Questions
	Lesson A: Exercises

	LESSON B: Adding a Menu to a Form
	Assigning Shortcut Keys to Menu Items
	Coding the Exit Menu Item
	Lesson B: Summary
	Lesson B: Key Terms
	Lesson B: Review
	Lesson B: Exercises

	LESSON C: Completing the Hangman Game Application
	Coding the mnuFileNew Object’s Click Event Procedure
	Lesson C: Summary
	Lesson C: Key Terms
	Lesson C: Review Questions
	Lesson C: Exercises

	CHAPTER 9 Arrays
	LESSON A: Arrays
	One-Dimensional Arrays
	The For Each . . . Next Statement
	Calculating the Total and Average Values
	Finding the Highest Value
	Arrays and Collections
	Accumulator and Counter Arrays
	Sorting a One-Dimensional Array
	Lesson A: Summary
	Lesson A: Key Terms
	Lesson A: Review Questions
	Lesson A: Exercises

	LESSON B: Parallel One-Dimensional Arrays
	Lesson B: Summary
	Lesson B: Key Term
	Lesson B: Review Questions
	Lesson B: Exercises

	LESSON C: Two-Dimensional Arrays
	Traversing a Two-Dimensional Array
	Totaling the Values Stored in a Two-Dimensional Array
	Searching a Two-Dimensional Array
	Lesson C: Summary
	Lesson C: Key Term
	Lesson C: Review Questions
	Lesson C: Exercises

	CHAPTER 10 Structures and Sequential Access Files
	LESSON A: Structures
	Declaring and Using a Structure Variable
	Lesson A: Summary
	Lesson A: Key Terms
	Lesson A: Review Questions
	Lesson A: Exercises

	LESSON B: Sequential Access Files
	Writing Data to a Sequential Access File
	Closing an Output Sequential Access File
	Reading Data from a Sequential Access File
	Closing an Input Sequential Access File
	Lesson B: Summary
	Lesson B: Key Terms
	Lesson B: Review Questions
	Lesson B: Exercises

	LESSON C: Coding the CD Collection Application
	Coding the Form’s Load Event Procedure
	Coding the btnAdd Control’s Click Event Procedure
	Aligning Columns of Information
	Coding the btnRemove Control’s Click Event Procedure
	Coding the Form’s FormClosing Event Procedure
	Lesson C: Summary
	Lesson C: Key Terms
	Lesson C: Review Questions
	Lesson C: Exercises

	CHAPTER 11 Classes and Objects
	LESSON A: Object-Oriented Programming Terminology
	Creating a Class
	Example 1—A Class that Contains Public Variables Only
	Example 2—A Class that Contains Private Variables, Public Properties, and Methods
	Example 3—A Class that Contains a Parameterized Constructor
	Example 4—Reusing a Class
	Lesson A: Summary
	Lesson A: Key Terms
	Lesson A: Review Questions
	Lesson A: Exercises

	LESSON B: Example 5—A Class that Contains a ReadOnly Property
	Example 6—A Class that Contains Auto-Implemented Properties
	Example 7—A Class that Contains Overloaded Methods
	Lesson B: Summary
	Lesson B: Key Terms
	Lesson B: Review Questions
	Lesson B: Exercises

	LESSON C: Example 8—Using a Base Class and a Derived Class
	Lesson C: Summary
	Lesson C: Key Terms
	Lesson C: Review Questions
	Lesson C: Exercises

	CHAPTER 12 Web Applications
	LESSON A: Web Applications
	Creating a Web Application
	Adding the Default.aspx Web Page to the Application
	Customizing a Web Page
	Viewing a Web Page in Full Screen View
	Adding Another Web Page to the Application
	Adding a Link Button Control to a Web Page
	Starting a Web Application
	Adding an Image to a Web Page
	Closing and Opening an Existing Web Application
	Repositioning a Control on a Web Page
	Lesson A: Summary
	Lesson A: Key Terms
	Lesson A: Review Questions
	Lesson A: Exercises

	LESSON B: Dynamic Web Pages
	Coding the Submit Button’s Click Event Procedure
	Validating User Input
	Lesson B: Summary
	Lesson B: Key Term
	Lesson B: Review Questions
	Lesson B: Exercises

	LESSON C: Creating the DJ Tom Application
	Creating a Columnar Layout
	Using an ASP Table
	Adding Items to a DropDownList Control
	Coding DJ Tom’s Web Page
	Lesson C: Summary
	Lesson C: Key Terms
	Lesson C: Review Questions
	Lesson C: Exercises

	CHAPTER 13 Working with Access Databases and LINQ
	LESSON A: Database Terminology
	Connecting an Application to a Microsoft Access Database
	Binding the Objects in a Dataset
	Visual Basic Code
	The Copy to Output Directory Property
	Binding to an Existing Control
	Lesson A: Summary
	Lesson A: Key Terms
	Lesson A: Review Questions
	Lesson A: Exercises

	LESSON B: Creating a Query
	Personalizing a BindingNavigator Control.
	Using the LINQ Aggregate Operators
	Lesson B: Summary
	Lesson B: Key Terms
	Lesson B: Review Questions
	Lesson B: Exercises

	LESSON C: Completing the Paradise Bookstore Application
	Coding the Paradise Bookstore Application
	Lesson C: Summary
	Lesson C: Key Terms
	Lesson C: Review Questions
	Lesson C: Exercises

	CHAPTER 14 Access Databases and SQL
	LESSON A: Adding Records to a Dataset
	Sorting the Records in a Dataset
	Deleting Records from a Dataset
	Lesson A: Summary
	Lesson A: Key Terms
	Lesson A: Review Questions
	Lesson A: Exercises

	LESSON B: Structured Query Language
	The SELECT Statement
	Creating a Query
	Lesson B: Summary
	Lesson B: Key Terms
	Lesson B: Review Questions
	Lesson B: Exercises

	LESSON C: Parameter Queries
	Saving a Query
	Invoking a Query from Code
	The INSERT and DELETE Statements
	Lesson C: Summary
	Lesson C: Key Terms
	Lesson C: Review Questions
	Lesson C: Exercises

	APPENDIX A: Locating Syntax and Logic Errors
	APPENDIX B: GUI Design Guidelines
	APPENDIX C: Visual Basic Conversion Functions
	Index

