

Dhrubojyoti Kayal

Pro Java™ EE Spring
Patterns
Best Practices and Design Strategies
Implementing Java™ EE Patterns with
the Spring Framework

Pro Java™ EE Spring Patterns: Best Practices and Design Strategies Implementing Java™ EE Patterns with
the Spring Framework

Copyright © 2008 by Dhrubojyoti Kayal

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1009-2

ISBN-13 (electronic): 978-1-4302-1010-8

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was writ-
ten without endorsement from Sun Microsystems, Inc.

Lead Editors: Steve Anglin, Tom Welsh
Technical Reviewer: Prosenjit Bhattacharyya
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Kylie Johnston
Copy Editor: Kim Wimpsett
Associate Production Director: Kari Brooks-Copony
Production Editors: Laura Cheu, Liz Berry
Compositor: Dina Quan
Proofreader: Linda Seifert
Indexer: Ron Strauss
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

To my parents and my wife.

Contents at a Glance

About the Author . xiii

About the Technical Reviewer. xv

Acknowledgments . xvii

Introduction. xix

■CHAPTER 1 Introducing Enterprise Java Application Architecture
and Design . 1

■CHAPTER 2 Simplifying Enterprise Java Applications with the
Spring Framework . 21

■CHAPTER 3 Exploring Presentation Tier Design Patterns . 41

■CHAPTER 4 Exploring Business Tier Design Patterns. 135

■CHAPTER 5 Exploring Integration Tier Design Patterns . 179

■CHAPTER 6 Exploring Crosscutting Design Patterns . 223

■CHAPTER 7 Case Study: Building an Order Management System 269

■INDEX . 311

v

Contents

About the Author . xiii

About the Technical Reviewer. xv

Acknowledgments . xvii

Introduction. xix

■CHAPTER 1 Introducing Enterprise Java Application
Architecture and Design. 1

Evolution of Distributed Computing . 2

Single-Tier Architecture . 2

Two-Tier Architecture . 3

Three-Tier Architecture. 4

N-Tier Architecture . 4

Java EE Architecture . 5

Java EE Application Design . 11

Simplifying Application Design with Patterns 11

The Java EE Design Pattern Catalog . 12

Java EE Architecture and Design with UML . 14

Class Diagram . 15

Sequence Diagram . 18

Summary. 19

■CHAPTER 2 Simplifying Enterprise Java Applications
with the Spring Framework . 21

What Is Spring? . 21

Why Is Spring So Important? . 22

Spring Framework’s Building Blocks . 24

Spring Core . 25

Spring AOP . 34

vii

Spring DAO . 34

Spring ORM. 35

JEE . 35

Web MVC. 35

Building a Layered Application with Spring . 35

Presentation Tier . 36

Business Tier . 37

Integration Tier . 38

Spring Enterprise Java Design Pattern Directive . 38

Name . 38

Problem . 39

Forces . 39

Solution . 39

Consequences . 39

Summary. 39

■CHAPTER 3 Exploring Presentation Tier Design Patterns. 41

Front Controller . 42

Problem . 42

Forces . 45

Solution . 46

Consequences . 49

Application Controller . 50

Problem . 50

Forces . 51

Solution . 52

Consequences . 68

Page Controller . 68

Problem . 68

Forces . 69

Solution . 69

Consequences . 89

■CONTENTSviii

Context Object . 90

Problem . 90

Forces . 91

Solution . 91

Consequences . 98

Intercepting Filter . 98

Problem . 98

Forces . 99

Solution . 99

Consequences . 106

View Helper . 107

Problem . 107

Forces . 107

Solution . 107

Consequences . 116

Composite View . 117

Problem . 117

Forces . 118

Solution . 118

Consequences . 123

Dispatcher View. 123

Problem . 123

Forces . 124

Solution . 124

Consequences . 130

Service to Worker . 130

Problem . 130

Forces . 131

Solution . 131

Consequences . 132

Summary . 133

■CONTENTS ix

■CONTENTSx

■CHAPTER 4 Exploring Business Tier Design Patterns 135

Service Locator . 136

Problem . 136

Forces . 139

Solution . 139

Consequences . 150

Business Delegate. 151

Problem . 151

Forces . 151

Solution . 151

Consequences . 154

Session Facade . 155

Problem . 155

Forces . 156

Solution . 156

Consequences . 162

Application Service . 162

Problem . 162

Forces . 163

Solution . 163

Consequences . 167

Business Interface. 168

Problem . 168

Forces . 169

Solution . 169

Consequences . 176

Summary. 176

■CHAPTER 5 Exploring Integration Tier Design Patterns. 179

Data Access Object . 180

Problem . 180

Forces . 183

Solution . 183

Consequences . 194

Procedure Access Object . 195

Problem . 195

Forces . 195

Solution . 195

Consequences . 199

Service Activator . 199

Problem . 199

Forces . 200

Solution . 200

Consequences . 208

Web Service Broker. 209

Problem . 209

Forces . 209

Solution . 210

Consequences . 221

Summary. 221

■CHAPTER 6 Exploring Crosscutting Design Patterns. 223

Authentication and Authorization Enforcer . 224

Problem . 224

Forces . 225

Solution . 226

Consequences . 247

Audit Interceptor . 248

Problem . 248

Forces . 249

Solution . 249

Consequences . 256

Domain Service Owner Transaction . 256

Problem . 256

Forces . 257

Solution . 257

Consequences . 267

Summary . 267

■CONTENTS xi

■CONTENTSxii

■CHAPTER 7 Case Study: Building an Order Management
System . 269

Requirements. 270

Story Card: Sign In Users . 270

Story Card: Look Up Services . 270

Story Card: Save Order . 271

Iteration Planning. 271

Architecture . 272

Presentation Tier . 273

Business Tier . 274

Integration Tier . 275

Design . 276

Security . 277

Problem . 277

Forces . 277

Solution . 277

Java Server Pages. 277

Problem . 277

Forces . 278

Solution . 278

Page Controller . 278

Problem . 278

Forces . 278

Solution . 279

Development . 280

Setting Up the Workspace . 280

Setting Up the Projects . 282

Adding Dependencies . 285

Constructing the Project . 287

Deploying the Project . 297

Summary. 309

■INDEX . 311

About the Author

■DHRUBOJYOTI KAYAL is an agile developer architect with almost a
decade of experience working with Java EE. During this time, he has
actively contributed to the architecture, design, and development of
products and applications using enterprise Java technologies. His
areas of interest include the Spring Framework, JBoss SEAM, OSGi,
refactoring and prefactoring, rich Internet applications, Scrum, and
XP. He currently works with Capgemini Consulting, where he helps

project teams with the architecture, design, and development of Java EE projects for
leading vendors in the telecom, media, and entertainment sectors. Prior to Capgemini,
Dhrubojyoti worked for TATA Consultancy Services, Oracle, and Cognizant Technology
Solutions.

xiii

About the Technical Reviewer

■PROSENJIT BHATTACHARYYA has been working with software ever
since he was introduced to computers during his early school days.
Starting with BASIC and Logo, he soon graduated to C, C++, and Java.
Currently he concentrates on designing enterprise solutions based on
the Java EE platform. An ardent supporter of open source, Prosenjit
contributes to the community through his open source projects—
JavaTrace and Dissect Framework—hosted on SourceForge. His

enthusiasm about open source has earned him the sobriquet of “open source evangelist”
amongst his acquaintances. Working for companies such as BEA Systems, Oracle Corpo-
ration, and IBM has enriched his experience and honed him into a thoroughbred
software professional. Prosenjit’s hobbies include playing the guitar and working on the
pit crew of an amateur racing team. He hopes to have his own racing team in the near
future. Prosenjit can be contacted at prosenjit.bhattacharyya@gmail.com.

xv

Acknowledgments

I would like to take this opportunity to thank a few people whose ideas, inspirations, and
diligence have contributed significantly to this book. First and foremost, I thank Steve
Anglin for providing me with the opportunity to author this book. We started with a com-
pletely different idea way back in September 2007. Later it was Steve who came up with
the idea to merge the Spring Framework and Java EE design patterns.

I am indebted to Prosenjit Bhattacharyya and Tom Welsh for the hours they spent on
the technical review. Prosenjit is my old buddy since college days, and his objective feed-
back (especially for Chapter 7) helped give complete shape to each chapter in this book.
I have learned a lot from Tom about writing in general. Tom’s guidance proved very
important in presenting and elaborating on the topics correctly, in a clear and concise
manner.

This section would be incomplete without mentioning Kylie Johnston. Kylie has been
the most patient and cooperative project manager. I must admit that this book probably
would not have seen the light of day without her. I missed the deadlines for chapter sub-
missions throughout the duration of this project. But Kylie always kept things on track by
reminding me about the deadlines time and again yet also ensuring that a high-quality
deliverable was produced. I must also thank Kim Wimpsett, Laura Cheu, and Elizabeth
Berry for their fabulous work during production.

I am also grateful to my former colleagues at Cognizant Technology Solutions—
Suman Ray and Somnath Chakraborty—for guiding and encouraging me to take up a
technical career path. The design directive idea discussed in Chapter 7 of this book was
introduced by Somnath in 2005 and was an instant hit.

xvii

Introduction

This book combines the Java EE design patterns with the Spring Framework. The Java
EE design pattern catalog provides an invaluable reference for any Java EE application
design and architecture. The Spring Framework, on the other hand, is the de facto stan-
dard for Java EE. Spring, with its inherently simple programming model and emphasis on
object design best practices, has helped revive and increase the adoption of the Java EE
platform.

I have been using the Spring Framework in combination with design patterns to
build Java EE applications for a long time now. This book is an effort to document a cata-
log of frequently used design strategies with the Spring Framework, which is relevant in
the context of the latest Java 5 EE specifications. I am sure this book will be a reference
for designers and developers who are interested in building enterprise applications with
Java EE and the Spring Framework.

Who This Book Is For
This book is primarily meant for Java EE application designers and architects. Experi-
enced developers with knowledge of the Java EE design patterns and the Spring
Framework will also find this book immensely useful.

How This Book Is Structured
This book is structured in a very simple way. Chapter 1 starts with an introduction to the
fundamental concepts in enterprise application architecture. It analyzes various archi-
tectural styles in distributed computing, and it introduces UML as the tool for the visual
representation of application design.

Chapter 2 introduces the Spring Framework and its role in building enterprise Java
applications. This chapter also highlights the design pattern template that will be used in
the next four chapters. Chapter 3 explains the design problems in the presentation tier
and presents solutions with the Spring MVC framework. Chapter 4 elaborates on the
business tier design patterns. This chapter also shows Spring’s support for simplifying
EJB development.

xix

Chapter 5 deals with the integration tier design patterns. Chapter 6 takes a look into
the often-overlooked areas of security and transaction design strategies. Finally, in
Chapter 7, all the concepts presented in earlier chapters are used to develop an order
management system.

Prerequisites
This book assumes you are familiar with the Java EE design patterns, the Spring
Framework, and the Eclipse IDE.

Downloading the Code
The source code for this book is available to readers at http://www.apress.com in the
downloads section of this book’s home page. Please feel free to visit the Apress website
and download all the code there. You can also check for errata and find related titles
from Apress.

Contacting the Authors
Feel free to contact the author at dhrubo.kayal@gmail.com.

■INTRODUCTIONxx

Introducing Enterprise Java
Application Architecture
and Design

For a long time, Java Enterprise Edition (Java EE) has been the platform of choice across
industries (banking, insurance, retail, hospitality, travel, and telecom, to name a few)
for developing and deploying enterprise business applications. This is because Java EE
provides a standard-based platform to build robust and highly scalable distributed appli-
cations that support everything from core banking operations to airline booking engines.
However, developing successful Java EE applications can be a difficult task. The rich set
of choices provided by the Java EE platform is daunting at first. The plethora of frame-
works, utility libraries, integrated development environments (IDEs), and tool options
make it all the more challenging. Hence, selecting appropriate technology is critical when
developing Java EE–based software. These choices, backed by sound architectural and
design principles, go a long way in building applications that are easy to maintain, reuse,
and extend.

This chapter takes a tour of the fundamental aspects of Java EE application architec-
ture and design. They form the foundation on which the entire application is developed.

The journey starts with a review of the evolution of distributed computing and
n-tier application architecture. I will then show how the Java EE platform architecture
addresses the difficulties in developing distributed applications. You will also learn about
the Model-View-Controller (MVC) architectural principle. I’ll then combine MVC princi-
ples with the Java EE platform to derive multitier Java EE application architecture.

With application architecture in place, I will focus on Java EE application design
based on object-oriented principles. I will also explain the use of design patterns to sim-
plify application design and the adoption of best practices. I’ll also touch on the Java EE
design pattern catalog as documented by Sun’s Java BluePrints and subsequently elabo-
rated on in the book Core J2EE Design Pattern by Deepak Alur et al (Prentice Hall, 2003).
I’ll end the chapter with an introduction to Unified Modeling Language (UML) and its
role in visually documenting Java EE design and architecture.

1

C H A P T E R 1

Evolution of Distributed Computing
In distributed computing, an application is divided into smaller parts that run simultane-
ously on different computers. This is also referred to as network computing because the
smaller parts communicate over the network generally using protocols built on top of
TCP/IP or UDP. The smaller application parts are called tiers. Each tier provides an inde-
pendent set of services that can be consumed by the connecting or client tier. The tiers
can be further divided into layers, which provide granular-level functions. Most applica-
tions have three distinct layers:

• The presentation layer is responsible for the user interfaces.

• The business layer executes the business rules. In the process, it also interacts with
the data access layer.

• The data access layer is responsible retrieving and manipulating data stored in
enterprise information systems (EISs).

The modern state of network computing can be better understood by analyzing the
gradual transition of distributed application architecture. In the next few sections, I will
examine the transition of distributed architecture with suitable examples.

Single-Tier Architecture

The single-tier architecture dates back to the days of monolithic mainframes connected
by dumb terminals. The entire application comprising layers such as user interfaces,
business rules, and data was collocated on the same physical host. The users interacted
with these systems using terminals or consoles, which had very limited text-based pro-
cessing capabilities (see Figure 1-1).

Figure 1-1. Single-tier architecture

CHAPTER 1 ■ INTRODUCING ENTERPRISE JAVA APPLICATION ARCHITECTURE AND DESIGN2

Two-Tier Architecture

In the early 1980s, personal computers (PCs) became very popular. They were less expen-
sive and had more processing power than the dumb terminal counterparts. This paved
the way for true distributed, or client-server, computing. The client or the PCs now ran the
user interface programs. It also supported graphical user interfaces (GUIs), allowing the
users to enter data and interact with the mainframe server. The mainframe server now
hosted only the business rules and data. Once the data entry was complete, the GUI
application could optionally perform validations and then send the data to the server for
execution of the business logic. Oracle Forms–based applications are a good example of
two-tier architecture. The forms provide the GUI loaded on the PCs, and the business
logic (coded as stored procedures) and data remain on the Oracle database server.

Then there was another form of two-tier architecture in which not only the UI but
even the business logic resided on the client tier. This kind of application typically con-
nected to a database server to run various queries. These clients are referred to as thick or
fat clients because they had a significant portion of the executable code in the client tier
(see Figure 1-2).

Figure 1-2. Two-tier architecture

CHAPTER 1 ■ INTRODUCING ENTERPRISE JAVA APPLICATION ARCHITECTURE AND DESIGN 3

Three-Tier Architecture

Two-tier thick client applications are easy to develop, but any software upgrade because
of changes in user interface or business logic has to be rolled out for all the clients. Luck-
ily, the hardware cost became cheaper and processing power increased significantly on
the CPU in the mid-90s. This, coupled with the growth of the Internet and web-based
application development trends, resulted in the emergence of three-tier architectures.

In this model, the client PC needs only thin client software such as a browser to dis-
play the presentation content coming from the server. The server hosts the presentation,
the business logic, and the data access logic. The application data comes from enterprise
information systems such as a relational database. In such systems the business logic can
be accessed remotely, and hence it is possible to support stand-alone clients via a Java
console application. The business layer generally interacts with the information system
through the data access layer. Since the entire application resides on the server, this
server is also referred to as an application server or middleware (see Figure 1-3).

Figure 1-3. Three-tier application

N-Tier Architecture

With the widespread growth of Internet bandwidth, enterprises around the world have
web-enabled their services. As a result, the application servers are not burdened anymore
with the task of the presentation layer. This task is now off-loaded to the specialized web
servers that generate presentation content. This content is transferred to the browser on

CHAPTER 1 ■ INTRODUCING ENTERPRISE JAVA APPLICATION ARCHITECTURE AND DESIGN4

the client tier, which takes care of rendering the user interfaces. The application servers
in n-tier architecture host remotely accessible business components. These are accessed
by the presentation layer web server over the network using native protocols. Figure 1-4
shows the n-tier application.

Figure 1-4. N-tier application

Java EE Architecture

Developing n-tier distributed applications is a complex and challenging job. Distributing
the processing into separate tiers leads to better resource utilization. It also allows alloca-
tion of tasks to experts who are best suited to work and develop a particular tier. The web
page designers, for example, are more equipped to work with the presentation layer on
the web server. The database developers, on the other hand, can concentrate on develop-
ing stored procedures and functions. However, keeping these tiers as isolated silos serves
no useful purpose. They must be integrated to achieve a bigger enterprise goal. It is
imperative that this is done leveraging the most efficient protocol; otherwise, this leads to
serious performance degradation.

Besides integration, a distributed application requires various services. It must be
able to create, participate, or manage transactions while interacting with disparate infor-
mation systems. This is an absolute must to ensure the concurrency of enterprise data.
Since n-tier applications are accessed over the Internet, it is imperative that they are
backed by strong security services to prevent malicious access.

CHAPTER 1 ■ INTRODUCING ENTERPRISE JAVA APPLICATION ARCHITECTURE AND DESIGN 5

These days, the cost of hardware, like CPU and memory, has gone down drastically.
But still there is a limit, for example, to the amount of memory that is supported by the
processor. Hence, there is a need to optimally use the system resources. Modern distrib-
uted applications are generally built leveraging object-oriented technologies. Therefore,
services such as object caches or pools are very handy. These applications frequently
interact with relational databases and other information systems such as message-
oriented middleware. However, opening connections to these systems is costly because
it consumes a lot of process resources and can prove to be a serious deterrent to per-
formance. In these scenarios, a connection pool is immensely useful to improve
performance as well as to optimize resource utilization.

Distributed applications typically use middleware servers to leverage the system
services such as transaction, security, and pooling. The middleware server API had to be
used to access these services. Hence, application code would be muddled with a propri-
etary API. This lock-in to vendor API wastes lot of development time and makes
maintenance extremely difficult, besides limiting portability.

In 1999, Sun Microsystems released the Java EE 2 platform to address the difficulties
in the development of distributed multitier enterprise applications. The platform was
based on Java Platform, Standard Edition 2, and as a result it had the benefit of “write
once, deploy and run anywhere.” The platform received tremendous support from the
open source community and major commercial vendors such as IBM, Oracle, BEA, and
others because it was based on specifications. Anyone could develop the services as long
as it conformed to the contract laid down in the specification. The specification and the
platform have moved on from there; the platform is currently based on Java Platform,
Standard Edition 5, and it is called Java Platform, Enterprise Edition 5. In this book, we
will concentrate on this latest version, referred to officially as Java EE 5.

Java EE Container Architecture

The Java EE platform provides the essential system services through a container-based
architecture. The container provides the runtime environment for the object-oriented
application components written in Java. It provides low-level services such as security,
transaction, life-cycle management, object lookup and caching, persistence, and net-
work communication. This allows for the clear separation of roles. The system
programmers can take care of developing the low-level services, and the application
programmers can focus more on developing the business and presentation logic.

CHAPTER 1 ■ INTRODUCING ENTERPRISE JAVA APPLICATION ARCHITECTURE AND DESIGN6

As shown in Figure 1-5, there are two server-side containers:

• The web container hosts the presentation components such as Java Server Pages
(JSP) and servlets. These components also interact with the EJB container using
remoting protocols.

• The EJB container manages the execution of Enterprise JavaBeans (EJB) compo-
nents.

Figure 1-5. Java EE platform architecture

On the client side, the application client is a core Java application that connects to
the EJB container over the network. The web browser, on the other hand, generally inter-
acts with the web container using the HTTP protocol. The EJB and web containers
together form the Java EE application server. The server in turn is hosted on the Java
Virtual Machine (JVM).

CHAPTER 1 ■ INTRODUCING ENTERPRISE JAVA APPLICATION ARCHITECTURE AND DESIGN 7

Different containers provide different sets of low-level services. The web container
does not provide transactional support, but the EJB container does. These services can be
accessed using standard Java EE APIs such as Java Transaction API (JTA), Java Message
Service (JMS), Java Naming and Directory Interface (JNDI), Java Persistence API (JPA),
and Java Transaction API (JTA). The greatest benefit, however, is that these services can
be applied transparently on the application components by mere configuration. To inter-
pose these services, the application components should be packaged in predefined
archive files with specific XML-based deployment descriptors. This effectively helps cut
down on development time and simplifies maintenance.

Java EE Application Architecture

The Java EE platform makes the development of distributed n-tier applications easier.
The application components can be easily divided based on functions and hosted on dif-
ferent tiers. The components on different tiers generally collaborate using an established
architectural principle called MVC.

An MVC Detour

Trygve Reenskaug first described MVC way back in 1979 in a paper called “Applications
Programming in Smalltalk-80™: How to use Model-View-Controller.” It was primarily
devised as a strategy for separating user interface logic from business logic. However,
keeping the two isolated does not serve any useful purpose. It also suggests adding a
layer of indirection to join and mediate between presentation and business logic layers.
This new layer is called the controller layer. Thus, in short, MVC divides an application
into three distinct but collaborating components:

• The model manages the data of the application by applying business rules.

• The view is responsible for displaying the application data and presenting the con-
trol that allows the users to further interact with the system.

• The controller takes care of the mediation between the model and the view.

CHAPTER 1 ■ INTRODUCING ENTERPRISE JAVA APPLICATION ARCHITECTURE AND DESIGN8

Figure 1-6 depicts the relationship between the three components. The events trig-
gered by any user action are intercepted by the controller. Depending on the action, the
controller invokes the model to apply suitable business rules that modify application
data. The controller then selects a view component to present the modified application
data to the end user. Thus, you see that MVC provides guidelines for a clean separation of
responsibilities in an application. Because of this separation, multiple views and con-
trollers can work with the same model.

Figure 1-6. Model-View-Controller

Java EE Architecture with MVC

The MVC concept can be easily applied to form the basis for Java EE application architec-
ture. Java EE servlet technology is ideally suited as a controller component. Any browser
request can be transferred via HTTP to a servlet. A servlet controller can then invoke EJB
model components, which encapsulate business rules and also retrieve and modify the
application data. The retrieved and/or altered enterprise data can be displayed using JSP.
As you’ll read later in this book, this is an oversimplified representation of real-life enter-
prise Java architecture, although it works for a small-scale application. But this has
tremendous implications for application development. Risks can be reduced and pro-
ductivity increased if you have specialists in the different technologies working together.
Moreover, one layer can be transparently replaced and new features easily added without
adversely affecting others (see Figure 1-7).

CHAPTER 1 ■ INTRODUCING ENTERPRISE JAVA APPLICATION ARCHITECTURE AND DESIGN 9

Figure 1-7. Layered multitier Java EE application architecture based on MVC

Layers in a Java EE Application

It is evident from Figure 1-7 that layered architecture is an extension of the MVC archi-
tecture. In the traditional MVC architecture, the data access or integration layer was
assumed to be part of the business layer. However, in Java EE, it has been reclaimed as a
separate layer. This is because enterprise Java applications integrate and communicate
with a variety of external information system for business data—relational database
management systems (RDBMSs), mainframes, SAP ERP, or Oracle e-business suites, to
name just a few. Therefore, positioning integration services as a separate layer helps the
business layer concentrate on its core function of executing business rules.

The benefits of the loosely coupled layered Java EE architecture are similar to those
of MVC. Since implementation details are encapsulated within individual layers, they can
be easily modified without deep impact on neighboring layers. This makes the applica-
tion flexible and easy to maintain. Since each layer has its own defined roles and
responsibilities, it is simpler to manage, while still providing important services.

CHAPTER 1 ■ INTRODUCING ENTERPRISE JAVA APPLICATION ARCHITECTURE AND DESIGN10

Java EE Application Design
In the past few sections I laid the foundation for exploring Java EE application design in
greater detail. However, the design of Java EE software is a huge subject in itself, and
many books have been written about it. My intention in this book is to simplify Java EE
application design and development by applying patterns and best practices through the
Spring Framework. Hence, in keeping with the theme and for the sake of brevity, I will
cover only those topics relevant in this context. This will enable me to focus, in the forth-
coming chapters, on only those topics that are essential for understanding the subject.

Some developers and designers are of the opinion that Java EE application design is
essentially OO design. This is true, but Java EE application design involves a lot more
than traditional object design. It requires finding the objects in the problem domain and
then determining their relationships and collaboration. The objects in individual layers
are assigned responsibilities, and interfaces are laid out for interaction between layers.
However, the task doesn’t finish here. In fact, it gets more complicated. This is because,
unlike traditional object design, Java EE supports distributed object technologies such as
EJB for deploying business components. The business components are developed as
remotely accessible session Enterprise JavaBeans. JMS and message-driven beans (MDB)
make things even complex by allowing distributed asynchronous interaction of objects.

The design of distributed objects is an immensely complicated task even for experi-
enced professionals. You need to consider critical issues such as scalability, performance,
transactions, and so on, before drafting a final solution. The design decision to use a
coarse-grained or fine-grained session EJB facade can have serious impact on the overall
performance of a Java EE application. Similarly, the choice of the correct method on
which transactions will be imposed can have critical influence on data consistency.

Simplifying Application Design with Patterns

Application design can be immensely simplified by applying Java EE design patterns.
Java EE design patterns have been documented in Sun’s Java Blueprints (http://java.sun.
com/reference/blueprints) and also in the book Core J2EE Design Pattern (Prentice Hall,
2003). They are based on fundamental object design patterns, described in the famous
book Design Patterns: Elements of Reusable Object-Oriented Software (Addison Wesley,
1994). These patterns are also called Gang of Four (GOF) patterns because this book was
written by four authors: Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
The Java EE patterns catalog also takes into the account the strategies to meet the
challenges of remotely accessible distributed objects besides the core object design
principles.

CHAPTER 1 ■ INTRODUCING ENTERPRISE JAVA APPLICATION ARCHITECTURE AND DESIGN 11

Design patterns describe reusable solutions to commonly occurring design prob-
lems. They are tested guidelines and best practices accumulated and documented by
experienced developers and designers. A pattern has three main characteristics:

• The context is the surrounding condition under which the problem exists.

• The problem is the difficult and uncertain subject area in the domain. It is limited
by the context in which it is being considered.

• The solution is the remedy for the problem under consideration.

However, every solution to a problem does not qualify it as a pattern. The problem
must be occurring frequently in order to have a reusable solution and to be considered as
a pattern. Moreover, patterns must establish a common vocabulary to communicate
design solutions to developers and designers. For example, if someone is referring to the
GOF Singleton pattern, then all parties involved should understand that you need to
design an object that will have only a single instance in the application. To achieve this
design pattern, its description is often supplemented by structural and interaction dia-
grams as well as code snippets. Last but not least, each pattern description generally
concludes with a benefit and concern analysis. You will take a detailed look at the con-
stituents of a pattern when I discuss the pattern template in Chapter 2.

The Java EE Design Pattern Catalog
As stated earlier, Java EE has been the dominant enterprise development platform for
nearly ten years. Over this period, thousands of successful applications and products
have been built using this technology. But some endeavors have failed as well. There are
several reasons for such failures, of which the foremost is inadequate design and archi-
tecture. This is a critical area because design and architecture is the bridge from
requirements to the construction phase. However, Java EE designers and architects have
learned their lessons from both failures and successes by drawing up a list of useful
design patterns. This Java EE patterns catalog provides time-tested solution guidelines
and best practices for object interaction in each layer of a Java EE application.

Just like the platform itself, the Java EE patterns catalog has evolved over time. As dis-
cussed earlier, this catalog was first formed as part of Sun’s Java BluePrints and later
elaborated on in the book Core J2EE Design Pattern (Prentice Hall, 2003). Table 1-1 pres-
ents the patterns with a brief description of each and its associated layer. I will discuss
each of them in greater detail in the subsequent chapters.

CHAPTER 1 ■ INTRODUCING ENTERPRISE JAVA APPLICATION ARCHITECTURE AND DESIGN12

Table 1-1. Java EE Spring Patterns Catalog

Layer Pattern Name Description

Presentation View Helper Separates presentation from business logic

Composite View Builds a layout-based view from multiple smaller
subviews

Front Controller Provides a single point of access for presentation
tier resources

Application Controller Acts as a front controller helper responsible for
the coordinations with the page controllers and
view components.

Service to Worker Executes business logic before control is finally
passed to next view

Dispatcher View Executes minimal or no business logic to prepare
response to the next view

Page Controller Manages each user action on a page and executes
business logic

Intercepting filters Pre- and post-processes a user request

Context Object Decouples application controllers from being tied
to any specific protocol

Business Business Delegate Acts as a bridge to decouple page controller and
business logic that can be complex remote
distributed object

Service Locator Provides handle to business objects

Session Facade Exposes coarse-grained interface for entry into
business layer for remote clients

Application Service Provides business logic implementation as simple
Java objects

Business Interface Consolidates business methods and applies
compile-time checks of EJB methods

Integration Data Access Object Separates data access logic from business logic

Procedure Access Object Encapsulates access to database stored procedure
and functions

Service Activator Processes request asynchronously
(aka Message Facade)

Web Service Broker Encapsulates logic to access external applications
exposed as web services standards

CHAPTER 1 ■ INTRODUCING ENTERPRISE JAVA APPLICATION ARCHITECTURE AND DESIGN 13

Table 1-1 is slightly altered based on the current state of Java EE. The Data Transfer
Object pattern, for instance, no longer finds its place in the catalog and therefore is not
listed. This pattern was used transfer data across layer and was especially useful if you
used remote entity bean persistence components. But with the new Java Persistence API
(part of the Java EE 5 platform) and general trend for plain old Java object (POJO) pro-
gramming models, this pattern is no longer relevant.

This table is far from complete. Certain patterns can be applied across tiers. Security
design patterns, for example, can be applied in the presentation layer to restrict access to
web resources such as JSPs. Similarly, security patterns can be used to control method
invocation on business layer EJB components. Transactional patterns, for example, can
be applied at both the business and integration layers. These patterns are classified as
cross-cutting patterns. I will explore cross-cutting patterns in detail in Chapter 6.

Java EE Architecture and Design with UML
Most modern-day applications are developed iteratively. The system grows gradually as
more and more requirements become available. The core of such systems is a high-level
design and architecture that evolves through iterations. It is also imperative that design
and architecture are documented in both text and visual forms for the benefit of the
development and maintenance teams. The visual representation is immensely useful
because it helps developers understand runtime interactions and compile-time depend-
encies.

UML is a graphical language used for modeling and visualizing architecture and
detailed design in complex enterprise systems. It is based on a specification developed by
Object Management Group (OMG). I will use UML 2.0 notations (which is the latest ver-
sion) available at http://www.uml.org/. However, UML is not limited to architecture and
design but can be used in all phases of software development. UML provides a rich set of
notation to depict the classes and objects and various relationship and interactions.
Modern UML modeling tools such as IBM Rational XDE, Visual Paradigm, Sparx Systems
Enterprise Architect, and so on, allow design patterns and best practices to be applied
during system design. Moreover, with these tools, the design model can be used to gener-
ate significant portions of the application source code.

There are several kinds of UML diagram. But for analysis of Java EE design patterns, I
will concentrate primarily on class and sequence diagrams and a simple extension mech-
anism called stereotypes. If you are new to UML or eager to know more, the best UML
reference is UML Distilled Third Edition by Martin Fowler (Addison Wesley, 2005).

CHAPTER 1 ■ INTRODUCING ENTERPRISE JAVA APPLICATION ARCHITECTURE AND DESIGN14

Class Diagram

A class diagram depicts the static relationships that exist among a group of classes and
interfaces in the system. The different types of relationships that I will discuss are gener-
alization, aggregation, and inheritance. Figure 1-8 shows the UML notation for a class
used to represent the details of an insurance claim. It is represented by a rectangle with
three compartments. The first compartment is the name of the class. The second com-
partment denotes the attributes in the class, and the last one shows the operations
defined on these attributes. Note that the + and – signs before the attribute and method
names are used to represent the visibility. The + sign denotes public visibility, and the –
sign denotes private visibility or that the attribute is not accessible outside this class. Also
note that, optionally, you can denote the data type of the attributes, method return type,
and parameters.

Figure 1-8. UML class notation

Interfaces lay down the contract that implementations must fulfill. In other words,
classes that implement an interface provide a guaranteed set of behavior. An interface is
represented by the same rectangular box as a class, but with a difference. The top com-
partment shows the class name augmented by a stereotype <<interface>>. Stereotypes
are a mechanism to extend an existing notation. Some UML tools also represent inter-
faces with a circle with no explicit mention of the methods. Figure 1-9 shows the two
different forms.

Figure 1-9. UML interface notations

CHAPTER 1 ■ INTRODUCING ENTERPRISE JAVA APPLICATION ARCHITECTURE AND DESIGN 15

Relationships

In the next few sections, I will examine the important relationships that exist between the
classes in a software system.

Generalization

The generalization relation indicates inheritance between two or more classes. This is a
parent-child relationship, in which the child inherits some or all of the attributes and
behavior of the parent. It is also possible for the child to override some of the behaviors
and attributes. Figure 1-10 shows the generalization relationship.

Figure 1-10. Generalization

Association

Association shows a general relation between two classes. In an actual class, this is shown
with one class holding an instance of the other. An insurance policy always has one or
more parties involved, with the most prominent being the policyholder who owns this
policy. There can be an agent who helps and guides the policyholder to take this policy.
Association often shows named roles, cardinality, and constraints to describe the relation
in detail, as shown in Figure 1-11.

Figure 1-11. Association

CHAPTER 1 ■ INTRODUCING ENTERPRISE JAVA APPLICATION ARCHITECTURE AND DESIGN16

Aggregation

Aggregation is a form of association in which one element consists of other, smaller con-
stituents. This relationship is depicted by a diamond-shaped white arrowhead. In this
case, if the parent object is deleted, the child object may still continue to exist. Figure 1-12
shows an aggregation relation between an insurance agent and the local insurance office
in which he works. The local insurance office is where insurance agents carry out tasks
such as policy underwriting, depositing premiums for their customers, and various other
functions. So even if the local office is closed down, the agent can report to another
office. Similarly, the agent can de-register from a local office and move to a different
office of the same insurer.

Figure 1-12. Aggregation

Composition

Composition is a stronger form of aggregation; as in this case, if the parent is deleted, the
children will also no longer exist. This relationship is depicted by a diamond-shaped solid
arrowhead. Figure 1-13 shows the composition relationship between a party involved in
some policy or claim and their address. If the party is deleted from the system, its address
will also be deleted.

Figure 1-13. Composition

CHAPTER 1 ■ INTRODUCING ENTERPRISE JAVA APPLICATION ARCHITECTURE AND DESIGN 17

Sequence Diagram

A sequence diagram is used to model dynamic aspects of the system by depicting the
message exchange between the objects in the system over a period of time. A sequence
diagram is used to show the sequence of interactions that take place between different
objects to fulfill a particular use case. Unlike a class diagram that represents the entire
domain model of the application, a sequence diagram can show interaction details of a
particular process only.

Object and Messages

In a sequence diagram, an object is shown with its name underlined in a rectangular box.
The messages are represented by arrows starting on one object and ending on the other.
An object can call a method on itself, which is a self-message and represented by an
arrow starting and terminating on the same object, as shown in Figure 1-14.

Figure 1-14. Lifeline in a sequence diagram

Lifeline

Each object has a lifeline represented by a dashed line going downward from the object
box (as shown in Figure 1-14). It represents the time axis for the entire sequence diagram
with time elapsed measured by moving downward on the lifeline.

Return Values

The messages in a sequence diagram can optionally have a return value, as shown in Fig-
ure 1-15. The createNewPolicy message, for instance, returns a PolicyDetail object.

CHAPTER 1 ■ INTRODUCING ENTERPRISE JAVA APPLICATION ARCHITECTURE AND DESIGN18

Figure 1-15. Optional return value in a sequence diagram

Summary
Developing distributed multitier applications is a daunting task. The Java EE platform
looks to simplify this task by defining a container-based architecture. It defines a specifi-
cation of the runtime environment for the application code and the low-level system
services that it should provide. This allows the application developers to focus on writing
business logic. The Java EE application architecture is based on the core platform archi-
tecture and established MVC principle. With this, you can clearly define specialized
component layers in each tier. The web tier, for example, hosts the presentation layer of
an application, whereas the business and data access layers generally reside on the appli-
cation server tier.

Java EE design, on the other hand, is an extended object design. The Java EE design
patterns catalog provides guidance and best practices in composing the objects and their
interaction within and across the layers and tiers. The design patterns catalog documents
the years of experience of designers and developers in delivering successful Java EE
applications. The Java EE design and architecture can be documented using UML nota-
tions. These are graphical notations that help provide a pictorial view of the static
structures and dynamic interactions of the domain objects.

In the next chapter, I’ll show how the Spring Framework further simplifies Java EE
application design and architecture. If you have experience with the Spring Framework
already, you can jump straight to Chapter 3.

CHAPTER 1 ■ INTRODUCING ENTERPRISE JAVA APPLICATION ARCHITECTURE AND DESIGN 19

Simplifying Enterprise Java
Applications with the Spring
Framework

The first chapter of this book discussed the fundamental principles of Java EE applica-
tion architecture and design. In this chapter, I will show how these concepts apply to the
Spring Framework. I will begin with a brief overview of Spring and its importance as an
application framework. Then, I’ll cover the building blocks that make up this framework,
and in the process you will see the framework in action. After you understand the under-
lying principles of the Spring Framework, I will discuss its role in enterprise Java
application architecture and design. Finally, I will wind up this chapter with the Spring
Java design pattern directive that will be used in the next three chapters of this book. If
you are interested in running the code in this chapter, then jump to Chapter 7, which
provides step-by-step instructions for setting up Eclipse-based Blazon ezJEE Studio with
the Spring Framework plug-in. It also shows you how to create the sample project struc-
ture required to develop and run these examples.

What Is Spring?
The Spring Framework is an open source application framework initially aimed at the
Java platform. It has recently been ported to the .NET platform as well. The idea and code
for this framework were first described by Rod Johnson in his book Expert One-on-One
J2EE Design and Development (Wrox, 2002). This framework was the outcome of Rod’s
extensive project experience working as an independent software consultant for financial
sector customers in the United Kingdom.

21

C H A P T E R 2

The Spring Framework is currently available under the Apache 2.0 open source
license. It is a high-quality software product that can be used to build clean, flexible
enterprise-class software. This is proven by tests done using Structure101 from Headway
Software (http://www.headwaysoftware.com). Chris Chedgey, founder and CEO of Headway,
reports in this blog (http://chris.headwaysoftware.com/2006/07/springs_structu.html)
that the Spring Framework code has no package-level dependency cycles “despite its
reasonable size of about 70KLOC (estimated from bytecode) divided into 139 packages.”
This speaks volumes about the sound underlying architecture and design of the Spring
Framework. If you’re interested in more information, refer to http://www.
springframework.org/node/310.

Why Is Spring So Important?
The Java EE platform was intended to solve the complexities associated with distributed
application development. The traditional Java EE platform achieved great success in
standardizing low-level middleware services through the various APIs such as EJB, JTA,
and JMS. This was possible because both commercial vendors and the open source
community came together, realizing the immense potential of the platform based on
standard Java. Because the primary focus was on standardizing system services, the fun-
damental problem of a simplified programming model was overlooked. Hence, in spite of
widespread adoption in the late 1990s and early 2000, developing multitier applications
on the Java EE platform still required strenuous effort.

The Java EE platform aimed to build applications based on a component model.
A component is a self-contained piece of code that ideally could be reused in multiple
applications. An order component can comprise an entity bean to handle the persistence
of order information and a session bean to carry out different workflows on order enti-
ties. Theoretically, this has immense potential for reuse. But reality is different, because
components developed in one project are seldom utilized again in another project. The
Java EE server-specific deployment descriptors also make it difficult to reuse these com-
ponents. The complexities in the Java EE programming model also leads to a lot of
unnecessary code being written, tested, and maintained by development teams. This
includes boilerplate code to look up an EJB object on the JNDI tree, retrieve a database
connection, prepare and execute database queries, and finally release all database
resources. The data transfer objects used to circumvent the limitations of the entity bean
API seriously violated the object-oriented principle of encapsulation. Even a midsize
project had a significant number of transfer objects to develop and maintain. All these
led to a significant drain of resources that should otherwise be used only for developing
sound business logic.

CHAPTER 2 ■ SIMPLIFYING ENTERPRISE JAVA APPLICATIONS WITH THE SPRING FRAMEWORK22

EJBs were designed to help ease the development of transactional and distributed
applications. Although even the smallest database-driven application requires transac-
tion, it may not need to be distributed. However, overusing EJBs, especially session beans
to simplify business logic, leads to the distribution being built into the application com-
ponent model. Distributed applications are unduly complex and hence consume more
CPU cycles for processing. They result in excessive and duplicated code along with meta-
data. Accessing a distributed application component requires network traversals, and
marshalling and unmarshalling of large datasets. The misuses of distributed objects have
often led to even a simple application not performing to its desired level.

Java EE encompasses a lot of technologies and APIs that are inherently complex. The
entity bean API, for example, required a significant learning curve and in turn provided
limited benefits for an application. Since Java EE components run inside the application
server containers, they are very difficult to unit test. This prevents test-driven develop-
ment (TDD).

The difficulties in Java EE application development forced the development commu-
nity to look for alternatives. Soon there was a rapid proliferation of frameworks built on
top of different Java EE APIs. The Apache Struts framework, for example, helps imple-
ment MVC principles using the servlet API. The framework implements a servlet-based
front controller and allows developers to provide implementation for simple page con-
trollers. Hibernate, on the other hand, emerged to answer the immense pain associated
with entity bean development. It provided persistence of POJOs with minimal configura-
tion metadata. These POJOs were not distributed objects like entity beans and hence led
to better application performance. Hibernate did not require any container support, thus
making it easy to unit test these persistence objects. Then there was HiveMind for devel-
oping simple POJO-based business services.

The Spring Framework also started to address the complexity associated with devel-
oping Java EE applications. However, unlike the single-tier frameworks such as Struts,
Hibernate, or HiveMind, Spring provides a comprehensive multitier framework that can
be leveraged in all tiers of an application. It helps structure together the entire applica-
tion with out-of-the-box components as well as integrates with the best single-tier
frameworks. Just like its single-tier counterparts, it provides a simple programming
model based on POJOs and makes them easily testable because these components can
run outside server containers.

The Spring Inversion of Control (IOC) container (to be discussed in the next section)
is the heart of the entire framework. It helps glue together the different parts of the appli-
cation, thus forming a coherent architecture. Spring MVC components can be used to
build a very flexible web tier. The IOC container simplifies the development of business
layer with POJOs.

CHAPTER 2 ■ SIMPLIFYING ENTERPRISE JAVA APPLICATIONS WITH THE SPRING FRAMEWORK 23

These POJO business components can be made available as distributed objects
through the various remoting options available with Spring. They can also be used to
develop as well as connect to distributed EJB components. With Spring AOP, it is possible
to transparently apply system services such as transactions, security, and instrumenta-
tion to POJO components. Spring JDBC and object-relational mapping (ORM)
components allow simplified interaction with databases. As an application framework,
Spring provides easy standards-based integration with disparate information systems
through Java Connector Architecture (JCA) and web services. Last but not least, Spring
security is a comprehensive solution to cater to the security requirements of any
enterprise application.

Spring Framework’s Building Blocks
Spring is an application framework and is divided into several modules or components.
Each module provides a specified set of functionality and works more or less independ-
ently of the others. Needless to say, these modules can be leveraged to build scalable yet
flexible enterprise Java applications. This system is very flexible, because developers can
choose to use only the module that is most appropriate in the context of a problem. For
example, a developer can just use the Spring DAO module and build the rest of the appli-
cation with non-Spring components. Moreover, Spring provides integration points to
work with other frameworks and APIs. If you think Spring is unsuitable in a particular
scenario, you can use alternatives. In case the development team is more proficient in
Struts, for example, it can be used instead of Spring MVC while the rest of the application
uses Spring components and features such as JDBC and transactions. In the two scenar-
ios described here, the developers need not deploy the entire Spring Framework. They
will require only the relevant module (like Spring DAO) along with the Spring IOC con-
tainer and the Struts libraries.

Figure 2-1 shows the various modules of the Spring Framework.

CHAPTER 2 ■ SIMPLIFYING ENTERPRISE JAVA APPLICATIONS WITH THE SPRING FRAMEWORK24

Figure 2-1. High-level building blocks of the Spring Framework

Spring Core

The Core module forms the backbone of the entire Spring Framework. All other Spring
modules are dependent on this module. It is also called the IOC container and is central
to Spring’s support for dependency injection (DI).

Inversion of Control

IOC is best described by the term the Hollywood principle, which states “Don’t call us;
we’ll call you.” (The junior artists often hear this from production managers in Holly-
wood.) However, this is important in software development as well to control the flow of
applications while ensuring high cohesion and low coupling. To better understand, this
let us consider a simple case when your application performs some calculations and
prints the end result using a logging library like log4j. In this case, the application code is
responsible for the flow of control while invoking methods on the log4j API as and when
necessary.

IOC, on the other hand, is fundamental to any framework. With IOC, an application
object is typically registered with the framework that takes the responsibility of invoking
methods on the registered object at an appropriate time or event. The control is inverted
because instead of application code invoking the framework API, things happen just the
opposite. Thus, in short, IOC is the principle of allowing another object or framework to
invoke methods on your application objects on the occurrence of appropriate events.

CHAPTER 2 ■ SIMPLIFYING ENTERPRISE JAVA APPLICATIONS WITH THE SPRING FRAMEWORK 25

IOC is not a new concept and has been around for a long time. EJBs, for example,
supports IOC. The various EJB components such as session, entity, and message-driven
beans lay down specific contracts with the container by implementing the methods
defined in different interfaces. The session bean, for example, implements the ejbActivate
and ejbPassivate life-cycle methods defined in the javax.ejb.SessionBean interface. How-
ever, these methods are never called from other methods of the session bean; rather, the
container calls these methods at different times during the life cycle of the bean, thus
inverting control. Message-driven beans, for instance, implement the onMessage method
of the javax.jms.MessageListener interface. It is the responsibility of the container to
invoke this method on the event of a message arrival.

Dependency Injection

It is common for developers to believe that IOC and DI are the same thing. This is incor-
rect, and I want to make it clear right at the outset that they are two different yet related
concepts. Just as IOC deals with inverting the control flow in an application, DI describes
how one object resolves or finds other objects on which it needs to invoke some meth-
ods. There are several ways to achieve DI, and one such strategy is IOC. I will explain the
different DI strategies one by one in the next few sections.

Direct Instantiation

Direct instantiation is the simplest form of DI. The dependent object is directly instanti-
ated using the new operator, as shown in Listing 2-1.

Listing 2-1. FormulaOneDriver.java: Using Direct Instantiation

public class FormulaOneDriver{

public Car getCar(){

Car car = new FerrariCar();

return car;

}

}

The Formula 1 driver object (FormulaOneDriver) needs a car to drive. Hence, it creates
an instance of the Car object directly and uses it. Direct instantiation increases coupling
and scatters object creation code across the application, making it hard to maintain and
unit test.

CHAPTER 2 ■ SIMPLIFYING ENTERPRISE JAVA APPLICATIONS WITH THE SPRING FRAMEWORK26

Factory Helper

The factory helper is a common and widely used dependency injection strategy. It is
based on the GOF factory method design pattern. The factory method consolidates the
use of the new operator and supplies appropriate object instances based on some input.
This is shown in Listing 2-2.

Listing 2-2. FormulaOneDriver.java: Using Factory Helper

public class FormulaOneDriver{

public Car getCar(){

Car car = CarFactory.getInstance("FERARI");

return car;

}

}

Using a factory promotes an object design best practice called program to interface
(P2I). This principle states that concrete objects must implement an interface that is used
in the caller program rather than the concrete object itself. Therefore, you can easily
substitute a different implementation with little impact on client code. In other words,
there is no direct dependency on the concrete implementation leading to low coupling.
Listing 2-3 shows the Car interface.

Listing 2-3. Car.java

public interface Car{

public Color getColor();

//other methods

}

The FerrariCar provides a concrete implementation of the Car interface, as shown in
Listing 2-4.

Listing 2-4. FerrariCar.java

public class FerrariCar implements Car{

//...implementation of methods defined in Car

// ...implementation of other methods

}

CHAPTER 2 ■ SIMPLIFYING ENTERPRISE JAVA APPLICATIONS WITH THE SPRING FRAMEWORK 27

This pattern also consolidates object creation in only a handful of factory classes,
making it easy to maintain. With a factory helper, it is also possible to make object cre-
ation configurable. You can define the concrete implementation that you supply in some
properties or XML configuration files, making it swappable on the fly.

Locate in Registry Service

This third method should be familiar with EJB developers. They often need to look up EJB
object references on the JNDI registry service. In this case, the EJB objects are already cre-
ated and registered in JNDI with a specific key. The objects may be located in a remote
JVM, but JNDI makes lookup using this key quite similar to Listing 2-2.

All these strategies are commonly called pull dependency injection. This is because
the dependent object is pulled in by the object that ultimately uses it. I prefer to classify
the pull methods as dependency resolution, rather than dependency injection. This is
because the true dependency injection happens with IOC and is called push DI. In this
approach, an external container or application framework creates and passes the
dependent object to the object that requires it. The dependent objects are mostly sup-
plied using constructor or setter methods. However, for this the application framework
must know which dependent object to provide and which object to notify with the
dependent object.

It is interesting to note that EJB containers support not only pull DI (one session
bean looking up another session bean, for instance, in the JNDI) but also push DI. This is
evident from the setSessionContext(javax.ejb.SessionContext ctx) or setEntityContext
(javax.ejb.EntityContext ctx) method where the context object is created, initialized,
and passed to the EJB objects by the container. This is called setter injection. You can
explore different varieties of push DI with examples in a later section when I touch upon
the DI features of Spring IOC container.

Benefits of DI

The following are the benefits of DI:

• Dependency injection promotes loose coupling. With a factory helper, for instance,
you can remove hard-coded dependencies through P2I. It is possible to configure
them outside the application and provide hot-swappable and hot-pluggable
implementations.

• It facilitates test-driven development (TDD). Objects can be easily tested because
they do not require any particular container to run. They can be tested as long as
the dependencies are injected by some mechanism.

CHAPTER 2 ■ SIMPLIFYING ENTERPRISE JAVA APPLICATIONS WITH THE SPRING FRAMEWORK28

• As you will see later with push DI supported by Spring IOC, there is no need for
applications to look up objects like EJB remote interfaces.

• DI promotes good object-oriented design and reuse—object composition rather
than reuse by inheritance.

Drawbacks of DI

These are the drawbacks of DI:

• The dependencies are generally hard-coded in XML configuration files that are
proprietary and nonstandard.

• Wiring instances together can become a hazard if there are too many instances
and many dependencies that need to be addressed.

• Dependency on XML-based metadata and excessive use of reflection and bytecode
manipulation may impact application performance.

Bean Factory

The org.springframework.beans.factory.BeanFactory interface provides the basis for
Spring’s IOC container or bean factory. It is a sophisticated implementation of the GOF
factory method design pattern and creates, caches, wires together, and manages applica-
tion objects. These objects are affectionately called beans because Spring promotes the
POJO programming model. Spring provides several out-of-the-box implementations of
the bean factory. One such implementation is the XmlBeanFactory class. This class allows
you to configure the various application classes and their dependencies in XML files. In
short, a bean factory like JNDI is a registry of application objects. Listing 2-5 shows a
simple Spring bean configuration file.

Listing 2-5. spring-config.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"

>

CHAPTER 2 ■ SIMPLIFYING ENTERPRISE JAVA APPLICATIONS WITH THE SPRING FRAMEWORK 29

<bean name="carService"

class="com.apress.simpleapp.service.CatServiceImpl" />

</beans>

Now that I have wired the bean in the XML configuration file, it is time to start the
IOC container, as shown in Listing 2-6.

Listing 2-6. SpringInitializer.java

Resource res = new FileSystemResource("spring-config.xml");

BeanFactory factory = new XmlBeanFactory(res);

Because I have the Spring container up and running, it is now possible to retrieve
beans from the bean factory that can then be used to perform some useful work in the
application.

Listing 2-7 is an example of pull DI with the Spring Framework. The application code
uses the Spring bean factory or IOC container to retrieve the car service objects using the
specified key. It is also evident from Listing 2-6 that it is possible to support several vari-
ants of CarSevice depending on the type of the car. This is because each car is different
and provides a different set of features and options. However, it is cumbersome to invoke
the getBean method each time you need a bean. It’s as good as having the factory method
implementation of the pull DI I explained earlier with the example of a Car object.

Listing 2-7. CarServiceLocator.java

CarService service = (CarService) factory.getBean("carService");

One major goal of Spring is to be unobtrusive and impose minimal dependency on
the framework. This is achieved through different forms of push DI supported by the
Spring IOC container.

Setter Injection

In this mode of push DI, an object is created in the Spring IOC container by invoking the
zero-argument constructor. The dependent object is then passed as a parameter to the
setter method. The CarService object needs data access objects (DAO) to execute data-
base operations. The data access objects are injected via setter methods, as shown in
Listing 2-8.

CHAPTER 2 ■ SIMPLIFYING ENTERPRISE JAVA APPLICATIONS WITH THE SPRING FRAMEWORK30

Listing 2-8. CarServiceImpl.java

public class CarServiceImpl implements CarService{

private CarDao carDao;

public void refuel(Car car){

carDao.updateFuelConsumed(car) ;

}

public void setCarDao(CarDao carDao){

this.carDao = carDao;

}

}

The CarDao object is passed by the Spring IOC container using the setCarDao method. Now
you must wire things up so that Spring knows how to resolve and inject the dependency.
You can do this with a simple configuration, as shown in Listing 2-9.

Listing 2-9. spring-config.xml: Setter Injection

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"

>

<bean name="carDao"

class="com.apress.simpleapp.dao.CatDaoImpl" />

<bean name="carService"

class="com.apress.simpleapp.service.CatServiceImpl">

<property name="carDao"

ref="carDao" />

</bean>

</beans>

CHAPTER 2 ■ SIMPLIFYING ENTERPRISE JAVA APPLICATIONS WITH THE SPRING FRAMEWORK 31

Constructor Injection

In this strategy, the dependent object is passed as part of the constructor call, as shown in
Listing 2-10.

Listing 2-10. CarServiceImpl.java with Constructor Injection

public class CarServiceImpl implements CarService{

private CarDao carDao;

public void CarServiceImpl (CarDao carDao){

this.carDao = carDao;

}

public void refuel(Car car){

carDao.updateFuelConsumed(car) ;

}

}

To achieve constructor injection, you need to alter the configuration as well, as
depicted in Listing 2-11.

Listing 2-11. spring-config.xml with Constructor Injection

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"

>

<bean name="carDao"

class="com.apress.simpleapp.dao.CatDaoImpl" />

<bean name="carService"

class="com.apress.simpleapp.service.CarServiceImpl">

<constructor-arg>

<ref bean="carDao"/>

</constructor-arg>

</beans>

CHAPTER 2 ■ SIMPLIFYING ENTERPRISE JAVA APPLICATIONS WITH THE SPRING FRAMEWORK32

Application Contexts

The bean factory is merely an object pool where objects are created and managed by
configuration. For small applications, this is sufficient, but enterprise applications
demand more. Application context builds on the foundations laid by the bean factory to
provide services like the following:

• Support for message resources required for internationalization

• Support for aspect-oriented programming (AOP) and hence declarative transac-
tion, security, and instrumentation support

• Registering event listeners in the bean factory

• Creating application layer–specific context such as WebApplicationContext for use
in web applications

The Spring application context can be created like a bean factory and without any
alteration in the configuration file, as shown in Listing 2-12.

Listing 2-12. SpringInitializer.java: Starting an Application Context

ApplicationContext context = new ➥

ClassPathXmlApplicationContext("spring-config.xml");

ClassPathXmlApplicationContext looks for a spring-config.xml file in the classpath and
initializes the application context. Similarly, a servlet listener can be registered to initial-
ize application context in a web application—commonly called web application context.
The listener looks for the configuration file at a specific location within the web applica-
tion archive to start the web application context.

So far, I have given a very basic and simplistic introduction to Spring IOC and DI fea-
tures. For a detailed treatment of the subject, refer to the Spring 2.5 documentation
available at http://static.springframework.org/spring/docs/2.5.x/reference/beans.html.

CHAPTER 2 ■ SIMPLIFYING ENTERPRISE JAVA APPLICATIONS WITH THE SPRING FRAMEWORK 33

Spring AOP

Spring AOP is an important module that provides critical system-level services. It pro-
motes loose coupling and allows cross-cutting concerns (such as business services and
transactions) to be separated in a most elegant fashion. It allows these services to be
applied transparently through declaration. With Spring AOP, it is possible to write custom
aspects and configure them declaratively. Spring AOP supports the creation of aspects
through AOP Alliance–compliant interfaces. It also supports AspectJ. Spring AOP is a
complicated subject in itself, and a detailed discussion is beyond the scope of this book.
I will, however, use AOP topics later in Chapter 6, to describe the transaction and security
patterns. So, you may also consider reading a bit about AOP in the book Foundations of
AOP for J2EE Development (Apress, 2005) and then check out the Spring AOP documenta-
tion at http://static.springframework.org/spring/docs/2.5.x/reference/aop.html.

Spring DAO

Java EE applications use the JDBC API to connect to and perform operations on rela-
tional databases. However, this often results in a lot of common code being written for
operations such as the following:

• Retrieving a connection from the connection pool

• Creating a PreparedStatement object

• Binding SQL parameters

• Executing the PreparedStatement object

• Retrieving data from the ResultSet object and populating data container objects

• Releasing all database resources

This kind of boilerplate code seriously hurts reusability. Spring JDBC/DAO makes life
very easy by removing the common code in templates. The templates implement the
GOF template method design pattern and provide suitable extension points to plug-in
custom code. This makes the data access code very clean and prevents nagging problems
such as connection leaks, and so on, because the Spring Framework ensures that all data-
base resources are released properly.

CHAPTER 2 ■ SIMPLIFYING ENTERPRISE JAVA APPLICATIONS WITH THE SPRING FRAMEWORK34

Spring ORM

ORM solutions provide easy persistence of POJO objects in relational databases. The
Spring ORM module is essentially an extension of the DAO module. Just like the
JDBC-based templates, Spring provides ORM templates to work with and integrate most
of the leading ORM products such as Hibernate, OpenJPA, TopLink, iBatis, and others.
I will cover the best practices and patterns involved with Spring DAO and ORM in
Chapter 5.

JEE

The JEE module forms the basis for all of the Spring Framework’s interaction with various
Java EE technologies such as EJB, JTA, JCA, and JavaMail. As you will read later in this
book, just like Spring DAO, the JEE module provides components to simplify the develop-
ment of and interaction with Java EE technologies such as EJB.

Web MVC

This module helps build highly flexible web applications leveraging the complete bene-
fits of the Spring IOC container. It is based on the MVC architectural pattern and
seamlessly integrates with the Servlet API. Spring MVC supports a pluggable architecture
and works with a multitude of view technologies such as JSP, FreeMarker, Velocity, and
Adobe Flex, to name just a few. If Spring MVC is not the framework of choice, then it is
possible to integrate with existing web frameworks such as Struts, Webwork, and JSF and
still reap the benefits offered by the core Spring Framework, in other words, IOC and DI.

Building a Layered Application with Spring
Now you are familiar with the roles of various Spring modules and have some idea of
their responsibilities. I’ll now show how to put these modules together to build a layered
web application with the Spring Framework. Figure 2-2 shows the high-level architecture
of this application.

CHAPTER 2 ■ SIMPLIFYING ENTERPRISE JAVA APPLICATIONS WITH THE SPRING FRAMEWORK 35

Figure 2-2. Lightweight application architecture with the Spring Framework

Figure 2-2 shows a three-tier web application leveraging the different Spring Frame-
work modules. I will dissect each of the tiers to see how these modules are utilized and
what different options are available to build a flexible, simple enterprise Spring applica-
tion.

Presentation Tier

As the name suggests, Spring MVC provides first-class components to build web applica-
tions following the MVC pattern. Like any good web framework, Spring MVC helps build
the controller layer. It is flexible and supports a variety of components for view manage-
ment, including core Java EE technologies such as JSP and others such as Extensible
Stylesheet Language (XSL) and Portable Document Format (PDF).

As shown in Figure 2-2, the HTTP request from the client’s web browser is first inter-
cepted by the controller component. This consists of a gateway servlet that acts as a
single entry point into the application. The servlet then delegates successive user
requests to respective handlers called page controllers. Page controllers are simple Java
classes that execute one application use case and invoke the business services. Spring

CHAPTER 2 ■ SIMPLIFYING ENTERPRISE JAVA APPLICATIONS WITH THE SPRING FRAMEWORK36

MVC also contains a view management layer (not shown for simplicity), which is respon-
sible for locating an appropriate view (which may be another JSP). It also binds the data
objects returned by the page controllers after invoking the model objects in the business
tier and finally dispatches the HTTP response to the client. All the objects that are
responsible for view management, controller management, and the page controllers
themselves are registered in the underlying Spring IOC container. Thus, all the benefits of
this container are available to the Spring MVC module. Note that the gateway servlet is
not part of the Spring IOC container; rather, it is managed by the web server.

Spring MVC is a versatile module and supports almost any view and model technol-
ogy available. If your development team is more confident with Java Server Faces (JSF) or
Struts, for example, it is quite possible to integrate these frameworks with Spring MVC.
You can very well use template-based view engines such as Velocity and FreeMarker;
document-based views such as PDF, Microsoft Word, and Microsoft Excel; and rich user
interfaces provided by Adobe Flex. As far as the model is concerned, Spring MVC not only
gels well with POJO business components, but it goes equally well with distributed EJB
components.

Business Tier

With Spring you can develop business components as plain Java classes without any
framework dependency. This is in complete contrast to the EJB programming model,
which demands the implementation of several different interfaces along with deploy-
ment descriptors, making life complicated for the developer.

The POJO business objects are all configured in the Spring IOC container just like
any other bean shown in earlier examples. They are responsible for executing business
rules, and in the process they manipulate application data using the data access API
available in the integration tier.

The Spring AOP module plays a significant role in the business tier. It can be used to
declaratively apply and control transaction and security on the POJO business compo-
nents.

It is possible to utilize Spring AOP to develop custom aspects that collect audit trail
information or instrument method execution time without affecting the existing applica-
tion code.

It is possible to develop a mixed solution with Spring POJO and EJBs. Spring IOC
implements the service locator pattern (to be discussed in Chapter 4) to look up (pull DI)
the EJB home interfaces and then injects those objects into the POJO business objects.
Note that the system-level services provided by the EJB container are now available to the
application. In this scenario, the Spring Framework played the role of an EJB client using
a session bean. Spring also helps with EJB implementation through convenient super-
classes. We will delve into this in greater detail as part of the Spring business layer
patterns in Chapter 4.

CHAPTER 2 ■ SIMPLIFYING ENTERPRISE JAVA APPLICATIONS WITH THE SPRING FRAMEWORK 37

It is important to note that Spring MVC is not the only way of connecting to the
Spring business tier. It is possible to expose Spring business objects as web services. Simi-
larly, various other remoting options like Spring remoting, Burlap-Hessian, and so on,
can be used to connect to Spring components, making them available as remote compo-
nents. I will explore a few remoting solutions in connection with the integration tier
patterns in Chapter 4.

Integration Tier

The integration tier in most applications interacts with the RDBMS using the JDBC API
through POJO data access objects. The data access objects provide a consistent API for
the business tier objects and wrap the JDBC API. Spring DAO provides templates for sim-
ple and flexible data access objects. The data access objects update relational databases
as well as retrieve data from them. The retrieved data is wrapped in JavaBean objects and
returned to the layers above.

Just like the other two tiers, Spring provides plenty of options even in the integration
tier. Spring ORM allows development teams to easily use an object relational bridge solu-
tion such as Hibernate or TopLink. The integration tier in a Java EE application is not
limited to communicating with relational databases. It can be a requirement to connect
to a mainframe or an ERP or CRM system. Just as with the business tier, here too we can
leverage the Spring JEE module to connect to these systems and applications using stan-
dard technologies such as JCA or web services.

Spring Enterprise Java Design Pattern Directive
In the previous chapter, I have discussed the foundations of Java EE architecture and
design. In the process, I mentioned that best practices in design can be collated as design
directives or design patterns. These provide a common vocabulary to communicate
design ideas among developers and designers. I will now combine the lessons learned
in the previous chapter with those from this chapter to formulate the Spring Java EE
application design pattern directive. This pattern template or directive will be used in the
next four chapters to describe how Java EE design patterns can be best applied using the
Spring Framework.

Name

This is the name used to identify a pattern.

CHAPTER 2 ■ SIMPLIFYING ENTERPRISE JAVA APPLICATIONS WITH THE SPRING FRAMEWORK38

Problem

This section describes one or more problems that you are trying to solve. I will use this
section to highlight the complexities in devising a solution with existing Java EE tech-
nologies.

Forces

This section follows from the previous section and outlines the intent for the pattern and
its applicability.

Solution

I will present the detailed solution to solve the problem under consideration. In this sec-
tion, I will discuss different possible strategies with the Spring Framework. I will also
identify various best practices and mention fundamental patterns and object design
principles that contribute to the solution. UML class and sequence diagrams will be
used extensively along with source code samples to present the solution clearly.

Consequences

Finally, I will wind up the topic with an analysis of the pros and cons of the solutions
provided.

Summary
This chapter builds on the foundation laid by Chapter 1. In this chapter, I put the Spring
application framework in the context of Java EE application architecture and design. I
highlighted the problems associated with Java EE application development. The Spring
Framework’s multitier components help address these common problems. Besides this,
the Spring Framework is an enabler for best practices and effective object design. You
probably realize by now that it has two facets—on one hand, it’s an IOC container, and on
the other hand it’s a set of libraries and APIs to help simplify Java EE development. Just
like any application, the Spring application framework’s core lies in the IOC container.
The different modules of the Spring Framework leverage this core framework and help
build robust flexible Java EE applications. The modules can be used on demand, making
Spring an extremely flexible application development stack.

CHAPTER 2 ■ SIMPLIFYING ENTERPRISE JAVA APPLICATIONS WITH THE SPRING FRAMEWORK 39

CHAPTER 2 ■ SIMPLIFYING ENTERPRISE JAVA APPLICATIONS WITH THE SPRING FRAMEWORK40

To give you a sound understanding of Spring Framework, I showed how to put the
different modules together to build a multitier Java EE application. In the process, I
touched upon the different options available with Spring to design and develop the dif-
ferent tiers with the utmost flexibility. Finally, I presented the design directive that I will
use in the next four chapters to explain the different Java EE design patterns. In the next
chapter, you will get into real action with the different presentation tier patterns where
you will first use this design directive template.

Exploring Presentation Tier
Design Patterns

Sometime back I joined a team that was developing a product named eInsure for the
insurance industry. The goal was to develop a comprehensive online e-business solution
encompassing all the major insurance processes such as underwriting, claims manage-
ment, accounting, customer relationship, re-insurance, and so on. By the time I joined,
this application already had a few major releases and was being used in production by
two clients. But the development team found it highly cumbersome and effort-intensive
to handle any new requirement, enhancement, or change request. This would always
lead to unnecessarily long develop-test-fix-release-maintain (DTFRM) cycles. So, I
started to investigate and soon made some critical observations about the application.

The main reason for the problem was the source code. The application was huge
with nearly 350 JSPs, 30-odd session beans, 600+ POJO helpers, 300+ tables, and an equal
number of entity beans. The bulk of the existing source code was generated by a tool that
helped convert the legacy product written in Oracle PL/SQL to Java EE. The generated
source was based on the enterprise Java component model, but deep down it had funda-
mental design flaws and bad smells. Code smells generally indicate that something has
gone wrong somewhere in your application code. The term was popularized by Kent
Beck and Martin Fowler in the book Refactoring: Improving the Design of Existing Code
(Addison-Wesley, 1999). The data structures used in eInsure mimicked the PL/SQL tables
and arrays. As a result, the developers had to first grasp the behavior of legacy code and
data structures. As the new code was being added in the same legacy style, there was no
scope of any improvement.

The lack of design and OO skills in the eInsure team (most of the team members
themselves were making a transition to acquire Java EE technology skills along with the
product) added to the woes. There was absolutely no design directive or code documen-
tation. A good software application should have different configuration parameters to
control its runtime behavior without having to modify any code. These configuration
parameters are generally stored in XML or properties file external to the application.

41

C H A P T E R 3

This configuration information can be modified by system administrators as per the cus-
tomization needs to alter the runtime behavior of the application. Unfortunately, eInsure
had only a small set of configuration parameters, making it vulnerable to code changes.

In this and subsequent chapters, I will discuss in greater detail some of the problems
in the application under consideration. I will then provide solutions to these problems by
applying the Spring Framework and design patterns and highlighting the best practices.
This chapter builds on the foundation laid in Chapters 1 and 2. It shows the first glimpses
of how design patterns and the Spring Framework can work in unison to form the back-
bone of a high-quality software application. In this chapter, I shall focus only on the
presentation tier.

Front Controller

Problem

So far, I have been pointing out the negatives of eInsure. Now I will introduce you to a
modified version of the source from this application. The source has been cleaned up
considerably to concentrate on the problem.

Listing 3-1 shows a simplified version of the JSP that was used to create and modify
policy details. It is evident from the JavaScript comments that the request was posted
after URL-rewrite. Since the same JSP was used for different underwriting operations, the
JavaScript always passed an event code and screen code combination. This was the case
with 95 percent of the JSPs in the application.

Listing 3-1. Policy.jsp

<title>Underwriting</title>

<script>

function eventValidateAndSubmit (){

//modify URL

//submit form

document.uwr.submit();

}

</script>

<body onLoad="displayError(<%=request.getAttribute("ERROR_MESSAGE")%>)">

<form name="uwr" action="UnderwritingController.jsp" method="post">

Name of Insured <input type="text" value="" />

<input type="button" value="Create"

onClick="eventValidateAndSubmit('UWR001','SCR001')"/>

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS42

<input type=" button" value="Update"

onClick=" eventValidateAndSubmit ('UWR002','SCR001')"/>

</form>

The controller used this combination of event code and screen code to uniquely
identify a block of code to be executed for each user action and subsequent selection of
the next view to be rendered. This controller was another JSP and was cluttered with sev-
eral long-running if-else blocks, as shown in Listing 3-2.

Listing 3-2. UnderwritingController.jsp

<%

String eventCode = request.getParameter("eventCode");

String screenCode = request.getParameter("screenCode");

String inputPage = request.getParameter("referrer");

Sting userCd = request.getParameter("userCode");

String nextView = "";

try{

SecurityChecker.getInstance().check(userCd, eventCode);

if(screenCode.equals("SCR001") && eventCode.equals("UWR002")){

//Look up session bean

//Create policy by invoking session bean method

nextView = "Policy.jsp";

}

else if(screenCode.equals("UWR002") && eventCode.equals("SCR001")){

//similar to above

nextView = "Policy.jsp";

}

else{

request.setAttribute("ERROR_MESSAGE",

"You have attempted an unsupported function");

nextView = "error.jsp";

}

}

catch(AppException appExp){

request.setAttribute("ERROR_MESSAGE",exp.getMessage());

nextView = inputPage;

}

catch(Throwable exp){

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 43

request.setAttribute("ERROR_MESSAGE",exp.getMessage());

nextView = "error.jsp";

}

finally{

//finally redirect to correct view

RequestDispatcher requestDispatcher = request.getRequestDispatcher(nextView);

requestDispatcher.forward(request,response);

}

%>

This controller was inefficient and promoted procedural programming. A new fea-
ture would inevitably add another if-else block. Now eInsure had thousands of use cases
with the underwriting module contributing a significant percentage of them. Hence, the
controller was bloated with a large number of if-else blocks. This controller showed all
the signs of the fat Magic Servlet antipattern (http://wiki.java.net/bin/view/Javapedia/
AntiPattern) and tried to perform too many tasks. It intercepted the requests, handled all
the different service requests, and finally forwarded the response to the browsers.

The controller was very large and soon ran beyond manageable proportions. The
development team then created a new controller named UnderwritingControllerNew.jsp
with a typical clone-and-modify programming style. This new controller too turned
bulky in no time, and again the same step was repeated, paving the way for yet another
“new” controller. The story was no different for other modules such as accounting,
claims, and so on. Each of them had several controllers handling a subset of the features
available in that module.

One of the prime goals of OO component-based application development is
reusability. But having too many JSP/servlet controllers only promotes procedural pro-
gramming and minimizes reusability. Also, having multiple points of entry into an
application makes it vulnerable to security threats. The copy-paste style of reuse seemed
easy but had only short-term benefits. Apparently it saved time, but any application fix
had to be rolled out at all duplicated points. Common services such as authorization
checks also need to be replicated across all controllers. For bug fixes and maintenance,
developers spent hours locating first the correct controller and then the appropriate
if-else block, as well as comprehending the legacy data structures and code flow. The
result was a strenuous development process and unnecessary effort wastage.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS44

It is evident that the JSP controller in Listing 3-2 tries to perform three main tasks:

1. Intercept the incoming request.

2. Invoke the Enterprise JavaBeans components to carry out the business operation
in several if-else blocks.

3. Finally, select the next view to display and bind the model object returned by the
invocation of business methods.

This resembles the MVC architectural pattern discussed earlier. However, the JSP
controller component takes on too many responsibilities, thus deviating from the single
responsibility principle (SRP). SRP states that every class should have one and only one
responsibility, and all its functions should be tightly aligned to this responsibility.
Adherence to a single concern makes the class robust, and it has limited chances of
modification. SRP is explained in greater detail at http://c2.com/cgi/
wiki?SingleResponsibilityPrinciple.

You should also consider whether JSP is the appropriate technology to be used as a
controller. This is because every technology in the Java EE platform has its own role. JSP
was intended to be a dynamic view technology. This allowed the user interface code to be
written by developers who were expert in HTML and JavaScript with some knowledge of
JSP tags, scriptlets, and implicit objects. These developers need not be seasoned Java pro-
grammers, freeing up the latter to focus on writing business and data access logic. Hence,
it is recommended that you use JSP as a dynamic view technology and not as a controller.

Forces

• Too many controllers make it difficult to maintain and reuse.

• There should be a single point of entry into the entire application.

• The controller should follow SRP. It should intercept requests and delegate busi-
ness logic invocation and view selection to pluggable components.

• JSPs should not be used as controllers.

• Extend functionality declaratively around the single entry point.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 45

Solution

Deploy a servlet to act as a single common gateway for all web requests. This servlet is
called the front controller servlet. Sometimes this pattern is also referred to as Gateway
Servlet.

Strategies with the Spring Framework

The Spring MVC framework provides an out-of-the box front controller servlet called
DispatcherServlet. This central servlet forms the backbone of the Spring MVC framework
and is integrated with the Spring IOC container. It is thus possible to get all the benefits
offered by the Spring IOC container.

The DispatcherServlet intercepts all web requests from the clients and routes them
to the appropriate page controllers. The page controllers are simple POJOs responsible
for interacting with the business layer components. These are registered in the Spring
container and implement the GOF command pattern. The page controllers will be dis-
cussed in detail later in this chapter. But in short, the front controller servlet and the
page controllers work together to form the core of an event-driven web application. The
front controller does not have any if-else blocks. All the code in the if-else block is
moved into page controllers. Hence, the front controller is a generic component that can
be reused across applications.

The front controller servlet delegates the responsibility of next-view selection and
binding the model object to specialized view managers. This allows the DispatcherServlet
to concentrate on a single responsibility: intercepting requests and then delegating the
rest of the functions to specialized handlers. Thus, the generic front controller helps
reduce the number of controllers. A single controller servlet should be sufficient for the
entire application. This is possible because the page controllers and view managers can
be made accessible to the front controller by simple configuration. However, some
designers also prefer to use one front controller per module. It is just a matter of choice,
but whatever the case, avoid multiple controllers per module.

Using the Front Controller

I will now show how to put the Spring DispatcherServlet to use. I will also discuss how to
refactor the bad-smelling JSP in the process. My preference is to use a single controller
for the entire application to minimize configuration maintenance overhead. As with all
servlets, the first step in using the DispatcherServlet is to configure it in the web.xml file.
The code in Listing 3-3 registers the front controller servlet with the web server.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS46

Listing 3-3. web.xml

<web-app>

<servlet>

<servlet-name>insurance</servlet-name>

<servlet-class>

org.springframework.web.servlet.DispatcherServlet

</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>insurance</servlet-name>

<url-pattern>*.do</url-pattern>

</servlet-mapping>

</web-app>

The interesting part in Listing 3-3 is the URL mapping. It shows that this servlet has
been configured to handle all requests ending with .do in the URL. If you are an experi-
enced Java EE developer and have worked with the Apache Struts framework, you will
immediately see its similarity to the ActionServlet.

On initialization, the DispatcherServlet looks for a configuration file with the naming
convention <servlet-name>-servlet.xml in the WEB-INF folder of the web application. This
XML file contains the configuration information about all the beans, including the page
controllers and view managers that will be managed by the Spring IOC container. The
front controller loads this file to start the Spring web application context and get access
to the Spring IOC container. In our case, this file will be named insurance-servlet.xml.
This is shown in Listing 3-4 with only the page controllers.

Listing 3-4. insurance-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<bean name="/createPolicy.do"

class="com.apress.insuranceapp.web.CreatePolicyController"/>

<bean name="/updatePolicy.do"

class=" com.apress.insuranceapp.web.UpdatePolicyController"/>

</beans>

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 47

The DispatcherServlet uses the BeanNameUrlHandlerMapping class to map an incoming
request URL to the appropriate page controller that is going to process that request. The
handler mapping bean, however, is not configured in Listing 3-4. This is because Spring
assumes this as a sensible default. As we will see later, it is possible to use different logic
to map an incoming request to its handler by implementing the HandlerMapping interface.
I will discuss other HandlerMapping implementations provided by the Spring Framework
later in this chapter.

With the central request-handling gateway installed, it’s time to refactor the JSP
described in Listing 3-1 to route all requests to the front controller. This is shown in
Listing 3-5.

Listing 3-5. Policy.jsp

<title>Underwriting</title>

<script>

function eventSubmit(url){

document.uwr.action = url;

document.uwr.submit();

}

</script>

</head>

<body onLoad="displayError(<%=request.getAttribute("ERROR_MESSAGE")%>)">

<form action="" name="uwr">

Name of Insured <input type="text" value="" />

<input type="submit" value="Create" onClick="eventSubmit('createPolicy.do')"/>

<input type="submit" value="Update" onClick="eventSubmit('updatePolicy.do')"/>

</form>

Note that the JSP no longer uses the event code and screen code. Instead, it now uses
logical request URLs. When a request for the URL /createPolicy.do reaches the front con-
troller, it uses the handler mapping to determine whether a page controller has been
registered to process this request. The processing is then delegated to the appropriate
page controller if one is registered; otherwise, an error is raised. In this case, the process-
ing is carried out by the CreatePolicyController. The simplest controller would implement
the handleRequest method of the org.springframework.web.servlet.mvc.Controller inter-
face. The handleRequest method should have most of the code that was in the if-else
block of the JSP controller. Simply stated, this controller will take care of the code in the
if-else blocks. After the business components are invoked and page controllers return,

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS48

the next view is selected with the help of view managers. The simplified sequence
diagram in Figure 3-1 shows the interaction between the front controller, the page
controller, and the view resolver. I will explain this diagram in greater detail in the
subsequent sections.

Figure 3-1. Sequence diagram: front controller request flow

It is evident from Figure 3-1 that the doDispatch is the most important method
in DispatcherServlet. It orchestrates and invokes the page controller and view. The
InternalResourceView class is responsible for abstracting a JSP-based view.

Consequences

Benefits

• Out-of-the-box front controller: The Spring MVC provides a ready-made front con-
troller that can be used in the application by mere configuration.

• Centralized control: The front controller provides a central entry point to consoli-
date and control the request inflow into the application. This makes it simpler to
manage the application.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 49

• Simplified design: The front controller now abides by SRP because it is involved
only in intercepting requests and delegating to specialized classes.

• Promotes reusability: The introduction of the front controller removes the module
controllers and immensely improves reusability.

Concerns

• Single point of failure: The front controller is also a single point of failure for any
application.

Application Controller

Problem

The JSP controller presented while discussing the Front Controller pattern was intended
to perform the following tasks related to request processing:

1. Intercept incoming requests.

2. Invoke business components.

3. Identify and redirect to the next view.

The Front Controller design pattern solved the first problem. As with the JSP con-
troller, it is entirely possible to build the two other functions in the front controller. But
that would result in a highly inflexible, fat, magic front controller that handles too many
responsibilities. As the application grows, it becomes an uphill task to maintain and use
such complex and specific front controllers. This was exactly the problem with the JSP-
based controller used in the eInsure application.

A new customer wanted to integrate their existing re-insurance product, built on the
WebWork 2.0 framework, with eInsure. The integration soon ran into heavy weather
because the controller was never designed to cater to this kind of requirement. Another
existing client of eInsure demanded a new feature called policy quotation. This feature
would enable the potential customers of this insurance company to get an approximate
value of the premium they needed to pay for a new policy. For this they would use their
mobile devices to connect to the system and supply the minimal information required to
generate the quote—or tentative premium value.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS50

The monolithic eInsure controller was coded to use only JSP as the view technology.
Hence, it was inflexible, and supporting a new view suitable for mobile devices was very
difficult.

The new features discussed in the previous two paragraphs can be better managed
with a strategy of “divide and conquer.” This involves employing pluggable components
with the front controller that are specialized to handle specific tasks. Two such important
components are the following:

• Action handler: The action handler locates and executes the appropriate page con-
troller. The page controllers decouple business logic invocation from the front
controller. So, the WebWork 2.0 page controllers can be used with the front con-
troller by implementing WebWork-specific action handler components.

• View handler: The view handler finds a view, binds the model returned by the page
controller, and prepares the response for the client. The view handler uses logical
view names (explained in the next section), thus abstracting the actual view object
from the front controller. Using the view handler, it is easy to support multiple view
types (HTML, JSP, PDF, Microsoft Excel, and so on). So, the view handler compo-
nent can be extended to help roll out views for mobile devices.

These components are connected to the front controller via configuration. This
enables the front controller to act as a coordinator only. This, along with decoupled
action and view management, makes the front controller more robust, reusable, and
highly extensible.

Forces

• Remove action and view management functionality from the front controller.

• Deploy pluggable action and view handlers to provide support for different types
of page controllers and views.

• Improve the reusability, cohesion, and modularity of the application code.

• The front controller should be generic and as lightweight as possible.

• Promote test-driven development by making it possible to run unit tests outside
the web container.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 51

Solution

Use an application controller to decouple action and view handling from the front
controller.

Strategies with the Spring Framework

The application controller is an important internal component of any Java EE web frame-
work. Since it sits silently behind the gateway servlet and generally suffices to all the
requirements of an application, developers are seldom bothered about this component.

In the Struts framework, for instance, the RequestProcessor class does the job of an
application controller. Internally, the Struts front controller ActionServlet delegates the
view and action management to this class. It is possible to extend this class to override
the default behavior. But Struts developers hardly ever do that.

Spring MVC provides similar support for action-view management orchestrated by
the DispatcherServlet. As with Struts, no effort is generally required from the developers
except, perhaps, some optional configuration. You have already seen this in earlier exam-
ples. You have neither written any code nor done any configuration for view or action
handling. Yet the request for the resource createPolicy.do was handled by the appropri-
ate page controller. This is possible because Spring has sensible defaults for command
and view handling. In the next few sections, I will go through the various application
controller configuration options available with the Spring Framework. The Spring Frame-
work is highly flexible in that it separates the application controller into two distinct parts
to be discussed in the next few sections.

Action Handling

Spring action/command handling can be slightly overwhelming at first because lots of
classes are involved. So, we will take it in simple steps. Figure 3-2 shows a simplified view
of the action management workflow. I have deliberately left out the view management
part for now.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS52

Figure 3-2. Action-handling workflow

As shown in Figure 3-2, the front controller interacts with the action handler, which
subsequently invokes the page controllers. The class diagram in Figure 3-3 shows the var-
ious classes and interfaces that are part of the Spring MVC action handler component.

Figure 3-3. Action handler class diagram

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 53

The HandlerMapping interface is the key to the overall action handler component. On
intercepting a request, the dispatcher servlet looks for the appropriate handler mapping
object to map between the request and the request-processing object. In other words, a
handler mapping provides an abstract way to map the request URL to the eventual han-
dlers or page controllers.

As the name suggests, AbstractHandlerMapping is an abstract handler mapping imple-
mentation. It implements the getHandler method of the HandlerMapping interface. This
method returns a HandlerExecutionChain, which holds references to the following:

• Single page controller implementations that implement either the Controller
interface or the ThrowawayController interface

• An optional set of interceptors implementing the HandlerInterceptor interface

The BeanNameUrlHandlerMapping and SimpleUrlHanderMapping provide two concrete
implementations of the HandlerMapping interface that are sufficient for most cases. The
BeanNameUrlHandlerMapping is the default handler mapping used by the front controller. If
your application needs only this handler mapping, then there is nothing to configure. In
some cases, your application may require multiple handler mappings. As I will show in a
later section, Spring MVC allows multiple handler mappings to work side by side. In this
case, the front controller has to decide the order in which the handler mappings will be
invoked. The handler mappings implement the Ordered interface, allowing the front con-
troller to decide the right ordering in the handler mapping chain. The handler mapping
with lowest order value has the highest priority.

A handler mapping holds only the reference of a page controller. It does not invoke
any method on it. A handler adapter is responsible for invoking methods on a page
controller. All handler adapters implement the HandlerAdapter interface. As the name
suggests, handler adapters follow the GOF adapter design pattern and have the best
knowledge to invoke the appropriate page controller. This opens up another Spring
extension point and allows easy integration of page controllers from other frameworks
such as WebWork or Struts Action classes. The handle method should be implemented to
invoke methods on the page controller. This is exactly what the concrete implementation
class SimpleControllerHandlerAdapter does. It is capable of invoking page controllers
that implement the Controller interface. In other words, it knows how to invoke the
handleRequest method and handle the returned value.

The HandlerExecutionChain also contains an optional set of interceptors. These pro-
vide a robust mechanism for declarative processing before and after a request is handled
by the page controller. The sequence diagram in Figure 3-4 is an extension of Figure 3-1
and shows the complete message exchange within the action handler part of the Spring
MVC application controller component.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS54

Figure 3-4. Action handler sequence diagram

This is a complex interaction diagram, showing the internals of the Spring applica-
tion controller component. The different steps in this diagram are as follows:

1. The request processing starts off with the doService method. It keeps a copy of the
request attributes and delegates to the doDispatch method for further processing.

2. The doDispatch method coordinates and controls the workflow of the application
controller.

3. The getHandler method is called on the dispatcher servlet to get hold of the appro-
priate handler mapping for the given request. There can be a list of handler
mappings installed with the Spring MVC runtime. This method checks the list to
select the appropriate handler mapping.

4. Once the correct handler mapping for a given request is detected, its getHandler
method is invoked to return an instance of HandlerExecutionChain.

5. The doDispatch method looks for an interceptor list that has been configured
in the Spring container. However, it is not mandatory to have interceptors for
requests; it depends entirely on your requirement.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 55

6. If one or more interceptors have been configured, the preHandle method is
invoked on each one of them to preprocess a request.

7. The doDispatch method gets an instance of a page controller by invoking the
getHandler method on HandlerExecutionChain.

8. Just like handler mappings, there can be multiple handler adapters registered with
the Spring MVC framework. The getHandlerAdapter() method of the front con-
troller servlet looks up the list of handler adapters to find the one most suitable for
executing the selected page controller.

9. Once the handler adapter is found, the request processing is delegated to its
handle() method.

10. The handle() method is responsible for invoking the correct page controller meth-
ods and converting the returned value into a type that the Spring MVC framework
understands.

11. Finally, any postprocessing task is carried out with the help of the interceptors.

Using Action Handlers

As shown earlier, HandlerMapping along with HandlerAdapter forms the backbone of the
robust and highly flexible Spring action management component. They bring the flexibil-
ity of program to interface (P2I), thus allowing different concrete implementations. Both
the handler mapping and the handler adapter provide extension points into the Spring
MVC framework. Let’s say you need to map a page controller based on a value set in a
cookie. You can achieve this with a custom handler mapping implementation. Assume
that this page controller was developed as part of some homegrown web framework. You
can create a handler mapping implementation to invoke appropriate methods on this
controller and consume the returned results. Using the customized version is as simple
as implementing the interfaces or any of the abstract classes and then configuring it with
the Spring container. However, this is not required in most cases. This is because Spring
provides several concrete implementations that are sufficient in most cases. I have been
explaining a lot of theoretical stuff so far, so I will now show how to put the implementa-
tion classes into action.

BeanNameUrlHandlerMapping

This handler mapping is used to map the request URL directly to the bean object or
a page controller registered in the Spring IOC container. In other words, the URL is

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS56

matched with the name of the bean in the application context. Consider a request for the
following URL: http://www.myinsuranceportal.com/insuranceapp/createPolicy.do. This
request is intercepted by the dispatcher or front controller servlet, which would look for a
handler mapping registered in the Spring web application context. You can do this as
shown in Listing 3-6.

Listing 3-6. insurance-servlet.xml

<beans>

<bean name="beanNameUrlHandlerMapping"

class="org.springframework.web.servlet.➥

handler.BeanNameUrlHandlerMapping"/>

<bean name="/createPolicy.do" class="com.apress.insuranceapp.➥

web.CreatePolicyController"/>

</beans>

However, as stated earlier, this configuration is optional because
BeanNameUrlHandlerMapping is the default handler. In case no handler mapping is
found in the web application context, Spring MVC will create an instance of
BeanNameUrlHandlerMapping. Now that the handler mapping is detected, the front con-
troller will then look up a bean with the name /createPolicy.do in the Spring container.
It manages to resolve this as the CreatePolicyController command handler bean.

This handler mapping works relative to the servlet mapping and is not dependent on
the context path. Hence, changes in context path or servlet mapping will not require a
change in the bean configuration in the Spring container. However, it is possible to turn
on the use of full path by setting a boolean flag, alwaysUseFullPath, as shown in the con-
figuration in Listing 3-7.

Listing 3-7. insurance-servlet.xml

<beans>

<bean name="beanNameUrlHandlerMapping" class="org.springframework➥

.web.servlet.handler.BeanNameUrlHandlerMapping">

<property name="alwaysUseFullPath" value="true" />

</bean>

</beans>

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 57

SimpleUrlHandlerMapping

The BeanNameUrlHandlerMapping class does not support wildcards to resolve a request
URL to a bean name. Let’s assume you want the UpdatePolicyController to handle two
requests: /createPolicy.do and /updatePolicy.do. With BeanNameUrlHanderMapping, you will
need to configure two <bean /> entries. This is redundant, and configuration can be sim-
plified with Apache Ant–style wildcard path mapping with the SimpleUrlHandlerMapping
class. Since this is not the default handler mapping, it has to be explicitly configured in
the Spring configuration file, as shown in Listing 3-8.

Listing 3-8. insurance-servlet.xml

<beans>

<bean name="simpleUrlHandlerMapping"

class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">

<property name="mappings">

<props>

<prop key="/*Policy.do">updatePolicyController</prop>

</props>

</property>

</bean>

<bean name="updatePolicyController" class="com.apress.insuranceapp➥

.web.UpdatePolicyController"/>

</beans>

As shown in Listing 3-8, the controllers are configured just like any other bean in the
Spring container. The mappings property of the handler mapping is very important. It is
wired using a java.util.Properties object. Each key of this object is a URL pattern. The
key for the updatePolicyController is the URL pattern: /*Policy.do. It uses the * wildcard.
This means any request URL ending with Policy.do will be handled by this page con-
troller.

Note that once this handler mapping is detected by the dispatcher servlet, it no
longer needs to create the default bean handler mapping instance.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS58

View Handler

Now it’s time to take a closer look at another piece of the application controller puzzle—
view management. Figure 3-5 shows the simple application controller workflow with
the view handler component.

Figure 3-5. View management workflow

The role of dispatcher servlet as the coordinator is reemphasized in Figure 3-5.
Note that the view handlers are completely decoupled from the action management
component.

This is achieved with the View and ViewResolver interfaces. The View interface is an
abstraction of any presentation technology available. This makes it possible to integrate
and use with Spring MVC any presentation technology, such as an HTML-based JSP or a
document-based PDF. Views essentially display the results of business object invocation.
They also present controls such as buttons, links, and input boxes for the users to interact
with the system. But from the perspective of the application controller and view manage-
ment, ViewResolver is the most important interface. It is responsible for the complete
decoupling of view and controllers. Figure 3-6 shows the basic view resolver class
diagram.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 59

Figure 3-6. View management class diagram

The ViewResolver interface defines a single method, resolveViewName, which tries
to resolve a view by name. This method also takes a Locale object as an argument,
which allows implementing classes to support internationalized view lookup. The
BeanNameViewResolver class resolves a view by looking up the current application context
for a bean that has the same name as the view name. AbstractCachingViewResolver pro-
vides a convenience base class to implement view resolvers. It caches view objects once
resolved. Like many other classes in the Spring Framework, this class implements the
template pattern, and subclasses implement the abstract method loadView.

The ResourceBundleViewResolver and XmlViewResolver use resource bundles and XML
files to load view definitions. However, this is not the only difference, as I will show you
in the examples later in this chapter. UrlBasedViewResolver is useful because it converts
view names to URLs, without any mapping definition being required explicitly. It can
optionally use a prefix and a suffix. So, a view name of claimdetail and suffix of .jsp will
result in the URL claimdetail.jsp. In short, this class helps map a logical view name to a
physical resource. JasperReportsViewResolver works specifically to map a view name to

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS60

a JasperReports-based view. InternalResourceViewResolver, on the other hand, resolves
view names to JSP or Apache Tiles–based view components located in the WEB-INF folder.
It is the most widely used view resolver. AbstractTemplateViewResolver is the abstract
base class used to resolve template-based views. FreeMarkerViewResolver and
VelocityViewResolver are two specialized classes to determine views based on FreeMarker
and Velocity template engines, respectively. Now that you are familiarized with the
important view-handling classes, it’s time to turn your attention to the dynamic aspect
by exploring the sequence diagram of the view-handling subsystem (see Figure 3-7).

Figure 3-7. View management sequence diagram

This is an extension of the workflow discussed in Figure 3-4. The message exchange
between the participating objects is as follows:

1. The handler adapter component is responsible for invoking the handleRequest
method on the Controller interface.

2. The page controller creates the ModelAndView object and passes it the logical view
name and the data to be rendered by the view.

3. The dispatcher servlet then delegates the view-rendering activity to the render
method.

4. The render method first tries to locate the appropriate view object by calling the
resolveViewName method.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 61

5. The resolveViewName method tries to map a given logical view name to a concrete
view resource. For this it seeks the help of all the registered ViewResolver classes in
the application context.

6. When the appropriate view object is resolved, the render method is invoked on it
to display the model data.

Using View Handlers

In the next section, I will show some of the commonly used concrete view resolvers in
action.

ResourceBundleViewResolver

This view resolver implementation has two advantages:

• It allows the logical view name to physical resource mapping to be configured in
externalized properties or resource bundle files.

• It adds internationalization support to the view resolution process. If we want to
configure a separate set of physical resources for different locales, this class makes
that possible.

eInsure had to be rolled out at a leading insurance company that had businesses in
Canada and Australia. Hence, eInsure had to support localized views: English in Australia
and French in Canada. One solution was to develop two sets of JSPs for presentation,
supporting different locales, and let ResourceBundleViewResolver find the appropriate
view at runtime. To achieve this solution, the eInsure team created two JSPs:
PolicyDetails_en_AU.jsp and PolicyDetails_fr_CA.jsp (Listing 3-9). The first JSP sup-
ported the Australian users, while the second catered to the French users in Canada.

Listing 3-9. PolicyDetails_fr_CA.jsp

<html>

<head>

<title>Underwriting</title>

<script>

function eventSubmit(url){

document.policy.action = url;

document.policy.submit();

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS62

}

</script>

</head>

<body>

<form name="policy">

<table>

<tr>

<td>Prénom:</td>

<td><input name="firstName" type="text"/></td>

</tr>

<tr>

<td>Nom de famille:</td>

<td><input name="lastName" type="text"/></td>

</tr>

<tr>

<td>Age :</td>

<td><input name="age" type="text"/></td>

</tr>

<tr>

<td colspan="3">

<input type="button" value="Créer"

onClick="eventSubmit('createPolicy.do')" />

</td>

</tr>

</table>

</form>

</body>

</html>

Next the resource bundle files containing the externalized information to map the
logical view names to physical resources were created. Listing 3-10 shows the mapping
file for the French Canadian locale. This file is picked up from the classpath and should
be placed in the /WEB-INF/classes folder of the web application.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 63

Listing 3-10. /WEB-INF/classes/insurance-views_fr_CA.properties

policydetails.class=org.springframework.web.servlet.view.JstlView

policydetails.url=/WEB-INF/jsp/PolicyDetails_fr_CA.jsp

The base resource bundle file is called views.properties. Depending on the locale,
the other resources will be named views_fr_CA.properties and so on. But this can be
changed by configuration. So when a view named policydetails is requested, the view
resolver creates a new instance of the JstlView class. This class represents a JSP-based
view that uses the JSP Standard Tag Library. The URL details are then passed to the
JstlView instance through setter injection. The logical view name is usually supplied by
the page controller, as shown in Listing 3-11.

Listing 3-11. PolicyDetailsController.java

public class PolicyDetailsController implements Controller {

public ModelAndView handleRequest(HttpServletRequest request,

HttpServletResponse response) throws Exception {

return new ModelAndView("policydetails");

}

}

Finally, the page controller and view resolver should be configured in the Spring
application context so that the dispatcher servlet can use them. Listing 3-12 shows the
Spring configuration.

Listing 3-12. insurance-servlet.xml

<beans>

<bean name="/policydetails.do"

class="com.apress.insurance.web.controller.PolicyDetailsController"/>

<bean id="viewResolver" class="org.springframework.web.servlet.➥

view.ResourceBundleViewResolver">

<property name="basename" value="insurance-views"></property>

</bean>

</beans>

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS64

Note in Listing 3-12 that the base name of the resource bundle has been changed.
Hence, in this case the resource bundles that hold the mapping information will be
named insurance-views.properties, insurance-views_fr_CA.properties, and so on. A lot of
things happen under the hood because of this configuration. I will summarize them here
so you can better understand:

1. A request of policydetails.do is intercepted by the dispatcher servlet.

2. The request is handled by the PolicyDetailsController page controller. It sets the
logical view name that should be used to present the data returned by the busi-
ness components.

3. The dispatcher servlet invokes the view resolver with the logical view name
returned by the controller and the locale information available with the request.

4. The ResourceBundleViewResolver first detects the appropriate resource bundle
based on the locale.

5. The logical view name is used to detect the appropriate view class configured in
the resource bundle. In this is the value of the property policydetails.class.

6. Finally, an instance of JstlView is created, and the value of the configuration
parameter policydetails.url is injected into this object and returned to the dis-
patcher servlet.

The design presented here may be used for an application supporting two locales,
but it can have serious side effects. Using a properties file for view management is a cum-
bersome approach. It can be a nightmare to maintain this application, because we will
add n JSPs per locale. In other words, if we support m locales, we will have m*n JSP files.
Add to this the view configuration file that is required for each locale. So, effectively we
will have m*(1+n) JSP and configuration files to maintain. A better approach is to have a
single JSP for all locales. It is backed by m resource bundles for the various locales that
the application intends to support. The resource bundles can then be used in the JSP
using the View Helper pattern described later. So, in effect we have (n + 2m) files to main-
tain, which makes things significantly easier.

XmlViewResolver

The XmlViewResolver does not support localized view resolution and should replace
ResourceBundleViewResolver if we intend to implement the solution of one JSP for all
locales. So, with XmlViewResolver, there is just a single PolicyDetails.jsp catering to all the
users with the localized labels stored in resource bundles. Most developers find it more
convenient to configure the view mapping in an XML file.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 65

To use an XML-based view resolver, configuration information should be moved in
XML files from the properties file. This view configuration file should be located in the
WEB-INF folder and is called views.xml by default. As with most parameters in Spring, the
location too is configurable. Listing 3-13 shows the views.xml file.

Listing 3-13. /WEB-INF/views.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"

>

<bean name="policydetails" class="org.springframework.web.➥

servlet.view.JstlView">

<property name="url" value="/WEB-INF/jsp/PolicyDetails.jsp" />

</bean>

</beans>

Notice that the configuration used is quite similar to the application context configu-
ration. The beans defined in views.xml are in fact an extension of the main application
context factory. Finally, we need to configure the XmlViewResolver in the application con-
text so that it can be used by the front controller servlet. Listing 3-14 shows the modified
application context configuration.

Listing 3-14. insurance-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"

>

<bean name="/policydetails.do" class="com.apress.insurance.web.controller.➥

PolicyDetailsController"/>

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS66

<bean id="viewResolver" class="org.springframework.web.servlet.view.➥

XmlViewResolver" />

</beans>

InternalResourceViewResolver

If the application uses only JSPs, then maintaining an external view mapping configura-
tion is not necessary. The InternalResourceViewResolver class can determine the physical
view in the web application archive given the logical view name. Using this view resolver
is just a matter of configuration, as shown in Listing 3-15.

Listing 3-15. insurance-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"

>

<bean name="viewResolver" class="org.springframework.web.servlet.view.➥

InternalResourceViewResolver">

<property name="viewClass" value="org.springframework.web.servlet.view➥

.JstlView"></property>

<property name="prefix" value="/WEB-INF/jsp/"></property>

<property name="suffix" value=".jsp"></property>

</bean>

<bean name="/policydetails.do" class="com.apress.insurance.web.controller➥

.PolicyDetailsController"/>

</beans>

Note that the InternalResourceViewResolver also returns JstlView. It inherits two
optional properties—prefix and suffix—from UrlBasedViewResolver to completely resolve
the physical resource. In this case, the view name policydetails will map to a physical
resource /WEB-INF/jsp/policydetails.jps. This view resolver can also be used with views
composed using the Apache Tiles layout framework.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 67

It is possible to chain view resolvers in case a single resolver is insufficient for the
application. The view resolver chaining works in a similar way to the handler mapping
chain because most of the view resolvers implement the Ordered interface.

Consequences

Benefits

• Enhanced modularity: Partitioning view and command management into two
distinct and decoupled subsystems makes an application modular and robust.

• Increased reusability: The application controller makes it possible to reuse the
controllers and views.

• Increased extensibility: The Spring application controller’s various interfaces and
abstract base classes with template methods make it easy to extend the framework,
supporting a variety of command controllers and views. It is also possible to inte-
grate third-party action-based web frameworks such as WebWork, Struts, and so
on, with Spring MVC as well as work with views such as OpenLaszlo and Flex.

Concerns

• Steep learning curve: Ideally, the application controller should be a low-level
framework concern. For most common needs, you will generally not work with the
application controller because Spring has sensible defaults. However, it also throws
this component wide open for developers seeking extensibility and flexibility. This
adds to the learning curve because you now need to know a lot more about frame-
work internals to support exceptional requirements.

Page Controller

Problem

The JSP-based controller introduced at the beginning of this chapter handled each user
action by executing code in if-else blocks. Each if-else block was responsible primarily

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS68

for invoking a session bean to carry out a distinct business function. However, this was a
most inflexible design and degraded reuse.

I will point out two simple use cases to elaborate on the problem discussed in the
previous paragraph. A claimant name can be modified until the claim is finally sanc-
tioned. Such modification involves a simple update operation on the claim record. Now
for a slightly tricky situation: consider a case when a lodged claim is rejected because of a
lack of evidence. It is easy to think of this as a delete operation. However, it had to be
handled as a soft delete by appending an effective end date to the claim record. This was
done because a rejected claim could be revived once mandatory information is available.
Moreover, it can be used as references for policies taken by the claimant in the future.

The JSP front controller had two distinct if-else blocks to cater to the two scenarios.
Two separate blocks of code were unnecessary, because the first case was an update of
the name field in the claim record, while the second case required the claim status and
effective end date fields to be modified in the same record. Thus, you have two blocks of
code where only a single block is really necessary. This is just one example of several such
blocks scattered in all the JSP controllers of eInsure. Moreover, as I have already pointed
out, JSP is not the appropriate controller to house the user action handlers. For each new
feature, a block needs to be added that discouraged OO principles—encapsulation,
inheritance, and reusability.

It is easy to consider embedding these blocks in the front controller dispatcher
servlet. However, the dispatcher servlet would soon be polluted like the JSP controller,
leaving it inflexible and unsuitable for use across applications.

Forces

• Remove the code that invokes business logic in response to user action to reusable
components.

• Identify the reusable components based on the request URL instead of hard-coded
event and screen code.

• Deploy one reusable component per user action.

Solution

Use a page controller to consolidate user action processing.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 69

Strategies with the Spring Framework

I have already introduced Spring page controllers in connection with the Front Controller
and Application Controller design patterns. I have also discussed the workflow involved
in identifying the appropriate page controller and also configuring them in the Spring
registry. However, I left the implementation details until now. In the next few sections, I
will explore the page controllers in greater detail.

Using Controller

Listing 3-16 shows the page controller implementation class that I have been referring to
and using in the previous examples.

Listing 3-16. CreatePolicyController.java

public class CreatePolicyController implements Controller {

private UnderwritingBusinessDelegate uwrBusinessDelegate;

public ModelAndView handleRequest(HttpServletRequest request,

HttpServletResponse response) throws Exception {

//transform data from request to a form suitable for use in business layer

PolicyDetail policyDetail = new PolicyDetail();

policyDetail.setPolicyId(request.getParameter("policyId"));

//invoke business component

this.uwrBusinessDelegate.createPolicy(policyDetail);

Map model = new HashMap();

model.put("POLICY_DETAIL", policyDetail);

//return model and next view

return new ModelAndView("Success",model);

}

public void setUwrBusinessDelegate(

UnderwritingBusinessDelegate uwrBusinessDelegate) {

this.uwrBusinessDelegate = uwrBusinessDelegate;

}

}

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS70

As shown in Listing 3-16, the CreatePolicyController class implements the Controller
interface provided by the Spring Framework. Hence, it implements the handleRequest
method of this interface. This method uses the data in the HttpServletRequest to
populate a simple JavaBean object PolicyDetail. It then invokes the business operation
to create a new policy. The business logic is invoked using the client-side facade
UnderwritingBusinessDelegate, which implements the business delegate pattern
described in Chapter 4. As shown in Listing 3-17, the business delegate object is injected
by the Spring container. Finally, the ModelAndView object containing the logical view name
and data returned by the business layer is passed to the handler adapter, which invoked
this page controller.

Listing 3-17. Spring-config.xml

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<bean name="/createPolicy.do" class="com.apress.insuranceapp.web.controller➥

.CreatePolicyController">

<property name="uwrBusinessDelegate" ref="uwrBusinessDelegate"/>

</bean>

<bean name="uwrBusinessDelegate" class="com.apress.insuranceapp.business.➥

delegate.UnderwritingBusinessDelegateImpl"/>

</beans>

The classes that implement the controller interface must be thread-safe, because
they are singleton by default. The controllers have complete access to HttpServletRequest
and HttpServletResponse objects, thus making them dependent on the HTTP protocol.
But this also makes these components usable by remoting mechanisms that depend on
HTTP. You can use ThrowawayController if the target is independent from the servlet API
and the controller does not need to be thread-safe.

Using AbstractController

For most cases, the implementation of the Controller interface is sufficient. Spring, how-
ever, provides several concrete as well as abstract implementations that can be extended
depending on the requirement. The class diagram in Figure 3-8 shows one such class.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 71

Figure 3-8. Abstract controller class diagram

As shown in Figure 3-8, the AbstractController class implements the Controller
interface and defines a well-defined workflow that can be used by the subclasses. This
class implements the template method design pattern (GOF) to define a fixed workflow
with suitable extension hooks to alter the workflow. The sequence diagram shown in
Figure 3-9 illustrates the workflow defined by this class.

Figure 3-9. Abstract controller sequence diagram

The handler adapter invokes the handleRequest method to trigger the workflow. The
checkAndPrepare method is then invoked on the superclass WebContentGenerator to per-
form the following activities:

1. Inspect whether the HTTP method for this request is supported. This can be used
to block unwanted HTTP method requests such as DELETE. It can be used for
access to some read-only resources such as help pages by supporting GET requests.

2. Check whether an HTTP session is already started. This is can be useful if the
application needs some data already stored in the session before carrying out
further processing.

3. Set hints for the clients with the cache duration of the final response sent by the
dispatcher servlet.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS72

All these tasks can be turned on and off with configuration. The first two tasks will
raise a ServletException in case of a failure. The extension point here is provided by the
abstract handleRequestInternal method. All subclasses must implement this template
method to provide custom implementation. Thus, AbstractController is a convenience
base class to simplify page controller implementations.

I will put AbstractController into use with a very simple use case. The eInsure appli-
cation needed to display support and help information to allow the users to comfortably
handle the different functions of the application. Listing 3-18 shows the controller for
one such scenario.

Listing 3-18. PolicyQuoteHelpController.java

public class PolicyQuoteHelpController extends AbstractController {

protected ModelAndView handleRequestInternal(HttpServletRequest request,

HttpServletResponse response) throws Exception {

return new ModelAndView("policyquotehelp");

}

}

The PolicyQuoteHelpController does not invoke any business logic. Instead, it acts as
a read-only controller, just transferring control to the next view. But before doing so, it
checks whether the request is by the HTTP GET method and a session already exists. Note
that these two options are set through configuration, as shown in Listing 3-19.

Listing 3-19. spring-config.xml

<beans>

<bean name="/policyquotehelp.do" class="com.apress.insuranceapp.➥

web.controller.PolicyQuoteHelpController">

<property name="supportedMethods" value="GET"/>

<property name="requireSession" value="true"/>

</bean>

</beans>

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 73

If the two checks mentioned earlier are not required, then the UrlFilenameView➥

Controller class can be combined with view resolvers to implement page controllers that
pass only the logical view name. I will cover this kind of controller in greater detail while
discussing the Dispatcher View pattern later in this chapter.

Using AbstractCommandController

Most of the use cases in a web application operate by collecting the information supplied
in HTML forms and then performing business actions based on this form data. It is pos-
sible to get all the form data from the HttpServletRequest object primarily using the
getParameter method. It is a bad practice to pass the request object to the business tier
because it would then be tied down to clients of a specific protocol type. Hence, the
getParameter method can be used to retrieve all required data to populate a JavaBean
object. This JavaBean object is passed to the business layer.

Putting the JavaBean creation logic in the controller violates SRP. Any change to the
form field may cause a change in the controller. A flexible and clean design would be to
create this JavaBean object outside the controller and pass it as a parameter to the con-
troller. This requirement is fulfilled by controllers that implement the AbstractCommand➥

Controller class. The handler adapter populates the POJO object from the
HttpServletRequest object, which is then passed to the controller. It maps the form field
names to the properties of the POJO.

The JSP shown in Listing 3-20 is used to underwrite new policies. It presents a simpli-
fied policy underwriting form with only three fields. Listing 3-21 shows the JavaBean
class, which is used to populate the form data. Some developers call these classes com-
mand classes. This name is inappropriate, however, because the page controllers are
command objects that implement the command design pattern (GOF). These data
holder classes on the server that populate and store values passed through HTML form
submission are better called form beans.

Listing 3-20. WEB-INF/jsp/createPolicy.jsp

<html>

<head>

<title>Underwriting</title>

<script>

function eventSubmit(url){

document.policy.action = url;

document.policy.submit();

}

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS74

</script>

</head>

<body onLoad="displayError(<%=request.getAttribute("ERROR_MESSAGE")%>)">

<form name="policy" method="POST">

First Name <input type="text" name="firstName" value="" />

Last Name <input type="text" name="lastName" value="" />

Age <input type="text" name="age" value="" />

<input type="button" value="Save" onClick="eventSubmit('saveNewPolicy.do')"/>

</form>

</body>

</html>

With Spring MVC, the form bean does not have any life-cycle dependency on
the framework, except creation. Also, the form beans do not need to implement any
framework-specific interface. Hence, these objects can be safely used in other parts
of the application—business tier and integration tier.

Listing 3-21. PolicyFormBean.java

public class PolicyFormBean implements Serializable {

private String firstName;

private String lastName;

private int age;

public int getAge() {

return age;

}

public void setAge(int age) {

this.age = age;

}

public String getFirstName() {

return firstName;

}

public void setFirstName(String firstName) {

this.firstName = firstName;

}

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 75

public String getLastName() {

return lastName;

}

public void setLastName(String lastName) {

this.lastName = lastName;

}

}

Thus, a form bean is a POJO with a get and set method for each field. Note that the
field name in this class exactly matches the name attribute of the HTML input elements.
Listing 3-22 shows the controller implementation.

Listing 3-22. SaveNewPolicyController.java

public class SaveNewPolicyController extends AbstractCommandController {

private UnderWritingBusinessDelegate uwrBusinessDelegate;

public SaveNewPolicyController() {

this.setCommandClass(PolicyFormBean.class);

}

public void setUwrBusinessDelegate(

UnderWritingBusinessDelegate uwrBusinessDelegate) {

this.uwrBusinessDelegate = uwrBusinessDelegate;

}

protected ModelAndView handle(HttpServletRequest request,

HttpServletResponse res, Object formBean, BindException errors)

throws Exception {

PolicyFormBean policyBean = (PolicyFormBean) formBean;

log.info("First Name--" + policyBean.getFirstName());

log.info("Last Name--" + policyBean.getLastName());

log.info("Age --" + policyBean.getAge());

this.uwrBusinessDelegate.createPolicy(policyBean);

return new ModelAndView("showPolicydetails","policydetails",policyBean);

}

}

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS76

The policy controller now extends the AbstractCommandContoller. The
AbstractCommandController workflow was altered by overriding the handle method.
Finally, Listing 3-23 shows the Spring configuration file that wires everything up.

Listing 3-23. insurance-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"

>

<bean name="simpleUrlHandlerMapping"

class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">

<property name="mappings">

<props>

<prop key="/create*.do">staticViewController</prop>

</props>

</property>

</bean>

<bean name="beanNameUrlHandlerMapping"

class="org.springframework.web.servlet.handler.BeanNameUrlHandlerMapping">

<property name="order" value="1" />

</bean>

<bean name="viewResolver"

class="org.springframework.web.servlet.view.InternalResourceViewResolver">

<property name="viewClass"

value="org.springframework.web.servlet.view.JstlView" />

<property name="prefix" value="/WEB-INF/jsp/" />

<property name="suffix" value=".jsp" />

</bean>

<bean name="staticViewController"

class="org.springframework.web.servlet.mvc.UrlFilenameViewController" >

</bean>

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 77

<bean name="/saveNewPolicy.do"

class="com.apress.insurance.web.controller.SaveNewPolicyController" >

<property name="uwrBusinessDelegate"

ref="underwritingBusinessDelegate" />

</bean>

<bean name="underwritingBusinessDelegate"

class="com.apress.insurance.view.delegate.UnderWritingBusinessDelegate" />

</beans>

The web page that is presented to the end user’s browser to create a policy does not
require any dynamic data. Hence, I have configured a UrlFilenameViewController object
to handle this request. It converts a resource name in the URL into a logical view name.
So, the request for createPolicy.do will result in a symbolic view name: createPolicy. The
SimpleUrlHandlerMapping with wildcard mapping resolves any request starting with create,
such as createPolicy.do, and invokes the UrlFilenameViewController, which returns the
logical view name. Finally, the view resolver is invoked by the front controller to resolve
the logical view name to a physical resource, /WEB-INF/jsp/createPolicy.jsp.

In createPolicy.jsp (Listing 3-20), whenever the user clicks the Save button, a
request is sent to the server for the resource saveNewPolicy.do. Now a handler mapping
chain has been configured in Listing 3-23. The BeanNameUrlHandlerMapping with higher
precedence is able to resolve this URL and invokes the SaveNewPolicyController. The
logical view name returned by this controller is finally resolved to the resource
showPolicydetails.jsp.

Using SimpleFormController

A typical web application involves displaying a form to collect user input. The users
fill in this form and submit the data to the web server for further processing.
SimpleFormController is widely used to provide page controller implementations because
it coordinates and manages the two most important aspects of a form’s life cycle—view
and submission. As with many other Spring MVC classes, this one also implements the
template design pattern and is closed for modification but open for extension at suitable
points of the workflow. The workflow can also be altered by setting various configurable
properties.

Form Display

I will first look at the form display feature provided by the SimpleFormController class.
Figure 3-10 shows the workflow of this function.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS78

Figure 3-10. Form display workflow in SimpleFormController

This is an oversimplified workflow, because I want to focus only on areas of interest.
You can find a detailed workflow and explanation in the book Expert Spring MVC and
Web Flow (Apress, 2006). As shown in Figure 3-11, the web browser’s request for a
resource is eventually delegated to the page controller. The SimpleFormController detects
that the request has come via HTTP GET, so this is not a form submission but a request
for form display. It creates an instance of the form bean and makes the form ready to be
displayed.

I will now take up the example discussed earlier with AbstractCommandController and
try to implement it with SimpleFormController because the latter offers greater flexibility.
As a first step, I will simplify the JSP as shown in Listing 3-24. Note that JavaScript is not
used to submit the form anymore. Also notice that the action attribute of the form does
not specify a value. This removes any coupling with a particular action URL. Apart from
these two changes, the JSP is the same as the one presented in Listing 3-20.

Listing 3-24. WEB-INF/jsp/createPolicy.jsp

<html>

<head>

<title>Underwriting</title>

</head>

<form action="" method="POST">

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 79

First Name <input type="text" name="firstName" value="" />

Last Name <input type="text" name="lastName" value="" />

Age <input type="text" name="age" value="" />

<input type="submit" value="Save" />

</form>

</body>

</html>

SaveNewPolicyController now extends the SimpleFormController as shown in
Listing 3-25. Note that this version is suitable only for form display.

Listing 3-25. SaveNewPolicyController.java

public class SaveNewPolicyController extends SimpleFormController {

private UnderWritingBusinessDelegate uwrBusinessDelegate;

public SaveNewPolicyController() {

setCommandClass(PolicyFormBean.class);

}

public void setUwrBusinessDelegate(

UnderWritingBusinessDelegate uwrBusinessDelegate) {

this.uwrBusinessDelegate = uwrBusinessDelegate;

}

}

Finally, I will wire up the beans in the Spring configuration file as shown in
Listing 3-26. This is a very clean configuration. A GET request for /createPolicy.do is inter-
cepted by the SaveNewPolicyController, which considers this as a form display request.
The property formView serves as a logical view name, which is resolved to the physical
view /WEB-INF/jsp/createPolicy.jsp to present the form to the end user.

Listing 3-26. insurance-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS80

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"

>

<bean name="viewResolver"

class="org.springframework.web.servlet.view.InternalResourceViewResolver">

<property name="viewClass"

value="org.springframework.web.servlet.view.JstlView" />

<property name="prefix" value="/WEB-INF/jsp/" />

<property name="suffix" value=".jsp" />

</bean>

<bean name="/createPolicy.do"

class="com.apress.insurance.web.controller.SaveNewPolicyController" >

<property name="uwrBusinessDelegate"

ref="underwritingBusinessDelegate" />

<property name="formView"

value="createPolicy" />

</bean>

<bean name="underwritingBusinessDelegate"

class="com.apress.insurance.view.delegate.UnderWritingBusinessDelegate" />

</beans>

Form Submission

The underwriters using the eInsure application would fill up this form and submit it to
underwrite new policies. The controller determines this request as a form submission,
since the method attribute of the form was set as POST. Now you must be wondering how
this form submits to the URL /createPolicy.do again because the action attribute in the
form is not specified. This in fact is a trick. If the action attribute is empty, the form will
post back to itself, that is, the page that presented the form. This will result in a new POST
request reaching the SaveNewPolicyController. Figure 3-11 shows the form submission
workflow.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 81

Figure 3-11. Form submission workflow in SimpleFormController

To handle form submission, the controller needs to override one of the many tem-
plate methods. Since the goal is to just invoke a business service in the controller, you
can override the simplest method called doSubmitAction. With this method, you do not
need to explicitly return any ModelAndView object. The form bean is automatically set in
the model object by the framework itself, with the identifier as the command name. If
more data has to be passed, then the onSubmit method needs to be overridden. This
method allows the creation of a ModelAndView object, which can be used to pass more
data than with the default approach.

Listing 3-27 shows the modified controller.

Listing 3-27. SaveNewPolicyController.java

public class SaveNewPolicyController extends SimpleFormController {

private UnderWritingBusinessDelegate uwrBusinessDelegate;

public SaveNewPolicyController() {

setCommandClass(PolicyFormBean.class);

}

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS82

public void setUwrBusinessDelegate(

UnderWritingBusinessDelegate uwrBusinessDelegate) {

this.uwrBusinessDelegate = uwrBusinessDelegate;

}

/*

protected ModelAndView onSubmit(Object formbean) throws Exception {

PolicyFormBean policyBean = (PolicyFormBean)formbean;

uwrBusinessDelegate.createPolicy(policyBean);

return new ModelAndView(this.getSuccessView(),"policydetails",formbean);

}

*/

}

To use the SimpleFormController, you have to set a few configuration parameters. The
first property is the commandName property. This name is used as the key for the form bean
object set in the model. The next property you need to consider is successView. This spec-
ifies a logical view name just like the property formView. This view will be used to render a
response in case of a successful form submission. Listing 3-28 shows the configuration
details.

Note that the command class/form bean has also been configured in
insurance-servlet.xml. Hence, you don’t need to register the form bean in the
constructor of the page controller.

Listing 3-28. insurance-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"

>

<bean name="/createPolicy.do"

class="com.apress.insurance.web.controller.SaveNewPolicyController" >

<property name="uwrBusinessDelegate"

ref="underwritingBusinessDelegate" />

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 83

<property name="formView"

value="createPolicy" />

<property name="commandName"

value="policydetails" />

<property name="successView"

value="policydetails" />

<property name="commandClass"

value="com.apress.insuranceapp.web.formbean.PolicyFormBean" />

</bean>

</beans>

Finally, Listing 3-29 shows the success view. It uses JSTL tags to retrieve model data.

Listing 3-29. WEB-INF/jsp/policydetails.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>

<head>

<title>Underwriting</title>

</head>

<body>

<form >

<table>

<tr>

<td>First Name:</td>

<td><c:out value="${policydetails.firstName}"/></td>

</tr>

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS84

<tr>

<td>Last Name:</td>

<td><c:out value="${policydetails.lastName}"/></td>

</tr>

<tr>

<td>Age :</td>

<td><c:out value="${policydetails.age}"/></td>

</tr>

</table>

</form>

</body>

</html>

Form Validation

In the form shown in Listing 3-24, the fields have certain restrictions. The first name
and last name fields are mandatory, and age must be an integer. It is possible to check
these restrictions using client-side JavaScript. However, most applications these days
require cross-browser support, and JavaScript is the most significant obstacle to this.
The alternative option is server-side form validation. As shown in Figure 3-12, the
SimpleFormController supports server-side form validation.

Spring MVC supports two types of validators:

• Programmatic validators: These implement the validations with customized logic.
These are generally carried out by classes that implement the Validator interface.
For the sake of simplicity, I will concentrate on this variety only.

• Declarative validators: These implement the validations via configuration. Spring
MVC integrates with two validation frameworks—Commons Validator and
VALANG—to provide this feature. The integration and usage of these two are a
huge subject and beyond the scope of this book. For detailed treatment on these
two frameworks, refer to Expert Spring MVC and Web Flow (Apress, 2006).

The first step to form validation is creating an implementation of the Validator inter-
face, as shown in Listing 3-30. The implementation of the supports method is necessary,
because it informs the Spring MVC framework whether a validator is applicable for a

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 85

form bean type. However, the most important is the validate method, which contains the
validation logic. For mandatory field validation, Spring provides a helper class with static
methods called ValidationUtils. As shown in Listing 3-30, the Errors object reference, the
field name that has to be validated, and an error code are passed to the rejectIfEmpty
method for validation. If there is a validation failure, the error object is populated with
the error message. This message is picked up from a resource bundle based on the sup-
plied error code.

Listing 3-30. PolicyFormbeanValidator.java

public class PolicyFormbeanValidator implements Validator {

public boolean supports(Class clazz) {

return PolicyFormBean.class.equals(clazz);

}

public void validate(Object formBean, Errors errors) {

PolicyFormBean policybean = (PolicyFormBean) formBean;

ValidationUtils.rejectIfEmpty(errors, "firstName", "mandatoryfirstname");

}

}

Now that the validator is ready, it must be connected to the controller. This is done by
wiring it in the Spring configuration. Apart from this, the resource bundle locator also
must be configured. This is shown in the modified Spring configuration in Listing 3-31.

Listing 3-31. insurance-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"

>

<bean name="viewResolver"

class="org.springframework.web.servlet.view.InternalResourceViewResolver">

<property name="viewClass"

value="org.springframework.web.servlet.view.JstlView" />

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS86

<property name="prefix" value="/WEB-INF/jsp/" />

<property name="suffix" value=".jsp" />

</bean>

<bean name="/createPolicy.do"

class="com.apress.insurance.web.controller.SaveNewPolicyController" >

<property name="uwrBusinessDelegate"

ref="underwritingBusinessDelegate" />

<property name="formView"

value="createPolicy" />

<property name="commandName"

value="policydetails" />

<property name="successView"

value="policydetails" />

<property name="commandClass"

value="com.apress.insuranceapp.web.formbean.PolicyFormBean" />

<property name="validator"

ref="policyUnderwriteValidtor" />

</bean>

<bean id="messageSource" class="org.springframework.context.support.➥

ResourceBundleMessageSource">

<property name="basename" value="messages"/>

</bean>

<bean name="policyUnderwriteValidtor"

class="com.apress.insurance.web.validator.PolicyFormbeanValidator" />

<bean name="underwritingBusinessDelegate"

class="com.apress.insurance.view.delegate.UnderWritingBusinessDelegate" />

</beans>

The resource bundle file that holds the error messages has a base name of messages.
Listing 3-32 shows a sample resource bundle.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 87

Listing 3-32. WEB-INF/classes/messages_en_US.properties

mandatoryfirstname.policydetails.firstName=First name field is mandatory

mandatoryfirstname.policydetails.mandatorylastname=Last name field is mandatory

mandatoryfirstname.policydetails.mandatoryAge=Age➥

field is mandatory and should be an integer(0-9)

Note that the message keys are different from the error keys. This is because the
MessageCodesResolver implementation converts the error key to append the command
name and field name. Finally, we also need to modify the JSP slightly to display validation
error messages alongside the corresponding fields. For this purpose, I will use the tag
library provided by Spring to simplify the development of JSP-based views. Listing 3-33
shows the modified JSP.

Listing 3-33. WEB-INF/jsp/createPolicy.jsp

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>

<head>

<title>Underwriting</title>

<style>

.error { color: red; }

</style>

</head>

<form:form action="" method="POST" commandName="policydetails">

First Name <form:input path="firstName"/>

<form:errors path="firstName" cssClass="error"/>

Last Name <form:input path="lastName"/>

<form:errors path="lastName" cssClass="error"/>

Age <form:input path="age"/> <form:errors path="age" cssClass="error"/>

<input type="submit" value="Save" />

</form:form>

</body>

</html>

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS88

Apart from the controllers discussed so far, Spring MVC provides few other con-
trollers (abstract as well as concrete implementations) for specific requirements. Some of
these controllers are listed in Table 3-1.They are required occasionally only for a handful
of use cases.

Table 3-1. Occasionally Useful Page Controllers

File Name Description

MultiActionController Some developers think it is useful to group a logical set of
actions into a single controller implementation class. All
the actions related to a policy creation page—Save, Edit,
and so on—can be placed in a single class that extends the
MultiActionController. This is useful in reducing
concrete implementations of page controllers for a large
application. Spring MVC can determine which method to
invoke using a class called MethodNameResolver. This class
can determine the method name from a parameter set in
the HttpServletRequest.

AbstractWizardFormController Some use cases in an application are best handled by
presenting multiple pages, before final action is taken.
Such multistep use cases are commonly seen in web
applications for the registration or sign-up process.
eInsure also deployed a multistep workflow for collecting
policy and claim details. Spring MVC provides out-of-the-
box support to model use cases of this kind through the
AbstractWizardFormController class.

Consequences

Benefits

• Increased reusability: The consolidation of use case processing in page controllers
enables reuse.

• Increased extensibility: With Spring support, it is possible not only to implement
custom page controllers but also to integrate with page controllers of other frame-
works such as Struts, WebWork, and so on.

• Life-cycle support: Without Spring MVC, supporting the form handling life cycle
would lead to a lot of custom code, causing effort wastage and difficulties in main-
tenance. However, with Spring, most of the boilerplate code associated with form
life-cycle and command management is provided out of the box.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 89

Concerns

• Steep learning curve: With Spring, MVC controller support has a plethora of
options. As a result, developers need to know about plenty of interfaces and
abstract classes to make the appropriate design decisions.

• Hard to maintain: Now the application has one page controller per use case. In a
large application, this would lead to a huge set of controller classes, making it diffi-
cult to manage and maintain.

Context Object

Problem

eInsure had a product workbench that was used by business analysts and product
designers to devise and roll out insurance products. Put simply, an insurance product
defines a set of rules used to underwrite a specific class of policies. One of the customers
who used eInsure wanted an offline version of the product workbench module. This
application would be installed on the laptops used by the business analysts. This would
enable them to work out the details of the product even when offline and synchronize
with the main database later, before finally releasing the rulesets.

There were two choices for this offline application. One was Java Swing–based desk-
top software, and the other was the same eInsure application running on an embedded
web server with a synchronization facility. Our customer preferred the first solution.
Since eInsure was being refactored to use Spring Framework, our initial take was that
most of the codebase (except the presentation tier view components) would be reusable.
The eInsure team was delighted about having moved to Spring because this Swing appli-
cation would run easily out of the container.

But soon our high hopes turned to despair when we found that even the page con-
trollers could not be reused. The reason for this was that the presentation tier code was
tightly coupled to the HTTP protocol and the servlet API. The page controllers imple-
mented the Controller interface and in the process heavily used HttpServletRequest and
HttpServletResponse objects. These objects were used to extract the data from form sub-
mission. The result was a set of page controllers that could not be reused outside a web
application. The development team was left with no choice but to build the application
from scratch, resulting in an unnecessary expenditure of effort.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS90

Forces

• Don’t let protocol-specific API usage proliferate deep into a layer. This intrusion
pollutes application code by reducing reusability.

• Identify the appropriate context where protocol-specific code is to be used. In this
case, the use of protocol-specific code should be limited to the front controller or
at most the application controller.

• Increase the reusability of page controllers.

• Make page controllers easily testable components.

Solution

Use a context object to encapsulate and share form data without any protocol depend-
ency.

Strategies with the Spring Framework

During the discussion of the Page Controller pattern, I did make attempts to break
free from the coupling of protocol-specific code. But since the SimpleFormController
inherited from controllers that had association with the HttpServletRequest and
HttpServletResponse objects, the runtime dependency remained. Hence, it was not
possible to use this controller outside the web container.

Spring MVC, however, provides a controller that is independent of any protocol-
specific details. The ThrowawayController interface is completely unaware of the servlet-
specific API. The implementation classes are similar to JSF managed beans with the
properties mapping to the HTML form fields. It also needs to implement the single
execute method that should be used to invoke business logic. This method is called by
the handler adapter only when setting all the properties is successful and there is no
data conversion error. Since ThrowawayController belongs to a different class hierarchy
than other controllers, executing these controllers requires a specific handler adapter
called ThrowawayControllerHandlerAdapter. However, there is no need to configure this
handler adapter explicitly, because it is assumed as the default along with
SimpleControllerHandlerAdapter.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 91

Listing 3-34 shows the ThrowawayController implementation. For each property it
defines a getter/setter combination to map the form fields. The handler adapter extracts
the form field values using the servlet API and maps them to the properties of this con-
troller. This makes the controller reusable and free from protocol specifics. It can very
well be used with Swing components with an appropriate handler adapter.

Listing 3-34. SaveClaimController.java

public class SaveClaimController implements ThrowawayController {

private String claimantName;

private String policyNo;

private String productCd;

public ModelAndView execute() throws Exception {

//Invoke business logic here

return new ModelAndView("claimDetails");

}

public String getClaimantName() {

return claimantName;

}

public void setClaimantName(String claimantName) {

this.claimantName = claimantName;

}

public String getPolicyNo() {

return policyNo;

}

public void setPolicyNo(String policyNo) {

this.policyNo = policyNo;

}

public String getProductCd() {

return productCd;

}

public void setProductCd(String productCd) {

this.productCd = productCd;

}

}

Listing 3-35 shows the JSP that maps to the throwaway controller shown just now.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS92

Listing 3-35. WEB-INF/jsp/createClaim.jsp

<html>

<head>

<title>New Claim</title>

</head>

<form action="saveClaim.do" method="POST">

Claimant Name <input type="text" name="claimantName" value="" />

Policy Number <input type="text" name="policyNo" value="" />

Product Code<input type="text" name="productCd" value="" />

<input type="submit" value="Save" />

</form>

</body>

</html>

Finally, the controller needs to be added in the Spring configuration, as shown in
Listing 3-36.

Listing 3-36. insurance-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"

>

<!- - Other beans - ->

<bean name="/saveClaim.do"

class="com.apress.insurance.web.controller.SaveClaimController" />

</beans>

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 93

Thus, a throwaway controller is a combination of form bean and page controller.
Note that its independence from the Servlet API increases reusability and makes this con-
troller easier to unit test. But it has some disadvantages too. Since this is a stateful
controller, a new instance should be created for each request. This in turn wastes space
on the JVM heap, increasing the need for garbage collection and the resulting pauses.
However, with a modern well-tuned JVM, this is not a major problem. This controller is
very simple, without any detailed workflow. It does not support validation of form fields.
Moreover, since the form fields are now part of this class, it is awkward to pass data from
presentation layer to business layer.

The tight coupling of the form bean in the page controller can be solved by a custom
solution. To achieve this, I will define a new throwaway controller interface that, like the
earlier one, is free from servlet API dependency. This is shown in Listing 3-37.

Listing 3-37. SimpleFormThrowawayController.java

package com.apress.insurance.web.controller.api;

import org.springframework.web.servlet.ModelAndView;

public interface SimpleFormThrowawayController {

public ModelAndView execute(Object formBean) throws Exception;

public Class getFormbeanClass();

}

Note that the throwaway controllers now need to implement this new interface, as
shown in Listing 3-37. The execute method of this interface needs to be implemented to
invoke business logic. It receives an instance of the form bean from the handler adapter.
Now I will show an implementation of the new throwaway controller and move the func-
tionality shown in Listing 3-34 to this one.

It is evident from Listing 3-38 that this throwaway controller, being stateless, can
have just a single instance in the web application context.

Listing 3-38. SaveClaimController.java

public class SaveClaimController implements SimpleFormThrowawayController {

public ModelAndView execute(Object formBean) throws Exception {

ClaimFormbean formbean = (ClaimFormbean)formBean;

//Invoke business logic here

return new ModelAndView("claimDetails");

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS94

}

public Class getFormbeanClass() {

return ClaimFormbean.class;

}

}

Listing 3-39 shows the form bean.

Listing 3-39. ClaimFormbean.java

public class ClaimFormbean implements Serializable {

private String claimantName;

private String policyNo;

private String productCd;

public String getClaimantName() {

return claimantName;

}

public void setClaimantName(String claimantName) {

this.claimantName = claimantName;

}

public String getPolicyNo() {

return policyNo;

}

public void setPolicyNo(String policyNo) {

this.policyNo = policyNo;

}

public String getProductCd() {

return productCd;

}

public void setProductCd(String productCd) {

this.productCd = productCd;

}

}

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 95

To execute this modified workflow, I will need to map the request parameters to the
form bean in some component. You already know that the most appropriate component
for this is the handler adapter. Listing 3-40 shows the handler adapter that executes the
SimpleFormThrowaway controllers.

Listing 3-40. SimpleFormThrowawayControllerHandlerAdapter.java

package com.apress.insurance.web.handleradpter.api;

public class SimpleFormThrowawayControllerHandlerAdapter

extends ThrowawayControllerHandlerAdapter {

public boolean supports(Object handler) {

return (handler instanceof SimpleFormThrowawayController);

}

public ModelAndView handle(HttpServletRequest req, HttpServletResponse res,

Object command) throws Exception {

SimpleFormThrowawayController throwaway = (SimpleFormThrowawayController)

command;

Object formBean = throwaway.getFormbeanClass().newInstance();

ServletRequestDataBinder binder = createBinder(req, formBean);

binder.bind(req);

binder.closeNoCatch();

return throwaway.execute(formBean);

}

protected ServletRequestDataBinder createBinder(

HttpServletRequest request, Object formbean) throws Exception {

ServletRequestDataBinder binder = new ServletRequestDataBinder(formbean,

getCommandName());

initBinder(request, binder);

return binder;

}

}

Note that the createBinder method is responsible for binding the HTTP parameter
values to the properties of the form bean. The handler adapter takes care of all the

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS96

protocol-specific details. Finally, I will wire up everything in the Spring configuration file.
Since this handler adapter is not a default one, I will need to explicitly declare it as part of
the configuration information. Because I am using handler adapter chaining, the default
handler adapter also has to be explicitly configured. Listing 3-41 shows all of this.

Listing 3-41. insurance-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<bean name="throwawayHandlerAdapter"

class="com.apress.insurance.web.handleradpter.api.➥

SimpleFormThrowawayControllerHandlerAdapter" />

<bean name="simpleControllerHandlerAdapter"

class="org.springframework.web.servlet.mvc.➥

SimpleControllerHandlerAdapter" />

<bean name="viewResolver"

class="org.springframework.web.servlet.view.InternalResourceViewResolver">

<property name="viewClass"

value="org.springframework.web.servlet.view.JstlView" />

<property name="prefix" value="/WEB-INF/jsp/" />

<property name="suffix" value=".jsp" />

</bean>

<bean name="/createClaim.do"

class="com.apress.insurance.web.controller.DisplayNewClaimController" />

<bean name="/saveClaim.do"

class="com.apress.insurance.web.controller.SaveClaimController" />

<bean name="underwritingBusinessDelegate"

class="com.apress.insurance.view.delegate.UnderWritingBusinessDelegate" />

</beans>

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 97

In the previous few sections, I have tried to alter and extend the workflow of the throw-
away controller. In case you are interested, to further enhance this workflow to add more
functionality such as validation, look at extending the ValidatableThrowawayController and
its corresponding handler adapter ValidatableThrowawayControllerHandlerAdapter.

Consequences

Benefits

• Improved reusability: Context objects are free from dependencies on any particular
protocol.

• Support variety of clients: The lack of dependency on any particular protocol
makes it easy to support different clients with the same codebase.

• Easy to test: Without protocol dependency, the page controllers are easily testable
because you can run the tests outside the container and without any servlet-
related objects.

Concerns

• Performance consideration: Mapping HTML form field values on to form bean
properties is done using reflection. This may degrade performance.

• Hard to maintain: Using form beans along with page controllers increases the
number of classes that have to be maintained.

Intercepting Filter

Problem

The JSP controller presented at the beginning of this chapter performed an authorization
check before actually executing an action in the if-else block. However, since the
eInsure application had multiple controllers, this code was duplicated in all of them.
It would be useful if this code were extracted in a common component and applied
declaratively, transparent to the controller. This would enhance the application’s

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS98

flexibility. Otherwise, any changes to this common authorization logic would have to be
replicated across all the JSP front controllers.

A client who was using eInsure in production submitted some enhancements. They
wanted to prevent access to the application beyond the scheduled office hours of 9 a.m.
to 6 p.m. This would let them use this downtime to run scheduled batch programs more
efficiently. In addition, they wanted to track and analyze the usage pattern of the web
site. Last but not least, they wanted a configurable monitor to track the time spent by
individual page controllers in fulfilling a request. This would be turned on from time to
time to check system performance.

The typical approach in this case would be to create some new components and
change some existing ones. But this is risky as new bugs can be added to the existing
codebase. A careful analysis of these new requirements reveals that they can best be
addressed by applying new reusable components before and after the existing code. It
should be possible to configure and apply these components transparently without
affecting the existing code. This would save lot of time and effort if existing components
had to be altered.

Forces

• You want common processing to be centralized into reusable components.

• The preprocessing and postprocessing components should be loosely coupled to
the existing application code.

• Apply common processing declaratively.

Solution

Use an intercepting filter to apply reusable processing transparently before and after the
actual request execution by the front and page controllers.

Strategies with the Spring Framework

Servlet Filter

It is possible to solve some of the requirements mentioned earlier with filters that are
built into the servlet API. All modern web servers provide support for filters—code that is
executed before control passes to a target servlet, after control leaves the servlet, or both.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 99

In fact, it is possible to configure a chain of filters to be executed for each request, as
shown in Figure 3-12.

Figure 3-12. Servlet filter chain

Filters are pluggable components that provide preprocessing and postprocessing
support around a servlet. This technique works with JSPs too, because they are effectively
servlets. The filters are configured in web.xml without affecting the existing application
code. Listing 3-42 shows the servlet filter used to add time-based access to the produc-
tion application.

Listing 3-42. TimebasedAccessFilter.java

public class TimebasedAccessFilter implements Filter {

private int startHour;

private int endHour;

public void destroy() {}

public void doFilter(ServletRequest request, ServletResponse response,

FilterChain chain) throws IOException, ServletException {

int currentHrofDay = Calendar.getInstance().get(Calendar.HOUR_OF_DAY);

if((startHour <= currentHrofDay) && (currentHrofDay <= endHour)){

chain.doFilter(request, response);

}

else{

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS100

HttpServletResponse res = (HttpServletResponse)response;

res.sendRedirect("html/downtimenotice.html");

}

}

public void init(FilterConfig config) throws ServletException {

startHour = Integer.parseInt(config.getInitParameter("starthour"));

endHour = Integer.parseInt(config.getInitParameter("endhour"));

}

}

In Listing 3-42 the doFilter implements the logic for time-based access to the eIn-
sure application. In this case only, the preprocessing of the incoming request is carried
out to check whether the scheduled office hour’s window has expired for the day. If so,
the user is redirected to a downtime notice page. Otherwise, the next filters in the chain
(if any) are executed. Finally, the target servlet and page controllers will be executed.
Note that the official business hours are configurable. The filter is registered in web.xml, as
shown in Listing 3-43, along with various parameters and a URL mapping. In this case,
this filter intercepts all requests ending with .do and heading toward the front controller.
This solution is highly reusable and based on Java servlet standards. It can be used even
without Spring MVC support because the web container is responsible for managing the
filters.

Listing 3-43. web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

<filter>

<filter-name>timebasedaccess</filter-name>

<filter-class>

com.apress.insurance.web.filter.TimebasedAccessFilter

</filter-class>

<init-param>

<param-name>starthour</param-name>

<param-value>9</param-value>

</init-param>

<init-param>

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 101

<param-name>endhour</param-name>

<param-value>18</param-value>

</init-param>

</filter>

<filter-mapping>

<filter-name>timebasedaccess</filter-name>

<url-pattern>*.do</url-pattern>

</filter-mapping>

<servlet>

<servlet-name>insurance</servlet-name>

<servlet-class>

org.springframework.web.servlet.DispatcherServlet

</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>insurance</servlet-name>

<url-pattern>*.do</url-pattern>

</servlet-mapping>

<jsp-config>

<taglib>

<taglib-uri>/spring</taglib-uri>

<taglib-location>

/WEB-INF/tld/spring-form.tld

</taglib-location>

</taglib>

</jsp-config>

</web-app>

Using servlet filters, it was possible to deliver the customer’s first enhancement with-
out affecting the existing code in any way. However, collecting different information
required for usage tracking would require some coding. But you can integrate a simple
yet powerful out-of-the-box open source solution called Clickstream from Open-
Symphony to achieve this goal. It can be downloaded from http://www.opensymphony.com/
clickstream/. Clickstream is also based on filters, providing a highly flexible way to track
usage patterns on a web site.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS102

Spring Interceptors

With the two enhancements solved efficiently, it’s time to focus on the last requirement.
You have guessed it right—filters can be deployed to solve this problem as well. But that
would mean the monitoring starts even before the servlet invocation. Though with this
solution, the time variation would be negligible; the actual intention was to monitor the
total execution time of a use case. So, the best place to apply this processing was around
a page controller invocation. This would also make more information available to us (the
actual controller class name, and so on) than filters could. Moreover, with servlet filters,
you need to code the preprocessing and postprocessing in the same doFilter method,
which can be cumbersome. Hence, for this solution, I will resort to the Spring page con-
troller interceptor support shown in Figure 3-13.

Figure 3-13. Spring Handler interceptor chain

While discussing the Application Controller pattern earlier in this chapter, I briefly
touched upon the handler interceptors. They implement the HandlerInterceptor inter-
face. As you have come to expect by now, Spring MVC provides some concrete
implementations of this interface as well as convenience abstract classes to build on
handler interceptor functions, as shown in Figure 3-14.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 103

Figure 3-14. Handler interceptor class diagram

The convenience abstract base class HandlerInterceptorAdapter implements all three
methods defined by the HandlerInterceptor interface. The preHandle method performs
preprocessing of a request before it is handled by the page controller. Similarly,
postHandle is responsible for postprocessing. The afterCompletion is a callback method
called finally when the view rendering is done. The UserRoleAuthorizationInterceptor is a
concrete implementation handling authorization checks on the current user based on
user role and using the HttpServletRequest object’s isUserInRole method. Finally, the
ThemeChangeInterceptor is invoked when the current theme (combination of images, style
sheets, and so on) of the web site is changed.

I will now try to solve the problem at hand by extending the
HandlerInterceptorAdapter class. Once the request is intercepted, the current time will be
saved as a request attribute as part of preprocessing code. When the page controller
returns, the actual time taken will be logged along with any other information required to
be monitored. This is shown in Listing 3-44.

Listing 3-44. ExecutionMonitorInterceptor.java

public class ExecutiontimeMonitorInterceptor extends HandlerInterceptorAdapter {

private final Log log = LogFactory.getLog(

ExecutiontimeMonitorInterceptor.class);

private static final String START_EXECUTION_TIME_KEY = "executionStartTime";

public void postHandle(HttpServletRequest request, HttpServletResponse response,

Object handler, ModelAndView modelAndView) throws Exception {

long executionStartTime = (Long) request.getAttribute(

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS104

START_EXECUTION_TIME_KEY);

long executionEndTime = System.currentTimeMillis();

StringBuffer logTxt = new StringBuffer

("Execution completed for request - ");

logTxt.append(request.getRequestURI());

logTxt.append(", handler -");

logTxt.append(handler);

logTxt.append(", total execution time(ms) -");

logTxt.append((executionEndTime - executionStartTime));

log.info(logTxt.toString());

}

public boolean preHandle(HttpServletRequest request,

HttpServletResponse response, Object handler) throws Exception {

request.setAttribute(START_EXECUTION_TIME_KEY, System.currentTimeMillis());

return true;

}

}

The advantage of using the convenience abstract class is evident in Listing 3-44.
I just had to override those methods that are required. Alternatively, using the
HandlerInterceptor, I would need to implement three methods, and the callback
afterCompletion would be redundant. To use this interceptor, it must be associated with
a handler mapping. This is shown in the Spring configuration file (Listing 3-45). Note
that I have used the inner bean style of configuration because this bean is relevant only
in the context of a handler mapping bean.

Listing 3-45. insurance-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"

>

<! - - Other beans - ->

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 105

<bean name="beanNamehandlerMapping"

class="org.springframework.web.servlet.handler.BeanNameUrlHandlerMapping">

<property name="interceptors">

<list>

<bean

class="com.apress.insurance.web.controller.interceptor.➥

ExecutiontimeMonitorInterceptor" />

</list>

</property>

</bean>

</beans>

This interceptor will now be applied to all the page controllers handled by the
beanNameHandlerMapping.

Consequences

Benefits

• Improved reusability: Common code is now centralized in pluggable components,
enhancing reuse.

• Increased flexibility: Generic common components can be applied and removed
declaratively, improving flexibility.

Concerns

• Reduced performance: Unnecessarily long chains of interceptors and filters may
hurt performance. Also, these components should not perform any long-running
operation.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS106

View Helper

Problem

The application controller and page controllers combine with the gateway servlet to
solve three important concerns of request processing:

• Request interception

• Invoking business components from page controllers

• Resolving the next view to be displayed with the data returned from business layer

However, in all the earlier discussions, I have deliberately bypassed another critical
concern—view creation. The data returned by the page controllers, as a result of invoking
the business logic, have to be consumed by the view components to provide the final
dynamic response.

eInsure primarily used JSP as the view technology. The data returned by the business
components was set as request attributes. It was later retrieved, processed, and used in
the JSPs using scriptlets. In other words, the dynamic data was combined with the static
markup or template text in the JSPs using embedded programming logic. This littering of
scriptlets significantly reduced reuse and increased maintenance efforts.

Forces

• Remove the programming logic from the template-based views like JSP.

• Achieve a division of labor between Java developers and web page authors.

• Create reusable components that can be used to combine model data across views.

Solution

Use view helpers to adapt model data with the view components in the presentation
layer.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 107

Strategies with the Spring Framework

This pattern separates out the logic for retrieving and processing model data from the
static markup in the JSPs. It can optionally format data types such as date and currency,
depending on the locale. As shown in Figure 3-15, it should be used as a thin layer to
adapt model data into views. Note that view helpers should not be responsible for invok-
ing business or data access logic.

Figure 3-15. Working of a view helper

JavaBeans View Helper

This is the simplest form of view helper strategy. JSP provides out-of-the-box tags to
support POJO view helpers. Listing 3-46 shows that policydetails.jsp is using the
PolicyDetail POJO as the JavaBean view helper.

Listing 3-46. policydetails.jsp

<jsp:useBean id="policydetails" scope="request"

class="com.apress.insurance.common.dataholder.PolicyDetail"/>

<html>

<head>

<title>Underwriting</title>

<script>

function eventSubmit(url){

document.policy.action = url;

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS108

document.policy.submit();

}

</script>

</head>

<body>

<form name="policy">

<table>

<tr>

<td>First Name:</td>

<td><jsp:getProperty name="policydetails" property="firstName"/></td>

</tr>

<tr>

<td>Last Name:</td>

<td><jsp:getProperty name="policydetails" property="lastName"/></td>

</tr>

<tr>

<td>Age :</td>

<td><jsp:getProperty name="policydetails" property="age"/></td>

</tr>

<tr>

<td colspan="3">

<input type="button" value="Create"

onClick="eventSubmit('createPolicy.do')" />

<input type="button" value="Edit"

onClick="eventSubmit('editPolicy.do')" />

</td>

</tr>

</table>

</form>

</body>

</html>

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 109

The page controller is responsible for invoking the business object, which returns
POJOs to be populated in views. Listing 3-47 shows the controller that binds the transfer
object in the request scope.

Listing 3-47. PolicyDetailsController.java

public class PolicyDetailsController implements Controller {

//set using setter injection

private PolicyBusinessDelegate businessDelegate;

public ModelAndView handleRequest(HttpServletRequest request,

HttpServletResponse response) throws Exception {

//policy id is part of the request,

PolicyDetail policyDetail = getBusinessDelegate()

.getPolicyDetails(policyId);

return new ModelAndView("policydetails","policydetails",policyDetail);

}

}

Finally, Listing 3-48 shows the JavaBean or POJO view helper. This class contains a set
of fields and getters/setters for all these fields.

Listing 3-48. PolicyDetailsController.java

public class PolicyDetail implements Serializable {

private long policyId;

private String firstName;

private String lastName;

private int age;

public long getPolicyId() {

return policyId;

}

public void setPolicyId(long policyId) {

this.policyId = policyId;

}

public int getAge() {

return age;

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS110

}

public void setAge(int age) {

this.age = age;

}

public String getFirstName() {

return firstName;

}

public void setFirstName(String firstName) {

this.firstName = firstName;

}

public String getLastName() {

return lastName;

}

public void setLastName(String lastName) {

this.lastName = lastName;

}

}

Tag Library View Helper

The JavaBean-based view helper is simple to use. The best part is it works even without
any support from the Spring Framework. However, it still mixes programming logic into
JSPs. It also does not allow for a component-based view helper. Let us consider a case
where you need a pagination display of search results in an HTML table. It would be very
convenient if we had a reusable component that displayed paged search results given the
search result list. This component can be further extended to support sorting search
results on any of the columns.

The JSP pages in eInsure mixed HTML and JavaBeans to display components such as
select boxes and drop-down menus. These can best be handled as reusable components.
All these components can easily be developed using tag libraries. Tag libraries provide
generic reusable components that cater to different requirements handled until now
using JavaBeans helpers or scriptlets. Besides, efficient third-party component-based tag
libraries are available to ease the development of flexible and robust view components.

Using JSTL Tags

The JSP Standard Tag Library (JSTL) provides a simple yet powerful tag library that
encapsulates common functions required by any JSP-based view. The JSTL Expression

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 111

Language (EL) makes it simpler to access JavaBean properties. The conditional and itera-
tor tags provide consistent syntax to access data from collection objects such as List, Map,
and arrays. Another important feature of JSTL is the support for i18n with locale-sensitive
messages and formatting tags. Listing 3-49 shows JSTL tags in action, iterating through a
policy search result returned as a list of PolicyDetail objects.

Listing 3-49. policydetails.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>

<head>

<title>Underwriting</title>

</head>

<body>

<form name="policysearch" action="policysearch.do">

<%-- The search criteria inputs are not shown for simplicity --%>

<table>

<tr>

<td>Policy Id</td>

<td>First Name</td>

<td>Last Name</td>

<td>Age</td>

</tr>

<c:forEach var="policyDtl" items="${policyDtlList}" >

<tr>

<td><c:out value="${policyDtl.policyId}"/></td>

<td><c:out value="${policyDtl.firstName}"/></td>

<td><c:out value="${policyDtl.lastName}"/></td>

<td><c:out value="${policyDtl.age}"/></td>

</tr>

</c:forEach>

<tr>

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS112

<td colspan="3">

<input type="submit" value="Search" />

</td>

</tr>

</table>

</form:form>

</body>

</html>

Listing 3-50 shows the controller that invokes the business components to retrieve
the search results and then prepares the list to be retrieved and used by the JSTL tags. To
use the JSTL tags, you must put jstl.jar and standard.jar in the WEB-INF/lib folder.

Listing 3-50. PolicySearchController.java

public class PolicySearchController implements Controller {

private UnderWritingBusinessDelegate businessDelegate;

public ModelAndView handleRequest(HttpServletRequest request,

HttpServletResponse response)

throws Exception {

List policyList = getBusinessDelegate().listPolicyByProduct(productCd);

return new ModelAndView("policysearch","policyDtlList",policyList);

}

}

Using Spring Tags

JSTL tags help encapsulate common tasks that allow the static view to be interposed with
dynamic model data. But it does not support component-based views. Spring form tags
provide this functionality to an extent. You have already used Spring form tags to display
input text fields and validation error messages in Listing 3-33. I will now add one more
field in the JSP used to underwrite policies. Underwriting a policy requires mandatory
product code information. So, in the createPolicy.jsp file, I will add a new drop-down
control that will enable the underwriters to select a product code. This is shown in
Listing 3-51.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 113

Listing 3-51. WEB-INF/jsp/createPolicy.jsp

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>

<head>

<title>Underwriting</title>

<style>

.error { color: red; }

</style>

</head>

<form:form action="" method="POST" commandName="policydetails">

First Name <form:input path="firstName"/> <form:errors path="firstName"

cssClass="error"/>

Last Name <form:input path="lastName"/> <form:errors path="lastName"

cssClass="error"/>

Age <form:input path="age"/> <form:errors path="age" cssClass="error"/>

Product Code <form:select path="productCodeList" items="${productCodeList}"/>

<form:errors path="productCodeList" cssClass="error"/>

<input type="submit" value="Save" />

</form:form>

</body>

</html>

A list of product code is prepopulated and cached at application startup. It is
retrieved and supplied in the form bean by the controller (see in Listing 3-52) by
overriding the formBackingObject method.

Listing 3-52. SaveNewPolicyController.java

public class SaveNewPolicyController extends SimpleFormController {

private UnderWritingBusinessDelegate uwrBusinessDelegate;

protected void doSubmitAction(Object formbean) throws Exception {

PolicyFormBean policyBean = (PolicyFormBean)formbean;

uwrBusinessDelegate.createPolicy(policyBean);

}

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS114

protected Object formBackingObject(HttpServletRequest req) throws Exception {

PolicyFormBean policyBean = (PolicyFormBean)super.formBackingObject(req);

List productList = (List) req.getSession(false).getServletContext()

.getAttribute("productCodeList");

policyBean.setProductCodeList(productList);

return policyBean;

}

}

Since I have added a field in the form presented by the JSP, a new field has to be
added to the form bean class. Listing 3-53 shows the modified version of the form bean.

Listing 3-53. PolicyFormBean.java

public class PolicyFormBean implements Serializable {

private String firstName;

private String lastName;

private int age;

private List productCodeList;

public int getAge() {

return age;

}

public void setAge(int age) {

this.age = age;

}

public String getFirstName() {

return firstName;

}

public void setFirstName(String firstName) {

this.firstName = firstName;

}

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 115

public String getLastName() {

return lastName;

}

public void setLastName(String lastName) {

this.lastName = lastName;

}

public List getProductCodeList() {

return productCodeList;

}

public void setProductCodeList(List productCodeList) {

this.productCodeList = productCodeList;

}

}

Using Third-Party Tag Library

Spring tags and JSTL are complementary tag libraries providing a rich set of reusable fea-
tures. Although Spring tags provide decent component support for common HTML
controls, at times you will need more complex controls, such as the pagination table
mentioned earlier. In such scenarios, third-party tag libraries can be used along with
Spring to ease development. Displaytag, for example, is an open source tag library sup-
porting complex pagination and sorting components. It is available for download and
use from http://displaytag.sourceforge.net/11/.

Consequences

Benefits

• Ease maintenance: View helpers remove scriptlet pollution and thus clean up view
code and improve application maintainability.

• Clear role separation: The task of application development can now be clearly
divided between hard-core Java programmers and web authors.

• Save development time: Since mostly third party view helper tag libraries are
used, it can speed up development because you just need to integrate these
components.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS116

Concerns

• Steep learning curve: Since this pattern mostly involves using third-party libraries,
care must be taken that we do not mix in too many of them. That would add to the
learning curve and increase the maintenance overhead.

Composite View

Problem

Developing and maintaining view components can be a daunting task. It requires not
only adaptation between static templates and dynamic data but also building views with
smaller reusable subviews. This promotes the reusability of views and allows them to be
managed and maintained easily.

Each view is composed of three elements:

• Components: UI controls such as buttons, text boxes, and so on

• Container: A collection of components

• Layout: Responsible for positioning and sizing the different components in a con-
tainer

Typically applications tend not to identify these critical elements. eInsure, for exam-
ple, never identified components or view containers even though the application had a
fixed layout (Figure 3-16). JSPs were included in this layout using standard include mech-
anisms. This achieved some flexibility, but even greater flexibility and reuse are possible if
the views are composed with subviews containing components and containers embed-
ded with layout.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 117

Figure 3-16. eInsure primary layout

Forces

• Compose a bigger view using reusable subviews for header, footer, menu, and
navigation.

• Identify and compose reusable components and containers.

• Place components and containers in appropriate layouts so that they can be
changed in a flexible way.

Solution

Use a composite view to group and deploy a pluggable and dynamic set of subview
components with the appropriate layout.

Strategies with the Spring Framework

The composite view pattern is a combination of two well-known GOF design patterns:
Composite and Strategy. The layouts provide a strategy for forming bigger view compo-
nents comprised of smaller composite subviews. You have already seen components and
a container with respect to the View Helper pattern described earlier. I modified the JSP
to support a reusable input text box and select controls, embedded in a form container.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS118

However, I did not focus on the layout aspect, which glues everything together. Let us
consider a case where you want to display an important notice at the top of every page. If
you are not using subviews with layout, you would have to replicate the notice in each
and every JSP file. However, with layout, you can just change the JSP, which comprises the
header, and revert back when this notice is no longer relevant.

eInsure typically used a table to configure the layout and used JSP includes to
dynamically include subviews to compose the main view. Although this solution works,
it’s a very naïve approach requiring lot of custom code to make this a flexible and plug-
gable view framework. Spring provides integration with two view layout frameworks to
ease the development and maintenance of composite views.

Using SiteMesh

SiteMesh is an open source web page layout framework from OpenSymphony. It can be
downloaded from http://www.opensymphony.com/sitemesh/. The greatest advantage of
using SiteMesh is that it is not intrusive. Because it is based on servlet filters, using it is
just a matter of configuration, and it will work even without Spring MVC. Being based on
filters, it implements the GOF Decorator design pattern. It modifies the response from
the front controller servlet to inject content before sending the final response to the
browser.

The first step in using SiteMesh is to create a JSP file with the desired layout, as
shown in Listing 3-54.

Listing 3-54. WEB-INF/decorators/primaryLayout.jsp

<%@ taglib uri="sitemesh-decorator" prefix="decorator" %>

<%@ taglib uri="sitemesh-page" prefix="page" %>

<html>

<head>

<title>

eInsure - <decorator:title default="Welcome!" />

</title>

<decorator:head />

</head>

<body>

<table width="100%">

<tr id="header">

<h3>eInsure - rel 3.0.1 </h3>

</tr>

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 119

<tr id="body">

<decorator:body />

</tr>

<tr id="footer">

<h3>eInsure - All rights reserved </h3>

</tr>

</table>

</html>

Note that I have used a SiteMesh-specific tag library to create the layout. The
decorator:title tag picks up the title information from the response sent by the front
controller. Similarly, the decorator:head and decorator:body tags include the information
in the head and body tags of the original response and put them in the layout. The header
and footer information is consolidated at a common place in the layout. To use this lay-
out framework and the different tags, you must include SiteMesh filter and tag definition
in the web.xml file, as shown in Listing 3-55.

Listing 3-55. web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

<!-- Start of SiteMesh filter config -->

<filter>

<filter-name>sitemesh</filter-name>

<filter-class>

com.opensymphony.module.sitemesh.filter.PageFilter

</filter-class>

</filter>

<filter-mapping>

<filter-name>sitemesh</filter-name>

<url-pattern>*.do</url-pattern>

</filter-mapping>

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS120

<!-- End of SiteMesh filter config -->

<servlet>

<servlet-name>insurance</servlet-name>

<servlet-class>

org.springframework.web.servlet.DispatcherServlet

</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>insurance</servlet-name>

<url-pattern>*.do</url-pattern>

</servlet-mapping>

<jsp-config>

<taglib>

<taglib-uri>/spring</taglib-uri>

<taglib-location>

/WEB-INF/tld/spring-form.tld

</taglib-location>

</taglib>

<!-- Start of SiteMesh tag config -->

<taglib>

<taglib-uri>sitemesh-page</taglib-uri>

<taglib-location>

/WEB-INF/tld/sitemesh-page.tld

</taglib-location>

</taglib>

<taglib>

<taglib-uri>sitemesh-decorator</taglib-uri>

<taglib-location>

/WEB-INF/tld/sitemesh-decorator.tld

</taglib-location>

</taglib>

<!-- End of SiteMesh tag config -->

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 121

</jsp-config>

</web-app>

As a final step, I will include the layouts in the decorator configuration for the filter to
work. Listing 3-56 shows the decorator configuration.

Listing 3-56. WEB-INF/decorators.xml

<decorators defaultdir="/WEB-INF/decorators">

<decorator name="primaryLayout" page="primaryLayout.jsp">

<pattern>*</pattern>

</decorator>

</decorators>

The decorators.xml is the externalized class that manages the layout. The page attrib-
ute in the decorator tag defines the layout to be applied for the request patterns. The
primaryLayout will be applied to all the requests as evident from the pattern tag. So, when
a request for /createPolicy.do is handled by the front controller and the response is
handed over to the SiteMesh filter, it performs the following activities to manipulate and
generate the final response:

• Extract the content of the title tag, and apply it in the primary layout.

• Extract the head tag, and use it in the primary layout.

• Extract the content from the body tag, and use it in primary layout.

Using Apache Tiles

Spring MVC also provides integration with the Apache Tiles framework. Just like
SiteMesh, Tiles is a flexible and highly extensible framework that earlier worked primarily
with the Struts web framework. As of Tiles 2, it works independently as a flexible, feature-
rich layout framework. Both SiteMesh and Tiles 2 are powerful layout frameworks, and
the choice of which one to use is basically a matter of taste and expertise. The following
link in the Spring documentation provides a step-by-step guide to integrating Spring and
Tiles 2:

http://static.springframework.org/spring/docs/2.5.x/reference/view.html#view-tiles

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS122

Consequences

Benefits

• Improved flexibility: The application now consists of smaller view components
such as controls and containers embedded in layouts. This makes the view easily
configurable, and changes to the application look and feel, as well as component
positioning, can be rolled out quickly and efficiently.

• Improved reuse: With this pattern, the same subview can be used to compose mul-
tiple composite views.

Concerns

• Performance: When composing a view, using multiple subviews can impact per-
formance. Hence, you should be judicious in keeping the subviews to an
acceptable number.

Dispatcher View

Problem

eInsure had a sign-in page that presented a simple UI to accept a username and pass-
word. This screen also had a button control that, on being clicked, triggered the
authentication action. Hence, the presentation of this sign-in page did not require any
business logic invocation. There were many other pages similar to this. There were sev-
eral pages to display the input criteria that can be supplied before triggering a search for
the policy, claim, and so on. Then we had lookup pages for various codes used in the sys-
tem. All the values used for lookup were loaded from the database at startup and cached
on the server. This was possible because the static data never changed when the applica-
tion was up and running. Also, the action to load the UI pages to create a policy or claim
required only user information that was cached in the session. Last but not least, almost
each page had a link to open a help page. The static HTML-based help pages provided
context-sensitive help to guide the users on how to use the different features (buttons,
menus, text boxes, and so on) in that particular page.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 123

All these cases required no business logic invocation. Although all these are simple
scenarios, our application based on a JSP front controller was not able to handle the situ-
ation in a simple fashion. Different developers created these pages and merrily added
if-else blocks to handle their cases. The simplest approach would be to handle the
request for these static contents directly, bypassing the page controllers. But this breaks
the overall uniform application structure. Also, it might be useful to secure these
resources so that no unauthorized access (such as directly typing the URL in the browser
address bar) is allowed.

Forces

• The application has a lot of static views that require no business logic processing.

• The semistatic views are presented from cached data.

• The purely static and semistatic views need to be handled consistently as other
dynamic views.

Solution

Use a dispatcher view to handle the processing of a static or semistatic view.

Strategies with the Spring Framework

Dispatcher View is actually a best practice to combine the other presentation tier pat-
terns. It employs dispatchers to delegate to the view. In this case, the dispatcher is a
combination of a controller and view resolver.

There can be two variants of this pattern for static and semistatic views. The semista-
tic views use cached data and hence need view helper support. I will start with the pure
static resources. Figure 3-17 shows the static structure of the Dispatcher View pattern.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS124

Figure 3-17. Dispatcher view class diagram

You have encountered most of the classes and interfaces before, except
UrlFilenameViewController. This is a concrete controller implementation and converts
the requested URL path into a logical view name. For example, a request for
/PolicyCreateHelp.do will be transformed to the view name PolicyCreateHelp. The
InternalResourceViewResolver then picks up this view name to resolve it to the actual
resource—PolicyCreateHelp.jsp. Using this controller is just a matter of configuration,
as shown in Listing 3-57.

As a first step to implementing this pattern, we create the PolicyCreateHelp.jsp file
in the /WEB-INF/jsp/help folder. It is not advisable to use static HTML files to serve the
help contents. This because in the future you may need to support internationalized
help. Besides, FreeMarker or Velocity templates can be used to keep the actual content
externalized separately from the JSP, making it easy to maintain and change. The final
step in using the dispatcher view is setting up the Spring configuration file, as shown
Listing 3-57.

Listing 3-57. insurance-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"

>

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 125

<bean name="simpleUrlHandlerMapping"

class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">

<property name="mappings">

<props>

<prop key="/*Help.do">urlFilenameViewController</prop>

</props>

</property>

<property name="order" value="2" />

</bean>

<bean name="beanNameUrlHandlerMapping"

class="org.springframework.web.servlet.handler.BeanNameUrlHandlerMapping">

<property name="order" value="1" />

</bean>

<bean name="viewResolver"

class="org.springframework.web.servlet.view.InternalResourceViewResolver">

<property name="viewClass"

value="org.springframework.web.servlet.view.JstlView" />

<property name="prefix" value="/WEB-INF/jsp/" />

<property name="suffix" value=".jsp" />

</bean>

<bean name="urlFilenameViewController"

class="org.springframework.web.servlet.mvc.UrlFilenameViewController" >

<property name="prefix" value="help/" />

</bean>

<bean name="/policydetails.do"

class="com.apress.insurance.web.controller.PolicyDetailsController" />

<bean name="underwritingBusinessDelegate"

class="com.apress.insurance.view.delegate.UnderWritingBusinessDelegate" />

<bean name="/policysearch.do"

class="com.apress.insurance.web.controller.PolicySearchController">

<property name="businessDelegate"

ref="underwritingBusinessDelegate" />

</bean>

</beans>

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS126

A lot is happening under the hood in Listing 3-57. Note that a common view resolver
caters to both dynamic and static resources. You can also see the handler mapping chain.
The BeanNameUrlHandlerMapping having higher precedence is selected first. Now a request
for a dynamic resource such as /policysearch.do is resolved by this handler mapping. It
looks for a bean with the name /policydetails.do in the application context and dele-
gates the processing to it. BeanNameUrlHandlerMapping, however, fails to handle the request
for the URL ClaimCreateHelp.do. Hence, the next handler mapping in the chain,
SimpleUrlHandlerMapping, is picked up to resolve this URL to a controller. This handler
mapping succeeds in detecting the controller. It uses wildcards to resolve the incoming
URLs that end in Help.do to an instance of UrlFilenameViewController. Hence,
UrlFilenameViewController handles all requests for static requests without any invocation
of business logic. This concrete controller implementation will convert the request URL
to a logical view name—ClaimCreateHelp. It will then use the prefix to finally return
/help/ClaimCreateHelp. Finally, the view resolver looks for the file /help/ClaimCreateHelp.
jsp in the folder /WEB-INF/jsp and returns the static physical resource. The simplified
workflow is shown in the sequence diagram in Figure 3-18.

Figure 3-18. Dispatcher view sequence diagram

The semistatic views have their data already cached in some form. To use this data,
you can use view helpers. To underwrite insurance policies, you must select a product.
The active products in the system are cached in the ServletContext object at application
startup. The physical resource ProductLoV.jsp is stored in the /WEB-INF/jsp/lookup folder

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 127

and is shown in Listing 3-58. This JSP retrieves the list of active products from the servlet
context and displays them.

Listing 3-58. ProductLoV.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>

<head>

<title>LoV - Product</title>

</head>

<body>

<table>

<tr>

<td>Product Id</td>

<td>Product Name</td>

</tr>

<c:forEach var="productDtl" items="${applicationScope.productDtlList}" >

<tr>

<td><c:out value="${productDtl.productId}"/></td>

<td><c:out value="${productDtl.productName}"/></td>

</tr>

</c:forEach>

</table>

</body>

</html>

As shown in Listing 3-58, we are using a JSTL-based view helper to retrieve and
present the data stored in application scope. applicationScope is an implicit object avail-
able with the JSTL Expression Language, and it gives a handle to the servlet context. In
Listing 3-58, it looks for an attribute with the key productDtlList in the servlet context.
To use this semistatic view, you need to slightly alter the configuration, as shown in
Listing 3-59. Note that the SimpleUrlHandlerMapping has been configured to handle
UrlFilenameViewController.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS128

Listing 3-59. ProductLoV.jsp

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"

>

<!-- other beans as above -->

<bean name="staticViewController"

class="org.springframework.web.servlet.mvc.UrlFilenameViewController" >

<property name="prefix" value="help/" />

</bean>

<bean name="semiStaticViewController"

class="org.springframework.web.servlet.mvc.UrlFilenameViewController" >

<property name="prefix" value="lookup/" />

</bean>

<bean

class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">

<property name="mappings">

<props>

<prop key="/*Help.do">staticViewController</prop>

<prop key="/*LoV.do">semiStaticViewController</prop>

</props>

</property>

</bean>

</beans>

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 129

Consequences

Benefits

• Foster best practice: This lays down clear guidelines for combining presentation tier
patterns.

• Easy to implement: It is easy to implement this solution in Spring because we
hardly need to write any code; everything is glued together using configuration.

Concerns

• Overcomplex solution: Dispatching to a static or semistatic view is a simple task.
But still there is dependency on layering and various framework-specific compo-
nents to maintain a consistent application architecture. This is a complex solution
to a simple task.

Service to Worker

Problem

The Dispatcher View pattern sets the guidelines for dispatching control to a static view. In
the case of eInsure, these constituted only a handful of use cases. A vast majority of the
use cases, however, required a dynamic view prepared from dynamic data.

However, since this product was migrated from legacy PL/SQL it had data access
code being invoked from page controllers. Since the product was implemented at several
clients and required quick turnarounds, developers would resort to quick fixes. They
would mix business logic with data access in page controllers, leading to a poorly
designed solution.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS130

Forces

• The application primarily needs to handle a dynamic view generated using
dynamic data.

• Business or data access code are mixed in action handlers.

• The business logic and data access code should be placed in separate layers.

Solution

Use server to worker to coordinate request processing workflow by invoking components
in different layers.

Strategies with the Spring Framework

Just like Dispatcher View, Server to Worker is essentially a guideline for building layered
Java EE applications. It is similar to the MVC architectural pattern and proposes that the
application must be divided into distinct layers corresponding to specific roles in a
request-processing workflow.

Server to Worker effectively is an extension of the Dispatcher View pattern. Just like
Dispatcher View, it allows the organization of patterns in the presentation tier, with two
differences. On one hand, it allows working with a dynamic view. On the other hand, it
invokes business logic before passing control to view. The business logic must be
accessed to retrieve the data required for the dynamic view. Server to Worker paves the
way for connecting presentation and business layers. The bridge between the two layers
is provided by the Business Delegate pattern, which we will explore in the next chapter.
The page controllers typically do not directly invoke methods on the actual business
objects. Rather, it invokes methods on the bridge or presentation tier proxy called the
business delegate object. As shown earlier in listings, the business delegate is injected into
the controller by the Spring container. The sequence diagram (Figure 3-19) shows the
complete workflow of a Server to Worker pattern.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 131

Figure 3-19. Service to worker sequence diagram

Consequences

Benefits

• Foster best practice: This lays down clear guidelines for combining presentation tier
patterns. It also provides the directive to connect business components from page
controllers only.

• Easy to implement: It is easy to implement this solution in Spring because every-
thing is glued together using configuration once most of the custom components
are ready. Spring also provides extensive support for building these custom com-
ponents quickly and easily.

• Role separation: With the guidelines set clearly, the task of application develop-
ment can be distributed among page authors working on the view and application
developers concentrating on page controllers and business components.

Concerns

• Performance concern: Too many layers and too much delegation can degrade per-
formance. So, designers must be careful when deciding the layers and components
to use.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS132

Summary
In this chapter, I have extensively explored various presentation tier patterns. We started
off at one end of the spectrum and finished at the other end, setting the stage for busi-
ness layer patterns in Chapter 4. The Front Controller pattern intercepted all requests
and delegated to the action handlers in the Application Controller pattern. The action
handlers work with the Context Object and Page Controller patterns to invoke business
logic. Once the page controller selects the logical view and returns the data retrieved
from business logic invocation, control is passed back to the application controller. The
application controller uses view management components to resolve the appropriate
physical view and binds the application data. The View Helper pattern assists in adapting
the application data in the views and builds composite views to send the final response
for end user display. The working of the front controller and page controllers can be dec-
orated with the Intercepting Filter pattern and handler interceptors. The Dispatcher View
pattern provides the guidelines to combine all the presentation tier patterns to delegate
efficiently to static views. Finally, the Service to Worker pattern paves the way for interac-
tion with the business layer using the Business Delegate pattern.

CHAPTER 3 ■ EXPLORING PRESENTATION TIER DESIGN PATTERNS 133

Exploring Business Tier
Design Patterns

Insurance applications, like most financial solutions, have complex business rules.
eInsure was no different. It had implemented very complex mathematical and statistical
formulas to derive the values for policy premiums, claim settlement amounts, and
several other properties. The eInsure application’s business tier was built with EJB tech-
nology. The application heavily used both stateless session beans and entity beans.
eInsure also employed message-driven beans for asynchronous processing. In this
chapter, I will concentrate on session and message-driven beans. The entity beans are
integration tier components, which too are available remotely and provide persistence
support. With the current EJB 3.0 specification, entity beans are a thing of the past.
Hence, in this book, I will not discuss them in detail.

In this chapter, I will explore some of the key design patterns that can be applied to
build a flexible yet simple business tier with the Spring Framework. I will start with the
Service Locator pattern, which consolidates the boilerplate code required to look up EJB
components registered in the JNDI. Then I will look into the Business Delegate pattern,
which provides a client-side proxy of the business objects. Business Delegate and Service
Locator work together to effectively connect the presentation tier with the business tier.
I will cover the business tier in depth and concentrate on showing how to build remotely
accessible business logic using the EJB session facade. You will also see the benefits of
POJO business tier components in association with the application service and EJB com-
mand object patterns. I will finish this chapter with a discussion of the Business Interface
pattern, which enforces certain compile-time checks on the session beans as well as sim-
plifies the Business Delegate pattern.

135

C H A P T E R 4

Service Locator

Problem

The EJB session beans and message-driven beans are used to implement business
workflows. These components on deployment are registered on the JNDI tree of the
application server. The JNDI provides a directory service, which external clients can use
to discover and look up objects by name. Hence, the JNDI makes EJBs accessible to
remote clients. Besides EJBs, JMS queues, topics, connection factories, and JDBC, data
sources are also bound in the JNDI. Listing 4-1 shows the JNDI lookup code used by the
magic JSP controller of the eInsure application.

Listing 4-1. UnderwritingController.jsp

<%!

final String JNDI_URL = "t3://localhost:7001";

public UnderwritingHome getEJBHome() {

UnderwritingHome home = null;

try{

Hashtable h = new Hashtable();

h.put(Context.INITIAL_CONTEXT_FACTORY,"");

h.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");

h.put(Context.PROVIDER_URL, JNDI_URL);

Context ctx = new InitialContext(h);

Object homeObj = ctx.lookup("uwrbusinessslsb");

home = (UnderwritingHome)PortableRemoteObject.narrow(homeObj,

UnderwritingHome.class);

}

catch(Exception e){

e.printStackTrace();

home = null;

}

return home;

}

%>

<%

String eventCode = request.getParameter("eventCode");

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS136

String screenCode = request.getParameter("screenCode");

String inputPage = request.getParameter("referrer");

String userCd = request.getParameter("userCode");

String nextView = null;

try{

boolean userHasPrivilege = SecurityChecker.getInstance().isAuthorized(

userCd, eventCode);

if(userHasPrivilege){

if(eventCode.equals("UWR001") && screenCode.equals("SCR001")){

nextView = "Policy.jsp";

UnderwritingHome home = getEJBHome();

Underwriting remote = home.create();

remote.underwriteNewPolicy("GAP","Dhrubo",1);

}

else if(screenCode.equals("UWR002") && eventCode.equals("SCR001")){

//lookup session bean

//perform business operation

}

}

else{

request.setAttribute("ERROR_MESSAGE",

"You do not have privilege for this operation");

nextView = inputPage;

}

}//try

catch(Throwable exp){

request.setAttribute("ERROR_MESSAGE",exp.getMessage());

nextView = "error.jsp";

}

finally{

// finally redirect to correct view

RequestDispatcher requestDispatcher =

request.getRequestDispatcher(nextView);

requestDispatcher.forward(request,response);

}

%>

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS 137

Listing 4-1 shows the getEJBHome method, which is used to look up the EJB home
interface using the JNDI API. This method was invoked in each if-else block that
required interaction with business components. The lookup method was repeated in all
the JSP controllers, thus degrading reuse. The legacy was perpetuated by the copy-and-
paste style of reuse. No one in the development team bothered to refactor and move the
JNDI object lookup to a generic reusable component ready to work with any server. This
point was emphasized as the team faced lot of problems to deploy the product on IBM
WebSphere for a new customer. It is clear from Listing 4-1 that the JNDI lookup used pro-
prietary classes such as weblogic.jndi.WLInitialContextFactory. This in turn makes the
application tightly coupled to a vendor implementation, in this case the BEA WebLogic
application server. This adds to the agonies of porting to another Java EE application
server.

With this design, each JSP controller was capable of supporting only a single session
bean. This also ensured that the session bean would grow to an unmanageable size as
more and more underwriting use cases were implemented. The end result was an appli-
cation with inefficient design and architecture.

Note that the getEJBHome method used a static URL to connect to the JNDI service.
This was done on the assumption that JSPs and EJBs were collocated in the same JVM.
Although there is nothing wrong with this system architecture (it is actually common in
midsize applications), this raises a serious question. If the JSPs and EJBs will be collo-
cated, then do you really need EJBs? The tasks of developing and maintaining EJBs are
difficult. Hence, unless your application needs the system services offered by an EJB con-
tainer such as remoting, security, transaction, object pooling, failover, and so on, you will
be better served by POJO business components.

To fully benefit from the advantages offered by EJB components, large-scale complex
applications like eInsure should use distributed deployment architecture in production.
In such deployment scenarios, the presentation tier components such as JSPs will reside
in a web container like Apache Tomcat or Jetty. The presentation components access the
EJB business objects deployed on an application server such as BEA WebLogic or Red Hat
JBoss. The application servers run on a separate box and possibly in a different environ-
ment. In short, the presentation and business tier components are generally deployed on
JVMs running on different machines. Hence, the distributed deployment of eInsure
would require that the static URL is edited in all the JSP controllers.

I am not finished with the drawbacks in Listing 4-1. You may have already observed
that this code created a new instance of the InitialContext object for each business serv-
ice lookup. This is a costly operation. A JNDI lookup primarily searches for and retrieves
an object proxy from another JVM on the network. Hence, a JNDI lookup is a likely cause
of performance bottlenecks in an enterprise Java application.

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS138

Forces

• Consolidate EJB, JMS, or data source object lookup into a reusable component that
encapsulates the complexities of interaction with the JNDI API.

• The JNDI lookup should be independent of vendor API classes and interfaces. In
fact, it should be possible to switch between different servers merely by changing
configuration parameters.

• The service lookup code should be flexible enough to support different types of
business objects: EJBs, POJO, or even web services.

• Address the performance concerns associated with JNDI lookup.

Solution

Use a service locator to encapsulate JNDI object lookup and eliminate any performance
overhead.

Strategies with the Spring Framework

As I explained in Chapter 3, page controllers are the most appropriate components to
start interaction with the business tier. They do so by invoking methods on POJO busi-
ness delegate objects. The business delegates provide the client-side interface for the
business tier and are responsible for accessing the remote EJB objects. They, in turn, rely
on the service locator to retrieve the EJB home object. Figure 4-1 shows this interaction.

Figure 4-1. Sequence diagram: service locator interaction

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS 139

The Spring Framework provides a comprehensive set of classes for retrieving JNDI
bound objects from all different application servers. The JndiObjectFactoryBean is the
most widely used service locator class in the Spring Framework. It is a factory bean and
hence implements the FactoryBean interface. A factory bean is an object factory within
the Spring bean factory. Hence, a factory bean is treated differently from a normal bean
by the Spring IOC container. It is configured in the same manner as an ordinary bean,
but Spring will not return a new instance of JndiObjectFactoryBean. Instead, the object it
exposes for injection is always the one that it creates or retrieves. In the case of
JndiObjectFactoryBean, this is made possible by the getObject method that returns the
object retrieved from the JNDI. Thus, this service locator implementation can be used to
look up and inject any kind of JNDI object. Since JndiObjectFactoryBean inherits from the
JndiAccessor class, it easy to configure various JNDI-related properties. Figure 4-2 shows
the Spring JNDI class diagram.

Figure 4-2. Class diagram: Service locator

Remote EJB 2.x Lookup

I will now put the JndiObjectFactoryBean to use. In Listing 3-27, I combined the page con-
troller with the business delegate but deliberately did not show the code for the sake of
simplicity. Listing 4-2 shows the business delegate implementation class. I will cover
business delegates in detail later in this chapter. So, the sole intention of this business
delegate listing here is to highlight how it is related to the service locator. As shown in
Listing 4-2, the business delegate is completely decoupled from the service locator. The
JndiObjectFactoryBean service locator works transparently with the Spring container to

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS140

inject the EJB home object. Although it is possible to inject as many session beans as you
want in this business delegate, the best practice is to have one EJB per business delegate.

Listing 4-2. UnderwritingBusinessDelegate.java

public class UnderWritingBusinessDelegate {

private UnderwritingHome underWritingHome;

public void createPolicy(PolicyFormBean policyBean) {

try {

Underwriting bean = this.underWritingHome.create();

bean.underwriteNewPolicy(policyBean.getProductCode(),

policyBean.getFirstName(), policyBean.getAge());

} catch (RemoteException e) {

throw new RuntimeException(e);

} catch (CreateException e) {

throw new RuntimeException(e);

}

}

public UnderwritingHome getUnderWritingHome() {

return underWritingHome;

}

public void setUnderWritingHome(UnderwritingHome underWritingHome) {

this.underWritingHome = underWritingHome;

}

}

The service locator can be turned on by configuration, as shown in Listing 4-3. Appli-
cations should use a single instance of a JndiObjectFactoryBean per JNDI object.

Listing 4-3. insurance-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS 141

<bean name="underwritingBusinessDelegate"

class="com.apress.insurance.view.delegate.UnderWritingBusinessDelegate">

<property name="underWritingHome" ref="uwrSlsbHome" />

</bean>

<bean name="uwrSlsbHome"

class="org.springframework.jndi.JndiObjectFactoryBean">

<property name="jndiName" value="uwrbusinessslsb" />

<property name="jndiEnvironment">

<props>

<prop key="java.naming.factory.initial">

weblogic.jndi.WLInitialContextFactory

</prop>

<prop key="java.naming.provider.url">

t3://localhost:7001

</prop>

</props>

</property>

</bean>

</beans>

You can use Spring’s property placeholder feature to further externalize the
configuration. In this strategy, you replace the values of the different properties with
placeholders. Then you move the values to an external properties file. It is easy to change
the environment-specific values in the properties file and still keep the Spring XML con-
figuration unaffected. For a detailed treatment of Spring’s property placeholder support,
you can refer to http://static.springframework.org/spring/docs/2.5.x/reference/
beans.html#beans-factory-placeholderconfigurer.

So, with the Spring Framework, it is possible to set up a configurable service locator
in no time.

Now to support a different application server, you just need to alter the configuration
file. The code shown in Listing 4-4 makes it possible to look up the same EJB deployed on
a JBoss server.

Listing 4-4. insurance-servlet.xml for JBoss

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS142

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"

>

<!- - Other beans - ->

<bean name="uwrSlsbHome"

class="org.springframework.jndi.JndiObjectFactoryBean">

<property name="jndiName" value="uwrbusinessslsb" />

<property name="jndiEnvironment">

<props>

<prop key="java.naming.factory.initial">

org.jnp.interfaces.NamingContextFactory

</prop>

<prop key="java.naming.provider.url"> jnp://localhost:1099</prop>

<prop key=" java.naming.factory.url.pkgs">org.jboss.naming.client</prop>

</props>

</property>

</bean>

</beans>

Local EJB 2.x Lookup

EJB 2.0 introduced local enterprise bean components collocated in the same JVM with
other Java EE components. This improved performance by eliminating the network
trip required to look up an object on the JNDI tree. This also simplified EJB object
lookup to a great extent. A local stateless session bean can also be accessed using the
JndiObjectFactoryBean just by configuration, as shown in Listing 4-5.

Listing 4-5. insurance-servlet.xml: Local EJB

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"

>

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS 143

<!- - Other beans - ->

<bean name="underwritingBusinessDelegate"

class="com.apress.insurance.view.delegate.UnderWritingBusinessDelegate">

<property name="uwrLocalHome" ref="uwrSlsbLocalHome" />

</bean>

<bean name="uwrSlsbLocalHome"

class="org.springframework.jndi.JndiObjectFactoryBean">

<property name="jndiName" value="UnderwritingBeanLocal" />

</bean>

</beans>

Note that with local EJBs the various properties related to JNDI lookup are
redundant.

EJB 3 Lookup

With EJB 3 you can turn a POJO into a session bean by using Java EE standard annota-
tions. You are no longer burdened with the home interface and XML deployment
descriptors. All these have immensely simplified EJB development. The changes in EJB 3,
however, have not changed how the Spring service locator works. You can still use the
JndiObjectFactoryBean as a service locator by configuration. As shown in Listing 4-6, it is
used to look up two different session beans.

Listing 4-6. insurance-servlet.xml: EJB 3 Lookup

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"

>

<!- - Other beans - ->

<!- - Remote EJB 3 SLSB - ->

<bean id="uwrRemoteService"

class="org.springframework.jndi.JndiObjectFactoryBean">

<property name="jndiName" value="UwrRemoteServiceBean/Remote" />

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS144

<property name="jndiEnvironment">

<props>

<prop key="java.naming.factory.initial">

org.jnp.interfaces.NamingContextFactory

</prop>

<prop key="java.naming.provider.url"> jnp://localhost:1099</prop>

<prop key=" java.naming.factory.url.pkgs">org.jboss.naming.client</prop>

</props>

</property>

</bean>

<!- - Local EJB 3 SLSB - ->

<bean id="uwrLocalService"

class="org.springframework.jndi.JndiObjectFactoryBean">

<property name="jndiName" value=" UwrLocalServiceBean/Local " />

</bean>

</beans>

Lookup of JMS Objects

The service locator is not limited to EJB components; it can be used for any JNDI bound
object such as a JMS queue and topic or a JDBC data source. It can also be used with web
services.

Listing 4-7 looks up a local JMS queue and topic configured in JBoss. The listing also
shows two ways of using a resource reference while accessing JNDI bound objects. One
option is to prefix it directly in the jndiName property; the other is to turn on the
resourceRef property, which will automatically prepend the string java:comp/env/: to the
JNDI name.

Listing 4-7. insurance-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS 145

<!- - Other beans - ->

<bean id="testTopic"

class="org.springframework.jndi.JndiObjectFactoryBean">

<property name="jndiName" value="topic/testTopic" />

</bean>

<bean id="testQueue"

class="org.springframework.jndi.JndiObjectFactoryBean">

<property name="jndiName" value="queue/testQueue" />

</bean>

<bean id="resourceRefOnQueue"

class="org.springframework.jndi.JndiObjectFactoryBean">

<property name="jndiName" value="queue/resourceRefOnQueue" />

<property name="resourceRef" value="true" />

</bean>

<bean id="sampleQueue"

class="org.springframework.jndi.JndiObjectFactoryBean">

<property name="jndiName" value="java:comp/env/topic/resourceRefOnQueue"

</bean>

/>

</beans>

As shown in Listing 4-7, you can use the JndiObjectFactoryBean to look up JMS
objects from the JNDI. In the case of remote JMS objects, you will just need to add the
jndiEnvironment property in the same way as the EJB session bean in Listing 4-3.

As already discussed, object retrieval from the JNDI can be detrimental to perform-
ance. In highly transactional applications, JNDI objects will be used regularly. So, it is
imperative that the clients cache and use these objects. This is exactly what the
JndiObjectFactoryBean does by default. It looks up the JNDI tree when the Spring web
application context is being initialized and loads the JNDI bound objects. Hence, it is
necessary that the EJBs are loaded and registered in the JNDI before the Spring web
application starts initialization.

The object caching feature of the service locator is not very important for applica-
tions that sparingly use JNDI objects. This will also cause problems if you update your
application with hot deployment support from the application servers. Hot deployment
allows an entire Java EE application to be reloaded without bringing down the server.
This will also refresh the JNDI with new objects. As a result, the service locator cache, if
used, will have object references that no longer exist. Hence, any further access to these
objects will result in runtime exceptions being raised.

It is possible to look up and load JNDI objects lazily in the Spring IOC container. If
JNDI object retrieval at startup and subsequent caching had to be turned off, you must

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS146

specify the proxy interface. The proxy interface will enable the generation of a proxy
object to stand in for the real JNDI object. Hence, the proxy interface must be the same as
the JNDI object interface. As shown in Listing 4-8, I have specified the local home inter-
face as the proxy interface. Note that the actual JNDI object will be made available on
first use.

Listing 4-8. insurance-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<!- - Other beans - ->

<bean name="underwritingBusinessDelegate"

class="com.apress.insurance.view.delegate.UnderWritingBusinessDelegate">

<property name="uwrLocalHome" ref="uwrSlsbLocalHome" />

</bean>

<bean id="uwrSlsbLocalHome"

class="org.springframework.jndi.JndiObjectFactoryBean">

<property name="jndiName" value="UnderwritingBeanLocal" />

<property name="cache" value="false" />

<property name="lookupOnStartup" value="false" />

<property name="proxyInterface"

value="com.apress.einsure.business.ejbfacade.UnderwritingLocalHome" />

</bean>

</beans>

The eInsure application had a large number of session beans carrying out business
workflow. But this resulted in lots of redundant metadata information bloating the Spring
configuration file. You can minimize the duplication of configuration information by
inheriting from an abstract template definition, as shown in Listing 4-9.

Listing 4-9. insurance-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS 147

<bean name="underwritingBusinessDelegate"

class="com.apress.insurance.view.delegate.UnderWritingBusinessDelegate">

<property name="uwrLocalHome" ref="uwrSlsbLocalHome" />

</bean>

<bean id="lazyJndiObjectFactoryBean" abstract="true"

class="org.springframework.jndi.JndiObjectFactoryBean">

<property name="cache" value="false" />

<property name="lookupOnStartup" value="false" />

</bean>

<bean id="uwrSlsbLocalHome" parent="lazyJndiObjectFactoryBean">

<property name="jndiName" value="UnderwritingBeanLocal" />

<property name="proxyInterface"

value="com.apress.einsure.business.ejbfacade.UnderwritingLocalHome" />

</bean>

<bean id="claimSlsbLocalHome" parent="lazyJndiObjectFactoryBean">

<property name="jndiName" value="ClaimBeanLocal" />

<property name="proxyInterface"

value="com.apress.einsure.business.ejbfacade.ClaimLocalHome" />

</bean>

</beans>

Spring 2.x introduces the new jee tag, which makes it even simpler to look up JNDI
objects.

Listing 4-10 shows how you can use this new tag to look up the stateless session
beans. Note that in order to use this tag, you need to modify the configuration file to
include the jee namespace and schema location.

Listing 4-10. insurance-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:jee="http://www.springframework.org/schema/jee"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

http://www.springframework.org/schema/jee

http://www.springframework.org/schema/jee/spring-jee-2.5.xsd"

>

<!- - local ejb lookup - ->

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS148

<jee:jndi-lookup id="uwrSlsbLocalHome"

cache="false"

lookup-on-startup="false"

jndi-name="UnderwritingBeanLocal"

proxy-interface="com.apress.einsure.business.➥

ejbfacade.UnderwritingLocalHome"

/>

<jee:jndi-lookup id="uwrSlsbRemoteHome" jndi-name=" UnderwritingBeanRemote ">

<!-- newline-separated, key-value pairs for the environment -->

<jee:environment>

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory

java.naming.provider.url=jnp://localhost:1099

java.naming.factory.url.pkgs=org.jboss.naming.client

</jee:environment>

</jee:jndi-lookup>

</beans>

Another important aspect of the JndiObjectFactoryBean is the support for unit testing.
It makes it easy to test components out of the container. You can do this by setting the
defaultObject property. It is the fallback object, in case the JNDI service or JNDI bound
objects are unavailable. Listing 4-11 shows how to use the fallback object.

Listing 4-11. insurance-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"

>

<!- - Other beans - ->

<bean name="uwrbusinessPOJO"

class="com.apress.einsure.business.UwrBusinessServiceImpl"

<bean name="uwrSlsbHome"

class="org.springframework.jndi.JndiObjectFactoryBean">

<property name="jndiName" value="uwrbusinessslsb" />

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS 149

<property name=" defaultObject" ref="uwrbusinessPOJO" />

<property name="jndiEnvironment">

<props>

<prop key="java.naming.factory.initial">

org.jnp.interfaces.NamingContextFactory

</prop>

<prop key="java.naming.provider.url"> jnp://localhost:1099</prop>

<prop key=" java.naming.factory.url.pkgs">org.jboss.naming.client</prop>

</props>

</property>

</bean>

</beans>

It must be noted that the JndiObjectFactoryBean is a convenient way to look up JNDI
objects. But the recommended approach is to use a proxy factory bean that effectively
combines the service locator with dependency injection. You will learn about this strat-
egy in connection with the Business Delegate pattern.

Consequences

Benefits

• The Service Locator pattern abstracts the complex lookup mechanism associated
with service objects. This adds flexibility because the service clients are freed from
the lookup code.

• JNDI lookup is achieved by mere configuration with the Spring Framework.

• Performance is improved by the caching behavior of the Spring-based service
locator.

• Improved testability of service objects. With Spring, it is now possible to test POJO
business components outside the container without any alteration of the applica-
tion code base.

• It’s easy to externalize service locator configuration.

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS150

Concerns

• Developers need to know and remember a lot of configuration parameters and
options.

Business Delegate

Problem

The page controllers form the boundary classes for the presentation tier in any Java EE
application. It is possible for the page controllers to directly invoke the business compo-
nents. This makes the presentation tier code tightly coupled with the business tier code.

In most cases, the business service components are available as remote objects like
stateless session beans (SLSBs). In such cases the page controller also needs to take care
of the infrastructure services such as JNDI lookup, handle remote exceptions, and so on.
In due course it becomes increasingly difficult to maintain these page controllers
because they handle multiple responsibilities.

Forces

• Minimize coupling between the presentation tier and the business tier.

• Hide infrastructure issues from the business service clients.

Solution

Use a business delegate to act as an adapter to invoke business objects from the
presentation tier.

Strategies with the Spring Framework

Famous computer scientist Butler W. Lampson (who envisioned the modern personal
computer at Xerox way back in 1972) once said, “All problems in computer science can be
solved by another level of indirection.” This principle can be applied to put together a
thin layer between page controllers and the EJB business layer. The sole purpose of this

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS 151

layer is to decouple the presentation tier from the business tier. This thin layer is com-
prised of business delegates.

As you saw in Listing 4-2, the business delegate is a POJO client-side proxy for the
business tier. It uses the service locator to access the EJB objects. With the Spring Frame-
work, the service locator works transparently to the business delegate. The EJB objects
looked up by the service locator are injected in the business delegate by the Spring IOC
container. This EJB object is used to delegate the business logic invocation. So, a business
delegate knows how to work with a remoting API such as an EJB. The business delegate
also handles exceptions that are raised during EJB method invocation. It will generally
convert these exceptions into an application-specific runtime exception.

Another critical responsibility of a business delegate is to provide a consistent API for
the page controllers. To achieve this goal, it will apply the object design best practice of
program to interface (P2I). Listing 10-12 shows the business delegate interface.

As shown in Listing 4-12, the business delegate replicates the same methods as the
actual remote business object.

Listing 4-12. UnderwritingBusinessDelegate.java

public interface UnderwritingBusinessDelegate {

public void underwriteNewPolicy(String productCd,String name,int age);

}

Listing 4-13 shows the business delegate implementation class. The business dele-
gate intercepts any exceptions raised by the distributed business objects and transforms
them into RuntimeException because in most cases it is not possible to recover from them.

Listing 4-13. UnderwritingBusinessDelegateImpl.java

public class UnderwritingBusinessDelegateImpl

implements UnderwritingBusinessDelegate{

private UnderwritingRemoteHome uwrRemoteHome;

public UnderwritingRemoteHome getUwrRemoteHome() {

return uwrRemoteHome;

}

public void setUwrRemoteHome(UnderwritingRemoteHome uwrRemoteHome) {

this.uwrRemoteHome = uwrRemoteHome;

}

public void underwriteNewPolicy(String productCd, String name, int age) {

try {

UnderwritingRemote bean = this.uwrRemoteHome.create();

bean.underwriteNewPolicy(productCd, name, age);

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS152

} catch (CreateException ex) {

throw new RuntimeException(ex);

} catch (RemoteException ex) {

throw new RuntimeException(ex);

}

}

}

Now everything needs to be wired up in the Spring configuration file shown in List-
ing 4-14. Note that the business delegate is injected into the page controller by the Spring
container.

Listing 4-14. insurance-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:jee="http://www.springframework.org/schema/jee"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

http://www.springframework.org/schema/jee

http://www.springframework.org/schema/jee/spring-jee-2.5.xsd">

<!—other beans - ->

<bean name="/createPolicy.do"

class="com.apress.insuranceapp.web.controller.CreatePolicyController">

<property name="uwrBusinessDelegate" ref="uwrBusinessDelegate"/>

</bean>

<bean name="uwrBusinessDelegate"

class="com.apress.insurance.view.delegate.➥

UnderWritingBusinessDelegateImpl">

<property name="uwrRemoteHome" ref="uwrSlsbRemoteHome" />

</bean>

<bean id="uwrSlsbRemoteHome" class="org.springframework.jndi.➥

JndiObjectFactoryBean">

<property name="jndiName" value="UnderwritingBeanRemote" />

<property name="jndiEnvironment">

<props>

<prop key="java.naming.factory.initial">

org.jnp.interfaces.NamingContextFactory

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS 153

</prop>

<prop key="java.naming.provider.url">

jnp://localhost:1099

</prop>

<prop key="java.naming.factory.url.pkgs">

org.jboss.naming.client

</prop>

</props>

</property>

</bean>

</beans>

The program to interface principle adds flexibility to the Business Delegate design. It
may happen that you decide to switch from EJBs to an alternative remoting option such
as Burlap-Hessian or web services. In such a scenario you need a new implementation of
the business delegate. But the page controllers (which are clients of business delegates)
will remain unaffected because they use business delegate interfaces. Finally, you will
need to wire this bean in the Spring configuration to replace the EJB.

Consequences

Benefits

• The intermediate business delegate layer decouples the business layer from the
presentation layer. As a result, you have a more flexible and maintainable presen-
tation tier.

• The business delegate exposes a uniform API to the presentation tier to access
business logic. It also handles exceptions and converts them into types that the
presentation tier understands.

• With Spring dependency injection support, the development and use of the POJO
business delegate are immensely simplified.

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS154

Concerns

• The business delegate introduces an extra layer that increases the number of
classes in the application. This may be a cause of concern during maintenance.

• If the remote business object interfaces change, the business delegate should take
care of this. In an ideal situation, the page controllers will be unaware of such
internal changes in the business delegate. However, such a thing seldom happens,
and page controllers too are affected by business object changes.

Session Facade

Problem

The eInsure application used SLSBs to deploy remotely accessible business logic. These
SLSBs were accessed from the JSP controllers as shown in Listing 4-1. However, as I have
already highlighted, business objects should be accessed from the business delegate.
Soon, eInsure code was refactored, and the Business Delegate pattern was put in use. But
the business service access code that moved from the JSP controller to the business dele-
gate continued to have the original problems. One such problem was the invocation of
multiple remote business methods in response to a user action. The use case “underwrite
new policy” in eInsure could be divided into four subtasks: saving policy details, query-
ing the product workbench to retrieve the default risk and cover list, associating these
risks and cover list to the policy, and finally creating accounting records that will be used
later to track premium payments. Hence, to fulfill this use case, the business delegate
would invoke the four remote business methods.

The approach described in the previous paragraph had immediate side effects. The
fine-grained remote business method invocation from the business delegate increased
network round-trips. This also required large data sets to be marshaled and unmarshaled
over the network for each method call. The end result was the degradation of application
performance. The whole thing was accentuated by the fact that in eInsure the SLSBs
relied on entity beans for persistence. Each of the subtasks used at least two entity beans
to save and retrieve data from the RDBMS. Since entity beans were remotely accessible
persistence components and required data marshaling and unmarshaling, they also
added to the network clog.

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS 155

Invoking multiple session bean methods from the business delegate per user action
increased the chances of business logic spilling over into the client tier. It also increased
the possibility of client-side transaction management that the EJB component model
should have eliminated. Since multiple session bean methods were involved, it created a
lot difficulty in setting the appropriate transaction attribute while using declarative con-
tainer-managed transaction (CMT) support. Using entity beans that themselves were
transactional components did not help the cause either. It was difficult to decide whether
to handle transactions in session beans or in entity beans.

Forces

• Consolidate business workflow in remotely accessible components.

• Expose coarse-grained business interfaces to access entity beans in one network
call.

• Prevent business logic and system-level services such as transaction management
from spilling over into the business tier’s clients.

• Improve performance by consolidating business methods.

Solution

Expose a remotely accessible session facade, which will encapsulate business logic while
exposing a coarse-grained API to the clients.

Strategies with the Spring Framework

A session facade is an application of the GOF facade pattern to an EJB session bean. The
facade pattern presents a unified interface for a group of interfaces in the subsystem. In
other words, a facade is a higher-level interface that makes it easier to use the subsystem.
In the context of EJBs, this means the session beans act as a facade and expose only a
single business method per user action. This method in turn invokes private session bean
methods. Another option is to consolidate the entire business logic in one session facade
method. This method then provides coarse-grained access to the business tier. Because
only a single method of the remote business object carries out the workflow pertaining to
a use case, it is easy to apply a container-managed transaction on this method. Later in
this chapter I will explain a flexible and cleaner solution in connection with the Applica-
tion Service pattern.

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS156

EJB 2.0 introduced local EJBs with the aim of limiting network trips and thus enhanc-
ing performance. A remote stateless session bean implementing business workflow can
be combined with local entity beans to complete a particular use case in just one
network trip.

Writing a stateless session bean is a tedious activity even with modern integrated
development environments. Each EJB 2.x or 1.x SLSB requires at least three Java files to
be created. You need two Java files for the home and remote interfaces, while the third
one is for the bean implementation class. Apart from this, you have two XML deployment
descriptors: the standard ejb-jar.xml and the other vendor-specific XML that supplies
runtime metadata. In the next few sections, I will try to simplify the development of the
session facade with Spring EJB support classes.

The first step to building a session bean is to create the home interface, as shown in
Listing 4-15.

Listing 4-15. UnderwritingRemoteHome.java

public interface UnderwritingRemoteHome extends EJBHome {

UnderwritingRemote create() throws CreateException, RemoteException;

}

The home interface is responsible for managing the life cycle of the remote EJB
object. In this case, the create method of the home interface acts as a factory responsible
for creating the remote objects. The remote object implements the remote interface as
shown in Listing 4-16.

Listing 4-16. UnderwritingRemote.java

public interface UnderwritingRemote extends EJBObject {

public void underwriteNewPolicy(String productCd,String name,int age)

throws RemoteException;

}

The remote interface defines all the business methods that will be exposed by the
SLSB to its clients. The bean implementation class is responsible for providing imple-
mentation for the business methods defined in the remote interface. Spring provides
convenience base classes to simplify the development of the bean implementation class.
So, it is important to understand these classes before I get down into the implementation
details.

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS 157

As you see in Figure 4-3, the AbstractEnterpriseBean class forms the core of the Spring
EJB support classes. This class can be subclassed to support different forms of EJBs such
as session beans, message-driven beans, and so on. However, in most cases, you will not
need to do that because Spring already provides the appropriate subclasses. The
AbstractEnterpriseBean class helps create and load a Spring bean factory and makes it
available to the EJB.

Figure 4-3. Class diagram: Spring stateless session bean support

The AbstractEnterpriseBean is generic, and Spring provides a specialized
AbstractSessionBean class to develop session bean components. This class implements
the SessionBean interface and takes on the responsibility of saving the SessionContext
object injected by the EJB container. However, it should not be extended for supporting
SLSBs. Instead, your bean implementation should inherit from the more specialized
AbstractStatelessSessionBean. This class implements all the EJB callback methods. This is
very useful because in most cases you would require empty implementation of these call-
backs. This feature cleans up the bean implementation classes, promotes reuse, and
allows it to focus only on business logic. The subclasses should override the onEjbCreate
method to carry out any post-initialization after loading the bean factory. Finally, Listing
4-17 shows the bean implementation class.

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS158

Listing 4-17. UnderwritingRemoteBean.java

public class UnderwritingRemoteBean extends AbstractStatelessSessionBean {

public void underwriteNewPolicy(String productCd, String name, int age)

throws RemoteException {

//implement business rule

//invoke Entity beans

}

protected void onEjbCreate() throws CreateException {

//use for post initialisation tasks

}

}

To register as a session bean and subscribe to the container services, the Java classes
must be supplemented with metadata information. The metadata information is pro-
vided in the form of XML deployment descriptors. The first deployment descriptor is
ejb-jar.xml, which describes the bean and system services it requires. In this case, the
bean requires transactional services for all its methods, as shown in Listing 4-18.

Listing 4-18. ejb-jar.xml

<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar version="2.1" xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd">

<enterprise-beans>

<session>

<display-name>UnderwritingRemoteSB</display-name>

<ejb-name>UnderwritingRemoteBean</ejb-name>

<home>com.apress.einsure.business.➥

ejbfacade.UnderwritingRemoteHome</home>

<remote>com.apress.einsure.business.➥

ejbfacade.UnderwritingRemote</remote>

<ejb-class>com.apress.einsure.business.➥

ejbfacade.UnderwritingRemoteBean</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS 159

<env-entry>

<env-entry-name>ejb/BeanFactoryPath</env-entry-name>

<env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>

com/apress/einsure/business/ejbfacade/Underwriting-beans.xml

</env-entry-value>

</env-entry>

</session>

</enterprise-beans>

<assembly-descriptor>

<container-transaction>

<method>

<ejb-name>UnderwritingRemoteBean</ejb-name>

<method-name>*</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

</assembly-descriptor>

</ejb-jar>

As I mentioned earlier, with Spring EJB support it is possible to start an application
context. The default mechanism is to load an application context from a resource speci-
fied as a JNDI environment variable: java:comp/env/ejb/BeanFactoryPath. Listing 4-18
highlights this environment variable. This default behavior is provided with the help of
the BeanFactoryLocator implementation provided by the ContextJndiBeanFactoryLocator
class. It is also possible to provide a custom BeanFactoryLocator implementation and
inject it using the setBeanFactoryLocator method either in the setSessionContext method
or in the default constructor of the stateless session bean implementation class.

The default behavior of ContextJndiBeanFactoryLocator can have serious performance
limitations. Loading and initializing an application context with several beans defined in
it can be time-consuming. You can overcome this by using a shared bean factory for all
the EJBs. The ContextSingletonBeanFactoryLocator class provides this support. However,
you need to be careful with a singleton context and limit it only amongst the EJBs in your
application. Sharing a common application context amongst all tiers (presentation, busi-
ness, and integration) may result in lots of class-loading issues.

Listing 4-19 shows the Spring configuration file required to start the SLSB application
context. Currently, it does not contain any bean definition. I will put this to effective use
later when I discuss the Application Service pattern.

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS160

Listing 4-19. Underwriting-beans.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

</beans>

Finally, to complete the EJB, you also need an application server vendor-specific
deployment descriptor, which is used to provide meta-information such as the JNDI
name to bind the EJB home object in the JNDI tree. Listing 4-20 shows the JBoss-specific
deployment descriptor.

Listing 4-20. jboss.xml

<?xml version="1.0" encoding="UTF-8"?>

<jboss>

<enterprise-beans>

<session>

<ejb-name>UnderwritingRemoteBean</ejb-name>

<jndi-name>UnderwritingBeanRemote</jndi-name>

<local-jndi-name>UnderwritingBeanLocal</local-jndi-name>

</session>

</enterprise-beans>

<resource-managers>

</resource-managers>

</jboss>

The final task is to compile, package, and deploy this EJB in a JBoss 4.x application
server. The clients can easily look up this EJB using the Service Locator pattern described
earlier in this chapter.

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS 161

Consequences

Benefits

• The session facade exposes a coarse-grained API to the clients of the remote busi-
ness object.

• It allows Java EE applications to effectively leverage container-managed services
such as transaction and security.

• The consolidation of business method invocation into a single coarse-grained call
reduces network trips and improves performance.

• The session facade helps to clearly establish the responsibilities of different com-
ponents in a Java EE application. This also prevents business logic from spilling
over to the client tier.

Concerns

• Session facades have steep learning curves with complex concepts.

• Besides different classes and interfaces, a lot of configuration information is
required. This adds overhead during maintenance.

Application Service

Problem

The eInsure application’s business logic was entirely coded in the session facades. As I
explained in connection with session facades, EJB development was a very complex task.
You had to work with three Java source files. Then there were two deployment descriptors
and a large set of configuration information. EJB development requires seasoned pro-
grammers. There are a lot of concepts related to system services, configuration, and
server-specific settings that can be managed effectively only with experienced developers.

The container manages the life cycle of the EJB components. These components also
subscribe to different container services such as security, transaction, and object pooling.
The developers need to have a clear understanding of the concepts and intricacies

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS162

behind these services and life-cycle stages. This is imperative to write code that will
respond correctly to life-cycle state changes. It will also help the developers appropriately
set configuration metadata and prevent unexpected results.

Since the entire business logic is now in the SLSB, chances are high that in a large-
scale application like eInsure that it will grow quickly to an unmanageable size. The
session facade not only intercepts business logic invocation, but also each method in the
SLSB is responsible for executing business rules. Hence, it also violated SRP. A simpler
option would be to model the session facade like a front controller servlet. It only takes
the responsibility of intercepting the business method execution requests. The actual
task of business logic execution is delegated to the helper classes.

The session facades run in the EJB container. As a result, they were difficult to unit
test. A prospective client of eInsure could not afford commercial application server
licenses. Hence, they wanted to deploy this application on open source products. Their
team was already using an Apache Tomcat and ObjectWeb JOTM-based platform to run a
few applications. Hence, they wanted to leverage the Tomcat web server with the JDBC-
based transaction-processing capabilities of the JOTM transaction monitor. However,
because the all-important business tier of eInsure was tightly coupled to SLSB, it would
be a painful and effort-intensive activity to successfully run eInsure without an EJB con-
tainer support.

Forces

• Session bean development requires experienced developers with sound knowledge
of EJBs and application servers.

• The session facade should act only as a gateway to the business tier and delegate
the actual business logic execution to helpers. It should declaratively subscribe to
container services.

• Session facades should not grow to an unmanageable proportion.

• Business logic should run outside an EJB container.

• Business logic should be easy to unit test.

Solution

Use an application service to concentrate business logic in POJO classes.

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS 163

Strategies with the Spring Framework

Although it is quite legitimate to put the business logic code in session facades, it is not
the best approach. You will be better served by moving the business logic to POJO com-
ponents and letting the session facade delegate to these POJOs. This will free up the
session facade. It can now act as the gateway to the remotely accessible business tier.
Since the business logic is now moved to POJO, it is easier to unit test. The POJO applica-
tion services sit behind the SLSB gateway and so can also leverage robust infrastructure
support such as transactions. In other words, all POJO methods that are invoked from
the session facade will be part of the same transaction scope. Moving business logic to
POJO components also reduces the effort that will be required to run an application like
eInsure in a web container.

The first step to writing an application service is to define an interface following the
P2I principle. Listing 4-21 shows the UnderwritingApplicationService interface.

Listing 4-21. UnderwritingApplicationService.java

package com.apress.einsure.business.api;

public interface UnderwritingApplicationService {

public void underwriteNewPolicy(String productCd,String name,int age);

}

Listing 4-22 shows the application service implementation class. Note that this class
does not use entity beans for persistence needs. Instead, it uses lightweight data access
objects for persistence. You will learn more about data access objects in Chapter 5.

Listing 4-22. UnderwritingApplicationServiceImpl.java

package com.apress.einsure.business.impl;

public class UnderwritingApplicationServiceImpl implements

UnderwritingApplicationService{

private PolicyDetailDao policyDetailDao;

public void underwriteNewPolicy(String productCd, String name, int age) {

//business validation - is this age allowed for this product

this.policyDetailDao.savePolicyDetails(productCd, name, age);

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS164

}

public PolicyDetailDao getPolicyDetailDao() {

return policyDetailDao;

}

public void setPolicyDetailDao(PolicyDetailDao policyDetailDao) {

this.policyDetailDao = policyDetailDao;

}

}

The PolicyDetailDao is injected in the application service by the Spring container.
The data access object also needs a data source to save data. This is shown in the EJB
application context configuration in Listing 4-23.

Listing 4-23. Underwriting-beans.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<bean id="uwrBusinessService"

class="com.apress.einsure.business.impl.UnderwritingApplicationServiceImpl">

<property name="policyDetailDao" ref="policyDetailDao"/>

</bean>

<! - - Data access object - ->

<bean id="policyDetailDao"

class="com.apress.einusre.persistence.dao.impl.PolicyDetailDaoImpl"

>

<property name="dataSource" ref="datasource"/>

</bean>

<!- - Lookup JNDI bound datasource - - >

<bean id="datasource" class="org.springframework.jndi.JndiObjectFactoryBean">

<property name="jndiName" value="einsureDatasource" />

<property name="jndiEnvironment">

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS 165

<props>

<prop key="java.naming.factory.initial">

org.jnp.interfaces.NamingContextFactory

</prop>

<prop key="java.naming.provider.url">

jnp://localhost:1099

</prop>

<prop key="java.naming.factory.url.pkgs">

org.jboss.naming.client

</prop>

</props>

</property>

</bean>

</beans>

You will need to alter the session facade (shown earlier in Listing 4-17) to delegate to
the application service that implements the business logic. Listing 4-24 shows the modi-
fied implementation class. Note that the onEjbCreate method now gets involved in doing
something useful. It retrieves the POJO business service object from the Spring applica-
tion context associated with this EJB. The constant in the business interface supplies the
value of the key used to look up the application service bean.

Listing 4-24. UnderwritingRemoteBean.java

public class UnderwritingRemoteBean extends AbstractStatelessSessionBean {

private final String SERVICE_BEAN_KEY = "uwrAppService";

private UnderwritingApplicationService uwrAppService;

public void underwriteNewPolicy(String productCd, String name, int age)

throws RemoteException {

//delegate to application service

uwrAppService.underwriteNewPolicy(productCd, name, age);

}

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS166

protected void onEjbCreate() throws CreateException {

//use for initialisation

uwrAppService = (UnderwritingApplicationService) this.getBeanFactory().

getBean(SERVICE_BEAN_KEY);

}

}

Note that there is a possibility that an application service will now increase rapidly in
size in order to incorporate complex business rules. It is possible to use a single applica-
tion service per user case just like you do with the page controllers. However, this will
create lot of small classes that are hard to maintain. A more balanced solution would be
to logically group the application service methods. In the case of eInsure, for example, a
particular application service can include the methods to create, update, suspend, reject,
and approve a claim.

Consequences

Benefits

• The business logic is now encapsulated in simple POJO components. These serv-
ices access EJB container services as they are invoked from the session facade.

• POJO components make the application easier to test and run outside the con-
tainer.

• You get improved performance because the session facade relies now on the POJO
application service and data access object combination. It no longer uses entity
beans, which increased the network chattiness.

Concerns

• The Application Service pattern adds an extra layer to the application. This
increases maintenance and development effort.

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS 167

Business Interface

Problem

The remote interface of a session facade defines the business methods that are accessible
from the client. The bean class, on the other hand, provides implementation for the busi-
ness methods. However, there is no direct relationship between the two. This results in
annoying runtime or deploy-time errors such as missing methods, inconsistent method
names, parameter type and count, and exceptions. Since these errors are generally
detected only at runtime, you may end up losing a significant amount of effort in the
debug-fix-deploy-test cycle. Thus, this decoupling of remote interface and bean imple-
mentation makes it impossible to trap errors early, at compile time.

The easiest solution to this problem is to allow the bean class to implement the
remote or local interface. However, this is not allowed by the EJB specification. Although
not very common, sometimes a session bean method may need to pass its reference to
the called method. This is common in Java programming, where you pass the this refer-
ence. But things are different in EJB. The EJB clients should always use the remote
interface to invoke business methods. This helps the EJB container intercept all business
method invocation and register these methods for applying system services such as secu-
rity and transaction. Now, since the bean class does not implement the remote interface,
you are forced get the associated EJBObject/EJBLocalObject from the SessionContext and
pass it to the called method. If the bean class had implemented the remote or local inter-
face, then there is a chance of inadvertently passing this reference from the bean class to
the calling method. In this case, however, the behavior of the EJB container is not guaran-
teed, and you may get unexpected results.

There are other problems for the bean class implementing the remote and local
interfaces.

The EJBObject and EJBLocalObject interfaces define two different sets of methods. The
container is supposed to provide implementations for these methods during deploy-
ment. The container-implemented methods are critical to the overall working of the EJBs.
These methods take care of low-level concerns such as networking, serialization of
parameters and passed values, and coordination with the container for system services.
They also proxy business method calls to the actual bean implementation. But in case
the bean class implements these methods, it has to provide implementation for these
classes, which may ultimately result in an unusable EJB. To compile the bean, the imple-
mentation needs to implement the methods defined in these interfaces. This in turn
clutters the bean implementation with unnecessary code. Moreover, if the remote inter-
face is implemented by the bean implementation, the clients will have access to the
actual bean just by casting the remote interface, which defeats the core goals of the EJB,
which are location transparency and distributed business objects.

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS168

Forces

• Consolidate business methods in a common interface.

• Enforce compile-time checks to prevent anomalies between the remote interface
and the bean implementation.

• Prevent EJB bean implementation classes from implementing remote or local
interfaces.

Solution

Implement a business interface to consolidate business methods and apply compile-time
checks of EJB methods.

Strategies with the Spring Framework

A business interface is a plain Java interface that consolidates the methods that the bean
class will implement. The local and remote interfaces also extend the business interface.
Thus, this superinterface keeps the method signature and count in sync and allows any
differences to be detected at compile time. Further, since the business interface does not
extend EJBObject or EJBLocalObject, the bean class is saved from unnecessary method
implementation. I will now show how to put the business interface into action for differ-
ent types and versions of stateless session beans.

Figure 4-4 shows the class diagram of the business interface for a remote SLSB.

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS 169

Figure 4-4. Class diagram: remote business interface

In the case of the remote SLSB, the business interface methods must declare a throws
clause for RemoteException. Otherwise, the EJB verifier tool that comes with each applica-
tion server will not allow the deployment of such EJBs. The business interface for the
SLSB should ideally be the interface associated with the application service. However,
because of this dependency with RemoteException, I will create a separate interface as
shown in Listing 4-25.

Listing 4-25. UnderwritingBusinessService.java

public interface UnderwritingBusinessService {

public void underwriteNewPolicy(String productCd,String name,int age)

throws RemoteException;

}

The remote interface now extends the UnderwritingBusinessService and no longer
defines any business methods. It is shown in Listing 4-26.

Listing 4-26. UnderwritingRemote

public interface UnderwritingRemote extends EJBObject, UnderwritingBusinessService {

}

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS170

To achieve compile-time consistency, the bean implementation class now imple-
ments the business service interface as shown in Listing 4-27. Note that I will continue to
use application services as is.

Listing 4-27. UnderwritingRemoteBean.java

public class UnderwritingRemoteBean extends AbstractStatelessSessionBean

implements UnderwritingBusinessService{

private final String SERVICE_BEAN_KEY = "uwrAppService";

private UnderwritingApplicationService uwrAppService;

public void underwriteNewPolicy(String productCd, String name, int age)

throws RemoteException {

//delegate business processing to application service

uwrAppService.underwriteNewPolicy(productCd, name, age);

}

protected void onEjbCreate() throws CreateException {

//use for initialisation

uwrAppService = (UnderwritingApplicationService)

this.getBeanFactory().getBean(SERVICE_BEAN_KEY);

}

}

Now the compile-time consistency is among the remote interface, and the enterprise
bean class is ensured. Amidst all the changes, the home interface remains unaffected.
The business interface is not limited to providing compile-time checks. It can be used
with the Spring proxy-based service locators to remove the code redundancy associated
with the business delegate. Proxies are like duplicates that stand in for the real object. To
remove the business delegate layer, you will need to alter the page controllers to now
work with the business interface, as shown in Listing 4-28.

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS 171

Listing 4-28. UnderwritingRemoteBean.java

public class SaveNewPolicyController extends SimpleFormController {

private UnderwritingBusinessService uwrBusinessService;

public void setUwrBusinessService(

UnderwritingBusinessService uwrBusinessService) {

this.uwrBusinessService = uwrBusinessService;

}

protected void doSubmitAction(Object formbean) throws Exception {

PolicyFormBean policyBean = (PolicyFormBean)formbean;

uwrBusinessService.underwriteNewPolicy(policyBean.getProductCode()

, policyBean.getFirstName(), policyBean.getAge());

}

protected Object formBackingObject(HttpServletRequest req) throws Exception {

PolicyFormBean policyBean = (PolicyFormBean)super.formBackingObject(req);

return policyBean;

}

/*

protected ModelAndView onSubmit(Object formbean) throws Exception {

PolicyFormBean policyBean = (PolicyFormBean)formbean;

uwrBusinessDelegate.createPolicy(policyBean);

return new ModelAndView(this.getSuccessView(),"policydetails",formbean);

}

*/

}

The page controller in Listing 4-28 in fact works with business interface proxies. To
inject the business interface proxy, I will use the SimpleRemoteStatelessSessionProxy➥

FactoryBean class. This factory bean performs two tasks. It looks up the EJB home inter-
face and caches it. It also creates a proxy object implementing the business interface. The
proxy object is injected into the page controller. The first business method invocation on
the proxy will result in the creation of the remote object by invoking the create method
on the cached home interface. It will then delegate the business processing to the remote
object. This is possible because the remote object also implements the business inter-
face. Listing 4-29 shows the configuration of this service locator and the page controller.

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS172

Listing 4-29. insurance-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:jee="http://www.springframework.org/schema/jee"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

http://www.springframework.org/schema/jee

http://www.springframework.org/schema/jee/spring-jee-2.5.xsd">

<bean id="viewResolver"

class="org.springframework.web.servlet.view.InternalResourceViewResolver">

<property name="viewClass"

value="org.springframework.web.servlet.view.JstlView" />

<property name="prefix" value="/WEB-INF/jsp/" />

<property name="suffix" value=".jsp" />

</bean>

<bean id="uwrBusinessServiceProxy"

class="org.springframework.ejb.access.➥

SimpleRemoteStatelessSessionProxyFactoryBean">

<property name="jndiName" value="UnderwritingBeanRemote" />

<property name="businessInterface"

value="com.apress.einsure.business.api.UnderwritingBusinessService" />

<property name="jndiEnvironment">

<props>

<prop key="java.naming.factory.initial">

org.jnp.interfaces.NamingContextFactory

</prop>

<prop key="java.naming.provider.url">

jnp://localhost:1099

</prop>

<prop key="java.naming.factory.url.pkgs">

org.jboss.naming.client

</prop>

</props>

</property>

</bean>

<bean name="/createPolicy.do"

class="com.apress.insurance.web.controller.SaveNewPolicyController" >

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS 173

<property name="uwrBusinessService"

ref="uwrBusinessServiceProxy" />

<property name="formView"

value="createPolicy" />

<property name="commandName"

value="policydetails" />

<property name="successView"

value="policydetails" />

<property name="commandClass"

value="com.apress.insuranceapp.web.formbean.PolicyFormBean" />

</bean>

</beans>

You may be thinking that because the business delegate is no longer there, the page
controller will be tightly coupled with the EJBs and need to handle RemoteException. How-
ever, this task is handled by the SimpleRemoteStatelessSessionProxyFactoryBean class. It
will intercept any RemoteException raised by the EJBs and convert it to Spring’s unchecked
RemoteAccessException.

Business interfaces work best with local SLSBs as well. In this case, you need not
define any extra interface. You can very well use the interface defined by the application
service because the local EJBs are not required to throw RemoteException. Another differ-
ence is that in the case of local EJBs, you need to use LocalStatelessSessionProxy➥

FactoryBean as the proxy service locator. Listing 4-30 shows the use of this service locator.

Listing 4-30. insurance-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:jee="http://www.springframework.org/schema/jee"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

http://www.springframework.org/schema/jee

http://www.springframework.org/schema/jee/spring-jee-2.5.xsd">

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS174

<bean id="viewResolver"

class="org.springframework.web.servlet.view.InternalResourceViewResolver">

<property name="viewClass"

value="org.springframework.web.servlet.view.JstlView" />

<property name="prefix" value="/WEB-INF/jsp/" />

<property name="suffix" value=".jsp" />

</bean>

<bean id="uwrBusinessServiceProxy"

class="org.springframework.ejb.access.➥

SimpleRemoteStatelessSessionProxyFactoryBean">

<property name="jndiName" value="UnderwritingBeanRemote" />

<property name="businessInterface"

value="com.apress.einsure.business.api.UnderwritingApplicationService" />

</bean>

<bean name="/createPolicy.do"

class="com.apress.insurance.web.controller.SaveNewPolicyController" >

<property name="uwrBusinessService"

ref="uwrBusinessServiceProxy" />

<property name="formView"

value="createPolicy" />

<property name="commandName"

value="policydetails" />

<property name="successView"

value="policydetails" />

<property name="commandClass"

value="com.apress.insuranceapp.web.formbean.PolicyFormBean" />

</bean>

</beans>

Note that the same proxy service locators can be applied to look up EJB 3 session
beans as well.

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS 175

Consequences

Benefits

• It is now possible to catch differences in remote interfaces and bean implementa-
tions during the compilation phase.

• The implementation of business interface ensures consistency.

• The code or layer redundancy associated with the business delegate is removed
because the page controllers use the proxy business interface implementations.

• Because the EJBs are now invoked through proxied objects that implement simple
Java interfaces, it is easy to remove EJB dependencies and deploy the application in
web servers like Apache Tomcat.

Concerns

• The business interface is not reusable across local and remote stateless session
beans.

• It increases the number of classes that you already are maintaining for EJBs.

• Performance overhead is added because EJB methods are now invoked by reflec-
tion from the proxies.

Summary
In this chapter, you explored different ways of building a flexible business layer combin-
ing Spring and EJB—a stateless session bean, to be specific. The Service Locator and
Business Delegate patterns are client-side extensions of the business logic exposed as
remote objects. The Session Facade pattern provides coarse-grained access to the busi-
ness logic as well as gives them access to the robust infrastructure support provided by
the container. The Application Service pattern describes a simple yet flexible mechanism
for encapsulating business logic in POJO components. The Business Interface pattern
allows compile-time checks on exposed business methods and reduces dependency on
business delegates.

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS176

In Chapter 5, I will cover the integration tier patterns. You have already had a short
glimpse of an integration tier pattern: the Data Access Object pattern. Integration tier
patterns expose a variety of strategies to retrieve data for use by the business compo-
nents. These patterns also help business objects alter enterprise data. In addition to this,
I will explore strategies to expose business tier functionalities for use by external clients.

CHAPTER 4 ■ EXPLORING BUSINESS TIER DESIGN PATTERNS 177

Exploring Integration Tier
Design Patterns

The integration tier is a boundary tier and interacts with different external systems for
data exchange. The integration tier in the eInsure application accessed the relational
database for storing, retrieving, and manipulating data related to policies, claims,
accounting, customers, and products. eInsure used entity beans for typical create, read,
update, and delete (CRUD) operations with the database. The legacy version of eInsure
had lots of leftovers in the form of stored procedures. The eInsure application made
heavy use of these stored procedures for database-intensive tasks, especially for the
batch jobs that ran daily after regular business hours or in certain intervals such as
monthly or quarterly.

Users of eInsure required a variety of reports to find out important information
about the state of the business. For reporting requirements, the eInsure system con-
nected to an asynchronous reporting subsystem. Last but not least, some of the services
provided by eInsure had to be exposed as web services. These services were consumed
by third-party external applications.

In this chapter, I will start with the Data Access Object (DAO) pattern for accessing
relational databases. I will explore the need for DAO and the strategies to simplify DAO
implementation with Spring JDBC support. The Spring JDBC API can also be used to pro-
vide OO-style access to stored procedures. I will explain this in detail while describing the
Procedure Access Object (PAO) pattern. Also, I will cover asynchronous service access
mechanisms in connection with the Service Activator pattern. I will wind up the chapter
with the Web Services Broker design strategy, which can be used to expose existing serv-
ices as web services.

179

C H A P T E R 5

Data Access Object

Problem

The eInsure application relied heavily on entity beans for database operations. Way back
in 1999, when entity beans first made their appearance (as part of the EJB 1.x specifica-
tion), they were thought to be a remarkable enterprise component that would completely
change enterprise software development, deployment, maintenance, and portability.
This thinking was backed by reason. Entity beans provided standard-based, container-
managed, distributed, secure, transactional persistence components. They provided
transparent and automatic persistence without the client worrying about the underlying
data store. But this popularity was only short-lived. As developers, designers, and archi-
tects started using entity beans, the problems became apparent. They soon realized that
most of the features offered by entity beans, except persistence, were not required in
their applications. The distributed nature of entity beans led to fine-grained calls from
the clients. This increased network traffic and had an adverse impact on performance.
The Session Facade pattern described in Chapter 4 was a solution to tackle this fine-
grained entity bean access. The session bean also took care of security and transactional
requirements.

With the quickly declining usage, the EJB 2.x specification introduced the concept of
local interfaces to at least alleviate the problems of network trips. But this still did not
address the complexity involved in developing entity beans. Entity bean development
required four Java source files comprising the home and remote interfaces, the bean
implementation, and a primary key class. Apart from the Java sources, you had two to
three deployment descriptors depending on your server vendors. You are already aware
of the two deployment descriptors from session beans in Chapter 4. Some application
servers used a third deployment descriptor for mapping the database table and column
to the bean class and its properties. Because the entity beans ran inside the EJB contain-
ers, they were difficult to test. The result was long development cycles and maintenance
overhead.

The developers’ problems were compounded by the side effects of using entity
beans. Because the accessing of getter/setters in entity beans were remote method invo-
cations, the data transfer objects (DTOs) were designed to extract all the data from the
entity beans in just a single method call. The DTOs were simple POJOs with getters and
setters and implemented the Serializable interface. In a large to midsize project that had
several DTOs, these classes added to the maintenance problem. A small field change in
any DTO often resulted in compilation failures in multiple source files.

The development community had no choice but to move to lightweight persistence
solutions provided by ORM frameworks such as Hibernate, Kodo, iBatis, and others.
These products focused on the persistence of POJOs with minimal configuration infor-
mation. This proved to be a telling blow for entity beans, and it finally made way for JPA

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS180

in the EJB 3.x specification. JPA supports POJO persistence with annotation-based con-
figuration. More important, JPA entities run outside the EJB container and are easily
testable.

The eInsure development team soon realized that search operations that returned
large lists were highly inefficient with entity beans since each object in the search list was
itself an entity bean. So, accessing a property in this entity bean resulted in a network trip
and in the marshaling and unmarshaling of the data. The team soon switched over to a
straight JDBC approach. The JDBC API was being used directly from the session beans to
execute SQL queries, as shown in Listing 5-1.

Listing 5-1. UnderwritingRemoteBean.java

public class UnderwritingRemoteBean implements SessionBean{

public List listPolicyByProductAndAgeLevel(String productCd, int age) throws

RemoteException {

String SQL = "SELECT POLICY_ID,PRODUCT_CODE, NAME, AGE FROM T_POLICY_DETAILS

WHERE PRODUCT_CODE = ? AND AGE > ? ";

List policyList = new ArrayList();

Connection conn = null;

PreparedStatement pstmt = null;

ResultSet rs = null;

try{

pstmt = conn.prepareStatement(SQL);

pstmt.setString(0, productCd);

pstmt.setInt(1, age);

rs = pstmt.executeQuery();

while(rs.next()){

policyList.add(new PolicyDetail(rs.getInt("POLICY_ID"),

rs.getString("NAME")

,rs.getString("NAME"),rs.getInt("AGE")));

}

}

catch(SQLException sqlex){

throw new RuntimeException(sqlex);

}

finally{

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS 181

if(rs!=null){

try {

rs.close();

} catch (SQLException ex) {

throw new RuntimeException(ex);

}

}

if(pstmt!=null){

try {

pstmt.close();

} catch (SQLException ex) {

throw new RuntimeException(ex);

}

}

if(conn!=null){

try {

conn.close();

} catch (SQLException ex) {

throw new RuntimeException(ex);

}

}

}

return policyList;

}

}

The mixed approach to persistence in eInsure (entity beans and straight JDBC) made
the business component vulnerable to change. As you can see in Listing 5-1, the direct
use of the JDBC API meant a lot of boilerplate code for establishing a connection, prepar-
ing SQL statements, setting parameters, executing the SQL, iterating over the result set to
prepare a list of Java objects, and finally releasing database resources. This last step is
critical and often neglected, causing connection leaks and resource wastage. If the
straight JDBC approach were used in all the DAO methods, it would result in significant
code duplication.

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS182

Forces

• You should prevent the unnecessary mixing of business logic with persistence
logic.

• The entity bean is an obsolete technology.

• The business tier required a consistent API to access integration tier components.

• Working directly with the JDBC API leads to a lot of boilerplate code being written,
thus degrading reusability and increasing development time.

Solution

Implement a data access object (DAO) to encapsulate the data access logic and provide a
consistent interface to the business tier components.

Strategies with the Spring Framework

As the name suggests, DAOs are generic objects and theoretically can support any kind
of persistence store. The primary goal of these classes is to abstract the underlying data
access mechanism from the business services. Since most applications interact with
RDBMSs, I will focus only on JDBC-based data access objects.

The Spring JDBC module implements robust object design principles that make it
simple to develop JDBC-based DAOs. It takes care of all the boilerplate code generally
associated with JDBC API usage and helps provide a consistent API for data access.

Application developers are no longer required to work directly with the JDBC API;
instead, they work with a high-level API.

Because eInsure had an affinity for Oracle owing to its legacy, the SQL syntax used in
the next few sections will be compatible with Oracle Database. But the general discussion
and concepts hold true for any database, and using them merely involves making minor
changes in the SQL statements. Listing 5-2 shows the Oracle script to create the
T_POLICY_DETAIL table and corresponding sequence.

Listing 5-2. createTbl_T_Policy_Detail.sql

CREATE table "T_POLICY_DETAIL" (

"POLICY_ID" NUMBER,

"PRODUCT_CD" VARCHAR2(20) NOT NULL,

"POLICY_HOLDER" VARCHAR2(150) NOT NULL,

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS 183

"AGE" NUMBER,

constraint "T_POLICY_DETAIL_PK" primary key ("POLICY_ID")

CREATE sequence "T_POLICY_DETAIL_SEQ"

/

The first step to building DAOs with Spring is to declare interfaces for the DAOs. This
follows program to interface (P2I), as described earlier, as an object design best practice.
It lays out a contract with the clients that deal with the concrete implementations only
through these interfaces. As a result, it is easy to swap or modify implementation classes.
Listing 5-3 shows the DAO interface for the policy details.

Listing 5-3. PolicyDetailDao.java

package com.apress.einusre.persistence.dao.api;

public interface PolicyDetailDao {

String SAVE_POLICY_DETAILS_SQL = " insert into T_POLICY_DETAIL

values(T_POLICY_DETAIL_SEQ.nextval,?,?,?)";

public void savePolicyDetails(String productCd, String name, int age);

}

Figure 5-1 shows the Spring JDBC support classes. Spring provides a convenient class
called JdbcDaoSupport to ease the development of JDBC-based DAO classes. This class is
associated with a data source and supplies the JdbcTemplate object for use in the DAO.

Figure 5-1. Class diagram: Spring JDBC support classes

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS184

JdbcTemplate is the most important class in the Spring JDBC DAO support. This class
implements the GOF Template Method design pattern. The Template Method pattern
defines the workflow or algorithm for a specific operation. It allows the subclasses to
modify certain steps without changing the algorithm’s core structure. JdbcTemplate con-
solidates all the common repeated code blocks typically associated with JDBC workflow.
As I will show later, the workflow defined by JdbcTemplate can be modified at appropriate
points to provide customized processing. Listing 5-4 shows the policy detail DAO imple-
mentation class.

Listing 5-4. PolicyDetailDaoImpl.java

package com.apress.einusre.persistence.dao.impl;

public class PolicyDetailDaoImpl extends JdbcDaoSupport implements PolicyDetailDao{

public void savePolicyDetails(String productCd,String name,int age) {

Object args [] = {productCd,name,new Integer(age)};

this.getJdbcTemplate().update(PolicyDetailDao.

SAVE_POLICY_DETAILS_SQL, args);

}

}

From the simplified code in Listing 5-4, it is clear that JdbcTemplate fosters reuse, and
this has resulted in a significant code reduction in the DAO implementation. The tight
coupling with the JDBC and collection packages (as in Listing 5-1) has been removed.
The leakage of JDBC resource is no longer a problem because JdbcTemplate methods
ensure that database resources are released in the proper sequence after they have been
used. In addition, you are not forced to handle exceptions while using Spring DAO. The
JdbcTemplate class handles the SQLException and rethrows a runtime exception because in
most cases it is not possible to recover from these database errors.

The DAO implementation will be injected into the application service used by the
session bean. Listing 5-5 shows the application service code.

Listing 5-5. UnderwritingApplicationServiceImpl.java

public class UnderwritingApplicationServiceImpl implements

UnderwritingApplicationService{

private PolicyDetailDao policyDetailDao;

public void underwriteNewPolicy(String productCd, String name, int age) {

//business rules - here

this.policyDetailDao.savePolicyDetails(productCd, name, age);

}

public PolicyDetailDao getPolicyDetailDao() {

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS 185

return policyDetailDao;

}

public void setPolicyDetailDao(PolicyDetailDao policyDetailDao) {

this.policyDetailDao = policyDetailDao;

}

}

Note that the session facade invokes the application service, which in turn calls the
DAO method. As a result, the DAO method automatically comes into the same transac-
tional scope as the session bean method. So, there is no need for any programmatic
transaction handling in the DAO.

The JdbcDaoSupport object needs a data source to connect to and execute the SQL
query. The data source object is generally registered in the application server’s JNDI. The
Spring service locator (explained in Chapter 4) will be used to look up the data source
from the JNDI and inject it into the JdbcDaoSupport object.

Finally, everything needs to be wired up by the configuration in the Spring applica-
tion context associated with the stateless session bean, as shown in Listing 5-6. I am
showing the application service and DAO in the same configuration so that you can
understand and visualize the coupling between the two. However, for modularity, it is
advised that you put them in separate configuration files.

Listing 5-6. Underwriting-service.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<bean id="uwrApplicationService"

class="com.apress.einsure.business.impl.➥

UnderwritingApplicationServiceImpl">

<property name="policyDetailDao" ref="policyDetailDao"/>

</bean>

<bean id="policyDetailDao"

class="com.apress.einusre.persistence.dao.impl.PolicyDetailDaoImpl"

>

<property name="dataSource" ref="datasource"/>

</bean>

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS186

<bean id="datasource" class="org.springframework.jndi.JndiObjectFactoryBean">

<property name="jndiName" value="einsureDatasource" />

<property name="jndiEnvironment">

<props>

<prop key="java.naming.factory.initial">

org.jnp.interfaces.NamingContextFactory

</prop>

<prop key="java.naming.provider.url">

jnp://localhost:1099

</prop>

<prop key="java.naming.factory.url.pkgs">

org.jboss.naming.client

</prop>

</props>

</property>

</bean>

</beans>

Using Bind Variables

The SQL query in Listings 5-1 and 5-3 uses positional bind variables denoted by ?, which
are static. Any change in the position of the bind variable will lead to a change in the
code that sets this variable value. In Listing 5-1, the arguments in the method call
PreparedStatement.setXXX will be affected. Similarly, in Listing 5-3, the position of the
array elements would have to be altered to accommodate the query change.

Spring JDBC provides a convenient solution to this with support for named bind
variables denoted by :variable_name. To use this feature, you should change the SQL
query as shown in Listing 5-7. Note that the signature of the savePolicyDetails method
has also changed, and it now takes a Map object as an argument.

Listing 5-7. PolicyDao.java

public interface PolicyDetailDao {

String SAVE_POLICY_DETAILS_SQL = " insert into T_POLICY_DETAIL

values(T_POLICY_DETAIL_SEQ.nextval,

:productCd,:name,:age)";

public void savePolicyDetails(Map policyDetailMap);

}

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS 187

Because the interface has changed, you will have to change the implementation as
well. To support named parameter bind variables, the implementation class inherits
from another convenient class called NamedParameterJdbcDaoSupport, as in Listing 5-8.

Listing 5-8. PolicyDaoImpl.java

public class PolicyDetailDaoImpl extends NamedParameterJdbcDaoSupport

implements PolicyDetailDao{

public void savePolicyDetails(Map policyDetailMap) {

this.getNamedParameterJdbcTemplate().update(SAVE_POLICY_DETAILS_SQL,

policyDetailMap);

}

}

It is noteworthy that our DAO code has shrunk even further. The Map object is impor-
tant in this case; the keys of the objects stored in the map must match those of the
named bind variables in the SQL. Hence, even if the positions of the parameters or bind
variables change in the SQL query string, the code does not break. This is a useful feature,
and it is quite feasible to pass a Map from the HttpServletRequest in the page controller all
the way down to the DAO. This would save a lot of effort because we no longer need to
develop and maintain form beans.

Spring DAO Callbacks

As we already know, JdbcTemplate implements the template design pattern. So, the
algorithm implemented by this class can be altered at suitable points by supplying cus-
tomized logic. In the examples discussed so far, I have allowed the template class to set
the JDBC bind variables for us. In some scenarios, you may be interested in controlling
the setting of these variables. One such case is when database-specific datatypes such as
Oracle’s XMLType are used. Listing 5-9 shows the modified DAO implementation class.

Listing 5-9. PolicyDaoImpl.java

public class PolicyDetailDaoImpl extends JdbcDaoSupport implements PolicyDetailDao{

public void savePolicyDetails(String productCd,String name,int age) {

this.getJdbcTemplate().update(PolicyDetailDao.SAVE_POLICY_DETAILS_SQL,

new SavePolicyPreparedStatementSetter(productCd,name,age));

}

}

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS188

As shown in Listing 5-9, I have used an overloaded version of the update method to
supply a prepared statement setter. The PreparedStatementSetter is a callback interface
used by Spring JDBC to set the bind variables in the SQL being submitted to the database
for processing. Note that the SQLException thrown by the setValues method will be han-
dled and converted to a runtime exception called DataAccessException by the framework.
Listing 5-10 shows the PreparedStatementSetter implementation class.

Listing 5-10. SavePolicyPreparedStatementSetter.java

public final class SavePolicyPreparedStatementSetter

implements PreparedStatementSetter{

private String productCd;

private String name;

private int age;

public SavePolicyPreparedStatementSetter(String productCd,String name,int age){

this.productCd = productCd;

this.name = name;

this.age = age;

}

public void setValues(PreparedStatement pstmt) throws SQLException {

pstmt.setString(0, productCd);

pstmt.setString(1, productCd);

pstmt.setInt(2, age);

}

}

I will now take a look at another case where all the policies for a given product code
need to be listed. As a first step, I’ll add a new method in the existing interface, as shown
in Listing 5-11.

Listing 5-11. PolicyDetailDao.java

public interface PolicyDetailDao {

//other SQL statements

String LIST_POLICY_BY_PRODUCT_SQL =

" select * from T_POLICY_DETAIL where PRODUCT_CD = ?";

//other methods

public List listPolicyByProductCode(String productCode);

}

Listing 5-12 shows the implementation of the new method.

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS 189

Listing 5-12. PolicyDetailDaoImpl.java

public class PolicyDetailDaoImpl extends JdbcDaoSupport implements PolicyDetailDao{

//other implementation methods

public List listPolicyByProductCode(String productCode) {

return this.getJdbcTemplate().queryForList

(PolicyDetailDao.LIST_POLICY_BY_PRODUCT_SQL,

new Object[]{productCode});

}

}

The queryForList method returns a list of Map objects representing each row of the
record fetched. The keys in this map object are the same as the retrieved column names
in the result set. This is a convenient solution, but passing and retrieving a Map object
would force the code to know the keys in the Map. Hence, you might have lots of constants
declared for the keys. But all of this will change if you rename any of the columns, leading
to changes in the constant file. A better approach would be to use a callback object to
retrieve the data from the result set and return a JavaBean. This callback object must
implement the RowMapper interface, as shown in Listing 5-13.

Listing 5-13. ListPolicyByProductRowMapper.java

public class ListPolicyByProductRowMapper implements RowMapper{

public Object mapRow(ResultSet rs, int rowCount) throws SQLException {

long policyId = rs.getLong(1);

String productCode = rs.getString(2);

String name = rs.getString(3);

int age = rs.getInt(4);

PolicyDetail policyDetail = new PolicyDetail(policyId,

productCode,name,age);

return policyDetail;

}

}

You should observe a few things in this row mapper callback object. The values in a
row are accessed using the positional index instead of the column name. This is more
effective in terms of performance, but changes in the position of the column in the row
will make the code vulnerable to change. You can use column names instead. The data
retrieved from the result set row is used to populate a JavaBean. Listing 5-14 shows the
JavaBean.

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS190

Listing 5-14. PolicyDetail.java

public class PolicyDetail implements Serializable {

private long policyId;

private String productCd;

private String name;

private int age;

public PolicyDetail() {

}

public PolicyDetailTo(long policyId, String productCd, String name, int age) {

this.policyId = policyId;

this.productCd = productCd;

this.name = name;

this.age = age;

}

public int getAge() {

return age;

}

public void setAge(int age) {

this.age = age;

}

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

public long getPolicyId() {

return policyId;

}

public void setPolicyId(long policyId) {

this.policyId = policyId;

}

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS 191

public String getProductCd() {

return productCd;

}

public void setProductCd(String productCd) {

this.productCd = productCd;

}

}

As I mentioned at the start of this chapter, more and more Java EE applications are
switching to ORM instead of the straight JDBC approach. Although Spring JDBC simpli-
fies things to a great extent, there are certain scenarios where you are better served by
ORM. ORMs are better suited to provide POJO persistence. They provide an OO way to
access the RDBMS. ORM is most useful for applications such as eInsure that need to be
portable across a variety of databases. The Spring ORM module provides extensive sup-
port to integrate with all leading ORM solutions such as Hibernate, TopLink, JPOX, and
OpenJPA. In the next few sections, I will take you on a tour of using Hibernate 3 with
Spring ORM. For this discussion, I assume you are familiar with Hibernate. If you are new
to Hibernate, you can take a look at the product documentation at http://www.
hibernate.org.

The first step to using Hibernate with Spring ORM is to set up the Hibernate
SessionFactory with a data source, as shown in Listing 5-15. SessionFactory is responsible
for creating session objects. You can think of sessions as abstractions of the underlying
database connection.

Listing 5-15. UnderwritingDao-config.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<bean id="datasource" class="org.springframework.jndi.JndiObjectFactoryBean">

<property name="jndiName" value="einsureDatasource" />

<property name="jndiEnvironment">

<props>

<prop key="java.naming.factory.initial">

org.jnp.interfaces.NamingContextFactory

</prop>

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS192

<prop key="java.naming.provider.url">

jnp://localhost:1099

</prop>

<prop key="java.naming.factory.url.pkgs">

org.jboss.naming.client

</prop>

</props>

</property>

</bean>

<bean id="hibernateSessionFactory"

class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">

<property name="dataSource" ref="dataSource"/>

<property name="mappingResources">

<list>

<value>policydetail.hbm.xml</value>

</list>

</property>

<property name="hibernateProperties">

<value>

hibernate.dialect= org.hibernate.dialect.Oracle9Dialect

</value>

</property>

</bean>

</beans>

LocalSessionFactoryBean is a factory bean that creates a Hibernate SessionFactory
from the supplied configuration parameters and data source object. Note that Hibernate
ORM knows all about the PolicyDetail POJO from the mapping resource policydetail.
hbm.xml. Since I intend to support Oracle Database for now, I have configured
Oracle9Dialect. Thus, switching to another database is just a matter of configuration.
You will need to change your data source configuration and the dialect used by
SessionFactory.

It is not advisable to directly expose the ORM persistence API to the business tier
objects. I will use the DAO to wrap the underlying ORM access. Spring ORM provides the
convenience base class HibernateDaoSupport just for this purpose. Listing 5-16 shows the
modified PolicyDetailDaoImpl from Listing 5-12.

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS 193

Listing 5-16. PolicyDetailDaoImpl.java

public class PolicyDetailDaoImpl extends HibernateDaoSupport

implements PolicyDetailDao{

public List listPolicyByProductCode(String productCode) {

return getHibernateTemplate().find("from ProductDetail where

productCode = ?", productCode);

}

//other methods

}

The getHibernateTempate method of HibernateDaoSupport supplies a HibernateTemplate
object. This is similar to the JdbcTemplate class. It also implements the GOF Template
Method design pattern and carries out the workflow associated with the Hibernate ORM
to interact with the RDBMS. It is important to note here that, even if you have changed
the underlying ORM persistence implementation, the business tier code will be unaf-
fected. This is because the business tier objects access the DAOs using interfaces. Thus,
you have seen the value of P2I.

Consequences

Benefits

• The high-level Spring JDBC API makes it easy to access relational databases.

• Spring JDBC implements the boilerplate low-level code, resource management,
and exception handling. The result is a significant reduction in code and hence
development effort.

• The use of named parameter support makes application code more robust.

• Spring-based DAOs provide a consistent interface to the business tier for data
access.

Concerns

• There is a significant learning curve to start off, even though the API is concise.

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS194

Procedure Access Object

Problem

A customer of eInsure had a two-tier thick client lead management application. eInsure
had to integrate with this existing two-tier application. The lead management application
heavily used legacy stored procedures running on Oracle Database. The stored proce-
dures contained both business logic and persistence logic. It was not possible to reuse
the UI, which was built with Visual Basic. Because the integration had to be completed in
a short time period, it was not possible to port the business logic to Java components.
Moreover, eInsure was not allowed direct access to the database tables of the lead
management application.

The legacy version of eInsure had also left behind several stored procedures that
were accessed using straight JDBC. But as you saw with DAO, this involves a lot of code
redundancy. The mixing of persistence logic with business logic made the business tier a
regular candidate for change. The stored procedure can directly subscribe to the transac-
tional services provided by the RDBMS. This makes it difficult for the application server
to manage distributed transactions. This often leads to bugs that are hard to detect and
fix. Using stored procedures limits portability options. In other words, a lot of code
changes are required to support the same application on a different RDBMS.

Forces

• Accessing a stored procedure from a session facade using the JDBC API causes an
intermingling of persistence logic with application services.

• Invoking a stored procedure involves lots of low-level programming against the
JDBC API.

• Stored procedure access with a low-level JDBC API results in a lot of code
duplication.

• Stored procedures make it difficult to apply system services such as transactions.

Solution

Use a procedure access object (PAO) to invoke stored procedures without directly interact-
ing with a low-level JDBC API.

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS 195

Strategies with the Spring Framework

Spring JDBC provides the convenient abstract class StoredProcedure to execute stored
procedures. This class, like other support classes in Spring JDBC, implements the GOF
Template Design pattern and provides an OO abstraction of a stored procedure. With this
class, it is possible to perform stored procedure operations such as setting input and out-
put variables, using database-specific datatypes, and returning cursors. This specific
class extends from the SqlCall class, which can be used to model the execution of any
stored procedure and function. The root of the SqlCall class is the RdbmsOperation, which
can be used to model any database-specific operation such as a SQL query to retrieve
results, update or delete records, and invoke stored procedures. Figure 5-2 shows the
class diagram of the stored procedure support classes.

Figure 5-2. Class diagram: Spring stored procedure support classes

To explore Spring JDBC’s support for stored procedure, I will show the case when
lead information has to be saved into the database. Listing 5-17 shows the simplified sig-
nature of the stored procedure. This stored procedure is used to create a new lead in the
database. It accepts the lead name and country as input and outputs the lead ID, which is
the primary key in the database and generated by a sequence.

Listing 5-17. Stored Procedure Signature

SaveNewLead (:pLeadId OUT NUMBER,:pName IN VARCHAR2,:pCountryCd VARCHAR2)

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS196

Procedure access objects are similar to data access objects. They wrap the execution
of a single stored procedure. Listing 5-18 shows the PAO to save information about a new
lead.

Listing 5-18. SaveNewLeadPao.java

public class SaveNewLeadPao extends StoredProcedure{

public SaveNewLeadPao(){

declareParameter(new SqlOutParameter("pLeadId", Types.INTEGER));

declareParameter(new SqlParameter("pName", Types.VARCHAR));

declareParameter(new SqlParameter("pCountryCd", Types.VARCHAR));

}

public Map execute(Map inParamMap){

return super.execute(inParamMap);

}

}

The declareParameter method needs to be called in the exact order in which the
parameters are declared in the stored procedure. The stored procedure abstraction sup-
ports input as well as output variables. The procedure execute is triggered by the execute
method, which accepts a Map argument. This Map object contains the input values to be
passed to the stored procedure. The keys of this Map are the same as the stored procedure
input parameter names. The execute method in the SaveNewLeadPao subclass delegates to
the superclass execute method. The execute method returns a Map as output. The output
map contains results returned from the database. The keys of this map are the same
declared output parameter names of the stored procedure.

The application service is the client of the PAO. Everything can be configured in the
Spring configuration as in Listing 5-19.

Listing 5-19. underwriting-service.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"

>

<bean id="uwrApplicationService"

class="com.apress.einsure.business.impl.➥

UnderwritingApplicationServiceImpl">

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS 197

<property name="policyDetailDao" ref="policyDetailDao"/>

</bean>

<bean id="policyDetailDao"

class="com.apress.einusre.persistence.dao.impl.PolicyDetailDaoImpl"

>

<property name="dataSource" ref="datasource"/>

</bean>

<bean id="datasource" class="org.springframework.jndi.JndiObjectFactoryBean">

<property name="jndiName" value="einsureDatasource" />

<property name="jndiEnvironment">

<props>

<prop key="java.naming.factory.initial">

org.jnp.interfaces.NamingContextFactory

</prop>

<prop key="java.naming.provider.url">

jnp://localhost:1099

</prop>

<prop key="java.naming.factory.url.pkgs">

org.jboss.naming.client

</prop>

</props>

</property>

</bean>

<bean id="leadApplicationService"

class="com.apress.einsure.business.impl.➥

LeadManagementApplicationServiceImpl">

<property name="savelLeadPao" ref="savelLeadPao"/>

</bean>

<bean id="savelLeadPao"

class="com.apress.einsure.persistence.pao.SaveNewLeadPao">

<property name="dataSource" ref="datasource"/>

</bean>

</beans>

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS198

Consequences

Benefits

• The high-level API provided by Spring JDBC makes it easy to access legacy stored
procedures.

• PAO promotes object orientation and minimizes code redundancy.

• PAO manages the boilerplate low-level code and resource management.

Concerns

• Using legacy stored procedures limits application portability.

• It has difficult-to-manage system services such as transaction, security, and so on.

• Invoking a stored procedure running on a remote database server comes with all
the baggage associated with remote procedure calls. So, this can have a possible
adverse effect on performance.

Service Activator

Problem

Like most enterprise applications, eInsure also had to support reports. Reports provide
valuable insights into the state of the business. In eInsure, for example, there were
reports to find out how many policies have been sold per product over a period, how
many premium collections over a period of time, the number of new leads in the month
of January, and so on. The contents and number of reports varied with the needs of the
customer.

eInsure supported two types of reports: scheduled and user generated. The sched-
uled reports were triggered by schedulers like Unix CRON after certain intervals. An
example of a scheduled report is the monthly premium collection report. The user-
generated reports were triggered by the users of the eInsure application from their
browser. A user would typically select a report, supply the necessary inputs, and start
the report generation.

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS 199

This synchronous report generation strategy was found wanting in some midsize to
large companies where eInsure was installed. As these companies used this application
to add new products, policies, parties, and claims, the data volume increased at a rapid
pace. This led to frustrating user experiences because the synchronous reports mostly
timed out with the large data volume. The users were already frustrated because of the
blocking nature of the synchronous reports. Most reports generated large data sets, and
transferring this data from the database to the application server and subsequently to the
client browser clogged the network.

Forces

• Applications need to support long-running use cases.

• It is necessary to execute the business services asynchronously.

• Long-running operations should not block users.

Solution

Use a service activator to receive and carry out an asynchronous service request.

Strategies with the Spring Framework

You can solve the blocking problem discussed earlier by allowing the actual report gener-
ation service request to be handled asynchronously. JMS message listeners can be
applied to process this business request asynchronously. However, a more robust
approach would be to use a message-driven bean (MDB). This is because MDBs combine
the asynchronous behavior of the message listener with services provided by the EJB
container.

Spring provides support for building MDBs as well as sending messages to a JMS
queue or topic. Just like stateless session beans, Spring also provides convenient base
classes to develop MDBs, as shown in Figure 5-3. The root of the class hierarchy is the
AbstractEnterpriseBean class, which can be used to load a Spring application context.

The subclass AbstractMessageDrivenBean is the convenient class for developing MDBs.
The setMessageDrivenContext is used to save the MessageDrivenContext object supplied by
the EJB container. The subclasses can override the onEjbCreate method for the initializing
or loading of any bean from the Spring application context associated with the MDB. The
AbstractJmsMessageDrivenBean implements the MessageListener interface, thus making
MDBs compatible with JMS messages.

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS200

Figure 5-3. Class diagram: Spring MDB support

Listing 5-20 shows the MDB used in the eInsure reporting subsystem. MDB develop-
ment is less cumbersome compared to SLSB because you don’t have home and remote
interfaces.

Listing 5-20. ReportingMDB.java

public class ReportingMDB extends AbstractJmsMessageDrivenBean {

protected void onEjbCreate() {

//initialize application service components from Spring bean factory

}

public void onMessage(Message msg) {

//handle business request here – report generations

}

}

Figure 5-4 shows the message sequence of message flow as the EJB container invokes
the MDB. The client that triggered the asynchronous processing returns just after send-
ing the message to the queue. Once the message arrives in a queue, the EJB container
delegates the processing to an MDB instance by invoking the onMessage method. This
method can be utilized to invoke a POJO service component for report generation.

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS 201

Figure 5-4. Sequence diagram: Spring MDB execution

Listing 5-21 shows the deployment descriptor for the MDB.

Listing 5-21. ejb-jar.xml

<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar version="2.1" xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd">

<enterprise-beans>

<message-driven>

<display-name>ReportingMDB</display-name>

<ejb-name>ReportingMDB</ejb-name>

<ejb-class>com.apress.einsure.reports.aysync.activator.ReportingMDB

</ejb-class>

<transaction-type>Container</transaction-type>

<env-entry>

<env-entry-name>ejb/BeanFactoryPath</env-entry-name>

<env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>com/apress/einsure/reports/aysync/activator➥

/Reporting-beans.xml</env-entry-value>

</env-entry>

<message-destination-type>javax.jms.Queue</message-destination-type>

<message-destination-link>reportQ</message-destination-link>

<activation-config>

<activation-config-property>

<activation-config-property-name>

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS202

acknowledgeMode</activation-config-property-name>

<activation-config-property-value>

Auto-acknowledge</activation-config-property-value>

</activation-config-property>

<activation-config-property>

<activation-config-property-name>

destinationType</activation-config-property-name>

<activation-config-property-value>

javax.jms.Queue</activation-config-property-value>

</activation-config-property>

</activation-config>

</message-driven>

</enterprise-beans>

<assembly-descriptor>

<container-transaction>

<method>

<ejb-name>ReportingMDB</ejb-name>

<method-name>*</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

<message-destination>

<display-name>Destination for ReportingMDB</display-name>

<message-destination-name>reportQ</message-destination-name>

</message-destination>

</assembly-descriptor>

</ejb-jar>

To deploy this EJB, you also need a JBoss-specific deployment descriptor declaring
the JNDI name of the JMS queue, as shown in Listing 5-22.

Listing 5-22. jboss.xml

<?xml version="1.0" encoding="UTF-8"?>

<jboss>

<enterprise-beans>

<message-driven>

<ejb-name>ReportingMDB</ejb-name>

<destination-jndi-name>queue/reportQ</destination-jndi-name>

</message-driven>

</enterprise-beans>

</jboss>

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS 203

The ReportingMDB has a Spring application context associated with it. It uses the
beans registered in this application context to carry out long-running report generation
tasks. This Spring application context is configured as shown in Listing 5-23.

Listing 5-23. Reporting-beans.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"

>

<bean name="reportServiceProvider"

class="net.sf.reporting.ReportServiceProviderImpl">

</bean>

</beans>

So far, I have explained the server-side Java components and configuration. Now I
will focus on the client that triggers the asynchronous report processing. Spring provides
the JmsTemplate class to simplify the process of sending JMS messages. It is also based on
the GOF Template Method design pattern. To use this class, you will need to configure it
in the Spring application context and inject the JNDI bound ConnectionFactory and
Destination objects. This is shown in Listing 5-24.

Listing 5-24. insurance-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<bean id="qConnectionFactory"

class="org.springframework.jndi.JndiObjectFactoryBean">

<property name="jndiName" value="ConnectionFactory" />

<property name="jndiEnvironment">

<props>

<prop key="java.naming.factory.initial">

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS204

org.jnp.interfaces.NamingContextFactory

</prop>

<prop key="java.naming.provider.url">

jnp://localhost:1099

</prop>

<prop key="java.naming.factory.url.pkgs">

org.jboss.naming.client

</prop>

</props>

</property>

</bean>

<bean id="qReport" class="org.springframework.jndi.JndiObjectFactoryBean">

<property name="jndiName" value="queue/reportQ" />

<property name="jndiEnvironment">

<props>

<prop key="java.naming.factory.initial">

org.jnp.interfaces.NamingContextFactory

</prop>

<prop key="java.naming.provider.url">

jnp://localhost:1099

</prop>

<prop key="java.naming.factory.url.pkgs">

org.jboss.naming.client

</prop>

</props>

</property>

</bean>

<bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate" >

<property name="connectionFactory" ref="qConnectionFactory"/>

<property name="defaultDestination" ref="qReport"/>

</bean>

<bean id="reportingDelegate"

class="com.apress.insurance.view.delegate.impl.ReportingDelegateImpl">

<property name="jmsTemplate" ref="jmsTemplate" />

</bean>

</beans>

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS 205

The JmsTemplate is finally injected into the ReportingDelegate, which is invoked by the
page controller that handles the report generation request. The implementation class
ReportingDelegateImpl follows the Business Delegate pattern and handles the JMS-related
details, as shown in Listing 5-25.

Listing 5-25. ReportingDelegateImpl.java

public class ReportingDelegateImpl implements ReportingDelegate{

private JmsTemplate jmsTemplate;

public long triggerReportGeneration(Map reportDataMap) {

long reportId = ReportUtil.generateReportId(reportDataMap);

this.jmsTemplate.send(new ReportMessageCreatorImpl(reportDataMap));

return reportId;

}

public void setJmsTemplate(JmsTemplate jmsTemplate) {

this.jmsTemplate = jmsTemplate;

}

}

The report ID is passed to the page controller so that it can display this token to the
user for future reference. The user can search with this ID to find the status of the report
generation that he has triggered. Note that I have also altered the workflow of the
JmsTemplate class by passing a custom implementation of the MessageCreator interface in
the form of ReportMessageCreatorImpl, as shown in Listing 5-26. This class is responsible
for transforming the incoming message into a form compatible with the JMS API.

Listing 5-26. ReportMessageCreatorImpl.java

public class ReportMessageCreatorImpl implements MessageCreator{

private Map reportData;

public ReportMessageCreatorImpl(Map reportData){

this.reportData = reportData;

}

public Message createMessage(Session jmsSession) throws JMSException {

MapMessage message = jmsSession.createMapMessage();

message.setObject("REPORT_DATA", reportData.get("REPORT_DATA"));

return message;

}

}

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS206

There are different strategies for sending the final response to the user who
requested the report. The asynchronous reports in eInsure generally fetched records
from the RDBMS based on certain criteria, applied formatting (such as date and cur-
rency), and saved this data as files of various formats, including Microsoft Word, PDF,
Microsoft Excel, and so on. When the report file generation was complete, the users were
informed about it by e-mail.

Message-Driven POJO

With Spring, it is possible to support asynchronous message listeners even without any
application server or JMS provider. In fact, it is possible to turn any POJO class into a
message listener—a so-called message-driven POJO (MDP)—without any EJB container
support. The MDPs are registered in Spring message listener containers. The message lis-
tener containers receive messages from a JMS queue and invoke the registered MDPs.

Listing 5-27 shows the MDP. It is independent of any framework-specific interfaces
or abstract classes. Since the message listener is a mere POJO, it is not possible for
Spring to determine which method to invoke when a message arrives in the queue. The
MessageListenerAdapter handles this.

Listing 5-27. ReportMessageListener.java

public class ReportMessageListener {

private void processReport(Map reportParams){

//generate reports

}

}

The message listener container is started when the Spring application container is
initialized and started. You will also need to register the message listener. This can be
done with the configuration, as shown in Listing 5-28.

Listing 5-28. insurance-config.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

"

>

<!—the other beans -->

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS 207

<bean id="messageListener"

class="com.apress.einsure.report.async.messagelistener.ReportMessageListener" />

<!-- this is the Message Driven POJO (MDP) -->

<bean id="messageListener"

class="org.springframework.jms.listener.adapter.MessageListenerAdapter">

<constructor-arg>

<bean class=" com.apress.einsure.report.async.messagelistener.➥

ReportMessageListener "/>

</constructor-arg>

</bean>

<!-- and this is the message listener container -->

<bean id="jmsContainer"

class="org.springframework.jms.listener.DefaultMessageListenerContainer">

<property name="connectionFactory" ref="qConnectionFactory"/>

<property name="destination" ref="qReport"/>

<property name="messageListener" ref="messageListener" />

</bean>

</beans>

Note that in this configuration you have enlisted the message listener adapter
with the container. This adapter knows how to execute the message-driven POJO.
DefaultMessageListenerContainer is the most widely used message listener container.

Consequences

Benefits

• You get robust support for asynchronous service processing both in the applica-
tion server and in the Spring IOC container.

• The clients that access the asynchronous services are easy to develop.

• Spring-based MDBs form the backbone for JMS-based integration with external
systems.

• Since the request is being processed asynchronously, the users are not blocked for
long-running tasks.

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS208

Concerns

• The Spring MDP is easy to develop and use but is not based on Java EE standard
specifications. Using the MDP and Spring message container may not be suitable
for large-scale enterprise requirements.

Web Service Broker

Problem

Generating policy quotations was one very important service provided by the eInsure
application. This service would accept the bare minimum information: the policy
amount, the number of years of coverage (the “term”), the frequency of premiums, and,
of course, the insurance product against which the policy is underwritten. Given these
inputs, the output would be the tentative premium to be paid by the client.

This service was available in the online eInsure application and was used heavily
at the counters by the underwriters and support executives. However, the partners,
resellers, and agents of the company using eInsure but without direct access to the appli-
cation also wanted to use this functionality. There were others like the affiliates who
wanted to integrate only this functionality into their utility web sites as widgets. The pol-
icy quotation service was accessible remotely through a session facade. However, the
actual functionality was implemented as a POJO application service. Most of these exter-
nal applications were running on PHP, and others were running on the Microsoft .NET
platform. It is possible to have a non-Java client for EJB, but this was not within the skill
set of the team developing those external applications. In such situations, an alternative
is to expose these services in a technology- or platform-independent manner. Web serv-
ices are a perfect solution. Exposing the policy quote function as a web service would
enable any external application to consume it without being inhibited by technology
barriers.

Forces

• It is required to expose internal services to external clients.

• The services should be exposed in a technology-neutral way.

• Open standards are preferred for exposing services while integrating with external
systems.

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS 209

Solution

Use a web service broker to expose business services to external clients based on open
web-based standards.

Strategies with the Spring Framework

Web services generally involve information exchange between two applications using
XML messages. These XML messages follow a standard called Simple Object Access Pro-
tocol (SOAP). The operations provided by the web service are described in a Web Service
Description Language (WSDL) file. The XML SOAP messages can be transported over
several network protocols such as HTTP, SMTP, and JMS. However, I will cover only HTTP
as the transport protocol.

Web Services with JAX-RPC

JAX-RPC is one of the most popular and simple mechanisms for developing web services
in Java. It can be used to create SOAP-based services called endpoints. The Spring con-
venience base class ServletEndpointSupport makes it simple to develop endpoints. This
class is useful since it provides access to the Spring application context, as well as acts as
the first point of contact in a web service. In this section, I will try to expose the policy
quotation service utilizing the Spring Framework and the Apache Axis web services
framework. Apache Axis provides a full SOAP-based JAX RPC implementation.

The first step in the development of a JAX RPC-based web service with Spring is to
define the service interface as in Listing 5-29. In this case, I will use the same
PolicyQuoteApplicationService implemented by the application service.

Listing 5-29. PolicyQuoteApplicationService.java

public interface PolicyQuoteApplicationService {

public String BEAN_KEY = "policyQuoteApplicationService";

public double calculatePolicyQuote(String productCd,int age,

double sumAssured,int term);

}

The next step is to implement the endpoint class as in Listing 5-30. This endpoint
will implement the service interface, but the implementation methods delegate to the
actual application service.

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS210

Listing 5-30. PolicyQuoteServiceEndpoint.java

public class PolicyQuoteServiceEndpoint extends ServletEndpointSupport

implements PolicyQuoteApplicationService{

private PolicyQuoteApplicationService policyQuoteService;

protected void onInit() {

this.policyQuoteService = (PolicyQuoteApplicationService)

getWebApplicationContext().

getBean(PolicyQuoteApplicationService.BEAN_KEY);

}

public double calculatePolicyQuote(String productCd, int age,

double sumAssured, int term) {

return policyQuoteService.calculatePolicyQuote(productCd, age,

sumAssured, term);

}

}

The key thing in this listing is that the endpoint class provides access to the Spring
application context. The onInit method was overridden to get hold of the application
service object.

Since I am trying to expose this service over HTTP using SOAP messages, the Axis
servlet has to be configured with the web container. This servlet plays a critical role in
coordinating web service calls from the external clients and then delivering them to the
endpoint. It also takes care of mapping SOAP messages to the appropriate endpoint
methods, as well as returning the values from the methods as SOAP responses. It is
responsible for creating the WSDL file, which is used by the clients to access the policy
quote web service. The Axis servlet is registered with the web container like any other
servlet, as shown in Listing 5-31. It is advisable to deploy the web service as a separate
web application for modularity and ease of maintenance.

Listing 5-31. web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS 211

<listener>

<listener-class>org.springframework.web.context.➥

ContextLoaderListener</listener-class>

</listener>

<servlet>

<servlet-name>axis</servlet-name>

<servlet-class>org.apache.axis.transport.http.AxisServlet</servlet-class>

<!--<load-on-startup>1</load-on-startup>-->

</servlet>

<servlet-mapping>

<servlet-name>axis</servlet-name>

<url-pattern>/axis/*</url-pattern>

</servlet-mapping>

</web-app>

The Axis servlet also requires a deployment descriptor to determine the services that
should be exposed on the service interface to external clients. Listing 5-32 shows the
deployment descriptor.

Listing 5-32. server-config.wsdd

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="http://xml.apache.org/axis/wsdd/"

xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

<globalConfiguration>

<parameter name="adminPassword" value="admin"/>

<parameter name="sendXsiTypes" value="true"/>

<parameter name="sendMultiRefs" value="true"/>

<parameter name="sendXMLDeclaration" value="true"/>

<parameter name="axis.sendMinimizedElements" value="true"/>

<requestFlow>

<handler type="java:org.apache.axis.handlers.JWSHandler">

<parameter name="scope" value="session"/>

</handler>

<handler type="java:org.apache.axis.handlers.JWSHandler">

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS212

<parameter name="scope" value="request"/>

<parameter name="extension" value=".jwr"/>

</handler>

</requestFlow>

</globalConfiguration>

<handler name="Authenticate"

type="java:org.apache.axis.handlers.SimpleAuthenticationHandler"/>

<handler name="LocalResponder"

type="java:org.apache.axis.transport.local.LocalResponder"/>

<handler name="URLMapper" type="java:org.apache.axis.handlers.http.URLMapper"/>

<service name="AdminService" provider="java:MSG">

<parameter name="allowedMethods" value="AdminService"/>

<parameter name="enableRemoteAdmin" value="false"/>

<parameter name="className" value="org.apache.axis.utils.Admin"/>

<namespace>http://xml.apache.org/axis/wsdd/</namespace>

</service>

<service name="PolicyQuoteService" provider="java:RPC">

<parameter name="allowedMethods" value="*"/>

<parameter name="className"

value="com.apress.einsure.business.external.➥

PolicyQuoteServiceEndpoint"/> </service>

<service name="Version" provider="java:RPC">

<parameter name="allowedMethods" value="getVersion"/>

<parameter name="className" value="org.apache.axis.Version"/>

</service>

<transport name="http">

<requestFlow>

<handler type="URLMapper"/>

<handler type="java:org.apache.axis.handlers.http.HTTPAuthHandler"/>

</requestFlow>

</transport>

<transport name="local">

<responseFlow>

<handler type="LocalResponder"/>

</responseFlow>

</transport>

</deployment>

The application service now needs to be accessible from the Axis servlet-managed
endpoint objects. To achieve this goal, the application services need to be configured in
the root web application context started by the context loader listener. This servlet

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS 213

listener loads the beans defined in WEB-INF/applicationContext.xml and binds them to the
root application context associated with the web application. Listing 5-33 shows this.

Listing 5-33. applicationContext.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"

>

<bean name="policyQuoteApplicationService" class="com.apress.einsure.➥

business.impl.PolicyQuoteApplicationServiceImpl" />

</beans>

Finally, Listing 5-34 shows the actual application service implementation class.

Listing 5-34. PolicyQuoteApplicationServiceImpl.java

public class PolicyQuoteApplicationServiceImpl implements

PolicyQuoteApplicationService{

public double calculatePolicyQuote(String productCd, int age,

double sumAssured, int term) {

//return calculated policy value

}

}

Now that the server-side components are ready, I will show how to build a sample
client to access the web service. As explained in Chapter 4, I will use a business delegate
because it is the most appropriate component to deal with remote services. Listing 5-35
shows the business delegate to invoke methods on the remote policy quote service.

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS214

Listing 5-35. PolicyQuoteBusinessDelegateImpl.java

public class PolicyQuoteBusinessDelegateImpl implements

PolicyQuoteBusinessDelegate {

private PolicyQuoteApplicationService service;

public void calculatePolicyQuote(){

this.service.calculatePolicyQuote("GNLIFE", 12, 1000, 10);

}

public PolicyQuoteApplicationService getService() {

return service;

}

public void setService(PolicyQuoteApplicationService service) {

this.service = service;

}

}

Now you can wire up everything in the Spring configuration file, as shown in
Listing 5-36.

Listing 5-36. springws-config.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"

>

<bean name="policyQuoteDelegate"

class="com.xpress.channel.PolicyQuoteBusinessDelegate" >

<property name="businessService"

ref="policyQuoteWebService" />

</bean>

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS 215

<bean id="policyQuoteWebService"

class="org.springframework.remoting.jaxrpc.➥

JaxRpcPortProxyFactoryBean" >

<property name="serviceInterface"

value="com.apress.einsure.business.api

.PolicyQuoteApplicationService"/>

<property name="wsdlDocumentUrl" value="http://localhost:7001/

eInsureWeb/axis/PolicyQuoteService?wsdl"/>

<property name="namespaceUri"

value="http://localhost:7001/eInsureWeb/axis/PolicyQuoteService"/>

<property name="serviceName" value="PolicyQuoteService"/>

<property name="portName" value="PolicyQuoteService"/>

<property name="serviceFactoryClass"

value="org.apache.axis.client.ServiceFactory" />

</bean>

</beans>

You can see from Listing 5-36, the Spring Framework uses a factory bean:
JaxRpcPortProxyFactoryBean. This class finds the web service from the web service registry.
It returns a proxy object implementing the business service interface. Finally, I will put
the business delegate into action from a stand-alone Java client, as shown in Listing 5-37.

Listing 5-37. PolicyQuoteClient.java

public class PolicyQuoteClient {

public static void main(String[] args) throws ServiceException, AxisFault {

accessViaSpringClient();

accessViaNonSpringClient();

}

}

public static void accessViaSpringClient() {

String configFile = "com/xpress/channel/springws-config.xml";

ApplicationContext ctx = new ClassPathXmlApplicationContext(configFile);

PolicyQuoteBusinessDelegate delegate = (PolicyQuoteBusinessDelegate)

ctx.getBean("policyQuoteDelegate");

delegate.execute();

}

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS216

public static void accessViaNonSpringClient() {

try {

URL url = new URL("http://localhost:7001/eInsureWeb/axis/➥

PolicyQuoteService");

Service service = new Service();

Call call = (Call) service.createCall();

call.setTargetEndpointAddress(url);

call.invoke("calculatePolicyQuote", new Object[]{"ff",1,2.5,4});

} catch (MalformedURLException ex) {

throw new RuntimeException(ex);

}

}

Remoting with Burlap

Spring provides some alternative remoting strategies for exposing services over HTTP.
One such alternative is its support for the Burlap and Hessian remoting protocols from
Caucho. Hessian supports binary data exchange over HTTP. I will concentrate on Burlap,
which allows simple text and XML-based data transfer. It is just a matter of configuration
to export a Spring service for access through the Burlap protocol. To do that, I will need to
ensure that the dispatcher servlet handles Burlap remoting. This requires some alteration
in the web application configuration file, as shown in Listing 5-38.

Listing 5-38. web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

<servlet>

<servlet-name>insurance</servlet-name>

<servlet-class>

org.springframework.web.servlet.DispatcherServlet

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS 217

</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>insurance</servlet-name>

<url-pattern>*.do</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>insurance</servlet-name>

<url-pattern>/remoting/*</url-pattern>

</servlet-mapping>

<welcome-file-list>

<welcome-file>WEB-INF/jsp/index.jsp</welcome-file>

</welcome-file-list>

<jsp-config>

<taglib>

<taglib-uri>/spring</taglib-uri>

<taglib-location>

/WEB-INF/tld/spring-form.tld

</taglib-location>

</taglib>

<taglib>

<taglib-uri>sitemesh-page</taglib-uri>

<taglib-location>

/WEB-INF/tld/sitemesh-page.tld

</taglib-location>

</taglib>

<taglib>

<taglib-uri>sitemesh-decorator</taglib-uri>

<taglib-location>

/WEB-INF/tld/sitemesh-decorator.tld

</taglib-location>

</taglib>

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS218

</jsp-config>

</web-app>

The next step is the most important because we export the POJO-based policy quota-
tion service as a Burlap remote service. Again, this can be done with mere configuration,
as in Listing 5-39. In this case, the BurlapServiceExporter acts as the service endpoint.

Listing 5-39. insurance-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

"

>

<bean name="policyQuoteServiceImpl"

class="com.apress.einsure.business.impl.➥

PolicyQuoteApplicationServiceImpl">

</bean>

<bean name="/PolicyQuoteService" class="org.springframework.remoting.caucho.➥

BurlapServiceExporter">

<property name="service" ref="policyQuoteServiceImpl"/>

<property name="serviceInterface" value="com.apress.einsure.business.➥

api.PolicyQuoteApplicationService"/>

</bean>

</beans>

Now that I have exposed the policy quote service using Burlap remoting, it’s time to
focus on the client. Once more you will just need to configure a proxy factory bean, and
that’s more or less all there is to it, as shown in Listing 5-40.

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS 219

Listing 5-40. springburlap-config.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"

>

<bean name="policyQuoteDelegate"

class="com.xpress.channel.PolicyQuoteBusinessDelegate" >

<property name="service"

ref="policyQuoteBurlapService" />

</bean>

<bean id="policyQuoteBurlapService"

class="org.springframework.remoting.caucho.BurlapProxyFactoryBean">

<property name="serviceUrl"

value="http://localhost:7001/eInsureWeb/remoting/PolicyQuoteService"/>

<property name="serviceInterface"

value="com.apress.einsure.business.api.PolicyQuoteApplicationService"/>

</bean>

</beans>

It is important to note that since I have used a proxy object with P2I, the business
delegate does not need to change. Last but not least, Listing 5-41 shows the stand-alone
client.

Listing 5-41. PolicyQuoteBurlapClient.java

public class PolicyQuoteBurlapClient {

public static void main(String[] args) {

accessViaSpringClient();

}

public static void accessViaSpringClient() {

String configFile = "com/xpress/channel/springburlap-config.xml";

ApplicationContext ctx = new ClassPathXmlApplicationContext(configFile);

PolicyQuoteBusinessDelegate delegate =

(PolicyQuoteBusinessDelegate) ctx.getBean("policyQuoteDelegate");

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS220

delegate.execute();

}

}

Consequences

Benefits

• It is easy to expose existing POJO services through a variety of remoting options.

• It is easy to develop Spring-based clients for remote web services.

• Technology- and platform-independent service access can be accomplished using
web services.

• Existing services can now participate in a bigger integration scenario.

Concerns

• Burlap-Hessian is nonstandard with respect to JAX-RPC and JAX-WS.

• Accessing services over the network can have adverse effects on application
performance.

• It will be necessary to implement a robust security infrastructure as more and
more services become available as remote web services.

Summary
Spring provides a robust high-level API that makes writing data access code very simple.
This is possible because the framework takes care of the boilerplate code generally
required for direct JDBC. The API also embodies robust object design principles and pat-
terns. Spring JDBC also provides an OO wrapper to access legacy stored procedures
through the PAO pattern. Spring ORM module allows integration with ORM solutions.
This also needs to wrap with Data Access Object pattern to provide a consistent persist-
ence API to the business tier.

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS 221

With Spring’s convenient support classes, it is possible to support asynchronous pro-
cessing with a service activator either in an EJB server or in the Spring container. Finally,
existing POJO-based Spring services can be exposed as technology-independent remote
web service components, primarily by configuration.

Security and transaction are two foremost important requirements in any Java EE
application. Unfortunately, not much has been written or discussed about them. In
Chapter 6, I will look into the need for security and transaction in a Java EE application
and discuss a few related patterns with the Spring framework.

CHAPTER 5 ■ EXPLORING INTEGRATION TIER DESIGN PATTERNS222

Exploring Crosscutting
Design Patterns

Most enterprise applications should be secured to prevent malicious access. They also
require transaction support to maintain data consistency. The Java EE platform contain-
ers provide support for both security and transaction. However, these services can be
applied in any of the application tiers. Security, for example, can be applied in the pres-
entation tier to prevent unauthorized access of web resources such as Java Server Pages.
The EJB business tier components also require protection because they can be accessed
by different remote clients. The web services in the integration tier also need secured
access. Similarly, transactional services may be used by the business tier or integration
tier data access logic depending on application need.

Unfortunately, Sun’s Java BluePrints and the book Core J2EE Design Patterns by
Deepak Alur, Dan Malks, and John Crupi (Prentice Hall, 2003) do not document any
design strategy for transaction and security, which are of critical importance to an enter-
prise application. Therefore, developers and designers often have a dilemma when
deciding the appropriate tier for applying these application concerns. As a result, they
often end up using a low-level Java EE platform security API or the Java Transaction API
in their code. The core application concerns such as presentation and business logic are
soon bloated because of mixing transaction and security code. Hence, I decided to dedi-
cate this chapter to discussing design strategies to counter these crosscutting concerns
with the Spring Framework.

The Java EE specification and the Java Authorization and Authentication Service
(JAAS) API tries to standardize security services. But they are limited in features and
unsuitable for the majority of the applications. The server vendors implement container
security in a proprietary way, resulting in vendor lock-in and limited portability. JAAS, on
the other hand, just provides a standard interface. The container support for JAAS too
lacks any consistency. So, development teams generally resort to a custom solution,
which consumes a significant portion of their development time. Spring Security, which
was earlier known as Acegi Security, is an easy-to-use and flexible security framework
that works irrespective of any container. It is based on the Spring IOC container and

223

C H A P T E R 6

heavily relies on its DI and AOP features. It provides declarative security to web requests
and business methods. It is highly extensible and provides out-of-the-box components
that cover almost every custom security need. In this chapter, I will apply Spring Security
in the context of some frequently used Java EE security patterns described in the book
Core Security Patterns by Christopher Steel, Ramesh Nagappan, and Ray Lai (Prentice
Hall, 2005).

Unlike with security, the Java EE containers provide robust support for distributed
transactions involving a variety of middleware and database servers. The Java EE specifi-
cation supports both the programmatic and declarative modes of transaction control.
The declarative transaction control is highly flexible and can be controlled by configura-
tion. Programmatic transaction management, on the other hand, can be very cumber-
some to develop and maintain. In this chapter, I will focus more on transaction strategies
primarily based on Spring AOP support and in the process explore some patterns dis-
cussed in the book Java Transaction Design Strategies by Mark Richards (Lulu.com, 2006).

In this chapter, I will heavily use AOP concepts. I will also call upon the Spring
Framework’s AOP support for several examples. If you are new to AOP, then get started
with the book Foundations of AOP for J2EE Development by Renaud Pawlak, Jean-
Philippe Retaillé, and Lionel Seinturieris (Apress, 2006). Also, you should read the Spring
AOP documentation at http://static.springframework.org/spring/docs/2.5.x/reference/
aop.html.

Authentication and Authorization Enforcer

Problem

The eInsure application handled sensitive information related to policies purchased by
thousands of people. It also managed crucial business intelligence data that was accessi-
ble to the senior management of the companies using this product. So, it was important
that eInsure allowed only trusted parties to access data to prevent any kind of data loss or
tampering.

The common strategy used by an enterprise application to establish trust with exter-
nal users or systems is known as authentication. In the authentication process, the
system asks a user one simple question: “Who you are?” The user will respond by supply-
ing a principal (username) and credential (password). The system verifies the
principal-credential combination, and if a match is found, the user is allowed to access
the system. Note that authentication does not guarantee that the user has access to sys-
tem resources. It merely unlocks the door to the web resources.

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS224

The decision whether an authenticated user has access to a resource is controlled by
another process, called authorization. Authorization seeks to answer this question:
“What can you do?” In other words, it tries to find out the operations that an authenti-
cated user can perform in the system. In a Java EE application, this mainly involves
protecting access to web resources such as JSPs. The user’s principal is generally associ-
ated with one or more roles. Each role in turn is linked to a set of resources or operations.

The eInsure application had a sign-in form for users to supply a username and pass-
word combination to get authenticated. The supplied information was checked into the
database, and valid users were granted access to carry out different operations.

The database-driven authentication mechanism used in eInsure was rigid. It was
placed deep inside the application and cut across all the tiers. In other words, the
authentication logic was implemented just like any normal operation such as policy
underwriting. In a refactored eInsure system, this would mean the request for authenti-
cation would be intercepted by the front controller and passed on to a page controller.
This would be followed by the invocation of the business delegate, session facade, and
data access objects.

Ideally, authentication and security code should be applied transparently and need
not span tiers. eInsure was being implemented by clients who had an existing enterprise-
wide security policy and software in place. So, in most cases the database-driven
approach did not work. Instead, the application had to adapt itself to the customers’
existing security implementation such as Lightweight Directory Access Protocol (LDAP),
Single Sign On (SSO), or OpenID. This resulted in a lot of code changes and testing in dif-
ferent tiers to integrate with an alternate authentication implementation.

As shown in Listing 4-1 later in the chapter, the JSP controller used the user informa-
tion as well as the event code to check whether the user has the privileges to execute a
certain action. This check was also placed deep inside the presentation tier. Any changes
to the authorization helper methods would lead to changes across all the controllers.
Such deeply embedded authorization checks resulted in the mixing of security and pres-
entation concerns. The authorization code in eInsure would query the database for each
request to find out whether the user had the privileges to execute the action with the
given event code. This database trip for each request had a negative impact on perform-
ance. Last but not least, the event code was hard-coded in the view and controller JSPs as
well as maintained in the database. Any change to the event code value meant modifica-
tion in all the JSPs. This often would lead to minor bugs that were very difficult to detect.

Forces

• Only valid users are allowed entry into the application.

• All different entry points into an application should be guarded by authentication.

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS 225

• All authenticated users should have the appropriate roles/authority to access
secure system resources.

• Authentication and authorization mechanisms should be encapsulated as inde-
pendent components and applied transparently by configuration.

Solution

Implement a pluggable authentication and authorization enforcer to verify a user’s iden-
tity and allow access to secured resources.

Strategies with the Spring Framework

Spring Security implements the Authentication and Authorization Enforcer pattern as a
set of two distinct yet very closely linked components. The authentication and authoriza-
tion enforcer components work together and transparently apply authentication and
authorization support both in the presentation tier of the Java EE web application and in
the business tier. These components are highly configurable and extensible, as you will
see in subsequent sections.

The authentication enforcer’s primary responsibility is validating a user’s identity. It
also checks for authentication whenever any request reaches the web application. If the
user is authenticated, it allows the request to pass on to the authorization enforcer. If the
authentication fails, the user will be redirected to the sign-on page.

Authentication enforcers are generally pluggable, which helps to quickly adapt to
any new authentication mechanism such as OpenID. The core component sits behind
protocol-independent interceptors and uses helpers to delegate the actual authentica-
tion process. All user actions must go through these interceptors to apply authentication.

Once the authentication core components are done, the authorization enforcer picks
up the request. It checks to see whether the user who has initiated this action has enough
privileges to access a particular web page or execute a certain method. If the user is try-
ing to access a resource without validating his identity, the authorization enforcer will
force him out to the sign-on page or access-denied page. Figure 6-1 shows the basic
architecture of the authentication and authorization enforcer.

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS226

Figure 6-1. Authentication and authorization enforcer high-level components

Key Components of Spring Security

The basic architecture of Spring Security is similar to the one described in Figure 6-1.
Figure 6-2 shows the high-level components of Spring Security. (The figure shows only
those components relevant to this discussion.)

Figure 6-2. Spring Security high-level components

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS 227

The different components of the Spring Security framework are the following:

• The security interceptor acts as the gateway that intercepts requests for resources.
It delegates security enforcement responsibilities to the core components. If a web
resource is being protected, then the Spring Security interceptor is provided in the
form of a servlet filter. Method invocation interceptors are implemented as
aspects.

• The authentication manager verifies a user’s identity. It is a pluggable component
with a clearly defined service provider interface (SPI). So, it is possible to integrate
virtually any authentication mechanism. Spring Security comes with several con-
crete authentication manager implementations covering most common needs.

• The access decision manager is another pluggable component responsible for
authorization. It allows authenticated requests to access system resources based
on certain roles.

Spring Security is based on the core Spring Framework. So, it has all the benefits of
the Spring IOC container available with the security subsystem.

Authentication and Authorization with Spring Security

Spring Security’s support for web application security starts with a servlet filter. The filter
intercepts incoming web requests and delegates to the authentication manager. To install
the Spring Security gateway, you will need to install the special servlet filter class
FilterToBeanProxy in web.xml, as shown in Listing 6-1.

Listing 6-1. web.xml Fragment

<filter>

<filter-name>springSecurityFilterGateway</filter-name>

<filter-class>org.springframework.security.util.FilterToBeanProxy

</filter-class>

<init-param>

<param-name>targetClass</param-name>

<param-value>org.springframework.security.util.FilterChainProxy

</param-value>

</init-param>

</filter>

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS228

<filter-mapping>

<filter-name>springSecurityFilterGateway</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

Note that the filter in Listing 6-1 uses the initialization parameter targetClass. The
servlet filter delegates the actual processing to this FilterChainProxy. On initialization,
the Spring Security filter gateway looks for a bean of type FilterChainProxy in the Spring
web application context. It then delegates all the handling to this filter chain proxy. You
can configure multiple filter chain proxies. In that case, the one found first will be used.
If no filter chain proxy object is found, an exception will be raised. It is possible to set the
targetBean initialization parameter instead of targetClass. This will allow the gateway
filter to look for a bean with the given name in the application context. But this can lead
to a bug that’s hard to detect. If you rename this bean in the Spring configuration, you
will have to do the same in web.xml as well. The filter mapping configuration in Listing 6-1
forces all web requests to be passed through this filter.

For Spring Security to work, the Spring application context must be loaded. Since
the goal all along has been to separate security concerns from presentation concerns,
ContextLoaderListener will load the application context for Spring Security. This will load
the parent Spring web application context. The dispatcher servlet described in Chapter 2
will load its own application context with the presentation tier beans. This application
context is a child of the context loaded by the servlet context listener, as shown in
Listing 6-2. The parent web application context will be loaded from the classpath
resource applicationContext-security.xml. Note that the Spring web application context
is bound to the servlet context, so there is no performance concern here because you’re
not reloading the context for each request.

Listing 6-2. web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.4" xmlns=http://java.sun.com/xml/ns/j2ee

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

<context-param>

<param-name>contextConfigLocation</param-name>

<param-value>

classpath:/WEB-INF/applicationContext-security.xml

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS 229

</param-value>

</context-param>

<filter>

<filter-name>springSecurityFilterChain</filter-name>

<filter-class>org.springframework.security.util.FilterToBeanProxy

</filter-class>

<init-param>

<param-name>targetClass</param-name>

<param-value>org.springframework.security.util.FilterChainProxy

</param-value>

</init-param>

</filter>

<filter-mapping>

<filter-name>springSecurityFilterChain</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

<listener>

<listener-class>org.springframework.web.context.ContextLoaderListener

</listener-class>

</listener>

<servlet>

<servlet-name>insurance</servlet-name>

<servlet-class>

org.springframework.web.servlet.DispatcherServlet

</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>insurance</servlet-name>

<url-pattern>*.do</url-pattern>

</servlet-mapping>

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS230

<jsp-config>

<taglib>

<taglib-uri>/spring</taglib-uri>

<taglib-location>

/WEB-INF/tld/spring-form.tld

</taglib-location>

</taglib>

</jsp-config>

</web-app>

Now that I have shown how to set up the security gateway of the web application
and registered it with the web server, it’s time to focus on the Spring side of things. On
the Spring side, the FilterChainProxy receives a request for security processing from the
gateway filter. The FilterChainProxy can then pass this request through a series of filters
configured in the Spring application context. Listing 6-3 shows this FilterChainProxy
configuration. ContextLoaderListener uses this configuration file to start the root Spring
application context.

Listing 6-3. applicationContext-security.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

<bean name="filterChainProxy"

class="org.springframework.security.util.FilterChainProxy">

<property name="filterInvocationDefinitionSource">

<value>

CONVERT_URL_TO_LOWERCASE_BEFORE_COMPARISON

PATTERN_TYPE_APACHE_ANT

/**=httpSessionContextIntegrationFilter,authenticationProcessingFilter,➥

anonymousProcessingFilter,exceptionTranslationFilter,➥

filterInvocationInterceptor

</value>

</property>

</bean>

</beans>

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS 231

The filterInvocationDefinitionSource is the key property for the FilterChainProxy. It
defines a ruleset for invoking the filters. As shown in Listing 6-3, it will convert an incom-
ing request URL to lowercase before any comparison. It will use Apache Ant–based
pattern matching to map an incoming request to the Spring Security filters. In this exam-
ple, all the incoming requests will pass through five filters. (I will get into the core of
Spring Security in a while and explain the functions of each of these filters.) There are
several other concrete filter implementations provided by Spring. You can refer to the
Spring Security documentation at http://static.springframework.org/spring-security/
site/index.html for more details about them. For our purposes in this section, these five
will be sufficient.

The httpSessionContextIntegrationFilter filter will be the first filter to be executed
when the request reaches FilterChainProxy. The ordering is important because one filter
may depend on the value set by the preceding or succeeding ones. In other words, setting
the filters in a different order may lead to unpredictable results. Figure 6-3 shows the
filter chaining.

Figure 6-3. Filter chaining in Spring Security

Session Context Integration Filter (SCIF)

This is the first of the five filters in the chain that is executed in Spring Security. SCIF
checks whether an HttpSession has been started, and it contains a security context object.
If the SecurityContext object is not found, it creates a new instance of this object. SCIF
puts the security context object in a temporary placeholder called a security context
holder for the other filters in the chain to access and update important information such

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS232

as user identity and roles. It then invokes the next filter in the chain. Once the control
returns, SCIF puts the security context back on to the HTTP session and clears the tem-
porary placeholder. Listing 6-4 shows the SCIF configuration.

Listing 6-4. applicationContext-security.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

<!—Other beans -->

<bean id="httpSessionContextIntegrationFilter"

class="org.springframework.security.context.HttpSessionContextIntegrationFilter"/>

</beans>

Authentication Processing Filter (APF)

The primary responsibility of APF is to authenticate a user’s identity. Several such filters
are available with Spring, as shown in the class diagram in Figure 6-4.

Figure 6-4. Class diagram: authentication processing filter

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS 233

Spring Security offers a variety of authentication-processing choices. The
BasicProcessingFilter supports HTTP basic authentication with the user information
stored in the request header. CasProcessingFilter is used for identity verification with
JA-SIG’s Central Authentication Service (CAS) SSO solution. You can read more about
CAS at http://www.ja-sig.org/products/cas/. There are other options such as the
DigestProcessingFilter for HTTP digest authentication, whereas X509ProcessingFilter
processes authentication with X.509 certificates.

In this book, I will concentrate on the simpler HTTP form-based authentication sup-
ported by AuthenticationProcessingFilter. This will help you grasp the key concepts
easily and apply them to different situations. With Spring Security, this would primarily
involve configuration. The sole responsibility of this filter is to invoke the underlying
authentication provider. It inherits from the AbstractProcessingFilter, which imple-
ments the core workflow associated with authentication. The SpringSecurityFilter
implements the javax.servlet.Filter interface. It implements the doFilter method
defined by this interface and delegates the actual processing to an abstract method
doFilterHttp, which should be implemented by all subclasses.

Before proceeding, I will introduce the sign-on page, as shown in Listing 6-5.

Listing 6-5. /WEB-INF/jsp/login.jsp

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>

<html>

<head>

<title>Login</title>

</head>

<body>

<form action="j_spring_security_check" method="POST">

<form:errors path="*" cssClass="errorBox" />

<table>

<tr>

<td>User:</td>

<td><input type='text' name='j_username' />

</td>

</tr>

<tr>

<td>Password:</td>

<td><input type='password' name='j_password' /></td>

</tr>

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS234

<tr><td colspan='2'><input name="submit" type="submit" /></td></tr>

<tr><td colspan='2'><input name="reset" type="reset" /></td></tr>

</table>

</form>

</body>

</html>

This login form is specific to the application, and hence I will configure this to work
with the front controller servlet, as shown in Listing 6-6.

Listing 6-6. insurance-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<bean id="viewResolver"

class="org.springframework.web.servlet.view.InternalResourceViewResolver">

<property name="viewClass"

value="org.springframework.web.servlet.view.JstlView" />

<property name="prefix" value="/WEB-INF/jsp/" />

<property name="suffix" value=".jsp" />

</bean>

<bean name="/login.do"

class="org.springframework.web.servlet.mvc.UrlFilenameViewController">

</bean>

<!-- other beans to be shown later -->

</beans>

As shown in Listing 6-5, this is a simple login form. If you fill in the two text fields and
submit this form, it will result in the following URL: http://localhost/eInsureWeb/
j_spring_security_check?j_username=value1&j_password=value2.

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS 235

This request will be intercepted by the Spring Security filter and delegated to the
Spring-managed filter chain. Once SCIF is done with the preprocessing of the request, it’s
APF turn to act on it. The APF is configured in the root application context, as shown in
Listing 6-7.

Listing 6-7. applicationContext-security.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

<!—Other beans -->

<bean id="authenticationProcessingFilter" class="org.springframework.security.ui.➥

webapp.AuthenticationProcessingFilter">

<property name="authenticationManager" ref="authenticationManager"/>

<property name="authenticationFailureUrl" value="/login.do?errorId=1"/>

<property name="defaultTargetUrl" value="/secure/app/createPolicy.do"/>

<property name="filterProcessesUrl" value="/j_spring_security_check"/>

</bean>

</beans>

The first decision that APF needs to make is whether the incoming request needs
authentication. For this it depends on the property filterProcessesUrl. APF will extract
the URI using the HttpServletRequest.getRequestURI method. In this case, the method
returns /eInsureWeb/j_spring_security_check. This returned value is then compared to
the context root and filterProcessUrl combination to determine whether this URL has to
be processed for authentication. You may want to customize the names of the two text
fields in Listing 6-5. I have used the default values. To use custom values, you will need to
configure the properties passwordParameter and usernameParameter of the authentication
processing filter.

Now, in the scenario under consideration, the APF determines that the incoming
request does need authentication. So, it will attempt to carry out the actual authentica-
tion. For this it will use the authenticationManager property. The authentication managers
are pluggable helpers that carry out the actual authentication; they implement the
AuthenticationManager interface. This interface defines a single method named
authenticate. This method accepts an Authentication object containing the user’s

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS236

principal and credential. On successful authentication, this method returns the
Authentication object with the user’s role list. This will be required later during
authorization.

The authenticated user is redirected to the URL specified by the property
defaultTargetUrl. In this case, the user is directed to the web page for underwriting a
new policy. If the authentication fails, an AuthenticationException will be raised. In this
case, the user is redirected to the URL set in the property authenticationFailureUrl.
In this example, the user is redirected to the login page. The errorId specified in the
authenticationFailureUrl flags the login.jsp file in Listing 6-5 to display the error mes-
sages because of an authentication failure.

Spring Security provides one custom authentication manager implementation in the
form of the ProviderManager class. This in turn delegates to authentication providers.
Authentication providers are adapters for the underlying authentication technology.
With this strategy, it is possible to authenticate with any identity management system.
The ProviderManager class can be configured to work with multiple authentication
providers. It will iterate through the list of authentication providers until the user is
authenticated by one of them or the provider collection is exhausted. Listing 6-8 shows
the provider manager configuration.

Listing 6-8. applicationContext-security.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

<!—Other beans -->

<bean id="authenticationManager"

class="org.springframework.security.providers.ProviderManager">

<property name="providers">

<list>

<ref local="daoAuthenticationProvider"/>

</list>

</property>

</bean>

</beans>

Note that in Listing 6-8, the provider manager works with a single authentication
provider. Spring provides several out-of-the-box providers, as shown in Figure 6-5.

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS 237

Figure 6-5. Class diagram: authentication provider

The providers implement the AuthenticationProvider interface. It defines two
methods. The authenticate method is used to trigger the actual authentication process.
The authentication manager invokes this method and passes a reference to the
Authentication object. The supports method checks whether the authentication provider
can work with the given Authentication object. As shown in Figure 6-5, Spring provides
several concrete implementations catering to most security requirements. Listing 6-9
shows the authentication provider for the current example.

Listing 6-9. applicationContext-security.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

<!—Other beans -->

<bean id="authenticationManager"

class="org.springframework.security.providers.ProviderManager">

<property name="providers">

<list>

<ref local="daoAuthenticationProvider"/>

</list>

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS238

</property>

</bean>

<bean name="daoAuthenticationProvider"

class="org.springframework.security.providers.dao.DaoAuthenticationProvider">

<property name="userDetailsService" ref="userDetailsService"/>

</bean>

</beans>

In this case I am going to use a data access object–based authentication provider:
DaoAuthenticationProvider. This provider assumes that the user’s identity is stored in a
relational database. To retrieve this information, it employs a data access object. The
DAO is configured using the userDetailsService property.

The principal and credential combination fetched from the database is matched
with the one passed by the provider manager in the Authentication object. If there’s a
successful match, an Authentication object with the user role list will be passed to the
provider manager. A failure results in an AuthenticationException being raised, indicating
a failed identity validation.

The DAOs used by the DaoAuthenticationProvider should implement the
UserDetailsService interface. This again is a single method interface and defines the
method loadUserByUsername. Spring Security provides two ready-made implementations
of this interface, as shown in Figure 6-6.

Figure 6-6. Class diagram: user details service

InMemoryDaoImpl is suitable for quick prototyping and testing. For real-world use, you
need to use JdbcDaoImpl or provide a custom implementation. The UserDetailsService
also needs to be wired up in the Spring application context, as shown in Listing 6-10.

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS 239

Listing 6-10. applicationContext-security.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

<!—Other beans -->

<bean id="authenticationManager"

class="org.springframework.security.providers.ProviderManager">

<property name="providers">

<list>

<ref local="daoAuthenticationProvider"/>

</list>

</property>

</bean>

<bean name="daoAuthenticationProvider" class="org.springframework.➥

security.providers.dao.DaoAuthenticationProvider">

<property name="userDetailsService" ref="authenticationDao "/>

</bean>

<bean name="authenticationDao"

class="org.springframework.security.userdetails.jdbc.JdbcDaoImpl">

<property name="dataSource" ref="dataSource"/>

</bean>

<bean id="datasource" class="org.springframework.jndi.JndiObjectFactoryBean">

<property name="jndiName" value="einsureDatasource" />

<property name="jndiEnvironment">

<props>

<prop key="java.naming.factory.initial">

org.jnp.interfaces.NamingContextFactory

</prop>

<prop key="java.naming.provider.url">

jnp://localhost:1099

</prop>

<prop key="java.naming.factory.url.pkgs">

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS240

org.jboss.naming.client

</prop>

</props>

</property>

</bean>

</beans>

As shown in Listing 6-10, the JdbcDaoImpl requires a DataSource reference to execute
its query. The JdbcDaoImpl assumes you have set up two tables in the database as shown
in Figure 6-7.

Figure 6-7. Spring Security: database tables

To retrieve data from these tables, the JdbcDaoImpl uses the default SQL statements
shown in Listing 6-11.

Listing 6-11. applicationContext-security.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

<!—Other beans -->

<bean name="daoAuthenticationProvider" class="org.springframework.➥

security.providers.dao.DaoAuthenticationProvider">

<property name="userDetailsService" ref="authenticationDao "/>

</bean>

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS 241

<bean id="authenticationDao"

class="org.springframework.security.userdetails.jdbc.JdbcDaoImpl">

<property name="dataSource" ref="dataSource"/>

<property name="userByUserNameQuery" >

<value>

SELECT username, password, enabled

FROM users

WHERE username=?

</value>

</property>

<property name="authoritiesByUserNameQuery" >

<value>

SELECT username, authority

FROM authorities

WHERE username=?

</value>

</property>

</bean>

</beans>

If your tables and column names were different, it is possible to supply your custom
queries by overriding the userByUserNameQuery and authoritiesByUserNameQuery properties.
You need to use proper aliases for the columns that have different names than the default
tables because Spring retrieves data from the resultset using default column names.
eInsure used the e-mail address instead of the username and role in the place of author-
ity. Listing 6-12 shows the configuration of the custom queries with aliases.

Listing 6-12. applicationContext-security.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS242

<!—Other beans -->

<bean name="daoAuthenticationProvider" class="org.springframework.➥

security.providers.dao.DaoAuthenticationProvider">

<property name="userDetailsService" ref="authenticationDao "/>

</bean>

<bean id="authenticationDao"

class="org.springframework.security.userdetails.jdbc.JdbcDaoImpl">

<property name="dataSource" ref="dataSource"/>

<property name="userByUserNameQuery" >

<value>

SELECT email as username, password, enabled

FROM t_users

WHERE email=?

</value>

</property>

<property name="authoritiesByUserNameQuery" >

<value>

SELECT email as username, role as authority

FROM t_user_role

WHERE email=?

</value>

</property>

</bean>

</beans>

Thus, with Spring Security, a few lines of configuration are enough to set up your
authentication component. Once the user is successfully authenticated, the request is
forwarded to the URL specified by the defaultTargetURL, which in this case is /secure/app/
createPolicy.do.

Anonymous Processing Filter (ANPF)

This is the third filter in the chain. Its sole purpose is to set an anonymous Authentication
object in the security context. This will allow you to browse certain URLs that are not

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS 243

secure and can be viewed without verifying user’s identity with the application. ANPF can
be configured as shown in Listing 6-13.

Listing 6-13. applicationContext-security.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

<!—Other beans -->

<bean id="anonymousProcessingFilter" class="org.springframework➥

.security.providers.anonymous.AnonymousProcessingFilter">

<property name="key" value="changeThis"/>

<property name="userAttribute" value="anonymousUser,ROLE_ANONYMOUS"/>

</bean>

</beans>

Exception Translation Filter (ETF)

ETF handles any exception raised during authentication or authorization. It is configured
in the application context as shown in Listing 6-14.

Listing 6-14. applicationContext-security.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

<!—Other beans -->

<bean id="exceptionTranslationFilter"

class="org.springframework.security.ui.ExceptionTranslationFilter">

<property name="authenticationEntryPoint" ref="authenticationEntryPoint" />

<property name="accessDeniedHandler" ref="accessDeniedHandler" />

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS244

</bean>

<bean name ="authenticationEntryPoint" class="org.springframework.➥

security.ui.webapp.AuthenticationProcessingFilterEntryPoint">

<property name="loginFormUrl" value="/login.do"/>

<property name="forceHttps" value="false"/>

</bean>

<bean name="accessDeniedHandler" class="org.springframework➥

.security.ui.AccessDeniedHandlerImpl">

<property name="errorPage" value="/denied.do"/>

</bean>

</beans>

The task of this filter is simple. In the case of an authentication exception, ETF uses
the authenticationEntryPoint property to redirect the user to the login page. If there is an
authorization failure, the user is redirected to the access-denied page.

Filter Security Interceptor (FSI)

This is another pivotal filter in Spring Security along with the authentication processing
filter. The primary responsibility of the FSI is to assist in authorization. If an unauthenti-
cated user tries to access a secured resource, FSI should prevent the user and force him
to either an access-denied page or a login page. Even an authenticated user may have
access to only a subset of the resources. The FSI ensures that a valid user accesses only
the resources available to his role. It also allows users to access certain pages anony-
mously. The sign-on page, for example, should be available to all the users. The FSI is
configured in the Spring application context, as in Listing 6-15.

Listing 6-15. applicationContext-security.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

<!—Other beans -->

<bean id="filterInvocationInterceptor"

class="org.springframework.➥

security.intercept.web.FilterSecurityInterceptor">

<property name="authenticationManager" ref="authenticationManager"/>

<property name="accessDecisionManager" name="accessDecisionManager" />

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS 245

<property name="objectDefinitionSource">

<value>

CONVERT_URL_TO_LOWERCASE_BEFORE_COMPARISON

PATTERN_TYPE_APACHE_ANT

/secure/admin/**=ROLE_ADMIN

/secure/**=IS_AUTHENTICATED_REMEMBERED

/**=IS_AUTHENTICATED_ANONYMOUSLY

</value>

</property>

</bean>

</beans>

The first property that I will focus on with the FSI is objectDefinitionSource. In Spring
Security, secured resources are called object definitions. The name is generic because
Spring Security can be applied to method invocation and object creation in addition to
web applications. The objectDefinitionSource is composed of directives and URL pattern
to role mapping. The directives are same as the ones used for the filter chain proxy in
Listing 6-3.

A user with ROLE_ADMIN has access to all URLs starting with /secure/admin. Only
authenticated users are allowed entry into all URLs starting with /secure. All other URLs
can be accessed anonymously or if the user is already authenticated. Note that the URL
mappings will be processed in the same order as they are defined. Also, you are free to
define any role that you want for your application.

The property authenticationManager uses the same Spring bean that I used with the
APF. It can be used to reauthenticate a request. This can hurt application performance, so
you need to set it carefully, and you can control this by setting the alwaysReauthenticate
property of the FSI to false. The property accessDecisionManager works like authentica-
tion managers and is responsible for making the actual authorization decision. The
access decision manager is wired up as shown in Listing 6-16.

Listing 6-16. applicationContext-security.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

<!—Other beans -->

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS246

<bean name="accessDecisionManager"

class="org.springframework.security.vote.AffirmativeBased">

<property name="decisionVoters">

<list>

<bean class="org.springframework.security.vote.RoleVoter"/>

<bean class="org.springframework.security.vote.AuthenticatedVoter"/>

</list>

</property>

</bean>

</beans>

The access decision managers implement the AccessDecisionManager interface. In this
case, I am using the AffirmativeBased access decision manager. This access decision
manager is controlled by a list of voters. It is similar to voting in an election. These voters
decide whether a user can actually access a particular protected resource. The access
decision manager will poll each voter for a vote. The possible values are ACCESS_DENIED,
ACCESS_GRANTED, and ACCESS_ABSTAIN (when the voter is unsure). Once the voting is done,
the AffirmativeBased access decision manager executes a simple algorithm to arrive at
the result. If any of the voters vote with ACCESS_GRANTED, the user is granted access.

The access decision manager supplies each voter with the Authentication object and
the objectDefinitionSource to make their decisions. The RoleVoter scans through the list
of URL pattern to role mappings. For the matched URL, it will check the roles. It will
vote if it finds a role starting with the prefix ROLE. You can alter this value by setting the
rolePrefix property. If it finds a matching role, it votes ACCESS_GRANTED; otherwise, it votes
ACCESS_DENIED. The AuthenticatedVoter will vote if it finds a predefined role in any of the
matched URL to role mapping. One such predefined value is IS_AUTHENTICATED_
ANONYMOUSLY. It will probe the Authentication object to determine whether the user has
been authenticated anonymously. A positive finding will result in ACCESS_GRANTED being
voted.

Consequences

Benefits

• Spring Security can be enabled and altered by mere configuration.

• Only users with valid identities are allowed access to the system.

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS 247

• Spring Security does not intrude into the application code. In fact, it can be
applied without the application code having any knowledge about it.

• Authenticated users can access only a subset of the application resources based on
their roles.

Concerns

• You need to know about a lot of classes, interfaces, and above all configuration
items. This adds to the development and maintenance overhead.

Audit Interceptor

Problem

The auditing of business tier method invocation is a common requirement in most enter-
prise applications. This involves tracing the input arguments as well as the return values.
The audit trail information can be later utilized for analysis in the case of any security
lapses. Because this data may be needed for future reference, it is stored in a permanent
store such as a filesystem or database. The audit trailing feature is applied at the business
tier because it is the gateway to the business logic and can be accessed by a variety of
clients.

Since eInsure handled sensitive financial data, it too implemented an audit trail fea-
ture. This was used in the SLSBs. The audit trail API saved the method arguments and
returned results in the database. This was also inflexible and mixed the business logic
with the security concerns. This coupling led to frequent code changes as eInsure tried
to fit in a customer-specific audit trail requirement. The SLSB in the eInsure application
internally invoked multiple other session bean methods, each of which also used the
audit trail API. Since the audit data was saved in the database, it increased the transac-
tional overhead and degraded response time.

The eInsure audit trail API was hardly configurable. As a result, it was difficult to
switch on/off the audit trailing as and when required. It also did not allow the flexibility
to filter what was being logged. For example, in certain cases you may not be interested
to log only the values being passed to a method as arguments and not the value returned
by the method. Also, you may not want to log all the values in the returned object. The
eInsure audit trail also required that the incoming and outgoing objects must implement
the toString method. Though this is a good practice, it often clutters code with long lines
of calls to StringBuffer.append or those using String concatenation.

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS248

Forces

• Apply the audit trailing transparently on the business service.

• The audit trailing must be configurable.

• Allow an audit trace of requests, responses, and exceptions raised from a service.

Solution

Implement a centralized audit interceptor that can be declaratively used to apply the
auditing of the business service invocations.

Strategies with the Spring Framework

You can easily develop an audit interceptor with Spring AOP support. With AOP, you can
build the audit trail component as an independent reusable component and then apply
it transparently with configuration. Since the audit interceptor needs to support the pre-
and postprocessing of methods along with the exceptions, the first step to building the
interceptor is to develop an advice. An advice denotes a reusable piece of code that can
be applied transparently to the actual application code. Since the SLSBs are container-
managed components, I will apply the interceptor on the application service POJOs.
Listing 6-17 shows the audit interceptor advice.

Listing 6-17. AuditAdviseInterceptor.java

public class AuditAdviseInterceptor implements MethodInterceptor {

private AuditRules rules;

private boolean auditOn = true;

private AuditLog auditLog;

public Object invoke(MethodInvocation invocation) throws Throwable {

Object returnVal = null;

String eventCode = "";

Object arguments[] = null;

try {

returnVal = invocation.proceed();

} catch (Exception exp) {

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS 249

//handle exception

throw e;

} finally {

//post process

if (this.auditOn) {

eventCode = getEventCode();

arguments = invocation.getArguments();

AuditRule rule = rules.getRule(eventCode);

if(rule!=null && rule.isApplyRule()){

String thisMethod = invocation.getMethod().getName();

if(thisMethod.equals(rule.getRuleDefinition())){

AuditEvent ae = new AuditEvent(eventCode,arguments,

results,exp);

auditLog.log(ae);

}

}

}

}

return returnVal;

}

private String getEventCode() {

String eventCode = "";

StackTraceElement[] stack = Thread.currentThread().getStackTrace();

eventCode = stack[7].getMethodName();

return eventCode;

}

public AuditRules getRules() {

return rules;

}

public void setRules(AuditRules rules) {

this.rules = rules;

}

public boolean isAuditOn() {

return auditOn;

}

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS250

public void setAuditOn(boolean auditOn) {

this.auditOn = auditOn;

}

}

A lot is going on in this class. This class implements the Spring AOP class
MethodInterceptor to provide around advice. The key here is the invoke method. This
method is called before and after the invocation of the target business method that you
want to audit. The audit trail operation happens in the finally block. The property
auditOn can be used to globally stop the audit trail.

If the audit trail flag is set to true, then an event code is determined by the invoke
method. Here, for simplicity, I have assumed that coarse-grained session facade method
name as the event code. This event code should be unique and used to look up an audit
rule from the audit rule list. If an audit rule is found for this event code and this rule is
not disabled, then the rule definition is consulted to see whether it is applicable to the
current application service method. Finally, the data in the audit event is traced by an
audit logger. Listing 6-18 shows how this class is wired in the Spring configuration.

Listing 6-18. audit-config.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<!--advice -->

<bean name="auditAdvice"

class="com.apress.einsure.security.audit.AuditAdviseInterceptor">

<property name="rules" >

<bean class="com.apress.einsure.security.audit.AuditRules" >

<property name="ruleMap" >

<map>

<entry>

<key><value>underwriteNewPolicy</value></key>

<bean

class="com.apress.einsure.security.audit.AuditRule" >

<property name="ruleDefinition" value="com.apress➥

.einsure.business.impl.UnderwritingApplicationService.underwriteNewPolicy" />

<property name="applyRule" value="true"></property>

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS 251

</bean>

</entry>

</map>

</property>

</bean>

</property>

</bean>

<!—other beans -->

</beans>

The rules property is used to externalize the rules that are applicable for a particular
audit event. The AuditRules class acts as a container for the audit rules, as shown in
Listing 6-19.

Listing 6-19. AuditRules.java

public class AuditRules{

public Map ruleMap;

public AuditRule getRule(String key){

return (AuditRule)ruleMap.get(key);

}

public Map getRuleMap() {

return ruleMap;

}

public void setRuleMap(Map ruleMap) {

this.ruleMap = ruleMap;

}

}

Each rule is an instance of the class AuditRule. In the current example, I’m using a
very simple rule. I just check whether the current method being intercepted is in the rule
definition. There is also a fine-grained control to turn off this rule. You can do this by set-
ting the applyRule property. Listing 6-20 shows the AuditRule class.

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS252

Listing 6-20. AuditRule.java

public class AuditRule {

private String ruleDefinition;

private boolean applyRule = true;

public boolean isApplyRule() {

return applyRule;

}

public void setApplyRule(boolean applyRule) {

this.applyRule = applyRule;

}

public String getRuleDefinition() {

return ruleDefinition;

}

public void setRuleDefinition(String ruleDefinition) {

this.ruleDefinition = ruleDefinition;

}

}

The AuditEvent class is a simple bean that stores the data that has to be logged as part
of audit trail. It is shown in Listing 6-21. The ToStringBuilder class is part of the Jakarta
Commons-lang project and can be used to simplify the toString method.

Listing 6-21. AuditEvent.java

public class AuditEvent {

private String eventCode;

private String fullMethodName;

private Object arguments[];

private Object result;

public String toString(){

return ToStringBuilder.reflectionToString(this);

}

}

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS 253

Now that you have collected the audit data, it has to be logged. You can adopt various
strategies to store this data. It can be stored in a database, filesystem, Microsoft Windows
Event Log, or Unix syslog. Hence, this component needs to be pluggable. I will follow the
simple principle of program to interface for this purpose. The AuditLog interface just
defines the single method log, which accepts an AuditEvent object. You can implement
this interface to provide a custom implementation. I have used an Apache Commons
Logger–based implementation to log the messages to the console, as shown in Listing 6-22.

Listing 6-22. CommonsLoggingAuditLogImplt.java

public class CommonsLoggingAuditLogImpl implements AuditLog{

private final Log _LOG = LogFactory.getLog(getClass());

public void log(AuditEvent event) {

_LOG.info(event);

}

}

An instance of this logger is injected into the audit advices, as shown in Listing 6-23.

Listing 6-23. audit-config.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<!--advice -->

<bean name="auditAdvice"

class="com.apress.einsure.security.audit.AuditAdviseInterceptor">

<property name="auditLog" ref="auditLogger" />

<!- - other properties -->

</bean>

<bean name="auditLogger" class="com.apress.einsure.security.audit.AuditRule" />

<!—other beans -->

</beans>

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS254

To apply this audit advice, you need a pointcut. In AOP, a pointcut determines where
to apply this advice. You can combine an advice and pointcut into an advisor. Listing 6-24
shows the advisor for this example.

Listing 6-24. audit-config.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<!--advisor -->

<bean id="auditAdvisor"

class="org.springframework.aop.aspectj.AspectJExpressionPointcutAdvisor">

<property name="advice" ref="auditAdvice" />

<property name="expression" value="execution(* *.underwrite*(..))" />

</bean>

<!—other beans -->

</beans>

As shown in Listing 6-24, the audit advice is applicable to any method starting with
the word underwrite. Finally, you need to create proxies for the beans matching the
expression property of the advisor. Listing 6-25 shows the automatic proxy creator bean.

Listing 6-25. audit-config.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<!--advisor -->

<bean id="auditAdvisor"

class="org.springframework.aop.aspectj.AspectJExpressionPointcutAdvisor">

<property name="advice" ref="auditAdvice" />

<property name="expression" value="execution(* *.underwrite*(..))" />

</bean>

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS 255

<bean class="org.springframework.aop.framework.autoproxy➥

.DefaultAdvisorAutoProxyCreator" />

<!—other beans -->

</beans>

Note that this bean does not require a name or ID attribute because it will be used by
the Spring AOP module internally. It will check beans for method names matching the
advisor and will create appropriate proxies to intercept calls to the method.

Consequences

Benefits

• With Spring AOP support, the audit trail can be applied declaratively on the POJO
application service components.

• It has support for a variety of options for logging the audit trail.

• The Spring AOP–based audit trail has no impact on the application code.

Concerns

• Upfront knowledge of AOP is required, which is considered difficult for junior
developers.

• Spring AOP makes extensive use of proxies and bytecode generation. This adds to
performance overhead.

Domain Service Owner Transaction

Problem

Transaction management is a critical concern for any enterprise application. It is essen-
tial to maintain the consistency of enterprise data. Transaction management is a
complex system concern because it involves interacting with a variety of enterprise infor-
mation systems. In Java EE servers, the applications can leverage the EJB container’s
robust support for distributed transaction. All the different types of EJBs—session, entity,

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS256

and message-driven beans—can subscribe to transactions declaratively. This often puts
the application designers in a dilemma when they get down to devising strategies for
transaction management. Consider the cases when your session bean accesses a number
of entity beans or when a message-driven bean invokes remote methods on a session
bean. Even with declarative Java EE transaction support, it becomes difficult to make
crucial decisions such as where to start a transaction, how to propagate a transaction,
and where to end it.

Sometimes Java EE applications are required to support non-web-based clients such
as Java Swing–based desktop software. These clients more often than not resort to client-
managed transactions. This is done programmatically with JTA. This, however, dilutes the
core goal of the Swing clients to act only as the view tier. This also results in multiple fine-
grained calls to the business logic on the server, which leads to a surge in network traffic.
This also greatly reduces the benefits of server-based distributed computing. Developing,
testing, and maintaining applications with client tier programmatic transaction are com-
plicated tasks.

In Chapter 4, I mentioned a client of eInsure who wanted us to deploy the entire
application on Apache Tomcat, which is a web server and servlet container. Tomcat does
not have an EJB container. So, the EJBs did not work in Tomcat, and there was no transac-
tion management support. An immediate option was to use JDBC-based transaction
support. But this would be cumbersome and would require a lot of code to be written as
well as refactored. Another solution was to use open source transaction monitors such as
ObjectWeb JOTM or Atomikos Essentials. But using them would pose the same problems
as with client-managed transactions.

Forces

• Avoid client-managed transactions wherever possible.

• Support declarative transaction management to be applied transparently.

• Declarative transaction management should work outside the EJB container
as well.

Solution

Deploy a domain service owner transaction to declaratively apply transactions both in
and out of the EJB container.

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS 257

Strategies with the Spring Framework

In a Java EE application, an SLSB implements the domain service for a remote client. The
SLSB is the most useful EJB component and can be used extensively for remoting and
transaction support. However, as shown in Chapter 4, writing and maintaining an EJB is
cumbersome because it involves a lot of classes and metadata. Also, they have little
importance if your application needs to run out of an EJB container or in a web con-
tainer. Moreover, a session facade intercepts only a remote business logic request, so in
a strict sense the application service actually implements the domain service.

With the Spring Framework, it is possible to provide declarative transaction support
even to POJO application service components. This makes an application highly
portable. You can now deploy this application in a web container with just a few configu-
ration changes. This application, with the POJO domain service, can also continue to run
in the EJB container and subscribe to container-managed transactions. Thus, with the
Spring Framework, you do not need an EJB to support transactions.

The Spring Framework neither implements any transaction monitor nor tries to
directly manage transactions. Instead, it delegates to the underlying transaction imple-
mentation through an abstraction called a platform transaction manager. There are
transaction manager implementations for most of the widely used platforms—JDBC,
object-relational mapping such as Hibernate and TopLink, JTA, JCA, and all major appli-
cation servers. In the next few sections, I will review some frequently used transaction
managers.

Plain JDBC Transactions

The DataSourceTransactionManager handles all the transactional requirements if straight
JDBC or Spring DAO is being used in the application. It can be configured in the Spring
application context as shown in Listing 6-26.

Listing 6-26. transaction-config.xml

<beans>

<bean id="datasourceTransactionManager" class="org.springframework.➥

jdbc.datasource.DataSourceTransactionManager">

<property name="dataSource" ref="dataSource"/>

</bean>

<beans>

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS258

The DataSourceTransactionManager works with a javax.sql.DataSource object. It ensures
that the same Connection object is retrieved from the DataSource and used in a transac-
tion. If the transaction is successful, the commit method is invoked on the Connection
object. If the transaction is a failure, the rollback method will be used. In short, this trans-
action manager delegates the actual transaction processing to the database.

Hibernate Transactions

HibernateTransactionManager can be used to manage transactions if your application uses
Hibernate ORM to manage application persistence. This transaction manager works
with the Hibernate SessionFactory object. It delegates the transaction handling to the
org.hibernate.Transaction object retrieved from the Hibernate Session object. The
commit and rollback methods will be called on this Transaction object depending on suc-
cessful and failed transactions, respectively. The HibernateTransactionManager is wired in
the Spring configuration, as shown in Listing 6-27.

Listing 6-27. transaction-config.xml

<beans>

<bean id="hibernateTransactionManager" class="org.springframework.➥

orm.hibernate.HibernateTransactionManager

">

<property name="sessionFactory

" ref="hibernateSessionFactory

"/>

</bean>

<beans>

JPA Transactions

The Java Persistence API is the new persistence standard in EJB 3, replacing the
widely disliked entity beans. Spring also supports JPA transactions through the
JpaTransactionManager. This is configured in the Spring application context, as in
Listing 6-28.

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS 259

Listing 6-28. transaction-config.xml

<beans>

<bean id="jpaTransactionManager"

class="org.springframework.orm.jpa.JpaTransactionManager">

<property name="entityManagerFactory"

ref="entityManagerFactory" />

</bean>

</beans>

Note that this transaction manager needs an entity manager factory, that is, an
implementation of the javax.persistence.EntityManagerFactory. This factory provides the
EntityManager. The JpaTransactionManager uses this EntityManager to coordinate transac-
tions.

JTA Transactions

The transaction managers described earlier are not very suitable for distributed XA
transactions. XA describes a protocol to coordinate transactions involving multiple trans-
action and resource managers. BEA WebLogic Server and JBoss Application Server (AS)
are examples of transaction managers. They manage transactions involving multiple
resource managers such as databases, messaging providers such as IBM MQ Series,
mainframes, and so on.

In such scenarios you will need to use the JTATransactionManager. It generally dele-
gates the transaction handling responsibility to the underlying JTA implementation
provided by BEA WebLogic Server, JBoss AS, ObjectWeb JOTM, or Atomikos. Listing 6-29
shows the configuration of JTATransactionManager.

Listing 6-29. transaction-config.xml

<beans>

<bean id="transactionManager" class="org.springframework.➥

transaction.jta.JtaTransactionManager">

<property name="transactionManagerName"

value="java:/TransactionManager" />

</bean>

</beans>

JtaTransactionManager works with the javax.transaction.UserTransaction and
javax.transaction.TransactionManager objects, delegating responsibility for transaction
management to those objects. A successful transaction will be committed with a call to

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS260

the UserTransaction.commit method. Likewise, if the transaction fails, the
UserTransaction.rollback method will be called.

Application Server Transaction

JTATransactionManager can work with application server transaction support. However,
application servers differ significantly with regard to their transaction management
implementation. They also provide varying degrees of transaction optimizations. To
leverage them, Spring comes with a few application-server specific transaction man-
agers: WeblogicJtaTransactionManager (BEA WebLogic), WebsphereUowTransactionManager
(IBM WebSphere), and OC4JtaTransactionManager (Oracle Application Server).

Declarative Transaction

Declarative transaction management support is immensely useful for applications
because it has the least impact on source code. It is nonintrusive and allows transaction
to be applied to a component transparently. The Spring Framework supports declarative
transaction management through its AOP module. In the next few sections, I will show
how Spring declarative transactions can be applied to the application service classes dis-
cussed in Chapter 4.

The first step to using Spring declarative transaction is to create an advice. In the
case of transaction management, the transaction manager applies an advice, as shown in
Listing 6-30.

Listing 6-30. transaction-config.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:aop="http://www.springframework.org/schema/aop"

xmlns:tx="http://www.springframework.org/schema/tx"

xsi:schemaLocation="

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

http://www.springframework.org/schema/tx

http://www.springframework.org/schema/tx/spring-tx-2.5.xsd

http://www.springframework.org/schema/aop

http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

<!-- this is the service object on which the transaction has to be applied -->

<bean name="uwrAppService"

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS 261

class="com.apress.einsure.business.impl.➥

UnderwritingApplicationServiceImpl">

</bean>

<!-- the transactional advice decides what needs to be done -->

<tx:advice id="txAdvice" transaction-manager="txManager">

<!- - More - - >

</tx>

<!-- DataSource -->

<bean id="dataSource" class="org.apache.commons.➥

dbcp.BasicDataSource" destroy-method="close">

<property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>

<property name="url" value="jdbc:oracle:thin:@eInsureDev:1525:eInsure"/>

<property name="username" value="scott"/>

<property name="password" value="tiger"/>

</bean>

<!-- Platform Transaction Manager, in this straight jdbd -->

<bean id="txManager" class="org.springframework.jdbc.➥

datasource.DataSourceTransactionManager">

<property name="dataSource" ref="dataSource"/>

</bean>

<!-- other beans -->

</beans>

Note that I have introduced the namespace and schema for simplifying AOP and
transaction configuration. In the previous example, I have assumed the application uses
straight JDBC for persistence and hence configured the DataSourceTransactionManager.
This will be used to apply transactional advice on the POJO application service. If you
want to use another platform transaction manager, it’s just a matter of configuration.

As you saw earlier with AOP, an advice needs to be combined with a pointcut to form
an advisor, as shown in Listing 6-31.

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS262

Listing 6-31. transaction-config.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:aop="http://www.springframework.org/schema/aop"

xmlns:tx="http://www.springframework.org/schema/tx"

xsi:schemaLocation="

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

http://www.springframework.org/schema/tx

http://www.springframework.org/schema/tx/spring-tx-2.5.xsd

http://www.springframework.org/schema/aop

http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

<!-- this is the service object on which the transaction has to be applied -->

<bean name="uwrAppService"

class="com.apress.einsure.business.➥

impl.UnderwritingApplicationServiceImpl">

</bean>

<!-- the transactional advice decides what needs to be done -->

<tx:advice id="txAdvice" transaction-manager="txManager">

<!- - More - ->

</tx>

<!-- DataSource -->

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource"

destroy-method="close">

<property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>

<property name="url" value="jdbc:oracle:thin:@eInsureDev:1525:eInsure"/>

<property name="username" value="scott"/>

<property name="password" value="tiger"/>

</bean>

<!-- Platform Transaction Manager, in this case straight jdbc -->

<bean id="txManager"

class="org.springframework.jdbc.➥

datasource.DataSourceTransactionManager">

<property name="dataSource" ref="dataSource"/>

</bean>

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS 263

<aop:config>

<aop:pointcut id="uwrServiceMethods" expression="execution➥

(* com.apress.einsure.business.*.Underwriting*.*(..))"/>

<aop:advisor advice-ref="txAdvice" pointcut-ref="uwrServiceMethods"/>

</aop:config>

<!-- other beans -->

</beans>

Finally, I will set up the transaction attributes applicable to the methods of the appli-
cation service, as shown in Listing 6-32.

Listing 6-32. transaction-config.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:aop="http://www.springframework.org/schema/aop"

xmlns:tx="http://www.springframework.org/schema/tx"

xsi:schemaLocation="

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

http://www.springframework.org/schema/tx

http://www.springframework.org/schema/tx/spring-tx-2.5.xsd

http://www.springframework.org/schema/aop

http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

<!-- this is the service object on which the transaction has to be applied -->

<bean name="uwrAppService"

class="com.apress.einsure.business.impl.➥

UnderwritingApplicationServiceImpl">

</bean>

<!-- the transactional advice decides what needs to be done -->

<tx:advice id="txAdvice" transaction-manager="txManager">

<tx:attributes>

<!-- all methods starting with 'list' fetch data from db, hence read-only -->

<tx:method name="list*" read-only="true"/>

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS264

<!-- other methods use the default transaction propagation attribute REQUIRES

-->

<tx:method name="underwrite*"/>

<tx:method name="update*" propagation=”REQUIRES_NEW”/>

</tx:attributes>

</tx:advice>

<!-- DataSource -->

<!-- Platform Transaction Manager, in this straight jdbd -->

<bean id="txManager" class="org.springframework.jdbc➥

.datasource.DataSourceTransactionManager">

<property name="dataSource" ref="dataSource"/>

</bean>

<aop:config>

<aop:pointcut id="uwrServiceMethods" expression="execution(*➥

com.apress.einsure.business.*.Underwriting*.*(..))"/>

<aop:advisor advice-ref="txAdvice" pointcut-ref="uwrServiceMethods"/>

</aop:config>

<!-- other beans -->

</beans>

The transaction attributes have been set with the AOP advice. All methods starting
with list are read-only and do not participate in transactions. Methods starting with
underwrite are associated with a default transactional propagation attribute of REQUIRED.
This is similar to the EJB transaction setting. An invocation of the underwriteNewpolicy
method on UnderwritingApplicationService will result in this method, either starting a
new transaction or joining an existing transaction. Similarly, any update method will run
in a new transaction scope.

Unlike in EJBs, the Spring Framework supports a declarative rollback configuration
as well. In general, if a Runtime exception (or its subclass) is thrown from the POJO appli-
cation service method, Spring will mark that transaction for rollback. It is possible to
specify the exceptions that will result in rollback. You can also configure the exceptions
that will not cause a rollback, as shown in Listing 6-33.

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS 265

Listing 6-33. transaction-config.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:aop="http://www.springframework.org/schema/aop"

xmlns:tx="http://www.springframework.org/schema/tx"

xsi:schemaLocation="

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

ttp://www.springframework.org/schema/tx

http://www.springframework.org/schema/tx/spring-tx-2.5.xsd

http://www.springframework.org/schema/aop

http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

<!-- this is the service object on which the transaction has to be applied -->

<bean name="uwrAppService"

class="com.apress.einsure.business.impl.➥

UnderwritingApplicationServiceImpl">

</bean>

<!-- the transactional advice decides what needs to be done -->

<tx:advice id="txAdvice" transaction-manager="txManager">

<tx:attributes>

<!-- all methods starting with 'list' fetch data from db, hence read-only -->

<tx:method name="list*" read-only="true"/>

<!-- other methods use the default transaction propagation

attribute REQUIRES -->

<tx:method name="underwrite*" rollback-for="ProductRuleViolationException"/>

<tx:method name="update*" propagation="REQUIRES_NEW" ➥

no-rollback-for="TruncatedFirstNameException"/>

</tx:attributes>

</tx:advice>

<!-- other beans -->

</beans>

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS266

Consequences

Benefits

• Declarative transaction support has no impact on existing source code.

• With the Spring declarative transaction and different transaction manager support,
the same application can be switched from the application server to the web server
with few configuration changes.

• Spring transactions have configurable rollback support.

• Stand-alone applications are no longer required to use programmatic transactions.
These applications can now leverage Spring declarative transaction support out-
side the container as well.

Concerns

• Transaction and AOP concepts are difficult to grasp for less experienced develop-
ers. So, a significant learning curve is involved in using Spring or even EJB
declarative transactions.

Summary
In this chapter, I discussed some critical Java EE application aspects that are generally
ignored or are mostly afterthoughts. Security design is of utmost importance for any
enterprise application, and much has been written on this subject. This is especially
important for Java EE applications because they service a variety of clients. The Authenti-
cation and Authorization Enforcer pattern can be used to prevent any malicious access to
system resources. With out-of-the-box support from Spring Security, you can set up a
security layer with mere configuration.

An audit trail is another widely used but often ignored concern in Java EE applica-
tions. With Spring AOP-based interceptor support, it is possible to deploy a robust,
nonintrusive, and declarative audit trail system. Although EJB containers provide com-
prehensive transaction support, it comes with a price. Your codebase will not run outside
the EJB container, thus severely limiting portability. With Spring AOP-based declarative
transaction support, the domain service objects run almost seamlessly in EJB containers,
web containers, and stand-alone components.

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS 267

Finally, with the crosscutting patterns, I will end the journey of exploring Java EE pat-
terns with the Spring Framework. In the next chapter, I will apply the concepts explored
so far to build the architecture and design of an order management system. So, read on
because I will introduce some interesting design and architecture artifacts in the process.

CHAPTER 6 ■ EXPLORING CROSSCUTTING DESIGN PATTERNS268

Case Study: Building an Order
Management System

I explored the architecture and design of Java EE applications in the earlier chapters. I
also explained the Java EE design patterns with regard to the Spring Framework. Now it’s
time to put all the concepts you’ve learned so far together to build a basic application. In
this chapter, I will apply the Spring Java EE patterns in the context of an order manage-
ment system (OMS). This is a simplified version of an OMS that I once built for a telecom
company that was used by their customers to register for value-added services such as
ringtones, video broadcasting, voicemail, and so on. Using this OMS, users can sign in
and then look up and order services. They can also search, cancel, and suspend their
orders. The primary focus will be on building a lightweight architecture and design. I will
also demonstrate the steps to develop, test, and deploy this application.

For this example OMS, I will borrow heavily from extreme programming (XP) princi-
ples. When applied properly, XP offers immense flexibility for project teams compared to
other methodologies that stress planning and invest significant effort on up-front archi-
tecture and design. An application framework such as Spring, backed by IDE support, is
best suited for agile software development. If you are new to XP, then you can visit
http://www.extremeprogramming.org for a quick tour of the features and workflow. In the
rest of this chapter, I will go through a customized XP iteration to develop the foundation
of the order management system. As you read on, you will see that in some parts of this
chapter I will leave some solution or development tasks as an exercise for you. I’ve done
this to get you to think about what you have learned in the previous chapters. It also
makes reading this chapter more interesting and interactive. If you want to validate your
solutions and development tasks, then visit http://www.opengarage.org, where I have
posted the entire solution and code for this chapter.

269

C H A P T E R 7

Requirements
To start any software development project, you need some documented business
requirements. XP employs user stories for documenting requirements. Each user story
describes how the system is going to solve a business problem. Each is a very short
description of the requirement and is often accompanied by acceptance test cases. Thus,
there is a clear traceability from the requirements to the tests. A user story is written on a
story card.

With agile processes, it is not necessary that you have all the requirements in place
before starting a project. To start the first iteration, you need just a few requirements. The
user stories coming after the start of the first iteration are added to the requirements
backlog. A few of them will be picked from the backlog based on their priority for imple-
mentation in a future iteration until the backlog has been cleared. For the OMS in this
chapter, I have picked up three requirements with the highest priority for the first itera-
tion. The priority is set by the customer, and it is used to determine whether a
requirement will be taken up from the backlog for implementation in the next iteration.
The user stories for these requirements are described in the next sections.

Story Card: Sign In Users

The system allows only registered users to sign in with a username and password. In the
case of a sign-in failure, the user will be notified with a generic error message and
prompted to sign in again. On successful sign-in, the user is taken to the home page
with a link to save the order.

Acceptance test set: AT-01

Priority: 1

Story Card: Look Up Services

The system should provide a facility to look up services available to order for authenti-
cated users only. This opens in a new pop-up window. When the user selects a service,
this pop-up closes, supplying the appropriate values to the parent page.

Acceptance test set: AT-02

Priority: 1

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM270

Story Card: Save Order

The system allows authenticated users to save an order with a unique order identifier.
This identifier can be used later to search an order. The users need to use a lookup func-
tion to select the order items. In the first release, the system will allow only one item per
order.

Acceptance test set: AT-03

Priority: 1

Iteration Planning
Once the requirements are identified, it’s time for iteration planning. Iteration planning
generally produces a plan for the programming and unit testing tasks to be carried out
for the current iteration. You should also add architecture, design, coding standards com-
pliance, and refactoring to the iteration plan. Each iteration lasts 14 to 21 working days
on average. In the first couple of iterations, more time is spent on architecture and design
evolutions. You should not spend more than two to three iterations baselining your archi-
tecture and design, after which the programming tasks should take precedence.

You can use advanced software such as Microsoft Project for your project manage-
ment and planning needs. However, keeping with the XP philosophy of simplicity and
flexibility, you can use spreadsheet software such as Microsoft Excel or OpenOffice Calc
for quick planning and tracking. Figure 7-1 shows the plan and tracker for the first itera-
tion of the example OMS created using Microsoft Excel.

Figure 7-1. Plan and tracker for iteration 1

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM 271

As shown in Figure 7-1, each row in the tracker represents a task that needs to be
carried out in the iteration. As part of the planning and tracking, you have the generic
attributes such as estimated hours, actual hours, start date, end date, and so on. You can
also see the resource or person who has been entrusted with a particular task. One
important attribute worth noting in this planner is variance. Variance helps keep track of
the “health” of the iteration. A positive variance generally indicates that a task has taken
longer than initially estimated. You can also maintain an overall project summary tracker,
as shown in Figure 7-2. This gives a quick snapshot of the overall progress of a project.

Figure 7-2. Overall project summary tracker

Architecture
Traditional projects tend to build a complete application architecture in a planned way.
However, experience has shown that this big-bang approach often results in failures.
Application architecture depends on a variety of factors including the functional and
nonfunctional requirements. It is not always possible to think and incorporate all the
issues that affect architecture in advance. As the customers business requirements
change and the team gets deep into the development phase, the cracks in the architec-
ture are revealed.

XP, on the contrary, believes in evolutionary architecture. Architecture-related tasks
consume a significant portion of the time in the first few iterations. The project starts
with a base architecture that evolves through the iterations. Figure 7-3 shows the archi-
tecture for the example OMS.

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM272

Figure 7-3. Architecture of the example OMS

As shown in Figure 7-3, the OMS is divided into three distinct tiers. Each tier is
divided into layers with distinct roles.

Presentation Tier

The presentation tier is primarily responsible for processing the incoming request and
preparing the HTML-based view to be rendered on the browser. It is also responsible for
invoking the business logic. The data returned by the business tier is then used to pro-
duce the response for the client.

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM 273

Security

This component is responsible for allowing secured access to the presentation tier
resources.

JSP

Java Server Pages (JSP) provides the view components of the OMS application.

Dispatcher Servlet

The dispatcher servlet intercepts all the incoming requests that cross the security layer.
It invokes the appropriate page controller for each user action. It is also responsible for
picking up the appropriate view component and merging it with the model to prepare
the final response.

Page Controller

A page controller is invoked by the dispatcher servlet for each action triggered by the
user. The page controller in turn interacts with the business tier components. It takes the
model returned by the business tier and a logical reference to the next view and passes
them to the dispatcher servlet.

Proxy Factory Bean and Business Interfaces

The proxy factory bean and the business interfaces are used to generate proxy objects to
access the business tier components. The proxy objects hide the networking details for
accessing remote business objects. The business interfaces are used by page controllers
to invoke methods on the business object proxy. The business interfaces play a role simi-
lar to EJB home interfaces.

Business Tier

The business tier is responsible for executing the business rules. Distributing the busi-
ness logic components is one important decision that can be made up front. This will
help you choose the appropriate remoting technology. For the example OMS, the cus-
tomer wants to expose the business logic only to external retail outlets over some form of
HTTP remoting. Also, the team is not conversant with EJB. Hence, I have decided to use
the fast, lightweight Hessian remoting, which is based on HTTP. It can be used to export

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM274

POJOs as remote business services. Later, if required, these POJO business components
can also be exposed as web services.

The business services also need security services if they are exposed to external
clients such as the Java Swing-based desktop application used by the retail outlets. This
consideration can be factored into the architecture later, when the customer makes the
final decision on this. Since the remoting is being done over HTTP using servlets, the
same security component used in the presentation tier can be reused in the business tier.

Remote Dispatcher Servlet

This dispatcher servlet intercepts all the remote business logic invocations over the
Hessian protocol. It dispatches the actual invocation on POJO business components.

Business Service Implementations

This layer implements the business interfaces and provides the actual implementation
of the business logic. The business service or the application service layer for the OMS
application will be developed as POJOs.

Data Access Objects

Data access objects (DAOs) encapsulate the interaction with the integration tier. In this
case, the DAOs connect and manipulate data stored in the Oracle RDBMS. For this they
use the JDBC API.

Integration Tier

The integration tier is hosted on an Oracle 10g database. The DAOs are responsible for
interfacing with this tier. They pass SQL commands to retrieve and manipulate the data
stored in the RDBMS. Note that OMS will not use any stored procedure because the
application does not require any bulk or long-running database operation.

A careful observation of Figure 7-3 will reveal a few missing pieces in the architec-
ture. For example, you may have noticed that I did not include any description about
transaction or logging. Since this is only the first iteration of the project, I was still delib-
erating about these two system aspects. In the case of transactions, the customer was
keen to embed the ObjectWeb JOTM transaction manager. However, I was confident
that the Spring Framework’s data source transaction manager implementation would be
sufficient in this case. Hence, I decided to implement the second option as part of the
development task. This would enable me to highlight its benefits such as robustness and

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM 275

ease of use to convince the end client. The selected approach can be applied in a subse-
quent iteration to refactor the evolutionary architecture. Note that in this book I will
discuss only the first iteration. Interested readers can take this up as an exercise for archi-
tecture refactoring. You can also visit http://www.opengarage.org to see the outcome of
this exercise.

Design
In the first pass of architecture, I managed to divide the application into tiers. Each tier
was decomposed into smaller layers with distinct functions. Now I will get down to the
design of the OMS application. It is important to educate the project development team
on the design of the application. This helps speed up development because it is now
based on best practices and established guidelines and patterns. Hence, before getting
into the actual design aspects, I will touch upon a very convenient yet powerful way to
publish design instructions.

I generally produce an HTML-based design directive as an agile design artifact.
Figure 7-4 shows a design directive composed in Javadoc style.

Figure 7-4. Design directive order management system

The design directive is composed just like a Javadoc. Each element in the Javadoc
describes a design concern. Since design aims to provide a high-level solution to the
problem at hand, each design concern is documented using the pattern template dis-
cussed in Chapter 2. In the next few sections, I will cover some of these design concerns
and address them using the Spring Java EE patterns discussed earlier in this book.

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM276

Security

Problem

The OMS application requires that only authenticated users can search for services and
place orders. Anonymous users should be prevented from pasting a URL in the browser’s
address bar and accessing a page in the application.

Forces

• Only valid users are allowed entry into the application.

• All different entry points into an application should be guarded by authentication.

• All authenticated users should have the appropriate roles/authority to access
secure system resources.

Solution

All these forces probably are familiar to you. You guessed right—you will need to imple-
ment the Authentication and Authorization Enforcer design pattern to solve this
problem. I will not delve much into the details of this solution because the entire prob-
lem can be addressed by this pattern described in Chapter 6.

Java Server Pages

Problem

The OMS application needs to display dynamic data to the end users. It also needs to
show controls such as text fields and buttons for the users to interact with the applica-
tion. The dynamic data and controls must be presented in a particular layout. It should
be easy to rearrange the position of the data and controls in the layout with configura-
tion. The layout should be flexible enough to add or remove new content.

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM 277

Forces

• Users need to view dynamic data and different HTML controls in their browsers.

• There needs to be flexible layout support.

Solution

The dynamic data can be displayed using the View Helper design pattern. In the case of
the order management application, I will use JSTL tags to retrieve and display dynamic
data. To render the different controls, you can use the Spring form tags. You can read
more about the Spring form tags at http://static.springframework.org/spring/docs/
2.5.x/reference/view.html#view-jsp-formtaglib.

You can apply the Composite View pattern to include the JSP-based view in a flexible
layout. The layout in the example OMS will be built using Apache Tiles 2. The Spring doc-
umentation provides comprehensive details about the integration with the Tiles layout
framework; you can access it at http://static.springframework.org/spring/docs/2.5.x/
reference/view.html#view-tiles. If you are interested to know more about layouts and the
Tiles framework in general, read all about it at http://tiles.apache.org/.

Page Controller

Problem

The event generated by each user action needs to be handled outside the front controller.
This will enable the front controller to concentrate on the core task of acting as the single
point of entry into the application and hence conform to SRP. Once the request is
received, the front controller delegates the actual request processing to some other
components. These components should also be responsible for retrieving a model by
invoking the business logic component.

Forces

• Remove the code that invokes business logic in response to user action to reusable
components.

• Identify the reusable components based on the request URL.

• Deploy one reusable component per user action.

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM278

Solution

Obviously, you will use the Page Controller pattern discussed in Chapter 3 to solve this
design issue. The OMS application will extensively use page controller implementations
that extend the SimpleFormController. However, the home page controller that will be
used for redirection on successful authentication will use a UrlFilenameViewController.
This is because this page controller does not define a complete workflow and is used only
to render a simple home page now. Figure 7-5 shows the page controller class diagram.

Figure 7-5. OMS class diagram for page controllers in iteration 1

The ServiceLookupController produces a list of matching services as per the search
inputs supplied by the user. Similarly, the SaveOrderController saves the order informa-
tion by invoking the business tier components.

By now you must have observed the similarity between the design directives and the
patterns presented earlier in this book. I have not shown the consequences for using the
different solutions. This is deliberate. I am sure you can make out the consequences from
the Spring Java EE patterns that were applied for a particular design issue. A conse-
quences section with a benefit and concern analysis is a must when you deliver a design
directive to a development team or customer. Also, I prefer to add a UML package dia-
gram (besides class and sequence diagrams) in my design directives, because it helps
reveal the coupling in the application.

By now you should have a clear idea about the OMS application design. Table 7-1
points you to the appropriate Spring Java EE design patterns for the rest of the design
issues. You can try to elaborate on these design directives as well as add the “Conse-
quences” section to the previous examples.

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM 279

Table 7-1. Design Directive Pointers

Design Issue Spring Java EE Pattern

Dispatcher servlet Front Controller

Business interfaces Business Interface

Remote dispatcher servlet Web Service Broker

Business service Application Service

Data access object Data Access Object

Development
Once the design is in place, the next step is to start the development. Before you get
started, though, it’s imperative that you set up the team development environment. For
the example OMS, I decided to use Blazon ezJEE 1.0.0, which is based on the Eclipse
Ganymede release. It is a comprehensive agile Java EE development environment and
comes bundled with all the essential plug-ins, including support for the Spring Frame-
work. If you are familiar with the Eclipse IDE, then getting started with Blazon ezJEE will
be a breeze. You can get Blazon ezJEE by following the download link at http://www.
opengarage.org.

Once you are done with the download, go through the quick-start guide to get started
with this IDE. I will use Apache Maven (included in Blazon ezJEE) to build and deploy the
web application artifacts. Maven is a useful tool for agile project development. It makes it
easy to develop, build, and deploy projects in a very flexible and modular way. It pro-
motes test-driven development by directly including unit test runs in the build process.
It can also be used with Continuum (http://continuum.apache.org/) to support continu-
ous integration. In the next few sections, I will explain how you can use Blazon ezJEE to
set up the different projects required for the OMS application in the workspace.

Setting Up the Workspace

When you launch Blazon ezJEE for the first time, it will prompt you to select a workspace.
Simply, a workspace is a folder in which you will keep your other Eclipse project directo-
ries. Because I am developing this OMS on the Windows platform, I will supply the fully
qualified folder name as c:\omsworkspace, as shown in Figure 7-6.

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM280

Figure 7-6. Workspace selection

So, now ezJEE is ready with a clean workspace to create projects for the OMS applica-
tion. Because I will use Apache Maven 2 to build this project, you will need to turn off the
automatic build option to follow along by selecting the Project menu and deselecting
Build Automatically, as shown in Figure 7-7. If you are new to Maven, then visit http://
maven.apache.org/ to learn more about Maven concepts. Maven is one of the best build
tools available, especially for large projects with lots of modules that need incremental
and versioned releases.

Figure 7-7. Turning off the automatic build

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM 281

Setting Up the Projects

The first project that I will show how to set up is the simplest one. This project contains
the JavaBeans that will be used to transfer data across layers and then across tiers. Here
are the step-by-step instructions for creating this project:

1. Create a new project by selecting File ➤ New ➤ Project in ezJEE. This displays the
New Project Wizard, as shown in Figure 7-8.

Figure 7-8. Starting the New Project Wizard

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM282

2. In the New Project Wizard, select Maven Project, and click Next to move to the
Select Project Name and Location screen. On this screen, do not make any
changes. Just click Next to move to the Select An Archetype screen, as shown in
Figure 7-9.

Figure 7-9. Archetype selection

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM 283

3. Select maven-archetype-quickstart, and click Next. This will take you to the screen
where you can specify the archetype parameters, as shown in Figure 7-10.

Figure 7-10. Specifying archetype parameters

4. Enter the values shown in Figure 7-10, and click Finish.

With these four steps you have created a Maven-based Java project in Blazon ezJEE.
You will need to repeat these four steps to set up a few other Maven 2 projects, as listed in
Table 7-2.

Table 7-2. Maven 2 Java Project Setup

Project Name Description Package Name

OMSJavabean Contains the JavaBean classes com.apress.oms.javabean
used as data container

OMSBusinessAPI Contains the business service com.apress.oms.business.api
interfaces

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM284

Project Name Description Package Name

OMSBusinessImpl Contains the actual business com.apress.oms.business.
logic implementations impl

OMSPersistence Contains the data access objects com.apress.oms.persistence

OMSBusinessRemote Contains the components required com.apress.oms.remoting
to export the business services as
remote objects

OMSWeb Contains the presentation com.apress.oms.web.
controller

The last two projects in Table 7-2 should be created as Maven 2 web projects. The
steps to create these projects are the same except the archetype selection. To set up web
projects with Maven, you will need to select maven-archetype-webapp on the Select an
Archetype screen.

Adding Dependencies

So far, all the Maven projects have been set up independently. But in order for these proj-
ects to compile and produce the final build, you will need to add dependencies amongst
projects as well other frameworks. Table 7-3 lists the dependencies.

Table 7-3. Maven 2 Project Dependencies

Project Dependency

OMSJavabean None

OMSBusinessAPI OMSJavabean

OMSBusinessImpl OMSBusinessAPI, OMSJavabean

OMSBusinessRemote OMSBusinessAPI, OMSBusinessImpl, OMSJavabean, Spring
Framework

OMSPersistence OMSJavabean, Spring Framework

OMSWeb OMSJavabean, OMSBusinessAPI, Spring Framework (2.5.4), JSTL 1.1.2

I will show you the steps that need to be followed to add Maven project dependen-
cies in Blazon ezJEE for the OMSWeb project. You can follow the same steps to add
dependencies for other projects. To add dependencies, you must first build all the proj-
ects in your workspace using Maven. You can do this by selecting the individual pom.xml
file and running the Maven install goal, as shown in Figure 7-11.

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM 285

Figure 7-11. Running the Maven 2 install goal

Now to add dependencies, select pom.xml in the project OMSWeb, and click Add
Dependency, as shown in Figure 7-12.

Figure 7-12. Adding Maven 2 dependency

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM286

This displays the Add Dependency dialog box. In the query input box search for
Spring, select the appropriate version of the product, and click OK, as shown in
Figure 7-13. This will now add the Spring project dependency to the OMSWeb project.
The version of the dependent project that you select may be critical. This is because
the dependent project—Spring in this case—can in turn have dependencies on other
projects.

Figure 7-13. Searching and adding Maven 2 projects as dependency

Following the same steps, you can add dependencies for other projects as listed in
Table 7-3. You are now ready to start coding and unit testing for the OMS application.

Constructing the Project

As shown in the Resource column of the tracker in Figure 7-1, I will now start with the
login service and setup of the security layer. The security layer is added primarily by the
configuration to the OMSWeb project to provide secured access to system resources to
authenticated users. All the development tasks that follow from now on are in the
OMSWeb project unless mentioned otherwise.

The first step to setting up the OMSWeb project is to add Maven dependencies with
other projects. You can do this by following the steps outlined earlier. Listing 7-1 shows
the pom.xml file that results from adding the dependent projects of OMSWeb.

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM 287

Listing 7-1. pom.xml

<?xml version="1.0" encoding="UTF-8"?>

<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<modelVersion>4.0.0</modelVersion>

<groupId>OMSWeb</groupId>

<artifactId>OMSWeb</artifactId>

<packaging>war</packaging>

<version>0.0.1-SNAPSHOT</version>

<name>OMSWeb Maven Webapp</name>

<url>http://maven.apache.org</url>

<dependencies>

<dependency>

<groupId>junit</groupId>

<artifactId>junit</artifactId>

<version>3.8.1</version>

<scope>test</scope>

</dependency>

<dependency>

<groupId>org.springframework</groupId>

<artifactId>spring</artifactId>

<version>2.5.4</version>

</dependency>

<dependency>

<groupId>org.springframework.security</groupId>

<artifactId>spring-security-core</artifactId>

<version>2.0.3</version>

</dependency>

<dependency>

<groupId>org.springframework</groupId>

<artifactId>spring-webmvc</artifactId>

<version>2.5.4</version>

</dependency>

<dependency>

<groupId>OMSBusinessAPI</groupId>

<artifactId>OMSBusinessAPI</artifactId>

<version>0.0.1-SNAPSHOT</version>

</dependency>

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM288

<dependency>

<groupId>OMSJavabean</groupId>

<artifactId>OMSJavabean</artifactId>

<version>0.0.1-SNAPSHOT</version>

</dependency>

<dependency>

<groupId>jstl</groupId>

<artifactId>jstl</artifactId>

<version>1.1.2</version>

</dependency>

</dependencies>

<build>

<finalName>OMSWeb</finalName>

</build>

</project>

As shown in the pom.xml file in Listing 7-1, running the Maven install goal will pro-
duce a web application archive (WAR) file. I will now show how to modify web.xml to
register the Spring dispatcher or front controller servlet. As mentioned in Chapter 3, this
servlet will load the Spring configuration from an XML configuration file starting with
the name of the servlet in web.xml. The Spring application context loaded by this servlet
will be a child of the parent application context loaded by the Spring context listener.
The parent application context is loaded from the classpath resource
applicationContext-security.xml. Listing 7-2 shows web.xml.

Listing 7-2. web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

<context-param>

<param-name>contextConfigLocation</param-name>

<param-value>

/WEB-INF/applicationContext-security.xml

</param-value>

</context-param>

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM 289

<filter>

<filter-name>springSecurityFilterChain</filter-name>

<filter-class>org.springframework.security.util.FilterToBeanProxy

</filter-class>

<init-param>

<param-name>targetClass</param-name>

<param-value>org.springframework.security.util.FilterChainProxy

</param-value>

</init-param>

</filter>

<filter-mapping>

<filter-name>springSecurityFilterChain</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

<listener>

<listener-class>org.springframework.web.context.ContextLoaderListener

</listener-class>

</listener>

<servlet>

<servlet-name>oms</servlet-name>

<servlet-class>

org.springframework.web.servlet.DispatcherServlet

</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>oms</servlet-name>

<url-pattern>*.do</url-pattern>

</servlet-mapping>

<jsp-config>

<taglib>

<taglib-uri>/spring</taglib-uri>

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM290

<taglib-location>

/WEB-INF/tld/spring-form.tld

</taglib-location>

</taglib>

</jsp-config>

</web-app>

As shown in Listing 7-2, I have installed the Spring Security filter. This filter interacts
with its security counterpart in the Spring application context. Listing 7-3 shows the
Spring Security application context configuration.

Listing 7-3. /WEB-INF/applicationContext-security.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

<bean id="filterChainProxy"

class="org.springframework.security.util.FilterChainProxy">

<property name="filterInvocationDefinitionSource">

<value>

CONVERT_URL_TO_LOWERCASE_BEFORE_COMPARISON

PATTERN_TYPE_APACHE_ANT

/**=httpSessionContextIntegrationFilter,authenticationProcessing➥

Filter,anonymousProcessingFilter,exceptionTranslationFilter, ➥

filterInvocationInterceptor➥

</value>

</property>

</bean>

<bean id="httpSessionContextIntegrationFilter"

class="org.springframework.security.context➥

.HttpSessionContextIntegrationFilter"/>

<bean id="authenticationProcessingFilter" class="org.springframework.➥

security.ui.webapp.AuthenticationProcessingFilter">

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM 291

<property name="authenticationManager" ref="authenticationManager"/>

<property name="authenticationFailureUrl" value="/login.do?errorId=1"/>

<property name="defaultTargetUrl" value="/secure/home.do"/>

<property name="filterProcessesUrl" value="/j_spring_security_check"/>

</bean>

<bean id="anonymousProcessingFilter" class="org.springframework.security.➥

providers.anonymous.AnonymousProcessingFilter">

<property name="key" value="changeThis"/>

<property name="userAttribute" value="anonymousUser,ROLE_ANONYMOUS"/>

</bean>

<bean id="exceptionTranslationFilter" class="org.springframework.security.➥

ui.ExceptionTranslationFilter">

<property name="authenticationEntryPoint">

<bean class="org.springframework.security.ui.webapp.➥

AuthenticationProcessingFilterEntryPoint">

<property name="loginFormUrl" value="/login.do"/>

<property name="forceHttps" value="false"/>

</bean>

</property>

<property name="accessDeniedHandler">

<bean class="org.springframework.security.ui.AccessDeniedHandlerImpl">

<property name="errorPage" value="/denied.jsp"/>

</bean>

</property>

</bean>

<bean id="filterInvocationInterceptor" class="org.springframework.security.➥

intercept.web.FilterSecurityInterceptor">

<property name="authenticationManager" ref="authenticationManager"/>

<property name="accessDecisionManager" ref="accessDecisionManager" />

<property name="objectDefinitionSource">

<value>

CONVERT_URL_TO_LOWERCASE_BEFORE_COMPARISON

PATTERN_TYPE_APACHE_ANT

/secure/admin/**=ROLE_ADMIN

/secure/**=IS_AUTHENTICATED_REMEMBERED

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM292

/**=IS_AUTHENTICATED_ANONYMOUSLY

</value>

</property>

</bean>

<bean name="accessDecisionManager"

class="org.springframework.security.vote.AffirmativeBased">

<property name="allowIfAllAbstainDecisions" value="false"/>

<property name="decisionVoters">

<list>

<bean class="org.springframework.security.vote.RoleVoter"/>

<bean class="org.springframework.security.vote.AuthenticatedVoter"/>

</list>

</property>

</bean>

<bean id="authenticationManager"

class="org.springframework.security.providers.ProviderManager">

<property name="providers">

<list>

<ref local="daoAuthenticationProvider"/>

</list>

</property>

</bean>

<bean id="daoAuthenticationProvider" class="org.springframework.security➥

.providers.dao.DaoAuthenticationProvider">

<property name="userDetailsService" ref="userDetailsService"/>

</bean>

<bean id="userDetailsService" class="org.springframework.➥

security.userdetails.memory.InMemoryDaoImpl">

<property name="userProperties">

<bean class="org.springframework.beans.factory.config➥

.PropertiesFactoryBean">

<property name="location" value="/WEB-INF/users.properties"/>

</bean>

</property>

</bean>

</beans>

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM 293

As shown in Listing 7-3, I have used an in-memory DAO for now. This is because the
customer was unsure of the security provider. When the first iteration started, they were
still deciding between an OpenID provider and an LDAP server. However, this did not
affect the progress of the project. You can easily set up an in-memory DAO security
provider for testing purposes. Spring Security provides support to easily switch to either
an OpenID or an LDAP authentication provider. Note that in order to use the in-memory
DAO, you need to create the user.properties file in the WEB-INF folder. Listing 7-4 shows a
sample user.properties file. This file also stores the role or authorities of the user as a
comma-separated list.

Listing 7-4. /WEB-INF/users.properties

dhrubo=kayal,ROLE_USER

harry=potter,ROLE_ADMIN

peter=parker,ROLE_USER

You are familiar with most of the configuration shown in Listing 7-3 from Chapter 6.
The application-specific beans are configured in the dispatcher servlet application
context. This application context is loaded from the configuration file, as shown in
Listing 7-5.

Listing 7-5. /WEB-INF/oms-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

"

>

<bean id="viewResolver"

class="org.springframework.web.servlet.view.InternalResourceViewResolver">

<property name="viewClass"

value="org.springframework.web.servlet.view.JstlView" />

<property name="prefix" value="/WEB-INF/jsp/" />

<property name="suffix" value=".jsp" />

</bean>

<bean name="/login.do"

class="org.springframework.web.servlet.mvc.UrlFilenameViewController">

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM294

</bean>

<bean name="/secure/home.do"

class="org.springframework.web.servlet.mvc.UrlFilenameViewController">

</bean>

</beans>

As shown in Listing 7-5, UrlFileNameViewController is used to display both the login
page and the home page. You may later want to use a different controller implementation
for the home or login page depending on requirement changes. The home page, for
instance, may require displaying the list of all the pending orders when the user signs on.
The home page shown in Listing 7-6 displays a simple form to place an order. It also con-
tains a link to launch a pop-up window to search and select a service. Note that home.jsp
has been placed in the secure folder.

Listing 7-6. /WEB-INF/jsp/secure/home.jsp

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>

<html>

<head>

<title>Place an Order</title>

</head>

<body>

<form action="saveOrder.do" method="POST">

<form:errors path="*" />

<table>

<tr>

<td>Item Id:</td>

<td><input type='text' name='itemId' readonly="readonly"/></td>

<td><input value="Find Item" name="FindItem"

type="button" onClick="openItemSearchWindow()"/></td>

</tr>

<tr>

<td>Item Name</td>

<td><input type='text' name='ItemName' /></td>

</tr>

<tr>

<td>Item Description</td>

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM 295

<td><input type='text' name='ItemDesc' /></td>

</tr>

<tr><td colspan='2'><input value="Save" name="Save"

type="submit" /></td></tr>

</table>

</form>

</body>

</html>

Since Spring Security is installed, any unauthorized or unauthenticated access will
redirect the user to the login page. Listing 7-7 shows the login page.

Listing 7-7. /WEB-INF/jsp/login.jsp

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>

<html>

<head>

<title>Login</title>

</head>

<body>

<form action="j_spring_security_check" method="POST">

<form:errors path="*" cssClass="errorBox" />

<table>

<tr>

<td>User:</td>

<td><input type='text' name='j_username' />

</td>

</tr>

<tr>

<td>Password:</td>

<td><input type='password' name='j_password' /></td>

</tr>

<tr><td colspan='2'><input value="Sign In" type="submit" /></td></tr>

</table>

</form>

</body>

</html>

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM296

This page just sets up form-based user authentication. Note that this code also uses
the Spring form tags as view helpers to display error messages resulting from login
failures.

Now that some code is in place, you need to build and test this application on the
Tomcat 5.5 web server. To build the OMSWeb application, you need to select the project
and run the Maven install goal as shown earlier in this chapter. The install goal will also
run any JUnit tests that you may have written. By default, Maven uses JUnit for unit tests.
You can also use any other testing framework, such as TestNG, as well. On a successful
build, the install goal generates a WAR file. In the next section, I will present a step-by-
step guide to install this WAR file on Tomcat 5.5. To follow the next section, you will need
to download, install, and start the Tomcat web server. You can get detailed instructions
for this at http://tomcat.apache.org/.

Deploying the Project

Maven 2 provides a plug-in to deploy the generated WAR file in the Tomcat 5.5 server. You
need to install this plug-in before you can actually use it. The steps to adding this plug-in
are the same as setting up the dependencies. To add the Maven 2 Tomcat plug-in, right-
click the OMSWeb project to launch the context menu. In the context menu, select
Maven ➤ Add Plugin. This is shown in Figure 7-14.

Figure 7-14. Adding the Maven 2 plug-in

On the Add Plugin screen that appears, type tomcat in the Query box. Select the
Tomcat Maven plug-in as shown in Figure 7-15, and click OK. This automatically down-
loads the relevant JAR files required by this plug-in.

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM 297

Figure 7-15. Searching and adding the Maven 2 plug-in

The Maven 2 Tomcat plug-in assumes a default Tomcat Manager URL (http://
localhost:8080/manager) to connect and deploy the WAR file. For authentication, it
assumes that the manager’s username is admin with no password. So, in order to get this
working, you may need to alter the tomcat-users.xml file to change the password of the
admin user. The Maven goals for this plug-in are not available explicitly. So, you need to
create a new run configuration as shown in Figure 7-16 to execute the Tomcat Maven
plug-in goals.

Figure 7-16. Creating run configurations

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM298

This opens the screen to create a new configuration, as shown in Figure 7-17. On this
screen, double-click Maven Build to create a new Maven configuration. Fill in the values
as shown in Figure 7-17, except Goals.

Figure 7-17. New run configuration for Maven build

For the goals, click Select, and in the goal search window that appears, query for
tomcat, as shown in Figure 7-18. You will need to select the deploy task and click OK. This
populates the text box in Figure 7-17 with the appropriate values for the Tomcat deploy
goal.

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM 299

Figure 7-18. Searching and selecting a goal

Once the goal is selected, click Apply to save this configuration (for future use) and
then click Run to execute this goal and install the OMSWeb.war file on the Tomcat server.

Setting up and using the Maven plug-in for Tomcat is a complex task. Moreover, you
may have reservations about using an alpha version of the plug-in. Also, you may not like
the idea of changing the Tomcat manager user password and setting it to be blank. This
plug-in has been around for some time now and has worked despite its alpha status. It is
especially useful if you do not use continuous integration and in staging environments
where you do not have access to Eclipse and need to execute all Maven goals from the
command line.

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM300

Simplified Deployment

There is a simpler way to deploy the OMSWeb project. I assume that you have already
executed the Maven install goal to create the WAR file and have downloaded and
installed Tomcat 5.5. Since I am on Windows, I have installed Tomcat at c:\tomcat5.5.
Note that you should not download and use the Tomcat Windows Service installer;
instead, choose the simple zipped distribution.

As a first step to this new deployment strategy, you will need to set up the target run-
time (or the server on which the web application will run) for the OMSWeb project. For
this, right-click the OMSWeb project to launch the context menu, and select Properties,
as shown in Figure 7-19.

Figure 7-19. Selecting OMSWeb project properties

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM 301

On the project properties screen for OMSWeb, select Targeted Runtimes. In the Tar-
geted Runtimes view, click New, as shown in Figure 7-20.

Figure 7-20. New target runtime

On the New Server Runtime Environment screen, select Apache Tomcat 5.5, and
check the Create a New Local Server option, as shown in Figure 7-21. Then click Next to
move to the next screen to select the Tomcat installation directory.

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM302

Figure 7-21. New server runtime: Apache Tomcat 5.5

On the Tomcat installation directory selection screen, you need to browse to and
select the Tomcat installation home directory. Alternatively, you can also choose to
download and install Tomcat from this screen. Since I have already installed Tomcat 5.5,
I will choose c:\tomcat5.5, as shown in Figure 7-22. Click Finish to complete the installa-
tion of Tomcat 5.5 and the local server.

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM 303

Figure 7-22. Tomcat directory selection

Once complete, you are back again on the project properties screen. The newly cre-
ated Tomcat runtime is now shown in this screen. You will need to select this new
runtime and click OK, as shown in Figure 7-23.

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM304

Figure 7-23. Selecting the new runtime

You’re not done yet. You need to create a new server from the local server configura-
tion created just now. You can do this in the server control panel. For this you need to
select Window ➤ Show View ➤ Servers in Blazon ezJEE IDE, as shown in Figure 7-24.

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM 305

Figure 7-24. Enabling a Servers view

Once the Servers view is enabled, it opens a blank server control panel. The server
control panel has buttons to start, stop, and restart a server. On the server control panel,
right-click to launch the context menu, and select New ➤ Server, as shown in Figure 7-25.

Figure 7-25. Server control panel: new server setup

In the New Server dialog box that appears, select Apache Tomcat 5.5, and click
Finish, as shown in Figure 7-26.

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM306

Figure 7-26. Tomcat server setup

The Tomcat server now appears in a stopped state in the server control panel. Right-
click it to add the OMSWeb project by selecting the Add and Remove Projects option, as
shown in Figure 7-27.

Figure 7-27. Adding and removing web projects on the Tomcat server

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM 307

In the Add and Remove Projects dialog box, select the OMSWeb project, and click
Finish, as shown in Figure 7-28.

Figure 7-28. Add OMSWeb on the Tomcat server

Now you can start the Tomcat server from the Blazon ezJEE server control panel.
This will also deploy the OMSWeb project on the server. You can now browse to http://
localhost:8080/OMSWeb/login.do to view the login screen, as shown in Figure 7-29.

Figure 7-29. Login screen

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM308

You can now test the login screen by supplying the values for the user and password
setup in the users.properties file in Listing 7-4. On successful authentication, the user is
redirected to the home page, as shown in Figure 7-30.

Figure 7-30. Placing an order

I will leave the rest of the tasks in the tracker for you to complete. Any agile Java EE
project must set up a source control, continuous integration server, as well as a few
source code analysis and refactoring tools. You can try these different options in Blazon
ezJEE to take this project forward. I will take this project forward on my web site at
http://www.opengarage.org.

Summary
In this chapter, I showed how to build the basic structure for an order management sys-
tem in an interactive way. Although I provided most of the foundation, I left enough for
you to try to experience the application design and development with the Spring Frame-
work and Java EE patterns. I also introduced you to user stories for agile requirements
gathering. Then I discussed the strategies that should be adopted by describing the archi-
tecture and design for projects in a flexible way. Finally, I presented a quick tour to get
started on the development using Blazon ezJEE, which is an Eclipse Ganymede-based
agile development environment.

As they say, all good things must come to an end. With this chapter, we’ve finished
our journey of Java EE design patterns with the Spring Framework. I will keep updating
and adding to this catalog, and you can find useful supplementary information related to
Java EE Spring patterns on my web site at http://www.opengarage.org.

CHAPTER 7 ■ CASE STUDY: BUILDING AN ORDER MANAGEMENT SYSTEM 309

- (minus sign) in class diagrams, 15
* (asterisk) as wildcard, 58
? (question mark) for positional bind

variables, 187
+ (plus sign) in class diagrams, 15

■A
AbstractCachingViewResolver class, 60
AbstractCommandController class, 74–78
AbstractController class, 71–74
AbstractEnterpriseBean class, 158, 200
AbstractHandlerMapping, 54
AbstractMessageDrivenBean class, 200
AbstractProcessingFilter, 234
AbstractStatelessSessionBean, 158
AbstractTemplateViewResolver class,

60–61
AbstractWizardFormController class, 89
access decision manager (Spring

Security), 228
accessDecisionManager property,

246–247
Acegi Security, 223–224
action/command handling (application

controller), 52–56
action handlers

page controllers and, 51
sequence, 54
using (application controller), 56–58

advices, audit interceptor, 249
AffirmativeBased access decision

manager, 247
afterCompletion callback method, 104
aggregation relationship (UML), 17
Alur, Deepak, 1, 223
ANPF (Anonymous Processing Filter),

243–244

AOP module (Spring), 34, 37
Apache Axis web services framework, 210
Apache Maven, 280–285
Apache Struts framework, 23
Apache Tiles framework, 122, 278
Apache Tomcat, 257
APF (Authentication Processing Filter),

233–243
application contexts (Spring), 33
Application Controller pattern

action/command handling, 52–56
action handlers, using, 56–58
for action-view management, 50–52
background, 50–51
benefits and concerns, 68
strategies with Spring framework, 52
view handlers, 59–62, 62–68

application server transactions, 261
application servers, 138
application service implementation class,

164
Application Service pattern

benefits and concerns, 167
to concentrate business logic in POJO

classes, 162–163
strategies with Spring framework,

164–167
applicationContext-security.xml, 229
applicationScope object, 128
architecture

container, 6–8
layered, 10
OMS application, 272–275

architecture, Java EE
n-tier, 4–5
overview, 5–6
single-tier, 2

Index

311

three-tier, 4
two-tier, 3

aspect-oriented programming (AOP), 33
association relationship (UML), 16
asynchronous report processing, 204
asynchronous service requests, 199–200
audit interceptors

to apply auditing of business service
invocations, 248–249

benefits and concerns, 256
strategies with Spring framework,

249–256
AuditEvent class, 253
AuditLog interface, 254
AuditRules class, 252–253
authentication

Authentication Processing Filter (APF),
233–243

authenticationEntryPoint property, 245
authenticationManager property, 246
AuthenticationProvider interface, 238
defined, 224
manager (Spring Security), 228, 236–237

Authentication and Authorization
Enforcer pattern

high-level components of, 226
OMS application and, 277
Spring Security framework

components, 228
strategies with Spring framework, 226
to verify user identity, 224–226

authorization, defined, 225
automatic proxy creator bean, 255–256

■B
BasicProcessingFilter, 234
BEA WebLogic Server, 260
beans

bean factory (Spring), 29–32
BeanFactoryLocator implementation,

160
beanNameHandlerMapping, 106

BeanNameUrlHandlerMapping, 54,
56–57, 127

BeanNameUrlHandlerMapping class,
48

BeanNameViewResolver class, 60
defined, 29
entity, 135
factory bean, defined, 140
form, 74–76

Beck, Kent, 41
bind variables, 187–188
Blazon ezJEE 1.0.0 development

environment, 280
Burlap protocol, remoting with, 217–220
BurlapServiceExporter, 219
business

interfaces, 274
layers, 2
logic, 195
service layer (OMS application), 275

Business Delegate pattern
as adapter to invoke business objects,

151
benefits and concerns, 154–155
business delegate object, 131
strategies with Spring framework,

151–154
Business Interface pattern

benefits and concerns, 176
to consolidate business methods,

168–169
strategies with Spring framework,

169–175
business tier design patterns

Application Service pattern. See
Application Service pattern

Business Delegate pattern. See Business
Delegate pattern

Business Interface pattern. See Business
Interface pattern

business tier method invocation,
auditing, 248

■INDEX312

business tier (Spring application), 37–38
OMS application, 274–275
overview, 135
Service Locator pattern. See Service

Locator pattern
Session Facade pattern. See Session

Facade pattern

■C
cache, service locator, 161
callbacks, Spring DAO, 188–194
CasProcessingFilter, 234
catalog, Java EE design pattern, 12–14
Central Authentication Service (CAS) SSO

solution, 234
Chedgey, Chris, 22
class diagrams, UML, 15–17
Clickstream (Open Symphony), 102
command classes, 74
compile-time checks, 169–171
components, code, 22
Composite GOF design pattern, 118–119
composite view

Apache Tiles framework, 122
benefits and concerns, 123
to group and deploy subview

components, 117–118
OMS application, 278
SiteMesh web page layout, 119
strategies with Spring framework,

118–122
composition relationship (UML), 17
ConnectionFactory object, 204
constructor injection, 32
container architecture, 6–8
Context Object pattern

benefits and concerns, 98
to encapsulate and share form data,

90–91
strategies with Spring framework, 91–98

ContextJndiBeanFactoryLocator class, 160
ContextLoaderListener, 229, 231
Continuum, 280

controller component (MVC), 8
Controller interface (Spring framework),

71–72
controller layers, 8
Core J2EE Design Pattern (Prentice Hall), 1,

11–12, 223
Core module (Spring)

application contexts, 33
bean factory, 29–32
DI (Dependency Injection), 26–29
IOC (Inversion of Control), 25–26

Core Security Patterns (Prentice Hall),
223–224

createBinder method, 96–97
crosscutting design patterns

audit interceptors. See audit
interceptors

Authentication and Authorization
Enforcer pattern. See
Authentication and Authorization
Enforcer pattern

defined, 14
domain service owner transactions. See

domain service owner transactions
overview, 223–224

Crupi, John, 223
custom queries with aliases (security), 242

■D
DAO, Spring, 38, 34
DaoAuthenticationProvider, 239
data access layers, 2
Data Access Object (DAO) pattern

benefits and concerns, 194
bind variables, 187–188
to encapsulate data access logic,

180–183
OMS application, 275
Spring DAO callbacks, 188–194
strategies with Spring framework,

183–186
data transfer objects (DTOs), 180
DataSourceTransactionManager, 258

■INDEX 313

declarative container-managed
transaction (CMT) support, 156

declarative transactions, 261–265
declarative validators (Spring MVC), 85
declareParameter method, 197
DefaultMessageListenerContainer, 208
dependencies, adding (OMS application),

285–287
Dependency Injection (DI). See DI

(Dependency Injection), Spring
deployment, OMS application, 297–309
design patterns

business tier. See business tier design
patterns

crosscutting. See crosscutting design
patterns

design pattern directive, Spring Java EE,
38–39

Elements of Reusable Object-Oriented
Software (Addison Wesley), 11

Java EE, 11–14
presentation tier. See presentation tier

design patterns
Destination object, 204
DI (Dependency Injection), Spring, 26–29
diagrams, UML, 14–18
DigestProcessingFilter, 234
direct instantiation, 26
Dispatcher View pattern

benefits and concerns, 130
to process static/semistatic views,

123–124
strategies with Spring framework,

124–128
DispatcherServlet, 46–49, 274
display, form, 78–80
Displaytag tag library, 116
distributed computing, 2–10
distributed objects, design of, 11
documented business requirements (OMS

application), 270–271
doDispatch method, 55

doFilter method, 103, 234
domain service owner transactions

application server transactions, 261
benefits and concerns, 267
declarative transactions, 261–265
to declaratively apply transactions,

256–257
Hibernate transactions, 259
JDBC transactions, 258–259
JPA transactions, 259–260
JTA transactions, 260–261
strategies with Spring framework, 258

doSubmitAction method, 82

■E
Eclipse IDE, 280
EJB (Enterprise Java Beans)

deploying business components with,
11

EJB 2.0, 157
EJB 3 lookup, 144
EJB containers, 7
ejb-jar.xml deployment descriptor,

159–160
EJBObject/EJBLocalObject interfaces,

168
local EJB 2.x lookup, 143–144
remote EJB 2.x lookup, 140–142
session beans, 136

endpoints, SOAP-based, 210
entity beans, 135
EntityManager, 260
ETF (Exception Translation Filter),

244–245
evolutionary architecture, 272
Exception Translation Filter (ETF),

244–245
Expert One-on-One J2EE Design and

Development (Wrox), 21
Expert Spring MVC and Web Flow (Apress),

79
extreme programming (XP), 269

■INDEX314

■F
factory bean, defined, 140
factory helper, 27–28
filters

filter chaining in Spring Security, 232
Filter Security Interceptor (FSI),

245–247
FilterChainProxy bean, 229, 231
filterInvocationDefinitionSource

property, 232
filterProcessesUrl property, 236
FilterToBeanProxy servlet filter class,

228
servlet, 99–103
Spring Security, 291

forms
beans, 74–76
display, 78–80
submission, 81–83
tags, Spring, 278
validation, 85–89

Foundations of AOP for J2EE Development
(Apress), 34, 224

Fowler, Martin, 41
Front Controller pattern

benefits and concerns, 49
front controller servlet, 42–46
strategies with Spring framework, 46–49

FSI (Filter Security Interceptor), 245–247

■G
Gamma, Eric, 11
Gang of Four (GOF). See GOF (Gang of

Four)
Gateway Servlet pattern, 46
generalization relationship (UML), 16
GET requests, 72
getEJBHome method, 138
getHandler method, 55
getHibernateTemplate method, 194
getObject method, 140
getParameter method, 74

GOF (Gang of Four)
command pattern, 46
Decorator design pattern, 119
patterns, 11
Strategy GOF design pattern, 118–119
Template Method design pattern, 204

■H
HandlerAdapter interface, 54
handleRequest method, 48–49
HandlerExecutionChain, 54
HandlerInterceptor interface, 103–106
HandlerInterceptorAdapter class, 104
HandlerMapping interface, 48, 54
Headway Software, 22
Helm, Richard, 11
Hessian remoting protocol, 217, 274–275
Hibernate

and container support, 23
HibernateDaoSupport base class,

193–194
HibernateTransactionManager, 259
SessionFactory, 192
transactions, 259

home interface (session beans), 157
HTTP (HyperText Transfer Protocol)

exposing services over, 217
HttpServletRequest, 71
HttpServletRequest object, 74
HttpServletRequest.getRequestURI

method, 236
httpSessionContextIntegrationFilter

filter, 232

■I
if-else blocks, 68–69
injection

constructor, 32
setter, 28, 30–31

InMemoryDaoImpl, 239
instantiation, direct, 26

■INDEX 315

integration tier design patterns
OMS application, 275–276
overview, 179
Spring application, 38

Intercepting Filter pattern
to apply reusable processing, 98–99
benefits and concerns, 106
servlet filters, 99–102
Spring interceptors, 103–106
strategies with Spring framework,

99–106
interceptors, Spring, 103–106
InternalResourceView class, 49
InternalResourceViewResolver, 60–61,

67–68
invoke method, 251
IOC (Inversion of Control), Spring, 25–26
iteration planning (OMS application),

271–272

■J
Jakarta Commons-lang project, 253
JasperReportsViewResolver, 60–61
Java

Authorization and Authentication
Service (JAAS) API, 223–224

Blueprints (Sun), 11, 223
JavaBean view helper, 108–110
Javadoc, 276
javax.servlet.Filter interface, 234
object (POJO) programming, 14
Persistence API. See JPA (Java

Persistence API)
Server Faces (JSF), 37
Server Pages (JSP). See JSP (Java Server

Pages)
Transaction API (JTA). See JTA (Java

Transaction API)
Transaction Design Strategies

(Lulu.com), 224
Virtual Machine (JVM), 7

Java EE
APIs, 8
application server, 7
design pattern directive (Spring), 38–39
Java EE 2 platform, 6
Java EE 5, 6

Java EE application architecture
container architecture, 6–8
distributed computing, 2–10
layered architecture, 10
MVC (Model-View-Controller), 8–9
overview, 1, 5–6
with UML, 14–18

Java EE application design
design pattern catalog, 12–14
overview, 11
simplifying with patterns, 11–12
with UML, 14–18

JAX-RPC
JaxRpcPortProxyFactoryBean, 216
web services with, 210–216

JBoss
Application Server (AS), 260
server, 142
-specific deployment descriptor, 161,

203
JDBC (Java DataBase Connectivity)

API, 34, 38, 181–182, 275
JDBC/DAO module (Spring), 34
JdbcDaoImpl, 239, 241
JdbcDaoSupport class, 184
JdbcTemplate class, 184–185
transactions, 258–259

JEE module (Spring), 35
jee tag (Spring 2.x), 148–149
JMS (Java Messaging Service)

JmsTemplate class, 204, 206
objects, lookup of, 145–150

JNDI (Java Naming and Directory
Interface)

directory service, 136
JndiAccessor class, 140

■INDEX316

JndiObjectFactoryBean service locator
class, 140–144, 146, 149

object lookup, 136–139
registry service, 28

Johnson, Ralph, 11
Johnson, Rod, 21
JPA (Java Persistence API)

JpaTransactionManager, 259
transactions, 259–260

JSP (Java Server Pages)
as controllers, 45
JSTL Expression Language (EL),

111–112
OMS application, 277–278
Standard Tag Library (JSTL), 64, 84,

111–113
view components in OMS application,

273–274
JTA (Java Transaction API)

JTATransactionManager, 260–261
transactions, 260–261

■L
Lai, Ray, 223–224
Lampson, Butler W., 151–152
layers

defined, 2
layered application, building with

Spring, 35–38
layered architecture, 10

layout element (views), 117
layout frameworks, 119–122
lifelines, object, 18
local EJB 2.x lookup, 143–144
LocalSessionFactoryBean, 193
LocalStatelessSessionProxyFactoryBean,

174
log method, 254
Logger, Apache Commons, 254
login form, 235, 295–297
lookup

EJB 3, 144
of JMS objects, 145–150

local EJB 2.x, 143–144
remote EJB 2.x, 140–142
services (OMS application), 270

■M
Magic Servlet antipattern, 44
Malks, Dan, 223
Map objects, 188, 190, 197
Maven, Apache, 280, 297–300
message-driven beans (MDBs), 135–136,

200–201
message-driven POJOs (MDPs), 207–208
message listener container, 207–208
MessageCodesResolver implementation,

88
MessageCreator interface, 182
MessageDrivenContext object, 200
MessageListenerAdapter, 207
MethodInterceptor Spring AOP class, 251
MethodNameResolver class, 89
model component (MVC), 8
ModelAndView object, 71
MultiActionController class, 89
MVC (Model-View-Controller)

basics, 8–9
Java EE architecture with, 9
web MVC module (Spring), 35

■N
n-tier architecture, 4–5
Nagappan, Ramesh, 223–224
NamedParameterJdbcDaoSupport class,

188
network computing, 2

■O
objects

lifeline of, 18
object definitions, 246
Object Management Group (OMG), 14
objectDefinitionSource property (FSI),

246
in sequence diagrams, 18

■INDEX 317

OC4JtaTransactionManager (Oracle
Application Server), 261

OMS (order management system). See
order management system (OMS)
application

Oracle Database, 183
order management system (OMS)

application
application architecture, 272–275
business tier, 274–275
dependencies, adding, 285–287
design of, 276
development overview, 280
documented business requirements,

270–271
integration tier, 275–276
iteration planning, 271–272
JSP, 277–278
look up services, 270
order saving, 270
Page Controller pattern, 278–279
presentation tier, 273–274
project construction, 287–297
project deployment, 297–309
project setup, 282–285
security, 277
story cards, 270–271
user sign in, 270
workspace setup, 280–281

order saving (OMS application), 270
Ordered interface, 54, 68
org.springframework.beans.factory.

BeanFactory interface, 29
org.springframework.web.servlet.mvc.

Controller interface, 48–49
ORM (Object-Relational Mapping)

module (Spring), 35

■P
Page Controller pattern

AbstractCommandController class,
74–78

AbstractController class, 71–74

AbstractWizardFormController class, 89
benefits and concerns, 89
to consolidate user action processing,

68–69
implementation class, 70–71
MultiActionController class, 89
OMS application, 278–279
SimpleFormController class, 78–89
strategies with Spring framework, 70

page controllers
defined, 36–37
OMS application, 274
in presentation tier, 151

patterns, Java EE design, 11–14. See also
Java EE, design pattern directive
(Spring)

Pawlak, Renaud, 224
persistence logic, 195
platform transaction manager, 258
pointcuts (AOP), 255
POJO (Plain Old Java Object)

business components, 138, 150
business objects, 37
components, 164, 167
message-driven (MDPs), 207–208

postHandle method, 104
preHandle method, 104
PreparedStatementSetter callback

interface, 189
presentation layers, 2
presentation tier design patterns

Application Controller pattern. See
Application Controller pattern

composite view. See composite view
Context Object pattern. See Context

Object pattern
Dispatcher View pattern. See Dispatcher

View pattern
eInsure application background, 41–42
Front Controller pattern. See Front

Controller pattern
Intercepting Filter pattern. See

Intercepting Filter pattern

■INDEX318

OMS application, 273–274
Page Controller pattern. See Page

Controller pattern
Service to Worker. See Service to Worker

pattern
Spring application, 36–37
View Helper pattern. See View Helper

pattern
Procedure Access Object pattern

benefits and concerns, 199
to invoke stored procedures, 195
strategies with Spring framework,

196–197
program to interface (P2I), 27, 184
programmatic transaction management,

224
programmatic validators (Spring MVC), 85
property placeholder support (Spring),

142
ProviderManager class, 237
proxy creator bean, automatic, 255–256
proxy factory beans, 150, 219, 274
proxy service locators, 174–175
pull dependency injection, 28, 30
push dependency injection, 28, 30

■R
RdbmsOperation, 196
Reenskaug, Trygve, 8
Refactoring: Improving the Design of

Existing Code (Addison-Wesley), 41
registry service, JNDI, 28
remoting

with Burlap protocol, 217–220
remote dispatcher servlet (OMS

application), 275
remote EJB 2.x lookup, 140–142
remote interface (session beans), 157

reports
generation of, 199–200
ReportingMDB, 204
scheduled, 199
synchronous, 200

ResourceBundleViewResolver, 60–65
Retaillé‚ Jean-Philippe, 224
return values of sequence diagram

messages, 18
reusability, 44, 50, 68, 89, 98, 106, 123
Richards, Mark, 224
rolePrefix property, 247
RowMapper interface, 190
Runtime exceptions, 152, 265

■S
SaveOrderController, 279
scheduled reports, 199
SCIF (Session Context Integration Filter),

232–233
security. See also Spring Security

framework
context holders, 232–233
design patterns, 14
filter, Spring, 291
interceptor (Spring Security), 228
OMS application, 277
Spring. See Spring Security framework

Seinturieris, Lionel, 224
sequence diagrams, UML, 18
servers

Java EE application, 7
Tomcat web server, 297–309

Service Activator pattern
benefits and concerns, 208–209
message-driven POJOs (MDPs),

207–208
to receive/carry out asynchronous

service requests, 199–200
strategies with Spring framework,

200–207
Service Locator pattern

benefits and concerns, 150–151
EJB 3 lookup, 144
to encapsulate JNDI object lookup,

136–139
local EJB 2.x lookup, 143–144
lookup of JMS objects, 145–150

■INDEX 319

remote EJB 2.x lookup, 140–142
strategies with Spring framework,

139–140
service requests, asynchronous, 199–200
Service to Worker pattern

benefits and concerns, 132
to coordinate request processing

workflow, 130–131
strategies with Spring framework, 131

ServiceLookupController, 279
servlets

Apache Axis servlet, 211–214
controllers, 9
dispatcher, 274
filters, 99–103, 228
front controller, 42–46
remote dispatcher (OMS application),

275
ServletEndpointSupport base class, 210

session beans
building, 157
subscribing to container services, 159

Session Context Integration Filter (SCIF),
232–233

Session Facade pattern
benefits and concerns, 162
to encapsulate business logic remotely,

155–156
strategies with Spring framework,

156–161
SessionContext object, 158
SessionFactory, Hibernate, 192
SessionFactory object, Hibernate, 259
setBeanFactoryLocator method, 160
setSessionContext method, 160
setter injection, 28, 30–31
Simple Object Access Protocol (SOAP), 210
SimpleControllerHandlerAdapter class, 54
SimpleFormController class, 78–89, 279
SimpleRemoteStatelessSessionProxy

FactoryBean class, 172, 174
SimpleUrlHandlerMapping, 54, 58, 127

simplified deployment (OMS application),
301–309

single responsibility principle (SRP), 45
single-tier architecture, 2
SiteMesh web page layout (Open

Symphony), 119
Spring Framework

action management component, 56
AOP documentation, 224
AOP module, 34
application controller strategies with,

52
application service strategies with,

164–167
audit interceptors strategies with,

249–256
Authentication and Authorization

Enforcer pattern strategies with,
226

building layered application with, 35–38
business delegate strategies with,

151–154
business interface strategies with,

169–175
composite view strategies with, 118–122
contact object strategies with, 91–98
Core module. See Core module (Spring)
DAO callbacks, 188–194
data access object (DAO) strategies

with, 183–186
dispatcher view strategies with, 124–128
domain service owner transactions

strategies with, 258
form tags, 278
front controller strategies with, 46–49
importance of, 22–24
intercepting filter strategies with,

99–106
interceptors, 103–106
Java EE design pattern directive, 38–39
JDBC/DAO module, 34
JEE module, 35
module overview, 24

■INDEX320

ORM module, 35, 192
overview, 21
page controller strategies with, 70
patterns catalog, Java EE, 12
procedure access object strategies with,

196–197
service activator strategies with,

200–207
Service Locator pattern strategies with,

139–140
service to worker strategies with, 131
session facade strategies with, 156–161
Spring 2.x, 148
tags, 113–115
view helper strategies with, 108–116
web MVC module, 35
web service broker strategies with,

210–220
Spring Security framework

ANPF (Anonymous Processing Filter),
243–244

APF (Authentication Processing Filter),
233–243

authentication and authorization with,
228–232

benefits and concerns, 247–248
components, 228
ETF (Exception Translation Filter),

244–245
filter chaining in, 232
FSI (Filter Security Interceptor),

245–247
high-level components of, 228
SCIF (Session Context Integration

Filter), 232–233
Security filter, 234, 291

SqlCall class, 196
SQLException, 185
SRP (single responsibility principle), 45
stateless session beans (SLSBs), 135, 150,

155, 157
Steel, Christopher, 223–224
stereotypes (UML), 14

stored procedures
PAO to invoke, 195
StoredProcedure abstract class, 196
support classes, 196

story cards (OMS application), 270–271
Strategy GOF design pattern, 118–119
Structure101 software, 22
Struts framework, 37, 52
submission, form, 81–83
synchronous reports, 200

■T
tags

JSP Standard Tag Library (JSTL), 64,
111–113

library view helper, 111
Spring, 113–115
third-party libraries, 116

test-driven development (TDD), 28
ThemeChangeInterceptor, 104
thick clients, 3
third-party tag libraries, 116
three-tier architecture, 4
ThrowawayController, 71
ThrowawayController interface, 91–97
tiers, defined, 2
Tiles framework, 278
Tomcat web server, 297–309
toString method, 248
ToStringBuilder class, 253
transaction management. See domain

service owner transactions
transactional design patterns, 14
two-tier architecture, 3

■U
UML (Unified Modeling Language)

Java architecture and design with, 14–18
package diagram, 279
UML Distilled Third Edition (Addison

Wesley), 14
UrlBasedViewResolver, 60–61

■INDEX 321

UrlFilenameViewController class, 74, 125,
279, 295

users
generated reports by, 199
identity, verifying, 224–226, 233
sign in (OMS application), 270
userDetailsService property, 239
user.properties file, 294
UserRoleAuthorizationInterceptor, 104

■V
validation

form, 85–89
ValidationUtils class, 85–86
Validator interface, 85–86
validators, programmatic/declarative

(Spring MVC), 85
variance attribute, 272
view component (MVC), 8, 117
view handlers

application controller and, 59–62, 62–68
page controllers and, 51

View Helper pattern
to adapt model data with view

components, 107
benefits and concerns, 116
JavaBean view helper, 108–110
JSP Standard Tag Library (JSTL),

111–113
OMS application, 278
Spring tags, using, 113–115
strategies with Spring framework,

108–116
tag library view helper, 111
third-party tag libraries, 116

View/ViewResolver interfaces, 59
Vlissides, John, 11

■W
web application context, 33
web containers, 7
WEB-INF/applicationContext.xml,

213–214
web MVC module (Spring), 35
Web Service Broker pattern

benefits and concerns, 221
to expose business services to external

clients, 209–210
remoting with Burlap protocol, 217–220
strategies with Spring framework,

210–220
web services with JAX-RPC, 210–216

web services
with JAX-RPC, 210–216
Web Service Description Language

(WSDL), 210
web sites, for downloading

Blazon ezJEE 1.0.0, 280
Clickstream (Open Symphony), 102
Continuum, 280
Displaytag tag library, 116
Headway Software, 22
SiteMesh web page layout, 119
Tomcat web server, 297
UML 2.0, 14

web sites, for further information
Apache Maven, 281
Central Authentication Service (CAS)

SSO solution, 234
Hibernate, 192
Magic Servlet antipattern, 44
OMS application solution and code, 269
property placeholder support (Spring),

142
single responsibility principle (SRP), 45

■INDEX322

Spring 2.5 documentation, 33
Spring AOP documentation, 34, 224
Spring documentation, 278
Spring form tags, 278
Spring Security documentation, 232
Tiles framework, 278
XP, 269

WebContentGenerator superclass, 72
WeblogicJtaTransactionManager (BEA

WebLogic), 261
WebsphereUowTransactionManager (IBM

WebSphere), 261
web.xml, modifying, 289–291
workspace setup (OMS application),

280–281

■X
X509ProcessingFilter, 234
XML (Extensible Markup Language)

deployment descriptors, 157
messages, 210
XmlBeanFactory class, 29
XmlViewResolver, 60–61, 65–66

XP (extreme programming), 269, 272

■Z
zero-argument constructor, 30

■INDEX 323

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

