

Beginning Visual Web
Programming in VB .NET

From Novice to Professional

DANIEL CAZZULINO
VICTOR GARCIA APREA

JAMES GREENWOOD
CHRIS HART

Beginning Visual Web Programming in VB .NET: From Novice to Professional

Copyright © 2005 by Daniel Cazzulino, Victor Garcia Aprea, James Greenwood, Chris Hart

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-359-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham
Technical Reviewer: Victor Garcia Aprea
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,

Jason Gilmore, Chris Mills, Dominic Shakeshaft, Jim Sumser
Assistant Publisher: Grace Wong
Project Manager: Beckie Stones
Copy Manager: Nicole LeClerc
Copy Editor: Marilyn Smith
Production Manager: Kari Brooks-Copony
Production Editor: Kelly Winquist
Compositor: Dina Quan
Proofreader: Katie Stence
Indexer: Kevin Broccoli
Artist: Kinetic Publishing
Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de,
or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads section.
You will need to answer questions pertaining to this book in order to successfully download the code.

To Any, for believing in me, changing for me, and risking with me on this
seemingly never-ending journey though new challenges. I hope I can get

to be as supportive with you as you have been with me. You have been the
most amazing companion I could have ever dreamed of.

To Agustina, my little baby, for giving me yet another reason to love
working at home. Watching you grow every day up close is a great gift

from God (I hear Any say I shouldn’t be *just* watching :o)).

To my father, for being such a life warrior. I’ll never give up, just as you
never do. Thanks for staying with us and giving me the opportunity of
making you feel proud of me. I can clearly see now that it wasn’t your

time, and God really wanted you to see everything that came after.

To all my girls, mum and sisters, for showing me what great women
look like. I must listen to you more. I’m working on that.

To my dear friends (you know who you are), for always being there and
bringing me back to earth. Talking to you makes me understand there’s a

beautiful life outside (along with?) .NET.

To Olga, for being like a second mother, and to Pedro, for doing all the
things I should do at home so I can spend more time programming,

without getting Any mad at me. I never thank you enough. With regards
to Pedro, it’s already too late. I hope I never make that mistake again.

We miss you a lot.

Daniel Cazzulino

Contents at a Glance

About the Authors . xv

About the Technical Reviewer. xvii

Acknowledgments . xix

Introduction. xxi

CHAPTER 1 Environment and Architecture . 1

CHAPTER 2 Web Development in .NET . 29

CHAPTER 3 User Interfaces and Server Controls . 59

CHAPTER 4 ADO.NET . 117

CHAPTER 5 Data Binding . 155

CHAPTER 6 ASP.NET State Management . 207

CHAPTER 7 Markup Languages and XML . 259

CHAPTER 8 XML and Web Development . 293

CHAPTER 9 Web Services in Web Applications . 343

CHAPTER 10 ASP.NET Authentication, Authorization, and Security 389

CHAPTER 11 Debugging and Exception Handling . 421

CHAPTER 12 Caching and Performance Tuning . 475

CHAPTER 13 Publishing Web Applications in .NET . 521

APPENDIX A The Friends Reunion Application . 567

APPENDIX B Management of IIS and MSDE . 573

INDEX . 595

v

Contents

About the Authors . xv

About the Technical Reviewer. xvii

Acknowledgments . xix

Introduction. xxi

■CHAPTER 1 Environment and Architecture . 1

Web Application Considerations . 1

The Web Model . 2

Desktop Applications vs. Web Applications . 3

Web Servers and Web Clients . 4

System Configuration for Web Development . 7

Installing and Configuring IIS for .NET Web Applications 8

Administering IIS . 9

Configuring Virtual Directories . 16

Dynamic Web Applications . 17

Client-Side Processing and Server-Side Processing 18

An Introduction to State Management . 24

Web Application Architecture . 24

Summary . 27

■CHAPTER 2 Web Development in .NET . 29

An Introduction to ASP.NET . 29

Web Form Construction in VS .NET . 30

Understanding Web Form Structure:
Presentation and Processing . 31

Using the Properties Browser . 40

Using Code-Behind . 45

A Brief Tour of An ASP.NET Application . 49

ASP.NET Application Files . 49

The Class View . 50

Object Orientation in ASP.NET . 51

Reusability and Encapsulation . 52

vii

Compilation . 53

The Lifecycle of a Page . 54

Summary . 56

■CHAPTER 3 User Interfaces and Server Controls . 59

Server Controls . 60

HTML Controls . 61

HTML Server Controls . 72

Web Server Controls . 76

Validation Controls . 87

User Controls . 94

Custom Controls . 102

Dynamic Content . 110

Avoiding Code Duplication . 113

Summary . 116

■CHAPTER 4 ADO.NET . 117

The Architecture of ADO.NET . 117

The Data Reader Object . 118

Data Providers . 119

Programmatic Use of ADO.NET . 121

Adding Data to a Database . 121

Retrieving Data from a Database . 126

Changing the Data in a Database . 133

The Rest of the Picture: The DataSet and Data Adapter Objects 141

Dealing with Disconnected Data . 141

Using a DataSet Object . 143

Summary . 154

■CHAPTER 5 Data Binding . 155

Introduction to Components . 155

Placing a Component on a Form . 156

Configuring Dynamic Properties . 158

Data Binding . 160

Using Binding Expressions . 161

Formatting with the DataBinder Class . 162

Using Data Binding . 162

Binding to Sets of Data . 170

■CONTENTSviii

Working Visually with Data . 177

Working with Data Components . 178

Using Typed Datasets . 179

Advanced Data Binding . 186

Paging . 189

Freestyle Data Binding and Editing—The DataList 192

Summary . 206

■CHAPTER 6 ASP.NET State Management . 207

State Storage and Scope . 207

Session State . 208

Controlling the Session State . 220

Configuring the Session State . 224

Application State . 226

Using Application Object and Events . 232

Viewstate . 233

Using the Viewstate As a Datastore . 237

Transient State . 243

Cookies . 248

Passing Data with Query Strings . 255

Passing Data with Hidden Form Fields . 256

Summary . 256

■CHAPTER 7 Markup Languages and XML . 259

Markup Languages . 260

HyperText Markup Language . 261

Extensible Markup Language (XML) . 262

XML Data Exchange . 267

XML Schemas and Validation . 268

Markup Languages, Schemas, and Validation 270

XML Schema Creation . 272

Using XML Namespaces . 274

Building an XML Schema . 276

Defining Complex Types . 280

Defining Custom Simple Types . 286

Restricting Element Occurrence . 288

Viewing the Entire Schema . 289

Summary . 290

■CONTENTS ix

■CONTENTSx

■CHAPTER 8 XML and Web Development . 293

XML Document Creation in VS .NET . 294

Creating XML Documents Visually . 294

Creating XML Documents in the Data View 298

Programmatic Manipulation of XML in .NET . 300

Reading and Validating XML . 300

Receiving the Uploaded File . 308

XML Queries with XPath . 321

Querying Document Object Model (DOM) Documents 324

Understanding the XPath Data Model . 329

Building XPath Expressions Dynamically . 334

XML APIs Comparison . 338

Summary . 340

■CHAPTER 9 Web Services in Web Applications . 343

Overview of Web Services . 343

Web Services Relationship to the Browser/Server Model 344

VS .NET Support for Web Services . 345

Web Service Implementation . 346

Implementing Web Methods . 346

Testing the Web Service . 349

Using Complex Data Types . 352

Web Service Consumption . 357

An Introduction to SOAP . 363

Understanding the SOAP Message Format 363

Viewing a SOAP Request and Response . 365

Error Handling in Web Services . 366

Web Service Efficiency . 370

Caching in Web Services . 370

Reducing the Amount of Data Involved . 371

Using Custom Data Types for Optimization 376

Adding State to Web Services . 385

Third-Party Web Services . 386

Summary . 387

■CHAPTER 10 ASP.NET Authentication, Authorization,
and Security . 389

Security Overview . 389

Security Architecture . 390

Essential Terminology . 390

The ASP.NET Security Infrastructure . 395

Application Security Configuration . 398

Authentication Configuration . 398

Authorization Configuration . 399

Location Configuration . 400

Authentication Modes . 401

Windows Authentication . 401

Passport Authentication . 403

Forms Authentication . 403

Customized Authentication and Role-Based Security 409

Implementing Custom Authentication . 410

Securing Folders . 416

Summary . 419

■CHAPTER 11 Debugging and Exception Handling . 421

Types of Errors . 422

Syntax Errors . 422

Semantic Errors . 424

Input Errors . 426

Debugging Web Applications . 426

ASP.NET Tracing . 427

Tracing and Assertions in .NET . 437

The VS .NET Debugger . 442

Exceptions . 459

Exception Handling . 460

Unhandled Exceptions . 469

Summary . 474

■CHAPTER 12 Caching and Performance Tuning . 475

What Is Good Performance? . 475

Performance Monitoring . 476

Configuring the System Monitor in PerfMon 477

Avoiding External Overhead . 484

Performance Testing an Application . 485

Installing the Web Application Stress Tool . 485

Generating a Realistic Set of Data . 486

Preparing a Performance Test with a Simulated Load 487

Running the Performance Test . 492

■CONTENTS xi

Caching . 494

Caching Overview . 495

ASP.NET Caching . 498

Monitoring the Cache API . 512

Controlling the Viewstate . 512

Disabling the Viewstate for Controls . 512

Disabling the Viewstate at the Page and Application Levels 514

Checking the Viewstate Encryption Features 515

Deciding What to Put in Viewstate . 515

More ASP.NET Performance Tips . 515

Server-Side Redirection Using Server.Transfer 515

Using Web Controls Conservatively . 517

Disabling Session State . 518

Improving Database Access . 518

Summary . 519

■CHAPTER 13 Publishing Web Applications in .NET . 521

Methods for Deploying .NET Applications . 521

XCOPY Deployment . 522

Deployment Projects . 522

Manual Web Application Deployment . 523

Setup Projects in VS .NET . 528

Creating Web Setup Projects . 530

Including the dotnetfx.exe File with Your Installation 536

Viewing Application Dependencies and Outputs 536

Using the Setup Project . 538

Uninstalling a Project . 539

Customized Deployment . 540

Adding a Custom File . 540

Editing the User Interface . 541

Building the Project . 546

Adding Custom Actions . 548

Using Installer Classes . 550

Deploying Application Configuration Settings 559

Using Launch Conditions . 560

Summary . 563

Web Applications—An Overview . 564

■CONTENTSxii

■APPENDIX A The Friends Reunion Application . 567

Friends Reunion Database Design . 567

How to Set Up the Code Download Package . 568

Setting Up the Database . 568

Setting Up the Code Samples . 569

How to Create GUIDs for Database Keys . 571

■APPENDIX B Management of IIS and MSDE . 573

IIS Configuration . 573

Configuring Site-Wide Settings . 573

Configuring ASP.NET Applications in IIS . 578

Locking Down IIS . 583

Impersonation Configuration . 583

An Introduction to IIS 6 . 588

MSDE Management . 590

Using MSDE . 590

Administering Data via the Server Explorer 590

■INDEX . 595

■CONTENTS xiii

About the Authors

■DANIEL CAZZULINO, one of the original authors of this book, is the main
editor of this edition. He reviewed and modified the original text to
make it an even more consistent book and to adapt it to the latest
changes in the ASP.NET product.

Daniel (also known as “kzu”) is cofounder of Clarius Consulting
(http://clariusconsulting.net), providing training, consulting, and
development in Microsoft .NET technologies. He coauthored several
books for Wrox Press and Apress on web development and server
controls with ASP.NET, has written and reviewed many articles for
ASP Today and C# Today, and currently enjoys sharing his .NET, XML,

and ASP.NET experiences through his weblog (http://clariusconsulting.net/kzu). He also
works closely with Microsoft in key projects from the Patterns and Practices group, shaping
the use of OO techniques, design patterns, and frameworks for .NET. Microsoft recognized
him as a Most Valuable Professional (MVP) on XML Technologies for his contributions to
the community, mainly through the XML-savvy open source project NMatrix (http://
sourceforge.net/projects/dotnetopensrc) he cofounded and his weblog. He also started the
promising Mvp.Xml project with fellow XML MVP experts worldwide (http://mvp-xml.sf.net).
Surprisingly enough, Daniel is a lawyer who found a more exciting career as a developer and
.NET/XML geek.

■JAMES GREENWOOD is a technical architect and author based in West Yorkshire, England.
He spends his days (and most of his nights) designing and implementing .NET solutions—
from government knowledge-management systems to mobile integration platforms—all the
while waxing lyrical on the latest Microsoft technologies. His professional interests include
research into distributed interfaces, the automation of application development, and human-
machine convergence. When he can be pried away from the keyboard, James can be found
out and about, indulging in his other great loves: British sports cards and Egyptology. You can
reach James at jsg@altervisitor.com.

■CHRIS HART is a full-time developer, part-time author based in Birmingham (UK). Chris
took the long route into development, having originally studied Mechanical Engineering.
She is currently working at Trinity Expert Systems (www.tesl.com), and her most recent project
has involved developing a heavily customized Microsoft CMS Server application. In her spare
time, she enjoys writing about ASP.NET, and she has contributed chapters to many books,
published by both Apress and Wrox Press. In the remaining hours of the day, she enjoys
cooking, going to the gym, and relaxing with her extremely supportive husband, James.

■VICTOR GARCIA APREA, one of the authors of the original version of this book, also served
as the technical reviewer of this edition. You can read about him on the “About the Technical
Reviewer” page.

xv

About the Technical
Reviewer

■VICTOR GARCIA APREA is cofounder of Clarius Consulting, providing training, consulting, and
development in Microsoft .NET technologies. Victor has been involved with ASP.NET since
early in its development and was recognized as a Microsoft MVP for ASP.NET since 2002.
He has written books and articles, and also has done a lot of reviewing for Wrox Press, Apress,
and Microsoft Press. Victor is a regular speaker at Microsoft Argentina (MSDN DevDays,
Ask the Experts panel, and other events) and .NET local user groups.

You can read Victor’s weblog at http://clariusconsulting.net/vga.

xvii

Acknowledgments

Special thanks to Chris Hart for sharing her writing skills with me and turning a chaotic,
spasmodic writer into a bearable author. To Ian Nutt for letting me learn the intricacies of the
editing work, which ultimately made my role in this book possible. The editorial industry
misses you!

Thanks to Dominique, for remembering my name after the lunch, our meeting, and the
years, and for believing in the strong and concise material we created for this book. Hey, I
slipped Mono release only by a year :o)!

And thanks to Ewan, Marilyn, Beckie, and Kelly for their help in getting this book out
the door.

And thanks to Victor for being the most amazing technical reviewer (besides being an
excellent author and partner, too). It’s great to see that just as we began, we continue (not
that you being the reviewer and me the editor means I’m sort of your boss…).

—Daniel

xix

Introduction

The introduction of .NET has blurred the lines between previously distinct programming
disciplines, and it has done so to great effect for developers. With so much functionality
encapsulated by the .NET Framework class library, some diverse tasks have gained a common
programming interface.

One area in which this change is particularly striking is that of web development. Before
.NET, web application programming “the Microsoft way” was all about ASP. At the time, ASP
was new, accessible, and exciting. But it was also script-based and inefficient. It led to serious
maintainability problems, and the IDEs were disjointed. Microsoft has channeled the lessons
it learned from ASP into its .NET Framework. Now, with ASP.NET (the .NET web development
technology), you can create efficient, interactive Internet applications using the same lan-
guages that you use for Windows desktop applications.

In Visual Studio .NET (VS .NET), Microsoft has taken this idea even further; not only does
the code look similar, but the GUI looks similar, too. Visual Basic .NET’s (VB. NET’s) familiar
form-based interface is used for development of web applications, as well as for desktop pro-
grams. If you want to, you can create a web application without ever seeing a line of HTML
code, and you can take advantage of all the facilities for testing and debugging that VS .NET
provides to programmers of all disciplines.

The structure of class libraries in the .NET Framework is such that the methodology you
use is the same, regardless of whether you’re developing desktop applications or web applica-
tions. ASP.NET is really just a series of classes in the .NET Framework, just like the Windows
Forms classes. From this perspective, the move from desktop application development to web
development shouldn’t be too much of a leap.

Yet there are some major differences that you need to consider when you move to web
development. We are no longer talking about applications installed and running on individual
machines; instead, we’re talking about hosting an application on a central server, ready to be
accessed by hundreds or thousands of remote clients every hour. This means that you need to
be more concerned with performance, scalability, and security issues to ensure that the end
user’s experience is as smooth and secure as possible.

In this book, we’ll explain the issues involved in the web development paradigm and how
they’re different from those you’re used to in desktop application development. To demon-
strate how to apply these principles, beginning in Chapter 3, this book guides you through
building a feature-rich, interactive web application called Friends Reunion, using VB .NET,
ASP.NET, and VS .NET.

The emphasis is on learning by practice. Every example in the book is described step by
step, and we’ll outline and explain each stage in the development, debugging, and deploy-
ment of the Friends Reunion application.

xxi

Who Is This Book For?
This book is predominantly targeted at developers who have some experience in the VB .NET
language (perhaps through practical application of the language or simply from a VB .NET
tutorial book). These developers may fall into one of two groups:

• Readers who have little or no web development experience, have gained their VB .NET
experience mostly in the context of desktop applications, and are seeking to apply this
VB .NET expertise in web development in .NET

• Readers who have gained some web development experience using ASP, PHP, or other
technologies, and are seeking to move into web development using .NET and VB .NET.

This book does not assume that you have programmed for the web environment before,
but it does assume that you have some familiarity with VB .NET. Previous experience with the
VS .NET integrated development environment (IDE) is not essential, but it is helpful. Similarly,
we assume no previous experience with HTML, XML, databases, or any of the other technolo-
gies mentioned in this book—though a little background knowledge does no harm.

What Does This Book Cover?
The first two chapters of this book are introductory. They provide the basic foundation you
need to begin working on the Friends Reunion web application in Chapter 3.

The remaining chapters examine different aspects of web application development using
VB .NET and ASP.NET. In each chapter, we study an aspect both in general terms and within
the context of the Friends Reunion application. Over the course of these 11 chapters, we
build, test, debug, and deploy a rich interactive web application—and you’ll see every single
step. You can obtain all of the code presented in this book from the Downloads section of the
Apress web site (http://www.apress.com). Appendix A contains an overview of the code and
explains how to install and run it for each chapter.

Here’s a summary of the contents of this book:

• Chapter 1 is an introduction to the web environment. It discusses the similarities and
differences between web applications and desktop applications, and explains what
happens behind the scenes when a user employs a browser to request a web page. The
intention is to clarify the issues that influence the way we design applications for the
Web and to set the scene for the remainder of the book. We also set up the web server
here and create a couple of simple examples to get things started.

• In Chapter 2, we move on to create some basic ASP.NET web forms using VS .NET. We
look at how web forms are processed and the lifecycle of a page, and we demonstrate it
all by walking through our first ASP.NET application.

• Chapter 3 is all about the server control. The server control is the core part of any web
form; it’s at the heart of the development of dynamic, interactive web sites in .NET.
VS .NET allows you to drag-and-drop server controls onto your web forms in exactly
the same way that you insert Windows Forms controls into a Windows desktop applica-
tion. And you can add code to your forms to interact with these controls in much the
same way, too.

■INTRODUCTIONxxii

• In Chapters 4 and 5, we turn our attention to data. Most interactive web applications
rely on the existence and manipulation of data of some form, and on storage of that
data (either in a full-scale database or some other format). In Chapter 4, we use
ADO.NET to access and manipulate data. In Chapter 5, we demonstrate how data
binding techniques make it easy to display data on your pages in a user-friendly man-
ner. You will also see how to apply templates to your web forms to alter the look and
feel of your data-bound controls.

• Chapter 6 is about applications, sessions, and state. By nature, the Web is a stateless
medium—when you request a web page, the web server delivers it, and then forgets
about you. If you want your web applications to recognize users when they make
multiple page requests (for example, as they browse an e-commerce application
adding items to a shopping basket), you need to know about the different techniques
you can use to retain state across pages, for a session, or across an application.

• Chapters 7 and 8 focus on XML, a topic that has become very important as widespread
Internet connectivity becomes the norm. In Chapter 7, we look at the concept of
markup and how it is widely relevant to data-driven applications, and we create our
own XML language by way of an XML Schema. In Chapter 8, we explore how to use
that XML Schema to facilitate a data-transfer feature—exploiting XML’s nature as the
perfect vehicle for data transfer across the Internet.

• In Chapter 9, we turn briefly away from web sites to explore a different type of web
application: the web service. Web services enable you to expose your application’s
functionality to other “client” applications. These applications make requests using
standards and protocols over the Internet. This also means that you can use other
people’s web services in your code as if they were components on your own system,
even though they are only accessible across the Internet. We’ll examine both how to
create web services and how to consume existing services.

• Chapter 10 is about ASP.NET authentication, authorization, and security. The role of
security in an application is motivated by the need to restrict a user’s (or application’s)
access to certain resources and ability to perform certain actions. For example, you
may want to include administrative tools in your web application and to prevent access
to these administrator pages for all but authorized users. This chapter looks at the
ASP.NET tools for authenticating and authorizing users of your applications.

• Chapter 11 tackles two distinct but related subjects: debugging and exception handling.
Debugging is much easier when you understand the different types of bugs that can
occur, and easier still with the array of debugging tools and techniques made available
by VS .NET and the .NET Framework. We’ll study all that in the first half of the chapter.
In the second half, we use the .NET exception mechanism to handle some potential
input errors that could occur at runtime and prevent the application from crashing in
a heap.

• In Chapter 12, we focus on two more different but related subjects: performance and
caching. We set out to clarify what we mean by “good performance,” and suggest a
number of techniques you can use to analyze your application in realistic conditions.
We’ll apply some of those techniques to our Friends Reunion application, putting the
application under stress to see what happens, and identifying and fixing a number of

■INTRODUCTION xxiii

different bottlenecks. We’ll explain the issues related to caching and employ some
caching techniques to save our application some processing effort, thereby optimizing
the use of the server’s resources.

• In Chapter 13, we describe how to prepare your application for deployment. VS .NET
provides some easy-to-use tools that enable you to build your own deployment wizards.
We demonstrate how to prepare the application for deployment—web site, database,
and all—by wrapping it all up into an easy-to-use installation wizard.

• Appendix A contains a brief overview of the structure and functionality of the Friends
Reunion web application, the design of the database, and the structure and use of the
downloadable code.

• Appendix B contains more information about the setup and configuration of the
Internet Information Server (IIS) web server and the Microsoft SQL Server Desktop
Engine (MSDE).

What You Need to Use This Book
The following is the list of recommended system requirements for running the code in this
book:

• A suitable operating system—server versions, such as Windows 2000 Server or Windows
Server 2003 Web Edition, or professional versions, such as Windows 2000 or Windows
XP Professional Edition

• Internet Information Server (IIS), which is shipped with the suitable operating systems
(the version will depend on the operating system, but all of them are suitable for
ASP.NET development)

• Visual Studio .NET (or Visual Basic .NET) Standard Edition or higher

• The Microsoft SQL Server Desktop Engine (MSDE) or Microsoft SQL Server

■Note Windows XP Home Edition does not come with IIS and cannot run IIS. For ASP.NET web develop-
ment on Windows XP Home Edition, you may consider the ASP.NET Web Matrix tool, available for free
download from http://www.asp.net. This tool offers limited ASP.NET web server functionality, and you
won’t be able to run web projects in VS .NET with this version.

Read Appendix B for details on how to download and install MSDE if you don’t have a full
SQL Server. VS .NET provides a useful user interface for any SQL Server or MSDE database.

■INTRODUCTIONxxiv

Environment and Architecture

Windows desktop applications and web applications have many differences, but one differ-
ence is fundamental. This difference lies in the relative locations of the application itself and
its user interface:

• When you run a Windows desktop application, the user interface appears on the screen
of the machine on which the application is running. Messages between the application
and its user interface are passed through the operating system of the machine. There’s
just one machine involved here and no network.

• When you run a web application, the user interface can appear in the browser of any
machine. Messages between the application and its user interface must also pass
across a network, because, typically, the web application and its user interface are on
two separate machines.

This single difference in architecture manifests itself in many ways. If you’re used to writ-
ing desktop applications and you’re coming to web applications for the first time, it brings
many new issues for you to consider. Let’s begin with an overview of these considerations.

Web Application Considerations
Arguably, the most significant advantage of web applications is that the end users don’t need
to be on the same machine on which the application is running. In fact, they don’t even
need to be in the same country! But there are many other technical, practical, and design
considerations, such as these:

Messaging: Since a running web application must communicate with its user interface
across a network, there needs to be a way of passing messages between the two that is
“network-proof.”

Manipulating the user interface: How can a web application tell its browser-based user
interface which buttons, text, labels, and so on to show, and how to arrange and style them?

Security: If a web application is available across a public network, you need to prevent
unwanted users from accessing the application or from tapping in on authorized users.

1

C H A P T E R 1

■ ■ ■

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE2

Multiple users: A web application can be executed via a remote machine, so it can effec-
tively be executed by two or more users at the same time (potentially millions of them if
it’s a successful one!).

Identification and state: How does a web application identify a user for the first time and
recognize that user when she returns? This is especially important because of the stateless
nature of the Web (see the “An Introduction to State Management” section later in this
chapter).

If you’re migrating from desktop application development to the Web, these are just a few
issues that derive from the simple fact that an executing web application is (usually) physi-
cally separate from its user interface. We’ll address all of the issues over the course of the book.

This chapter focuses on the web environment and on the architecture of web applica-
tions, to give you an idea of the implications of having an application and its user interface
on different machines. In this chapter, we’ll look at these aspects:

• How the web works, from the time the user requests a page to the time the user receives
the response

• What a web application is and how it is composed

• The purpose of HTTP (the protocol underlying the Web) and its role in the
request/response interaction between a browser and the web application server

• The role of the web server in hosting a web application

• The use of virtual directories in organizing web applications

• The difference between static content and dynamic content

• How client-side code and server-side code bring different effects to the world of
dynamic content

We’ll start by taking a look at how the web works and how requests for web pages are
processed.

The Web Model
You can take advantage of the Web to set up an application that runs in one central location
and can be accessed by users located anywhere in the world, through just a browser and an
Internet connection.

The earliest web applications weren’t really “applications” in the functional sense, but
they took advantage of this basic concept to host documents in a single, central location and
enable users to access those documents from distant places. With the global explosion of
interest in the Internet, developers all over the world are now creating web applications that
are much more functionally rich in their design.

Web applications no longer exist just as a central resource for shared documents. Now,
they’re still a central resource, but we use them interactively to buy groceries, to calculate our
taxes, and to send and receive e-mail. Our children use the Web as an exciting, interactive

learning experience. We’re now using web applications to perform all those interactive tasks
that were previously only in the domain of the desktop application. We don’t need to install the
software anymore; we just need to point the browser across the Internet to the application.

Desktop Applications vs. Web Applications
If you’ve built a Windows desktop application in a language like Visual Basic .NET (VB .NET),
then it’s not too difficult to sit down and write a VB .NET web application that looks and feels
quite similar to that desktop application, as illustrated in Figure 1-1. You can design the forms
in the user interface (UI) to be similar, have the forms react to mouse clicks and button presses
in a similar way, and make the back-end processing of the two applications quite similar.

Figure 1-1. A desktop application (left) and a web application (right) can look and feel quite
similar.

To use the desktop version of an application, you need to install it on a machine, and then
sit at that machine while you use it. When you ask the operating system to run the application,
it will create a new process for it, where the application will execute. Afterwards, your mouse
clicks and keypresses will be detected by the operating system and passed to the process in
which the desktop application is running. The application interprets these messages, does
whatever processing is necessary, and tells the operating system what changes should be
made to the UI as a result. All the communication between the application process and the
UI is done via the operating system of that machine.

To use the web version of an application, you need to use a web browser. You type a URL
into the web browser, which tells it where to find the machine on which the application is run-
ning. The browser arranges for a message to be sent across a network to this other machine.
When the message is received by that machine, it’s passed to the application, which interprets
the message and decides what the UI (a web page) should look like. Then it sends a descrip-
tion of that web page back across the network to the browser.

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE 3

Far more players are involved in the use of the web application than are involved with the
desktop application, but the advantages of this remote-access concept are nothing short of
phenomenal. To build an effective web application, you need to understand these interactions
between the browser and web application in finer detail, because they shape the way you
write web applications.

Web Servers and Web Clients
You know that by entering a URL into the Address box of a browser window, you can surf and
navigate to a web site. But what actually happens, behind the scenes, when you press Enter or
click the browser’s Go button to submit that URL?

Before looking into the process, you need to understand the distinctions between the dif-
ferent machines and messages involved:

Web client/web server: The machine on which a browser is running is referred to as a web
client. The machine on which the web application is running is called a web server.

Request/response: When a user types a URL into a browser, or clicks a link in a web page,
the resulting message sent from the browser to the web server is called a request. The
message containing the contents of a web page (which is sent by the web server to the
browser in reaction to receiving the request) is called a response.

The request and response are the vital components of this communication process. From
the point of view of a web application, they’re critically important. The request tells the web
application what to do, and the response contains the fruits of its labors.

With those concepts clearly defined, let’s examine the process that takes place when a
user employs a browser to request a web page. As illustrated in Figure 1-2, it’s all about the
exchange of messages: the request message and response message. In fact, the client is also
able to send responses in addition to requests. The following sections describe each step in
the process that you see in Figure 1-2.

Step 1: Initiating the Client Request
In the first stage, the user clicks a link, types a URL into a browser, or performs some similar
action that initiates a request. The request is a message that must be sent to the web server.

In order to send any request (or response) message, the browser needs to do three things:

• Describe the message in a standard way so that it can be understood by the web server
that receives it. For this, it uses the Hypertext Transfer Protocol (HTTP), the protocol used
by the Web to describe both requests and responses. The described request message is
called the HTTP request, and it has a very particular format that contains information
about the request plus the information required to deliver it to the web server.

• Package the message so that it can be safely transported across the network. For this, it
uses the Transmission Control Protocol (TCP).

• Address the message, to specify the place to which the message should be delivered.
For this, it uses the Internet Protocol (IP).

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE4

Figure 1-2. What happens when a user requests a web page from a browser

■Note TCP and IP are often grouped together and referred to as TCP/IP. When you hear people talking
about TCP/IP, they’re discussing packaging and addressing Internet messages.

After the browser has described the message, packaged it, and addressed it, the request is
ready to be dispatched across the network to its intended target: the web server.

Step 2: Routing the Request
Thanks to the HTTP, TCP, and IP protocols, the request message is formatted in such a way
that it can be understood by each of the machines involved in routing the request—that is,
passing the request from one machine to another as it finds its way from the web client to the
web server.

The web server machine will be connected to the Internet (either directly or via a firewall)
and will be uniquely identified on the Internet by its IP address. An IP address is a set of four
numbers, each of which ranges between 0 and 255.

However, the original request probably didn’t contain an IP address. More likely, it was
made using a URL that began with a named web site address (this is usually something more
memorable, like http://www.apress.com/). The link between an IP address and its named
equivalent is mapped using the Domain Name Service (DNS). For example, DNS currently

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE 5

maps the URL http://www.microsoft.com/ to the IP address http://207.46.245.222/, so
requests for web pages at the URL http://www.microsoft.com/ are directed to the web server
whose IP address is http://207.46.245.222/.

■Note The set of four numbers in an IP address enables us to address almost 4.3 billion machines
uniquely. IP version 6 (IPv6) is a new version of the protocol that allows for many more unique addresses
by employing eight sets of four hexadecimal digits (so that each set of four is between 0000 and FFFF).
Despite the fact that 4.3 billion sounds like a lot, the invention of portable devices with “always on” Internet
connections, such as mobile phones connecting over General Packet Radio Service (GPRS), means that we
will eventually run out of today’s IP addresses. This is why IPv6 was created.

One address you’ll be seeing a lot of in this book is http://localhost/. This is a special
address that resolves to the IP address http://127.0.0.1/. Any computer recognizes this
address as referring to itself. It’s not actually a real IP address, but a reserved address used
as a shortcut for the local machine, known as a loopback address.

Step 3: Receiving and Reading the HTTP Request
The standardized format for web requests is defined by HTTP, so when the HTTP request
arrives at its destination, the web server knows exactly how to read it.

In HTTP, a web client can make two principal types of requests of a server:

GET request: The client can ask the server to send it a resource such as a web page, a pic-
ture, or an MP3 file. This is called a GET request, because it gets information from the
server. This is a commonly used method, for example, when developing a search facility
on a web site, where the same request will be made on more than one occasion. It’s also
how you request simple web pages and images.

POST request: The client can ask the server to perform some processing in order to gener-
ate a response. This is called a POST request, because the client posts the information that
the server must process, and then awaits a response. This method is more likely to be
used, for example, when submitting personal data to an online shopping site or in any
other situation where you are sending information to the server.

Step 4: Performing Server-Side Processing
The web server is the place where the application is running. It is responsible for ensuring that
any necessary server-side processing takes place in order to complete its task and generate a
response.

If the HTML request contains a request for a simple HTML page, the web server will
locate the HTML page, wrap it into an HTTP response, and dispatch it back to the client. In
contrast, if the request is for an .aspx page, for example, the web server will pass the request to
the ASP.NET engine, which takes care of processing the page and generating the output (usu-
ally HTML), before the web server wraps that newly generated output into an HTTP response,
ready to be sent back to the client.

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE6

The HTTP response consists of two parts: the header and the body. The header contains
information that tells the browser whether the request was successful or there was an error
processing it. For example, if the web server received the request but was unable to locate
the requested page, the header will contain an HTTP 404 (File Not Found) error code. The
response body is where a successfully requested resource (such as a block of HTML) is placed.

Step 5: Routing the Response
The HTML page, generated at the web server, has been described in terms of an HTTP
response message, and is packaged and addressed using TCP/IP. The return address is an IP
address, which was included in the HTTP request message sent in step 1.

The HTTP response message is routed back across the network to its target destination:
the web client that made the original request.

Step 6: Performing Client-Side Processing and Rendering
When the HTTP response reaches the web client, the browser reads the response and
processes any client-side code. This processed code is now displayed in the browser window.

Now that you know what goes on when a user requests a page, it’s time to start using
some code.

System Configuration for Web Development
The best way to understand the web application process is to create some web pages and
look at them from the perspective of both the end user and web server. You’ll begin to do this
shortly (and you’ll create plenty of web pages during the course of the book), but before you
can start, you need to install and configure a web server, which you’ll use to host your web
applications.

If you are running Windows 2000, Windows XP, or even Windows Server 2003, you’ll be able
to use Microsoft’s own web server—Internet Information Services (IIS)—to host your applica-
tions. Other web servers are available for Windows (such as Cassini, a web server written in
.NET) and for other development platforms (notably Apache, which can be installed on Win-
dows machines, Linux machines, and now even comes preinstalled on Mac OS X machines).
For this book, we’ll use IIS to host the sample web applications, because it’s the platform pro-
vided by Microsoft in order to run ASP.NET applications (although not the only one).

Different versions of IIS are supplied as part of different versions of the Windows operat-
ing system:

• Windows 2000 Professional or higher has IIS 5.0

• Windows XP Professional has IIS 5.1

• Windows Server 2003 has IIS 6.0

IIS 5.0 and IIS 5.1 are very similar (in fact, IIS 5.1 is just a minor update of IIS 5.0). IIS 6.0 is
a more substantial revamping of the IIS architecture, providing improvements in security and
speed, as well as a deeper level of integration with ASP.NET applications.

Having said that, the front-end interface for all of these versions is very similar; therefore,
the configuration process described in this chapter works equally well for all of these IIS

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE 7

versions. For the remainder of the book, we’ll limit the discussions mainly to the features
available to IIS 5.x developers, because it’s the main platform for workstations. We’ve included
an overview and setup instructions for IIS 6.0 in Appendix B, as there are some differences
that should be taken into account when setting up web development or deploying the appli-
cation on a server with Windows Server 2003.

Installing and Configuring IIS for .NET Web Applications
The IIS installation process itself is a fairly painless operation. If you haven’t installed any of
the necessary software yet, then it’s recommended that you install IIS before either the .NET
Framework or Visual Studio .NET (VS. NET), because the installation of the latter configures
the former so that it is able to deal with the ASP.NET files that are central to web applications
in .NET.

If You Haven’t Installed the .NET Framework or VS .NET Yet
If you have not yet installed the .NET Framework or VS. NET, open the Control Panel and head
to Add/Remove Programs. In the dialog box that appears, select Add/Remove Windows Com-
ponents. In the list of components that appears, select Internet Information Services (IIS), as
shown in Figure 1-3. Accept all the default settings, and the installation process will commence.
Now, you can go ahead and install the .NET Framework and VS. NET, too.

Figure 1-3. Choosing to install IIS

If You’ve Already Installed the .NET Framework or VS .NET
If you have already installed the .NET Framework and/or VS .NET, you could proceed by unin-
stalling VS .NET, and then uninstalling the .NET Framework (via the Add/Remove Programs
group in your Control Panel). Then you could install IIS, and finally, reinstall VS .NET. But this is
an aggressive (and time-consuming) process. Instead, we recommend that you try to use one of
the following tools to “repair” the .NET Framework, and use the uninstall/reinstall method only
as a last resort.

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE8

First, try to run the ASP.NET IIS registration utility. Select Start ➤ Run. In the dialog box
that appears, type the following command:

%systemroot%\Microsoft.NET\Framework\[Version]\aspnet_regiis.exe

[Version] is the .NET version you have: v1.0.3705 for .NET 1.0 or v1.1.4322 for .NET 1.1.
If that doesn’t work, you should be able to do the job using the VS. NET DVD or CDs.
If you own the VS .NET DVD, insert the DVD, and then select Start ➤ Run. In the dialog

box that appears, type the following command (on one line):

<Drive>:\wcu\dotNetFramework\dotnetfx.exe
/t:c:\temp
/c:"msiexec.exe
/fvecms c:\temp\netfx.msi"

If you have the VS .NET CDs, insert the VS .NET Windows Component Update CD, and
then select Start ➤ Run. In the dialog box, type the following command (on one line):

<Drive>:\dotNetFramework\dotnetfx.exe
/t:c:\temp
/c:"msiexec.exe
/fvecms c:\temp\netfx.msi"

Administering IIS
Once the IIS installation has completed, you can check that it was successful by viewing the
IIS console. The IIS console is the key administration tool that you will use to configure
your IIS web server software.

To run the console, select Start ➤ Run, type inetmgr in the dialog box, and click OK. Alter-
natively, you can use the Internet Services Manager shortcut in the Administrative Tools group
in your Control Panel (if you are running Windows XP, this link is named Internet Information
Services). The IIS console appears, and it should look something like the window shown in
Figure 1-4.

Figure 1-4. IIS console is an administration tool for configuring IIS web server software.

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE 9

Creating Virtual Directories
In the folder list, you will notice that several of the folders are marked with a package-like
(gear-like in IIS 6.0) icon (shown in Figure 1-4). This icon indicates that the folder is a virtual
directory, which is also configured to be a root location for a web application.

IIS maps each virtual directory to a physical directory on the web server machine. This
mapping works as follows:

• The virtual directory structure is the structure that the end users see when they browse
the pages of the web site though a browser.

• The physical directory structure is the actual folder structure that is used on the web
server’s hard disk for organizing and storing the pages and resources of the web appli-
cation.

Thus, web developers can use this mapping of virtual directories to physical ones to place
the web application’s source files in the most convenient place on their server and to hide
their server’s physical organization from end users (each virtual directory is just the alias of a
physical directory). Let’s see how this works and examine the process in more detail in an
example.

Try It Out: Create a Virtual Directory In this example, you’ll use the IIS console to create a virtual
directory that points to a physical folder on your system. You’ll write a simple HTML page and
place it inside the physical directory, so that it will be possible to use a browser to navigate to
that page via HTTP, using the virtual directory structure you created.

1. Use Windows Explorer to create a directory called Apress anywhere on your drive, and
then create a subdirectory called BegWeb within it, so that you have a physical directory
structure like C:\Apress\BegWeb.

2. Fire up a text or code editor such as Notepad. (You’ll be using VS .NET in every other
example in the book, but for this example, it’s really not necessary.) Enter the following
simple HTML code into a new file:

<html>
<head>
<title>Beginning Web Programming - Simple Test HTML Page</title>

</head>
<body>
<h2>A Simple HTML Page</h2>
<p>Hello world!</p>

</body>
</html>

3. Save this file as HelloWorld.htm in the \BegWeb directory that you just created.

4. Now, you’ll create a virtual directory. Open the IIS console (select Start ➤ Run and type
inetmgr). Right-click the Default Web Site node, and select New ➤ Virtual Directory
from the context menu, as shown in Figure 1-5.

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE10

Figure 1-5. Choosing to create a new virtual directory

5. At this point, an introductory dialog box will appear. Just click Next to continue.

6. In the first page of the wizard, you’ll be prompted for the name that you want to give to
your virtual directory. This is the name that end users will see in the Address box of a
browser when they request the page. Name your directory ApressBegWeb, as shown in
Figure 1-6. Then click Next.

Figure 1-6. Naming your virtual directory

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE 11

7. In the next wizard page, browse to the BegWeb physical directory (or just enter the
directory path into the text box), as shown in Figure 1-7, and then click Next.

Figure 1-7. Specifying the physical directory that contains the web page contents

8. The next page, Access Permissions, presents a number of options relating to the per-
missions enabled on resources contained within this virtual directory, as shown in
Figure 1-8. By default, users will be able to read files and run script-based programs.
For now, leave the default settings and click Next to continue.

Figure 1-8. Setting access permissions

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE12

9. The last page of the wizard confirms that the virtual directory has been created suc-
cessfully. Click Finish to close the wizard. Your new virtual directory should now
appear in the directory list in the IIS console, as shown in Figure 1-9.

Figure 1-9. Your new virtual directory appears in the IIS console.

10. You can now run the example by opening your web browser and entering
http://localhost/ApressBegWeb/HelloWorld.htm in the Address box. You should
see the page shown in Figure 1-10.

Figure 1-10. Running the example in a web browser

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE 13

How It Works

At the end of the example, you played the part of the end user by typing a URL into the
Address box of the browser and sending the request. The destination of the request is deter-
mined by examination of the first part of the URL: http://localhost/. The machine name
localhost very quickly resolves to the loopback IP address, http://127.0.0.1/, so the request
is sent to the web server software (the IIS installation) that is running on the local machine.

When the web server receives the request, it reads and processes it. To establish exactly
which resource was requested, it reads the remaining part of the URL: /ApressBegWeb/
HelloWorld.htm. This tells the web server that the required resource is the HTML page,

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE14

OTHER METHODS FOR CREATING VIRTUAL DIRECTORIES

It’s also possible to create a virtual directory using Windows Explorer. To do that, right-click the physical
directory in question (such as C:\Apress\BegWeb) and select Properties from the context menu. Then
select the Web Sharing tab and click the Share this folder radio button. Finally, type the virtual directory (alias)
name into the Alias text box of the Edit Alias dialog box (which appears automatically). Figure 1-11 illustrates
the process.

Figure 1-11. Creating a virtual directory through Windows Explorer

It’s also possible to create virtual directories using VS .NET, as you’ll see when you create a dynamic
web page later in this chapter.

Whichever method you use to generate the virtual directory, the result will be the same.

HelloWorld.htm, and that it should be located in the directory whose alias is /ApressBegWeb.
The web server knows that this virtual directory alias corresponds to the physical directory,
C:\Apress\BegWeb, so it is able to fetch the .htm file from that location. All this processing is
invisible to the end user who requested the page.

When it’s ready, the web server sends the required output back to the requester. In this
example, the request was for a simple HTML page, and the HTML is sent back to your
browser.

The browser understands HTML and knows what to do with it. The HTML in this example
is designed to display a simple page in the browser window. HTML is a markup language, con-
structed using plain text, and you don’t need any fancy tools to create it. The browser interprets
the HTML that it received and renders the page on-screen (by putting the contents of the
<title> element into the title bar, rendering the contents of the <h2> element as a level 2 head-
ing, and so on). We’ll discuss the subject of markup languages in more detail in Chapter 7.

Finally, you’ve probably noticed that if you double-click an .htm file in Windows Explorer,
it appears in a web browser (by default). It looks the same as requesting it in HTTP, but it’s not.
The file is opened in a browser because, by default, the operating system is configured to open
.htm files in a browser. As you can see in the Address box in Figure 1-12, this page is not the
result of an HTTP request, so it was served locally by the operating system, not by the web
server.

Figure 1-12. Running the example from Windows Explorer

■Note It’s the web server, not the operating system, that is responsible for arranging that any necessary
server-side code is executed. And it’s HTTP that allows the requests to be carried between web client and
web server machines in a network. For a web application to work, requests must be made using http://
URLs and virtual directories, not through physical directories.

If you want, you can add more HTML pages and other web resources to the physical
directory C:\Apress\BegWeb, and those pages and resources will be accessible via a browser in
the same way: by browsing to the virtual directory http:\\localhost\ApressBegWeb\....

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE 15

Configuring Virtual Directories
When you were setting up the virtual directory in the previous example, you chose to accept
the default access settings. Of course, it’s possible to influence the amount of access users
have to your applications by adjusting these settings after the virtual directory has been cre-
ated. You can alter the settings for your virtual directory by right-clicking the virtual directory
in the IIS console and selecting Properties. You’ll see the Properties dialog box for the virtual
directory, as shown in Figure 1-13.

Figure 1-13. Setting a virtual directory’s properties

In the dialog box, you can see a collection of six check boxes, which relate to basic per-
missions. You can alter these as required, but note that you always need to have the Read
check box enabled if anyone is to view any of the pages in your directory! Out of the other
available options, you will find the following two to be the most useful:

Write: This needs to be set if the user is to be allowed to update files within the virtual
directory.

Directory browsing: This is a useful permission to enable when you’re developing a web
application by hand, because it allows you to examine the contents of the virtual direc-
tory through a web browser by browsing to that virtual directory. It’s highly recommended
that you disable this permission for production web applications, however, because it
exposes potentially sensitive information about your file listing to anyone who cares to
try it out.

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE16

■Tip You can try out the Directory browsing permission. Select the check box, click OK, and then browse
to http:\\localhost\ApressBegWeb on our web server. You’ll see a Windows Explorer-like display of the
contents of the corresponding physical directory.

You can apply more security settings to your virtual directories to further control access
to pages, as discussed in a bit more detail in Appendix B. We’ll also discuss security controls
set at the ASP.NET level in Chapter 10.

If you choose to do so, you can create multiple virtual directories on your web server, with
each one pointing to a different physical location. You can even create multiple aliases for the
same physical directory, each with different permissions and settings.

Also in the Properties dialog box is a section for Application Settings. We mentioned earlier
that the icon in the IIS console represents a virtual directory that is configured to be the root
location for a web application. In this section, you can configure aspects of that application, its
permissions, and its relationship with the web server itself. These settings are automatically
configured by VS .NET when it creates the web application. There are additional details that are
important about this section for IIS 6.0, as explained in Appendix B.

Dynamic Web Applications
One of the things about the HelloWorld.htm HTML page is that, no matter how many times
you look at it, it’s always the same. The entire contents of the page are contained in that one
file. In fact, the contents of that page don’t need to be generated at all. The web server feeds
the HTML from the .htm file straight into the HTTP response and back to the browser, and the
browser renders the HTML straight onto the screen. Content like this is called static content.

Static content doesn’t need to be generated at the time it is requested, because it has
already been generated before the request was made. (That’s why it’s the same each time.) It’s
fine to store your content as a bunch of static .htm files; indeed, if your content is static, it’s
unlikely to be a great burden to your web server when someone requests it. But static content
alone doesn’t make for an interactive web experience.

If you want your web users to be able to read or update data stored in a database, or if you
want you web application to react to the user’s actions or make calculations at the time the
request is made, your web pages need to be backed up with the processing code that can per-
form those actions. Additionally, you need that processing code to be executed on request. The
result is a more interactive web application involving a certain amount of dynamic content.

So, the main difference between static content and dynamic content is simple: static
content is generated only once, at the time the file was created, before the request is made;
dynamic content is generated after the request is made. You gain two clear advantages by
generating the content after the request is made:

• The web application can tailor the content it generates according to values submitted
as part of the request. For example, if you’re using an e-commerce web site, and you
submit your username and password, the next page you would expect to see is a
dynamically generated page containing information about your personal account.

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE 17

• The web application can tailor the content it generates according to the most recent
information available. For example, plenty of sites include a display of the number of
users currently using the site. That display is generated using up-to-the-minute infor-
mation taken at exactly the moment the request is received by the web server.

The main disadvantage of dynamic content is that it takes processor power to generate it.
If you have a web server that serves web pages to many consecutive users, and your dynamic
pages depend on server-side processing, your web server must be able to support all those
users. If you have content that rarely changes, it’s better to store it statically and save your
server’s resources. We’ll talk about performance issues in much more detail in Chapter 12, but
suffice it to say that static content does have its place in web application development, and
dynamic, server-side processed pages are not for free.

Client-Side Processing and Server-Side Processing
You can create a dynamic, interactive feel to our web applications in two ways: through
server-side processing and through client-side processing. This book is largely about the for-
mer, and the two certainly play very different roles within the request/response process.

Client-Side Code
You can design your web pages to include client-side code that is passed to the browser,
along with HTML, as part of the HTTP response. This code executes on the browser, after the
response is finished (step 6 of the diagram in Figure 1-2, shown earlier in the chapter) and is
an effective way to give pages a more lively and interactive feel.

Client-side code can take the form of JavaScript, Java applets, ActiveX controls, and even
Flash applications. As we’ve said, it’s the browser that processes this code. Client-side code is
often code that is intended to give an instant reaction to button clicks and keyboard presses
within the browser. Most modern, rich browsers support JavaScript scripting. To view some-
thing like a Flash movie, the browser is likely to need the appropriate plug-in. Some browsers
come with Flash preinstalled, but this doesn’t mean that all browsers do.

Placing large amounts of client-side code in a page comes at a cost. It increases the size of
the page, and that makes it slower to load. Moreover, not all browsers can handle client-side
code (some users disable client-side scripting to eliminate annoying features like pop-up ads;
others use stripped-down browsers to speed up browsing times), and even different types of
browsers may handle client-side code differently.

Server-Side Code
The server-side code is the place where your application can react to user input and respond
with customized results. For example, if you search the Amazon web site for the latest CD by
your favorite artist, Amazon’s web server executes server-side code to search its datastores for
the relevant item. It sorts any items that match the search according to whatever sort criterion
you may have specified (perhaps by album name, artist name, or release date) and uses this
information to generate HTML that is returned to your browser for display.

The server-side processing takes place much earlier than the client-side processing in the
request/response process (step 4 of the diagram shown earlier in Figure 1-2). It’s here that
the web application can react to data passed as part of the HTTP request, query databases,

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE18

perform other processing as necessary, and generate the page content (HTML plus client-side
code) to be sent back to the browser.

As well as generating HTML, server-side code can also serve to generate client-side code
to be sent back to the browser for execution there. This is the sort of feature that ASP.NET has
built into some of its server controls (a subject that we’ll cover in depth in Chapter 3).

Although server-side code is powerful, it isn’t the perfect solution to every requirement.
Plenty of features are better coded using client-side code. Often, you can reduce the overall
load on the web server with a little judicious application of some client-side code. For exam-
ple, you can use client-side techniques to prevalidate a registration form before it’s submitted
to a server, as you’ll do in Chapter 3. And you certainly should never use server-side code to
handle mouse rollover events (just imagine your clients waiting for a server response every
time they moved the mouse!).

Ultimately, a good, interactive, efficient web application is the right blend of dynamic
server-side code, client-side code, and static content. Keep in mind that server-side code
incurs the cost of network latency, meaning that even if you have a smooth experience at
development time (if everything is running locally, which is the most common scenario),
an end user accessing the Internet through a modem may not feel the same way.

It’s time for an example. The simple HTML example that you tried earlier didn’t use any
dynamic elements, so let’s look at an example that contains some server-side and client-side
functionality in an ASP.NET web page.

Try It Out: Create a Dynamic Page You’ll use VS .NET to create your first dynamic example, using
both server-side code and client-side code. In the next chapter, we’ll look at the VS .NET envi-
ronment and creating ASP.NET applications in more detail. Here, we’ll concentrate on a
simple example, constructed with a minimum of fuss.

1. Open VS .NET and create a new Visual Basic project: an ASP.NET Web Application proj-
ect using the address http://localhost/ClockExample, as shown in Figure 1-14.

Figure 1-14. Creating an ASP.NET Web Application project

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE 19

2. Once the blank application has been created (this may take a while), you will be pre-
sented with a design-time view of a web form. Click the HTML button at the bottom of
the form to switch to the HTML view of your page, as shown in Figure 1-15.

Figure 1-15. Viewing the HTML display

3. In the main window with your HTML source code, adjust the code as shown in the fol-
lowing highlighted lines:

<%@ Page language="vb" Codebehind="WebForm1.aspx.vb"
AutoEventWireup="false" Inherits="ClockExample.WebForm1" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<html>
<head>
<title>What's the time?</title>
<meta name="GENERATOR" content="Microsoft Visual Studio 7.1">
<meta name="CODE_LANGUAGE" content="Visual Basic .NET 7.1">
<meta name="vs_defaultClientScript" content="JavaScript">
<meta name="vs_targetSchema"

content="http://schemas.microsoft.com/intellisense/ie5">
</head>
<body MS_POSITIONING="GridLayout">
<form id="Form1" method="post" runat="server">
<p>The time (according to the web server) is:

<%= System.DateTime.Now %>
</p>
<p>What's the time on the web client?
<input onclick="alert('Web client time is now ' + new Date());"

type="button" value="Client Time"/>
</p>

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE20

</form>
</body>

</html>

4. Run the application by pressing F5 or by clicking the Start button on the toolbar.

5. When the application runs, you should see the time at which the page was loaded on
your web server. Wait a few seconds, and then click the button, and a window should
pop up, as shown in Figure 1-16.

Figure 1-16. Running you dynamic application

How It Works

The server-side processing and client-side processing occur at different stages in the overall
request/response process, as described in the six-stage diagram shown in Figure 1-2 earlier in
the chapter. Figure 1-16 shows what happened when I ran this example.

When I made the request, the browser packaged it into an HTTP request and sent it off to
the web server. When the web server received the request, it examined the URL to find out
what resource was requested. In this case, it’s the web page called WebForm1.aspx, located in
the physical directory whose alias is ClockExample.

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE 21

This time, you didn’t create the ClockExample virtual directory yourself. Instead, VS .NET
did it for you when you first created the ClockExample web application. By default, VS .NET
creates a virtual directory for each new ASP.NET web application, and it creates a correspon-
ding physical directory as a subfolder of C:\Inetpub\wwwroot\ (assuming that C: is the local
hard drive on the web server).

So, the web server reads the virtual resource location, /ClockExample/WebForm1.aspx, and
searches its hard drive for the resource at C:\Inetpub\wwwroot\ClockExample\WebForm1.aspx.
The resource it finds is an .aspx file, containing the code you saw in step 3 of the exercise. This
code is a mixture of HTML, server-side code, and client-side code. More important, the web
server uses the suffix of the file to decide how it should process the file. Notice that it’s not an
.htm file, like the static page in the previous example. Rather, it’s an .aspx file. If you’ve installed
IIS and the .NET Framework correctly on your web server machine, the IIS web server software
knows that it needs to send .aspx files to the ASP.NET engine for server-side processing.

The ASP.NET engine examines the contents of the .aspx file, looking for server-side code
to process. In fact, it finds only two fragments of server-side code here. The first is a Page
directive:

<%@ Page language="vb" Codebehind="WebForm1.aspx.vb"
AutoEventWireup="false" Inherits="ClockExample.WebForm1" %>

This directive describes how ASP.NET should interpret and process the server-side code
in the file. We’ll touch on attributes of the Page directive throughout the book; for now, you just
need to know that the ASP.NET engine uses this information to process the page and does not
send it to the browser.

More interesting to us right now is the second fragment of server-side code:

<p>The time (according to the web server) is:
<%= System.DateTime.Now %>

</p>

The server-side fragment is the section flanked by <% and %> tags, and surrounded here by
a couple of lines of HTML. The ASP.NET engine recognizes this as a fragment of server-side
code and processes it. In fact, it evaluates the Now property of the System.DateTime object,
which returns a string containing the current date and time. When my web server processed
this line in reaction to my page request, the time (according to the web server) was 11:11 PM

and 39 seconds, so the ASP.NET engine generated the following HTML here:

<p>The time (according to the web server) is:
3/4/2004 11:11:39 PM

</p>

There isn’t any more server-side code in this .aspx file; so with this action, the ASP.NET
engine has done its job. The resulting HTML and client-side code are sent to the browser and
rendered on the screen. To see what the web server sends to the browser, you can just use
View ➤ Source (or a similar option) on the browser, as shown in Figure 1-17.

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE22

Figure 1-17. Viewing the source code in a browser

Most of this is HTML, and there’s one bit of client-side script. In the HTML, you have a
<head> element that contains the title of the page and a few elements of metadata (informa-
tion about how the page was created, and so on). You also have a <body> element that contains
what you see on the page. It consists of a <form> containing the following:

• A hidden <input> element, named __VIEWSTATE, which contains encoded information
that is generated by ASP.NET and used when working with forms (this is related to the
concept of maintaining state in applications, introduced in the next section)

• A <p> paragraph element containing the time information created by the server

• Another <p> paragraph element, which itself contains more text and an <input> element
of type button

It’s the button that arouses our interest now. Let’s look at that <input> tag more closely:

<input onclick="alert('Web client time is now ' + new Date());"
type="button" value="Client Time"/>

When the user clicks this button, the onclick event is fired and the alert() method runs
on the browser, producing a message box. This is client-side processing, and the time and
date reported are the time and date as calculated by the browser on the client machine, not
the web server.

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE 23

An Introduction to State Management
When you request a resource from a server, using GET or POST, the server responds to your
request and returns the appropriate data. After the HTTP response has been sent back to the
client, the server then forgets all about the client. HTTP is known as a stateless protocol. This
means that state (that is, information relating to the connection and who is at the other end
of it) is not retained from one request to the next.

If you were to accept this limitation as unavoidable, it would certainly restrict the useful-
ness of your web applications. Being able to remember a user is necessary in all kinds of
situations. For example, imagine using a site that requires you to log in and being forced to
log in for every single page! It would be much easier if you could log in once and have the web
server recognize you when you make subsequent requests. Also, consider how important this
for an e-commerce site with shopping baskets, in which the web application must remember
what shoppers have ordered as they make their way through the pages of the site.

To counter this problem, two important techniques are available. One way is to instruct
your application to store state on the server in an object of some type. You could store selected
information about the client in a temporary location that exists for as long as the user is
browsing the site. The server can then remove this temporary data when the user navigates
out of scope of the application or closes the browser.

Alternatively, you can store selected information about the client on the client’s machine.
The following are two of the most common methods for doing this:

• Place the data in a small file called a cookie. You can use cookies to store small amounts
of data up to a limit, such as general preferences or login details. Each time a user navi-
gates to your site, those nuggets of data can be passed up as part of the request and used
by the web application to achieve an “automatic login” or to personalize the interface.

• Place data in a hidden <input> field within the HTML for the page—a technique also
used by an ASP.NET feature known as viewstate, which you saw in the preceding exam-
ple. You’ll learn more about viewstate and how you can use it in Chapters 2 and 6, and
you’ll learn about how it affects performance in Chapter 12.

State management is a fundamental aspect of dynamic web applications. We’ll have more
to say on the subject of statelessness, and strategies for dealing with it, in Chapter 6.

Web Application Architecture
A web application is more than just a collection of web pages. For example, a web application
can contain configuration files, stylesheet files (used to control the visual appearance of the
site), and files that link to a database server to retrieve information. Figure 1-18 illustrates how
a basic web application fits together.

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE24

Figure 1-18. Web application architecture

The web client (that is, the machine employed by the end user browsing to the web appli-
cation) can see only the main web site pages. This main site can itself link to images, music
files, or pictures that are displayed on the main pages. The site can use separate style files to
customize the appearance of the site. The site’s configuration can be controlled by individual
configuration files, and you can administer your site by using custom administration pages, if
you want. The application can draw on information stored in databases, XML files, and even
web services.

As you will see in later chapters, ASP.NET web applications follow this model very well.
Compared to older technologies like ASP 3.0, ASP.NET web applications can separate each
part of the application into a separate file. The architecture of ASP.NET lends itself to encapsu-
lation and reuse, which means that it’s much easier to modularize your applications and avoid
reams of repeated code.

When you create an ASP.NET application, you split your application into pieces, as shown
in Figure 1-19.

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE 25

Figure 1-19. Parts of an ASP.NET application

At the core of an application is the ASP.NET page, which may have an associated code-
behind page. This page can use functionality and presentation elements from user controls,
precompiled components, and custom server controls, as follows:

User controls: These contain presentation code that is intended to be reused across many
pages and can even be cached to improve loading times. An example is a header control
that contained links to other parts of your site. You’ll see an example of a user control in
Chapter 3.

Components: These contain application code that can be reused as required by compil-
ing it into classes that can be used in your ASP.NET pages.

Custom server controls: These are a sort of mixture of precompiled components and the
visual characteristics of user controls, in the sense that they are designed for providing
reusable visual elements that can be placed on your ASP.NET pages and packaged as
independent assemblies (that is, dynamic link libraries). There is a rapidly growing mar-
ket for professional compiled custom server controls for UI elements such as toolbars,
menus, and so on, which can be downloaded, installed, and then deployed in your own
applications, much as you could do with ActiveX on the past, but specifically tailored for
the web architecture and standards.

The ASP.NET application also has a global settings file, Global.asax, which can provide
application-level support, such as session management, application-level events, storage of
information that you can use throughout the application or for the duration of a session,
and so on.

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE26

Finally, the web application’s files are governed by a configuration file, Web.config, which
controls exactly how your application operates; for example, the security settings in place on
your application and other settings such as how long each session should last. We’ll discuss
available settings in the context of each feature in ASP.NET throughout this book.

In Chapter 2, you’ll start to learn more about the core ASP.NET components and how
an ASP.NET application is constructed. You can gain a lot of insight into the construction of
ASP.NET web applications just by using the VS .NET environment, which can create basic
template files ready for you to extend and customize as appropriate.

Summary
Windows desktop applications and web applications can be made to behave in similar
ways, but under the covers, they are fundamentally different. A desktop application must
be installed and executed on the user’s machine. In contrast, a web application runs on a
machine that could be anywhere in the world, and the user interacts with it remotely through
a web browser.

The physical separation of a web client machine and a web application machine means
that you need a network-proof set of protocols to allow them to communicate. Each interac-
tion takes the form of a request message and a response message. The web uses HTTP to
describe a message, TCP to package it, and IP to address it. At the client end, the user interacts
with the web application through a browser or similar piece of software. At the server end, the
web application is hosted by web server software, such as IIS.

There are two types of web content. One type is static content, which is generated only
once, at the time the corresponding file is created, before the user requested it. The other type
is dynamic content, which is not generated until after the request arrives at the server. Web
content can be made to be more interactive by means of dynamic techniques, specifically
server-side processing and client-side processing. Most web applications consist of some
combination of static content, server-side code, and client-side code.

Typically, a web application is made up of many client/server relationships. For example,
a user triggers a browser to request a page from the web server. For the web server to respond,
it may, in turn, need to make requests of server-side components, databases, file systems, and
other services.

.NET’s answer to the problems of web application programming is ASP.NET. You’ve seen a
little of how ASP.NET makes it easy for you to design applications in a modular way, to get good
organization of your application, and to encourage encapsulation and reuse. In Chapter 2, we’ll
examine the task of creating ASP.NET web applications in more detail, and we’ll explore the
VS .NET web development environment and the ASP.NET architecture. Then, in Chapter 3,
you’ll be ready to start work on the Friends Reunion web application, which is the sample full-
scale application you’ll develop in this book.

CHAPTER 1 ■ ENVIRONMENT AND ARCHITECTURE 27

Web Development in .NET

In this chapter, we’ll look at how ASP.NET web applications work and how you can create
them. We’ll examine the structure and elements of an ASP.NET page, and put together some
very simple pages that demonstrate basic techniques. All this will help to get you ready to
start building the Friends Reunion application in Chapter 3.

Along the way, you’ll make good use of the VS .NET integrated development environment
(IDE), and you’ll start to discover some of the VS .NET tools you’ll take advantage of in the web
application development tasks covered in this book.

In this chapter, you’ll learn more about the following:

• The features available when developing web applications in .NET

• Building web applications using VS .NET

• What goes on behind the scenes of an ASP.NET application and how .NET applies the
object-oriented design paradigm to web applications

• What happens when a user requests an ASP.NET page and how server-side code results
in client-side content

ASP.NET is at the center of web application development in .NET, so let’s start with an
introduction to this technology.

An Introduction to ASP.NET
As you saw in Chapter 1, a large-scale web application can be a complicated thing, which
takes advantage of many different technologies. If you write your application using the .NET
Framework, the technology at the center of it all, pulling everything together, is ASP.NET.

So what is ASP.NET? Here’s a definition that summarizes the key characteristics:
ASP.NET is an event-driven, control-based, object-oriented architecture that generates

content and dynamic client-side code from server-side code using functionality described mostly
in the System.Web classes of the .NET Framework.

Let’s unravel this statement, so that you can get a better understanding of all the implica-
tions of this definition and how ASP.NET is important to web application developers:

29

C H A P T E R 2

■ ■ ■

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET30

ASP.NET generates content and client-side code, either static or dynamic. In Chapter 1,
you saw that when a web server receives a web page request, it performs any necessary
processing to generate the page response before sending that response back to the
browser. ASP.NET is the technology at the center of that processing.

ASP.NET generates responses from server-side code. ASP.NET works on the web server.
It takes the page request and executes the necessary server-side code to generate the web
page that is sent back to the browser in the response.

ASP.NET is event-driven. ASP.NET pages fire events, and you can write code to react to
those events. These events include user-input actions (such as when a user clicks a but-
ton or selects an item from a drop-down list on the page) and events that occur as part of
the lifecycle of the page (like the page Load event, which fires when a page is loaded).

ASP.NET is control-based. ASP.NET relies heavily on reuse of elements of visual function-
ality known as server controls. In this chapter, we’ll look at server controls in generic
terms. In Chapter 3, we’ll cover the different types of server controls, how they work,
and how they’re used.

ASP.NET uses functionality described in the System.Web classes of the .NET Framework.
ASP.NET achieves all this using a comprehensive set of .NET Framework classes contained
within the System.Web namespace and all other namespaces that begin System.Web.*
(these are sometimes called the ASP.NET classes). It includes functionality for simple
ASP.NET pages, web forms, web services, controls, and so on. You’ll meet all of these over
the course of this book.

ASP.NET is object-oriented. ASP.NET brings the full power of object-oriented techniques to
web development. Everything in ASP.NET is extensible and reusable through inheritance
and polymorphism, and all features take advantage of abstraction and encapsulation
through classes that you can leverage to perform all sorts of actions during the life of the
web application. Even so, you don’t need to master object-oriented programming in order
to start developing attractive and interactive web applications quickly, as you’ll discover as
you work with ASP.NET.

Two terms that you need to know are ASP.NET page and web form. An ASP.NET page is a
web page that contains server-side elements written using a .NET language, such as VB .NET.
An ASP.NET page has a file extension of .aspx. A web form is a type of ASP.NET page that con-
tains an interactive form.

Since many ASP.NET pages contain forms, the terms web form and ASP.NET page are
often used interchangeably.

Web Form Construction in VS .NET
If you’re familiar with the process of building Windows forms in VS .NET or in Visual Basic 6.0
(VB6), you’re probably already comfortable with the way in which these IDEs allow you to
work with the interface:

• Use a drag-and-drop technique to add different controls (such as text boxes, labels,
drop-down lists, buttons, and so on) to your forms.

• Double-click a control in order to add an event handler to the control’s default event,
allowing your application to respond to events.

In VS .NET, Microsoft has worked hard to create a web development environment that is
similar in look and feel to the Windows development environment you’re already used to. So,
VS .NET makes the same drag-and-drop techniques available for creating web forms and pro-
vides a similar experience whenever you need to code an event handler for your web form.

VS .NET also gives you control over the positioning of your form elements, a Properties
browser that allows you to assign features and properties to your controls, and other tools. VS
.NET is not the only tool available for coding .NET web applications. For example, you can use
the ASP.NET Web Matrix, which is a free tool available from http://www.asp.net, and it’s even
possible to code everything using Notepad. But the VS .NET IDE is familiar in look and feel,
and it offers a lot of help (IntelliSense, shortcuts, wizards, code generation, and more) when
developing applications for the Web.

■Note You are not required to use VS .NET when developing ASP.NET web applications in VB. Whatever
development tools you choose to use for developing web projects, you’ll encounter the same problems
(in areas like security, usability, maintainability, debugging, and error handling) that all other web developers
encounter. Different IDEs will help you to tackle these problems in different ways. Microsoft has learned a lot
of lessons from the limitations of its pre-.NET IDEs and has applied them effectively to VS .NET. The result is
a highly usable and integrated IDE, which is why we chose to use it in this book.

Understanding Web Form Structure: Presentation and
Processing
In Chapter 1, you saw a very basic example of a web form. It consisted of some HTML code
and some in-line VB code. When a user requests this web form, the server runs the simple VB
code to work out the current time on the web server, and then sends a page to the browser
that has the web server’s time (at that instant) displayed on the browser.

Looking back at that code, you’ll see that all the presentation code and server-processing
code is mixed together in the page:

<body MS_POSITIONING="GridLayout">
<form id="Form1" method="post" runat="server">
<p>The time (according to the web server) is:

<%= System.DateTime.Now %>
</p>
<p>What's the time on the web client?
<input onclick="alert('Web client time is now ' + new Date());"

type="button" value="Client Time"/>
</p>

</form>
</body>

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET 31

For a simple page such as this one, mixing the presentation and server-processing code is
not too much of a problem. But it’s good practice to separate these two different types of code.
The standard method for doing this in ASP.NET is to use two different files:

• A file with an .aspx extension, which contains all of the presentation code, including the
HTML and server controls.

• A file with an identical name, but with an added .vb file extension, which contains all
the functional code and is known as a code-behind file. It contains only the language-
specific (in our case, VB-specific) code in which your classes, methods, and event
handlers are coded. Everything in this file is executed on the server.

When you create a web form, VS .NET automatically creates both the .aspx file and the
.aspx.vb file for you.

Keeping the presentation and code-behind information separate is a great way to organ-
ize code. It makes the code much more maintainable, and even allows a web page designer
and a VB developer to work side-by-side on different elements of the same page.

In addition to these two files, and the automatically generated code contained within
them, VS .NET also creates many other files that relate to configuration and setup of your web
application. You’ll look at these in more detail as you build the main example in this chapter.
Let’s begin that example now.

Try It Out: Control the Presentation Elements on a Web Form The best way to see all this in action is
in an example. Here, you’ll create a new VB ASP.NET web application, with a single web form.
You’ll concentrate on the basic presentational elements of the web form for now, and work on
the style (and other) properties and functionality of this web form later in the chapter.

1. Open VS .NET. Create a new Visual Basic ASP.NET Web Application project. Call it
Chapter2Examples by typing http://localhost/Chapter2Examples into the Location
box, as shown in Figure 2-1. Then click OK.

Figure 2-1. Creating a new ASP.NET Web Application project for the examples in this
chapter

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET32

2. Wait a few seconds while VS .NET creates a new web application. During this time,
VS .NET is performing all the necessary file creation and configuration of the new web
application on your local machine (since you specified localhost as the machine
name). You should now see the screen shown in Figure 2-2.

Figure 2-2. Starting to build a web form

3. Now you can start to build your web form. As it happens, VS .NET has created a web
form, WebForm1.aspx, already. You’ll remove this web form and create one that has a
name of your own choosing. Go to the Solution Explorer (shown at the top right in
Figure 2-2), select WebForm1.aspx, and delete it. (If you don’t see the Solution Explorer,
press Ctrl+Alt+L or select View ➤ Solution Explorer.) VS .NET will warn you that
WebForm1.aspx will be deleted permanently; just click OK.

4. To create a new web form, right-click the Chapter2Examples project in the Solution
Explorer and select Add ➤ Add Web Form from the context menu.

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET 33

5. In the Name field of the dialog box that appears, type the name of your new page,
Ch2WebForm.aspx, and then click OK.

6. Wait a couple more seconds while VS .NET creates the two files for this web form: the
markup file (Ch2WebForm.aspx) and its associated code-behind file (Ch2WebForm.aspx.vb).
You’ll see a new entry for Ch2WebForm.aspx in the Solution Explorer. VS .NET will open
this file for you, in the Design view, so it’s ready for you to start work on it.

7. Click once anywhere within the grid on the page designer. Then go to the Properties
browser, find the pageLayout property, and set its value to FlowLayout.

8. Return to the Design view of the page, and you’ll see that the grid marks have
disappeared.

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET34

9. Now you can start adding visual elements to the page. Place your cursor in the Design
view of the page and start typing text so that it looks like this:

Make sure you press the Enter key at the end of each line of text, so that when you’ve
finished, the cursor is below the second line of text.

10. Look at the Toolbox on the left of the IDE (press Ctrl+Alt+X or choose View ➤ Toolbox if
it’s not already visible). Select the Web Forms tab, and add a DropDownList control to
the page (either double-click the DropDownList item in the Toolbox or drag-and-drop
it from the Toolbox onto the page).

11. Add a Button control to the page in the same way, so that it is positioned just after the
DropDownList control. Then position your cursor at the end of the line and press
Enter to create a new line.

12. Add a Label control to the new line, in the same way you added the other two controls.
The Design view for Ch2WebForm.aspx should now look like Figure 2-3.

Figure 2-3. The Ch2WebForm.aspx file in the Design view

13. Take a look at the presentation code that you’ve generated by adding these items to the
page. Click the HTML button at the bottom of the Design view, and you’ll see the code,
as shown in Figure 2-4. (We’ll discuss this code in more detail in the next section.)

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET 35

Figure 2-4. Viewing the presentation code for the added controls

14. You can run the project at this stage. To do this, go to the Solution Explorer, right-click
Ch2WebForm.aspx, and select Set As Start Page. Then press F5 to build the project and
run it in Debug mode. This will start up a new browser window with the page displayed,
as shown in Figure 2-5.

Figure 2-5. Running the sample form

How It Works

The first thing you’ll notice is that the page displayed in the browser doesn’t do very much.
There are no entries in the drop-down list, and nothing happens when you click the button.
You’ll add this functionality later in the chapter (in the “Using Code-Behind” section). For
now, let’s look at what you’ve done so far.

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET36

The first interesting thing you did was change the page’s pageLayout property from
GridLayout to FlowLayout.

• Grid layout mode is useful for absolute positioning of elements, but it is based on a
standard that not all browsers support. It’s the only way you can develop Windows
applications.

• Flow layout mode is a more natural approach to layout. It assumes a top-down, left-
right approach and reduces the clutter in the Design view of your pages in the IDE.
The layout is more widely used in web applications.

In the next few steps, you created the content that you see on the page. You have a couple
of lines of text and three controls. By adding this text and these controls to the page, you’ve
generated a number of new tags in the presentation code in Ch2WebForm.aspx. You may have
noticed these new items in step 13, when you looked at the HTML view of the Ch2WebForm.aspx
file. Let’s examine some aspects of that code more closely.

The first line is a Page directive:

<%@ Page language="vb" Codebehind="Ch2WebForm.aspx.vb"
AutoEventWireup="false"
Inherits="Chapter2Examples.Ch2WebForm" %>

This contains information that ASP.NET uses when it executes the page to generate out-
put for the browser. In particular, note that it indicates that the code-behind file for your
Ch2WebForm.aspx page is the file Ch2WebForm.aspx.vb. By default, you don’t see this file in the
Solution Explorer. In order to see it, you need to select Project ➤ Show All Files or click the
appropriate button in the Solution Explorer:

You will be able to see all of the files created by VS .NET this way. We’ll take a closer look at
these files later in this chapter, in the “ASP.NET Application Files” section.

In the remainder of the code in Ch2WebForm.aspx, most of the interesting stuff is happen-
ing inside the <body> element:

<html>
...
<body>
<form id="Form1" method="post" runat="server">
<p>This is my first ASP.NET web form.</p>

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET 37

<p>Select a color from the following list, and then click the button:</p>
<p>
<asp:dropdownlist id="DropDownList1" runat="server">
</asp:dropdownlist>
<asp:button id="Button1" runat="server" text="Button">
</asp:button>

</p>
<p>
<asp:label id="Label1" runat="server">Hello World!</asp:label>

</p>
</form>

</body>
</html>

The code here consists of two types of content:

• Simple HTML tags (the <html> and <body> tags, and the <p> tags, which delimit para-
graphs on the page)

• The three server controls (represented by the <asp:dropdownlist>, <asp:button>, and
<asp:label> elements) that you added to the page via the Toolbox

Each of the three server controls also has the runat="server" attribute, which means
that when the page is requested, each element is processed at the server, in order to generate
HTML to be sent to the client. Each server control also has an automatically generated id,
which you’ll use later (in the “Using Code-Behind” section) to attach functionality to these
controls. The <asp:label> control has some default text (the string Hello World!), which you
saw when you viewed the page. Again, you’ll add functionality to control that text when we
explore using the code-behind file.

The HTML <form> tag is special here because it also has a runat="server" attribute. This
tag is also processed on the server at the time the page is requested, in order to generate
HTML for the browser.

It’s interesting to note that each of the elements here consists of an opening tag and a
closing tag (for example, <asp:label> and </asp:label>) and that they’re all properly nested.
In fact, this is more important for the server controls than for the HTML tags, because the
server controls are processed on the server by the ASP.NET parser, which is very strict about
how each ASP.NET element is arranged. The standard HTML elements (with the exception of
the <form runat="server"> element) are not processed at the server, but are simply passed to
the browser. Most browsers tend to be much more forgiving about missing end tags and poor
nesting, and they can often compensate for such errors.

VS .NET helps out by ensuring that all of the tags are well-formed. Well-formedness is a
set of rules about syntax of tags, which includes the rules about nesting and matching start
and end tags, which we’ll discuss in Chapter 7. For now, VS .NET will take care of the syntax
for you, but it’s worth being aware of it.

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET38

■Tip You’ve probably noticed that all the HTML tags have been created using lowercase characters. You
can control this using a setting in VS .NET. Select Tools ➤ Options from the main VS .NET menu. In the
Options dialog box, select the Text Editor, then HTML/XML, then the Format node on the left. In the dialog
box, look for the two drop-down lists that specify how to format HTML tags and attributes. To make them
all lowercase, select Lowercase and click OK. Again, most browsers are forgiving about the use of case in
HTML elements; you can use uppercase, lowercase, or a mixture. We think that lowercase is the most visu-
ally pleasant, which is why we’ve used that setting in this book.

You’ve seen the code that is processed on the server. What about the code that actually
gets sent to the browser? You can see this code by looking at the source code in the browser
(the exact menu option depends on the browser; in Internet Explorer, right-click the page and
select View Source).

You’ll see that the HTML code that you saw in the .aspx file is still there when the page
reaches the browser. However, the ASP.NET Page directive is gone. Also, the <asp:...> tags are
gone, and they have been replaced by more HTML tags. In addition, the <form runat="server">
element has been processed at the server, to generate more new HTML:

<html>
...
<body>
<form name="Form1" method="post" action="Ch2WebForm.aspx" id="Form1">
<input type="hidden" name="__VIEWSTATE"

value="dDwtMTU2OTI3MDUzMzs7Pg8RF9otUlFlTXjrUdHbFIc3CwRT" />
<p>This is my first ASP.NET web form.</p>
<p>Select a color from the following list, and then click the button:</p>
<p>
<select name="DropDownList1" id="DropDownList1">
</select>
<input type="submit" name="Button1" value="Button" id="Button1" />

</p>
<p>
Hello World!

</p>
</form>

</body>
</html>

The newly generated HTML is shown in bold font here. Essentially, the ASP.NET engine
has converted your server-side controls into elements that the browser can understand. For
example, the <asp:dropdownlist> server control has been converted into an HTML <select>
element. The ASP.NET engine has also added some information about something called view-
state, which we’ll mention again when we talk about the code-behind file later in this chapter
and study in Chapter 6.

Now let’s continue to work on the web form to make it do some interesting things.

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET 39

Using the Properties Browser
The Properties browser in VS .NET is an extremely useful tool. The Properties browser shows
the values of the properties of whatever element, control, or other item is currently in focus
and allows you to change those property values. You used it earlier to change the pageLayout
property of the Ch2WebForm.aspx page from GridLayout to FlowLayout.

The Properties browser is incredibly versatile. In the next simple example, you’ll use it
to change the ids of your controls and to add some basic styling to the text. You’ll be using it
throughout the book for changing all sorts of properties.

Try It Out: Set Properties on Your Page Let’s use the Properties browser to make some adjustments
to the property values of elements on the page, ready for the next stage of the example.

1. Return to the Design view of Ch2WebForm.aspx (click the Design tab at the bottom of
the main window). Check that the Properties browser is visible (if not, press F4 to
display it).

2. Place the cursor within the first line of text. The Properties browser will display a <P>
tag in the drop-down list at the top, which means that the properties you are about to
assign apply to the paragraph element at just that point in the page.

3. Set the align property to center, as shown here.

4. Select the style property. You can add a lot to the style property, so VS .NET provides
an editor, the Style Builder, to help. To start the Style Builder, click the … (ellipsis) but-
ton next to the style entry in the Properties browser.

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET40

5. In the Style Builder, select the Font tab on the left. Click the … button next to the
Family text box to bring up the Font Picker dialog box. Use it to add the two installed
fonts Verdana and Arial, and the generic Sans-Serif, in that order. (These fonts will be
used in that order of priority; the final one will result in the default sans-serif font
being used, if neither of the others is available.) Click OK in the Font Picker dialog
box when you’re finished.

6. Still in the Style Builder, set the Color to Maroon; set the Specific size to be 12 pt; set
the Effects to None; and set the Bold property to Bold. The dialog box should look like
Figure 2-6.

Figure 2-6. Using the Style Builder to set the style

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET 41

7. Click OK to close the Style Builder and apply the styling. You’ll see the changes
reflected immediately in the Design view.

8. Place the cursor on the second line of text. Leave this line as left-aligned (which is
the default), but set the font for this paragraph as in step 5 (Verdana, Arial, generic
Sans-Serif).

9. Click the DropDownList control once to select it, and then look in the Properties
browser. Change the ID of this control to ddlColorList.

10. Click the Button control once to select it. Set its ID property to be btnSelectColor, and
change its Text property to Apply Color.

11. Click the Label control once to select it. Set its ID property to lblSelectedColor, and
remove any text from its Text property. In its Font property, set its Names subproperty
to Verdana and Arial, by separating the names with a line return, as indicated in the
String Collection Editor dialog box and shown in Figure 2-7.

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET42

Figure 2-7. Assigning multiple names to a Label control

12. Run the project again by pressing Ctrl+F5. You should see the page shown in Figure 2-8
in your browser.

Figure 2-8. Running the sample form after adding some properties

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET 43

How It Works

The page still does not have any functionality, but it does look a little more styled. The style
properties control the visual appearance of your page, affecting the positioning and font of
the text. Also notice that the Text property of the button is reflected in the wording that you
see on the button now.

Let’s look at the changes that have occurred to the HTML source code behind the scenes.
Go back to the HTML view for the page in VS .NET and look at the changes to the code there:

<body>
<form name="Form1" method="post" action="Ch2WebForm.aspx" id="Form1">
<p style="FONT-WEIGHT: bold; FONT-SIZE: 12pt; COLOR: maroon;

FONT-FAMILY: Verdana, Arial, Sans-Serif;
TEXT-DECORATION: none" align="center">

This is my first ASP.NET web form!
</p>
<p style="FONT-FAMILY: Verdana, Arial, Sans-Serif">
Select a color from the following list,
and then click the button:

</p>
<p>
<asp:dropdownlist id="ddlColorList" runat="server">
</asp:dropdownlist>
<asp:button id="btnSelectColor" runat="server"

text="Apply Color">
</asp:button>

</p>
<p>
<asp:label id="lblSelectedColor" runat="server"

font-names="Verdana,Arial">
</asp:label>

</p>
</form>

</body>
</html>

Notice the changes in the <p> elements:

• In the first <p> element, the style attribute specifies the font-weight, font-size, color,
and font-family of the text in this paragraph.

• In the second <p> element, the style attribute just specifies the font-family.

• The third <p> element doesn’t have a style attribute, because you didn’t set one there.
However, you did set the font-names attribute of the <asp:label> control, and that
change is reflected in the code here.

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET44

■Tip Setting style properties like this gets a bit tiresome when there are a lot of elements on the page and
when you’re trying to get many elements across many pages to look the same. The solution is to place style
definitions into classes in a Cascading Style Sheets (CSS) file, link that file from all your pages, and then use
the classes to style the elements. You’ll learn more about CSS in Chapter 3, when you begin working on the
Friends Reunion application.

Finally, you can see that the changes you made to the ID properties of the three server
controls are reflected in the page HTML view. These new ids are chosen to reflect the purpose
of the controls, as you’ll see in the next section.

You may have noticed that setting styles for HTML elements and styling server controls
are done in different ways. We will look at this and other differences between the types of con-
trols in the next chapter.

Using Code-Behind
So far, you’ve just been working on the Ch2WebForm.aspx file, which contains the presentation
elements of your page. You also have the code-behind file, Ch2WebForm.aspx.vb, into which
you can place code that adds functionality to the elements of the page, making for a more
interactive experience. In the code-behind file, you can place the event handlers that handle
events raised during the life of the page.

Earlier in the chapter, we pointed out the <%@ Page %> directive that appears in the first
line of the Ch2WebForm.aspx file. As we noted, this line of code contains a reference to the code-
behind file, and its purpose is to act as the link between the two files:

<%@ Page language="vb"
Codebehind="Ch2WebForm.aspx.vb"
AutoEventWireup="false"
Inherits="Chapter2Examples.Ch2WebForm" %>

The Codebehind attribute points to the file name of the code-behind file. The Inherits
attribute points to the namespace and class name defined in the code-behind file, as you’ll
see in the next example. The language attribute specifies that you’re going to use VB whenever
you write server-side code; hence, your code-behind file must be written in VB.

Finally, the AutoEventWireup attribute tells ASP.NET how to associate an event with an
event-handler method. If it is set to true, the specially named event handlers Page_Load() and
Page_Init() are called automatically by ASP.NET when the page runs. If it is set to false, you
must explicitly specify which method handles each event. At the end of this example, we’ll
return to this and take a look at what has been generated.

Try It Out: Add Functionality Using Code-Behind Let’s create some interactivity in our example by
adding some functional code to the code-behind file. You’ll create an array of three colors and
list them in the drop-down list. You’ll invite the user to select a color and click the button,
and you’ll arrange that the button click causes some text to appear in the Label control,
reflecting the user’s choice of color.

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET 45

1. In the Solution Explorer, right-click Ch2WebForm.aspx and select View Code. This will
cause the code-behind file, Ch2WebForm.aspx.vb, to open in the IDE. Alternatively, you
can double-click the web form design surface. VS .NET interprets this as a sign that
you want to write code for the page-loading event, and you’ll be taken directly to the
Page_Load() method.

2. In Ch2WebForm.aspx.vb, look for the event-handler method called Page_Load(), and
add the code shown here in bold:

Public Class Ch2WebForm
Inherits System.Web.UI.Page
...
Private Sub Page_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load
If Not Page.IsPostBack Then
ddlColorList.Items.Add("Red")
ddlColorList.Items.Add("Green")
ddlColorList.Items.Add("Blue")

End If
End Sub

End Class

3. Return to Ch2WebForm.aspx and select the Design view. Double-click the Button
control. VS .NET interprets this double-click as a signal that you want to write an
event handler for the Click event on this Button control, which is designated (by
the control developer—in this case, someone on the ASP.NET team) as the default
event on the control. It creates an empty method called btnSelectColor_Click() in
Ch2WebForm.aspx.vb that handles the Click event. Then it changes the display to
show the code-behind file, Ch2WebForm.aspx.vb, with the cursor placed inside the
btnSelectColor_Click() method, ready for you to begin typing.

4. Type the code shown in bold into the btnSelectColor_Click() event-handler method:

Public Class Ch2WebForm
Inherits System.Web.UI.Page
...
Private Sub btnSelectColor_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnSelectColor.Click
lblSelectedColor.Text = _
"You selected " + ddlColorList.SelectedItem.Text()

lblSelectedColor.ForeColor =
Color.FromName(ddlColorList.SelectedItem.Text)

End Sub
End Class

5. That’s it! Now run the project by pressing Ctrl+F5. When the page loads, select a color
from the drop-down list and click the Apply Color button. Your page should look
something like the one shown in Figure 2-9.

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET46

Figure 2-9. Running the sample form after adding some functionality

How It Works

All you’ve done here is add a few lines of functional code to the code-behind page. It didn’t
take much effort to add an interactive feature to the page (albeit a very simple one).

The first thing you needed to do was to add the colors to the list of options in the drop-
down list. You need this to be done at the time the page loads, so that it’s already set up and
ready for the first time the user clicks the Apply Color button. For this reason, you add the
code for this to the Page_Load() event-handler method. This method is a private method of
the Ch2WebForm class, which is the class holding server-side code for this page, and it runs
when the page is requested by the user. (We’ll talk more about page-related events in the
“The Lifecycle of a Page” section later in this chapter.)

The Page_Load() event handler runs every time the page is loaded. So, as expected, it runs
when the page is first called. However, the Apply Color button is a server control, so when the
user clicks this button, the browser sends a request to the server for processing, and the page
is reloaded. Therefore, the Page_Load() event handler also runs each time the user clicks the
Apply Color button.

So, to handle this, each time the page is loaded, the Page_Load() code uses the
Page.IsPostBack property to find out whether the request is a first-time request or a postback;
that is, the page is being re-requested by the user so that the web server can process an event
and regenerate the page. If Page.IsPostBack is false, it’s a first-time request. In this case, you
need to add the three options to the drop-down list. If Page.IsPostBack is true, it’s a postback.
In this case, the data for the options has already been generated once and used to create the
options in the drop-down list. Then those options are stored within the HTML that’s sent to
the browser, in Base64-encoded format, in a hidden HTML <input> tag called viewstate:

<form ...>
<input type="hidden" name="__VIEWSTATE"

value="dDw0NDY2MjMzMjt0PDtsPGk8MT47 QFJWeORw=" />
...

</form>

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET 47

Using this method, you don’t need to generate those options again. The viewstate will be
sent to the server with the request, and then used by the ASP.NET engine to regenerate the
three items in the drop-down list. If you didn’t check for IsPostBack, you would have repeated
items added each time the user sent a request after selecting a color.

You achieve all that in just the following few lines of code:

Private Sub Page_Load(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles MyBase.Load
If Not Page.IsPostBack Then
ddlColorList.Items.Add("Red")
ddlColorList.Items.Add("Green")
ddlColorList.Items.Add("Blue")

End If
End Sub

Each of the three Add() method calls adds an item to the Items collection of the control,
which lists the available options.

■Tip Adding and displaying dynamic data on controls is so common in web development that it has been
greatly simplified and enhanced with a powerful concept called data binding, which frees the developer from
linking data to controls manually. We’ll study this subject in more detail in Chapter 5.

The button’s Click event handler is much easier. When you double-click the Button con-
trol, the IDE creates an event-handler method in the code-behind file. Note that the IDE chose
to name this event-handler method btnSelectColor_Click(), after the ID property of the But-
ton control (which you set to btnSelectColor earlier in the chapter) and the event it’s intended
to handle. As is usual in VB, the method is wired to the appropriate button event through the
Handles keyword:

Private Sub btnSelectColor_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnSelectColor.Click

In the event-handler method, there are just two lines of code. The first assigns some text
to the Text property of the Label control, and the second changes its foreground color. Both
use the expression ddlColorList.SelectedItem.Text, which returns the value of the option
that the user selected in the drop-down list before clicking the Apply Color button:

Private Sub btnSelectColor_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnSelectColor.Click
lblSelectedColor.Text = _
"You selected " + ddlColorList.SelectedItem.Text()

lblSelectedColor.ForeColor =_
Color.FromName(ddlColorList.SelectedItem.Text)

End Sub

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET48

There is one extra bit of work to do in the second line. Notice that the selected color value
is a string, but the ForeColor attribute expects an object of type System.Drawing.Color. There-
fore, you use the static FromName() method of that class to create a Color object based on the
string name of the color. The System.Drawing namespace is imported for all web projects by
default.

We’ll revisit many of these concepts in later chapters. In particular, in the next chapter,
we’ll concentrate on the different types of controls and how they’re used.

A Brief Tour of An ASP.NET Application
ASP.NET is an order of magnitude more structured than any other web development environ-
ment Microsoft has ever produced. You’ve already seen that it is object-oriented, event-driven,
and control-based. Its design also heavily promotes the benefits of code reuse and compiled
versus interpreted code execution. In the remaining pages in this chapter, you’ll take a brief
tour of some of these aspects of ASP.NET.

ASP.NET Application Files
You’ve already seen some of the files in an ASP.NET application; specifically, each web form
consists of an .aspx file and its associated .aspx.vb code-behind file. A quick look at the Solu-
tion Explorer (or, indeed, through Windows Explorer, a look at the folder that contains the
application) indicates that a number of other files are created by default when VS .NET creates
a new VB ASP.NET web application.

Let’s look at some of these files. Return to the Solution Explorer, click the Show All Files
button, and expand the resulting nodes. You’ll see a number of files that were previously hid-
den from view.

Notice that besides the Ch2WebForm.aspx.vb code-behind file that was created automati-
cally when you created your web form, there’s another file associated with the web form: an
.resx file. This is known as a resource file, which contains any other information external to
the form itself. VS .NET uses it for its drag-and-drop visual designer.

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET 49

What other files do you see here? Here’s a brief résumé of the more important files, from
the point of view of this book:

References files: Under the References node are a number of child nodes. Each one looks
as if it relates to a namespace. In fact, these are the names of the assemblies that are
linked to the application. Each assembly contains compiled code. These five hold the
compiled classes contained in five namespaces. (For convenience, many of .NET’s name-
space classes are compiled into assemblies of the same name as the namespace; for
example, the System.Data namespace classes are compiled into System.Data.dll.) The
five shown in the example are the five assemblies linked to an ASP.NET application by
default when it’s created in VS .NET, so the classes in these namespaces are available to
you immediately.

Global.asax and Global.asax.vb: Further down the list, the next important files are
Global.asax and Global.asax.vb. This pair is where you put the methods that handle
application-level and session-level events (for example, the Application_Start()
method, which runs when the application starts up, and the Session_Start() method,
which runs whenever a new user session starts). It’s also the usual place to keep global
variables. You’ll find some uses for Global.asax during the development of the Friends
Reunion application, in subsequent chapters.

Web.config: At the bottom of the list, the Web.config file is used to customize the configu-
ration of your web application. It can contain all sorts of information about application
settings, security settings, session-state timeout settings, compilation settings, error-
handling options, and so on. You’ll see this file mentioned in quite a number of the fol-
lowing chapters, whenever you need to apply application-specific settings.

■Note You’ll also notice the AssemblyInfo.vb file in the Solution Explorer for a newly created ASP.NET
application. This file contains assembly attributes relating to the compiled web application code. It controls
versioning, signing of the assembly, culture information, and so on.

The Class View
The Class View window is another tool that often comes in handy when you’re working with
ASP.NET applications. You can display this window by pressing Ctrl+Shift+C or selecting View
➤ Class View. This window offers a slightly different view of your application, displaying the
class hierarchy of the web application. If you look at the Class View tab of the Chapter2Examples
project and expand a couple of nodes, you’ll see the class hierarchy for that project.

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET50

In this example, you can see a few methods:

• The btnSelectColor_Click() method, which runs in response to the Click event of the
btnSelectColor Button control

• The InitializeComponent() method, which is involved in initialization by the page
designer

• The Page_Load() method, which runs when the page loads

• The Page_Init() method, which handles the page’s Init event and calls
InitializeComponent()

Under these methods, you can see variables representing the button, drop-down list, and
label that you created.

If you double-click any of these nodes, VS .NET takes you immediately to the point in the
code at which that item is defined. As your applications grow more complex, you may find this
to be a useful tool for finding your way around in the code.

Object Orientation in ASP.NET
The .NET programming environment is fully object-oriented, and that holds true in .NET web
application programming, too. Take a look at the simple Chapter2Examples project. It contains
a class called Ch2WebForm, which is the page class for your Ch2WebForm.aspx web form (you can
see this in the code in Ch2WebForm.aspx.vb):

Public Class Ch2WebForm
Inherits System.Web.UI.Page
...
Protected WithEvents ddlColorList As System.Web.UI.WebControls.DropDownList
Protected WithEvents btnSelectColor As System.Web.UI.WebControls.Button
Protected WithEvents lblSelectedColor As System.Web.UI.WebControls.Label
...

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET 51

Private Sub Page_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load
...

End Sub

Private Sub btnSelectColor_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnSelectColor.Click
...

End Sub
End Class

From this code fragment, you can see that:

• The Ch2WebForm page class inherits from a base class called Page, which belongs to the
System.Web.UI namespace.

• The Ch2WebForm page class contains member declarations and can contain public and
private properties, and so on.

• Each of the controls in the page (the drop-down list, the button, and the label) is declared
as a protected member of the Ch2WebForm page class, whose events can be handled by
methods on the class (WithEvents keyword). Each member is an instance of a class that
resides in the System.Web.UI.WebControls namespace.

All this comes from the fact that ASP.NET provides a truly object-oriented approach to
web application development.

Reusability and Encapsulation
The object-oriented nature of ASP.NET also manifests itself in the level of code reusability that
is possible. The Ch2WebForm page provides a simple example of this: each of the three controls
in the Ch2WebForm.aspx page is a reuse of an existing class. Each class is developed and tested
by Microsoft; it’s compiled, ready to use, and easy to deploy. When you’re developing web
forms, you don’t need to think about the internal complexities of these controls’ classes—you
can just drag-and-drop to create instances of the classes in your code.

The three controls you used in this chapter’s example are just a small sample of the vast
library of classes made available in the .NET Framework. There are some 17 namespaces,
which contain the classes that make up ASP.NET’s core functionality. These namespaces
organize the classes into logical groups; each of them is prefixed with the name System.Web.

Much of the structure of ASP.NET applications is built up from these classes, so you spend
some of your time creating instances of ASP.NET classes or writing your own classes that
inherit from them (as you saw in the Ch2WebForm example). There isn’t space to list all of the
namespaces here, but it’s worth noting a few of the most commonly used ones:

System.Web: This namespace contains classes for processing ASP.NET pages at their lowest
level and defining how ASP.NET relates to the web server. It contains classes for handling
information passed via HTTP, as discussed in Chapter 1, such as HttpRequest and
HttpResponse.

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET52

System.Web.UI: This namespace contains a lot of functionality that you use when con-
structing your pages. It’s one level of abstraction higher than the classes contained in the
System.Web namespace. When you construct an ASP.NET page, the classes in this name-
space are used to ensure the page has the correct structure. (The page class is one of the
classes in this namespace.) These classes define the functionality available to all ASP.NET
pages. You’ll understand this better when we discuss how pages are loaded and processed
a little later in this chapter, in the “Lifecycle of a Page” section.

System.Web.UI.WebControls and System.Web.UI.HtmlControls: These namespaces contain
the control elements that you add to the page. (For example, the DropDownList, Button,
and Label controls you added to the Ch2WebForm page are all instances of classes con-
tained in the System.Web.UI.WebControls namespace.) Each of these controls inherits
some basic functionality from the System.Web.UI.Control class, but they also add their
own functionality on top of this to provide a rich UI element. You’ll learn a lot more about
the classes in these namespaces in Chapter 3.

System.Web.Services and its child namespaces: These namespaces are somewhat differ-
ent from all the rest. They are specifically designed for the development of web service
applications. We’ll defer discussion of them until Chapter 9, which covers web services.

Finally, note that ASP.NET applications are not restricted to using the classes of the
System.Web.* namespaces. Elsewhere in the .NET Framework, there are many other (non-
ASP.NET-specific) namespaces, whose classes can be used in ASP.NET applications to connect
to data sources, build complex graphical interfaces, manage file systems and configuration,
and perform many other tasks. In fact, you’ll be making good use of some of them during the
course of the book.

Compilation
You’re probably already aware that a program created in VB must be compiled before it can
be run. The same is true of VB ASP.NET applications, where there is a three-stage compilation
process:

• In the first stage, all the classes are compiled into Microsoft Intermediate Language
(MSIL), in the form of a .NET Assembly. This is done at design-time, when you build the
web application project.

• In the second stage, the first time an .aspx page is requested, it’s compiled into a tem-
porary assembly, too.

• In the final stage, the Just-In-Time (JIT) compiler compiles the MSIL to be used (both
from the code-behind and from the compiled page) into machine code, and it is finally
executed.

Thus, the first call to a web page demands significant more work (page compilation and
the JIT compilation from MSIL to machine code). Second and subsequent calls to the page
will receive a much faster response, because the page class is already fully compiled to native
machine code by then.

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET 53

When you prepare a VS .NET web application for execution, all of the code files within
the application (including the code-behind files) are compiled into an MSIL assembly; the web
application depends on this assembly to run.

When you run an application (as you did earlier in the chapter by pressing the Ctrl+F5
shortcut), VS .NET first creates the assembly, and then it uses the assembly file to run the
application. The assembly file for the example in this chapter is called Chapter2Examples.dll.

The Lifecycle of a Page
In the first chapter, we described the sequence of processing steps that occurs, beginning
when a user requests a static page. It’s helpful to expand the steps fulfilled by ASP.NET when
the incoming request is processed by the server, and ending with the content being routed
back to the user’s browser. Given the event-based nature of ASP.NET, we’ll focus on the events
fired at each stage during processing.

The sequence depends on whether the request is the first request for a page or a subse-
quent request for the same page that is initiated via a postback. You saw this in the Ch2WebForm
example, in which the task of getting the options in the drop-down list was achieved by load-
ing it programmatically when the user first loaded the page or automatically by using the
encoded data in the viewstate (when the user clicked the Apply Color button and generated a
postback).

Figure 2-10 shows what happens each time the client requests a page, via either an origi-
nal request or a postback.

Figure 2-10. What happens each time the client requests a page

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET54

The System.Web.UI.Page class, from which every page ultimately inherits, exposes these
stages for you to consume and customize. There’s a common pattern for customizing these
phases: you can attach a handler for an event, such as Init or Load, or you can override a cor-
responding method on the page class, such as OnInit or OnLoad.

In Figure 2-10, there are five main stages—Init, Load, Control Events, PreRender, and
Unload—and you are able to add code that is processed at each of them. Other actions also
occur between these main phases, completing the picture of how a page is processed. As we
said, the main events can be handled in two ways: by attaching to the event itself or by over-
riding the corresponding method. For example, there’s an Init event and an OnInit virtual
method you can override. When you override, you must always remember to call the base
class method, as in the following example:

Protected Overrides Sub OnPreRender(ByVal e As System.EventArgs)
MyBase.OnPreRender(e)
' Do our stuff

End Sub

This ensures that all built-in processing implemented in the base class is properly exe-
cuted. Most notably, calling the base method implementation ensures the appropriate event
is fired.

Let’s analyze each of the five stages of a page’s lifecycle.

The Init Stage
When the page request is first received by the ASP.NET engine, the Init stage ensures proper
setup of the framework of the page and preparation of the controls on the page for rendering.
Most controls perform their initialization at this moment. By default, the VS .NET-generated
code-behind class handles the Init event of the base class to hook the InitializeComponent()
method, where further component initialization may happen:

Private Sub Page_Init(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Init
'CODEGEN: This method call is required by the Web Form Designer
'Do not modify it using the code editor.
InitializeComponent()

End Sub

Following this phase are a couple of smaller processes. First, if there is any viewstate, it is
loaded. In other words, the ASP.NET engine looks for data that was contained in the page in a
hidden <input name="_ _VIEWSTATE"> tag and has been included in the page request. If it finds
any such data, it reads and decodes it, ready for use in the (re)generation of the page. In the
Ch2WebForm example, this equates to collecting encoded data contained in the <input name="_
_VIEWSTATE"> tag that relates to the options in the drop-down list.

Second, the postback data is processed. In the Ch2WebForm example, when the user clicks
the Apply Color button, the web form fires a postback containing information for the server to
process (specifically, the color selected by the user in the drop-down list).

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET 55

The Load Stage
When a page is fully initialized and any state has been properly restored (either from viewstate
or postback), the main event raised is the Load event. The corresponding method you can
override is OnLoad(). By default, VS .NET always adds the Page_Load() method and sets it to
handle this event:

Private Sub Page_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

End Sub

This is a useful facility for the developer, as this is usually the best place to add code that
controls global page behavior. (In the Ch2WebForm example, you used the Page_Load() method
to check whether the request was a postback, and if not, to populate the options in the drop-
down list.)

The Control Events Stage
In the Control Events stage, the ASP.NET engine deals with a series of events that are raised
and handled. If the page is being posted back, this includes events raised by the user. For
example, the Click event of the btnApplyColor Button control would be handled here.

The PreRender Stage
The corresponding method for handling the PreRender event is called OnPreRender(). At this
stage, you can perform last-minute changes to the way the page is rendered and have these
changes preserved across postbacks. ASP.NET will save the state of your page just after this
phase, into the viewstate that will be returned to the client.

The single most important process in the page lifecycle that is not an event is the call to
the Render() method. By default, this method renders each server control by generating the
HTML that the browser will need to display. You can override it to make more last-minute
changes that affect how your page is rendered. These changes, however, are not preserved
across postbacks, because the viewstate has already been saved.

The Unload Stage
In the final stage, you have code that cleans up unused objects, such as data connections
that you don’t need anymore. Here again, you can either use the Unload event or override the
OnUnload method. Immediately after this event, the page is disposed of.

Summary
We started this chapter with a definition of ASP.NET. We said that it is an event-driven, control-
based, object-oriented architecture that generates content and dynamic client-side code from
server-side code using functionality described in the System.Web classes of the .NET Frame-
work. The intention of this chapter was to explore this definition, expanding and clarifying the
assertions it makes, and demonstrating the concepts and techniques that derive from it. You’ve
seen that:

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET56

• A web form is a special kind of ASP.NET page, which contains an HTML <form> element
processed on the server (runat="server" attribute).

• A web form developed in VS .NET with VB consists of an .aspx file and an associated
.aspx.vb code-behind file. These two files represent the separation of presentation
markup and functional code.

• The VS .NET IDE makes it easy to rapidly create web forms using drag-and-drop tech-
niques in the visual designer.

• Events and event handling are core to ASP.NET, since events occur at many stages in
the life of an ASP.NET page. The lifecycle of a page runs through initialization, loading,
event handling, prerendering and rendering, and finally, unloading and disposal.

• Adding a control to a web form page is simple, and setting properties for a control is
equally simple using the VS .NET tools. It’s also easy to write event handlers, which con-
tain the code to run on the server so that it reacts to events raised by your controls,
originating from client actions.

• The functionality available to ASP.NET comes from a series of classes built into the
.NET Framework. The System.Web.* namespaces contain a huge number of classes
that provide much of the functionality you need to write web forms. This functionality
includes class definitions for your controls, for handling the rendering process, and
much more. The non-ASP.NET Framework namespaces are also available for you to
work with.

• ASP.NET is a part of the object-oriented world of .NET, and its object-oriented nature
brings flexibility and extensibility.

In the next chapter, you’ll begin the task of building a web application called Friends
Reunion. By the end of that chapter, you’ll have a simple working application with a few
pages. In each subsequent chapter, you’ll continue to add functionality and features to the
application.

Along the way, we’ll build on the foundation of Chapters 1 and 2, and we’ll explore a num-
ber of concepts and technologies that help to enhance web applications. We’ll look at controls,
data access and data binding, state, XML and schemas, web services, and security. We’ll also
consider some important development-related issues: debugging, exception handling, per-
formance, and deployment.

We’ll start at the beginning, with an exploration of user interfaces and server controls in
ASP.NET.

CHAPTER 2 ■ WEB DEVELOPMENT IN .NET 57

User Interfaces and
Server Controls

In Chapter 2, we examined the architecture and purpose of web forms, and discussed how they
improve the concept of a web page. You began to see how, in combination with the IDE provided
by VS .NET, ASP.NET’s server (or server-side) controls can transform web page design into the
drag-and-drop ballet that our colleagues in the Windows desktop programming department
have enjoyed for so long. The way that server controls work is ingenious. While you’re designing
your web application, server controls behave like any other controls, allowing you to position
them and set their properties through the familiar Properties browser. At runtime, they generate
the HTML code necessary to render themselves identically in web browsers, using nothing but
standard HTML elements and possibly client-side scripts if needed.

Mastering ASP.NET server controls will make you a highly productive web developer, with
an intuitive feel for which controls should be used when. This chapter aims to teach this profi-
ciency by describing:

• How ASP.NET’s HTML controls compare with HTML elements

• How to react to events fired by controls, on both the server side and the client side

• Different ways to change the appearance of controls, using attributes and stylesheets

• The advantages of web server controls, especially their design-time benefits and uni-
fied object model (common set of properties, methods, and events)

• How to make web-based data capture more reliable by using the validation controls

• How to create user controls and custom controls that expand on built-in functionality

• How to use dynamic content to generate user-aware web applications

In this chapter, you’ll have your first look at a sample application that you’ll be returning
to in each remaining chapter of this book. The Friends Reunion application is a simplified take
on a class of web sites that is currently quite popular. The idea is to allow registered users to
enter details of schools and colleges they’ve attended or places they’ve worked. Then people
who were at the same place at the same time are given the opportunity to contact one another.
As you progress, this application will become ever more complex, but you’ll start here with
some basics: a login form, registration form, and a page for general news items. You will also
work on some header and footer components, which are common in web applications. 59

C H A P T E R 3

■ ■ ■

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS60

Server Controls
In the examples in Chapter 2, you had some experience with server controls: the Button and
DropDownList controls. In this chapter, you’ll soon discover that most of the other server
controls at your disposal in VS .NET are just as easy to place and use. While a page is being
designed, server controls appear as controls that you can configure through the Properties
browser, changing their appearance, default values, and so on. At runtime, ASP.NET trans-
forms them into plain old HTML code that it sends to the browser.

Server controls offer real productivity gains over other methods of web page design, not
only because of their ease of use, but also because they conform to the .NET programming
model. They make the process of building a page as easy as designing a Windows Forms appli-
cation. You drag controls onto your pages, tinker with their properties, and there’s your user
interface. You don’t need to grapple with HTML—unless, of course, you really want to. Once
you get used to the new model, you may never want to mess with HTML source code again!

■Note If you’ve done some ActiveX controls programming before, perhaps with ASP, it’s worth pointing out
that server controls are a very different thing. They don’t need any client-side installation, and they’re not
Windows-specific.

When you open a web form for editing in VS .NET, two areas of the Toolbox contain UI
elements that you can place on your web pages. As shown in Figure 3-1, the HTML area con-
tains the HTML controls, and the Web Forms area contains the web controls.

The namespace hierarchy looks like this:

All of these controls can be dropped and configured in the VS .NET IDE, their settings
modified using the Properties browser, and so on. The first division of these control types is
between HTML controls and web server controls. HTML controls map exactly to the HTML
tags. An HTML server control is a special type of HTML control, which runs on the server side.
A web server control always runs on the server side.

Figure 3-1. The HTML area (left) contains the HTML controls, and the Web Forms area (right)
contains the web controls.

HTML Controls
The HTML controls correspond exactly with standard HTML elements; they have all the same
properties, and they render precisely, as you would expect. For example, the ASP.NET HTML
Table control is equivalent to the HTML <table> element. If you were to drag one from the
Toolbox onto an empty web form, it would appear in the designer as shown in Figure 3-2.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 61

Figure 3-2. An HTML Table control on an empty web form

In the Properties browser, you can change many aspects of the table, and you may recog-
nize the names in the window (such as border, cellpadding, and cellspacing) as being the
attributes of a traditional HTML table.

When you add a control to a web form in the VS .NET designer, HTML code for the con-
trol is generated, and you can see (and modify) it by clicking the HTML button at the bottom
of the designer. For the table shown in Figure 3-2, VS .NET would generate the following
HTML:

...
<body>
<form id="Form1" method="post" runat="server">
<table id="Table1" cellSpacing="1" cellPadding="1"

width="300" border="1">
<tr>
<td></td>
<td></td>
<td></td>

</tr>
<tr>
<td></td>
<td></td>
<td></td>

</tr>
<tr>
<td></td>

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS62

<td></td>
<td></td>

</tr>
</table>

</form>
</body>

</html>

There’s nothing strange or magical here—just plain old HTML elements.
Because the HTML controls are represented by regular HTML code, there’s almost no pro-

cessing required, and ASP.NET simply passes the markup to the client browser pretty much
as-is. Also, you can use all of the traditional techniques for manipulating HTML controls,
such as setting attributes or executing client-side script.

Let’s start the ball rolling with a demonstration of some HTML controls.

Try It Out: Build a Login Form For this first example, you’re going to create a simple login form
that provides minimal authentication for users of the Friends Reunion site. As you’ll see, it’s
amazing what you can do with little more than a table and a couple of text controls!

1. Create a new ASP.NET Web Application project in VS .NET. Give it the name
FriendsReunion, as shown in Figure 3-3.

Figure 3-3. Creating the Friends Reunion project

2. When the project is created, go to the Solution Explorer (press Ctrl+Alt+L to bring it up,
if it is not already visible), right-click the FriendsReunion project, and select Properties.
Then select Designer Defaults, set the Page Layout property to Flow, and select OK.

3. Back in the Solution Explorer, delete the WebForm1.aspx web form that was created by
default.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 63

4. Later in the book, you will endow the Friends Reunion application with secure
login functionality. As a signal of that intent, you’re going to place the Login page
in a subfolder of its own, called Secure. So, in the Solution Explorer, right-click the
FriendsReunion project and choose Add ➤ New Folder to add a new folder. Name
it Secure.

5. Right-click the newly created folder and select Add ➤ Add Web Form to add a new web
form. Name it Login.aspx.

6. Double-click the Table control in the HTML tab of the Toolbox to add this control to
the form.

7. Place the cursor on one of the empty cells in the third column, right-click the same
cell, and select Delete ➤ Columns, so that your table now has just two columns.

8. Click the top-left cell and type User Name:. In the cell below it, type Password:.

9. Drag-and-drop a Text Field control and a Password Field control, respectively, into the
next cells in the table.

10. The last control to add is a Button. Place it in the first cell in the last row of the table.
Using the Properties browser, set its value property to Login, so that the page now
looks like Figure 3-4.

Figure 3-4. The Login page with some controls

11. To remove the unused cell to the right of the button, right-click it and choose
Delete ➤ Cells.

12. Select the cell containing the button, and in the Properties browser, set its colspan
property to 2. If you now switch to the HTML view using the HTML button at the
bottom of the web form, you should see something like this:

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS64

<%@ Page Language="vb" AutoEventWireup="false"
Codebehind="Login.aspx.vb"
Inherits="FriendsReunion.Login"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<html>
<head>
<title>Login</title>
<meta name="GENERATOR" content="Microsoft Visual Studio .NET 7.1">
<meta name="CODE_LANGUAGE" content="Visual Basic .NET 7.1">
<meta name="vs_defaultClientScript" content="JavaScript">
<meta name="vs_targetSchema"

content="http://schemas.microsoft.com/intellisense/ie5">
</head>
<body>
<form id="Form1" method="post" runat="server">
<table id="Table1" cellSpacing="1" cellPadding="1" width="300"

border="1">
<tr>
<td>User Name:</td>
<td><input type="text"></td>

</tr>
<tr>
<td>Password:</td>
<td><input type="password"></td>

</tr>For this
<tr>
<td colspan="2"><input type="button" value="Login"></td>

</tr>
</table>

</form>
</body>

</html>

13. Let’s add a client-side handler for the Login button being clicked. Position the cursor
next to the last <input> tag and press the spacebar to view the IntelliSense options
available, as shown in Figure 3-5.

14. Scroll down to the onclick event (or just type its first few letters), and insert it (by
double-clicking, pressing the Tab key, or pressing the equal sign key).

15. Add the following small amount of code, which will bring up a simple message box:

<td colSpan="2">
<input onclick="alert('About to log in!');"

type="button" value="Login"></td>

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 65

Figure 3-5. Viewing the IntelliSense options for the Login button

16. Right-click the Login.aspx page in the Solution Explorer and select Set As Start Page.
Compile and run the solution by pressing Ctrl+F5 (shortcut for Debug ➤ Start Without
Debugging), which also saves all files.

How It Works

The first thing you do is change the project’s Page Layout property from Grid to Flow. This is
because you will build all the pages in this application using FlowLayout, as you did in the
examples in Chapter 2.

■Tip Setting the property at the project level like this saves you the trouble of setting the pageLayout
property each time you create a new page. This kind of layout is the most common and browser-compatible
for web application development. It causes elements to be positioned according to their location in the page
HTML source, rather than using absolute positioning. Absolute positioning, which involves specifying the
coordinates at which elements should appear, is more frequently used in Windows applications than in web
applications.

As you drop and set the controls’ properties, the IDE automatically generates the corre-
sponding HTML source code, as you saw when you switched to the HTML view. In this view,
you also get the benefit of IntelliSense, which (among other things) lists all of the valid attrib-
utes for any HTML element.

When you view the page in a browser, the HTML code that you see in VS .NET is sent
straight to the browser, which interprets it to render the controls that you placed in the
designer. (In Internet Explorer, you can check this by right-clicking the page and choosing
View Source.) When you click the Login button, you should see the message shown in
Figure 3-6.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS66

Figure 3-6. Clicking the Login button brings up a message box.

This demonstrates that you can perform client-side event handling as usual, by attaching
a script to the element’s corresponding onXXX attribute, as you did here with onclick. If you
want more sophisticated functionality, this script can call further client-side methods. Right
now, however, let’s address a more pressing concern: the Login page looks quite ugly, doesn’t
it? You need to add some style to your page.

■Tip Client-side script code can perform some complex tasks, and it’s a subject to which whole books
are dedicated. For more information about script code, see Practical JavaScript for the Usable Web, by
Paul Wilton, Stephen Williams, and Sing Li (Apress, 2003; ISBN: 1-59059-189-5).

Finally, it’s important to say that all those <meta> tags in the <head> section can be com-
pletely removed. We won’t show them in upcoming examples.

Using Visual Styles
You can use Cascading Style Sheets (CSS) to define visual characteristics, which you can then
apply uniformly to a range of items on one page or a range of pages. As you saw in Chapter 2,
VS .NET comes with the Style Builder editor, which makes creating CSS styles easy. You open
the Style Builder by clicking the ellipsis (…) button next to the style property of an HTML
control in the Properties browser. The Style Builder allows you to change every aspect of a
particular control’s appearance.

Unfortunately, adding the style for each control on the page can be tedious, and it is cer-
tainly error-prone. Furthermore, if you decided at a later date to change the font of all the
<input> text boxes in your application, for example, you would have some serious work to do,
and it would be all too easy to miss one or two, spoiling the consistent feel. There’s a better
approach: using the Style Builder, you can create a single stylesheet file defining all the styles
that you use, throughout your site. Let’s see how that might work.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 67

Try It Out: Create a CSS Stylesheet To create a CSS stylesheet that works across more than one
web form, create it as a separate item, and then include it on all web forms in which you
want to use the definitions it contains. In this example, you’ll start the process of building a
stylesheet for the Friends Reunion application, which you’ll return to several times over the
course of this chapter.

1. For neatness, you’ll place your stylesheet in its own subfolder. Right-click the project
name in the Solution Explorer and create a new folder called Style.

2. Right-click the new folder, select Add ➤ Add New Item, and then select Style Sheet.
Name it iestyle.css. The new file will contain just an empty body element:

body
{
}

3. Right-click the body element and select Build Style from the context menu. This brings
up the Style Builder editor, which you will now use to specify appearance characteris-
tics that will apply to all pages that use this stylesheet.

4. Select the Background category from the list on the left side of the Style Builder, and
choose a color from the Color drop-down, such as sensible Silver (but feel free to be as
garish as you like!). Select OK when you’re finished.

5. You’re going to ensure that all the tables in the application have the same basic
appearance. Right-click anywhere on the stylesheet and select Add Style Rule. From
the Element drop-down list in the dialog box that appears, select TABLE, and then
click OK.

6. Right-click the new TABLE element and select Build Style again. Choose the Tahoma
font as the Family value, and set 8 pt for the Specific field in the Size section, as shown
in Figure 3-7.

Figure 3-7. Setting the style for tables in the application

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS68

7. Click OK and save the stylesheet.

8. You can now associate the new stylesheet with the Login page you built earlier by
adding the following line at the top of the file’s HTML code:

<html>
<head>
<title>Login</title>
<link href="../Style/iestyle.css" rel="stylesheet" type="text/css">
...

■Tip You can drag-and-drop the stylesheet file directly on the form, and the link will be added automatically.

9. Save, compile, and run the application, again by pressing Ctrl+F5.

How It Works

The CSS stylesheet groups together the layout attributes that should be applied to all instances
of a particular HTML element. By linking the stylesheet with a page through the <link> element,
the styles it contains are applied to items on the page. The path to the stylesheet is relative,
based on the location of the current web form; hence, the need for the .. syntax to step back to
the application’s root directory.

Once you’ve saved the stylesheet and linked it to your page, you can see the effect of your
handiwork when you reopen the page, as shown in Figure 3-8.

Figure 3-8. The Login page after applying a CSS stylesheet

Without any further work on your part, the color you set for the <body> element is shown,
and the text inside the table has taken on its new font. If you were to make changes to any of
the values in the stylesheet, they would be automatically reflected on this page and any other
page that links to it.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 69

Creating a More Flexible Stylesheet
Associating one style with all instances of a particular element isn’t very flexible. What if you
want to display some text boxes with one style and other text boxes with a different style?
(Consider the HTML <input> element, which represents text boxes, buttons, password fields,
check boxes, and more!) There’s another way to group styles together and associate them with
elements: you can use a CSS class.

Try It Out: Group Styles by Class Name In this example, you’ll use CSS classes to provide different
styles to the text boxes and buttons in the application. Both of these are facets of the <input>
element, so it would be impossible to do this by associating style rules with the element name.

1. If necessary, reopen the iestyle.css stylesheet in VS .NET. Then right-click anywhere
in it and select Add Style Rule.

2. This time, instead of selecting an item in the Element drop-down list, select the Class
name radio button, and type TextBox (this will also appear in the preview box in the
lower-right corner, preceded by a period). Click OK.

3. Add the following code inside the new rule’s braces:

.TextBox
{
border: #c7ccdc 1px solid;
border-top: #c7ccdc 1px solid;
border-left: #c7ccdc 1px solid;
border-bottom: #c7ccdc 1px solid;
font-size: 8pt;
font-family: Tahoma, Verdana, 'Times New Roman';

}

These additions should all be quite self-explanatory, but you’ll notice that you’ve spec-
ified three fonts for the font-family value. These are in order of preference, so that if
Tahoma is not available on the client machine, then Verdana will be used (and failing
that, Times New Roman).

4. Repeat steps 2 and 3, this time entering Button in the Class name text box. Use the fol-
lowing code:

.Button
{
background-color: gainsboro;
border-right: darkgray 1px solid;
border-top: darkgray 1px solid;
border-left: darkgray 1px solid;
border-bottom: darkgray 1px solid;
font-size: 8pt;
font-family: Tahoma, Verdana, 'Times New Roman';

}

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS70

5. Open the Login page in the Design view, select each of the two input boxes in turn,
and set the class property of both to TextBox. Also, set the Button’s class property to
Button. When you compile and run the page again, you’ll see the controls change,
reflecting the styles defined by each class.

6. Finally, select the table and set its border property to 0, and then save and run the page.

How It Works

In this example, you added new style rules to your stylesheet manually, but if you now open
the Build Style dialog box for any of them, it will be populated with the values you typed.
Furthermore, IntelliSense is there to help you whenever you add a new line inside a rule,
showing the styles currently available.

When you instruct a control to use a CSS class that you’ve defined in a stylesheet, VS .NET
makes the association by using the HTML class attribute on the tag in the code that is sent to
the browser. The class attribute is a standard attribute available to all HTML elements, and it’s
equally possible to associate controls with the styles in a stylesheet by adding it manually.
When you open the Login page in the browser, you’ll see the page shown in Figure 3-9.

Figure 3-9. The Login page after using CSS classes

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 71

Well, that’s an improvement! Better yet, you can now reliably and quickly apply the same
style to any text box you create, just by setting its class property to TextBox. If you then made
any further changes to the style rule, the associated controls would reflect them automatically.

■Tip For comprehensive information about CSS, we recommend Cascading Style Sheets, by Owen Briggs,
et al (Apress, 2004; ISBN: 1-59059-231-X). Usable Web Interface Components, by Jon Stephens (Apress,
2004; ISBN: 1-59059-354-5) is also useful.

HTML Server Controls
So far, you’ve seen some useful features of the VS .NET IDE, but what you’ve ultimately pro-
duced has been old-fashioned HTML, with a little bit of JavaScript thrown in for good measure.
One of the characteristics of web applications like this is that the browser does most of the
work, and the principles of client-side event handling haven’t changed much since the tech-
nique first began to appear several years ago. ASP.NET, by contrast, is founded on the basis of
server-side programming: events can be trapped and handled on the server.

In ASP.NET, the events associated with a web application are classified into two categories:

• Global events apply to the whole application or current user session; they are not
specific to any particular page. Handlers for these events are placed by default in the
code-behind of the Global.asax file, and you’ll learn more about how they work in
Chapter 6.

• Page-specific events, as you saw in the previous chapter, are handled in a specific page’s
code-behind file. We’ll examine these events in more detail in the remainder of this
chapter.

Start by taking a look at the code-behind page for Login.aspx, by right-clicking the page
(in the Solution Explorer or the designer) and choosing View Code:

Public Class Login
Inherits System.Web.UI.Page

[Web Form Designer generated code]

Private Sub Page_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load
'Put user code to initialize the page here

End Sub

End Class

Since you’ve used only plain HTML controls so far, there’s no information relating to them
in the code-behind page, not even in the designer-generated code region:

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS72

#Region " Web Form Designer Generated Code "

'This call is required by the Web Form Designer.
<System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

End Sub

'NOTE: The following placeholder declaration is required by the Web Form Designer.
'Do not delete or move it.
Private designerPlaceholderDeclaration As System.Object

Private Sub Page_Init(ByVal sender As System.Object,_
ByVal e As System.EventArgs) Handles MyBase.Init
'CODEGEN: This method call is required by the Web Form Designer
'Do not modify it using the code editor.
InitializeComponent()

End Sub

#End Region

Placing HTML server controls on the page, on the other hand, does result in code being
placed in the code-behind file, as you’ll see in the following example.

Try It Out: Convert to HTML Server Controls Converting an HTML control to an HTML server con-
trol is simply a matter of right-clicking the control in the designer and choosing Run As Server
Control from the context menu. In this example, you’ll do precisely that for the three <input>
elements already on the Login page, and you’ll add a new element that provides the users with
some feedback that their actions have had an effect.

1. Right-click the two text boxes and the button in turn, and select Run As Server Control.
As you do this, a small, green arrow will appear in the top-left corner of each control,
to indicate that it is indeed now a server control.

2. To make the ensuing VB code a little clearer, use the Properties browser to change the
IDs of the controls to txtLogin, txtPwd, and btnLogin. Save the file.

3. Underneath the login table, add a new HTML Label control, and convert it to a server
control as you did for the other controls in step 1. Then set its ID to lblMessage, delete
its text content, and clear its style property.

4. Double-click the btnLogin control and add the following line of code to the event
handler:

Private Sub btnLogin_ServerClick(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnLogin.ServerClick
lblMessage.InnerText = "Welcome " + txtLogin.Value

End Sub

5. Save and test the page by pressing Ctrl+F5.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 73

How It Works

When you select Run As Server Control for an HTML element, a runat="server" attribute is
added to that element’s HTML declaration, and a protected class member field representing that
element is added to the class in the code-behind page, inside the code region labeled Web Form
Designer Generated Code. In the case of Login.aspx, the following member fields were added:

#Region " Web Form Designer Generated Code "

'This call is required by the Web Form Designer.
<System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

End Sub
Protected WithEvents txtLogin As System.Web.UI.HtmlControls.HtmlInputText
Protected WithEvents txtPwd As System.Web.UI.HtmlControls.HtmlInputText
Protected WithEvents btnLogin As System.Web.UI.HtmlControls.HtmlInputButton
Protected WithEvents lblMessage As _
System.Web.UI.HtmlControls.HtmlGenericControl

...

VS .NET takes care of a lot of the necessary-but-tiresome details of writing pages, such as
the skeleton code for event handlers. When you double-clicked the btnLogin control, the
empty event handler was generated and specified as the handler of the default event of the
button control, ServerClick.

Additional handlers can also be attached in this way in other places in the code-behind
page, such as in the Page_Load() handler. In the discussion of the page lifecycle in the previ-
ous chapter, you learned that control events are raised at a stage following the Init and Load
stages. If you choose a later stage, however, your handlers will never be called, as it’s already
too late in the page processing.

Inside the click handler, the code simply tells the label to display a message. You can
dynamically access and modify the properties of any of the HTML server controls in the code-
behind page. (You cannot access the <table> itself, because you didn’t convert it to a server
control.) Note that the field pointing to the control is named exactly after the ID of the HTML
control, and that is what ties things together. When you test the page now, you first get the
alert message from the client-side script that you added before, and then, when the form is
posted to the server, a message is returned, as shown in Figure 3-10.

Figure 3-10. The Login page after converting to HTML server controls and performing a postback

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS74

A Side Note: Inside the Postback Mechanism
At this point, it would be reasonable to ask how the server-side code knows which control was
clicked. In general, a form could contain any number of buttons, so how does ASP.NET deter-
mine which handler to call? To discover the answer to this, take a look at the HTML code that’s
generated at runtime by ASP.NET (choose View ➤ Source, View ➤ Page Source, or a similarly
named menu option in your browser). When the application is first launched, this is the code
sent to the browser:

<body>
<form name="Form1" method="post" action="Login.aspx" id="Form1">
<input type="hidden" name="__EVENTTARGET" value="" />
<input type="hidden" name="__EVENTARGUMENT" value="" />
<input type="hidden" name="__VIEWSTATE"
value=" dDwtNzM0NDUyNDg2Ozs+XKvwk77EGvG1a0oaaieqYyUCsv4=" />
<script language="javascript">
<!—
function __doPostBack(eventTarget, eventArgument) {
var theform;
if (window.navigator.appName.toLowerCase().indexOf("netscape") > -1) {
theform = document.forms["Form1"];

}
else {
theform = document.Form1;

}
theform.__EVENTTARGET.value = eventTarget.split("$").join(":");
theform.__EVENTARGUMENT.value = eventArgument;
theform.submit();
// —>
</script>

<table id="Table1" cellSpacing="1" cellPadding="1"
width="300" border="0">

<tr>
<td>User Name:</td>
<td>
<input name="txtLogin" id="txtLogin" type="text"

class="TextBox" />
</td>

</tr>
<tr>
<td>Password:</td>
<td>
<input name="txtPwd" id="txtPwd" type="password"

class="TextBox" />
</td>

</tr>
<tr>

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 75

<td colSpan="2">
<input language="javascript"
onclick="alert('About to log in!'); __doPostBack('btnLogin','')"
name="btnLogin" id="btnLogin" type="button" value="Login"
class="Button" /></td>

</tr>
</table>
<div id="lblMessage"

ms_positioning="FlowLayout">Authenticated on the server!</div>
</form>

</body>
</html>

Notice the three hidden input fields that have been added and the new script block con-
taining a JavaScript function called _ _doPostBack(). This function receives two arguments,
saves them in the first two hidden fields, and then submits the form to the server.

Further down the listing, you come to the onclick handler for btnLogin. In addition
to the call to alert() that you added to this attribute earlier, there is now a call to the
_ _doPostBack() function, which is passed the button’s id attribute and a blank string.

The result is that when you click the button, the function saves the id of the control that
caused the postback in a hidden field and submits the form to the server. ASP.NET receives the
form and uses the hidden _ _EVENTTARGET value to determine the appropriate handler for the
event, which, in this case, would be your btnLogin_ServerClick() method.

Web Server Controls
As well as all of the HTML controls (and their server-side variants), ASP.NET offers another set
of controls for the use of web form programmers. These are the web server controls (or just
web controls, since they’re always server controls), and they’re located in the Web Forms tab
of the Toolbox. Many of these controls have direct HTML equivalents, but there are several
new ones, too.

Of the many reasons for choosing web server controls over HTML controls, here are the
most important ones:

• Web server controls offer a layer of abstraction on top of HTML controls. At runtime,
some of them comprise a number of HTML elements, and therefore offer greater func-
tionality with less design-time code. In a moment, we’ll look at an example featuring
the Calendar control, which demonstrates this idea quite nicely.

• Since web controls are independent of the markup that will render them at runtime,
some of them will render different HTML depending on the browser they’re being
viewed with, to improve compatibility. An example is the Panel control, which renders
as a <div> on Internet Explorer, but as a <table> on Netscape browsers.

• Web server controls have a more consistent and logical object model than HTML ele-
ments, with some properties common to all web controls (including style-related
properties such as BackColor, BorderColor, Font, and so on).

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS76

• Web server controls have a richer event model, making it easier to write server-side
code for them.

• Design-time support for web server controls is greatly enhanced and more flexible.
Some of these controls, for example, have their own wizards, custom property pages,
and the like.

• Web server controls provide typed values; in HTML controls, all values are strings.

• Since web server controls always run at the server, they are always available from
within your server-side code (in the code-behind page).

Try It Out: Create the News Page In this example, you’ll add a News page to the Friends Reunion
application, which will eventually fulfill the role of notifying the user of potential new con-
tacts. For the time being, though, you’ll just use it to display a calendar that allows the user to
select a date. You’ve got to start somewhere!

■Note Along with the code used in this book, the image files used in examples are available from the
Downloads section of the Apress web site (http://www.apress.com).

1. You’ll be using some images on this page, so create a new folder in the project and call
it Images. Select all the files from the Images directory in the code download, and drag-
and-drop them onto the new folder in the Solution Explorer.

2. Add a new web form to the root directory of the project and call it News.aspx. Its
pageLayout property should already be set to FlowLayout (because you changed this
property at the project level earlier in the chapter).

3. From the Web Forms tab of the Toolbox, drop a Panel control onto the new page.
Set the following properties for it:

• BackColor: #336699

• Font ➤ Bold: True

• Font ➤ Name: Tahoma

• Font ➤ Size: 8pt

• ForeColor: White

• HorizontalAlign: Right

4. Set the panel’s inner text to Friends Reunion. Then drop a new Image control inside
the panel, to the right of the text.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 77

5. Set the properties of this Image control as follows:

• ImageUrl: Images/friends.gif

• ImageAlign: Middle

Your form should look something like the one shown here.

6. Below the panel, insert an HTML paragraph tag (<p>) by pressing the Enter key, and
then enter this text: Welcome to the news for today! Here is the current calendar:.

7. Press Enter again after the text and double-click a Calendar control in the Web Forms
tab of the Toolbox. When it appears in your web form, set its ID to calDates.

8. Below the calendar, drop a Label control and set its Text property to Selected
Date: . The is an HTML character entity that inserts a space (nbsp stands
for new blank space) after the colon.

9. For a little extra complexity, you’ll add a drop-down list that allows the user to go straight
to yesterday, today, or tomorrow. Next to the label, place a DropDownList control, and
change its ID to cbDay. Click the ellipsis next to its Items property to bring up the ListItem
Collection Editor. Click the Add button three times to add three items to the Members
pane on the left, and set their properties as follows:

• ListItem 0: Selected = True, Text = Today, Value = 0

• ListItem 1: Selected = False, Text = Tomorrow, Value = 1

• ListItem 2: Selected = False, Text = Yesterday, Value = –1

10. Click OK, and the page will now appear in the designer as shown in Figure 3-11.

11. Set this page as the start page, and then press Ctrl+F5 to run the project.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS78

Figure 3-11. Adding a Calendar control to the News page

How It Works

The first thing to observe here is that, even if you used the font only on the Panel control,
the Calendar, Label, and DropDownList controls all have a Font property, too, which behaves
exactly the same in all of them. This consistency derives from the fact that the controls inherit
from more general controls, which provide the common properties. For the controls you used
on this page, the hierarchy is as shown here:

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 79

Except for the Control class at the top, all of these classes are in the
System.Web.UI.WebControls namespace. (The root Control class is also the base class for the
HTML controls.) The Font property belongs to the WebControl class, and all of the derived con-
trols inherit it, providing a very consistent model. Now, let’s take a look at the generated
output, shown in Figure 3-12.

Figure 3-12. The News page

The Calendar control is one of the most sophisticated built-in web server controls. You
didn’t need to write a single line of code, and yet you have a full-featured calendar that auto-
matically allows the user to select other months by using the links displayed at the top of the
control (to the left and right of the month name), as well as the date.

That’s not all. ASP.NET tailors the control to work optimally in different browsers. Further-
more, some controls can even automatically localize their UI for the culture of the user
currently accessing the page (such as for Spanish users). Let’s try this “intelligent” rendering
with the Calendar control.

Try It Out: Customize the Calendar Control In this exercise, you’ll customize the application so that
it takes advantage of automatic localization and predefined Calendar control formatting
options.

1. In order to achieve this localization, a single line of code is required to tell the running
thread to use the language supported by the browser. This can be done in the
Global.asax file, on the Application_BeginRequest event handler:

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS80

Sub Application_BeginRequest(ByVal sender As Object, ByVal e As EventArgs)
Try
System.Threading.Thread.CurrentThread.CurrentCulture = _
New System.Globalization.CultureInfo(_
Context.Request.UserLanguages(0))

Catch
'Will simply use the default language

End Try
End Sub

2. To change the Calendar’s appearance, right-click the calendar and select the Auto For-
mat option from the context menu. You’ll see the dialog box shown in Figure 3-13.

Figure 3-13. The Calendar Auto Format dialog box lets you apply predefined designs to
the control.

3. In the Select a scheme list, choose the Simple format for the Calendar control.
(Feel free to experiment with the different built-in formats.) Then click OK.

4. Through the Properties browser, set the Calendar DayNameFormat property to Short,
so that the names of the days in the calendar appear as localized short names.

5. Set the page as the start page, and then run it (press Ctrl+F5) to test the results.

How It Works

The first step sets the culture to use during execution of the current request. This is done
by creating a new CultureInfo object based on the preferred culture specified by the user
through the browser. This information is exposed by the Context.Request.UserLanguages
property.

Note that you’re just trying to change the current language. Things may fail at this point,
for example, because the user doesn’t have a user language selected, or because the client
browser sent wrong data for that value, or for some other reason. This example just ignores

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 81

any error that could happen and lets ASP.NET continue processing as normal, using the
default culture. We will discuss exception handling in Chapter 11.

At runtime, the calendar is rendered as an HTML table, with all the formatting in place.
There is strong design-time support through the Calendar Auto Format dialog box, which you
used to apply a predefined design. The calendar also renders at design-time with the style you
chose. Figure 3-14 shows an example of the runtime rendering using a browser accepting the
Spanish language.

Figure 3-14. A Calendar control with customized format and automatically localized for
Spanish users

Applying CSS Styles to Web Server Controls
All of the more complex web controls, such as the DataGrid that you’ll see in Chapter 5, offer
easy formatting in a similar way, and you can also set these properties manually, of course.
Also, just as for HTML controls, you can define CSS styles that apply to the web server controls
throughout your application. To assign a style rule to a web server control, specify its name in
the control’s CssClass property, and link the stylesheet to the page using the <link> element
inside the <head> section, just as you did in the previous examples. However, rather than
adding the link in the file’s HTML code, you will surely find it easier to simply drag-and-drop
the CSS file onto the web form and let VS .NET add the link automatically.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS82

Try It Out: Use CSS Styles with Web Controls In this exercise, you’ll do more to standardize the
appearance of the controls in your application by creating some new style rules and applying
them to your News.aspx web form.

1. Define a style that will apply fundamental formatting to any element that doesn’t
require something more specialized. Reopen the iestyle.css file and add the follow-
ing Normal style rule:

.Normal
{
font-size: 8pt;
font-family: Tahoma, Verdana, 'Times New Roman';

}

2. Change the color scheme. Modify the body style rule to match the following:

body
{
background-color: #f0f1f6;
font-size: 8pt;
font-family: Tahoma, Verdana, 'Times New Roman';

}

3. Add the CSS file by dropping it onto the form from the Solution Explorer.

4. Set the CssClass property of the label that reads “Selected Date:” to Normal. Set the
class property of the “Welcome...” message paragraph to Normal, too.

5. Set the CssClass property of the DropDownList control to TextBox, and then run the
project.

How It Works

Just as HTML controls have the class attribute, web server controls have a CssClass attribute,
and it has exactly the same effect, because CSS styles work the same way for both control
types. Once the styles have been applied, your News page should look like Figure 3-15.

Handling Events
Handling events for web server controls is exactly the same as for HTML controls. To associate
a new handler with a control, switch to the code-behind file, select the control in the left drop-
down list at the top of the code editor, and then select the event you’re interested in. Let’s try
that now.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 83

Figure 3-15. The News page with CSS styles

Try It Out: Handle Events for Web Server Controls To extend the example, you’ll use some server-
side event handling to make the link between the calendar and the drop-down list, and to
report the currently selected date to the user. You’ll arrange for selections in the drop-down
list to change the selected date in the calendar, as well as for any selection change to result in
the current date being displayed in a label.

1. Add a new Label control at the bottom of the News.aspx file. Set its ID to lblMessage
and its CssClass to Normal. Clear its Text property.

2. Set the cbDay DropDownList control’s AutoPostBack property to True. Then double-
click the control and add the following code to the handler:

Private Sub cbDay_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles cbDay.SelectedIndexChanged
calDates.SelectedDate = DateTime.Now.AddDays(_
Convert.ToDouble(cbDay.SelectedItem.Value))

calDates.VisibleDate = calDates.SelectedDate
lblMessage.Text = "Current Date: " + _
calDates.SelectedDate.ToLongDateString()

End Sub

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS84

3. Open the code-behind page for the form. From the drop-down list in the top-left
corner of the code editor, select the calDates item. From the drop-down list in the
upper-right corner, select the SelectionChanged item.

Then add the following code to the event handler that will be automatically created:

Private Sub calDates_SelectionChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles calDates.SelectionChanged
lblMessage.Text = "Current Date: " + _
calDates.SelectedDate.ToLongDateString()

End Sub

4. The News.aspx page is now set up so that when you select an option from the drop-
down list, the relevant day is highlighted in the Calendar control. Run the project in
the usual way to see this in action.

How It Works

In the handler for the drop-down list, you use the SelectedItem property to retrieve the drop-
down box value (either 0, 1, or –1, as defined when you set up the list items earlier). You
convert the value it contains to a Double using the Convert.ToDouble() method, and then add
this value to the current date before setting that as the SelectedDate property of the calendar.
You also set the VisibleDate property to the new date to ensure it’s visible in the calendar.
Finally, you update the label to show this date.

In order to create a handler for the SelectionChanged event, instead of double-clicking the
control, you explicitly selected the control and event you wanted to handle. You needed to do
this because SelectionChanged is not the default event for this control. For all events except
the default one for a control (like the Click event for a button or the SelectedIndexChanged for
a drop-down list), you will use this procedure to create an event handler.

To ensure that the event fires as soon as a change occurs in the drop-down list, you need
to set the AutoPostBack property to True. This is an important step, because unlike the button
and the calendar, drop-down lists don’t cause a postback by default. Figure 3-16 shows the
typical output of the page as it now stands.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 85

Figure 3-16. The News page after adding event-handling code and selecting a date

What stage have we reached? You now know that web server controls offer several features
above and beyond those of the HTML controls, and those features can make your time more
productive. Their consistent object model is also beneficial, since once you’ve learned the set
of properties that are available for one control, chances are that you will see those properties
again in other controls.

The events available for web controls are different from the HTML events that you can
use in the attribute list of an HTML tag; there are no onclick, onmouseover, onkeydown, and the
like. This is because web control events are exposed on the server, and so comprise only those
events appropriate for server-side processing. Imagine what would happen if your page caused
a postback for every single mouse move operation! Even the Click event, which roughly corre-
sponds to HTML’s onclick event, is available only for those controls (such as buttons) where it
makes sense.

■Tip For a complete description of all of the web server controls and the events that each can fire, check
out the information in the VS .NET help files or MSDN online.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS86

Validation Controls
When you’re creating a web form, especially one in which you hope to collect some data from
users, you’ll often come across situations in which you need to place constraints on exactly
what data they can submit. For example, you might want to mandate that a particular field
must always be completed (say, a user name), or must adhere to a particular format (say, a
Social Security number). In the past, this validation process had to be done manually, but
ASP.NET comes with a set of validation controls that perform this task automatically.

Technically speaking, the validation controls are a subset of the web server controls, but
there are enough new things to say about them that they deserve a section of their own here.
Usually, they take the form of fields that are invisible most of the time, but become visible
when a validation error occurs.

A number of validation controls are available, and their names are almost self-explanatory:

• RequiredFieldValidator

• CompareValidator

• RegularExpressionValidator

• RangeValidator

• CustomValidator

In the examples to come, you’ll see the first three of these in use. RangeValidator doesn’t
apply to our example (but it’s not complicated to understand). CustomValidator is used only
to create your own validation controls.

The ASP.NET validation controls are capable of performing validation on the server and (for
Internet Explorer 5 and later browsers) on the client as well, via JavaScript. To force validation to
take place, you can call the Page.Validate() method, or you can call the Validate() method of
every validation control on the page, which has the same effect. Validation controls are associ-
ated with the control to validate, and they have an IsValid property that indicates whether its
data is currently valid. There is a similar property at the page level that indicates whether all the
validation controls on the page are in a valid state.

Try It Out: Build a New User Form In this example, you’ll build a form for capturing the details of a
new user and employ the validation controls to ensure that you receive valid information in
certain fields.

1. Create a new web form in the Secure folder and name it NewUser.aspx.

2. Link the iestyle.css stylesheet file by dropping it onto the form from the Solution
Explorer.

3. Back in the Design view, place the cursor at the top left of the page and type Fill in
the fields below to register as a Friends Reunion member:. Press Enter when you’re
finished.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 87

4. Drop an HTML Table control onto the page, and give it ten rows with two columns
each. (You can add a new row by placing the cursor on a cell and pressing
Ctrl+Alt+down arrow.) Set the table’s ID to tbLogin, its cellspacing and cellpadding
properties to 2, and the colspan property of the last row to 2. Delete the rightmost cell
in this row. Finally, set the border property for the table to 0.

5. Enter text into the cells as shown in Figure 3-17. Also, add nine TextBox web server
controls to the right-hand column, setting their CssClass property to TextBox. The sim-
plest way to do this is to place the first TextBox control, set its CssClass property, and
then copy-and-paste it into the other locations.

Figure 3-17. The fields in the New User form

6. Now let’s modify the TextBox element in the iestyle.css stylesheet slightly. Add an
extra line as follows to make the text boxes wider:

.TextBox
{
border-right: #c7ccdc 1px solid;
border-top: #c7ccdc 1px solid;
border-left: #c7ccdc 1px solid;
border-bottom: #c7ccdc 1px solid;
font-size: 8pt;
font-family: Tahoma, Verdana, 'Times New Roman';
width: 200px;

}

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS88

7. Set the width of the table containing the controls to 400 in order to accommodate the
longer text boxes and labels.

8. The last row contains a Button control with an ID of btnAccept, a Text property of
Accept, and a CssClass of Button. To have it centered in the cell, set the cell’s align
property to center.

9. Give the TextBox controls the following ID properties, in the order they are displayed:
txtLogin, txtPwd, txtFName, txtLName, txtAddress, txtPhone, txtMobile, txtEmail, and
txtBirth. Set the TextMode property of txtPwd to Password.

10. To narrow the Birth Date field, which doesn’t need to be as wide as in Figure 3-17, add
the following style rule to the stylesheet, and then set txtBirth’s CssClass property to
SmallTextBox:

.SmallTextBox
{
border-right: #c7ccdc 1px solid;
border-top: #c7ccdc 1px solid;
font-size: 8pt;
border-left: #c7ccdc 1px solid;
border-bottom: #c7ccdc 1px solid;
font-family: Tahoma, Verdana, 'Times New Roman';
width: 70px;

}

11. Drop a RequiredFieldValidator control next to the txtLogin text box, and set its proper-
ties as follows:

• ID: reqLogin

• ControlToValidate: txtLogin (choose this from the drop-down list that contains the
names of all the web server controls on the form)

• Display: None

• ErrorMessage: A user name is required!

12. Copy this RequiredFieldValidator control, and then paste it next to the txtPwd text box.
Set its properties as follows:

• ID: reqPwd

• ControlToValidate: txtPwd

• ErrorMessage: A password is required!

13. Continue to paste RquiredFieldValidator controls next to the txtFName, txtLName,
txtPhone, and txtEmail text boxes. For each, change the ID, ErrorMessage, and
ControlToValidate properties as appropriate, making particularly sure that the
latter refers to the correct text box.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 89

14. Drop a CompareValidator control next to the txtBirth text box, and then give it these
properties:

• ID: compBirth

• ControlToValidate: txtBirth

• Display: Dynamic

• ErrorMessage: Enter a valid birth date!

• Operator: DataTypeCheck

• Type: Date

15. Drop a RegularExpressionValidator control next to the RequiredFieldValidator control
for txtPhone (there is no problem with using these controls in tandem), and then set
these properties:

• ID: regPhone

• ControlToValidate: txtPhone

• Display: None

• ErrorMessage: Enter a valid US phone number!

• ValidationExpression: U.S. Phone Number (click the ellipsis next to this property’s
field and select this from the list)

16. Drop another RegularExpressionValidator control next to the RequiredFieldValidator
control for txtEmail, and then set these properties:

• ID: regEmail

• ControlToValidate: txtEmail

• Display: None

• ErrorMessage: Enter a valid e-mail address!

• ValidationExpression: Internet E-mail Address (click the ellipsis next to this prop-
erty’s field and select this from the list)

17. Drop a Label control below the table. Set its ID to lblMessage and clear its Text prop-
erty. Set its CssClass property to Normal.

18. Drop a ValidationSummary control below this label. Set its ID to valErrors and its
CssClass to Normal. The form should now look something like Figure 3-18.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS90

Figure 3-18. The New User form with validation controls

19. Finally, let’s handle the Accept button’s Click event and populate the message label
with a string indicating the current status of the page. Double-click the button in the
designer and add the following code:

Private Sub btnAccept_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnAccept.Click
If Page.IsValid Then
lblMessage.Text = "Validation succeeded!"

Else
lblMessage.Text = "Fix the following errors and retry:"

End If
End Sub

The validation controls on your NewUser.aspx form are now set up and ready to go.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 91

How It Works

By setting the Display properties of the RequiredFieldValidator controls to None, you suppress
any errors they produce from appearing in the control. Instead, the ValidationSummary con-
trol displays errors on the page. Had you set Display to Dynamic or Static, any error messages
would have appeared next to the field in question. Since the Address and Mobile Number
fields are optional, you didn’t use any validation controls for those.

■Note The Dynamic setting for the Display property of validation controls uses page layout space only if
validation fails. The Static setting uses layout space even if no error has occurred yet.

If you now compile and run the application with NewUser.aspx set as the start page, and
submit the page after entering an invalid birth date and nothing more, you’ll see the page
shown in Figure 3-19 in your browser.

Figure 3-19. Failing to provide valid information in the New User page

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS92

Notice how the validation errors are automatically collated in the summary control (you
can change the format used for this control through its DisplayMode property). Also notice
that the individual validation controls don’t display their error messages, just as you specified.
For compBirth, whose Display property you set to Dynamic, the error message appears in the
summary as well as in the validation control itself.

The compBirth validation control checks that the value entered matches a Date data type
(as a result of setting Operator to DataTypeCheck and Type to Date). When a CompareValidator
control is configured to perform this sort of check, the ControlToCompare and ValueToCompare
properties are ignored. In other circumstances, you might use these properties to validate the
field against another control’s value or against a constant value.

The RegularExpressionValidator controls for txtEmail and txtPhone contain a somewhat
complicated string in the ValidationExpression property, which you were able to set with the
aid of the VS .NET IDE. As you would expect, it’s quite possible to enter your own strings here,
should you need to do so.

The final step, where you added the event handler for the Accept button, demonstrates a
subtle difference between handling validation with client-side JavaScript code and causing a
postback when the Accept button is clicked. Even if there are errors, the second message (set
when Page.IsValid is False) will never appear in Internet Explorer 5 and later versions. This is
because validation occurs on the client side, thus preventing the user from submitting invalid
values. The postback will not occur until all fields contain valid data. Using Netscape/Mozilla,
however, you will see the second message while invalid data remains. It’s worth noting, from a
security point of view, that in either case, validation will always be performed on the server
side, to ensure valid data has been received.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 93

REGULAR EXPRESSION RESOURCES

Using regular expressions is a fairly advanced topic in its own right. The classic reference to learn more
about it is Mastering Regular Expressions, Second Edition, by Jeffrey E. F. Friedl (O’Reilly, 2002; ISBN:
0596002890). Also, if you’re a subscriber to ASP Today, you can find a number of related articles there:

• Regular Expressions in Microsoft .NET (http://www.asptoday.com/Content.aspx?id=711)

• Validating user input with the .NET RegularExpressionValidator (http://www.asptoday.com/
Content.aspx?id=1378)

• String Manipulation and Pattern Testing with Regular Expressions
(http://www.asptoday.com/Content.aspx?id=85)

Another resource available is an amazing tool called The Regulator. This free tool, which you can down-
load from http://regulator.sf.net/, is a great help in learning and testing regular expressions

Finally, you can find an ever-growing library of well-tested regular expressions ready for use at
http://www.regexlib.com.

User Controls
In our Friends Reunion application, it would be good to have a common header and footer
for every page, a common navigation bar, and so on. ASP.NET provides a straightforward
reusability model for the page features that you create, in the form of the user controls. You
create these controls in much the same way as you create web forms, but they’re saved with
the .ascx extension.

A user control doesn’t contain the tags that usually start off a page, such as <html>, <head>,
<body>, and so on. Also, instead of the ASP.NET <%@ Page %> directive, it uses the <%@ Control %>
directive to customize certain features of the control. Without further ado, let’s build an example,
so that you can see what’s going on.

Try It Out: Build a Header Control To begin, let’s build a header control that you can put to use on
every single page in the Friends Reunion site. It will look a little like the blue banner that cur-
rently sits at the top of the News page.

1. Create a new folder called Controls, right-click it, and choose Add ➤ Add Web User
Control from the context menu. Name the new file FriendsHeader.ascx.

2. Drop a Panel web server control onto the page, and give it the following properties:

• ID: pnlHeaderGlobal

• CssClass: HeaderFriends

3. Set the text inside the panel to Friends Reunion.

4. Drop an image web server control inside the panel, to the right of the text, and set the
following properties:

• ID: imgFriends

• CssClass: HeaderImage

• ImageUrl: ../Images/friends.gif

5. Drop another Panel web control below the previous one. Clear the text inside it, and
set the following properties:

• ID: pnlHeaderLocal

• CssClass: HeaderTitle

6. Drop an Image web server control inside this panel, and set the following properties:

• ID: imgIcon

• CssClass: HeaderImage

• ImageUrl: ../Images/homeconnected.gif

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS94

7. Drop a Label web control inside the same panel, to the right of the image, and set
these properties:

• ID: lblWelcome

• Text: Welcome!

8. Save the control, which should now look like this:

9. Just to see how the control has been created, switch to the HTML view. Notice the
absence of any “normal” HTML elements around the ASP.NET elements:

<%@ Control language="vb" AutoEventWireup="false"
Codebehind="FriendsHeader.ascx.vb"
Inherits="FriendsReunion.Controls.FriendsHeader"
TargetSchema="http://schemas.microsoft.com/intellisense/ie5"%>

<asp:panel id="pnlHeaderGlobal" runat="server" cssclass="HeaderFriends">
Friends Reunion
<asp:image id="imgFriends" runat="server" cssclass="HeaderImage"
imageurl="../Images/friends.gif"></asp:image>

</asp:panel>
<asp:panel id="pnlHeaderLocal" runat="server" cssclass="HeaderTitle">
<asp:image id="imgIcon" runat="server" cssclass="HeaderImage"
imageurl="../Images/homeconnected.gif"></asp:image>

<asp:label id="lblWelcome" runat="server">Welcome!</asp:label>
</asp:panel>

10. As you will have noticed, you’ve used some CSS styles that haven’t yet been defined:
HeaderFriends, HeaderImage, and HeaderTitle. Let’s add those to the iestyle.css
stylesheet now:

.HeaderFriends
{
padding-right: 5px;
padding-left: 5px;
font-weight: bold;
font-size: 8pt;
font-family: Tahoma, Verdana, 'Times New Roman';
width: 100%;
color: white;

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 95

background-color: #336699;
text-align: right;

}
.HeaderImage
{
vertical-align: middle;

}
.HeaderTitle
{
padding-right: 5px;
padding-left: 5px;
padding-right: 10px;
font-weight: bold;
font-size: 8pt;
font-family: Tahoma, Verdana, 'Times New Roman';
width: 100%;
color: white;
background-color: #336699;

}

11. Open the NewUser.aspx form and drag the FriendsHeader.ascx file from the Solution
Explorer onto it, placing it just before the first line of text on the page. Add a new para-
graph after the newly added control by pressing Enter.

12. Save, compile, and run the application, and see what you get.

How It Works

The process of designing a new user control is just like creating a page: you drop controls and
set their properties in the same way. Apart from the lack of page-level elements, the HTML
looks just like the code for a regular web form. Once the user control is created, you can place
it on the page just as if it were a control from the Toolbox. At that moment, the control is regis-
tered with the page with the Register directive, and the following lines are added to the page’s
HTML code:

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS96

<%@ Register TagPrefix="uc1" TagName="FriendsHeader"
Src="../Controls/FriendsHeader.ascx" %>

...
<body>
<form id="NewUser" method="post" runat="server">
<p><uc1:friendsheader id="FriendsHeader1" runat="server">
</uc1:friendsheader></p>

...

The Register directive at the top of the page tells ASP.NET where to locate and load the
appropriate user control, from the relative path specified in the Src attribute. It also associates
the control with a prefix that’s used when you define control instances, which you can change
if you want to. When you open the NewUser.aspx page, you see something like Figure 3-20.

Figure 3-20. The New User page with a header user control

As long as you use server controls for the images in the header (in other words, you don’t
use an HTML Image element without the runat="server" attribute), the relative paths will be
properly resolved, no matter where the page using the control is located.

Just dropping this control onto every page of the Friends Reunion site will help to provide
it with a consistent look and feel, building on the work you’ve already done with stylesheets.
However, always having the same icon and message on the left isn’t ideal, so in a moment,
you’ll see how to customize it for the current page. First, though, we’ll deal with a problem
that you may have noticed a couple of pages ago.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 97

A Side Note: Style Builder, IntelliSense, and CSS
Sometimes, there’s a lack of synchronization between what IntelliSense and the Style Builder
show. One example is the vertical-align property you used to style the images. IntelliSense
will show you the following available values:

The Style Builder, however, will insist that fewer options are valid for this setting:

The CSS is a W3C standard, and as such, you should always consult the standards if
you are in doubt about valid alternatives and values. In this concrete case, the W3C’s CSS1
Recommendation specifies the legal values as baseline | sub | super | top | text–top | middle |
bottom | text-bottom | <percentage>. CSS2, a W3C Recommendation since May 12, 1998,
adds <length> | inherit to the values defined by CSS1. (You can find these documents at
http://www.w3.org/Style/CSS.) All of these values will produce valid output that will be
properly rendered by most browsers.

The bottom line is that you should make sure you bookmark the W3C site (http://
www.w3.org/) and go there as often as you need to ensure that you’re using standards-compliant
options and that you’re not missing something.

Try It Out: Add Properties to User Controls Returning to our Friends Reunion sample application,
we were talking (before our little diversion) about customizing the user control for different
pages. The technique for doing this is to define some properties for the control that you can
set when the control is instantiated. In this example, you’ll make it possible to set the image
and the message on the left side of the user control banner.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS98

1. Open the code-behind file for the user control (right-click it and select View Code),
and add the following code to it:

Public Class FriendsHeader
Inherits System.Web.UI.UserControl

[Web Form Designer Generated Code]

Private Sub Page_Load(ByVal sender As System.Object,_
ByVal e As System.EventArgs) Handles MyBase.Load
'Put user code to initialize the page here

End Sub

Private _message As String = ""
Private _imageurl As String = ""

Public Property Message() As String
Get
Return _message

End Get
Set(ByVal Value As String)
_message = Value

End Set
End Property

Public Property IconImageUrl() As String
Get
Return _imageurl

End Get
Set(ByVal Value As String)
_imageurl = Value

End Set
End Property

Protected Overrides Sub Render(ByVal writer As System.Web.UI.HtmlTextWriter)
If Message <> "" Then lblWelcome.Text = Message
If IconImageUrl <> "" Then imgIcon.ImageUrl = IconImageUrl
MyBase.Render(writer)

End Sub
End Class

2. Open the News.aspx page. Delete the panel and image you added previously as a
header. Drop the new user control in its place, and then insert a new paragraph after it.

3. Switch to the HTML view and find the line containing the control’s declaration:

<uc1:friendsheader id="FriendsHeader1" runat="server">
</uc1:friendsheader>

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 99

4. Add a Message attribute to it, like so:

<uc1:friendsheader id="FriendsHeader1" runat="server"
message="Welcome to the news page!"></uc1:friendsheader>

5. Open the NewUser.aspx page in HTML mode. Change the control’s declaration to
include both a Message attribute and an IconImageUrl attribute:

<uc1:friendsheader id="FriendsHeader1" runat="server"
message="Registration form"
iconimageurl="../Images/securekeys.gif">

</uc1:friendsheader>

6. Save, compile, and run the page to see how your changes have affected the output
displayed in your browser.

How It Works

You can add properties to a user control, just as you can add them to any other custom class.
In this example, you’ve implemented two properties that control the message and the icon of
the second panel through a couple of private member fields:

Private _message As String = ""
Private _imageurl As String = ""

You initialize the variables to empty strings in order to be able to determine whether
values have been supplied. In the Render() override, you change only the default image and
message if you have nonempty values for the properties. (This method is called just before the
HTML code is sent to the client.) In order to create a method that overrides one on the base
class, you use the same procedure you used to handle events, but you choose the item named
(Overrides) in the top-left drop-down list within the code editor. The drop-down list on the
right will show all of the methods that you can override.

When you now open the NewUser.aspx page, you see something like Figure 3-21.

Try It Out: Create the Footer Control Let’s complement the header you just created with a corre-
sponding footer control.

1. Right-click the Controls folder and choose Add ➤ Add Web User Control from the con-
text menu. Name the new file FriendsFooter.ascx.

2. Open the code-behind file for the user control (right-click it and select View Code),
and then add the following code to it:

<%@ Control Language="vb" AutoEventWireup="false"
Codebehind="FriendsFooter.ascx.vb"
Inherits="FriendsReunion.Controls.FriendsFooter"
TargetSchema="http://schemas.microsoft.com/intellisense/ie5" %>

<asp:panel id="pnlFooterGlobal" CssClass="FooterFriends" runat="server">
Friends Reunion Application - Courtesy of Apress

Beginning Web Applications

</asp:panel>

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS100

Figure 3-21. The New User page with a customized header user control

3. Add the FooterFriends CSS style class used by the control to the iestyle.css
stylesheet:

.FooterFriends
{
font-size: 8pt;
font-family: Tahoma, Verdana, 'Times New Roman';
width: 100%;
color: white;
background-color: #336699;
text-align: center;

}

4. Now you can go back to each of the pages you have created so far in the Friends
Reunion application and add the new header and footer controls to each one.
Figure 3-22 shows what the Login.aspx page will look like after you have added
your user controls for the header and footer.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 101

Figure 3-22. The Login page with header and footer controls

Now whenever you make changes to the user controls, the whole site will be instantly
updated. Couple this with your extensive use of stylesheets, and you can completely renew
the web application’s appearance in a snap!

Custom Controls
Most of the built-in ASP.NET server controls offer great features, but the ASP.NET object model
also allows you—and even encourages you—to extend the controls through inheritance.
A control that extends base functionality like this is called a custom control.

When creating a custom control, the particular base class you choose to inherit from will
depend on the situation. You could inherit from the TextBox control if you wish to incorporate
some custom processing into its behavior, or you might inherit from the top-level WebControl
base class to provide fully customized UI rendering.

In this section, we’ll start by working with some simple custom controls, and then
increase their complexity by incorporating more advanced features.

■Tip Our aim here is just to raise your awareness of custom controls, which can be an invaluable addition
to the ASP.NET web designer’s toolset. For a comprehensive study of this important feature, take a look at
Building ASP.NET Server Controls, by Dale Michalk and Rob Cameron (Apress, 2003; ISBN: 1-59059-140-2).

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS102

Try It Out: Build the SubHeader Custom Control In this example, you’re going to create a simple cus-
tom control that displays a subheader beneath your page header control, containing today’s
date and a link to the registration form.

1. Right-click the project name and select Add ➤ Add Class. Give the new class the name
SubHeader.vb.

2. Add the following code to the code-behind file:

Public Class SubHeader
Inherits WebControl

Private _register As String

Public Sub New()
'Initialize default values
Me.Width = New Unit(100, UnitType.Percentage)
Me.CssClass = "SubHeader"

End Sub

'Property to allow the user to define the URL for the
'registration page
Public Property RegisterUrl() As String
Get
Return _register

End Get
Set(ByVal Value As String)
_register = Value

End Set
End Property

Protected Overrides Sub CreateChildControls()
Dim lbl As Label

' If the user is authenticated, we will render their name
If (Context.User.Identity.IsAuthenticated) Then
lbl = New Label
lbl.Text = Context.User.Identity.Name

' Add the newly created label to our
' collection of child controls
Controls.Add(lbl)

Else
' Otherwise, we will render a link to the registration page
Dim reg As New HyperLink
reg.Text = "Register"

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 103

' If a URL isn't provided, use a default URL to the
' registration page
If _register = "" Then
reg.NavigateUrl = "~\Secure\NewUser.aspx"

Else
reg.NavigateUrl = _register
' Add the newly created link to our
' collection of child controls
Controls.Add(reg)

End If
End If

' Add a couple of blank spaces and a separator character
Controls.Add(New LiteralControl(" - "))

' Add a label with the current data
lbl = New Label
lbl.Text = DateTime.Now.ToLongDateString()
Controls.Add(lbl)

End Sub
End Class

3. Add the following style to the iestyle.css stylesheet:

.SubHeader
{
border-top: 3px groove;
font-size: 8pt;
color: white;
font-family: Tahoma, Verdana, 'Times New Roman';
background-color: #4f82b5;
text-align: right;
width: 100%;
display: block;

}

4. Open the News.aspx page in the HTML view and add the following directive at the top
of the page, which will allow you to use your new custom control:

<%@ Register TagPrefix="ap"
Namespace="FriendsReunion" Assembly="FriendsReunion" %>

5. Directly below the header user control you added earlier, add the following line:

<ap:subheader id="SubHeader1" runat="server" />

6. Set News.aspx as the start page, run the project, and sit back and admire your handi-
work!

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS104

How It Works

Your new custom control derives from the WebControl base class, just like most intrinsic
ASP.NET web controls. The base class provides properties for setting the control’s layout, such
as its Width, its CssClass, and so on, which you set at construction time. You’ve added a prop-
erty to hold a URL, similar to what you did for your user control:

Private _register As String

Public Sub New()
'Initialize default values
Me.Width = New Unit(100, UnitType.Percentage)
Me.CssClass = "SubHeader"

End Sub

'Property to allow the user to define the URL for the
'registration page
Public Property RegisterUrl() As String
Get
Return _register

End Get
Set(ByVal Value As String)
_register = Value

End Set
End Property

The main difference between the user control and the custom control is the way that the
control’s interface is built. For the user control, you just dropped controls onto the design sur-
face, as you would have done for a web form. For the custom control, a special method named
CreateChildControls () is called whenever ASP.NET needs to rebuild your control so it is
ready for display. For composite custom controls—those made of other child controls like your
SubHeader control—this method is the appropriate one to override for creating the control
hierarchy. You do so by specifying the controls that make up your custom control through the
Controls collection property. (This property comes from the Control base class, so any server
control can be a container for any other controls in this model.) You need to create and set up
the new controls programmatically before they are appended to that collection:

' If the user is authenticated, we will render their name
If (Context.User.Identity.IsAuthenticated) Then
lbl = New Label
lbl.Text = Context.User.Identity.Name

' Add the newly created label to our
' collection of child controls
Controls.Add(lbl)

Else
' Otherwise, we will render a link to the registration page
Dim reg As New HyperLink
reg.Text = "Register"

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 105

' If a URL isn't provided, use a default URL to the
' registration page
If _register = "" Then
reg.NavigateUrl = "~\Secure\NewUser.aspx"

Else
reg.NavigateUrl = _register
' Add the newly created link to our
' collection of child controls
Controls.Add(reg)

End If
End If

' Add a couple of blank spaces and a separator character
Controls.Add(New LiteralControl(" - "))

' Add a label with the current data
lbl = New Label
lbl.Text = DateTime.Now.ToLongDateString()
Controls.Add(lbl)

Also of note here is that you used the Context.User.Identity.IsAuthenticated property
to display the Register link selectively. As you’ll see in Chapter 10, this property identifies an
authenticated user, according to the authentication method selected. If the user is authenti-
cated, the Identity.Name property will contain the correct user name.

■Note If you expect more than one instance of your custom control to be used on a page, you need to
implement the marker interface INamingContainer to avoid naming conflicts for child controls, such as
the label or hyperlink you are using to build your control.

When you open the News.aspx page, you should see something like Figure 3-23.

■Tip The tilde char (~) you used to specify the default location of the registration page (~\Secure\
NewUser.aspx) can be used on any server control property expecting a URL to signify that a path is
relative to the current application root.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS106

Figure 3-23. The News page with the SubHeader custom control

You’ll learn more about security settings in Chapter 10, but for now, you can simulate
an unauthenticated user by enabling Anonymous access and disabling Integrated Windows
authentication. To do this, open the IIS console (Start ➤ Settings ➤ Control Panel ➤ Adminis-
trative Tools ➤ Internet Information Services). In the Default Web Site node under your server
name, right-click the FriendsReunion application and select Properties. Select the Directory
Security tab, and click the Edit button in the Anonymous access and authentication control
section. Check Anonymous access, and uncheck Integrated Windows authentication and
Basic authentication, as shown in Figure 3-24.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 107

Figure 3-24. Enabling Anonymous access and disabling Integrated Windows authentication

You can switch from an authenticated user to an unauthenticated user just by alternating
from Integrated Windows authentication only to Anonymous access. After enabling the latter,
you will see the link to the registration form instead of the Windows user name.

At runtime, there’s not much difference between this control and the user control you cre-
ated for the header, but the custom control stands out at design-time. With the News.aspx page
in the Design view, you can immediately see the difference, as shown in Figure 3-25.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS108

Figure 3-25. The custom control in the Design view

Unlike the user control, which isn’t even rendered at design-time (other than that ugly
gray box), your custom control renders itself on screen and provides the complete set of visual
properties available for all web server controls through the Properties browser. Toward the
bottom of the Properties browser, you can see the RegisterUrl property that you added. This
is far more intuitive than the user control approach, at the cost of some extra effort on the part
of the control developer.

■Note ASP.NET version 2.0 will provide about the same design-time support for both user controls and
custom controls.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 109

Dynamic Content
For our next trick, we’ll take a look at a subject that will become increasingly important when
we tackle database access in the next two chapters: dynamic content. Simply put, a dynamic
application is one that’s capable of altering its content or appearance at runtime, depending
on the identity of the user viewing the page, the nature of some information from a database,
or some other condition. In fact, you’ve already seen one form of dynamic content on our
Friends Reunion application’s News page, which displays either the user name or a link to
the registration form, depending on whether the current user was already authenticated.

You achieve this dynamic behavior by using the custom control’s Controls property to
add new controls to the hierarchy. We know that this property comes from the base Control
class, and as such is available to all web server controls. Perhaps surprisingly, the Page itself
also derives from this class and handles the controls it contains in precisely the same manner.
The hierarchy is as follows.

Another way to set up dynamic content is by manipulating the Visible properties of the
controls on the page. If you set a web server control’s Visible property to False, its output
won’t even be sent to the client browser, so it certainly won’t be displayed! It’s then easy to
switch the property to True from your code. This way, you can display controls selectively
according to certain conditions.

Try It Out: Dynamically Build Navigation Controls As a further example of dynamic content, you will
now create the Default.aspx entry page for the Friends Reunion site. This will be the page that
all users visit after they’ve logged in, and the links it offers will vary according to who they are.
In it, you’ll use a PlaceHolder control to define the location of the controls you add to the page
programmatically.

1. Add a new web form to the project’s root directory and call it Default.aspx.

2. Drop the FriendsHeader.ascx and FriendsFooter.ascx controls onto it. Set their IDs to
ucHeader and ucFooter.

3. Add the SubHeader custom control by switching to the HTML view, and adding a
Register directive and a <wx:subheader> element, just as you did for the News.aspx
page. This time, set its ID to ccSubHeader.

<%@ Register TagPrefix="ap"
Namespace="FriendsReunion" Assembly="FriendsReunion" %>

...
<ap:subheader id="ccSubHeader" runat="server" /></P>

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS110

4. While in the HTML view, add a <link> element for the iestyles.css stylesheet
(or drag-and-drop the .css file on the design surface).

5. Below the headers, type a description for the page: Welcome to the Friends Reunion
web site – the meeting place for lost friends! Set its class property to Normal, and start
a new paragraph after it.

6. Drop a PlaceHolder web control, and then set its ID to phNav. This marks the location
on the page where all of the controls you add will be placed.

7. Add the following code to the Page_Load() method:

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Dim tb As New Table
Dim row As TableRow
Dim cell As TableCell
Dim img As System.Web.UI.WebControls.Image
Dim lnk As HyperLink

If (Context.User.Identity.IsAuthenticated) Then
' Create a new blank table row
row = New TableRow

' Set up the News image
img = New System.Web.UI.WebControls.Image
img.ImageUrl = "Images/winbook.gif"
img.ImageAlign = ImageAlign.Middle
img.Width = New Unit(24, UnitType.Pixel)
img.Height = New Unit(24, UnitType.Pixel)

' Create a cell and add the image
cell = New TableCell
cell.Controls.Add(img)

' Add the new cell to the row
row.Cells.Add(cell)

' Set up the News link
lnk = New HyperLink
lnk.Text = "News"
lnk.NavigateUrl = "News.aspx"

' Create the cell and add the link
cell = New TableCell
cell.Controls.Add(lnk)

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 111

' Add the new cell to the row
row.Cells.Add(cell)

' Add the row to the table
tb.Rows.Add(row)

Else
' Code for unauthenticated users here...

End If

' Finally, add the table to the placeholder
phNav.Controls.Add(tb)

End Sub

8. Set Default.aspx as the start page, and save and run the application. Turn on and off
Anonymous access in IIS (as described in the previous section) to see how the results
differ. Figure 3-26 shows the Default page.

Figure 3-26. The Default page with dynamic content

How It Works

The special PlaceHolder control has been designed with dynamic control loading in mind. It
forms an invisible container for controls that you insert later and positions them correctly in
the hierarchy that’s defined by the Page.Controls collection. The PlaceHolder control doesn’t
render HTML to the client itself; it’s useful only for this sort of scenario.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS112

The Page_Load() event handler instantiates a new Table web control that will hold the
links you add. When you finish the process of adding links, you add the table to the Place-
holder control. You can add as many controls to the placeholder as you need; it’s not limited
to just one.

Avoiding Code Duplication
At this point, you’ve developed a set of controls that will help to create a consistent look and
feel for the application. At the moment though, you need to add the user controls and the cus-
tom control to every new page manually. You can avoid this tedious task with a custom base
page that can load user and custom controls dynamically.

Try It Out: Build a Custom Base Page Our technique for this final example will be to create a new
class that inherits from and builds on the System.Web.UI.Page class. Once you’ve set it up with
the header and footer controls you want to use, you’ll inherit from the new class in all of your
web forms, providing them with that functionality by default.

1. Add a new class named FriendsBase.vb to the project.

2. Add the following code to the class:

Public Class FriendsBase
Inherits Page

Protected HeaderMessage As String = ""
Protected HeaderIconImageUrl As String = ""

Protected Overrides Sub Render(ByVal writer As System.Web.UI.HtmlTextWriter)
' Get a reference to the form control
Dim form As Control = Page.Controls(1)

' Create and place the page header
Dim header As FriendsHeader
header = CType(_
LoadControl("~/Controls/FriendsHeader.ascx"), _
FriendsHeader)

header.Message = HeaderMessage
header.IconImageUrl = HeaderIconImageUrl
form.Controls.AddAt(0, header)

' Add the SubHeader custom control
form.Controls.AddAt(1, New SubHeader)

' Add space separating the main content
form.Controls.AddAt(2, New LiteralControl("<p/>"))
form.Controls.AddAt(form.Controls.Count, _
New LiteralControl("<p/>"))

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 113

' Finally, add the page footer
Dim footer As FriendsFooter
footer = CType(_
LoadControl("~/Controls/FriendsFooter.ascx"), _
FriendsFooter)

form.Controls.AddAt(Page.Controls(1).Controls.Count, footer)

' Render as usual
MyBase.Render(writer)

End Sub
End Class

3. Add a new web form to the project called Info.aspx. Its pageLayout property should
already be set to FlowLayout.

4. Type some place-holding text in a paragraph (such as: This is an information page.)
on the new form.

5. As usual, drop the iestyles.css stylesheet file from the Solution Explorer onto the
form to link it.

6. Open the code-behind page and change the class declaration to this:

Public Class Info
Inherits FriendsBase

7. Add the following lines to the Page_Load() method:

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
HeaderIconImageUrl = "~/Images/winbook.gif"
HeaderMessage = "Informative Page"

End Sub

8. Save and run the project with Info.aspx as the start page. It should look like Figure 3-27.

How It Works

By default, web forms inherit directly from the base Page class, but this is not a requirement.
It’s possible to inherit from any Page-derived class, creating a great opportunity for adding
common behavior across pages. Our web application takes advantage of this to insert header,
subheader, and footer controls on every page automatically, relieving the page developer from
the chore of dropping and placing these controls all the time. Now it’s just a matter of inherit-
ing from the new base page, as you did in step 6 of the previous example, by changing the
System.Web.UI.Page default base class to point to the FriendsBase class.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS114

Figure 3-27. Starting the project with a custom base page

The base page class loads controls onto the page by two methods. For user controls, you
need to use the special LoadControl() method, provided by the TemplateControl class from
which both UserControl and Page derive.

Once the control is loaded and assigned to a variable of the correct type, you can access
the properties and methods of the UserControl. After configuring the loaded control, you add
it to the form’s Controls collection, specifying where you want to add it by using the AddAt()
method. The form itself is the control with index 1, as you saw in the example. This is the case
for your page because ASP.NET treats everything from the page startup to the opening <body>
tag as a single literal control. Note that if you add any other controls between the body tag and
the form tag, its index will no longer be 1.

In order for inheriting pages to set the message and the icon to use (these were
previously set directly in every page), the base page defines two protected variables called
HeaderIconImageUrl and HeaderMessage, and uses them to set the controls appropriately.
The footer works in the same way as the header.

The SubHeader custom control, on the other hand, doesn’t need any special handling,
because it is treated just like any other server control. You add a new instance directly, without
declaring a variable, as it doesn’t need any further settings. At this point, you also add a couple
empty paragraphs to separate the header and footer from the main content.

The special processing to set up the pages has been created by overriding the Render()
method in the base page, and before exiting the function, you call MyBase.Render() to let the
base Page class perform the usual rendering of the modified control hierarchy. Any derived
class that wants to override this method must also call MyBase.Render(), passing in the writer
object that’s used to create the appropriate output.

The custom base page gives exactly the same result as you achieved with the Default.aspx
and News.aspx pages, but with almost no code at all required in Info.aspx!

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS 115

Summary
During this exploratory journey into ASP.NET’s brand-new web forms landscape, we have
uncovered a lot of new features. We looked at the various categories of server controls—HTML
controls, web controls, user controls, and custom controls—and performed some of the most
common tasks with them. The consistent object model makes it easy to handle all of them in a
standard manner, and server-side, event-driven programming raises programmer productiv-
ity to a new level.

Almost every part of the architecture is extensible, so that once you’ve mastered the
built-in functionality, you can move on and extend it to provide powerful and reusable user
controls or custom controls. This is a big leap forward for web application developers, who
are no longer constrained by the limitations of the default features.

Although we’ve touched on the idea of creating dynamic web sites in this chapter, we
haven’t yet considered the most important tools for creating them: databases. In the next
chapter, you’ll learn how databases can be used with web forms to make great applications
with minimal code.

CHAPTER 3 ■ USER INTERFACES AND SERVER CONTROLS116

ADO.NET

In Chapter 3, while we were talking about the various types of controls, we made a number
of references to the myriad of additional functionality that becomes available when data
access is brought into the mix. In our nascent Friends Reunion application, for example, we
could keep a permanent store of all the people who have entered their details into the form
and allow the creation of links between those records, so that users returning to the site are
immediately presented with a list of the people who want to contact them. We could also let
them see complete details about each other, so that they can get in touch.

To manipulate the data stored in databases, ASP.NET uses ADO.NET, Microsoft’s data-
access strategy in .NET. ADO.NET contains many classes that ease the process of building
dynamic web applications. We will be discussing the most interesting of these classes over
the course of the next two chapters. As we do so, we will be considering the following topics:

• The overall architecture of ADO.NET

• An overview of how to use ADO.NET to access different data sources, using data
providers

• How to add and read data to and from a database, and display it on a web form

• How to modify data that is already stored in a database

• What datasets are and how to use them

Before we start coding, we’ll take a brief tour of the ADO.NET architecture. If you’re
already familiar with the terms and concepts of ADO.NET, feel free to skip the first section of
this chapter. On the other hand, if you’re not familiar with ADO.NET, the description of the
architecture will give you an idea of how it works, and then this will become clearer as you
work through the examples in the later sections.

The Architecture of ADO.NET
Before we go any further, let’s get something out of the way: the name ADO.NET doesn’t actu-
ally stand for anything at all. Before you raise a hand to point out that ADO originally stood for
ActiveX Data Objects, just remember that Microsoft has decreed that ADO.NET is the name of
a technology and not an acronym. More significantly, ADO.NET is an important technological
leap forward from ADO and has a substantially different architecture, so it’s well worth taking
a look at its overall design.

117

C H A P T E R 4

■ ■ ■

CHAPTER 4 ■ ADO.NET118

Whenever developers want to access data in a database, the most common technique for
doing so involves first connecting to the database, and then issuing a SQL statement. ADO.NET
supports these two tasks, which together allow interaction between your code and a source of
data. Figure 4-1 shows how ADO.NET works: a command object, which will usually contain a
SQL statement, uses a connection object to reach the database. Besides direct SQL statements,
a command object can also be used to execute a stored procedure that’s already present in the
database.

Figure 4-1. ADO.NET command and connection objects for interacting with a database

Depending on the query being executed, you may expect to retrieve a single value (from
a SELECT COUNT(1) ... statement, for example), a result set (from a SELECT * FROM ... state-
ment), or no result at all (from an INSERT or UPDATE statement). Even in the latter case, however,
it can be useful to know the number of table rows that were affected. For each of these options,
you can use different methods of the command object to execute the command:

• ExecuteScalar()returns an Object containing the value.

• ExecuteReader() returns a data reader object, for accessing a result set.

• ExecuteNonQuery() returns an integer with the number of rows affected by the command.

The first and last of these methods are really quite simple, and you’ll see them in action
shortly. The second, however, is more complex, and the data reader object it returns deserves
a little more explanation here.

The Data Reader Object
A data reader object is a fast, read-only, forward-only, connected cursor to the data returned
from the database. As such, it represents a very efficient way to display the results of a SQL
statement.

Using a data reader object is very similar to using the other “reader” objects in the .NET
Framework, such as StreamReader, XmlReader, and so on. You get a reference to it (by calling
ExecuteReader() in this case) and call Read(), and if that returns True (meaning that more data
is available to be read), you use its methods to access data in the current position. Typically,
for result sets containing multiple rows of data, you’ll have a code pattern like this:

reader = Command.ExecuteReader()
While (reader.Read())
' Process current row

End While

From this point, you can use the data reader object’s methods or its default property to
access the values contained in the columns inside the current row.

The data reader object has GetXXX() methods for retrieving typed values. Methods such
as GetBoolean(), GetString(), and GetInt32() receive the index of the column as an argument
and return a value of the appropriate type. Inside the preceding code block, you could write:

Response.Write(reader.GetString(0))

If you know the name of a column but not its index, you can use the data reader object’s
GetOrdinal() method, which receives the column name and returns its position:

Dim pos As Integer = reader.GetOrdinal("CategoryID")

The data reader object’s GetValues() method fills an array with the values in the columns.
This method receives an object array and fills it with the values in the current row:

Dim values(3) As Object
reader.GetValues(values)

If you wish, you can use the data reader’s FieldCount property to initialize the array. In the pre-
ceding code, the array will be filled with the values from the first three columns of the current
record.

The data reader object also has a default property that provides direct access to the col-
umn values. You can pass either an integer representing the column’s position or a string with
the column’s name. The value returned is of type Object, so you’ll need to convert it to the
target data type explicitly:

Dim id As Integer = CType(reader("UserId"), Integer)

' Or accessed by column order
Dim id As Integer = CType(reader(0), Integer)

Before you head off and try to find classes called Connection, Command, and DataReader in
the .NET Framework, we should tell you that they don’t actually exist as such. In ADO.NET,
each different type of database must be accessed using its own version of these objects. A par-
ticular set of these objects for a particular database is called a data provider. The methods
we’ve mentioned so far are the core ones common to all data providers, but a provider may
expose additional features that are unique to its database.

Data Providers
Why do we need to use data providers? Wouldn’t it be less complicated to have a single set
of objects for accessing any kind of database? This is an approach that has been taken in the
past, but there’s a problem with it: in order to have a common set of objects across disparate
databases, an abstraction layer must be implemented on top of database-specific features.
A lowest-common-denominator approach must be taken in the design of the classes, which
hinders the possibility of making database-specific features easily available. This also adds
overhead and causes a performance impact.

In ADO.NET, each database can be accessed using classes that take best advantage of its
specific features. At the time of writing, the following .NET data providers exist:

CHAPTER 4 ■ ADO.NET 119

SQL Server: This provider is located in the System.Data.SqlClient namespace and
provides classes for working with SQL Server 7.0 (or later) databases. It contains the
SqlConnection, SqlCommand, SqlDataReader, and SqlDataAdapter classes. It is built into
the System.Data assembly.

OLE DB: This provider is located in the System.Data.OleDb namespace and provides
classes for working with any data source for which an OLE DB driver exists. It contains
the OleDbConnection, OleDbCommand, OleDbDataReader, and OleDbDataAdapter classes.
It is built into the ADO.NET System.Data assembly.

ODBC: This provider is located in the System.Data.Odbc namespace and provides classes to
work with any data source with an installed ODBC driver. It contains the OdbcConnection,
OdbcCommand, OdbcDataReader, and OdbcDataAdapter classes. It is built into the ADO.NET
System.Data assembly.

Oracle: This provider is located in the System.Data.OracleClient namespace,
and its assembly must be explicitly referenced in a project, as it’s part of the
System.Data.OracleClient assembly, not System.Data. It contains the OracleConnection,
OracleCommand, OracleDataReader, and OracleDataAdapter classes.

Third party: Additional providers exist for IBM DB2, MySQL, PostgreSQL, SQL Lite,
Sybase, and even embedded database engines. There’s a growing industry of commercial
as well as free data providers. A search for “ADO.NET data provider” using a search engine
will reveal many of them. An interesting place to look for open-source providers is the
Mono project (http://go-mono.com/ado-net.html).

Clearly, the data providers will have different implementations as a result of the variety of
database technologies they need to deal with. However, they’re very similar as far as developers
are concerned, because they have common methods and properties for us to use. This means
that, generally speaking, choosing a provider is a matter of performance, not of features. The
product-specific providers (SQL Server and Oracle, for example) offer superior performance
for the databases they target, compared with the generic OLE DB or ODBC providers. The SQL
Server provider, for example, communicates with the database using its own proprietary for-
mat, Tabular Data Stream (TDS), resulting in significant performance gains.

For the examples in this chapter, we’ll use the SQL Server data provider to connect to the
Microsoft SQL Server Desktop Engine (MSDE). If you haven’t explored MSDE before, there’s
relevant information about it in Appendix B. As far as the data provider is concerned, MSDE is
indistinguishable from SQL Server, which means that the actual classes we’ll be using to read
data are the same as those for SQL Server, as shown in Figure 4-2.

However, this picture is still incomplete. Specifically, there are two kinds of objects left
out of the diagram in Figure 4-2: data adapters, which are components of the data providers,
and the generic DataSet object. We’ll take a look at both of these objects later in the chapter
(in the “The Rest of the Picture: The DataSet and Data Adapter Objects” section). For now, let’s
explore some concrete uses of what you’ve already learned.

CHAPTER 4 ■ ADO.NET120

Figure 4-2. ADO.NET classes for interacting with MSDE and SQL Server

Programmatic Use of ADO.NET
Now that you’ve had an introduction to how data access works in ADO.NET, let’s make a start
on improving our Friends Reunion application to take advantage of it. First, you’ll see how to
use a database to store new user information.

The database that you’re going to use for your data is called FriendsData. It is a ready-
to-use, detached SQL Server database, provided with the code for this book (which you can
download from the Downloads section of http://www.apress.com).

■Note If you haven’t used MSDE before, take a look at Appendix B. That appendix contains details about
how to install and set up MSDE, how to use the Server Explorer window, and how to connect to databases
using the built-in features of the VS .NET IDE. It also showcases the FriendsData design.

Adding Data to a Database
In Chapter 3, you built a form called NewUser.aspx that accepts data from the user. Clearly
though, such a form is pretty useless unless you’re able to save that data somewhere! That’s
precisely what you’ll do now, and you’ll use a SqlCommand object to achieve it.

After the user has finished entering details into the form, you’ll insert a new row into the
User table of the FriendsData database. This table has the following structure:

CHAPTER 4 ■ ADO.NET 121

Try It Out: Add a New User For this first example, you’ll rewrite the handler for the NewUser.aspx
form’s Accept button to store the details in that form in the FriendsData database. You’ll also
add the improvement that you began to implement at the end of Chapter 3—that of inheriting
the FriendsBase base class for all forms.

1. Open the NewUser.aspx code-behind page.

2. Add the following imports at the top of the code-behind file (you’ll be using classes
from these namespaces):

Imports System.Data.SqlClient
Imports System.Text

■Tip It’s common practice to arrange imports alphabetically, so they can be easily located.

3. To take advantage of the common base page you created in Chapter 3, change the base
class for your page:

Public Class NewUser
Inherits FriendsBase

4. Now remove the header and footer user controls from this page, because they will be
added by the base page from which you’re inheriting.

5. As you learned in Chapter 3, change the page icon and the message text in the
Page_Load() event handler:

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
MyBase.HeaderIconImageUrl = "~/Images/securekeys.gif"
MyBase.HeaderMessage = "Registration Form"

End Sub

6. Now modify the handler for the Accept button. When you initially added it to the form
in the previous chapter, it tested only whether the page was valid. In its new form, it
will be responsible for building and executing the SQL INSERT statement that will add
a new user to the database. This method takes advantage of string formatting, which
makes replacing placeholders in a string with values a breeze.

Private Sub btnAccept_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnAccept.Click
If Page.IsValid Then
Dim values As New ArrayList(11)

' Optional values without quotes as they can be the Null value
Dim sql As String
sql = "INSERT INTO [User] " + _
"(UserID, Login, Password, FirstName, LastName," + _

CHAPTER 4 ■ ADO.NET122

"PhoneNumber, Email, IsAdministrator, Address," + _
"CellNumber, DateOfBirth)" + _
"VALUES " + _
"('{0}', '{1}', '{2}', '{3}', '{4}'," + _
"'{5}', '{6}', '{7}', {8}, {9}, {10})"

' Add required values to replace
values.Add(Guid.NewGuid().ToString())
values.Add(txtLogin.Text)
values.Add(txtPwd.Text)
values.Add(txtFName.Text)
values.Add(txtLName.Text)
values.Add(txtPhone.Text)
values.Add(txtEmail.Text)
values.Add(0)

' Add the optional values or Null
If (txtAddress.Text.Length <> 0) Then
values.Add("'" + txtAddress.Text + "'")

Else
values.Add("Null")

End If

If (txtMobile.Text.Length <> 0) Then
values.Add("'" + txtMobile.Text + "'")

Else
values.Add("Null")

End If

If (txtBirth.Text.Length <> 0) Then
values.Add("'" + txtBirth.Text + "'")

Else
values.Add("Null")

End If

' Format the string with the array of values
sql = String.Format(sql, values.ToArray())

' Connect and execute the query
Dim con As New SqlConnection(_
"data source=.;initial catalog=FriendsData;" + _
"user id=apress;pwd=apress")
Dim cmd As New SqlCommand(sql, con)
con.Open()

Dim doredirect As Boolean = True

CHAPTER 4 ■ ADO.NET 123

Try
cmd.ExecuteNonQuery()

Catch ex As SqlException
doredirect = False
lblMessage.Visible = True
lblMessage.Text = _
"Insert couldn't be performed. User name may be already taken."

Finally
' Ensure connection is closed always
con.Close()

End Try

If (doredirect) Then Response.Redirect("Login.aspx")
Else
lblMessage.Text = "Fix the following errors and retry:"

End If
End Sub

7. To make the text of the lblMessage label stand out better in case of any errors, set its
ForeColor property to Red.

8. Save and run the project with NewUser.aspx as the start page. If you now try to create a
new entry for a user who already exists, you’ll see something like the message shown in
Figure 4-3.

For the sake of simplicity, if the row is successfully inserted (that is, a new record is cre-
ated in the database), the user will be redirected to the Login page, where the new user will
(eventually) be able to enter a user name and password for the account just created.

■Note The password on the connection string must match the one you chose at database installation
time, as explained in Appendix B. If you have problems authenticating with SQL accounts (for example, the
apress account we’re using), the appendix contains information about how to enable Mixed (Windows and
SQL) mode authentication on MSDE.

How It Works

As you saw in Chapter 3, the Page.IsValid property represents an accumulation of the valida-
tion state of all the validation controls on the page. If all of them are in a valid state, the property
will return True; otherwise, its return value will be False.

The process of building the SQL INSERT statement itself isn’t too complicated. You just
split the query over multiple lines to make the SQL statement more readable. For the values
to replace in the statement, you use an ArrayList, taking into account that optional fields will
be Null if no value is specified on the form. When you’re finished, you simply format the SQL
string with the values, assigning it again to save another variable declaration:

sql = String.Format(sql, values.ToArray())

CHAPTER 4 ■ ADO.NET124

Figure 4-3. An error message appears when you try to add a user whose name already exists in
the database.

As far as our focus in this chapter is concerned, the database connectivity code comes
next. The first order of business is to create connection and command objects, and the very
next line of code achieves the first of these two tasks:

Dim con As New SqlConnection(_
"data source=.;initial catalog=FriendsData;" + _
"user id=apress;pwd=apress")

Here, you’re supplying the following arguments:

• . is the name of our MSDE instance. The dot is a shortcut for (local), which means the
default MSDE instance in the local machine.

• FriendsData is the name of the database to connect to.

• user id is the name of the user with rights to access that database.

• pwd is the user password.

CHAPTER 4 ■ ADO.NET 125

■Note The constructor for a connection object requires you to specify a number of pieces of information,
and the precise nature of this information will depend on the datastore in question. Consult the MSDN docu-
mentation for more information about this subject.

It’s important to note that this example hard-codes the full connection string in the code,
which is not a good thing. As we move along, we’ll discuss alternative ways of doing this.

Next, you use the connection object and the SQL query string to create a new command
object. With that done, you can open the connection to the database, ready for your command
to be executed against it:

Dim cmd As New SqlCommand(sql, con)
con.Open()

Any block of code that executes against an open database should (at the very least) always
be placed inside a Try...Finally block, giving you a chance to close the connection before
execution terminates, either normally or unexpectedly. (We will discuss exception handling
in detail in Chapter 11.)

Inside the block, you use the command object’s ExecuteNonQuery() method, as the INSERT
statement doesn’t return results. (You could optionally check the number of rows affected,
but we’re simply ignoring that here.) Depending on the outcome of the command execution,
either success or failure, which is tracked by the doredirect variable, you redirect the user to
the Login page, so that user can use the newly created credentials:

Dim doredirect As Boolean = True

Try
cmd.ExecuteNonQuery()

Catch ex As SqlException
doredirect = False
lblMessage.Visible = True
lblMessage.Text = _
"Insert couldn't be performed. User name may be already taken."

Finally
' Ensure connection is closed always
con.Close()

End Try

If (doredirect) Then Response.Redirect("Login.aspx")

As you can see, using ExecuteNonQuery() is fairly simple, and it’s all you need in order to
execute INSERT, UPDATE, and DELETE statements.

Retrieving Data from a Database
Now that you have a means by which to add new users to a database, the obvious next step is
to learn how to retrieve that information at a later date. In the Friends Reunion application,

CHAPTER 4 ■ ADO.NET126

there is nowhere more in need of this ability than the Login page. When someone enters a user
name and a password, you want to discover whether such a user exists and whether the pass-
word supplied is correct. Once you have the ability to log in users, you’ll be able to offer them
a way to view and edit their own information, but one thing at a time!

Before we look at the data-access code, however, you need to make a few changes to the
application’s security settings. This topic will be explained in more detail in Chapter 10, but
we’ll run through the specifics of this particular case here.

Try It Out: Set Up Security Simply put, you need to configure the Friends Reunion application so
that the Login page is always the first one that users see, regardless of how they try to access
our application. Furthermore, you need to arrange things so that unregistered users can navi-
gate from the Login page to NewUser.aspx, but to no other pages. Here’s how to do that:

1. Just as you did in Chapter 3, use the IIS console (Start ➤ Programs ➤ Administrative
Tools ➤ Internet Information Services) to enable Anonymous access for the applica-
tion, as shown in Figure 4-4. This setting means that IIS won’t handle authentication,
delegating that responsibility to ASP.NET and its settings. Integrated Windows authenti-
cation is also enabled, by default, and is needed to debug the application from VS .NET.

Figure 4-4. Enabling Anonymous access

CHAPTER 4 ■ ADO.NET 127

2. Open the Web.config file for the application, locate the <authentication> element, and
modify it so that it looks like the following, noting the inclusion of a child <deny> ele-
ment inside the <authorization> element:

<authentication mode="Forms">
<forms loginUrl="Secure/Login.aspx" />

</authentication>
<authorization>
<deny users="?" />

</authorization>

Briefly, this tells ASP.NET that you will use a form to authenticate users and also speci-
fies its location. Then you specify that Anonymous (not authenticated) users cannot
access any page in this application (deny users="?"). If you had specified "*", you
would be denying access to all users, whether they are authenticated or not. With this
setting in effect, clients will be automatically redirected to the Login.aspx page when-
ever they try to open any ASP.NET page in this application.

3. Anonymous users will need to access the NewUser.aspx form in order to register, so you
need to enable Anonymous access to that. Add the following code to the Web.config
file, just above the closing </configuration> tag:

<location path="Secure/NewUser.aspx">
<system.web>
<authorization>
<allow users="*" />

</authorization>
</system.web>

</location>

This setting introduces an exception to the generic deny users="?", for a specific path.
In this case, you’re allowing all users, whether authenticated or not, to access the spe-
cific page.

■Note The Web.config file, sitting at the root of the web application, governs all settings for the applica-
tion, such as security, debugging, and session management. A thorough examination of this configuration file
format can be found in the MSDN documentation, at http://msdn.microsoft.com/library/en-us/
cpguide/html/cpconaspnetconfiguration.asp. We’ll discuss the settings that apply to the features
we introduce throughout the book as we go.

With these settings in place, you can move on and finish the Login.aspx form. When the
form is submitted, you’ll receive a user name and a password, and you’ll need to check that
those values match an existing user in your database. What you need from the database is the
user ID that corresponds to the credentials passed in. This ID will be used from then on to
retrieve various pieces of information for the current user.

CHAPTER 4 ■ ADO.NET128

Once you have a valid user ID, you need to tell ASP.NET that the user is authenticated,
and let the user see the page originally requested. This is achieved by calling the
FormsAuthentication.RedirectFromLoginPage() method found in the System.Web.Security
namespace, passing in the user ID. After this method has been called successfully, the user
will be able access any resource in the application. In addition, you’ll be able to retrieve the ID
at any time, from any page, by reading the Context.User.Identity.Name property. This makes
it easy to customize the content of a page according to the current user. We’ll analyze security
and authentication in detail in Chapter 10.

Try It Out: Verify User Credentials in the Login Form In this example, you’ll put the things we just
talked about into code. In the handler for the Login button, you’ll use the ExecuteScalar()
method to retrieve the ID of a user with a given login name and password.

1. Open the Login.aspx form. Delete the header and footer controls that you added pre-
viously, leaving only the table with the text boxes and the Login button. Add a line of
explanatory text, such as Enter your user name and password to access the special
features of this application.

2. Switching to the HTML view, remove the div you used as a label before, and then add a
panel containing an image and a label at the bottom of the page to hold any authenti-
cation error messages that may occur:

<p>
<asp:panel ID="pnlError" Runat="server" Visible="False">

<asp:label ID="lblError" Runat="server" ForeColor="Red">
</asp:label>

</asp:panel>
</p>

</form>
</body>

</html>

3. Remove the onclick attribute on the Login button, as it would now be sort of annoying
for a real user!

<input onclick="alert('About to log in!');" ...

4. Switch back to the Design view so that the code-behind file is synchronized with these
new web controls.

5. In the code-behind page, change the code to match the following:

Imports System.Data.SqlClient
Imports System.Web.Security

Public Class Login
Inherits FriendsBase

CHAPTER 4 ■ ADO.NET 129

[Web Form Designer Generated Code]

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
MyBase.HeaderIconImageUrl = "~/Images/securekeys.gif"
MyBase.HeaderMessage = "Login Page"

End Sub

Private Sub btnLogin_ServerClick(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnLogin.ServerClick
Dim con As New SqlConnection(_
"data source=.;initial catalog=FriendsData;" + _
"user id=apress;pwd=apress")

Dim cmd As New SqlCommand(_
"SELECT UserID FROM [User] " + _
"WHERE Login=@Login and Password=@Pwd", con)

' Add parameters for the values provided
cmd.Parameters.Add("@Login", txtLogin.Value)
cmd.Parameters.Add("@Pwd", txtPwd.Value)
con.Open()
Dim id As String = Nothing

Try
' Retrieve the UserID
id = CType(cmd.ExecuteScalar(), String)

Finally
con.Close()

End Try

If Not id Is Nothing Then
' Set the user as authenticated and send him to the
' page originally requested
FormsAuthentication.RedirectFromLoginPage(id, False)

Else
pnlError.Visible = True
lblError.Text = "Invalid user name or password!"

End If
End Sub

End Class

6. Save all your changes, and then run the application with Default.aspx as the start
page. You should find that you’re taken to the Login page automatically, as shown in
Figure 4-5.

CHAPTER 4 ■ ADO.NET130

Figure 4-5. The Login page appears automatically after your changes.

How It Works

From now on, all of the web forms that you add to this project will inherit from the
FriendsBase class that you created in Chapter 3. You’ll also always use the two fields provided
by the base class to set the text and the image for the current page. On this occasion, that was
done in the Page_Load() handler:

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
MyBase.HeaderIconImageUrl = "~/Images/securekeys.gif"
MyBase.HeaderMessage = "Login Page"

End Sub

The settings you’ve applied to the Web.config file will redirect the browser to the Login.aspx
page when you start the project. After entering values for the user name and password and click-
ing the button, the code in btnLogin_ServerClick() is executed. The first step performed there
is to create a new SqlConnection object, using the same connection string as last time. After the
object is created, it remains closed until you explicitly call the Open() method later on:

Dim con As New SqlConnection(_
"data source=.initial catalog=FriendsData" + _
"user id=sapwd=apress")

Next, construct a SqlCommand object whose SQL statement contains parameter references:

Dim cmd As New SqlCommand(_
"SELECT UserID FROM [User] " + _
"WHERE Login=@Login and Password=@Pwd", con)

CHAPTER 4 ■ ADO.NET 131

And then append the parameters and their values to it:

cmd.Parameters.Add("@Login", txtLogin.Value)
cmd.Parameters.Add("@Pwd", txtPwd.Value)

In the next line, after opening the connection, you use the ExecuteScalar() method of the
SqlCommand object to retrieve the single value you’re selecting. (If the SQL expression returned
more than one row and/or field, only the first field of the first row would be passed back to
your code by this method.) Because you built the SQL statement to return the user ID, that’s
what you’ll get, after casting it to a string:

Try
' Retrieve the UserID
id = CType(cmd.ExecuteScalar(), String)

Finally
con.Close()

End Try

Next, check whether a valid user ID was returned. If it wasn’t, either the user name or the
password must have been incorrect, so you show an error message. If everything is fine, you
use the RedirectFromLoginPage() method to send the user to the page the user requested in
the first place. If you take a closer look at the URL in Figure 4-5, you’ll notice that a ReturnUrl
query string value has been appended to it. This is how RedirectFromLoginPage() knows
where to redirect the user:

If Not id Is Nothing Then
' Set the user as authenticated and send him to the
' page originally requested
FormsAuthentication.RedirectFromLoginPage(id, False)

Else
pnlError.Visible = True
lblError.Text = "Invalid user name or password!"

End If

Once a user has been authenticated here, you can access that user’s ID from any code-
behind page through the Context.User.Identity.Name property.

The new piece of functionality you used here was adding values with parameters to the
SqlCommand instead of direct string formatting. Note that parameters must be prefixed with the
@ sign, but they don’t need to match the corresponding field name. For example, this code uses
@Pwd, although the field name is Password.

From now on, we’ll use the word apress as both the user name and password in our
examples. The database comes preloaded with some information for this user. After a success-
ful login, the user is presented with a Welcome page, in which (if you remember your work in
Chapter 3) the subheader that displays the date also includes the following code:

Protected Overrides Sub CreateChildControls()
Dim lbl As Label

' If the user is authenticated, we will render their name
If (Context.User.Identity.IsAuthenticated) Then

CHAPTER 4 ■ ADO.NET132

lbl = New Label
lbl.Text = Context.User.Identity.Name

' Add the newly created label to our
' collection of child controls
Controls.Add(lbl)

Else
...

As a result of the changes you’ve made, the label now displays the user’s ID, rather than
the name, but we’ll be correcting that in Chapter 10.

Finally, for now, Context.User.Identity.IsAuthenticated is working just as it did before:
it returns True if the user has entered valid credentials in the Login.aspx form. One difference,
however, is that the code after the Else statement will never be executed, because in that case
(an unauthenticated user accessing the page), the browser will automatically be redirected to
the Login page.

Changing the Data in a Database
In general, details of the kind collected in the application’s registration form do not remain
the same forever, so it seems only reasonable that you should give your users the opportunity
to change the data you have about them. Since the updated information is of exactly the same
format as they used when they first registered, you can use the same form and just change
some of its code. Specifically, you can discover if the user accessing NewUser.aspx is a new
user seeking to register or a registered user trying to modify personal information, by testing
Context.User.Identity.IsAuthenticated.

Try It Out: Edit a User’s Profile In the case of a registered user, you will preload the form with the
existing data by using the command object’s ExecuteReader() method. When the time comes
to save the data back to the database—that is, when the Accept button is clicked—you’ll test
the same property to determine whether an UPDATE or an INSERT is appropriate. The INSERT
code is already in place, so you just need to add the UPDATE, again using the ExecuteNonQuery()
method.

You’ll also make a slight modification to the SubHeader.cs custom control that you built in
Chapter 3, so that it shows a link to allow users to change their profile. Since the register link
and the edit profile link both point to the same page, NewUser.aspx, you need to change only
its text.

1. Open the SubHeader.cs file and modify the code in CreateChildControls() as follows:

Protected Overrides Sub CreateChildControls()
Dim lbl As Label
' Always render a link to the registration/edit profile page
Dim reg As New HyperLink

' If a URL isn't provided, use a default URL to the
' registration page
If _register = "" Then

CHAPTER 4 ■ ADO.NET 133

reg.NavigateUrl = "~\Secure\NewUser.aspx"
Else
reg.NavigateUrl = _register

End If

If (Context.User.Identity.IsAuthenticated) Then
reg.Text = "Edit my profile"

Else
reg.Text = "Register"

End If

' Add the newly created link to our
' collection of child controls
Controls.AddAt(0, reg)

' Add a couple of blank spaces and a separator character
Controls.Add(New LiteralControl(" - "))

' Add a label with the current data
lbl = New Label
lbl.Text = DateTime.Now.ToLongDateString()
Controls.Add(lbl)

End Sub

2. If you have not already done so, set the Default.aspx page to inherit the FriendsBase
class and, from the page Design view, delete all the existing controls except the place-
holder. Also, modify the introduction line for the page to something like Welcome to
the Friends Reunion application. Select the desired link to access the functionality
on the site:.

3. If you recompile the project after making just these changes, and then reopen the
Default.aspx page (you may need to log in again), you’ll see the page shown in
Figure 4-6.

4. Now modify the Page_Load() handler in the NewUser.aspx page to preload the form
with a registered user’s data:

...
Imports System.Data.SqlTypes
...

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
MyBase.HeaderIconImageUrl = "~/Images/securekeys.gif"
MyBase.HeaderMessage = "Registration Form"

CHAPTER 4 ■ ADO.NET134

Figure 4-6. The Default page after modifications

' Postbacks will typically be caused by the validator
' controls in non-IE browsers
If Page.IsPostBack Then Return

' If this is an update, preload the values
If Context.User.Identity.IsAuthenticated Then
' Change the header message
MyBase.HeaderMessage = "Update my profile"

Dim con As New SqlConnection(_
"data source=.;initial catalog=FriendsData;" + _
"user id=apress;pwd=apress")
Dim cmd As New SqlCommand(_
"SELECT * FROM [User] WHERE UserID=@ID", con)
cmd.Parameters.Add("@ID", Page.User.Identity.Name)

con.Open()
Try
Dim reader As SqlDataReader = cmd.ExecuteReader()

If reader.Read() Then
' Retrieve a typed value using the column's ordinal position
Dim pos As Integer = reader.GetOrdinal("Address")
txtAddress.Text = reader.GetString(pos).ToString()

CHAPTER 4 ■ ADO.NET 135

' Avoid using the pos variable altogether,
' but get the typed value
txtBirth.Text = reader.GetDateTime(_
reader.GetOrdinal("DateOfBirth")).ToShortDateString()

' Convert directly the untyped Object returned by the
' default property to a string
txtEmail.Text = reader("Email").ToString()
txtFName.Text = reader("FirstName").ToString()
txtLName.Text = reader("LastName").ToString()
txtLogin.Text = reader("Login").ToString()
txtPhone.Text = reader("PhoneNumber").ToString()
txtPwd.Text = reader("Password").ToString()

' Use SQL Server type to have additional features
pos = reader.GetOrdinal("CellNumber")
dim cel as SqlString = reader.GetSqlString(pos)
If Not cel.IsNull Then txtMobile.Text = cel.Value

End If
Finally
' Ensure connection is ALWAYS closed
con.Close()

End Try
End If

End Sub

5. Test this code by compiling the project and refreshing the previous page. If you click
the Edit my profile link, you’ll see that the values are preloaded on the form, as shown
in Figure 4-7.

6. Next, to organize the code, create a private method called InsertUser(), and move the
code inside the If statement from the btnAccept_Click() handler to it:

Private Sub InsertUser()
...

End Sub

7. The code in the button Click event handler should now be as follows (you’ll complete
the If statement later):

Private Sub btnAccept_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnAccept.Click
If Page.IsValid Then

Else
lblMessage.Text = "Fix the following errors and retry:"

End If
End Sub

CHAPTER 4 ■ ADO.NET136

Figure 4-7. Values are preloaded for editing a user profile.

8. With that in place, now create another new method, called UpdateUser(), to handle
the update scenario. Inevitably, it’s similar to the code for inserting new entries.

Private Sub UpdateUser()
Dim values As New ArrayList(10)

' Optional values without quotes as they can be the Null value
Dim sql As String
sql = "UPDATE (User) SET " + _
"Login='{0}', Password='{1}', FirstName='{2}', " + _
"LastName='{3}', PhoneNumber='{4}', Email='{5}', " + _
"Address={6}, CellNumber={7}, DateOfBirth={8} " + _
"WHERE UserID='{9}'"

' Add required values to replace
values.Add(txtLogin.Text)
values.Add(txtPwd.Text)
values.Add(txtFName.Text)

CHAPTER 4 ■ ADO.NET 137

values.Add(txtLName.Text)
values.Add(txtPhone.Text)
values.Add(txtEmail.Text)

' Add the optional values or Null
If (txtAddress.Text.Length <> 0) Then
values.Add("'" + txtAddress.Text + "'")

Else
values.Add("Null")

End If

If (txtMobile.Text.Length <> 0) Then
values.Add("'" + txtMobile.Text + "'")

Else
values.Add("Null")

End If

If txtBirth.Text.Length <> 0 Then
Dim dt As DateTime = DateTime.Parse(txtBirth.Text)
' Pass date in ISO format YYYYMMDD
values.Add("'" + dt.ToString("yyyyMMdd") + "'")

Else
values.Add("Null")

End If

' Get the UserID from the context
values.Add(Context.User.Identity.Name)

' Format the query with the values
sql = String.Format(sql, values.ToArray())

' Connect and execute the query
Dim con As New SqlConnection(_
"data source=.;initial catalog=FriendsData;" + _
"user id=apress;pwd=apress")

Dim cmd As New SqlCommand(sql, con)
con.Open()

Dim doredirect As Boolean = True

Try
cmd.ExecuteNonQuery()

Catch ex As SqlException
doredirect = False
lblMessage.Visible = True
lblMessage.Text = "Couldn't update your profile!"

Finally

CHAPTER 4 ■ ADO.NET138

con.Close()
End Try

If doredirect Then Response.Redirect("../Default.aspx")
End Sub

9. Finally, add the following code to the now empty If statement in the btnAccept_Click()
handler:

Private Sub btnAccept_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnAccept.Click
If Page.IsValid Then
If Context.User.Identity.IsAuthenticated Then
UpdateUser()

Else
InsertUser()

End If
Else
lblMessage.Text = "Fix the following errors and retry:"

End If
End Sub

10. Save and compile the project. If you run the project again and log in to the application,
you can click the new link in the subheader and not only see the form preloaded with
values, but also change any of its values. It’s even possible for the users to change their
user name, because that’s not being used as the primary key for the table!

How It Works

The change in the SubHeader control is very straightforward: just change the text of the link
according to the IsAuthenticated property for the current request. The interesting thing is
happening in the Page_Load() method, where you create the database connection and com-
mand objects as usual, but assign the result of executing the command to a variable of type
SqlDataReader:

Dim reader as SqlDataReader = cmd.ExecuteReader()

To read the values that form the result of our query, you start by checking that a row has
actually been returned, by calling the Read() method:

If reader.Read() Then

After that, and in order to show all the available ways to retrieve the values, you use sev-
eral options that are available with the reader. First, you use the GetOrdinal() method to
retrieve the position of a column in the reader, so that you can get a typed string using the
GetString() method, which needs this value:

' Retrieve a typed value using the column's ordinal position
Dim pos As Integer = reader.GetOrdinal("Address")
txtAddress.Text = reader.GetString(pos).ToString()

CHAPTER 4 ■ ADO.NET 139

The next line takes the same approach, but avoids the need for an extra variable by calling
the GetOrdinal() method from inside the GetDateTime() method call:

' Avoid using the pos variable altogether,

' but get the typed value
txtBirth.Text = reader.GetDateTime(_
reader.GetOrdinal("DateOfBirth")).ToShortDateString()

This reduces the amount of code you need to write, at the expense of a little added com-
plexity. Because the value returned is a typed DateTime object, you can use its methods to
format the date. The following lines show the most common approach, where you simply use
the data reader object’s default property, which receives the column name and returns an
Object. You can convert this object to a string very easily indeed:

' Convert directly the untyped Object returned by the
' default property to a string
txtEmail.Text = reader("Email").ToString()
txtFName.Text = reader("FirstName").ToString()
txtLName.Text = reader("LastName").ToString()
txtLogin.Text = reader("Login").ToString()
txtPhone.Text = reader("PhoneNumber").ToString()
txtPwd.Text = reader("Password").ToString()

The last bit of code is a peek at the extra features you can get from a SqlDataReader object.
Accessing the native data types of a SQL Server database can improve application perform-
ance, since by doing so, you avoid the conversion between SQL Server data types and .NET
data types. However, this does make it harder to change the data provider if you decide to use
a different database in the future. In this block, you use the SqlString type, which has (among
other things) an IsNull property that can tell you whether a value is present:

' Use SQL Server type to have additional features
pos = reader.GetOrdinal("CellNumber")
Dim cel As SqlString = reader.GetSqlString(pos)
If Not cel.IsNull Then txtMobile.Text = cel.Value

When the user clicks the Accept button, you check the IsAuthenticated property and call
the update or the insert method accordingly:

If Context.User.Identity.IsAuthenticated Then
UpdateUser()

Else
InsertUser()

End If

If you compare the code for the UpdateUser() method with that for the insert method that
you created earlier, you will find that the two are almost identical. The only difference lies in
the SQL statement building process, so we don’t need to go any deeper there.

CHAPTER 4 ■ ADO.NET140

The Rest of the Picture: The DataSet and
Data Adapter Objects
Until now, we’ve been looking at a connected model for accessing a database; that is, your code
retains a connection to the database for the duration of your interactions with it. Data reader
objects are very useful if you just need to move forward through the results of a query and dis-
play some values quickly, but an open connection is a valuable resource. Also, if you need to
pass the retrieved data between methods, perform some processing before displaying it, or
move back and forth through the results, a data reader simply doesn’t cut the mustard.

What you need is some way to extract data from the database on a semipermanent basis,
so that you can close the database connection for a while and manipulate the data as you see
fit. In other words, you need a way to deal with data that’s disconnected from the data source.

Dealing with Disconnected Data
An ADO.NET object that we mentioned earlier but haven’t examined so far is the DataSet.
Unlike the data reader, command, and connection objects that we’ve been using, DataSet
objects are not data provider-dependent. DataSet is a class in the System.Data namespace,
and instances of it can be used with any data source. A DataSet object can be thought of as
an in-memory relational database, as it contains a collection of DataTable objects, which, in
turn, contain collections of DataColumn and DataRow objects, as illustrated in Figure 4-8.

Figure 4-8. The DataSet object model

The data in a DataSet object can be inserted, updated, and deleted, and the object retains
the details of any such modifications. However, being a generic, disconnected store for data,
the DataSet object is completely unaware of the data source, which means that a dataset can
be created from a database, a file, or programmatically, and it will always remain independent
from the original source.

CHAPTER 4 ■ ADO.NET 141

The connection between the data provider-agnostic DataSet and a specific database store
is the responsibility of another object in the ADO.NET architecture: the data adapter. The data
adapter is data provider-specific. Each data provider contains its own data adapter version:
SqlDataAdapter, OleDbDataAdapter, OracleDataAdapter, and so on.

The data adapter’s job is to handle the process of filling the DataSet with data from a
database and post changes back to that database. The data adapter uses command objects
to retrieve data from a database and later to post changes (insertions, updates, or deletions)
back to it. Figure 4-9 diagrams the interaction between these objects.

Figure 4-9. The interactions between the DataSet and data adapter objects

As shown in the figure, a data adapter object has two key methods: Fill() and Update().
Both of these take a DataSet as an argument, and they use the command objects with which
the data adapter is configured to interact with the database. During a Fill() call, the adapter
executes its SelectCommand and loads the data into the corresponding tables inside the DataSet.
During an Update() call, the adapter inspects the data in the DataSet and calls each command
depending on what’s happened to each row (it may have been inserted, updated, or deleted).
As stated earlier, the DataSet itself keeps track of all such changes.

■Tip The data adapter isn’t actually connected to the database; it’s connected through the commands, as
shown in Figure 4-9. Each of the commands can be configured independently to point to any database, so it
is actually possible to perform the SELECT from one database and do the UPDATE on another one.

So, let’s recap. Connection and command objects are used every time there is a need to
access a database. From there, you can do either of the following:

• Choose to use a connected mode, and use a data reader that’s retrieved as a result of
executing a command.

• Take advantage of the disconnected DataSet object, and use a data adapter to provide
the link between it and the database.

CHAPTER 4 ■ ADO.NET142

The complete picture for ADO.NET is shown in Figure 4-10. (With the exception of
DataSet, the names of the other elements shown in the figure are abstractions, since the
actual class names are specific to each data provider.)

Figure 4-10. The complete ADO.NET model

Using a DataSet Object
In our Friends Reunion application, users can enter information about the places they have
studied or worked in the past, so that fellow users can contact them. This information is kept
in the following tables in the database:

The TimeLapse table has a Name field, where users can describe what they were doing in
that place. For example, if the place were Columbia University, the name of the time lapse
could be Systems Engineer, meaning that the user was studying that career at that place for
the period of time in question.

CHAPTER 4 ■ ADO.NET 143

Try It Out: Assign Places For the next addition to the application, you’ll build a form to allow users
to enter all of this information. You’ll need to load any existing places they’ve registered, and
allow the editing of this list as well as the creation of new records in the TimeLapse table. As
you’ve probably guessed, you’ll be filling a DataSet object with all of the relevant information.

1. Add a new web form to the application, naming it AssignPlaces.aspx.

2. Link the iestyle.css stylesheet file by dropping it onto the form from the Solution
Explorer.

3. Change the code-behind page to inherit from the FriendsBase class, and also import
the namespace you’ll be using:

Imports System.Data.SqlClient

Public Class AssignPlaces
Inherits FriendsBase

4. To set up this form, add a Panel control called pnlExisting, containing a PlaceHolder
control with an ID of phPlaces, which will be filled dynamically with a control for each
TimeLapse record found, in much the same way that you saw in Chapter 3. Also add an
HTML table with eight rows and two columns, and the border property set to 0, with
text boxes and a combo box for the creation of a new record. Finally, add a button for
performing the insert operation. Figure 4-11 shows what the page should look like. Use
the ID properties shown inside the control in Figure 4-11 for each control. The Add but-
ton’s ID should be btnAdd.

Figure 4-11. The design of the Assign Places form

CHAPTER 4 ■ ADO.NET144

5. Create a new style class called BigTextBox in iestyle.css. This will be for descriptions
and notes, which are usually longer than can be contained in regular text boxes. This
style is just a copy of the TextBox style with a bigger value for width:

.BigTextBox
{
border-right: #c7ccdc 1px solid;
border-top: #c7ccdc 1px solid;
border-left: #c7ccdc 1px solid;
border-bottom: #c7ccdc 1px solid;
font-size: 8pt;
font-family: Tahoma, Verdana, 'Times New Roman';
width: 350px;

}

6. Set CssClass to BigTextBox for txtDescription, cbPlaces, and txtNotes. All of the other
text boxes have the SmallTextBox value, and the button has Button. Set the txtNotes
text box Multiline property to True.

■Note You could use RequiredFieldValidator controls on each of the required fields here, and you could
use a CompareValidator control to ensure that the period is sensible (so that YearIn is forced to be equal to
or less than YearOut, for example. In this example, however, we’ll focus on only the data-access aspects.

7. Add the following code to the Page_Load() method (it just sets the agenda for the work
to come):

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
MyBase.HeaderMessage = "Assign Places"

LoadDataSet()
InitPlaces()
InitForm()

End Sub

8. The first method, LoadDataSet(), will load a DataSet with all of the information needed
by this page, and it will necessarily be available as a class-level variable. Once you fin-
ish loading the data, the other two methods will initialize the user interface. Add the
following code block below the Page_Load() method:

Dim ds As DataSet

Private Sub LoadDataSet()
Dim con As New SqlConnection(_
"data source=.;initial catalog=FriendsData;" + _
"user id=apress;pwd=apress")

CHAPTER 4 ■ ADO.NET 145

' Select the place's timelapse records, descriptions, and type
Dim sql As String
sql = "SELECT " + _
"TimeLapse.*, Place.Name AS Place, " + _
"PlaceType.Name AS Type " + _
"FROM " + _
"TimeLapse, Place, PlaceType " + _
"WHERE " + _
"TimeLapse.PlaceID = Place.PlaceID AND " + _
"Place.TypeID = PlaceType.TypeID AND " + _
"TimeLapse.UserID = '" + _
Context.User.Identity.Name + "'"

' Initialize the adapters
Dim adExisting As New SqlDataAdapter(sql, con)
Dim adPlaces As New SqlDataAdapter(_
"SELECT * FROM Place ORDER BY TypeID", con)
Dim adPlaceTypes As New SqlDataAdapter(_
"SELECT * FROM PlaceType", con)

con.Open()
ds = New DataSet

Try
' Proceed to fill the dataset
adExisting.Fill(ds, "Existing")
adPlaces.Fill(ds, "Places")
adPlaceTypes.Fill(ds, "Types")

Finally
con.Close()

End Try
End Sub

9. The InitPlaces() method uses the DataSet you just filled to add items to the panel at
the top of the page: a summary of each existing place and a link to allow the user to
delete it. You saw how to create dynamic content in Chapter 3, but now you use data
from the DataSet to drive the process. Add this method below to the previous one:

Private Sub InitPlaces()
phPlaces.Controls.Clear()
Dim msg As String = _
"Type: {0}, Place: {1}. From {2}/{3} to {4}/{5}. Description: {6}."

Dim row As DataRow
For Each row In ds.Tables("Existing").Rows
Dim lbl As New LiteralControl

CHAPTER 4 ■ ADO.NET146

' Format the msg variable with values in the row
lbl.Text = String.Format(msg, _

row("Type"), row("Place"), _
row("MonthIn"), row("YearIn"), _
row("MonthOut"), row("YearOut"), row("Name"))

Dim btn As New LinkButton
btn.Text = "Delete"

' Pass the LapseID when the link is clicked
btn.CommandArgument = row("LapseID").ToString()

' Attach the handler to the event
AddHandler btn.Command, AddressOf OnDeletePlace

' Add the controls to the placeholder
phPlaces.Controls.Add(lbl)
phPlaces.Controls.Add(btn)
phPlaces.Controls.Add(New LiteralControl("
"))

Next
' Hide the panel if there are no rows
If ds.Tables("Existing").Rows.Count > 0 Then
pnlExisting.Visible = True

Else
pnlExisting.Visible = False

End If
End Sub

10. In the previous method, you attached the same handler to all of the link buttons, but
because each of them has a different CommandArgument, you can use that value to deter-
mine which row to delete. The code to perform the deletion is very similar to what you
have seen so far. Add this method, which will handle the user action:

Private Sub OnDeletePlace(ByVal sender As Object, _
ByVal e As CommandEventArgs)
' e.CommandArgument receives the LapseID to delete
Dim con As New SqlConnection(_
"data source=.;initial catalog=FriendsData;" + _
"user id=apress;pwd=apress")
Dim cmd As New SqlCommand(_
"DELETE FROM TimeLapse WHERE LapseID='" + _
e.CommandArgument.ToString() + "'", con)

con.Open()

Try
cmd.ExecuteNonQuery()

CHAPTER 4 ■ ADO.NET 147

Finally
con.Close()

End Try

LoadDataSet()
InitPlaces()

End Sub

11. The InitForm() method initializes the combo box with the available places the first
time the page is accessed. Add it as follows:

Private Sub InitForm()
' Initialize combo box
If Not Page.IsPostBack Then
' Access the table by index
Dim row As DataRow
For Each row In ds.Tables(1).Rows
' Find the related row in Types data table (by name now)
Dim types() As DataRow = ds.Tables("Types").Select(_
"TypeID='" + row("TypeID") + "'")

' Access row columns by name, using default property
Dim text As String = types(0)("Name") + ": " + row("Name")
' We can access the row's column by index too
Dim value As String = row(0).ToString()

cbPlaces.Items.Add(New ListItem(text, value))
Next

End If
End Sub

12. Double-click btnAdd in the Design view, and add the following code to the event handler:

Private Sub btnAdd_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnAdd.Click
If Page.IsValid Then
Dim values As New ArrayList(9)

Dim sql As String = "INSERT INTO TimeLapse " + _
"(LapseID, PlaceID, UserID, Name, " + _
"YearIn, YearOut, MonthIn, MonthOut, Notes) " + _
"VALUES " + _
"('{0}', '{1}', '{2}', '{3}', " + _
"{4}, {5}, {6}, {7}, '{8}')"

values.Add(Guid.NewGuid().ToString())
values.Add(cbPlaces.SelectedItem.Value)

CHAPTER 4 ■ ADO.NET148

values.Add(Context.User.Identity.Name)
values.Add(txtDescription.Text)
values.Add(txtYearIn.Text)
values.Add(txtYearOut.Text)

If txtMonthIn.Text.Length <> 0 Then
values.Add(txtMonthIn.Text)

Else
values.Add("Null")

End If

If txtMonthOut.Text.Length <> 0 Then
values.Add(txtMonthOut.Text)

Else
values.Add("Null")

End If

If txtNotes.Text.Length <> 0 Then
values.Add(txtNotes.Text)

Else
values.Add("Null")

End If

sql = String.Format(sql, values.ToArray())

' Connect and execute the query
Dim con As New SqlConnection(_
"data source=.;initial catalog=FriendsData;" + _
"user id=apress;pwd=apress")
Dim cmd As New SqlCommand(sql, con)
con.Open()
Try
cmd.ExecuteNonQuery()

Finally
con.Close()

End Try

LoadDataSet()
InitPlaces()

Else
Throw New InvalidOperationException("Invalid page data.")

End If
End Sub

As you can see, it’s just a simple INSERT statement that creates a new row for the
TimeLapse table.

CHAPTER 4 ■ ADO.NET 149

13. Compile and run the project with AssignPlaces.aspx as the start page. After logging in
as the apress user, you should see something like the page shown in Figure 4-12.

Figure 4-12. The Assign Places page

How It Works

Of the three methods that deal with what the user sees on the screen, the only one that inter-
acts directly with the database is LoadDataSet(). Once the DataSet object has been filled with
data by this procedure, you don’t need to refer to the database in InitPlaces() or InitForm().
This is a direct result of the disconnected nature of DataSet objects.

The data adapter class has a constructor that receives a SQL statement that’s used to
initialize its SelectCommand property. This has the same effect as setting this property to an
existing command later on. To the same constructor, you also pass the SqlConnection that
the command should use. In the code, you can see three adapters being created: one to
retrieve full details, one that’s just for places, and one that’s just for place type names.

CHAPTER 4 ■ ADO.NET150

' Initialize the adapters
Dim adExisting As New SqlDataAdapter(sql, con)
Dim adPlaces As New SqlDataAdapter(_
"SELECT * FROM Place ORDER BY TypeID", con)
Dim adPlaceTypes As New SqlDataAdapter(_
"SELECT * FROM PlaceType", con)

Because you’re only retrieving data here (as opposed to editing or updating it), you don’t
need to configure anything else, so you can just proceed to connect to the database and create
a new DataSet object:

con.Open()
ds = new DataSet

Inside the try block, you just call each adapter’s Fill() method, passing the DataSet
object and name that you want to give to the DataTable that’s created as a result. If you didn’t
specify a name here, you would get tables called Table1, Table2, and so on.

Try
' Proceed to fill the dataset
adExisting.Fill(ds, "Existing")
adPlaces.Fill(ds, "Places")
adPlaceTypes.Fill(ds, "Types")

Finally

Once you’ve filled the DataSet, you can access its data using various approaches. In
InitPlaces(), which fills the placeholder at the top of the user’s screen, you use a couple of
different methods. First, you access the table from the DataSet’s Tables property, using the
table name you specified when you filled it:

Dim row As DataRow
For Each row In ds.Tables("Existing").Rows

Now, you can use the For Each construct to iterate through the rows of the table in the
same way that you would iterate through any standard collection or array. The DataRow class
contains a default property that takes the column name (or its index), and retrieves the value
in that column:

lbl.Text = String.Format(msg, _
row("Type"), row("Place"), _
row("MonthIn"), row("YearIn"), _
row("MonthOut"), row("YearOut"), row("Name"))

The InitPlaces() method is just creating a literal control and a link button that’s initial-
ized with the values of each row. The link button will pass the row’s LapseID column value,
which is the primary key of the TimeLapse table, to the corresponding event handler:

CHAPTER 4 ■ ADO.NET 151

Dim btn As New LinkButton
btn.Text = "Delete"

' Pass the LapseID when the link is clicked
btn.CommandArgument = row("LapseID").ToString()

' Attach the handler to the event
AddHandler btn.Command, AddressOf OnDeletePlace

This way, the handler you attached to all the buttons will know which record to delete, as
this value is used to build the DELETE SQL statement:

Private Sub OnDeletePlace(ByVal sender As Object, _
ByVal e As CommandEventArgs)
' e.CommandArgument receives the LapseID to delete
Dim con As New SqlConnection(_
"data source=.;initial catalog=FriendsData;" + _
"user id=apress;pwd=apress")
Dim cmd As New SqlCommand(_
"DELETE FROM TimeLapse WHERE LapseID='" + _
e.CommandArgument.ToString() + "'", con)

Finally, in InitForm(), which sets up the values in the combo box, you use some of the
other choices offered by a DataSet. The most interesting one is that while you iterate through
the records in the Places table, you perform a Select in the Types table to find the row corre-
sponding to the current TypeID:

Dim types() As DataRow = ds.Tables("Types").Select(_
"TypeID='" + row("TypeID") + "'")

The Select() method of the DataTable object receives an expression that’s equivalent to
an SQL WHERE expression and retrieves an array of DataRow objects matching the criteria. In this
case, you know there will be only one row returned. This way, you’re recovering the relation-
ship between these two tables without any dependence on the database store! Next, you use
the row’s default property to retrieve a field value by name:

Dim text As String = types(0)("Name") + ": " + row("Name")

The value can also be retrieved using the default property overload that receives the field
index:

Dim value As String = row(0).ToString()

Then you add a new item to the combo box, using the values you recovered:

cbPlaces.Items.Add(new ListItem(text, value))

Now that you’ve added the Add Places page, to round off our application for this chapter,
you need to update Default.aspx to reflect the latest addition in functionality to the Friends
Reunion application.

CHAPTER 4 ■ ADO.NET152

Try It Out: Update Default.aspx Previously, when you were transferred to the Default.aspx page
after logging in to the application, there was only one link present, namely to the News.aspx
page. Now that you have another page that the user can access, you should include this also.

1. Open the Default.aspx code-behind page.

2. Add the following code in the Page_Load() method:

' Create a new blank table row, this time for Assign Places link
row = New TableRow

' Assign Places link
img = New System.Web.UI.WebControls.Image
img.ImageUrl = "Images/flatscreenkeyb.gif"
img.ImageAlign = ImageAlign.Middle
img.Width = New Unit(24, UnitType.Pixel)
img.Height = New Unit(24, UnitType.Pixel)

' Create the cell and add the image
cell = New TableCell
cell.Controls.Add(img)

' Add the cell to the row
row.Cells.Add(cell)

' Set up the Assign Places link
lnk = New HyperLink
lnk.Text = "Assign Places"
lnk.NavigateUrl = "AssignPlaces.aspx"

' Create the cell and add the link
cell = New TableCell
cell.Controls.Add(lnk)

' Add the new cell to the row
row.Cells.Add(cell)

' Add the new row to the table
tb.Rows.Add(row)

It will come as no surprise to you that it looks very similar to the code required to render
the News link. With this modification to the code, the Default.aspx page looks like Figure 4-13.

CHAPTER 4 ■ ADO.NET 153

Figure 4-13. The modified Default page

Summary
Data access is essential for all but the most trivial web applications. You have learned the
basics of ADO.NET, Microsoft’s new strategy for data access, and you have seen how the
various pieces fit in the whole picture of web application development.

■Tip For a more complete discussion of ADO.NET, refer to A Programmer’s Guide to ADO.NET in C#, by
Mahesh Chand (Apress, 2002; ISBN: 1-893115-39-9), or Applied ADO.NET: Building Data-Driven Solutions,
by Mahesh Chand and David Talbot (Apress, 2003; ISBN: 1-59059-073-2).

In this chapter, you started to add some data-aware pages to your application, which
allowed you to leverage the power of data-driven pages. We discussed how to programmati-
cally access a database and handle its data. You were able to display that data in web forms,
taking advantage of the techniques you learned about in previous chapters.

Up to now, however, you have been typing a lot of code manually. VS .NET goes much
further in programmer productivity, introducing the key concept of components. In the next
chapter, we’ll discuss this concept, and you’ll discover what components are and how they
work in conjunction with the IDE to perform some automatic coding tasks. We’ll also dig into
some exciting new features introduced by VS .NET to simplify web forms and data interaction
through data binding. You’ll learn how to use the more advanced wizards provided by compo-
nents, and how to leverage web server controls to display and edit data in highly customizable
ways through the use of another technique: templates.

CHAPTER 4 ■ ADO.NET154

Data Binding

In Chapter 4, you learned how to interact with a database using the ADO.NET classes, and in
this chapter, we’ll build on that. We’ll first take a look at VS .NET’s new component architec-
ture. This opens the door to the automatic generation of data-access code, and you’ll see how
that works in the latter part of this chapter.

We’ll also take a tour of the new data-binding capabilities provided by ASP.NET, a feature
that allows developers to write less code and let the platform do the heavy work of transferring
data from ADO.NET objects to web forms. You’ll then learn how to take advantage of another
feature that can be used in combination with data binding: templates. Templates allow you to
customize the look and feel of the controls in which your data is displayed—from the IDE and
with full drag-and-drop support.

In this chapter, we will cover the following topics:

• An introduction to components, to get you up and running

• Simple data binding to show data on a form

• More complex data binding that involves sets of data and presents it in tabular fashion,
automatically

• The interaction between .NET components and the IDE that lets VS .NET generate code
on your behalf

• Typed datasets, which improve the experience of data binding at design-time, and offer
some other improvements to your code

• Templates, which you can apply to customize the display of complex sets of data

• How to enable the editing of data through your web pages

Introduction to Components
Having come this far in the book, you may be starting to wonder what happened to the Visual
part of VS .NET and VB .NET. We’ve been writing code as if we had nothing better than Notepad!
Fortunately, VS .NET does come with some great productivity enhancements, including wiz-
ards and designers that can make most data-related work a breeze. Now that you know the
basics of ADO.NET, you’ll have a better understanding of what’s going on behind the scenes
when you use these VS .NET features.

155

C H A P T E R 5

■ ■ ■

CHAPTER 5 ■ DATA BINDING156

The fundamental concept that supports these features of the VS .NET IDE is the compo-
nent. Putting out of your mind for a moment the various other meanings that have been
ascribed to this word over the years, a component in VS .NET is a class that (directly or indi-
rectly) implements the System.ComponentModel.IComponent interface. Most of the time, such
a class will inherit from System.ComponentModel.Component.

Placing a Component on a Form
A VS .NET component closely interacts with the IDE. You can drop a component onto a
designer (like the Web Forms Designer) page, and it will appear as an item in a separate section
on the page, below the UI elements. All of the ADO.NET classes you’ve seen are components,
and as such, they also cooperate with and use services provided by the designer. For example,
Figure 5-1 shows a SqlConnection component that’s been dropped from the Toolbox’s Data tab
onto an empty page.

Figure 5-1. A SqlConnection component added to an empty page

When a component is placed on a designer page, it starts interacting with it, providing
properties and wizards that the developer can use to configure the component. Behind the
scenes, the designer works together with the component to generate source code representing
the actions the developer performs. As always, the best way to understand what’s going on is
to build an example.

Try It Out: Configure a Connection Component In this very short demonstration, you’ll see what
happens when you place a database component onto a form in a VS .NET designer.

1. To your FriendsReunion project, add a new web form called Components.aspx. We’ll use
this form to experiment with components.

2. In the Toolbox, from the Data tab, drag-and-drop a SqlConnection component
onto the form. Use the Properties browser to change its Name property to cnFriends.
Also, from the drop-down list next to the ConnectionString property, you can select
<New Connection...> and use the Data Link dialog box to configure a new connection,

or you can use the FriendsData connection created as explained in Appendix B. (This
is another advantage of creating database connections with the Server Explorer, as
described in Appendix B.)

3. Switch to the Code view and take a look at the code that has been generated for you.

How It Works

Components don’t have a UI, so they appear in a separate section at the bottom of the page.
In this example, you used the component to build the value for the ConnectionString property.
After the steps you performed, the code-behind page contains the following:

Public Class Components
Inherits System.Web.UI.Page

#Region " Web Form Designer Generated Code "

'This call is required by the Web Form Designer.
<System.Diagnostics.DebuggerStepThrough()> _
Private Sub InitializeComponent()
Me.cnFriends = New System.Data.SqlClient.SqlConnection
'
'cnFriends
'
Me.cnFriends.ConnectionString = [YOUR_CONNECTION_STRING]

End Sub
Protected WithEvents cnFriends As System.Data.SqlClient.SqlConnection

'NOTE: The following placeholder declaration is required by the Web Form...
'Do not delete or move it.
Private designerPlaceholderDeclaration As System.Object

Private Sub Page_Init(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Init
'CODEGEN: This method call is required by the Web Form Designer
'Do not modify it using the code editor.
InitializeComponent()

End Sub

#End Region

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
'Put user code to initialize the page here

End Sub

End Class

CHAPTER 5 ■ DATA BINDING 157

The Web Forms Designer generated the code in the #Region section automatically.
It also defined a protected variable, cnFriends, for the connection you added. The
InitializeComponent() method creates the connection and sets the ConnectionString
that you assigned through the Properties browser. This method is called when the page
is initialized, in the Page_Init() event handler. There is no magic here; there are just
plain old variables and initialization code that you could have written by hand.

In truth, the component that you’ve added here offers only limited advantages over
manual coding. But later on in the chapter, you’ll see how other components, such as the
SqlDataAdapter component, can perform some quite complex tasks on your behalf.

Configuring Dynamic Properties
Another advantage of components is the availability of dynamic properties, which can be con-
figured to load their values from the application configuration file, Web.config. In VS .NET,
dynamic properties live in a special section under the Configurations heading in the Proper-
ties browser. Once again, the designer works together with the component to generate the
appropriate code, this time for retrieving data from Web.config. Let’s see how that happens.

Try It Out: Configure a Dynamic Connection String In this example, you will modify the SqlConnection
component you just added to use a dynamic property for the connection string. This is a signifi-
cant improvement over the approach you’ve been using so far, which involved hard-coding the
value everywhere you needed access to the database.

1. Open the Components.aspx web form in the Design view and select the cnFriends
component.

2. In the Properties browser, expand the (DynamicProperties) element. Click the ellipsis
button next to ConnectionString, and then check the option to map the property to a
key in the configuration file, as shown in Figure 5-2. Then click OK.

In the Properties browser, you’ll see that a small icon has appeared next to the
ConnectionString property under the Data category, indicating that this is now a dynamic
property.

How It Works

The (DynamicProperties) section in the Properties browser works in conjunction with compo-
nents, showing only the properties that can be dynamically configured. If you now take a look
at the Web.config file, you’ll see that something similar to the following element has been
added:

<appSettings>
<!-- User application and configured property settings go here.-->
<!-- Example: <add key="settingName" value="settingValue"/> -->
<add key="cnFriends.ConnectionString" value="[YOUR CONNECTION STRING]" />

</appSettings>

CHAPTER 5 ■ DATA BINDING158

Figure 5-2. Setting a dynamic property for a component

If you look again at the code-behind page, you’ll see that there have been some changes
there, too:

<System.Diagnostics.DebuggerStepThrough()> _
Private Sub InitializeComponent()

Dim configurationAppSettings As System.Configuration.AppSettingsReader = _
New System.Configuration.AppSettingsReader

Me.cnFriends = New System.Data.SqlClient.SqlConnection
'
'cnFriends
'
Me.cnFriends.ConnectionString = CType(configurationAppSettings.GetValue(_
"cnFriends.ConnectionString", GetType(System.String)), String)

End Sub

The new configurationAppSettings variable is an instance of the AppSettingsReader
class, which allows access to the values in the Web.config file. The property’s value is retrieved
with this object, using the key that was built by the dynamic property, and cast explicitly to a
string. Whenever you change the setting in the configuration file, this page will automatically
use the new value.

There’s actually another method of getting the values that you store in Web.config file. You
can modify the code that you’ve been using to create connection objects so far to use the fol-
lowing syntax:

Dim con As New SqlConnection(_
ConfigurationSettings.AppSettings("cnFriends.ConnectionString"))

CHAPTER 5 ■ DATA BINDING 159

In fact, you can use the Web.config file to store pretty much anything you want, and then
retrieve it with this syntax. This way, you can use this central repository for both the compo-
nents added through the IDE and those from your custom code, significantly improving
maintenance.

The advantage of this shortcut over an AppSettingsReader object is that it requires less
code, but the reader object can offer better performance if you need to retrieve several settings
at once. This is because it caches the <appSettings> section as you read it and performs physi-
cal access to the file only once. If the Web.config file is fairly big, using AppSettingsReader can
be more suitable.

■Tip The ConfigurationSettings class is located in the System.Configuration namespace, so you
can either add an Imports statement or use the fully qualified class name.

With the database concepts you’ve learned so far, you’re ready to build some useful
data-aware applications, but this introduction to components has been just a peek into the
possibilities that are available in VS .NET. We’ll be taking a much closer look at these compo-
nents later in this chapter. You’ll see how they reduce the amount of code you need to type
and provide advanced functionality for your applications, with hardly any effort. For now
though, we’ll move on to the main topic of this chapter: data binding.

Data Binding
Recall your work with the NewUser.aspx page in Chapter 4. When you added the capability to
preload the form with information from the database (for the current users, to allow them to
edit their profiles), you used code in the code-behind page to set the values to be displayed in
the various controls. The code looked like this:

txtEmail.Text = reader("Email").ToString()
txtFName.Text = reader("FirstName").ToString()
txtLName.Text = reader("LastName").ToString()
txtLogin.Text = reader("Login").ToString()
txtPhone.Text = reader("PhoneNumber").ToString()
txtPwd.Text = reader("Password").ToString()

The need to display data from a data source— a data reader object, in this case—is a situ-
ation that crops up time and time again. For this reason, ASP.NET supports the concept of
data binding, which frees you from writing code like this. The idea behind data binding is that
the link between the data source and the controls that will display it is known at design-time,
and this link will rarely (if ever) change at runtime.

To use data binding, you provide each control property that will display data at runtime
with a binding expression that represents that data at design-time. At runtime, ASP.NET
resolves the binding expression to its actual value and assigns that to the control property
instead.

CHAPTER 5 ■ DATA BINDING160

Using Binding Expressions
A binding expression can be specified in HTML source code, in place of any web server con-
trol’s property value, such as:

<asp:Label id="lblPending" runat="server" Text='<%# EXPRESSION %>' />

Here, you see a data binding expression, <%# EXPRESSION %>, replacing the Text property
value of a Label web server control. This is probably the most common use, but there’s noth-
ing to stop you from using data binding for the label’s BackColor property, if that’s what you
want to do. This use of data binding is called simple binding, because resolution of the expres-
sion results in a single value.

To get the expression evaluated and have the results placed in the control’s property, you
need to call the control’s DataBind() method. This method is inherited from the Control base
class, and as such, it is available to all controls, even the page itself. Its effects propagate to all
child controls, too, so a call at the page level will cause all of the data binding expressions on a
page to be evaluated, and the results will be placed in the corresponding properties.

A binding expression is evaluated in the context defined by the actual Page class instance
built from the code-behind source; that is, all of the page-level variables, methods, and prop-
erties that are available in the code-behind page can be used as binding expressions. For
example, you could have a method called GetPending() that performs a database query and
returns a string to be bound, and use that as follows:

<asp:label id="lblPending" runat="server" Text="<%# GetPending() %>" />

Similarly, if you had a page-level variable called userID, you could bind that to any control
you wanted with the following code (for a label in this case):

<asp:label id="lblPending" runat="server" Text="<%# userID %>" />

Just as easily, you could refer to a dataset variable defined in the code-behind page to
show the count of the rows in a table:

<asp:label id="lblPending" runat="server"
Text="<%# dsUser.Tables(0).Rows.Count %>" />

As you can see, the mechanism is very flexible. You just need to perform the appropriate
variable initialization or method coding.

If you intend to use data binding, though, you need to do a little advance planning. Typi-
cally, you’ll define a page-level variable to hold the data (say, a dataset), fill it using a data
adapter as you saw in Chapter 4, and finally call DataBind() in the page itself. This will cause
all the controls that have binding expressions to be populated with the values from the just-
filled dataset.

■Note The code-behind members to be used in binding expressions must be either Public or Protected
in order to be accessible at the moment binding occurs.

CHAPTER 5 ■ DATA BINDING 161

Formatting with the DataBinder Class
If you need to format a value prior to displaying it, you can use a helper class that’s provided
in the System.Web.UI namespace, called DataBinder. This class contains a static method called
Eval(), which receives an object, an expression, and (optionally) a format string. The object is
used as the context in which to evaluate the expression, and the result of the evaluation is for-
matted using the last parameter, if specified.

If you wanted to apply special formatting to a user’s birth date, for example, you could
use this:

<asp:label id="lblBirth" runat="server"
Text='<%# DataBinder.Eval(dsUser.Tables(0).Rows(0), _
"(DateOfBirth)", "{0:MMMM dd, yyyy}") %>'>

</asp:label>

Here, the first parameter to Eval() is the row to display the value from, and it is used as the
context in which the second parameter is evaluated—the result of retrieving the DateOfBirth
field through the Row default property; that is, the default property for the row at index 0. If you
were retrieving a direct property, you wouldn’t need the parentheses. Note that you must obey
VB rules when splitting lines. Finally, the format string is applied. Notice that this part of the
expression includes double quotes. That’s why single quotes surround the code that assigns the
Text property value (Text='...'). You cannot replace quotes the other way around, because
single quotes cannot be used to enclose strings in the VB language.

You may have noticed that the default property of the DataRow object (the object accessed
by dsUser.Tables(0).Rows(0)) receives a string. However, the code uses the opening parenthe-
sis, followed directly by the column name and then the closing parenthesis, without quotes.
This facility of the DataBinder class saves you a lot of duplicate quotes. The “true” value that
would be used is as follows:

DataBinder.Eval(dsUser.Tables(0).Rows(0), "(""DateOfBirth"")", "{0:MMMM dd, yyyy}")

This relaxed syntax is valid only for the DataBinder.Eval() method, and it certainly makes the
code more readable!

■Caution DataBinder makes pretty heavy use of reflection for its dynamic evaluation capabilities, which
hinders performance. You may want to consider alternative ways of getting at the data, such as explicit
simple data binding through methods or properties at the page level.

Now let’s see how this functionality can be useful in the Friends Reunion application.

Using Data Binding
The Friends Reunion application is intended to allow users to get in touch with “old friends.”
To handle this, when users make requests for fellow users to contact them, a record will be
placed in the Contact table. This table has the following structure:

CHAPTER 5 ■ DATA BINDING162

In order to respect the user’s privacy, the site will never disclose a contact’s details without
approval. Therefore, when a new request for contact is placed in the Contact table, it will have
its IsApproved flag set to 0, indicating that this is a request waiting to be approved. After the
user has approved the contact, the IsApproved flag is updated, and the other user will be able
to access the contact information.

For example, say that you spot your old friend Victor listed at the Friends Reunion site,
and he has said it’s okay for you to contact him. You would then be given access to his per-
sonal information to arrange a meeting or whatever. In the following discussion, we’ll focus
on the view of the target user—the one specified in the DestinationID, your friend Victor.

Before the target user approves a contact that has placed a request, he will surely want to
see that user’s details; that is, Victor will want to make sure that you’re really an old friend. To
allow this verification, the application will use a form that receives a RequestID as a query
string parameter and displays information about the user who is requesting contact (you, in
this example) in a table, taking advantage of data binding. The form’s code-behind page will
include a method that counts the number of pending requests the user has, and use data
binding to display this value, too. Finally, a button will allow Victor to update the IsApproved
flag, and thus approve the contact. Once the flag has been updated, Victor will be redirected
to the page he came from, which will be News.aspx.

Try It Out: Display Information About Fellow Users Using Data Binding Eventually, the page you’re
about to create will arrive as a result of navigation from News.aspx, in the course of which the
RequestID will be passed as a query string. For now, while testing this example, you’ll assemble
the string, but don’t let that put you off—we’ll deal with News.aspx later.

1. Add a new web form called ViewUser.aspx to the project, adding the link to the
iestyle.css stylesheet (you can drag-and-drop the file to the design surface as usual),
and changing the code-behind page to inherit from the FriendsBase class.

2. Add a style rule called TableLines to the stylesheet. This will help to make the HTML
tables look consistent across the site:

.TableLines
{
border-bottom: #c7ccdc 1px solid;
border-left: #c7ccdc 1px solid;
border-right: #c7ccdc 1px solid;
border-top: #c7ccdc 1px solid;
padding: 5px 5px 5px 5px;

}

CHAPTER 5 ■ DATA BINDING 163

Notice that we’re using the abbreviated syntax for padding, which contains the values
for all four sides in a single value.

■Tip There’s a lot more to CSS than what we’ll be using. You can learn more about it in Cascading Style
Sheets, by Owen Briggs, et al (Apress, 2004; ISBN: 1-59059-231-X) and the W3C CSS specifications
(http://www.w3.org/Style/CSS/).

3. Add an HTML table with six rows and two columns. Set the following properties for it:

• (id): tbLogin

• class: TableLines

• border: 0

• cellpadding: 2

• cellspacing: 2

• width: blank (remove the default value)

4. Add Label web server controls to the cells on the right, except for the last row, which
will contain a Hyperlink control, with an ID of lnkEmail. Below the table, add some
text and a label to reflect the form layout, as shown here.

5. Below the text, add a web server Button control. Set its ID to btnAuthorize, its CssClass
to Button, and its Text property to Authorize Contact.

6. Switch to the HTML view, and make the following changes to add data binding expres-
sions to the controls:

...
<body ms_positioning="FlowLayout">
<form id="Form1" method="post" runat="server">
<p>

CHAPTER 5 ■ DATA BINDING164

<table class="TableLines" id="tbLogin"
cellspacing="2" cellpadding="2"
width="300" border="0">

<tr>
<td>Name</td>
<td>
<asp:label id="lblName" runat="server"
text='<%# dsUser.Tables(0).Rows(0)("FirstName") + " " + _

dsUser.Tables(0).Rows(0)("LastName") %>'>
</asp:label></td>

</tr>
<tr>
<td>Birth Date:</td>
<td>
<asp:label id="lblBirth" runat="server"
text='<%# DataBinder.Eval(_

dsUser.Tables(0).Rows(0), _
"(DateOfBirth)", "{0:MMMM dd, yyyy}") %>'>

</asp:label></td>
</tr>
<tr>
<td>Phone Number:</td>
<td>
<asp:label id="lblPhone" runat="server"
text='<%# DataBinder.Eval(_

dsUser.Tables("User").Rows(0), _
"(PhoneNumber)") %>'>

</asp:label></td>
</tr>
<tr>
<td>Mobile Number:</td>
<td>
<asp:label id="lblMobile" runat="server"

text='<%# dsUser.Tables("User").Rows(0)("CellNumber") %>'>
</asp:label></td>

</tr>
<tr>
<td>Address:</td>
<td>
<asp:label id="lblAddress" runat="server"
text='<%# DataBinder.Eval(_

dsUser.Tables("User").Rows(0), _
"(Address)") %>'>

</asp:label></td>
</tr>
<tr>
<td>E-mail:</td>

CHAPTER 5 ■ DATA BINDING 165

<td>
<asp:hyperlink id="lnkEmail" runat="server"
navigateurl='<%# DataBinder.Eval(_

dsUser.Tables("User").Rows(0), _
"(Email)", "mailto:{0}") %>'>

Send mail
</asp:hyperlink></td>

</tr>
</table>
</p>
<p>You have
<asp:label id="lblPending" runat="server"
text="<%# GetPending() %>">

</asp:label> pending requests for contact.</p>
<p>
<asp:button id="btnAuthorize" runat="server"

text="Authorize Contact" cssclass="Button">
</asp:button>

</p>
</form>

</body>

7. Open the code-behind page and add the following Imports statements to the top of
the page:

Imports System.Configuration
Imports System.Data.SqlClient

8. Also add the DataSet as a protected variable, and perform the database access in the
Page_Load() event handler:

...
protected dsUser as DataSet

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
Dim userID As String = Request.QueryString("RequestID")

' Ensure we received an ID
If userID Is Nothing Then
Throw New ArgumentException(_
"This page expects a RequestID parameter.")

End If

' Create the connection and data adapter
Dim cnFriends As New SqlConnection(_
ConfigurationSettings.AppSettings("cnFriends.ConnectionString"))
Dim adUser As New SqlDataAdapter(_
"SELECT * FROM [User] WHERE UserID=@ID", cnFriends)

CHAPTER 5 ■ DATA BINDING166

adUser.SelectCommand.Parameters.Add("@ID", userID)

' Initialize the dataset and fill it with data
dsUser = New DataSet
adUser.Fill(dsUser, "User")

' Finally, bind all the controls on the page
Me.DataBind()

End Sub

9. The next method, GetPending(), will return the value that’s used in the lblPending
label to show the number of pending requests for the current user:

Protected Function GetPending() As String
' Create the connection and command to execute
Dim cnFriends As SqlConnection = New SqlConnection (_
ConfigurationSettings.AppSettings("cnFriends.ConnectionString"))

Dim cmd As SqlCommand = New SqlCommand (_
"SELECT COUNT(*) FROM Contact " _
"WHERE IsApproved=0 AND DestinationID=@ID", cnFriends)

cmd.Parameters.Add("@ID", Page.User.Identity.Name)
cnFriends.Open()
Try
Return cmd.ExecuteScalar().ToString()

Finally
cnFriends.Close()

End Try
End Function

10. The last piece of code that you need to add here is the handler for the Authorize but-
ton. This will just perform an update of the IsApproved flag. Double-click the button
and add the following code to the event handler:

Private Sub btnAuthorize_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnAuthorize.Click

' Create the connection and command to execute
Dim cnFriends As New SqlConnection(_
ConfigurationSettings.AppSettings("cnFriends.ConnectionString"))

Dim cmd As New SqlCommand(_
"UPDATE Contact SET IsApproved=1 " + _
" WHERE RequestID=@RequestID AND DestinationID=@DestinationID", _
cnFriends)

cmd.Parameters.Add("@RequestID", Request.QueryString("RequestID"))
cmd.Parameters.Add("@DestinationID", Page.User.Identity.Name)
cnFriends.Open()

Try
cmd.ExecuteNonQuery()

CHAPTER 5 ■ DATA BINDING 167

Finally
cnFriends.Close()

End Try

Response.Redirect("News.aspx")
End Sub

11. Finally, save and compile the project. Open a browser window, and point it to
the newly created page with the following parameter appended to the URL:
?RequestID=1A1CF6BD-9EEE-4b7d-9AB1-BEE3C3365DC9. After you log in to the
application (again, with apress as the user name and password), you should
see the page shown in Figure 5-3.

Figure 5-3. The View User page

How It Works

The code in Page_Load() starts by checking for the existence of the RequestID parameter, and
then creates a connection and a data adapter to perform the query. As you learned earlier in
this chapter, you are no longer hard-coding the connection string. Instead, you are using the
value stored in the configuration file:

Dim cnFriends As New SqlConnection(_
ConfigurationSettings.AppSettings("cnFriends.ConnectionString"))

CHAPTER 5 ■ DATA BINDING168

You are using the adapter SelectCommand property to assign the value to the parameter,
as explained in the previous chapter:

Dim adUser As New SqlDataAdapter(_
"SELECT * FROM [User] WHERE UserID=@ID", cnFriends)

adUser.SelectCommand.Parameters.Add("@ID", userID)

After you have the objects configured, you create and fill the dataset that you defined at
the class level as a protected variable:

dsUser = new DataSet()
adUser.Fill(dsUser, "User")

Now, instead of manually assigning each property to the corresponding value in the
dataset, you let the data-binding mechanism do its work and evaluate the expressions used
in the page’s HTML source. You do this by explicitly calling DataBind() at the page level, so
that every control on the page is evaluated:

Me.DataBind()

To see exactly what’s going on, though, we need to take a look at the different binding
expressions in the example, starting with the first one:

<asp:label id=lblName runat="server"
text='<%# dsUser.Tables(0).Rows(0)("FirstName") + " " + _

dsUser.Tables(0).Rows(0)("LastName") %>'>
</asp:label>

Here, you directly specify the values from the dataset variable that you defined in the code-
behind page. You’re accessing the table by its index, as well as the row, and finally retrieving
the field you’re interested in by using the default property overload that receives the column
name. Notice that you can also perform simple string concatenation inside the expression.

The next binding expression uses DataBinder.Eval() to give the date a special format:

<asp:label id=lblBirth runat="server"
text='<%# DataBinder.Eval(_

dsUser.Tables(0).Rows(0), _
"(DateOfBirth)", "{0:MMMM dd, yyyy}") %>'>

</asp:label>

You split the expression just after the row to evaluate is selected (dsUser.Tables(0).Rows(0)),
and let the method resolve the default property access with "(DateOfBirth)". Notice how you
can take advantage of the relaxed syntax we talked about: you don’t need additional quotes
around the column name. The expression below it is just the same, but without formatting,
for the PhoneNumber column.

<asp:label id=lblPhone runat="server"
text='<%# dsUser.Tables("User").Rows(0)("CellNumber") %>'>

</asp:label>

CHAPTER 5 ■ DATA BINDING 169

This is just to show that if you don’t use DataBinder.Eval(), you need to code the expression
as valid VB code. In this case, that means passing the proper quoted string to access the col-
umn value. The next expression after that follows the pattern with DataBinder.Eval().

You’re also taking advantage of named access to the tables:

<asp:hyperlink id=lnkEmail runat="server"
navigateurl='<%# DataBinder.Eval(_

dsUser.Tables("User").Rows(0),
"(Email)", "mailto:{0}") %>'>

Send mail
</asp:hyperlink>

The third argument to the Eval() method here applies formatting, just as if the following were
called directly in the code:

String.Format("mailto:{0}", dsUser.Tables("User").Rows(0)("Email"))

Actually, in this case, you could even use this String.Format statement instead of the original
one, which would result in a slightly better performance.

At the bottom of the page is a simpler data binding expression, where you bind the
lblPending label to the GetPending() method created in the code-behind page:

<asp:label id=lblPending runat="server"
text="<%# GetPending() %>">

</asp:label>

The GetPending() method itself simply returns the count of pending requests for the current
user in the Contact table:

Dim cmd As SqlCommand = New SqlCommand (_
"SELECT COUNT(*) FROM Contact " _
"WHERE IsApproved=0 AND DestinationID=@ID", cnFriends)

The btnAuthorize handler just performs an update and redirects the user to the News.aspx
page. To use the command, you call ExecuteNonQuery(), as you don’t expect a result to be
returned.

Binding to Sets of Data
Up to now, you have been binding to single items of data; each of the binding expressions has
selected just one value from the database. In order to generate the table on the ViewUser.aspx
page, you needed to write a different expression for each cell. But there’s an easier way: to
display sets of data, you can use some of the controls provided with ASP.NET that support
binding to multiple items.

ASP.NET comes with three controls for displaying sets of data: DataGrid, DataList, and
Repeater. These controls provide a DataSource property that can be set to point to the data you
want to display. When this type of binding is used, the control itself is in charge of iterating
through the data source and formatting the data for display, in a fashion that’s configured
using the control’s properties.

CHAPTER 5 ■ DATA BINDING170

The concept of a data source is fairly wide here, and is by no means a synonym for dataset.
These controls can be bound to any set of data, provided that the object containing the data
implements the IEnumerable interface. This definition certainly includes the DataSet object,
but also encompasses the ArrayList, a collection, and even an array or arbitrary objects.

In our application, we want to display the current user’s list of pending requests for con-
tact. This information can be easily displayed in tabular format, so we will use a DataGrid
control.

Try It Out: Display Pending Contacts in a DataGrid The process you’ll follow here involves filling a
DataSet object with the data, setting it to be the data source for the grid, and calling the grid’s
DataBind() method. In addition, the control will be placed inside a panel, so you can later
hide it if there are no pending requests. As the starting point, you’ll use the News page that
you created in Chapter 3.

1. Open the News.aspx page. Remove its existing controls (calendar, a combo box, the
user controls, and so on), because they aren’t of much use any more. Also, you’ll recall
that the header and footer controls were moved to the FriendsBase base class, so you
should make this page inherit from that one. Once you’ve tidied up a little, the page
source should look like the following:

<%@ Page language="vb" Codebehind="News.aspx.vb"
AutoEventWireup="false"
Inherits="FriendsReunion.News" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<html>
<head>
<title>News</title>
<link href="Style/iestyle.css" rel="stylesheet" type="text/css">

</head>
<body ms_positioning="FlowLayout">
<form id="Form1" method="post" runat="server">
</form>

</body>
</html>

2. In the Design view for the News.aspx file, drop a Panel web control onto the form and
set its ID to pnlPending.

3. Change the text inside the panel to something meaningful, such as These users have
requested to contact you:, and add a carriage return.

4. Drop a DataGrid web control inside the panel and set its ID to grdPending.

5. Add the following namespace Imports statements:

Imports System.Configuration
Imports System.Data.SqlClient

CHAPTER 5 ■ DATA BINDING 171

6. Switch to the code-behind page, delete the cbDay_SelectedIndexChanged() and
calDates_SelectionChanged() methods, and change the Page_Load() handler as
follows:

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
' Configure the icon and message
MyBase.HeaderIconImageUrl = "~/Images/winbook.gif"
MyBase.HeaderMessage = "News Page"
Dim sql As String = _
"SELECT " + _
"[User].FirstName, [User].LastName, " + _
"Contact.Notes, [User].UserID " + _
"FROM [User], Contact WHERE " + _
"DestinationID=@ID AND IsApproved=0 AND " + _
"[User].UserID=Contact.RequestID"

' Create the connection and data adapter
Dim cnFriends As New SqlConnection(_
ConfigurationSettings.AppSettings("cnFriends.ConnectionString"))

Dim adUser As New SqlDataAdapter(sql, cnFriends)
adUser.SelectCommand.Parameters.Add("@ID", Page.User.Identity.Name)
Dim dsPending As DataSet = New DataSet

' Fill dataset and bind to the datagrid
adUser.Fill(dsPending, "Pending")
grdPending.DataSource = dsPending
grdPending.DataBind()

End Sub

7. Set News.aspx as the start page, and then save and run it. After the usual apress login,
you’ll see a list of users who have asked to contact you, as well as their user IDs on the
far right of the table, as shown in Figure 5-4.

8. Once you’re satisfied that everything works as described, go back to News.aspx, right-
click the DataGrid, and select Auto Format. Play with the different styles, which will
surely remind you of Excel’s auto-format feature. Look at how the page source changes
when you modify the look and feel of the grid, and how these settings are also available
for modification in the Style section of the Properties browser for the DataGrid. For
now, set the format of the DataGrid to Simple1.

CHAPTER 5 ■ DATA BINDING172

Figure 5-4. The News page with a DataGrid control

How It Works

Once again, you perform the data binding programmatically, at page-loading time. To do so,
you first query the database for records in the Contact table that have the IsApproved flag set
to 0 and for which the DestinationID matches the current user:

Dim sql As String = _
"SELECT " + _
"[User].FirstName, [User].LastName, " + _
"Contact.Notes, [User].UserID " + _
"FROM [User], Contact WHERE " + _
"DestinationID=@ID AND IsApproved=0 AND " + _
"[User].UserID=Contact.RequestID"

You then create the connection and the data adapter as usual, set the @ID parameter, and
fill a new DataSet. Finally, you set this DataSet to be the data source for the grid, and call the
grid’s DataBind() method:

grdPending.DataSource = dsPending
grdPending.DataBind()

CHAPTER 5 ■ DATA BINDING 173

When this method is called, the DataGrid control will iterate through the DataSet and
add a row to the table for each record it contains. If any of the available style properties are set,
such as when you’ve used the Auto Format option, the grid uses them to format the rows. By
default, the DataGrid control creates a column in the table for each column in the DataSet.

Note that you could also have chosen to declare the DataSet variable at the class level,
and used the following binding expression on the grid:

<asp:dataGrid id="grdPending" runat="server"
DataSource="<%# dsPending %>">

</asp:dataGrid>

Doing so would allow you to avoid assigning that property directly in our code, so you could
safely delete the following line:

grdPending.DataSource = dsPending

So far, so good, but we can’t be happy with the way things stand: the column names at the
top of the table are awful, and it certainly isn’t good to display the UserID column at all. Let’s
see what can be done about that.

Try It Out: Customize DataGrid Columns To improve matters, you’re going to change the headers
and use the UserID column to provide a link to the ViewUser.aspx page that you built earlier.
This way, whenever users see a new request, they can ask for additional details and, optionally,
authorize that request using the button provided in the corresponding form. Operationally
speaking, you need to override the automatic column generation feature and provide your
own column definitions instead.

1. Return to the Design view of News.aspx, right-click the DataGrid, and select Property
Builder. Notice how this user interface looks similar to that of the Style Builder you saw
in Chapter 3.

2. Select the Columns category, and uncheck the Create columns automatically at run
time check box at the top of the form.

3. From the Available columns list box, select Bound Column and click the > button three
times, to add the first three columns. Select each of the new columns from the list and
set the following property values for them:

• Header text: First Name, Data Field: FirstName

• Header text: Last Name, Data Field: LastName

• Header text: Notes, Data Field: Notes

CHAPTER 5 ■ DATA BINDING174

4. From the Available columns list box, select HyperLink Column and click the > button
again. Set its properties as follows:

• Header text: Details

• Text: View

• URL field: UserID

• URL format string: ViewUser.aspx?RequestID={0}

5. If you wish, you can play with the various formatting options that are available under
the Format and Borders sections of the Property Builder. When you’re finished, the
Property Builder should look something like Figure 5-5.

Figure 5-5. Using the Properties Builder to control the appearance of the DataGrid

CHAPTER 5 ■ DATA BINDING 175

6. Save the changes and run the application again. You should find that the appearance
of the application has improved significantly, as shown in Figure 5-6.

Figure 5-6. The News page with the formatted DataGrid control

How It Works

To make this discussion a little easier, we’ve taken all of the styling information out of the code
being presented here. If you have applied some automatic formatting, you can remove it by
selecting the Remove Auto Format scheme from the Auto Format dialog box. The markup gen-
erated for the grid should then look something like this:

<form id="Form1" method="post" runat="server">
<p>
<asp:panel id="pnlPending" runat="server">
<p>These users have requested to contact you:</p>
<p>
<asp:datagrid id="grdPending" runat="server"

autogeneratecolumns="False">
<columns>
<asp:boundcolumn datafield="FirstName"

headertext="First Name">
</asp:boundcolumn>
<asp:boundcolumn datafield="LastName"

headertext="Last Name">
</asp:boundcolumn>

CHAPTER 5 ■ DATA BINDING176

<asp:boundcolumn datafield="Notes"
headertext="Notes">

</asp:boundcolumn>
<asp:hyperlinkcolumn text="View"
datanavigateurlfield="UserID"
datanavigateurlformatstring="ViewUser.aspx?RequestID={0}"
headertext="Details">

</asp:hyperlinkcolumn>
</columns>

</asp:datagrid>
</p>

</asp:panel>
</p>

</form>

The DataGrid control now has a child element called <Columns>, which contains four new
elements that correspond to the four columns you set up in the exercise. The first three of
these are BoundColumn elements, and you can see how their DataField and HeaderText attrib-
utes correspond with the columns in your DataSet and the labels in the DataGrid control,
respectively. The fourth column in the table is implemented with a HyperLinkColumn element,
in which the DataNavigateUrlFormatString attribute provides a skeleton within which to per-
form string formatting, using the DataNavigateUrlField as the first argument.

■Note If you chose to output all attributes as lowercase (Tools ➤ Options ➤ Text Editor ➤ HTML/XML ➤

Format), you will see the output shown here. Each attribute usually maps to a corresponding property of a
.NET class, such as DataGrid.AutoGenerateColumns.

This apparent complexity simply renders the appropriate link to the ViewUser.aspx file,
with the expected RequestID parameter being added according to each row in turn. The Data-
Grid control is performing most of the binding work itself, using the properties that you set,
so you don’t need to provide the binding expressions directly.

Working Visually with Data
Aside from the help provided by the DataGrid control, so far, the VS .NET IDE hasn’t provided
much assistance with our data-related tasks. We’ve done all of the data binding manually, and
we’ve been accessing the database directly from our code, just as we did in the previous chap-
ter. But the IDE actually does provide a number of facilities to make your coding easier.

The VS .NET IDE can generate code automatically (both HTML source, and the code-
behind page), based on settings you specify through the Properties browser or in dedicated
wizards. This capability is provided through the data components we introduced at the begin-
ning of this chapter. Now you’ll see how to take advantage of these features.

CHAPTER 5 ■ DATA BINDING 177

Working with Data Components
Earlier in this chapter, you dropped a SqlConnection component onto a web form, resulting
in the automatic generation of some code. However, we noted at the time that the benefits of
using that particular component weren’t exactly compelling. A better example of potential
benefits is provided by the SqlDataAdapter component, which we’ve used frequently in our
programs so far. In VS .NET, you can visually configure this component, including all its inter-
nal Command objects for SELECT, INSERT, UPDATE, and DELETE statements. In fact, provided that
the SELECT is reasonably straightforward, VS .NET can even create the INSERT, UPDATE, and
DELETE statements on your behalf!

When you drop a SqlDataAdapter component onto a web form, you’re presented with a
wizard. (If you close the wizard, you can reopen it by right-clicking the component and choos-
ing Configure Data Adapter.) The wizard is very complete, allowing not only the creation of
SQL statements, but also the creation of new stored procedures (or the reuse of existing ones)
and even testing their execution. Figure 5-7 shows the Query Builder that the wizard makes
available for this purpose.

Figure 5-7. The Query Builder lets you create SQL statements.

What you see in Figure 5-7 is the result of building the same query you used previously to
fill the grid of pending requests for contact. Right-clicking anywhere inside the Query Builder
shows the menu of available actions, including running the current query. When you use a
parameter, you’re even presented with a proper UI to fill in for that parameter!

CHAPTER 5 ■ DATA BINDING178

To see how the data adapter is being “magically” configured, you only need to look at the
InitializeComponent() method in the code-behind page, which will contain the code that
corresponds to the settings you’ve made through the wizard. The TableMappings property that
appears in the Properties browser and the initialization code tell the adapter which tables and
fields in the SelectCommand to map to which tables and columns in the DataSet. This means
that the names of the columns, or even the tables, in the DataSet don’t need to match those in
the source database.

It’s also possible to use the Properties browser to set the property of one data compo-
nent to point to another one that is present on the same page. For example, you can set a
SqlDataAdapter component’s SelectCommand property to point to an existing SqlCommand
component on the page, and set the latter’s Connection property to point to an existing
SqlConnection component in turn. This makes it easy to share a common connection object,
for example, among multiple data adapters or commands.

Using Typed Datasets
Another VS .NET data-retrieval feature is a special type of dataset: a typed dataset, which offers
some additional benefits, both for the visual design of applications and for code. When we dis-
cussed how to access the tables, rows, and column values in a DataSet object, you saw that
you could do so using the string name of the element:

dsUser.Tables("User").Rows(0)("FirstName")

Or you could access those values using the element’s index:

dsUser.Tables(0).Rows(0)(0)

The code is simple in both cases, but it shows a drawback of the DataSet object: a mistake
in the name of a table or a field won’t be trapped at compile-time. Instead, it will produce a
runtime exception. The alternative, which is to access the values with indexes, introduces a
dependency on the SQL statement that’s used to acquire the data. If you happen to change
the fields returned (or even just their order), the code will not work as expected.

ADO.NET introduces the concept of a typed dataset, which is an automatically generated
class that inherits from the generic DataSet class, but adds properties and classes to reflect the
tables and rows in a type-safe manner. Once instantiated, you can use it to write code like this:

Dim ds As New UserDataSet()
' Fill the dataset

' Render the user ID
Dim row As UserDataSet.UserRow = CType(ds.User.Rows(0), UserDataSet.UserRow)
Response.Write(row.UserID)

Notice how you can access the tables as direct properties of the dataset (as in ds.User),
and after a straightforward cast to the specific row type, you can access the fields as properties
of the row itself (as in row.UserID). This feature improves your productivity, because you don’t
need to worry about getting the names and indexes of tables and fields right. If you get them
wrong, IntelliSense (and the compiler itself) will tell you about it! Furthermore, the values in
the columns of a typed dataset also have properly defined types, making it impossible to (say)
assign a string to a column that’s expecting an integer.

CHAPTER 5 ■ DATA BINDING 179

A typed dataset can be generated from a data adapter component that’s been placed on a
web form. Provided that it has a valid SelectCommand assigned, you can right-click it and choose
the Generate Dataset option, and a typed dataset will be created based on the structure of the
information that’s retrieved by the command. You can give the new dataset a name and choose
to add an instance of it to the current form, in order to use it immediately.

Going through this process creates a schema for the dataset that contains a definition of
its structure (such as tables, columns, and their types) in a file that has an .xsd extension. This
file is an XML document with a special format (also known as an XML language), which we
will examine more closely in Chapter 7. It can be opened inside the IDE, where the designer
will show the various pieces that make up the dataset’s structure.

As is so often the case, a lot of these ideas will become clearer with an example. In the
next exercise, you’ll improve the News.aspx page further, to display a list of approved contacts
as well as the pending ones. The query will be similar to the one you used earlier, except that
you’ll be looking for the IsApproved flag to be set to 1. The new list will appear above the exist-
ing one, and since the contacts on the list have already been approved, you’ll show the user
more complete data about those contacts and provide a link to send them e-mail. You’ll also
provide a link to another page showing the contact’s complete information. This linked page
will be the ViewUser.aspx form, with a slight change to hide the Authorize Contact button, as
that won’t be necessary.

Try It Out: Retrieve Contacts from the Database In this example, as well as implementing the fea-
tures just described, you’ll see how using a typed dataset results in improvements to the
support that’s available through the IDE for configuring the way data is bound to the grid.

1. Open the News.aspx page and add a carriage return before the panel where the pend-
ing requests appear. Add a new Panel web server control, set its ID to pnlApproved, and
change the text inside it to These are your approved contacts:.

2. Drop a DataGrid control inside the panel, next to the text, and set its ID to grdApproved.
Add a carriage return to separate it from the text.

3. Now let’s configure the data components. First, drop a SqlConnection component onto
the form, set its (Name) property to cnFriends, and use the ConnectionString property
under the DynamicProperties category to map this value to the value in your Web.config
file: cnFriends.ConnectionString. As the value will be already present in the Web.config
file (you put it there earlier in this chapter), the value will be loaded and shown in the
ConnectionString property under the Data category, with an icon to indicate that it’s a
dynamic value.

CHAPTER 5 ■ DATA BINDING180

4. Drop a SqlDataAdapter component from the Toolbox’s Data tab onto the Web Forms
Designer page, and a wizard will appear. Click Next, and select the FriendsData data
connection from the drop-down list. (The list is populated from the connections in the
Server Explorer that point to a SQL Server database.)

5. In the next step, the wizard offers the option to use SQL statements or stored proce-
dures to access the database. Select the first option and click Next.

6. The next step allows you to set various advanced options, use the Query Builder, or
directly type the SQL statement to use. Whichever method you choose, the final SQL
statement should be as follows:

SELECT [User].FirstName, [User].LastName,
[User].PhoneNumber, [User].Address,
[User].Email, [User].UserID

FROM [User]
INNER JOIN Contact ON [User].UserID = Contact.RequestID
WHERE (Contact.DestinationID = @ID) AND (Contact.IsApproved = 1)

You can also uncheck the Generate Insert, Update and Delete statements check box
in the dialog box that opens when you click the Advanced Options button. You won’t
be making changes to the dataset’s data, and those additional commands won’t be
needed.

CHAPTER 5 ■ DATA BINDING 181

7. Click Next, and then click Finish to close this wizard.

8. Change the data adapter’s (Name) to adApproved. Optionally, expand the SelectCommand
property and set its (Name) to cmApproved. Notice how the wizard automatically
detected that an existing SqlConnection on the page was already pointing to the
same SQL Server connection and used it for the command’s Connection property.

9. If you like, you can take a look at the SelectCommand’s Parameters collection. You’ll see
that the @ID parameter you used is already configured with the appropriate type. You’ll
fill this parameter with the current user’s ID before filling the dataset, so that you get
only the contacts for the current user.

10. Let’s now generate a typed dataset to be filled by this data adapter. Click the Generate
Dataset link that appears in the Properties browser, or right-click the data adapter
and select the similarly named menu option. In the dialog box that appears, type
ContactsData as the new dataset name; this will be the name of the generated DataSet-
derived class. The check box near the bottom of this dialog box specifies that you want
to add an instance of this dataset to the current Web Forms Designer page. Click OK.

11. Change the newly added dataset component’s (Name) to dsApproved.

12. Set the DataGrid’s DataSource property to point to dsApproved. Now you should see the
real column names displayed in the grid, instead of the dummy columns you saw before.

CHAPTER 5 ■ DATA BINDING182

13. Open the Property Builder for the DataGrid. In the Columns pane, the list of fields is
now shown in the Available columns list box. This makes it much easier to choose
which columns to display. Add all of them except for Email and UserID, and remember
to uncheck the box at the top of the pane (Create automatic columns).

14. Add a hyperlink column (as described earlier in the “Try It Out: Customize DataGrid
Columns” section) to allow the sending of e-mail, using the following values:

• Header text: Contact

• Text: Send mail

• URL field: Email

• URL format string: mailto:{0}

15. Add another hyperlink column to allow the viewing of user details, using the following
values:

• Header text: Details

• Text: View

• URL field: UserID

• URL format string: ViewUser.aspx?UserID={0}

Notice that URL field is now a combo box that shows the list of columns in the typed
dataset. You’re passing a different query string parameter to ViewUser.aspx, so that it
knows you’re not asking for the details of a pending request for contact (it receives a
RequestID in that case).

16. Now for the “hard” part. In the code-behind page, below the existing code in
Page_Load(), add the following to complete the command, fill the dataset, and
bind to the DataGrid:

' Fill approved contacts
adApproved.SelectCommand.Parameters("@ID").Value = _
Page.User.Identity.Name;

adApproved.Fill(dsApproved)
grdApproved.DataBind()

17. That is really all you need to code! To finish things off, though, let’s add two lines at the
end to hide the panels if there is no data to show:

If dsPending.Tables(0).Rows.Count = 0 Then
pnlPending.Visible = False

End If
If dsApproved.User.Rows.Count = 0 Then
pnlApproved.Visible = False

End If

18. Let’s apply a little auto-formatting. Right-click the DataGrid, choose Colorful 4 in the
Auto Format dialog box, and click OK.

CHAPTER 5 ■ DATA BINDING 183

19. Now let’s modify the ViewUser.aspx page, to take into account the fact that it can now
receive a user ID query string parameter. If that happens, it needs to hide the Autho-
rize Contact button. Change the if statement that checks for the ID in its Page_Load()
event handler to match this:

' Ensure we received an ID
If userID Is Nothing Then
userID = Request.QueryString("UserID")
If userID Is Nothing Then
Throw New ArgumentException("This page expects either a RequestID " +
"or a UserID parameter.")

Else
btnAuthorize.Visible = False

End If
End If

20. Save the page, set News.aspx as the start page, and run the project. After the usual login
process, you will see something like the page shown in Figure 5-8, after a couple con-
tacts have been approved.

Figure 5-8. The News page with approved contacts added

CHAPTER 5 ■ DATA BINDING184

How It Works

The data components you dropped on the page, the wizards, and the settings you specified
are all reflected in the code-behind page by variable declarations at the class level:

Public Class News
Inherits FriendsBase

' Web server controls here...
Protected WithEvents cnFriends As System.Data.SqlClient.SqlConnection
Protected WithEvents adApproved As System.Data.SqlClient.SqlDataAdapter
Protected WithEvents cmApproved As System.Data.SqlClient.SqlCommand
Protected WithEvents dsApproved As FriendsReunion.ContactsData

Each component has its own variable, and the last one—the dataset—is the most interest-
ing. It’s not defined as a generic DataSet, but rather as the custom FriendsReunion.ContactsData
class. This is the class that was generated by the adapter when you asked it to do so. The
components instances, just like their server controls counterparts, are initialized inside the
InitializeComponent() method, which is placed inside the Web Form Designer generated code
region. You can take a look inside that method, and you’ll realize there’s no magic there—just
raw VB code you could have written yourself.

The key point to bear in mind about this demonstration is that the code you wrote to load
the list of pending requests in the previous section performs exactly the same task as the code
here, and that code took 12 lines to achieve the same results as 3 lines here! That’s four times
less code—certainly not a minor detail. The code has been greatly simplified because all of the
variable initialization code is generated automatically. You just need to pass the adapter the
value for the current user ID, fill the dataset, and call DataBind() on the grid:

' Fill approved contacts
adApproved.SelectCommand.Parameters("@ID").Value = Page.User.Identity.Name
adApproved.Fill(dsApproved)
grdApproved.DataBind()

■Note Just in case you’re concerned with the database connection, it is opened by the data adapter, and
it’s closed as soon as the data adapter doesn’t need it anymore.

Finally, note that when you checked for the existence of rows in the two datasets, you
could use the new property in your typed dataset that points to the correct table:

If dsApproved.User.Rows.Count = 0 Then
pnlApproved.Visible = False

End If

CHAPTER 5 ■ DATA BINDING 185

This is instead of the following syntax, which you had to use for the generic dataset:

If dsPending.Tables(0).Rows.Count = 0 Then
pnlPending.Visible = False

End If

When the user clicks the View link, the browser navigates to the ViewUser.aspx page pass-
ing the UserID of the current row. When that page is loaded, it will hide the Authorize button,
because it received a UserID parameter instead of a RequestID. Otherwise, it will throw an
exception, as either one or the other is required in order to display the information.

Advanced Data Binding
Sometimes, you need more flexibility in the rendering of data than is provided by a table with
simple row and cell values. ASP.NET supports better customization of output through the use
of templates. A template is a piece of ASP.NET/HTML code that can contain binding expres-
sions, and it is used inside a DataGrid column (for example) as a skeleton for each row/cell’s
representation. The Web Forms Designer offers great integration with this concept, and makes
designing with templates a breeze.

■Tip Controls that support templates include DataGrid, DataList, and Repeater. Third-party controls may
also support templates.

Try It Out: Use a Templated Column in a DataGrid In this example, you’ll use a template to display
four items in a cell: two small images, and the user’s phone number and address. This display
will replace the columns that you previously used for this purpose. You’ll need to first create a
template for that cell, and then take advantage of what you learned earlier about simple data
binding to link values to the labels inside it.

1. Open the News.aspx page, right-click the grdApproved DataGrid, and select Property
Builder.

2. In the Columns pane, remove the PhoneNumber and Address columns. Next, select
the Template Column element from the Available columns list box, and add it to the
list of Selected columns. Using the arrows at the right of the list box, move the column
up and position it above the Contact column.

3. Set the Header text form field to Info, and then click OK.

CHAPTER 5 ■ DATA BINDING186

4. To add controls inside the template column, you need to start editing it. Right-click the
DataGrid again, and a new menu option will be available: Edit Template. It contains a
submenu that displays all template columns available in the control. Select the only
item available: Columns[2] - Info. You will see that the grid layout changes to show the
template, with four sections named HeaderTemplate, ItemTemplate, EditItemTemplate,
and FooterTemplate.

5. Drop two Image and two Label web server controls inside the ItemTemplate section.
Separate them by a line break (
) by pressing Shift+Enter. Set the ImageUrl property
of the images to Images/phone.gif and Images/home.gif, respectively. The section
should then look like this:

6. Select the first label, and then open the DataBindings dialog box for it by clicking the
ellipsis in the Properties browser.

7. In the Simple binding list box, locate the Container ➤ DataItem ➤ PhoneNumber
node. Note that once again, the complete list of fields available is shown, because
you’re using a typed dataset.

8. Do the same for the other label, this time binding it to Container ➤ DataItem ➤
Address.

9. Right-click the template and choose the End Template Editing menu option.

10. Save everything you’ve done so far, make this the start page, and then run the project.
You will now see something like the page shown in Figure 5-9.

CHAPTER 5 ■ DATA BINDING 187

Figure 5-9. The News page after applying a template to a column

How It Works

When you add templated columns to a DataGrid, the Edit Template context menu option is
enabled. After selecting the template column to edit from its submenu, the template design
process is exactly the same as for the page itself: you drop controls on the sections you want,
set the controls’ binding, and so on. You also used the DataBindings dialog box for the first
time. You could directly bind to the column you wanted, thanks to the typed dataset. In that
dialog box, you saw that the binding can be applied to any control property.

As a result of the template editing, the Web Forms Designer generates the following
HTML code (again, we’ve removed the auto-formatting information to make the code more
readable):

<asp:datagrid id="grdApproved" runat="server" DataSource="<%# dsApproved %>"
AutoGenerateColumns="False">

<columns>
<asp:boundcolumn datafield="FirstName" headertext="FirstName">
</asp:boundcolumn>
<asp:boundcolumn datafield="LastName" headertext="LastName">
</asp:boundcolumn>

CHAPTER 5 ■ DATA BINDING188

<asp:templatecolumn headertext="Info">
<itemtemplate>
<asp:image id="Image1" runat="server"

imageurl="Images/phone.gif">
</asp:image>
<asp:Label id="Label1" runat="server"
Text='<%# DataBinder.Eval(Container, _

"DataItem.PhoneNumber") %>'>
</asp:label>

<asp:image id="Image2" runat="server" imageurl="Images/home.gif">
</asp:image>
<asp:Label id="Label2" runat="server"
Text='<%# DataBinder.Eval(Container, _

"DataItem.Address") %>'>
</asp:label>

</itemtemplate>
</asp:templatecolumn>
...

</columns>
</asp:datagrid>

The important element inside the <asp:TemplateColumn> element is <ItemTemplate>.
As you can see, it contains ordinary server controls with binding expressions just like the
ones you’ve seen so far. New concepts, however, are the Container and the DataItem, both of
which are used in the binding expression. The first part of the binding expression evaluation,
Container, resolves to the context of the binding operation. DataItem points, in this case, to
the current row in the data table.

At runtime, when the grid finds a templated column, it creates the template, performs the
bindings, and adds the controls to the cell, resulting in the rich output you saw.

Paging
You’ve arranged for the panels to disappear if there’s nothing to display, but what happens if
there are a lot of records to display? You could end up with a very long page indeed, which
wouldn’t be a great way to treat your users. Fortunately, there’s something you can do about
that, too.

The technique known as paging divides the total count of items to be displayed by the
maximum number of items you want to display simultaneously, and shows only that subset
of data. By also providing a means to navigate back and forth among these logical pages, you
can allow users to browse through the data a page at a time.

■Note Paging is very common for applications that display long lists, such as a list of products for a big
company, a list of expenses for the last two years, or a complete set of stock quotes. Although you wouldn’t
expect such a lengthy list in the sample application (unless the user is really popular!), we will use it here for
demonstration purposes.

CHAPTER 5 ■ DATA BINDING 189

Try It Out: Add Paging The DataGrid control has intrinsic support for paging, and all that’s
required to take advantage of it is to set a couple of properties and handle a single event that’s
fired when the user changes the current page. You’ll add this functionality to the grdApproved
grid, limiting the visible rows to only one, so that you can see paging in action.

1. Change the grdApproved properties to set AllowPaging to True and the PageSize to 1.

2. Locate the PagerStyle property, and set the following subproperties:

• Mode: NextPrev

• NextPageText: Next >

• PrevPageText: < Previous

• HorizontalAlign: Left

3. To reconfigure the page when the user moves back and forth through the records, you
need to wire up and handle the PageIndexChanged event that’s fired by the DataGrid.
To do this, go to the code-behind page, select the grdApproved item from the leftmost
drop-down list at the top of the code editor, and then select the PageIndexChanged
event from the rightmost drop-down list. Now you can modify the handler that is
created:

Private Sub grdApproved_PageIndexChanged(ByVal source As Object, _
ByVal e As System.Web.UI.WebControls.DataGridPageChangedEventArgs) _
Handles grdApproved.PageIndexChanged
' Set the new index
grdApproved.CurrentPageIndex = e.NewPageIndex

' Fill approved contacts
adApproved.SelectCommand.Parameters("@ID").Value = _
Page.User.Identity.Name

adApproved.Fill(dsApproved)
grdApproved.DataBind()

End Sub

4. Save and run the page, and voilà, you have paging, as shown in Figure 5-10.

How It Works

You start the process by setting two properties that enable the paging mechanism in the grid:
AllowPaging and PageSize. The pager mode and style are set next, where you specify the text
the links will have, as well as their placement in the footer. Once the pager links are in place,
they raise the PageIndexChanged event when the user clicks them, which you handle in the
code-behind page:

CHAPTER 5 ■ DATA BINDING190

Private Sub grdApproved_PageIndexChanged(ByVal source As Object, _
ByVal e As System.Web.UI.WebControls.DataGridPageChangedEventArgs) _
Handles grdApproved.PageIndexChanged
' Set the new index
grdApproved.CurrentPageIndex = e.NewPageIndex

' Fill approved contacts
adApproved.SelectCommand.Parameters("@ID").Value = _
Page.User.Identity.Name

adApproved.Fill(dsApproved)
grdApproved.DataBind()

End Sub

The argument e received by the handler allows you to retrieve the new page index the
user selected. You set it to the grid’s CurrentPageIndex property, and perform the binding
again. As a result, the DataGrid will automatically skip the rows that don’t fit in the current
page, according to the page size you set.

Figure 5-10. The News page with paging

CHAPTER 5 ■ DATA BINDING 191

Freestyle Data Binding and Editing—The DataList
With all of the features you’ve seen for the DataGrid control, it is quite a challenge to find a
control that’s more suitable to your data display needs. However, you might need even more
control over presentation than the DataGrid allows. For example, if you want to display rows
in some arbitrary, nontabular format, a grid isn’t such a good fit. Sure, you could use a com-
plex template and a single cell, but ASP.NET comes with another control that is better suited
to this task: the DataList control. With regard to the data-binding process and the design of
templates, this control is similar to the DataGrid, but it has no concept of columns.

As a template-only control, the DataList is highly flexible, but crucially, it also supports
the concepts of selecting, editing, updating, or canceling the editing of an item. You can
use different templates for each of those actions, and react to events fired by the control to
perform the actual work against the database. The events fired by the DataList are, not sur-
prisingly, SelectedIndexChanged, EditCommand, UpdateCommand, and CancelCommand. But how
does the control know when any of these actions has taken place?

To cause these events to be fired, you need to place a Button, LinkButton, or ImageButton
control in a template, and set its CommandName property to one of the following values, accord-
ing to the event you want to cause: Select, Edit, Update, or Cancel.

The DataList decides which template to use for each item in the data source based on
some properties that you can set. When SelectedIndex is set to a value other than –1, the
corresponding item at the specified index will be rendered using the SelectedItemTemplate.
Likewise, if EditItemIndex is set to a value other than –1, the EditItemTemplate will be used for
that item. ItemTemplate and AlternatingItemTemplate are used to render the remaining items
that are neither selected nor being edited.

In your handlers for the events mentioned, you can update the SelectedIndex or
EditItemIndex to reflect the user’s action and to get the item rendered accordingly, much
as you did to reflect the current page in the DataGrid control.

In the Friends Reunion application, users create records in the TimeLapse table to reflect
the places they have been; you created a web form for that purpose in Chapter 4. The record
reflects that a user has been in a certain place for a certain period of time. The place can be a
high school, a college, or a place of employment. The different categories of places are defined
in the PlaceType table.

In the Place table, each place has an associated AdministratorID field, which is the ID of
the user authorized to modify its data. Users should be able to look at the places the applica-
tion works with, and if they are also the administrator for a place, they should be able to
modify its data, such as its address or notes.

Let’s take advantage of the DataList control’s flexibility to allow this new functionality
in the application. The process involves configuring data components (as you did before),
designing templates for the DataList, and then binding the data when necessary. The DataList
control has three template groups available to edit:

• Header and footer templates

• Item templates

• Separator templates

You can edit the various templates available for the DataList control by right-clicking it
and selecting the appropriate menu option under Edit Template.

CHAPTER 5 ■ DATA BINDING192

Try It Out: Show Places in a DataList Control In this example, you’ll build a page that displays the
list of places registered for the application, showing only their names and an icon to let the
user select them. Once selected, complete data about the place will be displayed. Figure 5-11
shows how the View Place page will look, with one place selected after the user clicked the
corresponding arrow next to it.

Figure 5-11. The View Place page with a DataList control

1. To our burgeoning project, add a new web form named ViewPlace.aspx. Add the
iestyle.css stylesheet to it, and change the code-behind page to inherit from
FriendsBase.

2. Drop a SqlDataAdapter component onto the form and configure it as you did earlier
(in the “Try It Out: Retrieve Contacts from the Database” section), setting the SQL
statement to SELECT * FROM Place. In this same wizard step, click the Advanced
Options button and leave only the first option checked. When the wizard has finished,
change the name of the adapter to adPlaces. Select Don’t include password from the
dialog box that appears next. (This is irrelevant, as you’ll pick the connection string
from the Web.config file in the next step.)

CHAPTER 5 ■ DATA BINDING 193

3. Change the automatically added SqlConnection’s name to cnFriends and set its
ConnectionString to use the dynamic property value, as you did before.

4. Set the adapter’s InsertCommand and DeleteCommand to None in the Properties browser,
as you won’t allow these operations for the data adapter. Leave UpdateCommand as it is,
but change its name to cmUpdate (you’ll be using updates later on).

5. As well as the details from the Place table, you also want to display the place type,
which resides in the PlaceType table. Change the name of the Select command to
cmSelect. Click the ellipsis next to the CommandText property, and the Query Builder
will appear. Right-click the zone next to the Place table, select Add Table, and add the
PlaceType table. Next, select the Name field on the table so that it appears in the output,
and set its alias in the grid below to TypeName. Then click OK.

6. Select the Generate Dataset data adapter action, select the New option, and enter
PlaceData as the name for the new dataset class. Set the new component’s name to
dsPlaces. Using a typed dataset will be useful when you start to customize the DataList
control, as the field names will be readily available.

7. At last, having set up the data-access code, you can get to displaying the data. Enter
some introductory text such as These are the places defined for the application:.
Drop a DataList control onto the page, and then set the following properties:

• ID: dlPlaces

• DataSource: dsPlaces

• DataMember: Place

• DataKeyField: PlaceID

• BorderStyle: Solid

• BorderWidth: 1px

• Width: 220px

8. Before moving on to the control layout, add the following styles to the stylesheet:

.Hidden
{
visibility: hidden;
display: none;

}
.PlaceHeader
{
border-bottom: 1px solid;

}
.PlaceItem
{
border-bottom: #336699 1px solid;
border-left: #336699 1px solid;

CHAPTER 5 ■ DATA BINDING194

border-right: #336699 1px solid;
border-top: #336699 1px solid;
padding: 5px 5px 5px 5px;
margin-top: 5px;
margin-bottom: 5px;

}
.PlaceTitle
{
font-weight: bold;
width: 100%;
color: white;
background-color: #336699;

}
.PlaceSummary
{
font-weight: bold;
width: 100%;
color: white;
background-color: black;

}

9. To set up the templates, right-click the DataList control, select Edit Templates, and
then choose the Header and Footer Templates submenu option.

10. In the HeaderTemplate section of the template, place a Panel control, set its CssClass
to PlaceTitle, and enter the text List of Places. In the FooterTemplate section, drop
another Panel control and set its CssClass to PlaceSummary. Type the text Total Places:,
and then place a Label control within it. The template should look like this:

11. With the last label selected, click the ellipsis next to (DataBindings) in the Properties
browser to open the DataBindings dialog box. Set the following custom binding
expression, as shown in Figure 5-12:

dsPlaces.Place.Rows.Count

12. Right-click the DataList control again, select Edit Templates, and then choose the
Item Templates submenu option. You’ll see several sections that apply to each kind of
item to render: ItemTemplate, AlternatingItemTemplate, SelectedItemTemplate, and
EditItemTemplate. Inside the ItemTemplate section, drop an HTML Flow Layout Panel
control. Set its style properties for a width of 100% and a background color of white.
Set its class to PlaceItem.

CHAPTER 5 ■ DATA BINDING 195

Figure 5-12. The DataBindings dialog box

13. Inside the panel, drop a web forms Panel control with BackColor set to Gainsboro and
CssClass to PlaceHeader. Position the cursor inside it, remove the default text, and
drop an Image control with ImageUrl set to Images/building.gif and ImageAlign to
Middle. Next to it, drop a Label control. Click the ellipsis next to (DataBindings) in the
Properties browser to open the DataBindings dialog box, and then set the following
custom data binding expression:

DataBinder.Eval(Container, "DataItem.Name")

Finally, below the gray Panel control, drop an ImageButton control and set the follow-
ing properties for it:

• AlternateText: Select

• ImageUrl: Images/bluearrow.gif

• CommandName: Select

• ImageAlign: Right

The layout of the ItemTemplate section should look like this:

CHAPTER 5 ■ DATA BINDING196

14. For the AlternatingItemTemplate section, you can simply copy the entire Flow Layout
Panel control, including its controls from the previous steps, into this section to reuse
the code (they are using essentially the same behavior). Then change its style prop-
erty to set the background color to lightskyblue, so it looks like this:

15. Now you need to set up the SelectedItemTemplate, which is a little more complex than
the previous templates. To start with, copy the panel you configured for the previous
templates. Then change the containing Flow Layout Panel control’s style property to
define BACKGROUND-COLOR as #5d90c3. Also change the contained web form’s Panel con-
trol so BackColor is Gray. Next to the existing Label control, drop another one with
CssClass set to Hidden, and set ID to lblAdministratorID. Then set the following cus-
tom data binding expression:

DataBinder.Eval(Container, "DataItem.AdministratorID")

This Label control will be used to determine whether the current user can edit the
selected row, and set the ImageButton control’s Visible property accordingly. The style
ensures it won’t appear in the display, yet it will be rendered (unlike setting Visible =
False) so you can use it. Change the ImageButton control’s properties as follows:

• AlternateText: Edit

• ImageUrl: Images/edit.gif

• CommandName: Edit

• Visible: False

• ID: cmdEdit

Directly above this button, enter a line break (Shift+Enter). Then add three Label con-
trols with text Type:, Address:, and Notes:, respectively, as shown here:

For the Type label, set the following custom data binding expression:

DataBinder.Eval(Container, "DataItem.TypeName")

CHAPTER 5 ■ DATA BINDING 197

For the Address label, set this custom data binding expression:

DataBinder.Eval(Container, "DataItem.Address")

And for the Notes label, set this custom data binding expression:

DataBinder.Eval(Container, "DataItem.Notes")

Finally, set COLOR: white for the style property of the containing Flow Layout Panel
control, to make the text stand out against the new blue backcolor.

16. Reopen the code-behind page and add the following code, which performs the bind-
ing and additionally prevents the DataList from being displayed if there are no places
to display:

Private Sub Page_Load(ByVal sender As Object, _
ByVal e As System.EventArgs)
If Not Page.IsPostBack Then
BindPlaces()

End If
End Sub

Private Sub BindPlaces()
adPlaces.Fill(dsPlaces)
If dsPlaces.Place.Rows.Count = 0 Then
dlPlaces.Visible = False

Else
dlPlaces.DataBind()

End If
End Sub

17. In the Design view, end template editing in the DataList control (right-click it and
select End Template Editing). Then double-click it to create the handler for the
SelectedIndexChanged event, adding the following code to it:

Private Sub dlPlaces_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles dlPlaces.SelectedIndexChanged
BindPlaces()

End Sub

18. Save and run the page. Test the selection mechanism, and see how the template is
applied to the selected item to show the complete details.

How It Works

For a DataList control, data binding works just as it does with a DataGrid control. At runtime,
the template is instantiated, binding expressions are evaluated, and controls are added to the
output for each element in the data source.

The important controls are the ImageButton controls that you placed at the bottom right of
each template. The values that you’ve assigned to the CommandName properties of these buttons—
Select and Edit—have special meanings: the DataList uses them to raise the events discussed

CHAPTER 5 ■ DATA BINDING198

earlier in this section. When the user clicks the select ImageButton of an item (or an alternating
item), the DataList detects the Select command name the button contains and raises the
SelectedIndexChanged event. Inside this event handler, you just rebind the data:

Private Sub dlPlaces_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles dlPlaces.SelectedIndexChanged
BindPlaces()

End Sub

The DataList control automatically tracks the currently selected element, and as you can
see, this rather simple procedure can have a powerful impact.

An interesting point to note here is that you didn’t bother to set your own IDs for the con-
trols. This would usually be considered to be bad practice, but the process here results in several
controls being created from the same template, making it impossible to predict the ID of a run-
time control. (If this didn’t happen, there would be naming collisions.) If you cannot predict the
ID of a control at runtime, there is little point in setting it to anything special at design-time.
Besides that, you can see in the code-behind file that the controls inside the template are not
given class-level variables either.

The final step to take in the page setup is to allow the user to edit an item. To enable this
feature, you’ll add a handler to the code-behind page to receive the EditCommand event, which
will be fired when the cmdEdit button, defined earlier, is clicked. You will need to hide this but-
ton if the current user is not the place’s administrator.

Try It Out: Enable Editing Capabilities You will create an editing template that uses data binding to
load the editable fields. If the user accepts the changes, you will post the changes back to the
database, using the configured data adapter. You will build the following layout:

1. Start editing the Item Templates as you did before. Copy the Flow Layout Panel control
of the SelectedItemTemplate section and place it in the EditItemTemplate section. Set
its style property to width: 100% and BACKGROUND-COLOR: lemonchiffon. Delete all the
controls except for the web form’s Panel control and its contents at the top, and set its
BackColor property to Wheat. Change the remaining image ImageUrl property to
Images/edit.gif.

CHAPTER 5 ■ DATA BINDING 199

2. Insert an HTML Table control with two columns and three rows outside the Panel con-
trol (as illustrated at the beginning of this exercise), using the Table ➤ Insert ➤ Table
menu option, so that you can specify its properties before creating it. Set the class
property to TableLines and its border to 0. Enter the text Type:, Address:, and Notes:
in the leftmost cells.

3. Drop a Label control and set its data binding expression as follows:

DataBinder.Eval(Container, "DataItem.TypeName")

4. Add a TextBox control and set its properties as follows:

• ID: txtAddress

• CssClass: TextBox

• Rows: 3

• TextMode: MultiLine

Give the TextBox control the following data binding expression:

DataBinder.Eval(Container, "DataItem.Address")

5. Add another TextBox control and set its properties as follows:

• ID: txtNotes

• CssClass: TextBox

• Rows: 3

• TextMode: MultiLine

Give the TextBox control the following data binding expression:

DataBinder.Eval(Container, "DataItem.Notes")

6. Below the table, enter a carriage return, and then drop two ImageButton controls.
Set the first control’s properties as follows:

• ID: cmdUpdate

• CommandName: Update

• AlternateText: Save

• ImageUrl: Images/ok.gif

7. Set the second ImageButton control’s properties as follows:

• ID: cmdCancel

• CommandName: Cancel

• AlternateText: Cancel

• ImageUrl: Images/cancel.gif

CHAPTER 5 ■ DATA BINDING200

8. Next to the top Panel control is an existing Label control with the Hidden class. You
need to change a couple properties for it, but because of its style, you won’t be able to
select it in the Design view. Switch to HTML view and locate Label12 by using Edit ➤
Find and Replace ➤ Find (Ctrl+F). The label next to it is the one to modify. Set its ID to
lblPlaceID, and modify the binding expression to this:

DataBinder.Eval(Container, "DataItem.PlaceID")

You will use the value bound to this label to determine the row that needs to be
updated.

9. When you have finished adding the inner controls, you can safely remove the table
width property value and let its size adjust to its content. Switching to the HTML view
causes template editing to end, so you’ll need to start it again for the Item Templates.
After removing the table width value, select End Template Editing from the DataList
context menu to return to the page Design view.

10. Now you need to add the appropriate event handlers to the code-behind page. First,
let’s deal with the ItemDataBound event, which is fired when an item is being bound
to the template. You receive the current item in the argument to the event, and you
want to show the Edit button only for users whose ID matches the current place’s
AdministratorID. Switch to the Code view, select the dlPlaces element from the left-
most drop-down list at the top of the window, and then select the ItemDataBound event
from the rightmost drop-down list. In the new event handler, add the following code:

Private Sub dlPlaces_ItemDataBound(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.DataListItemEventArgs) _
Handles dlPlaces.ItemDataBound
' Is the item selected?
If e.Item.ItemType = ListItemType.SelectedItem Then
' Locate the hidden Label containing the AdministratorID
Dim admin As Label = _
CType(e.Item.FindControl("lblAdministratorID"), Label)

' If it matches the current user, show the Edit button
If admin.Text = Page.User.Identity.Name Then
e.Item.FindControl("cmdEdit").Visible = True

End If
End If

End Sub

11. In all of the event handlers, you call BindPlaces() at the end, to re-create the controls in
the DataList according to the last changes made. Whenever the Edit button is clicked,
you’ll also need to update the DataList’s EditItemIndex, and set it to the ItemIndex of
the item passed with the arguments to the event. Select the EditCommand event from the
appropriate drop-down list in the code editor, and then add the following code to the
method:

Private Sub dlPlaces_EditCommand(ByVal source As Object, _
ByVal e As System.Web.UI.WebControls.DataListCommandEventArgs) _
Handles dlPlaces.EditCommand

CHAPTER 5 ■ DATA BINDING 201

' Save the edit index
dlPlaces.EditItemIndex = e.Item.ItemIndex
BindPlaces()

End Sub

12. Of course, users could just change their mind and directly select another item without
either canceling or accepting the current item’s edit session. In this case, you just need
to reset the EditItemIndex by adding the following line to the existing handler:

Private Sub dlPlaces_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles dlPlaces.SelectedIndexChanged
' Remove the edit index just in case we were editing
dlPlaces.EditItemIndex = -1
BindPlaces()

End Sub

13. Once editing is started, the user can cancel it, which resets the EditItemIndex property.
You also set the SelectedIndex property to leave users positioned on the item they
were editing. Now select the CancelCommand event to create a handler for it and enter
the following code:

Private Sub dlPlaces_CancelCommand(ByVal source As Object, _
ByVal e As System.Web.UI.WebControls.DataListCommandEventArgs) _
Handles dlPlaces.CancelCommand
' Reset the edit index
dlPlaces.EditItemIndex = -1

' Set the selected item to the currently editing item
dlPlaces.SelectedIndex = e.Item.ItemIndex
BindPlaces()

End Sub

14. Another option is for the user to click the OK button to perform an update. At this
time, you will perform the binding inside this method, instead of calling BindPlaces().
That is because you need to work with the dataset before binding, to perform the
appropriate update. You will locate the row corresponding to the current PlaceID
and issue an Update through the data adapter. Finally, reset the indexes as you did for
CancelCommand. Select the UpdateCommand event from the drop-down list and add the
following code:

Private Sub dlPlaces_UpdateCommand(ByVal source As Object, _
ByVal e As System.Web.UI.WebControls.DataListCommandEventArgs) _
Handles dlPlaces.UpdateCommand
' Find the updated controls
Dim addr As TextBox = CType(e.Item.FindControl("txtAddress"), TextBox)
Dim notes As TextBox = CType(e.Item.FindControl("txtNotes"), TextBox)
Dim place As Label = CType(e.Item.FindControl("lblPlaceID"), Label)
' Reload the dataset and locate the relevant row
adPlaces.Fill(dsPlaces)
Dim sql As String = "PlaceID = '" + place.Text + "'"

CHAPTER 5 ■ DATA BINDING202

Dim row As PlaceData.PlaceRow = _
CType(dsPlaces.Place.Select(sql)(0), PlaceData.PlaceRow)

' Set the values using the typed properties
row.Address = addr.Text
row.Notes = notes.Text

' Update the row in the database
adPlaces.Update(New DataRow() {row})

' Reset datalist state and bind
dlPlaces.EditItemIndex = -1
dlPlaces.SelectedIndex = e.Item.ItemIndex
dlPlaces.DataBind()

End Sub

15. Save and run the page. To try it out, edit the ACUDEI English Academy place, adding
or changing its comment, for example. (ACUDEI stands for Academia Cultural
Uruguayense de Enseñanza de Idiomas, a great place to study English!)

How It Works

Let’s start from the beginning. When BindPlaces() is first called, the first time the page is run,
the DataList control iterates through the data source and binds the corresponding template
with each row. At this time, the ItemDataBound event is raised. In the handler for that event, the
code reacts only to items of type ListItemType.SelectedItem, as they are the only ones that
have the Edit button you want to show, if it is appropriate to do so.

Private Sub dlPlaces_ItemDataBound(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.DataListItemEventArgs) _
Handles dlPlaces.ItemDataBound
' Is the item selected?
If e.Item.ItemType = ListItemType.SelectedItem Then
...

Note that even when you have given the control an ID, you need to use the FindControl()
method (inherited from the base Control class) to access the label that contains the
AdministratorID field value. To understand this, recall that the controls in the corresponding
template are created once for each row. The e argument passed to this event handler (and to
the others, too) has an Item property that contains the collection of controls created for the
current item. You call FindControl() on this collection to retrieve the label:

' Locate the hidden Label containing the AdministratorID
Dim admin As Label = CType(e.Item.FindControl("lblAdministratorID"), Label)

If the current user ID matches the administrator ID, set the Visible property of cmdEdit to
True. Note that you also need to find this command in the collection.

If admin.Text = Page.User.Identity.Name Then
e.Item.FindControl("cmdEdit").Visible = True

End If

CHAPTER 5 ■ DATA BINDING 203

With the button visible, the user can start editing the item by clicking it, which causes
the EditCommand event to be fired. In this handler, you save the index received in the DataList’s
EditItemIndex property and rebind the data. Note that the selected index is kept automati-
cally by the DataList component, but the edit index is not, unfortunately. At this stage, the
DataList control will render the interface shown in Figure 5-13.

Figure 5-13. The interface for editing places, with a DataList control

Now the user can stop editing simply by navigating to another item. This is handled in the
SelectedIndexChanged event handler, which resets any previous EditItemIndex value to –1 and
calls BindPlaces() to refresh the display.

CHAPTER 5 ■ DATA BINDING204

On the other hand, the user can click the Save or the Cancel button. If the user chooses
the latter, the CancelCommand event is raised, in response to which you reset the EditItemIndex
and set the SelectedIndex to the current element. The user will then be positioned in the ele-
ment he or she was just editing.

If the user clicks the Save button, the UpdateCommand event is raised. The handler for this
event first locates the controls with the data to be used for the update, as in:

Dim addr As TextBox = CType(e.Item.FindControl("txtAddress"), TextBox)

Then it gets a reference to the original row. To achieve this, first reload the dataset:

adPlaces.Fill(dsPlaces)

Then build a filtering expression with the PlaceID found in the corresponding (hidden) label:

Dim sql As String = "PlaceID = '" + place.Text + "'"

Then define a row variable using the corresponding typed dataset class, Places.PlaceRow:

Dim row As PlaceData.PlaceRow = _
CType(dsPlaces.Place.Select(sql)(0), PlaceData.PlaceRow)

Note that you use the Select() method of the Place table, which receives an expression
with the same syntax as the WHERE SQL clause and returns an array of DataRow objects that match
the request. You take the first element in the resulting array (dsPlaces.Place.Select(sql)(0))
and perform a type cast to assign the value to the row variable.

From this point, you have access to the typed properties of the row, and you use them to
set the new values:

row.Address = addr.Text
row.Notes = notes.Text

Next, submit changes to the adapter:

adPlaces.Update(new DataRow[] {row})

Here, you use the overload of the Update() method that receives an array of DataRow objects.
You initialize the array in the same method call with the single row edited. Because the
adapter has a configured UpdateCommand, it will know how to submit changes in the row you
passed to it to the database.

Finally, this event handler resets the DataList state and rebinds:

dlPlaces.EditItemIndex = -1
dlPlaces.SelectedIndex = e.Item.ItemIndex
dlPlaces.DataBind()

You don’t call BindPlaces() here, because you’ve already loaded the dataset. And you know
that you have at least one row, because you’ve just edited it!

CHAPTER 5 ■ DATA BINDING 205

Summary
Data access is essential for all but the most trivial web applications. However, the data-access
code itself should not hinder a programmer’s productivity. Easy and intuitive data facilities are
crucial in any good development environment, and VS .NET, together with ADO.NET, fulfills
both requirements. In this chapter, we looked at ADO.NET components and how they interact
with the IDE to enhance our experience. You saw that VS .NET includes some powerful wiz-
ards and design-time advantages that have not previously been seen in a Microsoft IDE.

Components and data binding make the process of displaying and editing data a breeze.
You learned how it works with simple controls, as well as with the more advanced DataGrid
and DataList controls. You saw how the incredibly versatile templates can be used to achieve
some real-world goals. Our Friends Reunion sample application became much more useful,
and it’s a good example of the possibilities of the new platform.

In the next chapter, you will learn about the importance of state in web applications, and
you’ll find out how ASP.NET overcomes the stateless nature of the HTTP protocol through its
impressive state management features.

CHAPTER 5 ■ DATA BINDING206

ASP.NET State Management

Back in Chapter 1, we discussed the particularities of web applications and the stateless
nature of the HTTP protocol. Every time a page is requested, the server processes it, returns it
to the client, and completely forgets about it. The same happens on the client side: every page
received is a completely new one, even if it comes from the same URL after a postback, for
example. It’s immediately evident that if you want to keep some information about the current
users while they use the application—login information, selected items in a shopping basket,
preferences about the site, filled form fields, selected values, and so on—you need some sort of
mechanism from ASP.NET or HTML itself, as HTTP (the protocol) doesn’t provide one.

The information we’re referring to here is generally called the application state. In this
chapter, we’ll discuss the variety of state-handling features ASP.NET offers, as well as the more
traditional approaches provided by HTML and browsers, and when to use each one. We’ll
build a search engine for the Friends Reunion case study application, taking advantage of
all the state-related features to make it fast, resource-conservative, and developer- and
user-friendly.

In this chapter, we’ll cover the following topics:

• Where the state can be stored

• Different scopes available

• When you should use each one

• How to preserve server resources

• Server state configurations and options

State Storage and Scope
Let’s start by saying that state is any kind of information that needs to remain active for a period
of time. This period can be the entire application life, the time a user spends using it, the page
life before the user browses to another page, and so forth. Examples of each are a global visitor
counter, items selected while shopping on a site, and values entered in a form field.

You already know the HTTP protocol that drives web applications is stateless. With that
fact in mind, there are only two places in which to store the state: the server or the client.
The application on the server side—that is, ASP.NET—can keep this data in some place and

207

C H A P T E R 6

■ ■ ■

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT208

provide the page developer with some way to retrieve and save values there. Alternatively, you
can keep data on the client machine, and rely on the browser to submit it to the server each
time a new request is performed, so that the application on the server side can use it.

ASP.NET provides mechanisms to save data on both sides, but usually, their categoriza-
tion takes into account the scope of the data—where it can be accessed from and by whom.
Table 6-1 shows the available state utilities in ASP.NET for the server, organized by the storage
location used by each feature.

Table 6-1. ASP.NET State Utilities for the Server

Utility Description

Application Data that is accessible by all users during the entire life of the application

Session Keeps state associated with each user (for example, a shopping basket)

Transient state Data that lives only during the processing of a single request

Table 6-2 shows the state utilities for the client.

Table 6-2. ASP.NET State Utilities for the Client

Utility Description

Viewstate Retains data related to a page, such as filled-in form fields

Cookies Keeps arbitrary data on the client browser

Query string Passes values between the client and the server in the URL itself

Hidden form fields Form fields containing data useful to the application but hidden from
the user

We’ll start by discussing the session state, and then move on to the application state and
the rest of the utilities.

Session State
Some applications may need to keep user data while the user is surfing the site or performing
some task that takes several steps, such as filling a shopping basket or proceeding to checkout.
It would be impossible to get all the data required for those tasks in a single page, so you need
a way to store such items. Of course, this data must be private to each user; selected items or
credit card information must not be accessible to other users performing the same tasks!

The first problem ASP.NET faces here is the HTTP protocol’s statelessness nature, as we
already mentioned. There’s no way the server can identify a returning user (the same user
requesting another page, for example) just by looking at the HTTP request itself. So, whenever
the session state is needed for a user, ASP.NET creates a random, unique ID called the session ID,
and, by default, attaches it to the client in the form of a cookie, although you can have the ses-
sion ID appended to the URL as well. (A cookie is a small piece of data, usually 4KB maximum,
that is kept by the client browser and handed back to the server on each subsequent request.)

This way, ASP.NET can identify a returning user based on the user’s saved session ID. This
sort of identity card given to the user is reclaimed when the user leaves the application or the
session times out. So the next time that user returns, a new identification will be created.

■Note Creating a session ID to identify returning users doesn’t imply they have been authenticated.
Authentication is a different process, related to security, and is discussed in Chapter 10.

Some users may disable cookies in their browsers for security reasons, or they may even
be disabled as a general corporate policy. Later, in the “Configuring the Session State” section,
we’ll describe a way to still gain the benefits of sessions without using cookies.

Based on the session ID, ASP.NET provides a separate store for each user. Once the user is
identified, ASP.NET can provide access to it. The session data is accessible through an object
of type HttpSessionState, which is available through any of the following class properties:

• Page.Session

• Page.Context.Session

• HttpContext.Current.Session

All of these properties point to the same object, which you can use to keep data. This code
could be placed in a code-behind page to access the session data:

' Save a value to the session state
Session("creditcard") = txtCard.Text

' Retrieve the value later to proceed to checkout
Dim card As String = Session("creditcard")

Since all your pages inherit from Page, you can use MyBase.Session, Me.Session, or just
Session to access this object, as in the example here.

The session object provides methods and properties that deal with the session, such as
Abandon(), Clear(), Count, Keys, and others. You can refer to the MSDN help for a list of mem-
bers and what they are used for (most of the member names are fairly self-explanatory).

You’ll now use the session state in a new feature you’ll add to the Friends Reunion case
study application. Up to now, users have been able to log in and see some news related to
them, such as requests for contact and approved contacts, but so far, there’s no way for them
to search for fellow users. You’ll add this search facility, and also allow the user to perform
searches within previous results, in order to narrow the initial search. This is a good place to
use the session state, as the whole dataset can be kept there to perform subsequent narrowing
searches against it.

An important consideration to take into account is that the session state is held on the
server, thus consuming resources. If you allowed users to perform very wide searches, with
potentially thousands of records being retrieved from the database (assuming your applica-
tion is popular enough!) and saved to the session state, the server would be brought to its
knees very soon. So, we will use a configurable limit of maximum allowed results for the

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 209

search engine, through the application configuration file, Web.config. This is common prac-
tice in most search engines, even Microsoft’s.

Try It Out: Create a Search Engine You’ll add a Search page to allow users to search for their
missing friends.

1. Add a new web form to the application, called Search.aspx.

2. Add the following new styles to the iestyle.css stylesheet (notice the use of shorthand
notation for both the border and padding).

.MediumTextBox
{
border: solid 1px #c7ccdc;
font-size: 8pt;
font-family: Tahoma, Verdana, 'Times New Roman';
width: 140px;

}
.Search
{
border: solid 1px silver;
padding: 5px 5px 5px 5px;
background-color: gainsboro;
width: 250px;

}
.SearchResults
{
padding: 5px 5px 5px 5px;

}

3. Just as you did in previous chapters, drag-and-drop the stylesheet file on the form to
link to it.

4. Import the following namespaces at the top of the code-behind page:

Imports System.Configuration
Imports System.Data.SqlClient
Imports System.Text

5. Make the page inherit from FriendsBase and add the icon and page header message:

Public Class Search
Inherits FriendsBase
Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
' Configure the icon and message
MyBase.HeaderIconImageUrl = "~/Images/search.gif"
MyBase.HeaderMessage = "Search Users"

End Sub
End Class

...

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT210

6. Insert an HTML Table control using Table ➤ Insert ➤ Table. Give the table one row
and two cells. Make the border 0 and the width 100%. Set the resulting table’s id to
tbResults and the two cells’ valign attribute to top.

7. Switch to the source HTML view and add the following code inside the first <td>
element.

<td valign="top">
<asp:panel id="pnlResults" cssclass="SearchResults" runat="server">
Search results:
<hr width="100%" size="1">
<asp:label id="lblLimit" runat="server" />

<asp:datagrid id="grdResults" runat="server" />

</asp:panel>
</td>

This is the panel that will hold the results from the search.

8. Switch to the Design view again. Inside the second cell element, drop a web forms
Panel control named pnlSearch, set its CssClass to Search, and type Search Friends
Reunion: inside it. Drop an HTML Horizontal Rule (<hr> element) next to the text, and
insert an HTML Table control below it, with two columns and seven rows. It should
have border set to 0 and width to 100%. The last row in the table should have only one
cell with its colspan property set to 2.

9. In the table’s left-hand cells, type the following text: First Name:, Last Name:, Place:,
Type:, Year In:, and Year Out:. Drop four TextBox controls next to the name and year
fields. Drop two DropDownList controls (also known as combo boxes) next to the
place and type fields. Finally, drop two Button controls in the last table row. The panel
should look like the one shown in Figure 6-1.

Figure 6-1. The Search page design

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 211

10. Set the following ID properties for the controls, working down the page through them,
and set their properties as shown. When you’re finished the form should look like
Figure 6-2.

• txtFirstName: CssClass to MediumTextBox

• txtLastName: CssClass to MediumTextBox

• cbPlace: CssClass to MediumTextBox; DataTextField to Name; DataValueField to
PlaceID

• cbType: CssClass to MediumTextBox; DataTextField to Name; DataValueField to
TypeID

• txtYearIn: CssClass to SmallTextBox

• txtYearOut: CssClass to SmallTextBox

• btnSearch: CssClass to Button; Text to New Search

• btnSearchResults: CssClass to Button; Text to Within Results

Figure 6-2. The Search page after applying CSS styles

11. You set the DataTextField and DataValueField properties for both combo boxes
because you will be binding them to a data source. Just as you did in Chapter 5, drop a
SqlConnection and two SqlCommand components on the page, naming them cnFriends,
cmPlace, and cmType, respectively. Then, set the following properties for them:

• cnFriends.ConnectionString (from DynamicProperties):
cnFriends.ConnectionString

• cmPlace.Connection: cnFriends

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT212

• cmPlace.CommandText: SELECT PlaceID, Name FROM Place ORDER BY Name

• cmType.Connection: cnFriends

• cmType.CommandText: SELECT TypeID, Name FROM PlaceType ORDER BY Name

12. Now load the results of both commands into the combo boxes in the Page_Load()
method:

Private Sub Page_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load
' Configure the icon and message
MyBase.HeaderIconImageUrl = "~/Images/search.gif"
MyBase.HeaderMessage = "Search Users"

cnFriends.Open()
' Initialize combo boxes
Try
Dim reader As SqlDataReader = cmPlace.ExecuteReader()
Try
cbPlace.DataSource = reader
cbPlace.DataBind()
cbPlace.Items.Add(New ListItem("-- Not selected --", "0"))
cbPlace.SelectedIndex = cbPlace.Items.Count - 1

Finally
reader.Close()

End Try

reader = cmType.ExecuteReader()
Try
cbType.DataSource = reader
cbType.DataBind()
cbType.Items.Add(New ListItem("-- Not selected --", "0"))
cbType.SelectedIndex = cbType.Items.Count - 1

Finally
reader.Close()

End Try
Finally
cnFriends.Close()

End Try
End Sub

You have used data binding before, in Chapter 5, so you already know what’s involved,
but this time you’re binding directly to a SqlDataReader object. The DataTextField and
DataValueField properties of the combo boxes define which values to load from the
data source. As you learned in previous chapters, a data reader is fast, read-only, and
forward-only—everything that’s needed to load the data controls. You manually add an
item to allow the user to specify that no filter should be applied for that field. You want
to make sure to always enclose your accesses to data readers in Try..Finally blocks to
ensure the underlying database connection is always closed.

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 213

13. Drop a DataSet on the page and select the Untyped option from the dialog box. You
will use it to load the results of the query. Set its name to dsResults. You are using a
DataSet instead of a data reader, because you will need this object later to perform
refining searches. A data reader object, being a connected and forward-only cursor,
isn’t suitable for this purpose.

14. Now you need to prepare the data properties of the DataGrid control you added man-
ually to the page source in step 7 to support data binding to this new dataset. Set the
grdResults.DataMember property to User. Set the grdResults.DataSource property to
dsResults.

15. Double-click the New Search button and add the following code to the handler, which
will perform the initial search and save the results to the session state. It’s mostly
string-manipulation code and command-parameter initialization, as you can see.

Private Sub btnSearch_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnSearch.Click

Dim limit As Integer = Convert.ToInt32(
ConfigurationSettings.AppSettings("searchLimit"))

Dim sql As New StringBuilder
' Limit maximum resultset size
sql.Append("SELECT TOP ").Append(limit)
sql.Append(" [User].UserID, [User].FirstName, [User].LastName, ")
sql.Append(" Place.PlaceID, Place.Name AS PlaceName, ")
sql.Append(" PlaceType.Name AS PlaceType, PlaceType.TypeID, ")
sql.Append(" TimeLapse.Name AS LapseName, TimeLapse.YearIn, ")
sql.Append(" TimeLapse.MonthIn, TimeLapse.YearOut, ")
sql.Append(" TimeLapse.MonthOut ")
sql.Append("FROM [User] ")
sql.Append("LEFT OUTER JOIN TimeLapse ON ")
sql.Append(" TimeLapse.UserID = [User].UserID ")
sql.Append("LEFT OUTER JOIN Place ON ")
sql.Append(" Place.PlaceID = TimeLapse.PlaceID ")
sql.Append("LEFT OUTER JOIN PlaceType ON ")
sql.Append(" Place.TypeID = PlaceType.TypeID ")

' Build the WHERE clause and accumulate parameter values now
Dim values As Hashtable = New Hashtable
Dim qry As StringBuilder = New StringBuilder
If Not (txtFirstName.Text = String.Empty) Then
qry.Append("[User].FirstName LIKE @FName AND ")
values.Add("@FName", "%" & txtFirstName.Text & "%")

End If
If Not (txtLastName.Text = String.Empty) Then
qry.Append("[User].LastName LIKE @LName AND ")

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT214

values.Add("@LName", "%" & txtLastName.Text & "%")
End If
' All other values can take advantage of ADO.NET parameters
If Not (cbPlace.SelectedValue = "0") Then
qry.Append("[Place].PlaceID = @PlaceID AND ")
values.Add("@PlaceID", cbPlace.SelectedValue)

End If
If Not (cbType.SelectedValue = "0") Then
qry.Append("[PlaceType].TypeID = @TypeID AND ")
values.Add("@TypeID", cbType.SelectedValue)

End If
If Not (txtYearIn.Text = String.Empty) Then
qry.Append("TimeLapse.YearIn = @YearIN AND ")
values.Add("@YearIN", txtYearIn.Text)

End If
If Not (txtYearOut.Text = String.Empty) Then
qry.Append("TimeLapse.YearOut = @YearOut AND ")
values.Add("@YearOut", txtYearOut.Text)

End If

Dim filter As String = qry.ToString()
If Not (filter.Length = 0) Then
' Add the filter without the trailing AND
sql.Append(" WHERE ").Append(filter.Remove(filter.Length - 4, 4))

End If

Dim ad As SqlDataAdapter = New SqlDataAdapter(sql.ToString(), cnFriends)
' Now add all parameters to the select command
For Each prm As DictionaryEntry In values
ad.SelectCommand.Parameters.Add(prm.Key.ToString(), prm.Value)

Next

dsResults = New DataSet
ad.Fill(dsResults, "User")

' Adjust label for results
If dsResults.Tables("User").Rows.Count < limit Then
lblLimit.Text = "Found " & _
dsResults.Tables("User").Rows.Count & _
" users matching your criteria on initial search."

Else
lblLimit.Text = "You're working with the first " & _
limit & " results.
" & _
"If you're looking for someone who's not in this list, " & _
"please search again with a more precise search criterion."

End If

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 215

' Place results in session state
Session("search") = dsResults
BindFromSession()

End Sub

16. The method called at the end, BindFromSession(), performs the actual binding from
the dataset found in the session. Add its code below the previous event handler.

Private Sub BindFromSession()
dsResults = CType(Session("search"), DataSet)
grdResults.DataBind()

End Sub

We created a separate method in order to call the same binding method from the code
that narrows search results.

17. Double-click the Within Results button and add the following code to the handler.
This handler will filter the previously retrieved dataset with further criteria, using the
dataset’s Select() method.

Private Sub btnSearchResults_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnSearchResults.Click

dsResults = CType(Session("search"), DataSet)
' If we can't get the previous results, then we lost session
' information (failure), or no previous results were available
' Default to normal search
If dsResults Is Nothing Then
btnSearch_Click(sender, e)

End If

' We can't use parameters as this is a common filter
' expression to use with the DataSet
Dim qry As StringBuilder = New StringBuilder
If txtFirstName.Text.Length > 0 Then
qry.Append("FirstName LIKE '%")
qry.Append(txtFirstName.Text).Append("%' AND ")

End If
If txtLastName.Text.Length > 0 Then
qry.Append("LastName LIKE '%")
qry.Append(txtLastName.Text).Append("%' AND ")

End If
If cbPlace.SelectedItem.Value <> "0" Then
qry.Append("PlaceID = '")
qry.Append(cbPlace.SelectedItem.Value).Append("' AND ")

End If
If cbType.SelectedItem.Value <> "0" Then
qry.Append("TypeID = '")

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT216

qry.Append(cbType.SelectedItem.Value).Append("' AND ")
End If
If txtYearIn.Text.Length > 0 Then
qry.Append("YearIn = ")
qry.Append(txtYearIn.Text).Append(" AND ")

End If
If txtYearOut.Text.Length > 0 Then
qry.Append("YearOut = ")
qry.Append(txtYearOut.Text).Append(" AND ")

End If

Dim filter As String = qry.ToString()
If Not (filter.Length = 0) Then
filter = filter.Remove(filter.Length - 4, 4)

End If
Dim rows As DataRow() = dsResults.Tables("User").Select(filter)

' Rebuild results with new filtered set of rows,
' maintaining structure
dsResults = dsResults.Clone()
For Each row As DataRow In rows
dsResults.Tables("User").ImportRow(row)

Next

' Place results in session state
Session("search") = dsResults
BindFromSession()

End Sub

18. As the search results may now be saved to the session state, you could check for that
when the page is loaded, and automatically bind the DataGrid control if the data is
there. Add the following lines immediately before the end of the Page_Load() method:

If Not Session("search") Is Nothing Then
BindFromSession()

End If

19. You’re almost finished. Recall that in the btn_Search handler, you’re using a setting
from the Web.config file that specifies the limit of rows retrieved from a search. Add
this setting to the configuration file:

<appSettings>
...
<add key="searchLimit" value="10" />

</appSettings>

You set it to this very low value in order to see it in action with the small set of test data
included with the sample database.

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 217

20. Finally, add the link in the Default.aspx page to allow the users to access the search
feature. As you learned in Chapter 4, you can do this by placing the following code in
the If block of the Page_Load() method:

' ----- Search button ----
' Create a new blank table row, this time for Search link
row = New TableRow
' Search link
img = New System.Web.UI.WebControls.Image
img.ImageUrl = "Images/search.gif"
img.ImageAlign = ImageAlign.Middle
img.Width = New Unit(24, UnitType.Pixel)
img.Height = New Unit(24, UnitType.Pixel)

' Create the cell and add the image
cell = New TableCell
cell.Controls.Add(img)
' Add the cell to the row
row.Cells.Add(cell)

' Set up the Search link
lnk = New HyperLink
lnk.Text = "Search"
lnk.NavigateUrl = "Search.aspx"

' Create the cell and add the link
cell = New TableCell
cell.Controls.Add(lnk)
' Add the new cell to the row
row.Cells.Add(cell)

' Add the new row to the table
tb.Rows.Add(row)

21. You are now ready to test the search engine by setting Search.aspx as the start page
and compiling and running the application as usual.

How It Works

If you perform a search with all the fields empty, you should see something like the page
shown in Figure 6-3.

We’ll improve the DataGrid control as we go, because we surely don’t want all those GUIDs
being displayed, right? What’s important to notice up front is the message being displayed. It
states that we’re working with the first ten records, because the initial search exceeded that
limit. If we set a lower value, the message will change accordingly.

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT218

Figure 6-3. Performing a search without specifying criteria

■Tip In the code that built the query, we used ADO.NET parameters with the query exclusively. This makes
for a more secure application, because by using parameters, you avoid the most common types of so-called
SQL injection attacks. This is an advanced topic, but you should be aware of its existence and take advan-
tage of parameters whenever you can. You can read the article at http://www.securityfocus.com/
infocus/1768 as a starting point, or search Google for more information on the subject.

Now try to narrow the search by specifying 1984 in the Year In field and clicking the Within
Results button (filtering through the combo boxes won’t work yet, but you will see what’s wrong
when we get to the “Viewstate” section). This time, instead of hitting the database again, the
search is performed in-memory on the server, a feature offered by the DataSet class. You’re
retrieving only the matching rows from the previously saved dataset:

Dim rows As DataRow() = dsResults.Tables("User").Select(filter)

Note that after you get the rows satisfying the new filter, you clone the structure of the
saved dataset and start importing the rows into its User table:

dsResults = dsResults.Clone()
For Each row As DataRow In rows

dsResults.Tables("User").ImportRow(row)
Next

The code that follows is just like the version that searches against the database. The
dataset is saved to the session, and the helper method, BindFromSession(), is called:

Session("search") = dsResults
BindFromSession()

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 219

Directly assigning the value to the session with the same key as before replaces any previ-
ous value. On the other hand, if the key doesn’t exist, it’s added automatically.

The limit placed on the maximum result rows allowed is a very important feature. This
prevents the user from selecting a huge resultset and affecting your server resources. Note also
that because the dataset is now placed in the session state, if the user navigates to other pages
in the application and later comes back to the search page, the previous results will still be
there, and therefore will be displayed. It’s a good time to ask how to get rid of those previous
results, how long a session lasts, and if there’s a way to perform some actions when the session
is started.

Controlling the Session State
Removing items from the session state when you don’t need them any more will preserve
server resources. You can do this either by assigning the value Nothing to an existing key:

Session(key) = Nothing

or by calling the Remove() method:

Session.Remove(key)

Even though both effectively remove the reference to the item, thus allowing the garbage col-
lector to remove the object from memory, the latter is more appropriate, because it completely
removes both the value and the associated key.

You can also use the Clear() method, which removes all items and their corresponding
keys.

Try It Out: Remove Session State Items Now you’ll improve the Search page. The users will be able
to perform some actions related to their search results, such as clearing the items, and you’ll
add other actions as we go.

1. In the Search.aspx file, add a panel below pnlSearch (which you created in the previ-
ous exercise). Insert a line break (press Shift+Enter) immediately after the search panel
on the right of the page, and drop a Panel control. Name it pnlActions and set its
CssClass to Search.

2. Enter the text Actions: inside the panel, and drop an HTML horizontal rule next to it,
but still inside the panel.

3. Insert an HTML Table control below the rule, with only one row (you will add more
later) and two columns. Set the border property to 0, cellpadding to 4, and width
to 100%.

4. Drop a web server ImageButton control on the leftmost cell, with the following
properties:

• ImageUrl: Images/results.gif

• Tooltip: Clear all results from the search

• (ID): btnClearResults

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT220

5. Type the text Clear Results in the rightmost cell, and set the cell’s width to 100%. The
form should look like Figure 6-4 now.

Figure 6-4. The Search page with a new section for actions

6. Double-click the ImageButton control to get to the event handler, and then enter the
following code:

Private Sub btnClearResults_Click(ByVal sender As System.Object, _
ByVal e As System.Web.UI.ImageClickEventArgs) Handles btnClearResults.Click
Session.Remove("search")
SetResultsState(False)

End Sub

7. Once the results have been cleared, you don’t want the actions panel to display any-
more. Also, you want to hide the results panel altogether, leaving just the search panel
visible, and hide the button to perform refined searches, too. When a new search is
performed though, you want to restore the visibility of all those controls. Additionally,
you are setting the btnSearch text to something more meaningful, depending on visi-
bility. For that purpose, create the helper SetResultsState() method:

Private Sub SetResultsState(ByVal visible As Boolean)
pnlActions.Visible = visible
pnlResults.Visible = visible
btnSearchResults.Visible = visible

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 221

If visible Then
btnSearch.Text = "New search"

Else
btnSearch.Text = "Search"

End If

' If setting to visible, it's because there are results to bind to
If visible Then
BindFromSession()

End If
End Sub

Note that the method receives a Boolean value indicating the visibility to set. The last
line takes into account that if you are turning on the visibility, it’s because there are
new results to display, and thus calls the BindFromSession() method you used before.

8. Now modify the following lines in Page_Load() to take into account the visibility of
panels when the page is entered. Change it from:

If Not Session("search") Is Nothing Then
BindFromSession()

End If

to:

SetResultsState(Not Session("search") Is Nothing)

Note that you pass the argument telling whether or not there are results in the session
state.

9. To restore this visibility in btnSearch_Click, replace the following line:

BindFromSession()

with:

SetResultsState(True)

10. Save and run the page.

How It Works

The most important bit of code here is when you remove the object from the session state:

Session.Remove("search")

Toggling visibility of items depending on the session state presence makes the page
shown in Figure 6-5 appear the first time now.

To gain more granular control over the session state, ASP.NET provides two events that are
fired at different points during the life of the user session: Start and End.

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT222

Figure 6-5. On the Search page, selective controls’ visibility depends on the session state items.

You can attach event handlers for them through the special file Global.asax. This file
allows you to add handlers to these kinds of events, which are global in the sense that they
don’t happen inside a single page or control. They belong to the web application as a whole.
You’ll use other global events later in this chapter. For now, you need to use only the following
special syntax in the Global.asax code-behind file to handle the session Start and End events:

Sub Session_Start(ByVal sender As Object, ByVal e As EventArgs)
' Fires when the session is started

End Sub

Sub Session_End(ByVal sender As Object, ByVal e As EventArgs)
' Fires when the session ends

End Sub

The empty signatures are already placed there whenever you start a new web application.
A good use of such methods would be, for example, to release expensive or locked resources,
such as a file or a database connection, if you keep it in the session state (a generally unadvis-
able practice, given the fact that ADO.NET already provides connection pooling), or to initialize
some context related to the user as soon as the session starts, such as reloading a previously
saved shopping cart. Note that the Session_End() event will be fired only when using InProc
mode for the sessionState configuration element, as explained in the next section.

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 223

However, you should use the session state carefully, because it can severely affect scalabil-
ity if it’s used without care. In this example, you were careful to limit the amount of information
placed there as a result of a search.

Configuring the Session State
You can tweak several settings related to this feature though the application configuration file,
in a section called (guess what) sessionState:

<sessionState
timeout="timeout in minutes"
cookieless="[true|false]"
mode="[Off|InProc|StateServer|SQLServer]"
stateConnectionString="tcpip=server:port"
stateNetworkTimeout=

"for network operations with State Server, timeout in seconds"
sqlConnectionString=

"valid SqlConnection string, minus Initial Catalog" />

The first attribute is easy to grasp; it specifies the minutes to keep a session alive after
activity has ceased. If the user remains inactive for the specified lapse of time, a new session
will be created afterwards, thus losing all previous state.

The other settings require a closer look.

Session IDs and Cookies
When we introduced the session state, we said the generated session ID is stored by default in
a cookie, which is later read by ASP.NET on further requests to determine the session state to
associate with the current user. We also said that some users may have disabled cookies in
their browsers, so how do you enable the session state for them?

The answer lies in the second setting for the sessionState configuration element:

cookieless="[true|false]"

When you set the cookieless value to true, ASP.NET will append the session ID to the URL
itself, and append it to any relative URL existing on the requested page. If you simply change
this setting in Web.config, and navigate to Search.aspx (you can click the link in the home
page), you will notice the change in the URL shown in the Address box.

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT224

You should be aware that this mechanism adds a processing step. This is because all the
links in the page must be rewritten to include the session ID, and further requested URLs
must be parsed to extract it and to get the actual resource URL (without the session ID).

■Note ASP.NET dynamically adds the session ID to all relative links, but not to fully qualified links.

You should check that the URLs you add at design-time are always relative if they point to
resources in the same application. This way, a migration to cookieless session mode will not
affect the application’s behavior.

State Modes
Up to now, we never said where the objects you place in the session object are stored. ASP.NET
provides three options when it comes to session state storage, configurable through the mode
setting and related attributes:

mode="[Off|InProc|StateServer|SQLServer]"

The following sections explain what the different modes mean.

InProc Mode

InProc is the default setting. All the state is kept in-memory, in the same AppDomain that is
running the application. This provides maximum performance, but if the application is
restarted, or the process hangs for some reason, all the session data associated with your users
is lost. This may be acceptable in many scenarios, but you need to keep this possibility in mind.

■Note An application domain (or AppDomain) is a new concept in .NET. It’s similar to the concept of a
process, in that it represents a boundary of application isolation. However, multiple AppDomains can exist
in a single operating system process.

StateServer Mode

The StateServer mode allows you to separate the state storage from the process that is run-
ning your application. It is used in conjunction with the following two attributes:

stateConnectionString="tcpip=server:port"
stateNetworkTimeout="for network operations with State Server, timeout in seconds"

You can specify the address and port of the machine that will keep the state information
in its own process and memory. This isolates the state from your application, protecting it
from failures. In the state server machine, you need to start the ASP.NET State service, either
from the Services console or from the command prompt with the following command:

> net start aspnet_state

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 225

You can configure this service to be started automatically, too. You can specify that the state
server be the same machine holding your application by setting the IP to 127.0.0.1. This will pro-
tect the state from application restarts, but not from machine restarts. You should also note that
taking the state storage out of the application process imposes a performance impact, especially
if the state server is located in another machine on the network, as it not only involves the nec-
essary network traffic, but also serialization of all data that must travel through it. You should
carefully determine if retaining your session information justifies this impact.

■Note In .NET version 1.1, SessionState has been modified to not allow connections from locations
other than localhost (127.0.0.1). You must explicitly tweak a Registry setting to allow for this.

SQLServer Mode

If you absolutely must preserve the session state at all costs, the SQLServer mode setting is for
you. This mode saves all the session state in a SQL Server database, so it can survive any failure
in your application, server, and even database server (provided the database itself survives!).
Setting this mode involves configuring the following attribute of the sessionState element:

sqlConnectionString="valid SqlConnection string, minus Initial Catalog"

You also need to run a script to prepare the required database where the state is stored.
It is usually located in the Windows directory at Microsoft.NET\Framework\[version]\
InstallSqlState.sql. (For ASP.NET version 1.0, the version is v1.0.3705; for version 1.1,
it’s v1.1.4322.)

Fortunately, you don’t need SQL Server 2000 Query Analyzer to run this script. MSDE
comes with a command-line utility called osql. The following command will run the script
on the server and prepare the database and tables needed to hold state:

> osql –S [servername] –U [login] –P [pwd] < InstallSqlState.sql

You can use (local) as the server name to install in the current machine. You could even
have clustered SQL Servers for maximum reliability. This mode is the most robust way to pro-
tect critical session state, but it is the most expensive in terms of performance. A round-trip
to the database will be needed for each request, which can severely affect the application
responsiveness. Also, the processing cost of serialization and the network may become bottle-
necks under high load.

The most important impact for application performance is the network hop. If you’ll keep
the session state in a separate machine, SQLServer mode is certainly far more reliable and
preferable to StateServer, since you’ll be paying the network cost anyway.

Application State
Sometimes, you need to keep some data globally available to all users, who can share it. Of
course, you can think of a database record as application-level state: all users can query it as
needed. The performance impact would be unacceptable though, especially if it’s used very
often. Additionally, it involves several steps, such as opening the connection, issuing a query,

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT226

and managing the results, just as you learned in Chapter 4. What’s more, you would be limited
to storing records, not arbitrary objects.

■Tip You could actually use serialization to store objects. You can find information about object serialization
in the MSDN documentation. Search for Serializing Objects in the index of the .NET Framework Developer’s
Guide topics.

To make matters easy, ASP.NET supports the concept of an application state. Each web
application has its own set of globally available state, which can be accessed and used as eas-
ily as the session state. The data is held in an object of type HttpApplicationState, which is
available through any of the following class properties:

• Page.Application

• Page.Context.Application

• HttpContext.Current.Application

This kind of state is obviously kept on the server side, too. Notice that the storage options
available for the session state (state server and SQL Server) are not available for the applica-
tion state, which will be lost on application or machine restarts.

Usually, the application state is loaded from some permanent store (a database for exam-
ple) when the application is started, and saved for later use (if it’s appropriate) when the
application ends. These events, just like their session counterparts, can be handled in the
Global.asax file:

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
' Fires when the application is started

End Sub

Sub Application_End(ByVal sender As Object, ByVal e As EventArgs)
' Fires when the application ends

End Sub

During the application’s life, the application state is used anywhere you need it—retrieving
it, changing its value, and so on. But because it’s available to all users simultaneously, you must
take care of concurrency. For example, if you implement a global counter of visitors and incre-
ment its value any time a new session is started, it’s possible that between the retrieval of the
current counter and the saving of the new incremented value, another user increments the
value, too, so the second write will overwrite the previous value. What you need is to synchronize
access to the application value when you are about to change it. The HttpApplicationState
object provides two methods to do just that:

Application.Lock()
' Read and change values
Application.UnLock()

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 227

The code that accesses the application state between the Lock() and UnLock() method
calls is protected from concurrency; that is, it’s guaranteed to be executed by only one user
at a time. Note that other users trying to access the application state during the lock will be
blocked until the lock is released, so you should use locking for the minimum possible time.

Let’s now implement all these features in a global counter of visitors to the Friends
Reunion application.

Try It Out: Implement a Global Counter You will increment the counter when new sessions start,
and display this value in the footer user control you created back in Chapter 3.

1. Open the Global.asax code-behind page and add the following code to the
Session_Start() skeleton code:

Sub Session_Start(ByVal sender As Object, ByVal e As EventArgs)
Application.Lock()
If Application("counter") Is Nothing Then
Application("counter") = 1

Else
Application("counter") = CType(Application("counter"), Integer) + 1

End If
Application.UnLock()

End Sub

2. Open FriendsFooter.ascx in the Design view. Below the existing content, add the text
This site has had, followed by a Label control with an ID of lblCounter, followed by the
text visitors, as shown here.

3. Open the code-behind page for this user control and add the following code:

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
lblCounter.Text = Application("counter").ToString()

End Sub

4. Save and run the pages of the application to see the results.

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT228

How It Works

When you start the application again, a new session is created. Because the application has
just been started, the counter application state value will be Nothing, so the value 1 is assigned
directly. The footer then retrieves this value and displays accordingly, as shown in Figure 6-6.

Figure 6-6. The Welcome page with a counter added to the footer

As you will remember, session IDs are saved by default as a browser cookie, so to simulate
a new user session, you can just browse to the application using another browser, such as
Mozilla, Netscape, or Firefox, or restart the current browser and navigate back to the applica-
tion. ASP.NET will not find the session cookie and will thus believe you’re a new user. This
time, the handler in Session_Start() will find the previous value in the application state, and
will increment it.

Notice that you have protected the code that performs the increment using Lock() and
UnLock() methods.

Now try adding a blank line to the application Web.config file. Save it and refresh the
page. Oops, the counter is again set to 1! What happened is that any change to the application
configuration results in an application restart, so that the new settings take effect. The same
would happen if the ASP.NET process were stopped and restarted for some reason, such as
a failure. Of course, a global counter that resets automatically every time the application is
restarted isn’t of much use!

■Note Any change to Web.config (either the root one or anyone in subfolders) or Global.asax results in
an application restart.

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 229

If you want to preserve and later restore the application state from some permanent stor-
age such as a file or a database, you can do so in the global events described earlier in this
section.

Try It Out: Preserve and Restore the Application State You will now fix the counter so that it retains
the site visitor count between application restarts.

1. The FriendsData database (provided with the code for this book) includes a table
whose purpose is to hold the global counter. It’s called (guess what) Counter, and
contains a single column, Visitors. Open the Global.asax code-behind page, and
add the following imports:

Imports System.Configuration
Imports System.Data.SqlClient

2. Add the following code to retrieve the counter to Application_Start():

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
' Get the connection string from the existing key in Web.config
Dim con As SqlConnection = New SqlConnection(_
ConfigurationSettings.AppSettings("cnFriends.ConnectionString"))

Dim cmd As SqlCommand = New SqlCommand("SELECT Visitors FROM Counter", con)
con.Open()
Try
' Retrieve the counter
Application("counter") = CType(cmd.ExecuteScalar(), Integer)

Finally
con.Close()

End Try
End Sub

3. Add the following code to save the counter to Application_End():

Sub Application_End(ByVal sender As Object, ByVal e As EventArgs)
' Get the connection string from the existing key in Web.config
Dim con As SqlConnection = New SqlConnection(
ConfigurationSettings.AppSettings("cnFriends.ConnectionString"))

Dim cmd As SqlCommand = New SqlCommand(
"UPDATE Counter SET Visitors=" + Application("counter").ToString(), con)

con.Open()
Try
cmd.ExecuteNonQuery()

Finally
con.Close()

End Try
End Sub

4. Let’s modify the Session_Start() event, as the counter will always be there now, since
it will be initialized by Application_Start():

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT230

Sub Session_Start(ByVal sender As Object, ByVal e As EventArgs)
Application.Lock()
If Application("counter") Is Nothing Then
Application("counter") = 1

Else
Application("counter") = CType(Application("counter"), Integer) + 1

End If
Application.UnLock()

End Sub

5. From the Server Explorer, set an initial value on the Visitor field of the Counter table.

6. Save and run the application to see what differences the changes in the code have
made.

How It Works

The counter is now kept in the database, thus preserving it across application restarts.
Figure 6-7 shows an example of how the application might look after some usage.

Figure 6-7. The counter preserved across application restarts

You can try this by making a small change to Web.config and refreshing the page. It won’t
change unless a new session is started. When you retrieve the counter, you use ExecuteScalar,
which returns the value of the first column in the first row—just what we need. Note that both
SELECT and UPDATE queries work with the whole table, as you’ll always keep a single record, so
you don’t need to worry much about selecting the appropriate record in the first place.

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 231

You’re using a database to persist changes across application restarts, but you’re paying
only the cost of querying it once: at application start time.

Using Application Object and Events
You may have noticed that the Global class in the code-behind page of Global.asax inherits
from HttpApplication. This means that this file actually contains the class that defines
the application instance at runtime. An instance of this class is instantiated when the
application is first started by the ASP.NET runtime. You can access this instance through
the HttpContext.Current.ApplicationInstance property.

So, the various empty event handlers you see in Global.asax are actually the events
exposed by the base HttpApplication class. The special Application_EventName() (or
Session_EventName() event, as you saw earlier in this chapter) event is an easy way to attach to
the event, but it’s equally possible to do so manually, for example, in the class constructor:

Public Sub New()
MyBase.New()

'This call is required by the Component Designer
InitializeComponent()

'Add any initialization after the InitializeComponent() call
AddHandler MyBase.BeginRequest,
New EventHandler(AddressOf Application_BeginRequest)

End Sub

There are many events and methods that you can override from the base HttpApplication
class. Some of them can be very useful, depending on your application requirements, and
we’ll actually use one of them, AuthenticateRequest in Chapter 10, to customize application
security.

This global availability makes Global.asax a good place for common features used
throughout the application. For example, a method to send mail from the application can
be placed there, like this:

Public Sub SendMail(String to, String message)
' Send the mail

End Sub

Then you can use this method from any page by casting the application instance to the
Global class type and calling the method:

Dim app As Global = CType(Context.ApplicationInstance, Global)
app.SendMail("user@target.com", "This is a mail from Friends Reunion")

We’ll let your imagination take over here, since the Friends Reunion application doesn’t
require global functions.

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT232

A Side Note: Modules and Global.asax Method Signatures
In ASP.NET, most of the functionality is implemented by so-called modules. These modules
are classes that are instantiated when the application starts and participate in the processing
of a request. Session state is one such module. You can see the predefined modules in the
%WINDIR%\Microsoft.NET\Framework\v1.1.4322\CONFIG\machine.config file, in the
<httpModules> section. Here are some of them:

<httpModules>
<add name="OutputCache" type="System.Web.Caching.OutputCacheModule"/>
<add name="Session" type="System.Web.SessionState.SessionStateModule"/>
...

</httpModules>

Other modules are included for authorization and security features, and you’ll learn
about these in Chapter 10. What’s important here is that modules are associated with a name,
such as Session.

When the application object is created, it looks at all the methods placed in the
Global.asax file and splits their name based on the underscore character. If the method
name starts with Application, it attaches the method as an event handler of the event on the
HttpApplication class with the name and signature that follows the underscore character. If
the method name doesn’t start with Application, it looks at all configured modules, trying to
match a module name with the part before the underscore, and then tries to find an event in
the module type with the name and signature matching that part following the underscore. If
it finds a match, it creates the corresponding delegate object and appends it to the event. In
VB terms, this is what it’s doing:

AddHandler CType(Me.Modules("Session"), _
System.Web.SessionState.SessionStateModule).Start, _
AddressOf Session_Start

Note that the method name can also be Session_OnStart(), and it will be attached prop-
erly, too.

Viewstate
ASP.NET introduces a new concept to solve one of the most common problems web developers
have faced in the past: how to retain HTML form state across postbacks. By form state, we
mean selected values, filled fields, and so on. This had to be done manually in the past, retriev-
ing the posted values and setting them back again on the fields when the page returned.
ASP.NET viewstate handles this situation and more, such as remembering not only the selected
value in a combo box but also all the values in the list!

Back in Chapter 3, when we analyzed the postback mechanism, you saw that a hidden
form field is automatically added by ASP.NET:

<body ms_positioning="FlowLayout">
<form name="Default" method="post" action="Default.aspx" id="Default">
<input type="hidden" name="__VIEWSTATE"

value="dDwtOTk4MjU3NjkzOzs+5LhhCG/25vTEDfp0bTJAhwkpYFQ=" />
...

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 233

You can see this code by selecting View ➤ Source in your browser when the rendered
Default.aspx page is displayed. This information is used to refresh some page state across
postbacks, as well as a means to know which controls have changed their state (such as text in
a text box or a selected item in a combo box) in order to fire the appropriate events. ASP.NET
automatically persists this information to the __VIEWSTATE hidden field, so that it is available
on later postbacks. In Chapter 2, we reviewed the overall page lifecycle. Now we can take a
closer look at the events happening right after the Init and PreRender events, as shown in
Figure 6-8.

Figure 6-8. The ASP.NET page lifecyle revisited

We’re now interested in these two stages:

• Load the viewstate (between the Init and Load stages)

• Save the viewstate (between the PreRender and Render stages)

The content of the hidden field is parsed and placed again in the control’s properties,
immediately after the Init event, through a method called LoadViewState(). The new, posted
values are then processed and loaded, and assigned as the values of their corresponding con-
trols. The Control Events stage in the middle is the moment when your event handlers are
called.

Now you can understand how a TextBox can know that its Text property has changed and
raise the corresponding event, for example. From viewstate, ASP.NET loads the value originally
sent to the client, and when processing the posted data, the control can detect that the new

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT234

value is different from the original value. This mechanism, which is also available to custom
control developers, makes it almost unnecessary to use the Request.Form collection anymore.
As you can see, the viewstate doesn’t hold resources on the server side. It’s a client-side state
feature, as it’s kept in a field in the HTML page itself. It’s not for free, however; state serializa-
tion must be done, as well as optionally hashing and encrypting it for increased security
(discussed in Chapter 10).

An interesting case where you can see all these concepts applied is when a value selected
in a combo box is changed. When the page is initially submitted to the browser, the viewstate
contains the items in the list, with the first one selected (for example). If the user changes the
selected element, on postback, LoadViewState will load the complete list of items. Next,
LoadPostData will contain the newly selected item. Based on this information, the new item in
the server control will be marked as selected, and ASP.NET will also know it needs to raise the
SelectedIndexChanged event at the appropriate time (after the Load event). This is how the
whole event-based structure works.

Inside your handlers, you can set controls’ values as usual, and immediately after the
PreRender event, the SaveViewState() method will be called to take care of persisting them to
the viewstate for later use. When the page is posted back again, those values will be automati-
cally loaded by ASP.NET. Now you can understand the importance of the moment you use to
perform processing. If you change values in the Render phase (overriding the Render virtual
method), the changes won’t be persisted to the viewstate, and thus will be lost on postback.
The PreRender stage, on the other hand, or for that matter, any event handler you attach to a
control, are good places to make changes that should be persisted in the viewstate.

Because the viewstate is saved to a hidden input field in the rendered HTML, it increases
not only the page size, but also the posted form at runtime. It also adds processing on the
server, because the server needs to deal with it and perform the steps for handling the view-
state. Thus, you should enable the viewstate only when it’s really needed. It can be configured
at four levels:

• Web server control: All these controls have an EnableViewState property to enable/
disable this feature.

• User controls: These controls also have an enableViewState property. It can also be
configured through the @ Control directive:

<%@ Control enableViewState="True|False" %>

• Page: The viewstate can be configured through the enableViewState page property, or
through the @ Page directive:

<%@ Page enableViewState="True|False" %>

• Web application: The viewstate can be configured through the <pages> element in
Web.config:

<pages enableViewState="true|false" />

Unfortunately, the viewstate is enabled by default for all pages and controls, so you must
manually disable it when you don’t need it.

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 235

Try It Out: Preserve Processing by Using the Viewstate We will now take advantage of the viewstate
to avoid reloading the combo boxes each time the page loads.

1. Change the code in Page_Load() of the Search.aspx page to match the following:

Private Sub Page_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load
' Configure the icon and message
MyBase.HeaderIconImageUrl = "~/Images/search.gif"
MyBase.HeaderMessage = "Search Users"

If Not Page.IsPostBack Then
' Previous code to load values here...

End If
SetResultsState(Not Session("search") Is Nothing)

End Sub

2. Run the page and perform a search with all fields blank, and select View ➤ Source.
Note the huge value in the hidden __VIEWSTATE field. This field is bigger than the rest
of the page!

3. Copy the entire value of the __VIEWSTATE field to the Clipboard, open Notepad, and
paste it. Now save the file and take a look at its size.

4. Go back to the page Design view, select the DataGrid control, and set its EnableViewState
property to false.

5. Repeat steps 2 and 3. Notice how the hidden field value has now been dramatically
reduced. You’ll see that the file size is reduced from approximately 10KB to 1.3KB!

■Tip ASP.NET comes with built-in features to debug and test your pages, including analyzing their size,
loaded controls, the time it takes to process them, and so on. We’ll discuss these features in detail in
Chapter 12.

How It Works

The Page class exposes an IsPostBack property that can be used to determine if the page is
being accessed for the first time or not, so you load the values from the database only on the
first hit. Note that on further postbacks, you don’t load the values, but they are not lost, as the
viewstate keeps track of them and reloads them each time. You can see this every time a new
search is performed, and the values in the combo boxes remain in place. You can try setting a
combo box’s EnableViewState property to False and see how the values are lost afterwards. It’s
so evident that the values are lost that you’ll even get an exception stating that the combo box
SelectedItem property is Nothing.

You can also try filtering by place or type, as it now works as expected. If you take a sec-
ond look at the sequence of events during the page life (Figure 6-8), you’ll notice that the Load

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT236

phase happens before your event handlers are called. As you were data binding the combo
boxes at that moment, you were effectively removing the user selection before the handler for
the Search button could retrieve the selected value, and that’s why it didn’t work. Now that the
binding is performed only once, selection is preserved, and the event handler can successfully
retrieve the filter.

When you disabled the viewstate for the DataGrid control, you prevented ASP.NET from
persisting all the information in the grid (including rows and data) to the viewstate, thus
preserving a lot of bandwidth your users will appreciate, and also relieved the server from
processing all that state about the grid that wasn’t used by the code.

Using the Viewstate As a Datastore
The viewstate can also be used much like the session and application state to hold arbitrary
data. This opens opportunities to avoid using the session state whenever the data you need to
track is relevant to only a single page. It can be accessed from your code using syntax identical
to that of the session and application state:

' Save a value to viewstate
ViewState("selected") = True

' Retrieve the value later
Dim selected As Boolean = CType(ViewState("selected"), Boolean)

Strictly speaking, almost anything can be saved to the viewstate, even a whole DataSet, but
it is optimized for simple values, such as string, integer, Boolean, array, ArrayList, Hashtable,
Pair, and Triplet types. Saving objects to the viewstate involves a process known as
serialization, which converts an object to a string representation, which can later be deserial-
ized back to its original form. The types we mentioned have optimized serializers that produce
very compact representations and have almost no performance impact on deserialization,
unlike, for example, a dataset, which will be very slow to process! It’s very important to avoid,
as much as possible, serializing any object whose type is not one of the optimized ones.

■Caution The viewstate increases the HTML payload (the size of the page sent to the browser, and there-
fore of the form posted back), so it’s not well suited for large amounts of data.

Try It Out: Enable Record Selection with the Viewstate In our Friends Reunion search engine, it
would be useful to allow the user to select desired records in order to perform some action
with them later, such as sending a request for contact to all of them in one step. You will add
the selection feature now, using the viewstate to keep this list.

1. You will use an ArrayList object to keep a list of selected items. You need to customize
the DataGrid control to enable this functionality, so first set its EnableViewState prop-
erty to False. Also, add the following import to the code:

Imports System.Collections.Specialized

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 237

2. Apply the Auto Format style Colorful 4 to the DataGrid control and set its
AutoGenerateColumns property to False through its Property Builder.

3. Switch to the HTML view. Inside the DataGrid control declaration, directly below the
pagerstyle element, add the following column definitions:

<asp:datagrid id="grdResults" ...>
...
<pagerstyle horizontalalign="Right" forecolor="#4A3C8C"

backcolor="#E7E7FF" mode="NumericPages">
</pagerstyle>
<columns>
<asp:templatecolumn headertext="Sel">
<itemtemplate>
<asp:imagebutton id="imgSel" runat="server"

tooltip="Toggle user selection"
commandargument='<%#

DataBinder.Eval(Container, "DataItem.UserID") %>'
commandname="SelectUser"
imageurl="Images/unok.gif" />

</itemtemplate>
</asp:templatecolumn>
<asp:boundcolumn datafield="FirstName" headertext="First Name" />
<asp:boundcolumn datafield="LastName" headertext="Last Name" />
<asp:boundcolumn datafield="PlaceName" headertext="Place" />
<asp:boundcolumn datafield="PlaceType" headertext="Type" />
<asp:boundcolumn datafield="LapseName" headertext="Lapse" />
<asp:boundcolumn datafield="YearIn" headertext="Year In" />
<asp:boundcolumn datafield="MonthIn" headertext="Month In" />
<asp:boundcolumn datafield="YearOut" headertext="Year Out" />
<asp:boundcolumn datafield="MonthOut" headertext="Month Out" />

</columns>
...

You cannot add these bound columns through the Property Builder as you did in
Chapter 5, because the DataSet you are using is untyped.

4. Switch to the code-behind view. Select the grdResults element from the leftmost drop-
down list at the top of the code editor, and then select the ItemDataBound event from
the rightmost one.

5. Add the following code to the event handler that is created for you:

Private Sub grdResults_ItemDataBound(ByVal sender As Object,
ByVal e As System.Web.UI.WebControls.DataGridItemEventArgs)
Handles grdResults.ItemDataBound
If ViewState("selected") Is Nothing Then Return

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT238

Dim sel As StringCollection = CType(ViewState("selected"), StringCollection)
Dim img As ImageButton = CType(e.Item.FindControl("imgSel"), ImageButton)

If img Is Nothing Then Return

If sel.Contains(img.CommandArgument) Then
img.ImageUrl = "Images/ok.gif"
img.CommandName = "DeselectUser"
e.Item.ForeColor = Color.Red

End If
End Sub

This event handler will be called every time a new item (data row) is created and
bound to the data source.

6. Select the ItemCommand event from the drop-down list and add the following code to
the handler:

Private Sub grdResults_ItemCommand(ByVal source As Object, _
ByVal e As System.Web.UI.WebControls.DataGridCommandEventArgs) _
Handles grdResults.ItemCommand

If e.CommandName = "SelectUser" Then
Dim sel As StringCollection = _
CType(ViewState("selected"), StringCollection)

If sel Is Nothing Then
sel = New StringCollection
ViewState("selected") = sel

End If

If Not sel.Contains(CType(e.CommandArgument, String)) Then
sel.Add(CType(e.CommandArgument, String))

End If

BindFromSession()

ElseIf e.CommandName = "DeselectUser" Then
Dim sel As StringCollection =
CType(ViewState("selected"), StringCollection)

sel.Remove(CType(e.CommandArgument, String))

BindFromSession()
End If

End Sub

This handler will be called when the image button is clicked.

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 239

7. Finally, in order to show the count of selected items, drop a label below the whole
table, but inside the same table cell, named lblSelected. Clear its Text property, and
add the following method to the code-behind page:

Protected Overrides Sub OnPreRender(ByVal e As System.EventArgs)
If Not ViewState("selected") Is Nothing Then
lblSelected.Text = CType(ViewState("selected"), _
StringCollection).Count & " users selected."

End If
MyBase.OnPreRender(e)

End Sub

8. Set the EnableViewState property of the lblSelected label to False (you don’t need to
track changes to it, and it will probably change in every postback).

9. Clear this viewstate value whenever the Clear Results image button is clicked:

Private Sub btnClearResults_Click(ByVal sender As System.Object,
ByVal e As System.Web.UI.ImageClickEventArgs) Handles btnClearResults.Click
Session.Remove("search")
ViewState.Remove("selected")
SetResultsState(False)

End Sub

10. Save and run the page.

How It Works

If you perform a search with a Place filter set to Sundance Components, you will see results
similar to those shown in Figure 6-9.

After you select a couple users from the grid, the page will look something like Figure 6-10.
Note that because selection is performed on a per-user basis, if a user appears in more

than one row (that user has been in more than one place), all of these instances will be
selected/deselected at once.

You used bound columns in the grid and a templated column, something you learned to
do in Chapter 5. Whenever you click the selection button, the ItemCommand handler is fired. In
order for this event handler to receive the user ID of the user in the row, you used a data bind-
ing expression:

<asp:imagebutton id="imgSel" runat="server" tooltip="Toggle user selection"
commandargument='<%# DataBinder.Eval(Container, "DataItem.UserID") %>'
commandname="SelectUser" imageurl="Images/unok.gif" />

Note that even if the dataset is not typed, you can successfully retrieve the user ID, which
is passed to the handler that saves it to the viewstate:

If Not sel.Contains(CType(e.CommandArgument, String)) Then
sel.Add(CType(e.CommandArgument, String))

End If

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT240

Figure 6-9. Performing a place search

Figure 6-10. Record selection with viewstate

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 241

This handler then binds the data again in order to let the ItemDataBound handler reflect
the change in the selection. This change involves setting the forecolor of the row and changing
the button’s image. All this is performed in the ItemDataBound event handler, which is fired for
each row being bound after the DataBind() method is called inside the BindFromSession()
method, and checks if the current item is selected. It determines this from the collection saved
to the viewstate during the ItemCommand handler and by comparing the CommandArgument of the
image in the current row, which contains the user ID placed there by means of the binding
expression you used:

If sel.Contains(img.CommandArgument) Then
img.ImageUrl = "Images/ok.gif"
img.CommandName = "DeselectUser"
e.Item.ForeColor = Color.Red

End If

You are also changing the CommandName property to perform a deselection if the item is
already selected. This information is used in the ItemCommand handler to determine if it should
add an item to (or remove an item from) the StringCollection:

If e.CommandName = "SelectUser" Then
' Add the e.CommandArgument value to the list

ElseIf e.CommandName = "DeselectUser" Then
' Remove the e.CommandArgument value from the list

End If

Finally, the override in the OnPreRender() method now shows the count of selected users,
which is also taken from the viewstate:

If Not ViewState("selected") Is Nothing Then
lblSelected.Text = CType(ViewState("selected"), _
StringCollection).Count & " users selected."

End If

Try It Out: Clear Record Selection You can very easily add a new action to the actions panel to
clear the selection. You’ll add that action now.

1. Add a new row to the existing table inside the panel.

2. Add an ImageButton control and set its ID property to btnClearSelection and its
ImageUrl to Images/clearselection.gif.

3. Double-click the ImageButton control and add the following code to the event handler:

Private Sub btnClearSelection_Click(ByVal sender As System.Object, _
ByVal e As System.Web.UI.ImageClickEventArgs) Handles _
btnClearSelection.Click

ViewState.Remove("selected")
BindFromSession()

End Sub

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT242

How It Works

Not surprisingly, the syntax is just the same as you used to remove elements from the session
and application state, and to the line you added to the btnClearResults_Click event handler.

Transient State
Many times, all you need is for the state to last for the duration of the request and be dis-
carded automatically. One such scenario is whenever you need to pass data between pages,
or even between controls at different stages of page processing, especially if such controls are
contained in separate classes (like the Friends Reunion application header and footer user
controls, or our SubHeader custom control class). In those cases, you may need a way to pass
data between pages or controls, but it needs to last for only the time it takes to process the
current page request.

You could use the session state, but that is clearly an overkill solution, because it would
waste server resources for a state that doesn’t need to last for the whole session duration. Even
if you can preserve resources by manually removing the items once you’re finished, if the ses-
sion state is configured to be stored in a separate state server or even SQL Server, you would
suffer the corresponding performance impact.

ASP.NET provides a class that represents the context of the current execution, including
the request and its response: the HttpContext class. You have already seen how you can
access the application or session state using properties provided by this class, through its
HttpContext.Current.Session and HttpContext.Current.Application properties. What’s more,
an instance of this class is readily available as a property of the Control class, from which Page
and all server controls derive: Context. We’ll call this instance the Context object from now on.

In addition to these properties, the Context object has an Items property that can hold
any kind of data. Whatever you place there is automatically discarded as soon as the request
finishes processing. That’s why we call it transient, because it’s never persisted across requests,
unlike the session state, application state, and viewstate, as well as cookies, as you will see
shortly.

The Friends Reunion application can take advantage of this transient state. Suppose that
Victor (that old friend from the previous chapter) now has a list of the users he is interested
in contacting. You need to provide him with a means to send a request to all of them in one
step. For this purpose, you’ll send him to another page, where he will enter the desired mes-
sage and post the request for contact. You’ll use the transient state to pass the list of selected
users you have been saving in the viewstate (which obviously doesn’t live across pages) to the
target page.

Try It Out: Pass the List of Selected Users to Another Page Let’s now add a function for requesting
contact to the Friends Reunion application.

1. Add a new row to the table inside the actions panel. Drop an ImageButton control on
the leftmost cell with the ID btnRequest, set its ImageUrl to Images/requestcontact.gif,
and type some meaningful text, such as Request Contact, in the rightmost cell. The
form should look something like Figure 6-11.

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 243

Figure 6-11. Adding a Request Contact action

2. Double-click the new button, which should have the ID btnRequest, and add the fol-
lowing code to the event handler:

Private Sub btnRequest_Click(ByVal sender As System.Object,
ByVal e As System.Web.UI.ImageClickEventArgs) Handles btnRequest.Click
Context.Items("selected") = ViewState("selected")
Server.Transfer("RequestContact.aspx")

End Sub

3. Add a new web form called RequestContact.aspx. As usual, add the link to the
stylesheet and make the page inherit from FriendsBase.

4. Add the following import statements at the top of the code:

Imports System.Collections.Specialized
Imports System.Data.SqlClient
Imports System.Text

5. Drop a SqlConnection component on the page, name it cnFriends and configure its
ConnectionString through (DynamicProperties), as you have done before.

6. Drop a SqlCommand component onto the form and set its Connection property to point
to the connection component. Name it cmInsert and set its CommandText property as
follows:

INSERT INTO Contact (RequestID, IsApproved, Notes, DestinationID)
VALUES (@RequestID, @IsApproved, @Message, @DestinationID)

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT244

7. Insert some text and drop a TextBox, a Button, a ListBox, and a Label control to match
the following UI.

8. Set the controls’ ID properties as in this list, from top to bottom, and then set the con-
trol properties as shown:

• txtMessage: CssClass to BigTextBox; MaxLength to 300; TextMode to Multiline; Rows
to 5; Width to 424 pixels

• btnSend: CssClass to Button; Text to Send

• lstUsers: CssClass to Normal; Rows to 5; Width to 224 pixels

• lblSuccess: Font.Bold to True; ForeColor to #0000C0; Text to (none)

9. Add the following lines to the Page_Load() method:

Private Sub Page_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load
MyBase.HeaderMessage = "Contact your buddies!"
MyBase.HeaderIconImageUrl = "~/Images/contact.gif"

' Initialize the list of users only once
If Not Page.IsPostBack Then
Dim sel As StringCollection =
CType(Context.Items("selected"), StringCollection)

If sel Is Nothing OrElse sel.Count = 0 Then
Server.Transfer("Search.aspx")

End If

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 245

Dim sql As StringBuilder = New StringBuilder
sql.Append("SELECT FirstName + ', ' + LastName AS FullName, ")
sql.Append("UserID FROM [User] ")

' Build the WHERE clause based on the list received
sql.Append("WHERE ")
For Each id As String In sel
sql.Append("UserID = '").Append(id).Append("' OR ")

Next
' Remove trailing OR
sql.Remove(sql.Length - 3, 3)
sql.Append("ORDER BY FirstName, LastName")

Dim cmd As SqlCommand = New SqlCommand(sql.ToString(), cnFriends)
cnFriends.Open()
' Using
Dim reader As SqlDataReader = _
cmd.ExecuteReader(CommandBehavior.CloseConnection)

Try
' Add the items with the corresponding ID
While reader.Read()
lstUsers.Items.Add(New ListItem(
reader(0).ToString(), _
reader(1).ToString()))

End While
Finally
reader.Close()

End Try
End If

End Sub

10. Double-click the btnSend button and add the following code:

Private Sub btnSend_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnSend.Click
cmInsert.Parameters("@RequestID").Value =
Page.User.Identity.Name

cmInsert.Parameters("@IsApproved").Value = False
cmInsert.Parameters("@Message").Value = txtMessage.Text

Try
cnFriends.Open()
For Each it As ListItem In lstUsers.Items
cmInsert.Parameters("@DestinationID").Value = it.Value
cmInsert.ExecuteNonQuery()

Next
lblSuccess.Text = "Message successfully sent!"

Finally

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT246

' Always close the connection
cnFriends.Close()

End Try
End Sub

11. Save and run the page.

How It Works

If you now perform a search, select some users, and click the button to request a contact, you
will be taken to the RequestContact.aspx page, but just before you get to it, the code in the
event handler saves the list you were saving in the viewstate to the transient state:

Context.Items("selected") = ViewState("selected")
Server.Transfer("RequestContact.aspx")

Note that you use Server.Transfer() instead of Response.Redirect(). By using this
method, ASP.NET passes the processing responsibility to the specified page, but doesn’t termi-
nate the current execution context, nor the request, which is now transferred to the target
page. Because the processing shift takes place on the server side, the client browser doesn’t
know that it happens, and that’s why the URL stays the same after the transfer, as shown in
Figure 6-12.

Figure 6-12. The Request Contact page

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 247

This page takes advantage of both the transient state and viewstate. The first is used to
populate the list box when the page is first hit (it’s not a postback), right after the transfer:

If Not Page.IsPostBack Then
Dim sel As StringCollection = _
CType(Context.Items("selected"), StringCollection)

Note that if a postback were performed, the Context.Items collection would be empty this
time, and there would be no way of getting to the user selection again. Here is where the page
takes advantage of the viewstate to preserve the values loaded initially. This makes it possible
to get the IDs of the selected users directly from the list box loaded the first time the page was
hit, as shown by the code in the btnSend_Click handler:

For Each it As ListItem In lstUsers.Items
cmInsert.Parameters("@DestinationID").Value = it.Value
cmInsert.ExecuteNonQuery()

Next

As you learned in previous chapters, requests for contact are saved to the Contact
table, together with the ID of the user requesting the contact (extracted, as usual, from
Page.User.Identity.Name), so you just need to update the target user ID command
parameter in order to perform the insertion for each item in the list.

Although you can appreciate the utility of the transient state here, it’s even more useful if
the data being passed is more complex, such as a dataset or a complex object hierarchy. It
doesn’t suffer from the performance problems (both client and server side) of the viewstate
regarding complex sets of data, as it can pass any kind of data. Additionally, the transient state
doesn’t impose a potential threat to server scalability as does the session state, since it’s auto-
matically discarded as soon as the request has finished processing. Due to this same fact, it’s
not suitable for scenarios when you need to preserve the values across requests—that’s why
we call it transient.

Cookies
Basically, a cookie is a key/value pair of strings stored on the client browser. We have already
mentioned cookies when we talked about the session state. They are used when they are
enabled in the browser to keep the session ID, which is simply a string. Cookies are useful for
that kind of storage, which doesn’t take much space and where security isn’t too important
(don’t save a credit card number in a cookie, for example!). The available storage space for
cookies is browser-specific, but the corresponding World Wide Web Consortium (W3C) speci-
fication states that a minimum of 4KB must be available, and at least 20 cookies per site must
be allowed. So, even if some browsers may allow more than this, it’s usually wise to stick to
these limits if you want to avoid erratic behavior across browsers.

A cookie in ASP.NET is represented by an instance of the HttpCookie class. This object can
have a name and a value on its own, or contain several name/value pairs inside it. It has Name
and Value properties, but also contains a Values property to hold multiple values.

Also, there is a Cookies property in both Page.Request and Page.Response, representing
the received cookies and the ongoing ones.

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT248

A very common use for cookies is to keep user preferences regarding site appearance.
Let’s add a feature to the Friends Reunion application to allow users to change their preferred
background color for the site. You’ll add a control to the common footer user control to
change it. Doing so, however, will imply some modifications to the FriendsBase class, which
will also be the one in charge of applying the style change based on the cookie value. While we
analyze the changes involved, you’ll get a deeper understanding of the page lifecycle and how
controls (both user and custom controls) need to be aware of it in order to behave properly.

The first thing to analyze is how to trap the event fired when the control you’re adding
to the footer (a combo box with a list of colors) changes. The answer may seem obvious:
double-click the control and add the event handler. However, if you take a look at our current
FriendsBase class, you will realize that you’re actually creating and loading these controls in
the Render() method override. You did so before, since you didn’t need to support postbacks
or the viewstate. If you look at the picture of the page lifecycle in Figure 6-8 earlier in this
chapter, you’ll realize that this method is the last one on the chain. All chances to get the event
handlers called have already gone. Therefore, when the control causes a postback as a conse-
quence of a change, the ASP.NET runtime won’t be able to find the control to call its handler,
because it won’t exist yet. The only way to get the event handlers called, then, is to create the
controls during a previous stage. The place to do so is the Init phase.

Try It Out: Use Cookies to Keep User Preferences Now, you will add the code to use cookies for pre-
serving user preferences.

1. Open FriendsFooter.ascx in HTML view and add the following code:

This site has had
<asp:label id="lblCounter" runat="server"></asp:label> visitors.
<asp:image id="imgShow" runat="server"

imageurl="../Images/down.gif"
imagealign="AbsMiddle"
tooltip="Change preferences">

</asp:image>

<div id="tbPrefs" style="DISPLAY: none; TEXT-ALIGN: center">BackColor:
<asp:dropdownlist id="cbBackColor" runat="server" cssclass="Normal"

autopostback="True"></asp:dropdownlist></div>
</asp:panel>

2. Open the code-behind file and add the following import statements:

Imports System.ComponentModel
Imports System.Collections

3. Modify Page_Load() as follows:

Private Sub Page_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load
lblCounter.Text = Application("counter").ToString()

' Script to show/hide the options and change the image
Dim script As String =

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 249

" var table=document.getElementById('tbPrefs'); " +
" if (table.style.display=='block') { " + _
" this.src='%down%'; table.style.display='none'; " +
" } else { " + _
" this.src='%up%'; table.style.display='block'; " +
" } "

' Resolve images relative to the current context
script = script.Replace("%down%",
ResolveUrl("../Images/down.gif"))

script = script.Replace("%up%",
ResolveUrl("../Images/up.gif"))

imgShow.Attributes.Add("onclick", script)
imgShow.Style.Add("cursor", "pointer")

If Not Page.IsPostBack Then
' Empty item to clear color preference
cbBackColor.Items.Add(String.Empty)
Dim cv As ColorConverter = New ColorConverter

' Retrieve current color preference to preselect the item
Dim selected As Color = Color.Empty
If Not Request.Cookies("backcolor") Is Nothing AndAlso
Not Request.Cookies("backcolor").Value Is Nothing AndAlso
Not Request.Cookies("backcolor").Value = String.Empty Then
selected = CType(cv.ConvertFromString(
Request.Cookies("backcolor").Value), Color)

End If

' Get all standard colors
Dim col As ICollection = cv.GetStandardValues()
For Each c As Color In col
' Convert each color to its HTML equivalent
Dim li As ListItem = New ListItem(c.Name,
ColorTranslator.ToHtml(c))

If c.Equals(selected) Then
li.Selected = True

End If
cbBackColor.Items.Add(li)

Next
End If

End Sub

4. Switch to the Design view to see your new control.

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT250

5. Double-click the combo box and add the following code:

Private Sub cbBackColor_SelectedIndexChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cbBackColor.SelectedIndexChanged
Response.Cookies.Add(New HttpCookie("backcolor",
CType(sender, DropDownList).SelectedItem.Value))

End Sub

6. Open the FriendsBase.vb file. As we discussed earlier, you need to add the controls to
the hierarchy on the Init phase, meaning you will need to override the OnInit()
method. You’ll do this, and also keep a reference to the loaded controls, as you’ll work
with them further at rendering time. For that purpose, let’s modify the class code as
follows:

Public Class FriendsBase
Inherits Page

Protected HeaderMessage As String = ""
Protected HeaderIconImageUrl As String = ""

Private _footer As FriendsFooter
Private _header As FriendsHeader
Private _subheader As SubHeader

Protected Overloads Overrides Sub OnInit(ByVal e As EventArgs)
_header = CType(LoadControl("~/Controls/FriendsHeader.ascx"),

FriendsHeader)
_footer = CType(LoadControl("~/Controls/FriendsFooter.ascx"),

FriendsFooter)
_subheader = New SubHeader

' Add to the Controls hierarchy to get proper
' event handling, on rendering we reposition them
Page.Controls.Add(_header)
Page.Controls.Add(_subheader)
Page.Controls.Add(_footer)
MyBase.OnInit(e)

End Sub

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 251

7. You also need to import this namespace:

Imports System.Web.UI.HtmlControls

8. The code for the Render() method will look different now, as you just need to rearrange
the controls you initialized in OnInit() and place them in their final location inside the
form Controls hierarchy:

Protected Overrides Sub Render(ByVal writer As System.Web.UI.HtmlTextWriter)
' Remove the controls from their current place in the hierarchy
Page.Controls.Remove(_header)
Page.Controls.Remove(_subheader)
Page.Controls.Remove(_footer)

' Get a reference to the form control
Dim form As HtmlForm = CType(Page.Controls(1), HtmlForm)

' Reposition the controls on the page
form.Controls.AddAt(0, _header)
form.Controls.AddAt(1, _subheader)
form.Controls.AddAt(form.Controls.Count, _footer)

' Set current values
_header.Message = HeaderMessage
_header.IconImageUrl = HeaderIconImageUrl

' New cookies are set to Response by the color selector
Dim bg As String = Response.Cookies("backcolor").Value

' If not, check Request for a previously saved cookie
If bg Is Nothing AndAlso Not Request.Cookies("backcolor") Is Nothing
AndAlso Not Request.Cookies("backcolor").Value Is Nothing
AndAlso Not Request.Cookies("backcolor").Value = String.Empty Then
bg = Request.Cookies("backcolor").Value
' Preserve cookie in the response
Response.Cookies.Add(Request.Cookies("backcolor"))

End If

' Do we have a value to work with?
If Not bg Is Nothing AndAlso bg <> String.Empty Then
' Enclose form in a DIV to display the backcolor
Dim div As HtmlGenericControl = New HtmlGenericControl("div")
div.Style.Add("background-color", bg)

' Relocate the form inside the DIV
Page.Controls.Remove(form)
Page.Controls.AddAt(1, div)
div.Controls.Add(form)

End If

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT252

' Render as usual
MyBase.Render(writer)

End Sub

9. That’s it! Save and run the page. Try clicking the new icon next to the visitor count and
selecting a color from the combo box.

How It Works

To get the list of available colors and to convert to and from HTML representations, you use
two classes in the System.Drawing namespace: ColorConverter and ColorTranslator. Those
are exactly the same classes VS .NET uses to handle color properties in the Properties browser
and Style Builder. You added a little piece of JavaScript to the image onclick attribute (actually
an event on the client side) to toggle visibility of the panel containing the color selector, and to
switch the image to display accordingly.

The important thing to notice in that code is that you’re not directly embedding the
images’ relative URLs in the JavaScript string. Rather, you’re using ResolveUrl(), a method
provided by the base Control class, which takes into account the current context. This is
important because the user control can be used in pages whose location is different than
the control’s page. This is, in fact, the case for all our pages. If you didn’t use that method,
a URL relative to the control may not always work. Here’s the code where you use it:

' Resolve images relative to the current context
script = script.Replace("%down%", _
ResolveUrl("../Images/down.gif"))

Testing the page, the first thing you will notice is that as soon as you select a color from
the list, the change takes place. That is a consequence of the AutoPostBack attribute you added
to the combo box. The workaround to get the event handler called involves creating and
adding the control in the hierarchy during initialization (OnInit()):

Page.Controls.Add(_footer)

and later removing it and adding it to the desired position (last in the Controls collection) for
rendering purposes:

Page.Controls.Remove(_footer)
HtmlForm form = (HtmlForm)Page.Controls(1)
form.Controls.AddAt(form.Controls.Count, _footer)

By keeping the controls’ instances in class-level private variables, removing them and
adding them to the Controls collection is very easy, as you don’t need to find the controls in the
hierarchy previously. This technique allows the event handler for the SelectedIndexChanged
event to be called after initialization has completed. Inside this handler (in the footer user
control’s code-behind file), you just save the selected HTML value to a cookie in the
Response.Cookies collection:

Response.Cookies.Add(New HttpCookie("backcolor",
CType(sender, DropDownList).SelectedItem.Value))

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 253

Then, as the final step in the page lifecycle, comes the FriendsBase.Render() method,
which besides repositioning controls as you’ve seen, checks the status of the cookies, both
from Response and Request. Based on that, it creates an enclosing <div> element, where it
places the whole form, to get the background color displayed:

Page.Controls.Remove(form)
Page.Controls.AddAt(1, div)
div.Controls.Add(form)

The process for relocating the form is exactly the same as you used to position the other
controls. Because all this code is placed in the base class for all your pages, they all gain this
feature immediately. The home page (Default.aspx) might look like Figure 6-13 after you
changed the color preference and expanded the preferences panel at the bottom.

Figure 6-13. The Default page with color preference choices

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT254

■Caution You can reposition controls on the page collection only during the Rendering phase, when the
viewstate for all of them has already been saved. If you do so earlier in the page lifecycle, the viewstate may
stop working, as well as the firing of events that depend on it.

If you restart your browser right now, you’ll lose your preference. That’s because the
cookie expires with the browser session by default. Let’s fix this now.

Try It Out: Survive Browser Restarts In order to change the default behavior, so the cookie is
retained after the browser session ends, add the following line to the FriendsBase.Render()
method:

div.Controls.Add(form)
Response.Cookies("backcolor").Expires = DateTime.Now.AddYears(1)

How It Works

You have set the expiration for the cookie that holds the color preference to one year from the
current time on the server. You should avoid setting the expiration to a higher value, because
some browsers will distrust it and may ignore it altogether.

Passing Data with Query Strings
A query string is everything appended to a URL after the name of the page plus a question
mark, such as in the following:

http://localhost/ViewUser.aspx?UserID=99

Some developers consider that passing data in the query string between pages is a way
to keep state, too. You actually have used this form of state in your work with the Friends
Reunion application; for example, you used it when you provided a link to view details about a
user in News.aspx, which rendered very similarly to the preceding example to pass the user ID
to the ViewUser.aspx page. It comes in especially handy when you use it in conjunction with
data binding, as you did. You retrieved this value simply with:

userID = Request.QueryString("UserID")

Note that the key used is the value before the =, and the value you get is the string follow-
ing it. The QueryString property is of type NameValueCollection, containing all the key/value
pairs found in the URL. If multiple values are needed, they must be separated by an & sign.

■Caution Remember to always check input parameters you receive before using them, to ensure they
are valid and within the expected values.

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 255

Except for this and similar cases where small sets of data need to be passed, this mecha-
nism is not recommended. HTTP 1.0 web servers usually don’t handle more than 255
characters in a query string, nor do older browsers. HTTP 1.1 solved this, but older browsers
still won’t work.

Passing Data with Hidden Form Fields
Using hidden form fields to pass data between the client and the server, as well as between
pages, is also possible. You can simply add an HTML input field to the form, set its type to
hidden, and then set values on it, either on the client side using a script or on the server. This
is an example of a hidden field:

<body ms_positioning="FlowLayout">
<form name="Default" method="post" action="Default.aspx" id="Default">
<input type="hidden" name="myField" value="myValue" />

On the client side, you can easily set the value of the field using JavaScript, ready to be
passed to the server:

document.getElementById(myField).value = "the value to pass!!";

You can get the values in a hidden form field using the Request.Form property on the
server side:

string value = Request.Form("myField")

You already know that the viewstate uses this technique, so you can easily imagine your
own applications for it, and they don’t necessarily need to be simple, as you can see!

This concludes our journey through the exciting ASP.NET state management features.

Summary
Equally important as dynamic features for web applications is the ability to retain state in its
different forms. ASP.NET offers a wide range of possibilities, filling all the gaps of the past and
creating new and improved state-handling approaches, such as the viewstate and transient
state. We have covered each of the features it offers. We also discussed the performance and
scalability trade-offs among them, and offered some hints on where to use each one.

We’ve taken advantage of the session state to allow the user to perform refining searches
for fellow users. We have taken into account scalability problems that may arise and placed a
limit on maximum search results, and also discussed different storage locations for this state
data. We then used the viewstate to further increase our application’s responsiveness by
reducing the HTML payload as a result of enabling it only when needed. We also reduced
server-side processing by avoiding reloading data, letting the viewstate take care of recon-
structing UI elements, such as combo boxes.

We then moved to more advanced uses of the viewstate as a store for arbitrary data, and
added the possibility to select users from the search results and stored those selections in the
viewstate. Next, we learned about a new feature available in ASP.NET, transient state, which
allowed us to pass this selection data between pages without consuming server resources.

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT256

We discussed the application state, and used it to provide a global count of visitors to our
application, and finally used the most traditional client state feature, cookies, to store user
preferences for the site’s background color.

Our application is becoming more mature, offering the possibility to register, add places,
and search for fellow users, and doing so in a user-friendly and responsive way. We have built
this functionality by taking advantage of ASP.NET state management features, as well as all the
features you learned about in previous chapters: server controls, ADO.NET, and data binding.

It’s now time to open up our application to partners and associates, and we will take
advantage of XML, XML schemas, and web services to allow them to access our data and
interact with our application. You’ll learn about these exciting new technologies and the
great potential they offer in the upcoming chapters.

CHAPTER 6 ■ ASP.NET STATE MANAGEMENT 257

Markup Languages and XML

In Chapters 4 and 5, we introduced the concept of working with data. We placed a relational
database behind our web application, and used it predominantly for data storage. We also
used ADO.NET techniques to manipulate and organize data as it passed between the user and
the database. By the end of Chapter 6, the Friends Reunion web application was acting as a
“middle man,” allowing individuals (on one side) to interact with the data stored within the
database (on the other side).

Of course, there is more to data than just storage and manipulation. Internet connectivity
is now widespread, and it is often desirable to have disparate applications working together
across the Internet. In this type of scenario, you need a way for such applications to exchange
data. Exchanging data involves formatting the data in a way that is compatible with all of your
applications and is easy to transport between applications.

For example, suppose we wanted to extend the Friends Reunion application to allow a
subscribing college or other institution to upload or download information about its users and
attendees. To achieve this, we would need some agreement about the format of the data and
how the data would be transferred. Ideally, we would build on a data format that is standard-
ized and universally understood.

It sounds complex, but Extensible Markup Language (XML) makes it all much easier. In
fact, XML was devised largely in answer to the generic need for a ubiquitous, transportable
data format, and as you’ll begin to see in this chapter, it’s very powerful.

As it happens, Microsoft has subscribed heavily to XML in its implementation of .NET. You
have probably already noticed that. XML is becoming increasingly important in a number of
ways, and over the course of the next two chapters, we’ll touch on only a few of its applications.

In this chapter, we will cover the following topics:

• The concept of markup that underpins XML

• The basic principles of an XML document

• The two properties of XML documents that allow you to read and work with them:
well-formedness and validity

• How XML Schemas play an important role in XML-based applications

In Chapter 8, we’ll use the preparatory work done in this chapter to extend the Friends
Reunion application. We’ll create a feature that allows an individual to upload an XML docu-
ment containing details of many registrants from a single college or institution.

259

C H A P T E R 7

■ ■ ■

CHAPTER 7 ■ MARKUP LANGUAGES AND XML260

XML is a markup language. To get a good understanding of XML, it helps if you first
understand the terms markup and markup language. Let’s start our exploration there.

Markup Languages
Whenever you look at a document, you are looking at an organized set of data. Consider some
everyday examples:

• Your salary slip contains data that relates to the amount of money you earned and how
much was deducted in tax.

• A recipe for chocolate cake is an organized collection of data, telling you what ingredi-
ents you’ll need (and how much of each), what method you should use to combine
them all, and the cooking time and temperature.

• This book is also an organized collection of data—specifically, an ordered set of
headings, paragraphs, and illustrations.

The data in documents such as these is generally arranged visually in such a way that the
organization of the data is clear to the human eye, and is therefore easy for humans to read.
In a similar way, we often need our computerized applications to be able to read a document
and deduce the structure and organization of the data contained within it. To do this, we use
markup.

Markup consists of tags or markers that exist in the document along with the data, and
describe the different elements of data within the document. Let’s consider an example:

<recipe title="Classic Chocolate Cake">
<ingredients>
<ingredient>
<description>Eggs<description>
<quantity>2</quantity>

</ingredient>
<ingredient>
<description>Butter<description>
<quantity unit="oz">4</quantity>

</ingredient>
...etc...

</ingredients>
<method>

Cream the butter and sugar. Add the milk and beaten eggs.
Sieve in the flour and cocoa, and fold into the mixture.
Turn into a lined cake tin and place into the oven.

</method>
<cookingTime unit="min">25</cookingTime>
<ovenSetting unit="C">180</ovenSetting>

</recipe>

This example clearly describes a recipe for chocolate cake. All the information (or data)
relating to the recipe is contained between the opening <recipe> tag and the closing </recipe>
tag. Within the recipe, you see an organized list of ingredients, a method, and information
about the cooking time and temperature. This document may not look like the attractive glossy
cookbooks you see in the bookstores these days, but all the necessary information is presented
in a well-organized, well-structured, unambiguous way.

HyperText Markup Language
You’ve seen markup before—in the HTML that is generated by your web applications and sent
to the browser for display. HTML is a markup language. It is a set of tags and attributes that
allow you to describe (or to mark up) the structure of a particular type of document. (In fact,
HTML is specifically designed to describe the structure of web page documents.)

The data in an HTML document is intended for display (in a browser window), so the
markup in an HTML document is intended specifically to describe the way the browser should
display the data. Here is an example:

<html>
<body>
<h1>Classic Chocolate Cake</h1>
<p>
Ingredients

2 eggs

4oz butter

4oz sugar

4oz self-raising flour

1oz cocoa

2tbsp milk

</p>
<p>
Method

Cream the butter and sugar. Add the milk and beaten eggs.
Sieve in the flour and cocoa, and fold into the mixture.
Turn into a lined cake tin and place into the oven.

</p>
<p>
Cooking Time: 25 minutes

Oven Setting: 180C

</p>
</body>

</html>

Like the previous example, this HTML document contains all the data required for a
chocolate cake recipe. However, the markup in this document structures the data very differ-
ently. The data in this document is not structured as a recipe (there are no <ingredients> and
<method> sections). Instead, it is structured as a web page (with a heading and a sequence of
paragraphs).

CHAPTER 7 ■ MARKUP LANGUAGES AND XML 261

You can send this HTML document to a browser. Because the browser is programmed to
recognize HTML tags, it will be able to work out the structure of the HTML document (the
sequence of headings and paragraphs, and so on) by reading the tags, and hence display all
the elements of the document in the right places on the page, as shown in Figure 7-1.

Figure 7-1. An HTML document viewed in a browser

Unsurprisingly, browsers are not programmed to recognize the <recipe> tag or the
<ingredients> tag, and so the recipe structure (in our first example) means nothing to them.
There would not be much point to sending the recipe markup to a browser. However, the
recipe markup would be very useful, say, as part of a custom application that deals with
archives of thousands of recipes.

Extensible Markup Language (XML)
So, markup is used to describe the structure and organization of data within a document. We
describe the structure of a web page document using a markup language called HTML. But
not every document is a web page; sometimes we need to describe data using a structure that
does not resemble web page structure at all. In that case, HTML will not do the job, so we need
a different markup language.

You’ve already seen a recipe document, which describes the structure of a recipe using
special “recipe markup” tags like <ingredients> and <cookingTime>:

CHAPTER 7 ■ MARKUP LANGUAGES AND XML262

<recipe title="Classic Chocolate Cake">
<ingredients>
...etc...

</ingredients>
<method>
...etc...
</method>
<cookingTime unit="min">25</cookingTime>
<ovenSetting unit="C">180</ovenSetting>

</recipe>

Here, everything between the <recipe> and </recipe> tags is recipe information, and we
use other tags to describe the exact nature of each bit of data.

You’ve also seen other types of markup already in this book, such as in the configuration
files used by the Friends Reunion web application:

<configuration>
<appSettings>
<add key="sqlCon.ConnectionString" value="...etc..." />

</appSettings>
<system.web>
<authentication mode="Forms">
<forms loginUrl="Secure/Login.aspx" />

</authentication>
<customErrors mode="RemoteOnly" />
...etc...

</system.web>
<location path="Secure/NewUser.aspx">
<system.web>
<authorization>
<allow users="*" />

</authorization>
</system.web>

</location>
</configuration>

The principle here is similar: everything between the <configuration> and </configuration>
tags is configuration data, and we use other tags to describe the exact nature of each bit of
configuration data. As a result, the configuration data can be interpreted and its structure
deduced programmatically, whenever it is required within the application.

These two examples have a common ancestor: they are both examples of Extensible
Markup Language (XML). XML is a little like HTML, in that each is a tag-based and attribute-
based text format for describing the structure of the data in a document. The main difference
is that HTML is a language of tags and attributes for describing a specific structure (a web
page), while XML is a more generic language that allows you to use almost any names for
your tags and attributes.

CHAPTER 7 ■ MARKUP LANGUAGES AND XML 263

The Significance of XML
As a data format, XML has a number of important characteristics that are its strengths. In par-
ticular, it is a text-based data format (this fact should be fairly obvious from the two samples
above). In other words, any XML document is a plain-text document that contains both data
and the markup that describes its structure. This means that:

• XML data is easy to store. You can store XML in text documents on hard disk.

• XML data is easy to transfer. Sending XML is as easy as transferring a text file or an
HTML file.

• XML data is easy for machines to read. Hence, XML is highly compatible with many
different types of systems.

• XML data is easy for humans to read. This makes it easy for a human to interpret the
data in an XML document, and even makes it possible for humans to write XML docu-
ments using a keyboard. (This was one of the requirements that was considered when
XML was being developed.)

Equally important is the fact that XML is a standard developed by the World Wide Web
Consortium (W3C), an independent organization responsible for developing web standards,
and the W3C’s XML 1.0 specification is a globally accepted specification. This means that the
following apply to XML:

• Any XML document can be expected to obey a standard set of rules, regardless of plat-
form or software vendor.

• Any application that produces XML is expected to produce XML that adheres to the
same standard (regardless of the operating system and programming language with
which the application is developed or run).

• Any application that reads XML data is expected to be able to read XML that adheres
to the same standard (again, regardless of the operating system and programming
language, or the origin of the XML document).

In other words, any two applications that need to exchange XML data can do so, regard-
less of the platform or programming language.

■Note The home page for all W3C XML specifications and works in progress can be found at
http://www.w3.org/XML.

Some Applications of XML
Since the release of XML 1.0 in 1998, XML has found its way into plenty of diverse areas of
computing. For example, Microsoft has adopted XML as a cornerstone of the .NET web

CHAPTER 7 ■ MARKUP LANGUAGES AND XML264

applications model. This section is not a comprehensive list of its uses, but rather is intended
to illustrate the usefulness of XML and how a good grounding in this important technology
will help you in many areas.

Web Applications

These are just a few places in which XML is directly relevant in this book:

• In configuration files: You have already seen how ASP.NET uses the Web.config XML
file to contain configuration settings for web applications. In fact, XML-based configu-
ration files are used throughout the .NET Framework. XML’s hierarchical and readable
format makes it easy to locate and change configuration details.

• In web forms: The data contained by web controls on a page is often represented by
XML fragments inside HTML and can be seen when the page is opened in HTML view.
This information is used by the controls to render themselves appropriately.

• In web services: As you’ll see in Chapter 9, web services are generally invoked using an
XML-based language called SOAP, which is also used for returning results.

Data-Access Features

In the area of data access, XML provides a convenient, standard way of passing data between
applications and databases. As you’ll see, XML is inherently hierarchical in its nature. This
hierarchical nature means that XML lends itself very well to representing the structure of the
data and relationships between elements of the data. It offers the following features for data-
access applications:

• Interoperability: XML is platform- and language-neutral, so it is ideal for moving data
between disparate database products and operating systems.

• ADO.NET support: The DataSet object, which we studied in Chapter 4, has extensive
support for XML, including the ability to read and save files and streams in this format
through its ReadXml() and WriteXml() methods.

• Support from major database vendors: Most major database vendors now build some
degree of XML support into their products. For example, many products can return the
results of queries in XML format. Some products can natively read and process XML
files and XML strings within stored procedures (using functions or types added to their
respective languages). SQL Server, Oracle, and IBM’s DB2 all offer native XML support.

Also as a platform-neutral standard, XML is the perfect candidate for data representation in
e-business, where business partners need their systems and applications to interact and com-
municate, and where systems range from the latest super-sleek setups to ancient monoliths. In
the past, the standard for business intercommunication was Electronic Data Interchange (EDI).
Unfortunately, EDI was very difficult to understand and costly to implement. XML, in conjunc-
tion with the Internet, makes it much easier for smaller companies to implement e-commerce
solutions.

CHAPTER 7 ■ MARKUP LANGUAGES AND XML 265

The Nature of an XML Document
The nature of XML as a data format implies that it imposes a set of formatting rules. If a docu-
ment conforms to these rules, then we say that it is a well-formed XML document.

The key rules of XML are simple, and mostly very intuitive:

• Matching start and end tags: Any block (or element) of data that begins with a start
tag (for example, <myElement>) should end with a matching end tag (in this case
</myElement>). For example, the following element is well-formed:

<quantity>2</quantity>

• Empty elements: An element composed of a start tag/end tag pair, but with no data in
between them, can be abbreviated by using a single empty tag. For example, you can
replace the following element:

<description></description>

with this empty element (note the position of the / character):

<description/>

• Attributes: If you want to add attributes to an element, you can write them within
the element’s start tag. The attribute is a name/value pair expressed using the format
att_name="att_value" (where the value is expressed as a string and enclosed in single
or double quotes). For example, the following element is well-formed:

<quantity unit="oz">4</quantity>

You can also add attributes to an empty tag:

<freezeable duration="3 months" />

• Case-sensitivity of tag and attribute names: Tag names and attribute names are case-
sensitive. In particular, this means the case of an element’s end tag must match the case
of its start tag. For example, the following element is not well-formed:

<Quantity>2</quantity>

• Nesting: Elements must be properly nested. In other words, if an element contains
another opening tag, it should also contain its closing tag. For example, the following
is well-formed:

<player><name>Joe DiMaggio</name></player>

By contrast, the following is not well-formed:

<player><name>Joe DiMaggio</player></name>

• Top-level element: There must be one (and only one) top-level element that encloses
all other elements in the document.

Any XML document that meets these requirements is said to be well-formed. In fact, the
chocolate cake document we presented at the beginning of this chapter is a well-formed XML
document. You’ll see how to check for well-formedness shortly.

CHAPTER 7 ■ MARKUP LANGUAGES AND XML266

XML Data Exchange
You’ve seen some examples of XML documents. We’ve described what makes a well-formed
XML document. We also noted that XML is particularly useful when it comes to data exchange.
Specifically, XML is a text-based, data-formatting mechanism. This means that the XML data
format is compatible with any application (regardless of operating systems and languages) and
that it is easy to transfer XML documents from one system to another.

Over the remainder of this chapter and during the next two chapters, you’ll develop your
Friends Reunion application a little further, by adding a couple of data-exchange features that
make use of different XML data-exchange techniques. As we go, you’ll learn a lot more about
XML and how it is used in web applications. We’ll begin by describing one of the features that
you’re going to add.

Suppose that a college or other institution wants to upload information about a number
of its students to the Friends Reunion web application, or a social group (such as an Old Class-
mates’ Society) wants to add the details of all of its members to the site. In its current form,
the application doesn’t enable an individual to upload details about a lot of people at the same
time. Instead, that individual would need to use the existing interface to insert the details of
each member manually. If there were more than a few members in the group, this would be a
fairly laborious task!

It would be much easier for the individuals concerned if you allowed them to upload the
complete set of details of their members all at once, as an XML document. The XML document
would pass from the individual’s web browser to the Friends Reunion web application on the
server. Then the application would read and interpret the uploaded XML document, and dis-
play the information on the screen. From there, you could extend the feature further and have
the application place the uploaded data into your database. The four steps in this procedure
are illustrated in Figure 7-2. We’ll go only as far as the third step in the book, but you should
learn enough in this book to be able to implement the fourth step yourself, if you wish.

Figure 7-2. The procedure for XML data exchange

CHAPTER 7 ■ MARKUP LANGUAGES AND XML 267

XML Schemas and Validation
Before you rush in and build the upload tool, you have some preparatory work to do. In par-
ticular, it’s quite easy to see that, unless you impose some careful checking mechanism, an
individual would be able to upload any type of document to your web application. You need
to develop a mechanism that checks the uploaded document, to confirm that it contains
exactly the kind of information that the Friends Reunion application expects.

We can break this checking process into two parts:

• First, your application needs to be able to read the XML document. In other words,
you need to check that the uploaded document is an XML document and that it is
well-formed.

• Second, your application needs to be able to interpret your well-formed XML docu-
ment. What does this mean? Well, the application’s task is to understand the data in
the document, extract it, and perform some task with it (in our case, display it on the
screen or place it into the database). If the document contains tags and attributes that
the application doesn’t understand, the application will not be able to extract the data
it’s looking for, and it will not be able to complete the job.

Let’s look at how to perform both of these checks: for well-formedness and to ensure that
the XML document contains the expected tags and attributes.

Checking for Well-Formedness
When an application opens an XML document, it uses an XML parser to check that the docu-
ment is well-formed. The parser is part of the XML implementation that your application uses
whenever it needs to deal with XML documents. (For example, Microsoft’s .NET Framework
provides an implementation through the classes in the System.Xml namespace, and Sun does
something similar for Java programmers.) The W3C’s XML standard specifies that a “confor-
mant” XML implementation must reject an XML document if it is not well-formed.

If your application opens an XML document that is well-formed, the parser will accept
the document. This indicates to the application that it should be able to read the document.

An XML document that is not well-formed is useless. If your application opens an XML
document that is not well-formed, the parser will reject it. It will generate an exception
that tells your application that the document is not well-formed and therefore cannot be
processed at all.

Defining the XML Document Tags and Attributes
Even when you can just start coding to read an XML document to process and add the func-
tionality you want to the application, it’s good practice and a highly recommended approach
to always start by defining what the input document must look like. This is especially impor-
tant for web applications, as they are potentially exposed to the entire world, and you need to
protect your applications from spurious data. A malicious user could upload a huge docu-
ment with nothing useful to your application, performing a denial-of-service (DoS) attack, for
example. Having a definition of a document also allows you to confidently process the docu-
ment, because all information will be exactly where you expect it.

CHAPTER 7 ■ MARKUP LANGUAGES AND XML268

The best way to start solving this problem is to work out the tags and attributes that you
expect an uploaded XML document to have. Then, as you’ll learn in the next section, you can
formalize this by writing something called an XML Schema. So, let’s look at what a typical
uploaded XML file should contain for the purposes of the Friends Reunion application.

When the XML file is uploaded, the Friends Reunion application will extract the data from
it and use it to populate the TimeLapse and User tables of your database. Here’s a reminder of
the structure of those tables:

We won’t dive into the process of database updates here. The main point is to see the type
of attendee-related information that individuals will want to include in their XML document.
The TimeLapse table holds data that describes how long a particular individual (or user) spent
at a particular institution (or place), while the User table holds more general information
about users.

Our XML document will contain data about a collection of users who attended a particu-
lar place. For each user, the document will contain data about the individual, and it may also
contain data about the attendance details of that user.

So, here’s an example XML document that shows the kind of structure we’re looking for.
It has a single root element (called <Friends>), which specifies the identity of the institution
submitting the document in an attribute called PlaceID. The <Friends> element is then
allowed to contain <User> elements (one for each user), and this element, in turn, contains
<Attended> elements (each element describes the period of attendance of the user it’s
enclosed by):

<?xml version="1.0" encoding="utf-8"?>
<Friends PlaceID="C9796AD1-5A7E-4d9c-9F99-0090E11E5662">
<User ID="E81A8BCD-47A3-4038-9F7B-2DF25C741833">
<Login>gmorande</Login>
<Password>gusygaby</Password>
<FirstName>Gustavo</FirstName>
<LastName>Morande</LastName>
<PhoneNumber>042-700-7007</PhoneNumber>
<Address>2755 3rd. February Street, Buenos Aires</Address>
<Email>gmorande@clariusconsulting.com</Email>
<Attended Name="High School Complete">
<YearIn>1972</YearIn>
<MonthIn>3</MonthIn>

CHAPTER 7 ■ MARKUP LANGUAGES AND XML 269

<YearOut>1977</YearOut>
<MonthOut>11</MonthOut>
<Notes>I played cymbals in the school band!</Notes>

</Attended>
...other courses attended by user...

</User>
<User>
...etc...

</User>
... other users...

</Friends>

The <?xml ... ?> line at the beginning of this document is known as a processing instruc-
tion. Processing instructions are common in XML documents. They’re not part of the data
itself but explain how the data has been prepared. In this case, the processing instruction says
that we’re using W3C XML version 1.0 and that the data is encoded in utf-8 format, which is
the most common and the default in VS .NET when you create the document using New ➤
Item ➤ XML File.

We’ve deliberately chosen tags and attributes that match the field names used in the data-
base (like User, UserID, YearIn, and so on). You don’t need to do this, but it’s helpful if you want
to use this feature to extract data from the XML file and insert it into the database.

We’ve also decided not to use a one-to-one mapping between the elements of the docu-
ment and the fields in the database tables. Instead, we’ve tried to give the XML document a
more intuitive layout, allowing us to demonstrate the full functionality of .NET’s XML objects,
which you’ll see later on. For example, the place is referred to at the root element as an attrib-
ute, because we expect uploads to be performed by a single institution. In the database,
however, each TimeLapse record contains the PlaceID. Likewise, the enclosing <User> element
defines the UserID that is attending to the place; as a consequence, there’s no need to repeat
this for each <Attended> element either. Again, this information is present in the database.

How is a document like this created? You could type it into a text editor such as Notepad
or create it using a specialized XML editor, like the one included with VS .NET or the new
InfoPath application included with Office 2003 Enterprise Edition. Alternatively, it could be
generated by a program that extracts the information from the organization’s database and
places it in a file of this format. However, since XML is a universally adopted standard across
platforms, languages, and tools, we don’t need to worry about that. We’ll leave it to individual
institutions and societies to decide how they want to create their XML documents, and we can
be sure we’ll be able to read it back, irrespective of this process. (However, we’ll be able to help
them, by supplying them with the XML Schema definition that we’ll begin to build shortly.)

Markup Languages, Schemas, and Validation
When you write the application code that interprets the uploaded XML file, that code will
assume the XML document has a certain structure (the sample document in the previous
section gives you an idea of that structure). But as we said, it’s quite dangerous to make that
assumption without some kind of explicit verification, because if the XML document has the
wrong structure, the application will fail in some unpredictable way.

CHAPTER 7 ■ MARKUP LANGUAGES AND XML270

What you should do is perform a formal check that the XML document has the structure
that the application expects. This check is usually performed at the same time the application
checks that the XML document is well-formed (so you know you can read it), but before the
application starts interpreting it.

To perform this check, you can use an XML Schema. An XML Schema is a way of describing
a markup language. More accurately, it describes the structure of a given language formally, as
follows:

• It states precisely which element names and attribute names are allowed.

• It can also state the permitted relationships between elements (for example, that a
<User> element can contain an <Attended> element, but not the other way around).

• It can impose restrictions on the values (or types of values) contained in elements or
attributes (for example, the ID attributes have a well-defined and known structure,
a GUID).

When the application receives an XML document, you can check that it has the appropri-
ate structure by validating it against the schema. If the XML document adheres to the rules
described in the schema, then we say that the XML document is valid—it contains the
expected structure. Figure 7-3 illustrates this validation process.

Figure 7-3. Validating an XML document against the schema

CHAPTER 7 ■ MARKUP LANGUAGES AND XML 271

Thus, as we stated earlier, an XML document usually needs to pass two important tests
before you can use it. First, it must pass the well-formed check (it can actually be read), and
then it must pass the validity check (and thus you can interpret it).

XML Schema Creation
The way you write an XML Schema is in the form of an XML Schema Definition (XSD) file. As
you’ll see, an XSD file is actually just an XML file that uses special tags and attributes designed
to describe XML Schemas.

Because the XML Schema can be completely described in a single XSD file, it’s easily
transportable. This means that not only is it a valuable part of the Friends Reunion applica-
tion, but also that you can send it to the developers of client applications. These developers
can use the XSD file to find out the exact structure of the XML documents that their custom
applications should be generating, and even to validate the generated XML before it is
uploaded, and thus ensure that their uploaded XML documents are not rejected by the
Friends Reunion application.

Moreover, because an XSD file is written in XML, it’s language-independent and platform-
independent. Therefore, any client developer should be able to make use of your XSD, once
you’ve written it.

So, we had better get down to writing it! We’ll devote the remainder of this chapter to
building and understanding our XML Schema. Our schema will describe the precise tags and
attributes that the Friends Reunion application expects from an uploaded XML document
that contains details of attendees. In the next chapter, we’ll write the part of the application
that allows a user to upload an XML document, the part that checks the XML document (for
well-formedness and for validity against our schema), and the part that then interprets the
uploaded XML and puts it onto the screen.

Try It Out: Create a New XML Schema File Now you’ll begin building the schema that defines the
chosen XML format. As we’ve said, there’s nothing stopping you from using Notepad to create
a schema manually. However, VS .NET has a great tool that makes the job much less painful,
so we’ll use that.

1. To add the schema to the Friends Reunion application, open the project, right-click
the project name in the Solution Explorer, and select Add ➤ Add New Item. Choose
the XML Schema template from the Data category and name the new file Friends.xsd,
as shown in Figure 7-4. Then click Open. When the empty schema has been created,
you’ll be presented with a blank design surface onto which you can drag various items
from the Toolbox in order to create your schema. This is the XML Schema Designer.

2. Open the Properties browser, which will be showing the options available for the
root element of an XML schema, <xs:schema>. These options represent the attributes
that may be set on this element, and will therefore apply to the schema as a whole.
Locate the targetNamespace property. You’ll notice that it is set to a default value,
http://tempuri.org/Friends.xsd. Change it to http://www.apress.com/schemas/
friendsreunion.

CHAPTER 7 ■ MARKUP LANGUAGES AND XML272

Figure 7-4. Creating a new XML Schema file

There’s not much to see yet, but let’s find out more about what you’ve done in these steps,
and how they contribute to the overall schema.

How It Works

Just like the VS .NET forms designers, the XML Schema Designer is a visual tool that generates
code corresponding to the drag-and-drop actions you perform. You can see the code it pro-
duces by clicking the XML button at the bottom-left corner of the designer.

If you do this now, you’ll see that your schema currently consists of a single, empty
<xs:schema> element, which looks like this (formatted a little here to make it more legible):

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema id="Friends"

targetNamespace="http://www.apress.com/schemas/friendsreunion"
elementFormDefault="qualified"
xmlns="http://www.apress.com/schemas/friendsreunion"
xmlns:mstns="http://www.apress.com/schemas/friendsreunion"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

</xs:schema>

CHAPTER 7 ■ MARKUP LANGUAGES AND XML 273

You can see that it’s just a regular XML file, right down to the <?xml ?> processing instruc-
tion at the start. In accordance with the rules of well-formedness, this file has a single root
element: the <xs:schema> element. As you build the schema over the course of the rest of this
chapter, you’ll see that you add “child” elements to this element, which all go between the
opening <xs:schema> tag and the closing </xs:schema> tag. This element contains other tags
that together define and constrain what an XML document conforming to this schema must
look like to be considered valid. This includes defining allowed elements, attributes, and their
types. You’ll see all of these as we go.

Notice in particular how there are a number of xmlns attributes in the opening <xs:schema>
tag. These relate to the namespaces that you will use in the example. Let’s take a minute to
understand namespaces, before continuing with the schema construction.

Using XML Namespaces
XML namespaces are similar in principle to .NET namespaces, in that an XML namespace
provides a way to group together elements that belong to a particular context under an identi-
fying name. In XML, the name of a namespace is just a string, but it must be a unique string.

Why is uniqueness important? Suppose you were working on an application that made
use of two different XML Schemas. Suppose also that both schemas allowed a User tag. Neces-
sarily, these two User tags have different meanings, because each one makes sense only within
the context of its own schema. So in order for the application to tell them apart, it uses name-
spaces. Each namespace has a name, and in order to guarantee that the names of different
namespaces are different, you use a uniqueness rule for naming them.

The recommendation is that you should identify namespaces using URIs (that is, URLs
or URNs), because URIs must, by their nature, be unique. When an organization’s developers
create schemas for its data, they can place the schemas within namespaces that specify the
organization’s own URLs (for example, Apress might choose namespace names that begin
http://www.apress.com, and Microsoft might choose namespace names beginning with
http://www.microsoft.com). This gives each organization control of the uniqueness of its own
namespace names, by guaranteeing that they are different from those of all other organiza-
tions. The W3C itself follows this recommendation by using namespaces that start with
http://www.w3.org/. They take advantage of namespaces to define all XSD elements in the
http://www.w3.org/2001/XMLSchema namespace.

In order to specify that an element belongs to a certain namespace, you use a prefix.
A prefix is mapped to a namespace by means of the xmlns attribute:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

Here, the xs prefix is mapped to the W3C XML Schema namespace, and the prefix is used to
specify that the schema element belongs to it (xs:schema). Multiple namespace/prefix map-
pings can be defined.

So, how do we plan to use XML namespaces in the Friends Reunion example? Well,
namespace names are used both in the XSD file that contains the schema and in the XML doc-
ument that contains the data. They are needed in the latter so that the application using the
document knows to which namespace the elements in the document belong.

CHAPTER 7 ■ MARKUP LANGUAGES AND XML274

Namespaces in the XSD File
In the schema document you created in the previous exercise, you use a (unique) URI to iden-
tify the target namespace of this XML Schema:

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema id="Friends"

targetNamespace="http://www.apress.com/schemas/friendsreunion"
elementFormDefault="qualified"
xmlns="http://www.apress.com/schemas/friendsreunion"
xmlns:mstns="http://www.apress.com/schemas/friendsreunion"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

</xs:schema>

The targetNamespace attribute defines which namespace this schema defines. All ele-
ment, attribute, and type definitions in the schema will belong to this namespace.

The xmlns attribute specifies the default namespace of the schema. Here, it is set to the
same value that you just set for the targetNamespace attribute. The effect of this is that any
element appearing inside the schema element without a prefix will be assumed to belong to
that namespace.

Note that the value of the <xs:schema> element’s elementFormDefault attribute comes
into play here:

<xs:schema id="Friends"
targetNamespace="http://www.apress.com/schemas/friendsreunion"
elementFormDefault="qualified"
... >

This attribute is set to qualified, which means that in this schema, all elements
defined anywhere will belong to the target namespace. The default is that only the
elements defined directly under the root schema element belong to the namespace
(elementFormDefault="unqualified"). This is common practice and ensures consistent
placement of both top-level and nested elements in the same namespace.

Namespaces in the XML Document
In the XML document itself, you specify that an element belongs to a particular namespace by
using the xmlns attribute on that element. For example, to associate a whole XML document
with one namespace, you would add the xmlns attribute (for that namespace) to the root ele-
ment of the document:

<?xml version="1.0" encoding="utf-8"?>
<Friends xmlns="http://www.apress.com/schemas/friendsreunion"

PlaceID="C9796AD1-5A7E-4d9c-9F99-0090E11E5662">
<User ID="E81A8BCD-47A3-4038-9F7B-2DF25C741833">
...etc...

CHAPTER 7 ■ MARKUP LANGUAGES AND XML 275

This adds the http://www.apress.com/schemas/friendsreunion namespace to the
<Friends> element. When you add a namespace to an element like this, all of the children
elements of that element inherit that namespace, too.

What if you have multiple namespaces in use within a single XML document? In that
case, you can use a different prefix for each namespace. For example, the following (hypothet-
ical) code states that the prefix af is to be equated with the namespace
http://www.apress.com/schemas/friendsreunion:

<?xml version="1.0" encoding="utf-8"?>
<af:Friends xmlns:af="http://www.apress.com/schemas/friendsreunion"

xmlns:ms="http://www.microsoft.com/Friends"
af:PlaceID="C9796AD1-5A7E-4d9c-9F99-0090E11E5662">

<af:User>
...etc...
</af:User>
<ms:User>
...etc...
</ms:User>

Then the af:User element is from the http://www.apress.com/schemas/friendsreunion
namespace, and the ms:User element is from the http://www.microsoft.com/Friends name-
space. An application can distinguish both and, for example, ignore the ones that are not from
the Friends Reunion “official” namespace.

Building an XML Schema
Returning to the schema definition for the Friends Reunion application, you have just an
empty schema at the moment—it does not contain any rules about tags or attributes. Now
you will start adding these rules, so that the XSD begins to take shape.

We will focus on the XSD Designer features, looking at what’s generated next. With the
designer’s XML and Schema views, and an explanation in the “How It Works” section, you’ll
gain an understanding of the concepts and components that make up an XML Schema.

Try It Out: Add an Element Every XML document must have exactly one root element, and the
Friends Reunion XML documents will be no different. You will start by adding the definition
for the root <Friends> element to your XSD.

1. Switch back to the Schema view of the XSD file by clicking the Schema button at the
bottom-left corner of the designer.

2. Open the Toolbox. At the moment, it offers just one tab, called XML Schema, which
contains all the items used when designing a schema.

CHAPTER 7 ■ MARKUP LANGUAGES AND XML276

3. In the Toolbox, double-click element, or drag-and-drop it onto the design surface.

4. Change the new element’s name from the default element1 to Friends, either through
the Properties browser or by clicking inside the element in the designer.

5. Drag an attribute from the Toolbox, and drop it onto the Friends element. Change its
name to PlaceID, and check that string is selected in the right-hand column (either
type it or select it from the combo box).

CHAPTER 7 ■ MARKUP LANGUAGES AND XML 277

How It Works

The element you have added corresponds to the root <Friends> element of the XML format
you are going to use for uploads:

<?xml version="1.0" encoding="utf-8"?>
<Friends xmlns="http://www.apress.com/schemas/friendsreunion"

PlaceID="C9796AD1-5A7E-4d9c-9F99-0090E11E5662">
...etc...

</Friends>

Your schema now specifies that the root element must have the name Friends. It also says
that the Friends element can have a string attribute called PlaceID. (The attribute is not com-
pulsory, however, because attributes are optional by default; see the “Restricting Element
Occurrence” section later in this chapter for more information.)

If you switch to the XML view, you can check out the schema markup that VS .NET has
generated, based on what you added in the designer:

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema id="Friends"

targetNamespace="http://www.apress.com/schemas/friendsreunion"
elementFormDefault="qualified"
xmlns="http://www.apress.com/schemas/friendsreunion"
xmlns:mstns="http://www.apress.com/schemas/friendsreunion"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Friends">
<xs:complexType>
<xs:sequence />
<xs:attribute name="PlaceID" type="xs:string" />

</xs:complexType>
</xs:element>

</xs:schema>

Notice that all of the new elements use the xs prefix. The xs prefix is associated with the
XML Schema namespace:

<xs:schema id="Friends"
...
xmlns:xs="http://www.w3.org/2001/XMLSchema">

This marks these elements as XML Schema elements, and they must therefore obey the
rules of validity for XML Schemas. This means that elements must follow the required order
and have valid values and attributes, such as the type attribute on the <xs:attribute> element.

According to the validity rules for an XSD, an <xs:element> that is a direct child of the
<xs:schema> describes the root element of any document that conforms to this schema. The
name attribute of the <xs:element> element here defines the name that the root element must
have, so it is <Friends>.

CHAPTER 7 ■ MARKUP LANGUAGES AND XML278

■Note For details about the validity rules for an XSD, see the W3C’s XML Schema specification at
http://www.w3.org/XML/Schema.

Once the element is defined, you need to specify what content it may hold. There are
two types of content: simple and complex. Simple content consists of direct values, without
any nested elements. Complex content, on the other hand, can contain nested elements.
These content models are specified through types. A type is defined by either a simpleType
or complexType element, which constrains the allowed content. For example, the Friends
xs:element includes the following complexType definition:

<xs:element name="Friends">
<xs:complexType>
<xs:sequence />
<xs:attribute name="PlaceID" type="xs:string" />

</xs:complexType>
</xs:element>

This type, being defined inside the containing xs:element, is called a local type. If a type is
to be reused by several elements, you can also define it as a global type, and give it a name so
you can refer to it:

<xs:complexType name="AddressDef>
...type content model...

</xs:complexType>

...Somewhere else in the schema, probably inside a Customer, Order, etc...
<xs:element name="Address" type="AddressDef"/>

When the element content model is defined in a global type, you just need to specify it as
the element type attribute. As you can see, complex types are usually custom ones you create
to reflect the content of your elements.

Many simple types, on the other hand, are so common that they are already provided by
XSD. For example, you don’t need to define what an integer, string, or date looks like, because
there are built-in types that already define them. You can see the full list of available built-in
simple types in the XML Schema Designer’s drop-down list you used to set the PlaceID attri-
bute type to string.

You can, however, define your own custom simple types, too. For example, you may want
to modify one of the basic XSD types to restrict numbers to a given range of values or to spec-
ify maximum and minimum lengths for string-based types. But keep in mind that simpleType
elements cannot contain attributes or child elements; they can represent only a simple value.

Defining a complex type is a bit like defining a new class in a project, in that you define its
structure in the abstract, and then all “instances” of it will have that same structure. By
“instance” of an XSD element or type, we refer to the element that appears in a concrete docu-
ment and that must comply with that element’s type. The schema that has been produced so
far specifies that the <Friends> element may have an attribute called PlaceID, and this attrib-
ute value is of type xs:string.

CHAPTER 7 ■ MARKUP LANGUAGES AND XML 279

Defining Complex Types
The most common elements that can appear in an <xs:complexType> element are
<xs:sequence>, <xs:choice>, and <xs:attribute>. You’ve already seen <xs:attribute> in
action, and the only thing to add is that its type must be either a built-in XSD simple type
or a custom simple type, because an XML attribute cannot contain other elements. For
example, it’s not valid to have an attribute like the following in an XML document:

<Friends PlaceID="<Place>6555</Place>">

The <xs:sequence> element defines the elements that can appear in instances of the type
and the order in which they must appear. Each allowed child element is defined by a nested
<xs:element> element inside the sequence. By default, each element in the sequence is com-
pulsory, and only one of each element can be present. (This sounds inflexible, but you can use
the minOccurs and maxOccurs attributes to permit multiple occurrences and optional elements,
as you’ll see later, in the “Restricting Element Occurrence” section later in this chapter.) If a
document contains elements in the wrong order, it is said to be an invalid instance with
regard to the element definition in the schema.

The <xs:choice> element, by contrast, defines a set of interchangeable elements. By
default, only one member of the set can be present in an XML instance document (again,
unless you use minOccurs and maxOccurs, as we’ll discuss later). There’s a third xs element for
describing groups of allowed elements in an instance document: <xs:all>. This describes a
set of elements that can appear in any order.

The plan that we’ve devised has a <User> element inside the root <Friends> element, and
an <Attended> element inside each <User>. Both arrangements can be represented by
<xs:sequence>.

Try It Out: Define the <User> Element Now you’ll build on the schema that you’ve created so far, and
start to define the <User> element. This will involve two parts: first, you specify that you want it
to be a child of the <Friends> element, and then you specify what you want it to contain.

1. If necessary, switch to the visual designer, by clicking the Schema button. You may find
it helpful to switch to XML view after each of the following steps, to see the code that is
being generated.

2. Drag an element from the Toolbox and drop it onto the Friends element that you added
earlier, to indicate that the new element is a child of <Friends>. This relationship is
shown in the designer by a solid line from the Friends element to the new element.

CHAPTER 7 ■ MARKUP LANGUAGES AND XML280

Note that the new element is represented not only by the new graphic below Friends,
but also by a new row within the Friends element, currently with the default name of
element1.

3. Change the name of this element from element1 to User, by typing either in the new
element or in the new row of the Friends element.

4. Drag an attribute from the Toolbox, this time placing it on the new empty element that
you just added. Set its name to ID, and ensure its type is string.

5. Drag an element inside below it. Set its name to Login.

6. Using the drop-down list in the right-hand column of the new element inside User,
set the type of the Login element to string. Being simple types, string-typed elements
cannot contain any attributes or child content, and so the third box, representing the
Login element, disappears from the designer.

How It Works

When you add the <User> element in steps 2 and 3, the code generated consists of a complex
type element with an empty <xs:sequence> inside it, similar to the code created for the
<Friends> element:

CHAPTER 7 ■ MARKUP LANGUAGES AND XML 281

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema id="Friends" ...etc... >
<xs:element name="Friends">
<xs:complexType>
<xs:sequence>
<xs:element name="User">
<xs:complexType>
<xs:sequence />

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="PlaceID" type="xs:string" />

</xs:complexType>
</xs:element>

</xs:schema>

The new code has been placed inside what was the empty <xs:sequence> child element
of <Friends>, as the new <User> element will be a direct child of the root element in instance
documents. A similar process takes place when you first add the <Login> element in step 5.
By default, VS .NET represents it as a complex type, with an empty <xs:sequence> element:

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema id="Friends" ...etc...>
<xs:element name="Friends">
<xs:complexType>
<xs:sequence>
<xs:element name="User">
<xs:complexType>
<xs:sequence>
<xs:element name="Login">
<xs:complexType>
<xs:sequence />

</xs:complexType>
</xs:element>

</xs:sequence>
...etc...

</xs:schema>

Once you set the type to string in the designer in step 5, the code is reduced to this:

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema id="Friends" ...etc... >
<xs:element name="Friends">
<xs:complexType>
<xs:sequence>
<xs:element name="User">
<xs:complexType>

CHAPTER 7 ■ MARKUP LANGUAGES AND XML282

<xs:sequence>
<xs:element name="Login" type="xs:string"></xs:element>

</xs:sequence>
<xs:attribute name="ID" type="xs:string" />

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="PlaceID" type="xs:string" />

</xs:complexType>
</xs:element>

</xs:schema>

This occurs because the string type is a simple type. Such elements cannot contain child
elements, so they don’t require the extra information that the <xs:complexType> element spec-
ifies. Nor is there any need to draw it as a separate element on the design surface.

Try It Out: Complete the <User> Element Definition Now you will define the nine remaining child
elements of <User>. As you did in steps 5 and 6 of the previous exercise, drag elements into the
User element and set their types. Add one for each field in the corresponding database table,
in the following order and of the type listed:

Password string

FirstName string

LastName string

DateOfBirth date

PhoneNumber string

CellNumber string

Address string

Email string

ID string

CHAPTER 7 ■ MARKUP LANGUAGES AND XML 283

How It Works

If you’ve ever used graphical database design tools such as those included with VS .NET, you
may recognize the layout of schema elements within the XML Schema Designer. They appear
much like a database table, with a row for each child element.

■Note We won’t discuss XML data types in detail in this book. If you’re curious about the different data
types, what they mean, the range of valid values, and so on, take a look at the XML Schema Part 2:
Datatypes document (http://www.w3.org/TR/xmlschema-2/).

Try It Out: Add an Element Directly As well as adding new child elements by dragging-and-dropping
them from the Toolbox, you can add them by typing directly into the table. You’ll see this in
action as you create the definition of the <Attended> element.

1. Click the empty row at the bottom of the graphic representing the User element, and
type Attended in the center column. When you press Enter, it will place an Attended
element, as shown here.

2. Change the type of Attendee from the default (string) to Unnamed complexType,
which appears at the top of the list. This step creates a new, empty element below the
User element. This is where content of the Attended element can be described.

3. Inside the Attended element, add a new row, with the name YearIn, and set its type to
short.

4. Add four more rows: MonthIn (type byte), YearOut (type short), MonthOut (type byte),
and Notes (type string).

5. You also need to specify that the <Attendee> element will have a Name attribute. Add a
new row called Name, and then click the capital E that appears in the left-most column
to open a drop-down list. Select attribute.

CHAPTER 7 ■ MARKUP LANGUAGES AND XML284

How It Works

When you use the drag-and-drop approach to create a new element, the designer creates a com-
plex type by default. But when you create a new element by typing directly into the designer, the
behavior is opposite: it creates a simple type by default. More precisely, this technique creates a
string type each time. So, you need to manually change the type of the <Attended> element to
Unnamed complexType (that is, a local complex type definition). When you do this (in step 2),
VS .NET produces exactly the same <complexType> definition as it generated when you used the
drag-and-drop approach:

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema id="Friends" ...etc... >
<xs:element name="Friends">
<xs:complexType>
<xs:sequence>
<xs:element name="User">
<xs:complexType>
<xs:sequence>
...etc...
<xs:element name="Attendee">
<xs:complexType>
<xs:sequence />

</xs:complexType>
</xs:element>

Notice that the nesting inside User is just like that for the User inside Friends.
For the child elements of <Attended>, the default behavior is more or less what you want:

these elements are all simple types.
The other default when adding new rows to an element is that the new item is itself an

element. In the final step, you needed to change the Name row, specifying Name as an attrib-
ute using the drop-down list.

■Note For a complete list of built-in simple types and their definition, see the W3C XML Schema Part 0:
Primer document at http://www.w3.org/TR/xmlschema-0.

CHAPTER 7 ■ MARKUP LANGUAGES AND XML 285

Defining Custom Simple Types
Usually, databases place restrictions on the permitted values for given fields. For example, the
SQL Server type called varchar is a string, with a certain maximum length set by the database
designer. XSD Schemas also allow you to define such restrictions, by defining custom simple
types that modify intrinsic XSD types according to your specific needs. This works by deriving a
new type from a base type—you select the base type, and then specify the required limitations.

In this regard, XSD is similar to the way object-oriented programming languages work:
you inherit an existing type and modify its behavior. However, in the case of XSD, you can
either extend or restrict a base type, which is different from object-oriented programming,
where inheritance is mainly a way to extend types.

Try It Out: Define a Custom Simple Type A suitable use of a custom simple type in our example is to
restrict valid IDs to strings of exactly 36 characters, which is what our database expects. Let’s
see how to go about arranging that.

1. From the Toolbox, drop a new simpleType element onto a blank area of the designer
surface, and give it the name KeyDef. Note that, by default, the new type derives from
the string type, as shown in the right-hand column on the top line.

2. On the blank row below the name and type, click the first column of the row and turn
it into a facet, indicated by the capital F. Now open the drop-down list for the second
column and select length. Tab to the next column, and enter 36.

3. Set the “ID” items in the schema to the newly created simple type. There are two of
them to change: the ID attribute on the <User> element and the PlaceID attribute of the
<Friends> element. You’ll see the new type shown in the drop-down list for the attrib-
ute type.

CHAPTER 7 ■ MARKUP LANGUAGES AND XML286

How It Works

VS .NET offers a variety of restrictions, which it calls facets, on XSD built-in simple types. The
available facets depend on the base type in use, and most are self-explanatory. For the KeyDef
type, which is derived from the string simple type, you may have noticed that there were
options for length and maxLength. Another useful facet is the enumeration, which allows you
to define a list of valid string values.

■Note For a complete list of base types and available facets, see the W3C XML Schema Part 0: Primer
document at http://www.w3.org/TR/xmlschema-0.

Try It Out: Use a Regular Expression Pattern By far, the most powerful facet is pattern, which allows
you to specify a regular expression that must be matched by the value in order to be valid.
In the case of the KeyDef type you defined, you know the exact format for a GUID string: it’s
composed of five sections of mixed characters (either uppercase or lowercase) and digits, in
groups of 8-4-4-4-12 characters, as in C9796AD1-5A7E-4d9c-9F99-0090E11E5662.

1. Add a new facet row to the KeyDef simple type definition.

2. Specify that the facet is of type pattern. Set its value to the following regular expres-
sion, which defines the format of a GUID string:

^[a-fA-F\d]{8}-([a-fA-F\d]{4}-){3}[a-fA-F\d]{12}$

How It Works

If you switch to the XML view again, the new facet will look like the following in the XML
source:

<xs:simpleType name="KeyDef">
<xs:restriction base="xs:string">
<xs:length value="36" />
<xs:pattern value="^[a-fA-F\d]{8}-([a-fA-F\d]{4}-){3}[a-fA-F\d]{12}$" />

</xs:restriction>
</xs:simpleType>

This is the second time you’ve encountered regular expressions in this book. You saw
them in Chapter 3, when we discussed validation controls, and now for XSD simpleType
restrictions. By now, you probably realize their importance in data validation.

If you look at the XSD code (by clicking the XML button on the bottom-left side of the
pane), you’ll see that the KeyDef type is defined as a child of the root <xs:schema> element.
This means that this type definition is available to all other elements in the document; that is,
it’s a global type. As we mentioned before, a global type must have a name so that other ele-
ments can reference it; it is therefore also a named type.

CHAPTER 7 ■ MARKUP LANGUAGES AND XML 287

It’s also possible to define global complex types, which you can reuse in several places in
a schema (just as we have done here, by using the KeyDef type definition in the UserID and
PlaceID items).

Incidentally, this probably helps to explain why an element such as <User>, which is local
to the <Friends> element, is described as an unnamed complex type.

Restricting Element Occurrence
By default, each element defined by a schema must appear once (and only once) in the
instance document. Clearly, this is not appropriate for all cases. In particular, in our example,
we want to allow multiple <User> and <Attended> elements in a single XML document.

By contrast, some of the fields in our database are optional, and they won’t always have
values. For instance, the MonthIn and MonthOut fields of the TimeLapse table can be null.

You can cater to requirements like these through the minOccurs and maxOccurs attributes
of XSD elements, as you’ll see now.

Try It Out: Set Minimum and Maximum Occurrences We’ll use this example to set up the rules we
just described: you’ll allow multiple instances of the <User> and <Attended> elements and
force the presence of the PlaceID and ID attributes.

1. We support uploading multiple users in a single document. However, at least one user
should be present, or there would be no purpose in the upload! Select the User ele-
ment of the Friends element in the designer, and open its Properties browser. Set the
maxOccurs property to unbounded. The minOccurs default of 1 is appropriate in this case.

2. Each user may attend any number of courses in a single institution. On the other hand,
the user may still be in the middle of a first course (no YearOut yet). So, the Attended
element should be optional and allow multiple occurrences. Select the Attended ele-
ment inside the User element in the designer and open its Properties browser. Set the
maxOccurs property to unbounded, and set the minOccurs property to 0.

3. Select the PlaceID attribute of the Friends element. Set its use property to required
(which means that this attribute must be set on the <Friends> element of instance
documents). You will need this attribute to know which institution is uploading users.

4. Repeat step 3 for the ID attribute of the User element.

5. Select the DateOfBirth element of the User element. Set its minOccurs property to 0.
Leave maxOccurs at the default setting.

6. Repeat step 3 for the CellNumber element of the User element.

7. Repeat step 3 for three elements of the Attendee element: MonthIn, MonthOut, and
Notes.

8. Save the file.

CHAPTER 7 ■ MARKUP LANGUAGES AND XML288

How It Works

The minOccurs and maxOccurs properties determine the lower and upper limits for the number
of occurrences of that element allowed in an instance document. Setting minOccurs to zero
makes an element optional (it means that there can be no occurrences of that element or any
number of occurrences, up to and including the upper limit). Setting maxOccurs to unbounded
means that there is no upper limit.

Notice that the <Friends> element itself doesn’t have minOccurs and maxOccurs properties
available. This is because, as the root element, there must be exactly one occurrence present in
any instance document, by definition.

In XML, attributes can either appear once (within a given element) or not at all. Accordingly,
VS .NET shows you the valid choices for setting them as optional, prohibited, or required,
where the first of these is the default. You set this property to required for the PlaceID and user
ID attributes, because those must be present for you to be able to make sense of, and process,
an XML file that you receive.

Viewing the Entire Schema
We have finished our schema! Maybe this seems like a lot of work before you get to write a
single line of code, but you’ll soon see the great benefits that this preparatory endeavor can
bring. Figure 7-5 shows how the finished schema looks in the XML Schema Designer.

Figure 7-5. The completed XML Schema

CHAPTER 7 ■ MARKUP LANGUAGES AND XML 289

If you now switch to XML view, VS .NET allows you to validate the schema, and hence
double-check that you haven’t made a mistake (such as setting an invalid type for an element
or attribute, or introducing an error when modifying the file manually). Select Schema ➤
Validate Schema. Any invalid content in the schema will be underlined and added to the Task
List. If there are no errors, you’ll see a “No validation errors were found” message at the bot-
tom left of the window.

Summary
Markup plays an important role in web applications, because one of the key tasks of such
applications is to deliver web pages to client browsers. We use HTML to mark up the informa-
tion in a web page, and the HTML describes the structure of that page in terms of headings,
paragraphs, tables, images, and so on.

HTML is a markup language specifically designed for describing the structure of web
pages. XML is also a form of markup, but it is much more generic. We can use XML to describe
the structure of any type of data. XML, like HTML, is text-based markup. It uses tags and attrib-
utes to describe the different elements of data. Because XML is text-based, it’s ubiquitous—you
can use XML techniques in any environment or language, and to allow any combination of
platforms to communicate with one another. In particular, in .NET, Microsoft has invested
heavily in XML.

In our Friends Reunion application, we plan to allow a client application (such as an
“Old Classmates Society”) to be able to upload a single XML document, containing atten-
dance details of any number of attendees. When the file has been successfully uploaded, we
plan to have our Friends Reunion application read XML data, interpret it, and channel it into
the correct tables and fields of the database.

The application will be able to do that only if the uploaded XML adheres to a very specific
structure. Checking this conformance manually through application code would be difficult,
error-prone, and difficult to maintain and evolve. The W3C has created an XML language
called XML Schema Definition Language for exactly this purpose, which will relieve develop-
ers from the burden of manual content verification. Therefore, in this chapter, we’ve written
the XML Schema that precisely describes the structure to which the expected XML documents
must adhere. When we receive such a document, we will validate it against the XML Schema
to ensure it has the correct structure, and thus is usable.

As you’ve seen, the XML Schema definition document (an XSD file) is itself written in
XML. Perhaps this sounds a little confusing, but it really makes a lot of sense: a schema docu-
ment is a structured block of data, so it’s logical to describe it using special XML tags (like
<element> and <attribute>) that define the allowed elements and attributes in an XML data
document. The exact description of all the permitted elements and attributes in an XSD is
contained in a schema within the namespace http://www.w3.org/2001/XMLSchema.

XML in general, and XML Schemas in particular, are quite advanced topics, and there are
many aspects that we have left untouched. For more in-depth information, try the following
books:

• Definite XML Schema, by Priscilla Walmsley (Prentice Hall; ISBN: 0-13065-567-8)

• Pro .NET XML, by Kent Tegels (Apress; ISBN: 1-59059-366-9)

CHAPTER 7 ■ MARKUP LANGUAGES AND XML290

We’ve covered all the preparatory material for the upload feature of our Friends Reunion
application. In the next chapter, we’ll take advantage of it by building an XML document that
adheres to our XML Schema and writing the feature that uses the XML Schema to validate,
interpret, and understand the uploaded XML.

CHAPTER 7 ■ MARKUP LANGUAGES AND XML 291

XML and Web Development

The XML Schema that we created in Chapter 7 is a document that describes a certain data
structure. Specifically, it describes the XML data structure that a third party must use when
it uploads an XML document (containing details of multiple attendees of a college or other
institution) to the Friends Reunion web site.

The best way to think of an XML Schema is as a set of rules for the data structure. We (as
developers of the Friends Reunion application) will use our schema, our set of rules, when we
write the code that interprets an uploaded XML document and processes it. (As you’ll see, we’ll
write code that assumes that any uploaded document contains only the tags and attributes that
are allowed by the schema.) When a user creates a data document containing attendee details,
that document should use the same set of rules. Provided we all adhere to the same rules, as
defined in the schema, each uploaded document will be compatible with the application, so
the application should be able to process it without any trouble, regardless of the tool used to
generate it.

The preparatory work that we did in Chapter 7 to create the schema document,
Friends.xsd, puts us in good shape to complete the XML upload feature. In this chapter, we’ll
make use of it as we build the feature, and we’ll continue our studies of XML in the process.

In this chapter, we will perform the following tasks:

• Use the VS .NET IDE to create a sample XML document that validates against the XSD.

• Build a feature that allows a user to upload an XML file onto the web server, via a
browser interface.

• Build the back-end functionality that reads and interprets the uploaded XML docu-
ment, extracts the relevant data, and displays it on screen. This will require the
following steps:

• Programmatically validate an XML document against a specified XSD, to ensure it
has the expected structure

• Read the XML data, to analyze the information received

• Query the XML data, to search for a particular piece of data

Using XML, XML Schemas, and XPath makes all of these tasks easy—and that is part of
what makes XML and its satellite technologies such a powerful set of tools. By the end of this
chapter, you’ll have employed some of the most fundamental XML-related capabilities.

293

C H A P T E R 8

■ ■ ■

CHAPTER 8 ■ XML AND WEB DEVELOPMENT294

XML Document Creation in VS .NET
With your XSD file complete, you can start building some valid XML documents. Many differ-
ent tools and techniques are available for writing and generating XML documents. As noted
in the previous chapter, because XML is text-based, you could even use a simple text editor
such as Notepad to type data and markup into a document. It’s occasionally convenient to do
that, but usually, you’ll want to use one of the more powerful tools around that are specifically
designed for XML-based development. The XMLSpy program (http://www.xmlspy.com) is one
of those tools, and, the VS .NET IDE also contains some nifty features for creating XML docu-
ments. In this section, you’ll use some of the VS. NET IDE features to create an XML document
visually.

Creating XML Documents Visually
As we said, the VS .NET IDE has some very useful features for generating XML documents.
These features are useful not only for creating small test files, but also for working with XML
configuration files in custom applications, for example.

Try It Out: Create a Valid XML Document First, you need a sample instance document that conforms
to the schema (Friends.xsd) that you built in Chapter 7. Once you have that XML document,
you’ll be able to use it to test the XML upload functionality of the web application that you’re
going to build in this chapter.

1. Right-click the FriendsReunion project to add a new item, select the Data category, and
choose the XML File template, as shown in Figure 8-1. Name the file upload.xml.

Figure 8-1. Creating a new XML file

2. The IDE will open an XML editor window, with a single line of code: an XML process-
ing instruction. Below that line, start typing in a new <Friends> element. Give it an
xmlns attribute, to set the http://www.apress.com/schemas/friendsreunion namespace
as the default one, as shown here.

3. Type a right-angle bracket (>) to mark the end of the tag; the closing </Friends> tag will
automatically appear after the cursor.

4. Now add the <Friends> element’s required PlaceID attribute. To do this, place the cursor
just before the > character of the opening <Friends> tag and insert a space. IntelliSense
will recognize that you want to insert an attribute, and will offer a list of the names of all
the valid attributes that you’re allowed to put there.

As it happens, there’s only one attribute available: PlaceID. Choose that, and type an
equal sign (=). This will insert PlaceID="".

CHAPTER 8 ■ XML AND WEB DEVELOPMENT 295

GENERATING XML DOCUMENTS PROGRAMMATICALLY

There’s also the question of how third-party users would generate an XML document ready for upload. It’s
possible that they might use a development tool such as XMLSpy or VS .NET; however, if they were planning
to upload XML documents on a regular basis, taking data from their own database, it would be appropriate
for them to spend some effort building an application that used a defined XML Schema and generates XML
documents programmatically.

We’re not going to build such an application in this book. However, the Friends Reunion application will
use programmatic techniques (not to build an XML document, but to extract data from an XML document), as
described later in this chapter, so you’ll get an idea of how to take advantage of them.

5. The value of the PlaceID attribute must be a GUID (a globally unique identifier).
Choose Tools ➤ Create GUID to create a new GUID. In the Create GUID dialog box,
check option 4. Registry Format, as shown in Figure 8-2. Then click the Copy button
to copy the new GUID to the Clipboard, and paste the result into the XML document
(between the two double quotes). You don’t need to exit the Create GUID dialog box;
it can be left open in the background until it’s needed again. Just remember to click
New GUID each time you need a new ID.

Figure 8-2. Creating a new GUID

6. In the XML document, the GUID is enclosed in surrounding braces. Delete those.

7. Add a <User> element. Place the cursor between the <Friends> and </Friends> tags,
press Enter, and type a left-angle bracket (<). Select User from the drop-down list that
appears, and press the spacebar to add it.

8. Inside the opening <User> element, you’ll see the attributes valid for the element,
namely, the ID attribute. Its value must also be a GUID. Return to the Create GUID dia-
log box, click the New GUID button to create a new GUID, and then click the Copy
button. Now paste the result into the XML document as the value of the attribute.
Again, the GUID is enclosed in surrounding braces, and you need to delete them.
Type the > character to complete the User element and close it appropriately.

CHAPTER 8 ■ XML AND WEB DEVELOPMENT296

9. Now add the remaining child elements for <User>. Recall that DateOfBirth and
CellNumber are optional elements, because we defined them with minOccurs=0; for
simplicity, we’ll leave them out here. You should end up with something that looks
like this:

<?xml version="1.0" encoding="utf-8" ?>
<Friends xmlns="http://www.apress.com/schemas/friendsreunion"

PlaceID="C95FE0A8-D24F-43cf-99CD-AA267BEFB21C">
<User ID="6F724ACE-4230-42a1-9EE2-EA18C5A251B5">
<Login>gmorande</Login>
<Password>gusygaby</Password>
<FirstName>Gustavo</FirstName>
<LastName>Morande</LastName>
<PhoneNumber>0191-700-7007</PhoneNumber>
<Address>2266 3rd. February Street, Buenos Aires</Address>
<Email>gmorande@clariusconsulting.net</Email>

</User>
</Friends>

10. Now you can validate the document against the schema, to check that it satisfies its
rules. To do that in the VS .NET IDE, choose XML ➤ Validate XML Data. This document
should validate successfully. If there are validation errors, they will be underlined with
a green, wavy line in the editor (“ala Word”), and listed in the Task List window.

How It Works

As soon as you type the xmlns attribute, IntelliSense starts to do its magic. First, you’re offered
a list of available namespaces known to VS .NET, which includes a number of built-in ones,
plus all the namespaces from schemas in the current project, including the
http://www.apress.com/schemas/friendsreunion namespace used by our schema.

Once the namespace is specified, IntelliSense uses the associated XML Schema to make
suggestions as you type. VS .NET provides a list of all elements that are valid according to the
schema, and this list is context-sensitive. So you see only the <User> element when you’re in
the process of inserting an element into the <Friends> element, and all the others once you’re
inside the <User> element. Notice, however, that the list is ordered alphabetically, so it doesn’t
necessarily reflect the actual schema constraints, particularly when the order of elements can
be important. For instance, as soon as you start inserting elements inside <User>, <Address>
and <Attended> elements are suggested as valid children, but you know that <Login> and
<Password> must appear before both of them, as defined by an <xs:sequence> element in the
schema.

The validation process that you used at the end, by choosing XML ➤ Validate XML Data,
is exactly the same as the one that you’ll apply programmatically in a moment, and it demon-
strates the value of namespaces. At design-time, namespaces enable the IDE to activate
IntelliSense and validation; at runtime, they allow the elements in a file to be matched unam-
biguously to their definition in the appropriate schema.

CHAPTER 8 ■ XML AND WEB DEVELOPMENT 297

Creating XML Documents in the Data View
The VS .NET IDE offers another way to create an XML document visually when you have a
schema for it: the Data view. Click Data in the lower-left corner of the designer (next to the
XML button), to open a two-pane view: Data Tables on the left and Data on the right. In the
Data pane, you can add data to an XML file.

If an element is specified as a complex type in the schema, it will be represented in the
Data view as a data table. The simple type attributes and elements within that complex type
will appear as fields within the table. In our document, the <Friends>, <User>, and <Attended>
elements are the complex types; this is why they are listed as tables in the left pane, as shown
in Figure 8-3.

Figure 8-3. The Data view shows the elements in an XML document and allows you to navigate
and modify them.

When a complex type element is enclosed inside another complex type (such as the <User>
inside the <Friends> root element, and <Attended> inside <User>), you will be presented with a
navigation link in the Data pane that lets you get inside the contained elements to add child
ones. Click the plus sign to show the available children. Click the link, and it will expand to list
the child elements. In Figure 8-3, we have navigated to the first User element. Notice that the UI
keeps track of the parent element of the current one and shows it above the table. In Figure 8-3,
you see the PlaceID attribute of the Friends parent. The arrow icon in the top-right corner of
the window allows you to navigate back to the parent element.

In order for elements to be put in the right place in the XML file, you must follow the links
through the elements until you get to the level where the new element must be placed. This is
important, because the tool doesn’t prevent you from selecting the User or Attended “tables”
directly (through the list in the Data Tables panel) and creating elements right there. If you do
that, the resulting elements are placed under a new root <Friends> element (not under the
existing <Friends> element). The result would contain two nested <Friends> elements, and
that would be invalid according to our schema.

■Caution Not following the links in Data view is very likely to mess up the document.

CHAPTER 8 ■ XML AND WEB DEVELOPMENT298

Try It Out: Add an Element in the Data View Let’s see how the Data view works in practice. You’ll use
it to create a new <Attended> element in your upload.xml file.

1. Click the Friends User link in the Data pane for the Friends data table (as shown in
Figure 8-3).

2. Try adding a new user directly in the grid. It will look something like Figure 8-4.

Figure 8-4. Adding a new user in the Data view

3. Switch back to the XML view to see the new data that you’ve generated:

<?xml version="1.0" encoding="utf-8" ?>
<Friends xmlns="http://www.apress.com/schemas/friendsreunion"

PlaceID="C95FE0A8-D24F-43cf-99CD-AA267BEFB21C">
<User ID="6F724ACE-4230-42a1-9EE2-EA18C5A251B5">
...etc...

</User>
<User ID="A8DAF7E7-E736-4d54-8797-BB6BA9E07639">
<Login>acarvallo</Login>
<Password>any</Password>
<FirstName>Analia</FirstName>
<LastName>Carvallo</LastName>
<PhoneNumber>555-205-9999</PhoneNumber>
<Address>Dr. Melo 2836</Address>
<Email>any@clariusconsulting.net</Email>

</User>
</Friends>

Notice that because you navigated inside the <Friends> element to the desired child
“table,” the elements have been added inside the appropriate parent element.

CHAPTER 8 ■ XML AND WEB DEVELOPMENT 299

■Note The Data view (tables-and-rows) approach is suitable for most XML files, but the IDE does not
allow you to use this feature for some schema designs. For example, if you have child elements with the
same name but different parent elements—a perfectly valid schema definition—the Data view won’t be
available.

Programmatic Manipulation of XML in .NET
Microsoft has made a substantial commitment to XML with the .NET platform. The .NET
Framework contains namespaces that encompass classes implementing almost every XML-
related standard, as illustrated in Figure 8-5.

Figure 8-5. .NET Framework support for XML standards

In the upcoming examples, you will use classes contained in the System.Xml and
System.Xml.Schema namespaces to load and validate an XML file, ready for use in our web
application. After that, you’ll be ready to start issuing queries using XPath, and we’ll look
at the options you have when dealing with in-memory XML documents.

Reading and Validating XML
In .NET, the task of reading an XML document from a file is accomplished in much the same
way as reading any other file type. However, the source of the XML does not need to be a file; it
can be any form of stream, such as an in-memory stream, a file stream, or a network stream.

Throughout the .NET Framework, the process of reading a stream follows the same pat-
tern: a reader object systematically steps through the stream from start to end, through a
succession of calls to the Read() method. Each method call reads a new portion of the stream
and returns a Boolean value; Read() returns true unless the end of stream has been reached,
in which case Read() returns false. As you progress through the stream, the methods and
properties (provided by the specific reader implementation) allow you to retrieve information
and data for the current position in it. Figure 8-6 illustrates some of the readers offered by the
.NET Framework classes that are relevant to XML handling.

CHAPTER 8 ■ XML AND WEB DEVELOPMENT300

Figure 8-6. .NET Framework reader approach for general I/O and XML processing

The readers in the System.IO namespace are relevant to us because we can pass them
to overloaded constructors of many of the XmlReader-derived classes in order to read XML
content from them. The XmlReader and derived classes take advantage of the features of the
System.IO readers. You’ll see this mechanism in action as you develop the Friends Reunion
application in this chapter.

Uploading an XML File
The first step in creating the upload feature for our application requires adding a new web
form that will be used to receive a file from the client. To make the web form visually appeal-
ing, we will use an ASP.NET server control from Microsoft called TreeView. The TreeView
control makes it simple to display hierarchical information, and so it’s perfect for showing
XML content.

In order to make the TreeView control available in your application, you must download
and install the Internet Explorer WebControls server control on the web server. At the time of
writing, this download is 361KB, and you can get it from the official ASP.NET web site: http://
www.asp.net/IEWebControls/Download.aspx. (Even if it was programmed for version 1.0 of
.NET, it works flawlessly in version 1.1, too.)

■Note The Internet Explorer WebControls server control product doesn’t have official support from
Microsoft, although the download page points to a quite active forum dedicated to it, where you can get
peer support from fellow developers. ASP.NET 2.0 will already include a built-in TreeView control.

The code download contains the source for the controls, which also makes it a good
opportunity to take a closer look at production-quality custom server controls. You will need
to open a VS .NET Command Prompt window, go to the installation directory (C:\Program
Files\IE Web Controls, by default) and run build.bat. Follow the further instructions in the
Readme.txt file for deploying the various files it uses, including images.

CHAPTER 8 ■ XML AND WEB DEVELOPMENT 301

In order to view the TreeView control in the VS .NET Toolbox, right-click the Toolbox and
select Add/Remove Items. In the next dialog box, browse to the build folder (C:\Program Files\
IE Web Controls\build, by default), and then select the Microsoft.Web.UI.WebControls.dll
assembly. This will select all available controls to be added to the Toolbox, as shown in Figure 8-7.
Mark the checkbox next to any of the selected elements and click OK in the dialog box to add the
controls to the Toolbox.

Figure 8-7. Adding the Internet Explorer WebControls to the VS .NET Toolbox

■Note The TreeView control works in all browsers, but it will be much smoother in Internet Explorer
because it takes advantages of Internet Explorer “behaviors,” a feature that exploits Dynamic HTML
(DHTML).

We’re going to build a web form that will receive an XML file posted by the user and
perform further processing on it. First, it will show the contents of the uploaded file in the
TreeView control, so users can see if the information they’re sending is correct. We will also
add a link to the schema file that’s used to validate the incoming file, and also a link to a sam-
ple XML file that users can either view or load in the page for testing purposes.

Try It Out: Create the Upload List Form Now you’ll build the form and review key settings in it.
You’ll add the code for specific features in later sections. Before beginning these steps, you
need to have downloaded and installed the TreeView control, as just described.

You’ll set up the form’s text and controls to give it the layout shown in Figure 8-8.

CHAPTER 8 ■ XML AND WEB DEVELOPMENT302

Figure 8-8. The Upload List page layout

1. Add a new web form to the FriendsReunion project and name it UploadList.aspx.
Switch to the Code view and import the System.IO namespace at the top of the code-
behind file (UploadList.aspx.vb):

Imports System.IO

2. Make the page inherit the FriendsBase class you built in Chapter 3, to add the site
header and footer. To do this, change the class declaration line to:

Public Class UploadList
Inherits FriendsBase

3. Drag-and-drop the iestyle.css file onto the web form surface to link the stylesheet.

4. Add the following style rule to the stylesheet, which is used to format the TreeView
control:

.TreeView
{
border: solid 1px #c7ccdc;
padding: 5px 15px 5px 5px;
font-size: 8pt;
font-family: Tahoma, Verdana, 'Times New Roman';
background-color: #f0f1f6;

}

5. Add the following controls, in order of their appearance on the page, from left to right
and top to bottom. Take all these from the Web Forms tab in the Toolbox, except the
HTML File Field control. Arrange the controls as shown in Figure 8-8.

CHAPTER 8 ■ XML AND WEB DEVELOPMENT 303

• HyperLink control

• HTML File Field control (take this from HTML tab)

• Two Button controls

• A Panel control; inside it, place a TreeView control

• Another Button control

• A Panel control; inside it, place an Image control and a Label control

• A LinkButton control

• A HyperLink control

6. The HyperLink control creates a link to the schema file you built, so that partners can
download it to check the validity of their files. Set its properties as follows:

• ID: hySchema

• Text: schema

• NavigateUrl: Friends.xsd

• Target: _blank

7. The HTML File Field control will allow users to upload a file from their machine. The
name property is important; although you don’t use it in the code, the mechanism
depends on the existence of a value here. Set this control’s properties as follows:

• id: fldUpload

• class: Button

• style: WIDTH: 238px

• name: fldUpload

Right-click the fldUpload control and select Run As Server Control from the context
menu.

8. The first Button control will allow users to submit the file selected with the previous
control, to upload it from their machine to the web server. Set its properties as follows:

• ID: btnLoad

• CssClass: Button

• Text: Load

CHAPTER 8 ■ XML AND WEB DEVELOPMENT304

9. The next Button control will redirect users to a page showing statistics about the file
they posted. Set its properties as follows:

• ID: btnReport

• CssClass: Button

• Text: View Report

10. The TreeView control will show information in the XML file. Set its properties as follows:

• ID: tvXmlView

• CssClass: TreeView

• ExpandedImageUrl: Images/opened.gif

• ImageUrl: Images/findfolder.gif

• SelectedImageUrl: Images/selected.gif

• Visible: False

• Nodes: Add a root node and two children to it, with the text Friends and User
respectively, using the editor that appears, so that you can have a preview of the
layout at design-time.

• TreeNodeTypes: This is a collection of node type definitions, which can be used to
give new nodes a default formatting. Add a new type using the TreeNodeType Col-
lection Editor. Set its ID and Type to Normal. Set the DefaultStyle to font-size:
8pt; font-family: Tahoma,Verdana,'Times New Roman'.

• ChildType: This sets the default style for new nodes. Set it to Normal (created in the
previous property).

11. The next Button control will save the posted file to the database. Set its properties as
follows:

• ID: btnAccept

• CssClass: Button

• Text: Accept File

12. The Panel control will display any errors found in the incoming file. Set its ID to
pnlError and its Visible property to False.

13. Set the panel’s Image control’s ImageAlign property to AbsMiddle and ImageUrl prop-
erty to Images/error.gif.

14. Set the panel’s Label control’s ID to lblError, ForeColor to Red, and Text to Clear this
field.

CHAPTER 8 ■ XML AND WEB DEVELOPMENT 305

15. The LinkButton control will allow the user to load a sample file from the server, for
testing purposes and to grasp the UI functionality. Set its ID to btnDefaultXml and
Text to here.

16. The HyperLink control will provide a link to the sample XML file so the user can view it
in the browser or download it for testing. Set its properties as follows:

• ID: hyXmlFile

• Text: view

• NavigateUrl: upload.xml

• Target: _blank

17. Add the following code to the Page_Load() event handler to configure the header
image and text (as described in Chapter 3):

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
HeaderIconImageUrl = "~/Images/pctransfer.gif"
HeaderMessage = "Upload Attendees"

End Sub

18. Through the Windows Explorer, select the upload.xml file you already created and
open its Properties dialog box (right-click and select Properties). On the Security tab,
add the Everyone group to the list of users allowed to access the file, and leave the
default permissions of Read and Read & Execute. This will allow your code to read
this file from disk.

19. Double-click the btnDefaultXml control and add the following code to its event handler:

Private Sub btnDefaultXml_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnDefaultXml.Click
Dim sr As New StreamReader(Server.MapPath("~/upload.xml"))

Try
Session("xml") = sr.ReadToEnd()
Session("file") = "Sample file"

Finally
sr.Close()

End Try
End Sub

20. The Upload List page is now complete, so set it as the start page, and compile and
run the application by pressing Ctrl+F5. After the usual login process (using apress as
the user name and password), the page shown in Figure 8-9 should appear in your
browser. If you click the Browse button, you’ll see the standard Windows dialog box
for locating files.

CHAPTER 8 ■ XML AND WEB DEVELOPMENT306

Figure 8-9. The Upload List page running

How It Works

As we said, the objective of this form is to allow partner institutions to submit an XML file con-
taining all their users and attendees. In order to specify the file to upload, the user clicks the
Browse button. The control that makes this possible is an HTML File Field, which is nothing
more than <input> control, whose type attribute is set to file. However, this control allows
only for a local file name selection. The form is not posted. Therefore, you placed a Load but-
ton control on the form solely for this purpose, but, in fact, any postback caused by any server
control will cause the file to be uploaded.

Traditionally, for the file to be sent to the server, the form not only needed to use a post
method but also had to specify an additional attribute called encType:

<form id="Form1" method="post" encType="multipart/form-data" ...

Setting the file input field as an HTML server control automatically handles this for us.
When the file is uploaded, you will use the values contained in the file to fill the TreeView

control. You’ll do that in the next section, but there are a couple of things to say about this
control right now. The TreeView control is similar to its Windows counterpart. It basically con-
sists of a collection of TreeNode elements that can, in turn, contain other TreeNode elements,
and so on. The server control provides several options to add styles to it, such as defining the
style to use to render child nodes. You used the TreeNodeTypes property to define a Normal
node type, and then used it in the ChildType.

CHAPTER 8 ■ XML AND WEB DEVELOPMENT 307

Finally, you provide the users access to the schema file and to a sample XML document,
which should help give them a good idea of what their own files should look like. The first of
two links at the bottom of the page allows users to load our sample document automatically,
so they can test the application features. Both the link at the top of the form (pointing to the
schema you created), and the link at the bottom of the form (pointing to the sample XML file)
have their Target property set to _blank. This causes the requested file to appear in a new
browser window, so that the users can inspect those files without leaving the main Upload
Attendees form.

Receiving the Uploaded File
The feature you are building will allow users to preview the file’s contents, see some statistics
about it, and later decide if they actually want to store the information in the file to the data-
base. In order to allow this, three areas need to be addressed:

• Saving the posted file: The users should upload the file only once. If you asked them to
select the file again every time a postback is performed, it could become very frustrat-
ing for them, just as posting it again in every round-trip would be very inefficient. For
this reason, you’ll save the uploaded XML into a session variable, which you’ll use later
when working with the file. Remember that XML is just text content, so you’re actually
saving a string value here.

■Note As this is a testing scenario, we don’t pay much attention to size limits, scalability issues, and so
on. Some would say it would be better to save the file in the server’s file system; while others would
complain that the I/O access and security permissions involved would actually turn out to be worse. Such
topics would need to be evaluated in a production environment.

• Setting up the reader: Configuring an XmlValidatingReader object requires several
steps, so you’ll move all that code into a private function.

• Using the reader: You’ll create another method that uses the reader to add nodes to the
TreeView control, to show the XML contents on the web page. This will help the users to
preview the file they are about to store, prior to confirmation.

You’ll complete these three tasks over the course of the next three “Try It Out” sections.

Saving the Posted XML File
Let’s analyze the code for reading and saving the incoming file to the session variable that
we’ll use later on.

Try It Out: Save the Posted XML File

1. Import the following namespace at the top of the code-behind file,
UploadList.aspx.vb:

CHAPTER 8 ■ XML AND WEB DEVELOPMENT308

Imports System.Text
Imports System.Xml
Imports System.Xml.Schema
Imports Microsoft.Web.UI.WebControls

The last of these points to the namespace where the TreeView control and its related
classes are located. When you dropped that control onto the page, a reference to the
Microsoft.Web.UI.WebControls.dll assembly was automatically added to your project.
It will come as no surprise that this is the assembly that contains the namespace you
imported.

2. Add the following method to the UploadList class, in the same file:

' Save the input file if appropriate
Private Sub SaveXml()
If Request.Files(0).FileName.Length > 0 Then
' Save the uploaded stream to Session for further postbacks
Dim stm As New StreamReader(Request.Files(0).InputStream)
Try
Session("xml") = stm.ReadToEnd()
Session("file") = Request.Files(0).FileName

Finally
stm.Close()

End Try
End If

End Sub

3. Double-click the Load button and add the following line:

Private Sub btnLoad_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnLoad.Click
SaveXml()

End Sub

4. Grab a copy of the upload.xml file that you created earlier and place it somewhere
handy on your hard drive (say, C:\upload.xml).

5. Set a breakpoint in the line of code in the btnLoad button’s Click event handler that
contains the SaveXml() method call, so that you can test the new method (you can
do that by positioning the cursor on that line and pressing F9). Compile and run the
application with Ctrl+F5, and after the usual login process, use the Browse button to
select the sample XML file (at C:\upload.xml or wherever you put it), and then click
the Load button.

How It Works

When you click the Load button (after selecting the XML file), the corresponding handler will
be called. Press F11 to step into SaveXml(). Inside the routine, you first check whether you
received any content from the client:

CHAPTER 8 ■ XML AND WEB DEVELOPMENT 309

If Request.Files(0).FileName.Length > 0 Then
...

The Request.Files property contains the list of uploaded files. You can’t just use its Count
property because of the way the HTML File Field control works: there will always be an item in
this collection for each of these controls on a page, and you can know if an actual file was sub-
mitted only by checking for the FileName property of each element in this collection. As you
know, there will be only one element, so you directly check that against the first element in the
collection.

The Files collection itself contains a single HttpPostedFile object (Request.Files(0))
that represents the uploaded file, and it contains a number of useful subproperties that
describe the file being uploaded (ContentLength, ContentType, and FileName, for example).

Next, you see one of the reader implementations of the System.IO namespace in action,
the StreamReader:

Dim stm As New StreamReader(Request.Files(0).InputStream)

Its constructor requires an object of type Stream, which you get from the InputStream
property of the posted file. This Stream contains the uploaded content. The Imports construct
ensures this reader will be properly disposed of as soon as you leave the block.

You put of all the file content returned by the reader into a Session item called xml. You
also hold the original file name in a second Session variable, called file:

Session("xml") = stm.ReadToEnd()
Session("file") = Request.Files(0).FileName

The ReadToEnd() method returns the whole file—the XML document—as a single string.

Validating XML from a Web Application
The XmlValidatingReader class that you will use derives from XmlReader, so it shares many
properties and methods with that class. It also adds a set of new properties (that is, it extends
the base class) to set options required for validation. In this book, we’ll use the term validator
to refer to an instance of this class.

Once the validator is configured, you can start reading an XML file and taking values from
it, just as you would with a regular XmlReader object. Behind the scenes, though, the object
ensures that the file is valid as it is read, according to the settings you have made and to the
schema you have configured. You can configure the validator to react when validation errors
are found in the XML source in two ways:

• The validator can throw exceptions. This is the default mode. When an error is found,
processing is aborted and an XmlSchemaException is thrown.

• The validator can fire the event handler attached to the ValidationEventHandler event
of the XmlValidatingReader class. When a handler is specified for this event, the valida-
tor won’t throw an exception when an error appears; instead, it will call the handler. It is
up to the developer to collect information inside the handler and respond accordingly.

Clearly, the second approach allows more complete reporting of any failures found in an
XML file, and it also allows you to continue through the document and process all elements,
whenever it makes sense.

CHAPTER 8 ■ XML AND WEB DEVELOPMENT310

Try It Out: Set Up Validation You’re now ready to handle the second step for receiving the
uploaded file: setting up the reader. You’ll write the code to set up the XmlValidatingReader
object.

1. Declare the following private member at class level, before the Page_Load() event
handler:

Dim _errors As New StringBuilder

■Note As a naming convention, we prefix class-level variables with an underscore so that we can easily
differentiate them from local variables inside a method.

2. Add the handler for the validation event. It needs to have exactly the signature speci-
fied here, and you’ll be using it later when you configure validation:

Private Sub OnValidation(ByVal sender As Object, _
ByVal e As ValidationEventArgs)
_errors.AppendFormat("{0}: {1}
", _
e.Severity.ToString(), e.Message)

End Sub

3. Using the Windows Explorer, open the properties for the Friends.xsd file. In the Secu-
rity tab, add the Everyone group to the list of members allowed to access the file, and
leave the default permissions of Read and Read & Execute. You need to add this per-
mission so the web application can read the schema from disk.

4. The procedure responsible for reading and displaying the XML content doesn’t need to
know that it’s using an XmlValidatingReader instance or how it has to be configured. It
only cares about the reading methods. You’ll isolate it from the initialization code for
the validator in a function that returns a generic XmlReader object type:

Private Function GetReader() As XmlReader
If Not Session("xml") Is Nothing Then
Throw New InvalidOperationException(_
"No XML file has been uploaded yet.")

End If

' Build the XmlTextReader from the in-memory string saved before
Dim xmlinput As New StringReader(CType(Session("xml"), String))
Dim reader = New XmlTextReader(xmlinput)

' Configure the validating reader
Dim validator As New XmlValidatingReader(reader)
AddHandler validator.ValidationEventHandler, AddressOf OnValidation

Dim schema As XmlSchema
Dim fs As FileStream = File.OpenRead(_

CHAPTER 8 ■ XML AND WEB DEVELOPMENT 311

Server.MapPath("~/Friends.xsd"))
Try
schema = XmlSchema.Read(fs, Nothing)

Finally
fs.Close()

End Try

validator.Schemas.Add(schema)
validator.ValidationType = ValidationType.Schema
Return validator

End Function

How It Works

The XML processing code (which you’ll build in the next “Try It Out” section) will call the
GetReader() method to get the object it will use to process the XML file. Notice that you return
a generic XmlReader object from the method:

Private Function GetReader() As XmlReader
...

In this way, the act of getting an object for reading the file is independent of the actual
XmlReader implementation being used to work through it. This makes it easy to turn off valida-
tion just by returning an XmlTextReader instead of an XmlValidatingReader.

You first check to see if there is actual content in the Session variable you saved earlier.
The first time the page loads, or if an error on the server causes session information to be lost,
you raise an exception. You use an InvalidOperationException, already defined in the .NET
Framework, since it seems to be an appropriate exception to throw if you’re trying to read an
XML file when none has been actually found:

If Session("xml") Is Nothing Then
Throw New InvalidOperationException(_
"No XML file has been uploaded yet.")

End If

Next, you set up a StringReader from the System.IO namespace, which you will use as the
source when you create the XML reader. In effect, the StringReader class applies a TextReader
implementation to a simple string, which you can then pass to an XmlTextReader constructor:

Dim xmlinput As New StringReader(CType(Session("xml"), String))
Dim reader As New XmlTextReader(xmlinput)

You could have avoided declaring the xmlinput variable altogether (and constructed it
directly inside the XmlTextReader constructor), but this way, the code is a bit clearer. At this
point, if you wished to disable validation, you could just add the following line:

Return reader

But instead, as you do want to validate, you use the XmlTextReader to create an instance of
the XmlValidatingReader class. You also set the validator’s ValidationEventHandler property,

CHAPTER 8 ■ XML AND WEB DEVELOPMENT312

to tell it what method it should use to handle events (such as encountering errors) that occur
during the validation process. In this case, it will be the OnValidation() method:

Dim validator As New XmlValidatingReader(reader)
AddHandler validator.ValidationEventHandler, AddressOf OnValidation

We’ll look at the OnValidation() method in a moment, to see how that works.
The validator needs a reference to the schema that it should validate against, through

its property called Schemas, which is a collection of XmlSchema objects. You read your schema
using the static Read() method of the XmlSchema class, which loads and returns the specified
schema. Because you added permissions to Everyone to read the schema, the ASP.NET appli-
cation can load it directly from disk. You get a reference to the physical file using
Server.MapPath and read the schema from the stream:

Dim schema As XmlSchema
Dim fs As FileStream = File.OpenRead(_
Server.MapPath("~/Friends.xsd"))

Try
schema = XmlSchema.Read(fs, Nothing)

Finally
fs.Close()

End Try

The second parameter to the Read() method is a validation handler to deal with any
errors that are found in the schema itself. In this case, we’ll assume the schema is valid (since
we created it). Once you’ve loaded the schema, adding it to the collection of schemas for the
validator is simple:

validator.Schemas.Add(schema)

Finally, you return the initialized XmlValidatingReader object:

validator.ValidationType = ValidationType.Schema
Return validator

Now let’s return to look at how errors are handled during the validation process. You have
created a class-level variable, _errors, that will help to handle the errors that can occur during
the reading phase. It is initialized to a new StringBuilder object and will accumulate error
messages:

Dim _errors As New StringBuilder

If an error is found during the reading phase, this is considered as an event, so it is handled
by the nominated event handler: the OnValidation() method.

Private Sub OnValidation(ByVal sender As Object, _
ByVal e As ValidationEventArgs)
...

If the validator finds an error, it calls this method, passing in information about the event
in the e parameter, which is of type ValidationEventArgs. This parameter supplies details
about the error that you append to the _errors variable for later use. You want to know the

CHAPTER 8 ■ XML AND WEB DEVELOPMENT 313

severity of the validation failure (which will be either an Error or a Warning) and the error
message itself, with some formatting to display nicely in the page:

_errors.AppendFormat("{0}: {1}
", _
e.Severity.ToString(), e.Message)

Should you need it, the Exception property of the ValidationEventArgs class holds the
actual exception that was caught. This property is of type XmlSchemaException, and it can be
queried to obtain comprehensive information about the error, including the line number and
position where the error occurred, the schema object causing the exception, and so on. For
short files though, the Message property contains just about everything you need to locate the
problem. For example, a PlaceID with a length other than the 36 characters and the pattern
required by the schema will generate a message string something like this:

The 'http://www.apress.com/schemas/friendsreunion:PlaceID' element has an invalid
value according to its data type. An error occurred at (2, 72).

Processing the Uploaded XML Data
The XmlSchema class is Microsoft’s implementation of the W3C XML Schema Definition
Language standard, and it performs validation while the XML stream is being read. There is
no need for a special validation method. Remember that these readers are read-only and
forward-only, which makes them fast and light, but also means that you need to process the
XML while you are still validating it. You will not know whether the entire XML file meets
the requirements of your schema until you have finished processing it.

As you examine the following example, notice that the code for retrieving data from the
validator (that is, the XmlValidatingReader object) always refers to nodes in the first instance
(through its NodeType property), rather than to elements, or attributes, or text. This is due to
the way that the reader perceives the XML: as it moves through the document, one by one it
comes across the entities that document contains. The next item that it comes across could be
an element, an attribute of an element, or the content of an element. We use the generic term
node to refer to all of these items. When each entity arrives in your code, you need to find out
what it is.

Try It Out: Display XML Data It’s time for us to implement the steps that process the XML file.
You’re going to read the elements and display them in the TreeView control.

1. Place the reading and processing code in a method called BuildTreeView():

Private Sub BuildTreeView()
' Keep the current node and its parents
Dim hierarchy As New Stack(5)
Dim node As TreeNode
Dim reader As XmlReader

pnlError.Visible = False
' Save the incoming file if appropriate
SaveXml()

CHAPTER 8 ■ XML AND WEB DEVELOPMENT314

Try
reader = GetReader()
' Clear the tree view
tvXmlView.Nodes.Clear()

Do While reader.Read()
' We create new nodes for all elements
If reader.NodeType = XmlNodeType.Element Then
'Create the new node
node = New TreeNode
node.Text = reader.LocalName
AddAttributes(reader, node)

' Anchor to its parent
If hierarchy.Count > 0 Then
CType(hierarchy.Peek(), TreeNode).Nodes.Add(node)

End If

' Set it as the last node in the stack
hierarchy.Push(node)

ElseIf reader.NodeType = XmlNodeType.Text Then
' If it's a text, set the text value of the last node
CType(hierarchy.Peek(), TreeNode).Text &= _
": " & reader.Value

ElseIf reader.NodeType = XmlNodeType.EndElement Then
' Remove the element as we're done with it
node = hierarchy.Pop()

End If
Loop

' Last node will be the root one, with the whole
' hierarchy properly built. Append the file name to it.
node.Text &= " (" & Session("file").ToString() & ")"

tvXmlView.Nodes.Add(node)
tvXmlView.Visible = True

' Check for errors accumulated during XSD validation
Dim msg As String = _errors.ToString()
If (msg.Length > 0) Then
pnlError.Visible = True
lblError.Text = msg
' Remove invalid document from session
Session.Remove("xml")

Else
pnlError.Visible = False

End If

CHAPTER 8 ■ XML AND WEB DEVELOPMENT 315

Catch ex As Exception
pnlError.Visible = True
lblError.Text = ex.Message
' Remove invalid document from session
Session.Remove("xml")

End Try
End Sub

2. Add the AddAttributes() helper method next:

' Helper method of BuildTreeView that adds attributes found as
' child nodes of the passed node, using a different icon
Private Sub AddAttributes(ByVal reader As XmlReader, _
ByVal node As TreeNode)
If Not reader.HasAttributes Then
Return

End If

Dim child As TreeNode
Dim attrs As New TreeNode
' Define the node that will contain all attributes
attrs.Text = "Attributes (" & reader.AttributeCount & ")"
attrs.ImageUrl = "Images/attributes.gif"
attrs.ExpandedImageUrl = "Images/attributes.gif"

For i As Integer = 0 To reader.AttributeCount - 1
child = New TreeNode
' Move to the appropriate attribute
reader.MoveToAttribute(i)
' Configure the node and add it to the list of attributes
child.Text = reader.Name & ": " & reader.Value
child.ImageUrl = "Images/emptyfile.gif"
attrs.Nodes.Add(child)

Next

node.Nodes.Add(attrs)
' Reposition the reader on the element
reader.MoveToElement()

End Sub

3. Now you need to remove the call to SaveXml() in the Load button handler, and put in
its place a call to BuildTreeView(). This is because you want to reload the contents
of this control. As you see from the code in the first step, the call to SaveXml() is per-
formed inside that method already:

private void btnLoad_Click(object sender, System.EventArgs e)
{
BuildTreeView();

}

CHAPTER 8 ■ XML AND WEB DEVELOPMENT316

4. You need to call BuildTreeView() after uploading the btnDefaultXml button (the one
that loads a sample document). Add the call to the method after the current event-
handling code:

Private Sub btnDefaultXml_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnDefaultXml.Click
...
BuildTreeView()

End Sub

5. Save the solution and run the page. After the usual login process, load the upload.xml
file, just as you did before. This time, the XML file will be represented in a tree view, as
shown in Figure 8-10.

Figure 8-10. The XML file in tree view

CHAPTER 8 ■ XML AND WEB DEVELOPMENT 317

How It Works

Clicking the Load button causes a postback. The code in the button event handler calls the
BuildTreeView() method, where you save the incoming XML file and then uses an XmlReader
to create nodes and add them to the tree view. You also append any attributes that may be
found, by calling the helper AddAttributes() method.

The processing code using the XmlReader is typical when dealing with XML in a streaming
fashion, and you basically read until you reach the end, testing in the loop for the occurrence
of nodes you’re interested in. In this case, you care about three types of nodes:
XmlNodeType.Element, XmlNoteType.Text, and XmlNoteType.EndElement.

XmlNodeType.Element signals the start of a new element. For each element, you will add a
child TreeNode to the tree, therefore, you create a new one here:

If reader.NodeType = XmlNodeType.Element Then
'Create the new node
node = New TreeNode
node.Text = reader.LocalName
AddAttributes(reader, node)

You populate the attributes of the node at this time also. Note that the code is generic,
and it does not depend on whether the XML element is a <User>, <Attended>, or <Login> one.

At this point, you have the node properly initialized. It’s time to anchor it to the appropri-
ate parent. You do so by taking the last node in the hierarchy (if there’s one), and adding this
node as its child, without removing it from the hierarchy (that’s the Peek method behavior):

' Anchor to its parent
If hierarchy.Count > 0 Then
CType(hierarchy.Peek(), TreeNode).Nodes.Add(node)

End If

You won’t have a parent when you’re dealing with the root element <Friends>.
Next, you append the node to the hierarchy you’re populating, by pushing it to the stack

of nodes you have found so far. This is the usual way of dealing with nested elements, in order
to keep track of the last node and all its parents.

' Set it as the last node in the stack
hierarchy.Push(node)

The next node of interest is XmlNoteType.Text. This type of node is the one that indicates
that you have reached the content of an element; that is, its Value. You reach this node type
whenever there’s actual content inside an element, and as the previous step must have been
to add that element to the hierarchy, you know it’s the one you need to assign the value to:

ElseIf reader.NodeType = XmlNodeType.Text Then
' If it's a text, set the text value of the last node
CType(hierarchy.Peek(), TreeNode).Text &= _
": " & reader.Value

As noted, we retrieve the node through the Peek method, because we only need to assign
its value, not actually remove it. If we wanted to remove it on retrieval, we would use the Pop
method instead.

CHAPTER 8 ■ XML AND WEB DEVELOPMENT318

The third node of interest is XmlNoteType.EndElement. This one comes where the closing
tag is reached for an element. At this point, you’re finished processing the current element
(the one at the top of the stack), so you can safely remove it.

ElseIf reader.NodeType = XmlNodeType.EndElement Then
' Remove the element as we're done with it
node = hierarchy.Pop()

End If

If a validation error occurs while the tree view is being built, the handler you created in
the previous section will be called, and the error will be appended to the _errors variable. The
code will continue processing and adding nodes, until finally you check whether this variable
contains any error messages and show the error panel if appropriate:

' Check for errors accumulated during XSD validation
Dim msg As String = _errors.ToString()
If (msg.Length > 0) Then
pnlError.Visible = True
lblError.Text = msg
' Remove invalid document from session
Session.Remove("xml")

Else
pnlError.Visible = False

End If

Just in case other unexpected exceptions happen during processing, you handle them
through a common catch section (we’ll discuss exceptions in detail in Chapter 11):

Catch ex As Exception
pnlError.Visible = True
lblError.Text = ex.Message
' Remove invalid document from session
Session.Remove("xml")

End Try

In both cases, you remove the invalid document from the Session object, to force the user
to load a valid one.

To finish off this section, let’s take a look at what happens to a file that contains some
validation errors. This time, add the uploadBad.xml file that’s available in the code download
for this chapter, which contains an invalid ID (shorter than it should be), and an invalid
<Institution> element (not expected according to the schema). You can also append this
kind of invalid content to your current upload.xml file. Click the Load button, and you should
see the page shown in Figure 8-11.

XML Schema validation provides our system with a watertight seal against invalid data.
As it’s an external text file, you can modify your schema if your business requirements change,
without necessarily recompiling or even stopping the web application. And the processing
code is drastically simplified, because you simply rely on the schema for validating content.
We don’t need to check anything else.

CHAPTER 8 ■ XML AND WEB DEVELOPMENT 319

Figure 8-11. The Upload List page after trying to load an invalid XML file

Note that, in practice, schemas are usually loaded only once per application. So far, we
have loaded it every time the page is posted back. This isn’t good for performance. Typically,
you would define a static variable for the schema and a property to access it, which loads and
initializes it on first use, such as:

Shared _schema As XmlSchema

Private ReadOnly Property SchemaInstance() As XmlSchema
Get
If _schema Is Nothing Then
Dim fs As Stream = File.OpenRead(Server.MapPath("~/Friends.xsd"))
Try
_schema = XmlSchema.Read(fs, Nothing)

CHAPTER 8 ■ XML AND WEB DEVELOPMENT320

Finally
fs.Close()

End Try
End If
Return _schema

End Get
End Property

Now, the validating reader would just need to add this cached version of the schema to its
collection:

validator.Schemas.Add(SchemaInstance)

XML Queries with XPath
XML represents a powerful and increasingly popular way of storing and manipulating data,
so it would be a huge shortcoming if there were no way to perform queries against that data.
Now, we know that the de facto standard for querying relational data stores is SQL, so why
can’t we just use that to extract data from our XML documents?

The answer lies in the differences between the relational model of tables and rows, and
the hierarchical structure of XML documents, where elements can be arbitrarily nested to any
depth. This is why the W3C came to the rescue again with XPath, which is, as the specification
says, “a language for addressing parts of an XML document.”

XPath will be immediately familiar if you have an understanding of the file structure of a
modern operating system, and particularly if you remember the days of the DOS command
prompt. This is because XPath is based on the same slash-based syntax to locate items. The
following XPath expression, for example, would locate all of the <User> elements in our sam-
ple XML document:

/Friends/User

The first slash indicates that the search should start from the root node of the document.
The following elements compose a path, called a location path, that leads to the elements you
want to be included in the result. When an XPath expression like this is executed, the result is
a node set (or collection of nodes). The slash after <Friends> is the axis for the next element,
<User>. It means that the next node is a child of <Friends>. XPath defines many other axes,
such as parent and sibling.

We could refine this query by adding some further constraints on the results we wanted
returned:

/Friends/User[LastName="Brown"]

This revised expression would return only those <User> elements for which the <LastName>
child element has the text value Brown. The constraint is called the predicate. Let’s dissect this
expression:

CHAPTER 8 ■ XML AND WEB DEVELOPMENT 321

A set consisting of an axis (optional) plus a node test and an optional predicate is referred to
as a location step. The example has two location steps: /Friends, and /User[LastName="Brown"].
The axis determines the direction in which to move down the location path. You can move to
child nodes, as in this example, with the forward slash, which means that the next step is evalu-
ated against the children of the previously evaluated step. Other possibilities include moving to
the parent node (../), staying in the current node (.), or moving to an attribute (/@).

Another important feature of XPath is its numeric, string, and Boolean functions, which
include count(), sum(), string-length(), starts-width(), contains(), and some others.

■Tip For more information about XPath, visit http://www.w3c.org/TR/xpath. You can find the complete
list of functions, axes, and other features of XPath in the specification itself at http://www.w3.org/TR/
1999/REC-xpath-19991116.html. Additionally, you can refer to Pro .NET XML, by Kent Tegels (Apress
2005; ISBN: 1-59059-366-9).

Try It Out: Build the Reports Form In our application, we want to provide some statistical informa-
tion about the uploaded file, such as a report of users and their Attended information. You can
achieve this without needing to traverse the file laboriously, by using the features of XPath.

You’ll set up the report form as shown in Figure 8-12.

Figure 8-12. The Upload List Report page

CHAPTER 8 ■ XML AND WEB DEVELOPMENT322

1. Add a new web form to the application and name it UploadListReport.aspx. As usual,
make the class defined in the code-behind page inherit the FriendsBase class:

Public Class UploadListReport
Inherits FriendsBase

2. Drag-and-drop the iestyle.css file onto the form surface to link the stylesheet.

3. Add two HTML Table controls from the HTML tab of the Toolbox, and two TextBox
controls, two LinkButton controls, and an ImageButton control from the Web Forms
tab, arranged as shown in Figure 8-12. Copy and paste at the bottom the pnlError
panel from the UploadList.aspx form.

4. The first Table control will contain some fixed statistics values retrieved using XPath
queries against the file. Set its properties as follows:

• ID: tbReport

• CssClass: TableLines

• GridLines: Both

• CellPadding: 0

• CellSpacing: 0

• Rows: Add a new row, with its BackColor set to #D3E5FA. Use the Cells property to
add the two cells shown on the page (you’ll just need to insert the Text property of
each cell).

5. The TextBox control will show the starting year for the XPath query to filter attendees.
Set its properties as follows:

• ID: txtYearFrom

• CssClass: SmallTextBox

• MaxLength: 4

• Width: 36px

6. The next TextBox control will show the ending year for the XPath query to filter atten-
dees. Give it the ID txtYearTo and set the other properties the same as for the previous
TextBox control.

7. The LinkButton control will perform the query with the range of years specified. Set its
ID to btnExecute and its Text to Execute.

8. The Table control below the LinkButton control holds the results from the previous
query execution. Set its properties as follows:

• ID: tbDates

• CssClass: TableLines

• GridLines: Both

CHAPTER 8 ■ XML AND WEB DEVELOPMENT 323

• CellPadding: 0

• CellSpacing: 0

• Rows: Add a new row, with its BackColor set to #D3E5FA. Use the Cells property to
add the four cells shown on the page (you’ll just need to insert the Text property of
each cell).

• Visible: False

9. The ImageButton control will redirect the user back to the upload page. Set its proper-
ties as follows:

• ID: btnBackImg

• AlternateText: Back to Upload

• ImageUrl: Images/back.gif

• ImageAlign: Middle

10. The bottom LinkButton control links to the upload page. Set its ID to btnBackLink and
its Text to Back to Upload.

The error panel and its controls will be already properly configured, as you use the same
approach to handling errors as in the UploadList.aspx form.

How It Works

This form will show the statistics that you’ll add in the code-behind page. The table at the top
of the page will be populated with the results of some predefined queries, while the second
table will execute a custom XPath query built from the value in the text boxes above it. It will
allow the user to select the <Attendee> elements whose child elements’ <YearIn> and <YearOut>
text values match the desired range.

Before moving on to perform the queries, however, we need to introduce one last XML-
related standard: the Document Object Model.

Querying Document Object Model (DOM) Documents
XmlReader-based objects provide forward-only access to the underlying XML data, which
means that as soon as you move forward, you lose all information pertaining to the previous
element. Clearly, such an approach is unsuited to querying a document, because you would
end up reading the entire file for every query you perform. Even if the element you were look-
ing for was the first one in the document, there would be no way to know that for sure, and
you would need to read it in its entirety to be certain.

To perform queries effectively, you really need the complete document in memory, so
that you can perform all the queries without needing to reparse the file. The W3C again has
an answer: the Document Object Model (or DOM).

The DOM defines the way an XML document is stored in memory, and how its nodes are
loaded, accessed, and changed using a “collection” approach: each node contains other nodes

CHAPTER 8 ■ XML AND WEB DEVELOPMENT324

as children, and these, in turn, can contain other nodes, and so on. The DOM allows you to
navigate back and forth between child and parent elements, too, tinkering with them as you
go. It is neither forward-only nor read-only.

The DOM is built on several key building blocks. The fundamental one is the concept of
the Document, which is to DOM what the Schema element is for XSD. This important object is
implemented by the .NET Framework in the System.Xml.XmlDocument class.

Try It Out: Query a DOM Document With the information about the DOM in mind, you’re ready to
build the code for performing XPath queries, as we outlined in the previous section.

1. Open the code-behind page for the UploadListReport.aspx web form and import the
following namespaces at the top of the file:

Imports System.IO
Imports System.Xml
Imports System.Xml.XPath
Imports System.Text

2. Add the GetReader() helper method to the UploadListReport class. This method will
serve the same purpose as the function by the same name in the UploadList.aspx
page:

Private Function GetReader() As XmlReader
If Session("xml") Is Nothing Then
Throw New InvalidOperationException(_
"No XML file has been uploaded yet.")

End If

' Build the XmlTextReader from the in-memory string saved before
Dim xmlinput As New StringReader(CType(Session("xml"), String))
Return New XmlTextReader(xmlinput)

End Function

3. Locate the Page_Load() method and place the following code inside it:

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
' Configure header
MyBase.HeaderIconImageUrl = "~/Images/print.gif"
MyBase.HeaderMessage = "Upload Attendees - Report"

Dim ns As String = "http://www.apress.com/schemas/friendsreunion"
Try
' Retrieve the reader object and initialize the DOM document
Dim reader As XmlReader = GetReader()
Dim doc As New XmlDocument
doc.Load(reader)

CHAPTER 8 ■ XML AND WEB DEVELOPMENT 325

' Initialize the namespace manager for the document
Dim mgr As New XmlNamespaceManager(doc.NameTable)
mgr.AddNamespace("af", ns)

' List of new users
Dim nodes As XmlNodeList = doc.SelectNodes("/af:Friends/af:User", mgr)
Dim row As TableRow = New TableRow
Dim cell As TableCell = New TableCell
cell.Text = "Users: " + nodes.Count.ToString()
row.Cells.Add(cell)

Dim sb As StringBuilder = New StringBuilder
For Each node As XmlNode In nodes
sb.AppendFormat("{0}, {1} ({2})
", _
node("LastName", ns).InnerText, _
node("FirstName", ns).InnerText, _
node("Email", ns).InnerText)

Next

' Add the cell with the accumulated list
cell = New TableCell
cell.Text = sb.ToString()
row.Cells.Add(cell)
tbReport.Rows.Add(row)

Catch ex As Exception
lblError.Text = ex.Message
pnlError.Visible = True

End Try

If tbReport.Rows.Count = 1 Then
tbReport.Visible = False

End If
End Sub

4. Double-click the btnBackImg and btnBackLink controls in the designer to create Click
event handlers for each of these. Add the following line of code to each handler to
allow the user to navigate back to the UploadList form:

Private Sub btnBackImg_Click(ByVal sender As System.Object, _
ByVal e As System.Web.UI.ImageClickEventArgs) Handles btnBackImg.Click
Response.Redirect("UploadList.aspx")

End Sub

Private Sub btnBackLink_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnBackLink.Click
Response.Redirect("UploadList.aspx")

End Sub

CHAPTER 8 ■ XML AND WEB DEVELOPMENT326

5. Leave this page, and open the UploadList.aspx web form in the designer. Double-click
the View Report button, and add the following code to the event handler that is created:

Private Sub btnReport_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnReport.Click
SaveXml()
Response.Redirect("UploadListReport.aspx")

End Sub

6. With the UploadList.aspx page set as the startup page, run the project by pressing
Ctrl+F5.

7. Select the sample XML file to upload and click View Report. You should see a summary
that looks something like Figure 8-13.

Figure 8-13. Viewing a report

How It Works

When you click the View Report button in the previous page, this page takes up the XML you
saved in the session variable and produces the report you see in the table at the top of the page.
In order to achieve this, you load an XmlDocument from it and perform the queries you need.

CHAPTER 8 ■ XML AND WEB DEVELOPMENT 327

Loading the document involves retrieving an XmlReader that points to the XML string in
the session variable, just as you did in the previous section, and passing it to the Load()
method of the XmlDocument class:

' Retrieve the reader object and initialize the DOM document
Dim reader As XmlReader = GetReader()
Dim doc As New XmlDocument
doc.Load(reader)

You use a class called XmlNamespaceManager when you perform the queries. To understand
why this class even exists, you need to understand the great effort Microsoft made to separate
out functionality and make individual objects more manageable, lighter, and faster.

You saw how XmlValidatingReader builds on the XmlTextReader. You also learned how to
pass XML Schemas to it. Why was the schema a separate object and not an intrinsic part of the
validating reader? The answer lies in modularization and performance. Separating functional-
ity that, while closely related, doesn’t belong to the same classes, provides modularity, which
allows each class to be simpler, easier to use, and more easily upgraded with new features.
That effectively makes it all more manageable. As an example, the validating reader not only
works with the new XML Schemas, but it also validates against older DTD and XDR formats.
On the performance side, the schema, being a separate object, can be easily cached, as
demonstrated in the previous section.

Now imagine that you need to perform an XPath query on a document that doesn’t
use namespaces (this is a perfectly legal task). If namespace management—that is, the resolu-
tion of XML prefixes and related operations—were built into the XPath classes, you would
be wasting memory and making the classes more complex than required for that particular
scenario. Hence, .NET separates namespace-related operations into their own class (the
XmlNamespaceManager class), and you need to instantiate that class only when you need to
issue queries that require namespace support. In our case, the schema design enforces the
use of namespaces in the XML instance files, so we need to initialize and use this class when-
ever a query is performed against these files.

Initializing the namespace manager is a simple operation: you just create it and tell it to
use the names already found in the document, and then add the namespaces you will be
using in your queries:

Dim ns As String = "http://www.apress.com/schemas/friendsreunion"
..
' Initialize the namespace manager for the document
Dim mgr As New XmlNamespaceManager(doc.NameTable)
mgr.AddNamespace("af", ns)

Once loaded, the document will be completely available, from top to bottom.

■Note Here, we focus on the methods that the XmlDocument class provides to perform queries against
data. It contains many more methods and properties to work with, and they can be found in the MSDN docu-
mentation simply by typing “XmlDocument” in the Help Index window.

CHAPTER 8 ■ XML AND WEB DEVELOPMENT328

In the example, you execute a query to retrieve the list of new users in the file; that is, all
<User> elements that are present in the document and children of the <Friends> element:

Dim nodes As XmlNodeList = doc.SelectNodes("/af:Friends/af:User", mgr)

It really is that easy to get the results! Note that you need to include the namespace
prefixes on both element names in the XPath expression, because the document uses a name-
space. Prefixes allow you to locate elements that belong to different namespaces, and the
namespace manager is responsible for resolving them. Of course, you can still use documents
without a namespace, and execute queries without using this class at all, but it’s strongly rec-
ommended that you make namespaces part of your regular XML handling. Note that the
specific prefix you use is irrelevant, as long as the manager is able to map it to a namespace.
Also note that even when the namespace was applied to the root <Friends> element, all its
children (including <User>) are also in that namespace, so they need the prefix, too.

Once you get the results, displaying them in the table is just a question of creating the
appropriate TableRow and TableCell objects to contain the information about it. To build the
result string containing all the users in the file, use the StringBuilder class:

Dim sb As StringBuilder = New StringBuilder
For Each node As XmlNode In nodes
sb.AppendFormat("{0}, {1} ({2})
", _
node("LastName", ns).InnerText, _
node("FirstName", ns).InnerText, _
node("Email", ns).InnerText)

Next

As you iterate through the nodes found, the StringBuilder accumulates a sort of sum-
mary about new users, containing their full name and e-mail address (between parentheses).
Each node offers some accessors to get at its content. Here, you’ve used the InnerText prop-
erty to extract that content as a string value.

Understanding the XPath Data Model
The XPath specification defines four basic types that can result from executing expressions:
node set, Boolean, number (floating point), or string. These are the only types in XPath. As you
saw in the previous section, the XmlDocument provides basic support for querying and working
with the results of XPath expressions. This support is limited to expressions returning node
sets. The XmlDocument.SelectSingleNode is just a helper method that returns the first of such
a node set.

XPath itself is independent of the DOM. Actually, there are many concepts in DOM
that don’t have an equivalent in XPath. So, instead of merging two different things into the
XmlDocument implementation, Microsoft did the modularization work and completely sepa-
rated the XPath processing from the underlying document implementation, such as the
XmlDocument.

The fundamental class for XPath evaluation is the XPathNavigator that resides in the
System.Xml.XPath namespace. This is an abstract class that implements a cursor-like interface
to the underlying data. Most methods are navigation methods such as MoveToAttribute,
MoveToFirstChild, MoveToNext, and so on. The XPath evaluation engine uses these methods to

CHAPTER 8 ■ XML AND WEB DEVELOPMENT 329

move through the data as it executes an XPath expression. In order to avoid the limitations of
XmlDocument with regard to XPath native types (other than node set), you need to move to the
XPathNavigator. For example, if you want to use some of the built-in XPath functions such as
sum(), count(), substring(), and so on, you simply can’t use XmlDocument’s methods.

But since the XPathNavigator is an abstract class, how do you get at it? Here’s where the
System.Xml.XPath.IXPathNavigable interface comes into play. This interface is implemented
by those classes that support the XPathNavigator. It has a single method, CreateNavigator(),
which returns the instance you need to execute XPath expressions. The XmlDocument inherits
the implementation of this interface from its base XmlNode class, and therefore you can get the
navigator as follows:

Dim doc As New XmlDocument()
' Load it somehow

Dim nav As XPathNavigator = doc.CreateNavigator()

From now on, you can use the navigator to select nodes:

Dim it As XPathNodeIterator = nav.Select(expression)

Or to get scalar values resulting from a query:

Dim value As Object = nav.Evaluate(expression)

Note that instead of the DOM-related XmlNodeList class you get from the XmlDocument,
you receive an XPathNodeIterator, which implements the usual iterator pattern:

Do While it.MoveNext()
Response.Write(it.Current.Value)

Loop

After each call to MoveNext(), the internal cursor in the iterator is placed on the next ele-
ment that matched the expression. If no more results are available, the method returns false.

The picture is completed by the XPathExpression class. This class represents a parsed
XPath expression, and it is used to execute queries involving namespaces. Additionally, it
offers the very convenient AddSort() method, and it gives you a chance to also cache these
expressions for improved performance, much as you did for the XmlSchema. Basically, you must
compile the expression with the navigator and assign the XmlNamespaceManager that is going to
resolve namespaces before you use it:

Dim expr As XPathExpression = nav.Compile("/af:Friends/af:User")
' mgr is the configured XmlNamespaceManager
expr.SetContext(mgr)

Next, just pass the expression instead of a string to the navigator Evaluate() or Select()
methods:

Dim it As XPathNodeIterator = nav.Select(expr)

Let’s apply these concepts to our reporting application.

CHAPTER 8 ■ XML AND WEB DEVELOPMENT330

Try It Out: Query with XPathNavigator You will add a couple more queries that return scalar values:
the count of <Attended> elements and the last user ID in the file. Because they are simple val-
ues, you need to use the XPathNavigator. Given your document uses namespaces, you need to
use XPathExpression.

1. Add the following code to the Page_Load() event handler in UploadListReport.aspx:

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
...etc.
Try
...previous code...
' Create a navigator over the document
Dim nav As XPathNavigator = doc.CreateNavigator()

' Total number of attendees anywhere in the document
Dim expr As XPathExpression = nav.Compile("count(//af:Attended)")
' Set the manager to resolve namespace
expr.SetContext(mgr)
' Execute expression
Dim count As Object = nav.Evaluate(expr)

' Build the cell and row that shows the result
row = New TableRow
cell = New TableCell
cell.Text = "Global count of attendees: " & count
cell.ColumnSpan = 2
row.Cells.Add(cell)
tbReport.Rows.Add(row)

' The last attendee in the file, in document order
expr = nav.Compile("string(/af:Friends/af:User[position() = last()]/@ID)")
expr.SetContext(mgr)
Dim last As Object = nav.Evaluate(expr)

' Build the cell and row that shows the result
row = New TableRow
cell = New TableCell
cell.Text = "Last attendee ID in file: " & last
cell.ColumnSpan = 2
row.Cells.Add(cell)
tbReport.Rows.Add(row)

Catch ex As Exception
Me.lblError.Text = ex.Message
Me.pnlError.Visible = True

End Try

CHAPTER 8 ■ XML AND WEB DEVELOPMENT 331

If tbReport.Rows.Count = 1 Then
tbReport.Visible = False

End If
End Sub

2. With the UploadList.aspx page set as the startup page, run the project by pressing
Ctrl+F5.

3. Select the sample XML file to upload and click View Report. The summary should look
something like Figure 8-14 now.

Figure 8-14. The report with queries that return scalar values

How It Works

As we said, when you use the XmlDocument’s SelectNodes() method (or for that matter, the
SelectNode() method, which returns the first node in the results), the XPath expression issued
must evaluate to a node set (although this might contain only one node). For example, the fol-
lowing query is a valid XPath expression that returns a number, representing the count of
<Attendee> elements found in the entire document:

count(//af:Attended)

CHAPTER 8 ■ XML AND WEB DEVELOPMENT332

This query would fail if you used it for the SelectNodes() method. Note that the double slash
(//) at the beginning of the expression means that you’re looking for all <Attended> elements
anywhere in the document, starting from the root.

You use the IXPathNavigable.CreateNavigator() method implemented by the XmlDocument
to get a navigator suitable for this kind of expression evaluation:

Dim nav As XPathNavigator = doc.CreateNavigator()

As your document uses a namespace (xmlns="http://www.apress.com/schemas/
friendsreunion" attribute on the root <Friends> element), you must use an XPathExpression
that allows for namespace resolution:

Dim expr As XPathExpression = nav.Compile("count(//af:Attended)")

This XPathExpression object can be used to precompile commonly used queries, in a sim-
ilar way to stored procedures in database systems. This can speed up execution, because it
allows you to reuse the expression and avoid repetition of the string-parsing step that inter-
prets the query. You can also find the return type of the expression dynamically, through its
ReturnType property.

In order for the expression to resolve the namespace used, it needs an associated
XmlNamespaceManager, which is performed by calling the SetContext() method:

expr.SetContext(mgr)

Recall that the mgr variable was already initialized at the beginning of this method.
Finally, you evaluate the expression:

Dim count As Object = nav.Evaluate(expr)

The rest of the code just deals with adding the cells and row to show the result, exactly as
you did before.

The second expression used is more complex:

// The last attendee in the file, in document order
expr = nav.Compile("string(/af:Friends/af:User[position() = last()]/@ID)");

As the comment indicates, this query returns the ID attribute (/@ID) of the last <User> ele-
ment found in the document, for the user’s verification purposes. More important though,
this expression illustrates a number of useful XPath functions:

• string(), in this case, converts the ID attribute node to its string value.

• position() returns the position of the context element (in this case, each <User> being
evaluated).

• last() returns the position of the last element in the context node (the context being
the result of the previous location step evaluation; that is, the root <Friends> element).

Note that a predicate (the part of an XPath expression appearing in square brackets) can
appear in any or all location steps. Here, a predicate selects the last <User> element so that
you can access its ID attribute. This element is converted to a string and shown in the results
table. This query isn’t particularly useful in the context of our application, but it does show the
power behind XPath expressions and the flexibility available for performing complex queries.

CHAPTER 8 ■ XML AND WEB DEVELOPMENT 333

Building XPath Expressions Dynamically
As a final feature for our site, we are going to let the user enter a range of years, and query the
uploaded file for matching nodes. For this feature, instead of using XmlDocument class, you will
use another class that implements a read-only in-memory representation of the document
and that is highly optimized for XPath querying: XPathDocument.

When we introduced XmlDocument, we said it is an implementation of the W3C DOM
standard. As such, it’s built around the concepts laid out in that specification. Microsoft
developers realized that the DOM is not particularly efficient at executing XPath queries
because of the way it stores its information as collections of nodes containing child nodes,
and so on. They also discovered that many scenarios don’t actually require a read/write
representation, especially for query processing. We have such a scenario in our application
already: reporting doesn’t require any editing features.

As a result, the XPathDocument class was created. It’s a really simple class that
contains nothing but a CreateNavigator() method (the implementation of
IXPathNavigable.CreateNavigator()). Once you have a navigator, you deal with
queries and results in the same way as you did with an underlying XmlDocument.
That’s the beauty of XPathNavigator and the modularization achieved in System.Xml!

Try It Out: Query Based on User Input To allow execution based on user input, your code will build
an XPath expression based on what’s contained in the text boxes on the UploadListReport
page when the Execute button is clicked. It will use the values to filter the matching nodes
and show them in the second (currently invisible) table on the page.

1. Open the UploadListReport page in the designer, double-click the Execute button
(btnExecute), and add the following code:

Private Sub btnExecute_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnExecute.Click

Dim ns As String = "http://www.apress.com/schemas/friendsreunion"

Try
' Clear any previous state
Dim row As TableRow = tbDates.Rows(0)
tbDates.Rows.Clear()
tbDates.Rows.Add(row)

' Set up the document
Dim doc As New XPathDocument(GetReader())
' Get the navigator over the document
Dim nav As XPathNavigator = doc.CreateNavigator()
' Set up the manager
Dim mgr As New XmlNamespaceManager(nav.NameTable)
mgr.AddNamespace("af", ns)
' Build the expression to execute
Dim path As String = String.Format("/af:Friends/af:User/" + _
"af:Attended[af:YearIn>={0} and af:YearOut<={1}]", _

CHAPTER 8 ■ XML AND WEB DEVELOPMENT334

txtYearFrom.Text, txtYearTo.Text)
Dim expr As XPathExpression = nav.Compile(path)
expr.SetContext(mgr)

Dim it As XPathNodeIterator = nav.Select(expr)
Do While it.MoveNext()
' Create the empty row and cells
row = New TableRow
row.Cells.Add(New TableCell)
row.Cells.Add(New TableCell)
row.Cells.Add(New TableCell)
row.Cells.Add(New TableCell)
' Grab the current navigator
Dim attended As XPathNavigator = it.Current
row.Cells(0).Text = attended.GetAttribute("Name", String.Empty)

' Iterate children of current Attended element
attended.MoveToFirstChild()
Do
If attended.LocalName = "YearIn" AndAlso _
attended.NamespaceURI = ns Then
row.Cells(1).Text = attended.Value

ElseIf attended.LocalName = "YearOut" AndAlso _
attended.NamespaceURI = ns Then
row.Cells(2).Text = attended.Value

End If
Loop While attended.MoveToNext()

' We have moved to Attended children
' Reposition to Attended node
attended.MoveToParent()
' Get the parent (User) ID attribute
attended.MoveToParent()
row.Cells(3).Text = attended.GetAttribute("ID", String.Empty)

' Finally, add the new row
tbDates.Rows.Add(row)

Loop
tbDates.Visible = True

Catch ex As Exception
lblError.Text = ex.Message
pnlError.Visible = True

End Try
End Sub

2. Press Ctrl+F5, leaving UploadList.aspx as the start page. Select the sample XML docu-
ment and click View Report.

CHAPTER 8 ■ XML AND WEB DEVELOPMENT 335

3. Insert a range of years in the boxes on the UploadListReport page, and click Execute to
view the results. Figure 8-15 shows an example of the output when the years 1980 and
1990 are inserted into the text boxes.

Figure 8-15. Executing a query based on user input

How It Works

When you click the Execute button, you load an XPathDocument constructed with the reader
returned by the method you have used so far:

' Set up the document
Dim doc As New XPathDocument(GetReader())

You create the navigator and set up the namespace manager as you did before:

' Get the navigator over the document
Dim nav As XPathNavigator = doc.CreateNavigator()

CHAPTER 8 ■ XML AND WEB DEVELOPMENT336

' Set up the manager
Dim mgr As New XmlNamespaceManager(nav.NameTable)
mgr.AddNamespace("af", ns)

The XPath expression is built using the values in the text boxes. For this purpose, you use
String.Format() to replace the dynamic values and compile the expression with the navigator:

Dim path As String = String.Format("/af:Friends/af:User/" + _
"af:Attended[af:YearIn>={0} and af:YearOut<={1}]", _
txtYearFrom.Text, txtYearTo.Text)

Dim expr As XPathExpression = nav.Compile(path)

Setting the expression context to the namespace manager and executing the Select()
method is straightforward:

expr.SetContext(mgr)
Dim it As XPathNodeIterator = nav.Select(expr)

You will notice the differences in the way attribute and child elements are accessed from
an XPathNavigator inside the while loop. First, an attribute value is retrieved directly through
the GetAttribute() method:

row.Cells(0).Text = attended.GetAttribute("Name", String.Empty)

The first argument to the method is the name of the attribute to retrieve, and the second is its
namespace. The attributes don’t use namespaces, which is the default behavior in both XML
and the XML Schema, as you saw in the previous chapter.

To process the child YearIn and YearOut elements, you need to move the navigator cursor
into the children of the current Attended node. This is achieved by the following method call:

' Iterate children of current Attended element
attended.MoveToFirstChild()

At this point, it’s important to remark that you are sure there are children, thanks to our
schema. You know the document is valid, because you uploaded it with an XmlValidatingReader.
You can now appreciate the simplification in code that derives from that fact. The method in this
code returns a Boolean indicating whether or not it could move to the first child. You know it will
always succeed; otherwise, the document would have been invalid in the first place. If you had
not used an XML Schema, you would have needed to add checks everywhere to ensure that the
structure conformed to that expected by your code.

The code to access children values is a little more complicated than with XmlNodes, but
once you get used to it, it’s fairly easy. Basically, you iterate until you run out of children
(Loop While attended.MoveToNext()), checking the information in the current position to
see if it’s a node you’re interested in:

Do
If attended.LocalName = "YearIn" AndAlso _
attended.NamespaceURI = ns Then
row.Cells(1).Text = attended.Value

ElseIf attended.LocalName = "YearOut" AndAlso _

CHAPTER 8 ■ XML AND WEB DEVELOPMENT 337

attended.NamespaceURI = ns Then
row.Cells(2).Text = attended.Value

End If
Loop While attended.MoveToNext()

Retrieving the parent User element’s ID requires moving the cursor upwards. As you have
already moved into Attended’s children, you need to move twice in that direction, and finally
retrieve the attribute with the GetAttribute() method you used before:

attended.MoveToParent()
attended.MoveToParent()
row.Cells(3).Text = attended.GetAttribute("ID", String.Empty)

Once you have the results loaded in the table, you can change the values and click the
Execute button again, to reload the table with the new values

XML APIs Comparison
As you’ve learned in this chapter, there are three basic approaches available when accessing
an XML file; the XmlReader, the DOM through XmlDocument, and the XPath-optimized
XPathDocument. In this section, we’ll sum up what differentiates each of them, to help you
make the correct decision when choosing which one to use in your own applications.

What mainly differentiates XmlReader from the other two approaches is that these
readers provide forward-only, read-only access to documents, with no caching, while the
other approaches cache an entire document in memory. The main difference between the
XmlDocument and XPathDocument approaches is the editing capability: the latter is read-only.
These differences give rise to a range of pros and cons for each one, as noted in Table 8-1.
This table presents an analysis of the key features of all three approaches and compares
implementations.

CHAPTER 8 ■ XML AND WEB DEVELOPMENT338

Table 8-1. Comparing XmlReader, XmlDocument, and XPathDocument

XmlReader XmlDocument XPathDocument

Context

The reader doesn’t persist any The document is completely Like XmlDocument, the XML
information about the file. Once loaded in memory when opened, document is completely loaded
the cursor has moved on, there and it stays there until you are in memory when opened, and it
is no access at all to the previous finished with it. This means you stays there until you are finished
element. To preserve information, can move freely from the current with it. Therefore, you can freely
you must set up your own element to its parent, siblings, and navigate it and have full context
mechanisms and variables. children. The complete document information for queries and the
Con is available to provide any context like. Unlike XmlDocument, it’s not

information you may require. It’s tied to any specific in-memory
tied to the W3C specification with storage or object model.
regard to how the data is accessed Therefore, it was specifically
and stored. optimized for XPath query
Pro executions.

Pro

XmlReader XmlDocument XPathDocument

Resources Consumed

Stemming from the previous Loading a complete document Same problems as XmlDocument.
“con,” the reader gets its most in memory can become a serious Con
important “pro”: it consumes hindrance, especially for
minimal resources because of applications that work with large
the fact that only the current files. For smaller files, the impact
element is held in memory. is less noticeable, although even
As soon as the position is then, several concurrent users of
changed, the previous element a web application can quickly
is discarded, and its resources consume significant resources.
are freed. Con
Pro

Random Access

These readers provide only Nodes can be accessed using Full flexibility in navigating and
sequential access. To find a indexes or names, even queried accessing the document, but
particular element, you must using XPath. This complete through a different navigation
start at the beginning and work random access support makes approach, implemented as a
your way through. This can be the DOM ideal for storing cursor over the underlying data.
a real problem if you need to configuration files or offline XPath queries are fully
access elements scattered data files. supported, and it’s the
through the XML “tree.” Pro foundation for fast XSLT
Con transformations in .NET, too.

Pro

Read-Write Access

As the name implies, XmlReader XmlDocument provides complete No editing supported.
and family can only read. control over elements in a file. Con
Con You can add, remove, and change

them. This makes it very suitable
for data storage (from a form, for
example) and for offline client-side
functionality (where you send
intermittent batch updates to
the server).
Pro

Speed

The reader can be considerably Due to the comprehensive Compared to XmlReader,
faster, because it is so lightweight. features it offers, DOM can take XPathDocument is certainly
If read-only access is suitable for much longer than a reader to slower, as the entire document
a scenario, these classes are well load and read a document from needs to be loaded. But the
worth consideration. top to bottom. Improvements added functionality and ease of
Pro can be made through caching, use may be worth the price.

but this will only increase the Compared to XmlDocument, it’s
already high level of resources faster if you’re doing intensive
consumed. XPath querying.
Con Depends

Continued

CHAPTER 8 ■ XML AND WEB DEVELOPMENT 339

Table 8-1. Continued

XmlReader XmlDocument XPathDocument

Ease of Use

The reader has several methods, The DOM has a more structured The cursor model of
and the fact that it simultaneously specification. There is an XPathNavigator (the main way
represents the reader object and inheritance tree of classes, which to interact with an
the current element makes the starts from a general node type XPathDocument) resembles that
interface somewhat clumsy. For and adds specialization for other of the reader, but with navigation
example, some methods will be node types. The base XmlNode methods. It is harder to learn if
useful when the current element class is easy to master, and it is you come from the DOM world,
is of some specific type, but not inherited by all the other disparate but in the long term, it offers
when it is positioned over another node types, greatly helping your only a slightly more difficult API.
type. You must work harder with learning curve. Pro
readers. For instance, to retrieve Pro
the value of an element (with the
Value property), you must first
check the HasValue property to
determine whether or not the
current element can have a value.
Con

CHAPTER 8 ■ XML AND WEB DEVELOPMENT340

This list is by no means a definitive comparison, but aims to provide some guidance.
As with almost everything in programming, there is no guaranteed formula for successfully
choosing one technique over another, and you must weigh the particular needs of each appli-
cation.

Finally, keep in mind that in .NET version 2, the XPathNavigator cursor model will be the
recommended way to handle XML data. So, unless you really need the DOM or write access to
the document, we suggest that you stick to the XPathDocument approach.

Summary
In this and the previous chapter, you learned some important concepts about the use of XML
in web applications. We looked at several standards that are regulated by the W3C and have a
crucial role to play in the evolution of the Web.

When you use XML files, you need to understand the difference between well-formed
XML and valid XML. Looking at valid XML led us to the W3C’s XML Schema Definition Lan-
guage (XSD) specification. We looked at some of the most important elements for defining
the structure of XML instance documents, such as simple types, complex types, sequences,
and attributes. We added occurrence constraints and learned how to restrict a base type to
meet our needs. We added validation to our application using the schema we built, and it
proved to be simple yet highly flexible and powerful. Storing validation logic for incoming
data separate from business logic by the use of schemas helps maintenance and minimizes
the coding required should your validation requirements change.

We exploited the full power of the XML support built into VS .NET, to visually create
both schemas and instance documents. We saw how a schema enables IntelliSense during the
creation of an XML document, and also played with the visual designers provided for drag-
and-drop authoring.

A closer look at .NET’s XML classes shed some light on the close relation between dis-
parate namespaces, such as System.IO and System.Xml, as we used them in conjunction when
building a useful upload feature for our application. On the way, we tried out a third-party
custom control, in this case, the TreeView from Microsoft.

While reading XML may suffice for some applications, you usually need to perform
queries against XML data. XPath is designed to fulfill this goal, and we applied it to generate
statistical information about the file being uploaded to our web page.

Finally, we examined the W3C’s DOM standard and its implementation in the .NET Frame-
work: the XmlDocument class. We learned that it was not the only way to query documents and
discussed the new and innovative XPathDocument and its companion, the XPathNavigator.
These two are the foundation of the future of XML handling in .NET. We contrasted both the
XmlDocument and XPathDocument with the XmlReader alternative, to determine for which situa-
tions each is most suited.

These chapters should provide the groundwork that we hope will be useful as you work
through the next chapter, which is about the very important emerging XML technology of web
services.

CHAPTER 8 ■ XML AND WEB DEVELOPMENT 341

Web Services in Web
Applications

We’ve looked at the creation of web applications, connecting these applications to data
sources, and then adding XML functionality to them. In this chapter, you’ll make use of what
you’ve learned from the previous chapters, applying that knowledge to a different aspect of
web development that opens up a wealth of new functionality: web services.

Web services are seen by many as critical to the future of Internet-connected applica-
tions. Such a bold claim can be made for two main reasons. First, web services allow remote
applications to be connected together over the standard Internet network. Second, they allow
systems developed on other platforms and in different languages, such as Linux and Java, to
integrate with functionality developed in .NET.

In this chapter, we’ll explain what is unique about web services and why they are so
lauded, and cover everything you need to know in order to create and use them. This chapter
will cover the following topics:

• What a web service is

• How to create a web service

• How to consume a web service

• Error handling in web services

• Web service optimization

• Third-party web services

Overview of Web Services
Before you roll up your sleeves and start writing web services, it’s a good idea to understand
how they work. Here, we’ll look at what web services are, how they came to be, and how they
compare to the browser client/server application model that we described in Chapter 1.

Web services are parts of a system that are externally exposed (like web pages) via a new,
open-standard wire format. This allows disparate applications to communicate with one
another and share information. The web services standard itself is built on other standards
such as HTTP (for transport) and XML (for message format). By making use of such widely

343

C H A P T E R 9

■ ■ ■

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS344

accepted technologies, web services do not rely on any proprietary system or vendor. This
allows support for them to be freely developed for any platform and language: .NET, Java, Perl,
and so forth.

A web service itself (as implemented in .NET) is a collection of methods that can be called
from a remote location. These methods accept parameters and optionally return a value, just
as normal methods can, allowing for the vast majority of (appropriate) functionality that is
used internally in an application to be exposed to a wider public.

Although web services themselves are fairly new, the concept behind them isn’t. There
has long been the need for disparate applications to communicate with each other in order
to share information and functionality; this is called distributed services. Historically, tying
these applications together was done on an ad hoc basis, with only the parties involved in the
integration deciding on the structure and format of the data. As it became clear that a stan-
dardized specification would shorten development time and lower costs, several options were
put forward; DCOM and CORBA are two examples. These options were based on proprietary
formats, however, slowing their acceptance by developers and creating barriers to their use.
They also imposed further technical issues, such as requiring the use of TCP/IP ports that are
regularly blocked by firewalls. An alternative approach was needed that wasn’t vendor- or
platform-specific. Enter web services.

Having such a flexible mechanism available provides two main features to web applica-
tion developers:

• You can draw on all of the custom functionality and information of a separate applica-
tion, just as easily as you would use functionality provided by the .NET Framework or
your own application code. For example, you could retrieve a company’s current stock
price, or get news in the relevant industry sector for display on the site, providing more
information to the end user.

• You can publish information, allowing other applications to consume it. For example,
you could publish a company’s product catalog in a format that allows other sites to use
the information, potentially increasing sales.

In the case of our Friends Reunion application, web services can be used to aid in the cre-
ation of affiliate sites, allowing people to sign up for the system from the web site of their old
high schools, for instance.

Web Services Relationship to the Browser/Server Model
A simple way of visualizing a web service would be to think of it as a web page, which, rather
than returning information that is useful to an end user, returns information that can be con-
sumed by another application. In the simplest form, requests for information are made in a
similar manner: calling a URL and passing any required information either on the URL (a GET
verb), or as the body of the request (a POST verb). More complex mechanisms such as SOAP are
also available (we’ll look at SOAP later in this chapter). Requests for these URLs are then han-
dled by IIS and the .NET runtime, just as they would be for a web request for a web form, for
example. Any processing necessary is performed by code written by the developer, and the
results are returned as the body of the HTTP response. However, rather than the response
being an HTML document containing markup for display, it is made up of an XML document
that contains data.

Figure 9-1 shows the process of making a request for a web service. From this logical
point of view, it is the same as that of a web browser requesting a page.

Figure 9-1. Making a request for a web service

Although web services and web pages are similar in nature, the fundamental purpose
of them is different. Web services are intended as a standard way of exchanging information
between two computers. This leads to a couple key differences:

• Interface: A web page has a user interface. A web service does not have a user interface.
(Although it’s not part of the standard, Microsoft does provide a simple way of testing
your web services using an auto-generated interface.)

• Interaction: A web page is designed to interact with users. A web service is designed to
interact with other applications.

To cater to these differences, and other technical differences, web services are created dis-
tinctly in VS .NET, and they have a different file extension from web pages: .asmx, rather than
.aspx. This allows the ASP.NET runtime to process them differently and to provide extra func-
tionality.

VS .NET Support for Web Services
Prior to the release of .NET, Microsoft’s main offering for the creation of web services was in
the form of a simple command-line tool, the SOAP Toolkit. Although this did a lot of the hard
work for you, it certainly wasn’t the easiest way of getting an introduction to the topic. As with
many other new areas (such as XML, which we’ve looked at in Chapters 7 and 8), VS .NET has
tightly integrated the creation of web services into the IDE.

To the developer, creating a web service is now almost identical to writing a user control
or the code-behind page for a web form. Other features that we’ll look at later in the chapter
allow for the automatic creation of a UI for testing web services and treating web service
methods just like normal methods when they’re called from within your code.

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS 345

Web Service Implementation
To get a good understanding of what constitutes a web service and how one is developed,
we’re going to expose some of the functionality of our Friends Reunion application through
such a service. We’ll focus on two areas of functionality:

• Retrieval of the number of attendees to a place, given the place ID or name. For example,
this will allow the ACUDEI English Academy’s web site to show the number of Friends
Reunion associates who have taken a course there.

• Retrieval of contact requests for a given user of the system. Consumer sites will be able
to provide information aggregated from a third-party site (the Friends Reunion applica-
tion) to their users, enhancing their experience. We, as providers of this consumer site,
can even apply fees for this value-added information.

In order to provide this functionality, it’s important that you first understand how methods
are exposed. As mentioned earlier, a web service is simply an .asmx file, much like an .aspx web
form. This is called on a URL, just as a web page would be. For instance, if you had a web service
named MyWebService.asmx, you could potentially host it at http://localhost/MyWebService.asmx.

To add such functionality to your solution and to ensure that it works correctly, several
steps are involved:

• Create a new ASP.NET Web Service project to contain the service functionality.

• Create an .asmx file that will provide the web methods that can be called.

• Add the methods that are needed for the service to the code-behind class for the
.asmx file.

• Enable anonymous access for third parties (our whole site is secured right now).

• Build the project.

• Test the project.

To start with, we’ll implement the simpler of the two functions we mentioned: retrieving
the count of attendees to a place. This will allow us to focus on the web service, rather than
getting too involved in the logic of the application.

Implementing Web Methods
Within each web service, you add web methods. If a web service is thought of as a class (which it
technically is), then a web method is akin to marking a method as public on a class, making it
available externally. For our application, we’ll create the Partners.asmx service and add web
methods called GetAttendees() and GetContactRequests(), which actually implement the func-
tionality we’re trying to expose. Although the way in which these methods are called depends on
the format used—HTTP-GET, HTTP-POST, and so on—the methods are always accessed from the
containing service URL.

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS346

Try it Out: Create a Web Service You will now add a web service to your Friends Reunion project.
Note, however, that you could instead create a completely separate application for this purpose.
Doing so would allow for some more independent control over authentication, permissions,
and so on. In our example, building a separate web service application isn’t necessary.

1. Add a new folder to the application, called Services. This will allow you to set different
authentication and authorization policies than the ones in effect for the main site.

2. Right-click the folder, select Add ➤ Add Web Service, and name the new item
Partners.asmx, as shown in Figure 9-2.

Figure 9-2. Creating a new Web Service

3. Next, you need to create SqlConnection and SqlCommand components to interact with
the database. To do this, return to the new Partners.asmx file, in the Design view. In
this view, you’ll be able to drag-and-drop the database components that you need
onto the design surface, just as you have done in earlier chapters.

4. From the Data tab of the Toolbox, drag-and-drop a SqlConnection component onto the
design surface. Set the Name property of this to cnFriends and select the ConnectionString
property from the DynamicProperties section, mapping it to the suggested default key of
cnFriends.ConnectionString that we have been using since Chapter 4.

5. Once the connection has been created, drag-and-drop a SqlCommand component onto
the design surface, and rename it to cmAttendeesCount. Next, set the Connection prop-
erty to the existing connection, cnFriends. Set the CommandText required to retrieve the
count of unique users for the requesting place in the TimeLapse table to the following
SQL query:

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS 347

SELECT COUNT(0) AS Attendees, @PlaceID
FROM

(SELECT UserID FROM TimeLapse
WHERE PlaceID = @PlaceID GROUP BY UserID) Users

If you set it directly in the Properties browser, enter the query without line breaks.
Accept the suggestion to regenerate command parameters. You need to place the
@PlaceID parameter in the outside query in order to get the appropriate command
parameter to be generated and added automatically.

6. Switch to the code-behind view to start developing your web methods. The code-
behind view should present you with a fairly standard looking class. We’ll look at the
differences between this and other classes shortly, but for now, you can just get on
with adding a web method of your own.

7. The first method you’ll create is called GetAttendees(). This will take a place ID and
return the count of unique users who either worked there or attended classes. To
create this method, enter the following code into the class:

<WebMethod()> _
Public Function GetAttendees(ByVal placeId As String) As Integer
cnFriends.Open()
Try
' Set the place to filter by
cmAttendeesCount.Parameters("@PlaceID").Value = placeId
Return CType(cmAttendeesCount.ExecuteScalar(), Integer)

Finally
cnFriends.Close()

End Try
End Function

■Tip When the web service was originally created, the IDE would have placed a short HelloWorld() web
method example in it for you to see how the functionality works. This is a sample web service that simply
returns the string “Hello World” to anyone who calls it. It is provided as a template for the creation of your
own web services and as a means for testing. We won’t be showing you how to get it running here, as
all you need to know is explained in the method’s comments, so you can delete it without causing any
concerns. If you leave it there, it can always be uncommented and run to help you diagnose any problems
you may encounter.

8. In order to make the services publicly available, you must allow Anonymous access
to them. To do this, add the following location element to the Web.config file, just as
you did back in Chapter 3 for the NewUser.aspx page. This time, however, you simply
specify the folder. Remember this element must be under the root <configuration>
element.

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS348

<location path="Services">
<system.web>
<authorization>
<allow users="*" />

</authorization>
</system.web>

</location>

How It Works

Creating a web method within a web service really is that simple, because VS .NET takes care
of all the low-level XML and HTTP plumbing required to make this work. It knows how to deal
with your class and method in a web service fashion because of the slight differences in their
definition. The first thing to note is the declaration of the class itself:

Public Class Partners
Inherits System.Web.Services.WebService

As you can see, this class inherits from the WebService base class, instead of the
System.Web.UI.Page class you’re used to. This means that it automatically takes on all of the
characteristics of a WebService, leaving you with little to do to implement the functionality
that you need.

The second thing to note is the attribute that you place at the top of your method
declaration:

<WebMethod()> _
Public Function GetAttendees(ByVal placeId As String) As Integer

This attribute informs the ASP.NET runtime to perform all of the actions necessary to expose
your methods as part of the web service. The WebMethodAttribute attribute effectively adds
the method to the public interface of your web service. If you wanted, you could also write
other methods in this class that are made simply Public and can be consumed from within
your application. Unless they are marked with this attribute, however, they would not form
part of the publicly visible web service.

Finally, you added a new <location> to make your services freely accessible.

Testing the Web Service
Now that you’ve implemented a web method, you’ll want to test it. Testing this method is similar
to testing a web application; it can be done using a web browser. In some ways, it is far simpler,
however, due to the fact that the functionality is contained within discrete methods that take
and return specific parameters, rather than the verbose, UI-driven nature of web pages.

In order to test any service methods that you create, you must do the following:

• Set the web service file (.asmx) as the start page.

• Build and run the project.

• Select the web method to test.

• Enter the parameters and execute the method.

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS 349

Try it Out: Test a Web Service You will now test your new GetAttendees() web method to check
that it works correctly.

1. Right-click the Partners.asmx file, and set this as the start page. This has the same
effect as in a web application: it informs the environment that when the solution is
built and run, it should navigate to this location by default.

2. Compile and run the solution by pressing Ctrl+F5. You should see the results shown in
Figure 9-3. Keep in mind that this page is intended only for testing purposes, not as a
public interface to the web service. Whenever you create a web service using VS .NET,
this is always available to you and to other users as a way to discover what the web
service offers and to test it. The main point of interest to us on the page is the list of
hyperlinked methods that are displayed near the top of the screen. This list takes you
to a definition of every method that was marked as a web method in your code. The
pages that are displayed when you select the hyperlinked method names provide the
means to test your web service.

Figure 9-3. Running the web service test page

3. Click the one entry in the list, GetAttendees. This will take you to a second page that is
again generated by .NET, as shown in Figure 9-4. This page allows you to test the indi-
vidual method using the HTTP-POST verb and provides other details, such as the SOAP
requests and responses that are used beneath the hood to make the necessary calls.
(You can ignore this information for now; we’ll discuss it shortly.)

4. Enter any valid PlaceID, such as 11CF70F8-E48E-4bdc-AE1A-5F2277015851, and then
click the Invoke button. This will create a new window in which the method is called.
The method should return the following XML, containing the count of unique users
that attended that place:

<?xml version="1.0" encoding="utf-8" ?>
<int xmlns="http://tempuri.org/FriendsReunion/Partners">2</int>

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS350

Figure 9-4. The page for testing the GetAttendees() web method

How It Works

If you look at the URL after clicking the Invoke button, you can see the actual URL of the web
method you called:

http://localhost/FriendsReunion/Services/Partners.asmx/GetAttendees

Notice that the URL is built by appending the method name after the URL to the .asmx file.
These web pages provide us, as developers, with a great means of viewing and testing

web services, but the textual descriptions, text boxes, and so on are not of the structured
nature used by other applications when interfacing with web services. If you select the Service
Description link from the Partners.asmx page (Figure 9-3), you are taken to a page with the
query string parameter of ?WSDL. This parameter can be added to any .asmx URL, and it pro-
vides the Web Service Description Language (WSDL) definition of the service.

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS 351

This WSDL definition is an XML document that specifies all of the methods and data types
that compose the web service. It is used by other systems to retrieve all of the information nec-
essary to call a service. If you view this document, you’ll see that it defines the parameters that
are expected when the GetAttendees() method is called and the response that this returns. It
then goes on to detail the way that the method can be called, which is, by default, only SOAP.
For testing and debugging purposes, the HTTP-POST verb is allowed only on the local machine
(localhost), but is not reflected on the WSDL, as it’s not accessible from the outside world.

You could also enable HTTP-GET and HTTP-POST without restrictions, simply by adding the
following entry in your Web.config file:

<system.web>
...etc...
<webServices>
<protocols>
<add name="HttpPost"/>
<add name="HttpGet"/>

</protocols>
</webServices>

Both HTTP-GET and HTTP-POST are disabled by default through the Machine.config file.
Enabling HTTP-POST may be a good idea if you have clients or programming languages that
don’t have built-in support for SOAP, such as JavaScript from inside a web page. In that case,
composing an HTTP request using the POST verb is far easier than writing SOAP (which can
be in a fairly complex XML format). HTTP-GET may be useful for services that don’t require
authentication and are intended to only retrieve information from the web service, as in this
example:

http://localhost/FriendsReunion/Services/Partners.asmx/GetAttendees?placeId=
11CF70F8-E48E-4bdc-AE1A-5F2277015851

We’ll look at SOAP in more detail later in this chapter.

Using Complex Data Types
The web method that you created in the previous section returns an integer. As we mentioned,
applications making use of the functionality that you expose determine this by examining the
WSDL definition of your services. While returning simple data such as strings and integers will
work fine this way, what happens when you want to return something more complicated,
such as an object containing all of the requests for contact for a person?

When retrieving this information from the database, and passing it around internally using
normal methods, you could use a DataSet. This same approach works with a web method, and
that’s how we’ll handle the other functionality we’re adding to the Friends Reunion database,
which is the retrieval of contact requests for a given user of the system.

To implement this functionality, you’ll need to create a new method within the service
that takes in a user name and password and returns a DataSet. The information returned will
include complete information about all the users who requested to contact the individual per-
forming the query, based on the user’s login data. In our simple implementation, entering the
wrong user name or password will simply cause no results to be returned, instead of a failure.

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS352

Try It Out: Return Complex Data Types Now, you will add another web method, called
GetContactRequests(), which will return complex data.

1. Open the Partners.asmx file in the Design view and drop a new SqlCommand component
on the design surface. Name it cmContacts and set its CommandText to the following
query, through the Query Builder (so that you can enter the comments and line breaks):

SELECT
/* Return fields we're interested in */
ContactUser.FirstName, ContactUser.LastName, ContactUser.Email,
ContactUser.Notes, ContactUser.IsApproved

FROM
[User] INNER JOIN
/* Join with the contact information to get

the one for the user matching the login and pwd */
(SELECT
[User].FirstName, [User].LastName, [User].Email,
Contact.Notes, Contact.IsApproved, Contact.DestinationID

FROM
/* Another join to retrieve the requester name */
Contact INNER JOIN [User] ON [User].UserID = Contact.RequestID)

AS ContactUser
/* Filter contact information for the current destination user */
ON [User].UserID = ContactUser.DestinationID

WHERE
/* This is the filter that restricts the inner contact results */
[User].Login = @Login AND [User].Password = @Password

2. Import the following namespace at the top of the web service code-behind Partners class:

Imports System.Data.SqlClient

3. Add the following new web method to the class:

<WebMethod()> _
Public Function GetContactRequests(ByVal login As String, _
ByVal password As String) As DataSet
cnFriends.Open()
Try
cmContacts.Parameters("@Login").Value = login
cmContacts.Parameters("@Password").Value = password

Dim contacts As New DataSet
Dim ad As New SqlDataAdapter(cmContacts)
ad.Fill(contacts)
Return contacts

Finally
cnFriends.Close()

End Try
End Function

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS 353

4. Finally, let’s use our own namespace for the web service messages:

<System.Web.Services.WebService(_
Namespace:="http://www.apress.com/services/friendsreunion")> _

Public Class Partners

5. Save and run the application. You’ll see that there are now two methods listed on the
page that is displayed, as shown in Figure 9-5, since you now have two web methods in
the code-behind page.

Figure 9-5. The web service now has two methods.

6. Click the GetContactRequests link to bring up the test page for this method. Enter
apress as the user name and password and click the Invoke button. This will generate
a new browser window, containing the XML that the .NET Framework generates from
the DataSet. The output should be similar to Figure 9-6. As you can see, it’s a rather
large XML document.

How It Works

Up front, we must say that passing a user name and password over an unencrypted URL
should not be done in production systems. In addition to using unencrypted HTTP, web serv-
ices can also use HTTPS. This could then be combined with methods of calling web services
other than an HTTP-GET, ensuring that parameters aren’t placed on the URL and that all of the
data is encrypted.

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS354

Figure 9-6. The XML for the DataSet

■Tip In the future, securing web services will also be available at the message level, instead of the
transport level, as in HTTPS. That means you will be able to encrypt and sign the communication
with your service without the need for SSL. This is the WS-Security specification, headed by OASIS
(http://www.oasis-open.org/) with the support of major industry players such as Microsoft,
IBM, and BEA.

The query to retrieve contact information is a bit complex. It’s actually made of two queries:
one selecting all requests for contact (including joining this information with the User table),
and another one selecting only the user that matches the login and password received, filtering
the previous result. The former query is nested in the latter. Let’s look at the nested query:

SELECT
[User].FirstName, [User].LastName, [User].Email,
Contact.Notes, Contact.IsApproved, Contact.DestinationID

FROM
Contact INNER JOIN [User] ON [User].UserID = Contact.RequestID

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS 355

It’s just like the queries you have been issuing so far. It simply selects the full contact
information for all users in the database.

Let’s analyze the outer query by replacing this one with its alias, ContactUser, to make it
easier to understand:

SELECT
ContactUser.FirstName, ContactUser.LastName, ContactUser.Email,
ContactUser.Notes, ContactUser.IsApproved

FROM
[User] INNER JOIN ContactUser
ON [User].UserID = ContactUser.DestinationID

WHERE
[User].Login = @Login AND [User].Password = @Password

This time, we filter the full contact information to that where the current user (the one
matching the login and password parameters) is the destination. This is an effective way of
decomposing complex queries to their constituent parts, and makes their comprehension
far easier.

As usual, the SqlCommand component is configured and initialized automatically with the
parameters you specified, so when you need to issue the query, you just set their values:

Public Function GetContactRequests(ByVal login As String, _
ByVal password As String) As DataSet
cnFriends.Open()
Try
cmContacts.Parameters("@Login").Value = login
cmContacts.Parameters("@Password").Value = password

Next, you simply initialize an adapter and fill the DataSet you are about to return:

Dim contacts As New DataSet
Dim ad As New SqlDataAdapter(cmContacts)
ad.Fill(contacts)
Return contacts

When you return a complex data type, such as a DataSet from a web method, it undergoes
a process known as XML serialization, whereby an object is converted to an XML string that
represents it. XML is a good technology for doing this, as it allows for arbitrarily large and
complex data structures, making it possible to store almost any type of data in a convenient
and portable format. DataSet objects have better support than most objects for converting to
this string-based representation, but almost all data types can be serialized automatically,
whether they are structs, arrays, or some other type.

Serialization is only half of the story, though. Once another application has retrieved the
data in this format, it can deserialize it back into an object. Deserialization is the reverse
process to serialization: it takes the XML string that was built during serialization and creates
an object of the correct type, populated with the data contained within the XML document
(and hence representing the original object).

Thankfully, rather than needing to implement the serialization and deserialization
process yourself in the consuming application, when you add a reference to a web service,

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS356

.NET creates a wrapper for you, allowing all of this processing to happen behind the scenes—
and you can just get on with writing your applications. You’ll see this deserialization in action
shortly.

Realize that, in allowing VS .NET to take care of all this for you, you can no longer return
this data to a non-.NET application without writing a lot of wrapper code yourself. But even
if it’s harder, non-.NET applications can still get the relevant information out of the data
returned, since it’s just plain XML in the end, with all the advantages we discussed in previous
chapters.

Web Service Consumption
As well as implementing web services in your applications, you may also need your applications
to use, or consume, another application’s web services. The process of consuming a web service
from .NET is exactly the same, regardless of the nature of the application: it can be a web appli-
cation, a Windows forms application, a command-line utility, or even a Windows service!

To use a web service from an application, you reference that web service. Adding a web
reference performs a similar function to adding a reference to a .NET assembly: it allows the
IDE to know the location of the external classes you’re using and methods available on them.

As a demonstration of how to consume a web services, we’ll create a test application that,
rather than displaying the XML that is produced when you test a method using an Internet
browser, uses the web services we’ve implemented in the Friends Reunion application as
though they were functionality local to the application.

Try it Out: Consume a Web Service For this example, you’ll need to create a new project for an
institution associated with the Friends Reunion community, and therefore with full permis-
sions to upload lists of users (as discussed in the previous chapter). The home page of this
institution, ACUDEI English Academy, will welcome users and show how many Friends
Reunion members have attended the school, and will allow users to enter their login and
password to retrieve their list of contacts.

1. Add a new Web Application project to the solution and call it Acudei. Once the IDE has
finished creating the application, it will present you with the usual blank form named
WebForm1.aspx. Let’s remove it.

2. Add a new Web Form, named Default.aspx, and set its pageLayout property to
FlowLayout. Add some text and a Label control that will hold results of the web
service execution, reflecting the following layout.

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS 357

3. To add a web reference, right-click the project name and select the Add Web Reference
option from the context menu. This will bring up the Add Web Reference dialog box,
which allows you to locate web services being hosted, either locally or at any publicly
visible URL. It also allows you to view details about them and test them (where sup-
ported) before they’re added to the project.

4. In the URL field at the top of the dialog box, enter the location of your web service:
http://localhost/FriendsReunion/Services/Partners.asmx. Then click the Go button
(the little green arrow next to the Address box) or press Enter. The IDE will retrieve the
URL specified and display details about the service in the two panes. The left-hand
pane will contain the same web page that you saw when you browsed to the web serv-
ice in your browser. The right-hand pane displays details of the actual web services
that are available at that URL. If there is an error retrieving web service information
from the specified URL, it will be displayed in this right-hand pane. Once the URL has
been located, and the page has been loaded, the dialog box should look like Figure 9-7.

Figure 9-7. Adding a web reference to a web service

5. The default web reference name used is the domain name you’re connecting to—in
this case, localhost. Give the reference a more memorable and meaningful name,
such as FriendsService. It’s worth noting that you can also test the web service just as

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS358

you did earlier, but directly from this window, before adding the reference. If you are
making use of a third-party web service, you should ensure that service is functioning
as expected before trying to consume it. To complete the addition of the web refer-
ence, click the Add Reference button. If you click Show All Files in the Solution
Explorer at this point, you’ll see the IDE has added several files to the Acudei project.

6. You will need to pass a PlaceID to the web service. Let’s make it configurable by adding
a key to the <appSettings> section in the Web.config file:

<configuration>
<appSettings>
<add key="PlaceID" value="11CF70F8-E48E-4bdc-AE1A-5F2277015851" />

</appSettings>

7. Next, import the following namespace on the code-behind page:

Imports System.Configuration

8. Now you can start adding code that makes use of the web methods, just as though they
were in a built-in class, such as a SqlCommand. The runtime will take care of calling the
remote service and handling the data marshaling. This code will be called when the
page loads, to fill the blank with the count of Friends Reunion users in the associate
institution. Therefore, add the following code fragment to Page_Load():

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
Dim friends = New Acudei.FriendsService.Partners
Dim count As Integer = friends.GetAttendees(_
ConfigurationSettings.AppSettings("PlaceID"))

txtCount.Text = count.ToString()
End Sub

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS 359

9. That completes the implementation of the simple consumer application, so you can
save, compile, and run it. In order to run this project, you’ll need to set it as the startup
project for the solution (by right-clicking on the project and selecting Set as Startup
Project, as in previous examples). Next, set the Default.aspx page as the start page. The
page should render the count of users for the place entered, as shown in Figure 9-8.

Figure 9-8. The consumer application

How It Works

When you add a web reference, VS .NET asks for the service WSDL formal description. You
looked at such a description earlier, by appending the ?WSDL parameter to the service URL, in
our case, http://localhost/FriendsReunion/Services/Partners.asmx?WSDL. With this descrip-
tion at hand, the IDE generates a class to represent this service, with a method for each web
method exposed by it, and places it in a namespace that matches the name you used for the
web reference. In the Solution Explorer, you can see this WSDL file is actually downloaded and
stored as part of the web reference.

The class generated from this file is located below the Reference.map file. You can dig into it
to discover how the remote web service invocation is done when you call the GetAttendees()
method.

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS360

The code in Page_Load() uses this class as any other regular class, initializing an instance
of it and calling the method. Notice how the call to this method looks identical to calls to any
other regular class method. There’s nothing in the code that indicates this is a web service call.
You also get a typed result, the integer you are expecting.

As mentioned earlier, the so-called proxy class and the .NET runtime deal with the nuts
and bolts of passing requests to the service, serializing parameters being passed in to the
method, deserializing return values, initiating the connection, and so on. By generating the
proxy class at design-time, you get strong typing and IntelliSense right away.

Try It Out: Retrieve Contact Requests Now that you’ve seen how our GetAttendees() method can
be called from within an application, let’s extend the consumer application to retrieve the
contact requests for users. To do this, you’ll need to call the GetContactRequests() method,
passing in the user login name and password, and add a DataGrid control to the form in order
to present the DataSet of results that are returned. Figure 9-9 shows the layout you’ll set up for
the Default page.

Figure 9-9. The Acudei project’s Default page layout

1. Add text, two TextBox controls, a Button control, and a DataGrid control to the
Default.aspx form of the Acudei test application, as shown in Figure 9-9.

2. Set the TextBox ID properties to txtLogin and txtPassword, the button’s to btnRefresh,
and the DataGrid’s to grdContacts. Set the button’s Text property to Refresh.

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS 361

3. Double-click the button to get to the Click event handler. Add the following code to it:

Private Sub btnRefresh_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnRefresh.Click
Dim friends = New Acudei.FriendsService.Partners
Dim ds As DataSet = friends.GetContactRequests(_
txtLogin.Text, txtPassword.Text)

grdContacts.DataSource = ds
grdContacts.DataBind()

End Sub

4. Start the application again, and then fill the text boxes with the usual apress login and
password. You’ll see a page like the one shown in Figure 9-10.

Figure 9-10. The web service consumer application

How It Works

Just as in the previous example, the proxy class and .NET infrastructure takes care of passing
the information to the remote web method and handing results back. In this case, you receive
a complex DataSet object back, which can be readily used to fill your DataGrid control. You
take advantage of data binding, as discussed in Chapter 5.

Having both the consumer application and the web service inside the Friends Reunion
project makes it extremely easy to follow the execution flow. If you place breakpoints in your
web methods’ code before starting the Acudei consumer site project, you can step into the code
easily. Note that we don’t handle errors that could happen, such as connectivity problems, serv-
ice malfunctioning, and so on. We will introduce some error handling that is particular to web
services in the “Error Handling in Web Services” section later in this chapter. General debug-
ging and exception-handling techniques are covered in Chapter 11.

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS362

An Introduction to SOAP
Although there’s no need for us to go deep into the gory details (as .NET takes care of it all for
us), it’s useful to know where SOAP comes in to all of this, as it plays a fundamental behind-the-
scenes role in web services. SOAP is a means of sending a message to an endpoint (URL), and it
offers an alternative to the HTTP-POST options that we’ve already discussed. It is used in .NET
as the default method for accessing web services. This is due to the richer functionality that it
offers, namely a more structured way of alerting the calling application to errors (which we’ll
cover shortly), support for return parameters (reference parameters), and other such features.

■Note SOAP originally stood for Simple Object Access Protocol, although we doubt anyone can call it
simple anymore.

SOAP is not just yet another Remote Procedure Call (RPC) mechanism. It certainly can be
used as such, but SOAP is more message-oriented, and it’s exclusively based on XML.

The SOAP specification consists of the following parts:

• The message format, required elements, and processing model

• An optional set of rules for encoding application data and method parameters for
performing RPC-style calls between web services

• SOAP message transmission through HTTP

The latter two belong to low-level support from libraries, and they are already handled for
you in .NET infrastructure. The first, the message format itself, defines an open structure that
allows for easy and structured extensibility, and is worth looking at further, as it’s at the core of
web services.

Understanding the SOAP Message Format
SOAP uses XML to send information between applications as messages. This usage of XML
supports sending the data in a well-structured format. This allows you to provide more robust
systems than would be possible if the only way of accessing web services was by passing
parameters on a URL—imagine trying to pass an entire dataset around using only a query
string!

When used for request/response message exchange, there will be two types of messages:

• SOAP request: This is sent to a SOAP-compliant application (such as IIS and ASP.NET)
for processing, usually over HTTP. This processing can be (and usually is) an invocation
of an application method exposed as a web service. In this case, the request includes
information such as the arguments required by the method.

• SOAP response: This is returned from a SOAP-compliant application and contains the
results of processing a SOAP request, if it completed successfully.

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS 363

In this usage scenario, we can draw a direct parallel with the standard HTTP request and
response. In the case of web services, each of the SOAP messages maps directly to the under-
lying HTTP messages.

If an error occurs during processing that is not handled, or the developer code throws an
exception, a special type of message, called a SOAP Fault, is sent in place of the SOAP response.
This message contains details of the exception that was thrown, and allows you to provide
information about errors in a standardized format that can be interpreted by a system easily,
as opposed to the error pages that are displayed to alert users to errors in web applications.

A SOAP message is transmitted within an envelope, just like sending a letter. This allows
extra information to be transmitted along with the message data itself. Figure 9-11 shows the
basic structure of a SOAP message, whether it’s a request or a response.

Figure 9-11. The basic structure of a SOAP message

As you can see in the diagram in Figure 9-11, a SOAP message has the following structure:

• The SOAP envelope contains the entire SOAP message.

• The SOAP header contains arbitrary and extensible information, such as details about
transactions, security, login information, the source of a request, and so on. These are
similar in functionality to HTTP headers, but far more extensible.

• The SOAP body contains either a SOAP Fault or the actual XML payload of the message,
which could be the bulk of the request message (the name of the method to call and the
parameters that are to be passed to it) or the response generated after the call.

• The optional SOAP Fault contains details of errors that occurred. This is available only
if an untrapped exception is raised, and it is available only as part of a SOAP response
message.

Other than when you’re testing your methods through a browser, or when you implement
a lot of the nuts and bolts work of creating web services yourself rather than relying on VS .NET,
you are not actually exposed to the underlying SOAP messages. If you’re developing an appli-
cation that must integrate with a platform other than .NET, then such messages become far
more important, as they may not be directly compatible with the output generated by the IDE.
In most cases, however, XML serialization in .NET, combined with the built-in proxy class gen-
eration, is sufficient.

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS364

Viewing a SOAP Request and Response
You can see an example of a SOAP request and response by browsing to the URL http://
localhost/FriendsReunion/Services/Partners.asmx?op=GetContactRequests.

Beneath the input boxes that allow you to enter the login and password information,
you can see a sample SOAP request and response for the method that you are examining
(GetContactRequests()). The first block of code details the request. This can be split into two
parts: the XML document (the data you’re interested in sending) and all of the information
that is required to send this document via HTTP. The headers merely ensure that the HTTP
request being sent is well-formed and complies with standards. Beneath this is the SOAP
message that we’re interested in:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<GetContactRequests

xmlns="http://www.apress.com/services/friendsreunion">
<login>string</login>
<password>string</password>

</GetContactRequests>
</soap:Body>

</soap:Envelope>

You can see that the structure of the XML follows the diagram in Figure 9-11. The root
node in the document is the soap:Envelope, which, in turn, contains a soap:Body. This body
then details the name of the method to be called, along with the parameters to pass to it. The
occurrences of string within the login and password tags are where you would insert the val-
ues for these parameters, such as apress.

The response shows the complex information contained in a dataset. Both the schema for
the data being returned and the actual information are included in the body:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope ...etc...>
<soap:Body>
<GetContactRequestsResponse

xmlns="http://www.apress.com/services/friendsreunion">
<GetContactRequestsResult>
<xsd:schema>schema</xsd:schema>xml</GetContactRequestsResult>

</GetContactRequestsResponse>
</soap:Body>

</soap:Envelope>

The schema is included as a W3C XML Schema, immediately preceding the actual data
(the xml word before the closing </GetContactRequestsResult>). Other non- .NET platforms
can therefore handle even this complex .NET object, as it’s represented by standard XSD and
XML data.

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS 365

Error Handling in Web Services
As with any piece of code, there is the potential for an error to occur during the processing of a
web service. This may be either through a mistake in the original implementation or because
an external error has occurred, such as losing a database connection on the service side. In
the .NET projects we’ve looked at so far, this is handled through the throwing of exceptions.
Such exceptions aren’t used only when an unexpected error occurs; they can also be thrown
within code whenever you want to abort processing and signify to the caller that a special
(usually undesired) state has been reached. This technique is also available to you when
you’re developing web services.

The main caveat here has to do with the details that are returned to you when you allow
VS .NET to create the proxies around services for you. Every exception that is thrown is
wrapped up within another SOAPException error, which doesn’t store all of the details of your
original .NET exceptions, making handling them a little more difficult. This does not prevent
you from handling errors in a manageable fashion, however, as you’ll see in the next example.

Looking at the GetAttendees() method in our web service, it should be clear that if an
invalid place ID is passed into the system, it will simply return zero as the count of attendees.
Rather than have the calling application determine that this value means that no match was
found (and which may be an incorrect assumption, anyway), you can throw an exception that
informs the application of the result if no match was found.

To add such a mechanism to the service, you will modify the query sent to the database
to include a check for the PlaceID before issuing the count of attendees. If the PlaceID is not
found in the Place table, it will return -1.

Try It Out: Handle Web Service Errors To handle web service errors, you’ll need to update both the
web service and the consumer application. The service needs to throw exceptions when an
error occurs, and the consumer needs to trap them.

1. Open the Partners.asmx code-behind file, locate the InitializeComponent method,
and change the line that sets the cmAttendeesCount.CommandText property to match the
following:

Private Sub InitializeComponent()
...etc...
'
'cmAttendeesCount
'
Me.cmAttendeesCount.CommandText = _
"IF EXISTS(SELECT PlaceID FROM Place WHERE PlaceID = @PlaceID)" & _
" SELECT COUNT(*) AS Attendees, @PlaceID " & _
" FROM (SELECT UserID" & _
" FROM TimeLapse" & _
" WHERE PlaceID = @PlaceID" & _
" GROUP BY UserID) Users" & _
"ELSE" & _
" SELECT -1"

Me.cmAttendeesCount.Connection = Me.cnFriends
...etc...

End Sub

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS366

You can’t set the property to this value through the Properties browser or the Query
Builder because the designer does not support IF statements (and many other valid
SQL statements). Therefore, it will fail to set it. Once you set it this way, however, it
will be properly reflected in both and preserved when you make changes to other
properties.

2. Import the following namespace at the top of the code-behind class:

Imports System.Web.Services.Protocols

3. Go to the GetAttendees() method and modify the code as follows:

<WebMethod()>
Public Function GetAttendees(ByVal placeId As String) As Integer
cnFriends.Open()
Try
' Set the place to filter by
cmAttendeesCount.Parameters("@PlaceID").Value = placeId
Dim count As Integer = CType(cmAttendeesCount.ExecuteScalar(), Integer)
If count = -1 Then
Throw New SoapException("Invalid Place identifier!", _
SoapException.ClientFaultCode, Context.Request.Url.AbsoluteUri)

End If
Return count

Finally
cnFriends.Close()

End Try
End Function

Now, whenever the user passes in a place ID that doesn’t exist, the application will
throw a SoapException, which inherits from the standard Exception class.

4. Now that you’ve altered this method so that it specifically throws exceptions, you must
update your consumer application to ensure that it doesn’t fall over when the excep-
tion is thrown. In other words, you need to make use of this exception, by catching
it whenever it is thrown. To do this, drop a new Label control at the bottom of the
Default.aspx page in the Acudei project and set the following properties for it:

• ID: lblError

• Visible: False

• EnableViewState: False

• ForeColor: Red

5. Locate the Page_Load() event handler in the code-behind code. Add the following
try…catch block:

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
Dim friends = New Acudei.FriendsService.Partners

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS 367

Try
Dim count As Integer = friends.GetAttendees(_
ConfigurationSettings.AppSettings("PlaceID"))

txtCount.Text = count.ToString()
Catch se As SoapException
lblError.Text = String.Format(_
"<h2>An error happened connecting to Friends Reunion service.</h2>" & _
"<h3>Service location: {0}</h3>" & _
"Error:
{1}", se.Actor, se.Message)

lblError.Visible = True
End Try

End Sub

6. Since you are catching a SoapException, you need to import the following namespace
at the top of the code in this file:

Imports System.Web.Services.Protocols

7. Modify the Web.config file in the test application, adding some characters at the end of
the PlaceID in <appSettings>, to make it an invalid GUID.

8. Start the project. You should now get the message stating the error occurred. However,
it doesn’t simply contain the text that you would expect: “Error: Invalid Place identi-
fier!” Rather, you’ll be presented with something like this:

Error:
System.Web.Services.Protocols.SoapException: Invalid Place identifier!
at FriendsReunion.Partners.GetAttendees(String placeId) in C:\Apress\
Code Download\Chapter09\FriendsReunion\Services\Partners.asmx.vb:line 91

This is due to the way SOAP faults are serialized and deserialized by .NET, and unfortu-
nately, there’s little you can do to resolve the issue.

9. You might not be able to stop the errors from being formatted in this manner when
they’re returned, but you can write a bit of code to retrieve solely the original message
using string manipulation, as long as you always return a single-line error message
from your web service. To do this, amend the catch block as follows:

Catch se As SoapException
lblError.Text = String.Format(_
"<h2>An error happened connecting to Friends Reunion service.</h2>" & _
"<h3>Service location: {0}</h3>" & _
"Error:
{1}", se.Actor, _
se.Message.Substring(45, se.Message.IndexOf(vbLf) - 45))

lblError.Visible = True
End Try

10. Now run the application again. You will be presented with a different, more user-
friendly message, as shown in Figure 9-12.

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS368

Figure 9-12. By using string-manipulation, you can present a user-friendly error message related
to a web service problem.

How It Works

Within your code, you can throw exceptions, just as in any other code. These could
technically be any exception supported by the CLR, such as an ArgumentException, an
ApplicationException, and so on. However, rather than use these, you can throw a special
type of exception: the SoapException. This provides a structure within which you can store
more appropriate and detailed information than with more generic exceptions. Such infor-
mation includes the URL at which the error occurred and details of what caused the error.
In this example, you used this information to show the error message.

You determined the information for the error message from two values:

• SoapException.ClientFaultCode specifies that the error was due to the values that were
passed in to the function.

• Context.Request.Url.AbsoluteUri returns the location at which the code is running.

When you passed these values to the constructor of the SoapException, you used one of
the six overloaded methods.

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS 369

■Note You can use SoapException to return more or less information than in this example. See the
product documentation for the SoapException class for details.

From this example, it should be clear that providing an error-handling mechanism in
your code not only allows for the simple detection of certain conditions, but also allows for
richer interaction with the users, informing them of mistakes, prompting them to retry, sug-
gesting they contact the administrator, and so on. In a real-world application, such error
handling should also be added to the GetContactRequests() method, in case invalid login
and password information were passed as a parameter. In this case, the error message would
be more targeted at the end user.

Here, we’ve introduced error handling in the context of web services. We’ll discuss error
handling in general in Chapter 11.

Web Service Efficiency
Performance is a consideration with any application, and web services are no exception. With
web services, you can apply caching to improve efficiency and optimize performance. Other
optimization options are available—from simple ones, like reducing the amount of data being
transferred, to more complex solutions, such as adding state to your web services.

Caching in Web Services
In many ways, caching in web services is very similar to caching with web pages, which we’ll
discuss in detail in Chapter 12. To implement caching, you specify a duration to determine
how long to cache a response. After the request has been processed for the first time (with a
given set of input parameters), this version will be cached until the specified duration has
expired. Adding caching to web services is done on a per-method basis. Each method can
have its own caching settings applied.

Although caching can greatly improve performance, you should always cache informa-
tion judiciously. Caching should be added only to methods that don’t need to return the most
current information. This makes them very useful for caching results of intensive processing,
such as weather reports, but not for more dynamic data, such as current stock market prices
for trading systems or account balance information.

The data being returned by one of the Friends Reunion web methods, GetContactRequests(),
is fairly static in nature. Although a new contact request may be made, it is more than likely
not imperative that the recipient of this request sees it immediately. So, this information is
suitable for caching, especially given this scenario applies for third-party consumers of the
web service.

Try It Out: Cache Information Now, you will add the caching functionality to the
GetContactRequests() web method.

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS370

1. Open the Code view of the Partners.asmx file in the FriendsService project. In this
file, locate the GetContactRequests() web method. The method’s definition is already
prefixed with the attribute [WebMethod]. To implement caching, just amend this attrib-
ute so that it reads as follows:

<WebMethod(CacheDuration:=600)>

This specifies, in seconds, how long the item should be cached. In this case, you’ve set
this to 600 seconds, or 10 minutes.

■Note When you enable the CacheDuration setting, the method response is managed by ASP.NET output
caching. We’ll discuss this in depth in Chapter 12.

2. You haven’t changed the signature of any of the methods in the service, so there is no
need to update the reference from within your consumer. You just need to recompile
the application to ensure that this change is applied. Then you’re ready to test the
application again to see that this caching is working. Press F5 (the compile and debug
shortcut) to do both.

3. Within the test application main page, enter the apress login and password, and then
click the Refresh button. This will show all the requests for contact that this user has
made so far.

4. Switch to the Friends Reunion web site, log in with a different user credentials, such as
login vga and password vga, and make a new request for contact with Daniel Cazzulino
(the one with the apress login and password), using the Search.aspx facility you cre-
ated in Chapter 6.

5. Return to the consumer application and click the Refresh button again. If less than
10 minutes have passed since the last time you clicked the Refresh button (more pre-
cisely, since the server-side method was executed, and therefore, its output entered the
cache), the test application’s grid will show the cached version of the data again, so you
won’t see the new request for contact you just added via the web site. However, the
speed boost with your GetContactRequests() method should be noticeable. After a
10-minute period, a fresh output will be generated, as the data in the cache will have
expired, so the grid will include the new request for contact.

Reducing the Amount of Data Involved
The tasks in servicing a request for a web method can be split into three parts:

• Requesting information

• Performing processing

• Returning results

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS 371

We’ve just covered how to lower the processing overhead using caching, but this still
leaves the time taken to request data and retrieve results. This part of the overall round-trip
time is governed by two factors: the amount of data and the speed at which it can be transmit-
ted. There is little that you can do to improve transmission speed without paying for faster
Internet connections, leaving you with the option of reducing the amount of data transferred.

When you’re making simple calls, such as to the GetAttendees() method, not much can
be done to decrease the amount of data, since there is very little data there to start with. How-
ever, in the case of retrieving a list of contact requests, you can apply optimizations, ranging
from better serialization of the DataSet itself to completely replacing it with more efficient and
resource-conservative representations.

You’ve seen the amount of data generated by a DataSet when used as the response
of a web service (as shown in Figure 9-6, earlier in this chapter). You can have another
look at it by navigating to the http://localhost/FriendsReunion/Services/
Partners.asmx?op=GetContactRequests URL and invoking the service with the apress user
name and password. You will notice that the generated output contains both the data and its
schema information, in the form of an XML Schema embedded in the response.

Sometimes, just as in our case for a few contact requests, the schema is actually bigger
than the data itself! While this schema may be useful to .NET consumers, as it helps to re-create
the DataSet structure on the client side, it’s mostly useless otherwise. The DataSet supports
another serialization format, called a diffgram of its internal data, but it’s equally unsuited for
easy portability to other programming languages. (Look for the index entry “DiffGrams” in the
product documentation for more information about the diffgram format.)

Given that datasets serialize in such a heavyweight format, there are several options avail-
able to us when trying to optimize the GetContactRequests() method. The first thing we’ll do
is simplify the returned data by delivering only the contact information, without schema and
with the following format:

<?xml version="1.0" encoding="utf-8"?>
<Contacts>
<Contact>
<FirstName>Gustavo</FirstName>
<LastName>Morande</LastName>
<Email>gus@morande.com</Email>
<Notes>Hey, stop working and let's eat an "asadito"!!!</Notes>
<IsApproved>true</IsApproved>

</Contact>
...etc...

</Contacts>

We’ll then update the consumer to make use of this amended data format. Once that’s
done, we’ll take a look at ways of returning even less data for situations where high perform-
ance is critical.

Try it Out: Return Less Data Now, you‘ll implement a different way to return XML to the con-
sumer application.

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS372

1. In the Partners.asmx.vb file, locate the GetContactRequests() method, and update it
to match the following code, causing an XML document, rather than a DataSet, to be
returned:

Public Function GetContactRequests(ByVal login As String, _
ByVal password As String) As XmlDocument
cnFriends.Open()
Try
cmContacts.Parameters("@Login").Value = login
cmContacts.Parameters("@Password").Value = password

Dim contacts As New DataSet("Contacts")
Dim ad As New SqlDataAdapter(cmContacts)
ad.Fill(contacts, "Contact")
Return New XmlDataDocument(contacts)

Finally
cnFriends.Close()

End Try
End Function

2. The XmlDataDocument and XmlDocument classes you’re using here come from the
System.Xml namespace, so let’s import the corresponding namespace:

Imports System.Xml

3. Because you’ve altered the signature of the web method, it no longer accepts or returns
the same number or type of parameters that it did previously. As the web reference
could technically be a link to functionality on the other side of the world that is
unavailable for long periods of time, .NET doesn’t automatically update the details of
these references; as far as the test application is concerned, you haven’t changed the
web service. Before synchronizing it with the latest version of the service, you must
first rebuild the project. Select Build ➤ Rebuild Solution to do this.

4. Switch to the Acudei project. Right-click the FriendsService entry under Web Refer-
ences in the Solution Explorer for the project, and then select the Update Web
Reference option.

5. Open the Default.aspx form and import the following namespace, so that you can use
the XmlNode and XmlNodeReader classes in the next step:

Imports System.Xml

6. With the references updated, you can tweak the code to make use of the amended
method. Within the btnRefresh_Click() method in the Default.aspx form, modify the
following code:

Private Sub btnRefresh_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnRefresh.Click
Dim friends = New Acudei.FriendsService.Partners

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS 373

' We now retrieve a bare XML representation
Dim contacts As XmlNode = friends.GetContactRequests(_
txtLogin.Text, txtPassword.Text)

Dim ds As New DataSet
' Read from the node
ds.ReadXml(New XmlNodeReader(contacts))

grdContacts.DataSource = ds
grdContacts.DataBind()

End Sub

This will create a new DataSet, and then read the information into it from the XML
that is now returned from your web service. Note that the proxy generated a method
returning an XmlNode instance, which is the base class for the XmlDocument. This is due
to the very nature of SOAP: the whole message is an XML document, so the contents
of the body can be only a node inside it, instead of a separate document. Once the
DataSet is populated, you data bind the DataGrid control with this source, just as
before.

7. If you like, you can start the project and test this functionality. What is more interest-
ing, though, is testing the GetContactRequests() method in a browser. To do this, type
http://localhost/FriendsReunion/Services/Partners.asmx?op=GetContactRequests
into the browser, and type in the apress login and password as usual. The window
showing the returned XML will look similar to Figure 9-13. If you compare this with
Figure 9-6, you’ll see that there is far less data present.

How It Works

Usually, retrieving information from the database into the web application isn’t an excessively
expensive operation, because the connection to the database server from the web server is
probably of high bandwidth. However, returning that data from the web server to the client
can be a major bottleneck that causes poor performance in applications, because it’s usually a
low-bandwidth connection, such as a dial-up connection or wide area network (WAN) access.
So, you must ensure that you send only the necessary information, and in the most compact
format possible.

We have already discussed how the DataSet serializes to a heavy XML representation. To
solve this problem, you can take this DataSet and serialize it in a more lightweight structure. In
this case, you simply contained data as a clean XML document, within the business logic of the
service. You can then return this simpler data instead, resulting in a far lower data overhead.

XmlDataDocument is an XmlDocument-derived class that presents a DataSet as an XmlDocument,
hiding all the non-XML relevant information, such as row IDs and type. It simply wraps the
DataSet, and you can directly return it from the web service:

Dim contacts As New DataSet("Contacts")
Dim ad As New SqlDataAdapter(cmContacts)
ad.Fill(contacts, "Contact")
Return New XmlDataDocument(contacts)

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS374

Figure 9-13. The XML after reducing the amount of data returned

This is, together with the base XmlDocument, the preferred way of returning XML to the
consumer application. By looking at the result of the web service execution through the
auto-generated test page with a browser, you can see that it’s the actual XML data that is
returned—no wrapping elements. A client can directly pass this data to the tool of choice,
knowing it can be processed as-is.

You should resist the temptation of simply returning a string by calling the
DataSet.GetXml() method:

Return contacts.GetXml()

Such “XML” is actually nothing more than a raw string to the ASP.NET Web Services infrastruc-
ture, and as such, it must be escaped in order to avoid invalid characters that could make for
a non-well-formed document. For example, if your web service returned the string 12 < 83,
the infrastructure must escape the < character and replace it with <. This is to maintain the
document well-formedness inside the SOAP body. Multiply that by the number of opening
and closing tags in your data document, and you’ll get an idea of how much harder it is. And
after all the escaping is done, you end up with something like the following as a response from
the service:

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS 375

<?xml version="1.0" encoding="utf-8"?>
<string xmlns="http://www.apress.com/services/friendsreunion"><Contacts>
<Contact>
<FirstName>Gustavo</FirstName>
<LastName>Morande</LastName>
<Email>gus@morande.com</Email>
<Notes>Hey, stop working and let's eat an "asadito"!!!</Notes>
<IsApproved>true</IsApproved>

</Contact>
...etc...

</Contacts></string>

What’s more, the consumer receiving this “XML” needs to unescape it in order to use it,
consuming processing resources again. You may be surprised that the browser test page actu-
ally shows the XML tags, but that’s just a rendering feature, because it knows how to handle
escaped characters.

Using Custom Data Types for Optimization
Suppose that we were working with custom classes, rather than datasets in our application.
How could we turn them into XML ready for consumption from our web service? For example,
we may have a data-access layer that returns instances of a Contact class, which holds the
information for each contact request issued for a user through properties such as FirstName,
LastName, and so on.

.NET supports serializing arbitrary objects to XML through the
System.Xml.Serialization.XmlSerializer class. This class takes care of converting any class
to an equivalent XML representation and deserializing it back for consumption. This process,
by default, converts each class, as well as each read/write public property and public field, to
an XML element. You can control this formatting through the use of XML serialization attributes.

■Note For more information about serialization attributes and the XML serialization process, see the
product documentation for the XmlSerializer class or online at http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/cpref/html/frlrfSystemXmlSerializationXml

SerializerClassTopic.asp. You can also read Dare Obasanjo’s (former Program Manager of the
XML WebData team, now part of the MSN team) excellent article about .NET XML serialization at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnexxml/html/

xml01202003.asp.

Let’s take a look at the powerful support for custom types serialization by adding such a
feature to our web service.

Try It Out: Return Custom Data Types To demonstrate the use of custom data types, you’ll create a
new method that returns the same data as the GetContactRequests() method, but with a dif-
ferent name. By implementing it this way, you can compare the output of the methods side by
side, as well as compare the consumer-side code and how it changes in this case.

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS376

1. Within the Partners.asmx code-behind file, in the SQL statement, you can see that you
are returning five fields: FirstName, LastName, Email, Notes, and IsApproved. To repre-
sent this, you can add a class called Contact alongside the Partners class in the
Partners.asmx.vb file, as follows:

Public Class Contact
Public FirstName As String
Public LastName As String
Public Email As String
Public Notes As String
Public IsApproved As Boolean

End Class

2. Next, add a new web method, called GetContactRequestsCustom(), to the Partners
class. This new method is very similar to the existing GetContactRequests() method,
except that you use the SqlDataReader to initialize the Contact objects:

<WebMethod(CacheDuration:=600)> _
Public Function GetContactRequestsCustom(ByVal login As String, _
ByVal password As String) As Contact()
cnFriends.Open()
Try
cmContacts.Parameters("@Login").Value = login
cmContacts.Parameters("@Password").Value = password

Dim reader As SqlDataReader = cmContacts.ExecuteReader()

Dim contacts As New ArrayList
While reader.Read()
Dim ct As New Contact
ct.FirstName = CStr(reader("FirstName"))
ct.LastName = CStr(reader("LastName"))
ct.Email = CStr(reader("Email"))
ct.Notes = CStr(reader("Notes"))
ct.IsApproved = CBool(reader("IsApproved"))
contacts.Add(ct)

End While

Return CType(contacts.ToArray(GetType(Contact)), Contact())
Finally
cnFriends.Close()

End Try

End Function

As you can see, you’ve simply changed the return type, and replaced the dataset
handling and filling code with a block of lines that move the data into an ArrayList
containing Contacts initialized with the SqlDataReader data. Finally, you simply con-
vert this list to an array and return that array instead of the XML.

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS 377

3. Rebuild the solution with these changes, browse to the Partners.asmx file with a
browser, and run the GetContactRequestsCustom() web method. You’ll be presented
with an XML document similar to the one shown in Figure 9-14.

Figure 9-14. The XML for the new web method

4. Having the root <ArrayOfContact> element is not ideal, however. You can take advan-
tage of the XML serialization attributes we mentioned before. Specifically, you can
modify the root element generated for the array returned, by adding the following line
directly above the method declaration:

<WebMethod(CacheDuration:=600)> _
Public Function GetContactRequestsCustom(ByVal login As String, _
ByVal password As String) As _
<System.Xml.Serialization.XmlRoot("Contacts")> Contact()

5. Recompile and execute the web method again, and you’ll see the new <Contacts> root
element.

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS378

6. Finally, you can make the output even more compact by turning all child elements of
<Contact> (its properties) into attributes. This is done through another serialization
attribute, this time applied to the Contact class members:

Public Class Contact
<System.Xml.Serialization.XmlAttribute()> _
Public FirstName As String
<System.Xml.Serialization.XmlAttribute()> _
Public LastName As String
<System.Xml.Serialization.XmlAttribute()> _
Public Email As String
<System.Xml.Serialization.XmlAttribute()> _
Public Notes As String
<System.Xml.Serialization.XmlAttribute()> _
Public IsApproved As Boolean

End Class

7. Recompile again and execute the web method. You will see a much more compact for-
mat this time, as shown in Figure 9-15.

Figure 9-15. The new method with child elements converted to attributes

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS 379

How It Works

As you learned earlier in the chapter, objects are converted into a string representation of
themselves via a process of serialization. Serialization into XML is a special kind of serializa-
tion where the XmlSerializer class enters the scene. By default, this process results in a
structure consisting of the following:

• One root tag to contain the results if it’s an array (ArrayOfContact)

• One tag (Contact) to denote the start and end of each Contact instance

• One tag for each property of the Contact (FirstName, LastName, and so on)

When you use this type of serialization, rather than the GetXml() method on a DataSet
object, you not only return XML containing the data, but also have a definition of the struc-
ture of this XML provided in the WSDL for the service, automatically. You can test this by
asking for the WSDL using the URL http://localhost/FriendsReunion/Services/
Partners.asmx?wsdl. This will be extremely useful in the next section, where we look at
the changes in the consumer .NET application.

The attributes in System.Xml.Serialization namespace control the XmlSerializer class
that is used for object serialization under the hood, and help to accommodate the format
exactly as you want, including element versus attributes, namespaces, and so on. What’s
more, you can apply these attributes not only to class members, but also to the return value
of the service, as you did in the previous exercise:

Public Function GetContactRequestsCustom(ByVal login As String, _
ByVal password As String) As _
<System.Xml.Serialization.XmlRoot("Contacts")> Contact()

In this case, you modified the default root element name for the returned data.
Switching to custom classes makes for profound differences in client code, too. The

advantage of strong typing on the server is also available to the client if it’s a .NET application
developed with VS .NET. Let’s see how this is possible by modifying the Acudei consumer
application to use the new web method.

Try It Out: Consume Custom Data Types You will abandon the loosely typed DataSet in the client
code and see how to take advantage of the custom types returned by the server, by modifying
the code that retrieves contacts and binds them to the DataGrid component.

1. Recompile the FriendsReunion project to get the most up-to-date version. Right-click
the FriendsServiceWeb Reference in the Acudei project and select Update Web
Reference.

2. Open the Default.aspx code-behind file from the Acudei project. Modify the code as
follows:

Private Sub btnRefresh_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnRefresh.Click
Dim friends = New Acudei.FriendsService.Partners

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS380

Dim contacts As FriendsService.Contact() = _
friends.GetContactRequestsCustom(_
txtLogin.Text, txtPassword.Text)

grdContacts.DataSource = contacts
grdContacts.DataBind()

End Sub

Note that you’re simply using the data binding facility, but you could actually iterate
and work with the typed collection of contacts and query for their properties.

3. In order for data binding to work, the custom type must have public properties. By
default, however, these classes are generated with public fields in this specific case,
just as in the server-side version. You can confirm this by looking at the Reference.vb
class under the FriendsService web reference.

The relevant piece of code looks like the following:

'<remarks/>
<System.Xml.Serialization.XmlTypeAttribute(_
[Namespace]:="http://www.apress.com/services/friendsreunion")> _

Public Class Contact

'<remarks/>
<System.Xml.Serialization.XmlAttributeAttribute()> _
Public FirstName As String

'<remarks/>
<System.Xml.Serialization.XmlAttributeAttribute()> _
Public LastName As String

...etc...
End Class

4. In order to convert all public fields into their property equivalents, you can simply
perform a search and replace on this file. Open the Replace dialog box and specify
the following settings, as shown in Figure 9-16 (type all values in a single line):

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS 381

• Find what: Public {[^]+} As {[^]+}

• Replace with:
Public Property \1() As \2
\n\t\t\tGet
\n\t\t\t\tReturn \1field
\n\t\t\tEnd Get
\n\t\t\tSet(ByVal Value As \2)
\n\t\t\t\t\1field = Value
\n\t\t\tEnd Set
\n\t\tEnd Property
\n\t\tDim \1field As \2

• Use: Regular expressions

Figure 9-16. The Replace dialog box settings for converting public fields into their prop-
erty equivalents

5. Click Replace All, and that will do the trick, converting the previous class to the
following:

Public Class Contact

'<remarks/>
<System.Xml.Serialization.XmlAttributeAttribute()> _
Public Property FirstName() As String
Get
Return FirstNamefield

End Get
Set(ByVal Value As String)
FirstNamefield = Value

End Set
End Property
Dim FirstNamefield As String

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS382

'<remarks/>
<System.Xml.Serialization.XmlAttributeAttribute()> _
Public Property LastName() As String
Get
Return LastNamefield

End Get
Set(ByVal Value As String)
LastNamefield = Value

End Set
End Property
Dim LastNamefield As String

...etc...
End Class

6. Run the application, and you should see the same rendering as you saw with the
DataSet examples in the preceding sections.

How It Works

The consumer application, if developed with VS .NET, benefits from the switch to custom
classes because it gains IntelliSense and strong typing for each item value. A DataSet regener-
ated without schema information, on the other hand, will necessarily treat all values as
strings. With custom types, you avoid polluting the message response with schema informa-
tion, but you don’t lose the advantages of strong typing. What’s more, you gain in validation,
as the information being deserialized must forcibly match the data type of its destination
class and members. Having similar functionality with datasets either requires you to send the
schema with the data or reparse the service output with an XmlValidatingReader to ensure
conformance with a locally cached schema. In the former case, you can’t be certain of pre-
venting unexpected application behavior anyway, as the embedded schema could have been
tampered with, too.

Leveraging data binding is straightforward, and the code looks much the same as with the
dataset: get the results, set it as the DataSource, and call DataBind():

Dim contacts As FriendsService.Contact() = _
friends.GetContactRequestsCustom(_
txtLogin.Text, txtPassword.Text)

grdContacts.DataSource = contacts

The only issue you needed to deal with was the requirement that the custom class have
public properties instead of fields. Let’s go through the find and replace expressions.

■Note For more information, refer to the documentation of the regular expressions support available for
VS .NET search and replace operations (this differs slightly from in the .NET Framework).

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS 383

The find expression looks like this:

Public {[^]+} As {[^]+}

This means to find the string Public, followed by a space and one or more characters
except a space, specified by [^]+. The curly braces around the expression mean that you want
the engine to capture this value, so that you can use it in the Replace dialog box by referring to
its position. This would be capture \1, indicating the type of the field. Immediately after the
field name capture, we match the As keyword, and then match again any character except a
space, which signals the end of a field declaration in this case. You also use curly braces here,
and this will become capture \2. For a field like Public FirstName As String, the find captures
\1 = FirstName, \2 = String. You use these captures to build the replace expression.

The replace expression starts with the property declaration:

Public Property \1() As \2

Here, you just redeclare the same line that has been matched, but as a property: the string
Public, followed by the member name, followed by the type.

Next, you add new lines (\n) and tabs (\t) for pretty formatting:

\n\t\t\t

We’ll omit these characters in the analysis that follows for clarity, and replace them with a
couple whitespaces.

Next comes the property Get accessor declaration, which returns the first capture
(FirstName) with a field suffix, which will be the format of the private field backing the
new property:

Get Return \1field End Get

You then define the property Set accessor, which assigns the value of the same variable to
the incoming value:

Set(ByVal Value As \2) \1field = Value End Set

Finally, you add the closing End Property statement. Then declare the private variable,
which is the Dim followed by the first capture, which is the member name, suffixed with the
field word; followed by the second capture, which is the type:

Dim \1field As \2

So, for the example FirstName field, you get:

Public Property FirstName() As String
Get
Return FirstNamefield

End Get
Set(ByVal Value As String)
FirstNamefield = Value

End Set
End Property
Dim FirstNamefield As String

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS384

This is yet another example of where regular expressions come to the rescue, and they’re
not for validation in this case.

Adding State to Web Services
If you take a look at the web methods you have developed, you can see that they are all state-
less, just like the protocol supporting them, HTTP. That is to say that the application doesn’t
remember the previous calls that have come in to it or store any information based on them.

For example, in our Friends Reunion application, by default, you couldn’t call one method
that specified what place you are interested in, and then make subsequent calls related to that
place, as you would be able to do with many other objects, such as a SqlConnection.

The following is an example of how state could be useful in our Friends Reunion
application:

Dim place As New FriendsService.Place()
place.Name = "ACUDEI English Academy"
Response.Write(place.GetAddress())
place.UpdateNotes("There are no notes for this place")

Here, we’re assuming the Place.Name property will be “remembered” by the remote web
service as the value we used in a previous interaction, such as GetAddress(). This is the same
issue that web developers came up against with traditional web application development, and
one of its possible solutions is also the same: the use of the Session object. This is the same
Session that is used for web sites, and works in the same way: by storing a cookie on the call-
ing machine to identify it to .NET. Therefore, it must be used with great care, as not all service
consumers may support this feature. Cookieless sessions, described in Chapter 6, are not sup-
ported by web services.

Adding such support for stateful web services is largely handled for you by the .NET
Framework. From the point of view of the creation of a web service, all you need to do is
update the attributes of the web method in a similar way to setting the CacheDuration:

<WebMethod(EnabledSession:="true")>

The way to consume this web service is slightly more interesting. Since you’re writing an
application to use web services, rather than an Internet browser, the cookie that is used to
track your requests is stored only as long as you have the same instance of an object. As an
example of this, once place is set to Nothing, or goes out of scope in the block of code shown
earlier in this section, the cookie is lost, and the session is ended. This can be seen as the web
service equivalent of closing a browser window.

Due to this limitation, and because of the added overhead for using session information
and cookies, you should be careful about adding state with web services. It’s also worth
considering that stateful services may not be supported by other platforms, and that a
service-oriented approach is mostly stateless, by definition.

As there is no real use for state in our web services, and the subject of session state was
covered thoroughly in Chapter 6, we won’t delve into an example here. It really is as simple as
updating the attribute, if both ends are .NET applications!

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS 385

Third-Party Web Services
It is very gratifying to create your own web services and publish them so that they can be used
by other applications you develop and by other people you tell about them. But how can you
share your web service functionality with all of the other developers who may be interested?
And how do you find out about the web services offered by others—services that may improve
or speed up the development of your own applications?

The solution to this is quite elegant: a web service to let developers know about other web
services. This is known as UDDI (for Universal Description, Discovery, and Integration). Using
these directories, you can look up the functionality that other developers have made available
to the public, and inform others of your own services easily. These listings are maintained not
only by Microsoft, but also by several other major companies including IBM. The simplest way
to access these listings is by using Microsoft’s own UDDI directory, though. You can browse
http://uddi.microsoft.com/ and search for published services and maybe even publish your
own. The UDDI is one of the main reasons why web services are succeeding where previous
technologies have failed!

Other than the services listed at the UDDI location, many of the more popular (and use-
ful) web sites on the Internet are beginning to make their functionality available via web
services. The following are some of the most interesting ones to try out with the Friends
Reunion application:

• Google’s search service: http://www.google.com/apis

• Microsoft’s services, such as MapPoint.NET: http://msdn.microsoft.com/
webservices/building/livewebservices/

• Amazon: http://www.amazon.com/gp/aws/landing.html

You can use these services in your applications in an identical manner to those you create
yourself: by adding a web reference in the same way you did for your test consumer web
application. The only differences with commercial services are the requirements for informa-
tion such as login information to be passed in to method calls to allow usage statistics, billing
data, and so on to be maintained by the provider. Using these services, you could, for exam-
ple, click a personal details link and see all matches for the person returned from a search
engine, display a map of a place next to that person’s address, or show that person’s wish list
in Amazon.

■Tip You can find a good overview of Microsoft Web Services and how they can be used to enhance your
applications at http://msdn.microsoft.com/msdnmag/issues/03/12/XMLFiles/default.aspx. You
can also read the book Google, Amazon, and Beyond: Creating and Consuming Web Services, by Tom Myers
and Alexander Nakhimovsky (Apress, 2003; ISBN: 1-59059-131-3).

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS386

Summary
In this chapter, we provided an introduction to web services, showing how they’re not only an
open standard in themselves, but are built up from other open standards such as HTTP and
XML. You’ve seen that by making use of web services, you have a method for allowing dis-
parate applications to interact with one another very simply, where it would have taken a
great deal of painstaking integration work in the past.

These features and ease of use were put into action in the development of web service
functionality for our Friends Reunion application. By creating a test application, we showed
how this functionality can be used (consumed) as simply as any other object in .NET, once a
reference has been added within the project.

After we created and used our own web services, we took a look at one of the key underly-
ing technologies of web services, SOAP, which allows information to be passed around in a
structured XML format. We then went on to look at exception handling, and saw how this tied
in to SOAP with the SoapException object.

We then discussed the performance of web services. You saw how you can improve per-
formance by retrieving less data by using built-in mechanisms and by creating your own
mechanisms, as well as by taking advantage of and controlling XML serialization support
in .NET.

Finally, we looked at how you can publish your web services so that others can use them,
and how you can find third-party services to use in your own applications, including a few
examples of currently available services that can be used to add further functionality to the
Friends Reunion application.

CHAPTER 9 ■ WEB SERVICES IN WEB APPLICATIONS 387

ASP.NET Authentication,
Authorization, and Security

The role of security in an application is related to the need to restrict the ability of a user to
access certain resources or to perform certain actions. For example, a web application may
offer administrative tools that should be accessible only to authorized users, or it may have
information that’s restricted to registered users. (In fact, you’ve already seen this kind of
restriction in our Friends Reunion application.) It’s also possible to apply different security-
related settings at the web-server level.

In this chapter, we’ll focus on ASP.NET and how to take advantage of the security features
it offers. ASP.NET works closely with IIS to provide the infrastructure available, so we’ll look at
their interaction, too.

This chapter will cover the following topics:

• Authentication and authorization—what are they and how they interact with each
other

• The ASP.NET security infrastructure

• Interaction between ASP.NET, IIS, and the operating system

• ASP.NET security settings

• Authentication options and how to use them

You’ve already seen some of these concepts in action, but we haven’t said much about
how they actually work. We will take a closer look at the mechanics during this chapter, and
you will gain a much better understanding of what is going on behind the scenes.

Security Overview
Security is a long-standing concern that pervades all kinds of software:

• Operating systems (think of the Windows NT/2000/XP login process)

• Web servers (think of the IIS management console’s Application Settings and Directory
Security settings)

389

C H A P T E R 1 0

■ ■ ■

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY390

• Database servers (remember the login process to add a connection to MSDE in
Chapter 4)

• Desktop applications (you should know several examples)

• Web sites (such as e-commerce sites and sites like Hotmail.com)

In each of these cases, the main purpose is to prohibit unauthorized users from accessing
sensitive information or performing certain tasks and actions. For example, you may want to
prevent a user from posting comments on a site unless that user is logged in; or you may want
to prohibit a developer from deleting records in a table or creating a new database in a server,
unless that user is properly authorized.

With Internet connectivity available almost everywhere, this becomes increasingly
important, because the information in your application has the potential to be exposed to
the entire world. If an application isn’t secure (that is, if unauthorized access is allowed),
you run the risk that users will be unwilling to trust it to keep any critical information.

Security Architecture
Whether you configure it carefully or not, your ASP.NET web applications will always have
some kind of security in place. This is a consequence of the security architecture itself, which
can be divided into three layers:

• The operating system: Unless you are using DOS or Windows 9x, there will always be
some built-in security. Windows NT, 2000, and XP use domains to keep users’ informa-
tion and to ensure that they have permission to access resources such as files and
folders, printers, network shares, and so on. Users must always log in before using the
system, and every request made by a user is checked for the necessary permission
before it is allowed.

• The web server: A web server runs in the operating system, and as such, also uses the
security infrastructure built into it. Even when Anonymous access is enabled for an
application, it will actually be bound to the account specified for the anonymous user;
by default, the IUSR_MACHINENAME account.

• The web application: When an ASP.NET application is run on IIS (there are alternatives,
as there’s a public ASP.NET hosting API), the security available in the previous two levels
is always in effect, whether or not you explicitly decide to use it. At this level, you have
some additional configuration options and features that ASP.NET offers over plain IIS
settings, as you’ll learn in this chapter.

Essential Terminology
Because they crop up so frequently in discussions about security, we need to clearly define
two key terms: authentication and authorization. We’ll also explain credential stores, security
tokens, role-based security, principal, and identity. These refer to essential security concepts
that you’ll learn how to apply in this chapter.

Authentication and Authorization
In order for users to get access to a resource with restricted access, they must first be identified
and authenticated. This means that they must provide some sort of identifier (such as a login
name) and credentials (such as a password). Here, the login name allows them to say who
they are, and the password allows them to prove that they are who they say they are. The way
these credentials are validated depends on the authentication scheme you choose. ASP.NET
offers several, and we’ll discuss them in this chapter.

Once users have been identified and their identification has been authenticated, another
step known as authorization takes place. Here, the process consists of checking whether authen-
ticated users have permission to access the resource they requested. For example, an ordinary
user may not be allowed to access certain administrative features of a web application.

As a side effect of authentication, an application may also provide customized content
that’s tailored to the current user accessing the resource. In fact, some applications will
use security concepts with the sole aim of offering users an improved experience through
personalization— supplying content filtered according to their needs.

Credential Stores and Security Tokens
As we’ve said, authentication is the process of positive identification of a user based on the
credentials they supply. In order to perform this process, the credentials supplied by the user
are compared to those existing in a credential store. Once again, the nature of the credential
store depends on the type of authentication. For example, Windows authentication compares
the credentials against a Windows domain. Passport sites such as Hotmail, MSN, McAfee, and
others use the Microsoft-owned Passport credential store, which is in charge of the authenti-
cation. The credential store could also be a database, an XML file, or any other media that
developers decide to use for this purpose. Later in this chapter, you’ll learn which types of
authentication are available for your ASP.NET applications.

In order to allow a security-aware application to detect that the current user has already
been authenticated, a security token is attached to that user. The security token is used to keep
information about the user; again, its format and manner of use depend on the application. In
a Windows environment, for example, this token is directly associated with the user while the
user’s session remains open. It is later used as a sort of key when the user performs an action
such as opening a folder or printing a document; security settings on any of these objects may
bar that user from accessing the resource. In a web environment, things are somewhat differ-
ent, because of the disconnected and stateless nature of the HTTP protocol. Later in this
chapter, we’ll discuss how ASP.NET solves this problem.

Once the user has been authenticated and the user’s security token is in place, authoriza-
tion happens. Once more, the association between a resource and the list of users allowed to
access it depends on the specific application type or environment. For example, restrictions
on access to files and folders in Windows are kept in access control lists (ACLs). These ACLs
are set through the Security tab of the Properties window corresponding to the file or folder.
Figure 10-1 shows an example of the security settings of a folder called MyArchive.

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY 391

Figure 10-1. Security settings on a folder in Windows

As another example, you may have used the Component Services MMC snap-in to assign
permissions to COM+ applications. Like file and folder ACLs (Figure 10-1), this approach also
uses the credentials in the Windows domain credential store, but assigns access permissions
to components based on them. Figure 10-2 shows an example of a component that can be
accessed only by managers.

For ASP.NET applications, you have other options for assigning permissions to resources,
as described in this chapter.

In Figure 10-1, you can see that Windows allows you to assign permissions to an individual
user or to a Windows group. Figure 10-2 shows a similar way to assign permissions: through
roles, such as Employees and Managers. This leads us to the next key concept: role-based
security.

Role-Based Security
You can easily imagine the administrative nightmare it would be to assign permissions to
resources to one user at a time, especially if you have a large number of users. Furthermore,
each new user created would need to be manually added to all of the resources that the user
is supposed to be able to access. To avoid this, a higher-level construct is available, in which
users are assigned to groups or roles according to application requirements. For example,
a project administration and tracking system may define groups such as Administrators,
Developers, Testers, and Users.

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY392

Figure 10-2. Security settings on a component in COM+

This generalization allows you to apply permissions according to roles, as well as (or even
instead of) according to individual users. New users can then be included in certain roles. The
most obvious advantage to this is that once a particular permission has been assigned to a
role, new users with that role will automatically gain that permission. For example, if there is
a resource that allows developers to upload the code they have developed, and which is obvi-
ously restricted to users who are included in the Developers’ role, a new programmer hired by
the company will be able to access it automatically, provided she is included in the Developers
role when the system administrator creates her account.

A user can be included in more than one role simultaneously. For example, a user may
be added to the Developers and Testers roles, if that user performs tasks related to both roles
simultaneously. (Although some would say, with good reason, that it’s not a good idea to be
the only tester of your own code!)

Principal and Identity
In order for an application to use role-based security, it needs a way to access the information.
For example, it must be able to check that the current user is included in a certain role, and to
act accordingly. The .NET Framework supports and exposes this scheme through the concepts
of principal and identity.

A principal is an object that contains the roles associated with a user. It also contains an
identity object that holds information about that user. Together, they map onto the access con-
trols provided by the Windows and COM+ security we discussed earlier. In fact, though you
may not have noticed it at the time, you have already used these objects in the Friends Reunion

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY 393

application to pass around the current user’s ID and to check if that user is authenticated. For
example, we used the following code in Chapter 3 for selective rendering of navigation links:

If Context.User.Identity.IsAuthenticated Then
...

And we used the following to display the current user name in the SubHeader control in the
same chapter:

lbl.Text = Context.User.Identity.Name

Context.User contains the Principal object associated with the current user for ASP.NET
applications. Context is a property of the base Control class (from which Page and all server
controls derive), and as such is available to all of the code in your code-behind page. It’s actu-
ally a shortcut to the Shared HttpContext.Current property. We discussed this object with
regard to state management in Chapter 6.

If you look at the type of this property (place the cursor above User, and IntelliSense will
do the rest), you’ll find that it’s actually an interface, IPrincipal. Likewise, the Identity prop-
erty is of type IIdentity. This abstraction allows you to use the methods and properties defined
in those interfaces, irrespective of the concrete types of principal and identity, which depend
on the type of authentication used, as you’ll see shortly. These two interfaces belong to the
System.Security.Principal namespace, and they provide the most common properties and
methods you may need when working with role-based security, as illustrated in Figure 10-3.

Figure 10-3. Role-based security properties and methods

The Page object provides access to the Principal object through a User property, too,
which actually points to the same value in Context.User.

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY394

The ASP.NET Security Infrastructure
In Chapter 1, you saw that when a request for an ASP.NET resource (such as an .aspx page) is
received by IIS, it is handed to the ASP.NET worker process (an ISAPI extension), which passes
execution to the ASP.NET engine (.NET-managed code) to continue processing the request.
In order to understand how the security context is initialized, we need to take a closer look at
what happens beyond that point, as illustrated in Figure 10-4.

Figure 10-4. ASP.NET processing

When the ASP.NET engine (implemented by a class called HttpRuntime) receives the request
from IIS, it hands it to an instance of the application corresponding to the page requested. As
you saw in Chapter 6, the HttpApplication object is defined in the Global.asax code-behind file
of your web application, hence the line in Figure 10-4 showing that relationship:

Public class Global
Inherits System.Web.HttpApplication
...

The ASP.NET engine, after initializing the HttpApplication object, initializes any
configured module for it. The HttpApplication raises a number of events at different stages
of processing, such as AuthenticateRequest, BeginRequest, and EndRequest, which any
HttpModule that’s configured in the application can listen to. These events can also be handled
in the Global.asax.vb code-behind file itself. You can see empty skeletons for those event
handlers in the code-behind file:

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY 395

Public Class Global
Inherits System.Web.HttpApplication

Sub Application_BeginRequest(ByVal sender As Object, _
ByVal e As EventArgs)
' Fires at the beginning of each request

End Sub

Sub Application_AuthenticateRequest(ByVal sender As Object, _
ByVal e As EventArgs)
' Fires upon attempting to authenticate the user

End Sub
...

End Class

The key event for security initialization is AuthenticateRequest, which is fired whenever a
client requests a resource for which some kind of authorization is set. We’ll talk about how you
can configure this for your application at the end of this section.

■Note If you want to know about other events available for the HttpApplication class, check the MSDN
documentation.

Security-related modules subscribe to this event, and they initialize the security
context before the request is handled by the particular page the user requested. Several
modules are configured by default for all your web applications, and you can find them
in the %WinDir%\Microsoft.NET\Framework\v1.1.4322\CONFIG\Machine.config file, in the
<httpModules> section (as you saw back in Chapter 6). Here are the ones we’re interested
in right now:

<httpModules>
...
<add name="WindowsAuthentication"

type="System.Web.Security.WindowsAuthenticationModule"/>
<add name="FormsAuthentication"

type="System.Web.Security.FormsAuthenticationModule"/>
<add name="PassportAuthentication"

type="System.Web.Security.PassportAuthenticationModule"/>
...

</httpModules>

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY396

Depending on the authentication scheme you choose for your application, the appropri-
ate module loads and then sets the current Principal and Identity objects:

Windows authentication: If you choose Windows authentication, the module will use the
information passed by IIS (which must be configured to use the same type of authentica-
tion) to create a WindowsIdentity object with the user’s Windows account name, such as
MYCOMPANY\Daniel. It will then use this object, together with the list of Windows groups to
which the user belongs, to initialize a WindowsPrincipal object. The new Principal object
is then set to the Context.User property.

Passport authentication: If you choose Passport authentication, the user will be redi-
rected to the Microsoft Passport login page. When the user is redirected back to your
application from this page, the module will use the information passed back to create a
PassportIdentity object. As roles can’t be configured in Passport (because it is intended
to only authenticate users), a GenericPrincipal object must be initialized with the newly
created identity. Finally, the object must be set to the Context.User property. All this
needs to be done manually for Passport, as the PassportIdentity object itself contains
the methods to perform the checks.

Forms authentication: If you choose Forms authentication, the module will rely on
a cookie-based mechanism. (We described how cookies work in Chapter 6.) Forms
authentication settings include a loginUrl setting that points to a web form page to be
used for authentication purposes. The Forms authentication module will check for the
presence of an authentication cookie (also called an authentication ticket) in the current
request. If it finds one, it will use the information in it to create a FormsIdentity object.
This module doesn’t support roles either, so this identity object is used to create a
GenericPrincipal, which is set to the Context.User property. If the cookie is not present,
the user is redirected to the login page. A utility method that we’ve been using already,
FormsAuthentication.RedirectFromLoginPage(), allows the module to create the authen-
tication cookie and save it to the client browser’s cookie collection. Once this process
finishes, the user is redirected to the page originally requested, this time with the cookie
in place.

With all of this new information, we can complete the picture of ASP.NET processing, as
shown in Figure 10-5.

If this infrastructure is not enough for your particular security requirements, you can
extend it by creating a handler for the AuthenticateRequest event in the Global.asax file. The
.NET Framework provides another generic object that you can employ for custom security,
GenericIdentity, which you can use as-is or extend to suit your needs. In the “Implementing
Custom Authentication” section later in this chapter, you’ll see how to do this and discover
why it might be necessary.

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY 397

Figure 10-5. ASP.NET security initialization

Application Security Configuration
A repeated refrain in this chapter is that the security behavior will largely depend on applica-
tion configuration. As you already know, all web application-wide settings are configured in
a file called Web.config under the application root folder. You have already used some of the
security settings in developing the Friends Reunion application, but let’s now take a look at
all the options available.

In the configuration file, security-related settings are divided into three elements:
<authentication>, <authorization>, and <location>. In the following sections, we’ll examine
the purpose of each of these three elements.

Authentication Configuration
The <authentication> element defines the type of authentication that will be enforced, and it
can contain child elements like <forms> and <passport> for those two types of authentication
options. The element’s syntax is as follows:

<authentication mode="Windows|Forms|Passport|None">
<forms name="name"

loginUrl="url"
protection="All|None|Encryption|Validation"

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY398

timeout="30" path="/" >
<credentials passwordFormat="Clear|SHA1|MD5">
<user name="username" password="password" />

</credentials>
</forms>
<passport redirectUrl="internal"/>

</authentication>

When the authentication mode is set to Windows, all other tags will be ignored. For Forms
authentication, all of the <forms> element’s attributes have preconfigured default values,
which are also found in the Machine.config file shown in the previous section:

<forms name=".ASPXAUTH"
loginUrl="login.aspx"
protection="All"
timeout="30" path="/">

So, if you configure Forms authentication only with the following syntax, you will need to
provide a login.aspx page under the application root:

<authentication mode="Forms" />

■Note The other <authentication> element attributes, valid child nodes, and their meanings are
explained in depth in the MSDN help.

So far, you’ve used these configuration settings in Web.config:

<authentication mode="Forms">
<forms loginUrl="Secure/Login.aspx"/>

</authentication>

For the Friends Reunion application, you let the default values take effect, and only over-
rode the loginUrl attribute to point to the location of your login form.

Authorization Configuration
The <authorization> element is the one used in ASP.NET to assign permissions to resources.
The process of creating this element and its child elements and attributes is therefore compa-
rable to the process of assigning file or folder security in Windows, or to that of defining the
application roles allowed in COM+, as you saw earlier in the chapter (Figures 10-1 and 10-2).

The <authorization> element has the following syntax:

<authorization>
<allow users="comma-separated list of users|?|*"

roles="comma-separated list of roles"
verbs="comma-separated list of verbs" />

<deny users="comma-separated list of users|?|*"

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY 399

roles="comma-separated list of roles"
verbs="comma-separated list of verbs" />

</authorization>

The ? and * (which don’t actually appear in the documentation) represent the anonymous
user (that is, an unauthenticated user) and any users (authenticated or not), respectively. The
following is the default setting for this element in Machine.config:

<authorization>
<allow users="*" />

</authorization>

In other words, all users are allowed to access the resources, unless otherwise specified in
your application configuration file. This is the authorization setting you’ve been using for the
Friends Reunion application (in Web.config):

<authorization>
<deny users="?"/>

</authorization>

This means that you don’t allow unauthenticated users to access any resource in the
application.

Location Configuration
The <location> element can be used to specify <authorization> elements with regard to a
certain path in the application. This is useful for setting exceptions to the rules defined for
the whole application. You used it in Chapter 4 to explicitly allow Anonymous access to the
NewUser.aspx form (which wouldn’t be available according to the authorization setting shown
in the previous section):

<location path="Secure/NewUser.aspx">
<system.web>
<authorization>
<allow users="*"/>

</authorization>
</system.web>

</location>

If you didn’t set this rule, unregistered users wouldn’t be able to register themselves, since
the NewUser.aspx page wouldn’t be available unless they were previously authenticated!

The path can also be a folder instead of a specific file, so the following setting would work
equally well:

<location path="Secure">
<system.web>
<authorization>
<allow users="*"/>

</authorization>
</system.web>

</location>

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY400

In fact, using a <location> element with a path to a folder instead of a file (as in the exam-
ple here) is equivalent to adding a Web.config file in that folder with the same authorization
settings. So, you could achieve the same configuration as the <location> setting in the code
you have just seen by adding a Web.config file to the Secure folder and adding the following
elements to it:

<configuration>
<system.web>
<authorization>
<allow users="*" />

</authorization>
</system.web>

</configuration>

It’s worth noting how the process of authorization takes place here. There is another mod-
ule, called UrlAuthorizationModule, that is registered by default to all web applications and
performs the checks. It is called after the other security modules have processed the request,
so it uses the Principal that was associated with the current user by the appropriate authenti-
cation module. This way, these checks are independent of the authentication mode selected.
This means that you can use authorization elements to deny or allow access to certain roles,
for example, and leave the settings intact, even if you later decide to change the authentica-
tion mode, as long as the role names remain the same.

The settings in a configuration file apply to the current folder and all its child folders,
except for the <location> element, which applies only to the element specified in its path
attribute. Application configuration files are hierarchical, which means that you can place
multiple configuration files in different folders under the root application path, overriding the
appropriate elements whenever necessary. These overrides can either broaden or tighten the
settings in the parent folders. For example, you might deny Anonymous access to an applica-
tion in general, just as we did for our Friends Reunion application, but make available a
subfolder that contains items such as registration information or help pages.

Authentication Modes
Let’s now move on and see how we can use the three authentication modes: Windows, Pass-
port, and Forms. In the following sections, we’ll explain how these modes work and examine
their advantages and drawbacks.

Windows Authentication
Windows authentication works closely with IIS and the operating system. In fact, ASP.NET
doesn’t do much more than receive what IIS passes it, and then map it to .NET Principal and
Identity objects. All of the business of exchanging credentials and authentication is handled
at the IIS side, where Integrated Windows authentication (and optionally Basic authentica-
tion) should be used, with Anonymous access disabled. This is most suitable for intranet
and extranet scenarios, where the users are a part of your organization and already have a
Windows account in the company domain.

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY 401

If you use Integrated Windows authentication, this will be the most secure method, as
everything will be handled inside the Windows domain. In addition, access to pages can be set
directly using file-access permissions (such as the ones shown in Figure 10-1), which makes
for the lowest impact on your pages’ design with regard to security. The user experience will
also be improved, because users will not even need to log in to the application—the security
token will automatically be passed to ASP.NET whenever the user opens the browser and
points to a page.

Recall that in Chapter 4, we alternated between Integrated Windows authentication and
Anonymous access settings. Now you can fully understand what was going on. The Web.config
file was left with the default authentication mode of Windows, so when Integrated Windows
authentication was turned on, the user automatically became authenticated; the token was
received by ASP.NET behind the scenes. When you turned on Anonymous access, ASP.NET no
longer received the Windows user’s security token, so the user became unauthenticated.

If you select the Windows authentication mode in ASP.NET, and set the IIS security set-
tings to use any method other than Anonymous access, you won’t see the Windows login form,
unless you try to access the application through the Internet from another machine. Machines
on your local area network will get the effect we achieved in Chapter 4: the credentials will be
passed automatically, and you become authenticated to the application without needing to
do anything. On the other hand, if you tried to access the application through the Internet,
you would see the dialog box shown in Figure 10-6.

Figure 10-6. Accessing a Windows authenticated application from the Internet

The Connect to application dialog box replaces the Forms login page that you’ve been
using so far. The information entered in this dialog box is encoded/encrypted according to the
specific setting used in IIS. This dialog box is the same as the one that appears when you try to
access a network share for which you haven’t been authenticated, such as a share from a com-
puter outside your domain.

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY402

Passport Authentication
Passport is a paid authentication service provided by Microsoft. It is the authentication
service backing up Hotmail, MSN, and MSN Messenger, so you could say that it’s a well-tested,
streamlined, production-quality, high-volume service. However, setting it up for use in your
web application is not as easy as setting up Windows or Forms authentication, and the actual
authentication process is not as automatic.

For more information about Passport authentication, you can download the Software
Developers Kit (SDK) from http://msdn.microsoft.com/library/default.asp?url=/
downloads/list/websrvpass.asp and read the product documentation.

Forms Authentication
Forms authentication has been the mode of choice for our Friends Reunion web application,
for two reasons:

• It is easily implemented.

• It is the most likely to be used for web applications, as it allows for administration of
users outside Windows accounts, which is paramount for the Internet. However, as
we noted earlier, for intranet/extranet scenarios, Windows authentication is a better
choice.

The processing sequence that has been taking place in our Friends Reunion application is
a typical Forms authentication interaction, which can be represented as shown in Figure 10-7
(the numbers in the diagram reflect the request processing order of execution).

Figure 10-7. The Forms authentication processing sequence

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY 403

The figure shows a user requesting a page that requires authentication (Default.aspx).
If the user hasn’t been authenticated previously with the application, that user is redirected
to the login page. After the user has entered a user name and password, and these credentials
have been successfully validated, the user is set as being authenticated. As you’ve learned,
this involves the creation of an authentication cookie that is saved with the request and later
passed back to the server on every subsequent request. Using the built-in infrastructure will
suffice for most applications, such as our Friends Reunion example.

In the next example, we’ll extend the functionality of the login form we’ve been using so
far. We will improve it by giving the user the ability to “persist” login information; that is, to
save the cookie in order to survive browser restarts. This will allow users to avoid the incon-
venience of needing to enter the same information again when they return to the site. Most
sites that offer this feature also allow users to sign out of the application explicitly, so that any
authentication cookies are removed from their machine. This is very important for users who
access your application from shared machines.

Let’s first recap the security-related settings the application is using (in Web.config) so far:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
...
<system.web>
...
<authentication mode="Forms">
<forms loginUrl="Secure/Login.aspx" />

</authentication>
<authorization>
<deny users="?" />

</authorization>
...

</system.web>
<location path="Secure/NewUser.aspx">
<system.web>
<authorization>
<allow users="*"/>

</authorization>
</system.web>

</location>

Now let’s move to the new feature you’ll build.

Try It Out: Improve the Authentication Process You’ll add the “permanent” login and “total” logout
functionality to the application through some additional elements in the user interface.

1. Open the Login.aspx form and add a new row to the table that is already present (the
easiest way to do this is to position the cursor in the cell with the Login button and
press Ctrl+Alt+up arrow).

2. Drop in a CheckBox web server control named chkPersist, and set its Text property to
Remember me on this machine, as shown in Figure 10-8.

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY404

Figure 10-8. Adding an option for a persistent login to the Login page

3. Add the code to persist the cookie according to the user’s selection in the new check
box (a change to just one line!):

Private Sub btnLogin_ServerClick(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnLogin.ServerClick
...
If Not id Is Nothing Then
' Set the user as authenticated and send him to the
' page originally requested
FormsAuthentication.RedirectFromLoginPage(id, chkPersist.Checked)

Else
pnlError.Visible = True
lblError.Text = "Invalid user name or password!"

End If
End Sub

4. Now let’s add the logout feature. The natural place to put this is as a link next to Edit
my profile, in the SubHeader control you created in Chapter 3. Open SubHeader.vb and
add the code to create and add the new link next to the old one:

Protected Overrides Sub CreateChildControls()
Dim lbl As Label

' Always render a link to the registration/edit profile page
Dim reg As New HyperLink

' If a URL isn't provided, use a default URL to the
' registration page
If _register = "" Then
reg.NavigateUrl = "~\Secure\NewUser.aspx"

Else
reg.NavigateUrl = _register

End If

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY 405

If (Context.User.Identity.IsAuthenticated) Then
reg.Text = "Edit my profile"
reg.ToolTip = "Modify your personal information"
Dim signout As New HyperLink
signout.NavigateUrl = "~\Logout.aspx"
signout.Text = "Logout"
signout.ToolTip = "Leave the application"
Controls.Add(New LiteralControl(" | "))
Controls.Add(signout)

Else
reg.Text = "Register"

End If

' Add the newly created link to our
' collection of child controls
Controls.AddAt(0, reg)

' Add a couple of blank spaces and a separator character
Controls.Add(New LiteralControl(" - "))

' Add a label with the current data
lbl = New Label
lbl.Text = DateTime.Now.ToLongDateString()
Controls.Add(lbl)

End Sub

Note that you will actually redirect the users to a confirmation page, just as Passport
does.

5. Let’s now create the logout confirmation page. Add a new web form called Logout.aspx.
Drag-and-drop the CSS stylesheet we’ve been using so far on the design surface. Also,
change the code-behind page to inherit the class from the FriendsBase class.

6. Inside a new paragraph, add a table with a row and two columns. Set its border to 0
and its width to 100%. Set the first cell’s valign attribute to top. Put an image
(images/question.gif) on the first column and the following text on the second:

You are about to leave the application. After this process, you will have to enter
your user name and password in order to use the application.

Do you want to proceed?

Add a new paragraph below the table and drop a button to perform the actual logout
operation. Set its ID property to btnLogout, its CssClass to Button, and its Text to
Logout. The Logout form should look like Figure 10-9.

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY406

Figure 10-9. The layout of the Logout form

7. Add the following event handler to the Logout button:

Private Sub btnLogout_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnLogout.Click
' Remove the authentication ticket
System.Web.Security.FormsAuthentication.SignOut()

' Redirect the user to the root application path
Response.Redirect(Request.ApplicationPath)

End Sub

8. Add the following code to Page_Load() to set up the message and icon for the page:

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
MyBase.HeaderMessage = "Leave the Application"
MyBase.HeaderIconImageUrl = "~\images\back.gif"

End Sub

9. Run the application with Default.aspx as the start page, and log in (select the Remem-
ber me on this machine check box if you like). After a successful login, the default page
with the new Logout link looks like Figure 10-10.

10. Close the browser window directly (don’t log out). Now run the application again. What
you see depends on whether you checked the Remember me on this machine check
box. If you did, the cookie (which is caching your identity) will be sent along with the
request, so you won’t need to log in, and you’ll go directly to the Welcome page. If you
didn’t check that option, you’ll need to log in again.

11. Once you’re at the Welcome page, you can formally log out (and destroy the cookie)
by clicking the Logout link. This will take you to the confirmation page, as shown in
Figure 10-11. If you now confirm the logout, you’ll be sent back to the application’s
login page. The next time you start the application, you’ll need to log in again.

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY 407

Figure 10-10. The new Logout link on the Default page

Figure 10-11. Confirming logout

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY408

How It Works

The login form uses the following method to set authentication:

FormsAuthentication.RedirectFromLoginPage(id, chkPersist.Checked)

This method takes care of creating the authentication cookie and saving it for subsequent
requests. You pass the UserID, just as you did before, which is used to perform queries across
the application. The new parameter you pass now is the Checked state of the check box, which
tells the method to create a persistent cookie that will be preserved in the client machine even
across browser and machine restarts.

The other new feature is the logout link in the SubHeader control. The process for creating
this new link is similar to what you already did for the existing link in the SubHeader control:
add the control to the Controls collection, and then add the existing link at the first position,
so that it appears at the left of the new one:

Controls.AddAt(0, reg)

As you can see, the biggest advantage of Forms authentication is its flexibility. You can
authenticate against a database store of credentials, using the infrastructure absolutely as-is,
and achieve some very acceptable results! You were able to query the database, customize con-
tent tailored to the current user, and secure the whole application to require authentication.
(You could even have used authorization on a per-user basis, although it wasn’t necessary for
this application.) Not bad for a sample project!

■Tip Putting the Login and NewUser forms in a separate folder from the rest of the application makes it
easier to increase security for these two especially sensitive forms. One way to do this would be to set SSL
security for that folder, forcing the web server and client browser to encrypt the entire conversation between
them, making it harder for hackers to get in the middle. This is an advanced topic that’s treated in greater
depth in Building Secure Microsoft ASP.NET Applications (Microsoft Press, 2003; ISBN: 0735618909), which
can also be downloaded as a PDF from www.microsoft.com/practices.

Customized Authentication and
Role-Based Security
Forms authentication is great, but it doesn’t use the role-based features we talked about at the
beginning of the chapter. As you saw, it will simply create an empty GenericPrincipal object,
containing only the initialized FormsIdentity object. If we were to build an administration
section in our application, and we wanted to restrict access only to administrator users, we
would need to deny access to everyone, and then add the administrator users one by one.

To take advantage of role-based authentication, you need to customize the process. In the
“The ASP.NET Security Infrastructure” section earlier in this chapter, you saw that the various
authentication modules actually hook into the same events that you can use, particularly
AuthenticateRequest, an event to which you can attach a handler in your Global.asax file.

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY 409

You also learned that the infrastructure is prepared to work with any role-based scheme, as
long as it works around the concepts of principal and identity (represented by the IPrincipal
and IIdentity interfaces). So far, however, you’ve let the default modules take charge. Your
only intervention in Forms authentication was to check a user name and password in the login
form. You didn’t need to bother about the cookies, encryption/decryption (yes, the cookie is
encrypted), creation of the Principal and Identity objects, or anything else. Some things are
going to have to change.

Implementing Custom Authentication
For our implementation of custom authentication, we will start by using the GenericPrincipal
and GenericIdentity objects, which provide a reasonable and simple implementation. In case
they are not enough, we can always inherit and extend them, or even implement IPrincipal
and IIdentity directly in a custom class.

You already know the processing that takes place in order to make the default modules
work. You can now apply that knowledge to build custom authentication. As we stated, the key
event to handle in the process is AuthenticateRequest. During the handler for this event, you
can perform some actions, and then set the Context.User property to your custom Principal
and Identity objects. As with any other authentication scheme, this security context will fol-
low the user through pages, user controls, code-behind pages, and so on. You’ll be able to
access these objects from any point in running code.

To customize authentication, you need to intercept the process at some point. In this
instance, we’ll leave the code as it is in the Login.aspx page, and let the Forms authentication
module perform all the work it has been doing so far, until a certain point. Let’s look again at the
steps for a typical request in our application, and see where to override the default behavior:

1. User requests Default.aspx (this is the initial request to enter the application).

2. The Application_AuthenticateRequest event is fired; IsAuthenticated = false, so
Forms module redirects to Login.aspx?ReturnUrl=....

3. The redirect causes a new request to another page (namely Login.aspx).

4. The Application_AuthenticateRequest event is fired again, this time by the access to
Login.aspx. The module realizes that this is the login page, so it doesn’t redirect to
itself again.

5. The user enters credentials and submits. Posting the form to itself is actually another
new request.

6. The code checks against database and returns OK. The module saves UserID with the
authentication cookie, and performs a redirect to ReturnUrl (Default.aspx).

7. As a result of the redirect, a new request is made for Default.aspx. This time, the
authentication cookie is set.

8. The Application_AuthenticateRequest event fires; this is the first time you get
IsAuthenticated = true. The application picks up processing from here, and rebuilds
customized versions of GenericPrincipal and GenericIdentity, based on the informa-
tion retrieved from the database using the UserID attached to the authentication
cookie. It replaces the Context.User with the new complete Principal.

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY410

In this sequence, note that the last AuthenticateRequest is the first one for which the
IsAuthenticated property returns true. From now on, this is the only response that will be
issued to an authenticate request, because the authorization cookie will be present and
the Forms authentication module will take care of recovering the UserID from it. You will
actually customize the authentication mechanism after the Forms authentication module
has handled it.

We can refer to Default.aspx more generally as a “restricted page,” which can be any pro-
tected resource in the application. Graphically, the interaction is as shown in Figure 10-12.

Figure 10-12. Custom ASP.NET Forms authentication

After you use the FormsAuthentication.RedirectFromLoginPage() method, the restricted
page is actually requested again, but this time, with the security token (or authentication
ticket) set. At this time, you have a chance to override the default behavior implemented by
Forms authentication, and you can set the Context.User property to an object that better rep-
resents your needs. For our example, this will be a GenericPrincipal that contains the roles
associated with the current user.

Try It Out: Use and Replace the Principal Object In our database, there are only two roles: Users and
Administrators. These roles aren’t actually defined anywhere, but Administrators are distin-
guished by the IsAdministrator flag in each record in the User table. This is the information
you will use to create a GenericPrincipal containing the Users role, or both the Users and
Administrators roles (an administrator will always be a user, too).

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY 411

1. Open the Global.asax.vb code-behind file, and import the following namespace:

Imports System.Security.Principal

2. Find the Application_AuthenticateRequest() event handler, and add the following
code to it:

Sub Application_AuthenticateRequest(ByVal sender As Object, _
ByVal e As EventArgs)
' Cast the sender to the application type
Dim app As HttpApplication = CType(sender, HttpApplication)

' Only replace the context if it has already been handled
' by forms authentication module (user is authenticated)
If app.Request.IsAuthenticated Then
Dim con As SqlConnection
Dim sql As String
Dim cmd As SqlCommand

Dim id As String = Context.User.Identity.Name

con = New SqlConnection(
ConfigurationSettings.AppSettings("cnFriends.ConnectionString"))

sql = "SELECT IsAdministrator FROM [User] WHERE UserId='{0}'"
sql = String.Format(sql, id)
cmd = New SqlCommand(sql, con)
con.Open()

' Ensure closing the connection
Try
Dim admin As Object = cmd.ExecuteScalar()

' Was it a valid UserID?
If Not (admin Is Nothing) Then
Dim ppal As GenericPrincipal
Dim roles() As String

' If IsAdministrator field is true, add both roles
If CBool(admin) = True Then
roles = New String() {"User", "Admin"}

Else
roles = New String() {"User"}

End If

ppal = New GenericPrincipal(Context.User.Identity, roles)
Context.User = ppal

Else

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY412

' If UserID was invalid, clear the context so they log on again
Context.User = Nothing

End If
Finally
con.Close()

End Try
End If

End Sub

3. Create a new folder named Admin, and add a new web form called Users.aspx to it. As
always, add the stylesheet reference to it, and change the code-behind page so that it
inherits from the FriendsBase class.

4. On the Users page, drop a DataGrid control. Set its ID to grdUsers, and set its width to
100%. Right-click the DataGrid control, select Auto Format, and select Colorful 4. Just
above the DataGrid control, add this text: Welcome to the Users Administration page.
This is the complete list of users:. The Users.aspx page should look something like
Figure 10-13.

Figure 10-13. The beginning layout of the Users page

5. Drop a SqlDataAdapter component onto the form, and follow the wizard as you did in
Chapter 5: first select the appropriate connection string, then select that you want to
use SQL statements, and then set the SQL statement to SELECT * FROM [User]. Finally,
select Finish to complete the wizard.

6. Change the name of the SqlDataAdapter object to adUsers. Change the name of the
connection to cnFriends.

7. Check the properties of the SqlDataAdapter component (adUsers). Its SelectCommand
property should be cmUsers (change the Name property of SelectCommand if necessary).
Also, if you haven’t unchecked the Generate insert... advanced option, remember to
set the UpdateCommand, InsertCommand, and DeleteCommand properties to (none).

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY 413

8. Set the cnFriends connection string property to use the dynamic configuration you
used before. (Select the Dynamic Configuration property called ConnectionString, and
use the button there to map the property to the key cnFriends.ConnectionString in
the configuration file.)

9. Right-click the SqlDataAdapter component (adUsers) and select Generate Dataset.
Select the New option button, and give it the name UserData. Click OK in the dialog
box, and rename the new dataset to dsData.

10. Bind the DataGrid control to this new dataset (by setting its DataSource property to
dsData). The form will look something like Figure 10-14 now.

Figure 10-14. The User page with data components

11. Let’s add the code to load the dataset and bind the grid to display the data. Add the
following code to the Page_Load() method of this page:

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
MyBase.HeaderIconImageUrl = "~/images/padlock.gif"
MyBase.HeaderMessage = "Administer Users"

If Not IsPostBack Then
Me.adUsers.Fill(Me.dsData)
Me.grdUsers.DataBind()

End If
End Sub

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY414

12. Add a link to this new page in the Default.aspx page, so that administrators have easy
access to it. Open the Default.aspx page, and add the following code to the bottom:

<form id="Default" method="post" runat="server">
...
<p class="Normal">
<asp:placeholder id="phNav" runat="server"></asp:placeholder>

</p>
<p>
<asp:hyperlink id="lnkUsers" runat="server"

navigateurl="Admin/Users.aspx">
Users Administration Page

</asp:hyperlink>
</p>

</form>

13. Finally, make the link visible only if the current user is an administrator. Open the
code-behind page for Default.aspx and add the following code at the bottom of the
method:

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
...
' Show the Admin link only to administrators
lnkUsers.Visible = User.IsInRole("Admin")

End Sub

14. Save the project, and then run it with Default.aspx as the start page.

How It Works

As you can see from step 13, the purpose of the code you added is to be able to control appli-
cation behavior (in this case, showing a link) based on the current user’s role, instead of the
particular user name or ID. This allows you to take advantage of the benefits of the role-based
approach.

You’re handling the AuthenticateRequest event in the Global.asax file in order to
replace the default principal that’s associated by Forms authentication with a custom one.
This will allow you to add roles to the current user, based on the information in the database.
Note that you used the application request’s IsAuthenticated property, instead of the
Context.User.Identity.IsAuthenticated property you’ve used before:

If app.Request.IsAuthenticated Then
...

You had to do this because the first time the page is accessed, the Context.User property
isn’t initialized yet, and you would have caused an exception. To take this into account, you
could have replaced the previous code with the following:

If (Not (Context.User Is Nothing) AndAlso
(Context.User.Identity.IsAuthenticated)) Then

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY 415

If you pass the IsAuthenticated check, it will mean that Forms authentication
has already done its work, and the UserID is placed where you’re used to finding it: in the
Context.User.Identity.Name property. This is the work that’s already achieved in the
Login.aspx page, and it’s what you’ve been doing since Chapter 4.

In the remainder of the handler, you replace the empty GenericPrincipal object that’s
created by the Forms authentication module with one containing the actual roles the user
belongs to. So, in the Application_AuthenticateRequest() handler, you retrieve the UserID
and use it to issue a database query to discover whether it corresponds to an administrator.
You use ExecuteScalar(), because you expect a single Boolean value to be returned. As usual,
you placed the code in a Try...Finally block to ensure the connection is always closed.

The GenericPrincipal constructor receives an identity and a string array containing the
roles it belongs to. You reuse the identity created by Forms authentication, which is attached
to the Context.User.Identity property you have been using; you don’t need to change any-
thing about it:

ppal = new GenericPrincipal(Context.User.Identity, roles)

Finally, you assign the newly created principal to the Context.User property:

Context.User = ppal

If you go look at the diagram shown earlier in Figure 10-12, you’ll notice that the next
page to be processed is the page that was originally requested. So, when execution reaches
your code for the page, it will have access to the new role-aware principal you attached. You
use this in the Page_Load() method of the Default.aspx page to display a link to the user’s
administration page:

lnkUsers.Visible = User.IsInRole("Admin")

User is a property of the Page class that provides a shortcut to Context.User, and its
IsInRole() method allows you to check whether it pertains to a specific role. Figure 10-15
shows the page when an administrator user logs in.

Securing Folders
You have used your new, custom, roles-aware principal to display information on the
page selectively. However, merely hiding or showing a link is not enough security. If a non-
administrator user knows the administration page’s location and name, he could type the
address into the browser’s Address box and gain access to a resource that is supposed to be
restricted! To solve this problem, you will add a configuration file inside the Admin folder, to
secure all the items in that folder.

■Tip If you were to add more administration tools later, the configuration file would automatically protect
them, too. Organizing an application into separate folders according to resource features makes it extremely
easy to administer its security settings and ensures that future growth won’t become a maintenance
nightmare.

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY416

Figure 10-15. The page an administrator sees after logging in

Try It Out: Take Advantage of Roles for Authorization To secure the items in your new Admin folder,
you just need to provide it with a new web configuration file, as you’re about to do.

1. Right-click the Admin folder and select Add ➤ Add New Item. Choose Web Configuration
File from the Utility folder, as shown in Figure 10-16.

2. Open the Admin/Web.config file that you’ve just created. Remove all of this file’s
content, and replace it with the following:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.web>
<authorization>
<allow roles="Admin" />
<deny roles="User" />

</authorization>
</system.web>

</configuration>

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY 417

Figure 10-16. Creating a new web configuration file

How It Works

If a user who is not an administrator is logged in, that user won’t see the link to the adminis-
tration page, because the page’s code (added in the previous example) hides it. But now, if the
user tries to type the page’s address directly into the browser’s Address box, that user still won’t
be allowed to access it, thanks to the configuration file you just placed in the folder. Instead,
the user will be redirected to the Login page again, to provide appropriate credentials.

Up to now, you have been using user-related information to restrict access to resources,
such as denying anonymous users or granting all users. Now, you are taking advantage of role-
based security to set permissions. This means that new administrator users registered with
the application later on will automatically gain access to these resources, without any further
changes to the application’s configuration. If you had used user-related information, you
could have granted the apress user access to this folder, but you would then need to add any
new administrators manually.

Having logged on as a non-administrator user, try typing the URL directly into the
browser’s Address box to see what happens. You should be redirected to the Login page, to
provide new credentials with appropriate permissions. Only users belonging to the Adminis-
trators role will be able to see the administration page, regardless of how they try to access it.
Needless to say, an unauthenticated user will be redirected to the Login page, too.

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY418

Summary
Security in web applications is very important, because of the exposure to the entire Web
(of hackers!). In this chapter, we looked at some general security concepts, as well as modern
role-based security.

We examined the various authentication options available in ASP.NET, and provided some
guidance that should allow you to choose among them. We discussed application configuration
files in the context of security settings, and we used authentication and authorization to secure
an application. We also used custom authentication to meet application requirements, show-
ing the level of extensibility available in the general security infrastructure.

In order to describe the close relationship between IIS and ASP.NET, we provided an
overview of the modular and extensible architecture that exists to process web requests, and
how the various authentication options are implemented internally, as well as their interac-
tion with the main web application.

Now our Friends Reunion application has become much more secure, through the use of
the concepts you’ve learned in this chapter. However, we certainly haven’t covered every pos-
sible security-related feature available in .NET, as that is a subject for a whole book. As noted
earlier, one such book is Building Secure Microsoft ASP.NET Applications, which can also be
downloaded as a PDF from www.microsoft.com/practices.

CHAPTER 10 ■ ASP.NET AUTHENTICATION, AUTHORIZATION, AND SECURITY 419

Debugging and Exception
Handling

In the previous chapters, we’ve written and generated a lot of code in our Friends Reunion
application. In this chapter, we have two aims:

• To explain techniques that will help you to ensure the code you’ve written is free
of bugs

• To look at how to include exception-handling code that is designed to deal with
unexpected runtime errors

These two topics are often bundled together and confused with one another. That’s
because, although they are different, they are related. If you can get a good understanding of
exception handling, it will help you to write robust code that is capable of dealing with unex-
pected occurrences. Then, if your application does have a bug, that bug is less likely to cause a
horrible failure at runtime, because the exception-handling code will be designed to deal with
it gracefully.

We’ll devote the first part of the chapter to the subject of debugging:

• The different types of errors and which tools are most suitable for finding and fixing
them

• Alternative techniques for debugging applications without the aid of a debugger (useful
when you move your application from the test environment into a live environment)

• How to use the VS .NET debugger to debug an application

In the second part of the chapter, we’ll introduce you to the subject of error handling
using exceptions:

• How to catch, throw, and rethrow exceptions

• How to define your own custom exceptions

• How to recover gracefully from an unhandled exception

• How to log exceptions to the System event log

421

C H A P T E R 1 1

■ ■ ■

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING422

By the end of the chapter, you should have a good understanding of what is offered by the
.NET Framework in general, and ASP.NET in particular, in the battle against bugs. You’ll also
know how the exception-handling mechanism works and how to integrate it with some spe-
cific ASP.NET features.

Types of Errors
If you have any experience developing applications, you already know that it’s very difficult
to rid an application of errors entirely. It doesn’t matter how much effort you put into writing
error-free code—developers are human, and humans make mistakes. Therefore, we must
accept that we won’t write perfect code the first time; it’s as simple as that.

After accepting that we’re not all as infallible as we would like to think we are, the next
thing to realize is that we should at least try to minimize the number of coding errors and the
effect that those errors can have on our application’s behavior. To do this, we need to under-
stand a little about the different types of errors that we may encounter.

We can classify errors into three distinct types: syntax errors, semantic errors, and input
errors. As you’ll see, these three types are different in nature, and thus you need different tools
and techniques to find and fix them.

Syntax Errors
A syntax error occurs when you write code that violates the rules of grammar of the program-
ming language. A debugger will not be of any help in detecting and correcting syntax errors!
The compiler is the main tool here. If the compiler detects a syntax error, it will refuse to com-
plete compilation of the code, and so there will be no program to debug.

Syntax errors are said to be caught at compile-time (because it is the compiler that
catches and reports them). When you’re building your VB .NET web application in VS .NET,
the VB.NET compiler will check the code for syntax errors and output its results to the Output
window. (To view the Output window, select View ➤ Other Windows ➤ Output or press
Ctrl+Alt+O.) The Output window will contain a short description of each error, along with
the file and line number in which it was found.

Generally, the compiler will be able to tell you the location of a syntax error with reason-
able accuracy. If there isn’t a syntax error at the exact line reported by the compiler, then the
error is usually located somewhere above the specified line (and probably within just a few
lines). For example, consider this code fragment from SubHeader.vb shown in Figure 11-1.

The code in Figure 11-1 contains a simple syntax error: the closing End Sub for the con-
structor is missing at line 10. If you tried to compile this code, the compiler would detect this
syntax error and report it to the Output window, as shown in Figure 11-2. However, it doesn’t
detect the error at line 10, but it does detect that there’s something at line 13 that isn’t as it
should be.

The compiler works from the top down, so in this case, it finds the Public Property state-
ment as part of the constructor, which is not valid in that context, and highlights the error
there. Although the exact location of the error is not quite right, the information is enough
for you to work out what’s wrong in the code.

Figure 11-1. Code with a syntax error

■Tip In fact, we didn’t even need to compile the code to discover this syntax error. Look carefully at line 13
in Figure 11-1, and you’ll see that the IDE has underlined the Public Property keywords (in blue). That’s
because the IDE is automatically parsing the file as you type, and it highlights any syntax error it finds with
a red underline. What Microsoft Word did for years for spelling mistakes is now done by VS .NET for syntax
errors!

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 423

Figure 11-2. A syntax error report in the Output window

Besides showing the error in the Output window, the compiler also adds build error tasks
to the Task List window and automatically displays that window, as shown in Figure 11-3.
(You can also open the Task List window by selecting View ➤ Other Windows ➤ Task List or
by pressing Ctrl+Alt+K.) Double-clicking each build error task will take you directly to the file
and position where the error was detected.

Figure 11-3. The Task List window shows build error tasks.

It’s particularly worth watching out for typos, because they’re probably the most common
cause of syntax errors. But don’t worry too much about them; with all the help from the IDE
and the compiler, you should be able to quickly and easily locate and fix syntax errors.

Semantic Errors
A semantic error occurs when the syntax of your code is correct but one of the following
occurs:

• Some other rule is broken.

• The meaning of the code is not what you intended.

• The code does what you intended, but your intent is not a correct interpretation of
what the program is supposed to do.

In some cases, the compiler will be able to detect semantic errors (though, of course, it
can’t possibly know what is the proper application behavior according to the program’s speci-
fication and requirements!).

Semantic Errors That Get Caught by the Compiler
Here’s an example of the type of semantic error that can be caught by the compiler:

Dim btn As New Button
btn.Age = 32

This code tries to use a nonexistent property of the Button class.
If you try to compile such code, the compiler will complain and refuse to compile it. You

can find out what is wrong by looking at the newly added task in the Task List window, where
the compiler correctly tells you that the Button class doesn’t have a definition for Age, as
shown in Figure 11-4.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING424

Figure 11-4. The compiler can catch some semantic errors.

This kind of semantic error is easy to fix. You just need to browse the Output window or
check the Task List window to locate the error, and then fix the code to satisfy the compiler’s
complaints.

Semantic Errors That Don’t Get Caught by the Compiler
The other kind of semantic error is what we usually call a bug. Bugs get through the compila-
tion stage and become part of a compiled application.

A bug cannot be caught by the compiler because it is not a problem that can be identified
by rigorous systematic application of a set of rules. Rather, a bug is a problem with the mean-
ing of the code or the developer’s interpretation of the requirements. The only way to find
bugs is by testing the application. Many bugs are found by the programmer or tester during
the test cycle or by the end user when the application is actually being used.

The following code contains an example of such an error:

Dim btn As Button
btn.Text = "OK"

The developer who wrote these lines of code forgot to instantiate btn before using it. Therefore,
the expression btn.Text (in the second line) evaluates to Nothing.Text, which is nonsensical.
But the compiler will not find this error, because the compiler doesn’t run all the code. This
error will be found only at runtime. When these two lines of code are executed, an exception
will be thrown and the application will halt execution, usually showing the user the exception
that happened.

However, not all semantic errors manifest themselves in such an obvious way as to raise
an exception and cause a termination. Sometimes, a program will continue to run after a
semantic error has occurred, even though the logic it executes is in error (for example, if the
flow of execution takes an inappropriate path or a variable contains an invalid value). Con-
sider the code excerpt from the InsertUser() method of the NewUser.aspx.vb file (in the
Secure folder) shown in Figure 11-5.

If we swap the order of lines 132 and 133, the application will still appear to run smoothly,
but it will contain a logic error that causes the first and last names of the newly registered user
to be added to the wrong fields in the database.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 425

Figure 11-5. A code excerpt from the NewUser.aspx.vb file

Input Errors
An input error occurs when input into your application (from an external source) is not of the
expected form. For example, suppose the application is required to open a file that it expects
to be in JPG format, but it finds the file to be in a different format. Alternatively, consider when
the application has a web form that invites the user to enter a date of birth, but the user types
a meaningless value instead. These are input errors.

Input errors can and do happen. Moreover, input errors occur at runtime, so no compiler
will be able to help find them. You can deal with input errors only by anticipating the type of
input errors that might happen and preparing your code to be able to handle them. As you
will see in this chapter, the .NET Framework provides an exception-based mechanism that
allows you to code your applications to handle input errors properly and recover from them
gracefully.

An effective way to detect potential input errors, as well as many of the semantic errors
that cannot be detected by a compiler, is to test the application. (Testing is discussed in
Chapter 12.) However, the testing process is only half the story. You can test an application
to confirm that it is not working as you expected. But testing, in itself, doesn’t tell you much
about where the error is and or how to fix it. That’s why you also need debugging.

Debugging Web Applications
Debugging is the process of finding and fixing errors that can’t be caught by the compiler. It’s
very common to associate the debugging process with the use of a debugger—a piece of soft-
ware designed to help you find and fix bugs—but there are other ways to debug applications.

In this section, we’ll look at some alternative debugging techniques that .NET provides
through the classes in the System.Diagnostics namespace and through the more specific
ASP.NET tracing features. We’ll also perform a useful debugging demonstration that doesn’t
use any debugger software at all. Finally, we’ll introduce the powerful VS .NET debugger, and
we’ll do some debugging of the Friends Reunion application.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING426

ASP.NET Tracing
When developing an application, a useful technique is to include lines of code that print mes-
sages, which are specifically intended to help the developer determine the path of execution
that the application takes and the values of key variables at any given point in the application.
This is what we call tracing the execution of an application.

If you have done much development work, it’s very likely that you’re used to tracing code.
In the development of traditional Windows applications, tracing messages are often output
to the screen or logged to a file. In ASP web applications (written before ASP.NET), the most
common tracing method was to use Response.Write to output the tracing messages to the
browser, along with the output of the rendered page.

When you’re developing your ASP.NET web applications, there is nothing wrong with
including your own tracing code (using Response.Write or your favorite technique) to help
you fix bugs without resorting to a debugger. However, there are significant drawbacks to
this approach:

• It’s likely that while you’re looking for the error, your tracing output will be mixed in
with the actual content of your page, and that makes it harder to read the original for-
mat of the page (this is a particular weakness of the Response.Write technique).

• After you’ve fixed the bug, you need to go back over your code and remove all the
tracing code that helped you to trace the error in the first place!

• There is a chance, in some cases, that the added tracing code has its own effect on the
behavior of the application, and actually makes it harder to locate the problem.

Until now, web application developers had to reinvent the wheel, creating their own
tracing mechanism and facing these problems. But now, ASP.NET introduces a new tracing
facility, intended to free the developer from such chores.

This new functionality, designed from the ground up to avoid all the previously men-
tioned drawbacks, is implemented by the TraceContext class that is exposed via the public
Trace property of the Page class. This makes the tracing feature easily available in every place
where you deal with a page. When you use the methods of the TraceContext class to output
tracing messages to the browser, ASP.NET arranges for these messages to be rendered at the
bottom of the page, after the proper content of the page, so that the two different types of
information being rendered don’t get mixed. Apart from printing custom messages, ASP.NET
will also output key data for your page and application, such as the items of the Form collec-
tion, the items of the QueryString collection, the Application state, and the Session state.

Enabling Tracing in ASP.NET
You can easily enable tracing for a page by setting the Trace attribute to true in the Page direc-
tive for your page:

<%@ Page Trace="true"
Language="vb" AutoEventWireup="false"
Codebehind="NewUser.aspx.vb"
Inherits="FriendsReunionSec.NewUser" %>

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 427

Try It Out: Enable Trace Information for a Page Let’s enable trace information for the News page of
our Friends Reunion application, and take a look at the type of information it shows.

1. Using VS .NET, browse the Friends Reunion files and open News.aspx. Switch to the
HTML view and add the Trace attribute to the Page directive, like this:

<%@ Page Trace="true"
language="vb" Codebehind="News.aspx.vb"
AutoEventWireup="false" Inherits="FriendsReunion.News" %>

If you prefer a visual approach, you can do this from the Design view. Click anywhere
on the form (but not over a control!) so that the Properties browser shows the proper-
ties of the page. Then find the Trace property and set it to True.

2. Set this form as the start page, press Ctrl+F5 (the shortcut for the Debug ➤ Start Without
Debugging menu option) and log in to Friends Reunion. After that, you will be redirected
to News.aspx. Notice that the tracing information has been appended after the regular
output of the page, as shown in Figure 11-6.

Figure 11-6. The News page after enabling tracing

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING428

3. Scroll down through the tracing information. You’ll see that it’s divided into several
different sections.

How It Works

As part of its normal processing, the Page class checks to see if tracing is enabled for the page
before and after performing any major task (loading viewstate, processing events, rendering
its content, and so on). If tracing is enabled, the Page class will output corresponding tracing
messages by using the TraceContext class’s Write method.

The trace is broken down into ten sections:

• Request Details: Summary information with the details of the request just made,
including the following fields:

• Session ID is the session ID for the specified request.

• Request Type is the HTTP method used (POST or GET).

• Time of Request is the date and time the request was made.

• Status Code is the status code of the response (see http://www.w3c.org, RFC 2616,
Section 6.1.1, for a list of possible status codes).

• Request Encoding and Response Encoding are the character encoding for the
request and response, respectively (for example, UTF-8, ASCII, and so on).

• Trace Information: Includes all the trace messages that are generated automatically
by ASP.NET and your application. The following information will be shown for each
message:

• Category is the category to which the message belongs.

• Message is the text of the message itself.

• From First (s) is the time (in seconds) since the first trace message was generated.

• From Last (s) is the time (in seconds) since the most recent previous trace message
was generated.

• Control Tree: Lists all the controls available in the page in an indented, hierarchical
fashion, which allows you to differentiate between parent and child controls. This is
very useful, for example, when inserting controls dynamically to check that they are
being added to the correct parent. Also, it shows the render size and viewstate size of
each control, so you can check that neither of these values goes too high.

• Session State: Lists the name, type, and value of all objects stored in the current
Session collection. This will show up only if there are actual values stored in it.

• Application State: Lists the name, type, and value of all objects stored in the
Application collection. This will also show up only if there are values in it.

• Cookies Collection: Lists the name and value of each cookie in the request and
response.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 429

• Headers Collection: Lists the names and values of the HTTP headers that the client
sent to the server.

• Form Collection: Displays the names and values of all form elements, along with the
built-in _ _VIEWSTATE form field. These values should provide a brief representation of
the state of each one of the controls contained in the page. Note that data for this sec-
tion will not be displayed if your page doesn’t contain a form (obviously!) or if it is your
first request for the page; it will be displayed only on postbacks.

• Querystring Collection: Displays values passed to the page after the ? character. This
comes in handy when you need to check whether the page is really receiving a specific
parameter via the query string and to find out what value has been set. This will contain
information only if parameters are specified.

• Server Variables: Provides a dump of all predetermined server environment variables.

In the next example, you’ll see how to add your own custom trace messages to the trace
information output.

Adding Custom Tracing Statements
The information you get by default by enabling tracing in a page is very useful, and in many
cases, it provides enough information to allow you to isolate and solve a particular problem.
However, tracing is more powerful than that.

You can add your own tracing statements that tell the application to output specific
information that you need about the state of the application at any particular point. The
TraceContext class provides two methods that provide this capability: the Write() and Warn()
methods. The only difference between these two methods is that the Warn() method marks
its messages as warnings. Any message you output using this method will be rendered in red
type. This is useful when you’re scanning the trace information, because it makes it easy to
differentiate between regular trace messages and warning messages.

Both the Write() and Warn() methods write a message to the trace log (the log of all trace
information generated by the application). Each of these methods has three overloads. In the
example that follows, we’ll use the overload that takes two string arguments. The first argument
corresponds to the category of the message you want to output, and the second argument is the
text of the message itself. The ability to specify a category is useful because you can define your
own categories and have the trace output sorted alphabetically by category.

Try It Out: Add Custom Trace Statements In order to exploit the capabilities of the ASP.NET tracing
feature, you’ll output some trace messages of your own during the process where you insert
new users. This will allow you to examine the path the code takes and to check that everything
is running as expected.

1. Using VS .NET, open the NewUser.aspx file (in the Secure folder). Add a Trace attribute
to the Page directive as you did in the previous example:

<%@ Page Trace="true"
language="vb" Codebehind="NewUser.aspx.vb"
AutoEventWireup="false"
Inherits="FriendsReunion.Secure.NewUser" %>

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING430

2. Switch to the Code view (NewUser.aspx.vb) and make the following changes to the
btnAccept_Click() method:

Private Sub btnAccept_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnAccept.Click
If Page.IsValid Then
Trace.Write("FriendsReunion", "Page data was validated ok")

...etc...
End If

End Sub

3. Modify the InsertUser() method as follows:

Private Sub InsertUser()
Trace.Write("FriendsReunion", _
"We're entering the InsertUser() method")

' Build SQL statement
...etc...

' Connect and execute the query
Dim con As New SqlConnection(_
"data source=.;initial catalog=FriendsData;" + _
"user id=apress;pwd=apress")
Dim cmd As New SqlCommand(sql, con)
con.Open()

Trace.Write("FriendsReunion", _
"Connection string in use: " + con.ConnectionString)

Dim doredirect As Boolean = True

Try
cmd.ExecuteNonQuery()

Catch ex As SqlException
Trace.Warn("FriendsReunion", _
"An exception was thrown: " + ex.Message)

doredirect = False
lblMessage.Visible = True
lblMessage.Text = _
"Insert couldn't be performed. User name may be already taken."

Finally
' Ensure connection is closed always
con.Close()

End Try

'If (doredirect) Then Response.Redirect("Login.aspx")
Trace.Write("FriendsReunion", _
"We're leaving the InsertUser() method")

End Sub

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 431

As well as adding four trace statements here, you’ve done two other things. First,
you’ve used the ex variable mapped to the SqlException trapped in the Catch block
on the Trace.Warn() method, where you report its Message property to the trace log.
Second, you have commented out the Response.Redirect() call. This prevents the
page from being redirected to Login.aspx and gives you a chance to look at the trace
information for the NewUser.aspx page.

■Note If your code still uses the hard-coded connection string, recall that back in Chapter 5, in the “Try It
Out: Configure a Dynamic Connection String” section, you learned how to use the ConfigurationSettings
class from the System.Configuration namespace, and we suggested changing all hard-coded connection
strings with it. If you change that now, make sure there’s an Imports statement for this namespace at the
top of the NewUser.aspx.vb file: Imports System.Configuration.

4. Press Ctrl+F5 to start the application without debugging. Click the Register link. Then
fill in the registration form and click the Accept button. After the page postback, scroll
down a bit and look at the Trace Information section, which should look something
like Figure 11-7.

Figure 11-7. Custom trace statements for the News page

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING432

5. Fill in the registration form again, this time using the same user name that you pro-
vided before. Click the Accept button and look at the Trace Information again. You
should see something like Figure 11-8.

Figure 11-8. The Trace Information section with a custom trace warning statement

This time, there is one extra trace message in the FriendsReunion category. The extra
one is actually displayed in red, because it’s a warning (generated by the Warn()
method), which says that the user is trying to take a user name that already exists
in the database.

How It Works

The new custom tracing code outputs messages to the Trace Information section in the same
way as the Page class does. In this simple example, you’ve used the trace to check the execution
path that the application takes. You expect the data to be validated first and the InsertUser()
method to run next, and you expect to see the four regular trace messages that you’ve placed in
that method.

You don’t expect any of those messages to be missing from the trace output, and you don’t
expect any of the messages to appear more than once. If they did, you could deduce that there
is a problem with the application’s flow, and then you would take further steps to pinpoint the
exact problem and fix it.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 433

You used the Trace.Warn() method in the Catch block, because it helps you to see when
the execution path leads to an exception being thrown. Finally, the From First (s) and From
Last (s) columns tell you how much time has passed since the first message in the trace and
the current one, and the same interval relative to the previous message.

Enabling and Disabling Tracing at the Application Level
You’ve seen how to enable tracing for a particular page. But if you’re developing an application
that contains a lot of pages, it is potentially more convenient to enable tracing across the
whole application in one step.

You can control this in the application’s Web.config file, through the <trace> element,
which belongs under the <system.web> element. If there is no <trace> element, you need to
add one like the one shown here; if there’s one there already, just change its enabled attribute
to true:

<configuration>
...
<system.web>
<trace enabled="true" requestLimit="10" pageOutput="true"

traceMode="SortByTime" localOnly="true" />
...

</system.web>
...

</configuration>

With this set, all your pages will contain trace information. It’s then possible to disable
tracing on an individual page, if you wish, by setting Trace="false" in the Page directive of
that page.

As you can see, the <trace> element in Web.config has quite a number of other attributes,
and it’s worth a quick look to see how they work:

• The enabled attribute allows you to enable or disable tracing for the application (its
default is false).

• The requestLimit attribute is the maximum number of trace requests to be stored on
the server (the default is 10). You’ll see this in action in the next example, when you use
the trace viewer.

• The pageOutput attribute allows you to force the tracing information to be appended
to the application’s pages (in the way you’ve seen in Figures 11-6, 11-7, and 11-8). This
defaults to false.

• The traceMode attribute sets the mode used to display trace information. It can be
SortByTime, which sorts them in the order they were processed, or SortByCategory,
which sorts them by category. The default is SortByTime.

• The localOnly attribute allows you to specify where the tracing information is available.
If it’s set to true (the default), tracing information will be available only on the host
server. For viewing trace information from a browser running on a PC other than the
host machine, set this to false.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING434

■Caution Be sure to specify the exact casing shown here when setting the <trace> element attributes in
the Web.config file, because attributes are case-sensitive. If you specify any with the wrong case, you will
get an error.

Using the Trace Viewer
You have seen how to enable tracing for a single page or an entire application and how to add
your own tracing statements. Although all that may seem to be sufficient ASP.NET tracing
capability, one more important feature needs to be covered: trace.axd, or the trace viewer.

The server stores the tracing information for a specified number of the most recently
requested pages. (By default, this number is 10, but you can use the requestLimit attribute of
the <trace> element in Web.config to change this value, as described in the previous section.)
You can use the trace viewer to access all that trace information. This means that you can step
through a number of different pages in the course of testing the application, and then review
the trace for all those pages at your leisure when you’re finished.

Try It Out: Use the Trace Viewer In this example, you’ll use the trace viewer to access the tracing
information recorded by the server for the last ten pages requested. You’ll see summary and
detailed views of the tracing information—all with just a browser and a few clicks!

1. Enable tracing at the application level. Do this by locating the <trace> element in the
<system.web> section of the Web.config file and changing its enabled attribute to true
(as described in the previous section).

2. Point your browser to Friends Reunion, log in, and start surfing to different pages
(News, Assign Places, Search, and so on).

3. Browse to the trace.axd file in the application directory of Friends Reunion (http://
localhost/FriendsReunion/trace.axd). Your output should look like Figure 11-9.

As you can see, trace.axd presents a summary list of the last ten pages for which you
have tracing information recorded. For each entry, you have a link named View Details,
which will take you to a details page. Note that in the example in Figure 11-9, we only
navigated through seven pages, so the Remaining label at the right of the table heading
indicates we have three more pages we could view.

4. Click any of the View Details links, and you will see the details page for that particular
page. Figure 11-10 shows the details page for Default.aspx.

Note that you’re just getting the tracing information for a particular page; you’re not
getting regular content. That’s because you’re not actually requesting the pages now.
You’re just looking at the trace information that was generated at the time the page
was requested.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 435

Figure 11-9. Viewing trace information in the trace viewer

Figure 11-10. Viewing details of the Default.aspx page tracing information

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING436

How It Works

When tracing is enabled at the application level, the server records the tracing information
for pages most recently visited. The trace viewer makes this trace information available after
the event.

This trace recording is totally transparent and doesn’t require any special intervention by
the user; it just happens as users request pages. When you want to take a look at the tracing
information captured by the server, just open a browser and navigate to trace.axd. In fact, you
can actually access the trace viewer by using any URL that begins with the application direc-
tory and ends with the filename trace.axd, so something as random as http://localhost/
FriendsReunion/f1/f2/trace.axd will also do the job.

Note that there’s no such file as trace.axd in your application. What happens here is
that the request is intercepted by a specialized HTTP Handler that responds by showing the
recorded tracing information, instead of going to disk to look for the specified file name.

■Note An HTTP Handler is a piece of code that gets a chance to work with HTTP requests at a basic level.
To learn more about the topic, refer to Pro ASP.NET 1.1 in VB .NET, by Steven Livingstone and John Timney
(Apress; ISBN: 1-59059-352-9) or the MSDN article at http://msdn.microsoft.com/msdnmag/issues/
02/09/HTTPPipelines/.

Tracing and Assertions in .NET
In a chapter about debugging, we really should take a look at some of the other features (aside
from the ASP.NET-specific ones) in the .NET Framework that can help you to debug your appli-
cations. In this section, we’ll describe how you can benefit by using assertions in your code.

An assertion is a statement in the programming code that enables you to test your
assumptions about your application. Each assertion contains a Boolean expression that
you believe to be true when the assertion executes:

• If the expression evaluates to true, your assumption about the behavior of your appli-
cation is confirmed, increasing your confidence that the application is free from errors.

• If the expression evaluates to false, an error will be thrown, and you will need to check
what went wrong and made your assumption fail.

For example, if you write a method that calculates the age of a person, you might assert
that the result is greater than 0 and less than 120.

If you include additional code to use assertions, will that added code have an impact on
the performance and code size of your application? No, because all assertion code is compiled
only when you create a debug build; for release builds, it is automatically discarded. This
means you can use assertions to write robust code, without affecting the performance and
code size of your final application.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 437

Using Assertions in .NET Code
The .NET Framework provides an entire namespace, called System.Diagnostics, which is ded-
icated to diagnosing applications. The tracing and assertion mechanisms are implemented by
the Trace and Debug classes, respectively. The two classes are almost identical, providing the
same properties, methods, and method overloads. The only difference is that any code that
uses the Debug class is compiled only for debug builds, while code written using the Trace
class is compiled for both debug and release builds.

■Tip The System.Diagnostics namespace contains very powerful classes that will allow you to manage
system processes, performance counters, and event logs. We recommend that you browse the documenta-
tion for these classes at http://msdn.microsoft.com/library. They’ll come in handy very often.

The Trace class works in a similar way to the TraceContext class you used in the previous
example. One significant difference is that, by default, the Trace class will send its output to
the Output window, instead of directing it to the rendered page. Also, an important (and
slightly inconvenient) difference between the Trace.Write() and Debug.Write() methods
and the TraceContext.Write() method is that the order of arguments is inverted! The former
methods expect the message text to be provided before the category name, while the latter
expects the category to come first.

Where could we use assertions in Friends Reunion? Let’s take a look at the first lines for
the Render() method of the FriendsBase.vb file:

Protected Overrides Sub Render(ByVal writer As System.Web.UI.HtmlTextWriter)
...
' Get a reference to the form control
Dim form As HtmlForm = CType(Page.Controls(1), HtmlForm)

Note that this code grabs a reference to the control at index (1) in the Page.Controls col-
lection and assigns it to the form variable, but it does so without checking that it really is a
reference to the type of control we need there. The rest of the code in that method depends
on the assumption that the variable form really does refer to a control of type HtmlForm.

How could the form fail to be there? It should be there for a page newly created in VS .NET,
but a developer might delete it in the course of editing the .aspx page (perhaps because the
developer didn’t need an HtmlForm control at all) or include some other controls before
it (which would cause the desired HtmlForm control to be at an index higher than 1 in the
collection).

One way to solve this would be to modify the code so it doesn’t depend on the HtmlForm
control being positioned at an exact index. However, if we do that, it could affect the rest of
our logic. So, we’ll preserve the current code and instead use an assertion to ensure that the
expression Page.Controls(1) really does refer to a control of type HtmlForm.

Try It Out: Add an Assertion You’ll use an assertion in the Friends Reunion application to ensure
you always have an HtmlForm control exactly at index (1) in the Page.Controls collection, so
the rest of the logic will work as expected. You will add a new page to display legal information
about the use of the application.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING438

1. Using VS .NET, add a new web form and name it LegalStuff.aspx. Then edit its
code-behind file to make it inherit from the custom FriendsBase class instead of
System.Web.UI.Page:

Public Class LegalStuff
Inherits FriendsBase

2. Now you need to alter the default HTML created by VS .NET for your page. Open
LegalStuff.aspx in the HTML view and delete the entire <form> element (you won’t
need it in this page). Then add the following code:

<html>
<head>
<title>LegalStuff</title>
<link href="Style/iestyle.css" type="text/css" rel="stylesheet">

</head>
<body ms_positioning="FlowLayout">
<asp:label runat="server" id="Label1">Legal Stuff</asp:label>

<asp:label runat="server" id="Label2">
If you notice this notice you will notice
that the notice is not worth noticing.

</asp:label>
</body>

</html>

3. Open FriendsBase.vb and add the following Imports statement:

Imports System.Diagnostics

4. Still in FriendsBase.vb, edit the Render() method of the FriendsBase class to add the
assertion code:

Protected Overrides Sub Render(ByVal writer As System.Web.UI.HtmlTextWriter)
' Remove the controls from their current place in the hierarchy
Page.Controls.Remove(_header)
Page.Controls.Remove(_subheader)
Page.Controls.Remove(_footer)

Debug.Assert(_
TypeOf Page.Controls(1) Is HtmlForm, _
"Form control not found", _
"Any FriendsReunion page requires that a form tag be " + _
"the first child of the page body.")

' Get a reference to the form control
Dim form As HtmlForm = CType(Page.Controls(1), HtmlForm)
...

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 439

5. Check the solution configuration drop-down list in the toolbar (or select Project ➤
Properties) to make sure that your project’s configuration is set to Debug.

6. Set LegalStuff.aspx as the start page and press F5 to start the application in the
debugger. A new instance of Internet Explorer will open, showing the Login page for
Friends Reunion. Log in to the application, and you will be automatically redirected
to the LegalStuff.aspx page. However, the page will fail, and you’ll see an unpleasant
error message, as shown in Figure 11-11.

Figure 11-11. The Legal Stuff page fails.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING440

7. In VS .NET, look at the Output window (press Ctrl+Alt+O to open it, if necessary).
It should look like Figure 11-12.

How It Works

Using the Debug.Assert() method, you have asserted that the control at index [1] of the
Page.Controls collection should always be of type HtmlForm:

Debug.Assert(
TypeOf Page.Controls(1) Is HtmlForm, _
"Form control not found", _
"Any FriendsReunion page requires that a form tag be " + _
"the first child of the page body.")

In the first argument, you specify the Boolean condition you expect to evaluate to True at
runtime if everything is working correctly. The Is operator does exactly that by checking the
type of the object at the left and comparing it with the one at the right (HtmlForm).

This assumption should be True in order for the application to continue to run, because
subsequent code expects it to be that way. If this assertion is not True, you can’t guarantee how
your application will perform—at best, you might get some strange rendering; at worst, there’s
the rude possibility of exceptions being thrown and your application terminating abruptly (as
in this case).

When you started debugging Friends Reunion and requested the LegalStuff.aspx page
(which doesn’t include a <form> element), your assertion code was eventually executed, and
the Boolean expression evaluated to False. This caused the message text to be output to the
debugger’s Output window.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 441

Figure 11-12. The Output window with debug information about the assertion

The VS .NET Debugger
We’ve looked at a number of different methods for debugging applications, but we haven’t
yet looked at any debugging software. Let’s round off this section with a look at the VS .NET
debugger.

The VS .NET debugger takes many web developers into new territory. It’s the first tool
that enables you to debug a web application using techniques similar to those you would use
when debugging a traditional (Windows) application. In VS .NET, all you need to do in order
to start the debugger is press F5.

One of the most tedious problems found with previous versions of the debugger was
its inability to detach from a running process without killing it. For a web application, if the
debugger kills the process used to run the application, any state information will be lost.
Now, thanks to the Common Language Runtime (CLR), the debugger can detach from a
process without killing it. All you need to do is select Debug ➤ Stop Debugging or click the
Stop Debugging button in the Debug toolbar.

The VS .NET debugger allows you to debug across different languages, as well as to debug
multiple processes across machines. Besides these new features, there is more good news:
many of the features that have been previously available only when debugging traditional
applications can be used now for debugging web applications!

The VS. NET debugger offers several useful windows: Breakpoints, This, Locals, Autos,
Watch, and Call Stack. In the following sections, you’ll see how these windows help you debug
your applications.

Managing Breakpoints
In the VS .NET debugger, you can mark any line of code with a breakpoint. When the applica-
tion runs in the debugger and reaches a line that has a breakpoint, it causes the execution to
pause. When the application has paused like this, it is said to be in break mode. With the appli-
cation in break mode, you can perform a number of activities. For example, you can examine
the values of variables and object properties, and you can even change these values.

You can also ask the debugger to continue execution one line at a time, stepping through
or over subroutines as you desire. Stepping through the code like this is a particularly useful
technique, because it allows you to watch the code, observing the values contained in vari-
ables’ object properties, in “slow motion,” and use this analysis to spot semantic coding errors.

To set a breakpoint in the code, click in the gray margin to the left of the line where you
want execution to pause, or position the cursor over the line you’re interested in and press F9.
You’ll notice that a red filled circle appears, giving a clear indication that a breakpoint has
been set and is enabled at that point, as shown in Figure 11-13.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING442

Figure 11-13. A breakpoint set in code

It’s often useful to have a few breakpoints in different places in your code. To allow you to
manage your breakpoints, the VS .NET debugger provides the Breakpoints window, shown in
Figure 11-14. To view the Breakpoints window, select Debug ➤ Windows ➤ Breakpoints or
press Ctrl+Alt+B. Using this window, you can perform the following tasks:

• Add and remove breakpoints.

• Enable and disable breakpoints. (A disabled breakpoint will keep its place in the code,
but won’t pause execution when execution reaches that line of code.)

• Set the properties of a breakpoint.

■Tip To remove all your breakpoints in a single step, press Ctrl+Shift+F9.

Figure 11-14. The VS .NET debugger’s Breakpoints window

In the next few examples, you will get some hands-on experience using the VS .NET
debugger to set breakpoints in the Friends Reunion application.

Try It Out: Set a Breakpoint in the VS .NET Debugger You’ll start by creating a breakpoint that causes
the application to pause whenever a request for an already authenticated user is about to be
processed.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 443

1. Open the code-behind file for Global.asax. Find the following line in the
Application_AuthenticateRequest() method:

con = New SqlConnection(_
ConfigurationSettings.AppSettings("cnFriends.ConnectionString"))

2. Set a breakpoint at this line, by clicking the gray margin to the left of the code
(adjacent to that line), or by placing your cursor on the line and pressing F9.
You should see the breakpoint indicator, as shown in Figure 11-15.

Figure 11-15. Setting a breakpoint in the Application_AuthenticateRequest() method

3. Press Ctrl+Alt+B to view the details about this breakpoint in the Breakpoints window.

4. In the Solution Explorer, right-click Default.aspx and select Set As Start Page.

5. To run the application in the debugger, press F5. A new browser instance will open,
pointing to the Friends Reunion Login page. Enter the usual credentials (user name
and password apress).

6. Click the Login button to submit the login request to the application. This will cause
focus to switch to the VS .NET debugger, and you will see that yellow highlighting is
used to show the line with the breakpoint on it.

Don’t stop the application yet; we’ll continue from here in the next exercise. But first, let’s
see what has happened so far.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING444

How It Works

Because you chose to run the application in the debugger, execution will pause whenever it
reaches any line that has an enabled breakpoint. That’s exactly what happens here: when the
application receives the login credentials, it begins to process them. As part of that process,
the application needs to execute the line on which you placed the breakpoint. When the appli-
cation reaches that line, it does not execute it; instead, it pauses, as shown in Figure 11-16.

Figure 11-16. Execution paused at a breakpoint

The debugger highlights the progress it has made by using yellow highlighting (in the
code) and a yellow arrow (in the gray area to the left). At this point, the application is in break
mode, and the debugger is awaiting further instructions.

Note that you can do a lot with a breakpoint by changing its behavior. To view the proper-
ties of a breakpoint, select it in the Breakpoints window and click the Properties button in
the Breakpoints window, or right-click the line with the breakpoint set and select Breakpoint
Properties. You’ll see the Breakpoint Properties dialog box, as shown in Figure 11-17. Of
particular interest are the Condition and Hit Count buttons at the bottom of this dialog box.
Clicking the Condition button allows you to specify a condition that will be evaluated when
the breakpoint is hit, and whose result will determine whether or not the execution is paused
at that breakpoint. For example, you may want the Friends Reunion application to halt only
when a user belonging to the Admin group is logged in. Clicking the Hit Count button allows
you to specify the number of times a breakpoint must be hit before it pauses the application.

Inspecting Application State
One of the most important features a debugger has to offer is the ability to examine the inter-
nals of the application being debugged. The VS .NET debugger includes several windows that
show this information (accessible through the Debug ➤ Windows menu):

• Me window: Displays the values of the current object being debugged. Figure 11-18
shows an example of the Me window opened at the breakpoint set in the previous
exercise.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 445

Figure 11-17. Viewing a breakpoint’s properties

Figure 11-18. The VS .NET debugger’s Me window

• Locals window: Shows all variables declared and available in the current execution
context, including the Me reference. Figure 11-19 shows an example of the Locals
window opened at the breakpoint set in the previous exercise.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING446

Figure 11-19. The VS .NET debugger’s Locals window

• Autos window: Shows only those values and properties actually used in your code. This
is a good way to have an overview of the values your code will be working with, and the
Autos window, shown in Figure 11-20, is generally more useful than the Locals window.

Figure 11-20. The VS .NET debugger’s Autos window

• Watch window: Allows you to add any expression you want and watch its value as you
debug. This is by far the most flexible window for debugging. The debugger offers four
Watch windows, named Watch 1, Watch 2, and so on. These are provided to make it
easier to debug large applications, so you can group related variables into different
windows and focus on the variables you need at a given time. Figure 11-21 shows the
Watch 1 window, which is empty when you first open it. The Name column is where
you type the expression you want to evaluate. When you do that, its value and output
type appear in the Value and Type columns.

Figure 11-21. The VS .NET debugger’s Watch 1 window

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 447

You can use the Watch window while debugging to check the current value and output
type of any variable or expression. More important, the Watch window is the only one that
also allows you to modify a variable’s value. This is a very powerful technique to use when
debugging. It allows you to try different values for a variable and watch the execution path
to see how the application responds, without repeatedly restarting the application. In this
chapter, we’ll use the Watch 1 window (and we’ll refer to it as just the Watch window).

■Note The features of the other debugger windows are similar to those of the Watch window, but they
have fixed items. Although we’ll focus on the Watch window here, keep in mind that, except for the ability
to add your own expressions, the other debugger windows offer mostly the same features.

Try It Out: Step Through an Application with the Watch Window Open Remember how we left the
Friends Reunion application in break mode at the end of the previous exercise? Well, we’ll pick
it up from there, and use the Watch window to check the current values of some variables in
the application.

1. Open a Watch window (select Debug ➤ Windows ➤ Watch ➤ Watch 1 or press
Ctrl+Alt+W, then 1). You’ll use it to watch the connection string for the SqlConnection
object.

2. Type the name of the variable as well as the property to show in the Name column:
con.ConnectionString. The Watch window will show an error because the line declar-
ing the variable (where you’re paused right now) hasn’t been executed yet. Therefore,
the variable and its property don’t exist yet.

3. Return to the code window. The VS.NET debugger should show yellow highlighting
and the yellow arrow to indicate the next line to be executed.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING448

4. Let’s run the next few lines of code step by step. You can select Debug ➤ Step Over for
each step, but it’s easier to use the shortcut, F10. So, press F10 once. This causes the
highlighted line to be executed. VS .NET now pauses the execution before the next line
(and the yellow highlighting and arrow have moved to reflect that).

5. Return to the Watch window. It is updated automatically to reflect the fact that the
value of the con.ConnectionString property is now valid, as the SqlConnection con-
structor set it with the value passed in.

6. Now let’s add a watch for the roles variable. Find a place where the roles variable is
used in the code (look within the Try block of the method), right-click the variable, and
select Add Watch. This will place a new entry in the Watch window. In the Value col-
umn, you can see an error indicating that roles is not declared. That’s okay; in fact, it’s
what you would expect, because you’re watching a variable that hasn’t been defined
yet! You’ll be using it in the next example.

7. Press F10 a few more times, but stop before the following If clause is executed.

8. It would be really handy if you could tell whether the expression CBool(admin) = True is
going to evaluate to True or False before you executed the line. You can do this quickly,
using the QuickWatch window. Select the full expression for the condition (just the

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 449

expression and not the brackets that enclose it), right-click it, and select QuickWatch.
This will cause the QuickWatch window to open, as shown in Figure 11-22. This window
works similarly to the Watch window, showing the expression you’ve selected and what
the expression evaluates to.

Figure 11-22. The QuickWatch window

9. Close the QuickWatch window, and then press F10 one more time. You’ll see that the
expression really does evaluate to True, because the execution enters the If statement.

Again, don’t stop the debugger just yet; we’ll continue this exercise soon.

How It Works

You can see how the Watch window can help you to get information about what’s happening
inside the application. It can stay open all the time, so you can watch variables and expres-
sions to see how their values change as the execution progresses. A value will be shown in red
if it was changed as a result of the last executed step.

The QuickWatch window works in roughly the same way as the Watch window, but it’s
modal. This means that you can step through the application with the Watch window open,
but not with the QuickWatch window open.

The roles variable is not a simple object; in fact, it’s an array of objects. How does the
Watch window cope with things like complex objects and arrays? You’ll find out in the next
example, in which you’ll also see how to use the Watch window to change the value of a vari-
able during the debugging process.

Try It Out: Change a Variable Value in the Watch Window You left the Friends Reunion application in
break mode at the end of the previous example, so you’ll pick it up from there again and do
some more tasks with the Watch window.

1. Find the following line in the Application_AuthenticateRequest() method, a few lines
down from the If block discussed in the previous example:

ppal = New GenericPrincipal(Context.User.Identity, roles)

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING450

2. Right-click this line and select Run to Cursor. This will cause the application to execute
a few steps further, as far as this line.

3. Check the value of roles in the Watch window. You have just stepped over the line
that assigns the roles variable, so you should now be able to see that roles is of type
String() (an array of strings) with two strings. There’s a + icon at the left of the variable
name, which indicates that the type being watched is not a simple type. You can watch
the values contained within roles by clicking the + icon.

What does this show? Well, you logged in as the user named apress, and this user is an
administrator user. Thus, it belongs to both the User and Admin groups, and hence has
two roles. These are the two roles shown here.

4. Now let’s edit the value of the roles variable. In the Watch window, change the value of
roles(1) (the string at index (1) in the array) from Admin to Guest (keep the enclosing
quotation marks), and then press Enter. Look at the Watch window.

5. Press F5. This will cause the application to continue its execution from the point where
you just left off, using any new values you inserted in the Watch window in the previ-
ous step. Notice the absence of the link to the Users Administration page, as shown in
Figure 11-23.

How It Works

In break mode, the Run to Cursor option in the context menu is a handy way of getting the
application to execute as far as a certain point. It’s particularly useful when the only other way
of reaching the desired point is by pressing F10 repeatedly.

Of particular interest is the way in which values changed in the Watch window can alter
the way the application behaves halfway through its execution. You can see evidence of this
by looking at the way the application uses the value of roles(1). First, the process in the exer-
cise will log you in as an administrator user. That’s because when the application is stepped
through the lines of code that oversee the login process, the value of roles(1) is Admin.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 451

Figure 11-23. The link to the Users Administration page is gone.

However, in Figure 11-23, the page doesn’t display the Users Administration Page link
(which is usually displayed to any administrator user). Why is that? Well, you may recall
from Chapter 10 that this line of code (in Default.aspx.vb) is where the application decides
whether to show that link:

' Show the Admin link only to administrators
this.lnkUsers.Visible = Context.User.IsInRole("Admin")

However, you changed the value of roles(1) (in step 4) before the application executed that
line. When this line is executed, the expression User.IsInRole("Admin") returns False, and so
the link remains invisible.

Seeing the Call Stack
When you call a method that calls another method, which in turns calls another method,
and so on, a call stack is created. It’s very useful to be able to see the call stack, which is what
the VS. NET debugger’s Call Stack window shows. This window has information about each
method: its name, parameter types, and parameter values. As well as giving you a good idea
of the path your code has taken, it also allows you to navigate forward and backward in the
stack to debug at any place.

The Call Stack window is available only while the application being debugged is in break
mode. To see it, select Debug ➤ Windows ➤ Call Stack or press Ctrl+Alt+C.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING452

Try It Out: Use the Call Stack Window Let’s see the Call Stack window in action while debugging
Friends Reunion.

1. Open the NewUser.aspx.vb file (in the Secure folder). Add a breakpoint at the first line
of the InsertUser() method, by clicking on the gray margin to the left of the code
(adjacent to that line), or by placing your cursor on the line and pressing F9.

Notice a red dot is added to that line indicating the active breakpoint. There’s no need
to remove the trace statements you added in previous examples, because they will not
affect this example.

2. Set Secure/NewUser.aspx as the start page and press F5 to launch the application.
A new browser will open with the Secure/NewUser.aspx page showing.

3. Fill in the registration form and click the Accept button. The focus should switch to the
VS .NET debugger.

4. Open the Call Stack window by pressing Ctrl+Alt+C. Notice that the first line shows
that execution is stopped at the InsertUser() method, as expected. The previous line
in the Call Stack window shows what path the code took to finally get to this method,
as well as the method parameters.

How It Works

The breakpoint that you placed at the start of the InsertUser() method causes the application
to pause at that point when you’re running it using a debugger. After requesting the registra-
tion form, filling in the required data, and clicking the Accept button, the application’s path of
execution eventually leads to the InsertUser() method, hits the breakpoint, and pauses.

At this point, the application is in break mode, so you can access the Call Stack window.
The Call Stack window reveals how the application got to the InsertUser() method: the sec-
ond line in the Call Stack window shows that the btnAccept_Click() method was executed just
previously and is the method that called the InsertUser() method.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 453

Furthermore, the btnAccept_Click() method itself must have been called by some other
method. In order dig into that <Non-user Code> line, you can right-click anywhere in the win-
dow (except its title) and check the Show Non-user Code option. This will show you the entire
code path, right back to the beginning of it all, as shown in Figure 11-24.

Figure 11-24. When the Show Non-user Code option is selected, the Call Stack window shows the
entire code path.

As shown in Figure 11-24, you can see that the method responsible for calling
btnAccept_Click() is a method named Button.OnClick(), which is the dispatcher for Click
events of the Accept button you clicked after filling in the form. You can see this method
named on the third line of the Call Stack window, after btnAccept_Click(). You can also check
that Button.OnClick() was called by RaisePostBackEvent(), which is the method called by
.NET on noticing that this Button control has an event to process.

Armed with these few pieces of debugging functionality, you’re in a good position to go
hunting for bugs, and that’s what we’ll talk about next.

Hunting for Bugs
Suppose the support team for the Friends Reunion application has received a number of
e-mail messages lately from different people, reporting that they can’t register successfully
on the site. Typically, these users didn’t say much about what they experienced when the site
failed on them. The only information they provided when contacting support was that they
accessed the site, clicked the Register link, filled in the registration form, and clicked the
Accept button—and the next thing they saw on the browser was a custom error page.

Using the VS .NET debugger, we can perform a debug session and try to reproduce the
error and locate the problem.

Try It Out: Locate Bugs in an Application We need to know what is happening in Friends Reunion
to be able to respond to the e-mail enquiries of people who can’t register successfully. Our
strategy will be to reproduce (as closely as possible) the actions taken by one of the users who
couldn’t register.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING454

1. Open the NewUser.aspx.vb file (in the Secure folder). Press Ctrl+Shift+F9 to clear all
breakpoints at once.

2. In the InsertUser() method, which is the method that controls the addition of new
users, set a breakpoint on the line just before the con.Open() method call.

This breakpoint will allow you to pause execution of the application just before the
database code executes, and hence step through that code and see whether it’s causing
a problem. This should help you to determine what may be wrong, or at least elimi-
nate some possibilities.

3. Set Default.aspx as the start page. Press F5 to start debugging the application. A new
browser instance should open, pointing to the Friends Reunion home page.

4. Click the Register link to navigate to the registration form. Fill out the form, using
exactly the same data used by one of the users who contacted us:

• User Name: pjenkins

• Password: tucker

• First Name: Peter

• Last Name: Jenkins

• Address: 3768 Georgetown’s Way

• Phone Number: 345-449-9481

• Mobile Number: 459-498-2031

• E-Mail: peterjenkins@apress.com

• Birth Date: 1/5/64

5. After completing all the fields, click the Accept button to submit the information.
Execution of the application will pause at the line where you placed the breakpoint,
and the focus will automatically shift to the VS .NET debugger.

6. Let’s start by looking at what the variables are holding, just to check that everything
is as you expect. Place the cursor over the values variable, right-click, and select
QuickWatch. The QuickWatch window should open, as shown in Figure 11-25. Here,
you can check that the data you entered in the registration form is the same data that
that application is handling now. This is as expected.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 455

Figure 11-25. The QuickWatch window showing variable values

7. In the Expression field of the QuickWatch window, type sql, and then click the Recal-
culate button. The QuickWatch window will now show the value for the sql variable.
You can check it quickly, but you shouldn’t find anything wrong. Everything continues
to be as expected.

8. Type con.ConnectionString in the Expression field of the QuickWatch window and
click the Recalculate button. Again, the results are as expected. It was worth examining
all these things, because even though they didn’t reveal a problem, each one elimi-
nates another possibility. Close the QuickWatch window for now.

9. Press F10 a few times to get to the cmd.ExecuteNonQuery() method call. In this line, you
are calling the code that accesses the database.

This line is in a Try block, so if anything goes wrong within this method, the code will
jump to the Catch block just below it. (We’ll look at Try and Catch blocks and excep-
tions in the next section of this chapter.)

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING456

10. Press F10. This causes the cmd.ExecuteNonQuery() call to be executed, and the execu-
tion pointer does move to the Catch block! So, something does go wrong during the
ExecuteNonQuery() method call.

11. Press F10 one more time to enter the Catch block and examine the e variable, which
holds the exception that has been raised. Move the cursor next to the e variable, right-
click, and select QuickWatch. Your output should look like Figure 11-26. A quick look at
the Exception object’s Message property will reveal a clue: SQL Server is not happy with
the SQL text near the character s, and it says that you haven’t provided a closing quota-
tion mark.

Figure 11-26. Using the QuickWatch window to inspect the exception Message property

12. Let’s check the value of sql again. Type sql into the Expression field and press Enter
to examine it more closely, as shown in Figure 11-27. In fact, there is a syntax error in
the SQL here! The problem arises because the value of the Address field contains a
single quotation mark, and you are not properly escaping it. Thus, the string has an
odd number of quotation marks. The syntax of this SQL is incorrect, and so SQL Server
is unable to parse it.

13. Let’s test if this diagnosis of the problem is correct. Place the cursor in the line that
caused the exception: the cmd.ExecuteNonQuery() method call. Right-click it and select
Set Next Statement from the context menu. This will cause the execution to return to
this point. The yellow arrow will move accordingly. (You can also grab the yellow arrow
and drag it with the mouse to the line you want to execute next.)

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 457

Figure 11-27. The QuickWatch window with sql variable information

14. Open the Watch window (Debug ➤ Windows ➤ Watch ➤ Watch 1). Type cmd.CommandText
in the Name column and press Enter. The statement you’re about to execute again will
appear in the Value column. Click this value to edit it, and then delete the quotation
mark embedded in the Address field, as shown here.

15. After getting rid of the suspicious quotation mark, press Enter to save the new edited
value. It will change to a red font.

16. Press F10. This time, the Catch block is not executed and you go directly to the Finally
block, which is normal, to close the connection. This means you have caught the bug!
Now you need to code a fix for it.

17. Stop the debugging of the application by selecting Debug ➤ Stop Debugging (or by
clicking the Stop Debugging button in the Debug toolbar).

18. Edit the NewUser.aspx.vb file to use the Replace() method to escape any quotation
mark that may be entered by the user filling in the form:

' Save new user to the database
Dim values As New ArrayList(11)

' Escape any quotation mark entered by the user
txtLogin.Text = txtLogin.Text.Replace("'","''")

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING458

txtPwd.Text = txtPwd.Text.Replace("'","''")
txtFName.Text = txtFName.Text.Replace("'","''")
txtLName.Text = txtLName.Text.Replace("'","''")
txtPhone.Text = txtPhone.Text.Replace("'","''")
txtMobile.Text = txtMobile.Text.Replace("'","''")
txtEmail.Text = txtEmail.Text.Replace("'","''")
txtAddress.Text = txtAddress.Text.Replace("'","''")
txtBirth.Text = txtBirth.Text.Replace("'","''")

' Optional values without quotes as they can be the Null value
...etc...

19. Save this code and run the application again. You should find that single quotation
marks in any of the fields no longer cause a problem.

How It Works

By having the chance to run the suspect code one step at the time while checking the status of
key variables, you were able to determine exactly what was going on. The QuickWatch window
proved very useful in allowing you to examine the value of any variable. Meanwhile, the Watch
window allowed you to make a change to one of your variables and see how the application
continued to run with the changed value. You also used the ability to move the execution
point back in order to test fixes, which was essential to determine if your understanding of
the problem was accurate, as well as if the solution worked.

Once you had identified the bug, it was easy to write a few lines of code to fix it.

Exceptions
An exception is a violation of an implicit assumption made by your code. For example, sup-
pose that your application contains code to open a file that it depends on, but it doesn’t first
check that it can actually open the file. Here, your application is making an implicit assump-
tion that the file will always be accessible. What happens if, when the code executes, it cannot
access that file (for example, because it’s missing or because the application doesn’t have
enough privileges to access it)? The underlying .NET Framework class responsible for opening
the file recognizes the reason why it can’t open the file, and it throws an exception.

When an exception is thrown, the exception dictates the application’s subsequent execu-
tion path:

• If the application is able to catch the exception, then it will. For this to happen, the
application must contain special exception-handling code. This kind of code is gener-
ally designed both to catch the exception and to handle it in a controlled way.

• If the application is unable to catch the exception, then it will bubble it up and eventu-
ally be caught by the CLR. This will result in an unfriendly exception message appearing
on the page in the browser. This is the most undesirable result, and the one you want to
avoid.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 459

Of course, in the example of the code that opens a file, you could code the application to
check that the file is accessible before it tries to open it, and to take an alternative execution
path if the file is inaccessible. Then a missing file would no longer be an unexpected occur-
rence, and no exception would be thrown. But realistically, it’s impossible to code for all of the
many things that can go wrong. Your code should also be ready to catch general exceptions
thrown as a result of unexpected situations.

So, in fact, the example above tells us two things:

• When it’s possible, we should avoid implicit assumptions in our applications, by writ-
ing code in our applications to anticipate places where things can go wrong and check
for them.

• We should also include exception-handling code in our applications, in order to deal
with those exceptions that we cannot anticipate.

It’s clear from the discussion so far that exceptions are a good way to deal with unex-
pected situations and errors (in particular, input errors) such as missing files, unexpected user
input, and network failures. However, it’s also worth noting that not all exceptions are thrown
in this way. In fact, .NET also allows you to throw exceptions deliberately, so you can force the
application to throw an exception in reaction to an expected problem.

In the remainder of this chapter, we’ll talk about exceptions: throwing them, catching
them, and handling them.

Exception Handling
We’ve talked a little about throwing and catching errors, and in this section, you’ll see some
examples in code. The ideas of throwing and catching are simple:

• When the application throws an exception, it’s saying, “Hey! Something is up. Maybe
some rule was violated here. Someone needs to deal with this right away!”

• When the application catches the exception, it’s saying, “Okay, I’m ready to handle this
violation right now. Let me deal with it.”

In VB .NET, four keywords are used when dealing with exception handling: Try, Catch,
Finally, and Throw.

Throwing Exceptions
From the point of view of the application code, there are two ways an exception can be thrown.
The first is illustrated by the example described earlier, in which your application charges a
.NET Framework class object with a task (such as opening a file), but the object cannot com-
plete the task. It then tries to inform the calling application of the problem by throwing an
exception.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING460

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 461

EXCEPTIONS AND RESULT CODES: A COMPARISON

To appreciate the power of exceptions, it’s useful to look at them in the light of older error-handling tech-
niques. A common technique used in the absence of exceptions is that of the result code. The concept of a
result code is quite simple. Method A calls Method B, and when Method B finishes executing, its return value
(the result code) is a coded value (usually an integer) that indicates what happened during its execution. Then
Method A must interpret the coded return value and act accordingly. For years, developers have used this
technique for their error handling. If you have some experience in programming in the Windows environment,
you’re probably familiar with the idea of watching for functions that return FALSE, calling the GetLastError
function, and dealing with HRESULT codes.

The result code technique suffers from two major limitations. One is that a result code is not
descriptive. A result code is commonly expressed using a simple type (such as an integer). So, for example,
a result code that represents an error generally doesn’t provide any detailed information about the error. If a
client method receives an invalid argument error result code, all you can say for sure is that an argument is
invalid; there’s no way to tell which of the arguments was invalid or at what point the error happened.

The other problem is that it’s easy to ignore a result code. If Method A calls Method B, it’s Method A’s
responsibility to check the return code returned by Method B, and to act on it. So, it’s the responsibility of the
developer who writes Method A to ensure that it tests the result code of every method it calls. This is really
tedious; moreover, it produces code that is hard to read (because it becomes bloated with condition-checking
statements all over the place). It’s very easy for developers to become undisciplined, and that undermines the
purpose of result codes. In short, result code methodology produces code that is hard to maintain and limited
in capability.

By embracing exceptions and exception handling, the .NET Framework tackles the limitations of result
codes head-on. The following are the key characteristics that make exceptions a far superior methodology
for handling errors for your applications:

• Exceptions contain detailed information. An exception contains a lot of useful information that can
be used at runtime to judge how best to handle situation that caused it. This information is also helpful
at development/testing time: it includes information about the source of the exception, a stack trace,
and the exact source line at which the exception was thrown. With all this information, you should be
able to easily identify and fix bugs.

• Exceptions cannot be ignored. If your application throws an exception and doesn’t handle it, the
exception will ultimately be caught by the CLR. There’s no room for undisciplined coding, because
the exception methodology is far less forgiving, and consequently your code will be more robust.

• Exception-handling code is more manageable. With result codes, you dealt with the result of each
method immediately after the method call, which meant you had result-handling code all over your
code files. In contrast, you can collect all exception-handling code for a page in one place in the file.
If something goes wrong, the CLR will catch up and direct execution to the handling code. That makes
the code faster and easier to maintain.

• Cleanup code is more manageable. Just like the exception-handling code, the cleanup code can go
in a single place in the file. Moreover, you can rely on it always being executed.

If you’re used to using result codes, it means a change of habit. However, exceptions are such a power-
ful technique that the effort required to learn a little about exceptions and exception handling will be effort
well spent. The benefits you will see in your code are quite significant.

Alternatively, the application itself can throw an exception. To do this, use the Throw key-
word. For example, suppose you have a method called CalculateDiscount() that expects a
parameter of type Double, which must be a nonnegative value. You can write code in this
method to check the value passed, and throw an exception if the value is negative:

Public Sub CalculateDiscount(ByVal money As Double)
If money < 0
Throw new ArgumentException("money", _
"The money parameter can't be less than zero")

...
End Sub

Catching Exceptions
How do you catch an exception once it has been thrown? First, the exception must be thrown
from within a Try block, or it won’t get caught at all. If the exception is thrown from within a
Try block, it will be caught if there is an associated Catch block that recognizes the type of
exception thrown.

For example, you can call the CalculateDiscount() discount method from within a
Try block like this, and include a Catch block that is ready to catch exceptions of type
ArgumentException:

Try
CalculateDiscount(a)
CalculateTax(a)

Catch e As ArgumentException
' here we handle the exception...

End Try

The Try block is used to enclose all the code that may throw exceptions. Note that there
are just two lines in the Try block in this example, but you can add as many lines of code as
you want.

The Try block is used to enclose all the code that may throw exceptions. In this example,
there are two method calls in the Try block. If either method call results in an exception of
type ArgumentException, the execution will immediately switch to the associated Catch block,
which will catch and handle the exception. This is the way in which you collect exception-
handling code into a single location in the file, and hence improve the maintainability of
your code.

Cleaning Up
The Finally keyword allows you to specify a block of code that will always execute, whether
or not an exception is thrown. The Finally block, if you include one, goes just after the Catch
blocks.

Usually, you will place your cleanup code in this block, so you can be sure that the proper
cleanup is done and the state of your application continues to be consistent, even when an
exception is thrown.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING462

Try It Out: Improve a Simple Exception-Handling Block Let’s take a look at an exception-handling
block already coded into Friends Reunion. Armed with your new knowledge about exceptions,
you will try to improve it.

1. Open the NewUser.aspx.vb file and look at the Try and Catch blocks in the InsertUser()
method:

Try
cmd.ExecuteNonQuery()

Catch ex As SqlException
Trace.Warn("FriendsReunion", _
"An exception was thrown: " + ex.Message)

doredirect = False
lblMessage.Visible = True
lblMessage.Text = _

Finally
' Ensure connection is closed always.
con.Close()

End Try

2. Add two more Catch blocks after the existing one, as follows:

Catch ex As SqlException
Trace.Warn("FriendsReunion", _
"An exception was thrown: " + ex.Message)

doredirect = False
lblMessage.Visible = True
lblMessage.Text = _
"Insert couldn't be performed. User name may be already taken."

Catch ex As OutOfMemoryException
doredirect = False
lblMessage.Visible = True
lblMessage.Text = "We just run of out memory, " + _
"please restart the application!"

Catch ex As Exception
doredirect = False
lblMessage.Visible = True
lblMessage.Text = "Couldn't update your profile!"

Finally

How It Works

First, let’s take a look at how the code worked before you made the change. The Try block
shown contains any lines of code that may throw an exception. In this case, there’s just one
line of code, which contains a call to the ExecuteNonQuery() method:

Try
cmd.ExecuteNonQuery()

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 463

When the application is executing and reaches the Try block, it just steps into the Try
block and executes whatever code it finds within.

If an exception is thrown at any point, execution immediately jumps out of the Try block,
and the CLR starts to look for a way for the exception to be handled. In this case, there is a
Catch block that accepts an exception of type SqlException. This is a specific exception thrown
by SQL Server. So, this Catch block will be used to handle only that type of exception:

Catch ex As SqlException
...

Any other kind of exception will be propagated back to the caller; that is, it will be an
unhandled exception. Regardless of whether or not an exception is thrown, the database con-
nection that was opened earlier in the page must be closed. This is your cleanup code:

Finally
con.Close()

End Try

In this code, you have just a single Catch block, which will catch SQL execution excep-
tions. The problem is that different types of exceptions require different handling, and you
must be prepared for them. Right now, you’re simply ignoring them. What you need is to fur-
ther identify the type of exception that is thrown and have different Catch blocks to handle
these different types of exception in different ways. That’s what you’ve started to do here.
Instead of one Catch block, you now have three:

Catch ex As SqlException
...
lblMessage.Text = _
"Insert couldn't be performed. User name may be already taken."

Catch ex As OutOfMemoryException
...
lblMessage.Text = "We just run of out memory, " + _
"please restart the application!"

Catch ex As Exception
...
lblMessage.Text = "Couldn't update your profile!"

Finally

The first Catch block handles only exceptions of type SqlException. The SqlException
class inherits from the base class for all exceptions, the Exception class. SqlException is a spe-
cial type of Exception that is created when the SQL Server .NET data provider comes across
an error generated by the database. Within this Catch block, you can write special exception-
handling code for this type of exception. (In this case, to keep it simple, we just customized
the error message to reflect what we’ve detected.)

The next Catch block handles only exceptions of type OutOfMemoryException. This type of
exception occurs when the application server doesn’t have enough memory left to continue
executing the application. Again, you have special code within this Catch block to handle this
type of exception; this code is different from the code in the first Catch block.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING464

You’ve written exception-handling code in anticipation of a database error or out-of-
memory error, but what if the Try block code throws a different type of error? You’ve added a
final generic Catch block to catch those, as every exception will inherit from the Exception
class. This Catch block needs to contain more generic exception-handling code, because you
cannot be sure exactly what the problem is.

■Note You could omit the final Catch block. In that case, exceptions of types other than SqlException
and OutOfMemoryException would not be caught here, but would be passed up the call stack to the method
that called InsertUser(). If that method couldn’t handle the exception, it would be passed to the next level
of the call stack, and so on. If it is not caught when it reaches the top of the call stack, it is passed to the CLR.
In that case, the user gets an unfriendly message on the browser page, and your application ends!

When an exception is thrown, at most one of these Catch blocks will be used to handle it.
The order of these three Catch blocks is important because it acts as a filter. An exception of
type SqlException will be caught by the top Catch block, not the bottom one.

■Tip You could make more improvements here. In the first Catch block, you could examine the properties
of the SQLException object, ex, to find out more about what error occurred within the database, and you
could handle different types of database errors in different ways within that Catch block.

Defining Custom Exceptions
The exception types you’ve seen so far are classes provided by the .NET Framework. When
you’re writing a complex application like Friends Reunion, it can be useful to devise your own
system of custom exceptions that contain detailed information about the kinds of errors that
are specific to the domain of your application.

Try It Out: Create Custom Exceptions You’ll create a couple of custom exception classes here, to
see how it’s done, and then in subsequent examples in this chapter, you’ll use them to good
effect.

1. Create a new class file to the project (using Add ➤ Add Class), and call it
FriendsReunionException.vb. Change the code so that the class inherits from
ApplicationException, and so that it has two constructors, like this:

Public Class FriendsReunionException
Inherits ApplicationException

Public Sub New()
End Sub

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 465

Public Sub New(ByVal message As String, ByVal inner As Exception)
MyBase.New(message, inner)

End Sub

End Class

2. Add another new class file to the project, and call this one
DuplicateUsernameException.vb. Change the code in this class so that it
inherits from FriendsReunionException and has two constructors, like this:

Public Class DuplicateUsernameException
Inherits FriendsReunionException

Public Sub New()
End Sub

Public Sub New(ByVal message As String, ByVal inner As Exception)
MyBase.New(message, inner)

End Sub

End Class

How It Works

The FriendsReunionException class will serve as the base class for any custom exceptions you
define for the application. Having such a class will allow you to write a generic Catch block to
catch any custom exception type defined by your application (and thus differentiate them
from exceptions thrown by the .NET Framework). It inherits from the .NET Framework class
called ApplicationException, a generic exception thrown when a nonfatal application error
occurs, which itself inherits from the more generic Exception class.

The DuplicateUsernameException class is an application-specific exception class that
you’ll use to handle errors caused when a user tries to register using a user name that already
exists in the database. It inherits from the FriendsReunionException class you just created.

Each of these classes contains two constructors. The more interesting one in each case is
the one that contains two arguments. Its purpose will become clear in the next example.

You’ve used Microsoft’s recommendation by appending the word Exception to each of
your exception classes, and by deriving them from the ApplicationException class.

Now it’s time to see these classes in action.

Rethrowing Exceptions
When handling an exception within a Catch block, it is sometimes useful to be able to perform
a few important handling tasks within that Catch block and then rethrow the exception so
that it may be caught and handled by a different Catch block (which then performs its own
exception-handling tasks). It can even be advantageous to catch one type of exception, per-
form your handling tasks, and then rethrow it as a different type of exception—usually a more
specific one that will provide additional information about the type of exception being thrown.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING466

Custom (application-specific) exception types can have a big part to play in this. You may
catch a generic exception, identify how it relates to the application, and then rethrow it as an
application-specific exception so that it can be handled appropriately.

Try It Out: Rethrow Exceptions Let’s see how this works with a custom exception type.

1. Modify the exception-handling code of the InsertUser() method in NewUser.aspx.vb
as follows:

Try
cmd.ExecuteNonQuery()

Catch ex As SqlException
If ex.Number = 2627 Then
Throw New DuplicateUsernameException("Can't insert record", ex)

Else
doredirect = False
Me.lblMessage.Visible = True
Me.lblMessage.Text = "Insert couldn't be performed. "

End If
Catch ex As OutOfMemoryException
...

2. Add the following code to the btnAccept_Click() method, in the same file:

Private Sub btnAccept_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnAccept.Click
If Page.IsValid Then
Trace.Write("FriendsReunion", "Page data was validated ok")
If Context.User.Identity.IsAuthenticated Then
UpdateUser()

Else
Try
InsertUser()

Catch ex As DuplicateUsernameException
lblMessage.Visible = True
lblMessage.Text = _
"You are trying to register using a user name that has " + _
"already been taken by someone else. " + _
"Please choose a different user name. "

End Try
End If

Else
lblMessage.Text = "Fix the following errors and retry:"

End If
End Sub

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 467

How It Works

In the btnAccept_Click() method, you’ve placed the InsertUser() method call into a Try block.
Now if the InsertUser() method throws an error, the associated Catch block stands a chance of
catching it. You’re looking in particular for exceptions of type DuplicateUsernameException here:

Try
InsertUser()

Catch ex As DuplicateUsernameException
... etc ...

End Try

Within the InsertUser() method, you’ve changed the first Catch block so that it examines
the properties of the SqlException exception before deciding what to do next:

Catch ex As SqlException
If ex.Number = 2627 Then
Throw New DuplicateUsernameException("Can't insert record", ex)

Else
doredirect = False
Me.lblMessage.Visible = True
Me.lblMessage.Text = "Insert couldn't be performed. "

End If

Here, you’re checking the type of error generated in the database. If the error number is
2627, it means that the “unique index” constraint in the database has been violated. In this case,
that means that the user is trying to register with an existing user name. You have a custom,
application-specific exception class for this situation: the DuplicateUsernameException class.
You rethrow the exception as this new type, so that up the call stack, the btnAccept_Click()
method can catch it and handle it accordingly. If the error number is not 2627, then some other
database-related error has taken place, and you report a more generic error.

Note that you use the DuplicateUsernameException constructor with two arguments. The
first argument is a string that contains a message relating to the exception, and the second is
the exception object that was caught by this Catch block. This allows information from the
original exception to be available in the place where the rethrown exception is handled.

Back in the btnAccept_Click() method, the DuplicateUsernameException is caught and
handled using exception-handling code designed specifically for that type of exception

Catch ex As DuplicateUsernameException
lblMessage.Visible = True
lblMessage.Text = _
"You are trying to register using a user name that has " + _
"already been taken by someone else. " + _
"Please choose a different user name. "

End Try

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING468

Unhandled Exceptions
What happens when an exception is not handled in the hierarchy of calling methods or by
some .NET Framework code? In this case, the exception is said to go unhandled and will be
caught by ASP.NET, which will deal with the unhandled error by rendering a page that displays
details of the unhandled exception.

Displaying a Custom Error Page
Ideally, you should try to write exception-handling code so that every exception is handled
within the application. But just in case an exception does bubble all the way up the call stack
to the CLR, it would be better to show a friendly error page to your users than the default one
provided by ASP.NET. For this purpose, ASP.NET provides two events that will be called when
an exception is unhandled:

• The Page_Error event provides a way to trap errors occurring at the Page level.

• The Application_Error event provides a way to trap errors occurring within your
code. The application-wide scope of this event also makes it an ideal place for adding
logging code.

If you provide handlers for both events, they both will be executed: first Page_Error and
then Application_Error. But in some circumstances (depending on how your application is
coded), it may be appropriate that errors handled in Page_Error don’t get to Application_Error.
In such cases, you can use the Server.ClearError method after handling the error in
Page_Error, thus causing the last error to be cleared and avoiding the Application_Event call.

Try It Out: Create a Custom Error Page In this example, you will use an ASP.NET error-handling
feature to redirect to a friendly page in the situation when an exception goes unhandled.

1. Create a new web form and name it CustomError.aspx. Edit its code-behind file
(CustomError.aspx.vb) to make the CustomError class inherit from FriendsBase
instead of Page:

Public Class CustomError
Inherits FriendsBase

2. While you’re still in CustomError.aspx.vb, add the following lines to the Page_Load()
method:

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
MyBase.HeaderMessage = "An error has been found!"
MyBase.HeaderIconImageUrl = "~/Images/error.gif"

End Sub

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 469

3. Drag-and-drop the stylesheet used in your application onto the web form designer
surface to link to it.

4. Switch to the HTML view of CustomError.aspx and add some friendly error message
within the <form> element:

<form id="CustomError" method="post" runat="server">
<p>

An error has been found...

</p>
<p>
We have detected an error in the Friends Reunion website.

If this error persists, please contact our support team...
</p>

</form>

5. After creating the custom error page, you need to tell ASP.NET to show that error page
instead of the default error page. To do this, edit the <customErrors> element of the
Web.config file for the application like this:

<configuration>
<system.web>
...
<customErrors defaultRedirect="CustomError.aspx" mode="On" />
...

</system.web>
</configuration>

6. Now you need some code that explicitly throws an exception, so you can test that the
custom error page works properly. To do this, edit LegalStuff.aspx.vb by adding this
code to the Page_Load() method:

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
Throw New NullReferenceException

End Sub

7. Set LegalStuff.aspx as the start page and press Ctrl+F5. A new browser instance will
open with the Login page for Friends Reunion. Log in, and you will be automatically
redirected to LegalStuff.aspx. You should see the page shown in Figure 11-28.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING470

Figure 11-28. The custom error page

How It Works

When an exception is neither handled by the exception-handling code in the application nor
cleared in the Page_Error() or Application_Error() event handlers, ASP.NET will check the
<customErrors> element of the Web.config file to see whether a default error page has been
specified for your application, through the defaultRedirect attribute. If it finds one, it will
transfer execution to that page; if not, it will transfer execution to the default error page, which
displays all the information about the unhandled exception.

Note that you also changed the mode attribute from RemoteOnly to On, so that you can see
the custom error page, even when executing on the local machine. With that new value, the
custom page is always shown. If you wanted to still get the detailed, default error page show-
ing the complete exception when running the application locally, you would leave the
previous RemoteOnly value.

Logging Exceptions to the System Event Log
You have successfully shown the user a customized message. However, in order for your sup-
port team (that may be you!) to diagnose the error and determine its cause, you need a way to
permanently store the error information for later analysis. Windows provides the event log for
that purpose. The event log is a central location, which can also be accessed remotely, that
stores logs for all applications that wish to write to it. ASP.NET applications can also do so, by
using the System.Diagnostics.EventLog class.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 471

There is one caveat, though: the first time an application logs an event, an event source
must be created for it. This task requires administrative privileges, unlike subsequent log
actions. For security reasons, the ASP.NET worker process account doesn’t have these permis-
sions. Therefore, the first call to write an entry in the event log (and all subsequent ones) will
fail because the event source for your application cannot be created. In Chapter 13, we will
discuss deployment options in .NET and how you can create this event source at installation
time. For now, we can use the following workaround:

1. Open the Administrative Tools ➤ Computer Management tool.

2. Select the Users node inside Local Users and Groups, from the System Tools node.

3. Double-click the ASPNET account.

4. On the Member Of tab, add the Administrators group. Then click OK in the dialog box.

What you have done is increase the account permissions to allow for the automatic cre-
ation of the event source the first time you write an entry to the event log. You must restart
IIS in order for this change to have effect. You can do so by running the iisreset command
(either by using Start ➤ Run or the command line).

Needless to say, you must remove this permission after you’ve completed the next “Try It
Out”!

Now let’s see the code to actually write to the event log.

Try It Out: Log Exceptions to the System Event Log We mentioned earlier that the Application_Error()
event handler is an ideal place for adding application-wide logging of errors. It’s ideal because it
receives unhandled exceptions raised anywhere in your code, not just on a specific page. Let’s see
how to code this.

1. Open the Global.asax.vb file, and edit the Application_Error() method as follows:

Public Class Global
Inherits System.Web.HttpApplication
...
Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)
System.Diagnostics.EventLog.WriteEntry("FriendsReunion", _
Server.GetLastError().InnerException.ToString(), _
System.Diagnostics.EventLogEntryType.Error)

End Sub
...

End Class

2. That’s all the code required! Press F5 to run Friends Reunion. Log in to the appli-
cation, and then navigate to LegalStuff.aspx (which still has the code to throw a
NullReferenceException in its Page_Load() method).

3. Open the Event Viewer (Control Panel ➤ Administrative Tools ➤ Event Viewer) and
click the Application log. A list of the last application events recorded should be dis-
played. Locate the one whose Source column shows FriendsReunion and double-click
it. You’ll see the log shown in Figure 11-29.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING472

Figure 11-29. Writing to the System event log

How It Works

You are handling the Application_Error event, which is called by ASP.NET when an exception
goes unhandled. Thanks to the great EventLog class provided in the System.Diagnostics
namespace, you need just one line of code to write to the System event log. Note that you’re
not clearing the exception (there’s no call to Server.ClearError), so ASP.NET will then check
Web.config for information about a default error page, and if it finds one, it will transfer execu-
tion to it.

Because you granted increased permissions to the ASP.NET account, you get the
FriendsReunion event source (the fourth column in the Event Viewer right pane) automati-
cally. The elevated permissions are needed only for the first entry written.

■Caution Do not forget to remove the Administrators group you added to the ASPNET account!

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING 473

Finally, note that because you are using debug builds, you get full information from the
Server.GetLastError().InnerException.ToString() method call, including the location of the
failing code and the full stack trace.

Summary
Developers need to deal with different types of errors in different ways, and the .NET Frame-
work has a fine array of features that help you to do just that. Syntax errors are caught by the
compiler, as are some semantic errors. Input errors and other semantic errors get through the
compiler or don’t occur until runtime.

You can use a number of different diagnostic techniques to find and fix as many of these
runtime types of errors as possible at design-time:

• ASP.NET provides a tracing mechanism that allows you to trace specific aspects of the
application, as well as see a lot of basic data by default.

• The VS .NET IDE provides a powerful debugger, with many windows that allow you to
pause execution, watch and change the values of variables, and go through the applica-
tion one step at a time.

• The .NET Framework provides a network of generic and specific exception classes, and
the opportunity to build your own custom exception classes. The VB .NET language
provides the functionality that allows you to catch and throw exceptions.

Some of these techniques are also useful for checking out problems when the application
goes live. The exception-handling techniques continue to be useful, because they can help the
application to deal with most unforeseen situations gracefully. You can also run the tracing
mechanism quietly in the background of a live application if necessary, to find out more infor-
mation about specific problems—which is very handy because the debugger cannot help you
in a live situation.

You are armed with a good understanding of the different types of errors and how to deal
with them at design-time and runtime, and you should be able to write a bug-free application.
When it’s written, you’ll need to put it through some heavy testing in order to measure how it’s
performing and what areas can be improved. And that’s exactly what we’re going to cover in
the next chapter.

CHAPTER 11 ■ DEBUGGING AND EXCEPTION HANDLING474

Caching and Performance
Tuning

Since Chapter 3 of this book, we’ve been building a realistic web application from scratch.
In the course of developing the Friends Reunion application, you’ve had hands-on experience
dealing with web forms, user controls, database access, XML Schemas, state, authentication,
and so on. You now have a complete web application working on your desktop PC. You can
test it over and over again, and it will work as expected.

In this chapter, you’ll prepare to take your Friends Reunion application out of the rela-
tively safe confines of your desktop PC and into some real-world scenarios. You’ll put it under
some stress to see how well it is likely to perform in a live environment with many concurrent
users, and you’ll look for areas that you can enhance in order to make it perform even better.
If you’re thinking that we’ve already tested this application and wondering what needs
improvement, read on—there’s always room for improvement!

In this chapter, we’ll cover the following topics:

• What it means to “improve an application’s performance”

• Performance monitoring tools and some useful load-testing techniques

• How different types of caches (in different locations) can be used to get different effects

• How to use ASP.NET output caching and data caching to get some performance
improvements

• How to control viewstate

• Other tips for improving resource usage, including using server-side transfers, avoiding
unnecessary web controls, disabling session state, and improving database access

What Is Good Performance?
What do we mean when we say that an application “has good performance”? Ultimately, it
comes down to the experience of the user. If your application is capable of supporting the
requisite number of concurrent users, and each user experiences acceptable response times,
then your application is performing adequately.

475

C H A P T E R 1 2

■ ■ ■

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING476

So, any definition of “good performance” is relative, because it depends on the require-
ments of the system (in terms of number of concurrent users, the activities they perform, and
expected response times). An application that performs well under a regular load of 20 con-
current users may not perform well when the load increases to 100 users, and the application’s
resources are more stretched.

Since this chapter is about performance tuning (or essentially, improving the performance
of an application), we need to address what it means to “improve” an application’s perform-
ance. Given what we’ve already said, it follows that any performance improvement is about
changing the application so that it can support greater numbers of concurrent users, and/or
so that each user experiences improved response times.

So how do you improve an application’s performance? Well, performance is restricted only
by the available resources and the way the application uses them, so there are two obvious
ways to improve performance:

• Increase the resources available to the application (more memory, broader network
connections, and so on).

• Find the places in the application that make inefficient use of existing resources
(or bottlenecks) and improve resource usage in those places.

Obviously, the second of these options is the most interesting one from our perspective.
As we said, we know that Friends Reunion performs fine on a local machine with a single user,
but to discover its weaknesses, we need to examine how our system’s resources cope when the
application runs under more stressful conditions. So, much of this chapter will be about mon-
itoring aspects of our application’s performance, locating bottlenecks, and doing something
about them. Of course, we cannot examine the whole application in one chapter. We’ll focus
on a few places, identify some optimizations, and demonstrate some important techniques
along the way.

You can think of performance as a characteristic of your application. A good understanding
of performance-optimization techniques in ASP.NET is useful knowledge to apply right from
the time you start designing your application. It’s often easier and more effective to apply such
techniques to the design than to try to fit them retrospectively. But there are usually improve-
ments that can be made, even when you’ve finished the build, and with a little judicious stress
testing, you’ll be able to find out just how well the application really does perform under stress.

Performance Monitoring
In order to make judgments about the performance levels of your application, you’ll need to
do some monitoring, and for that, you’ll need some tools. Windows XP, Windows 2000, and
later versions provide two tools that help you to monitor the resource usage of the system:
the Task Manager and the Performance Console.

The Task Manager (opened by pressing Ctrl+Alt+Del and clicking the Task Manager button)
is most commonly used to provide a list of the applications running on your machine, and the
processes and memory used by those applications. It also provides readings on CPU, page file
usage, and other characteristics of resource usage. Most readers will already be familiar with the
Task Manager—it’s what you turn to whenever you need to kill a nonresponding application.

Although it provides some useful statistics on how different areas of the system are performing,
it is designed more for managing the applications on your system. It’s not really intended to be
used for serious performance-measurement purposes.

So let’s turn our attention to the second of these tools. The Performance console, usually
referred to as PerfMon, is actually composed of two tools: the System Monitor and the Perfor-
mance Logs and Alerts. Together, they provide detailed data about the resources used by
specific components of the operating system and by programs that were developed with
the collection of performance data in mind.

The System Monitor is of particular interest to us here. It allows you to monitor many
different aspects of the system, providing different real-time views (graphs, histograms, and
reports) that help you to see how your system is performing.

Configuring the System Monitor in PerfMon
To start up the System Monitor, select Start ➤ Control Panel ➤ Administrative Tools ➤
Performance (or just select Start ➤ Run and type perfmon). The Performance console
should appear immediately, as shown in Figure 12-1.

Figure 12-1. The Performance console

■Note If you’re running Windows XP or Windows 2003, the Performance console will look similar to
Figure 12-1. If you’re running Windows 2000, it will look similar except that the Windows 2000 version
doesn’t automatically set up the three different-colored graphs in the area on the right side of the window.

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING 477

The System Monitor monitors use of resources as they change over time. The display
shown in Figure 12-1 shows the System Monitor taking readings of three metrics (called
performance counters) and plotting those readings against time on the graph.

Performance data is defined in terms of objects, counters, and instances. A performance
object is any resource, service, or application that can be measured in some way. The proces-
sor and paging file on your system are two examples of such a resource; they are various
aspects of the processor’s activity and the paging file’s activity that you can monitor over time.

Any given performance object has a number of different aspects that could be of interest.
Each of these aspects is called a performance counter. Every performance object has its own
collection of performance counters. For example, the processor object includes ten different
counters that represent different aspects of its activity, including one for measuring the propor-
tion of time the processor spends working (% Processor Time), and another for measuring the
proportion of time it spends dealing with deferred procedure calls (% DPC Time). Figure 12-1
shows the three performance counters that you get by default if you’re using Windows XP
or 2003:

• The Memory object’s Pages/sec counter

• The PhysicalDisk object’s Avg. Disk Queue Length counter

• The Processor object’s % Processor Time counter

■Note If you’re working in Windows 2000, and you can’t see any counters yet, be patient: we’re going to
configure the System Monitor for our own purposes in a moment.

In some cases, the notion of a performance counter can be further dissected. If your sys-
tem has more than one application, resource, or service of the same type, you can represent
each of these by its own performance instance. For example, if your system has two hard disks,
the System Monitor still provides only one PhysicalDisk performance object, but each of the
counters has three instances: one for each drive and one (called _Total) to represent the sum
total drive usage over both the drives.

There are many performance objects, which come from many different sources. Aside
from the performance objects built into the operating systems, some other programs install
their own performance objects. For example, Microsoft SQL Server installs its own set of per-
formance objects, each of which comprises a collection of performance counters that you can
use to monitor the internals of the database engine. So, it may come as no surprise that when
you install the .NET Framework, you also install performance objects for the CLR and for
ASP.NET. These allow you to monitor various aspects of the activity of the CLR and ASP.NET,
to see what’s going on while your ASP.NET application is running.

Adding Counters
To set up the System Monitor to show performance counters and instances, right-click
anywhere in the right-pane of the System Monitor and select Add Counters. You’ll see the Add
Counters dialog box, as shown in Figure 12-2. Select an object from the Performance object

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING478

list. Then select one of the counters from the counters list, and (if there is an option) select
one (or all) of the instances in the instances list. In Figure 12-2, we’ve chosen the % Disk Time
counter of the PhysicalDisk object and selected to watch the C: drive instance.

Figure 12-2. Adding a counter in the System Monitor

In this chapter, we’ll focus on using seven performance counters: five of these relate to
ASP.NET, one relates to CLR, and one relates to the processor.

Try It Out: Configure the System Monitor for Key Performance Counters Let’s configure PerfMon so
that it shows all seven performance counters. Then you’ll be able to use it to monitor the
Friends Reunion application as it executes.

1. If you haven’t done so already, open PerfMon (select Start ➤ Run and type perfmon)
on the machine that’s running the Friends Reunion application. Make sure the System
Monitor details pane is shown on the right; if not, click the System Monitor item under
Console Root in the left pane.

2. If there are any counters already showing, remove them, so you can start with a clean
slate. To do this, select one of the items in the table under the graph, and click the
Delete button in the toolbar (the one with an X) to delete it. Repeat this for each of
the items in the table.

3. Now you’re ready to add the counters of interest. Click the Add Counters button (the
one with a plus sign), or right-click and select Add Counters, to open the Add Counters
dialog box (see Figure 12-2). Select the Use local computer counters radio button.

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING 479

4. In the Performance object drop-down list, select ASP.NET. When you do this, the contents
of the Select counters from list box (immediately below) will change accordingly, so that it
shows all the counters that are made available by the ASP.NET performance object.

5. In the Select counters from list box, choose the Applications Restarts counter, as
shown in Figure 12-3, and click the Add button.

Figure 12-3. The ASP.NET performance object counters

6. Repeat the procedure to add the following six counters (shown in performance
object\counter\instance format, where applicable):

• ASP.NET\Requests Queued

• ASP.NET\Worker Process Restarts

• ASP.NET Applications\Errors Total_LM_W3SVC_1_Root_FriendsReunion
(or similar)

• ASP.NET Applications\Requests/sec_LM_W3SVC_1_Root_FriendsReunion
(or similar)

• Processor\% Processor Time\Total

• .NET CLR Exceptions\# of Exceps Thrown\aspnet_wp

■Note In order to see the _LM_W3SVC_1_Root_FriendsReunion instance, the site must be running. If it’s
not, just navigate to the http://localhost/FriendsReunion site.

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING480

7. Close the Add Counter dialog box. You should be able to see all the selected counters at
the bottom of the right pane. Each counter is represented by a different colored line.

8. Open your browser and start surfing Friends Reunion. Browse the pages and generate
load on the server. Perform some different activities within the application (registering
a new user, logging in, accessing different pages, logging out, and so on). The System
Monitor will show how your seven monitored counters perform, as in the example in
Figure 12-4.

Figure 12-4. The seven counters added to the System Monitor

■Note You’ll probably find that your counters don’t give exactly the same results as those shown in
Figure 12-4. But the results shown at the moment are really not what we’re concerned with right now. They
will become more interesting when you start to generate a heavier load on the server (that is, more than just
one user!).

9. Save these settings by selecting File ➤ Save As. This way, you can easily reload this set
of counters at a later time.

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING 481

How It Works

The ASP.NET performance object contains global-only counters that are not related to appli-
cations but to the ASP.NET engine itself. The ASP.NET Applications performance object
includes per-application counters. When you select one of these counters, you can monitor
the entire server, or select which instance of the counter you’re interested in (there is one
instance for each application). It was not possible to get this level of granularity in pre-.NET
versions of ASP, because the counters available related to the activity of the entire server.

Here are the seven counters we’ve chosen to monitor:

• ASP.NET\Application Restarts: Shows the number of application restarts. An applica-
tion could restart for a number of reasons. For example, as you saw in Chapter 6,
ASP.NET forces an application restart whenever a modification is made to a configura-
tion file or dependent file. Ideally, this counter should be zero. If it’s not, you may need
to start hunting for the code that is causing your application to restart (for example, if
the Web.config file is configurable via an administration page in your application).

• ASP.NET\Worker Process Restarts: Shows the number of worker process restarts.
ASP.NET may periodically restart the worker process as a proactive measurement
against memory leaks and other bugs that may affect performance. This is normal
behavior, commonly referred to as scheduled recycling. You need to keep an eye on
those process restarts that are not caused by scheduled recycling but by errors in
your application.

• ASP.NET\Requests Queued: Shows the number of requests that are waiting to be
processed. If this counter starts to climb in proportion to the number of concurrent
requests, it means your application is receiving more concurrent requests than it is
able to handle. Note that you can adjust the maximum queue length by setting the
requestQueueLimit attribute of the processModel element in the Machine.config file;
the default setting is 5000.

• ASP.NET Applications\Errors Total: Indicates the total (cumulative) number of errors
that the application has generated. The output value for this counter should be zero.
If it isn’t, you should identify and fix the errors before you continue testing.

• ASP.NET Applications\Requests/sec: Shows how many requests the application is serv-
ing per second. This counter should remain fairly constant and within a “safe” range in
relation to a constant load. If this counter shows regular troughs, it may be because the
server is also required to perform other tasks (such as garbage collection) or because
some other software running on the server is affecting performance. To correct this
behavior, you will need to investigate what tasks your server is performing and try to
minimize them.

• Processor\% Processor Time: Shows how much processor time is being consumed by
the application. You can expect this counter to increase with load. If it doesn’t, your
application is probably using multithreading features of some kind and suffering from
a problem called contention.

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING482

• .NET CLR Exceptions\# of Exceps Thrown: Shows the number of exceptions that are
being thrown by the application. In terms of resources, exceptions are expensive. It’s
helpful to know where (and why) your application throws exceptions, and this counter
helps you to be aware of them. Although the output for this counter is not necessarily sup-
posed to be zero, you need to keep an eye on it, just to make sure it doesn’t go too high.

Although the last two counters are not ASP.NET-specific, they are still very important in
helping you to measure your application’s performance.

There is an abundance of performance counters available. The seven counters listed here
constitute some of the key counters that can help you to measure a web application’s per-
formance, but they are just a small subset of the many counters available. For example, the
two performance objects provided by ASP.NET alone provide more than 60 counters. The CLR
alone already provides 10 performance objects (with a total of more than 80 counters!).

In the Add Counters dialog box, you may have noticed at least two extra performance
objects whose names contain the .NET version number:

These are intended to support the side-by-side execution features of the CLR and ASP.NET.
These objects contain counters that will apply only to that particular ASP.NET version. The
unique set that doesn’t contain any version information in its name will apply to the highest
version installed.

It’s well worth spending some time with PerfMon to familiarize yourself with some of
the other counters. PerfMon provides a handy explanation of each counter (you can view the
explanation by clicking the Explain button in the Add Counters dialog box). Of course, the
more counters you learn about, the better armed you will be when it comes to the performance-
testing process.

■Tip Just as other programs provide their own custom performance objects and counters, it’s also possible
to write custom performance objects for your own applications. This is a potentially powerful way to create
tools to measure details that are specific to your application. For example, if you’re particularly interested in
monitoring the number of users registered per minute, you can do that using a custom performance counter.
To learn more about developing and monitoring your own custom performance objects and counters, refer to
Performance Tuning and Optimizing ASP.NET Applications, by Jeffrey Hasan and Kenneth Tu (Apress, 2003;
ISBN: 1-59059-072-4).

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING 483

Avoiding External Overhead
Although it may be nice to have a real-time graph that shows how aspects of your system are
performing, you need to be aware that the process of collecting and displaying this information
is itself a process that consumes server resources! Of course, you should try to keep monitoring
overhead to a minimum. The whole idea is to not overload your system with external tools like
monitoring, screensavers, and the like, which affect the accuracy of the readings.

One way to reduce the load is to control the frequency with which the System Monitor
takes sample ratings. To do this, display the System Monitor Properties dialog box (by clicking
the Properties button in the toolbar) and select the General tab. Near the bottom of the dialog
box, you’ll see the Sample (or Update) automatically every x seconds option, as shown in
Figure 12-5. The higher you set this value, the longer the System Monitor will wait between
samples. This will reduce the amount of processing work that the System Monitor has to do,
which may be necessary if your current hardware cannot cope with the required processor
power.

Figure 12-5. You can adjust the frequency of System Monitoring sampling through the
Properties dialog box.

Another slimmer approach, which will consume even fewer resources, is to avoid using
the System Monitor at all, and to use the counter logs instead. You’ll find the counter logs
under the Performance Logs and Alerts node of the Performance console. Here, you can still
specify all the counters you want to measure, and their performance data will be recorded
silently (no fancy graphics this time!) to a log file from which you can later generate various
reports (for example, in Microsoft Excel, using the comma-separated value output format).

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING484

So, now you’ve set up the System Monitor to monitor the resources your application is
using. To get some useful results, you need to monitor the resources in a realistic testing
scenario. This is the subject of the next section.

Performance Testing an Application
It’s important to think of your ASP.NET application as a real piece of software, just like any
other software you’ve ever written, and to test it in all the same ways. Of course, there are a lot
of different types of testing processes you can (and should) apply to a piece of software during
the course of its development. For example, two main types of software testing are functional
testing and load testing.

Functional testing is about checking that the application conforms to the design specifi-
cations. You want to verify that each module performs its tasks correctly, that there are no
broken or missing links, that client-side scripts run smoothly, that web pages look fine on
every different browser you intend to support, and so on.

Load testing is about simulating the amount of load that the application needs to be able
to support, and checking that the server can handle that load properly (and without implica-
tions such as memory leaks). As you’ll see, you can use special tools to simulate large amounts
of user activity, and hence reproduce the necessary load. Load testing falls fairly naturally into
two areas:

• Performance testing: This involves incrementally increasing the load on the server
while it can properly handle it, with the objective of finding out the maximum number
of requests per second your server can handle without degradation.

• Stress testing: This is about subjecting the server to a greater amount of load than it is
capable of handling. The objective here is to make the server break, so that you can find
out how it behaves in such a situation. Although you are not expecting the server to
handle the overload, you do want the server to behave in a decent manner (for example,
without any data loss or corruption).

In this chapter, we’re particularly interested in performance testing. We’ll place reasonable
levels of load on the server to see how well it copes with that load and to identify bottlenecks,
with a view toward improving the overall resource usage of our application. To do this, you’ll
use the performance objects you’ve configured in the System Monitor. You’ll also need a way to
simulate a number of end users browsing the Friends Reunion application simultaneously.
That is the purpose of the Web Application Stress tool.

Installing the Web Application Stress Tool
In order to generate amounts of load on your server that you could not generate by other
means, you can use a tool that is specifically designed for that job. In this chapter, we will
use Microsoft’s Web Application Stress (WAS) tool. There are two reasons for choosing WAS
here: it is simple to use, and it is available for free. You can use this tool to simulate a specified
number of users, to specify the pages these simulated users will be surfing, and so on. At
the time of writing, WAS is freely available from http://www.microsoft.com/downloads/
details.aspx?FamilyID=e2c0585a-062a-439e-a67d-75a89aa36495. It’s about 9.5MB in size.

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING 485

Before you install WAS, it’s worth considering on which machine you should put this tool.
If you don’t have a couple of networked PCs, then you can follow the exercises in this chapter
by running WAS, the Friends Reunion web application, and the database server on the same
machine. However, when you run WAS, it will take up most of the resources of the machine
that it runs on, so you should be aware that your results will be skewed by the fact that WAS is
using resources that would usually be available to the web application.

If you do have access to a couple of machines, and you can take advantage of this, you’ll
get much more realistic results. Keep one machine for the Friends Reunion web application
and database server, and install WAS on the other one. (In this case, it makes sense to think of
the former as the server machine and the latter as the client machine.)

The installation process is straightforward. The download consists of a single file, called
setup.exe. Just run this file and follow the on-screen instructions of the installer.

Although WAS is not officially supported by Microsoft, the product comes with a very
complete online help that should aid you in getting started using it. You can also read the
guide at http://www.microsoft.com/technet/itsolutions/ecommerce/maintain/optimize/
d5wast_2.mspx to learn more about it.

■Tip Microsoft also has a more recent tool, called Application Center Test (ACT), which supersedes
WAS. ACT is supported by Microsoft, but it’s not free. It does come bundled with VS .NET (but only the
Enterprise Architect and Enterprise Developer editions). It provides enhanced features, such as a complete
reporting capability and integration with the VS .NET IDE. You can learn more about ACT at http://
www.microsoft.com/applicationcenter/.

Generating a Realistic Set of Data
To get an even greater approximation of reality, you should expand the amount of data in the
database you’re using. It currently holds just a few users, but once it gets established, you
would expect it to hold information about hundreds of people. To do this, you’ll run a little
script to insert some extra data into the database.

Try It Out: Insert Sample Data into the Database You’ll run a SQL script that performs 1,000 loop
iterations, adding one new user into the User table each time. You’ll find this script in the
downloadable code for this book (available from the Downloads section of www.apress.com),
within the folder that contains this chapter’s code.

1. Get the file sp_Fill_User.sql and place it in a folder somewhere handy on your hard
disk (say, C:\temp).

2. Start up a command window and navigate to the folder where you placed
sp_User_Fill.sql. Now run the following command:

C:\temp>osql -S server -d FriendsData -E -i sp_Fill_User.sql

So, if your database server is called CLARIUS, then you should type:

C:\temp>osql -S CLARIUS -d FriendsData -E -i sp_Fill_User.sql

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING486

You can also use (local) as the server name if you’re running it locally.

3. In VS .NET, open the Server Explorer, browse to your FriendsData database, and check
the content of the User database table. You should find 1,000 new rows.

How It Works

The .sql file contains a simple SQL script that runs through a loop 1,000 times, adding a new
user to the database table with each iteration:

DECLARE @cnt int
SELECT @cnt = 0
DECLARE @u varchar(15)

WHILE @cnt<1000 BEGIN
SELECT @cnt = @cnt + 1
SELECT @u = 'user' + CAST(@cnt as varchar)

INSERT INTO [User]
VALUES(NEWID(), @u, 'mypassword', 'Carlos', 'Garcia Saccone', GETDATE(),

'(999) 999-9999', '(999) 999-9999', '7th. Avenue 1234, NY, USA',
'cgs@clariusconsulting.net', 0)

END

Admittedly, all of the new users will have the same personal details, but each user does
have a unique ID, so this data should be sufficient for our purposes.

Preparing a Performance Test with a Simulated Load
Over the next few pages, we’ll set up and perform a performance test. Specifically, we’ll simu-
late a situation in which a number of Friends Reunion administrator users perform a couple
of simple tasks: logging in to the application, and then browsing to the Users Administration
page to manage the list of current users.

First, we’ll need to write the test script. This is a document that describes the requests that
each simulated user will perform. Then we’ll set up the monitoring criterion in WAS. Finally,
we’ll run the test.

Try It Out: Create the Test Script To begin, you’ll write the test script using the WAS script-writing
tool. You should have already installed WAS on your “client” machine, as described earlier in
the “Installing the Web Application Stress Tool” section.

1. Open WAS (on your “client” machine) by selecting Start ➤ Programs ➤ Microsoft Web
Application Stress Tool.

2. You’ll see a dialog box that asks you what you want to do, as shown in Figure 12-6.
Select Record (this option allows you to navigate to the site while WAS records your
actions and generates a script to reproduce them).

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING 487

Figure 12-6. The WAS Create New Script dialog box

3. Next, you will be prompted with a dialog box that allows you to customize the creation
of the script, as shown in Figure 12-7. We won’t use any of these options in this example
(although we’ll examine these options in the following “How It Works” section). For
now, just click the Next button to continue.

Figure 12-7. WAS options for customizing your script

4. Next, you’ll see a preparation dialog box. If you’re ready to start recording the test
script, click Finish.

5. Immediately, a new browser instance will open. You’ve started recording! Go to the
browser and enter the URL for your Friends Reunion application (the Default.aspx
page). Log in as usual (using the user name and password apress), so that you get to
the home page.

6. Click the Users Administration Page link. You should see a grid of current users.

7. Click in the WAS window (but don’t close the browser window just yet). Your WAS
window should look something like Figure 12-8.

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING488

Figure 12-8. The WAS window with the recorded script

8. Click the Stop Recording button. The Recording window will close (although it won’t
cause the opened browser instance to close automatically).

9. The WAS tool will display the Scripts window. In it, you will see a new item named New
Recorded Script. It’s a good idea to change its name to something more meaningful.
Change the script’s name to FRSimpleAdminScript, as shown in Figure 12-9.

10. Set the Server field to the one hosting your Friends Reunion application. If you’re
hosting Friends Reunion on the same machine that is running WAS, you don’t need
to make a change here (localhost is the default). If you have different machines for
the application and for WAS, type the application server name in the Server field.

11. Now you can clean up the script generated by WAS, so that it does not include any
static content. You can do this by clicking the leftmost column of the desired row and
then pressing the Delete key. For this test, you should delete all .gif and .css files, so
that your list will end up looking similar to this (with just five items in it):

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING 489

Figure 12-9. Your new script added to the WAS Scripts window

12. While still at the Scripts window, adjust a setting of your newly created script. Expand
the script node and click the Settings child. Change the default Warmup time from 0
to 10 seconds, as shown in Figure 12-10. This will cause WAS to load-test your server
10 seconds before considering the test started, which will give your server some time
to initialize itself in preparation for the test. So, for example, if the server needs to pre-
compile any .aspx files, this one-time precompilation will not skew the test results.

How It Works

You have just created your first WAS test script. It will play a crucial part in the Friends Reunion
performance test you’ll run in the next section.

The script itself follows the steps that an administrator user of the application would usu-
ally perform at the beginning of a session: browsing to the home page, logging in, and then
browsing to the Users Administrators page.

To create the script, you simply followed the steps that an administrator would follow, but
you did it using a browser window that is being spied on by your WAS session. The WAS tool
watches what you do in the browser, and records each request and the server’s responses into
the test script. This cool feature saves you from needing to write the script by hand.

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING490

Figure 12-10. Adjusting WAS script settings

You’ve also specified a number of different settings that will affect the execution of the
script when you use it in the performance test. In particular, there were three check box options
at the beginning of the process (see Figure 12-7). In this case, we opted not to use any of them,
but it’s worth knowing their purposes:

• Record time delay between requests: Controls whether the script records the pauses
you make while surfing the different pages of the application (this is known as think
time, because it reflects the time that a user reads the content of a page and thinks
about it before making the next request).

• Record browser cookies: Controls whether or not the cookies sent to the browser will
be recorded into the script.

• Record the host header: Allows the recording of host header information.

There’s another “think time” control in the Settings dialog box (see Figure 12-10): the
Use random delay check box adds further variety to the amount of time between requests,
by introducing a random interval of time.

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING 491

You also adjusted the Warmup time, and removed the requests for static pages. It may
seem a little odd to have done the latter—after all, your testing might seem less realistic with-
out all those essential static image and stylesheet files—but there is a reason behind it. Our
objective here is to find out specifically how our dynamic pages are performing (how long they
take to execute, for example), with a view to finding and fixing bottlenecks in dynamic pro-
cessing. If, by contrast, our objective were capacity planning (that is, finding out how many
concurrent users the site can support, with a view to buying more hardware if necessary), then
we would test both the dynamic and static content now. Additionally, most browsers cache
static content instead of requesting it all the time.

WAS will save these settings along with the recorded script, and will apply them when the
script is executed.

WAS supports adding performance counters, much as you did with the PerfMon tool ear-
lier in this chapter. This feature works only with Windows 2000, however. You can use WAS to
test the application while simultaneously using the PerfMon tool.

■Tip If you’re using a separate machine for WAS, you may also choose to monitor the % Processor Time
counter (in the Processor performance object) of the workstation running WAS. You can add this counter to
the seven counters you added previously (just choose the correct machine name, object, and counter in the
System Monitor’s Add Counters dialog box). When you run the test, you can use this counter to check that
the WAS machine is managing to keep up with the generation of the load. If you find this counter going over
80%, it may be a signal that WAS is failing to generate all the specified load; if that’s the case, your results
will be skewed.

When you execute the test (in a moment), the WAS client will simulate many users per-
forming various actions simultaneously, using the test script you’ve just recorded, while the
System Monitor will observe and report whatever the server is doing at any given time.

Running the Performance Test
Now you’ve created your test script and specified what things you want to keep an eye on
while performing the test. You’re ready to run the performance test on your web server and
collect the results on the WAS client, as well as with the System Monitor. In addition to the
results from the performance counters you’ve set up, you’ll also be able to make use of a
number of performance metrics that WAS collects. The following metrics will be of particular
interest:

• Machine Throughput: This is the maximum number of requests per second that an
application is able to serve.

• Time to First Byte (TTFB): This is the number of milliseconds that pass between the
time the request is sent and the time the first byte of the response is received.

• Time To Last Byte (TTLB): This is the number of milliseconds that pass between the
time the request is sent and the time the last byte of the response is received.

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING492

Try It Out: Perform the Test You’ve done most of the hard work. There are just a few short steps
left, and then you’ll have some results to analyze.

1. Make sure the FRSimpleAdminScript node is selected in the left pane. Then run the
script by selecting Script ➤ Run. (Alternatively, click the Run Script icon.) The test will
begin, and you’ll see a dialog box showing the test’s progress.

2. When the test completes, the WAS tool should automatically display the Scripts window
again. At this point, you should stop the System Monitor so that you keep the last meas-
urements taken.

3. To view the results, select View ➤ Reports, or just click the Reports icon.

4. In the left pane of the Reports window, you’ll see a list of all the scripts that have been
run (there’s just one here). Expand the node. You will find more nodes beneath, one for
each occasion the script was run (these nodes are labeled with the date and time of
execution; again, there’s just one in this example).

5. Beneath each dated node is the result data for that test. Click the Page Summary node.
This will show a short description of how each page involved in the test has performed
(in terms of numbers of hits, TTFB Average, TTLB Average, and so on), as shown in
Figure 12-11. WAS calculates these performance metrics automatically, based on the
load it generates and the response it receives from the server. We’ll examine and inter-
pret these results in a moment.

6. Now take a look at the performance counters in the PerfMon application. You’ll see the
results of the server’s seven performance counters during the test.

How It Works

You have just run your first load test against your server! After recording the scripts, eliminat-
ing unwanted requests for static content, modifying some default values to fit your needs, and
setting up key performance counters, you now have your first test results.

For my testing, I used two machines. This is the best approach, because WAS stresses the
client machine quite a lot, but what you’re really interested in measuring is the server load.
When I checked the System Monitor after running the test, I found that my server handled
6.50 requests/sec, which is sufficiently low to cause concern. The question is: Why do I get
such a low number?

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING 493

Figure 12-11. The WAS report after running the script

Next, you can have a closer look at how each individual page performed, by examining
the Page Data node of your report. By briefly examining the data for each page, you may find
that the results for Users.aspx differ significantly from the rest. Here are the figures that I got
in my test:

Average TTFB Average TTLB Downloaded Content
Page (milliseconds) (milliseconds) Length (bytes)

Default.aspx 7.03 7.27 2360

Login.aspx 7.22 8.19 3040

Users.aspx 490.84 833.67 1054113

For some reason, my server is taking about 0.5 second in serving the first byte of that page,
and then almost another 0.35 second (TTLB minus TTFB) to finish serving it up. Moreover, the
output of Users.aspx is 1MB long! These two results probably help to explain why the server is
handling so few requests per second (6.50 requests/sec) on average.

Why is Users.aspx causing that much work on the server? It’s probably because the page
contains a full-fledged DataGrid control, loaded with the details of 1,000 users, just for display
purposes. In the next section, you will make use of caching techniques to save your server the
immense work of needing to process this DataGrid control on every request, and see how you
can tweak it to produce smaller-sized pages.

Caching
A cache is an area of memory that stores recently accessed data and resources, so that subse-
quent requests can reuse them without having them regenerated. When a web page is requested
for the very first time, the page must be completely generated from scratch by the server and

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING494

sent back to that user in the HTTP response. But at the same time, the server can also arrange for
the freshly generated material in that page to be put aside into cache areas, so that it can be used
to serve subsequent requests from the same user or other users.

So, how does a web application benefit from caching? One benefit from caching is that
you can eliminate the need to regenerate the same content many times (because you can gen-
erate it once, and then cache it in the appropriate location). Also, depending on the nature of
the content, you can try to cache it as close to the client as possible. These two benefits mani-
fest themselves in three immediately obvious ways:

• If content is cached close to the client, you achieve a reduction in latency (that is,
apparent inactivity) and hence improve the user experience.

• If content is cached close to the client, you also achieve a saving in bandwidth (because
the route from the client to the cache is shorter than the route from the client to the web
server). In particular, if a resource is cached on the browser itself, network resources are
eliminated altogether for that resource!

• By reusing generated content many times, you can vastly reduce the workload on your
server, which can now just generate the material once and cache it (instead of regener-
ating it for each page request). The reduced demand on the server’s resources will
improve the server’s overall performance.

Caching Overview
If you understand the implications of caching correctly, you can use it in your web applica-
tions to gain significant performance improvements. In particular, you need to consider what
content you can cache, where you can cache it, and for how long. While the first consideration
is application-specific, the other two are not.

Cache Content Expiration and Priority
Most items of content have a natural lifetime. In other words, at the time the content is gener-
ated, it’s usually possible to specify a date and time at which that freshly generated content
will become out-of-date. For example, on a site that publishes stock market shares, much of
the data changes every few minutes, so you would not want cached data to last for more than
a few minutes (otherwise users will almost always be looking at outdated stock prices). By
contrast, you can safely cache the pages of a web site that shows the results of sports events,
because those results don’t change once they’ve happened.

You don’t want cached data to hang around in the cache after it has become out-of-date.
Therefore, any cached item has a expiry date that determines its life span—that is, for how
long it will stay cached before it is considered invalidated and taken out of the cache. There
are essentially two ways to set the expiry date:

• Absolute expiration allows you to set the exact date and time when the cached content
will expire.

• Sliding expiration is a time interval, and it dictates for how long the cached item is
permitted to live in the cache after the time it was last accessed.

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING 495

There is another way that items are removed from a cache. Because a cache is just a block
of memory (and therefore not infinite in size), there is a cache management mechanism that
prevents the cache from filling up with nonexpired items. The way it does this is to examine
the priority of all the items in the cache and remove those with the lowest priority to make way
for new items. An item’s priority is set at the same time as its expiration, at the time the item is
generated and cached. The expiration setting and priority chosen depend very much on the
type of data and the context (you’ll see an example later in this chapter, in the “Data Caching”
section).

Cache Locations
In the web architecture, a cache can reside in a number of different places, and it makes sense to
cache different types of content in different places. To be more specific, consider that, in general,
a request/response is generally made either directly between the web client (the browser) and
the web server, or indirectly via a proxy server, as shown in Figure 12-12.

Figure 12-12. A request/reponse may go through a proxy server.

This, in fact, gives you three different places where you can cache content: the client
(browser), the proxy server, and the web server. The implications of storing content in a cache
depend on which cache location is used. Let’s examine each one in turn.

Caching at the Client (Browser)

Any browser has a local cache, which it can use for temporary storage of any received resources
that are marked as cacheable by the content author. When a user requests the same resource a
second time, the browser will check the local cache. If the resource is still there (that is, it has
not expired or been removed), the browser will fetch the resource from the local cache, rather
than fetching it from the server.

The obvious advantage of this situation is that it provides zero latency, because the cached
resource can be displayed immediately by the browser without the need to establish a connec-
tion and wait for a response. This is as fast as it gets! It also reduces the overall number of
necessary transmissions of requests and responses over the network, and hence saves band-
width. Finally, if the original resource required server resources to generate it, it saves the server
the trouble of repeating that work, so there’s an overall reduction in demand on the server.

These are compelling benefits, and it’s easy to conclude that browser caching seems like
an ideal option. But it’s not ideal in all situations. One reason is that some browsers choose
not to honor the caching attributes specified by the page’s author. Another is that if the user

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING496

has specified any different settings on their browser, these settings will override the default
behavior. (For example, users of Internet Explorer can control the browser’s internal cache by
selecting Tools ➤ Internet Options, and then clicking the Settings button.)

It’s important to realize that “caching a page at the browser” means that there’s a copy of
the cached item stored on the user’s local machine. There are potential security and privacy
implications here, because it’s possible for other users of the same machine to access these
resources. In particular, it would be irresponsible to code your application to cache sensitive
information such as bank account information at the browser (or, indeed, at the proxy server,
as you’ll see in the next section).

Caching at the Proxy Server

As illustrated in Figure 12-12, a proxy server is a machine that sits between the web application
server and the client machines, acting as an intermediary. It receives requests from client
machines and forwards these requests to the origin server. It also receives the responses from
the origin server and passes them back to clients.

When a proxy server receives a resource from a server, it checks to see whether the page
author has deemed the resource to be “cacheable at the proxy server” (something we’ll look at
when we discuss ASP.NET page caching in the next section). If so, the proxy server can store
the page in its own local cache.

The benefits of caching at the proxy are similar to those for caching at the browser. In par-
ticular, if the same resource is requested again (either by the same user or by another user via
the same proxy server), the proxy server is able to deliver the resource from its own cache,
rather than by passing the request on to the server. This saves on the server’s resources and
bandwidth, and reduces response time in much the same way. Note that the saving is less sig-
nificant; for example, you get reduced latency but not zero latency. To reduce latency of the
cached request to a minimum, the proxy server is usually located close to the client machine.
On the other hand, a resource cached on a proxy server can be used to serve the requests of
the hundreds (or thousands) of users whose requests are handled by that proxy server, regard-
less of the identity of the user who requested it first.

Proxy servers are usually put in place by ISPs and corporations with many users. As a
consequence, you (as an application developer) generally don’t have any control over the
existence (or otherwise) of a proxy server. Therefore, while it’s useful to take advantage of
the possibility of proxy server caching, it is not something you can depend on.

Caching at the Origin Server

Of course, caching content on the server doesn’t get the content any closer to the client. If the
web server chooses to use its own cache to serve a request, the content still needs to be trans-
mitted back across the network, just as if it were freshly generated. Therefore, there are no
savings in latency and bandwidth to be made from caching at the server. However, caching
at the server still allows you to reuse resources, avoiding unnecessary regeneration of those
resources, and hence reducing the server’s workload. While caching at the server doesn’t look
as attractive as caching at the client or proxy server, it is sometimes your only option, particu-
larly when security and privacy issues are involved.

Ultimately, these three types of caching can help you save resources and get better per-
formance. How much bandwidth and workload can you save? How much is latency reduced?

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING 497

The answers to these questions depend on where the content is cached, how often it is reused,
and when it expires. But there’s no doubt that, when used well, caching can help improve your
site’s performance significantly.

For this reason, ASP.NET has been designed with caching techniques in mind, so let’s look
at those techniques now.

ASP.NET Caching
ASP.NET has its own cache. This cache is an area of memory (on the web server) that it uses to
store the output of web pages. ASP.NET stores this output to use it to serve subsequent requests
from that memory, and hence avoid executing the page each time the page is requested. As we
explained in the previous sections, this reduces the overall amount of processing work required
of the server, and the reduction in resources used results in improved performance.

The Microsoft ASP.NET team has given us two APIs that allow us to access the cache:

• A high-level API, which uses a very simple declarative syntax that takes the form of a
directive that can be applied to a page or user control

• A low-level API, consisting of a single class (the Cache class, which belongs to the
System.Web.Caching namespace) that can be used in code, allowing us to manage
the cache programmatically

The high-level API will save you some typing, while the low-level API requires some cod-
ing and a greater understanding of what’s going on beneath the surface. Naturally, the latter is
the one that gives you more control.

ASP.NET’s implementation of caching provides for two different types of caching that
relate to the different types of content that can be cached. The first, output caching, is about
caching the output generated by executing a page or a fragment of a page (a user control). You
can use both the high-level and low-level APIs with this type of caching. However, the ASP.NET
cache is not limited to storing the output of pages. It’s often effective to use data caching to
cache data whose generation may be expensive in terms of resources (for example, a large
dataset is the sort of thing you might cache using this technique). ASP.NET allows you to
cache your own data by using the low-level cache API.

Let’s look at both of these types of caching in more detail.

Output Caching
As we’ve said, output caching is about caching the output (or results) obtained when a page
(or user control) is executed. It’s clear from this definition that you’re not obliged to cache
whole pages; you can cache just a fragment of a page if that’s appropriate. In principle, page
caching and fragment caching work in the same way, but there are a few subtle differences
that we’ll explain in a moment.

Let’s look at the principle first. When an .aspx page or .ascx page fragment is requested, the
server checks to see whether the page has been marked as cacheable (using the OutputCache
directive that you’ll meet shortly). Whether the output cache is enabled influences the process
at two different stages, as shown as shaded decision items in the flowchart in Figure 12-13.

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING498

Figure 12-13. Checking whether output caching is enabled

The server first checks for the OutputCache directive right at the beginning of the process.
If it finds that the page (or page fragment) is cacheable, it checks for an existing cached
instance of the page, and returns that instance, thus avoiding the subsequent parsing and
compilation steps and saving server resources.

If the page is not cacheable, or if there is no cached instance, the parsing and compilation
steps occur as usual. Then if the page is cacheable, the newly generated page is placed in the
ASP.NET cache so it can be used for subsequent page requests.

The basic process described here applies to both page caching and fragment caching.
Now let’s look at the practicalities and note the differences between the two.

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING 499

Page Caching

To enable caching for a specific page, you can use the OutputCache directive. Here’s an example
of what this directive might look like:

<%@ OutputCache Duration="3600"
Location="Any"
VaryByCustom="browser"
VaryByParam="RequestID" %>

The directive has five possible attributes (the attribute not shown here is VaryByHeader).
Only the Duration and VaryByParam attributes are required.

The Location attribute refers to the three different places (browser, proxy server, or web
server) to cache resources. You can use this attribute when you write the page to specify where
you’ll allow the output of your page to be cached, with the following settings:

• Any is the default value. It means that the output of the page may be cached at the client
browser, at any “downstream” clients (such as a proxy server), or on the web server itself.

• Client dictates that the output cache can be stored only on the local cache of the client
who originated the request (that is, the browser).

• Downstream dictates that the output cache can be stored in any HTTP 1.1 cache-capable
device (such as a proxy server).

• Server dictates that the output cache will be stored on the web server.

• None dictates that the output cache will be disabled for this page.

The Duration attribute allows you to control how long (in seconds) you want the page to
exist in the cache. A page containing the directive shown in the example at the beginning of
this section will be cached for one hour.

The VaryByParam attribute enables you to have different versions of our page cached. In the
example, VaryByParam is set to RequestID, so ASP.NET uses different values of the RequestID
parameter sent either in the query string of an HTTP GET verb or the parameters of an HTTP POST
verb. This is useful for pages like ViewUser.aspx in the Friends Reunion application. The exact
content of this page varies from user to user, and so there would be no value in caching a single
version of the page for all users. So, you can have the application differentiate between individual
users by checking the value of the RequestID parameter; and by placing VaryByParam="RequestID"
in the OutputCache directive of the page, you can have ASP.NET cache a different version of the
page for each user. If you don’t want to cache different versions of the page based on the value of
a parameter, just set VaryByParam to none:

<%@ OutputCache Duration="3600" VaryByParam="none" %>

You can also ask ASP.NET to cache a version of the page for every possible combination of
parameters. To do this, set VaryByParam to *; like this:

<%@ OutputCache Duration="3600" VaryByParam="*" %>

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING500

■Caution It’s tempting to set VaryByParam to *, and hence to cache every possible version of the page.
At first glance, this seems like a good idea for improving overall performance. However, the cache is itself
just a memory store of finite size, so the more output you choose to cache, the sooner the cache will fill up.
Generally, a more selective approach is required; it’s really only worth caching pages that are frequently
accessed or whose generation is expensive. There is little sense in caching pages that are almost
never accessed or simple pages that don’t require any computation.

The VaryByHeader and VaryByCustom attributes work like VaryByParam, in that they allow
you to specify when new cached versions of your page should be created. The VaryByHeader
attribute allows you to vary the cached versions of a page based on the semicolon-separated
list of HTTP headers provided. The VaryByCustom attribute, when set to browser, allows you to
vary the cached versions depending on the browser name and major version information.
Alternatively, you can set it to the name of a custom method, in which you can implement
your own logic that controls the versions to cache.

You can use output caching to improve the performance results for the Users.aspx page
you saw earlier in the chapter.

Try It Out: Apply Output Caching Generating the dataset of user information displayed in
Users.aspx seems to be a real bottleneck, because it uses such a large amount of resources to
generate the dataset, and you’re asking the application to regenerate the dataset each time the
page is requested. One way around this is to cache the entire generated page in the ASP.NET
cache, so that the page itself (and hence the dataset that contributes to it) is regenerated less
often.

1. Open Users.aspx, and add an OutputCache directive just after the Page directive:

<%@ Page Language="vb" AutoEventWireup="false"
Codebehind="Users.aspx.vb"
Inherits="FriendsReunionSec.Admin.Users" %>

<%@ OutputCache Duration="300" VaryByParam="none" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
...

2. Save the file. If you wish, use the WAS client machine to rerun the FRSimpleAdminScript
you tested the application with earlier in the chapter, and examine the results to see
whether there’s a noticeable improvement. Remember to start collecting information
in the System Monitor also.

How It Works

The first time the page is requested, the application must generate the dataset in order to
deliver the page, but subsequent requests for Users.aspx are served directly from the ASP.NET
cache, and they should be much faster because they require far less processing.

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING 501

When I tested this using the FRSimpleAdminScript script on my WAS client machine, I got
22 requests per second now, a great improvement over the earlier result of 6.5!

■Tip This isn’t the only way to deal with the dataset-generation bottleneck in Users.aspx. Instead of
caching the entire page, you could have simply cached the dataset itself. The “Caching Data” section later in
this section is all about that technique, and for comparison, demonstrates using it with AssignPlaces.aspx.

Fragment Caching
What if some fragment of the page is very dynamic in nature, while the remainder of the
page changes very rarely? For example, what if you tried to cache a page that shows live stock
quotes (which change every few minutes) along with daily news headlines (which change only
every few hours). A high-valued Duration attribute means that the stock quotes are lasting far
too long in the cache and becoming outdated; a low-valued Duration attribute means that the
less dynamic news headlines are being regenerated too often to be effective. If you really want
the stock values to be live, you should generate them from scratch for each request, based
on the current values at the moment the request is made. Page caching is not really suitable
here; you can use fragment caching instead.

Fragment caching is a new concept introduced by ASP.NET. It is implemented in practice
by using the user controls you learned about in Chapter 3. The idea is that you employ user
controls (like the FriendsHeader.ascx and FriendsFooter.ascx controls) to separate different
kinds of content in the page. Then you apply an OutputCache directive in the same way as
shown earlier, except that you add the directive to the appropriate .ascx files, rather than to
the .aspx file. The result is that ASP.NET caches the output for only the fragments (that is, the
user controls) whose .ascx file contains an OutputCache directive.

Another way of programmatically controlling caching for a user control is to apply the
PartialCachingAttribute attribute to its code-behind file:

<PartialCaching(7200)> _
Public Class MyControl

Inherits System.Web.UI.UserControl

How would you use this solution to solve the problem of a page containing live stock
quotes and news headlines? First, you would implement a user control to show the daily news,
and have that user control cache for, say, two hours. So that .ascx file would contain a direc-
tive like this:

<%@ OutputCache Duration="7200" VaryByParam="none" %>

Then you could implement the stock quotes listing in a separate user control (which would
also allow you to reuse it in a number of different pages), but this .ascx page would not con-
tain any OutputCache directive, and it would therefore be regenerated at each request.

Fragment caching works in roughly the same way as page caching, although there are a
couple of differences. First, fragment caching does not support the Location attribute; the
only valid place to cache a page fragment is the web server. This is because fragment caching
is new in ASP.NET, and it is consequently not supported by browsers and proxy servers.

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING502

Additionally, fragment caching makes available an extra attribute—VaryByControl—which
is not relevant in page caching. The VaryByControl attribute allows you to specify a semicolon-
separated list of strings, representing the IDs of controls used inside the user control. ASP.NET
will generate one cached version of your user control for each different combination of values.
Following the example of a news/stocks page, suppose you added a DropDownList control to
the news-headlines user control, with the intention of filtering by company name the displayed
news:

<asp:dropdownlist id="Company" runat="server" Width="120px">
<asp:ListItem Value="apress">Apress</asp:ListItem>
<asp:ListItem Value="msft">Microsoft</asp:ListItem>
<asp:ListItem Value="amex">American Express</asp:ListItem>

</asp:dropdownlist>

Then you can tell ASP.NET to cache different versions of your user control based on the
value of the DropDownList control. For that, you modify the OutputCache directive accordingly:

<%@ OutputCache Duration="7200" VaryByControl="Company" %>

Note that it’s not possible to programmatically handle a cached user control like a non-
cached one. This is because once the user control is cached, ASP.NET is not creating an instance
of your own control, but instead makes a simpler one whose only purpose will be to fetch the
cached output. This has an implication for us in the Friends Reunion application. Specifically,
we cannot use fragment caching for our FriendsHeader.ascx and FriendsFooter.ascx user con-
trols, because they are manipulated programmatically each time we call them (for example,
setting the message in the header and the user count in the footer) in a way that is not allowed
for cached controls.

Finally, if a user control is used in several pages (such as a footer control in all your web-
site pages), you can avoid caching the fragment for every page by using the Shared attribute
on the OutputCache directive:

<%@ OutputCache Duration="7200" VaryByParam="none" Shared="true" %>

Or programmatically through the following attribute:

<PartialCaching(7200, Shared:=True)> _
Public Class MyControl

Inherits System.Web.UI.UserControl

If you don’t specify the Shared value as true, output will be cached for each instance of the
control in every page that uses it.

Data Caching
The lower-level API we mentioned earlier is the Cache class, which is contained in the
System.Web.Caching namespace in ASP.NET. You can use this API for caching data that is costly
to generate. The Cache class is as simple to use as the Session and Application objects you met
back in Chapter 6.

There is only one Cache instance per application, which means that the data stored in the
cache using it is application-level data. To simplify things further, the Page class’s Cache prop-
erty makes the application’s Cache object instance easily available in code.

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING 503

The data cached through the Cache object is stored in memory within the application.
That means that this data will not survive an application restart. (In fact, this is the same as for
the data stored in the Application and Session objects, unless you’ve arranged to store your
Session data using the State Service or SQL State session modes, as you saw in Chapter 6.)

The easiest way to add an object to the Cache is by using the index syntax, and specifying
a key/value pair like this:

Cache("CheckEffectOn") = False
Cache("MembersDataSet") = dsMyDataSet

The first of these assigns a Boolean value to the cached flag item called CheckEffectOn.
The second assigns a dataset to the item called MembersDataSet. To use these cached values
in code, you would access them like this:

Dim CheckEffectValue As Boolean = CType(Cache("CheckEffectOn"), Boolean)
Dim dsMembers As DataSet = CType(Cache("MembersDataSet"), DataSet)

In each case, you need to cast the retrieved object explicitly. This is because the Cache
object handles only references to the System.Object type (which allows it to store objects of
any type).

This is not the only way of adding items to the ASP.NET cache. There are two methods
of the Cache object that are considerably more flexible: the Insert() method and the Add()
method. These methods are very similar in usage, but subtly different:

• The Insert() method should be used to overwrite existing items in the ASP.NET cache.

• The Add() method should be used only to add new items to the ASP.NET cache. (If you
try to use Add() to overwrite an existing item, it will fail.)

Each of these methods has the same seven arguments (though Insert() has some over-
loads that allow you to specify fewer than all seven). Using them is so similar that we’ll only
show you some examples of the Add() method now. You’ll see how to use the Insert() method
when we apply some data-caching techniques to the Friends Reunion application in the next
“Try It Out” section.

Dependencies and Priorities

To appreciate what you can do with Insert() and Add(), you need to know a little about
dependencies and priorities. By specifying a dependency for an item when you insert it into
the cache, you’re telling ASP.NET that the item should remain cached until a certain event
occurs. The Add() and Insert() methods allow you to specify the dependency of a cached
item at the time the item is cached, using these values:

• CacheDependency allows you to specify a file or cache key. If the file changes, your object
is removed. If the cache key changes or becomes invalidated, the object is also
removed.

• DateTime is a DateTime value that dictates the time at which the cached data expires
(as we said earlier in the chapter, we use the term absolute expiration for this type of
expiration).

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING504

• TimeSpan is an interval of time that dictates how long the cached data can remain
cached after the last time it was accessed (we use the term sliding expiration for this
type of expiration).

As you add more and more data to the cache, it becomes fuller and fuller. If the data
expires at a reasonable rate, there will always be room for more data to be added as the older
cached data expires. But if not, the cache will eventually fill up.

If the cache does fill up, ASP.NET needs a way to start removing some of the less important
items in the cache to allow new items to be cached. To decide which cached items it can
delete, ASP.NET rates the importance of all the different items in the cache according to the
priority of each item. The priority of an item to be stored in the ASP.NET cache can be speci-
fied at the time the data is cached (using the Add() or Insert() method). These are the
different priority levels, as classified in the CacheItemPriority enumeration:

• High priority items are the least likely to be removed when memory is low.

• AboveNormal priority items prevail over items with a priority of Normal or less.

• Normal priority items will prevail over BelowNormal and Low priorities. The default value
for a cached item’s priority is Normal.

• BelowNormal priority items use the second lowest priority available. Items with this
priority set will prevail over only items whose priority is set to Low.

• Low priority items will be the most likely to be removed when memory is low.

• NotRemovable as a priority level for an item means that ASP.NET should not remove it
from the cache, even if memory is low.

When you’re assigning the priority of an item, you should base the assignment on the
resource cost needed to produce the item: the higher the cost, the higher the priority level.

So, to use the Add() method to add a DataSet object to the ASP.NET cache, you might
write the method call like this:

Dim dt As New DateTime(DateTime.Now.Year,12,31)
Cache.Add("MembersDataSet", dsMembers, Nothing, _

dt, TimeSpan.Zero, _
CacheItemPriority.Normal, Nothing)

The first and second arguments are the keys by which you reference the cached object
and the object to be cached. The third argument is null (signifying no dependency).

The fourth and fifth parameters are the absolute and sliding expirations. Here, we’re saying
that the cache should expire on the last day of the current year (dt). We want to specify that there
is no sliding expiration, so we put TimeSpan.Zero into the fifth argument. The sixth parameter
sets the priority to be Normal, using a value from the System.Web.Caching.CacheItemPriority
enumeration.

The following example is similar, but it specifies a sliding expiration of 5 minutes instead
of an absolute expiration:

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING 505

Cache.Add("MembersDataSet", dsMembers, Nothing, _
DateTime.MaxValue, TimeSpan.FromMinutes(5), _
CacheItemPriority.Normal, Nothing)

So, if you want to set no absolute expiration, use DateTime.MaxValue. If you want to specify
no sliding expiration, use TimeSpan.Zero. (It’s not valid to provide values for both absolute expi-
ration and sliding expiration at the same time; if you do, ASP.NET will throw an exception.)

We could add a dependency. In this example, the expiration is also dependent on the
modification of a file, friendsreunion.xml:

Dim dep As New CacheDependency("C:\\data\\friendsreunion.xml")
Cache.Add("MembersDataSet", dsMembers, dep, _

DateTime.MaxValue, TimeSpan.Zero, _
Normal, Nothing);

In the next example, the expiration is dependent on the modification of another item in
the cache:

Dim dependencyKeys() As String = {"MembersChanged"}
Dim dependency As new CacheDependency(Nothing, dependencyKeys)
Cache.Add("MembersDataSet", dsMembers, dep, _

DateTime.MaxValue, TimeSpan.Zero, _
CacheItemPriority.Normal, Nothing)

If you don’t want to specify a CacheDependency object for your item, you can pass Nothing
to that argument, as in the first example.

■Tip In ASP.NET version 2.0, the CacheDependency class is no longer defined as NotInheritable, so it’s
possible to create your own dependency classes with custom logic to determine cache item removal. In fact,
the new SqlCacheDependency class that is available in version 2.0, for invalidating cache items based on
changes on a database, is implemented exactly that way—by deriving from CacheDependency.

In case you’re wondering, the final argument is of type CacheItemRemovedCallback, and it
allows you to ask for notification whenever the cached item is evicted from the cache. You can
write a custom method (like the ItemRemovedCallback() method here), and then specify that
method in the seventh argument, as follows:

Public Sub ItemRemovedCallback(ByVal key As String, ByVal value As Object, _
ByVal reason As CacheItemRemovedReason)

' This method will be called when the our item expires
End Sub
... other code ...
Cache.Add("MembersDataSet", dsMembers, Nothing, _

DateTime.MaxValue, TimeSpan.FromMinutes(5), _
Normal, _
New CacheItemRemovedCallback(Me.ItemRemovedCallback))

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING506

Note that the ItemRemovedCallback() method (which is called whenever the cached item
expires) has three arguments. The first is the key we used when we stored the item in the cache,
the second is the stored object itself, and the third is the reason the item was evicted. There are
four possible reasons listed in the CacheItemRemovedReason enumeration: DependencyChanged,
Expired, Removed, and Underused.

At least a couple of places in the Friends Reunion application would benefit from some
careful application of data caching. In particular, every time we perform an expensive query
to the database and then hold the results in a DataSet, we can take the opportunity to cache
the DataSet and avoid regenerating it unnecessarily for each request.

Try It Out: Cache Places-Related Data In this example, you’ll use data caching in the pages that
deal with all the places available to the application. You use this data in different pages and hit
the database to get it each time. If you cache the data, and then use the cached data in any
page that needs it, the resulting reduction in the demands on the server and network should
give an overall performance boost.

In particular, AssignPlaces.aspx includes a drop-down list that shows a list of available
places. Let’s use our new data-caching skills there.

1. Open AssignPlaces.aspx.vb. Change the LoadDataSet() method by removing all the
code used to get the Places data from the database. To do this, you just need to remove
(or comment out) the following lines:

Private Sub LoadDataSet()

Dim con As New SqlConnection(_
"data source=.;initial catalog=FriendsData;" + _
"user id=apress;pwd=apress")

' Select the place's timelapse records, descriptions, and type
Dim sql As String
sql = "SELECT " + _
"TimeLapse.*, Place.Name AS Place, " + _
"PlaceType.Name AS Type " + _
"FROM " + _
"TimeLapse, Place, PlaceType " + _
"WHERE " + _
"TimeLapse.PlaceID = Place.PlaceID AND " + _
"Place.TypeID = PlaceType.TypeID AND " + _
"TimeLapse.UserID = '" + _
Context.User.Identity.Name + "'"

' Initialize the adapters
Dim adExisting As New SqlDataAdapter(sql, con)
'Dim adPlaces As New SqlDataAdapter(_
' "SELECT * FROM Place ORDER BY TypeID", con)
Dim adPlaceTypes As New SqlDataAdapter(_
"SELECT * FROM PlaceType", con)

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING 507

con.Open()
ds = New DataSet

Try
' Proceed to fill the dataset
adExisting.Fill(ds, "Existing")
'adPlaces.Fill(ds, "Places")
adPlaceTypes.Fill(ds, "Types")

Finally
con.Close()

End Try
End Sub

Note that you’ve deleted only the code that creates and initializes the SqlDataAdapter
component for the Places data, and the code that fills the dataset with its contents.

2. You need to create a dataset for the Places data somewhere. You’ll implement this func-
tionally in a method called GetPlacesDataSet(). You’ll create this method as a Protected
method of the FriendsBase class, so that it will be available to AssignPlaces.aspx and
any other page that needs to use the cached data. So, open FriendsBase.vb and add the
following method to the FriendsBase class:

Protected Function GetPlacesDataSet() As DataSet
' If it's already cached, return it
Dim ds As DataSet = CType(Cache("Places"), DataSet)
If Not (ds Is Nothing) Then
Return ds

End If
' Generate the new dataset
Dim con As New SqlConnection(_
ConfigurationSettings.AppSettings("cnFriends.ConnectionString"))

Dim adPlaces As SqlDataAdapter
adPlaces = New SqlDataAdapter("SELECT * FROM Place ORDER BY TypeID", con)
adPlaces.Fill(ds, "Places")

' Reset the dependency flag.
Cache("PlacesChanged") = False

' Create a dependency based on the "PlacesChanged" cache key
Dim dependencyKeys() As String = {"PlacesChanged"}
Dim dependency As New CacheDependency(Nothing, dependencyKeys)

' Insert the dataset into the cache,
' with a dependency to the "PlacesChanged" key
Cache.Insert("Places", ds, dependency)

Return ds
End Function

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING508

3. Import the following namespaces at the top of the FriendsBase.vb file:

Imports System.Data
Imports System.Data.SqlClient
Imports System.Configuration
Imports System.Web.Caching

4. Now return to AssignPlaces.aspx.vb, and modify the InitForm() method so that it
uses the cached dataset when populating the drop-down list:

Private Sub InitForm()
' Initialize combo box
If Not Page.IsPostBack Then
' Retrieve the dataset.
' If it's not already cached,
' it will be generated automatically and cached.
Dim cachedDs As DataSet = MyBase.GetPlacesDataSet()

' Access the table by index
Dim row As DataRow
For Each row In ds.Tables(0).Rows
...

Next
End If

End Sub

5. Finally, you need to invalidate the cached dataset when someone uses ViewPlace.aspx
to edit the places-related information in the database. You must do this to ensure that
no part of the application (such as AssignPlaces.aspx) uses outdated data. Open
ViewPlace.aspx.vb and add the following lines to the end of the dlPlaces_UpdateCommand
method:

Private Sub dlPlaces_UpdateCommand(ByVal source As Object, _
ByVal e As System.Web.UI.WebControls.DataListCommandEventArgs) _
Handles dlPlaces.UpdateCommand
...etc...
' Invalidate the cached dataset
Cache("PlacesChanged") = True

End Sub

This will ensure that, whenever the list of places is modified, the cached dataset will
expire.

How It Works

The lines that you removed from the LoadDataSet() method are the lines that created, initialized,
and filled the old dataset with its contents. After these changes, those lines of code reemerge in
the GetPlacesDataSet() method, which is the place that now has the responsibility for setting up
the new cached dataset:

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING 509

Protected Function GetPlacesDataSet() As DataSet
' If it's already cached, return it
Dim ds As DataSet = CType(Cache("Places"), DataSet)
If Not (ds Is Nothing) Then
Return ds

End If
' Generate the new dataset
Dim con As New SqlConnection(_
ConfigurationSettings.AppSettings("cnFriends.ConnectionString"))

Dim adPlaces As SqlDataAdapter
adPlaces = New SqlDataAdapter("SELECT * FROM Place ORDER BY TypeID", con)
adPlaces.Fill(ds, "Places")
...

Note that the method first checks for the existence of the DataSet, returning it if it’s
already cached.

In the same method, you then create a dummy cache entry called PlacesChanged, which
you will use for dependency purposes (essentially it acts like a flag; you change its value to
True whenever the data in the database is changed, as you’ll see in a moment):

Cache("PlacesChanged") = True

Then you create a dependency to tie the life of your dataset to the modification of the
dummy key:

Dim dependencyKeys() As String = {"PlacesChanged"}
Dim dependency As New CacheDependency(Nothing, dependencyKeys)

Finally, you use the Insert() method to insert the dataset in the cache. The Insert()
method works in a similar way to the Add() method we discussed earlier, but also allows you
to overwrite existing cache entries:

Cache.Insert("Places", ds, dependency)

You made just two changes to the InitForm() method, which is the one that populates the
drop-down list. First, you added code to retrieve the cached dataset using the GetPlacesDataSet()
method:

Dim cachedDs As DataSet = MyBase.GetPlacesDataSet()

Second, you changed the next bit of code so that it uses the cached dataset, rather than a
freshly generated one as before:

For Each row In ds.Tables(0).Rows
...

The cached dataset should be regenerated when the database is updated (rendering the
existing cached dataset outdated). So, you’ve added a line of code to ViewPlace.aspx, to flag

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING510

changes to the database. This line of code changes the value of the dummy “flag” cache item,
Cache("PlacesChanged"), which is the subject of the cached dataset’s dependency:

Cache("PlacesChanged") = True

The result of all this is that whenever a user requests AssignPlaces.aspx, the application
will check for a cached version of the dataset first. If one exists, it will build the page using
the cached dataset. If not (either because no dataset has been generated yet or because the
dataset has expired), the application generates the dataset from scratch, places that dataset
in the cache, and then uses that newly cached dataset to generate the page. Invalidating the
existing cached dataset is performed in another, entirely different page: the one administering
places and their information.

Using this approach, I measured an increase from 10.88 to 19.63 requests per second for
the AssignPlaces.aspx page when I retested the page with WAS!

Caching at Application Startup
Notice that there is no cached dataset when the application first starts. The dataset will not be
generated and cached until the first time someone requests AssignPlaces.aspx. This means
that the first ever visitor to AssignPlaces.aspx will not be served as fast as subsequent visitors
to the page; the first user will need to wait slightly longer while the application generates and
caches the dataset.

There is a way to eliminate this delay for the AssignPlaces.aspx page’s first visitor. You
could arrange for the dataset to be generated and cached at the time the application starts, by
adding code to the Application_Start() event handler (in Global.asax). This process requires
identical code to that contained in the GetPlacesDataSet() method. Therefore, the best way to
do this would be as follows:

1. Create a Friend utility class, which is accessible from anywhere in the current applica-
tion and import the following namespaces in it:

Imports System.Data
Imports System.Data.SqlClient
Imports System.Configuration
Imports System.Web.Caching

2. Move the GetPlacesDataSet() method code to a Public Shared method of this utility
class:

Public Class FriendsUtility
Public Shared Function GetPlacesDataSet() As DataSet

... almost same code as before ...
End Function

End Class

Note that because the code is no longer applied to a class derived from the Page class,
you no longer have access to the Cache property. Therefore, you need to replace it with
HttpContext.Current.Cache, which is the way of getting to the same cache but from
anywhere in the application.

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING 511

3. Replace the GetPlacesDataSet() call in AssignPlaces.aspx.vb so it calls the new
FriendsUtility.GetPlacesDataSet() instead:

Dim cachedDs As DataSet = FriendsUtility.GetPlacesDataSet()

4. Finally, add a call to FriendsUtility.GetPlacesDataSet() in Application_Start() to
force its loading at startup.

Monitoring the Cache API
We’ve mentioned the dangers of caching too many items. The dilemma is simple. It’s tempting
to cache everything you generate, because it seems sensible to avoid the resource cost of
regenerating items if possible. However, the main cost of caching is memory utilization, since
the items must be stored somewhere.

Ultimately, you need to avoid wasting your server’s cache memory on an item if caching
the item offers no benefit. If an item is not expensive to generate or is rarely accessed, it’s gen-
erally better to regenerate it each time it is needed.

With this in mind, it’s helpful to have some way of monitoring the activities of the cache.
There are a number of PerfMon performance counters designed specifically for this purpose,
particularly the counters available for the ASP.NET Applications performance object. A key
counter to watch here is the Cache Total Turnover Rate counter. If this counter gives high-valued
readings, it means that there are many items entering and leaving the cache per second. This
could have a negative impact on performance, because of the resources involved in expiring
items from the cache (particularly in terms of cleanup). If there is a consistently high volume of
material being added to and deleted from the cache, any benefits of the caching process are
likely to be outweighed by the additional processing power required to handle the high cache
turnover rate.

If you use a lot of short expiration times, your application will be particularly vulnerable
to a high cache turnover rate. Of course, some items require short expiration by their very
nature; if you need to use short expiration times, be aware that this could have an effect and
use them carefully.

Controlling the Viewstate
As you’ve learned in previous chapters, the viewstate is enabled by default. You can control the
viewstate in several ways to improve your application’s performance.

Disabling the Viewstate for Controls
In the WAS tests that we performed earlier in the chapter, we noticed a couple of things about
the Users.aspx page. First, it was taking a long time to generate the page. We identified that
this was due to the fact that the server was required to generate a huge dataset (containing
data about 1,000 users), and we dealt with that problem by arranging for a cached version of
the page (from the ASP.NET cache) to be used if possible.

But there was another issue: the size of the response itself (the number of bytes passed
from server to client in the page response) is also very large. These were the results I generated
in my test, and you probably got something similar:

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING512

Why is the response so large? Admittedly, we need to pass all the data (about the 1,000
users) in the dataset to the client; otherwise, the browser will be unable to display the data in
the page. But in addition to that, these bytes also contain a hidden _ _VIEWSTATE form field,
which will at least double the size of rest of the page. You can verify this by selecting View
Source from the page context menu in the browser.

But is there any reason why the viewstate should be enabled for this DataGrid control?
The page has no facility for the user to post back the user data to the server for handling; it
contains no code for events on the DataGrid control. In fact, there is nothing in the page that
requires the viewstate to be enabled. Therefore, you are free to reduce the response size for
this page by disabling the viewstate for the DataGrid control.

Try It Out: Disable the Viewstate on a DataGrid Control Since the viewstate is unnecessary on the
DataGrid control in Users.aspx, you’ll disable it for that control. Then you’ll find out whether
it has a noticeable effect on the overall response size of the page.

1. Open Users.aspx, select the DataGrid control, and view its properties by pressing F4.
Find its EnableViewState property, and set it to False. Save the file.

2. You can check in the HTML view that VS .NET has correctly changed the
enableviewstate attribute in the code:

<asp:datagrid ...other attributes...
enableviewstate="False">

...
</asp:datagrid>

3. Now go back to the WAS client and run the FRSimpleAdminScript test one more time.
After the test, check the Downloaded Content Length readings for Users.aspx to see if
the download size of the page has been reduced. (You’ll find this reading in the Page
Data node in the results.)

How It Works

Well, first let’s check that it does work! Here are the results that I got for Users.aspx after dis-
abling the viewstate on the DataGrid control:

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING 513

The simple act of disabling the viewstate has reduced the download size by two-thirds.
It’s also worth checking how much impact this has on the server’s performance overall. In my
results, I found that my server is now able to handle 42 requests per second—that’s about
twice what I had before, and almost seven times what I had when we started the chapter!

So, what’s happening? When the DataGrid’s viewstate was enabled, it simply allowed the
state to be persisted across postbacks. For this, the state was being included in the page in
encoded form, within the _ _VIEWSTATE field of the page. This inflated the page size from a
relatively acceptable 0.337MB (in my case) to a massive 1.05MB.

We simply identified that the page doesn’t use the DataGrid’s viewstate data for anything
useful on the server and was therefore an unnecessary burden. By explicitly setting the Data-
Grid’s enableViewState property to false, you tell the DataGrid not to persist any value into
the viewstate (the default for this property here is true). As a result, the _ _VIEWSTATE hidden
field is much shorter, which improves things in two ways:

• Most obviously, there’s a significant reduction in page size (as you’ve seen in the results
of your testing).

• There’s a saving on the server’s resources, because the server now has far less viewstate
to encode or decode and process.

The viewstate is enabled by default. It’s worth considering each of the controls used in each
page to check whether it really depends on having the viewstate enabled. If a particular control
does not use its viewstate, then simply disable it by setting the control’s enableViewState prop-
erty to false.

Disabling the Viewstate at the Page and Application Levels
In light of the previous discussion, you might start looking at the Label controls used in the
ViewUser.aspx page of Friends Reunion. None of these Label controls make use of its view-
state, so they can all be disabled. In fact, in ViewUser.aspx, you can go one step further. If you
consider the controls in that page, you’ll notice that none of them need to keep their state
between postbacks! So, you could deal with them all in one go by disabling the viewstate
for the whole page. To do that, you could just set the EnableViewState attribute to false
within the Page directive:

<%@ Page language="vb" Codebehind="ViewUser.aspx.vb"
AutoEventWireup="false" Inherits="FriendsReunion.ViewUser"
EnableViewState="false" %>

If you’re writing an application that doesn’t use viewstate at all, you could disable the
viewstate at the application level by making a simple change to the application’s Web.config
file. Simply find the <pages> element and set its EnableViewState attribute to false:

<configuration>
...
<system.web>
<pages ...
EnableViewState="false"

/>

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING514

...
</system.web>
...

</configuration>

Don’t do this in the Friends Reunion application, because there are some parts of that
application that do rely on the viewstate!

Checking the Viewstate Encryption Features
It is also important to check that the tamper-proofing and encryption features of the viewstate
are not enabled in your application if you don’t really need the extra security that these fea-
tures provide. This level of security will certainly impact the performance of your application,
so disable it if you don’t need it.

The tamper-proofing mechanism can be specified by setting the EnableViewStateMAC
attribute in the Page directive:

<%@Page ... other attributes ...
EnableViewStateMAC="false" %>

There is no need to explicitly disable encryption, because it depends on EnableViewStateMAC
being set to true.

Note that the value of the EnableViewStateMAC attribute doesn’t affect your ability to use
the viewstate for individual controls. In contrast, if the value of the EnableViewState attribute
is false, then it disables the viewstate-related security settings.

Deciding What to Put in Viewstate
Finally, we recommend that you are selective about what data types you store in the viewstate.
Integers, Booleans, hash tables, strings, arrays, and array lists containing any of the former, as
well as Pair and Triplet types, are okay, because the viewstate serializer is optimized to work
with these types. Other data types should be avoided if possible, because saving other serializ-
able types into the viewstate is a slower process.

More ASP.NET Performance Tips
You have already learned plenty in this chapter about how to examine and improve the per-
formance of specific pages, and you’ve seen a couple of demonstrations in which carefully
chosen caching techniques and controlling the viewstate enhance the overall performance
of the page and the application.

In the remainder of the chapter, we’ll take a look at some other ASP.NET performance
tips. Not all of them are immediately applicable to the Friends Reunion application, but you
will surely find them useful when developing your own applications.

Server-Side Redirection Using Server.Transfer
When the user is redirected between pages of an application using Response.Redirect(), the
server sends an HTTP 302 Redirect response to the client passing the target URL. The 302

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING 515

Redirect response tells the browser to issue a new request with the new URL. Effectively, the
redirection is handled by this extra round-trip between the client and server, to finally get the
user to the desired page, as illustrated in Figure 12-14.

Figure 12-14. Redirection involves an extra round-trip.

You can avoid this extra round-trip by employing Server.Transfer() instead of
Response.Redirect(). Server.Transfer() transfers the execution to a different page within
your application. It’s a sort of “server-side redirect,” in which the client doesn’t notice that a
redirect occurs.

Try It Out: Use Server.Transfer for Server-Side Redirection You can quickly apply this improvement
to the Friends Reunion application.

1. Perform a search (Ctrl+Shift+F) on the files in the Friends Reunion application to find
occurrences of the Response.Redirect() method call in the application. There are
quite a few; for example, you’ll find them in Logout.aspx.vb, NewUser.aspx.vb, and
ViewUser.aspx.vb.

2. Go to each one in turn (or perform a global Find and Replace in Files) and replace
the Response.Redirect() with a Server.Transfer() method call. The new method will
take the same single parameter as the old one. For example, here’s the change in the
UpdateUser() method in NewUser.aspx.vb:

If doredirect Then Server.Transfer("../Default.aspx")

How It Works

Replacing the Response.Redirect() method call with a Server.Transfer() method call simply
means that the redirection is managed on the server, without a round-trip to the client, as
illustrated in Figure 12-15.

The performance improvement from this change manifests itself in two ways:

• The server now needs to handle just one request, instead of two.

• There are only two messages sent (one request and one response) instead of four, and
that reduces the delay perceived by the end users as they wait for a response to appear
on the browser.

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING516

Figure 12-15. Managing redirection on the server

When you run the code to test this, you may also notice that the URL shown in the
Address box of the browser is the address of the original request (NewUser.aspx), even though
the page returned to the browser is clearly Login.aspx. That’s because the server transferred
execution to Default.aspx without telling the browser about the transfer. This may make
things difficult for users if they want to bookmark pages, for example. You’ll need to evaluate
whether this drawback is an acceptable trade-off for the reduced network traffic.

Using Web Controls Conservatively
You learned about the power of web controls back in Chapter 3. When you’re using web
controls, you need to be aware that they can involve a lot of processing work for the server,
because these controls must be initialized, their properties set, their events handled, and so
on. So, you should take a look at each web control in your application and consider whether
you really need to use a web control for that function.

For example, take a look at the code in the ViewPlace.aspx file. In particular, note the fol-
lowing <asp:panel> control there:

<headertemplate>
<asp:panel id="Panel1" runat="server" cssclass="PlaceTitle">
List of Places

</asp:panel>
</headertemplate>

The <asp:panel> control here is not manipulated anywhere in ViewPlace.aspx.vb or in
any other code. It’s just used to hold three words of text, styled using the PlaceTitle CSS class.
However, it’s still a web control and consequently demands server processing time. Since this
control isn’t manipulated at all, this just wastes processing time.

Try It Out: Avoid Unnecessary Web Controls Now you’ll rewrite ViewPlace.aspx to demonstrate how
to use web controls conservatively, and get a slight performance gain in this case.

Simply open ViewPlace.aspx and replace the <asp:panel> control with an HTML <div>
tag, as follows:

<headertemplate>
<div class="PlaceTitle">
List of Places

</div>
</headertemplate>

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING 517

How It Works

The <div> element provides the same rendering effect as the <asp:panel> control, but doesn’t
require server-side processing. Note that you use the <div> element’s class attribute to attach
the same CSS class as you used before.

As an exercise, you may want to go hunting for other controls in Friends Reunion that
may be converted to plain HTML. Label and Panel controls are great candidates for this!

Disabling Session State
It’s very convenient that you can just throw objects into session state and use them later,
but this convenience comes at a cost. By default, session state is enabled, which means that
ASP.NET does all the work involved in making the session state feature available, even if you
don’t use it. Therefore, it’s worth overriding the default value for those pages that do not per-
form any session handling.

You disable session state by setting the EnableSessionState attribute to false in the Page
directive:

<%@ Page Language="vb" ...
EnableSessionState="false" %>

If you have a page that reads values from session state (but does not write new values or
modify existing ones), then it uses session state in a sort of read-only mode. In these cases, you
can set the EnableSessionState attribute to ReadOnly, which will provide the page with access
to session state but with less overhead (because it omits the writing capabilities).

If you don’t use session state anywhere in your application, you can simply turn it off at the
application level by setting the <sessionState> element’s mode attribute to Off in Web.config:

<sessionState mode="Off"
stateConnectionString="tcpip=127.0.0.1:42424"
sqlConnectionString="data source=127.0.0.1;user id=sa;password="
cookieless="false" timeout="20" />

■Caution Be careful to use an uppercase letter O when setting the value, because it is case-sensitive!

Finally, be aware that in State Service and SQL State session modes, session data must be
serialized and deserialized to get it in and out of storage, and the cost of this processing will
directly depend on the complexity of your objects.

Improving Database Access
A number of factors affect the efficiency of database access. Here are some ways for improving
database access to consider for your applications:

Use stored procedures. The first (and perhaps most obvious) consideration is the way
you write your queries. In the Friends Reunion application, you have used SQL text
queries throughout. You’ve done this for one reason only: to simplify the code. You can

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING518

give your application an instant performance boost by converting that code into stored
procedures. Stored procedures are precompiled and highly optimized, and reside within
the database. That means you don’t need to transmit and compile the entire query each
time you use it. As a result, you benefit from reduced traffic between your web server and
the database server, and a significant reduction in the database server workload (espe-
cially for complex queries).

Code the DataAdapter component manually. The automatically generated commands
that a DataAdapter component can produce are not optimized, and not as powerful as
coding your own commands.

Choose a managed provider carefully. Use a data provider that is specifically written for the
database engine you’re targeting, instead of a generic one. If you’re targeting Microsoft SQL
Server, you should use the classes found in the System.Data.SqlClient namespace, rather
than the more generic classes found in the System.Data.Odbc namespace. This will avoid an
extra level of indirection and, better yet, your code will be speaking SQL native language,
and thus dramatically improve performance.

Use DataReaders instead of DataSets. What about the relative costs of DataReader and
DataSet objects? You should use a DataReader in preference to a DataSet wherever possible.
Remember that the disconnected nature of a DataSet is achieved by storing all the data in
memory, so if you don’t need to cache the data, you should be using a DataReader instead.

Set up connection pooling correctly. Remember that the useful connection pooling
offered by ASP.NET (which manages open connections and allows them to be reused,
thus avoiding some of the overhead of connection opening and closing) will work only if
you use identical connection strings for identical datastores. If you have two connection
strings that differ by even a single character, the connection-pooling mechanism will
consider them as different.

Summary
Performance is a feature of your application, which you should consider even before starting
to write your very first line of code. As it happens, in this chapter, you’ve considered and
applied some retrospective changes to the Friends Reunion application:

• Caching expensive pages, page fragments, and data objects

• Disabling viewstate where appropriate

• Replacing Response.Redirect() with Server.Transfer()

• Replacing web controls with HTML elements where possible

• Disabling session state where possible

You managed to apply all these changes without too much effort, but it would have been
a lot easier if you had applied some of the practices here at the time you wrote the application.
Certainly, at the time you design an application, it’s often possible to pick out places where

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING 519

you have things like large, frequently generated datasets. In those cases, you should plan your
cache usage as part of the application design, establish the expiration of the cached object,
and convince yourself that there will be enough cache memory to contain it.

The main cache area we’ve examined in this chapter is the ASP.NET cache. This is an area
of memory on the web server that is provided by ASP.NET for output caching and for data
caching. You’ve also seen that some items can also be cached further downstream, in areas
of cache at the proxy server or in the browser itself.

Caching is undoubtedly one of the most powerful techniques available for improving
web application performance. New ASP.NET caching features, such as the ability to cache the
whole or a fragment of a page, are very well suited to their task.

It’s clear that you don’t need to resort to tricky code. You can write clean and maintainable
code that uses the different features you have learned about in this chapter to effectively
improve your application’s performance.

Our intention has been to demonstrate how to test your application and to suggest some of
the options ASP.NET has on offer. There is much to explore, and we hope we’ve given you some
ideas! As we noted earlier, there is much more information on these subjects in Performance
Tuning and Optimizing ASP.NET Applications, by Jeffrey Hasan and Kenneth Tu (Apress, 2003;
ISBN: 1-59059-072-4). Also, see the Microsoft Patterns and Practices site (www.microsoft.com/
practices), particularly the guide “Improving .NET Application Performance and Scalability”
(http://msdn.microsoft.com/library/en-us/dnpag/html/ScaleNet.asp).

In the next chapter, we’ll turn our attention to the task of preparing the Friends Reunion
application for deployment on production servers.

CHAPTER 12 ■ CACHING AND PERFORMANCE TUNING520

Publishing Web Applications
in .NET

Throughout this book, we’ve examined how to make the best use of VS .NET for developing
applications. Once you’ve finished developing the application, there are just a few final hurdles
to overcome before it can be used by the world at large. These hurdles all relate to publishing
and maintaining this application. In particular, you need to select and group the files required
for an installation into a deployment package, and then install the deployment package on pro-
duction servers. You also need to find a way to configure an application for the target system.

The time and complexities involved in the deployment of a project are often overlooked.
Once an application has been proved to function, to be reliable, and to fulfill the requirements
set out for it, developers may want to relax and assume that there is nothing more to do. But
we still need to organize all the elements that make up the application—web pages, compiled
components, databases, and so on—and move them from the place where they were devel-
oped/built/tested (maybe in the developer environment itself for small teams, or on the build,
testing, or preproduction staging servers in larger ones) to the production hosting environment
in a controlled way.

This chapter examines the functionality provided by the .NET Framework and VS .NET
that comes into play when development of an application finishes and deployment is required.
It covers the following topics:

• Installing an application by hand

• Creating a simple deployment project to do the same task, automating a lot of the effort
involved

• Adding more complex functionality, such as user interaction to the deployment project,
and allowing changes to the configuration to be made during deployment

• Adding custom actions to the installation of applications (including installation of
external parts of a system, such as databases)

Methods for Deploying .NET Applications
Historically, the manner of deploying an application has been largely dependent on how
the application was composed (that is, what was in it). Traditional ASP files could simply
be copied to a folder on the target machine, and as long as a site or virtual directory was 521

C H A P T E R 1 3

■ ■ ■

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET522

configured in IIS, the application would run. If the application made use of COM compo-
nents, things became much more complicated. You could register COM components by
writing a batch file (a script with a .bat extension). You could even create a proper installation
package that either registered the DLLs or placed them in COM+. Such installation packages
could be created either by using third-party applications or by using Microsoft’s Packaging
and Deployment Wizard, included with Visual Studio 6.0. Other methods were available for
different platforms, such as Java. The existence and popularity of such third-party applica-
tions for the creation of installation packages demonstrated the commonly held opinion that
Microsoft’s offering didn’t provide the functionality required, and left much to the developer.

When Microsoft announced that it was planning to incorporate a full-featured deploy-
ment manager into VS .NET, many were skeptical due to its track record. However, consider
that an installation package just goes through the motions that are required when installing
by hand. It’s now much simpler to deploy an application by hand than it used to be (as you’ll
see in the next section). So, the simpler this process, the more easily such functionality can be
implemented by an installation builder. VS. NET’s deployment projects provide an efficient
and professional way to manage application deployment. We’ll look at the functionality they
offer in a moment, after we look at another method for deploying .NET projects: XCOPY.

XCOPY Deployment
Possibly the most talked about aspect of installing .NET applications in general, and web
applications in particular, is XCOPY deployment. This refers to the old MS-DOS tool XCOPY,
which allows files and folders to be copied between locations with a wealth of options.

XCOPY can be used on its own. It can copy subfolders, validate the actions it has per-
formed, ignore errors, select the files to copy based on attributes (such as Last Modified Date),
and so on. This is a huge leap forward in comparison to the deployment of projects developed
in older technologies such as ASP with COM DLLs, where, once all of the files had been copied,
DLLs had to be registered and unregistered, entered into COM+, and so on.

Such a simple method of deployment is possible due to the self-describing nature of
assemblies in .NET. Each assembly contains within itself all of the information required for
other applications to make use of it (which means that you don’t need to store metadata about
the assembly in the Registry). This feature, when combined with the fact that .NET applica-
tions check specific folders (such as the current one) for libraries to be used with applications,
means that the deployment of applications really can be as simple as copying files to the tar-
get machine.

Deployment Projects
With the solution to installation as simple as copying files, it may seem that there is little need
for the inclusion of deployment packagers with VS .NET. However, there are many secondary
questions that need answering for each application, such as the following:

• Where do the files need to be installed?

• How do you provide the files in a manageable format (such as a compressed archive) to
those installing the application?

• How do you create an entry in IIS that guarantees that the entry’s settings are the same
as on the development machines?

• What if the individuals installing the application aren’t experienced with file manipula-
tion? (Keep in mind that most of the time administrators, not experienced developers,
have the responsibility of installing the application.)

• What if the user makes a mistake while performing a manual installation?

• How much time will be spent copying the files by hand (particularly if the system must
be deployed to many machines or is being updated on a regular basis)?

• What if certain parts of the application can be installed and updated separately from
others?

• What if you need to provide further functionality, such as the installation of a database
or notification of a successful installation for auditing purposes?

• Is your application going to be presented to end users as a commercial product
(that they’ll expect to install in a similar manner to all of their other software)?

• How do you provide late-breaking information and tips to users installing your
applications?

By using deployment projects in .NET, you can deal with all of these issues. These projects
provide a wizard-style interface that guides users through the installation process, allowing
them to make choices at the appropriate times.

Manual Web Application Deployment
Before we look at how to go about creating a deployment project using VS .NET, we’ll run
through the process of installing an ASP.NET application by hand. This way, you’ll gain a
better understanding of the underlying architecture and installation process involved in
deployment.

If you look at any web application in the Solution Explorer, you’ll see that it consists of a
large number of files and folders. Here’s an example from our Friends Reunion application:

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET 523

However, this is only half of the story. If you click the Show All Files button on the toolbar of
the Solution Explorer, you’ll see that several more files and folders are shown with a “ghosted”
appearance, along with + symbols next to many of the files.

Many of these files are not required when deploying the project to another machine. For
instance, all of the files with a .vb extension are merely source code for the application. This
source code will not be required at runtime, because it will have been compiled.

In order for the Friends Reunion the application to run, the following files are required:

• bin\FriendsReunion.dll: This is the application’s DLL file, which contains the compiled
code of the project’s classes, methods, declarations, and so on. There is a class for each
of the web pages that was created as part of the project.

• bin\Microsoft.Web.UI.WebControls.dll: This is the assembly that contains the controls
we used for some functionality on our site, such as populating a TreeView control with
information from an XML file in Chapter 8.

• *.aspx and *.ascx: These files represent the individual web pages and user controls
in the application. They contain any HTML required to render the page, along with
controls that are used (such as <asp:textbox> tags) and a reference to the code-behind
file that has been compiled into the FriendsReunion.dll assembly. As we just men-
tioned, the .aspx.vb (and also the.aspx.resx) files are not required for deployment
because the code and resources contained in those files are already compiled into
the FriendsReunion.dll assembly. The same is true for the contents of .ascx.vb and
.ascx.resx files.

• Services\Partners.asmx: This is the file that exposes the web service we created in
Chapter 9. Just as in the case of the web pages and user controls, the .asmx.vb and
.asmx.resx files don’t need to be deployed.

• Friends.xsd and upload.xml: These are the schema file we created in Chapter 7 and the
sample XML file used in Chapter 8. They are used in the upload feature of our site.

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET524

• Global.asax: This file links to the Global.asax.vb code-behind class, which is compiled
into FriendsReunion.dll. That’s where we added the Application_AuthenticateRequest()
functionality, back in Chapter 10. This is the code that checks to see if a user has logged
in, for example. Again, source files that are compiled (those with a .vb and .resx exten-
sion) can be ignored.

• Web.config: This is the XML file that contains ASP.NET configuration information for
the web application. We can change the values in this file without the need to recom-
pile the entire project. This means that after installation, we can alter the Web.config
file without affecting the other files we need to deploy.

Obviously, for our site to appear to users as we intend, the files contained in the Images
and Style folders will also need to be included for deployment. If we used any script files, we
would need to deploy them, too.

■Note The Microsoft IE WebControls package we used in Chapter 8 will need to be installed with its own
Microsoft Installer (MSI) file, too, as some scripts need to be deployed to the IIS root application folder.

In addition to the .vb source files, there are several other files that are not required for
deployment. These include some files shown in the Solution Explorer, such as .pdb (program
database) files that are created for each project when it is compiled in Debug mode and other
files that aren’t shown, such as .vbproj files that contain information about the project. Also,
we don’t need the XSD files we used to generate typed datasets in Chapter 5, such as
PlaceData.xsd or ContactsData.xsd. These files were used to generate a class that is already
compiled into the application assembly.

Now that you know exactly which files are actually required by an ASP.NET web applica-
tion, let’s try out the process of manual installation.

Try It Out: Deploy by Hand We’ll assume here that the destination server already has IIS installed,
but does not yet have the .NET Framework installed. After all, it could be that this is the first
.NET application to be deployed to your servers.

1. Install the .NET Framework runtime files so that IIS can recognize and process
ASP.NET file types such as .asmx, .aspx, and so on. The Microsoft .NET Framework
Redistributable installs the files required to run any .NET application, including web
applications. This file is called dotnetfx.exe, and it can be found on the Microsoft Win-
dows Component Update CD that came with VS .NET. It is located in a subdirectory
named dotNetFramework. Alternatively, you can download it from Microsoft’s web site,
at http://msdn.microsoft.com/netframework/downloads/redist.aspx. By executing
this file, you install all of the essential runtime libraries (files such as System.dll,
System.Data.dll, and so on), as well as the runtime itself, which executes the assem-
blies that form the compiled application. If it weren’t for this runtime, the applications
created by .NET projects could not be run at all, as they don’t contain native code;
that is, the code must first be processed by the runtime, converting it to the physical
instructions that execute on the machine.

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET 525

■Caution To ensure correct execution, the version of the .NET Framework Redistributable run on the
target machine should be the same as the version of the .NET Framework installed on the machine that
compiled the original project. A newer version may work, but it’s highly recommended to recompile the
application against the version used for deployment.

2. Copy the necessary files into a new folder somewhere on the target server’s hard disk.
By default, IIS uses the C:\Inetpub\wwwroot as the folder where individual applications
place their subfolders, but you’re free to put it anywhere that seems appropriate;
after all, that’s why they are called virtual folders! Throughout this example, it will be
assumed that the folder chosen is C:\Inetpub\wwwroot\FriendsReunion. Here are the
files to copy (an asterisk denotes either all files in a given folder or all files with a spe-
cific extension):

• Admin\Users.aspx

• Admin\Web.config

• bin\FriendsReunion.dll

• Controls*.ascx

• Images*

• Secure*.aspx

• Services*.asmx

• Style*

• *.aspx

• Global.asax

• Web.config

• Friends.xsd

• upload.xml

When copying the files across, you should ensure that the exact folder structure is
re-created on the target server (in other words, the FriendsReunion.dll file is located
in the bin folder, and so on). There is no need to register the DLL file itself.

3. Depending on the location of these files, you may need to create a virtual directory for
them in IIS, set an alias for the folder, and set the physical folder directory as an appli-
cation. (Refer to Chapter 1 and Appendix B to see how to create and set up virtual
directories in IIS.) Or, if you have placed the files under C:\Inetpub\wwwroot, you sim-
ply need to tell IIS that the directory is an application folder, by clicking the Create
button on the Directory tab of the Properties dialog box for it.

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET526

4. Set special file and folder permissions if necessary. For example, you need to allow
Read permissions on both Friends.xsd and upload.xml files used by the application
and discussed in Chapter 8.

5. Before verifying that the web site is installed properly, let’s check the version number of
the .NET Framework on the server (to ensure that it matches with that of the develop-
ment machine). In the Internet Services Manager MMC snap-in (select Start ➤ Settings
➤ Control Panel ➤ Administrative Tools ➤ Internet Services Manager or select Start ➤
Run and type inetmgr), right-click the FriendsReunion (virtual) directory and select
Properties. Then click the Configuration button that appears in the lower-right area of
the Properties dialog box. This brings up another dialog box that shows all the file types
and their mapping with an executable that handles them. Scroll down a little to the
.asmx and .aspx extensions. Files of this type are run using the aspnet_isapi.dll, which
will be located in a folder named after the version of the .NET Framework to which it
belongs. In Figure 13-1, you can see that the Framework version is 1.1.4322.

Figure 13-1. Checking the version number of the .NET Framework

6. Now you’re ready to test the installation. Open a web browser and navigate to the URL
http://<servername>/FriendsReunion, where <servername> is the name of the server
to which the application has been deployed or its IP address. The web application’s
default page should appear, allowing you to log in or register, as appropriate.

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET 527

■Note If you’re getting exceptions when you run an application on the server, but it runs fine on the devel-
opment machine, it’s worth checking that both machines have the same version number installed. Problems
with .NET Framework versioning will become more common as additional releases of the Framework are
made available by Microsoft. At the time of writing, version 1.1.4322 is the latest released version available.
The good news is that ASP.NET version 2.0 adds an option to the virtual directory Properties dialog box that
allows you to easily change the version you want to use.

How It Works

You have taken the minimum number of files produced by VS .NET for an ASP.NET web appli-
cation project and copied them to a folder on our server. You then created a virtual folder that
acts as an alias for this location and allows users to view the site through a web browser.

Each of the .aspx, .asmx, and .ascx files (and Global.asax, too) contains a line of markup
that specifies which class in your project contains the code-behind functionality for that file.
When that resource is requested, the .NET runtime looks within the DLL file for the necessary
class, which will be already compiled into FriendsReunion.dll. The runtime automatically
looks for this DLL file in the bin subfolder of your application. So, all you needed to do was
copy each of the files to the correct location.

The only issue you needed to deal with was ensuring that the version of the .NET Frame-
work that you used in developing the application is the same as the one on the target server.

Setup Projects in VS .NET
Having looked at the steps required to install the Friends Reunion web application onto a dif-
ferent machine manually, you should now have a good understanding of what any automated
installer will need to do. With that in mind, let’s look at the project type VS .NET provides for
installing web applications. This is the setup project, and it is found under the Setup and
Deployment Projects node of the New Project dialog box.

A VS .NET setup project creates a single Microsoft Windows Installer file (with the .msi
file extension, which we’ll refer to as MSI file in this chapter). This MSI file offers the user a
friendly GUI for directing installation, which includes copying files, configuring the environ-
ment, and installing components into COM+, if necessary. In addition to the manageability of a
single file, such MSI files also offer the benefit of remote deployment over earlier installer tech-
nologies (such as cabinet, or .cab, file-based installers). This allows them to be installed on
remote machines by system administrators, making their management far quicker and easier.

A setup project combines the output files from other VS .NET projects, along with any
other necessary files, to create an installation file that can be copied and run on the system
that is to host the application. Just for reference, Table 13-1 describes the types of VS .NET
projects you can use for deployment.

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET528

Table 13-1. VS .NET Deployment Projects

Project Type Description

Setup Project Used to create installers for Windows Forms applications, as opposed
to web applications. This is the only option available with the Standard
Edition of VS .NET. In order to use the other project types, you need
either the Professional Edition or one of the Enterprise Editions.

Web Setup Project Similar to a standard Setup Project, but it is aimed to the deployment
of web applications. It does this by tailoring the installation process to
include the creation of a virtual directory in IIS automatically.

Merge Module Project Can be reused in several installations. If certain groups of components
or files are common to many applications, then instead of copying
such files one by one into each setup project, you can create a merge
module containing a group of files. You can then use the merge module
in your setup project to include the common files that it contains
automatically. Microsoft itself makes such merge modules available,
for the .NET runtime, for example. One difference between merge
modules and other setup projects is that they cannot be run on their
own. They must be added to other setup projects in order for the files
they contain to be deployed. Creating merge modules for common
tasks follows a very similar procedure to regular setup projects.

Setup Wizard Not really a setup type in its own right; it simply asks a series of
questions in order to determine the setup project type to use. It also
sets certain options within the setup configuration.

Cab Project Used to create cabinet files that can be downloaded to a web browser
or platform. This project type lets you package ActiveX components
so that they can be downloaded and installed onto a client’s machine
from a web site with a single click.

In VS .NET, setting up Web Setup Projects (or any of the other setup project types) is
very simple. VS .NET provides a series of editors to alter each stage of the installation. These
editors allow you to specify changes that should be made to the Registry, any extra files that
are required, the look of the installation interface, and so on. When you select a setup project
in the Solution Explorer, the mini-toolbar at the top changes to display an icon for each of the
editors available for the project, as listed in Table 13-2.

Table 13-2. VS .NET Editors

Icon Editor Type Description

File System Editor Allows creating, updating, and property setting for all
physical files, assemblies, and folders of the project to
be installed.

Registry Editor For creating or modifying values in the Registry of the
machine where the application is being installed.

File Types Editor Can create specialized file type commands that assign
processes to specific file extensions. Particularly useful if
the installed project uses a unique file name extension.

Continued

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET 529

Table 13-2. Continued

Icon Editor Type Description

User Interface Editor The install process comprises a series of dialog boxes
that are displayed to the user. This editor allows you to
change or delete any of the default dialog boxes and
to create new custom dialog boxes.

Custom Actions Editor Allows you to specify additional processes that should
be performed on a target computer during installation.
The process can take the form of a DLL, an executable,
a script file, or an Installer class file within the solution.
For instance, you could create a Visual Basic script that
creates a new administrator or a SQL script that creates
a database.

Launch Conditions Editor The installer uses conditions specified in this editor to
determine whether the installation can proceed or if
dependent components need to be installed first.

Creating Web Setup Projects
The only project type available in the Standard Edition of VS .NET is the Setup Project. In
order to try out the creation of a Web Setup Project, you need to have the Professional Edition
or one of the Enterprise Editions of VS .NET. Even if you don’t have one of the versions, you
should still read the steps in the next “Try It Out.” The main difference between the Setup
Project and Web Setup Project types is that the latter creates a virtual directory in IIS to host
the application. You can add this functionality by using custom actions, described later in this
chapter, in the “Customized Deployment” section.

Try It Out: Create a Web Setup Project You’ll now create a VS .NET Web Setup Project that installs
the Friends Reunion application.

1. Within the Friends Reunion solution, add a Web Setup Project from the Setup and
Deployment Projects node of the Add New Project dialog box, as shown in Figure 13-2.
Name this project FriendsReunionSetup (this project can be created in any convenient
location) and click OK. Once the FriendsReunionSetup project has been created by the
IDE, it will show up in the Solution Explorer, along with the FriendsReunion project
that you have created.

2. You now need to add to the deployment package the files that constitute the web site.
To do this, click the File System Editor button on the toolbar at the top of the Solution
Explorer pane (see Table 13-2). The editor appears, as shown in Figure 13-3.

3. Using the File System Editor, you can add all of the files that are required by your web
application in order to function. To do this, right-click Web Application Folder in the
tree view on the left and select the Add ➤ Project Output option. This brings up the
dialog box shown in Figure 13-4.

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET530

Figure 13-2. Creating a Web Setup Project

Figure 13-3. The VS .NET File System Editor

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET 531

Figure 13-4. Adding a project’s primary output to the setup project

4. The Project drop-down list at the top of this dialog box lets you select the project
whose output you want to use from those currently attached to this solution. The list
box beneath the drop-down list shows the different types of project output that you
can choose: primary output (such as DLLs), content files (such as .aspx files), and so
on. You want to add the primary output of the FriendsReunion project, which will
include the .dll files in the installation, and you also want to do the same for the con-
tent files of the project. This will include the .aspx files, along with the associated
Web.config file and all of the images, styles, and so on that compose the project. To do
this, select both the Primary output and Content Files options (hold down the Ctrl key
while clicking each), and then click OK. Leave the Configuration setting as (Active).
Once you’ve done this, the FriendsReunionSetup project should look something like
the following:

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET532

5. That’s all you need to do to create a simple installer for your projects in VS .NET. To
build the setup package, right-click the FriendsReunionSetup project in the Solution
Explorer and choose the Build option from the menu.

As it now stands, the deployment package won’t work, so don’t attempt to install it just
yet. We’ll look at how this deployment package works first, before trying it out.

How It Works

To add the files that you want to include for installation, you use the File System Editor. This
editor uses a layout similar to Windows Explorer, with a tree view on the left and a detail pane
on the right showing the contents of the selected folder. To include a file in the installation
process, you just need to place it into the appropriate folder in this editor. By default, the bin
folder is already created, ready for you to place your executables and DLLs.

When VS .NET builds a setup project after you’ve added such files, it creates all of the
installation packages that you might need to distribute in order for your users to install your
.NET application. You can see what these are by browsing to the folder that you specified
when the FriendsReunion project was created. This folder will contain two subfolders, called
Debug and Release, respectively. The compiled code for the installation will be in one of these
folders, depending on your project configuration. The default location is the Debug folder.
The following files are created:

• Setup.exe and Setup.ini: This program, and its configuration file, will examine the
system to determine whether the Microsoft Installer technology itself needs to be
installed, and let the user do it if necessary. It will then install your application, using
the file described next.

• FriendsReunionSetup.msi: This is the package that contains all files for installing your
application with the Microsoft Installer. If you are certain that the required version of
the Microsoft Installer is already installed on the target machine, this is the only file
that you need to distribute.

Using the Microsoft Installer software is the default method of installing any Windows
application, and Microsoft and other third-party software vendors throughout the industry
use it.

When you selected the Primary output option from the Add Project Output Group dialog
box, the FriendsReunion.dll file in the bin folder was added to the deployment package. This
file contains all of the compiled code-behind files for the project. By selecting the Content
Files option too, you ensured that all of the other files required (as listed in the previous sec-
tion) were also included. Table 13-3 describes the output types available from the Add Project
Output Group dialog box.

Each of the entries for the content files and primary output is really just a shortcut to the
project output files themselves; it’s a sort of list of what files are to be included, rather than a
copy of each individual file. This means that the setup package adjusts itself to use the latest
version of the included files at the time the installation project is built, and hence reduces the
danger of producing a setup package that installs an outdated application.

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET 533

Table 13-3. The Output Types Available for Setup Projects

Output Type Description

Documentation Files The documentation that has been produced for a project.

Primary output The compiled executables and libraries (files with an .exe or a .dll
extension). This does not include any DLL or EXE files that have simply
been copied into the selected project; only those that are created by
the project are included. Libraries that are referenced by the primary
output are, however, automatically added to the bin folder of the
File System Editor.

Localized resources The locale- or culture-specific resources for a project.

Debug Symbols The debugging files produced for the project, with either a .dbg or .pdb
extension. These files are required for debugging the project remotely;
they are not required if you are deploying a live system.

Content Files Files such as .asmx, .aspx, .ascx, .asax, .htm, .css, .xml, .xsd, and
images.

Source Files These comprise the code-behind files for .aspx, .asmx, and .ascx
solution items, as well as other code files such as classes and interfaces.
Similarly to the Debug Symbols, if the project is to be deployed to a live
environment, these are not required.

■Tip The files to be included in the Content Files category are those that have the Build Action set to
Content in the Properties browser. You can set it to None to avoid deploying them.

In addition to selecting project outputs, the File System Editor also allows you to drag any
files and folders located on your system directly into the desired output folder, either from
Windows Explorer or from VS .NET’s Solution Explorer pane.

The Configuration drop-down list in the Add Project Output Group dialog box offers the
following choices for the selected project:

• (Active): Uses whichever one of the following two configurations has been set as the
default configuration for the project you’re attaching to this installation.

• Debug .NET: Includes debug information, making it possible to easily step through
code, trace errors, and so on. This produces slightly more of a performance hit than
Release .NET builds.

• Release .NET: Strips out all code that uses the DEBUG command and also omits all debug
information from compiled code.

It is also possible to select different code for different configurations at compile-time, on
a conditional basis. Look at this simple example as an illustration:

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET534

#If DEBUG Then
Response.Write("Test code...")

#Else
Response.Write("Live code...")

#End If

This preprocessor directive (as denoted by a leading hash character, #) is similar to a regu-
lar If statement, except that it controls the behavior of the compiler itself, rather than the
compiled code. So in this simple example, if you were to select Debug .NET as the active con-
figuration for a project, the command would write out the text “Test code...”; otherwise, the
text “Live code...” would be displayed.

The value DEBUG that is used for testing can be found in the Property Pages of your web
application, which are displayed when you select the Properties option from its context menu
in the Solution Explorer. If you select the Build node inside the Configuration Properties node
from the list on the left side of the window, and you switch to the Release configuration using
the drop-down list at the left top of this window, you will see the DEBUG value disappears from
the Conditional Compilation Constants field, as shown in Figure 13-5. If you change the Con-
figuration drop-down list to Debug, you’ll see that this value reappears.

Figure 13-5. Viewing configuration properties of a web application

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET 535

Including the dotnetfx.exe File with Your Installation
Needless to say, your application depends on the .NET Framework being installed on the target
machine. When you went through the process for installing the application manually, you dealt
with this issue by manually copying the dotnetfx.exe file to the target machine and running it
to install the .NET Framework. Now that you’re having the MSI file do the work for you, you can
(if you wish) include the dotnetfx.exe file in the installation package. But this comes at a cost:
dotnetfx.exe is 40MB in size. It needs to be installed only once, so it’s probably better to install
it manually on the target machine, rather than as part of our application’s installation. Also, it’s
worth noting again the importance of being careful about versioning. You must ensure that the
correct .NET Framework version is installed to deployment machines.

That said, however, it is extremely easy to include the dotnetfx.exe file with your instal-
lation. If you were watching closely earlier, you may have seen a file with a similar name,
dotnetfxredist_x86.msm, under the detected dependencies of your setup project in the Solu-
tion Explorer. To include this file in all subsequent installation packages generated from your
project, just right-click this entry and uncheck Exclude.

This file has an .msm extension because it is a merge module. This means that it contains
one or more files required for a specific and common installation process. If you’re interested,
you can view the files it contains by choosing Properties from the context menu and clicking
the ellipsis button for the Files property. You’ll see the Files dialog box, listing the contents of
dotnetfxredist_x86.msm, as shown in Figure 13-6. This list contains all of the files within the
merge module.

Figure 13-6. Viewing the contents of dotnetfxredist_x86.msm

Viewing Application Dependencies and Outputs
At this point, you may be wondering how VS .NET knows that components like dotnetfx.exe
should be included in the first place. Some files need other files to be installed already if they
are to work correctly, and these other files are called dependencies of the files requiring them.

To view the dependencies for the files in your install list, right-click either the appropriate
item in the right-hand pane of the File System Editor or the Primary output option in the
Solution Explorer, and choose Dependencies. Figure 13-7 shows the list for the primary out-
put of FriendsReunion.

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET536

Figure 13-7. The primary output dependencies for the FriendsReunion project

The Dependencies dialog box shows the components (and the component’s versions)
that this file or package is dependent on, and which must, therefore, be included in the instal-
lation for it to operate correctly. All of the dependencies shown here are installed with the
.NET Framework (by running dotnetfx.exe), except for the Microsoft.Web.UI.WebControls
assembly.

Often, it’s also useful to know exactly which files are being included with the installation,
especially in the case of these shortcuts to project outputs. To see a list of the files being
installed, right-click an item listed in the right-hand pane of the File System Editor and choose
Outputs. Figure 13-8 shows the outputs for the content files of the FriendsReunion project.

Figure 13-8. The outputs for the content files of the FriendsReunion project

Being able to see the outputs and dependencies for files is invaluable when creating an
installation project for a web application. It prevents needless hours of hunting for missing
files that were assumed to be present.

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET 537

With the setup project selected in the Solution Explorer, you can open the Properties
browser (press F4) and modify some global values for the installation wizard, such as the
Manufacturer and ProductName. Set the former to Apress and the latter to Friends Reunion.

Using the Setup Project
Now that you’ve created a VS .NET Web Setup Project, you’re ready to find out what actually
happens when you use the files it creates. Once you’ve seen that, you’ll have a clearer idea of
the aspects that you might want to change.

■Tip If you don’t have a separate machine to test your installation projects, you can use software that
simulates a separate machine, such as VMware (http://www.vmware.com) or VirtualPC (http://
www.microsoft.com/windowsxp/virtualpc/). It’s a good idea to test not only your setup packages,
but also your entire application on other platforms and operating systems. You can do this easily using
these products, without needing to have a separate physical machine.

Try It Out: Run the Installation Package In this example, you will deploy the installation files to
another folder, ideally on a remote machine, to see how they behave. As the last step in the
previous exercise, you built the solution, so you’re ready to run it.

1. Navigate to the folder on your local machine that contains the MSI file. This is the
folder that was created when you built the deployment project. Its location is specified
in the Output window, just as the project build begins. You need only the file with the
.msi extension to test the installation. If you can, use another machine, because then
the demonstration will be more effective. If you don’t have another machine available,
you can use a folder on the development machine for testing purposes. (For a manual
setup process, you need to set up IIS yourself, but that isn’t necessary when you use
a setup project.)

2. Double-click the MSI file to start the process. The installation process now follows the
standard wizard format that almost all modern applications use: a sequence of dialog
boxes that asks a series of questions, guiding the user through the installation process.
In this case, all you need to do is confirm the details of the virtual directory for IIS,
including the port to use, as shown in Figure 13-9.

3. The values of the settings in Figure 13-9 shouldn’t be changed unless it is necessary,
ensuring that the port to access the web site is left at the global standard of 80 and that
the virtual directory name is relevant to the application you’re installing. Click the
Next button twice, to complete this page and move past the Confirm Installation page,
which informs the user that all the required information has been gathered.

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET538

Figure 13-9. Installing the Friends Reunion application

4. When you reach the page with the Finish button, the installation is complete, and
you can test it. To do this, run Internet Explorer on the machine and enter the URL
http://localhost/FriendsReunionSetup. This should show the home page of your
site, just as when you installed the application manually.

How It Works

The installation process simply creates a folder with the same name as the setup project in the
Inetpub\wwwroot folder and specifies it as an application in IIS. If you browse to this directory,
you’ll see that all of the files here are those that you selected using the File System Editor: the
primary output and content files from your project. The installer also knows to place the DLLs
into the bin subfolder.

Uninstalling a Project
Although the deployment packages that you create within VS .NET can automatically remove
previous versions of software you’ve installed before proceeding, there are also times that you
may wish to remove the projects manually yourself. You can do this in the same way that you
install any other application: using Add or Remove Programs in the Control Panel, as shown in
Figure 13-10.

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET 539

Figure 13-10. You can uninstall Friends Reunion from the Control Panel’s Add or Remove Programs

Customized Deployment
You’ve managed to install the web application successfully. The next step is to add your other
dependencies to the deployment package, producing an installer that’s customized to your
particular application. In our case, this means deploying the database. The fundamental
method of installing the database is based on using a custom action in the setup project to
perform the work and using the User Interface Editor to obtain any user input you need dur-
ing the process.

One option if you have SQL Server Enterprise Manager installed is to generate a SQL
script that will re-create the entire database on the target machine, solely based on SQL state-
ments. You can, however, deploy the database files themselves and avoid this step altogether
(including the need to install the Enterprise Manager or SQL Query Analyzer to be able to
generate the scripts in the first place). This comes in handy if all you have is MSDE on your
development machine. For this example, we’ll demonstrate this alternative.

Adding a Custom File
Before you can use the more advanced features that will allow you to install the database, you
need to add the database files themselves to the installation project. You do this through the
File System Editor.

Try It Out: Add Custom Files You’ve already seen how you can place files in the Web Application
Folder that is present in the File System Editor, adding them to the install package. You follow
a similar procedure to add other files, namely the database.

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET540

1. In the File System Editor, right-click the File System on Target Machine node and select
Add Special Folder ➤ Custom Folder. Rename the folder that is created to Database.

2. Switch to the Properties browser for this folder and set the Property property to
DBPATH. This will allow you to modify this installation folder by linking its name to
the user interface you’re going to create shortly.

3. Use Windows Explorer to navigate to the database files. These files are Friends_Data.mdf
and Friends_Log.ldf, and they will be located wherever you uncompressed them after
downloading them from the Apress web site. Drag-and-drop the files into the Database
folder in VS .NET.

■Note If warnings about not being able to find the source file are issued by VS .NET at this point, you can
probably ignore them. We’ll cover correcting this shortly.

That’s it. Adding custom files is that easy!

Editing the User Interface
Now that the database will also be installed with the project, you want to allow the user to be
able to specify the location of the database server on which this file will be installed. You’ve
seen the user interface that VS .NET creates for the installation process by default, but you can
change it to insert new dialog boxes or delete existing ones that appear during the deployment
process. To do this, you use the User Interface Editor. Click the User Interface Editor button on
the toolbar at the top of the Solution Explorer (see Table 13-2) to open the editor, as shown in
Figure 13-11.

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET 541

Figure 13-11. The VS .NET User Interface Editor

This editor is split into two sections:

• Install: This section, the top one in the User Interface Editor, details the user interface
for installing from either the MSI file or a network-ready installation. (A network-ready
installation is one that has been installed to a network drive using the msiexe.exe
Microsoft Installer command that we’ll look at shortly.) This section is used in almost
all situations.

• Administrative Install: This section pertains to the interface to use when a system
administrator uses the msiexe.exe command to install the application to a network
drive, ready for other users to install from via a standard install later. You can alter the
user interface to suit the requirements of the administrator. For example, you may wish
to allow the administrator to install to any network location, but to restrict the users’
installation to a specific path. In such a case, you would disable the Installation Address
dialog box in the Install section, but leave it intact under Administrative Install. This
section is only for installations onto a network or shared folders.

Each of these two sections is itself split into three subsections:

• Start: This subsection contains dialog boxes that will be displayed before installation
takes place. It includes welcome screens, validation screens, folder browsing, custom
actions, and so on.

• Progress: This subsection contains dialog boxes that will appear during installation,
such as a progress bar. Only the Progress dialog box may be placed within this section,
and it may appear only once.

• End: This subsection contains dialog boxes that will be shown once the installation has
completed; for example, to display a simple “Finished” message, details of documenta-
tion, or where to check for updates.

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET542

As you can see in Figure 13-11, five dialog boxes are included by default when you create a
Web Setup Project: Welcome, Installation Address, Confirm Installation, Progress, and Finished.

Before you get too enthusiastic about the possibility of adding dialog boxes to various
stages of the installation process, you should know that, as with other third-party installers,
the functionality these dialog boxes allow is very limited. In the case of VS .NET, such dialog
boxes perform a specific task and/or simply pass on user-entered values for use during the
installation. These might be used to make crucial decisions related to the installation or
to provide values to place in the Registry for retrieval by the application once it has been
installed.

There are 14 basic types of dialog boxes that VS .NET will allow you to add to the installa-
tion sequence, as shown in Table 13-4. You may have only one of each type within a given
installation. To reduce the effect that this restriction may have, the dialog box types that are
used most frequently (Checkboxes and Textboxes) have three dialog boxes (A, B, and C), each
identical in design. So, if you have already added a Checkboxes A dialog box and you want to
add another Checkbox dialog box, you could use Checkboxes B.

Table 13-4. Types of Dialog Boxes Available for an Installation’s User Interface

Dialog Box Type Description

Checkboxes (A, B, or C) Presents up to four choices using check boxes. Check boxes
can be used to set conditional values that are used throughout
the installation process.

Confirm Installation Allows the user to confirm settings such as installation
location before the installation starts.

Customer Information Prompts the user for information that may include name,
company, and product serial number. Serial information can
be checked immediately against a specified template. The
Customer Information dialog box, like many of the dialog
boxes here, is built on a template and therefore offers little in
the way of customization.

Finished Notifies the user when installation is complete.

Installation Address Allows the user to choose the IIS virtual directory where the
application files will be placed.

Installation Folder Allows the user to choose the folder where application files
will be installed. This option is not available when you create a
Web Setup Project (it is intended for standard Setup Projects).

License Agreement Presents a license agreement for the user to read and
acknowledge. You, as the developer, can set up the license.

Progress Updates the user on the progress of the installation. This is the
only dialog box type that can be used in the Progress section
of the installation.

RadioButtons (2, 3, or 4 buttons) Presents a dialog box containing radio buttons that allows the
user to choose between two, three, or four mutually exclusive
options.

Read Me Displays a file written in rich-text format.

Continued

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET 543

Table 13-4. Continued

Dialog Box Type Description

Register User Allows the user to submit registration details by running an
executable that you supply. This executable can display a
dialog box of its own, capture the registration, and save it to
disk, the Registry, or the Internet. This executable will most
likely need the .NET runtime in order to work, and therefore
it’s better to place it at the end of the installation, once the
runtime has been installed. Placing it at the end of the
installation also lets you pass in values (using arguments)
that have been collected from the user by the installer.

Splash Presents a bitmap to the user, generally representing a logo for
the company or product.

Textboxes (A, B, or C) Prompts the user for custom information using one to three
text boxes. The A, B, and C options work in the same way as
the Checkboxes dialog boxes.

Welcome Presents introductory text and copyright information to the
user.

Now that you have a basic idea of the kind of functionality that can be added to an
installer by adding dialog boxes, let’s try it out.

Try It Out: Modify the Installation User Interface You’ll present the users with a text box that allows
them to specify a location for the database installation.

1. Select the FriendsReunionSetup project in the Solution Explorer and click the User
Interface Editor button on the toolbar (see Table 13-2, earlier in this chapter).

2. In the User Interface Editor, right-click the Start node of the Install section of the tree
(see Figure 13-11). From the menu that appears, select the Add Dialog option. You’ll
see the dialog box shown in Figure 13-12. Select the Textboxes (A) option and click OK.

3. The dialog box you’ve just added will appear at the bottom of the Start node, and the
Start node itself will be highlighted with a blue, wavy line. This is to indicate that the
Textboxes (A) option has been placed at an invalid location in the tree. In fact, it must
appear before the Installation Address dialog box. To move it, simply drag it up to
beneath the Welcome node.

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET544

Figure 13-12. Adding a Textboxes dialog box to the installation

4. Next, you need to change the details that are displayed in this dialog box when it is
presented to the user. For one thing, you need only one text box (rather than the three
that are supported). To achieve this and render the correct information, update the
values of the following properties:

• Banner Text: Database Location

• Body Text: Choose a location to install the database

• Edit1Label: Database Location:

• Edit1Property: DBPATH

• Edit1Value: [TARGETDIR]

• Edit2Visible: False

• Edit3Visible: False

• Edit4Visible: False

How It Works

When the user runs the MSI file, it processes the dialog boxes in the order in which they appear
in the tree in the User Interface Editor. Following the Welcome dialog box, all of the custom dia-
log boxes that you define (such as the Textboxes dialog box in this example) will be presented
before the installation continues with the standard dialog boxes. These dialog boxes can cap-
ture data, display information, or both. Such data can then be used during the installation
process by referencing the names of the items specified.

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET 545

In this example, you added a single text box to the installation process, the value of which
you linked to the DBPATH property that you used when you added the database file to the proj-
ect. Creating this link means that changes in the text box will update the location to which the
file is deployed. By default, you’re setting this location to [TARGETDIR]; this is an intrinsic prop-
erty that specifies the installation folder for the project as a whole.

Building the Project
Now that you’ve added the ability to deploy the database file to the target computer, you can
rebuild your deployment project to make sure everything works as intended. To do this, right-
click the deployment project and select the Build option. If you do that right now, you will
probably receive an error message similar to the following:

FriendsReunion Deployment.vdproj Unable to find source file
'...\Friends_Data.MDF' for file 'Friends_Data.MDF', located in '[DBPATH]', the file
*

If you get this error, it’s because the database server keeps the file opened and locked
whenever it’s running. To remove this error, you’ll need to stop the SQL Server Engine for a
few seconds while you perform the build.

Try It Out: Manage the MSDE Service The SQL Server Engine doesn’t run as an application, so to
speak, which means that you cannot simply “close it down.” Instead, it runs as a service, or
task, in the background. You need to stop this service in order to perform the build.

1. To view all of the services running on your machine, select Start ➤ Settings ➤ Control
Panel ➤ Administrative Tools ➤ Services. You’ll see the Services window, which should
look similar to Figure 13-13.

Figure 13-13. The Services window lists all services installed on your machine.

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET546

2. The entry you want begins with MSSQL, and is probably named MSSQL$NetSDK or
MSSQLSERVER. Locate this item, right-click it to bring up the context menu, and then
select the Stop option. This stops the database server engine.

3. With the SQL Server Engine service temporarily disabled, switch back to VS .NET,
right-click the deployment project, and select Build. It should complete successfully.

4. Once the build has finished, the SQL Server Engine can be restarted. To do this, right-
click it in the Services window and select the Start option that should now be enabled.

5. Now run your installation package to install the application. You’ll find that it includes
an extra screen, which prompts you for the desired database location, as shown in
Figure 13-14.

Figure 13-14. The new Database Location dialog box added to the installation

How It Works

While SQL Server is running, it maintains connections with all of the files it uses for storing
database information, allowing it to have fast access and greater control over them. The cost of
this is that it stops such files from being manipulated in the ways necessary to create installa-
tion packages. By stopping the SQL Server Engine service, you force SQL Server to shut down,
releasing all of its locks on these files in the process. With this done, any operations that need to
be performed on these files, such as copying, can be carried out. Once the build has been com-
pleted, SQL Server can be restarted, at which point it will reestablish its locks on the files.

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET 547

Try It Out: Restrict Access to Database Files As a security precaution, you will forbid access from
clients to the database files, just in case the user installs them in the same folder as the web
application.

Add the following code to the Web.config file:

<configuration>
<system.web>
<httpHandlers>
<add verb="*" path="*.mdf" type="System.Web.HttpForbiddenHandler" />
<add verb="*" path="*.ldf" type="System.Web.HttpForbiddenHandler" />

</httpHandlers>

This configuration tells the ASP.NET engine that all files with extensions .mdf and .ldf
cannot be downloaded by a client.

Adding Custom Actions
Custom actions, as their name suggests, allow you to add custom operations to installers. With
custom actions, you can implement features unique to each project that are not supported by
the out-of-the-box installer. These actions can be in the form of an executable (.exe file), a
.dll, or a script that can be attached to setup projects to perform their specific tasks. Since the
installation of a database is fairly common, it makes a great example of using custom actions.

Try It Out: Register the Database with a Custom Action In this example, you’ll create an executable
program that can attach a backup of the SQL database file to your deployment server. You’ll
automate the steps that you performed manually to set up the database (as explained in the
Setup.txt file in the Db folder of the code download for this book and discussed in Appendixes
A and B).

1. Add a new VB Console Application project to the solution, giving it the name
FriendsReunionInstaller.

2. Open the Module1.vb file that appears in the Solution Explorer. Import the following
namespaces at the top of the file:

Imports System.Diagnostics
Imports System.IO

3. Add the following code to the Main method:

Sub Main(ByVal args As String())

Dim patharg As String = args(0)
Dim cmd As String = String.Format(_
"-S (local) -E -Q ""sp_attach_db N'FriendsData', N'{0}', N'{1}'", _
Path.Combine(patharg, "Friends_Data.mdf"), _
Path.Combine(patharg, "Friends_Log.ldf"))

' Execute the attach DB command
Dim p As Process = Process.Start("osql", cmd)
p.WaitForExit()

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET548

' Create the apress user
p = Process.Start("osql", _
"-S (local) -E -Q ""sp_addlogin @loginame='apress', " + _
"@passwd='apress', @defdb='FriendsData'""")

p.WaitForExit()

' Set the apress user as owner of the database
p = Process.Start("osql", _
"-S (local) -E -d ""FriendsData"" -Q ""sp_adduser 'apress', " + _
"null, 'db_owner'""")

p.WaitForExit()
End Sub

You’ll pass the [DBPath] property collected from the user through the installer into this
method. It basically calls the osql command-line utility to attach the two database files
you deployed and configure the apress user login. This utility is guaranteed to exist if
either SQL Server or MSDE is installed on the machine. This is a check that will be per-
formed up front when the installer is started, which you’ll add later in the chapter, in
the “Using Launch Conditions” section.

4. With your code in place to attach the database, you now need to hook it up to the
installer. The first step in accomplishing this is to add to your deployment project
the primary output from the project you just created. To achieve this, right-click the
Database folder and select Add ➤ Project Output. In the Add Project Output Group
dialog box, select the FriendsReunionInstaller project, and highlight the Primary
output option, as shown in Figure 13-15. Then click OK.

Figure 13-15. Adding primary output to the installer project

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET 549

5. You now need to change the settings for this output to ensure that it is not left on the
system after installation. To do this, view its properties and change the Exclude setting
to True.

6. To arrange for the project to be called during the installation process, you use the Cus-
tom Actions Editor. Select the Custom Actions Editor button from the toolbar at the
top of the Solution Explorer (see Table 13-2 earlier in this chapter) to open this editor.

7. Right-click the Install node on the left side of the editor window and select the Add
Custom Action option. In the Select Item in Project dialog box that appears, select
the Database element in the Look in list, and then choose the Primary output from
FriendsReunionInstaller. Click the OK button to add the item to the Install folder.

8. Rename the item to FriendsReunionInstaller. Select this item and view its properties.
There are two properties that you need to change here. First, the application you’ve
created is a standard executable, rather than an InstallerClass (a special type of
application that adheres to certain standards, which we’ll discuss in the next section),
so set that property to False. Second, you need to pass in the DBPath property to this
program, so that it can use it when attaching the database. To do this, set the Arguments
parameter to [DBPath].

How It Works

Following the installation of all of the files specified in the File System Editor, the installer runs
any tasks that have been specified in the Install folder of the Custom Actions Editor. These
tasks can be executables (such as command-line applications), Windows form-based applica-
tions, DLLs, and so on. Other useful files for custom actions are VBScript and JavaScript files,
which are simple and easy to create; they don’t require separate projects. The values that have
been captured through interaction with the user during the installation process can be passed
as arguments to these custom actions, allowing them to perform tasks based on the user’s
input. Debugging script files is quite hard, however, and authoring them without the aid of
IntelliSense is even harder!

We now face a problem regarding the database deployment: what happens if the user
uninstalls our product? As things stand, we’ll “leak” the database, leaving it installed even
when the product that uses it no longer exists in the machine! What’s more, there could be an
error in the installation that impedes a successful deployment, but if our console application
has already run, it will also leave the database attached. In order to support these scenarios,
setup projects introduce the concept of an installer class.

Using Installer Classes
An installer class is a special class that inherits from System.Configuration.Install.Installer.
Installer classes can participate in the MSI installation process, by overriding methods from the
base class, such as Install(), Commit(), Rollback(), and Uninstall().

Try It Out: Register the Database with an Installer Class In the last step of the previous exercise, you
specified that your custom action, consisting of a console application, was not an installer
class (by setting the InstallerClass property to False). However, as explained in the previous

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET550

section, using a console application for the database deployment presents some problems.
In order to support uninstallation of the database and account for errors that may happen
during installation, you’ll now transform your console application into a class library assem-
bly with an installer class.

1. Open the FriendsReunionInstaller project properties and change the Output Type
from Console Application to Class Library, in the Common ➤ General node, as shown
in Figure 13-16. You can safely clear the Application Icon value, too.

Figure 13-16. Changing the custom installer project to a class library

2. Add references to System.Configuration.Install and System.Windows.Forms assem-
blies to the project.

3. Add a new class named DbInstaller, and modify it as follows:

Imports System.Configuration.Install
Imports System.Collections
Imports System.Diagnostics
Imports System.IO
Imports System.Windows.Forms

<System.ComponentModel.RunInstaller(True)> _
Public Class DbInstaller
Inherits Installer

End Class

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET 551

4. In order to pass arguments to the installer classes, instead of using the Arguments
property you used for the console application, you must use the CustomActionData
property. Switch to the Custom Actions Editor for the setup project, select the
FriendsReunionInstaller item inside the Install folder, and set the following
properties on it:

• (Name): FriendsReunionInstaller

• Arguments: Leave blank

• Condition: Leave blank

• CustomActionData: /db=[DBPATH]

• InstallerClass: True

5. Now you need to add the code for the installation procedure. For that purpose, you will
simply copy and paste the code you had in the previous Main method into a new one in
this class, with some minor changes:

Public Overrides Sub Install(ByVal stateSaver As IDictionary)
MyBase.Install(stateSaver)
' Warn the user that we need the service to be running
MessageBox.Show(_
"Ensure the SQL Server / MSDE service is running " + _
"for a proper installation.", _
"Database Service", MessageBoxButtons.OK, _
MessageBoxIcon.Warning)

Dim patharg As String = MyBase.Context.Parameters("db")

Dim cmd As String = String.Format(_
"-S (local) -E -Q ""sp_attach_db N'FriendsData', N'{0}', N'{1}'", _
Path.Combine(patharg, "Friends_Data.mdf"), _
Path.Combine(patharg, "Friends_Log.ldf"))

' Execute the attach DB command
Dim p As Process = Process.Start("osql", cmd)
p.WaitForExit()

' Create the apress user
p = Process.Start("osql", _
"-S (local) -E -Q ""sp_addlogin @loginame='apress', " + _
"@passwd='apress', @defdb='FriendsData'""")

p.WaitForExit()

' Set the apress user as owner of the database
p = Process.Start("osql", _
"-S (local) -E -d ""FriendsData"" -Q ""sp_adduser 'apress', " + _
"null, 'db_owner'""")

p.WaitForExit()
End Sub

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET552

6. You can now delete the Module1.vb file, since you are not using it anymore.

7. Now add the Uninstall method:

Public Overrides Sub Uninstall(ByVal savedState As IDictionary)
' Warn the user that we need the service to be running
MessageBox.Show(_
"Ensure the SQL Server / MSDE service is running " + _
"for a proper uninstallation.", _
"Database Service", MessageBoxButtons.OK, _
MessageBoxIcon.Warning)

Process.Start("osql", _
"-S (local) -E -Q ""sp_detach_db N'FriendsData'""")

MyBase.Uninstall(savedState)
End Sub

Here, you are simply calling another command that detaches a database from the
server.

8. In order to make the procedure bullet-proof, you’ll also implement the Rollback()
method:

Public Overrides Sub Rollback(ByVal savedState As IDictionary)
MyBase.Uninstall(savedState)

End Sub

9. Installer classes need to be deployed to the target machine in order to be executed.
Therefore, you must set the FriendsReunionInstall project output Exclude property to
False. Do this by selecting the project output item in the setup project, opening the
Properties browser for it, and changing the Exclude property setting.

10. Now you must add the project output to the Rollback and Uninstall nodes in the Cus-
tom Action Editor. Right-click the Rollback node and select Add Custom Action. In the
editor, select the Database folder in the Look in drop-down list and select the Primary
output from FriendsReunionInstaller (Active) item. Rename the custom action to
FriendsReunionInstaller.

11. Repeat step 10 for the Uninstall node.

12. Compile the setup project and install it.

How It Works

Installer classes allow more structured control over the installation process, and they give
you a chance to react to certain stages during installation, such as Install, Uninstall, and
Rollback. You did so by overriding methods of the base Installer class. The attribute you
used on the class definition tells the MSI file that it must always run your installer class:

<System.ComponentModel.RunInstaller(True)>
Public Class DbInstaller

Inherits Installer

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET 553

Without this attribute, the methods are not called, and your installer class is simply ignored.
You also needed to pass arguments to your class, namely the folder to which the user

chose to install the database. Instead of using the Arguments property as you did for the con-
sole application, you use the CustomActionData property. It’s a simple string with the following
format:

/name1=value1 /name2=value2 ... /nameN=valueN

For the values, you can use the usual notation for referring to properties collected by the
installation wizard—that is, the property name enclosed in square brackets: /db=[DBPATH].
These values are converted to a collection of key/value pairs that is accessible through the
Context.Parameters property of the base Installer class:

Public Overrides Sub Install(ByVal stateSaver As IDictionary)
...
Dim patharg As String = MyBase.Context.Parameters("db")

One thing to note here is that the pair name (which becomes the key into the Parameters
collection) is always converted to lowercase.

There’s one caveat to the uninstallation process implemented this way. All file copying
(and subsequent deleting) is done prior to custom actions execution. This means that when the
MSI file tries to remove the database files, they will be locked if the database is in use, because
the custom action that detaches it hasn’t run yet. Therefore, the service must be stopped in
order for file removal to succeed. However, in order to detach the database (the custom action
that executes after file deletion), you need the service running, so the user will need to first stop
the service to initiate uninstallation, and restart it when you warn the user about it through
your custom action (the MessageBox.Show() call in the code). You could avoid this inconven-
ience by starting the service yourself, but it’s not a trivial task, because the SQL Server/MSDE
service may have different names, and you may need to use a technology called WMI (Win-
dows Management Instrumentation) to achieve it in a reliable way. You can read more about
WMI at http://msdn.microsoft.com/library/en-us/ wmisdk/wmi/wmi_start_page.asp.

Creating an Event Source to Initiate Windows Event Logging
Back in Chapter 11, you set up the logging of application errors in the Windows System event
log. You learned that each application that logs events in the event log has its own event
source, and that this event source must exist prior to the first log request from an ASP.NET
application. This is due to security permissions related to creating a new event source. We used
a workaround, but we said we would solve that at installation time. Now is the time to create
the event source. We’ll also need to arrange for it to be deleted if the application is uninstalled.

Try It Out: Manage Event Sources You’ll add a new installer class that will handle the event source
creation and deletion.

1. Add a new class to the FriendsReunionInstaller project called EventLogInstaller, and
then add the following using statements:

Imports System.Collection
Imports System.Configuration.Install
Imports System.Diagnostics

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET554

2. Add the RunInstaller attribute to the class and make it inherit from Installer:

<System.ComponentModel.RunInstaller(True)> _
Public Class EventLogInstaller
Inherits Installer

3. Add the following method overrides:

Public Overrides Sub Install(ByVal stateSaver As IDictionary)
MyBase.Install(stateSaver)
Try
EventLog.CreateEventSource("FriendsReunion", "Application")

Catch ex As ArgumentException
Context.LogMessage(ex.Message)

End Try
End Sub

Public Overrides Sub Uninstall(ByVal savedState As IDictionary)
EventLog.DeleteEventSource("FriendsReunion")
MyBase.Uninstall(savedState)

End Sub

How It Works

This simple installer class creates the event source named FriendsReunion you use in the
Global.asax.vb error handler:

Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)
System.Diagnostics.EventLog.WriteEntry("FriendsReunion", _
Server.GetLastError().InnerException.ToString(), _
System.Diagnostics.EventLogEntryType.Error)

End Sub

This time, the event source will already exist when an error is logged. Notice that you also
chose the Application log. This is one of the standard logs supported in the Event Viewer.
You can also pick Security, System, or a log with a custom name.

Additionally, we catch ArgumentException exceptions and log them, which will be thrown
if the event source already exists (which is the case in your machine now).

Debugging an Installer Class
An important part of any component development is how to debug it. So, since the custom
installer classes are not regular executable code, how can you debug them? To demonstrate
how to do this, we’ll set up debugging for the final custom action we need to develop: one that
sets Read permission to the Everyone built-in group on the two files that are read directly from
disk in the application. These are the upload.xml and Friends.xsd files, which were introduced
in Chapter 8.

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET 555

Try It Out: Set ACLs and Debug an Installer Class You need to set the Read permission for the
upload.xml and Friends.xsd files in order for the code to work as expected; otherwise, a secu-
rity exception will be thrown. As noted in Chapter 10, these permissions are controlled by
access control lists (ACLs).

1. Add a new class to the FriendsReunionInstaller project called AclInstaller, and add
the following using statements:

Imports System.Collections
Imports System.Configuration.Install
Imports System.Diagnostics
Imports System.IO

2. Add the RunInstaller attribute to the class and make it inherit from Installer:

<System.ComponentModel.RunInstaller(True)> _
Public Class AclInstaller
Inherits Installer

3. Add the following Install method override:

Public Overrides Sub Install(ByVal stateSaver As IDictionary)
MyBase.Install(stateSaver)
System.Diagnostics.Debugger.Break()
Dim patharg As String = MyBase.Context.Parameters("path")
Dim files As String() = MyBase.Context.Parameters("files").Split(","c)

Dim info As New ProcessStartInfo("cacls")
info.CreateNoWindow = True
info.WindowStyle = ProcessWindowStyle.Hidden
Dim file As String
For Each file In files
' Assign permissions to everyone to read the file
info.Arguments = Path.Combine(patharg, file) + " /E /G Everyone:R"
Process.Start(info)

Next
End Sub

4. Edit the FriendsReunionInstaller custom action properties under the Install node. Set
the CustomActionData property to the following value:

/db=[DBPATH] /path=[TARGETDIR] /files=upload.xml,Friends.xsd

5. Compile the setup project, and then run the installation project again.

How It Works

You created another new installer class. You can have as many installer classes as you want,
and they are all executed as part of the custom action. If you compile the setup project in
Debug mode, at a certain point while running the installation, the Just-In-Time Debugging
dialog box will appear, as shown in Figure 13-17.

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET556

Figure 13-17. You can choose to debug the setup project.

If you choose Yes with the existing instance of the Microsoft Development Environment
(that is, VS .NET) selected, you’ll be offered the choice to attach to the process, as shown in
Figure 13-18.

Figure 13-18. Attaching to a process

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET 557

Since you want to debug only .NET code, leave the default Common Language Runtime
option checked and select OK. You’ll see something like the window shown in Figure 13-19
after the debugger runs.

Figure 13-19. Debugging the installer

At this point, you can press F10 (or select Debug ➤ Step Over) and start executing your
code step by step. You can also inspect variables and use all the debugging techniques you
learned about in Chapter 11.

The Debugger.Break() method launches the dialog box to attach a debugger whenever
it’s executed. In order to access variables, you must first press either F10 or F11, so that the
debugger actually enters the line you’re being shown with a green background color.

Note that you changed the CustomActionData property to pass both the installation folder
([TARGETDIR]) and the list of files to set the Everyone permission to:

/db=[DBPATH] /path=[TARGETDIR] /files=upload.xml,Friends.xsd

You simply split the files parameter using the comma as a separator to get the array of files to
process:

Dim files As String() = MyBase.Context.Parameters("files").Split(","c)

You also customize the way the process will be started for each file by using a
ProcessStartInfo object as a parameter to the Process.Start() method. In this case, you’re
specifying that you don’t want the command-line window to be created at all. You can also
retrieve the output of the command execution, specify how errors are handled, and so on.
(Read the documentation for the ProcessStartInfo class for more information.) You can also
customize the way the database installation tool is launched.

The command you execute next to set the permissions is a utility available in Windows NT
and later versions (including 2000, XP, and 2003).

Dim info As New ProcessStartInfo("cacls")

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET558

■Note You can learn more about the CACLS tool at www.microsoft.com/resources/documentation/
windows/xp/all/proddocs/en-us/cacls.mspx.

Once you have all the files passed in by the installer, you execute that tool with the appro-
priate parameters to set the read permission to Everyone:

For Each file In files
' Assign permissions to everyone to read the file
info.Arguments = Path.Combine(patharg, file) + " /E /G Everyone:R"
Process.Start(info)

Next

Whenever you compile the solution as a Release build, the break you specified does not
cause the debug dialog box to appear. However, it’s a good idea to get rid of that line when
you’re finished debugging the installer class.

Deploying Application Configuration Settings
One further complication with the deployment of an application is the application configura-
tion, controlled by the values stored in appSettings section of the Web.config file. In our
Friends Reunion application, we use this to store the connection string for making database
calls. When deployed to a live environment, settings such as this need to be changed in order
to make them relevant to the target system.

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET 559

SOME CUSTOM ACTION CAVEATS

It’s quite tempting to start doing everything through custom actions and installer classes. You should resist
this temptation. They were created to accommodate exceptional scenarios, and they do not integrate well
with the Microsoft Installer infrastructure.

For example, let’s say you use a custom action to create some Registry keys instead of using the Reg-
istry Editor (we didn’t need this editor for our application, but it’s a simple editor that allows entering values
into the Registry at installation time). If the user (or another application) deletes those keys, your application
may stop working, unless you explicitly check for that error. If you used the built-in Registry Editor instead,
the Microsoft Installer would automatically pop up and reinstall those keys, without requiring any further
actions, either on your part through application code or taken by the user.

The same concept applies to file copying. Using the File System Editor allows you to configure the files
you want to add to the target machine. If another installation tries to copy the same files, the latest versions
will be preserved—something you would need to do by hand in a custom action. Furthermore, you would
need to do the work of checking if no other applications need those files before deleting them upon uninstal-
lation. You can save yourself all those headaches by using the built-in features in setup projects. However, for
advanced functionality, such as the one we needed for this example, it’s okay to use custom actions.

In our solution, there is little need to make changes, as we’ve developed the system point-
ing to a database on our local machine (localhost) and are deploying it in this configuration,
too. If this weren’t the case, we would have three options:

• Specify a different Web.config file in the deployment package.

• Configure the installation package to edit Web.config based on user input.

• Have the user edit the Web.config file manually once the application has been installed.

The first two options can be implemented using techniques similar to those described
earlier in the chapter. In the first case, you can simply add the new Web.config file to the Web
Application Folder in the File System Editor. If you want to edit the Web.config file via the
installation package, you have a more complicated task on your hands; this would require a
custom action and a dialog box. This dialog box could ask the users for the connection string
that they wish to use. After the installation wizard captured this information, you could pass it
in as a parameter to the output of a project that you added as a custom action. This project
could then read in the Web.config file as an XML document, update the correct setting, and
write it back out to disk.

The option of having the user edit the Web.config file is not desirable, because it removes
the automated end-to-end installation of the application, exposing the user to the underlying
nuts and bolts. It is, however, the simplest of the three options.

Using Launch Conditions
Launch conditions allow you to specify certain environmental conditions that must be satis-
fied before an installation can continue, or to locate a specific value that can subsequently be
used within the installation process. For instance, you could vary the installation procedure
according to the value of a particular Registry key already set on the destination computer, or
you could change the installation process (or stop it altogether) if a certain file is missing.

You can add or modify launch conditions using—unsurprisingly—the Launch Conditions
Editor, shown in Figure 13-20.

Figure 13-20. The Launch Conditions Editor

The Launch Conditions Editor is divided into two sections: Search Target Machine and
Launch Conditions, which work together to ensure that a given launch condition is met. The
default conditions for Web Setup Projects is to check for the presence of IIS version 4 or higher
and to check for the .NET runtime.

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET560

Setting Up a Search
Using the Search Target Machine section, you can set up a search for a Registry entry, a file, or
a Windows component. The result of the search can then be used in two ways:

• As a value to be used elsewhere in the installation

• In a test that must be satisfied in order for the installation to continue

Figure 13-21 shows the properties for the Search for IIS entry under Search Target Machine.
Property denotes the name of the condition, which will be set to the value of the Registry entry
specified by the MajorVersion entry in the RegKey property. This gives excellent flexibility, but
does require a certain amount of knowledge about the organization of the Windows Registry.

Figure 13-21. Properties for the Search for IIS entry under Search Target Machine

The Root property (vsdrrHKLM) that is specified informs the installer to start looking under
the HKey_Local_Machine (HKLM) node within the root of the Registry. You would need to supply
alternative values to search within other root nodes, such as the current user’s settings
(HKey_Current_User).

Try It Out: Search for SQL Server or MSDE Installations In our installer, we need to attach a database
to a SQL Server or MSDE running on the local machine. This makes for an excellent opportu-
nity to check for that condition by searching the Registry.

1. Right-click the Search Target Machine and select Add Registry Search. Rename the
entry to Search for MSSQL.

2. Set the following properties on the entry:

• (Name): Search for MSSQL

• Property: MSSQL

• RegKey: SOFTWARE\Microsoft\Microsoft SQL Server

• Root: vsdrrHKLM

• Value: InstalledInstances

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET 561

How It Works

When the MSI file launches, the Registry will be searched for the value you specified. The key
you’re looking at is created by both SQL Server and MSDE, and specifies the different installa-
tions that exist on the machine. By assigning this search the property name MSSQL, you can
refer to it later, as you’ll do in the next exercise.

Now that you know how to perform a search, you need to know how to use the result to
change the installer behavior. That’s the role of the Launch Conditions node of the Launch
Conditions Editor.

Setting Up the Launch Condition
Searches for items on the target machine are always performed before the processing of the
launch conditions in this section, so any properties set by searches can be used here. If you
again check the properties of the IIS Condition entry, you’ll see the IISVERSION property in
use, as shown in Figure 13-22.

Figure 13-22. The IIS Condition properties

All launch conditions must evaluate to True if the installation is to take place, so the #4 in
Figure 13-22 represents the minimum version number of IIS required in order to install the
web application. The # is used to denote that the value stored in the Registry is a hexadecimal
value, and that a conversion is required when performing a comparison. If the condition is
simply a reference to a search value and the value is not found, it evaluates to False.

The Message property indicates the message to display if the condition is not met. As used
by this condition, it’s a message stored in a resource and referenced by placing the name of it
within square brackets, such as the standard IIS message [VSDIISMSG]. You can use a literal
string also.

Try It Out: Set a Launch Condition to Check for SQL Server or MSDE Let’s add a condition that ensures
SQL Server or MSDE is installed, using the Registry search you created in the previous section.

1. Right-click Launch Conditions in the editor, choose Add Launch Condition, and give it
the name MSSQL Condition.

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET562

2. Set the following properties on the entry:

• (Name): MSSQL Condition

• Condition: MSSQL

• InstallUrl: Leave blank

• Message: Either Microsoft SQL Server or Microsoft Desktop Engine must be
installed.

That’s all that’s required. When you now rebuild the setup project, the MSI file it creates
will proceed with the installation only if a previous installation of SQL Server or MSDE created
the Registry entry you searched for before.

How It Works

A condition pointing to a search alone means that if it didn’t found the desired value, the con-
dition has failed. You’re not limited to checking for values’ existence, as you’ve already seen for
the IIS search. A search for ASP.NET, for example, could also check that the version installed
equals a certain value expected by your application. In that case, you could use direct value
comparisons within the Condition property. The configuration for such a search (using the
Search Target Machine section of the Launch Conditions Editor) would be as follows:

• Property: ASPNETVERSION

• RegKey: SOFTWARE\Microsoft\ASP.Net

• Value: RootVer

The Launch Condition properties would be set like this:

• Condition: ASPNETVERSION="1.1.4322.0"

• Message: This application requires version 1.1 of ASP.NET.

If you run the MSI file with this condition, it will not proceed with the installation if a dif-
ferent version of ASP.NET is detected on the host machine.

Summary
We began this chapter by looking at .NET application deployment methods. You saw that a
web project can be published manually using XCOPY deployment, seeing how and where the
files should be placed.

Next, we looked at setup and deployment projects, which are the .NET approach to dis-
tributing applications. Creating one of these projects allows you to transfer your application to
a remote server in a professional manner, such as a single compressed archive.

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET 563

You then learned about adding customizations to a deployment project. First, you saw
how to add the database from the Friends Reunion application as a custom file, demonstrat-
ing in the process how your entire application, including all of the external resources that it
requires, can be installed as part of the same process. You customized the installation wizard
UI to account for the new values you needed for your application, and you learned how to
pass values from the wizard into your custom installation components.

We discussed installer classes and how to take advantage of them to perform some com-
plex operations, such as attaching a database to a server and setting file-access permissions
on files. We also discussed the trade-offs of overusing custom actions and installer classes.

Finally, we explored launch conditions, which allow you to check that the environment to
which you are installing your application meets criteria that you can specify using the IDE.

Throughout this book, we’ve dissected how a real-world application is designed, devel-
oped, debugged, improved, and deployed—covering almost every aspect of its lifecycle. With
these concepts, you’re ready to take over new projects leveraging this incredible powerful and
revolutionary platform for developing web applications.

Web Applications—An Overview
At the end of this chapter, and consequently the end of this book, it seems fitting to present
an outline of the process of developing and then preparing a web application for deployment
and installation, with an obvious focus on the areas we’ve been discussing most recently.
Figure 13-23 presents this outline.

Over the course of the book, we’ve addressed the end-to-end development of an applica-
tion—from the creation of the solution in Chapter 3 to the deployment of the application
on remote servers. The best way to take things forward is to experiment with what you’ve
learned throughout the book. For further information and updates for the book, check the
Apress web site at http://www.apress.com. You can also check out the Apress forums at
http://forums.apress.com—you never know what you might find. Good luck!

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET564

Figure 13-23. The web application development and deployment process

CHAPTER 13 ■ PUBLISHING WEB APPLICATIONS IN .NET 565

The Friends Reunion
Application

Throughout this book, we developed an application called Friends Reunion to apply the con-
cepts we explore in each chapter. The sample application provides a web site where registered
users can get in touch with other users who have attended the same schools or worked in the
same location.

We include many features in Friends Reunion: counters, search engines, web services,
and so on. As is common in real-life web applications, Friends Reunion uses a database to
store and retrieve information.

Friends Reunion Database Design
The database tables involved in storing user information for the Friends Reunion application
are shown in Figure A-1.

The institutions (schools, colleges, and other places where users may have been) are
located in the Place table, which uses the PlaceType lookup table to specify the type of place
(school, university, business, and so on). The users can register their attendance at different
institutions into the TimeLapse table, in which they specify a friendly name for the time lapse
period (such as “Systems Engineer Career”), the year/month in, and the year/month out.
There’s also a free-form Notes field for any comments they wish to add.

When users have matching or overlapping time lapse periods, they can submit a request
for contact with the other user. This is represented as a row in the Contact table, whose
IsApproved flag is initially set to 0, to indicate a pending request. The destination user (that
is, the user receiving this request for contact) can optionally accept this request, and from
there, the requester’s details are unveiled, allowing a direct contact.

Early in the book, we build a registration form, a login form, and a couple of report forms,
which show a list of approved and pending contacts, as well as list of places and users for
administrator users (those who have the IsAdministrator flag set to 1 in the User table) to
view. A Place has an Administrator, who usually is the user who registered the place. This user
will be able to modify the place details later on.

We also build search functionality into the application, so that users can search for differ-
ent matches, such as first and last name, place, type, and time lapse. The Counter table has a
single field, Visitors, which is used to store a global counter for the number of visitors and
preserve application state.

567

A P P E N D I X A

■ ■ ■

APPENDIX A ■ THE FRIENDS REUNION APPLICATION568

Figure A-1. The tables in the FriendsData database

How to Set Up the Code Download Package
The code download package from the Downloads section of the Apress web site (http://
www.apress.com) contains a folder for each chapter (except for the first two) and also a Db
folder, with a detached SQL Server database (a file that contains a fully operational database
that only needs to be attached to a server).

Setting Up the Database
The Db folder contains four files:

• Friends_Data.MDF

• Friends_Log.LDF

• MixedMode.vbs

• Setup.txt

The Setup.txt file contains instructions on how to get the latest version of the Microsoft
SQL Server Desktop Engine (MSDE), as well as how to attach the database using the command-
line osql utility.

If you already have MSDE installed, it’s possible that its default security mode, Windows
Integrated Security, is enabled. However, you need to set up the database so that database-
configured users are also allowed to log in; that is, you need to be able to pass specific
non-Windows credentials to the database and be able to log in. In this book’s examples,
you do that by using the apress user name and password.

To configure mixed-mode authentication, rather than the default mode, we’ve provided
the MixedMode.vbs script, which you can run on your machine. Simply double-click the script
to run it and change the authentication mode to support both approaches.

Once you have the database attached, you can add the connection to the Visual Studio
.NET (VS. NET) Server Explorer by right-clicking the Data Connections node and choosing
Add New Connection from the context menu, or by clicking the Connect to Database icon.
This connection can be used to administer the database, much as you can with SQL Server
Enterprise Manager.

Setting Up the Code Samples
Inside the chapter folders, there’s a FriendsReunion folder containing the code developed dur-
ing the chapter. For the third chapter, when you start coding the sample application, you’ll
need to configure this folder as a web application in Internet Information Services (IIS). For
subsequent chapters, you just point the web application to the new folder. Here’s how:

1. To access the code for Chapter 3, right-click the chapter’s folder and select Properties
to open the folder Properties dialog box. In the Web Sharing tab, enable sharing and
accept the default name suggested, which matches the folder name. This procedure is
illustrated in Figure A-2. By default, enabling sharing configures the folder with IIS
and sets Windows Integrated authentication for it. In the book, we’ll add Anonymous
access to leverage the new authentication and authorization features of ASP.NET. We’ll
do so by modifying the application configuration through the IIS management con-
sole. This is discussed in Appendix B.

2. Double-click the FriendsReunion.sln solution file inside the FriendsReunion folder,
which contains the project code for Chapter 3.

3. When you move to the next chapter, point the web application to the new folder. This is
done through the IIS management console (Administrative Tools ➤ Internet Informa-
tion Services). Locate the FriendsReunion node inside the Default Web Site, right-click
it, and select Properties to see the dialog box shown in Figure A-3. In the dialog box that
appears, specify the appropriate chapter in the Local Path field to point to the new loca-
tion. This requires changing only the chapter number.

APPENDIX A ■ THE FRIENDS REUNION APPLICATION 569

Figure A-2. Configuring a folder as a web application in IIS

Figure A-3. Pointing the web application to a chapter’s folder

APPENDIX A ■ THE FRIENDS REUNION APPLICATION570

4. Now you can open the FriendsReunion.sln solution file in the new folder. This time,
when VS .NET opens, it will display the dialog box shown in Figure A-4.

Figure A-4. VS .NET indicates that it couldn’t access the folder.

5. This happens because VS .NET caches files from web sites, as well as the location
where they were opened last time. In this case, you can see that it’s trying to open
Friends Reunion from the Chapter03 folder, which no longer maps to the web applica-
tion. This is easily solved by selecting the “Retry using a different file share path” radio
button, and replacing the chapter number with the new one, just as you did in IIS.
This will cause VS .NET to refresh its cache and synchronize with the new files.

How to Create GUIDs for Database Keys
All the primary keys in our database use GUIDs, a fixed-length (char type) string of 36 charac-
ters. A GUID is a unique value calculated using a complex algorithm that includes the network
adapter ID and a timestamp. This ensures its uniqueness, even across machines. The main
benefit of this approach is that keys can be generated on the client machine, or in a middle-
tier component, prior to posting data to the database.

In the scenario analyzed in Chapters 7 and 8, which are about XML, using GUIDs allows a
partner institution to upload a file containing information about its attendees, with their IDs
already assigned even before uploading the file, and it can save these values for future refer-
ence in its own system. If you use auto-numeric fields, for example, you would need to send
back the assigned IDs for every new row inserted.

■Note SQL Server provides a uniqueidentifier type that can also be used to store GUIDs. We used a
char type because that allows you to export the database structure and re-create it on a database server
other than SQL Server.

APPENDIX A ■ THE FRIENDS REUNION APPLICATION 571

The best news is that .NET has a class that can be used to generate these GUIDs: the
System.Guid class. Only one line of code is required to generate a new ID and turn it into a
string through the ToString method:

Dim id As String = Guid.NewGuid().ToString()

Customers sending batch uploads using the functionality we built in Chapter 8 can gen-
erate valid IDs, even if they don’t use .NET, because GUID creation is broadly available in
other programming languages and platforms.

Once converted to a string, the GUID looks like some Registry keys (which can be GUIDs
themselves) or values; for example, 4e29f256-5ada-4344-baf7-20ae52dfa544.

If you want to add data to the tables manually, or you’re just testing the application,
VS .NET has a built-in GUID generator to ease the process, too. Select Tools ➤ Create GUID
to open the Create GUID dialog box. In this dialog box, select option 4. Registry Format, and
click the New GUID button each time you need a new GUID. You can use the Copy button to
copy the GUID to the Clipboard so you can paste it in the destination place. The copy process
automatically adds surrounding brackets, as you can see in the Result section of Figure A-5.
You’ll need to delete these brackets manually.

Figure A-5. Creating a new GUID

This appendix explained how to work with the files for the Friends Reunion application,
the web application developed in this book. The next appendix provides information about
configuring IIS and MSDE, which will be useful for developing Friends Reunion and, of
course, your own web applications.

APPENDIX A ■ THE FRIENDS REUNION APPLICATION572

Management of IIS
and MSDE

This appendix is intended to supplement the coverage of Internet Information Services (IIS)
and the Microsoft SQL Server Desktop Engine (MSDE) in this book, providing tips on configu-
ration and on how to perform common tasks. This appendix covers the following topics:

• Configuration options for IIS 5.x, including site-wide settings, application-specific
settings, and locking down IIS

• Impersonation when working with ASP.NET and IIS

• An introduction to IIS 6.0 and its new features

• MSDE database management in Visual Studio .NET (VS .NET)

IIS Configuration
You can apply many different settings to the virtual directories on your system. Site-wide set-
tings configure the defaults. You can then override those settings on a per-application basis.
In the following sections, we’ll look at the IIS settings for the site, and then examine how to
override them. Finally, we’ll cover how to close down potential IIS security holes.

We are not going to discuss every IIS configuration option available, but we suggest that
you do look through the tabs and dialog boxes to see what’s possible. IIS configuration is
something of an art, and balancing performance configuration, security settings, and appli-
cation load settings is a tricky job for system administrators.

Configuring Site-Wide Settings
To access the settings for a web site, in the IIS management console, right-click the Default
Web Site node and select Properties. You will see the Default Web Site Properties dialog box,
with the Web Site tab displayed, as shown in Figure B-1.

The settings that you apply in this Properties dialog box are the default settings for all
web applications on this web site. An individual application can override the defaults, but
these settings will provide the starting point.

573

A P P E N D I X B

■ ■ ■

APPENDIX B ■ MANAGEMENT OF I IS AND MSDE574

Figure B-1. Properties for a web site

If you’re using Windows Server 2003, you’ll see another tab, called Performance, where
you can tweak settings that affect the performance of the server, such as the available band-
width and connections.

Logging User Activity
One item to notice in the web site’s Properties dialog box is the Logging facility. IIS will keep a
log of all requests to the web server, unless you configure it not to. Click the Properties button
in the Logging section to open a dialog box that allows you to customize the type of informa-
tion logged and the frequency of generation of log files, as shown in Figure B-2.

The IIS logs are stored in the specified folder, with the file name shown in the label below
the field. The content of such a log file might look something like this:

#Software: Microsoft Internet Information Services 5.0
#Version: 1.0
#Date: 2004-07-31 12:31:54
#Fields: time c-ip cs-method cs-uri-stem sc-status
12:31:54 127.0.0.1 GET /FriendsReunion/default.aspx 200
12:32:05 127.0.0.1 POST / FriendsReunion /default.aspx 200
12:33:01 192.168.202.185 GET / FriendsReunion /default.aspx 200
12:33:08 192.168.202.185 POST / FriendsReunion /default.aspx 200
12:34:50 192.168.0.121 GET / FriendsReunion /default.aspx 200
12:35:00 192.168.0.121 POST / FriendsReunion /default.aspx 200

Figure B-2. IIS Logging settings

This sample log shows a request for the main page of the Friends Reunion application,
Default.aspx, originating from the local machine (the request was made by the 127.0.0.1
loopback IP address). It also shows a couple of other requests for the same page from other
machines on the local network. The IP addresses of all requesting machines are listed, along
with the name of the resource requested from the client, either by using the HTTP GET verb
or the HTTP POST verb. The number 200 at the end of each entry is an HTTP response code,
which indicates that the operation was successful.

Logging hits to the web server is a great way to watch for malicious activity and to track
general usage of your site, so usually you should leave it turned on.

Handling Simultaneous Connections
In non-server Windows versions, such as Windows XP, IIS allows for a maximum of ten simul-
taneous connections by default. While this may be enough in most cases, if you’re developing
many web services and debugging several at the same time, as well as developing and debug-
ging a couple client web applications, you may run out of connections rather quickly. This
results in HTTP result code 403.9 (usually with the description “Access Forbidden: Too Many
Users Are Connected”).

■Tip The default of 10 connections can be bumped up to 40 (but not higher) by using a script included
with IIS. Locate the adsutil.vbs script (by default in C:\Inetpub\AdminScripts). Open a command
prompt in that folder and issue the following statement: adsutil set w3svc/MaxConnections 40.

APPENDIX B ■ MANAGEMENT OF I IS AND MSDE 575

One way of solving this problem is through the Connection Timeout value on the Web
Site tab of the Default Web Site Properties dialog box (Figure B-1). You can set the timeout to a
lower value. You cannot simply use the other setting in this section of the dialog box to disable
HTTP Keep-Alives (which allows the client to keep an open connection with the server for the
specified timeout), because VS .NET will no longer be able to debug applications.

Managing General Security Settings
Now look at the Directory Security tab in the Default Web Site Properties dialog box. You’ll see
a section for configuring Anonymous access and authentication on the web server. Click the
Edit button to open the Authentication Methods dialog box, as shown in Figure B-3. Here, you
can configure access to your web server.

Figure B-3. Configuring web server access

By default, Anonymous access to your web server is enabled. This is a logical choice in an
Internet environment, particularly for web applications that are intended to serve web pages
to unknown users. When users access the site via Anonymous access, they are still authenti-
cated by the web server; all such users are authenticated under an account defined for that
purpose. The default account used in that case by IIS is called IUSR_MachineName, and it
defines the basic rights assigned to all Anonymous access users.

APPENDIX B ■ MANAGEMENT OF I IS AND MSDE576

■Note Along with IUSR_MachineName, there are several other special accounts you might come across
when using IIS. IWAM_MachineName is an account used when the application runs out of process. ASPNET
is a user account under which the ASP.NET worker process runs and the one used for Anonymous access
to ASP.NET applications. It has very few privileges on the local machine, and therefore limits the chances
that ASP.NET code is exploited for malicious purposes on the server. In Windows Server 2003, another
account named NETWORK SERVICE is used for the same purpose.

Anonymous access is great for public web sites, but it’s not always the best solution for an
intranet scenario or for other “restricted” sites for which you want to have more fine-grained
control of access to your web server. In those cases, you can use the other authentication
options:

Basic authentication: This method prompts the user for a valid user name and password,
and these are transmitted to the server in a Base64-encoded, unencrypted format.
(Base64 encoding is a standard used for sending binary information over a network.)
This isn’t a very secure technique, but it’s standards-compliant, and it’s compatible with
almost all browsers. If you’re sure that the connection between your server and your
client is secure, then Basic authentication should be sufficient. The Secure Sockets Layer
(SSL) is commonly used alongside basic authentication to provide a secure communica-
tion channel.

Digest authentication: This method works in a similar way to basic authentication,
except that all transmitted information is encrypted using a hashing technique, which
makes it harder for a malicious user to intercept the data and decrypt it. This method of
authentication can pass data through firewalls and proxy servers, so it’s great in an Inter-
net scenario. However, it relies on HTTP version 1.1, which excludes some older browsers,
and more important, it’s dependent on the server residing in a domain with a Windows
2000 domain controller.

Integrated Windows authentication: With this method, user details are encrypted before
being transmitted to and from the server, so information exchange is much more secure.
Users are not prompted for their details, as the current login credentials for the client
machine are sent automatically when requested. If the credentials are not valid or the
user does not have enough privileges for the operation the user is attempting, the user is
prompted to enter a user name and password, but the information will still be transmit-
ted using this scheme. Integrated Windows authentication is dependent on the end user
having a compatible browser. It’s great for intranet environments in which the clients and
server reside on the same domain, because it makes it simple for users to log in to a site
and gain access to the information they require. The drawback of this method is that it
cannot reliably pass data through firewalls and routers, so it’s best to keep it only for
intranets.

If both Basic authentication and Integrated Windows authentication are selected in the
Authentication Methods dialog box, and the browser supports Windows authentication, it will
attempt to use Windows authentication first.

APPENDIX B ■ MANAGEMENT OF I IS AND MSDE 577

■Note For more information about IIS authentication, see http://msdn.microsoft.com/library/
en-us/vsent7/html/vxconIISAuthentication.asp.

Configuring ASP.NET Applications in IIS
We’ve examined some of the options available for the site-wide configuration of IIS. Now
let’s explore how you can specify properties that apply to an individual application. To set an
application’s properties, right-click the virtual directory for that application and select Proper-
ties. You’ll see the Properties dialog box for that directory. The Virtual Directory tab, shown in
Figure B-4, has several settings that you can alter.

APPENDIX B ■ MANAGEMENT OF I IS AND MSDE578

THE ROLE OF SECURE SOCKETS LAYER

It’s also possible to configure the web server to work with SSL certificates, in order to enable secure commu-
nication between the server and the client. SSL was created by Netscape, and is designed to run between
the root level of communication over the Web (TCP), and the application-level communication (HTTP). An
SSL-enabled server and an SSL-enabled client can authenticate each other and establish an encrypted
connection.

You may be familiar with this process if you’ve ever purchased anything online. By default, your browser
will warn you whenever you switch between secure and “unsecure” connections. When you’re in a secure
area, you’ll see a padlock icon somewhere in the window. Here are examples of this icon in Mozilla Firefox
(left) and Internet Explorer (right):

SSL uses public key cryptography to establish a secure connection between the client and the server.
The server side of the connection must be equipped with an SSL certificate. These are available from various
vendors. A good explanation of public key cryptography can be found at http://www.sun.com/
blueprints/0801/publickey.pdf.

Figure B-4. Properties for a web application

Setting Application Permissions
The Local Path section contains check boxes that determine the basic permissions for your
application:

• Script source access: Determines whether the client can view the source code for
server-side applications. This is normally left unchecked, because it’s unlikely that
you’ll want to allow users to view your source code. Note that this permission can be set
only if Read or Write permission is also set.

• Read: Enables browsers to read or download files in the virtual directory. This option
should be left checked for published web applications. Unchecking it will mean that
clients requesting the page will see an error message.

• Write: Allows users to create or modify files within the directory. In most situations, this
should be left turned off.

• Directory browsing: Allow users to browse the contents of a directory. This is a useful
feature when you’re working with an application that contains many files. In most
cases, however, it’s recommended that you leave this turned off on production sites
in order to hide as much of your site as possible from prying eyes.

APPENDIX B ■ MANAGEMENT OF I IS AND MSDE 579

• Log visits: Logs user activity. This is a good idea when you want to track users.

• Index this resource: Indexes the directory. Indexing your virtual directory speeds up
searches on your system.

Choosing Application-Specific Settings
In the Application Settings section of the application’s Properties dialog box, you can set the
Application Name (this text box in the IIS dialog box will be empty if you created the applica-
tion through the Web Sharing tab on the folder properties, rather than through this IIS
management console).

In the bottom-right area of the Application Settings section is a button marked Configura-
tion. Click this button to open the Application Configuration dialog box, shown in Figure B-5.
This dialog box contains some options that are specific to this application, including the map-
pings of file extensions to the ISAPI DLLs that handle each extension. Looking through this
list, you’ll see several file extensions that you recognize, but many more that you’ll probably
never have to worry about. It’s actually possible to remove some of these file extensions from
IIS (or just from an application), and in some circumstances doing so can aid security.

Figure B-5. Application-specific configuration settings

APPENDIX B ■ MANAGEMENT OF I IS AND MSDE580

APPENDIX B ■ MANAGEMENT OF I IS AND MSDE 581

THE ROLE OF ISAPI

ISAPI is an acronym for Internet Server Application Programming Interface. ISAPI is a low-level interface that
resides beneath higher-level abstractions like ASP.NET. In many ways, you can think of ASP.NET as a developer-
friendly way of working with ISAPI. It’s possible to work with ISAPI directly, but it’s much easier if you can find
an alternative approach! Every web development technology that’s compatible with IIS must be able to com-
municate with ISAPI, which provides the ability to process page requests and send responses.

An ISAPI extension, such as the ASP.NET ISAPI extension, is the go-between that can process and make
sense of code written in a given programming language, and process it so that it’s possible to send an appro-
priate response to the client browser. IIS has a list of allowed file extensions that it can handle, and each file
extension maps to an ISAPI extension designed to handle that type of request.

ASP.NET pages have the extension .aspx, and the ASP.NET ISAPI extension is aspnet_isapi.dll,
which is located in the %WinDir%\Microsoft.NET\Framework\v1.1.4322 folder. When IIS receives a
request, the file extension will tell IIS which extension to pass the request to for processing. This extension
will then pass the request on to the ASP.NET worker process to be processed.

The ASP.NET ISAPI extension passes requests for ASP.NET pages to aspnet_wp.exe (w3wp.exe in
Windows Server 2003), which runs as a system process. Here, you can see this process highlighted in the
list that’s produced by the Windows Task Manager on a Windows 2000/XP machine:

The Options tab of the Application Configuration dialog box provides an option to con-
figure session timeout length, as shown in Figure B-6. This setting will affect any ASP.NET
application that relies on session state. This overrides the defaults that you specified in the
site-wide settings, giving you the ability to work with different timeouts for each application
on the server.

Figure B-6. The Options tab of the Application Configuration dialog box

APPENDIX B ■ MANAGEMENT OF I IS AND MSDE582

On a Windows Server 2003 machine, you would see a w3wp.exe process running with the NETWORK
SERVICE account.

On the first request for an .aspx page, this process is started automatically. (This is one reason why
the first hit on an .aspx page can take so long.) Subsequent hits to the same page benefit not only from the
fact that there is a cached, compiled version of the page stored on the server, but also from the fact that the
ASP.NET process is already started.

Note that there’s also an entry in the list some lines below the aspnet_wp.exe, called
inetinfo.exe. This is the name of the process that IIS runs as, and it will appear in the list whenever the
web server is up and running.

Locking Down IIS
In general, there are a lot of things that you can do on a day-to-day basis to close down poten-
tial security holes on your IIS server. You can install all the security patches and hotfixes, turn
off directory browsing on sites, enable logging, remove IIS samples, and install antivirus soft-
ware. You should always make sure that your IIS installation is as patched and up-to-date as
possible, to prevent newly discovered security holes from affecting your server.

To simplify this process, Microsoft has released a very useful tool that helps to secure IIS 5,
called the IIS Lockdown Tool. This tool is used to turn off unnecessary features and disable
some loopholes in IIS. At the time of writing, the Lockdown Tool is available for download
from http://www.microsoft.com/downloads/release.asp?ReleaseID=43955. It’s recommended
that you read the instructions very carefully and understand each step in the process before
proceeding to download and use this tool. If you proceed too hastily, you can end up turning
off too many features, rendering your web server nonfunctional.

Impersonation Configuration
When hosting a web application for general public consumption, it’s usually acceptable to
allow Anonymous access to your web server. But what if you wanted to enable more function-
ality (requiring greater permissions) for certain users? What if certain users need Write
permissions on a target folder on the web server or need to write to an event log? ASP.NET
can handle this situation by using a technique known as impersonation.

In any situation that involves Windows Integrated security (in an intranet or extranet
application, for example), you can enable impersonation on your ASP.NET application. This
means ASP.NET will use the authentication token determined by IIS instead of its own mecha-
nism, so your users can be authenticated as local or domain accounts that have more privileges
than the standard ASPNET/NETWORK SERVICE account or the IUSR_MachineName account.

With impersonation turned off, there’s an entry in the Machine.config file that determines
which account is used for Anonymous access. The entry is <processModel>, and the default
setting is username="Machine", password="AutoGenerate". This special "Machine" value maps
to the ASPNET or NETWORK SERVICE account.

Impersonation can be turned on by adding the following to the system.web section of
either the Machine.config or Web.config file:

<identity impersonate="true" />

Using this setting, if Anonymous access is enabled on IIS, your anonymous ASP.NET users
are now authenticated using the IUSR_MachineName account, instead of the ASPNET or NETWORK
SERVICE account. You can configure impersonation further by adding to this definition:

<identity impersonate="true" username="name" password="password"/>

Here, the user name and password must relate to a valid account on the web server. This
setting affects only the account under which the ASP.NET process itself is run; it doesn’t affect
Anonymous access to any other IIS-based application.

Implementing impersonation gives users of your application a specific set of permissions
for performing tasks that the basic ASPNET user account cannot perform.

APPENDIX B ■ MANAGEMENT OF I IS AND MSDE 583

This is a two-phase process:

• IIS authentication: IIS determines the Windows identity depending on authentication
settings or uses the account set for the Anonymous access, if it’s enabled.

• ASP.NET impersonation: For the request execution, the ASP.NET engine impersonates
the account set in the <identity> element or the one received from IIS, if no particular
one is set. The one received from IIS may be the IUSR_MachineName account or the
actual Windows local/domain account the user logged in with, depending on the IIS
authentication settings.

Try It Out: Establish Identity Let’s take a look at how to use impersonation with a quick example
that declares the user account under which ASP.NET is currently authenticated.

1. Open VS .NET and create a new web application called ImpersonationExample.

2. Create a new web form in your application by right-clicking the application in
the Solution Explorer and selecting Add ➤ Add Web Form. Call the new form
ImpersonateMe.aspx.

3. Delete WebForm1.aspx from the project, right-click ImpersonateMe.aspx, and select
Set As Start Page from the context menu.

4. View the code-behind file for ImpersonateMe.aspx and enter the following code into
the Page_Load() event handler:

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
Response.Write("I am authenticated as: " + _
WindowsIdentity.GetCurrent().Name)

End Sub

5. In order to get access to the WindowsIdentity class, you need to tell your web page to
reference the classes in the System.Security namespace. Add the following line to the
top of the code-behind page, before the class definition:

Imports System.Security.Principal

6. Run the project, and view the results. (In Windows Server 2003, you will see
NT AUTHORITY\NETWORK SERVICE instead.)

APPENDIX B ■ MANAGEMENT OF I IS AND MSDE584

How It Works

So far, you have not done anything too complex. You just confirmed the fact that ASP.NET
pages are run under an account on the web server called ASPNET (NETWORK SERVICE in Windows
Server 2003):

Response.Write("I am authenticated as: " + _
WindowsIdentity.GetCurrent().Name)

Here, you’ve output a simple line of text on your browser that gathers information from
the local system, using functionality provided by the System.Security namespace.

Try It Out: Enable Impersonation with Anonymous Access Let’s now extend the example to see
how you can enable impersonation for anonymous users and what effect this has on your
application.

1. In the ImpersonationExample application, open the Web.config file and add the follow-
ing line near the top:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.web>
...
<identity impersonate="true" />
...

</system.web>
</configuration>

2. Run the application again, and you’ll see something similar to the following page.

How It Works

The <identity> tag that you added to the Web.config file has changed the default user account
for Anonymous access to your ASP.NET application. The application has reverted to the
default user account for all IIS Anonymous access, which is IUSR_MachineName (IUSR_WINXP-VM
in the example). If you had configured IIS to use a different account for standard Anonymous
access, the details of that account would be displayed instead.

APPENDIX B ■ MANAGEMENT OF I IS AND MSDE 585

To log in as a specific user in this example, you need to have a user account on your
local system that you can use. Let’s suppose that you’ve set up a temporary account called
TestUser, with an eminently hackable password: letmein. Let’s also imagine this account is a
member of the Power Users group on the local machine. Here’s what the line in the Web.config
file needs to look like:

<identity impersonate="true" userName="TestUser" password="letmein" />

With the configuration you’ve set up, you would end up with the following result.

Since this user has more privileges on the local machine than the basic anonymous users,
your applications have more flexibility. For example, code in your ASP.NET application could
now create and modify files as required, provided the current user has the appropriate per-
missions on the target folder or files.

Try It Out: Use Impersonation and Integrated Windows Authentication While you have an example,
let’s take a quick peek at what happens when Integrated Windows authentication is switched
on for your application.

1. Open the IIS management console. Right-click the ImpersonationExample virtual
directory and select Properties.

2. In the Directory Security tab, click the Edit button to display the Authentication
Methods dialog box. Uncheck the box for Anonymous access, and enable only
Integrated Windows authentication, as shown in Figure B-7.

3. Remove the <identity> element that you entered in the Web.config file in the previous
exercise.

4. Run the application, and you’ll find that ASP.NET will revert to using the ASPNET
account for authentication.

5. Now reinsert the <identity> element in the Web.config file as follows:

<identity impersonate="true" />

APPENDIX B ■ MANAGEMENT OF I IS AND MSDE586

Figure B-7. Using Integrated Windows authentication

6. Run the application again, and ASP.NET will attempt to use the currently logged-in
user’s account for authentication.

How It Works

As a result of the switch to Windows Integrated authentication, ASP.NET pages are now run-
ning under the current Windows user’s account (this Windows user is logged in as kzu, in the
CLARIUS-XP machine/domain). Access to your application is now controlled by the access con-
trol lists (ACLs) maintained by the operating system, moving the authentication portion of
your exchange to the underlying security settings of the system, rather than IIS. This is useful
if you need to access to resources managed by the operating system, such as files, the Registry,
or the event log.

APPENDIX B ■ MANAGEMENT OF I IS AND MSDE 587

When using impersonation, you should always consider what it is you’re trying to
achieve. You need to take care to restrict access to the minimum possible privileges for each
user, and you will rarely need to give any user full administrative capacity on your server.

An Introduction to IIS 6
IIS 6 is part of Windows Server 2003, which is quite different from the Windows 2000 Server
family, mainly because of the introduction of the Windows Server 2003 Web Edition. IIS 6 is
installed by default on Windows Server 2003 Web Edition, and it is an optional installation for
the rest of the product family.

■Note Windows Server 2003 Web Edition is designed solely for hosting web applications, and, as a result,
lacks a lot of the functionality contained within the other Windows Server 2003 editions (the full list is Web
Edition, Standard Edition, Enterprise Edition, and Datacenter Edition). It doesn’t include functionality to act as
a domain controller, and you won’t be able to install many server products on it.

IIS 6 is designed to be more secure than IIS 5 by default. The default settings you get with
an IIS 6 installation have been chosen with security issues foremost, with the potential loop-
holes disabled (so you need to opt in, rather than opt out). ASP, ASP.NET, and technologies
such as WebDAV and FrontPage Server Extensions are disabled in a default IIS 6 installation;
if you need them, you must enable them explicitly. Also, IIS 6 installs security patches auto-
matically by default, so you need to opt out of this process if you don’t want it.

The major changes and new features of IIS 6 can be summarized as follows:

XML metabase instead of custom metabase: The technique for configuring virtual direc-
tories in IIS 5 relies on using the custom IIS interface. The new XML-based metabase
makes it possible to edit the settings using different tools, and it makes it much easier to
back up and restore settings. It is even possible to make changes while an application is
running and have those changes take place immediately. Changes can be rolled back if
necessary.

Process isolation for web applications without taking a performance hit: IIS 5 runs in a
process called inetinfo.exe. Instead of having a single process for running IIS, IIS 6 hosts
applications in a more robust manner by splitting this process into three parts:

• The HTTP.sys part runs in kernel mode and serves the requests. This part alone will
give you a performance boost, especially for static or cached content.

• The Web Admin Service (WAS) part is used to configure HTTP.sys and manage the
lifecycle of worker processes. The WAS is what looks after the memory allocation
needs of your applications, and detects crashes and protects the server from fail-
ure. (Note that this is not the Web Application Stress tool introduced in Chapter 12
of this book!)

APPENDIX B ■ MANAGEMENT OF I IS AND MSDE588

• The W3 core part is where your applications actually are loaded. This is where
ISAPI extensions and filters are loaded. The W3 core isolates each application in its
own process, so if an application crashes, there is less chance that it will take the
whole web server down with it.

Secure by default installation: IIS 6 removes security holes and black spots that seemed
to plague IIS 5. IIS 6’s defaults should help to ensure that hackers who have been used to
exploiting vulnerable servers will have a much harder job.

The IIS 6 management console also has some changes, as shown in Figure B-8. It has some
new nodes, such as Application Pools, which corresponds to the new application process
model. A new feature of the IIS 6 management console is the ability to save a particular site
or even an individual web application configuration to a file, so you can import it later on
another server.

Figure B-8. The IIS 6 management console

Also, by default, there is nothing under the Default Web Site node. This is very different
from an IIS 5 server, which has several default directories and virtual directories when it is first
installed. You will also notice that requesting your default page from this newly installed web
server produces an error instead of a detailed IIS page. These all reflect the new “secure by
default” aims of IIS 6: a lot of the functionality that you have seen previously is removed or
disabled.

■Note You can find more information about the different versions and the features of IIS 6 at
http://www.microsoft.com/windowsserver2003/.

APPENDIX B ■ MANAGEMENT OF I IS AND MSDE 589

MSDE Management
One of most important ingredients of a dynamic web application is the ability to store data
in and retrieve data from a database, and several of the examples in the chapters in this book
involve this functionality. For that, of course, you need a database. In this book, we choose to
use the Microsoft SQL Server Desktop Engine (MSDE), which is a specialized version of SQL
Server 2000.

Using MSDE
MSDE is entirely compatible with and behaves in the same way as Microsoft SQL Server,
which is truly an enterprise-class database server. (The only differences from the full version
of SQL Server are that MSDE is optimized for—but not limited to—up to five connections at a
time, the maximum database size is limited to 2GB, and some enterprise features are absent.)
This means that the things you learn while using MSDE will stand you in good stead when you
move on to use SQL Server itself.

From our perspective here, though, the immediate benefits of MSDE are that it’s freely
distributable and freely downloadable. This means that, as well as providing the perfect system
for us to learn and experiment with, a complete web application can initially be produced and
distributed without incurring any costs for the database server. If the system expands at a later
date, it can be ported to the commercial distribution of SQL Server with nearly no effort.

■Note All of the features supported by MSDE are also supported by SQL Server. The converse is not true;
some of the richer functionality of SQL Server is not present in MSDE. However, none of this functionality is
required by any of the code in this book.

Administering Data via the Server Explorer
When you’re working with databases, it’s not inconceivable that you might want to check
what’s going on in the database tables or edit the data they contain, without needing to do it
through ADO.NET. For that purpose, you can use the Server Explorer tool that comes with
VS .NET. If you already feel comfortable with this tool, or you’ll be using SQL Server’s Enter-
prise Manager to administer the database, feel free to skip this section. If not, choose the
View ➤ Server Explorer menu item to open the Server Explorer window, which will look
something like this:

APPENDIX B ■ MANAGEMENT OF I IS AND MSDE590

■Note If the Server Explorer hasn’t been used before, there may be nothing at all underneath the Data
Connections root node. We’ll address that right away.

The Data Connections node maintains a list of configured database connections, to
which you can add new connections.

In the Professional and Enterprise versions of VS .NET, the Server Explorer allows you to
connect to just about any database you might want to manipulate. Once a connection has
been established, its node can be expanded, and the features of the database then appear as
child nodes. In the version that comes with the Standard Edition of Visual Basic .NET, your
options are more limited—you can connect to only MSDE and Microsoft Access databases,
but that’s more than adequate for the examples in this book.

To see how it works, we’ll add a connection to the database for Friends Reunion, the
application that we work with in this book.

Try It Out: Add a Connection to the Friends Reunion Database As explained in Appendix A, you
attach the FriendsData database by following the instructions in the Setup.txt file in the Db
folder of the code you’ve downloaded for this book (from the Downloads section of http://
www.apress.com). You will now connect to this database and manipulate its data.

1. Right-click the Server Explorer’s Data Connections node and select Add Connection.
You’ll see the Data Link Properties dialog box.

2. Set the server name to the machine on which you installed the Friends Reunion
database.

3. Select the Use Windows NT Integrated security radio button.

4. Select the FriendsData database from the drop-down menu. The Data Link Properties
dialog box should look something like the one shown in Figure B-9.

How It Works

VS .NET assumes, by default, that you want to make a connection to a SQL Server database
(if you need to, you can change this by clicking the Provider tab). By using Windows NT Inte-
grated security to log on, you don’t need to enter a separate user name or password to connect
to the database.

You used the actual machine name for the server name field, but you can also replace it
with the special value (local), which means the local machine.

Now let’s see how to use the Server Explorer to edit the data contained in a database table.

APPENDIX B ■ MANAGEMENT OF I IS AND MSDE 591

Figure B-9. The Data Link Properties dialog box in the Server Explorer

Try It Out: Change Data and Perform Queries with the Server Explorer In this example, you’ll use the
Server Explorer to take a look at the FriendsData database that you just connected to, and per-
form some simple operations on it through the interface that VS .NET provides.

1. In the Server Explorer, go to the FriendsData connection and open the Tables node.

2. Right-click the User table and select Retrieve Data from Table (or simply double-click
the User table). The main Server Explorer window will look similar to Figure B-10. Also,
a new toolbar, called the Query toolbar, will appear at the top left of the window, as
well as a new Query menu, which presents most of the button actions as menu items.

3. At this stage, any change you make to the data will be sent to the database as soon as
you move the cursor to another row, just as if you were working in Microsoft Access.
For example, locate Robert De Niro in the table and set his birth date to August 17,
1943. Move the cursor to the next row, and the change will be applied.

4. With the cursor positioned anywhere inside the table, click the Show SQL Pane button
in the Query toolbar (the one with the letters SQL on it) to display the SQL code that
was executed in order to produce the data you see.

APPENDIX B ■ MANAGEMENT OF I IS AND MSDE592

Figure B-10. The User table displayed in the Server Explorer

5. In the new pane, you can write any valid SQL statement, such as SELECT * FROM
[Users] and click the Run Query button in the Query toolbar (the one with an excla-
mation point) to show the results. You can also check the validity of the statements
you enter by clicking the Verify SQL Syntax button (the one with small SQL letters and
a check sign), as shown in Figure B-11.

Figure B-11. Checking SQL syntax

APPENDIX B ■ MANAGEMENT OF I IS AND MSDE 593

You can continue to experiment with the data-manipulation features of the Server
Explorer and examine the other FriendsData tables.

How It Works

As well as allowing you to examine and change the information in a database, setting up con-
nections in the Server Explorer serves another purpose: preconfiguring connections in this
way allows VS .NET’s wizards to interact with databases though the use of components. This is
something we discuss in Chapter 5.

You can also create stored procedures, views, database diagrams, and so on through the
Server Explorer. Almost everything that the SQL Enterprise Manager offers in terms of simple
database creation and administration is available through the ServerExplorer.

APPENDIX B ■ MANAGEMENT OF I IS AND MSDE594

■Special Characters
#region directives, 158
% Processor Time Counter, 492
<% and %>tags, 22
 character, 78
@Control directive, 235
@Page directive, 235
~ (tilde), as relative path indicator, 106

■A
absolute expiration, 495, 505
access control lists (ACLs), 391, 556
access permissions, for virtual directories, 13
ACT (Application Center Test) tool, 486
ActiveX controls, 60
acudei project, Friends Reunion, 357

default page layout, 361
exception handling, 367
updating web references, 373
using custom data types, 380

Add Counters dialog, System Monitor,
478–79, 483, 492

Add() method, Cache class, 504–5
Add Project Output Group dialog, 533, 534
Add Web Reference dialog, 358
AddAt method, Controls collections, 115
AddAttributes() method, 318
AddSort() method, XPathExpression class, 330
Administrative Install section, User Interface

Editor, 542
ADO.NET. See also data adapter object;

data binding; DataSets, ADO.NET
architecture, 117–20
classes for interacting with SQL Server, 121
command objects, 118. See also

SqlCommand class
components

configuring dynamic properties, 158–60
connection components, 156
overview, 155–56

placing on form, 156–58
VS.NET code generation and, 178–79

connection objects, 118, 126
data access model, 143
data adapter objects, 142. See also

SqlDataAdapter class
constructor, 150
disconnected data, 141–43
Fill() method, 142
interaction with DataSets, 142
manual coding for efficiency, 519
overview, 141
Update() method, 142

data providers, 119–20
data reader objects, 118–19
DataRow classes, 141, 151
DataSet object model, 141
DataTable class, 141, 152
further resources on, 154
overview, 117
programmatic use of

adding data to database, 121–26
changing data in database, 133–34,

136–40
overview, 121
retrieving data from database, 126–33

Server Explorer alternative, 590–94
typed datasets, 179
XML support, 265

adsutil.vbs script, 575
AllowPaging property, DataGrid class, 190
AlternatingItemTemplate property, DataList

class, 192, 197
anonymous access

alternating with Integrated Windows
authentication, 402

enabling impersonation with, 585–86
IIS default setting, 576
web service availability and, 348
Web.config representation, 400

Index

595

anonymous users
custom control example, 107
database retrieval example, 127

Apache web server, 7
AppDomains, .NET, 225
Application Center Test (ACT) tool, 486
Application Configuration dialog, 580
application configuration settings,

deploying, 559–60
Application Restarts performance counter,

482
application security, configuring

authentication, 398–99
authorization, 399–400
location, 400–401
overview, 398

Application Settings section, Properties
dialog, 580

application state
implementing global counter, 228–30
inspecting using VS.NET debugger, 445–52
overview, 226–28
preserving and restoring, 230–32
trace information, 429
using application objects and events, 232

Application_AuthenticateRequest() method,
Friends Reunion example

changing variable values using the
debugger, 450

setting a breakpoint, 444
Application_Error event, 469
Application_Error() method, Global.asax, 472
Application_Start event, global.asax file, 230,

511
Application_XXX() methods, 232
ApplicationInstance property, HttpContext

class, 232
Applications performance object, 482
<appSettings> element, Web.config file, 559
AppSettingsReader class,

System.Configuration, 159
architecture

desktop applications, 1, 3–4
web applications, 1, 3–4, 24, 26–27
web servers and web clients

initiating client requests, 4–5
overview, 4

performing server-side processing, 6–7
receiving and reading HTTP requests, 6
routing client requests, 5–6
routing responses, 7

arrays, returning from web service, 377
ascx files, 524
ASP.NET. See also ASP.NET state management

features; ASP.NET user controls;
caching; data binding

applications. See also Friends Reunion
example

class hierarchy, 50–51
files, 49–50

authentication account, 577
authentication, customized. See role-based

security
authentication modes

Forms authentication, 403–7, 409
overview, 401
Passport authentication, 403
Windows authentication, 401–2

binding expressions, 160
custom binding expressions, 195–97
record selection with viewstate, 240

Class View window, 50–51
compilation process, 53–54
controls. See also ASP.NET server controls

custom controls, 102–7, 108
for displaying sets of data, 170
repositioning, 255
supporting template use, 186
user controls, 94–97, 98–102

dynamic web application example, 19–21
modules, 233
namespaces, 52
next version, 109, 528
object-orientation, 51–52
overview, 29–30
page lifecycle, 54–56

event handler location, 249
viewstate and, 234

pages. See also web forms
custom base pages, 113
defined, 30

performance tuning, 476
disabling session state, 518
improving database access, 518–19

■INDEX596

server-side redirection using
Server.Transfer, 515–17

using web controls conservatively,
517–18

processing and security, 395
registration utility, 9
reusability and encapsulation, 52–53
security. See also application security,

configuring
architecture, 390
further resources, 419
infrastructure, 395–97
overview, 389–90
terminology, 390–94

security initialization, 398
tags, 38
templates, 186, 192, 199
tracing application execution

custom tracing statements, 430–34
enabling and disabling tracing at

application level, 434
enabling tracing, 427–30
overview, 427
using trace viewer, 435, 437

virtual directory creation, 22
web application architecture, 25
Web Matrix, 31
web services functionality, 345
well-formedness requirements for

parsing, 38
ASP.NET server controls

HTML controls
building login form, 63, 65
creating flexible stylesheets, 70–72
overview, 61–63
server controls, 72–76
using visual styles, 67–69

overview, 60
web server controls

applying CSS styles to, 82–83
example, 77–82
handling events, 83–86
overview, 76–77
validation controls, 87–93

ASP.NET state management features
application state

implementing global counter, 228–30

overview, 226–28
preserving and restoring, 230–32
using application objects and events,

232
cookies

overview, 248–49
surviving browser restarts, 255
using to keep user preferences, 249–55

overview, 207
passing data with hidden forms, 256
passing data with query strings, 255–56
session state

configuring, 224
controlling, 220
creating search engine, 210–20
in-memory storage, 225
InProc mode, 225
overview, 208–9
removing session state items, 220–22,

224
session IDs and cookies, 224–25
SQLServer mode, 226
state modes, 225
StateServer mode, 225–26

state storage and scope, 207–8
transient state

overview, 243
passing list of selected users to another

page, 243–48
viewstate

clearing record selection, 242–43
enabling record selection with, 237–40,

242
overview, 233–35
processing by using, 236–37
using as datastore, 237

ASP.NET user controls, 26. See also ascx files;
web controls

adding properties, 100
custom controls compared with, 108
and fragment caching, 502–3

aspnet.isapi.dll extension, 581
aspnet.wp.exe process, 581
<asp:panel> control, 517
assemblies, .NET, 50, 54, 522
AssemblyInfo.cs file, 50
Assert() method, Debug class, 441

■INDEX 597

assertions, .NET, 437–41
assign places form, Friends Reunion, 144,

150, 507
attendee count web service, Friends

Reunion, 346
exception handling, 366
reducing amount of data, 375
testing, 349
using custom data types, 377

attributes, XML. See also serialization,
attributes

converting child elements to, 379
defining, 268–70
formatting, 266
setting attribute properties, 289
as simple types, 280

AuthenticateRequest event
and custom authentication, 409–10, 412
HttpApplication class use, 396

authentication. See also authentication
cookies; authentication modes

configuring, 398–99
credential stores and security tokens, 391
distinguished from authorization, 391
further resources, 409
MSDE, 124
persisting Friends Reunion login, 404
process stages, 410
using role-based security

implementing custom authentication,
410–17

overview, 409–10
securing folders, 417–18

authentication cookies, 397, 404, 409, 410
authentication element, Web.config file,

398–99
authentication modes

Forms authentication, 403–7, 409
IIS options, 577
MixedMode.vbs script, 569
overview, 401
Passport authentication, 403
security context settings, 397
Windows authentication, 401–2

authorization
component-based security, COM+, 392
configuring, 399–400

distinguished from authentication, 391
role-based security and, 417
and UrlAuthorizationModule, 401

<authorization> element, Web.config file,
399–400

Auto Format dialog, DataGrid control, 172,
176, 183

AutoEventWireup attribute, Page directive, 45
automatic localization, 80
AutoPostBack property, DropDownList

control, 84–85
Autos window, VS. NET debugger, 447
axes, XPath, 321

■B
bandwidth, 495
basic authentication, configuring in IIS, 577
BindFromSession() method, search page,

216–17, 219, 242
binding expressions, ASP.NET, 160

custom binding expressions, 195–97
record selection with viewstate, 240

BindPlaces() method, 203
body, HTTP responses, 7
<body> element, HTML, 37
BoundColumn control, DataGrid control, 177
Breakpoint Properties dialog, 445
breakpoints, VS.NET debugger, 442, 444–45,

451
browsers

cache, 496–97
case-sensitivity and, 38
HTML display, 15
new user form, Friends Reunion, 93
opening files in new window, 308
relationship of web services to

browser/server model, 344–45
restarts, cookies surviving, 255
role in web applications, 3
TreeView control and, 302
view of HTML markup, 262
viewing dynamic web pages, 23
web control compatibility, 76

bugs. See debugging
Build option, deployment project, 533,

546–48
Build Style dialog box, 71

■INDEX598

BuildTreeView() method, 314, 318
button elements, 23, 70
button-click event-handler, 48

■C
Cab Project, VS.NET, 529
Cache class, System.Web.Caching, 498, 503,

504
Cache Total Turnover Rate counter, 512
CacheDependency value, 504
CacheDuration attribute, web methods, 371
CacheItemPriority enumeration, 505
caching

at application startup, 511–12
cache locations

local cache, 496–97
origin server, 497–98
overview, 496
proxy server, 497

content expiration and priority, 495–96
data caching, 503–11

dependencies and priorities, 504–11
overview, 503–4

fragment caching, 502–3
location, 500
management, 496
monitoring cache API, 512
output caching, 498–502
overview, 494–95, 498
selectivity, 501
web service responses, 370–71

cacls tool, 559
Calendar Auto Format dialog, 81–82
Calendar control, 78, 80
call stacks, 465
Call Stack window, VS.NET debugger, 452–54
CancelCommand event, DataList class, 202,

205
capacity planning, 492
Cascading Stylesheets. See CSS
case-sensitivity

HTML, 38
XML, 266

catch blocks
multiple, 464
rethrowing exceptions, 466

catch section, upload list form, 319

Ch2WebForm.aspx, 34, 40
Ch2WebForm.aspx.cs file, 45
Checkboxes dialog, VS.NET, 543
class attribute, HTML elements, 71
class libraries, changing custom installer

project to, 551
Class View window, VS.NET, 50–51
classes, CSS, 70
Clear() method, HttpSessionState class, 220
client cache, 496–97
client requests

initiating, 4–5
receiving and reading HTTP requests, 6
routing, 5–6

client-side processing
dynamic web applications, 18, 23
further resources on, 67
resource requirements, 19
server-side code generation, 19

client-side state management, 208, 235
clock example, creating dynamic web

pages, 21
CLR, and exception handling, 464
code

accessing though Class View, 51
behind files, 26, 32, 45–49

Friends Reunion login page, 72
generated from component, 157, 159
and HTML server controls, 73
identification in Page directives, 37, 45
viewing, using Solution Explorer, 46

downloads, setting up, 568–69, 571
duplication, avoiding with custom base

pages, 113–15
reusability, 52
simplification, using XML Schemas, 337

Codebehind attribute, Page directive, 45
Color class, System.Drawing, FromName()

method, 49
color selection example. See

Ch2WebForm.aspx
ColorConverter class, System.Drawing, 253
colors

changing using cookies, 249
setting, using Style Builder, 41

ColorTranslator class, System.Drawing, 253
COM components, 522

■INDEX 599

combo boxes. See dropdown lists
command objects, ADO.NET, 118. See also

SqlCommand class
CommandArguments, link buttons, 147
CompareValidator control

data type checking, 93
new user form example, 90

compilation process, 53–54
files not needing deployment, 524
Friends Reunion login form, 66
semantic error detection, 424
syntax error detection, 422

complex data types, web methods returning,
352–57

complex types, XSD, 279
DataView representation, 298
defining, 280–81

adding elements directly, 284–85
<User> element, 280–84

component-based security, 392
components

ADO.NET
configuring dynamic properties, 158–60
connection components, 156
overview, 155–56
placing on form, 156–58
VS.NET code generation and, 178–79

ASP.NET applications, 26
composite custom controls, 105
concurrency, application state and, 227
concurrent users, performance and, 476, 492
configuration. See system configuration
configuration files, XML use in, 265
configuration settings. See application

configuration settings
ConfigurationSettings class,

System.Configuration, 160
Confirm Installation dialog, VS.NET, 543
Connect to application dialog, 402
connected data model. See data reader

objects
connection components, ADO.NET, 156
connection objects, ADO.NET, 118, 126
connection pooling, 519
Connection property, SqlCommand class,

179, 182

ConnectionString property, SqlConnection
class, 180

consuming web services, Friends Reunion
example, 357, 360, 362

exception handling, 367
using custom classes, 383

Content Files option, Add Project Output
Group dialog, 532–33

Content Files output type, 534
Context object, instance of HttpContext

class, 243
Context property, Page class, 394
Control class, System.Web.UI, 80

DataBind() method, 161
FindControl() method, 203
ResolveUrl() method, 253

Control directive, ASP.NET, 94
Control Events stage, ASP.NET page

lifecycle, 56
Control property, custom controls, 110
control tree, trace information, 429
controls. See also ASP.NET server controls;

ASP.NET user controls;
DataGrid controls; HTML controls;
server controls; validation controls;
web controls

Controls collection property, 105, 115
Convert.ToDouble() method, 85
cookieless setting, Web.config file, 224, 385
cookies, 397

authentication cookies
customized authentication, 410
Forms authentication, 397, 404
persisting login information, 409

collection, trace information, 429
to keep user preferences, 249–55
overview, 24, 248–49
persisting login information, 405, 409
and session state, 208, 224–25
surviving browser restarts, 255

Create GUID dialog box, 296, 572
Create New Script dialog, WAS, 488
CreateChildControls() method, 105
CreateNavigator() method

IXPathNavigable interface, 330, 333
XPathDocument class, 334

credential stores, 391

■INDEX600

CSS (Cascading Style Sheets)
creating using Style Builder, 67
further resources on, 72, 164
Properties browser alternative, 45
user controls and, 95
using CSS classes, 70
W3C standard, 98
web controls and, 82–83

CssClass property, 82–83, 89
CultureInfo object, 81
Current property, HttpContext class, 394
CurrentPageIndex property, DataGrid class,

191
custom actions, 556, 559
Custom Actions Editor, VS.NET, 530
custom authentication, 410–17
custom base pages, 113–15, 122
custom controls, ASP.NET, 102–7, 108
custom data types, 376–85
custom error pages, 469–71
custom exceptions, 465–66
custom performance objects, 483
custom server controls, 26
custom simple types, XSD, 279
custom tracing statements, 430–34
Customer Information dialog, VS.NET, 543
<customErrors> element, Web.config file,

470–71
customized deployment

adding custom actions, 548–50
adding custom file, 540–41
building project, 546–48
deploying application configuration

settings, 559–60
editing user interface, 541–46
installer classes, 550–54

creating event source to initiate
Windows event logging, 554–55

debugging, 555–59
launch conditions, 560–63
overview, 540

■D
data access, and ADO.NET, 117, 143
data adapter objects, ADO.NET, 142. See also

SqlDataAdapter class
constructor, 150

disconnected data, 141–43
Fill() method, 142
interaction with DataSets, 142
manual coding for efficiency, 519
overview, 141
Update() method, 142

data binding
advanced

DataList control, 192–205
overview, 186
paging, 189–91
using templated column in DataGrid,

186–89
binding DataGrids to DataSets, 171
binding expressions, 160
binding to sets of data, 170–77
components

configuring dynamic properties, 158–60
overview, 155–56
placing on form, 156–58

custom data type example, 381, 383
filtering and, 237
formatting with DataBinder class, 162
Friends Reunion example, 162–70
linking server controls and, 48
overview, 155, 160
typed datasets, 179
using binding expressions, 161
working visually with data

overview, 177
using typed datasets, 179–86
working with data components, 178–79

data caching
accessing cached values in code, 504
dependencies and priorities, 504–11
Friends Reunion example, 507
overview, 503–4
priority, 505

data components. See components,
ADO.NET

Data Link Properties dialog, Server Explorer,
592

data providers, ADO.NET, 119–20
data reader objects, ADO.NET, 118–19, 141.

See also SqlDataReader class
data sources, 141, 237

■INDEX 601

data types
accessing native Sql Server types, 140
checking, 93
storing in viewstate, 515
XML, further resource, 284

Data view
importance of following links, 298
schema design restrictions, 300
XML document creation, 298–99

Database Location dialog box, 547
databases. See also FriendsData database

access, performance aspects, 518–19
accessing using Server Explorer, 590–94
adding data to (ADO.NET), 121–26
ADO.NET providers for, 119–20
changing data in (ADO.NET), 133–34,

136–40
constraint violations, 468
customized deployment, 540
FriendsData example, 121, 143
inserting realistic sample data, 486
preserving session state in, 226, 231
querying and editing, using Server

Explorer, 592
registering, 548, 550
restricting access to files, 548
retrieving data from (ADO.NET), 126–33
XML support, 265

DataBind() method
approved contacts page use, 185
Control class, 161
DataList class, 204
Page class, 169
pending contacts page use, 173
web controls, 161

DataBinder class, 162, 169
DataBindings dialog box, Properties Browser,

196
DataColumn class, ADO.NET, 141
DataGrid class, System.Web.UI.WebControls

adding templated column, 186
CurrentPageIndex property, 191
ItemCommand event, 242
LoadViewState() method, 235
PageIndexChanged event, 190
pending contacts example, 171
properties enabling paging, 190
SaveViewState method, 235

DataGrid controls
adding paging, 190
Auto Format feature, 172
custom authentication example, 413
customizing DataGrid columns, 174
DataList compared to, 192
disabling the viewstate for, 513
iterating through a DataSet, 174
performance effects, 494
retrieving approved contacts, 180

DataList class, System.Web.UI.WebControls
EditCommand event, 199
enabling editing capabilities, 199
Friends Reunion example, 192
SelectedIndex property, 205
SelectedItem property, 203

DataList control, 192–205
data binding, 198
events fired by, 192
view places page using, 193

DataReader class, 519
DataRow classes, ADO.NET, 141, 151
DataSets, ADO.NET, 219

caching at application startup, 511–12
choice between DataReader and, 214
data caching example, 507
DataReader performance and, 519
DiffGram format, 372
disconnected data, 141–43
filtering retrieved results, 216
GetXml() method, 375, 380
in-memory search, 219
interaction with data adapters, 142
overview, 141
performance bottlenecks and, 502
Tables property, 151
typed datasets, 179
using, 143–53
web methods returning, 352, 355

amount of data, 372
lightweight serialization, 374
serialization, 356

XML support, 265
DataSource property, 170
DataTable class

ADO.NET, 141, 152
System.Data, 205

■INDEX602

date formatting, ADO.NET update example,
140

DateTime dependency value, 504–5
DateTime object, System namespace, 22
Debug class, System.Diagnostics, 438, 441
Debug mode, VS.NET, 36
Debug Symbols, 534
debugging

installer classes, 555–59
overview, 426
setup projects, 557
tracing, ASP.NET

custom tracing statements, 430–34
enabling and disabling tracing at

application level, 434
enabling tracing, 427–30
overview, 427
using trace viewer, 435, 437

tracing, .NET, 437–41
VS.NET debugger

Call Stack window, 452–54
inspecting application state, 445–52
locating bugs, 454–59
managing breakpoints, 442, 444–45
overview, 442

default entry page, Friends Reunion
example, 110–13

adding search facility, 218
allowing data modification, 135
assign places functionality, 153
color preference choices, 254
dynamic content, 112
global visitor counter, 229
logout page link, 408
preloaded data, 137
users administration page link, 415
using trace viewer, 435

Default Web Site Properties dialog, 573
Authentication Methods dialog, 576–77
Logging settings, 574–75

dependencies, data caching, 504–11
deployment. See also setup projects, VS.NET

customized deployment, installer classes
adding custom actions, 548–50
adding custom file, 540–41
building project, 546–48

deploying application configuration
settings, 559–60

editing user interface, 541–46
installer classes, 550–54
launch conditions, 560–63
overview, 540

Friends Reunion example, 530
manual deployment, 523–28
methods, 521–23
modifying installation user interface, 544
overview, 521

deserialization. See serialization
Design View, VS.NET projects, 34, 108
desktop applications, vs. web applications,

3–4
dialog boxes, Web Setup Project, 543
DiffGram format, 372
digest authentication, configuring, 577
directories, virtual. See virtual directories
directory browsing permission, IIS console, 16
disc drives, performance counters for, 478
disconnected data model, 141–43
Display property, validation controls, 92
DisplayMode property, ValidationSummary

control, 93
distributed services, 344
<div> element, HTML, 518
DLL files, 524
DNS (Domain Name Service), 5
Documentation Files output type, 534
DOM (Document Object Model), 324–29
__doPostBack() function, 76
dot notation, 125
dotnetfx.exe file, 525, 536
downloads, 568–69, 571
dropdown lists, 212, 236–37
DropDownList control, Friends Reunion

news page, 78
DuplicateUsernameException class, 466, 468
Duration attribute, OutputCache directive,

500, 502
dynamic properties, VS.NET components,

158–60
dynamic web applications

and ADO.NET, 117
client-side and server-side processing,

18–23

■INDEX 603

dynamically building navigation controls,
110–13

example, 19–21
overview, 17–18, 110
state management, 24

■E
e-commerce sites, and state management, 24
EDI (Electronic Data Interchange), 265
Edit Template option, 187–88
EditCommand event, DataList class, 199,

201, 204
editing template, using data binding, 199
EditItemIndex property, DataList class, 192,

201, 204
EditItemTemplate property, DataList class,

192, 199
editors, VS.NET, 529–30
elative paths, tilde indicator, 106
elementFormDefault attribute,

<xs:schema>element, 275
elements, XML, 266
EnabledSession attribute, WebMethod

attribute, 385
EnabledSessionState attribute, Page

directive, 518
EnableViewState attribute, Page directive,

514
EnableViewState property, web controls, 235

disabling viewstate for performance,
513–14

DropDownList control, 236
Label control, 240
record selection example, 237

encapsulation, 52
encryption, enabling for viewstate, 515
error messages

new user form, 125
SOAP, in .NET, 368

errors. See also exception handling
HTTP error codes, 7
input errors, 426
semantic errors, 424–25
syntax errors, 422, 424
types of, 422

Errors Total performance counter, 482
escaping invalid characters, 375, 458

Eval() method, DataBinder class, 162, 169
event handlers. See also Page_Load() event

handler
Application_BeginRequest, 80
associating with web controls, 83–86
attaching and overriding, 55
button-click event-handler, 48
Chapter2Examples project, 51
client-side, in Friends Reunion example, 67
Global.asax file, 232
location in code-behind files, 45
SelectionChanged, 85
skeleton code for, 74

event source creation, 472, 554–55
Event Viewer, 555
EventLog class, System.Diagnostics, 471, 473
events

ASP.NET event categories, 72
event-driven nature of ASP.NET, 30

exception handling
catching exceptions, 462
catching SOAPExceptions, 368
custom exceptions, 465–66
finally keyword, 462
Friends Reunion example, 463–65
logging exceptions, 471–74
multiple catch blocks, 464
overview, 460
rethrowing exceptions, 466–68
throwing exceptions, 460, 462
unhandled exceptions, 469–71
upload list form, 319
web services, 366–70

exceptions
catching exceptions, 459
deriving and naming exception classes,

466
inspecting Message property, 457
overview, 459–61
SOAP Fault messages, 364
superiority to result codes, 461

Exceptions Thrown performance counter,
483

exchanging data using XML, 259
ExecuteNonQuery() method

ADO.NET command objects, 118, 456, 463
SqlCcommand object, 126
SqlCommand class, 170

■INDEX604

ExecuteReader() method
ADO.NET command objects, 118
SqlCommand object, 133

ExecuteScalar() method
ADO.NET command objects, 118
SqlCommand class, 231
SqlCommand object, 129, 132

expiry dates, cached items, 495
Explain button, Add Counters dialog, 483
Extensible Markup Language. See XML

■F
facets, 286, 287
FieldCount property, ADO.NET data reader

objects, 119
file extensions

ASP.NET pages, 30, 32
code-behind files, 32
resource files, 49
user controls, 94
web services, 345

File System Editor, VS.NET, 529
adding custom file, 540–41
creating Web Setup Project, 530
listing files being installed, 537

File Types Editor, VS.NET, 529
Fill() method

data adapter objects, 142
SqlDataAdapter class, 151, 169

finally keyword, 462
FindControl() method, Control class, 203
Finished dialog, VS.NET, 543
Flash movies, 18
flexible stylesheets, 70–72
Flow layout mode, pageLayout property, 37
folders

access problems, VS.NET, 571
securing, 417–18

Font Picker dialog box, 41
Font property, WebControl class, 80
fonts, setting using Style Builder, 68
footer control, Friends Reunion example, 100

global visitor counter, 228
using cookies, 249–55
using custom base pages, 113

FooterTemplate property, DataList class, 195
form collection, trace information, 430

<form> element, HTML, 23, 30, 38
formatting values, using DataBinder, 162
forms. See also web forms

HTML, 233
Forms authentication, 403–7, 409

custom authentication, 410–18
security context settings, 397

FormsAuthentication class,
System.Web.Security,
RedirectFromLoginPage() method,
129, 132, 397, 409, 411

fragment caching, 498, 502–3
friendly error pages, 469
Friends Reunion example. See also default

entry page
ADO.NET DataSet use, 143–53
assign places form, 144, 150
attendee count web service, 346
authentication choice, 403
contact approval process, 163
content file outputs, 537
creating GUIDs for database keys, 571–72
creating project, 63
custom base pages, 113
data caching, 507
database design, 567
DataList control, 192
deployment project, 530
editing user profile, 133
enabling tracing, 428
exception handling, 463

custom exception example, 465
logging exceptions, 472
rethrowing exceptions, 467

files needed for deployment, 524
footer control, 100
Forms authentication, 403
global visitor counter, 228–30
header control, 94
installation, testing, 528
installation user interface, modifying, 544
installing, 539
locating bugs in new user page, 454–59
login form, 63–67

CSS styled version, 69
verifying user credentials, 129
version with HTML server controls, 74

■INDEX 605

logout form, 405
navigation controls, 110–13
new user form, 87, 122
news page, 77–80, 83
passing selections to another page, 243–48
pending contacts display, 171
performance testing

generating realistic set of data, 486–87
installing WAS tool, 485–86
overview, 485
running performance test, 492–94
with simulated load, 487–92

persisting login information, 404
primary output dependencies, 537
request contact page, 243–48
retrieving approved contacts, 180
retrieving contact requests, 361
running performance tests, 492–94
search facility

enabling record selection, 237–40, 242
preserving processing using viewstate,

236–37
record selection with viewstate, 241

security settings, 127
setting up code download package,

568–69, 571
subheader custom control, 103
System Monitor and, 481
test script, 487
uninstalling, 540
upload list form, 302, 307

creating valid documents, 294
displaying the XML data, 314
querying based on user input, 334, 336
querying DOM document, 325
querying with XPathNavigator, 331–32
reporting, 322
setting up validation, 311
viewing a report, 327

users administration page, 413–14
using assertions, 438
using Call Stack window, 453
using cookies, 249–55
using custom error pages, 469
using custom trace statements, 430, 433
using data binding, 162–77
using debugger’s Watch windows, 448
using trace viewer, 435

using VS.NET debugger, 443
using web services, 344, 346

acudei project, 357, 360, 362
testing, 349

view places page, 193
view user page, 168
Web Setup Project, 530
XML data exchange procedure, 267
XML sample document, 269
XML Schema creation, 272, 276–79, 283,

289–90
FriendsData database, 121

connecting to, using Server Explorer, 591
global visitor counter and, 230
querying and editing, using Server

Explorer, 592
user information tables, 143
XML upload requirements, 269

FriendsReunionException class, custom
exceptions, 466

FromName() method,
System.Drawing.Color class, 49

functional code, web forms, 32
functional testing, 485

■G
Generate Dataset link, Properties browser,

182
GenericPrincipal class,

System.Security.Principle, 397, 409,
411, 416

GET requests, HTTP, 6, 352
GetAttendees() web method, 348, 351,

366–67
GetContactRequests() web method, acudei

project, 361
reducing the amount of data, 373
SOAP request and response, 365
suitability for response caching, 370

GetContactRequestsCustom() method, 377
GetPlacesDataSet() method, Friends

Reunion, 508, 510
GetReader() method, 312, 325
GetXml() method, DataSet class, 375, 380
GetXXX() methods

ADO.NET data reader objects, 119
SqlDataReader object, 139

■INDEX606

global types, XSD, 279, 287
global visitor counter, Friends Reunion,

228–30
Global.asax file

application state and, 227
Application_Error() method, 472
Application_Start event, 230, 511
and Application_XXX() methods, 233
and AuthenticateRequest event, 415
changes to, and application restarts, 229
event handlers and, 72
Friends Reunion visitor counter, 228
and Global.asax.cs files, 50
HttpApplication inheritance, 232
HttpApplication object definition, 395
overview, 26
session state events and, 223
Session_Start event, 230
web application manual deployment, 525
web control localization, 80

Global.asax.cs file, 555
Grid layout mode, pageLayout property, 37
GUID class, System namespace, 572
GUID (Globally Unique Identifier)

Create GUID dialog box, 296
as primary keys, 571–72
and XSD pattern facet, 287

■H
header control, Friends Reunion example, 94

customizing, 98–100
using custom base pages, 113

headers
HTTP responses, 7
SOAP messages, 364–65

HeaderTemplate property, DataList class, 195
HelloWorld() web method example, 348
HelloWorld.htm example, 10
hidden form fields

allowing editing by authorized users, 201
passing data using, 256
postback mechanism and, 233
validation controls as, 87

hidden input fields, 24, 76
hidden input tags, __VIEWSTATE element as,

47
HTML controls

building login form, 63, 65
converting to server controls, 73
creating flexible stylesheets, 70–72
overview, 61–63
as server controls, 60
server controls, 72–76
using visual styles, 67–69
web control advantages over, 76

HTML File Field control, 304
HTML (Hypertext Markup Language). See

also HTML controls
case-sensitivity, 38
display in browsers, 15, 39
display in VS.NET Design View, 35, 44
display in Windows Explorer, 15
generated from server controls, 39
markup language example, 261–62
server control alternative to writing, 60

HTML view, 20, 95
HTTP Handlers, 437
HTTP (Hypertext Transfer Protocol). See also

GET requests
requests, 4, 6
response structure, 7
result code 403.9, 575
statelessness of, 24, 207–8

HttpApplication class, System.Web, 232, 395
HttpApplicationState class, System.Web, 227
HttpContext class, System.Web, 243
HttpCookie class, System.Web, 248
HTTPS protocol, 354
HttpSessionState class,

System.Web.SessionState
class properties supporting, 209
Clear() method, 220
Remove() method, 220, 222

HyperLink control, upload list form, 304, 306
HyperLinkColumn class,

System.Web.UI.WebControls, 175
HyperLinkColumn control, DataGrid control,

177

■I
IComponent interface,

System.ComponentModel, 156
IconImageURL attribute, customizing user

controls, 100

■INDEX 607

IDE (Integrated Development Environment),
31

identity objects, .NET, 393–94, 397
<identity> tag, Web.config file, 583, 585–86
IE Web Controls package, deployment, 525
IEnumerable interface, System.Collections,

171
iestyle.css stylesheet, 68
Identity interface, System.Security.Principal,

394
IIS (Internet Information Services). See also

impersonation
administering

configuring virtual directories, 16–17
creating virtual directories, 10, 12–15
overview, 9

configuring
ASP.NET applications, 578–81
folder as web application, 569
overview, 573
site-wide settings, 573–77

IIS 6, 8, 588–89
IIS console, 9

creating virtual directories, 10
custom controls, FriendsReunion

example, 107
IIS 6 changes, 589
Properties dialog, 16
security settings, Friends Reunion

example, 127
installing and configuring, for .NET Web

applications, 8–9
and launch conditions, 560, 562–63
locking down, 583
logging settings, 574–75
overview, 7
processing .aspx files, 22
security settings, 576–77
simultaneous connections, 575–76
virtual directories, 10
and Windows authentication, 401

images
Friends Reunion header control, 94
Friends Reunion news page, 77
used in examples, availability, 77

impersonation
enabling, with anonymous access, 585–86
establishing user identity, 584–85

and Integrated Windows authentication,
586, 588

overview, 583–84
INamingContainer interface, 106
inetinfo.exe process, 582
inetmgr. See IIS (Internet Information

Services), IIS console
InfoPath application, 270
inheritance, 79, 102, 114
Inherits attribute, 45
Init stage, ASP.NET page lifecycle, 55
InitForm() method, 148, 152, 509, 510
InitializeComponent() method, 55
InitPlaces() method, 146, 151
InProc mode, session state, 223, 225
input errors, 426, 460
<input> element, HTML. See also hidden

input tags
converting HTML controls to server

controls, 73
hidden input fields, 24
viewing dynamic web pages, 23

Insert() method, Cache class, 504, 510
INSERT statement, 122, 124, SQL
InsertUser() method, Friends Reunion, 453
Install section, User Interface Editor, 542
installation. See also deployment

creating an event source, 554
Launch Conditions Editor, 560–63
modifying installation user interface, 544
setup projects, VS.NET, 538
uninstalling projects, 539–40

Installation Address dialog, VS.NET, 543
Installation Folder dialog, VS.NET, 543
installer classes, 550–54

creating event source to initiate Windows
event logging, 554–55

debugging, 555–59
multiple, 556

Installer class, System.Configuration.Install,
550–54

Integrated Windows authentication, 127, 402
configuring in IIS, 577
disabling, 107
impersonation and, 586, 588

IntelliSense
Friends Reunion login form, 65
HTML elements, 66

■INDEX608

lack of synchronization with Style Builder,
98

and typed datasets, 179
XML document creation, 295, 297

interactivity, dynamic content and, 17
Internet Explorer WebControls, 301
Internet Information Services. See IIS
Internet messages, and TCP/IP, 5
Internet Protocol (IP), 4
Internet Server API. See ISAPI
Internet Server Application Programming

Interface (ISAPI), 581
Internet Services Manager (ISM), 9
interoperability, 265
intranets/extranets, and Windows

authentication, 401
InvalidOperationException, 312
IP addresses, 5, 6, 7
IP (Internet Protocol), 4
IP version 6 (IPv6), 6
IPostBackDataHandler interface,

System.Web.UI, 235
IPrincipal interface,

System.Security.Principal, 394
ISAPI (Internet Server Application

Programming Interface), 581
IsAuthenticated property

custom authentication example, 415
custom control example, 106
login security example, 133
user update example, 133

IsInRole() method, Page class, 416
ISM (Internet Services Manager), 9
IsNull property, SqlString data type, 140
IsPostBack method, 47
IsPostBack property, Page class, 236
IsValid property, Page class, 124
ItemDataBound event

DataGrid class, 242
DataList class, 201

ItemRemovedCallback() method, 506
Items property, Context class, 243, 248
ItemTemplate property, DataList class, 192
<ItemTemplate> element, 189
IUSR_MachineName authentication

account, 576
IXPathNavigable interface,

System.Xml.XPath, 330, 333

■J
JavaScript. See also client-side processing

dynamic web applications and, 18
hidden form fields and, 256

JIT (Just In Time) compilation, 53

■L
Label control

Friends Reunion header control, 95
Friends Reunion news page, 78, 84

<Label> element, HTML, 73
language attribute, Page directive, 45
latency, 495, 496, 497
launch conditions, 530, 560–63
License Agreement dialog, VS.NET, 543
<link> element, HTML, 69, 82
LinkButton control, update list form, 306
Load event, ASP.NET page lifecycle, 56
Load() method, XmlDocument class, 328
load testing

distinguished from functional testing, 485
realistic data volumes, 486–87
server load, 493
simulated load, 487–92
using WAS tool, 485–87

LoadControl method, TemplateControl class,
115

LoadDataSet() method, 145, 150, 509
LoadPostData() method,

IPostBackDataHandler interface, 235
LoadViewState() method, DataGrid class,

235
local cache, 496–97
Local path option, Properties dialog, 579
local types, XSD, 279
localhost, IP address, 6
localization, Calendar control example, 80
Localized resources output type, 534
Locals window, VS. NET debugger, 446
Location attribute, OutputCache directive,

500
location configuration, 400–401
location element, Web.config file, 400–401
location paths, XPath, 321
Lock() method, HttpApplicationState class,

227
logging exceptions, 471–74

■INDEX 609

Logging facility, Web Site Properties dialog,
574–75

login form, Friends Reunion example, 63–67
automatic redirection, 131
with headers and footers, 102
persisting the login information, 404
security settings, 127
verifying user credentials, 129

logout form, Friends Reunion example, 405,
406, 407

loopback addresses, 6, 14
looping scripts, 486

■M
Machine.config file, 352

authentication settings, 399
authorization settings, 400
impersonation and, 583
security-related modules, 396

managed providers, and performance, 519
mapping virtual to physical directories, 10
markup languages, 259–61. See also HTML;

XML
maxOccurs attribute, XSD, 288–89
Merge Module Project, VS.NET, 529
merge modules, 536
Message attribute, 100
<meta> tags, HTML, 67
Microsoft. See also .NET; Passport

authentication; Windows
Microsoft Intermediate Language (MSIL), 53
Microsoft SQL Server Desktop Engine.

See MSDE
Microsoft Windows Installer files. See MSI

files
Microsoft.Web.UI.WebControls namespace,

309
minOccurs attribute, XSD, 288–89
mixed-mode authentication, 569
MixedMode.vbs script, 569
mode settings, Web.config file, 225
modules, ASP.NET, 233
Mono project, 120
MoveToXXX() methods, XPathNavigator

class, 329

MSDE (Microsoft SQL Server Desktop
Engine), 120. See also Sql Server

administering data via Server Explorer,
590–94

download instructions, 568
stopping the service, 546
using, 590

MSI files
checking launch conditions, 562–63
and installer classes, 553
processing dialog boxes, 545
testing the installation, 538

msiexe.exe file, 542
MSIL (Microsoft Intermediate Language), 53

■N
named types, XSD, 287
namespaces

and ASP.NET functionality, 52
Control class hierarchy, 110
and IntelliSense, 297
related to XML, 274–76, 300
server controls hierarchy, 60
web controls hierarchy, 79
and XmlNamespaceManager class, 328

naming conventions, variables, 311
navigation controls, Friends Reunion

example, 110–13
nested queries, web service example, 355
nesting, XML elements, 266
.NET assemblies, 50, 54, 522
.NET assertions, 437–41
.NET Framework. See also ASP.NET

assertions, 437
installing IIS after, 8
namespaces related to XML, 300
namespaces relevant to ASP.NET, 52
namespaces relevant to XML, 300
performance objects, 478
programmatic manipulation of XML, 321
repairing, 9
significance of XML in, 264
version number checking, 527
web services implementation, 344

.NET Framework Redistributable, 525

■INDEX610

.NET identity objects, 393–94, 397

.NET principal objects
GenericPrincipal object, 397
and UrlAuthorizationModule, 401
using and replacing, 411
WindowsPrincipal object, 397

network latency, 19
network-ready installations, 542
New Project dialog box, 528
new user form, Friends Reunion, 87

adding header control, 96–97
custom trace example, 430
with customized header, 101
error messages, 125
exception handling, 463
locating bugs in, 454
preloading data, 135
rethrowing exceptions, 467
saving data to database, 121
semantic error example, 426
using Call Stack window, 453
with validation controls, 91–92

news page, Friends Reunion example, 77–80
approved contacts added, 184
custom trace example, 433
DataGrid control, 173
event handling, 86
formatted DataGrid, 176
paging, 191
subheader custom control, 106
template column, 188
tracing enabled, 428

node sets, XPath, 321, 332
node types, 305, 340
nodes, and XmlValidatingReader class, 314
Now property, System.DateTime, 22

■O
object-orientation, and ASP.NET, 30, 51–52
ODBC, ADO.NET data provider for, 120
OLE DB, ADO.NET data provider for, 120
OnInit() method, 251
OnPreRender() method, 242
OnValidation() method, 313
onXXX attribute, 67
operating systems, security, 390
optimization. See performance optimization

Oracle, ADO.NET data provider for, 120
osql utility, 226, 549, 568
OutOfMemoryException exceptions, 464
output caching, 498–99

applying, 501
page caching, 500–502

Output window
assertions example, 441
syntax error display, 422

OutputCache directive, 498
attributes, 500
fragment caching, 502
page caching, 500–502

overriding, event handling by, 55

■P
page caching, 500–502
Page class, System.Web.UI. See also

IsPostBack method
and ASP.NET page lifecycle, 55
and custom base pages, 113, 114
DataBind() method, 169
inheritance from, 52
IsInRole() method, 416
Validate() method, 87

Page directives
attributes, 45
dynamic web page example, 22
EnableSessionState attribute, 518
EnableViewState attribute, 514
enabling tracing in ASP.NET, 427–30
web form example, 37

page lifecycle, ASP.NET, 54–56
event handler location, 249
viewstate and, 234

page specific events, ASP.NET, 72. See also
code, behind files

Page_Error event, 469
Page_Init() event handler, 45
Page_Layout property, 66
Page_Load() event handler, 45, 46, 47, 56
PageIndexChanged event, DataGrid class,

190
pageLayout property, VS.NET, 37
<pages> element, Web.config file, 514
PageSize property, DataGrid class, 190
paging, 189–91

■INDEX 611

Panel control, 77, 94, 144
parameters

ADO.NET, 219
SqlCommand object, 132

parsers, XML, 268
Passport authentication, 397, 403
pattern facet, XSD, 287
Peek() method, 318
PerfMon tool

cache API monitoring, 512
configuring System Monitor, 477–83
constituent tools, 477
performance counters and, 483

Performance console, 477. See also PerfMon
tool

performance counters, 478, 483
adding, using WAS, 492
ASP.NET performance object, 480
configuring System Monitor for, 479
monitoring cache, 512
monitoring Friends Reunion, 482
using counter logs, 484

performance instances, 478
Performance Logs and Alerts, 484
performance metrics, 478, 492
performance objects, ASP.NET, 478, 480, 482,

483
performance optimization, web services. See

also performance tuning
adding state to, 385
custom data types, 376–85
overview, 370
reducing amounts of data, 371–76
using caching, 370–71

performance overhead, 162, 226
performance testing, 485
performance tuning. See also caching

ASP.NET
disabling session state, 518
improving database access, 518–19
server-side redirection using

Server.Transfer, 515–17
using web controls conservatively,

517–18
controlling viewstate

checking encryption features, 515
data type selection, 515

disabling at page and application levels,
514–15

disabling viewstate for controls, 512–14
custom performance objects, 483
functional testing, 485
further resources on, 520
good performance defined, 475–76
load testing, 485
monitoring performance

avoiding overhead, 484–85
overview, 476–77
PefMon, configuring system monitor in,

477–83
testing applications

generating realistic set of data, 486–87
installing WAS tool, 485–86
overview, 485
running performance test, 492–94
with simulated load, 487–92

persisting login information, 404
personalization and authentication, 391
PlaceHolder controls, 110–12, 144
platform-independence, 265, 344
POST requests, HTTP

overview, 6
and SOAP, 363
testing web methods, 350
web method access restrictions, 352

postbacks, 55, 75, 85, 248. See also IsPostBack
method

predicates, XPath, 322, 333
PreRender stage, ASP.NET page lifecycle, 56,

235
primary keys, using GUIDs as, 571–72
primary output, adding to setup project, 532,

550
Primary output option, Add Project Output

Group dialog, 533
Primary output type, 534
principal objects, .NET

GenericPrincipal object, 397
and UrlAuthorizationModule, 401
using and replacing, 411
WindowsPrincipal object, 397

principal objects, .NET, 393–94
priorities, data caching, 504–11
processing instructions, XML, 270

■INDEX612

Processor\% Processor Time, 482
Progress dialog, VS.NET, 543
properties

converting public fields into, 381
converting to attributes, 379
customizing, for user controls, 98–102
setting Page_Layout at project level, 66

Properties browser, VS.NET, 34, 40–42, 44–45
DataBindings dialog box, 196
defining content files, 534
and dynamic properties, 158
Generate Dataset link, 182
and HTML controls, 62

Properties dialog
IIS console, 16
System Monitor, 484

Property Builder, VS.NET, 174, 175
Property Pages, web applications, 535
protected class member fields, 74
providers, ADO.NET. See data providers
proxy classes, 361–62
public key cryptography, 578

■Q
Query Builder, VS.NET, 178, 194
query strings, 255–56
Query toolbar, Server Explorer, 592
querystring collection, 430
QuickWatch window, VS.NET debugger, 449,

455
quoted strings, relaxed syntax for, 162, 169

■R
RadioButtons dialog, VS.NET, 543
RaisePostBackEvent() method, 454
Read Me dialog, VS.NET, 543
Read() method

ADO.NET data reader objects, 118
SqlDataReader object, 139
XmlReader-derived classes, 300

read-only mode, session state, 518
ReadToEnd() method, StreamReader class,

310
Rebuild Solution option, 373
recipe markup example, 260, 261, 262
Redirect() method, Response class, 247,

515–17

RedirectFromLoginPage() method, 129, 132,
397, 409, 411

redirection, 515–17
references. See web references
References files, VS.NET, 50
regiis.exe utility, 9
Register directive, 96
Register User dialog, VS.NET, 544
Registry Editor, VS.NET, 529
Registry, searching with Launch Conditions

Editor, 561
regular expressions

converting public fields into properties,
382, 384

further resources on, 93
and XSD pattern facet, 287

RegularExpressionValidator control, 90, 93
relative paths, stylesheet linking, 69
relaxed syntax, for quoted strings, 162, 169
Remote Procedure Calls (RPC), 363
Remove Auto Format option, 176
Remove() method, HttpSessionState class,

220, 222
Render() method, 115, 252, 438–39
Render stage, ASP.NET page lifecycle, 235
rendering

ASP.NET page lifecycle, 56
automatic localization of controls, 80
and client-side processing, 7

Replace dialog, 381
request contact page, Friends Reunion,

243–48
Request.form collection, 235
Request.Form property, 256
request-response architecture, 4, 344, 363
Requests Queued performance counter, 482
Requests/sec performance counter, 482
RequiredFieldValidator control, 89, 92
ResolveUrl() method, Control class, 253
resource files, VS.NET, 49
resource implications, 18, 209
Response.Write() method, ASP.NET

alternatives to using, 427
result codes, 461
.resx files, 49
rethrowing exceptions, 466–68
reusability. See code, reusability

■INDEX 613

role-based security, 392–93
authorization using, 417
and custom authentication

implementing custom authentication,
410–17

overview, 409–10
securing folders, 417–18

Friends Reunion example, 415
properties and methods, 394

root element, XML, 276
routing

HTTP responses, 7
Internet requests, 5–6

RPC (Remote Procedure Calls), 363
Run As Server Control option, 73
Run to Cursor option, break mode, 451
runat=”server”attribute, 38, 74

■S
SaveViewState method, DataGrid class, 235
SaveXML() method, 309
scalability, 224. See also resource

implications
scheduled recycling, 482
schemas, 180. See also XML Schemas
scope, 208
scripts, 486. See also test scripts
search engine, Friends Reunion

with actions panel, 221, 242
enabling record selection, 237–40, 242
limiting results, 209, 220
page design, 211
preserving processing using viewstate,

236–37
record selection with viewstate, 241
results, without specifying criteria, 219
styled page, 212
toggling control visibilities, 223

Search Target Machine section, Launch
Conditions Editor, 561, 563

Secure Sockets Layer. See SSL
security. See also authentication;

authorization
anonymous user account, 576
application security configuration

authentication, 398–99
authorization, 399–400

location, 400–401
overview, 398

architecture, 390
ASP.NET parameters and, 219
and browser caching, 497
configuring IIS settings, 576–77
further resources, 409, 419
and IIS 6, 588
and IIS Lockdown tool, 583
infrastructure, 395–98
overview, 389–90
restricting access to database files, 548
role-based security, 392–93
securing folders, 417–18
settings, 17, 107, 127
terminology, 390–94
web services and, 355

security tokens, 391
Select() method

DataSet class, 216
DataTable class, 152, 205

SelectCommand property
DataAdapter objects, 180
SqlDataAdapter class, 150, 169, 179, 182

SelectedIndex property, DataList class, 192,
202, 205

SelectedIndexChanged event, DataList class,
199, 202, 204, 235, 253

SelectedItem property, DataList class, 203
SelectedItemTemplate property, DataList

class, 192, 197, 199
SelectNodes() method, XmlDocument class,

332
semantic errors, 424–25, 442
serialization

attributes, 376, 378
lightweight, of DataSets, 374
object storage using, 227
saving objects to viewstate, 237
XML serialization, 356, 376, 380

server controls. See also ASP.NET server
controls

adding binding expressions, 164
adding from VS.NET Toolbox, 35
Ch2WebForm.aspx example, 38
Controls collection property, 105
HTML, 39, 60, 76

■INDEX614

TreeView control, 301
Visible property, 110

Server Explorer, VS.NET, 590–94
creating database connections, 157, 591
Data Link Properties dialog, 592
querying and editing databases, 592

server variables, trace information, 430
Server.ClearError() method, 469
Server.MapPath() method, 313
server-side processing, 6–7

and <% and %> tags, 22
ASP.NET execution, 30
dynamic web applications, 18–19
network latency, 19

server-side state management, 208
Server.Transfer() method, 247, 516
Session object, adding state to web service,

385
Session property, HttpContext class, 243
session state

configuring, 224
controlling, 220
cookies, 208
creating search engine, 210–20
disabling for performance, 518
HttpSessionState object, 209
in-memory storage, 225
InProc mode, 225
overview, 208–9
removing session state items, 220–22, 224
session IDs and cookies, 224–25
SQLServer mode, 226
Start and End events, 222
state modes, 225
StateServer mode, 225–26
trace information, 429

Session_Start event, global.asax file, 230
<sessionState> element, Web.config, 518
Set As Start Page option, Solution Explorer, 36
SetContext() method, XPathExpression class,

333, 337
SetResultsState() method, 221
setup projects, VS.NET

debugging, 557
deployment project types, 528
editor types, 529

including dotnetfx.exe file with
installation, 536

output types available, 534
overview, 528–30
setup files, 533
using, 538–39
viewing application dependencies and

outputs, 536–38
web setup projects, 530, 533–35

Setup Wizard, VS.NET, 529
Show All Files option, VS.NET, 49
Show Non-user Code option, Call Stack

window, 454
simple data binding, 161
Simple Object Access Protocol. See SOAP
simple types, XSD, 279, 285, 287

DataView representation, 298
defining, 286–88
facets, 287

simulated load, performance testing with,
487–92

simultaneous connections, handling in IIS,
575–76

site-wide settings, IIS, 573–77, 578
sliding expiration, 495, 505
SOAP Fault messages, 364
SOAP (Simple Object Access Protocol)

message format, 363–64
message structure, 364
overview, 363
requests, 363, 365
responses, 363, 365

SOAPExceptions, 368–69
Solution Explorer, VS.NET

creating web form, 33
Custom Actions editor, 550
File System Editor, 530
Set As Start Page option, 36
Show All Files option, 49
User Interface Editor, 541–46
viewing code-behind files, 46
viewing dependencies, 536
viewing files created by VS.NET, 49

Source Files output type, 534
spaces, HTML nonbreaking space character,

78

■INDEX 615

Spanish language localization example, 80
Splash dialog, VS.NET, 544
SQL Server, 120, 561–62
SQL Server Desktop Engine. See MSDE
SQL (Structured Query Language)

INSERT statement, 122, 124
limited VS.NET support, 367
statements

creating using VS.NET wizard, 178
retrieving approved contacts, 181

unsuitability for XML querying, 321
verifying syntax, using Server Explorer, 593
web service example, 355

SqlCommand class, System.Data.SqlClient
Connection property, 182
creating web service, 347
ExecuteNonQuery() method, 170
web service example, 356

SqlCommand object, 126, 131
SqlConnection class, ADO.NET, 347
SqlConnection object

creating, 125, 131
placing as component, 156

SqlDataAdapter class, 156, 158
configuring using Visual Studio .NET, 181
custom authentication example, 413
Fill() method, 151
SelectCommand property, 150, 182
Update() method, 205

SqlDataAdapter component, 178
SqlDataReader class, 139

binding dropdown lists to, 213
custom data types and, 377
getXXX() methods, 139

SQLServer mode, session state, 226
SqlString data type, 140
SSL (Secure Sockets Layer), 409, 578
Start() method, Process object, 558
state management

adding state to web service, 385
client-side and server-side, 208
information requiring retention, 207
overview, 24
persisting login information, 404

StateServer mode, session state, 225–26
static web applications, 17
statistical information on queries, 322

step-by-step execution, Watch windows, 448
stored procedures, and performance, 518
stream readers, I/O and XML processing, 300
StreamReader class, System.IO, 310
stress testing, 485
String Collection Editor dialog box, 42
StringBuilder class, 329
String.Format() method, 337
StringReader class, System.IO, 312
Structured Query Language. See SQL
style attribute, HTML, 44
Style Builder editor, VS.NET, 40, 67, 98
stylesheets. See also CSS

flexible, 70–72
Friends Reunion login form, 67
IntelliSense and Style Builder, 98
linking to forms, 69

styling web pages, 40, 67
subheader custom control, Friends Reunion

example, 103, 139
syntax errors, 422, 424, 457
system configuration

administering IIS
configuring virtual directories, 16–17
creating virtual directories, 10, 12–15
overview, 9

installing and configuring IIS for .NET
Web applications, 8–9

overview, 7–8
system event log

creating event source, 554–55
logging exceptions, 471–74

System Monitor, PerfMon, 477
configuring, 477–83
sampling frequency, 484

System namespace
DateTime object, Now property, 22
GUID class, 572

System.Collections namespace, IEnumerable
interface, 171

System.ComponentModel namespace,
IComponent interface, 156

System.Configuration namespace
AppSettingsReader class, 159
ConfigurationSettings class, 160

System.Configuration.Install namespace,
Installer class, 550–54

■INDEX616

System.Data namespace, 120, 141
System.Diagnostics namespace

and debugging, 438
EventLog class, 471, 473
Trace Class, 434

System.Drawing namespace, 49, 253
System.IO namespace

readers, 301
StreamReader class, 310
StringReader class, 312

System.Security.Principal namespace, 394,
584

System.Web namespace, 52
and ASP.NET functionality, 29–30, 52
HttpApplication class, 395
HttpCookie class, 248
TraceContext Class, 427

System.Web.Caching namespace, Cache
class, 498

System.Web.Security namespace,
FormsAuthentication class, 129

System.Web.Services namespace, 53, 349
System.Web.UI namespace

Control class, 80
DataBinder class, 162
overview, 53
Page class, 52, 55

System.Web.UI.HtmlControls namespace, 53
System.Web.UI.WebControls namespace, 80

Ch2WebForm class, 52
DataListItem class, 201
overview, 53

System.Xml namespace, 268, 300
XmlDataDocument class, 373
XmlDocument class, 325

System.Xml.Serialization namespace,
XmlSerializer class, 376, 380

System.Xml.XPath namespace
IXPathNavigable interface, 330
XPathNavigator class, 329

■T
Table control, Friends Reunion login form, 64
<table> element, HTML, 61
TableMappings property, SqlDataAdapter

class, 179
Tables property, DataSet class, 151

Tabular Data Stream (TDS), 120
tags

ASP.NET, 38
XML, 268–70

Target property, 308
targetNamespace attribute, <xs:schema>, 275
Task List window, build error tasks, 424
Task Manager, Windows, 476
TCP (Transmission Control Protocol), 4
TDS (Tabular Data Stream), 120
TemplateControl class, LoadControl method,

115
templates, ASP.NET, 186, 192, 199
test machines, software simulating, 538
test scripts, WAS, 490
testing performance

generating realistic set of data, 486–87
installing WAS tool, 485–86
overview, 485
running performance test, 492–94
with simulated load, 487–92

TextBox elements, style rule for, 70, 88
Textboxes dialog, VS.NET, 544
think time, 491
This window, VS. NET debugger, 445
throwing exceptions, 460, 462, 466–68
tilde char (~), as relative path indicator, 106
Time to First Byte (TTFB), 492
Time to Last Byte (TTLB), 492
TimeSpan dependency value, 505
Toolbox, VS.NET, 35

adding TreeView, 302
adding web controls, 77
HTML and web controls, 60
placing a component using, 156
and XML Designer, 272
and XSD Designer, 276

Trace attribute, Page directive, 427–30
Trace class, System.Diagnostics, 434, 438
trace logs, 430
trace viewer, ASP.NET, 435, 437
<trace> element, Web.config file, 434–35
trace.axd, 435, 437
TraceContext class, System.Web, 427, 430
tracing, ASP.NET

custom tracing statements, 430–34
enabling and disabling tracing at

application level, 434

■INDEX 617

enabling tracing, 427–30
overview, 427
using trace viewer, 435, 437

tracing, .NET, and assertions, 437–41
transient state

and complex data sets, 248
overview, 243
passing list of selected users to another

page, 243–48
postbacks and, 248
saving viewstate content to, 247–48

Transmission Control Protocol (TCP), 4
TreeView control, 301, 303, 307
try blocks, throwing exceptions, 462
Try, Catch, Finally blocks

Friends Reunion example, 463
generic catch blocks, 465
VS.NET debugger example, 456, 458

TTFB (Time to First Byte), 492
TTLB (Time to Last Byte), 492
type capture, regular expressions, 384
type conversion

ADO.NET data readers, 119
web control event handlers, 85

typed datasets, 179–86

■U
UDDI (Universal Description, Discovery, and

Integration), 386
underscore (_) character

class-level variables, 311
private variables, 384

unhandled exceptions
custom error pages, 469–71
overview, 469

Uniform Resource Locator. See URL
uninstalling projects, 539–40, 554
Universal Description, Discovery, and

Integration (UDDI), 386
Universal Resource Identifier (URI), 274
Unload stage, ASP.NET page lifecycle, 56
UnLock() method, HttpApplicationState

class, 227
Update() method, data adapter objects, 142,

205

Update Web Reference option, 373, 380
UpdateCommand event, DataList class, 202,

205
upload list form, Friends Reunion, 302, 307

controls, 303
displaying XML data, 314
loading invalid file, 320
processing uploaded data, 314
querying based on user input, 334, 336
querying DOM document, 325
querying with XPathNavigator, 331–32
reporting, 322
setting up validation, 311
viewing report, 327

uploading data as XML, 267, 302
UploadList form, Friends Reunion, 303
UploadListReport form, Friends Reunion,

325, 334
URI (Universal Resource Identifier), 274
URL (Uniform Resource Locator)

passing data with query strings, 255–56
process underlying submission, 4
relative URLs and cookieless sessions, 225
web method example, 351

UrlAuthorizationModule, 401
user controls, ASP.NET. See ASP.NET user

controls
user experience and performance, 476
User Interface Editor, VS.NET, 529, 541–46
user interfaces, server controls and design of,

60
<User> element, Friends Reunion, 280, 283,

296
UserControl class, 115
user-friendly error messages, 369
UserLanguages property, Context.Request,

81
users administration page, Friends Reunion,

413
administrator access, 417
with data components, 414
disabling viewstate on a DataGrid, 513
with output caching, 501
server load testing, 494

■INDEX618

■V
Validate() method, Page class, 87
Validate Schema option, VS.NET, 290
Validate XML Data option, VS.NET, 297
validation

client-side script compared with
postback, 93

Friends Reunion assign places form, 145
XML, 268–70, 310–14

validation controls, 87–93
ValidationEventArgs class, 313
ValidationEventHandler, 310, 312
ValidationExpression property,

RegularExpressionValidator
control, 93

ValidationSummary control
DisplayMode property, 93
Friends Reunion new user form, 90
new user form example, 92

variables
changing, 450
checking, 448
distinguishing class-level and local, 311
use as binding expressions, 161

VaryByControl attribute, OutputCache
directive, 503

VaryByCustom attribute, OutputCache
directive, 501

VaryByHeader attribute, OutputCache
directive, 501

VaryByParam attribute, OutputCache
directive, 500

Verify SQL Syntax button, Server Explorer,
593

View Code option, Solution Explorer, 46
view places page, Friends Reunion, 193

editing using DataList, 204
enabling editing, 199
replacing web controls, 517

view user page, Friends Reunion, 163, 168,
180

viewstate
clearing record selection, 242–43
controlling for better performance

checking encryption features, 515
data type selection, 515

disabling at page and application levels,
514–15

disabling viewstate for controls, 512–14
disabling for controls, 514
enabling record selection with, 237–40,

242
overview, 233–35
processing by using, 236–37
record selection example, 237
and repositioning controls, 255
saving content to transient state, 247–48
using as datastore, 237

__VIEWSTATE element, 23
and ASP.NET page initiation, 55
use with postback, 47

virtual directories
configuring, 16–17, 578
creating, 10, 11, 12–15, 22
deploying application manually, 526
example, 10
and IIS 6, 588

visibility, toggling, 222, 253
Visible property, server controls, 110
visitor counters. See global visitor counter
Visual Studio .NET. See also IntelliSense;

Server Explorer, VS.NET; setup
projects, VS.NET; Solution Explorer

ACT bundling, 486
automatic code generation, 177
automatic file generation, 32, 34, 49
building web forms, 30–31
components

configuring dynamic properties, 158–60
overview, 155–56
placing on form, 156–58

configuring data adapter objects, 178
creating GUIDs, 572
creating virtual directories, 14, 22
debugger

Call Stack window, 452–54
inspecting application state, 445–52
locating bugs, 454–59
managing breakpoints, 442, 444–45
overview, 442

deployment manager, 522
editors, 529–30
folder access problems, 571

■INDEX 619

IntelliSense, 66
IntelliSense and Style Builder, 98
Properties browser, 40–42, 44–45
Query Builder, 178
repairing .NET Framework, 9
setup projects, 533
Style Builder editor, 67
syntax error detection, 423
typed datasets, 179
User Interface Editor, 541–46
web services support, 345, 349, 357
Web Setup Project, 529
XML attribute properties, setting, 289
XML Designer, 272
XML document creation

creating visually, 294–97
in Data view, 298–99
overview, 294

XML editor, 270
visual styles, 67–69
VS.NET. See Visual Studio .NET, 32

■W
W3C (World Wide Web Consortium)

cookie standards, 248
CSS standards, 98
XML specification, 264

Warn() method
Trace class, 434
TraceContext class, 430

WAS (Web Application Stress) tool
example report, 494
Friends Reunion test script, 490
generating realistic set of data, 486–87
installing, 485–86
performance metrics, 492
script settings, 491
script writing with, 487
scripts window, 489

Watch windows, VS.NET debugger, 447, 448
web applications. See also deployment;

dynamic web applications; Friends
Reunion example

architecture, 1, 24, 26–27
client-side processing, 7
configuring, in IIS, 578, 579–81

configuring folder as, using IIS, 569
debugging, 426. See also tracing, ASP.NET
design model, 2–3
desktop applications compared, 3–4
IIS 6 process isolation, 588
maintaining, 521
process overview, 564
Property Pages, 535
request-response process, 4

Web Application Stress tool. See WAS tool
web clients, distinguished from web servers,

4
web controls. See also user controls

advantages over HTML controls, 76
applying CSS styles to, 82–83
automatic localization, 80
AutoPostBack property, 85
Calendar control, 80
CssClass property, 83
EnableViewState property, 235, 237
and HTML controls, 60
Internet Explorer WebControls, 301
and performance, 517–18

web forms. See also Friends Reunion
example

building, in Visual Studio .NET, 30–31
Ch2WebForm.aspx example, 34
code-behind files, 32
creating new web application, 32
defined, 30
inheritance, 114
structure of

controlling presentation elements,
32–39

overview, 31–32
using code-behind files, 45–49
using Properties browser, 40–42, 44–45
VS.NET toolbox view, 60
XML use by, 265

Web Forms Designer, 156, 158, 188
web methods

caching, 370–71
implementing, 346–49
statelessness, 385
testing, 349–52
WebMethod attribute, 349

■INDEX620

web references
adding, 358, 360
consuming web services, 357
updating, 373

web server controls
applying CSS styles to, 82–83
event handling, 83–86
example, 77–82
overview, 76–77
validation controls, 87–93

web servers and web clients
distinguished from each other, 4
initiating client requests, 4–5
overview, 4
performing server-side processing, 6–7
receiving and reading HTTP requests, 6
routing client requests, 5–6
routing responses, 7

web services. See also SOAP
adding state, 385
consuming, 357–62
exception handling, 366–70
exposing web methods, 349
Friends Reunion examples, 346
further resources, 386
implementation, 347–49
overview, 343–44
performance optimization

adding state to, 385
custom data types, 376–85
overview, 370
reducing amounts of data, 371–76
using caching, 370–71

relationship to browser/server model,
344–45

request process, 345
security, 355
setting as start pages, 350
testing, 349–52, 358
third party, 386
UDDI directories, 386
using complex data types, 352–57
VS.NET support for, 345, 349
XML use in, 265

Web Setup Project, VS.NET, 529, 543, 560

Web.config file, 50, 128
application configuration, 559
application of XML, 265
application security configuration, 398
changes to, and application restarts, 229
configuring dynamic properties and, 158
configuring session state, 224–25
configuring viewstate, 235
<customErrors> element, 470–71
disabling session state, 518
disabling viewstate in, 514
enabling and disabling tracing, 434
enabling anonymous access, 128, 348
enabling HTTP access to web methods,

352
example of markup, 263
impersonation and, 583, 585–86
limiting search results, 209, 217
loading dynamic properties from, 158
overview, 27
restricting access to files, 548
retrieving values from, 160
securing folders, 416
security-related settings, 404
state mode settings, 225
<trace> element, 434
web application manual deployment, 525

WebControl class, 80, 105
WebMethod attribute, 349

CacheDuration attribute, 371
EnabledSession attribute, 385

WebService class, System.Web.Services, 349
Welcome dialog, VS.NET, 544
well-formedness

and VS.NET, 38
and XML, 266, 268, 375

Windows
2003 Server Web Edition, 588
authentication, 397, 401–2
event logging, creating event source to

initiate, 554–55
folder security settings, 392
performance monitoring tools, 476
versions and IIS, 7

Windows Explorer
creating virtual directories using, 14
HTML display, 15

■INDEX 621

Windows NT Integrated security, 591
WindowsIdentity class,

System.Security.Principal, 584
WMI (Windows Management

Instrumentation), 554
Worker Process Restarts performance

counter, 482
World Wide Web Consortium. See W3C
Write() method

Debug and Trace classes, 438
TraceContext class, 429–30, 438

WSDL (Web Service Description Language)
definitions, 351, 360

WS-Security specification, 355

■X
XCOPY deployment, 522–23
XML Designer, VS.NET, 272, 279, 289–90
XML documents

displaying uploaded data, 314
formatting rules, 266
generating programmatically, 295
in-memory storage, 324
multiple instances of elements, 288
processing uploaded XML data, 314
sample Friends Reunion update, 269
saving uploaded files, 308
SOAP basis in, 363
stream reader approach to reading, 300
tools for creating, 270
tree view, 317
validation in VS.NET IDE, 297
validity checking, 271
web services results as, 344, 354
WSDL definitions as, 352

XML (Extensible Markup Language). See also
XML documents; XML Schemas;
XPath

applications of, 264–65
attribute properties, setting, 289
attributes. See also serialization, attributes

converting child elements to, 379
defining, 268–70
formatting, 266
setting attribute properties, 289
as simple types, 280

case sensitivity, 266

configuration files, use in, 265
creating documents in VS.NET

creating visually, 294–97
in Data view, 298–99
overview, 294

data exchange, 267
data types, 284
DOM and, 324
further resources on, 290
IIS 6 metabase use, 588
markup language example, 262–63
namespaces, 275–76
.NET namespaces related to, 300
processing instructions, 270
programmatic manipulation in .NET

overview, 300
reading and validating XML, 300–308
receiving uploaded file, 308–21

purpose, 259
reader APIs compared, 338–40
significance of, 264
tags, 268–70
uploading data as, 267, 302
uploading XML files, 301–8
validation, 268–70, 310–14

checking for well-formedness, 268
defining documents tags and attributes,

268–70
overview, 268

well-formedness, 266
XML Schemas. See also XSD

building, Friends Reunion example,
276–79

built-in simple types, 285
code simplification using, 337
creating

overview, 272–74
using XML namespaces, 274–76

and Dataview approach, 300
defining complex types, 280–81

adding elements directly, 284–85
<User> element, 280–84

defining elements, 280, 283, 285
defining simple types, 286–88
defining tags and attributes, 269
embedding in web method responses, 372
Friends Reunion example, 289–90

■INDEX622

further resources on, 290
loading once, 320
overview, 270, 272
restricting element occurrences, 288–89
validation using VS.NET, 290

XML serialization, 356
XmlDataDocument class, System.Xml,

373–74
XmlDocument class, System.Xml, 325

compared to XmlReader and
XPathDocument, 338–40

Load() method, 328
methods and properties, 328

XmlNamespaceManager class, 328, 330
XmlNodeType elements, 318
xmlns attribute, <xs:schema> element, 274
XMLReader class, 310
XmlReader class, 338–40
XmlSchema class, 314
XmlSerializer class, System.Xml.Serialization,

376, 380
xmlspy program, 294
XmlValidatingReader class, 308, 310
XPath

building expressions dynamically, 334–38
building Reports form, 322–24
data model, 329–33
functions, 333
further resources, 322
overview, 321–22
querying DOM documents, 324–29
statistical information on queries, 322

XPathDocument class, 334, 338–40
XPathExpression class, 330, 333
XPathNavigator class, System.Xml.XPath,

329, 331, 340
XPathNodeIterator class, 330
<xs:all> element, 280
<xs:choice> element, 280
<xs:complexType> element, 279, 280
XSD Designer, VS.NET, 276, 278
XSD (XML Schema Definition), 272. See also

XML Schemas
complex types, 279

DataView representation, 298
defining, 280–85

custom simple types, 279

simple types, 279, 285, 287
DataView representation, 298
defining, 286–88
facets, 287

target namespaces, 275–76
validity rules, 279

<xs:schema> element, 272, 274
<xs:sequence> element, 280, 281

■INDEX 623

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

