

Design Principles for
Interactive Software

JOIN US ON THE INTERNET VIA WWW, GOPHER, FTP OR EMAIL:

WWW: http://www.thomson.com
GOPHER: gopher.thomson.com
FTP: ftp.thomson.com

A service of I(f)P

EMAIL: findit@kiosk.thomson.com

IFIP- The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World
Computer Congress held in Paris the previous year. An umbrella organization for societies
working in information processing, IFIP's aim is two-fold: to support information
processing within its member countries and to encourage technology transfer to
developing nations. As its mission statement clearly states,

IFIP's mission is tobe the leading, truly international, apolitical organization which
encourages and assists in the development, exploitation and application of information
technology for the benefit of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. lt operates
through a number of technical committees, which organize events and publications.
IFIP's events range from an international congress to local seminars, but the most
important are:

• the IFIP World Computer Congress, held every second year;
• open conferences;
• working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers
may be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working
group and attendance is small and by invitation only. Their purpose is to create an
atmosphere conducive to innovation and development. Refereeing is less rigorous and
papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of selected
and edited papers.

Any national society whose primary activity is in information may apply to become a
full member of IFIP, although full membership is restricted to one society per country.
Full members are entitled to vote at the annual General Assembly. National societies
preferring a less committed involvement may apply for associate or corresponding
membership. Associate members enjoy the same benefits as full members, but without
the voting rights. Corresponding members are not represented in IFIP bodies. Affiliated
membership is open to non-national societies, and individual and honorary membership
schemes are also offered.

Design Principles for
Interactive Software

Edited by

Christian Gram
Professor of Computer Science,

Technical University of Denmark

and

Gilbert Cockton
Senior Consultant,

MARI Computer Systems

and

Visiting Research Fellow,

Universities of Glasgow and Newcastle-upon-Tyne

SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.

First edition 1996

© 1996 Springer Science+Business Media Dordrecht
Originally published by Chapman & Hall in 1996

ISBN 978-1-4757-4944-1 ISBN 978-0-387-34912-1 (eBook)
DOI 10.1007/978-0-387-34912-1

Apart from any fair dealing for the purposes of research or private study, or
criticism or review, as permitted under the UK Copyright Designsand Patents
Act, 1988, this publication may not be reproduced, stored or transmitted, in any
form or by any means, without the prior permission in writing of the publishers,
or in the case of reprographic reproduction only in accordance with the terms of
the licences issued by the Copyright Licensing Agency in the UK, or in
accordance with the terms of licences issued by the appropriate Reproduction
Rights Organization outside the UK. Enquiries concerning reproduction outside
the terms stated here should be sent to the publishers at the London address
printed on this page. ·
The publisher makes no representation, express or implied, with regard to
the accuracy of the information contained in this book and cannot accept any
legal responsibility or liability for any errors or omissions that may be made.

A catalogue record for this book is available from the British Library

Library of Congress Catalog Card Number: 93-83646

I@ Printed on acid-free text paper, manufactured in accordance with
ANSIINISO Z39 .48-1992 and ANSI/NISO Z39 .48-1984 (Permanence of Paper).

Contents

Contributors vii

Foreward ix

Preface xi

1 The Context of lnteractive Systems Development 1
1.1 Introduction 1
1.2 Terminology 3
1.3 The Development Process 6
1.4 The Development Process: Human Roles 13
1.5 Interactive Software Development Environments 17
1.6 Summary 22

2 External Properties: the User's Perspective 25
2.1 Introduction 25
2.2 Goal and Task Completeness 26
2.3 Interaction Flexibility 27
2.4 Interaction Robustness 37
2.5 Formal Modeling of External Properties 46
2.6 Conclusions 50

3 Interna! Properties: The Software Developer's
Perspective 53
3.1 Introduction 53
3.2 Internal Properties 55
3.3 Software Techniques 65
3.4 Internal Properties and Software Techniques 74
3.5 External Properties and Software Techniques 78
3.6 Conclusions 88

4 Software Architecture Models 91
4.1 lntroduction 91
4.2 A Framework for User Interface Software Architectures 92

vi

4.3 Architecture and External Properties
4.4 Architecture and Interna! Properties
4.5 Conceptual Architectural Models
4.6 Example Architectures
4. 7 Assessing Quality Properties
4.8 Conclusion

5 Tools and Materials
5.1 Introduction
5.2 Specification Tools and Materials
5.3 Construction Tools and Materials
5.4 Commercial Tools
5.5 Experiences at Research and Development Sites
5.6 Conclusions

6 Example: Interface for Air Traffic Controllers
6.1 Introduction
6.2 The Air Traflic Service
6.3 A Simplified ATC Support System
6.4 External Properties
6.5 Applying the PAC-Amodeus Model

7 Conclusions
7.1 Predictable Quality?
7.2 Contributions
7.3 Epilog

Appendix A Glossary

Appendix B Summary Tables

References

Index

Contents

98
110
115
123
129
131

133
133
138
150
166
179
185

189
189
189
192
193
205

209
209
211
214

215

221

233

243

Contri butors

Gregory D. Abowd
College of Computing,
Georgia Institute of Technology,
Atlanta, USA

Leonard J. Bass
Software Engineering Institute
and HCI Institute,
Carnegie Mellon University,
Pittsburgh, USA

Michel Beaudouin-Lafon
Laboratoire de Recherche en
Informatique,
Universite de Paris-Sud,
Orsay, France

Niels Vejrup Carlsen
Siemens Corporate Research,
Siemens AG,
München, Germany

Stephane Chatty
Centre d 'Etudes de la
Navigation Aerienne,
Toulouse, France

Gilbert Cockton
MARI Computer Systems Ltd.,
Ashington, and Departments
of Computing Science,
Universities of Glasgow and
Newcastle-upon-Tyne, UK

Joelle Coutaz
CLIPS: Communication Langagiere
et Interaction Personne-Systeme,
Federation !MAG, HCI Group,
Grenoble, France

Prasun Dewan
Department of Computer Science,
University of North Carolina,
Chapel Hill, USA

Alan Dix
HCI Research Centre, School of
Computing and Mathematics,
University of Huddersfield,
Huddersfield, UK

Christian Gram
Department of
Information Technology,
Technical University of Denmark,
Lyngby, Denmark

Vlll

Keith Hopper
Department of Computer Science,
University of Waikato,
Hamilton, New Zealand

Rick Kazman
Department of Computer Science,
University of Waterloo,
Ontario, Canada

Balachander Krishnamurthy
AT&T Research,
New Jersey, USA

J ames A. Larson
Intel Corporation,
Hillsboro, Oregon,
USA

Reed Little
Software Engineering Institute,
Carnegie Mellon University,
Pittsburgh, USA

Gontributars

lan Newman
Department of Computer Studies,
Loughborough University
of Technology,
Loughborough, UK

Laurence Nigay
CLIPS: Communication Langagiere
et Interaction Personne-Systeme,
Federation IMAG, HCI Group,
Grenoble, France

Sylvia B. Sheppard
NASA Goddard Space
Flight Center,
Greenbelt, Maryland, USA

Helmut G. Stiegler
SNI Siemens Nixdorf
Informationssysteme,
München, Germany

Claus Unger
Department of Computer Science,
University of Hagen
(Fern Universität),
Hagen, Germany

Foreword

IFIP's Working Group 2.7(13.4)* has, since its establishment in 1974, con
centrated on the software problems of user interfaces. From its original
interest in operating systems interfaces the group has gradually shifted em
phasis towards the development of interactive systems. The group has orga
nized a number of international working conferences on interactive software
technology, the proceedings of which have contributed to the accumulated
knowledge in the field.

The current title of the Working Group is 'User Interface Engineering',
with the aim of investigating the nature, concepts, and construction of user
interfaces for software systems. The scope of work involved is:

- to increase understanding of the development of interactive systems;
- to provide a framework for reasoning about interactive systems;
- to provide engineering models for their development.

This report addresses all three aspects of the scope, as further described
below.

In 1986 the working group published a report (Beech, 1986) with an
object-oriented reference model for describing the components of operating
systems interfaces. The modelwas implementation oriented and built on an
object concept and the notion of interaction as consisting of commands and
responses. Through working with that model the group addressed a number
of issues, such as multi-media and multi-modal interfaces, customizable in
terfaces, and history logging. However, a conclusion was reached that many
software design considerations and principles are independent of implemen
tation models, but do depend on the nature of the interaction process.

Therefore, this book concentrates on software principles and properties of
interactive systems, and attempts to show developers ofinteractive systems
how to make use of the principles to ensure a high quality user interface.

The report has emerged over some years from discussions at working
group meetings, where the members presented their viewpoints on the dif
ferent topics and supplied drafts of sections and chapters. The drafts have
gradually been edited together into this report, which represents a sum of
the experience of all the members. As a consequence of this we felt it was
not appropriate to develop a full set of references, because it would be very

* The Working Group is denoted 'WG 2.7' in the sequel.

X Foreward

voluminous. Instead, we have tried to select a smaller number of references
which we find essential and most relevant for the topics in focus.

Acknowledgements

I would like to thank all working group members for their continuing and
untiring co-operation. Nevertheless it was still a hard job for our two ed
itors, Gilbert Cockton and Christian Gram, to cast all the contributions
and drafts into a coherent and consistent book. Without their unilagging
engagement and enthusiasm this book would never have been published. I
also want to thank Carol Larson who patiently and carefully designed and
re-designed all the figures, as the manuscript developed.

Hagen, Germany
August 1995

Claus Unger
Chairman, IFIP WG 2.7(13.4)

Preface

Purpose of the Book

The rapid proliferation of interactive systems used by more and more peo
ple has resulted in an increasing interest in the quality of the user interface
of interactive systems. But for any product, quality is an elusive concept
difficult to define and difficult to guarantee. As formulated by John Long
(1989) 'The general HCI problern is to design user interactions with com
puters for desired performance. Performance expresses:

1. The quality of work carried out (product quality).

2. The costs incurred herein, both by the user and the computer (produc
tion costs).'

The overall concern must of course be the quality of work, but the very
broad formulation of the problern does not try to define what quality means,
and it does not address the fundamental role of software in all human
computer interaction (HCI). The software architecture of an interactive
system does influence interface quality. This book examines the quality and
software engineering problems encountered during construction of reliable
interactive systems of high quality. In this context, an interactive system is
defined as a computer system that interacts with human users.

The 'Quality' of an interactive system is broken down into a number
of external and internal properties: the former are perceivable, or at least
may be inferred, by end-users; the latterare only apparent to the software
developer. These properties are then related to the software architecture
and to development tools - existing or desired.

The intended audience for this book is primarily software developers
constructing interactive systems. Rather than providing universal answers
to all questions of development, the book raises wide ranging but coherent
issues relevant to the development process. Quality properties are related to
software development and it is argued, illustrated by examples, how better
quality may be achieved by using the appropriate methodology and tools.

Quality goals of interactive software cover a broad mixture of properties
that vary across the many different application domains; some are more
related to human factors, others more to software engineering factors. In
order to use quality goals constructively they must be measurable. This

Xll Preface

is attempted by means of several complementary analyses where we relate
quality aspects to software aspects.

This book does not cover the full range of problems, but takes a software
engineering approach to the problems of quality and its evaluation. Neither
does it cover all aspects of human factors, user models and user evaluation
methods; it tries rather to cover a gap between human-factors-oriented
results on one side, and software developers' tools and practices on the
other side.

Structure of the Book

The book is centered around the set of properties considered essential to the
quality of an interactive system as illustrated in the figure. Chapters 2 and
3 'unfold' the concept of quality into a number of properties and analyse the
interaction between each property and key aspects of software development.
The choice of software architecture is seen to interact considerably with
the properties, as do software development methods and tools. Chapter 4
links the properties with software architecture in the form of more abstract
components, while Chapter 5 takes a 'toolsmith approach' and tries to
link the ideas expounded earlier to tools and materials in the real world
of the software engineer. To illustrate the approach advocated, Chapter 6
discusses a particular example (an air traffic control system) in some depth,
elaborating on the quality properties and showing their inter-dependence
in a large and complex system.

Chapters and contents.

Preface xiii

Chapter 1 introduces the context of interactive system development: the
development process, human roles and development tools. Two principal
development models currently in use - Waterfall and V models - are con
trasted. The V model stresses the need for a quality plan and quality testing
throughout the development phases. Several roles (or actors) are identified
and related to the different development phases. The use of development
tools is also discussed briefl.y.

Chapter 2 discusses the concept of quality in interactive systems from
the user's point of view, the e:xternal quality. The highly desirable, but
currently unrealizable objective of 'scenario completeness' is analysed and
rejected in favor of a more limited set of external properties, which describe
different facets of the fl.exibility and the robustness of the interface.

The properties are not completely independent of each other, but they
all contribute to high quality. A formal (state transition machine) model
for interactive systems is introduced and is used to suggest some ways of
measuring to what extent a system possesses the desired properties.

Chapter 3 looks at quality from a software engineering perspective. Sev
eral internal properties of good interactive systems are defined. Internal
properties are mostly of interest to the software engineer and are not di
rectly visible to, or measurable by, the user. The chapter also identifies a
number of software techniques which are of interest during the develop
ment of interactive software. A discussion relates the internal properties
and software techniques to the external quality of the interface.

Chapter 4 examines the use of software architecture models when con
structing high quality interactive systems. The properties introduced in the
previous chapters are related to a number of architectures, which are recast
into a single framework and are compared with each other. Each architec
ture emphasizes a certain subset of the properties; this subset is refl.ected
in the structure and purpose of the architecture's components. The com
ponents are discussed in the light of the external and internal properties
from Chapters 2 and 3, and each property is related to one or more of these
components.

Chapter 5 considers the full life cycle of an interactive system and de
scribes engineering tools and materialstobe used during the development
process. The analysis identifies different forms of interactions between in
ternal and external properties on the one hand, and tools and materials
used at stages of the development on the other. The interactions are fur
ther illustrated, firstly in evaluations of some commercial development tools
and software materials, and secondly in briefstyle reports that highlight
the properties which currently determine the choice of tools and materials
at some development and research sites.

Chapter 6 provides a single large example of an air traffic control in
teractive system to illustrate the properties and the techniques introduced
in the earlier chapters. The relevance of each property is discussed in the

XIV Preface

light of the specific application, and an architecture for the air traffic con
trol system is proposed.

Finally, Chapter 7 is a short discussion of what is achieved and what
is not achieved in the book. It also points out interesting areas for future
research related to high quality interactive software development.

The appendices contain a glossary with short definitions of all essential
terms used in the book, as weil as some of the tables relating properties to
techniques, tools and materials.

CHAPTER 1

The Context of Interactive Systems
Development

1.1 Introduction

Interactive computer systems are built in order to help people achieve some
goals as efficiently as possible. Users at work have tasks to perform, and
the systems they use should support these extensively and appropriately.
This chapter establishes a context for discussing the quality of interactive
systems.

Many different methods for the development of interactive software have
been discussed in the literature. The purpose of this chapter is to outline the
development seenarios chosen for discussion in this book. In order to discuss
quality and quality goals for software development, agreement is needed on
a basic vocabulary, an understanding of the development process, and a
definition of the human roles that participate in the process. After defining
the terminology used and the development phases considered, the chapter
introduces human roles and outlines our vision of an ideal environment for
development of interactive software.

Quality of a user interface shall be measured by measuring a number of
properties of the interface and the computer system. Some of the properties
are 'soft' and can only be defined and measured by taking the user's cogni
tion and understanding into account; other properties are 'harder' and can
be measured more easily by standard software engineering methods. The
properties so defined can be ordered or grouped together in many ways,
depending on which features are considered most important and relevant.
We have chosen to distinguish two types of quality properties:

• From the user's perspective high quality means that the interface is
pleasant, reliable, easily understandable, and that it has sufficient func
tionality, so that all the identified tasks can be performed with ease.
These characteristics describe what we shall call external quality, and
they will be defined in terms of a set of external, i.e. user-perceivable or
at least inferrable, properties of the interface.

• From the software engineer's perspective, the user interface - or rather
the software and hardware implementing this interface - is part of the
system: the quality of the interface is judged in a way similar to other
parts of the system. This kind of quality is called internal quality. It is

2 The Gontext of Interactive Systems Development

defined through a number of software and hardware properties of the
system, such as modifiability, maintainability, and run time efficiency.

External quality is described using a set of task-related properties; inter-
nal quality is presented as a list of software-development-related properties.
All properties are influenced by the design of the interactive system. Those
properties that contribute to system quality must be considered explic
itly during the development process: it is too late to think of them when
the design has been completed. It is necessary, therefore, to discuss these
properties in relation to software architecture and software development,
including software engineering techniques and development tools.

The external properties will be introduced in Chapter 2, the internal
properties in Chapter 3, using the context and terminology defined in this
chapter. These properties arenot completely independent (or mutually 'or
thogonal'). Some may conflict in the sense that if a system is designed to
have one property, another one may be very difficult to obtain. Others may
automatically support each other, as demonstrated in Chapter 6 in the dis
cussion of an example system.

User involvement in the entire development process is essential, because
user requirements for the interface style - the look and feel of the system
- vary from one user to the next, and also vary for the same user over
time (as that person learns more about the system, or carries out different
tasks). The same is true offunctionality as the usersunderstand it, i.e. the
model that they form of a system's capabilities. These variations must be
understood if a usable and useful system is to be produced.

The designer must also realize that properties are neither necessarily
good or bad features. To make a good design is to make a proper selection
among a number of choices. Design objectives can be seen as achieving a
design which satisfies some properties (those required for achieving high
quality in the particular design) and is free of others (those contributing
negatively to quality).

Structuring interactive systems to support user goals requires a different
set of skills than designing to meet functional requirements. Therefore this
chapter concentrates on the development process for interactive systems,
the human roles in this process, and the tool environments that can be used
to support development. The aim in doing this is to establish a context for
the discussion in the following chapters. A complete survey of structured
software development is not attempted here, but we do define some gener
ally used concepts and terms in relation to the construction of interactive
systems.

Terminology 3

1.2 Terminology

Subsequent chapters introduce and define a number of concepts that re
late quality to software architecture. This section introduces some basic
terminology used throughout the book.

1.2.1 Goal, Task and State

The user attempts to reach some goals using an interactive system to per
form certain tasks. From the designer's viewpoint, the system may be per
ceived as a state transition machine that passes through a number of states
during interaction with the user. The precise meanings of these terms as
used throughout the book are as follows:

• a goal is a psychological variable, a state of the world desired by a person
or a group of persons. A goal will not always correspond in an obvious
or Straightforward way to physical variables (e.g. eliminate unacceptable
overruns, improve newsletter layout, make claims for research work more
humble).

• a task is a proced ure (a concrete action or set of actions) that is designed
to lead to a goal from the current state of the world. Whereas goals are
abstract, tasks are always rooted in the here and now. Execution of a
task changes the current system state to a new system state, the goal
state, which- hopefully- fulfills or corresponds to the goal as perceived
by the user.

• an interaction trace is the particular execution of a task or a set of
related tasks. It can usually be described as a sequence of steps (or a
complex of interrelated but not necessarily sequential steps) of interac
tion between a user and a system, which takes the system from the here
and now to the goal state.
User steps can be described as articulations, i.e. purely physical actions,
or they can include cognitive steps such as decisions and calculations.
A trace extended with cognitive steps will be called a Cognitive Task
Description.

• an interaction point is a significant, observable hiatus in an interaction
trace.

• an articulation is a sequence of physical user actions that communi
cates a chosen command to the system. (Command is a concept at the
functional level, see Section 1.2.2.)

• task support is any feature of an artefact or action of a person that
supports task execution by directing users towards effective and efficient
procedures, that is, task support enables users to achieve their goals
directly and easily. Task support artefacts may be computerized, but
may also be documents (manuals, guides, etc.).

4 The Gontext of lnteractive Systems Development

• the system state or the internal state is the set of values within a
system that affect its present and future behavior. It is represented by
a vector of all variables in the system, where each variable is a state
element.

• the observable state is the observable part of the system state, i.e.
those system data to which a user may obtain access (but they need not
be presented at once).

• a rendering is a sequence - or complex - of physical system actions
that communicates some observable state elements to the user.

In our terminology a goal is a state (of the world or of the system), while
a task is a method or procedure that can be executed in order to reach a
new, desired state. A task execution may be wholly manual (where the user
effects the task execution), wholly automated (where the user just monitors
the execution), or partially automated where the user's role varies from
being an obedient source of information to being the manager of operations.
The focus in this book is on partial automation of task execution, within
the extremes of manual tasks and automation, although we occasionally
address monitaring of automated processes. The overall concern in the
following chapters is how to construct good computer-based task support.

1.2.2 Levels of Abstraction

Design becomes more abstract as attention moves away from communica
tion channels, and the encoding of information on them, to the conceptual
structure of work domains. Designers must work on several levels of ab
straction, and each level brings its own concerns and knowledge sources.
Such levels are well established in the HCI literature. For example, with
the Command Language Grammar (CLG) Moran (1981) introduces seven
layers of refinement used to structure the design process, and the GOMS
method (Goals, Operations, Methods, Selection rules) by Card et al. (1983)
introduces four different layers for task modeling, which are similar to, but
not identical with, our levels as described below.

We distinguish between four levels for interchanges with an interactive
system, where each level is a refinement of the earlier one. At each level
of abstraction some data objects and operations are described as are event
sequences; by an event we mean a 'unit of action', i.e. some data transfer
and some process execution which, at this level, is perceived as one step.
At a lower level of abstraction, each event usually becomes a sequence of
lower level events - or a set of not necessarily sequentially executed events.
The four levels of abstraction are:

Functionallevel - the highest level of abstraction within the system. At
this level the operations (or abstract commands) and objects provided
by the system are described. It is the first level below the 'task level'

Terminology 5

which we consider as being outside (above) the interactive system. The
term command is used here in the same way as in the PIE model (Dix
et al., 1993) to denote a single user action at this level of abstraction.

Examples: Three examples of (unrelated) functionallevel events or ab
stract commands are:

(a) start Draw program.
(b) set date and time.
(c) convert Celsius temperatures to Fahrenheit.

Dialog Ievel - the level concerned with the temporal behavior and the in
terdependencies among the operations and objects. (This level is some
times called the 'session level'.)

Examples: At this level the three functionallevel events from above are
described in a little more detail:

(a) open Drawlmage window.
(b) select month; advance month; select date; ...
(c) enter Celsius temperature; show Fahrenheit temperature.

Logical interaction Ievel - the level of 'how to do the interaction' with
some generalization over lower-level events and with reference to presen
tation entities rather than raw device values.

Examples: At this level dialog events like 'open' and 'select' are split
into logical events on presentation entities:

(a) move mouse to Drawlmage icon; dick mouse.
(b) move mouse to menu; move mouse to 'month' item;

dick mouse; ...
(c) type Celsius value in input field;

show Fahrenheit value in result data box.
If the system accepts spoken input the first example could be:

(a') say 'Open Drawlmage'.

Physical interaction Ievel - the lowest level of abstraction describing
'what really happens during interaction'. The description needs no refer
ences to display state or system state. Some call this the 'keystroke level',
but others mean the logical interaction level when they say keystroke
level.

The description of the example (c) above now 'explodes' into:
(c) move mouse to position (450,780);

buttondown at Fri Oct 22 14:18:36.260 BST 1994;
button up at Fri Oct 22 14:18:36.350 BST 1994;
type the actual sign, 2 digits and <Return>;
display the resulting sign and digits in data box at
position (650,780).

At the lowest levels (physical and logical), the designer can draw on
perceptual and motor psychology. The distinction between the logical and

6 The Gonted of Interactive Sy&tema Development

the physical level is sometimes very subtle, and it is not always needed
because the underlying system may automatically take care of all the details
at the physical interaction level; the designer needs only to specify the
logical interaction.

The dialog level design is more concerned with end-user planning and
activity structures. Design at the functionallevel deals with the conceptual
objects and the abstract commands users may perform on those objects in
order to perform tasks to achieve goals.

The users' goals and tasks are considered as being something outside the
interactive system itself, but the interactive system is an implementation
of the objects and operations intended to help the users to achieve their
goals.

The levels of abstraction introduced above will be reflected in the archi
tectural model of an interactive system discussed in Chapter 4, where a
functional partitioning is introduced in close relation to the levels of ab
straction.

1.3 The Development Process

The development process for all systems (whether interactive or not, com
puter-based or not) is usually considered as a phase structure which distin
guishes logically separate activities. Development models integrate a col
lection of methods that support different phases. Different models have
slightly different phases, but most identify the following to a greater or
lesser extent:

• identifying the idea or problern in a given domain (Problem Analysis);

• determining requirements (Requirements Specification);

• outlining the system design (System Design);

• designing the software structure of the system (Global Software Design);

• detailing the design (Module Design);

• constructing modules (Coding or Module Construction);

• testing modules (Module Test);

• integrating and testing the system (Integration Test);

• testing the finished system against the system design (System Test);

• installing and testing the final system versus the requirements (System
Acceptance);

• maintenance (sometimes called sustaining engineering).

During Problem Analysis, the need for a system, the nature of the domain
in which it will operate, and the needs of its users and other stakeholders
are examined. The result of the phase is a statement of the problern to be
solved by the system, in the language of the users.

The Development Proceu 7

During Requirements Specification, or requirements capture, constraints
are identified and acceptance tests may be specified. An important sub
phase is Requirements Analysis, where a user's problern formulation is anal
ysed and transformed into specifications. Requirements often take the form
of logical constraints on abstract models of possible final systems. In some
developments, many of the high-level features of the final design are decided
upon during this phase. The user interface could be specified during this
phase. But often user interface specification is delegated to programmers
during construction phases. This explains many of the problems end-users
have with interactive systems. It is already important at this stage to in
troduce quality goals for the project which guide formation of quality plans
for subsequent development phases, i.e. methods for achieving the quality
goals.

The result of the phase is a description of the functionality of the system,
constraints in its environment and quality goals. These specifications must
be approved by users or customers.

During System Design, possible ways of transforming requirements into
solutions are identified. Salutions are expressed as (abstract) models of
the final system. One model, the physical architectural model, decomposes
the system into modules. The result is the external specification of the
system, i.e. a specification of a solution as perceived by the user; the solution
must meet the requirements from the previous phase. The System Design
document also includes a plan for the system test.

During Software Design (also called Global Software Design) the global
software architecture is chosen, and the main components of the system
and their interfaces are specified. The result is a software design document
describing this global structure of the system's software.

During Module Design, modules are progressively refined until the major
software structure of a system has been detailed. The result is the detailed
description of all software modules and their interrelationships.

During Coding (or Module Construction) modules are implemented and
debugged to provide the result of this phase.

During Module Test and Integration Test, the implemented modules are
progressively integrated and tested until the final system is assembled. Each
integration step is accompanied by a collection of tests.

During System Test the system is tested to determine whether it meets
the external specifications as set up in the System Design document. This
test is guided by the test plan (acceptance test) set up during system design.

During System Acceptance, the system must pass the acceptance tests
specified in the requirements. The final system is used 'for real' by end
users. The system may go live in a series of steps. This is the last develop
ment phase.

During M aintenance, the system is exposed to regression testing after
each (code) change. A regression test consists of performing all those de-

8 The Contezt of Interactive Syltema Development

velopment tests (i.e. module and integration tests) that were used during
the development of the now altered components. This is done to ensure the
correctness of the modifi.cation.

Development of new systems is costly and time-consuming; it is impor
tant to re-use existing tested components, whenever possible. This holds for
the entire development process and for modules at alllevels up to complete
designs. Therefore, it is important to introduce the concept of a quality
plan into the development process. The Quality Plan defi.nes quality goals
and indicates methods and tools which may be used to reach the quality
goals. The plan stretches across the development phases; test methods must
be used to check on the achievement of quality goals, as discussed below.

The above sketch ofthe development process is by no means complete but
has been found sufficient for the analysis in subsequent chapters. Clearly, a
full description of software development needs much more detail, as found
in the Iiterature on software engineering in general.

1.3.1 Development Models

There are several different development models, or arrangements of the
phases, currently in use. The effective management and control of the pro
cess is related to the model selected. One popular model, the W aterfall,
connects phases into a pipeline: all prerequisite work for each phase is un
dertaken before that phase starts. This model emphasizes cost estimation
and control. It mitigates some risks by ensuring that work is undertaken
in a realistic order. Effective risk management is essential because there
is generally an element of research or new work in all computer system
development.

An alternative structure, the V-model, relates each development phase
not only to its immediate predecessor and successor, but also to the con
struction and testing phase on the same Ievel of detail. Requirements Spec
ification deals with the usage of the total system, as does the System Ac
ceptance. Acceptance tests are created as part of the specification and
used during the final installation. Software Design (where a system is de
composed into modules) is arranged at the same Ievel as Integration Test
(where modules are combined to check the correct interplay between the
modules). Module Design is on a Ievel with Module Test, because modules
are tested against specifications from the module design. The V-model is
illustrated in Figure 1.1. Only development and test phases are considered
parts of the V; thus Problem Analysis and Use and Maintenance phases
are kept separate (and shown just above the V).

This simple V model is still a Waterfall model in that it does not allow
backtracking to a phase once development has advanced beyond it. This
simplifies management, but may compromise quality, a risk that may be

The Development Proceu

Requirements
Specification

~
System
Design

\
Software
Design

System
Acceptance

/
System

Test

/
Integration

Test

'\ /
Module Module

Design~ / Test

Coding

9

Figure 1.1 The simple V model for software development. The arrows show the
temporal order of the phases.

greater than the ones that a Waterfall approach does avoid. Decisions made
before Module Design inevitably rely on assumptions that could not be
thoroughly validated when they were made. This is not only a question of
time and resources; it is impossible to predict the impact of design decisions.
What looks acceptable on paper may turn out to be incomplete or too
specific, or to have other unacceptable consequences in practice. During
the design process it is also very common to use implicit assumptions, since
there is rarely time for a complete and rigorous problern analysis. A further
problern with Waterfall structures is that even explicit assumptions that
were thoroughly validated during Requirements Specification and System
Design may later become invalid. The world changes.

Solutions to the limitations of waterfall structures, where all project steps
are carried out as single steps in a forward sequence, exploit iteration in
development by allowing steps several phases forward or backward. In the
resulting iterative process, a project may cycle through the same phase sev
eral times. It has become popular to characterize this type of development
process as a spiraling, iterative cycling through the phases (Boehm, 1988).
We prefer to consider iteration as an extension to the phase sequence of
the simple V model. Figure 1.2 shows possible iterative steps in a V-model
with backtracking, where each design phase is still matched by a test phase.

Each backtracking step results in some 'recovery' that extends, corrects
or refines existing inadequacies in previous phases. Thus during System
Design, gaps, errors and unclear definitions in Requirements Specifications
may be detected. During Module Design, problems with the global software

10 The Contezt of Interactive Systems Development

decomposition may be detected. During Coding, problems with the module
refinement may become apparent.

During Module Test, problems with the module refinement, stubs, drivers
and system decomposition may become apparent, as may problems with the
system level decomposition and the requirements specifications. The prob
lems that emerge during System Acceptance are often more subtle errors
that only show up in the full-scale system where all components interact.
Such errors are typically due to very early decisions during Requirements
Specification (and perhaps System Design), as problems with other phases
are generally detected during System Test.

c~ ------------------------·-=~

\ystem ------------------+ Syste/ Design Test

C\0ottware- _________ ._ Integral(::
(ves1g~ Test

~ \dule Mod!

C\-/T~
Coding

Figure 1.2 The V model with backtracking. The solid arrow11 11how the usual tem
poral order of the pha11e11 and the backtracking llteps. (Backtracking may also jump
more than one pha11e back.) The da11hed arrow11 indicate that teilt plans mu11t be
made for each development phase, and the testing results give feedback to the
design phases.

An alternative type of model is the evolutionary prototype, where the
phases of the V are undertaken one function at a time, as suggested by
Bersoff and Davis (1991). Functions and features in a high-level design
are given a priority in order of importance or of anticipated stability. The
functions with highest priority are then developed to completion first. The
development cycle is repeated for the next most important functions, etc.

Backtracking steps give rise to iteration as previous phases must be re
visited for remedial action. However, there are other forms of iteration.
Speculative steps are also possible. Here analysis, specification and sys
tematic design may be skipped in order to test out ideas and hypotheses
by constructing prototypes. This rapid prototyping results in throw-away

The Development Process 11

prototypes, corresponding to quick runs through all phases in the V. Once
ideas have been tested and hypotheses confirmed or rejected, this infor
mation is fed back into the requirements phase, and the design proceeds
until new uncertainties are encountered. At such points, development may
be suspended while another rapid prototype is constructed to address the
uncertainties.

Innovation, with all its uncertainties, requires some form of prototyping.
One way of trying to 'foresee the unforeseen' is called participative develop
ment where users are involved in the design phases (the left-hand branch
of the V), see Muller et al. (1993). During participative development only
some aspects of the needs of some individual users may be assessed and
hopefully fulfilled. On the other hand, a prescriptive approach, which as
sumes users are wholly predictable, is neither practical nor appropriate.
This perspective is an important context for the development of properties
in Chapter 2, since it restricts our approach to the analysis of tasks and
their idealized execution. We avoid properties that rely on some model of
the user, but stress the need for involving real users in testing an interactive
system. Indeed, some of the properties can only be tested for (and perhaps
measured) through observations of users' interaction with the system.

The models described above do not incorporate explicit steps to re-use
parts of other systems. Still, not everything about a system is new. If
something has been clone before, if its applicability is well understood and
if it has been implemented in a re-usable form, then it should be re-used.
Thus during Requirements Specification and/or System Design, existing
code that supports a required function should be identified, and the system
should be designed to use this code. Thus development may not begin with
a clean slate.

1.3.2 Interaction Design and the Development Process

The above account of development is applicable, with modification, to batch
systems, to embedded systems and to systems that interact with human
end-users. Only the latter are the subject of this book.

Research into Human-Computer Interaction (HCI) and into Interactive
Systems Design has added specialized techniques and outputs to each phase
of the development process outlined above. HCI approaches:

• model new aspects for system design by introducing task, performance
and conceptual models (the latter describe systems at the functional
level);

• introduce new detailed design concerns related to output formatting,
interaction technique, and the use of color and sound as well as other
media and modalities in information coding;

12 The Conte:r:t of Interactive Systems Development

• add new software components especially for the dialog, such as help,
history, undoing, macros, tailoring, tutoring;

• produce new development models with different orderings of develop
ment phases, e.g. designing the user interface first;

• create new forms of testing, e.g. formative and summative usability test
ing;

• give rise to new forms of installation plans, e.g. special training plans
for dialog-intensive systems;

• introduce new problems of maintenance, e.g. for self-adaptive systems
that change the dialog by exploiting ernerging users' pattern of usage.

Many of these new activities concentrate on the design, development
and revision of the perceivable user interface to the system. Users interact
via communication devices such as speech input or output, graphic dis
plays and haptic devices (mice, tablets, etc.). A communication device is
thus anything which transfers coded information between the user and the
computer. Designers must pay careful attention to the selection of these
communication devices and the manner in which they are used.

These communication devices are mostly concerned with the lowest level
of abstraction, the physical interaction level. However, interaction design
is much more subtle and complex than designing communication devices.
Users will attempt to make sense ofthe underlying temporaland conceptual
patterns of interaction, so designers must specify these explicitly and be
confident of their adequacy at each level of abstraction.

Schematically, the design process starts with a task analysis identify
ing the tasks to be supported. At the functional level, the task steps are
conceptualized as abstract commands applied to objects. These are then
refined through the remairring levels into specific sequences of renderings
and communication devices at the physical interaction level.

But the quality of the user interface is dependent on features - and
combination of features - from all these levels, as will be evident from the
exposition in Chapters 2 and 3. Therefore the developer of an interactive
system must include quality aspects from the very beginning of a design
process.

Design of interactive systems requires continuous capture of require
ments, constraints, and modifications throughout the development process,
certainly up to the completion of the design phases. Thus, designers require
iterative development and backtracking transitions, although the latter can
be reduced by initial speculative prototyping. These approaches recognize
that many non-functional requirements cannot be specified in advance of
the construction and demonstration of possible solutions. However, itera
tion must be constrained if diminishing returns are to be avoided: it is often
said that the first 20% of any effort produces 80% of actual improvements.

The Development Process: Human Roles 13

The synthesis of a development process for interactive systems requires
answers to four key questions:

1. Where/how does the user interface get designed and developed?

2. How are users involved in the process of design?

3. What are the relationships between user interface development and the
remainder of the development process?

4. What are the relationships between user interface management software
and the remainder of the interactive system?

The relationship between user interface management software and the
remainder of an interactive system is one of the major foci of this book. It
draws on the large body of research on user interface software technology.

This research addresses mainly internal software properties, i.e. properties

not directly perceivable by users. The research is concentrated on devel

oping conceptual, logical and physical architectures for the software of in

teractive systems. An important issue in designing interactive systems is

keeping the software components for user interface functions separate from

those ofthe rest ofthe interactive system, which we call the functional core.

The functional core provides the computational realization of the problern

domain functionality for an interactive system. User interface components

represent this functionality to end-users and support them in the use of
these representations.

1.4 The Development Process: Human Roles

The development cycle as described above gives rise to a number of roles

which may be filled by one or more humans; conversely, a single human
may participate in one or more roles, and very often each person in a
development team performs several of the roles discussed in this section.

This section presents an analysis of the interactive system development
process based on the human roles within it. Each role is associated with

a subset of objectives that arise during the development of an interactive
system. The division of labour is compatible with a basic assumption of
software separability into user interface and functional core components.
Roles may thus be specific to design at a particular level of abstraction.

Some of the roles listed below are outside the scope of this book, as they

do not participate directly in the software development process. They are

mentioned here for the sake of completeness.
All role objectives are described informally in this section. However, some

will be given a more precise content in Chapter 2, which provides a catalog

of general interactive properties. We view a property as some aspect of

the software quality of an interactive system, and several of the properties
may be taken into consideration and determined at one or more levels of

abstraction in a design. Each property represents a standard by which an

14 The Conte:d of lnteractive Systems Development

interactive system can be evaluated, and an important part of the design
process is to ensure that the system under construction has some of the
properties (those desired for this particular system) and does not have
certain other properties.

1.4.1 Human Roles

Each human role has a set of tasks to perform. For each task there are
constraints on the starting point for that task and the quality of the out
put from the task, i.e. the development objective is associated with each
role. Most tasks are complex, and quality is difficult to attain without task
support, so for each role the task support requirements are also outlined.

Client. The dient assesses the intended scope of the project, and pro-
vides payment for the resources to design and implement an interactive
system. This role needs task support for outlining - at a high level - re
quirements, acceptance tests, training plans and installation schedules.

Project Manager. The project manager is responsible for making avail
able the resources necessary to complete the entire design and implemen
tation, and for scheduling the resources for near-optimum usage. This
role needs task support for general software engineering tasks such as
cost estimation and control, task scheduling, and life-cycle management.

User Representative. The user representatives are the problem-domain
experts who have knowledge of the application domain. They provide
feedback at as many design phases as possible and participate in us
ability testing of prototypes and final systems. The user representatives
should represent as wide a range of potential end-users as is practical.
Their key objective is to propose and validate requirements and their in
terpretation as embodied in the software. They need to be provided with
early prototypes and with tools to assist in evaluating the prototypes.

These first three roles are important for defining the framework for the
development but arenot discussed further, because they do not participate
directly in the software development work. All the roles discussed below are
directly involved in the development or the use of the interactive system.

Requirements Specialist. Requirements specialists perform needs and
task analysis to determine potential end-user requirements and tasks,
and to explore end-users' conceptual models of the work domain.

This role can use task support for requirements elicitation, data collec
tion, cross-referencing, video capture, repertory grid analysis, user pro
filing, organizational profiling (business goals, privacy, security, safety),
technical profiling ('sizing' hardware, performance), requirements an
imation, scenario generation, task description and analysis, and user
interface style selection/ specification.

The Dettelopment Process: Human Roles 15

The next roles deal with the design and implementation phases. As men
tioned above a system may be considered as consisting of a functional
core part and a user interface part. This division is refl.ected in the roles
described below (although the V model does not explicitly show that par
tition). The designer and the implementer may often be the same person
(also called system engineer),who may, at least for smaller systems, design
and implement all parts of the systems.

System Designer. This role may be split into three sub-roles:

(i) The Interactive System Designer is responsible for the initial system
level design. Once the system level design is complete, the System Im
plementer is responsible for managing and coordinating the activities of
the User Interface Designer, User InterfaceImplementerand Functional
Core Designer/Implementer. The Interactive System Designer also pays
attention to the choice of implementation platform, development costs,
and concurrency and synchronization issues that arise from distributed
software components. The operating system, development tools such as
user interface toolkits, existing implementations of the functional core,
memory size, speed of processor(s), and the interface devices available
may all impose constraints on the design and implementation of the
interactive system.

A key task for the role is the identification of the state vector at the
highest level of abstraction, the conceptual structure of the application
domain. Another task of the Interactive System Designer/Implementer
is to ensure that the system and its components possess the desired prop
erties, such as re-usability, modifiability or reconfigurability (discussed
in the following chapters).

(ii) The User Interface Designer specifies the more detailed dialog de
sign. This requires expertise in ergonomic principles and/or aesthetic
sensitivities for dialogs, for user support (help, history, etc.), and for
encoding via communication devices to create a coherent, concrete rep
resentation of data for end-users. The designer must ensure the usability
by aiming for the external properties discussed in the next chapter, sub
ject to the constraints given by the actual application domain and the
requirements. Good usability is often accomplished by prototyping user
interface fragments and evaluating the end-users' interactions with those
prototypes.

(iii) The Functional Core Designer is responsible for the logical decompo
sition ofthe non-user-interface code (the functional core) and for select
ing existing tools, libraries (databases, numerical packages) and designs.

Sub-role (i) needs task support for conceptual model design, task alloca-
tion, hardware selection and transformations from requirements to specifi
cations.

16 The Conte:d of Interactive Systems Development

Sub-role (ii) needs efficient and effective access to a collection of user
interface components (e.g. a library ofinteractor classes), and further task
support for presentation design (e.g. bitmap editor, icon editor, and layout
editor), interactor design, animation, and dialog design. Where task sup
port takes the form of computer tools, ease of use should be established for
non-programmers. It should be possible to use individual tools in isolation.

Sub-role (iii) needs task support for the Interactive System Designer role
plus tools for specification of exported objects, binding services, and access
control.

lmplementer. Like the designer role, this role may be split into three
sub-roles:

(i) The lnteractive System lmplementer is responsible for managing and
coordinating the implementation activities and needs task support for
data dictionary use, version control, re-use of components and configu
ration control.

(ii) The User Interface lmplementer applies expertise in conceptual, log
ical and physical software architecture design, and software specification
to generate formal descriptions of the user interface. The lmplementer
also applies programming skills to develop a working user interface. The
role needs task support for system modeling, specification, compilation,
verification, validation, debugging, step-through/animation as well as
style realization.

(iii) The Functional Core lmplementer implements the specified objects
that belong to the functional core of the system. The role needs task
support for debugging, regression testing, validation and data dictionary
maintenance in addition to the support required by the User Interface
lmplementer.

Validator. Throughout the development and testing process it is impor
tant to focus on quality and validation. This role has the responsibility
- in all phases - to ensure that the objectives of a quality plan are
achieved. This role may also be split into sub-roles:

(i) The Quality Specialist sets up a quality plan for the entire devel
opment project and manages the testing when it is carried out. This
requires task support for project management (much like the Project
Manager), verification, validation and quality assurance tools.

(ii) The Usability Specialistapplies knowledge in experimental and cogni
tive psychology to design, implement and conduct usability evaluations
(user testing). The purpose is to determine ease of learning and use,
paying attention to usability measures such as time, error rates, cor
respondence between goals and tasks, and subjective satisfaction. This
role needs task support for evaluation (contextual evaluation criteria),
experimental design (scenarios, user selection), test management, data

lnteractive Software Development Environments 17

gathering (video, multi-levellogging) and data analysis (protocol anal
ysis).

(iii) The Software Validator, designs, implements and conducts tests to
determine the completeness, adequacy and robustness of user interface
software. This role needs task support for rehearsal, evaluation, and
testing (e.g. simulation, playback, check lists).

The two last roles (User and System Administrator) concern the final
system. Like the first two roles (Client and Project Manager), the last two
do not participate in the software development. But they are important as
representing the persans using the final system.

User. By users we mean end-users of the final system, the persans solving
their tasks helped by the interactive system.

System Administrator. The system administrator keeps the interactive
system running and controls access to computational resources and files.
The administrator also receives error reports and initiates maintenance
when needed. This role needs task support for configuration manage
ment, version control, access control, resource allocation, database ad
ministration, bug tracking, and maintenance control.

1.4.2 Human Roles in the V Model

The main part of the system specification, development, and testing are per
formed by the roles requirements specialist, system designer, implementer,
and validator with their sub-roles. There isasimple relation between these
roles and the phases of the V model. The phases on the left side of the V
model (problem analysis, specification, and design) are performed by re
quirements specialists and system designers. The bottom phases (module
design and coding) are performed by implementers, while validators cover
most of the right side of the V model.

In each role, an individual works with some material that is transformed
into some other material or product (or is related to it) by means of some
tools. By material we mean any document, data collection, or program
which is part of the system under development. In the development process
the individuals may use tools on some materials to generate new materials.
In Chapter 5 we shall take a closer look at tools and materials and how
they may influence the development process and the quality of the final
system.

1.5 Interactive Software Development Environments

The problems considered in HCI research are relevant, not only to the
development of specific end-user applications, but also to the development
of tools for constructing such interactive systems. Support software both for

18 The, Contezt of Intera.ctive Sy.tems Development

the development of user interfaces and for the management of interactions
is essential. Each development role is associated with a set of objectives.
Software support for the satisfaction of these objectives is both feasible and
desirable. In this section, we outline a comprehensive support environment
for the roles described in the previous section.

Software engineering environments - also called software development
environments or computer-aided software engineering (CASE) tools- aim
at making program development and construction efficient, without loss
of functionality. Here we focus on properties of the Interactive Software
Development Environment (ISDE), i.e. those parts of programming envi
ronments that are directed specifically toward the efficient construction of
interactive systems. An ISDE is a general, comprehensive environment that
provides support for a wide range of development roles.

The term UIMS, User Interface Management System, was coined in an
attempt to promote the concept of separating the interface part of a sys
tem from the functional core (the application part). Complete separation
is not possible in any but the simplest systems, and the development of all
parts must go hand in hand. Therefore, a somewhat broader view of the
development environment is taken here, where the interplay between inter
face part and functional core is taken into consideration. The term UIMS
is not used below, but it would correspond to some of our User Interface
Development Environment, some of our Binding Services, and some of the
resulting interactive system in Figures 1.3 and 1.4.

General and comprehensive support environments for interactive systems
development are possible. But the construction of ISDEs is complicated by
the regular arrival of new communication devices for user interface imple
mentation: (glass) teletypewriters were superseded first by cursor address
able text displays, and then by raster graphical displays, which in turn
have been supplemented with mice, touch screens and audio inputfoutput
devices.

Although the functionality affered by interactive systems varies from one
system to the next, much of the software processing in flexible, effective user
interfaces is largely separable from the intended functionality. The same
run time support code can manage the user interface for different functional
cores. The code needed depends on the machine architecture, the operating
system, the communication devices being used, and user preferences for
interfaces - much more than on the purpose/function of the system. Also,
the variety of communication devices does not imply completely disjoint
design rules for constructing user interfaces. Many choices apply regardless
of the communication device, so similar tools can facilitate development.

Many attempts have been made to provide practical tools that assist with
the development of user interfaces, and with management of the interaction
between the user interface and the functional core. Typically, the support
provided varies with: the hardware being used; the operating system being

lnteractive Software Development Environments 19

used; the preferred look and feel; the assumptions of the user interface tool
designer about what sorts of interaction may be required; and assumptions
about how interactive system designers work. Below, we abstract from the
variability of available tools and accommodate them within a general tool
framework.

An ideal environment would provide designers with a single source of

support that accommodates differences between operating systems, hard
ware, communications devices, and interaction modalities and styles, con
siderably easing the task of porting among different technologies. In turn,
descriptions of such an environment can support designers who must de

velop such software support.
The main task in developing interactive systems is specifying their ren

dering via communication devices, their surface behavior, and their under
lying functionality. There are three basic requirements for such specification
tasks. An ISDE should allow:

• simple specifications of simple systems;

• declarative specifications of non-procedural aspects of interactive sys-
tems;

• interactive specifications of procedural aspects of interactive systems.

Such an environment contains tools that support the complete development

of interactive software, and thus support all phases of development (as
outlined above). Figure 1.3 shows the general structure of an ISDE.

An interactive system is developed on the basis of requirements by using
an ISDE. The ISDE sets up suitable Environments for the different de
velopment tasks and offers the designer and the implementer a number of
Services. At the coarsest level of task description, ISDE Services are used
to create more detailed design specifications of the interactive system. The
more specific tasks of developing a functional core and a user interface are
supported by two other components: a User Interface Development Envi

ronment, UIDE; and a Functional Core Development Environment, FCDE.
The results of using UIDE and FCDE are a number of software modules,
and this output of the two subsidiary environments is combined into an in
stantiation of an Interactive System using the Binding Services. Although
only one interactive system is shown in Figure 1.3, an ISDE should be able
to support concurrent multiple instances of interactive systems, as well as
several functional cores and several user interfaces.

The ISDE Services must support the initial specification phase, the project
administration, and the later validation and evaluation of the interactive
system. Hence they must contain: (i) general specification tools; (ii) tools
for project management; and (iii) tools for testing of complete interactive
systems.

Examples of specification support are tools for conceptual model design,
coarse-grained task analysis and cognitive modeling.

20 The Gontext of lnteractive Systems Development

Req,;remoorn Spooll~
i--------

lnteractive System Development i Environment (ISDE)

t
I

ISDE Services

I

/ ~
Functional Core User Interface

Development Environment Development Environment
(FCDE) (UIDE)

~ /
Binding Services

Evaluation D
lnteractive System r--------

Figure 1.3 The major component6 of an ISDE.

---,
i
i
I
i
i
i

ata __ _J

General project administration is supported by tools for version control,
configuration management, archiving and re-use, and system testing.

Support for testing comprises tools for: rehearsal, simulation and play
back; video and software logging/ analysis.

Binding Services contain tools with mechanisms for instantiating the
interactive system from specifications and modules produced by subsidiary
environments and for linking code instances within the final system. The
latter functionality may exploit dynamic binding (of components created
within a session) or static binding (ofready-to-use components).

Figure 1.4 gives a more detailed view of an ISDE, the subsidiary envi
ronments UIDE and FCDE, and their tools. The figure also shows which
human roles the different parts support. The tools and the related materials
are discussed further in Chapter 5.

The main input to FCDE and UIDE is an interactive system specification

lnteractive Software Deve/opment Environments

Requirements Specia//st
Requirements Specification

lnteractive System Development
Environment {ISDE)

/nteractlve System DesignerNalldator
ISDE Services

Specification and Evaluation Tools

r-----------1

!

Functlonal Core
Deslgnerßmplementer

Functional Core
Development Environment

(FCDE)

User Interface
DesignerRmplementer

User Interface
Development Environment

(UIDE)

Evaluation Data
~----------1

21

Figure 1.4 The components of an ISDE and their use by the human roles. Each
human role is shown in bold face within the components supporting this role.

produced with the aid of ISDE-Services. The User Interface Development
Environment (UIDE) supports the iterative development ofuser interfaces.
It offers services - UIDE Services- by means of which the designer creates
user interface specifications and code (UI modules).

The UIDE Services are a collection of construction tools such as presen
tation design tools (e.g. bitmap editor, layout editor), finer-grained task

22 The Conte:r:t of Interactive Syltems Development

analysis and cognitive modeling tools together with user system protocol
design tools (e.g. dialog control editor).

The FCDE, the subsidiary development environment for domain func
tionality, may be decomposed similarly. The FCDE Services are a collec
tion of construction tools by means of which the software implementer
constructs a specification of the functional core of the system and corre
sponding code modules.

The Interactive System consists of two components: the Functional Core
(abbreviated FCX because it is the executing code), and the User Inter
face part (UIS). This reflects the division of labour between the subsidiary
environments, in that there are run time components for the UIS and the
FCX. This division is somewhat conservative, as there are experimental
approaches to virtual separation that support separation in the design en
vironment, but do not preserve this at run time (Shevlin and Neelamkavil,
1991). In this case, the Binding Services restructure the run time archi
tecture around common patterns of interaction, in much the same way as
optimizing compilers restructure generated code.

This completes the brief overview of ISDEs, their components and their
internal data flows. From the division of labour as discussed here, we can
identify some requirements that ISDEs should fulfill:

• provide means for configuring high-level components, rather than just
low-level ones like the widgets offered by a toolkit;

• provide a set of link classes for combining components;

• generate components with well-defined functional roles and interactions
with system properties;

• provide clear rules for restrictions on component interrelations and pro-
vide means for enforcing such restrictions.

Thus, ISDEs should support component configuration at all four levels of
abstraction, and be clear about software architectures that can be formed
within them. Chapter 5 discusses this in more detail, and shows other ways
of putting components together to form an interactive system.

1.6 Summary

We see software development as a structured process with well-defined hu
man roles. Both the process and the roles have to be extended and spe
cialized when the system is interactive. Such extensions further complicate
an already complicated milieu. It is therefore essential that software tool
support be provided for each human role in the development of interactive
systems. The main design goal for each tool is to maximize the quality
of the final interactive system, given the available resources. Such quality
must be defined either as properties of the final system, or as properties

Summary 23

of end-user interaction with the final system. The next chapters begin by
analysing general properties for interactive software and then look in depth
at architectural models which can guide the construction of interactive soft
ware. Once all these structures have been adequately described, Chapter
5 discusses the pragmatics of ISDE design, by addressing the tools and
materials with and from which they can be formed.

CHAPTER 2

External Properties: the U ser's
Perspective

2.1 Introduction

The usability of an interactive system is linked to the quality of the dia
log, and quality shall here be expressed through a number of measurable
properties of the dialog. The aim of this chapter is to identify and define a
set of user-centered properties of interactive systems which promote high
quality from the perspective of the users. The set must be as complete and
mutually independent ('orthogonal') as possible. At the same time these
so-called external properties must be usable in the software development
process as yard-sticks or 'measures' in the quality plan for the develop
ment. For a particular system, some of the properties may be absolute
requirements (this interactive system must have such and such property),
while others are desired in a quality plan but are given some 'weight of
importance' (0 ~ w < 1). Once we understand these properties and their
implications, and also the internal properties presented in the next chapter,
we will be able to discuss how to construct interactive systems possessing
desired and required properties.

Two main approaches are used in this chapter to discuss external prop
erties of interactive systems, informal and formal. The informal discussion,
contained in Sections 2.2-2.4, provides a loose characterization of external
usability properties as three main principles: task completeness, interaction
flexibility and interaction robustness. Flexibility and robustness arefurther
broken down into more basic properties. Each property is defined in natural
language and we provide some concrete examples of the property in real
systems to help understanding.

Section 2.5 discusses the use of mathematically-based formal models, as
an aid towards understanding and distinguishing between various exter
nal properties. We do not present a complete formal description of each
external property defined in the chapter, and there are no formal proofs
of theorems about the properties. Rather, the emphasis is on explaining
the kinds of formal models that have influenced our understanding of the
external properties and on the distinctions between the various levels of
abstraction defined in Chapter 1.

26 Ezternal Propertiea: the Uaer'a Perapective

2.2 Goal and Task Completeness

The purpose of an interactive system is to allow users to attain their goals
within a specific application domain. If users can reach any goal by means
of the system we may talk about goal completeness. But this is not a meas
urable property of the system, it is rather a feature of the combination of
users and system, since one cannot foresee every goal a user may form.

For the software developer, it is morerelevant to consider task complete
ness, i.e. to ask whether the system supports all adopted tasks (tasks for
computer support will be adopted during requirements specification). Suc
cesful execution of these tasks when interacting with the system willlead
to goal satisfaction. As adopted tasks will only be partially automated,
computer support must be shown to meet user needs.

The relevant tasks are found during problern analysis, where future users
are studied at their workplace. Descriptions of their work are analysed to
isolate common goal states, typical and problematic initial task states, and
regular procedures for task execution. This process is an early task analysis,
prior to design (but task analyses after designarealso important in HCI). It
is an essential process in interactive system design and the system should
support all of those tasks which have been identified. If we assume an
acceptable adoption of identified tasks prior to requirements specification,
then task completeness can be defined with respect to the task model. A
system is task complete if each task defined in the task model is supported
by the system.

Various task analysis methods can be used to generate a task model
(Diaper, 1989, and Dix et al., 1993). Tools that are able to generate code
directly from a task model, or verify that code actually conforms to such a
task model, will increase the likelihood of task completeness.

Note that we do not assume that a userwill only ever perform tasks which
were predicted by task analysis. Usersare far too imaginative and inventive
for that assumption to work. As Carroll and Rosson (1991) point out,
computer artifacts themselves change the very tasks that users perform.
It is therefore impossible to predict all goals or tasks that users may wish
that a system supports. This does not, however, reduce the importance of
task-driven design for those goals we can predict.

The principle of task completeness addresses the question:

• can I do my tasks at all and achieve my goals?

Behind this principle lie the tacit assumptions that userswill adapt to the
procedures imposed by the system for task execution and that they will
make no errors in the process. These oversights can be avoided by asking
two further questions about fle:cibility and robustness:

• can I do the task my own way? This means that the system should allow
user choice during task execution as far as feasible.

Interaction Flexibility 27

• am I supported in doing the task successfully and realizing that I have
succeeded? This means that the system should facilitate the user's ac
tions and help the user to recover from mistakes.

These principles are discussed in the next two sections from a task-oriented
point ofview. The principles do not fully address the complete range ofHCI
problems. Instead they are a minimal replacement for a universal principle
of scenario completeness, which addresses the question:

• can all users successfully complete any intended task, regardless of the
initial task state (which includes their knowledge and beliefs) and re
gardless of all expectable events that could arise during task execution?

The principle of scenario completeness has deliberately been left out of
consideration because it is not clearly defined and therefore not useful for
software engineering. To simplify and even enable subsequent analysis, we
have substituted 'adopted goals' for 'any intended task'. The principles of
flexibility and robustness address some aspects of typical scenarios, where
variations are due to users' preferences, mistakes or slips rather than to the
demands of their physical, social and work environments, or to inappropri
ate beliefs or assumptions.

We have two justifications for this reduced focus:

1. this book reports the first systematic attempt to establish links between
what users need and the ways in which software is constructed. It is un
reasonable to attempt or expect comprehensiveness in such exploratory
work.

2. critiques of task-based design (Bannon and B~dker, 1991, and Benyon,
1992) are stilllargely polemical, where credible arguments have yet tobe
backed up by practical consequences. Thus, while we know that learning,
users' knowledge, social interaction, working divisions oflabour, working
practices and situated activity are all relevant to the design of systems,
the form ofthis relevance is not yet clear, and thus we cannot be expected
to establish links between what humans need and the ways in which
software is constructed.

Our hope is that we have made no commitments to, and depend on no
assumptions about theories of human activity that will obstruct future
extensions of our framework to incorporate more demanding aspects of
human activity.

2.3 Interaction Flexibility

Interaction flexibility refers to the multiplicity of ways in which the user and
the system exchange information during task execution. This can apply at
alllevels of description defined in Chapter 1: functional, dialog, logical and
physical levels. Interaction flexibility requires designers to recognize that

28 External Propertieß: the Ußer's Perspective

people react differently, and designers must respond to user differences and
preferences by providing a variety of interaction techniques.

We will list interaction flexibility properties under three subcategories:
representation (of information), planning (of task execution) and adapta
tion (of dialog forms).

Representation of information:

Fl. Device multiplicity - the capacity of the system to offer multiple
input and output devices for communication. Input devices include
microphone, keyboard, mouse, dataglove, video camera, etc. Output
devices include screen, loudspeaker, force-feedback joystick, etc.

F2. Representation multiplicity - the capacity of the system to of
fer alternative representations for both input and output.

F3. Input/Outputre-use - the capacity ofthe system to allow usage
of previous input or output as future input.

Planning of task execution:

F4. Human role multiplicity - the capacity ofthe system to support
users with different roles.

F5. Multithreading - users can engage in several tasks which may
overlap in time. In these cases, the system can provide support for
the simultaneously active task threads.

F6. Non-preemptiveness - Preemption occurs when the system en
forces a sequence of interaction that is not necessarily expected by
the user. Non-preemptiveness is the absence of preemption.

F7. Reachability - the capacity of the system to allow users to reach
any system state, regardless of the current state.

Adaptation of dialog forms:

FS. Reconfigurability - the capacity of the system to support user
initiated customization of the interaction.

F9. Adaptivity - the capacity of the system to initiate customization
of the interaction.

FlO. Migratability - the capacity of the system to support user- or
system-initiated transfer of task responsibility.

Reconfigurability and adaptivity are often dealt with as one property,
customizability, but the software developer must distinguish between
functionality that gives the users some choices (reconfigurability) and
features that makes the system take the initiative (adaptivity).

The remainder of this section will further examine each of these proper
ties. These properties are again summarized in Table 2.1 at the end of this
section.

Interaction Fle:r:ibility 29

2.3.1 Device multiplicity

Device multiplicity means that multiple input and output devices can be
used for the dialog. For example, in an airline reservation system, the cus
tomers might type or speak their queries in natural language. The logical
representation in both cases is the same, natural language, but different
input devices are used to articulate the query.

Whereas representation multiplicity refers to the dialog and/or logical
levels of interaction, device multiplicity refers to the lowest level of inter
action flexibility, the physical level; the word device is preferred to other
terms used, such as 'media' and 'modality', because they have several in
terpretations. Some authors refer to a device as a media type. For others,
the word media is not constrained to the physical level, but can be under
stood at higher levels of abstraction (Blattner and Dannenberg, 1992), and
the media is understood as a representational system (Alty, 1991). Others,
like Bernsen (1993), use the term modality to refer to a representational
system. Given this overlap in interpretation between media and modality
(which extends to multimediaand multimodality), we will be explicit about
our meanings for these terms. Media refers to the device or physical level,
whereas modality refers to all other levels of abstraction. Therefore, multi
media corresponds with device multiplicity, while multimodality is a more
complex property corresponding with representation multiplicity, the next
flexibility property.

2.3.2 Representation multiplicity

Representation multiplicity concerns flexibility in the rendering of state
elements as well as in the articulation of input. Multiple representation
covers the variation of information content as well as the presentation of
the information. For example, on output a system could support alternative
representations of the notion of temperature over a period of time. It can
be presented as a thermometer, if the actual numerical value is important,
or as a graph if it is important to notice trends. It might even be desirable
to make both representations simultaneously available to the user. Each
representation provides a perspective on the internal state of the system.
At a given time, the user or the system is free to consider the representations
that are most suitable for the task. When several renderings are presented
simultaneously, it is often called multimodality.

Alternatively, a single output on the screen can represent a synthesized
representation of a collection of internal system values. For example, per
formance meters aggregate all system data concerning resource usage and
present that information as a timeplot to indicate overall utilization. A
quick glance at such a plot can help a user understand performance trends.

An example of input multiplicity would be in a drawing package where

30 External Properties: the User's Perspective

a user may draw lines by direct manipulation or by specifying the end
coordinates numerically in text fields. Depending on the task require:ments,
either means of specifying the input can be important, and both may need
to be equally available. If both line and numeric values are simultaneously
presented, we have a particularly rich form of interaction referred to as
equal opportunity by Thimbleby (1990).

As well as using different representations alternatively they can also be
used simultaneously to achieve a certain effect. For example, asound effect
(a 'bip') may be issued as a new window appears.

Representation multiplicity is related to multi-modality but the latter is
a more complex issue. Multi-modality also covers how signals on two or
more modalities (communication channels) are combined to form a single
message.

2.3.3 Input/Output re-use

It is possible to articulate an input expression by referring to previous input
or output expressions. Cut, paste and copy commands are typical examples
of input and output re-use (I/0 re-use). Another simple example of re-use
occurs in command line interfaces in which users can select commands from
their previous input and re-issue them to the system.

Two interesting issues arise. First, there are implications for type coer
cion. The second issue is at what level of abstraction is the re-used informa
tion interpreted. Type coercion is necessary when the source and target sys
tems use different data structures. For example, the internal representation
of a circle differs between object-based and pixel-based graphical editors.
Cut and paste re-use will have to support conversion between thesedifferent
internal representations. Furthermore, it is desirable that such type coer
cion be invertible, but this is a complicated issue involving interoperability,
which we discuss further in Chapter 3.

The issue with interpretation at different levels has implications on how
interaction histories are stored by the system. At the physical level, re
use would mean that actual keystrokes would be recorded. Re-use at the
functionallevel would mean that functional-level information (e.g. the com
mand code and the value of arguments) would be recorded. Re-use at the
dialog level is rare, as input re-use generally is implemented at the extremes
of keystroke input or command invocation. Indeed, it is difficult to identify
advantages for dialog level re-use that are not matched and exceeded at
the functionallevel. Aspects of I/0 re-use are further discussed in Section
4.3.

Default behavior is related to I/0 re-use. Default values are generated by
the system based on prior user interaction; they provide input or output
based on prior history. Adjusting default behavior based on the interac-

Interaction Flezibility 31

tion history in this way is similar to system-initiated adaptation, called
adaptivity below.

2.3.4 Human role multiplicity

In multi-user systems, different users serve different roles or functions in
their interactions with the system and, ultimately, other users. A role in
this context refers to users' goals and determines the kinds of tasks that
they will want to perform, the methods or commands used to accomplish
those tasks, and the system objects that will be necessary to complete their
actions. A user role is thus identified by a duster of goals that is allocated
to or adopted by a user within some division of labour. Roles may overlap
and change over time.

So, for example, in a multi-party conferencing situation, one participant
might play the role of the manager whose responsibility is to explicitly
pass floor control to the other participants. The participants can assume
the role of either the speaker or a member of the audience. Thus, the
conferencing system calls for three different roles: manager, speaker and
audience. Human role multiplicity refers to the extent to which the system
supports the various roles that users can assume.

This variability of roles is most obvious in multi-user systems, but it is
certainly not exclusive to groupware. The major distinction between single
user and multi-user systemsisthat multi-usersystemswill have to support
multiple human roles simultaneously, but also a single-user system must be
able to support the user in different roles, sequentially. A simple example
of role multiplicity occurs with Hypercard, which has five pre-defined roles
that a single user may switch between - scripting, authoring, painting,
typing and browsing. Hypercard uses these role definitions both to ease
the novice user into more sophisticated programming tasks and to limit
some users from changing secure parts of a Hypercard stack. This last
concern raises questions about how the system controls access to various
system objects, a topic linked to role multiplicity that we discuss under the
property of access control for the interaction robustness principle.

Another issue of concern for a system supporting multiple roles is how
users are able to change roles. Changes in role can be either user initiated
or system initiated, as discussed below under the headings 'Adaptivity'
and 'Reconfigurability'. In the conferencing example, it is the duty of the
manager to explicitly assign roles to the conference participants. A member
of the audience sends a request to the manager to gain control of the
floor, but it is up to the manager to make the appropriate role assignments
(e.g. reassigning the current speaker to be a member of the audience and
assigning the requestor to be the new speaker). So the manager has the
capability to reconfigure the system. An adaptive Hypercard system, on

32 External Properties: the User's Perspective

the other hand, might sense that a novice user needs to alter text in a
Hypercard stack, and therefore changeher role from 'browsing' to 'editing'.

2.3.5 Multithreading

In cooperative systems with several simultaneaus users multithreading is
a sine qua non because the users want to execute their individual task
threads in parallel.

In a single-user environment the need for multithreading is less clear
cut, and a number of arguments may be brought into play. The rest of this
subsection discusses different ways and different levels of multithreading in
a system with one user (or a few users).

Often a user wants to do several things in parallel, and if the system
has concurrent capabilities, multithreading may help users to achieve their
goals. This contributes toward interaction flexibility since it lets users per
form multiple tasks simultaneously or switch freely between them. The user
may want parallelism on more than one level of abstraction: (i) at the func
tionallevel, where parallel command execution is possible; (ii) at the dialog
level, where parallel command specification is possible; (iii) at the logical
interaction level, where parallel formation of elements of a command spec
ification is possible; and (iv) at the physicallevel, where parallel formation
of an element of a command specification is possible.

Multithreading at one level of abstraction implies nothingabout thread
ing at a high er level. We can have multithreading at the physicallevel (e.g.
simultaneaus input of keyboard and mouse events), but not at the logical
interaction level (when they are formed into a single element, i.e. an edited
text field value).

Similarly, we can have multithreading at the logical interaction level (e.g.
simultaneaus formation of options and arguments respectively by keyboard
short cuts and mouse selections), but not at the dialog level (where op
tions and arguments part of the same command specification). Lastly, we
can have multithreading at the dialog level (e.g. simultaneaus formation
of command specification in separate windows), but not at the functional
level (where command executions are serialized).

At each level of abstraction, the kind of multithreading possible depends
on what kind of parallelism the underlying system supports. A system with
concurrent multithreading allows simultaneaus communication of a set of
elements that are fully formed at a higher level of abstraction.

A system having interleaved multithreading permits a temporal overlap
between articulations or specifications but stipulates that at any given in
starrt, only one element of a fully formed structure is being articulated
(below dialog level), specified (at dialog level), or execu ted (at functional
level). Concurrent interleaving at one level of abstraction may thus be re
placed by interleaved multithreading at a higher level.

Interaction Fle:ribility 33

Multithreading may also be replaced by single threading at a lower level,
but this imposes extra interaction steps on users. Thus in a typical window
system, the interaction is interleaved multithreaded at the dialog level, as
the user may communicate interleaved with a number of open windows
supporting different tasks, but at the physicallevel the user interacts with
one window at a time in a serial manner, utilizing one mouse and one
keyboard only. This imposes explicit changes of focus on users. Similarly,
operating system command languages with backgrounding or job control
are multithreading at the functional level, but command specification at
the dialog level is single-threaded, forcing the sequential articulation of
operations, options and parameters. This imposes explicit articulations of
backgrounding and foregrounding on the users.

Just as serialization below interleaved multithreading complicates inter
action traces (by adding explicit changes of focus), so concurrent multi
threading is more simple than interleaved multithreading, as it avoids
suspension and resumption of interrupted formations, and avoids explicit
backgrounding and foregrounding.

As an example at the physical level, consider two acts for a user of
a computer painting application: changing brush width and painting on
the canvas. In a single-threaded or interleaved multithreaded-system, users
would have to suspend painting acts in order to change brush width. In
a concurrent multithreaded system, such as VoicePaint (Gourdol et al.,
1992), users could change the size of the brush as they are painting, and
thus be able to paint a crescent moon in one uninterrupted stroke of a
locator device.

Designers must carefully consider differences in 'threading' between lev
els of abstraction, since transitions from single to multithreading and from
concurrent to interleaved multithreading require users to plan their inter
actions more carefully. Interaction is both more flexible and more simple
when multithreading is concurrent at alllevels of abstraction in interactive
systems.

2.3.6 Non-preemptiveness

When considering the interaction between user and system as a dialog be
tween partners, it is important to consider which partner has the initiative
in the conversation. The system can initiate all dialog, in which case the
user simply responds to requests for information or action. We call this
type of dialog system-driven because the system more or less decides which
action (or actions) the user may perform next. Alternatively, the system
might only react to user input, in which case the dialog is called user-driven
because the user has more freedom in choosing the next action. A dialog
where either the user or the system may have the initiative is called a
mixed-initiative dialog.

34 External Properties: the User's Perspective

Non-preemptiveness refers to the degree of freedom the user has in de
ciding what next action to perform at the interface, and it is one of the
key factors contributing to the user's feeling of fl.exibility in the dialog.
System-driven models of interaction tend to be preemptive, they limit the
user's choice of next available action, whereas user-driven interaction favors
non-preemption.

Preemptive systems limit the user's options for communication. For ex
ample, a dialog box may prevent the user from interacting with the system
in any way that does not direct input to the box. From the user's perspec
tive, a system-driven interaction hinders fl.exibility whereas a user-driven
interaction favors it. In general, we want to minimize the system's abil
ity to preempt the user although some situations may require it for safety
reasons. In situations in which a user error or slip would result in serious
darnage without a chance for recovery, it is desirable- or even necessary -
to limit user freedom.

The task analyst must have a good understanding of the sets of tasks
the user is likely to perform with a system and how those tasks are related
in order to minimize the likelihood that the users will be prevented from
initiating or advancing some task at a time when they would want.

2.3. 7 Reachability

Reachability refers to the possibility of navigation through the system
states. It can be defined at any level of detail, but in this context only
observable states are of interest. Various aspects of reachability have been
given formal definitions, but the main notion is whether the user can nav
igate from any given observable state to any other observable state. From
the user's point of view it may be useful to distinguish between backward
and forward reachability.

The user may want backward reachability in order to get back to some
previous state of the interaction, after having made a mistake or realizing
a need for some previous information. This type of reachability is covered
by the property of recoverability, as it is usually defined, and it requires
sufficient history information to be kept by the system.

Forward reachability means that the user is able to proceed to any desired
interaction state, independently of previous dialog development.

These coarse definitions say nothing about how difficult it is to go from
one state to another. For example, in order to make a text editor fully
reachable, we only need to provide the ability to insert letters sequentially
and erase the entire contents of the editing buffer. Such an editor will
be reachable because any possible buffer contents can be achieved from
any other buffer state. However, the only way to effectively delete the last
character would be to erase the whole buffer and type in the entire con
tents again! To get around this over-simplified reachability criterion, we

Interaction Flexibility 35

can invoke Thimbleby's principle (1990) of commensurate effort- things
that are easy to do should be easy to undo. Since it is easy to mistype a
character in a text editor, it should be just as easy to undo that error (e.g.
by providing a delete character command).

Therefore, a more general definition of reachability should include some
measure of the ease of navigating. A system has good reachability if the
user can navigate from one observable state to another with an effort which
in some sense is commensurate with the user's expectation.

2.3.8 Reconfigurability

Reconfigurability refers to the user's ability to adjust the form of input
and output. This customization may be very limited, with the user only
allowed to adjust the position of soft buttons on the screen or redefine com
mand names. The power given to the user can be increased by allowing the
definition of macros to speed up the articulation of certain common tasks.
In the extreme, the interface can provide the user with programming lan
guage capabilities, such as the Unix shell or the script language Hypertalk
in Hypercard.

Such user-initiated changes can also have varying periods of duration.
For example, changes could be limited to one interaction session or they
could be recorded and affect all future sessions (e.g. resource settings in
the X Window system).

2.3.9 Adaptivity

Adaptivity is automatic customization of the user interface by the system.
Decisions for adaptation can be based on user expertise or observed rep
etition of certain task sequences. The distinction between adaptivity and
reconfigurability is that in a reconfigurable interface the user plays an ex
plicit role in customization, whereas his role in an adaptive interface is
more implicit. A system can be trained to recognize the behavior of an
expert or novice and accordingly adjust its dialog control or help system
automatically to match the needs of the current user. This is in cantrast
with a system which would require the user to explicitly classify themselves
as novice or expert at the beginning of a session (Kuehme et al., 1992).

Automatie macro construction, as proposed in the Eager system (Cypher,
1991), combines reconfigurability with adaptivity in a simple and useful
way. Repetitive tasks can be detected by observing user behavior, and
macros can be automatically constructed from this observation to perform
repetitive tasks automatically.

36 External Properties: the User's Perspective

2.3.10 Migratability

Task migratability concerns the transfer of control for events or execution
of tasks between system and user. It should be possible for the user or
system to pass the control of a task over to the other or promote the task
from a completely internalized one to a shared and co-operative venture.
Hence, a task that is internal to one can become internal to the other or
shared between the two partners.

Table 2.1 Summary of interactionflezibility properties. The 'Description' column
contains a short description of each property; the 'Related propertie11' column is
a reminder of relationships to other propertie11 mentioned under each property

Flexibility
Property

Representation:

Description

Device More than one way to
multiplicity do something

Representation More than one way to
multiplicity present something

Input/Output History repeating itself
re-use

Planning:
Human role Several people doing sev-
multiplicity eral things
Multi threading One person doing several

things

Non- Doing what you want
preem pti veness when you want

Reachability Getting anywhere from
anywhere else

Adaptivity:
Reconfigur- The user changing the
ability interaction

Adaptivity The system changing
the interaction

Migratability Transferring control

Related properties

Multi-media capability

1/0 multiplicity,
equal opportunity,
multi-modality

Use of defaults

Access control

Concurrency, interleaving

User-driven dialog,
mixed-initiative dialog

Commensurate effort

Programmability of the
interface

Automatie macro
construction

As for many other properties, migration can occur at multiple levels of
abstraction. At the physical level, the provision of command completion

Interoction Robu•tnesa 37

migrates responsibility for some physical operations (typing) from the user
to the system. At the dialog level a system with nurober input could allow
the user to enter not only literals (e.g. 24) but also numerical expressions
(e.g. 6 x 4). Here a step that would be a user calculation in a full cognitive
task description is migrated to the system. At the functional level, file
saving is an example of a migratable task: one user may do it explicitly,
and another user may want automatic file saving. Interestingly, the effect
of migration at the functionallevel is to reduce the nurober of commands
and objects that users are effectively in contact with during subsequent
interactions.

2.4 Interaction Robustness

An interactive system is called robust if it supports a user in performing
a chosen task without irreversible mistakes, and if it gives users a correct
and complete picture of task progress. Thus, interaction robustness covers
all those properties that minimize the risk of task failure. We identify seven
properties that contribute to the principle of interaction robustness. The
first three properties ensure a correct and complete picture of the system,
while the last four properties lessen the risk and cost of mistakes.

Correct picture:

Rl. Observability - the system makes allrelevant information poten
tially available to the user.

R2. lnsistence - the dialog structure ensures that necessary informa
tion is perceived.

R3. Honesty - the dialog structure ensures that users correctly inter
pret perceived information.

Few mistakes (no irreversible ones):

R4. Predictability - users can predict future states and system re
sponse time from the current and prior observable states.

R5. Access control - the system allows for defining control policy and
availability for information access.

R6. Pace tolerance - the system allows users to control the pace of
interaction.

R7. Deviation tolerance - the system supports users' correction of
slips and errors.

The first four of these properties - Observability, Insistence, Honesty and
Predictability - are very user-dependent; they can only be validated by
user testing. The last three - Access control, Pace tolerance and Deviation
tolerance - are less user-dependent and can be validated reasonably within

38 Ezternal Properties: the Uaer'a Perspective

a system (either by analysis of specifications or by expert walkthrough of
an implementation).

The remainder of this section will further examine each of these proper
ties. These properties are again summarized in Table 2.2 at the end of the
section.

2.4 .1 Observability

A system is observable if it allows users to inspect all information relevant
to their tasks. This does not necessarily mean that all relevant data are
presented at once. A typical screen-based computer system can only ren
der a small amount of the total information on an output device. Hence
there must be some browsing function allowing the user to inspect the
information in stages.

An important part of observability is to restriet it to all relevant infor
mation. It could be argued that one would like to be able to view all of
the system state, but even if this were possible the user might suffer infor
mation overload. So, in large industrial control rooms and aircraft cockpits
where vast numbers of dials have traditionally displayed all of the state,
there is an emphasis on glass displays which focus the operator's attention
on parts of the available information.

We want the immediately perceivable information to be relevant and
sufficient for the user's current tasks. The task model should contribute to
this design issue, by identifying those elements of the system state which
are most critical at each interaction point. Having identified these elements,
lower levels of design can ensure that the identified elements are indeed
rendered at the required times. In a constrained process this task-based
identification may be sufficient, but in most systems the user will have
some control as to which elements are displayed, for example in choosing
the positioning and visibility of windows.

Clearly in most situations only the most critical information can be im
mediately available. However, the user should be able to access all relevant
information eventually. This kind of observability- often called browsability
- is based on the general principle of allowing the users to perceive any
thing they can name, i.e. anything he or she can provide a description for. lf
the description is not ambiguous, then the required information should be
provided; if it is ambiguous, the user should be given sufficient information
about possible choices in the present state. This means that the system
must present the information and the possible actions which seem to be
useful. Furthermore, this browsing of information should be possible with
out modifying the system state (other than the form and contents of the
current presentation). This requires some kind of multithreading allowing
the user effortless return to the state from which the browsing was started.

It is particularly important that a user is aware of the effect of the last

Interaction Robultneu 39

action. That is, that there is effective feedback. Ideally, all changes should
be immediately perceivable, but where this is not possible (for example,
in a document-wide search/replace), at least some indication of the ef
fects should be given (for example, displaying the number of changes that
resulted from the search/replace). In addition, a user ought to be able to
browse the effects of the previous action, but this is frequently inadequately
supported. For example, after a search/replace the user ought to be able to
find out precisely which words were affected, but this is usually impossible.

In an open system like a CSCW system, * the user will also want to
be aware of the actions of other users and of external processes. This ob
servability of other users' actions has been referred to as feedthrough (Dix,
1994). In practice, we may accept weaker feedthrough mechanisms than
those for feedback. For example, in a shared editor feedback of a user's
own typing must be virtually instantaneous, whereas network delays of a
few seconds may be acceptable for feedthrough. However, as the user did
not initiate the actions, merely seeing the effect may be insufficient; it is
frequently helpful for feedthrough to identify both the action which caused
the change and the user who initiated it. This can be very important in
allowing users to interpret the intention behind other users' actions.

The observability of a system is -like the predictability discussed below
- tied to the user's understanding of the system and their expectations of
its behavior.

2.4.2 Insistence

Just because information is available at the interface, it is not necessarily
the case that the userwill notice it. For example, one persistent problern in
windowed systems is the situation where the user mistakes which window
is selected and then directs text at the wrong window. All window systems
give some clue as to the active window, often by highlighting the window's
name, or emphasizing its border. However, if the user is looking at the
content of the window, these borders may be insufficiently salient.

Softwaredesigners should do their best to ensure that critical information
is not only available, but is actually perceived by the user. In addition, the
system must ensure that events are reported and noticed at the appropriate
time. In particular, if an event indicator is ephemeral (e.g. a buzzer) and
the user is temporarily absent, then the user may never realize that the
event has occurred.

lnsistence can be achieved by various means: by increasing the visual
salience, by interrupting the user with pre-emptive dialogs, by using aural
signals or by leaving persistent event indicators. The choice of mechanism

* CSCW = Computer Supported Cooperative Work.

40 Ezternal Properties: the U1er'l Per1pective

is again finely dependent on the plausible cognitive task description, which
should identify two aspects:

• where the user's attention is likely to be (in order to assess the salience
of a particular feature);

• the required timeliness and salience of different system elements.

Different interface widgets have different salience and timeliness prop
erties. For example, a buzzer may demand instant attention whereas the
appearance of a new icon may be eventually noticed after a few minutes.
Too many over-salient features will lead to a noisy and unpleasant inter
face and furthermore will hide the features which are really important. The
designer should therefore attempt to match the properties of the interface
widgets to the required salience and timeliness required by the user's task.

In an open or multi-user system it is also important that the user is made
aware of appropriate events generated by other users and the environment.
For critical events this should be very salient, but it is also useful to generate
a low-level, ambient indication of external activity. This is called awareness
in CSCW systems. Experiments have shown that this can be very important
in giving users a sense of working together and in diagnosing changes in
the world (Gaver and Smith, 1990).

2.4.3 Honesty

Designers need to ensure that users interpret the symbols at the interface
in the way that they are intended. In Norman's terms (1988), this is called
the 'gulf of evaluation'. Maybe a system is observable and insistent, but if
users misinterpret the information, there is bound to be trouble. Honest
systems strive to achieve a match between the user's interpretation and the
designer's intended interpretation ofthe interface. This requires that (i) the
observable state conforms with and represents the relevant features of the
system state, and (ii) the user interprets the rendered information correctly.
The second part of this can only be validated through user testing, but the
first part is the responsibility of the designer.

Various heuristics exist for promoting the honesty of a system. The no
tion of affordance from psychology deals with how artifacts in the real world
(including a computer's interface) suggest the correct mode of operation.
For example, buttons should suggest pushing them to get some operation.
Mouse cursors should suggest pointing or dragging. Metaphors are fre
quently used in an interface to borrow from a user's previous knowledge
of how things behave in the world. If a designer structures the interaction
consistently according to some clear metaphor to the user, the user's famil
iarity with the metaphor will assist them in guessing the correct behavior.
The potential danger with metaphors in a computer interface is that they
might suggest operations which are not possible, or they might suggest the

Interaction Robustneu 41

wrong interpretation of an action (e.g. dragging the icon for a floppy disk,
or the hard disk, to the trash icon in the Macintosh desktop metaphor).

Observability and insistence are robustness properties that support hon
esty, but also flexibility properties may improve the honesty of a system.
As an example, if a system is reconfigurable (the user may change the in
teraction), users can make changes that make the system more honest to
them; and an adaptive system (the systemchanging the interaction) may
adapt to a user's habits and thereby be perceived as more honest.

2.4.4 Predictability

The above discussions of observability and insistence focus on the extent
to which the system provides enough information for the user to know how
past actions have affected the present state. Honesty refers to how this
information is correctly comprehended by the user. Predictability concerns
the future, that is, to what extent information in the past and present can
help the user determine the outcome of future interactions. Like the first
three robustness properties predictability depends not only on the system
itself but also on the actual user knowledge and expectations. But the
designer can do much to further (or impede) the predictability as perceived
by the users.

Roughly speaking, predictability means that a user's knowledge of the
past interactions and current observable state are sufficient to determine
future behavior ofthe system. The system must be designed to provide state
and action information in a reasonably complete, systematic and consistent
way. Finer measures of predictability are concerned with just how much of
the past is necessary and to what extent behavior is predictable based on
immediately observable information.

Consistency is one heuristic that is often applied to increase the pre
dictability of an interface. Consistency allows the user to generalize from
specific situations to similar situations. But it is difficult at times to de
termine, at design time, which situations a user will consider similar or
dissimilar.

Predictability is about actions as well as effects. Users need to know not
only what will happen when they issue a command, they need to know
what commands are available to them at any point. Several properties we
have discussed already are related to this property of operation visibility.
Affordance means that the operations which are suggested to a user are the
ones that are available, that is, affordance means honesty with respect to
operation visibility. If the user sees a button that says cancel, is it really the
operation that is available? And what will be cancelled? This may depend
on the user's actual role, as discussed in Section 2.4.5; when users play
limited roles they should know that their set of possible actions is limited.

Users also expect the systemtobe stable with respect to response times.

42 Ezterna.l Properties: the User's Per11pective

A predictable system must therefore exhibit temporal stability: if the same
action - for example, opening a new file - is executed several times, the
response time should be the same each time. Furthermore, execution times
for similar tasks (i.e. tasks which the user perceives as similar) must be
close to each other.

2.4.5 Access control

Access control mechanisms restriet those parts of a system which a user can
view or alter. This is particularly important in systems where the users can
assume multiple roles. In a groupware application supporting synchronous
editing, certain users could be designated as the editors of parts of the text.
Users who are not editors of part of a text should not be allowed to make
changes to that text, though they may be allowed to view the text.

Access control addresses the robustness concerns brought about by hu
man role multiplicity. In a single-user context, the actions of users in some
roles might be restricted in order to prevent darnage to the system. Users
in other roles might have very few restrictions placed on their interaction.
Though there are good reasons to allow such free interaction, it is not
without risk. For example, a Unix super-user has free reign, which means
that most operating system safeguards which apply to normal users (e.g.
file ownership) are circumvented. Whereas the power of the super-user is
necessary for some tasks, it means that the system is less forgiving of slips
at the interface.

A simple example of an access control mechanism arises in mostmodern
operating systems, in which protection schemes are used to tailor access
to files and control who can alter file contents. In a multi-user text editor,
users in the role of commentator are prevented from changing the text
owned by some author, though their comments aremadevisible to editors
and authors.

Access control is not always motivated by the desire to prevent users from
doing bad things. The training wheels metaphor (Carroll and Carrithers,
1984) in which a system adjusts the availability of functionality based on
a user's level of expertise, is intended to ease the learning burden for the
novice. Rather than risk exposing a new user to the daunting variety of
potential functions, the systembegins by offering a minimal set of functions,
gradually revealing more functions as user experience grows. This gradual
revelation of system functionality does limit the user's access to the system
but with the intention of decreasing anxiety and increasing learnability.

In multi-user systems, it is important that users be aware of other users'
activity, even ifthey cannot affect their actions directly. We saw an example
of this earlier in the multi-user editor with the visibility of comments. This
is related to feedthrough (see Section 2.4.1). In a shared graphical editor,
each user may be limited to actions on their own private painting layer.

Interaction Robudness 43

The system superimposes alllayers to reveal to each user what the overall
shared picture looks like. Though individual users cannot alter any drawing
on another user's layer, they can still see what the others are doing and
can coordinate their drawing activity accordingly.

When a user's actions are limited by some access control mechanism,
it is also important that they understand the scope of the access control.
Again, in the multi-user editor a single author not only wants to know
what parts of a document are available to them for editing but also wants
to know what other parts of the document are open to others for editing,
indicating which parts of the text are liable to change. For example, consider
the design of media spaces (i.e. computer mediated video for computer
supported co-operative work), where users can generally make arbitrary
live video connections with other users. Privacy issues demand that a user
be able to prevent arbitrary intrusion. When someone wants to make a
connection with another user and that connection is denied, the system
could indicate whether the person is busy with another video connection
or is restricting access to their office for the time being.

2.4.6 Pace tolerance

Interaction take place in the real world. There the time it takes for things
to occur matters. It takes time for both the user and the system to react to
changes in the world. A pace-tolerant system considers the timing match
between user expectation and system demands. For example, it takes time
for a user to read a message, so sending numerous error messages to screens
which scroll away faster than they can be read is a timing mismatch. De
signers of such systems fail to realize that what is a quick task for the
system is not so quick a task for the user.

As technology improves, we may be led to believe that the system will
always be able to keep up with the user. Dix (1991) pointsout that adher
ence to this myth of the infinitely fast machine would lead us to conclude
that we only ever have to worry about slowing the system down to the
user's level. No matter how our technology progresses, it will always be the
case that things take time. External factors (network latency, hardware
failures, etc.) and increasing system demands (load the entire Oxford En
glish Dictionary when doing a spell check!) will always mean that we should
design the system knowing that delays will be present. Pace-tolerantdesign
is conscious of how to meet the user's expectations both when the system
is too fast and too slow. A standard concession to the 'faster' user is to
provide type-ahead; while the system is busy doing some other task, the
user is allowed to provide input to the system that will be interpreted once
the system is available. Type-ahead acknowledges that there are situations
in which the user works faster than the system.

How to interpret typed- (or clicked-)ahead commands is a tricky issue,

44 External Propertieß: the User's Perspective

especially in a graphical user interface and it points out the criticality
of pace-tolerant design. It is very easy for a user to dick at several soft
buttons quicker than the system can respond to them. Suppose a user sends
a command to launch an application in a new window. While waiting for
the new application to initialize and appear on the screen, the user decides
to send some commands to other windows. The system stores the user
actions to be interpreted once it has finished the task of launehing the new
application. In what context are those actions interpreted once the system
is ready to respond to them? The reasonable answer is that they should
be interpreted in the context in which they were issued, but if all that
is stored in the type-ahead buffer are physical actions (keystrokes, mouse
dicks and mouse positions), then it is virtually impossible to guarantee
that the actions will be interpreted in the correct context. Pace-tolerant
type-ahead is not a solution that can be implemented at the physicallevel
alone, but involves higher levels of abstraction as well.

When interface behavior is time-dependent and the user is not aware of
the dependency, the interface will be hard to learn. How diffi.cult is it for
users to understand the difference between a double-dick of the mouse and
two separate mouse dicks? And once they understand the difference, will
they expect a different system interpretation for two mouse dicks than for a
single one? Ifusers don't expect the speed oftheir interactions to affect the
interpretation, then they probably won't learn on an interface that relies
on it.

2.4. 7 Deviation tolerance

No matter how well a system has been designed, users will commit errors
from which they will want to recover. Deviation-tolerantsystems may sup
port (i) detection of error states or 'dangerous' states, (ii) prevention from
getting into error states and (iii) correction of slips and errors. When users
can rely on being warned against dangerous actions and being assisted in
recovering from small errors, then they will feel more free to explore an in
terface without worry, i.e. the user will experiment with the interface with
the expectation of being able to undo some operation once he or she has
learned how it works.

Even in a system with a very careful design of mechanisms for detecting
error states and for prevention, the users will commit errors. Therefore the
most important aspect of deviation tolerance is the provision of recovery
procedures for the user. Recovery is a special form of reachability; the user
wants to get from some state of interaction to another. The initial state for
recovery is an error state (an unwanted state) and the final state is the cor
rected state. There can be two different strategies for recovery - backward
and forward. A backward recovery strategy, such as undo, has a previously
attained state as the corrected state. A forward recovery strategy, such as

Interaction Robustness 45

Table 2.2 Summary of interaction robustness properties. In the second column, a
'+' indicates the property is tied to user expectation and that validation depends
on user testing. The 'Description' column contains a short description of each
property. The 'Related properties' column is a reminder of relationships to other
properties mentioned under each property

Robustness User
Property dep.

Observa- +
bility

Insistence +

Honesty ++

Predicta- +
bility

Access
control

Pace
tolerance

Deviation
tolerance

Description

The user may perceive

The user will perceive

The user correctly
comprehends

Understanding how the
system will react

Hole-sensitive restric-
tion of information
availability

Response times match
user's expectations

User's recovery inten-
tions are supported

Related properties

Immediacy, browsability,
feedback, feedthrough

Salience, timeliness, persis
tence, awareness

Affordance, familiarity, sug
gestiveness, guessability

Observability, consistency,
affordance, response time
stability

Human role multiplicity,
feedthrough, awareness,
visibility, privacy

Timeliness, adaptivity,
migratability

Forward/backward recover
ability, commensurate
effort,
pre-emptiveness

negotiation in a cooperative system, selects a previously unattained state
as the corrected state. In some cases only one of the strategies will be avail
able. When both strategies are available, it is the user who decides which
to adopt. Recovery should be viewed, therefore, as a user intention, not
as a function provided by the system. The designer must make the system
deviation tolerant by supplying understandable and easy 'escape routes'
from anticipated unwanted states, not by building one recovery function.

Thimbleby's notion (1990) of commensurate effort is again important
here. In this situation it means that if an error is easy to commit, its effect
must be easy to recover from.

The robustness property of deviation tolerance must be balanced against
the flexibility property of non-preemptiveness. A non-preemptive system
'allows the user to do anything in any case', while a deviation-tolerant sys
tem 'guides the user away from dangerous slips and errors' and in case of a

46 External Properties: the User's Perspective

slip 'guides the user towards safe recovery'. For example, a non-preemptive
power station control system would allow the operator to close a cooling
water pump without further ado, but a deviation-tolerant system would
react with a modal warning saying 'you can't do this unless you also ... '.

2.5 Formal Modeling of External Properties

The external properties cover so wide a spectrum that no single formal
model can be used to define and discuss all of them. Some of the properties
are tied intimately to the users' perception and behavior, henceforth they
are diffi.cult or impossible to formalize.

In this section, we present some simple formal modeling activities which
lead to a clearer understanding of some of the external properties associ
ated with usability. But our formal model does not contain real time, and
therefore the temporal aspects of a dialog are not formalized below.

In Chapter 1 we introduced four different Ievels of abstraction for an
interactive system: the functional, the dialog, the logical and the physical
level. At each of these levels we describe the interactive system as a deter
ministic state machine, or labeled transition system, consisting of a set of
states (system states), a set of events and a function which relates events
to state transitions. A state machine, M, is a 3-tuple

M = (S, E,"-+),

where
S the set of possible states the machirre can assume;
E the set of events or operations the machirre can engage in,

sometimes referred to as the alphabet;
"'-'+ the transition function, which maps events in E to transi-

tions on S. The signature is: "'-'+ : S x E t-+ S.

We are thus introducing four state machines, one for each level of abstrac
tion, and below weshall further introduce the set Obs of observable states,
i.e. the states which the user can perceive and distinguish.

But first we use the generalmachirre model M to illustrate the difference
between some ofthe properties described informally in Sections 2.2-2.4. For
example, we can distinguish between reachability and non-preemptiveness.
To make this distinction, we will appeal to a graphic depiction of a state
machine, or state transition diagram, like the example shown in Figure 2.1.

2.5.1 Flexibility properties formalized

Reachability refers to the connectedness ofthe state transition graph. Initial
reachability means that the user can get from the initial state to any other
state in the system. In the example in Figure 2.1, with S1 as initial state, the

Formal Modeling of E:z:ternal Properties 47

Figure 2.1 A transition diagram for a simple dialag with Jour observable states.
Sl is the initial state, and el-e5 are events triggered by user actions.

dialog has this initial reachability property. In the more general formulation
of reachability we ask whether it is possible to get from any state to any
other state. In the example, this form of reachability is not satisfied, since
there is no event transition from state S4 to any other state in the system.

Non-preemptiveness, on the other hand, is not just asking about connect
edness, but about the shortest paths between states. It can be defined more
or less fine-grained. Complete non-preemptiveness means that the transi
tion diagram is fully connected, i.e. there is a direct path from any state to
any other state. Such a requirement does not make sense in a real system
of any complexity, and therefore a system design must include decisions on
the degree of non-preemptiveness required.

Whereas there is a path from state S3 to Sl in Figure 2.1, it is only
possible to get to Sl by first going through S2. This intermediary state
is pre-emptive. This example demonstrates that non-preemptiveness is rel
ative; it depends on what actions or tasks the user wants to perform. If
the user never would want to get to Sl from S3, then this pre-emption is
acceptable (and maybe even helpful by preventing unwanted actions).

Multithreadedness refers to the possibility of having independent threads
of activity going on at the same time, and it can only be expressed here by
having several state machirres acting in parallel. A formalism capturing this
must involve synchronization mechanisms or real time in some form (as for
instance CSP* or Petrinet). But at the functionallevel, we can identify the
tasks that the user can be performing, and from this functional perspective
a multithreaded system will allow interleaving of those functional tasks.

Input/output re-use can be described in the state transition model at
the dialog or logicallevel. Re-use is possible if there is a transition from a
state rendering some inputjoutput value to a state using that same value
as input for another task.

* CSP = Communicating Sequential Processes, a language for parallel programming.

48 E:z:ternal Properties: the User's Perspective

2.5.2 Robustness properties formalized

Deviation tolerance, or recoverability, is in state model closely related to
reachability (discussed in the previous subsection) and the connectedness
of the state graph. Deviation tolerance is examined by determining which
states in S are error states and whether there are 'undo' paths back to
'normal' states.

Observability can be discussed using the different levels of state machirres
and the concept of interaction points. The machirres form a hierarchy, where
the functionallevel machirre MF is considered an abstraction of the dialog
level machine MD, which is an abstraction of the logical-level machine ML,
etc.

So we have abstraction functions between the states of each machine:

Abstrf : SL -+ SD Abstri; : SD-+ Sp

and sequences of events (transitions) at one level can be interpreted as a
single event (transition) at the level above. Figure 2.2 illustrates two of
these levels of abstraction.

Dialog Level

Logical Level

Figure 2.2 Two Ievels of state machines. The dialog-level machine has three
states, Dt, D2 and D3, and the corresponding refined logical-level machine has
siz states, where Dt is the abstraction of (Lt,L2}, and D2 is the abstraction of
{L3,L4,L5).

A specific dialog can be described by its state trajectory, i.e. the sequence
of states activated during the dialog. An interaction point is defined as the
point at which a sequence of events at one level can be interpreted as an

Formal Modeling of External Properfies 49

event at the next higher level. (At the highest level, the functional level,
all states represent interaction points.) Events between interaction points
at one level do not cause state transitions (are not 'seen ') at the next
higher level. Figure 2.3 depicts this relationship between states and events
at different levels of abstraction.

~ ·0 Functional Level

I I
I I

~ ·~ ·$ Dialog Level

I
I

0 Logical Level

Figure 2.3 Three levels of state machine trajectories. The interaction points are
marked with thick circles.

The user observes and interacts directly with the physical-level machine,
at the 'keystroke level'. But usually only apart ofthe internal system state
is rendered to the user. What the user can perceive is some projection,
or rendering, of the physical system states. This may be described by a
rendering function from the set of physical states to the set of observable
states:

render: Sp -+ Obs

We can now formulate observability properties in this multi-level model.
The user only perceives information rendered at the physical level. This
level contains information about the higher levels (by means of abstrac
tion/refinement). Therefore, we can ask to what extent the observable in
formation covers all of the dialog or functional information. If the rendering
doesn't reveal all information of higher levels, we can ask whether it is pos
sible to browse at the physical or logicallevel, a strategy in which physical
events (such as scrolling a window) provide different observations ofthe log
ical state without changing the corresponding dialog or functional states.
That is, a passive browsing strategy isonein which the logicallevel activity
occurs between interaction points of the higher levels.

Even if the property of predictability is very dependent on the user's
perception, we may be able to say something about it in terms of the
multi-level state machine model. It is a deterministic model where, given
a state s E S, any event e E E leads to a unique new state s' E S. (This
corresponds to modeling'"""" as a function.) But the user does not always

50 Ezternal Properties: the User's Perspective

know or understand how the system will behave. The uncertainty - or
nondeterminism - arises because the system cannot teil the user everything
about its state. The renderfunction above defines the observable state space
Obs, and predictability must be formulated with respect to what the user
can observe.

A necessary condition for the system to be predictable from the user's
perspective is that there is a function which maps events to deterministic
transitions on the observable state. It is important to note here that this
formulation of predictability is a necessary condition, but not a sufficient
one. That the observable effects of events are deterministic does not guar
antee that the users will actually perceive the determinism. The formalism
can only suggest that the definition of the observable state space Obs be
such that we can guarantee that users perceive it. Here the property of
insistence and the persistence of information in Obs will play a role and
influence how predictable the system occurs to the users.

2.5.3 Summary of formal model of e:~;ternal properties

This section has demonstrated how some of the external properties pres
ented in this section can be better understood by attempts to model them
mathematically. We do not claim to be able to provide such models for all of
the properties given in this chapter, nor would such an exercise necessarily
be beneficial. The formal models are only useful to the extent that they
make clear distinctions between properties or suggest new properties, or if
they can be used in verification of a system.

2.6 Conclusions

In this chapter, we have presented a catalog of external properties of inter
active systems which characterize usability, and which can be useful in the
software development process as yardsticks for quality. To summarize, the
external properties fall into three categories:

Goal and Task completeness - you can do what you thought of doing.

Flexibility - you can do things in several ways.

Robustness - you can avoid doing things you wish you hadn't done.

The last two principles attempt to compensate for obvious limitations
of Goal and Task Completeness, by considering user preferences and plan
ning, their need to understand the state of a system, and likely sources of
error and frustration. These extensions still fail to cover the full spectrum
of requirements of the more demanding principle of 'scenario completeness'
(page 27). However, there are also principles that could be adequately ad
dressed without covering all the requirements of scenario completeness.
Some notable examples of omissions are:

Conc/usions 51

Learnability - the ease with which novice users achieve competent per
formance with new systems.

User satisfaction - how a system makes the user feel in terms of sense
of accomplishment or excitement.

Rather than suggest that we could present a complete catalog of exter
nal properties to support usability, we consider the properties discussed to
represent (some aspects of learning and user satisfaction apart) the cur
rent state-of-the-art. The properties are defined to form as complete and
'orthogonal' a space as possible, but a number of interdependencies and
trade-offs will show up in Chapter 6 when discussing concrete examples.
We have introduced a finite-state machine model to illustrate how at least
some of the properties may be formalized, but formalization has not been
carried through, because it is still difficult to see how to utilize it effectively
in the development process.

We hope that the efforts to provide a systematic catalog that has both
formal and informal rationale will encourage researchers in the area to add
to and improve upon the properties identified in this chapter.

For the remainder of this book, however, we will assume only the external
properties defined here and try to demonstrate how systems should be built
which satisfy those properties where appropriate.

CHAPTER 3

Interna! Properties: The Software
Developer's Perspective

3.1 lntroduction

Every engineering project is driven by the need to produce an acceptable
product which matches the users' requirements and which will therefore be
accepted in accordance with contradual obligations. Where a product is
being produced speculatively in the hope of attracting users, there is just
as strong a set of requirements (including costing and timing) as when a
specific dient has ordered something.

These general rules apply just as much to the developer of a software
engineering product as to a civil or electrical engineer, the sole practical
difference being that a larger proportion of software products is produced
on a speculative basis. This makes (potential) customer involvement even
more important; a feature of software engineering design which should be
welcomed by a good professional engineering team.

There is, however, a very important technical difference between most
software engineering products and most 'hardware' engineering products.
Where hardware is concerned, the materials available for the product pro
vide a Iimitation on what can be made. Unfortunately for the software
engineer the investment of sufficient resources (including time) can nearly
always achieve a product which is almost indistinguishable from the users'
ideal. Most software engineering organizations, however, will wish to min
imize the resources required to produce and support speculative projects
to avoid exhausting resources, before the end product is completed and
earning revenue.

As discussed in Chapter 2, customer satisfaction is provided when system
behavior as perceived by the user is acceptable. The design of an interactive
system, however, must also take into account other considerations which,
in general, cannot be perceived or inferred by a user. For example, the
user is not concerned with the designer's problems or the construction cost
of a system (although perhaps with the price charged!) Also, while the
user is likely tobe directly concerned with the lifetime of the system when
produced, difficulties of maintainability are only of indirect concern where,
for example, a modification may turn out to be too late or too expensive -
or both.

54 Interna/ Propertie!: The Software Developer's Perspective

Designers' problems, which the user should not need to be aware of, in
clude, for example, the difficulty of actually constructing the desired system
and determining the actual effectiveness ofthe end result. Considerations of
this kind necessarily affect the software and hardware architecture chosen,
which, in turn, influences how the desired user-detectable properties are to
be achieved.

This chapter therefore introduces and discusses those software engineer
ing considerations which affect the construction and usability of an inter
active system. The developer must look at several attributes which are
neither observable, inferable nor measurable by users, but which influence
the effectiveness of the development process and of the final result. These
attributes, which are not visible to users, are given the collective term in
ternal properties.

lnternal properties are quality attributes of a system as seen from the
developer's perspective, just as the external properties discussed in the pre
vious chapter are system quality attributes as seen from the user's point
of view. While several internal properties apply generally to all systems,
the discussion in this chapter is confined to the user interface system ar
chitecture and those software engineering practices - software techniques -
which relate to this.

The approach that will be followed, is to consider, from the designer's
viewpoint, those software techniques which should be adopted to best sat
isfy the software quality goals throughout the entire life cycle of a system
- from the first gleam in the designer's eye to the final system's demise. It
will cover design and development methods for software creation, different
approaches to the content of software, and will also discuss the application
of software tools in order to produce the desired content. Together these
three facets of a designer's work (methods, software content and tools) may
be termed software techniques for the interactive system designer.

It should be noted that several different techniques may contribute to
the achievement of any one internal property. The decision to make use of
a particular technique to achieve one property may, however, have the side
effect of making it more difficult to achieve some other property or prop
erties. The existence of such negative effects makes it essential to study
the inter-relationships between properties and those software techniques
which may be adopted to ensure that necessary quality goals are achieved.
This is, of course, independent of whether the internal quality goal is set
because of a user requirement or is an imposed development constraint.
lmposed development constraints necessarily limit the design space avail
able to the software engineer, giving rise to the need to consider additional
design trade-offs.

There are many forms of interrelation between internal properties and
software techniques. These are discussed in more detail in a subsequent
section, after first covering the internal properties and then selected soft-

Internal Properties 55

ware techniques. These software techniques also interact with the external
properties from the previous chapter. This chapter closes with an analysis
of these interactions.

3.2 Interna! Properties

Internal properties require a complete life cycle view. It is important to
recognize that these properties are relevant from the conception of a sys
tem, beyond construction to modification and maintenance until its final
demise. Many properties are in a sense 'post manufacture' issues - such as
modifiability and maintainability - and are sometimes neglected by devel
opers. But the user interface is frequently the most highly modified portion
of a system after its initial production, and therefore the consideration of
all the issues is very important to the interface system software engineer.
Normaloperation must also be considered, even when no modifications or
maintenance are required, since systems must not make excessive demands
on processor power or storage.

We have selected eight internal properties that are particularly relevant
to the development of interactive systems:

Il. System Modifiability - is the system easy to modify when it be
comes desirable to extend its life or enhance its facilities?

I2. Portability - this must be viewed from three points of view: change
of hardware environment, change of software environment and moving
a user to a different environment using the 'same' system. How diffi
cult/easy will these be?

I3. Evaluability - how easy is it to evaluate the system against quality
goals (such as performance and suitability for new /different users)?

I4. Maintainability - once installed in a certain environment, will the
system be easy to maintain (and manage)?

I5. Run time Efficiency - does the system use an acceptably low frac
tion of computer system resources in relation to the functionality it
provides?

I6. User Interface Integratability - how easy is it (will it be) to in
tegrate the interactive system with existing or new user software appli
cations?

17. Functional Completeness - does the system have sufficient func
tionality to support the users in solving their tasks - and to do so cor
rectly?

18. Development Efficiency - is the most effective use being made of
resources during design and construction?

Two of these properties, Modifiability and Maintainability, may appear

56 Interna! Properties: The Software Developer's Perspective

to be very similar, but we still distinguish between them: a new task re
quirement or a change in the environment or the platform for the system
is met by modifications in the product; maintenance is the work needed to
keep a given system running in a given environment.

3.2.1 Modifiability

Once an interactive system has been released as a product, new or addi
tional requirements may arise. This leads to necessary modifications (or
new versions) of the product. The ease with which the system may be
modified is a very important factor in improving life cycle effectiveness.

In practice the user interface is the most highly modified portion of an
interactive system. This is one of the prime motivators for the developrnent
of the user interface software architectures discussed in the next chapter.
Modifiability is influenced by several different factors:

• available development environment;

• target environment;

• re-use of existing specifications and code;

• separation of concerns - the ability to provide clean abstractions (and
well defined interfaces) for system components;

• software architecture- the (re)composition of system components.

A typical development environment offers the designer both a set of tools
to assist with specification and implementation and also a library of already
designed and tested software abstractions (modules). The contents of the
library may be at specification level and/or implemented code level.

The value of such library facilities strongly depends on how well the mod
ules are parameterized. A well-parameterized modulewill offer the greatest
flexibility; a poorly devised modulewill be relatively inflexible and may ac
tually hinder modifications. Where a well-designed library of code exists,
modification may be effected by amendment of the actua.l parameters used
by a module or by changing one or more modules. In either case, existing
code is re-used. If system modifications cannot be effected by re-using ele
ments from a library, then new code will need to be constructed - with the
additional development tasks of documenting and testing. Inevitably such
new code will be more liable to failure than library facilities as it will have
had less testing than code already used in other systems.

The target environment, in which a system will be used, offers both
hardware and software facilities, together with inevitable constraints (e.g.
good graphical user interface (GUI) support may be available, but little
support offered for multi-mediastyle interfaces). The ease or difficulty of
modification is therefore strongly influenced one way or the other by the
target environment.

lnternal Propertie. 57

In the design of any interactive system there will be sections or modules,
which the designer's experience may indicate as likely candidates for future
modification. Such anticipated modification will be more easily effected if
the principle of Separation of concerns is followed in the original design.
Those sections for which modification is considered likely should (as far
as practicable) be separated into pure abstractions. If the separation is
well implemented, it results in the modification having no effect on other
interacting components. Hence the development environment must contain
tools that support good abstractions and provide facilities for generating
re-usable code-modules.

Because it is highly likely that modification will be needed both within
the user interface portion of the system and in the functional core, the
ability to produce separately generated modules is an essential adjunct
to ease of modification. But the full benefit can only be achieved if the
overall software architecture supports (or even forces) such separation into
modules. This separation and consequent encapsulation of functions not
only assists with future modification, but also with the ease of eventual
maintenance. This is further discussed in Section 3.2.4.

3.2.2 Portability

A system is said to be portable if it is easy (hence cheap!) to move it to a
different environment. Three kinds of portability may be involved:

1. Change oftarget hardware- the hardware platform on which the system
runs is changed but the system should still behave the same for the
user. Such changes may have profound effects on the user interface and
functionality of the system.

2. Change of target software - the software environment in which the sys
tem runs is changed (perhaps as an upgrade) and the system should
still behave in the same way for the user. Such software changes occur
frequently with little or no warning. Depending on the kind of upgrade,
such changes may have profound effects on the interface.

3. Move of user- a user moves to another department while undertaking
the same tasks. Differences in the platforms (for example due to small
differences in versions of terminals, * file servers, etc.) must not show
up as differences in the user interface. The system must supply the user
with the same facilities and functions as before, even if the new platform
is different from the one previously used.

The first two kinds of portability cover situations where the target plat
forms are changed, e.g. because new versions of hardware or software are

* We generalize the idea of a 'terminal' to any grouping of interactive input and output
devices and the associated software (e.g. a complete workstation).

58 Intemal Propertiea: The Software Developer'• Perapective

installed. The third kind covers a different, although superficially similar,
situation, where a user moves from workplace to workplace expecting to be
able to use the same system the same way with the same results.

Changing the hardware on which a system is to run is perhaps the most
obvious form of portability, for example changing from a bit-mapped graph
ics display to a vector display or motion video device. It should not be for
gotten, however, that 'merely' substituting a moremodern version of some
workstation may not be without hardware problems, where manufacturers
have failed to adhere to previously adopted standards, causing unforeseen
hardwarefsystem incompatibilities.

The most difficult portability problern is posed by the need to maintain
the same software interface following changes to the environment upon
which it is built. Such changes occur frequently with little or no warn
ing (such as installing an upgrade to an operating system) and can have
profound effects on the running software product. The need to adhere to
standards is even more important in this case. If such major portability
problems are to be avoided, the system designer must be absolutely sure
that his or her user interface does not rely upon non-standard features of
some environment.

The third kind ofportability, move ofuser, could be dismissedas an issue
of administration only. It may also be considered a combination of the first
and the second kind of portability. But it does cause problems sufficiently
often in practice that the designer should prepare for it. The system must
be designed for all the (slightly different) configurations and must be tested
on all terminals linked to the system.

All three forms of portability, however, are special cases of modifiability.
When discussing modifiability the focus point is the ease of changing the
behavior of a system in response to a need for enhanced or changed user
facilities. When considering portability, however, the items that have been
changed are the user's place or the system's platform rather than functional
requirements. Here it is a question of preventing changes in the environment
from affecting the way the system behaves for the user. The modifications
needed are to maintain previous behavior; not to permit changes from
affecting the way the system behaves or performs for the user. In summary,
modifiability addresses design changes, whereas portability occurs later in
the life cycle during installation and operation. It has the aim of prese1'1Jing

the original design in the face of a new and potentially uncooperative target
environment.

3.2.3 Evaluability

A system is said tobe evaluable when it is easy to evaluate, whether or not
it fulfills some specified quality goals. One method for enhancing evalua
bility is to build into the system facilities for obtaining metrics of various

lnternal Properties 59

kinds, related to the detailed behavior and performance evinced in use.
In many standard systems (like C or Pascal) tools are available- directly
or indirectly - to obtain measurements related to software properties like
e:ffectiveness, efficiency, error visibility or maintainability.

But from a usability point of view it should also be possible to measure
the usability properties discussed in the previous chapter - predictability,
migratability, etc. This requires careful consideration during design, as the
evaluability is intimately connected with the facilities available in the de
velopment and runtime environments. The runtime facilities may include
logging tools specific for each level of abstraction, producing reports such
as:

• Physical-interaction-levellogs capturing time-stamped patterns ofusers'
keystrokes, mouse clicks, etc., used to assess low-level time-dependent
external properties.

• Functional-levellogs capturing each function invocation and completion,
used to assess, e.g., pace tolerance and runtime efficiency. The logsalso
reveal functions seldomly used (candidates for elimination) and functions
that often fail (candidates tobe rewritten with improved error checking).

• Dialog-levellogs capturing patterns of user-system interaction, used to
assess external properties, such as non-preemptiveness, insistence and
deviation tolerance.

Irrespective of the actual development and run time facilities, the de
velopment approach used (prototyping, incremental development) should
provide for taking such measurements and incorporating the results of the
evaluation into the system as it is being developed.

3.2.4 Maintainability

Maintenance is that e:ffort which is necessary to keep a given system running
in a given environment (in contrast to modifiability which measures the
work to include new functions in a given system).

Maintenance includes system administration; installation ofnew printers,
displays, etc.; tuning of the system and error correction. Tuning and error
correction together make up typically only 20% of the work while admin
istration and hardware adaptation swallow 80%. The administration work
comprises things like version control, library updating and re-installation
(with altered set-up, or with a new window manager, etc.).

A system is said to be maintainable if:

• a system administrator has an easy job keeping the system running;

• the existence of errors which could cause failures is easily detected and,
when failures do occur, those errors are easily corrected.

60 Internal Properties: The Software Developer's Perspective

System administration is helperl if the system is clearly structured, and
it is systematically and accurately documented. This is most easily encom
passed as part of an overall quality assurance plan. Maintenance should also
be supported by good tools (software packages) for version and library con
trol, etc. Providing facilites for monitoring system behavior in response to
user interactions could also offer help in determining load patterns, bottle
necks, most frequent kinds of user mistakes, etc. *

A software system differs from a hardware product in that it is not
subject to wear. However, if over-stressed (not used in accordance with its
specification) it can suddenly break down just like a piece of hardware.
Just like hardware, too, errors which cause failure are present from the day
of manufacture, but do not reveal their presence until a user performs a
seldom exercised function or misinterprets some system response.

The difference between user interface software and most other engineer
ing products, therefore, is that maintainability measures need to include
user mistakes (errors of misuse) as well as system errors. A user mistake
may arise from two separate actions.

1. Because a task execution does not solve the user's task in the expected
way. What the user believes to be a correct task step in the actual
situation is invalid or leads to an unexpected result.

2. Because a system response is misinterpreted by the user, such that the
user continues task execution 'in a wrong direction'.

Errors may be caused by the underlying Operating system and hardware,
by the user application or by the interface system itself. The first two of
these error sources behave unpredictably from the point of view of the user
interface system. As such it is extremely difficult to design for maintain
ability in respect of them.

For the user interface system, however, reduction of number of errors
in the first place and ease of error correction improves maintainability.
High error rates are likely to result in requests for change. Developers must
therefore strive to prevent errors and to make it easy to correct errors.
A principal means of doing this is by re-using code as much as possible
and by making use of standards and standard development toolkits. The
resulting consistency aids users in learning how to correct basic input errors,
as well as reducing the need to learn new interaction techniques, which
would increase errors during the learning period. However, this tactic only
addresses the logicallevel of interaction, with occasional standardization of
dialog fragments (e.g. select command, fill in dialog box, accept dialog box).
The provision of tools and materials for supporting deviation tolerance at
all levels of interaction is discussed further in Chapter 5.

* It must be mentioned in this connection, however, that any such monitoring may be
in conflict with local privacy legislation.

lnternal Propertie• 61

3.2.5 Run time Efficiency

While other components of performance are relevant in an overall sense,
the most important measure of run time efficiency for an interactive user
interface is the response time of the system to user input. This is influenced
by a variety of factors, including:

• the software architecture adopted;

• the algorithms and heuristics which have been incorporated;

• the underlying software and hardware.

It is unfortunate that, in general, run time efficiency is reduced by the
adoption of mechanisms to alleviate some of the other problems of the
interactive system developer. For example, improving deviation tolerance
by the provision of undoing can make extensive demands on storage space,
especially when unlimited backtracking is supported. Thus, the process
of system design necessarily includes making trade-offs between run time
efficiency and some of the other problems discussed.

3.2.6 User Interface Integratability.

The typical user has several activities to perform and uses a number of
different interactive systems. This means that a new interactive system
must ideally integrate transparently with the existing user facilities in the
following ways.

• The interface of the new system must not be significantly different in
apparent behavior from existing systems. The reason for this is that users
may well continue to use existing systems at the same time. The new
system must therefore work in a manner which is intuitively the same
as existing software in the workplace, so that users can move seamlessly
without difficulty between the old and the new. It mustat least provide
the required functions in a way which is not counter-intuitive to the
user of other software. For example, the functionality assigned to picking
devices (e.g. mouse button mappings) must not be different, andin the
'File' and 'Edit' menus, optionssuch as those for saving files and copying
to the clipboard should use the same names, short cuts, and other menu
features.

These requirements are closely associated with some of the criteria for
portability (Section 3.2.2) and predictability (Section 2.4.4).

• One of the crucial aspects about the introduction of a new interactive
system is its ability to work correctly with existing software. The new
system must, therefore, interface to existing software applications so that
they - at the functional and the dialog levels - behave identically to the
way they have always behaved in the past in spite of the new interface.

62 Internal Properties: The Software Developer's Perspective

• The new system must not disrupt the target software or hardware en
vironment in such a way that the behavior of other existing software is
affected perceptibly. That is, the new system must not use the resources
in such a way, that any of the other (independent) programs are impeded
perceptibly.

Interface integratability in these ways is more easily obtained the more
the developers are able to adopt relevant standards both for the interface
software being built and for communications between different application
systems. These forms of interface integratability become progressively eas
ier to achieve when developers make increasing use of application design
standards (e.g. Windows Application Design Guide, Microsoft (1992)) and
inter-application communication standards - two software techniques that
influence the satisfaction of internal properties, as discussed in Section 3.4.

9.2. 7 Functional Completeness

The reason for constructing a particular system in the first place is to sat
isfy a set of task requirements. The external property of task completeness
requires that designers describe the necessary interactions for all identi
fied tasks. At the functional level, task executions involve the application
of abstract commands to functional state elements. During construction,
developers must find ways to implement these abstract commands and
functional state elements.

A system is functionally complete if developers can faithfully implement
all the abstract commands and functional state elements required to sup
port all identified tasks. Functional completeness is thus conformance to
the specifications that result from earlier task analyses.

The ease (or difficulty) with which this completeness may be achieved
is therefore a major concern for the development team. The proper choice
of design, refinement and testing methods is consequently of great impor
tance. Several software techniques have an impact on the achievement of
functional completeness. The required functionality at some level of system
abstraction may be given extensive support by the target environment, re
usable code, or the 1/0 resource manager. But the capabilities of these
fixed components may also prevent implementation of a required feature
(e.g. early implementations of the X Window system could not support
double-clicking at the logical interaction level). Similarly, user interface
and inter-application communication standards may aid, impede or block
the efficient and/or effective implementation of required functionality.

9.2.8 Development Efficiency

The efficiency with which it is possible to develop a system, must not be
confused with the effectiveness of the design process or of the design itself.

Interncd Properties 63

Efficiency as used in this chapter is defined as making the best possible
use of the resources available to the designer during development. To a
large extent this is a concern for the project manager, but the developer
must also be aware of the fact that methods and techniques selected for
the design may in:fiuence the overall effi.ciency.

The entire development process includes construction and testing which,
in common with most other branches of engineering, are often more labour
intensive than the design process. It is principally, therefore, these phases
which must be considered in attempting to improve efficiency. Development
efficiency is thus related to the following principal factors.

• The complexity of the development methods used (e.g. iterative, predic
tive and experimental methods, see below).

• The development environment and tools available to the engineers.

• The software architecture being developed. If the architectural model
does not easily fit with the systems requirements, compromises have to
be made in the software architecture, and this may impede the develop
ment effi.ciency.

• The target platform for the product which may place more or less severe
restrictions on the available options for implementing desired facilities.

• The need to adhere to published standards or local software engineering
practices.

• The size and composition of the development team.

In order to permit the rapid development of sophisticated, highly dy
namic user interfaces, there is a need for tools and techniques to assist the
designer. At present such user interfaces are more difficult to design and im
plement than were command line interfaces. Certain de facto user interface
standards can be used for more traditional interfaces, but for multi-media,
time-rlependent interfaces with audio input no standard is available. Those
tools which are being developed to assist the software engineer (e.g. Visual
Basic) are still experimental, and they only cover some of the possibilities
(i.e. GUis).

There is limited experience of developing such highly dynamic inter
faces. There are, for these reasons alone, very few standards of any kind to
which the engineer can adhere or even use as guidelines when designing.
In the short term the developer must therefore develop highly dynamic in
terfaces in the absence of significant tool support for formal design, and in
the absence of comprehensive standards (whether implemented in available
standard software components or not).

To some degree, the absence of standards may hinder efficient develop
ment, because the development engineer must invent his or her own meth
ods and rules. This may also hinder effi.cient re-use of already developed
software. While adherence to standards (whether formal or local) will help

64 Interna/ Properties: The Software Developer's Perspective

to reduce development design effort, as will the adoption of accepted engi
neering practice, this will only be of assistance as long as the standards and
practices concerned suit development ofthe kind of system being produced.
The problems of being constrained to adopt inappropriate standards will
inevitably hinder, if not inhibit, satisfactory product development, result
ing in functional incompleteness, inefficient development, or both.

Several different software architectures have been developed to support
user interface development. The in-depth study of a representative selection
of these is deferred to the next chapter. However, some initial observations
can be made. When a system developer uses an existing software architec
ture as the basis for a new design, there are several advantages.

• The architecture has been analysed and its advantages and disadvan
tages are known and are documented.

• The architecture will usually have been tested in practice, and such tests
will presumably also have been documented.

• The architecture may have been embodied in a development environment
specialized for it and, consequently, sophisticated tools could be available
to support the development of systems based upon it.

However there are also potential disadvantages which arise from using
any pre-packaged architecture.

• The architecture was optimized to support features that may not be
important in the current development.

• The architecture was similarly not optimized to support features that
are important to the current design.

• The compromises inevitable in a general design could have severe impli
cations for the simplicity with which complex requirements can be met
in an effective and effi.cient manner.

The nature and facilities provided by the target environment platform
will also affect development effort. The target platform will in almost all
cases provide undesired constraints on such things as memory, processor
power and peripheral channel performance. It may, probably far more im
portantly, not use the same software environment as that being used by
the development platform.

Lastly, the size and composition of the development team is a primary
determinant of development effi.ciency. The more experienced are the mem
bers of the team in developing systems similar to the current design, the
more effi.cient will the development process be. On the other hand, devel
opment efficiency is inversely dependent on the size of the development
team because of the communication requirements engendered by multiple
developers. The more developers, the more diffi.cult it is to maintain useful
communication.

Software Technique! 65

3.3 Software Techniques

When discussing external properties in the previous chapter, frequent refer
ence was made to those design features that aided or impeded the satisfac
tion of an external property. In the above discussion of internal properties,
software phenomena which aid or impede the satisfaction of an internal
property have also been mentioned. These phenomena may be collectively
grouped together under the heading of software techniques.

Each internal property may be achieved - at least to some degree - by
the judicious application of one or more software techniques. This section
discusses those software techniques which are seen as particularly appropri
ate to interface system design and building. The following section discusses
their applicability under particular circumstances.

Software techniques take many forms (this is why the term is used in
a loose sense). The main forms are: methodologies, tools and standards.
Methodologies provide guidelines for the development of software systems.
Tools generate or analyse (components of) software systems. Standards
provide guidelines for the behavior and other features of (components of)
software systems. The techniques that are considered most relevant to the
design of interactive systems fall into these three groups as follows.

Methodologies used as guidelines during the development of the interface
system:

1. User interface design methods
2. Architectural modeling
3. Global software re-use
4. Quality assurance planning.

Design and implementation tools to generate or analyse parts of the
system:

5. Specification languages and tools
6. Input/output resource management tools
7. Target environment facilities.

Standards that provide definitions and guidelines for behavioral and other
features of the system:

8. User interface standards
9. Inter-application communication standards.

All the above techniques have been referred to during the preceding dis
cussion of internal properties. The list given is not intended to be exhaus
tive, but rather to support the general approach adopted for this book - to
highlight, exemplify and analyse relationships between diverse aspects of
software quality and elements of the design, such as separation of concerns,

66 lnternal Properties: The Software Developer's Perspective

composition principles, and encapsulation. In Chapter 4, the software tech
niques are considered in the light of software architecture models, and in
Chapter 5 the techniques are related to the development process.

As noted at the start of this chapter, the employment of software tech
niques applies to entire software systems, but the discussion here is re
stricted to consideration of user interface aspects.

3.3.1 User Interface Design Methods

The intuitiveness of a particular user interface for users, and the effective
ness with which it can be used are very difficult to predict. First of all, the
design process should be helped by clearly distinguishing the four levels of
abstraction introduced in Chapter 1: the functional, the dialog, the logical
interaction and the physical interaction levels.

In response to the difficulty of prediction, most user interface design
methods include the use of evaluation techniques to gather early feedback
from other specialists or from representatives of the user community. Com
bining this with the fundamental principles of iteration referred to in Chap
ter 1, this may be restated as:
• Iterative design, where each development version of the system is eval

uated (by users and others), and evaluation results are used to design
the next version. A special version of this is prototyping, i.e. the rapid
construction of a portion of the user interface with limited, simulated or
non-existent functionality. A prototype may be constructed by hand or
by a tool able to translate a specification into executable code.
A number of evaluation techniques are widely used. It is necessary to

distinguish between (i) predictive methods that can be used very early
in the design phase of a project (i.e. during the specification phases, as
soon as a specification or even a low-tech prototype is available), and (ii)
experimental methods where some version (prototype) of the system is
used. Some widely used evaluation techniques may be classified as follows.

• Predictive methods applicable early in the development process:

HCI-based design heuristics, such as:
Principle-based Inspection- inspection by specialists for certain tech

nology aspects, such as non-preemptiveness, observability, etc.;
Style conformance inspection - inspection by specialists for confor

mance with published style guides such as the Windows Application
Design Guide (Microsoft, 1992).

Cognitive-theory-based methods, such as:
Cognitive Walkthrough- inspection by specialists for learning prob

lems, such as operation visibility, honesty, etc., discussed by Polson
et al. (1992);

Software Techniques 67

GOMS method - use of a cognitive model using Goals, Operators,
Methods and Selection rules, for a system to evaluate the efficiency
and/or learnability of the dialog.

Formal methods for assessing properties, such as using a formal spec
ification of a dialog to prove that it has some specified properties (e.g.
reachability).

• E:eperimental methods that require a running prototype or some mock-up
of the system under development:

Participative design - presentation of the user interface and the func
tionality of the developing system to user representatives.

Summative evaluation - structured and planned evaluation of the
finished product by usability specialists, with measurement against
required targets.

Heuristic evaluation - informal but planned examination of whether
the system fulfills a pre-identified set of heuristic usability criteria
(Nielsen, 1992, 1993).

Usage observation - semi-structured monitaring and observation of
real users' interaction with the system.

Once a prototype user interface has been built, it is imperative for the
designer to obtain user opinion, even if predictive evaluation has been ap
plied. The system must be tested by potential users. The purpose of such
tests is to obtain both objective measures of user difficulties and subjec
tive impressions from the user of ease of use, good and bad features, ease
or difficulty of learning, etc. Such user tests need very careful design and
preparation. The inevitable weaknesses of a prototype (with slow or miss
ing facilities) may lead to user frustration if the test users are not suitably
instructed.

In subsequent design work it must not be forgotten that the subjective
impressions gained in such tests are potentially more important than actual
measurements, since a prototype can rarely offer the same performance
because of the general purpose nature of the tools used in its construction.

In contrast to a prototype system, a system functional walkthrough need
not be conducted with a computer-based system. It could just as easily be
based on low-technology prototyping such as flip charts, recorders or other
presentation mechanisms. Recent developments in participative design have
greatly extended approaches to low-tech prototyping (Muller et al., 1993).

Whichever mechanism is chosen to derive user impressions and study
the usability of the design, it is important that the process is not merely a
single linear step in design. It may be necessary to iterate walkthroughs and
prototype experiments, until both software engineer and users are content
with the proposed design.

68 Interna.l Properties: The Software Developer's Perspective

3.3.2 Architectural Modeling

Most systems used in the real world are so large and complex that it is im
possible to grasp all details and to have a total understanding of the system
and its functionality. The way to better understand complex systems is to
use abstraction and to analyse simplified formal models of the systems.

The adoption of a high-level abstract architectural model for the design of
an interactive interface cannot, therefore, be too highly commended. The
model must provide a formal definition of an abstract solution to some
set of design requirements that is su:fficiently general to incorporate the
principal requirements of the system being designed. Using such a model
as a basis for detailed design has the immense advantage that the model's
designers have carried out a full analysis to ensure its suitability for the
specified range of system types. The developer using it therefore only has
to carry out design analyses at the detailed level, if no major architectural
modifications are found necessary.

The formal model of an interactive system must have the ability to cap
ture not only functionality in the classical sense, but also the essential
interactive nature of a dialog. A potential advantage of using such a formal
model as the basis for an interface system design is that the formal tools
which are becoming available could make it possible to not only specify the
detail design formally, but also to provide a large measure of design verifi
cation automatically. This obviously is of great significance for the design
aspects of quality assurance protocols as discussed below.

The following chapter examines a number of abstract software architec
tures suitable for the design of an interactive interface, elaborating on these
principles.

3.3.3 Global Software Re-use

The re-use of functional components, originally written for use as part of
other systems, is attractive from several points of view.
• The software exists and has (presumably) been tested in that earlier

system. This reduces the errors inevitably inserted when building a new
system.

• The cost of producing software for the new system is reduced by the
effort that would otherwise be expended on design, building and testing
of the component.

Along with the advantages there come responsibilities and, if these are
ignored, some possible disadvantages.

• The design of the original component should have been set out as an
abstraction (an abstract data type) so that its use depends upon nothing
except itself and those items which were used in its original construction.
This is a responsibility of the original designer/implementer.

Software Techniquea 69

• The clocumentation of the re-usable component must be complete ancl
(preferably) formal so that there can be absolutely no misunclerstancling
about how it shoulcl be usecl in another environment.

• The implementation must have been clesignecl ancl testecl against the
formal specification, otherwise it is almost worse than useless as it woulcl
have to be consiclerecl unsafe.

It is worth noting that several existing user interface toolkits have been
successfully usecl (principally commercial or public clomain winclowing sys
tems for bit-mappecl clisplays). In fairness, however, it must also be pointecl
out that the majority of these have a limitecl software interface choice ancl
have not yet been portecl to a suffi.ciently wicle range of programming lan
guages to be of completely general applicability. Nonetheless the clesigner
shoulcl strive to re-use existing software, because besicles reclucing clevel
opment costs it may contribute significantly to the maintainability ancl
moclifiability of the system.

3.3.4 Quality Assurance Planning

The popular saying that 'a reputable manufacturer procluces reliable procl
ucts' is a tautology, because the acljective 'reputable' hicles a great cleal of
conscious work ancl effort by the manufacturer to retain the (well-earnecl)
reputation. Most of this effort is clone in the names of quality control ancl
quality assurance. These two complementary aspects of quality are both in
their own way important to the ability to earn that goocl reputation.

Quality assurance (QA), the preventive meclicine of quality, is the work
clone to ensure that the procluction tools ancl the procluction methocls em
ployecl are all conclucive to minimize errors/failings in the resulting procl
uct. Quality assurance is thus not relatecl to any specific product or type
of procluct, rather to the methocls and techniques which are necessary to
procluce it. Careful QA planning is requirecl to achieve reliable proclucts.

Quality control, on the other hancl, is the curative meclicine, which has
to be appliecl to test completecl proclucts in an attempt to 'prove' that
the quality assurance proceclures have succeeclecl, providing feeclback for
further improvement in them as ancl when neeclecl.

Quality assurance comprises those proceclures, protocols ancl recorcls
maintainecl in relation to the entire clesign ancl procluction work, which
will provicle early warning if something is not working correctly. Such a
simple matter as recorcling not only every clesign change macle, but also
the reason for the change, will prevent extra work when some later cle
cision woulcl tencl to reverse this clecision without knowleclge of the very
likely unrelatecl reason for the earlier choice.

For the clesigner of interface software, the quality assurance protocols
usecl vary little from those neeclecl for other software, except that they

70 lnternal Properties: The Software Developer's Perspective

must cover the user tests, which constitute a very important part of the
interface development. These tests will involve performance and subjec
tive satisfaction targets that must be discussed, agreed and revised with
user involvement. Users must thus form part of the QA mechanism when
developing quality procedures.

The kinds of records and procedures needed for QA are carefully laid
down now in both nationalandinternational standards (such as ISO, 1987).
It is worth pointing out that the practice of quality assurance is frequently
annoying in its inception due to the extra tasks and morerigid procedures
which have to be adopted in working in the required way. But practical
experience has shown that engineering firms which have adopted the formal
mechanisms have reduced their costs in the long term and quality is indeed
improved, sometimes to an astanishing extent.

It is important, however, to reiterate that preventive medicine is not
foolproof and that quality control testing (and possible repair) of the end
products themselves cannot be omitted. Doing so in a production envi
ronment which operates a quality assurance system offers much less costly
'restorative medicine' than would be required were final product testing
the only means adopted for controling product quality.

3.3.5 Specification Languages and Tools

Those specification languages and tools chosen for use in any particular
project are intended to simplify the eventual construction of the actual
system by providing a formalism for specifying of the interactive system.
In contrast to the results of using prototyping tools, which are intended
to construct throw-away prototypes, the specification languages and tools
are used to define and document the final executing system (or at least a
part of it). The tools may help to check completeness and consistency of
a specification, thereby supporting development efficiency. Without such
tools, incompleteness and inconsistency may not be apparent until user
testing. Making corrections at this late stage is bound to be more expensive:
inappropriate features will have been implemented, and appropriate ones
may have been omitted. Addressing the former involves throwing work
away. Addressing the latter may involve expensive changes to the software
architecture in order to accommodate the missing features.

In general, specification tools can improve general quality merely by let
ting problems be detected and addressed before the expense of construction
and testing, by which time the resources needed for remediation may be
unavailable.

A variety of such specification languages exists, together with a few tools
for analysing specifications and for transforming specifications to generate
final systems. Some of these will be discussed in Chapter 5.

Software Technique! 71

3.3.6 Input/Output Resource Management

As will be described in discussing the use of inter-application communica
tions, the problern of resource sharing of any kind brings with it - besides
the request for data transparency- the need to ensure fairness and possibly
mutual exdusion in the communication protocols.

Therefore, whenever multiple applications wish to share a resource (such
as, for example, a bit-mapped graphic display) a resource manager shotild
be used to coordinate and arbitrate between requests for access to that
resource.

A principal feature of any such resource manageristhat it needs to pro
vide for an arbitrary nurober of applications and their interfaces requiring
access to a single resource. It is important, therefore, that the manager pro
vides timely response both to program requests and to external requests
- it may usefully be thought of as a real time component in almost any
workstation environment.

Another important feature is that a resource manager be entirely trans
parent to its dients. No one dient should need tobe aware of the existence
of other dients unless, of course, there is a functional need for such aware
ness. Even then, the resource manager must not be overtly visible when
inter-dient activity is taking place through its mediation.

A third major requirement of a good resource manager is the separability
of the management of the communications resource from the actual trans
fer of data via that resource. Such things as opening/ dosing connections
and setting or obtaining connection status should be completely divorced
from the transfer of data using that connection. This is best obtained by
using sound abstraction principles in the design - separating resource man
agement from data transfer.

To illustrate the complexity of I/0 resource management, consider that
part of an interface which is controling the current standard output channel
from some application. This part of the interface may need to arrange
for the channel to be connected to one of a nurober of devices (e.g. a
display window, a loudspeaker, and a remote communications line) all at
different times during one invocation of an application. This function can be
abstracted as 'standard-output-channel' - only provided that the transfer
of data through that channel can be donein a device-independent manner.
If this cannot be done, the designer may have to use a completely different
architecture - forced by the limitations imposed by the resource manager
failings.

72 lnternal Propertieß: The Software Developer's Perspective

3.3. 7 Target Environment

The choice of the target environment (in so far as it is under the control
of the system developer) almost invariably affects the difficulty of both the
design and the construction of an interactive system.

When the target environment is distinct from the development environ
ment, some additional effort must be spent in order to ensure that the
developed system operates correctly in the target environment. Such sim
ple matters as the availability (or not!) of a particular keyboard key, or
a monochrome target whereas the development environment had 24-bit
color, may seem trivial, but can completely frustrate the user of what in
prototype on the development hardware looked very good. The user tests
performed during the development should always be carried out in the
target environment.

The use of standard toolkits, window systems and resource (window)
managers provides a choice of techniques to achieve this. Error detection
and correction is also of much greater concern when the target environment
is distinct from the development one.

In any case, careful selection ofthe components in the target environment
is the preferred technique to help satisfy some of the software engineering
problems discussed above, such as portability and functional correctness.
For example, the mouse must work the same way (both speed and button
use) in the development and the target environment; data buffers and swap
areas must be large enough in the target environment to allow the same
size and speed of data transfer as in the development environment.

3.3.8 User Interface Standards

The interface developer - like any software engineer - must take into con
sideration not just official standards, but also guidelines and common con
ventions. All standards develop from guidelines derived from conventions
which in turn have been adopted as encapsulations of good engineering
practice. It is important, therefore, to realize that the use of three terms
really refers to the same concept at various stages of its life. That which is
today's standard is yesterday's guideline and the previous day's convention!

The existence and content of a standard is, for similar reasons, change
able as further technical knowledge or insight is gained over time. It is
most important, therefore, that a standard is not treated as a constraint
by the software engineer. Its existence merely confirms that a large num
ber of experts have come to an agreement over the standard after several
years of discussion, but like almost everything else in the computing world
the advance of technology encourages the amendment and improvement of
standards as understanding improves and ideas develop.

The interface developer must consider standards at two levels:

Software Techniqueß 73

1. Internally within the system.

2. Externally in interaction with the end user.

At the system level, the adoption of standards offers the advantage that
the designer is given some interface specifications rather than having to
develop them from scratch. Thus, various portions of the system can be
integrated more easily than would otherwise have been the case.

At the external interface, end users can be given a (standard) inter
face style with which they may be expected to be familiar. This decreases
training time for a particular system where the same style has been used
previously. A further advantage of using standard interaction styles is that
the standard interfaces can be tested for usability in a general setting rather
than replicating some of the testing for each system.

In both cases, the adoption of standards potential1y leads to the de
velopment of re-usable software components which implement a specified
functionality. The topic of developing and using such re-usable software is
discussed further below.

Where the adoption of one or more standards has been specified as a re
quirement, it must be realized that they may act as a constraint dependent
upon the appropriateness of the choice made in relation to the interface
system being designed. This is not, of course, certain. The potential for
constraint which may be engendered arises from the necessary nature of a
standard - it offers the solution of some less specific problem.

The underlying assumption in the considerable effort expended in de
veloping all forms of standards is that such general solutions provide an
organization with wide advantages, even though they may not be optimal
for every (or indeed any) system. A wise selection of the appropriate stan
dards to be adopted in helping to solve a particular problern will minimize
the disadvantages while maximizing the advantagestobe gained from their
adoption.

3.3.9 Inter-application Communication Standards

An important feature of the software running in any modern computer sys
tem is the ability for applications to share both control and data. A typical
example of such sharing is the ability to pass data from one application
to another under control of the user. This kind of inter-operability requires
that the inter-application communication follows some standard rules.

• The two applications concerned share a common form of data represen
tation.

• The facility offered for a user to move presented data (sharing a device
between two applications) requires that applications share the services
of a device to 'move' the data (for example, between one display window
and another).

74 Internal Properties: The Software Developer's Perspective

• The protocols that are used to effect the data movement must be defined
in common by the two applications involved. As an example, the edi
tor functions cut, copy, paste, send, receive must operate in a common
context for several applications. As another example, the co-existence
of multiple window managers requires that they co-operate to share the
display resource.

Even if the same data representation may not be suitable for all the ap
plications involved in this kind of interaction, all those involved must agree
on a representation for data exchange. Similarly, the protocol interaction
must be dealt with by the underlying software in a uniform way such that
different applications can react coherently on receipt of a message. The use
of inter-application communication standards is a mechanism that allows
this kind of data and protocol interchange.

3.4 Interna! Properties and Software Techniques

The preceding sections have listed a number of the principal software engi
neering problems - related to internal properties - faced by the developer
of an interactive system, together with some techniques which could be
used in attempting to solve them.

Achievement of the internal properties mentioned can be influenced by
several (or all) of the techniques in some way or another. This section
outlines the most important relationships between internal properties and
techniques. Table 3.1 gives a summary of the relations. The following dis
cussions for each internal property describe how each problern may be al
leviated by a proper combination of development techniques and amplify
the table in respect of the matters discussed earlier in this chapter, point
ing out the specific interactions which must be considered by the design
engineer.

11. Modifiability. User interface software architectures are designed to
support the modifiability of the user interface. Thus, the adoption of
one of those architectures already developed and formally analysed will
improve the modifiability of the total system. The use of specialized
specification languages and tools will reduce the effort needed to modify
a system, because a formal description is easier to manipulate than an
informal one. To some degree the systematic re-use of code and the
proper choice of target environment may promote modifiability.

T
ab

le
 3

.1
 R

el
at

io
ns

hi
ps

 b
et

w
ee

n
so

ft
w

ar
e

in
te

rn
a

l
pr

op
er

ti
es

 a
nd

 s
of

tw
ar

e
te

ch
ni

qu
es

 i
n

 t
he

 d
es

ig
n

o
f

in
te

ra
ct

iv
e

sy
st

er
ns

.
E

n
tr

ie
s

in
di

ca
te

 t
he

 r
el

at
io

ns
:

++
 :

 is
 a

 p
ri

rn
ar

y
rn

ec
ha

ni
sr

n
to

 r
ne

et
 t

he
 c

on
ce

rn

+
 :

 h
as

 a
 s

ec
on

da
ry

 e
ff

ec
t

on
 s

ol
vi

ng
 t

he
 p

ro
bl

er
n

-
:

rn
ay

 h
av

e
a

ne
ga

ti
ve

 e
ff

ec
t

on
 s

ol
vi

ng
 t

he
 p

ro
bl

er
n

er
np

ty
:

th
e

te
ch

ni
qu

e
ha

s
no

 s
ig

ni
fi

ca
nt

 e
ff

ec
t

w
it

h
 r

eg
ar

d
to

 t
he

 p
ro

pe
rt

y

T
h

e
U

se
 o

f
S

of
tw

ar
e

T
ec

hn
iq

ue
s

In
te

rn
a!

 P
ro

p
er

ty

D
es

ig
n

A
rc

hi
te

ct
.

S
W

Q

A

S
pe

ci
f.

1

/0
 R

es
.

T
ar

g
et

m

et
ho

ds
 m

od
el

s
R

e-
us

e
P

la
n

n
.

L
an

g.

M
an

ag
.

E
nv

ir
.

11
 M

od
if

ia
bi

li
ty

++

+

+

+

12

 P
o

rt
ab

il
it

y

+

+

13
 E

v
al

u
ab

il
it

y

+

++

+

14
 M

ai
n

ta
in

ab
il

it
y

+

++

+

+

15

 R
u

n
 t

im
e

E
ff

ic
ie

nc
y

+

+

++

16
 U

l
In

te
g

ra
ta

b
il

it
y

+

+

+

17

 F
ct

.
C

om
pl

et
en

es
s

+
I-

+

+

+

18
 D

ev
.

E
ff

ic
ie

nc
y

+

+

-
++

U
I

C
o

m
m

.
S

ta
n

d
.

S
ta

n
d

.

++

+
 ++

++

+

+

76 lnternal Properties: Tke Software Developer's Per~~pective

12. Portability. Provided that the target hardware can offer the required
functionality in some form it should always be possible to port a system
tothat hardware from some other hardware. This does not, of course, im
ply that the functionality will be identical or even acceptable - nor does
it imply that porting is easy. Problems in this area relate to such things
as requirements for a rich display color spectrum for correct function
ing, speed penalties with an inadequate central processing unit (CPU),
or unacceptable performance of some disc storage.

The adoption of software standards and guidelines for a target environ
ment will have a major impact on the possibility of moving to a different
platform with minimal effort. The availability of standard software pro
tocols, interfaces and facilities ensures that the required functionality is
standard across platforms to a greater extent than would have been the
case, had such standards not been available and adopted.

The use of specialized formal specification languages and tools helps to
make the interface system independent of the target platform. The plat
form dependency then becomes a function of the conformance to stan
dards of the compilers, tools and resource managers - not of the system
being built. Adoption of such formal techniques should also, therefore,
enhance the portability of the interface system.

13. Evaluability. This is enhanced by adopting and planning for the use
of user interface design methods such as walkthroughs, since evaluation
of behavior is the prime purpose of employing such methods. A stead
fast intention to perform predictive testing will ensure that the system is
evaluated in early phases of development. The presence of assertions and
conditions in formal specifications allows these to be converted into run
time instrumentation of the interface, which can again assist in evalua
tion. The use of such techniques, therefore, also supports the satisfaction
of this property.
Most important of all, however, is the adoption of quality assurance pro
tocols and methods. Recording all measurements, decisions and reasons
- and having formal change mechanisms and review processes during
system development - prepares the ground for evaluation and for ex
ploitation of the evaluation results.

14. Maintainability. Several software techniques may improve the main
tainability of a system. If, in the design, a well-structured architecture
is chosen, with loose couplings between components and strong cohesion
in each component, it will be rather easy to implement the necessary
maintenance. Systematic quality assurance planning ensures that full
regression testing is carried out when updating and changing the sys
tem.

The systematic re-use of code in an organization can be a major contri
bution towards improving the maintainability of the systems developed.

lnternal Propertie& and Software Techniques 77

Maintainability is also enhanced through the use of standards embed
ded in software toolkit components, since they are used in a wide variety
of environments and consequently may be expected to have been thor
oughly tested. It may be further enhanced through having a separate
target environment from the development environment, since different
platforms tend to exercise software behavior in different ways, exposing
different errors.

15. Run time Efficiency. The key factor in providing an efficient run
time performance is the choice of target platform. Usually, the more
resources available in the target environment, the faster the interactive
software and the application programswill execute. But the development
engineer must be concerned with efficient use of the available resources
whatever they are. Here the choiCe of an appropriate architectural model
may enhance efficiency (although few user interface architectures focus
on efficiency, most introduce additional overhead).

The use of a resource manager should increase efficiency, since such man
agers have been carefully optimized for efficiency, and therefore tend to
be more efficient than any individual system design will be. The adoption
of standard inter-application communication protocols in many cases
introduces overheads because they involve additional data transforma
tions, lowering run time efficiency.

16. User Interface Integratability. The developer often works under
the constraints of what target environment is available to the users. But
given this constraint, the adoption of appropriate standards, whether for
user interfaces or inter-application communications, will ensure as far as
possible that a new interface integrates smoothly into the user's work
place. It is most important that any new interface is not incompatible
operationally with the other systems with which a user is familiar.

The use of prototypingjwalkthrough techniques and their embodiment
in the quality assurance protocols also improves integratability of a new
system into the user environment. By letting users examine prototypes,
designers can discover features of a new system that are incompatible
with existing interactive software at the user site. It must be ensured
that the users' feedback is taken formally into account in the system
design process. This may do more than anything else to produce the
desired end result.

Finally, the re-use of standard software components is also likely to give
the end user a look and feel with which they may be expected to be
familiar, provided that their existing environment supports these com
ponents.

17. Functional Completeness. The ease with which the functional re
quirements can be met depends on the target platform, that is, the

78 Interna/ Propertieß: The Software Developer'ß Perßpective

target environment components, and additional materials such as I/0
resource managers and libraries that implement standards. These, there
fore, must be selected appropriate to the functional needs. There is no
primary mechanism for achieving the property, and several of the soft
ware techniques considered here may further the achievement of func
tional completeness. But architectural models can aid or impede the
provision of advanced user interface support facilities as discussed in
Cockton (1991).

18. Development Efficiency. The use of languages and tools specifically
designed to specify user interfaces has a significant influence on the de
velopment effi.ciency. It may significantly reduce the time required to
produce and prove a specification. The use of an already analysed soft
ware architecture will also help, since a portion of the high-level design
has been completed. Similarly, the re-use of existing code can mean that
the functionality embodied in that code does not have to be re-designed,
re-built and re-tested. Lastly, the current use of predictive user interface
testing can require extensive developer effort with uncertain gains in
terms of design improvements. This can have a negative impact on de
velopment effi.ciency.

3.5 External Properties and Software Techniques

Previous sections have discussed a number of techniques available to the
developer of an interactive system and stressed important relations between
the techniques and some of the major concerns for the software engineer.
The previous chapter introduced a number of important 'external' proper
ties of user interfaces. Interactions between these external properties and
software techniques can now be explored. In no case does the application
of a technique ever guarantee that the constructed system has a specific
property, but certain forms of some techniques can aid or impede the sat
isfaction of an external property.

Each user interface property is discussed in this section from this point
of view in relation to the software engineering techniques outlined in this
chapter. The discussion is summarized for flexibility properties in Table 3.2
and for robustness properties in Table 3.3.

3.5.1 Fle~ibility Properties

The use of good user interface design methods and the use of a well
structured architectural model are of great importance for almost all the
flexibility properties, as indicated in the first column of Table 3.2. Each of
the other software techniques influences some of the properties as discussed
below.

T
ab

le
 3

.2
 R

el
at

io
ns

ki
ps

 b
et

w
ee

n
fi

e:
~;

ib
il

it
y

pr
op

er
ti

es
 a

n
d

 s
of

tw
ar

e
te

ch
ni

qu
es

.
E

n
tr

ie
s

in
di

ca
te

 t
he

 r
el

at
io

ns
:

++
 :

 is
 a

 p
ri

m
a

ry
 m

ec
h

a
n

is
m

 t
o

he
lp

 a
ch

ie
ve

 t
he

 p
ro

pe
rt

y
+

 :
 h

as
 a

 s
ec

on
da

ry
 e

ff
ec

t
in

 a
ch

ie
vi

ng
 t

he
 p

ro
pe

rt
y

-
:

m
a

y
ha

ve
 a

 n
eg

at
iv

e
ef

fe
ct

 o
n

 a
ch

ie
vi

ng
 t

he
 p

ro
pe

rt
y

em
p

ty
:

th
e

te
ch

ni
qu

e
ha

s
no

 s
ig

ni
fi

ca
nt

 e
ff

ec
t

w
it

h
re

ga
rd

 t
o

th
e

pr
op

er
ty

'C

u
st

o
m

iz
a

b
il

it
y'

 c
ov

er
s

he
re

 b
ot

h
R

ec
on

fi
gu

ra
bi

li
ty

 a
n

d
 A

d
a

p
ti

vi
ty

T
h

e
U

se
 o

f
S

of
tw

ar
e

T
ec

hn
iq

ue
s

F
le

xi
bi

li
ty

 P
ro

p
er

ty

D
es

ig
n

A
rc

hi
te

ct
.

S
W

Q

A

S
pe

ci
f.

1

/0
 R

es
.

T
ar

g
et

rn

et
ho

ds
 r

no
de

ls

R
e-

us
e

P
la

n
n

.
L

an
g.

M

an
ag

.
E

nv
ir

.

D
ev

ic
e

M
ul

ti
pl

ic
it

y
+

+

+

+

+

R
ep

re
se

nt
at

io
n

+
+

++

M

ul
ti

pl
ic

it
y

1
/0

 R
e-

us
e

+

++

R
ol

e
M

ul
ti

pl
ic

it
y

+

+

+

M
u

lt
it

h
re

ad
in

g

+

+

+
+

+

N

on
-p

re
er

np
ti

ve
ne

ss

+

+

+
+

+

+

R
ea

ch
ab

il
it

y
+

+

+

C
us

to
rn

iz
ab

il
it

y
+

++

+

I-
+

M

ig
ra

ta
b

il
it

y

++

++

-

U
I

C
or

nr
n.

S

ta
n

d
.

S
ta

n
d

.

+

+
+

+

+

+

+

80 Internal Propertie1: The Software Developer'1 Penpective

Device Multiplicity

The ability of an interface system to provide flexible use of multiple in
putjoutput devices is related to the use of a resource manager and the
facilities which it provides. Devices and channels are controlled and pro
vided by the resource manager, as a facility for the user interface system.
The importance of the resource manager providing the necessary I/0 fl.ex
ibility cannot be sufficiently stressed as the ability to multiplex channels
and change I/0 device dynamically is of great significance.

The other technique of importance is the use of an architectural model
which caters for the necessary multiplicity. Capabilities for concurrent ex
ecution, introduced and supported by the architecture, ease the configura
tion of multi-channel interfaces. Without them, one must directly program
the scheduling and interleaving unaided. Likewise, the target environment
which provides the real communication devices and channels must pro
vide the necessary fl.exibility and the mechanisms for synchronization (e.g.
sound with video). The target operating system must contain the necessary
facilities to allow for device multiplicity.

Representation Multiplicity

An interactive system has representation multiplicity if it offers the user
multiplerenderings (simultaneously or sequentially, on request) of one state
element at any level of abstraction, or if it accepts multiple representations
of the same input at the logical interaction, dialog, or functional Ievels of
abstraction. In order to achieve this, presentation must be clearly separated
from control and data processing during software refinement. This is sup
ported by the use of an abstract architecture model in the design process.
However, the systematic use of a good user interface design method may
also help to identify the multiplicity that is appropriate for the intended
users and adopted tasks.

1/0 Re-use

The re-use of output from one interaction step as input to another step is
an important convenience factor for users, similarly for re-use of previous
input. Implementation of re-use is helperl noticeably if the interface sys
tem adopts standards for inter-application communication. When design is
done using a suitable architectural model, the possibilities for re-use will
be established in the design phase and will considerably ease subsequent
construction.

To a lesser degree, the adoption of common standards and conventions in
other parts of the design may also help the designer to incorporate re-use
of inputjoutput data.

External Properties and Software Techniques 81

Human Role Multiplicity

Multi-user systems - and to some extent also single-user systems - must
be designed to support users in different roles, being granted access to dif
ferent sets of facilities. This is both a question of safety, where the system
limits access for less privileged users, and of fl.exibility, where the system
renders some information differently to different users. This calls for a de
sign methodology that allows identification of the need for and the nature
of this fl.exibility. It also calls for architectural models that can deliver
what is required here. Since data should be used and presented in different
contexts to different users, the consistent use of inter-application commu
nication standards is essential. Also the underlying components - such as

the database system and the 1/0 resource manager- must facilitate using
the same data for different purposes.

Multi- Threading

Where a user interface system is required to provide the user with an oppor

tunity to maintain several threads of activity at once, the correctness of the
design is paramount. Correctness here must ensure that the interface sys
tem maintains separation and permits merging/splitting when called upon
to do so, while maintaining the individual integrity of the functional cores.
In this respect the need to use formal specification notations and tools
cannot be over-stressed. The requirement here is for a process construct
rather than just an interleaving construct/ capability (as in production sys
tems) where the actual threads of control are not easily isolated within
a specific configuration. Once the (formal) specification is complete, how

ever, the reification needed for the actual implementation can proceed in
a variety of ways, for example, it may depend upon the architecture which
may have been chosen for other reasons. lf a choice of architecture remains,
the selection should improve the multi-threading performance (by provid
ing process facilities offering parallel execution of interface components)
as well as guiding the appropriate re-ification of the specification during
implementation.

It is again important to note that multi-threading of any kind necessarily
involves interaction with any resource manager being used. Therefore, once
again, care must be used in adopting the relevant protocols to achieve the

desired end results. Note, for example, that many window managers can
provide multi-threading between applications by letting users change their
focus of attention between windows.

Non- Preemptiveness

Where a system is to be non-preemptive, great care has to be taken in its
design to ensure that the correct desired temporal relationships exist be-

82 Internal Propeflties: The Software Developer's Perspective

tween the user's actions and those ofthe system's interface. This is therefore
primarily an issue at the session level of description, since it may place re
strictions on the next user step in terms of intention and planning. The
only way to ensure completely satisfactory specification of this is to use a
formal technique which can be proven correct, for example using a dialog
specification language, the use of which could be partially automated.

It is also important to realize that care must be taken in selecting ap
propriate protocols for use with any resource manager to be used with the
interface design so that the specified relationships hold in the implementa
tion. Without such a separate resource manager it must be noted that it
is not possible to isolate the session level of description; the designer not
using one would lose the ability to detect introduction of pre-emptiveness
problems occurring at low levels of system abstraction.

Reachability

A system is said to be easily reachable if it allows users to navigate easily
from any state to any other state. Reachability analysis of code, especially if
the user interface modules are not well separated, is demanding and must
be carried out using formal requirements to ensure a clean and correct
system design, using formal specification languages and tools.

Layered specifications allow reachability to be established separately at
one or more levels of abstraction. In practice most reachability analyses
can be carried out most efficiently at the functionallevel. But, as further
illustrated in Chapter 4, reachability is a pervasive property and therefore
basically neutral to any architectural model.

Customizability

The term customizability includes reconfigurability, modifications to the
user interface initiated by the user, and adaptivity, modifications initiated
by the system. As already indicated when discussing relationships between
several other properties, the architectural model used may have a prime
influence on how easy an interface system may be to customize. The poten
tial for customizability will also be enhanced by the use of flexible resource
managers.

On the other hand, the adoption of inappropriate standards and conven
tions may adversely affect the possible customizability, particularly since
standards - at least older standards - often prescribe one and only one way
of doing something.

A customizable system must have some built-in flexibility, some possi
bilities left open. Provided that care is taken in parameterizing the design,
the use of formal techniques supports well-defined user customizability. If
care is not taken, the system could be difficult to customize.

External Propertieß and Software Technique! 83

Migratability

Migratability must be designed into the system at an early stage and is
best achieved through use of a well-structured system architecture and a
good design methodology. Architecture is relevant, as different forms of
migratability exist at different Ievels of system abstraction, and an archi
tecture that separates these Ievels will localize each form of migratability.
Layered architectures support such localization, as do layered specification
languages. The latter describe a system at different Ievels of abstraction.
At the physical and logical Ievels of abstraction, input and output steps
are described in detail using constructs appropriate to the interactive me
dia that realize them. At the dialog Ievel, these steps are treated as atomic
events within some temporal structure. At the functionallevel, the system
becomes an abstract data type, with abstract commands applied to and
modifying abstract substructures.

Design methods should support identification of tasks that allow tasks
to migrate between computer-supported ones and fully-automated ones.
Generally, this will be at the functional level of interaction, but it can
be even more abstract, at the level of user's goals, where many abstract
commands may migrate to the system.

When goals and related tasks migrate to the system, some software agent
becomes responsible for them. The same is true for lower levels ofmigration.
At the logical interaction Ievel, some agent must generate input events. At
the dialog Ievel, agents can follow scripts. At the functionallevel, agents can
execute abstract commands. Whatever the mechanism, users must never
find that commands work well in conjunction with other applications when
they issue them but not when they migrate to an agent. In short, everything
that works in the absence of migration should also work when it is added
or invoked.

The ability to implement agents at different Ievels of system abstrac
tion depends to an extent on user interface standards and inter-application
communication standards. The latter may assist or obstruct t.he implemen
tation of agents, generally by denying capabilities to programmers that are
available to end-users (i.e. the system cannot do everything the user can).
The former may impose patterns of interaction that obstruct optimal de
sign of migratable functions, e.g. its visual design guidelines and display
features may make it diffi.cult to make the actions of agents salient (Ciarke
et al., 1995).

3.5.2 Robustness Properties

The matehing of robustness properties and software engineering techniques
is summarized in Table 3.3. As illustrated by the first columns of the table,
the design methodology, the use of an architectural model, and specification

84 Interna! Properties: The Software Developer's Perspective

languages and tools play important roles in the design of systems with good
robustness properties. The influence on each property is discussed below.

Observability

The use of formal specification techniques in the design of an interactive
system is a primary factor in preparing the system for observability, because
the specification must contain all state elements of interest to the user. For
example, the dialog level supports observability walkthroughs, which can
isolate the values rendered at a particular interaction point. With some
notationssuch analysis could be automated, and Chapter 5 addresses tools
that do this. In order to assess observability it is important to use a design
method that supports the assessment.

The adoption of a suitable architectural model will also throw light on
how such observability may be achieved. Such a model isolates specific rela
tionships between levels of description in user interface configurations. This
is only possible in architectures that allocate different levels of description
to different architectural components. Suitable architectures must further
support explicit links between elements in different levels of description.
For example, elements at the functionallevel of description could be linked
to elements at the logical interaction level to expose the correspondence
between a display item and the underlying value that it renders. There are
many possible forms for such links, and they will affect the extent to which
analysis of observability is supported.

Insistence

A system is insistent if feedback to the user is sustained and demands some
user reaction. This is best provided for during design by using formal speci
fication languages and tools, which permit the explicit specification of such
sequencing requirements. Whether or not insistence can be obtained by an
implementation depends, of course, to a large extent on the components of
the target environment (e.g. absence of so und, no modal dialog boxes, no
locking of display resources, limited graphical or text coding for emphasis).
The designer, therefore, must consider such target environmental factors
when planning for insistence.

Where insistence is achieved by some form of pre-emptiveness, the use of
formal descriptions lets designers establish that the required pre-emptiveness
has been achieved. Formal descriptions at the dialog level allow manual and
automatic analysis of the persistence of information on specific interactive
devices; and the design method must allow assessment of the property.

T
ab

le
 3

.3
 R

el
at

io
ns

ki
ps

 b
et

w
ee

n
ro

bu
st

ne
ss

 p
ro

pe
rt

ie
s

a
n

d
 s

of
tw

ar
e

te
ch

ni
qu

es
.

E
n

tr
ie

s
in

di
ca

te
 t

he
 r

el
at

io
ns

:
++

 :
 is

 a
 p

ri
m

a
ry

 m
ec

ha
ni

sm
 t

o
he

lp
 a

ch
ie

ve
 t

he
 p

ro
pe

rt
y

+
 :

 h
as

 a
 s

ec
on

da
ry

 e
ff

ec
t

in
 a

ch
ie

vi
ng

 t
he

 p
ro

pe
rt

y
-

:
m

a
y

ha
ve

 a
 n

eg
at

iv
e

ef
fe

ct
 o

n
ac

hi
ev

in
g

th
e

pr
op

er
ty

em

p
ty

:
th

e
te

ch
ni

qu
e

ha
s

no
 s

ig
ni

fi
ca

nt
 e

ff
ec

t
w

it
h

re
ga

rd
 t

o
th

e
pr

op
er

ty

T
h

e
U

se
 o

f
S

of
tw

ar
e

T
ec

hn
iq

ue
s

R
ob

us
tn

es
s

P
ro

p
er

ty

D
es

ig
n

A
rc

hi
te

ct
.

S
W

Q

A

S
pe

ci
f.

I/

0
 R

es
.

T
ar

g
et

U

I
C

o
m

m
.

m
et

ho
ds

 m
od

el
s

R
e-

us
e

P
la

n
n

.
L

an
g.

M

an
ag

.
E

nv
ir

.
S

ta
n

d
.

S
ta

n
d

.

0
bs

er
va

bi
li

 ty

+

+

+
+

In

si
st

en
ce

+

+

+

+
+

H

on
es

ty

++

+

+
+

P

re
d

ic
ta

 bi
li

 ty

++

+
+

-

+

A
cc

es
s

C
o

n
tr

o
l

+
+

+

P

ac
e

T
ol

er
an

ce

+
+

D

ev
ia

ti
o

n
 T

ol
er

an
ce

+

+

+

+

+
+

-

+

86 Interna/ Properties: The Software Developer's Perspective

Honesty

No software engineering technique can guarantee that a system will be
honest, neither misleading nor misinforming the user, because honesty is
intimately linked to the users' perception of the system. In this context,
however, a user's perception is frequently dictated by experience. Such
experience is, like a standard, a distillation of what has been found to occur
in the past. The adoption of appropriate standards, particularly in relation
to the visible elements of the interaction, is therefore perhaps the best
way of giving a user a subjective impression of 'honesty'. User interface
standards can create, maintain and reinforce user's expectations on the
use of interface controls, from the simple operation of pull-down menus to
the standard contents of 'File' and 'Edit' menus (e.g. as specified in the
Windows Application Development Guide (Microsoft, 1992)).

Allied to this adoption of such standards, however, the designer must not
neglect the use of a design methodology with as much user involvement as
possible to supplement and reinforcesuch subjective perception. Also, qual
ity assurance procedures with user involvement further the construction of
a system which users perceive as honest.

Architectural modelsthat simplify the maintenance of observability will
also contribute to the achievement of honesty. Similarly, anything that sup
ports insistence will inevitably also support honesty.

Predictability

There are two key aspects of predictability: consistency offeatures and con
sistency of response time. The feature consistency aspect of predictability
may be promoted by adoption of standards and common conventions in
the same kind of way.

Desired temporal aspects of system behavior can only be achieved, if
user involvement helps to establish actual parameters of appropriateness
during the design phases. The designer must also be aware that hardware
or software constraints in the target environment may spoil all attempts to
achieve temporal predictability.

Both of these aspects of predictability effectively require that the inter
face system specification is logically complete - that a formal specification
language has been used and that there are no unspecified behavioral com
ponents, so that every action/reaction is totally predictable. Architectural
models which simplify the maintenance of honesty may- as a secondary
effect - also support predictability.

Access Control

Access control may contribute significantly to the quality of multi-user sys
tems with multiple human roles, but may also be of interest in single-user

External Properties and Software Techniques 87

systems, as discussed in Chapter 2. The basic problern of access control
is to differentiate the users' access to inspect or alter certain parts of a
system, according to the users' roles or tasks. The users may have differ
ent opportunities to view data, to execute task sequences, or to adapt the
interface. Most of this is centered around the handling of input/output for
data access, therefore the, design must use appropriate 1/0 resource man
agement facilities, and use of inter-application communication standards
may also further the ease of consistent and planned access control.

Pace Tolerance

In order to construct a system perceived as pace tolerant by users, the
design methodology must involve user tests, especially at late stages where
a prototype is almost ready for field-testing. The designer must require
that the target environment does not prevent pace tolerance (for example
by the unavoidable presence of built-in hardware time-outs and undesired
environmental software variations).

Deviation Tolerance

This is the capability of the system for backward or forward error recov
ery. It can be achieved only by using suitable abstractions and systematic
refinements during design and construction. This means that an appropri
ate architectural model (which provides for 'undoing' support at different
levels of system processing) and the use of formal specification tools are
necessary.

Consideration should also be given to the adoption of relevant standards
and conventions for error recovery. There is a wide repertoire of design
features that support good deviation tolerance. If these are not features of
a specific user interface standard, and this standard must be adhered to
in a design, this may have a negative effect on deviation tolerance. Con
versely, if the standard provides support for diffi.cult and obscure features,
the standard will have a positive effect.

The designer should not forget that error recovery is necessarily depen
dent upon beingable to recreate some previous state. Undoing mechanisms
make a major contribution to deviation tolerance. These can be diffi.cult
to implement in many current programming languages without some form
of exception facility, although extensive support for rollback is provided in
some database managers. The ability to provide undoing and error recovery
is, therefore, inevitably limited by the state recording facilities (and their
reliability) provided by the target environment and re-used software. This
must therefore be chosen appropriately to satisfy the property requirements
specified for the user interface system.

88 Interna! Properties: The Software Developer's Perspective

3.6 Conclusions

This chapter has addressed the internal software properties of a user inter
face system, properties that are additional to the external usability prop
erties discussed in the previous chapter. While the internal properties are
not directly visible to the users of an interactive system, they are still most
important in determining the usability qualities of the system. Directly or
indirectly they influence the external, more visible properties.

The three areas of software engineering techniques (methods, tools and
standards) which have been discussed must be evaluated by the designer to
establish that they do not impede satisfaction of the quality requirements
laid upon the interactive system being designed. It is our strong convic
tion that the design and construction of a satisfying interactive system is
promoted by the judicious use of properly selected tools and techniques.
But the above discussion covers mainly existing software techniques, not
all possible techniques.

Tables 3.2 and 3.3 reflect in some sense the current state-of-the-art in
user interface development. A '+' doesn't mean that using that technique
enforces or guarantees the property in question. The entries show where
application of certain software techniques may help the designer to obtain
quality in user interfaces, and the missing entries point to areas where
more research is needed. The tables illustrate how important it is that
the designer takes the target environment into consideration. Features and
tools in the target environment may ease the achievement of several of the
internal properties, but may on the other hand spoil some of the robustness
properties.

The tables indicate the apparent current relative importance of each
software technique. Three software techniques stand out: design methods,
architectural models and specification languages. Each appears in around
half of the rows in the combined tables. However, they differ in the bal
ance between interactions as primary mechanisms and secondary effects.
Specification languages are the most common primary mechanism. This is
due to their role in establishing properties during design phases. However,
they very rarely have any secondary effects, as their use does not pervade
the development life cycle as other techniques do. In contrast, interactions
with architectural models are evenly balanced between primary mecha
nisms and secondary effects. The effects of architectural decisions begin
during the design phases and pervade all further development and (at
tempts at) maintenance and modification. As a result, architectural mod
els interact with more properties than do specification languages. Design
methods are equally ubiquitous, although they tend to be more secondary
in their effects. When they are a primary mechanism, they operate like
specification languages, establishing properties during design phases, but
not pervading the development life cycle until system decommissioning.

Gonefusions 89

Properties that hold for architectural models will generally be preserved
by the actual software architecture of the installed system. The e:ffect of
architectural models is thus pervasive and less volatile. The e:ffect of spec
ifi.cation languages and design methods is less pervasive and more volatile,
i.e. the benefits that they bring during the design phase are liable to evap
orate, unless they can be preserved by other techniques. It is necessary
to consider the role of various software techniques in preserving properties
throughout the entire life cycle of the system. A repertoire of these software
techniques under the heading of tools and materials provides the subject
for Chapter 5.

Architectural models are considered first for two reasons. Firstly, their
interactions with properties pervade and persist through software develop
ment. Secondly, they are one technique, and therefore the analysis will be
more straightforward, being more amenable to an in-depth examination of
some candidate architectures.

The aim of this book is to map out the space of interactions between
the people that use software, the people who develop it, and the very soft
ware itself. The attempt at this is now largely completed. The topography
has been surveyed, although some terra incognita remains (for example
external properties associated with the principle of learnability.) The next
three chapters move from topography to geology. Chapters 4 and 5 can be
thought of as bore holesthat will reveal the underlying structure of some re
gions of the space of interactions between properties and techniques. Chap
ter 6 attempts to validate the conclusions of Chapters 2 to 5 by analysing
Air Traffic Control applications from the perspective of our properties and
identified interactions with and between them.

Given the pioneering nature of this work, it is sensible to begin the next
part of our survey with the most promising region. We thus now turn our
detailed attention to software architectures for interactive systems.

CHAPTER 4

Software Architecture Models

4.1 lntroduction

This chapter demonstrates how one can use analysis of software archi
tectures to generate software designs that are compatible with a chosen
'property profile'. Such a profile must be determined during requirements
specification. The approach used in this chapter is to take each external and
internal property, and describe (in)compatibilities between it and some in
teractive software architectures. Architectures developed and refined during
the system and software design phases can be compatible with this profile
in four ways.

1. The property is delivered without further developer effort.

2. The property can be assessed with developer effort (perhaps consider
able) and skill (always extensive).

3. The property can be addressed, assisted or measured but cannot be
assessed immediately.

4. The property is not impacted - the architecture does not interact with
the property.

The last form of compatibility is neutrality, but an architecture will not
be neutral with respect to all properties. Were this so, there would be no
reason to use it (or the list of properties presented in this book is not
complete!). The first three forms of compatibility are support to varying
degrees. An architecture is said to be compatible with a property if it
provides it automatically, supports it, or is neutral with respect to it.

During early development activity, desired properties should be selected
and be allocated a priority weighting. The designer must accept these con
straints during the subsequent architectural design phase. The actual pro
cess of defining and weighting properties, when coupled with the analyses
developed in this chapter, can guide the design of architectures which are
compatible with system requirements. These analyses are similar to those
given in previous chapters, but rather than examine interactions between
software techniques and quality properties in general, we restriet our at
tention to architectural models.

92 Software Architecture Models

4.2 A Framework for User Interface Software Architectures

The need for architectures arises in response to complex functionality. A
system's functionality is expressedas a set of capabilities ('what the system
can do'). These capabilities can generally be regarded as operations on some
model of an application domain, which may, for example, transform (some
of) the model, or perform calculations on it.

A simple domain may only require a few operations. These could be
readily understood as comprising the system's overall behavior. Typical
application domains are more complex, with many operations, and com
prehension must be assisted by grouping operations on the basis of similar
ities. These groups must be readily understood as comprising the system's
overall behavior. Functionality is thus coarsened to make it manageable.

Such a grouping of the operations for an application domain is called a
functional partitioning; this is one of the starting points for the design of a
software architecture. Architectural design for software systems involves (at
least) two other factors: its structure and the allocation of domain function
to that structure (Kazman et al., 1994). Architectural structure will be
considered first.

In order to work together as a system, coarse decompositions must be
recomposed by linking function groups together. The function groups must
then be allocated to some architectural structure. There are two kinds of
entity in this structure:

• a collection of components which represent computational entities (e.g.
modules, procedures, processes or persistent data repositories);

• a representation of the connections between the computational entities,
i.e. the communication and control relationships among them.

The relationships between the components must provide for efficient 'ver
tical' abstractions over several components, e.g. widgets composed of func
tions from several components.

Each allocation offunction to structure should provide the designer with
a different understanding of the realization of function in a software system.
However, the key motivation for architectural analysis is not the creation
of such understanding. Rather its purpose is to support rational choice be
tween alternative software architectures (by comparing the corresponding
allocation of function to structure in each one). Such comparisons can be
guided by the probable support that each structure can deliver for desired
properties for a proposed system.

4.2.1 Functional Partitioning

A functional partitioning is a grouping of the operations for an application
domain. Here, the application domain is understood as the general one of

A Framework for Uur Interface Software Architectures 93

computer systems interacting with humans. Before proposing a functional
partition for this domain, it may help to make an obvious statement:

Valid extensive conclusions about the construction of interactive systems can
only be drawn if there are extensive commonalities among the systems.

Fortunately, there is extensive consensus on the adequacy of one form of
functional partitioning for all interactive systems. It is based on the nec
essary transformations of information that flows between users and the
underlying computations of interactive systems. *

In order to discuss partitioning clearly, untainted by specific features
of different architectures, a standard functionality decomposition model is
adopted here. The Arch/Slinky metamodel, discussed in UIMS (1992),
is used with slightly modified terminology (see Section 4.5.1 for further
details). The five groups offunctionality used in the model are illustrated
in Figure 4.1.

Figure 4.1 The Arch/Slinky Metamodel.

• Functional Core (FC): This group of functions implements work do
main features. They are also often called the 'application', but that
term is ambiguous (Cockton, 1987b).

• Functional Core Adapter (FCA): This group offunctions mediates
between D and FC by providing more generic work domain concepts.
They may aggregate system data into domain-oriented structures, pro
vide a unified interface to heterogeneous FCs, perform semantic checks
on data and trigger domain-initiated dialog tasks. Results from the FC
are passed through to the D and onward for presentation to the user.

* Ot her less common partitions use phenomenology (i.e. reflecting a user's decompo
sition of the system into objects), interaction structures (e.g. steps in a standard
interaction cycle) or generalized interactive functions (e.g. help, customization, his
tory) (Cockton, 1987a).

94 Software Architecture Models

• Dialog (D): This group offunctions mediates between domain-specific
and presentation-specific functions. It controls task sequencing and con
text management and ensures consistency (possibly among multiple views
of data).

• Logical Interaction (LI): This group of functions mediates between
PI and D. It provides a set of logical interaction objects (sometimes
called virtual objects), and presentation-specific functions to the dialog.

• Physical Interaction (PI): This group of functions implements the
physical interaction between the user and the computer. It deals with
input and output devices and is typically realized as a user-interface
toolkit andjor a proprietary interface library.

This functional partitioning mirrors nicely the levels of input/ output
abstractions introduced in Chapter 1. It is based on an information flow
component provision strategy (Cockton, 1991) reflecting a general obser
vation: that the information flow starts and ends in the physical devices
with which users interact and that there is a final 'U-turn' in an interac
tive system which lies deep in the underlying functionalities realizing the
semantics of a specific work domain. *

To show the general applicability of this partitioning, a thesaurus is pro
vided, showing how a variety of well-known architectures' specific choices
of terms relate to the terms which are used here. This is presented in Table
4.1 for a number of well-known user interface models. For each model,
the functions which that architecture instantiates are given equivalents in
terms of the partitioning described here. Further information about these
systems may be found in Coutaz (1987), Lantz et al. (1987), Krasner and
Pope (1988), Nigay and Coutaz (1993), Pfaff (1985) and UIMS (1992).

4.2.2 Understanding Functional Partitionings

Using the above classes offunctions, an example decomposition forasimple
climate control system is presented below. The system is to support control
of temperature and humidity in a building. A control unit is used toset the
desired temperature and humidity. The system monitors temperature and
humidity and maintains the desired climate by controling a furnace and air
conditioning equipment. The control unit displays two sets of information:
the actual temperature and humidity, and the desired temperature and
humidity. Functional partitioning within this simple system shall be made
to reflect the generic decomposition shown in Figure 4.1.

Functional core functions interface with temperature and humidity sen
sors, the boiler and air conditioning equipment; store the desired temper-

* 'U-turns' occur when input processing changes to output initiation. There are other
'U-turns' whenever feedback occurs (e.g. cursor tracking as lexical feedback for logical
devices).

A Framework for User Interface Software Architectures 95

Table 4.1 User Interface Functional Partitioning.

Model Components Functional Equivalents

Seeheim Appl. Interface Model FCA
Dialog Control D
Presentation LI+ PI

Seattle Application FC
Workstation Manager D
Dialog Manager LI
Workstation Agent PI

PAC-Amodeus Functional Core FC
Interface with FC FCA
Dialog Controller D
Pres. Techniques Comp. LI
Low-level Interact. Comp. PI

Arch Domain Specific FC
Domain Adapter FCA
Dialog D
Presentation LI
Interaction Toolkit PI

MVC Model FC
View LI (output only)
Controller LI (input only)

PAC Abstraction FC
Control D
Presentation LI+ PI

ature and humidity; maintain the desired climate; and report the actual
temperature and humidity. These constitute the underlying functionality
of the system and can be independent of any user interface functions. They
may be supplied by the manufacturers of the control and sensor hardware.

Functional core adapter functions convert information between the for
mats required by the functional core and those used by the user interface.
The functional core handles the desired and actual climate as four separate
numbers.

All temperature values are in Fahrenheit, as the functions are written
to interface with hardware components that accept and produce digital
Fahrenheit values. The user interface displays and receives temperatures in

96 Software Architecture Models

Celsius, as the controller is designed for markets where Celsius is preferred.
The functional core adapter thus includes two functions for converting be
tween Fahrenheit and Celsius. The Celsius to Fahrenheit conversion func
tion is called by a function that implements one of the system's two abstract
commands (change desired temperature, change desired humidity).

The functional core adapter also includes a function that forms status
'records' and communicates them to the user interface. Each status message
contains a pair of values, a desired setting and a current value. The user
interface displays two statuses, one for temperature and one for humidity.
As the functional core's reporting functions are not event based, this status
forming function polls the functional core periodically to get the current
temperature and humidity.

ROOM CLIMATE CONTROL

Temperature Humidity

Figure 4.2 Display for climate control.

Dialog functions include one that implements the presentation strategy
for temperature and humidity status records by converting them to pa
rameters for the two controller-gauge widgets shown in Figure 4.2. Another
function responds to a new user setting for desired temperature or humidity
by calling an abstract command in the functional core adapter.

Logical interaction functions implement controller-gauge widgets. In the
particular PI realization of the interface shown in Figure 4.2, each gauge
has two pointers. The black pointer shows the current value and the white
pointer the desired value. The white pointer has a circle near the end (the
designer's intention is that this should afford manipulability). Logical inter
action functions will implement these specialized widgets for a specific set
of physical interaction functions . Few existing physical interaction libraries
support these controller-gauge widgets. Different sets of logical interac
tion functions will be provided for each toolkit, window system or graphics

A Framework for User Interface Software Architectures 97

library that provides the physical interaction functions. However, these sets
of functions would appear to be identical to any dialog dient.

Ambient
,,

Setting 11

Temperature Humidity

Figure 4.3 Display with ob6cure button Iabels.

Physical interaction functions interact directly with external peripheral
devices. They display logical interaction objects as graphical primitives
with requested graphical attributes. They detect user interaction with these
objects. One can imagine using a device such as a mouse or a touch screen
to alter the temperature.

The generic functional partitioning introduced here thus maps rat her
nicely onto this simple example. The partitioning can be further illustrated
by the scope of changes to the user interface to the climate control system.

Changes to the way in which the data is presented to the user will affect
different functional partitions. For example, Figure 4.3 shows a moded di
alog with fairly obscure button Iabels ('ambient' means current, 'setting'
means desired). For this design, some functional core adapter function(s)
would have to prepare 'climate records' that pair temperature and humid
ity rather than actual and desired values (as in status records). Dialog
functions would have to maintain two modes: in one mode, ambient tem
perature and humidity are to be displayed as dials; in the other state the
current settings are displayed (and can be re-set). The buttons at the top of
the display correspond to the two modes. A selected button is highlighted
in some way to indicate the current mode. Dialog functions would respond
to button presses by changing the mode. Other functions would implement
behavior specific to each mode (i.e. changing the displayed informat ion,
enabling/disabling user interaction). Logical interaction functions would
implem ent the separate control and view gauges, as well as the mode but-

98 Software A rchitecture Models

tons. These functions would provide a portable interface to specific physical
interaction functions.

Interestingly, this second design uses an interface which provides an ex
plicitly modal appearance to the user, whereas the previous one was mode
less. This change in the manner of operating the controls necessitates a
change in the functional core adapter. It should be noted, however, that
changes to the adapter could also be needed in the modeless case if the
functional core provided climate records rather than actual and desired
val ues (stat us records).

Temperature oc % Humidity

Figure 4.4 Display with thermometer sliders instead of gauges.

As a final example, consider the changes required to change the design in
Figure 4.3 to that in Figure 4.4. Here only the logical interaction functions
need to be changed (in order to render a thermometer slider rather than a
dial style gauge). However, the new functions would appear tobe identical
to the dialog dient. To do this, logical interaction functions support con
cepts such as 'scale' and 'selector', which they then translate into physical
interaction objects, such as ' button', 'dial' or 'slider' (Figure 4.2 requires a
concept like 'double-scale').

4.3 Architecture and External Properties

It is important to determine which functional partitions need to be con
sidered when attempting to satisfy an external property. This will enable
the designer to construct a system with more predictable properties. It also
improves the understanding of the interrelationships between internal and
external properties, as they are affected by software architecture.

The functional partitioning given in Section 4.2.1 will be used here as

Architecture a.nd E:z:terna.l Properties 99

the base reference. The properties are analysed for their relationships to
the five canonical partitions of an interactive system- FC, FCA, D, LI and
PI- illustrated in Figure 4.1.

This and the following section address the properties that support goal
and task completeness, interaction flexibility and interaction robustness.
If a property is considered desirable in the context of a given design then
it must be considered in this analysis. For each such property it is nec
essary to determine which of the functional partitions will be impacted
when attempting to satisfy the property. The notion is here that the list of
especially desirable properties for a system will constrain the designer to
certain architectural solutions.

This leads to an important observation: there are two levels of analysis
at which the various properties might impact the choice and implemen
tation of an interaction software architecture. A property might pose re
quirements to the allocation of function to structure, that is, it requires a
specific relationship between functional partitions. It can also pose specific
requirements to the implementation of run time support for one or more
functional partitions. This distinction will be exemplified below. A property
is said to impact a functional partition:
• if this partition must necessarily be the focus of attention in an analysis

of the system with respect to the satisfaction of the property;

• if the satisfaction of this property requires extra functions to be imple
mented within this partition than would be the case if the property was
deemed irrelevant to the design.
The discussion of how properties impact architectures is followed - in

Sections 4.5 and 4.6 - by a discussion of examples of both conceptual
architectural models and more implementation-oriented architectures in
this context. Finally, in Section 4.7 a specific Chiron-1-based system (the
climate control system described above) is assessed with respect to support
for a list of given properties.

4.3.1 Goal and Task Completeness

The architectural interactions with the principle of completeness are medi
ated by the internal property of functional completeness defined in Chapter
2. The functionality required to support adopted goals and user tasks must
be established early in design, and thereafter the issue becomes one of faith
ful realization rather than correct determination. There are thus no direct
interactions between this principle and architectural models.

4. 3. f Interaction Fle:~:ibility

The analysis below examines the impact of external properties related to
interaction flexibility on functional partitionings.

100 Software Architecture Modelß

Role Multiplicity

This property is most visible in the dialog component. Different roles imply
different dialogs handled in various subdialog components that communi
cate with the same functional core, or different functional cores. The overall
management of these - metadialog control - has to be handled in the dialog
component. In order to properly support this property, the dialog should
allow decomposition into sub-dialogs. For example, in the PAC-Amodeus
conceptual software architecture (described in detail in Section 4.5.3) the
dialog controller is organized as a hierarchy of PAC agents (Nigay and
Coutaz, 1993). To provide for the Role Multiplicity property, a metadialog
mechanism which communicates with the control part of each PAC agent is
needed. This also is similar to the fusion mechanism used for implementing
multi-modal systems in PAC-Amodeus by Nigay and Coutaz (1995). See
also Figure 4.5.

Interface with
Functional Core

Functional Core

Domain Dependent

Presentation
Techniques

Usern

Figure 4.5 Human role multiplicity: Applying PAC-Amodeu1.

Architecture and E:z:ternal Properties 101

N on-Preemptiveness

This property is most visible at the dialog level. In addition, the feedback
needed to make pre-emptiveness perceivable is at the dialog level too.

For example, when trying to print a document on a Macintosh, if there
is not enough memory left to print the document, a dialog box appears to
indicate this fact, but the system does not allow the user to do anything
else to enable printing until the dialog box is cleared. The system is pre
emptive. The Dialog defines the task sequencing, so it is clear that this
component is the one that must be addressed to solve this problem.

In verifying that an interactive system is non-preemptive, the designer
is greatly aided if the dialog aspects of the system are architecturally iso
lated. A separate dialog component will isolate the concerns about pre
emptiveness from other concerns of the system; it also isolates the point
where verification of this property must be performed.

If an architecture lets dialog management be distributed- e.g. across an
object space like PAC (Coutaz, 1987), MVC (Krasner and Pope, 1988) or
ALV (Hill, 1992)- then it is probably easier to implement non-preemptive
ness. However, it is more difficult to analyse distributed models for non
preemptiveness than if the dialog management is centralized. At the system
component level, there might be different strategies for representing dia
log control - some better suited for analysis than others. For example, a
dialog controller built around a state transition network model provides
support for the creation and analysis of non-preemptive dialogs. A dialog
built with a traditional programming language (without state-transition
support) would make the creation of non-preemptive dialogs more difficult.

Multithreading

In a system with multithreading the user may engage in several tasks simul
taneously. This means that context management is needed when handling
multithreading, and this functionality is available in the Dialog component.
Hence multithreading and multitasking are strongly related to the Dialog.

If an interactive system has to support the user's desire to pursue multiple
threads of interaction addressing separate tasks, then it must be able to
preserve the state of any active threads of interaction. This has the following
architectural implications.

• The Dialog must record the state of all threads of interaction in order to
allow for arbitrary interruption and resumption of conversation threads.

• Although it is not strictly necessary to differentiate the various threads
of dialog at the LI level, a reasonable architecture will reflect multiple
concurrent dialogs pertaining to different user threads or tasks by means
of multiple presentation schemes.

Consider the effect of these on the Dialog component: when attention

102 Software Architecture Modeb

is moving from one window to another, the Dialog has to be aware of the
context switch (which then results in providing feedbacksuch as changing
the cursor or highlighting the selected window).

Reachability

The reachability property concerns a user's intention in going from one
state to another. As indicated in Chapter 1, states can be defined at
different levels of abstraction. Therefore, from an architectural perspec
tive, reachability affects many functional partitions. Whether the user is
forward- or backward-seeking (as defined in Chapter 2), the Functional
Core must allow for reachability. This could mean that sufficient history
information is preserved in order to undo back to some arbitrary point in
the interaction. It also means that the system avoids blind alleys - inter
actions which leave the FC in a state from which it is impossible to reach
other states.

It may be necessary to incorporate functions that keep track of the
progress of the user from one state to another in order to be able to back
track. If there are aspects of the Functional Core state which are not ac
cessible to the user interface then changes inside the Functional Core or
Functional Core Adapter are needed to permit backtracking. For example,
if the FC does not provide a facility for undoing the results of previous
function executions, then the FCA could keep track of changes to the state
of the FC and implement undo itself. To permit runtime reasoning about
forward reachability, the system needs a description of the available func
tions at any given time. This description could be found in the Functional
Core Adapter or the Functional Core.

Since analysis of reachability necessarily has to be clone by looking at the
dialog description, the functionality of the Dialog component is affected.
For instance, a state transition diagram representation of the Dialog may
indicate that the user can always return to a particular dialog state (e.g.
repeated pressing of escape will return to the main menu of a menu-driven
system). It is important to note, however, that this reachability constraint
may not adequately reflect the user's intention, as there is no guarantee
that returning to the same dialog state has had no effect on the Functional
Core. The user will need to know information about the consequences of
pressing an undo key in order to determine if that action will satisfy his or
her intention.

An issue of forward reachability is how to indicate to the user the avail
ability (or not) of following operations in the current interaction context.
This is the property of observability which will be discussed in Section
4.3.3. The Dialog therefore must make reachability information accessible
to the user.

It can be seen that reachability involves a close relationship between

Architecture and Ezternal Propertieß 103

functional partitions which seems to violate separation of concerns. Reach
ability not only has meaning in many of the identified functional partitions
(FC, FCA, D and LI) but also implies that capturing the user's intention
may require an evaluation within more than one functional partition at a
time. For example, the discussion in the preceding paragraph for the dialog
component requires an evaluation ofthe Functional Core and Dialog as well
as the information that is communicated between them via the Functional
Core Adapter. In conclusion, the present understanding of architectural
separation does not localize reachability concerns. Since the property of
reachability depends on functions in several partitions, no architectural
modeling guarantees easy achievement.

Device Multiplicity

Dialog is independent of device and representation considerations. There
fore, concerns of device multiplicity do not extend beyond the Logical
Interaction (LI) and the Physical Interaction (PI). To support device mul
tiplicity, either the LI or the PI implementation must be able to distin
guish different interaction device usages and potentially allow for their
concurrent use. For instance, PI must provide time stamps so that fusion
of I/0 streams and time-out strategies can be handled. LI must con
tain mechanisms for abstracting device-dependent data into device- and
representation-independent data to ensure that the Dialog is device- and
representation-independent.

Some issues of device multiplicity are similar to multithreading in that
two physical devices can be used concurrently.

Representation Multiplicity

This property means that a single application concept may be represented
by more than one presentation object, both input and output. For example,
the dials in Figures 4.3 and 4.4 represented the same underlying informa
tion, but had different appearances and different means of interaction with
the user. Similarly, a new temperature or humidity setting might be spec
ified using natural language or a command language.

The LI and PI are necessarily representation-dependent, whereas the
Dialog only becomes representation-dependent when moded dialogs are se
lected for the representation of task methods (this is a temporal represen
tation, but a representation nevertheless, and alternative dialog sequences
will produce alternative representations).-

Representation multiplicity can be achieved in a number of different ways
- it does not necessarily belong to any one function. For example, one could
pass a single application object from the FCA to the D, and from the D
convert it into two LI objects. Or, the FC could pass a single object to the
FCA, which would then split it into two objects for the D. Representation

104 Software Architecture Models

multiplicity would not occur in the FC, since the application should remain
presentation-independent, and it should not occur in the link between the
LI and PI components (i.e. having the LI split a single object into two
distinct presentation objects), since this should be a one-to-one mapping,
for the sake of generality.

As discussed in Section 4.3.2, multiple presentation schemes can be used
to effectively support multiple threads of user interaction. In this case,
representation multiplicity will be achieved in the D component which is
the locus for multithreadedness.

I/0 Re-use

Re-use of input is the utilization of data previously entered in some current
context. Since input re-use is a semantic function, it is ideally supported
in the Functional Core Adapter and the Dialog. One of these functional
partitions will gather the input (into a history buffer, for example) and
enabling re-editing and re-use of it.

Re-use of output relies on passing the same structure of information be
tween various partitions of the architecture. In the case of passive output
re-use the LI is impacted since it has to accept that the present output
representation is returned as input (for example, cut and paste features).
Active output re-use is exemplified by live text, see Fraser and Krishna
murthy (1990). An example of a live text application is the ability to edit
the output of a spelling checker and have the changes propagated back to
the source files. The information required of the spelling checker program
is simply the name of the source file(s) and the location of the (possibly)
misspelled words. In order to enable active output re-use, two possible so
lutions present themselves:

• the LI may be modified in order to present a consistent set of input
objects to the Dialog.

• the Dialog itself is modified in order to map between input objects and
the requested functions.

Of these two solutions, the first appears to ensure separation of concerns -
in particular that the Dialog is representation-independent.

Reconfigurability

Different types of reconfigurability may exist within several different func
tional partitions. Many systems allow the users to define new commands,
and this belongs to the dialag level. For instance, the use of Unix shell is a
way, at the dialag level, to customize the users' command line interface.

At the LI level, the style of interaction (menus or command-lines or
graphical buttons) can be adjusted as may be clone using the X Window
resource manager. The ability to tailor displays to the user's chosen format

Architecture and External Properfies 105

clearly impacts LI; for example, displaying a menu in Kanji as opposed
to ASCII may require different logical interaction objects because the two
representations are so different. Choosing a different set of key bindings or
mouse clicks to invoke a command may impact the LI as well.

At the PI level, the use of initialization files for window managers permits
tailoring the look and feel of various interaction objects, such as windows,
icons, and pointers. Reconfigurability at the PI level is also available on
platforms that support easy addition and substitution of input and output
devices (e.g. the Apple DeskTop Bus (Apple, 1991)). Such plug-and-play
capabilites interfere with software architecture since critical software sup
port is needed in addition to hardware features.

Lastly, reconfigurability can in some cases be provided by FCA func
tions, for example to support a 'training wheel' approach as in Carroll and
Carrithers (1984) where novice users have restricted access to a system's
functionality. Such capabilities would be used by a system administrator
rather than by an end-user.

Reconfigurability is defined as the user's ability to adjust I/0 forms. This
kind of fl.exibility should not be provided in the functional core because the
FC deals with the domain-dependent functions of the interactive system.
Changes and fl.exibility at this level modify the functionality of the system
and belongs under the heading of the internal property modifiability in
Section 4.4.

Adaptivity

Self-adaptivity is an action on the part of the system to better provide ser
vices to the user. Some exam ples of self-adapti vi ty are caching information
for quicker retrieval, and automatic creation of user profiles. These types
of adaptivity exist in the Functional Core, Functional Core Adapter and
Dialog.

Migratability

Migratability allows transfer of control between the user and the system for
performing some set of tasks. This is closely related to the Dialog compo
nent which controls the dialog and manages the sequencing of tasks. Hence
the Dialog must be constructed with an ability to switch between various
agents performing tasks. Furthermore, the Functional Core (or the Func
tional Core Adapter) must be able to initiate tasks that are 'migrated' to
the system from the user.

As an example, an expert system can allow the user to transfer some
decision-making responsibilities to the system and the system can decide
when its decision-making process requires further user guidance. The diag
nosis and correction of errors in a factory control system may have similar
transfer capability between the userfoperator and the system.

106 Software Architecture Modela

4.3.3 Interaction Robustness

Robustness is concerned with those features of the interaction that support
successful achievement and assessment of the goals. Interaction robustness
is divided into the sub-properties discussed in the following paragraphs.

Observability

A system which supports observability allows the user to evaluate its in
ternal state without modifying it. Browsability, on the other hand, allows
the user to e:cplore the current internal state. This functionality is basically
handled within D. However the more detailed exploration of an internal
state may require (or use) knowledge from the Functional Core. For ex
ample, in the World Wide Web, browsing through the Internet will often
cause files to be transferred from remote sites to the user's home site.

Insistence

Insistence deals with the the effect of a communication act. Insistence varies
according to the output representation and device (e.g. audio versus graph
ics). Insistence will ideally be handled by the PI or LI-these will provide
control over the properties of each presentation object.

However, in some cases this will affect the dialog component. Consider,
for instance, a text editor which provides multiple windows to view the same
document. If the user modifies the document, and wants to quit without
saving, a 'Quit without saving?' dialog box will appear. This dialog box
has to be acknowledged by the user before going on. If there were a single
window, this insistence could be handled by the logical interaction com
ponent. In the multiple view case, however, insistence would require that
every window should be locked under these circumstances. The user must
then deal with the application query before proceeding. This insistence
could be reinforced by beeps when the user attempts other actions. As the
presence of multiple windows is known only by the dialog component, it
will have to implement that insistence.

Insistence at the PI level is supported by hardware features such as lights
on keyboards (e.g. to indicate 'Caps Lock' on). To exploit these features, LI
functions must give full access to them, but they are generally abstracted
away from the actual rendering device in favour of device independence.

Deviation Tolerance

As noted in Chapter 2, the system should not only help the user recover
from errors but also prevent or discourage errors from occurring. However,
analysing a system to discover potential error situations usually involves
functionality within all the components. An example of this is seen in Dix
et al. (1993), pages 292-5. A particular word-processor automatically saves

A rchitecture and Eztern.al Propertie1 107

when the program terminates, and the user can set a flag to override this
function. However, this default can be overridden by setting a (temporary)
flag which allows the user to exit the program without saving the text.
Of course, if this flag is accidentally set, the system enters a 'dangerous
state' where the user might lose important work. Detecting such 'dangerous
states' requires an understanding of the semantics of the system (ideally
located in the Functional Core Adapter, with necessary support from the
Functional Core). This can be seen in the example, where one needs to
know that exiting without saving is a 'dangerous' thing to do. Discovering
what user actions can cause these states requires an analysis of the Dialog.
Finally, finding whether these sequences are easy to perform accidentally
requires an examination at the Physical and Logical Interaction Levels. In
the example cited one keyboard design (using function keys) gave no errors
at all, but a slightly different design meant that the most common exit
sequence could, by a minor typing slip, lead to the dangerous state.

Deviation tolerance for certain input errors can be supported at the LI
level. For example, input can be smoothed when digitizing curves. More
general provision of deviation tolerance support is found in LI modifica
tions for users with motor diffi.culties; Apple Macintosh computers provide
several facilities (Apple, 1991) for users with special needs (e.g. 'sticky
keys', 'slow keys'). This reduces the need for speed and co-ordination of
mouse buttons and keyboard modifiers. The capabilities could be regarded
as supporting reconfiguration, but the aim is to remove sources of errors.

Predictability

Predictability of an interactive system means that the user knowledge of
the interaction history is suffi.cient to determine the result of the future
interaction. It deals with the user's ability to determine the effect of oper
ations on the system. It is a user-dependent concept and is not primarily
influenced by the software architecture of the interface.

Honesty

Honesty is the ability of the user interface to provide the user with an
observable and informative account of the state changes effected by opera
tions. It is a manifestation of the relation between the internal and external
states of the user interface. It is defined in the Dialog which handles the
mapping function between the Functional Core and the Logical and Phys
ical Interaction. But honesty can only be obtained if the LI contains the
right functionality, i.e. widgets that can produce renderings with suffi.cient
information for the user.

108 Software Architecture Models

Access control

Access control may affect the Functional Core or the Dialog component or
the Logical Interaction component. The component affected is usually the
one that manages the pieces of data to which access must be controlled. For
instance, write access to a file in a Unix system is handled in the Functional
Core, because files are objects of the functional core. Similarly, in a multi
user graphical editor, the locking of graphical objects can be handled in
the Dialog component. Finally, in a shared editor, the temporary blocking
for user interaction (where the cursor is 'locked') is relevant to the Logical
Interaction component.

Pace tolerance

Pace tolerance refers to the temporal properties of the user's interaction
with the Functional Core. Examples of pace tolerance are type-ahead (where
the user is temporally ahead of the system), and time-outs, where the user
is behind the system. Pace tolerance can affect any of the components FC,
FCA, D, LI, or PI. For example, type-ahead is implemented by the Phys
ical Interaction component. Video games are instances of applications for
which pace tolerance properties are dictated by the Functional Core.

Pace tolerance also exists from the system's point of view. For example
many systems provide feedback about partial completion of activities (such
as fetehing or copying large files).

Temporal properties cannot be demonstrated in any existing software
architecture. Multi-agent approaches (as in the PAC-Amodeus model, see
Section 4.5.3) can, however, provide partial feedback before the completion
of a user command. This is seen as being a good way of achieving pace
tolerance.

Tables 4.2 and 4.3 summarize the impact of interaction robustness prop
erties on functional partitionings and show how well each property corre
sponds to a single functional partitions or adjacent partitions.

Reachability and Pace Tolerance are pervasive. Consideration of these
properties cannot be restricted to a few functional partitions, but certain
aspects of each property can be localized to each of the functional parti
tions introduced. Developers should therefore still be able to focus on one
partition at a time when considering these properties.

However for the effectively pervasive properties of reconfigurability, 1/0
re-use and deviation tolerance, only reconfigurability can be factored into
features specific to each functional partition. For 1/0 re-use and deviation
tolerance, there will be close coupling between the source of the re-use in
put or output, or the source of the deviation, and its handling at a more
abstract level of interaction. The value of architectural analysis here is its
highlighting of two problern areas for software design. Advance knowledge

Architecture and External Properties 109

Table 4.2 Interaction Flexibility vs Functional Partitioning

Flexibility Property Partitions

Role Multiplicity D
Non-Preemptiveness D
Multi threading/M ul ti tasking D LI
Reachability FC FCA D LI PI
Device Multiplicity LI PI
Representation Multiplicity FCA D LI PI
I/0 Re-use FCA D LI
Reconfigur a bili ty (FCA) D LI PI
Adaptivity FC FCA D
Migratability FC FCA D

Table 4.3 Interaction Robustness vs Functional Partitioning

Robustness Property Partitions

0 bservabili ty FC D
Insistence D LI PI
Deviation Tolerance FC FCA D LI
Predictability
Honesty D LI
Access Control FC D LI
Pace Tolerance FC FCA D LI PI

of such difficulties can improve development. On the other hand, the archi
tectural analysis using the functional partitions offers no support for the
creation of predictable systems.

Several properties interact with three or four of the functional partitions.
A certain pattern seems to emerge here: properties such as adaptivity and
migratability are mainly tied to semantic features of the system as ex
pressed in the FC and FCA partitions; others - representation multiplicity,
reconfigurability, and insistence - are tied to more representation-linked
features found in the PI and LI partitions. Developers can focus their atten
tions on different 'coherent' regions of a software architecture when consid
ering these properties. Interestingly, support for the representation-linked
properties seems to be more common in real systems than support for the
semantic properties. The former are given adequate to good support from

110 Software Architecture Model&

existing tools and materials (see Chapter 5), but general support for the
latter has been developed almost exclusively for research systems.

Access control does not fit into the distinction between representation
linked and more semantic properties as it affects both the FC and the LI
partition.

Other representational properties are more focused, such as multi-thread
ing, device multiplicity, and honesty which are supported by two adjacent
functional partitions. Observability would also have a tight architectural
focus were it not for examples like Internet applications which require wide
area network (WAN) access when providing observability. Human role mul
tiplicity and non-preemptiveness are the most focused properties. Both can
be addressed by dialog functions alone.

The properties thus vary in their architectual specialization and the func
tional partitions vary in their influence. The relevance of dialog functions
is striking. Only device multiplicity and predictability arenot related to D
(for very different reasons). PI functions have a limited role because many
properties are supported by higher-level software processes.

There are no significant differences between the extents ofinfluence ofthe
other three functional partitions. However, FCA functions play a greater
role in the provision of interaction flexibility than do FC ones, whereas the
reverse is true for the provision of interaction robustness.

4.4 Architecture and Interna! Properties

The properties described in this section are properties that are not appar
ent at the external Ievel. However, the choice of a particular architecture
can impact these properties. The influence which the choice of different
architectures can have is discussed in the following paragraphs.

Development Efficiency

The existence of an architectural design implies that some thought has been
given to software engineering considerations. One of them is effi.ciency in
development of the actual system. Development effi.ciency is enhanced by
a variety of means such as the ability to partition work into manageable
pieces. Architectural structures which promote the division of a system's
functionality into coherent classes aids in the partitioning and allotment of
work.

But equally important are the ways in which these partitions are inter
connected. Currently, the systems which most strongly support develop
ment effi.ciency are those which allow a developer to consider a 'vertical
slice' of system functionality as one (large) component. Consider, for ex
ample, the File Selection widget as it appears in several current systems.
Adoption of this widget speeds development not only because it provides

Architecture 1:1nd Intern~:~l Properties 111

an encapsulation of a commonly used functionality - navigating around
the file system and choosing files or directories - but also because it cuts
across functional barriers. The File Selection Box contains a Functional
Core (the file system), Dialog (when one selects the 'Filter' button, the
set of displayed files is updated), and a Presentation (the buttons, sliders,
labels and lists which comprise the representation of the widget).

Development efficiency benefits from the ability to bridge functional par
titions. This, of course, confl.icts with separation of concerns, which en
hances re-usability- a bridge, or vertical slice, unites what would otherwise
be separate functions. Thus if, for example, the developers wanted to re-use
a dialog from a previous implementation, then a layered approach would
be more appropriate.

To summarize, development efficiency interacts little with the capabilities
of specific functional partitions. Instead, it is more impacted by the overall
quality of the separation of concerns and the available ways of composing
and encapsulating the functional partitions.

M odifiability and M aintainability

The introduction of reference software architectures to the user interface
field was motivated by the desire to guarantee modifiability and main
tainability of the software. Modifiability and maintainability offer similar
design challenges. Modifiability is both supported by, and constrained by,
the goals of architecture used. That is, if logically separate functionality is
kept physically separate in its architectural realization then the indepen
dent modification of those separate functions is supported by this archi
tecture. However, modifications which cut across those functions are not
supported by the architecture. The more clearly defined, well motivated,
and properly separated architectural components there are, the more mod
ifiable and maintainable the resulting software will be. This separation is
achieved through two mechanisms:

• separation of concerns: keeping distinct functional partitions in distinct
software components;

• indirection: creating virtual interfaces, such as the logical interaction
component, which buffer one component from the implementation de
tails of another component.

To give a concrete example: when modifying a system's dialog the soft
ware engineer should -not have to worry about the effects of this change
on the functional (FC, FCA) or presentation (LI, PI) components, as dis
cussed by Kazman et al. (1994). If a new device is added for input or
a new representation is needed, one need not change the Dialog compo
nent. Furthermore, if one wants to move from one interaction toolkit to
another, one should not have to change the Dialog simply because the

112 Software Architecture Models

attribute names of the interaction objects are slightly different. An archi
tecture which separates these concerns properly supports the modifiability
and maintainability of its software.

Thus, indirection may be identified as an architectural mechanism that
promotes some internal properties. Another architectural mechanism that
supports modifiability is the ability to homogeneously decompose a func
tional partition. In the PAC-Amodeus architecture (Section 4.5.3), the di
alog component is refined in terms of a hierarchy of PAC agents.

Portability

Portability is a special case of modifiability. Traditional portability tech
niques include isolating 'volatile' components into a library, thus localizing
the places that may require changes. Portability can thus be supported at
an architecturallevel by separating volatile functional partitions into dis
tinct architectural components. This was one of the main motivations of
the Arch/Slinky model.

To give an example, portability across user interface toolkits is simply
modifiability with respect to the PI and LI components. Separation of
the PI and LI supports portability because under this model the Dialog
component of any system ported would be re-usable. By way of contrast, a
strict multi-agent approach might have marle the porting task much harder
because the PI and LI functionality is distributed across the system.

In summary, this internal property is more impacted by pervasive ar
chitectural qualities than by a specific functional partitioning. Portability
depends on a specialized notion of separation of concerns, such that any
volatile functional partitions are isolated from those functions that imple
ment the underlying domain semantics.

Evaluability

This principle is architecture-neutral, since the choice of architecture does
not affect how easy it will be to measure the quality of the final system.
The concept of an architecture is still important since it may be easier to
isolate, in a well-structured system, where evaluation has to be done.

Run Time Efficiency

Given that systems do not have unlimited resources, the efficient usage of
system resources is always important. If data have to move through many
layers and have to be transformed at each layer then this naturally leads
to inefficiency at run time. Thus a layered architecture does not lend itself
well to maximizing run time efficiency. As with development efficiency, one
needs the ability to take 'vertical slices' of system functionality if high
performance is a priority.

Architecture and lnternal Properties 113

For example, it has often been commented that the Seeheim model of
user interface software needed to provide a special mechanism to support
semantic feedback. This mechanism bridged layers (functional partitions)
in the Seeheim model, as indicated by the small, unlabeled box in Figure
4.6, taken from Pfaff (1985).

User Presentation Dialog Application
Component Control Interface

Model

Figure 4.6 The Seeheim Model.

Semantic feedback occurs when the presentation is changed in real time
according to the semantics of a user's input. For example, in the Macintosh

desktop, if one drags a file over a folder icon or the dustbin icon, these icons
will be highlighted. If, however, one drags a file over another file, the file
will not be highlighted. The highlighting of the dustbin or the folder are
examples of semantic feedback, indicating that these objects are potential
locations for the file being dropped. Semantic feedback involves the use of
application (FC) information - knowing the purpose of each screen icon -
in the presentation (PI) component.

If one implements each functional partition of the Arch/Slinky model as
a separate layer, creating interfaces between each of the five components
- FC, FCA, D, LI and PI- then each time the user moves the mouse, an
event could pass from LI to FC, and back again.

The frequency of this event may vary. The PI may pass events to the LI
each time the mouse moves by a single pixel, but an effi.cient LI would only
pass enter and leave events to D each time the mouse left the bounds of
one object and entered another selectable one (the LI can be configured to
only pass events for selectable objects, as in PRESENTER as introduced
by Took (1990)). Depending on the configurability of the LI, no communi
cation between D and FCA may be required during dragging. With weak
abstractions in the LI, and no way for the FCA to indicate selectable ob
jects to the LI (via D), the location information would have to cross eight
interfaces. The current pointer position would need to travel from PI to
FC (so that the type of the object currently underneath the pointer could
be checked) and back again (to actually highlighted the covered object, if
necessary). This layering is clearly sub-optimal.

If such advanced Lis and FCAs cannot be easily implemented, one would
prefer instead to be able to take a vertical slice of functionality, from FC to

114 Software At"Chitecture Model11

PI, and bundle this functionality together so that as little as possible un
necessary work is done, and as few as possible layer boundaries are crossed.

It sometimes occurs that a system will bridge layers for a small subset of
functions, but not for the entire system. This could occur in the following
ways.

• An entire Arch could be embedded within a single functional partition.
This type of layer bridging is found in any sophisticated widget which
provides access to some Functional Core services. An example of this is
the File Selection Box widget referred to above.

• A functional partition may directly call a service in another functional
partition to which it is not adjacent. An example of this is the layer
bridging in the Seeheim model (the 'bypass channel'), as illustrated in
Figure 4.6.

In summary, pervasive architectural qualities rather than a specific func
tional partitioning impact this internal property. Support for 'vertical slice'
capabilities as a composition and encapsulation mechanism may improve
run time efficiency. But also key architectural decisions on the allocation of
function to structure have a direct bearing on this property. The division of
labour between LI and PI partitions has a critical e:ffect on the bandwidth of
the interfaces between these components. For run time efficiency, we want
to minimize the bandwidth requirements among a system's components,
particularly if those components are physically separated (say, communi
cating across a network). The right allocation offunction to structure will
minimize the events that functions in the D partition must deal with.

Functional Completeness

As defined in Chapter 3, a system is functionally complete if the various
abstract commands and state elements required to support the designed
task model can be faithfully implemented. Within the scope of this chap
ter, the term 'faithfully' means that the system is efficient at run time and
easy to develop. A good example is the semantic feedback issue discussed
above. A strictly layered architecture would here make it difficult to im
plement this concept faithfully whereas a more fine-grained object oriented
architecture like ALV (Hill, 1992) would allow for the necessary trade-o:ffs
between maintainability and run time efficiency.

User Interface Integratability

The ability to integrate an application into an existing environment, ensur
ing that the user interface is compatible with interfaces of other applications
in the environment, is a difficult task. It involves achieving a look and feel
which is consistent with existing applications. This is typically achieved
via user interface toolkits for LI/PI functional partitions. User Interface

Conceptual Architectural Models 115

Integratability can be achieved through consistent interaction techniques
- such as menus, form-filling, drag-and-drop, etc. - and consistent dialogs
(e.g. using consistent syntax).

This internal property is the only one with a narrow architectural focus
in the presentation components (LI and PI). In part this reflects the rarity
of extensible support for semantic external properties such as adaptivity
and migratability in current systems.

4.4.1 lnternal Properties and Functional Partitions

There are three architectural principles which significantly impact internal
properties.

Separation of concerns - or the overall principle of functional partitioning,
which varies across the external properties, and brings specific benefits
for internal properties where indirection (e.g. virtual interfaces such as
LI) is provided.

Division oflabor- or the overall allocation offunction to structure, which
should preserve the overall quality of the functional partitions.

Composition and encapsulation- or the basic provision of structure, which
should allow different ways of combining and re-using functional parti
tions, for example, the 'vertical slices' mentioned above.

For internal properties, the structure of an architecture, and its relation
to the functional partitioning rather than the functional partitions them
selves, has more profound implications than for external properties. The
remainder of this chapter examines these structural issues in more depth.

4.5 Conceptual Architectural Models

The previous two sections introduced the notion of analysing or choosing a
systems architecture on the basis of our quality properties. The discussion
was based on a generic partitioning of functions for interactive software
systems in order to be as broadly applicable as possible.

This and the following section analyse the allocation of function to struc
ture and take a closer look at two conceptual architectural models and two
more implementation-oriented software architectures. This aims to rein
force the understanding of the issues introduced above. It also serves to
lead up to a concrete example of architectural analysis in Section 4.7.

4.5.1 The Arch Model of lnteractive Systems

The Arch model of interactive systems is in UIMS (1992) defined as a lay
ered structure. The functional core of the system to be designed and the UI

116 Software Architecture Models

toolkit provided by a given implementation environment form its two end
points between which three additional component layers are interspersed.
The model makes direct use of the functional groupings adopted above
(with small differences in nomenclature from Figure 4.1). It comprises:

Domain-Specific Component - which controls, manipulates and retrieves
domain data and performs other domain-related functions.

Domain-Adapter Component - a mediation component between the Dia
log and the Domain-Specific Components. Domain-related tasks required
for human operation of the system, but not available in the Domain
Specific Component, are implemented here. The Domain-Adapter Com
ponent triggers domain-initiated dialog tasks, reorganizes domain data
(e.g. collects data items in a list), and detects and reports semantic
errors.

Dialog Component - which has responsibility for task-level sequencing,
both for the user and for the portion of the application domain sequenc
ing that depends upon the user; for providing multiple view consistency;
and for mapping back and forth between domain-specific formalisms and
user-interface-specific formalisms.

Presentation Component - a mediation, or buffer, component between
the Dialog and the Interaction Toolkit Components that provides a set
of toolkit-independent objects for use by the Dialog Component (e.g.
a 'selector' object that can be implemented in the toolkit using either
a menu or radio buttons). Decisions about the representation of media
objects are made in the Presentation Component.

Interaction Toolkit Component - which implements the physical interac
tion with the end-user (via hardware and software).

Domain objects are used by both the Domain-Specific and the Domain
Adapter Components, but instances of these objects are created by the two
components for different purposes. In the Domain-Specific Component, Do
main objects employ domain data and operations to provide functionality
not associated directly with the user interface. In the Domain-Adapter
Component, domain data and operations are used to implement opera
tions on domain data that are associated with the user interface. For ex
ample, one domain-specific operation of a database management system
(DBMS) would retrieve a set of employee names and salaries by gender
from a database. Iterative review of the list to display parts of succeeding
records might need to be clone in a Domain-Adapter Component. Here the
Domain-Adapter Component would supplement the functionality of the
Domain-Specific Component by providing a service related to the presen
tation of information.

Presentation objects are interaction objects that control user interactions
but are toolkit-independent. Presentation objects include descriptions of

Conceptual Architectural Models 117

data to be presented to the user and events to be generated by the user.
The medium used in the presentation or event generation is not defined.
An example of a Presentation object for use with the list of employees and
salaries is 'tabular, labeled, two-column data with single-entry selection'.

Interaction objects are specially designed instances ofmedia-specific meth
ods for interacting with the user. Interaction objects are supplied by the
Interaction Toolkit software and may be primitive (e.g. graphics and key
board device drivers) or complex. An Interaction Object corresponding to
the Presentation object cited in the paragraph above is a dual bank of
radio buttons (which allows the user to select an employee with a particu
lar salary from the 'male' column or the 'female' column).

4.5.2 Migration and Branching in the Arch/Slinky metamodel

The above description of Arch could give two misleading impressions:

• functions cannot migrate from their 'logical partition' in an architecture;

• there is no branching into multiple partitions.

Neither is true. Architectural analysis only arises because migration is pos
sible. Otherwise, only one allocation of function to structure would be pos
sible. However, the levels of abstraction given in Chapter 1 do indicate
a 'logical partitioning' of functionality in addition to providing important
analysis guidance. Too great a departure from the 'spirit' of a functional
partition normally reveals itself as a negative impact on internal and/or
external properties.

For example, the logicallevel of interaction requires comprehensive device
independence in its abstraction over physical devices. Development effi
ciency requires that this is delivered in as compact a form as possible.
Also, the dialog level requires clear isolation of interaction points in or
der to support walkthroughs for the assessment of external properties (but
especially those determining interaction flexibility). Lastly, the functional
level requires capabilities that are compatible with (the user's model of) the
work domain. Incompatibility has a negative impact on role multiplicity,
predictability, honesty, observability, customizability, and migratability.

In other words: concepts defined at the functional level of abstraction
should logically be implemented in the Functional Core (Adapter) compo
nent, concepts defined at the dialog level of abstraction should be imple
mented in the Dialog component, etc. However, the correspondence is not
strict; for instance, a strategy of semantic delegation or semantic repair will
implement some concepts at the functional level of abstraction in a dialog
component, see Bass and Coutaz (1991).

Another migration factor is that sophistication in UIMS's dialog lan
guages is required since dialog functionality (sequencing, constraint main
tenance, context management) is inherently complex. Consequently, many

118 Software Architecture Models

dialog languages are Turing complete, or are extensions of existing Turing
complete languages. One can therefore, in principle, do almost anything in
the dialog partition of many UIMSs. This does not, however, mean that
everything in the system is inherently dialog and should be dealt with in
one big chunk.

In summary, not only are there good reasons for migration in architec
tures, but there are many requirements that, once satisfied, make it im
possible to prevent migration. Thus when it was stated in Sections 4.3 and
4.4 that a property interacts with some functional partition, this expressed
the fact that the property affects the portion of a system which is logically
concerned with the partition, irrespective of how or where that functional
ity is implemented. The analyses thus identify the groups of functions that
logically impact properties, leaving aside the problern of what it is possible
to implement.

Migration is dealt with in the Slinky generalization of the Arch Model as
found in UIMS (1992). The coupling of functionalities in the layers of the
Arch model described above was designed to minimize the effects of future
changes in the interaction toolkit, the user interface dialog or the applica
tion domain. Dissimilar functions were assigned to separate components in
order to allow the modification of one type of functionality with minimal
impact on other components in the system. However, a model derived to
minimize the effects of changing technology may have an adverse effect on
the speed of the run time system. A single model cannot satisfy conflicting
criteria - i.e. different sets of critical quality properties.

The Slinky metamodel provides a set of Arch models, as opposed to one
particular model. The Slinky metaphor was chosen since function groups
can migrate through the arch in the way that the coils of a Slinky toy (a
large and long spring) may distribute themselves in many different ways
throughout their arch.

To clarify the concept of shifting functionalities, consider an example
where a function in a Domain-Specific Component was later implemented
in an Interaction Toolkit. The Unixfilesystem was originally considered a
specific application domain, with fileoperationssuch as 'open' and 'delete'.
When the interaction toolkit became more sophisticated, a file selection
widget was included in the toolkit, thus shifting the functionality from one
end of the model architecture to the other. In one sense, the file selection
widget can be regarded as a simple string widget at the LI level, but this
ignores the extensive file system functions behind it, which can and do
make changes to the functional state of the system (such as current drive
and directory).

A second complication with architectural models is the need to provide
for sub-partitioning of functional classes on the basis of some system con
text - known as branching. This can be added to the Arch/Slinky model
as indicated in Figure 4. 7 for example.

Conceptual Architecturol Models 119

The causes of brauehing are varied, but include the following.

Technology - variations in target environments may require multiple
adapter partitions, e.g. multiple logical interaction partitions for multi
ple toolkits at the physical interaction level, or multiple FCA partitions
to provide unified access to different kinds of databases (SQL-based,
object-oriented, etc.) through the same interface.

Re-use - extensions to a system's capabilities may be achieved by re-use
of an existing component. It may be impossible, and will probably be
unwise, to incorporate the new component into an existing functional
partition.

Closely related applications may need separate Functional Cores, but
their interaction with the user should be (almost) identical. One way of
handling the addition of separate Functional Cores is to have a single Func
tional Core Adapter interfacing with all of the Functional Cores. Similarly,
for the second factor, a single Logical Interaction component could inter
face with all Physical Interaction toolkits. However, as long as a Functional
Core or Physical Interaction software package doesn 't interact with other
packages (e.g. by sharing a limited resource like a communication channel,
a graphics display device, or a locator device), then it may be preferable to
accommodate multiple Functional Core Adapters and Logical Interaction
components within a system.

Suppose a new Functional Core is added to a system that currently has
one instance of each functional partition. Suppose also that the data and
functionality of the new Functional Core are independent from that of the
old one. In such a case the existing Functional Core Adapter should not
be changed to generalize to both Functional Cores, for to do so would ruin
the integrity of the existing Functional Core Adapter. In such a case a new
Functional Core Adapter should be added to mediate for the new Func
tional Core, thus isolating the existing Functional Core Adapter from this
change to the system as well as from future changes to the new Functional
Core. In this way, the two Functional Core Adapters communicate inde
pendently with the Dialog Component, forming two branches which join at
the Dialog Component (Figure 4.7).

In short, maintaining single instances of functional partitions may not
be worth the effort. Brauehing of the Slinky structure supports multiple
instances of functional partitions. Brauehing also lets a user interface de
velopment environment be functionally distributed and modularized by
creating networks of components.

These examples of discretionary brauehing are however less common than
imposed branching. In CSCW systems, it is only possible for multiple users
to share the same Functional Core (Adapter).* Each user requires a 'leg'

* The delivery of the WYSIWYG (what you see is what you get) property can be
controlled by multiple Functional Core Adapters.

120 Software Architecture Models

Figure 4.7 Branching. The Arch/Slinky Metamodel with Multiple FCs and FCAs.

ofthe Arch/Slinky branching offfrom a shared Functional Core (Adapter).
This is why branching is the appropriate metaphor for multiple partition
instances, since several partitions may be composed. A second example of
such branching is when several Functional Cores are visualized on a single
screen. This results in several Arch/Slinky structures converging into a
single Physical Interaction component.

Branching is also useful for the LI/PI components. Consider an interac
tive system used by people with different linguistic or cultural background.
The same functional core is then equipped with rather different user inter
faces implemented as multiple Lls or Pis.

4.5.3 The PAC-Amodeus Conceptual Architectural Model

As alluded to in the previous subsection, branching is a problern not origi
nally addressed in the Arch/Slinky metamodel. Another issue arises when
considering recursive decomposition of interactive systems which in many
cases is a useful method for designing complex systems, such as systems
with highly interactive direct manipulation user interfaces. In such cases
layered separation of functionality is not sufficient as the only decomposi
tion principle. The PAC-Amodeus model (Nigay and Coutaz, 1993; Coutaz
et al., 1995) is defined as an Arch/Slinky-oriented extension of the original
PAC model (Coutaz, 1987) addressing migration, branching and recursive
decomposition.

PAC-Amodeus adopts the same components as Arch and assigns the
same roles as Arch to these components. However, PAC-Amodeus goes one

Conceptual Architectural Modelß 121

step further than Arch by decornposing the Dialog cornponent into a set of
cooperative PAC agents, as illustrated in Figure 4.8.

Dialog Controller

Domain Objects ~ Set of PAC Agents Presentation Objects

Functional Core Presentation
Adapter Component

Domain Adapter Abstract Interaction
Objects

i
Domain Objects Interaction Objects

1 1
Functional Core Interaction Toolkit

~ Component

Domain-Specific Windowing System

Figure 4.8 The PAC-Amodeus Model.

The Dialog Controller has the responsibility for task-level sequencing.
Each task or goal of the user corresponds to a thread of dialog. This ob
servation suggests the choice of a rnulti-agent rnodel which distributes the
state of the interaction arnong a collection of cooperating units. Modular
ity, parallelisrn and distribution are convenient rnechanisrns for supporting
rnulti-thread dialogs. One agent or a collection of cooperating agents can
be associated with each thread of the user's activity. Since each agent is
able to rnaintain its own state, it is possible for the user (or the functional
core) to suspend and resurne any thread at will.

The Dialog Controller receives events both frorn the Functional Core,
via the Functional Core Adapter, and frorn the user via the Presentation
Cornponent. Bridging the gap between a Functional Core Adapter and
Presentation Cornponent has sorne consequences. In addition to task se
quencing, the Dialog Controller rnust perform data transforrnation and
data rnapping:

• A Functional Core Adapter and a Presentation Cornponent are oriented
in different directions. One is driven by the cornputational considerations
of the Functional Core, the other is toolkit-dependent. In order to rnatch

122 Software A rchitecture Models

the two different styles, data must be transformed inside the Dialog
Controller.

• State changes in the Functional Core Adapter must be reflected in the
Presentation Component (and vice versa). Links must therefore be main
tained between domain objects of the Functional Core Adapter and pre
sentation objects in the Presentation Component. A domain object may
be rendered with multiple presentation techniques. Therefore, consis
tency must be maintained between the multiple views of the conceptual
object. Such mapping is yet another task of the Dialog Controller.

Thus, bridging the gap between the Functional Core Adapter and the
Presentation Component covers task sequencing, formalism translation,
and data mapping. Experience shows that these operations must be per
formed at multiple levels of abstraction and distributed among multiple
agents.

Levels of abstraction reflect the successive operations of abstracting and
concretion. Abstracting combines and transforms events coming from the
presentation techniques into higher-level events for higher abstractions.
Conversely, concretion decomposes and transforms high-level data into low
level data. The lowest level of the Dialog Controller is in contact with the
presentation objects.

This multi-agent approach supports parallelism, distribution, multithread
dialogsanditerative design. Since agents should carry task sequencing, for
malism transformation, and data mapping at multiple levels of abstraction,
the Dialog Controller is described at multiple grains ofresolution combined
with multiple facets. At one level of resolution, the Dialog Controller ap
pears as a 'fuzzy potato'. At the next level of description, the main agents of
the interaction can be identified. In turn, these agents are recursively refined
into simpler agents. This is the usual abstractionjrefinement paradigm ap
plied in software engineering.

Orthogonal to this refinement / abstraction axis, the 'facet' axis is intro
duced. An agent is described along three facets: Presentation, Abstraction,
Control. These facets are used to express different but complementary and
strongly coupled computational perspectives.

• The Presentation facet of an agent implements the perceivable behavior
of the agent. As shown in Figure 4.8, it is related to some presentation
object of the Presentation Component.

• The Abstraction implements the competence of the agent (i.e. its exper
tise) in an essentially media-independent way. It is the Functional Core
of the agent. It maintains the abstract state of the agent. It may be
related to some domain object(s) of the Functional Core Adapter. The
abstraction facet of an agent provides a good mechanism for performing
domain-knowledge delegation.

Example Architectures 123

• The Control part of an agent is in charge of two functions: linkage of
the Abstraction part of the agent to its Presentation portion and main
tenance of the relationships of the agent with other agents. The linkage
serves two purposes: i) formalism transformations between the Abstrac
tion and the Presentation portions of the agent, and ii) data mapping
between the abstract facet and the presentation facet. Relationships
between agents may be static or dynamic. Dynamic relationships are re
quired when agents are dynamically created/deleted. Relationship main
tenance by the control part of an agent covers the communication and
the synchronization mechanism between this agent and its cooperating
partners.

In summary, a PAC agent could be viewed as a mini-Arch. Figure 4.9
shows how one PAC agent relates to other agents and to the surrounding
world of the Dialog Controller:

Functional
Core

Adapter

Domain
Object

/
/ ' '

Presentation
Component

Presentation
Object

Figure 4.9 A PAC agent of the Dialog Controller.

4.6 Example Architectures

In the following examples the Serpent and Chiron-1 architectures are dis
cussed in the light of the generic functional partitioning described above
and from the viewpoint of satisfying the quality properties introduced. Re
search systems have been chosen for the following reasons.

• Research tools are often concerned with software architecture, and so
provide enough information in their descriptions to allow architectural
analysis. This is often not the case for commercial systems.

• One commercial tool should not be advocated over another in this con
text.

124 Software Architecture Modell

A graphical convention for representing architectural structure is intro
duced, see Figure 4.10. This in combination with the generic functional
partitioning will ease comparisons and discussions of the architectures.

Rectangles with solid lines represent processes, or independent threads of
control, ovals represent computational components which only exist within
a process or within another computational component (e.g. procedures or
modules), shaded rectangles represent passive data repositories (typically
files), shaded ovals represent active data repositories (e.g. active databases),
solid arrows represent data flow (uni- or bi-directional) and grey arrows
represent control flow (also uni- or bi-directional).

4.6.1 Serpent

Components

Process

Compulationa I
Component

Passive Dala
Reposilory

Ac~ve Data
Repository

Connections

-
-

Uni·directional
Dala Flow

Bi·directional
Dala Flow

Uni-directional
Control Flow

Bi-directional
Control Flow

Figure 4.10 Structural Notation!J .

Serpent identifies a dialog controller, the presentation and the application
as three distinct processes in its architecture, as shown in Figure 4.11.

Application modules contain the computational semantics required for
the application. Although there can theoretically be many different ap
plications contained within a given run time instance of Serpent, there is
typically only one. Presentation modules provide techniques for supporting
interaction at both the logical and physicallevel completely independently
of application semantics. Different presentation modules in a given run
time instance are possible, although not typical. Given that application
and presentation modules are separate, there must be a way to coordinate
a given application component with a presentation component. That is the
purpose of the dialog controller. The dialog component mediates the user's
interaction with an application, through the control of the presentation.

Example Architectures 125

Dialog Controller

Dialog Manager

Application --
Active Database

Presentation

Figure 4.11 Serpent's Architecture.

All communication between Serpent components is mediated by con
straints on shared data in the database shown in Figure 4.11. This struc
ture is implemented as an active database; when values in the database
change, they are automatically communicated to any component which is
registered as being interested in the data. This global database physically
resides in the same process as the dialog controller but is logically indepen
dent from all of the Serpent components. A dialog manager sits within the
dialog controller process and mediates the connection between application
and presentation. The dialog manager is further decomposed into a collec
tion of view controllers - not shown in Figure 4.11 - which provide a finer
grain of correspondence between application and presentation objects.

4.6.2 Analysis of Serpent

This section explains the mapping between the system-specific notion which
Serpent implements and the functional partitioning used as the base of
reference in this book. Figure 4.12 recasts Serpent's architecture in the
common functional notation given in Section 4.2.

Several things have been changed between Figure 4.11 and Figure 4.12:

• the Active Database is represented as an active repository;

• data and control relationships are exposed;

• independent flows of control are exposed through the delineation of pro
cesses; and

126

Functional Core Adapter
Dialog

Dialog Controller

r--------
1 Functional Core
I
I
I
I
I
I
I Ii ____ _

Software Architecture Model&

r--------
1 Logical lnteraction
1 Physical lnteractio
I

Figure 4.12 Serpent'! Architecture (annotated).

• a v1ew controller hierarchy is exposed as a subdivision of the dialog
manager.

Recall that, with properties associated with functional roles, and with
Serpent analysed in terms of these roles, Serpent can now be assessed
against a property profile. This assessment will be discussed after the anal
ysis of another example architecture.

4.6.3 Chiron-1

Chiron-1 (Taylor and Johnson, 1993) is a User Interface Design System
which was created with the goal of addressing two important software
life-cyde issues: maintainability and sensitivity to environmental changes.
Chiron-1's architecture, as presented by its authors, is shown in Figure
4.13.

A Chiron-1 system consists of a dient and a server. The dient consists
of an application, which exports a number of abstract data types (ADTs)
which Chiron-1 encapsulates within Dispatchers. Dispatchers communicate
with Artists, which maintain abstract representations of their associated
ADTs in terms of an abstract depiction library (ADL).

A Chiron-1 server consists of: a virtual window system, which trans
lates from abstract interface depictions into concrete ones; and an instruc-

Example Architecture!

Chiron Server

Abstract
Depiction

ADLUtx.y

Chiron Client

Figure 4.13 Chiron-1'6 Architecture (original) .

127

tionfevent interpreter. It also accesses an ADL. The instructionjevent
interpreter responds to requests from Artists to change the abstract de
scription and translates those requests into changes to the presentation.
The server also responds to events from users and translates those back
into Artist requests.

All of these components- ADL, Artists, virtual window system etc. - are
specific to Chiron-1. This 'naming problem' makes analysis and comparison
with other systems difficult. The goal in doing architectural analysis is
to have a single language and a single representation for understanding
architectural issues. In order to do this, Chiron-1 is re-characterized in
terms of the functional roles given in Section 4.2.1. This leads to a system
independent language for talking about functionality, and the partitioning
of functionality.

4.6.4 Analysis of Chiron-1

The Chiron-1 architecture clearly separates the application (functional
core) from the rest of the system, as would be expected in a system which
was built with the expressed goal of minimizing sensitivity to environmental
changes. The functional core adapter could live in the ADTs, or in the
Artists. It seems clear that the Artists contain some of the dialog since

128

Chiron Server

~ ~;s~a-;- : i - -L;;-g-;;;~ - - :
I Interaction II Interaction 1
I II 1
I II I
I I
I I
I I
I I
I 11+----+i
I I

Abstract
Depiction

ADLLibraiY

L- ------

L -- -- ..J

Software Architecture Models

Chiron Client
r ------ -

Functional Core 1 Functional Core
Adapter 1

I
I
I
I
I
I
I
I

Figure 4.14 Chiron-1 's Architecture (annotated) .

they have the job of maintaining a correspondence between objects from
the application domain and interface objects from the presentation domain.

However, what is less clear from Chiron-1 's architectural description is
where the 'state' of the dialog Jives. For example, where does one put the
information that the 'Paste' option in an edit menu should be greyed out
unless something has previously been cut or copied? Another type of dialog
issue is maintaining relationships among the interface objects. For example,
when a user selects the 'Save As' option in a file menu, something in the
dialog must cause a file selection box to be created.

The location of these sorts of dialog issues is explicitly addressed in
Chiron-1 's architectural description. These dependencies might exist in the
Artists, in the ADTs or even in the Abstract Depiction Libraries. For sim
plicity's sake, we have provisionally annotated the architecture to show the
dialog as living completely in the Artists.

The final two functional roles are clearly identified: the Physical Inter
action function corresponds to Chiron-1 's Virtual Window System com
ponent, and the Logical Interaction functionality is provided by the 1/E

Aueuing Quality Propertiea 129

interpreter, augmented by the ADL. As a result of this characterization,
the Chiron-1 architecture is provisionally annotated as shown in Figure
4.14.

In this depiction of Chiron-1 (which was adapted from the original sys
tem architecture given in Taylor and Johnson (1993)), the partitioning of
functionality can be viewed in terms of the functional roles given in Section
4.2.1.

4. 7 Assessing Quality Properties

The main aim in analysing the allocation of functional roles to a specific
architectural structure is to support assessment of an architecture against a
property profile (as long as properties have been associated with functional
roles).

Before giving examples of such an assessment for both Serpent and
Chiron-1, the above analysis of Chiron-1 can be cross-checked by map
ping the temperature/humidity example onto Chiron-1 's architecture. Per
forming this mapping has the further advantage of allowing assessment of
properties for a specific realization of an architecture for a specific (small)
computer system.

4,. 7.1 A Chiron-1 Architecture for a Climate Control System

The functional core of the climate control system (Section 4.2.2)- getting
current or ambient temperature and humidity and setting the desired tem
perature and humidity- will be located in the 'Application' component,
labeled FC in Figure 4.14. The functional core adapter - responsible for
conversion and bundling/unbundling of information- will be located in the
Chiron-1 'ADT Dispatcher' components, labeled FCA.

The dialog functionality for the climate control system - reporting user
requests to the application, displaying application information to the user
and switching between setting mode and ambient temperature mode -
should be located in the Artists, as indicated by the D label surround
ing the Artists.

The presentation functionality in Chiron-1 is alllocated in the Chiron-1
server. The logical interaction portion, which translates between generic
presentation objects and particular window-system specific objects, is loc
ated in Chiron-1's Abstract Depictions and I/E interpreter, as indicated
by the LI label. The physical interaction component, which would display
the controller-gauge widgets to the user and receive input from the user, is
located in Chiron-1's Virtual Window System, as indicated by the PI label.

The functions of the climate control system are now partitioned and
mapped onto the structural components of a realized user interface archi
tecture. This allows establishment of the software ramifications of user-

130 Software Architecture Models

oriented properties. If it were desirable, for example, to guarantee a partic
ular property of a user interface - e.g. that a user can always return to a
previous state no matter what their current state is - it would be necessary
to assess how this property would affect the software of the system being
developed. One key concern is to know which portions of the system need
to be changed to better support a property. This is done for a few sample
properties below.

4. 7.2 Assessment of Properties

Representation Multiplicity

Consider, for example, the property ofrepresentation multiplicity. As stated
in Section 4.3.2, representation multiplicity can be manifested in a number
of different ways - it does not necessarily belong to any one function or one
software component. Two possibilities suggested were:

• the FC could pass a single object to the FCA, which would then split it
into two objects for the D;

• a single application object could be passed from the FC to the D, and
from the D converted into two LI objects.

Consider how this would be manifested in a system. A system such as
Chiron-1 could implement the first possibility. A single application object,
created in the FC, would then be packaged by Chiron-1 as an ADT (in
the FCA). This ADT would be split into two realizations and passed, via
a Dispatcher to two distinct Artists (dialog components).

In another system, one might choose to split an application object at
a different point. For example, the Serpent User Interface Management
System described in Bass et al. (1990) divides a system into FC, D/FCA
and PI/LI components, as shown in Figure 4.12.

In Serpent, the FCA and D functionality are undifferentiated, and so
there is only one way to achieve representation multiplicity: a single ap
plication object is passed to the FCA/D component, where it is split into
two. Each of these two objects in Serpent's Active Database would then
correspond to distinct LI/PI objects.

Insistence

The same kind of analysis of a software architecture can be made with re
spect to other properties as, for instance, the property of insistence (Section
4.3.3). Insistence, it should be remembered, deals with the duration and
period of the effect of a communication act. Consider a visual interaction
object which is to have a have a blinking aspect.

In order to achieve this function in Chiron-1, the designer has a choice
between three possibilities. If the underlying medium provides this function,

Gonclusion 131

it will be located in the PI - Chiron-1's Virtual Window System - and he
or she needs only choose the appropriate objects and attributes. If the PI
does not provide it, one would ideally want to simulate this functionality
in the LI. The LI provides a consistent set of interaction objects to the
Dialog, smoothing over or hiding the idiosyncratic differences of individual
toolkits.

In order to achieve insistence then, the LI would have to simulate an
insistent visual object by 'blinking' it - alternating its background and
foreground colors. In the Chiron-1 system, this functionality would have to
be located in the Abstract Depiction library. If, however, the LI could not
or did not support such functionality, then it would have to be supported
in the dialog component- in the Artists, in the case of Chiron-1.

In Serpent roughly the same situation is found. Insistence could be sup
ported in Serpent's Dialog Controller, or in its Presentation (which does not
architecturally differentiate Logical Interaction and Physical Interaction).

M odifiability

Modifications to the user interface are easiest to perform when the fewest
modules must be changed. Let us examine one specific modification: 'grey
out menu items that are currently not accessible'. This modification re
quires knowledge of currently valid menu choices and this knowledge is
contained in the Dialog. Both Serpent and Chiron-1 isolate Dialog within
their architectures and so this type of modification is assisted by both of
them.

User Interface Integratability

Suppose that a new system written using Serpent or Chiron-1 is to be
introduced into an existing environment. Since the details of the presenta
tion come from the Physical Interaction partition, and since this partition
is localized in Chiron-1 it can be seen that this architecture assists User
Interface Integratability. Since in Serpent the Logical Interaction and the
Physical Interaction partitions are bundled together, Serpent is less effec
tive in this than Chiron-1.

4.8 Conclusion

Chapter 3 introduced a set of software phenomena that interacted with
properties under the broad heading of software techniques. It identified
software architecture as the phenomenom that interacted most with our
properties. In this chapter, we have examined these interactions. To do
this, we have described software architectures in more detail, and have
presented a common framework for architectural analysis. The functional
groupings that were adopted in this framework can be related to our prop-

132 Software Architecture Modela

erties and thus identify where attention can be focused when attempting
to satisfy a property. This helps with the choice of an architectural model
that is optimal for a prioritized Iist of required properties. Even so, choice
between different published software architectures is difficult. There are
always different ways of applying a given architectural model to a given
design problem, especially as their descriptions in the Iiterature are not
sufficiently detailed. Architectural analysis would become more straight
forward if architectural models were accompanied by guidelines on how to
apply them. Furthermore, they could be further motivated with reference
to those properties that they supported weil.

Despite these difficulties, we have shown how properties can guide the
choice of a system software architecture. Such guidance is most straightfor
ward when properties are associated with a single functional grouping. For
example, reachability and properties that involve mappings by dialog func
tions such as observability are most easily checked for in architectures such
as Serpent where the dialog is explicitly represented and localized. Anal
ysis of these properties is far less Straightforward for architectures such
as PAC-Amodeus or Chiron-1 where the dialog state is distributed across
multiple agents or artists. Conversely, multi-threading, representation mul
tiplicity and device multiplicity are more easily handled within multi-agent
approaches like PAC-Amodeus where each thread of dialog is realized by
a separate sub-hierarchy of agents. For both sets of examples, analysis is
simpified by our prior association of properties with functional groupings.
Once an architecture has been related to these functional groupings, a prop
erty profile can easily be established for an architectural model, which in
turn simplifies the analysis of specific instances of a software architecture.

CHAPTER 5

Tools and Materials

5.1 Introduction

An interactive system is seen by different people from different points of
view. The system user is concerned with external properties, such as those
that infiuence task coverage, fiexibility and robustness during system use.
The developer is often more concerned with those internal properties which
address such things as the costs and reliability of development throughout
the entire development life cycle.

The subject of this chapter is the interactions between properties and
software techniques that are methodological in nature. Chapter 3 identified
interactions with these software techniques as the next most significant
after those with software architecture (this formed the subject of Chapter
4).

Effective and effi.cient use of methodological techniques is unlikely with
out tool support. For example, quality procedures, which validate that a
system meets its requirements, are likely to fail without extensive support
from tools and materials. Since these interactions are mediated by the use
of various tools and materials, this chapter examines how these infiuence
properties.

The wide range of tools and materials used for examples in this chapter
(e.g. the use of automatic code generation techniques and hypertext ap
proaches to requirements structuring) extends the subset of software tech
niques identified in Chapter 3. However, no attempt is made to cover all
possible software techniques (e.g. change control tools and protocols).

5.1.1 Definitions

In the context of this chapter, materials are defined broadly as anything
that someone in a development role produces for a specific project. In addi
tion to specifications, implemented code, and evaluation reports, materials
may include design documents, system administrator as well as well as user
documentation, on-line help and tutorials, and various training aids. Even
marketing strategies can be regarded as materials given the above defi
nition. However, the definition unfortunately excludes any re-usable code
that was not produced for a specific project (e.g. interaction toolkits). The
definition could clearly be improved, but in order to keep it simple, the

134 Toolß and Materials

comment may be added that anything that could be produced by a devel
opment role for a specific project can be alternatively provided by re-using
existing materials.

Materials mark the boundaries of software development phases. They
are used to pass information between phases (evaluation materials can re
flect informationback into a phase). In contrast, tools embody the activ
ities that carry a project forward. Materials produced with tools in one
phase are used either in subsequent phases to generate further materials,
or within the same phase to refine other materials within it. For example,
design specifications can be transformed by model-based tools into exe
cutable code, but they can also be analysed with evaluation tools in order
to produce evaluation reports that guide further refinement of the design
specification.

5.1.2 Potential Scope of this Chapter

The potential scope of this chapter is very large. For example, five broad
categories of material can be identified.

1. Requirements materials specify the requirements for an interactive
system. Requirements specialists select external and internal properties
and allocate weights to them.

2. Specifications and Design materials provide a detailed description
of the interactive system.

3. Coded modules implement the components of an interactive system.
lmplementers transform design materials into these coded modules, ex
cept where existing materials can be re-used.

4. Working system, i.e. the coded modules, bound together and exe
cutable, resulting in an interactive system performing useful work, and
containing state information about a user's current interactive tasks.

5. Evaluation reports describe the strengths and weaknesses of a working
system, partly expressed in terms of the properties identified in Chapters
2 and 3.

Development roles from Chapter 1 appear above (e.g. Requirements spe
cialists, lmplementers) and below. Recall that multiple roles can be filled
by the same person, and that a single person may fill multiple roles.

The usual inputjoutput relationship in any one phase is defined by the
application of a transformation to the input in order to create the output
(e.g. transform a task method into a dialog sequence). However, other forms
of inputjoutput relationship may be needed during system development.
For example, in the case of mapping from requirements to specifications,
a solely transformational approach cannot handle the pervasive nature of

Introduction 135

'non-functional' requirements, because there is no simple mapping of re
quirements onto design features. In this case, a checking relationship pre
dominates, designs being checked against requirements. In all cases, tools
may be used to move between different categories of material. Five cate
gories of such tools can be identified.
1. Requirement tools are used by requirements specialists to formulate

requirements.

2. Specification tools are used by system designers to produce specifi
cation materials that describe intended solutions.

3. Construction tools are used by implementers to transform specifica
tion materials into coded modules.

4. Execution tools are used by system administrators to assemble and
bind modules into interactive systems.

5. Evaluation tools are used by validators in evaluating interactive sys-
tems by exercising and measuring various usability aspects.

The above lists of categories of materials and tools cover a potential range
that is so large as to make this chapter's analysis unmanageable. The work
ing group therefore made several pragmatic decisions that restriet the scope
of analysis. The scope is also restricted by a number of logical considera
tions that do exclude many tools and materials from the discussion.

5.1.3 Restricting the scope of this chapter

The main pragmatic restrictions result from an assumption that the most
relevant materials for an analysis of interactions with properties are those
that describe the final system, evaluate these descriptions, specify proper
ties for the final system, or remain in the final system (i.e. as coded modules
or resources that are referenced during execution). It is also appropriate
to consider detailed architectures as materials (they are extensions of the
architectural models considered in Chapter 4). Given the restrictions on
'relevant' materials, 'relevant' tools generate such materials (this extends
transitively to all 'ancestor' tools and materials in a 'generation pipeline').

These pragmatic restrictions exclude tools that support standard meth
ods from Usability Engineering (Nielsen, 1993), as these evaluate the final
system rather than a description of it. This is a little late for our purposes.
Such tools (e.g. Hix and Hartson, 1994) are placed outside the scope ofthis
chapter, even though user testing is required to establish the satisfaction
of all user-dependent properties (e.g. honesty), as well as properties given
a low (even no) priority in an initial property profile.

A further pragmatic restriction is that we ignore hardware materials,
even though pace tolerance is generally determined by system response time
(which in turn is improved by high-performance processors, accelerator
boards etc.).

136 Tools and Materials

Other restrictions placed on the tools and materials considered below
can be supported by argument. Primarily, many tools and materials in
routine use do not interact with properties. For example, general purpose
text editors can be used to create specifications, but provide no support for
internal or external properties. At best, such tools provide some support
for development effi.ciency, but experiences with CASE over the last decade
suggest that even this is open to question. Actual usage can often be an
act of faith, and some tools used in good faith are actually detrimental to
the achievement of high-quality interactive systems.

Further logical restrictions arise from the development life cycle. Tools
and materials for the early phases of development can be ignored, since
properties are not selected nor are weightings allocated until late in the
requirements specification phase. Neither should the phases following the
system test be considered, since properties should have been established
long before system installation. The scope of this chapter may therefore be
logically confined to the phases from the start of system design until the
end of system testing (but with usability evaluation tools already excluded
from the scope). These remaining phases may be collected into the following
three groups.

Specification - the phases of system design, software design and module
design.

Construction - the phases of coding, module tests and integration tests.

Evaluation - the system test phase.

The fine-grained phases of Chapter 1 are now, therefore, replaced by coarse
grained groups of phases. These are used to organise the analysis in the
same way as functional partitions did in Chapter 4. However, there is one
dass of tools and one develoment practice that clearly cut across the above
coarse groups. These must be considered before examining interaction in
detail.

Model-based tools cut across coarse development phases. These address
specification, construction and evaluation by automatically generating large
parts of the final system. Clearly, however, internal properties may be as
sisted, as these tools integrate and manage activities that span most of
the development life cycle. For example, ADEPT (Johnson et al., 1995)
begins with task analysis and user modeling, expresses requirements as a
task model and a user model, and then generates intermediate models (de
sign specifications) from which code is generated. Tools such as DON (Kim
and Foley, 1993) and TRIDENT (Vanderdonckt and Bodart, 1993) also
evaluate models for various qualities. Such tools can be accommodated by
treating them as a family of implicit tools. Each implicit tool is used to
address aseparate coarse development phase.

Prototyping (see Section 1.3.1) cuts across coarse development phases. At

Introduction 137

least three uses for a prototype are possible once an iterative development
is halted.

1. The prototype and evaluation reports become materials for requirements
specialists, who transform them into formal requirements that refiect the
whole prototyping experience.

2. System designers draft formal specifications that capture key features of
the prototype at alllevels of abstraction - here prototypes are materials
that specifications are checked back against.

3. The prototype contributes coded modules for use by an implementer of
the final system (who will add modules for new functionality and/or user
interface capabilities).

The third use arises with evolutionary prototypes, while the first two arise
with rapid prototypes (as defined in Section 1.3.1).

Rapid prototypes can be constructed using paper and pencil, or with
tools such as HyperCard (Goodman, 1993) and Director (Macromind, 1990).
They can be evaluated, for example, to provide some confidence about inter
action fiexibility or robustness. Tools with explicit high-level configuration
languages could even support proof of some properties. Rapid prototypes
are thus reference materials against which requirements or specifications
can be checked. They are strictly part of the early development phases and
thus rapid prototyping tools are outside this chapter's scope.

When using rapid prototypes, the speed at which they can be produced
limits evaluation to the external properties defined for the system since soft
ware quality standards (i.e. internal properties) must necessarily be relaxed
in creating them. However, when developing evolutionary prototypes, high
software quality standards must be maintained at all times since the pro
totypes develop into the final system for which high standards are wanted.
It follows from this that evolutionary prototypes will usually be developed
using commercially available construction tools.

For evolutionary prototypes, the relevant properties, tools and materials
are no different to those for final systems that have been developed with
out prototyping. Such commercially available user interface development
products include:

• UIMX from Visual Edge

• InterfaceBuilder from NeXT

• Prototyper from SmethersBarnes (SmethersBarnes, 1990)

• Visual Basic from Microsoft

• PowerBuHder from PowerSoft

• XFaceMaker from Non-Standard Logics.

In summary, this chapter will focus, for a mixture of pragmatic and
logical reasons, on materials and tools that are used or produced during

138 Tools a.nd Ma.teria.ls

specification and construction. Model-based tools can be analysed first for
their specification support, and then for construction. Evolutionary proto
types can be regarded as being no different to any other final system for
our analysis. The ten categories of tools and materials that could provide
the scope for this chapter have thus been reduced to a manageable four
(there are no evaluation tools or materials to consider).

Detailed discussion of relevant interactions begins by considering first
those interactions between properties and tools/materials within the spec
ification and construction phases of development (Sections 5.2 and 5.3 re
spectively). Examples will be drawn from a wide range of existing tools and
materials. This analysis of interactions is then extended in two ways: first
by examining three well-established tools across a representative range of
properties (Section 5.4); then by presenting current practice in using such
tools at four representative development sites (Section 5.5).

5.2 Specifi.cation Tools and Materials

The time consuming task of specification spans system design, software de
sign and module design. Recall that the properties which must be satisfied
during these design phases will have been selected and allocated weighting
during earlier development.

5.2.1 Fle:I!ibility Properties

Consider first the need for flexible planning of task execution. This involves
the properties of reachability, non-preemptiveness and multi-threading.

Reachability can be proved when using some notations, especially ones for
dialog abstractions such as transition networks. The RAPID prototyping
tool (Wasserman, 1985) configures dialogs using state transition networks,
letting reachability be at least assessed at the dialog level of abstraction.
Proof is obstructed by RAPID's traversal semantics- there are side-effects
on transition conditions, input consumption and time-outs (Cockton, 1985).
For tools with cleaner transition conditions and traversal functions, path
algebras (Alty, 1984) can be used. These can compute the transitive clo
sure of state transition graphs, and thus be used to assess reachability and
representation multiplicity (for input, through multiple dialog structures).
Such tools are still only present in research environments and applicable
only to moderately sized systems (Alty and Ritchie, 1985).

Transition networks and similar dialog abstractions also support as
sessment or proof (given a formalization) of non-preemptiveness. Unfor
tunately, these abstractions effectively obstruct the multi-threading prop
erty. This is because networks can only represent interleaving of processes
by having a path for every possible trace through the process complex.
Interleaving two network-specified dialogs with m and n states respectively

Specification Tools and Materials 139

Table 5.1 Specification Phase Interactions between Tools/Materials and Interac
tion Flezibility Properties

Property

Reachability

Non-preemptiveness

Multi-threading

Device Multiplicity, I/0
Re-use and Human Role
Multiplicity

Representation
Multiplicity

Reconfigurability, Adap
tivity and Migratability

Interaction Comment

Prove Most Straightforward with
'clean' dialog abstractions

Assess By inspecting specifications that
support proofs of reachability

Deliver By using dialog abstractions
with process constructs

Obstruct By using any sequential dialog
abstraction

Address By using dialog abstractions
with process constructs

None Dependent on construction
tools/materials

Assess Same relationships as observ
ability with constraints, view
controllers, model-based tools
and cognitive walkthrough

None Dependent on construction
tools/materials

requires a combined interleaved network with m x n states, whereas pro
duction systems require only m + n rules to interleave two rule sets of m
and n rules (Hill, 1987).

This problern with networks can be overcome quite simply by directly
addressing the multi-threading property by adding process constructs (Eng
land, 1988; Jacob, 1986), but care must be taken with the underlying
schedulers that distribute events to different dialog networks. Often the
schedulers will not preserve the desired properties of good concurrent pro
cesses. Multithreading and non-preemptiveness are thus best supported by
using integrated specification constructs that address them directly, (e.g.
Statecharts - Harel, 1988).

Table 5.1 summarizes interactions between properties and tools or mate
rials (T /M). Overall, tool support for flexibility properties is biased towards
properties that can be proved or directly provided in some form. Only reach
ability can be easily proved (and this willlargely be at the dialog level).

140 Tools and Materials

Multi-threading and non-preemptiveness can be delivered by appropriate
control constructs, which again are best suited to specialization for the
dialog level of abstraction.

Support for interaction flexibility during specification is very limited,
and largely restricted to flexible planning of task execution. This is be
cause many of the capabilities required for interaction flexibility must be
provided by construction and execution tools. Specification tools tend to lag
behind construction and execution tools, but there are clear opportunities
for better support here.

Classifying Interactions

Several new terms are introduced in the second column of Table 5.1, and
these will be explained before returning to the main analysis. Each form
of interaction is defined by a set of activities in which developers must
engage in order to exploit the interaction (with the exception of None and
Obstruct, see below). To define each form of interaction, we must first
identify the defining activities. For the forms of interaction in Table 5.1,
these are.

Specialization - developers use a basic knowledge of a property to in
stantiate a construct (e.g. instantiating an interaction specification for
a pull-down menu using an appropriate* construct such as a transition
network).

Formalization - developers must use extensive knowledge of a property
to express it as a formal predicate.

Proof Discharge - developers must use formalization, specialization (to
produce a specification) and extensive skills at following proof proce
dures to establish that a property holds for the specification.

Inspection - developers must use extensive knowledge of a property to in
spect specifications (which ideally should be formed from instantiations
of appropriate constructs).

Given these activities, four interactions can be defined as follows.

Delivery - involves none of the four activities, and yet a positive interac-
tion still results (by use of appropriate tool or re-use of materials).

Proof - requires formalization then specialization then proof discharge;

Addressing - requires only specialization.

Assessing - requires inspection after specialization.

* An appropriate construct is implicitly defined 8S one th8t requires only 8 b8sic knowl
edge of 8 property to inst8nti8te it. Once properly inst8nti8ted, in the sense th8t the
inst8nti8tion is weil formed, the property is delivered. The developer h8s to do nothing
other th8n to 'fill in the bl8nks', 8lthough this ID8Y involve quite complex expressions.

Specification Tools and Materials 141

The table also includes an obstruction interaction. This can be the opposite
of either assessing or proof, as the degree of obstruction may be assessed
by inspection or established by a proof procedure. Here, developers must
engage in activities to establish that a property cannot be (fully) supported.

When there are no positive or negative interactions between a specific
tool or material and a property, then the tool or material is said to be
neutral with respect to this property. In this case, no combination of de
velopment activities using the tool or material could exploit a property or
demonstrate that it was obstructed. 'None' in the table indicates that all
the tools and materials that were considered were neutral with respect to
the property in question.

There are clear advantages in defining interactions in terms of required
development activities. Firstly, it reveals some forms of interaction as being
specific to a development phase. Thus tools that support proof of properties
are used during specification. Furthermore, some interactions during early
phases create further tasks for later phases. Properties that are proved
or addressed during specification must be preserved during construction
(for addressing, this can be achieved by construction tools that address
properties to the same standard as specification tools).

A second advantage of defining interactions in terms of required activities
is that it reveals differences in entailed developer effort for each form of
interaction. Delivery requires no further developer effort beyond use of
appropriate tools or re-use of materials (as, for example, use of a true
functional programming language will deliver referential transparency for
all programs); proof requires extensive developer effort and skill- someone
must produce design specifications, someone must formalize the property
and someone must do the proof; addressing requires some developer effort
- someone must form relevant parts of a specification by instantiating an
appropriate construct (e.g. processes are appropriate for forming instances
of non-modal dialog boxes); assessing requires developer effort and good
human factors skills - someone must produce design specifica.tions and
someone must inspect them.

A third advantage of defining interactions in terms of required activities
is that it reveals differences in likely attainment of each form of interaction.
Consider, for example, the activities involved in proof. Only the special
ization activity is Straightforward (for developers who can use specification
tools). In contrast, formalization of properties can be very frustrating. It
was not completed for any informal property in Chapter 2, despite several
efforts. Many apparently acceptable predicates turn out to be too weak or
too strong, i.e. they admit or exclude design features that do not or do
support the property that they should formalize. Proof discharge is also a
risky enterprise. The ability to prove a property depends on the notations
used. Thus proof procedures for some properties are well understood when
established constructs such as transition networks and context-free gram-

142 Tools and Materials

mars are used. However, Chapter 4 identified no proof interactions between
architectural models and properties, for although architectural description
languages are being developed (Garlan and Shaw, 1993; Luckham et al.,
1995); this work is still at an early stage.

In summary, forms of interaction between toolsjmaterials and properties
have a straightforward definition that involve one or more development ac
tivities in a particular order. As long as the simple basis oftheir definition is
remembered, they support valuable analyses that identify what developers
must do and when they must do it. This is especially valuable when iden
tifying properties that can be ignored from an early stage in development,
cannot be attended to during long periods of construction, require little
developer effort, require much developer effort, can be reliably exploited or
incur risks of failure. Having presented the basis for such judgements, we
can resume the main analysis.

5.2.2 Robustness Properties

Flexibility properties are quite general and can thus often be addressed
by general formal computing constructs, at least for flexible planning of
task execution. In contrast, robustness properties require more constructs
specific to interactive systems. As will be seen, general constructs can be
used for pace tolerance, but several properties can only be assessed by using
walkthrough techniques. Overall, several constructs are often required to
address a robustness property comprehensively. This is particularly the case
with deviation tolerance. But specific architectural support is needed for
observability, and this robustness property is examined first.

Observability is defined as the possible rendering (at the logical level
of abstraction) of relevant state (at the functional level of abstraction).
Architectural models described in Chapter 4 support separation into dif
ferent levels of abstraction. So do UIMSs that link functional components
to interaction components via a dialog component.

When such architectures are embodied in specification tools, then link
constructs are required to address observability. A link construct is any
specification construct (or software entity) that forms connections between
separate architectural components. A range of link constructs is mentioned
in one of the example site reports (Section 5.5.2 below).

Dialog functions that use specialized link constructs address observabil
ity. This holds because information must be rendered to become observable,
and dialog functions are responsible for initiating such renderings (by trans
ferring selected information from the functional core adapter to selected
logical interaction functions). Hence link constructs such as SERPENT's
View Controllers (Bass et al., 1990) address observability by encapsulating
design decisions on when and how to render information.

Developers need not be aware of link constructs in model-based user

Specification Too/1 and Materials 143

interface development tools such as ITS (Wiecha et al., 1990), Humanoid
(Szekely et al., 1993), and UIDE (Sukaviraya et al., 1993). They generate
appearance and behavior from higher-level models, addressing observabil
ity by (semi-)automatically linking functionallevel models to presentation
models.

Lastly, link constructs can also partially deliver honesty as long as the
system is pace tolerant with minimal delays between functional state and
corresponding display updates, since a value on the display should always
accurately reflect its underlying value. Automatically created links can pro
mote honesty if pace tolerance conditions are met.

In the absence of architectural support, observability and related robust
ness properties (i.e. insistence, honesty) can be assessed in specifications,
primarily by combining design descriptions with walkthrough procedures.
For example, Cognitive Walkthrough (Wharton et al., 1994) combines task
descriptions in any format chosen by developers with a simple set of ques
tions. Four questions are asked at any interaction point:

1. Will the user try to achieve the right effect?

2. Will the user notice that the correct action is available?

3. Will the user associate the correct action with the effect they are trying
to achieve?

4. If the correct action is performed, will the user see that progress is being
made towards solution of the task?

Two of these questions address two stages of Norman's Seven Stage Model
of Human-Computer Interaction. In this model, users cycle through com
mand execution and result evaluation (Norman, 1986). Before entering
commands, users must work out what to enter. Norman calls this stage
'action specification', and question 2 addresses it. Question 4 addresses all
three of Norman's three result evaluation stages (perception, interpretation
and evaluation).

There are clear similarities between some robustness properties and Cog
nitive Walkthrough questions.

Predictability is covered by question 3;

Honesty is covered by question 4;

Insistence is covered by question 2 (and question 4 is implied by honesty);

Observability: both questions 2 and 4 are implied by insistence.

Cognitive Walkthrough thus supports assessment of four robustness prop
erties. It is, however, a paper-based tool, although specification tools could
easily be extended to step designers through each of the four questions at
each interaction point.

Other assessment methods focus on a single robustness property. For ex
ample, predictions of learnability made by Cognitive Complexity Theory

144 Tool! and Materials

(CCT) let predictability be assessed (predictable systems are more consis
tent than unpredictable ones and thus require fewer rules than a user model
for an inconsistent system), although the e:ffectiveness of CCT is disputed
(Knowles, 1988).

CCT focuses on a single robustness property, and it also requires a com
plete system model for CCT at some level of abstraction (usually the dialog
level). In contrast, for Cognitive Walkthrough, task descriptions may only
give partial coverage at mixed levels of abstraction. In short, designers can
walkthrough what they imagine the system to be, rather than what some
specification says it is. There are trade-o:ffs between developer e:ffort and
comprehensiveness here. Only partial assessment can be expected unless
task descriptions are formally derived from a complete system specifica
tion.

Considering other robustness properties during specification, pace tol
erance can be assessed, and perhaps even delivered, by general comput
ing constructs. Real time specification languages can be combined with
real time scheduling algorithms to establish that a response to an event
will occur within a given time (Burns, 1994). For example, rate-monotonic
scheduling algorithms (Shc, and Sathaye, 1993) can be used to establish
pace tolerance, although they currently ignore system overheads. They also
largely address hardware issues such as bus protocols. Their applicability
to current interactive systems is limited, but progress with such approaches
could be relevant for pace tolerance. With control over processing time, pre
dictability in the form of response time stability would also be addressed.

More specific tools can focus on interface details that impact pace toler
ance, for example, messages that are displayed and removed under system
control. Users must be given time to read these. Algorithms for calculat
ing the necessary duration of a message exist (Bevan, 1983), and thus the
times could be specified. A focused tool could address by making such
calculations.

The authors are aware of no interactions between specification tools or
materials and the robustness property of access control.

The remaining robustness property, deviation tolerance, must be ad
dressed by a wide range of constructs during specification. For example,
input validation constructs, which are increasingly found in user interface
builders, only address the error detection aspect of deviation tolerance. The
property must be further addressed by constructs for error prevention and
error recovery. For example, error prevention constructs can be found in
screen layout tools that include constructs for preventing users from per
forming inappropriate commands (e.g. the presentation of an undesirable
command can be visually distinguished at the logical interaction level).

Error prevention can be given more general support by specification lan
guages with command pre-conditions. The earliest UIMS work here was
by Mark Green (1985). Pre-conditions over states at the functionallevel

Specification Toolß and Materials 145

are used in the UIDE environment by Sukaviraya et al. (1993), where they
support automatic generation of various user support features such as in
telligent help (Sukaviraya et al., 1992). More extensive pre-conditions,
which support error detection, error prevention and error recovery, are
found in the NUF notation, a specification notation for the functional
level (Cockton et al., 1995). This has four types of pre-conditions for ab
stract commands: availability, prevented failure, automated recovery and
mixed-initiative recovery. * Availability pre-conditions prevent users from
initiating a command (typically by greying it out and making it unse
lectable). Prevented failure pre-conditions are the simplest form of error
detection, which merely specify an error state from which no further recov
ery is possible. Automated recovery pre-conditions specify an error state
from which automated recovery is possible. Mixed-initiativerecovery pre
conditions specify an error state from which recovery is possible, but only
with user involvement.

Consider, for example, a document editor which offers a command to
the user to save the document as a file to be named by the user as part
of the command interaction (sometimes known as a 'Save As' command).
When no documents are being edited, this command is made unavailable
(availability condition is a non-empty set of open documents). The editor
must also prevent the file save failing because an unacceptable file name
is given (prevented failure condition is presence of special characters, in
correct <prefix>. <suffix> format, or name too long), as well as negoti
ating mixed-initiative recovery for the case where the named file already
exists (that is, the error detection condition) - to prevent unintentional
over-writing of contents (error recovery takes the form of a yes/no/cancel
question). Also, where a programming environment offers a command to
run the program being developed it can automate error recovery where the
current version of the source code needs recompilation before execution
(the error detection condition is 'source changed since last compilation',
and error recovery takes the form of recompilation).

Current model-based tools do not provide such recovery mechanisms. In
Humanoid (Szekely et al., 1993), for example, side effects must be used to
provide for error recovery. In UIDE (Sukaviraya et al., 1993), a generated
dialog model may have to be extended by hand to include recovery. Support
for the deviation tolerance property may therefore be diminished between
specification and construction.

Overall, there are few sufficiently general constructs that address robust
ness properties. Developers must thus wait until construction phases where
re-usable library materials can provide specialized assistance for specific

* Mixed-initiative recovery involves both the user and the system in deciding whether
to quit without saving.

146 Tools and Materials

Table 5.2 Summary of Specification Interactions between Tools/Materials (T /M)
and Interaction Robustness Properties

Property Interaction

Observability Address
Assess

Insistence Assess

Honesty Assess

Predictability Assess

Access None
Control

Pace Deliver
Tolerance

Deviation Address
Tolerance

Address

Assess

Comment

Constraints/View Controllers
Model-Based User Interface Generators
Cognitive Walkthrough Questions 2 and 4

Cognitive Walkthrough Questions 2 and 4

Cognitive Walkthrough Question 4
Temporal aspects assessed in conjunction
with both observability and response time
conformance

Cognitive Complexity Theory (but effec
tiveness disputed (Knowles, 1988))
Response Time Stability assessed along
with pace tolerance
Cognitive Walkthrough Question 3

Dependent on construction materials

Real time scheduling algorithms
(potentially)

Partial support from UI management
tools/builders with input validation
construct
Pre-conditions as used in NUF (Cockton et
al., 1995) and Model-Based User Interface
Generators
Cognitive Walkthrough can establish effects
of errors

design features. Interactions between tools/materials and robustness prop
erties are summarized in Table 5.2.

Robustness properties are given more extensive, but less effective, sup
port than flexibility properties by tools and materials. Only observability,
pace tolerance and restricted forms of honesty and deviation tolerance can
be addressed. Otherwise, assessment is the best support available. For ex
ample, the combination of cognitive models and walkthroughs allows as
sessment of insistence, honesty, predictability and deviation tolerance. This

Specification Tools and Materials 147

is because these properties are more user-dependent than the other robust
ness properties. They can be assessed during specification, but cannot be
re-tested until evaluation. This poses a problern in that they cannot be
attended to during construction. There is thus a gap between their as
sessment by analysis and their confirmation by (user) testing. This kind of
insight isafurther benefit of exposing different forms of interaction between
properties and tools/materials.

5.2.3 Internal Properties

The main interactions between tools/materials and internal properties dur
ing specification are with development efficiency, modifiability and user
interface integratability. Other interactions are minor, such as those with
evaluability, portability and maintainability, which are due to positive inter
actions with architectural models (i.e. appropriate architectures will pro
mote these properties, and thus properties achieved for an architectural
model must be preserved during architectural design). Minor interactions
here between these properties and architectural models must be preserved
during architectural refinement in the software design phase. In particular,
modifiability must be carefully considered during all refinements. However,
all current model-based tools impose architectures on the final systems,
and may thus obstruct properties that interact with architectural models.

Support for external properties can obstruct run time efficiency unless
steps are taken to counteract this. One possible step is to use virtual Sep

aration (Shevlin and Neelamkavil, 1991). This can be used to reduce the
tension between, for example, observability and run time efficiency by not
generating separate coded modules for different levels of abstraction in the
final system. Separation is thus virtual: it exists during specification but
is not preserved in the final system (in Figure 1.4, there would be no sep
arate FCX and UIS as the binding services would create PAC-like agents
instead).

Virtual separation lets properties be addressed when they are most rel
evant during specification. Once established, specification constructs that
address them (e.g. link constructs for observability) can be compiled away
in the interests of run time efficiency. Returning to more major interactions,
development efficiency is clearly a key property for specification and design
tools. Tools that automatically generate the user interface such as TRI
DENT (Vanderdonckt and Bodart, 1993), ADEPT (Johnson et al., 1995),
UIDE (Sukaviraya et al., 1993), ITS (Wiecha et al., 1990), and Humanoid
(Szekely et al., 1993) improve development efficiency by reducing develop
ment decisions. For example, UIDE automatically chooses the appropriate
interaction object from interaction specifications.

Tools should deliver known degrees of development efficiency. One way
to establish such degrees is to use tools for bench-mark (standard) devel-

148 Toolß a.nd M a.teria.ls

opment tasks, and then to assess the speed up over untooled development.
For limited tools such as user interface builders, the task for creating a
'hello world' pop-up window is often used to compare their efficiency with
toolkits and lower-levellibraries.

Benchmarks, however, are only a start. The development efficiency of
tools should be assessed for real work (to do this, a software team need a
good guess at how long tasks took without tool support). It is questionable
to use tools without known levels of development efficiency. For such tool
usage to be worthwhile, there must be extensive compensating support for
other properties.

Development efficiency is very dependent on the appropriateness of con
structs supported by a specification tool. For example, several constructs
can be used to specify the dialog level of interaction. However, each con
struct is biased towards a specific set of dialog requirements (e.g. sequence,
interleaving, permutation, ease of walkthrough), and thus a tool based on
an inappropriate construct for a system's requirements can obstruct de
velopment efficiency. As a simple example, consider simulating interleaved
processes with state transition networks. This would quickly bring develop
ment to a halt, due to the explosion of interaction points when interleaving
two or more processes (see page 139).

A degree of development efficiency can also be delivered by reducing
the number of design decisions that developers must make. User interface
standards attempt to do this by taking many design decisions away from
developers. GUI guidelines standardize many features, but mostly for 'look
and feel' at the logical interaction level. Example guidelines include CUA
(Windows and OS/2), Motif style guidelines (OSF, 1990), and guidelines
for constructing Macintosh user interfaces (Apple, 1992). Guidelines may
come in printed or on-line versions (Sadler, 1993), and there is anecdotal
evidence that the latter format is preferred by developers.

Conversely, development efficiency is reduced when written style descrip
tions are ambiguous or incomplete. To take a detailed example, the Win
dows 3.1 Application Design Guide (Microsoft, 1993a) did not specify what
should happen on pull-down and pop-up menus when the mouse re-enters
the menu with the left button depressed. Developers often copied the com
mon option of ignoring this event and forcing the user to re-select a menu
(title). However, this obstructed deviation tolerance by penalizing users
who slip off the bottom or side of a long menu. This omission was rectified
for the Windows 95 style guide (Microsoft, 1995).

Guidelines are be best developed using formal notations, where ambigui
ties and incompleteness would be easier to detect (Chen, 1993). These could
be left as they are for developers who can read them, and re-expressed in
naturallanguage for those who cannot. Better still, interaction techniques
should be embodied in materials for use at the construction stage (e.g. the

Specification Tools and Materials 149

Macintosh tool box, Visual Basic and similar implementations of Microsoft
Windows style guides (Microsoft, 1993a, 1995)).

In summary, appropriate specification constructs and thorough unam
biguous guidelines result in favorable interactions between development ef
ficiency and related tools and materials.

The second significant interaction with an internal property during speci
fication concerns modifiability. Absolute unconditional modifiability is only
encountered in science fiction. Modifiability only extends to known classes
of potential change for which a software architecture is known to be suit

able.
Further interactions with modifiability result when system designers and

software engineers use the same tools to modify a system as they use to ini

tially design and implement the system. The system designer and software
engineer (i) modify the original requirements, (ii) modify the specification

to reflect the changes in the requirements, and then (iii) modify the code
to reflect the changes in the specification.

This three-step process is facilitated if the system designer and software
engineer use tools that automatically transform materials at one level into
more detailed materials at the next lower level. If system designers and soft

ware engineers avoid manually modifying materials at lower levels without
modifying the corresponding material at the next higher level, then no
system modifications will be lost when the system designer and software
engineer use this three-step process to modify a system. Modifiability can

thus be further assisted by the use of model-based generation tools. The
use of these tools has largely been confined to research teams, although
ITS was used successfully to generate the public information system at the
Seville EXPO (Wiecha, personal communication).

ITS demonstrates the potential of generators in user interface develop
ment. Modeling facilities in ITS proved to be adequate during the EXPO,
despite significant changes to the public information system following obser
vation of its usage. Most modifications added capabilities to the functional
core (e.g. broadcast of text and images for update to the electronic news
service). Since EXPO, three more applications of similar complexity to the
EXPO system have been built and developers other than the EXPO team
now use ITS within IBM (Wiecha, personal communication).

If tools that automatically transform materials are not available, then
the system designer or software engineer must manually change the re
quirements, the corresponding specifications and the corresponding code.
Given that many non-functional requirements are pervasive constraints on
design and implementation decisions, it is hard to generate specifications
from a full range of requirements. The only tool support for what seems
to be an inherently manual activity comes from design rationale tools and
from Hypertext links between requirements and design decisions (Kaindl,
1993). Such tools assist modifiability by keeping developers aware of all

150 Tools and Materials

the requirements that relate to a design feature under modification. The ef
ficiency of modifications is improved as a result. The need for maintenance
will be further reduced by avoiding modifications that adversely affect re
lated requirements because developers were unaware of their relevance when
designing the new modification.

Userinterface integratability can also be assisted by specialized user in
terface development tools (e.g. UIMS, UI builders). Consider two different
applications with different user interfaces that have not been well engi
neered (for one, there is little documentation, also no tools were used in
their construction). If they must be integrated, it may be necessary to re
verse engineer design or requirements specifications from working systems.
Specification tools assist with the reverse engineering of designs, but this
does not provide enough support. For simple applications, and ones with
limited interaction, reverse compilers, cross-compilers, and high-level trans
lators are currently used to support integration. However, we know of no
such tools that provide extensive assistance for user interface integration.
If they did exist, they could perhaps even deliver user interface integrata
bility.

Table 5.3 summarizes the interactions between tools/materials and in
ternal properties during specification phases. Interna! properties are more
evenly covered than external ones during specification, although much of
this depends on preservation of properties supported by architectural mod
els.

5.3 Construction Tools and Materials

The coarse phase of construction spans module coding, module tests and
integration tests. Properties that have been delivered or proved during
specification must be preserved during these phases. Preserving properties
from specification requires considerable developer effort if there are no sim
ple equivalences between key constructs in specification notations and the
constructs provided by construction tools.

Properties that have been addressed or assessed during specification can
only be systematically preserved by formal program transformation. Alter
natively, a constructed system must be shown to conform to a specification
after each software design decision.

Properties that could not be addressed during specification can be as
sisted at this stage by the use of appropriate materials. The materials here
are always some form of re-usable code modules, which can be services
within a target environment or capabilities provided by dass or module
libraries.

Construction Tools and Materials 151

Table 5.3 Specification Interactions between Tools/Materials and Internal
Properties

Property Interaction Comment

Development
Efficiency

Deliver UI Management Tools/Builders with val
idated efficiency, but such tools are rare
Model-based UI generators (mostly re
search and industrial prototypes)
Appropriate specification abstractions,
but only dialog level abstractions are well
established
Detailed unambiguous style guides, but
these are rare (toolkit implementations
for construction are better)!

System Deliver Architectural refinement, but only for an
ticipated potential changes Modifiability

User Interface Deliver
Iotegratability

Run Time Deliver
Efficiency

Portability, None
Evaluability and
Maintainability

Model-based UI generators (mostly re
search and industrial prototypes)
Hypertext requirements linking tools such
as RETH (Kaindl, 1993)

Limited support from general (UI) tools

Virtual separation

Preservation of property from architec
tural model

Assisting: a Further Form of Interaction

In Section 5.2.1 the possible interactions between properties and specifica
tion T/M were split into five (or six) classes: inspection, delivery, proof,
addressing, assessing (and obstruction). It may now be useful to make a
further distinction netween addressing and a weaker interaction assistance,
where a T/M gives an implementer some constructs that may be used to
obtain a certain property.

Assistance is specific to construction, where re-use of code (and tools) is
worthy of consideration. As with other forms of positive interaction, it is
defined solely in terms of the developer activities required to exploit the
interaction. Assistance requires two activities: implementation followed by

152 Tools and Materials

specialization. Implementation is an activity specific to the construction
phase.

lmplementation - developers use extensive knowledge of a property to
program an appropriate construct by using general system, program
ming or algebraic constructs (e.g. implementingYang's (1988) two-stack
undoing model using standardimperative data structures).

Some forms of interaction between properties and tools/materials were
introduced in Section 5.2, but assistance is a distinct form of interaction.
Assistance interactions are not instances of addressing, because the mate
rials involved require more than basic knowledge to specialize them. As
sistance interactions are not instances of neutrality because the materials
involved do provide some support. Assistance is thus in-between 'what we
want and what we have got'. It is better than nothing, mostly because
assisting materials or basic tool constructs can be combined, refined and
extended to form appropriate constructs that do address a property.

It is important to distinguish between assistance and addressing. The
difference is due to the development activities required for each. To ad
dress a property, a tool or material must provide a general construct that
only needs to be specialized. This can involve setting attributes, filling in
slots, specifying logical conditions or naming functions and procedures to
be called to perform a specific function. Specializing a construct generally
instantiates one part of a design. Where the construct addresses a property,
this instantiation will deliver the property for the corresponding design el
ement.

To assist a property, a tool or material need only provide the means
for implementing a general construct that can then be further instanti
ated to deliver a property. The implemented construct will thus address
the property, but it must be implemented. This is the key difference, al
though it is easy to overlook. With assistance interactions, implementation
of constructs that address properties is possible and perhaps even relatively
straightforward, but there is no guarantee that its existence or potential
will be realized and exploited. Furthermore, constructs that address prop
erties must be implemented and specialized before any assessment is pos
sible. Such assessment will often require users to interact with the system
- inspection of coded modules will not suffice.

The difference between addressing and assistance is illustrated by the de
velopment of structured programming. Specialized constructs in structured
programming languages directly address iteration, selection and procedural
abstraction. The provision of stack frames and a run time stack directly
addresses the needs of recursion. In contrast, assembly languages only as
sist with these fundamental control constructs and information structures
(selection, iteraction, procedures, stack frames for recursion), since jumps,
comparisons and stack pointers must be skilfully combined to implement

Construction Tools and Materials 153

structured programming constructs. Assembly language programmers still
fail to make use of these constructs, with obvious implications for software
quality.

Assistance with an external property can clearly vary, but variations will
generally be reflected in development efficiency. An overall evaluation of
tools and materials can thus distinguish different levels of assistance. With
this diffuse form of interaction introduced, interactions between properties
and tools/materials during construction can be analysed.

5.3.1 Fle:cibility Properties

Flexibility properties are rarely proved or delivered before construction.
Requirements and specification tools usually only indirectly support these
properties by letting developers specify a system's requirements. Construc
tion tools actually implement the materials that establish properties.

Properties that concern the flexible representation of information require
extensive run time support. These run time materials must be in place at
the outset of construction stages.

Device multiplicity is delivered directly by resource managers, such as
that found in graphics libraries and window systems. However, window
systems (notably X Window, Scheißer et al., 1992) may restriet devices to
a raster display, a keyboard, and a mouse with up to five buttons. Thus
while some device multiplicity may be provided, it may not take the form
required for a specific system.

When providing device multiplicity, and thus multiple foci of control,
various resource managers must cooperate with each other. Support for
such cooperation could be handled by a further software component which
can be viewed as a resource manager manager. A resource manager manager
must handle cross-resource manager transfer and sharing of control, while
handling the synchronization of various resource managers. An example
application for a resource manager manager is the synchronization of real
time video with real time audio, where the cooperation of audio and video
resource managers must be controled by a yet higher level manager.

World Wide Web browsers are now providing extensive support for de
vice multiplicity. Some web browsers adapt layout according to the display
device in use. These capabilities have been extended to input widgets in
tools such as Sun's Hot JAVA (Gosling and McGilton, 1995).

Representation multiplicity is assisted (for output) by mechanisms such
as the View Controllers in SERPENT (Bass et al., 1990). Indeed, theselink
constructs almost address the property, since representation multiplicity is
easily supported by having multiple view controllers for a single functional
value. Still, there is no construct to encapsulate the representations for a
single (group of) value(s), and thus developers must manage the modular
ization themselves. In contrast, the DIAMANT UIMS (Trefz and Ziegler,

154 Tool• and Materiab

1989) does have a representation manager that directly addresses represen
tation multiplicity by encapsulating the relevant information.

'Separable' user interface tools support separate specification at differ
ent Ievels of abstraction for interactive systems. They can assist with rep
resentation multiplicity for input. The dialog notations in such tools (e.g.
UIMSs) may be used to configure alternative user inputs, and also support
their translation into a common functionallevel representation. No further
effort from the developer is required. The tool itself preserves properties
configured during specification, so developers need not attend to them dur
ing construction. However, most current construction support for flexible
representation of information is in the form of materials rather than tools.

Moderate assistance for representation multiplicity (output) is provided
by the standard Smalltalk methods for Model-View communication. These
have been generalized in the paradigm of access-oriented programming and
the associated use of Active Values (Myers, 1988). When state values are
'active', pre-specified actions are triggered when a value is changed. Active
values almost directly address representation multiplicity (and also observ
ability) by letting multiplerendering actions be triggered whenever a value
is changed. The actions associated with a value change do encapsulate the
multiple representations ofthat value, but they also encapsulate other be
haviors associated with value changes.

Access-oriented programming is largely restricted to research systems.
Much more restricted support is provided by typical target environments,
for example, application events such as those found in version 7 of the Mac
intosh operating system (Apple, 1993). Here, different programs can send
and receive arbitrary events, once they have registered them, and interests
in them have been noted. This is a basic capability that requires detailed de
velopment effort, and can reduce development effi.ciency. However, it could
provide direct support for access-oriented programming. For example, in
an object-oriented programming language, the assignment operator could
be overridden for a class of 'active' objects. The overriding assignment
operator would make the assignment, but also call all the methods in a
dependency !ist. These methods may be imperative procedures, or simply
broadcast events to notify the value change.

This example demonstrates the difference between different extents of
assistance. Neither active values, nor View Controllers, nor application
events directly address representation multiplicity. However, each requires
increasing Ievels of developer effort and expertise to create constructs that
do address representation multiplicity. If developers are unaware of access
oriented approaches, they may program an event to be raised when the
functional state is changed, but they will also have to program the dia
log to respond to this event by propagating display changes into logical
interaction events. The extent of assistance is thus crucial in any evalua-

Construction Tools and Materials 155

tion of tools or materials, since this interaction covers support that almost
addresses a property to interactions which come close to neutrality.

Representation multiplicity is given broader, albeit conceptual, support
in the PAC model. Specialized PAC components such as Multi-View agents
(Nigay, 1994) can support representation multiplicity for output. For input,
PAC-Amodeus constructs such as melting-pots (Nigay and Coutaz, 1995)
assist in the provision of multi-modal representation multiplicity. However,
re-usable materials for these constructs are not widely available, so most
developers will have to specialize more general constructs in order to im
plement these PAC concepts.

I/0 re-use is assisted by inter-application communication facilities. Re
usable code for clipboards is one specific example. Such code delivers 1/0
re-use, as do history modules. An alternative to modules for history support
comes from multiple inheritance in object-oriented languages such as Eiffel,
where all interactive objects can inherit the capabilities of a history dass
(Meyer, 1988).

Whatever the mechanism for 1/0 re-use, there must be compatibility
between the source and the target of the re-used information, and this
usually must reflect different levels of abstraction. For example, plain text
is a material at the logicallevel of interaction, as its pure ASCII format is
device-independent. Re-use of such values is easy to provide, whereas other
values present more difficulties. For example, re-use of commands at the
functional level is not straightforward, nor is re-use of exotic media, such
as real time video at the physical level.

Within single systems, compatibility of re-used information can be ad
dressed, although development effort can be high. However, re-use between
systems requires standards (e.g. OLE, Williams, 1994) that allow the re-use
of information between disparate systems such as splicing of a video image
into a spreadsheet. Extensive re-use is hard without standards. Thus the
LiveTextprototypes developed at AT&T (Fraser and Krishnamurthy, 1990)
could achieve only a fair level of 1/0 re-use on the basis of existing Unix
text output conventions. More extensive 1/0 re-use was seen to require new
standards, for example the output of records similar to those found in text
editor 'piece-tables'. Suchstandards would have required major departures
from text 1/0 conventions for Unix commands.

To achieve properties for flexible planning of task execution requires
skilled use of materials. For example, groupware toolkits (Gibbs, 1989;
Knister and Prakash, 1990; Dewan, 1993) deliver human-role multiplicity.
Similarly, resource management code addresses multi-threading directly,
by letting multiple processes share the same physical devices and related
resources, but multi-threading constructs need to be used with skill.

Resource managersalso assist in the satisfaction of non-preemptiveness,
since multiple processes make pre-emption easy to avoid. However, this au
tomatic provision may obstruct the satisfaction of pre-emptiveness when

156 Tools and Materials

this is required. This is because non-preemptiveness is always delivered
along with multi-threading. Developers must thus implement extra con
structs to re-introduce pre-emptiveness.

Reachability can be proved during specification and preserved during
construction. Alternatively, reachability can be delivered by construction
materials such as re-usable history modules (Berlage and Spenke, 1992).
Such modules provide generic capabilities for stepping backwards and for
wards through the interaction history, as well as skipping unwanted steps.

Properties that relate to flexible representation ofinformation (represen
tation rnultiplicity, device multiplicity, I/0 re-use) and flexible planning of
task execution (reachability, non-preemptiveness, multithreading, human
role multiplicity) require extensive run time support. So too do proper
ties that address adaptation of dialog forms (reconfigurability, adaptivity,
migratabili ty).

Properties that address adaptation of dialog forms are currently almost
entirely supported by materials. Only reconfigurability is given extensive
support (see below). Other properties are less well supported. For example,
adaptivity can be provided by specialized articicial intelligence (AI) tools
such as User Modeling shells (Kobsa, 1990), but the property requires more
extensive support than this. The most successful widespread adaptive ap
proach is 'plug and play' as used by hardware manufacturers to ease the
installation of various user interface devices such as mice, video interfaces
and audio interfaces. These are intelligent devices that have knowledge of
what other kinds of devices can be plugged into the parent system. When
the devices are plugged into the system they autonomously determine what
other devices are present and using this information configure themselves
appropriately so as not to interfere with the other devices. This relieves
users from having to manually resolve bus conflicts and similar complex
problems. As this affects devices, the property of device multiplicity is also
supported, and it provides a much needed alternative to the restrictions of
current window managers.

No tools that provide specialized support for migratability are known.
However, when functions or tasks migrate to the system, some system com
ponent must take control. Materials in some form are required. Such com
ponents are often called agents. These may operate at the dialog level (e.g.
Microsoft's Wizards), and thus relieve users of planning decisions. Other
agents can operate at the functional level. Software materials could pro
vide re-usable agent 'skeletons', but we are unaware of such support being
currently available in any form.

Returning to reconfigurability, construction tools and materials support
this in many ways, but there is no overall coherence at present. In the
past, reconfigurability has been assisted by materials that underpinned the
'table-driven software' approach. Here configuration files hold values that
set various system options, such as the right margin setting in the case of a

Construction Tools and Materials 157

text editor. This approach requires a module to read configuration files at
start up, and to then modify the state at any level of abstraction to reflect
expressed user preferences. Each user can have their own configuration file,
and thus their own view of how the system should perform.

Reconfigurability can be obstructed by virtual toolkits, especially if they
take a lowest common denominator approach. In this approach, the avail
able widgets/ controls and their look and feel are restricted to a set of
widgets that is common to all the styles for the merged platforms. This
minimal set may be so restricted that reconfiguration becomes impossible.
Problems here are recognized, with key vendors currently moving away
from the lowest common denominator approach. The situation is thus im
proving, and virtual toolkits should in the future obstruct reconfigurabiity
less than they originally did.

A typical approach to letting users reconfigure systems is provided by the
X Window System Resource Manager. It employs a form of table-driven
customization (Scheißer et al., 1992). While X-based applications usually
use this at system start up, nothing prevents dynamic use of data from the
resource database.

Both end-user and developers' tools allow reconfiguration of many fea
tures, e.g. window decorations (e.g. scroll bars, command icons, borders),
key bindings, mouse button bindings, default fonts and colors, interpreta
tion of various mouse movements (e.g. focus follows mouse, focus changes
on dick), maximumtime between single clicks for them to represent a dou
ble dick event, and the contents and representation of window manager
commands.

It is an important question whether typical users require such reconfig
urability. Furthermore, it is not clear that end-users can use all the tools
that developers find straightforward. However, the perspective taken in this
chapter is one of possibility, rather than ease of learning. Properties asso
ciated with ease of learning were not considered in Chapter 2, and thus the
learnability of reconfiguration tools cannot be considered systematically in
this chapter.

Usability on the other hand can be considered. Reconfiguration tools of
ten obstruct robustness properties such as predictability, since the terms
used to describe attributes of window managers (e.g. scroll bars, borders,
key bindings, mouse button bindings, default fonts, focus follows mouse
entry, focus changes on dicks) have subtly different meanings in different
specific commercial products. The result is that the effect of items on con
trol panels and dialog boxes for window manager reconfiguration may be
so hard to predict that users give up trying to get any windowing system
working the way they want.

Current window systems thus provide considerable support for reconfig
urability, but this support is neither coherent, comprehensive nor compre-

158 Tools and Materials

hensible. Features have accumulated in a piecemeal manner, with limited
thought for the user's view of reconfiguration.

A tool that supports reconfigurability and need not be part of a win
dow system is a macro recorder. This lets users record sequences of actions
(keystrokes, mouse movements, screen touches), name, save and edit se
quences, and then play sequences back such that they appear to be coming
from the user. Such tools relieve users from having to perform complex,
error-prone repetitive tasks. However, reconfiguration here is largely re
stricted to the dialog level of abstraction.

Macro languages and associated script editors also assist in the provision
of reconfigurability, but unlike macro recorders, users must program macros
themselves. For example Tcl/Tk (Ousterhout, 1994) is a graphical toolkit
(Section 5.4.2 below). With it, users can dynamically change many aspects
of widgets during system execution. These changes are programmed using
a simple command language.

Compared with tools such as Tcl/Tk, users are better supported by
UIMSs with customization features, such as S/X Tools (Küehme and Schnei
der-Hufschmidt, 1992), which provides widgets with several customization
options. In contrast, customization options are rarely found in hand-coded
widgets for specific projects.

Construction phase interactions with interaction flexibility properties are
summarized in Table 5.4. Most support takes the form of assistance for a
few detailed approaches to partial delivery of a property. Most exceptions to
this are properties that could be proved during specification, which can thus
be delivered during construction. However, one property that could not be
addressed during specification can be delivered, but only in a limited form
(device multiplicity). Overall, support appears tobe patchy, with an un
principled set oflocal solutions to the challenge of using design principles to
guide software development. However, the table does not include properties
that can be preserved from specification through the use of model-based
UI tools and UIMS. The use of such tools improves support for interac
tion flexibility during construction, but only for properties that could be
addressed during specification (see Table 5.1).

5.3.2 Robustness Properties

Properties for the robustness principle were largely supported by assess
ment during specification. Few tools or materials assist during construc
tion. Support here is very specific and rarely provides general support for
a property. Still, partial support exists for most properties.

Observability is assisted by all declarative constructs (e.g. view con
trollers) that assist representation multiplicity, with differing extents of
support for each tool or material. Observability can be further assisted by
context-sensitive help. Such help can tell users what is currently possible

Construction Tools and Materials 159

Table 5.4 Construction Interactiom between Taola/Materials and Interaction
Flezibility

Property

Device
Multiplicity

Representation
Multiplicity

I/0 Re-use

Human-Role
Multiplicity

Multi-threading

Non-
preem pti veness

Reachability

Reconfigurability

Adaptivity and
Migratability

Interaction Comment

Deliver Resource Manager, but often restricted
to specific drivers in window systems,
unless Plug and Play supported

Assist By View Controllers (SERPENT), but
mostly support from materials (e.g.
Model-View Controller (Smalltalk),
Multi-View Agents

Assist

Assist

Deliver

Assist

Deliver

Obstruct

Assist

Assist

Inter-Application communication facili
ties, if compatability problems avoided
Object Linking and Embedding

By groupware toolkits

Resource Manager

Resource Manager, but pre-emptiveness
can be obstructed

By re-usable history module (or dass)

By virtual toolkits, but situation is
improving
By table-driven software, macro record
ing, feature modification (e.g. changing
menu items) and tools such as Tcl/Tk

Limited support from materials (e.g.
User Modeling Shells, Plug and Play,
Agent Ware?)

and how to accomplish it, thus making the current state of the user inter
face observable. When a broad range of context-sensitive help facilities is
encapsulated in a re-usable module, then this is a specific form of material
that addresses a small part of observability.

Insistence is delivered in one specific form by materials that implement
modal dialog boxes in toolkits, and in other materials that implement re
peated replay of audio until some user acknowledgement.

160 Tools and Materials

Honesty is assisted by all declarative constructs that assist represen
tation multiplicity, and by all materials that improve response time, as
users can perceive a system as lying when known 'out-of-date' information
stays rendered. It also requires good response times even at the physical
level of interaction, where immediate character-by-character feedback dur
ing typing is preferred to delayed output. Many aspects of honesty however
are given no support, for example the suppression or revision of warnings
and error messages that no Ionger hold (because the monitared condition
has changed).

Access control is delivered in a broad form by access control lists that
hold information on access to data and commands by user roles. There are
materials that provide some basic assistance with access controlability. For
example, (the code for) a file system manages read, write, and/or execute
permissions. More extensive support can be envisaged, and is provided in
part by Suite (Dewan and Shen, 1992). Instead of providing access con
trol in the back-end or persistent store of an application, Suite implements
access control in the front-end or user-interface of the application. As a
result, it is able to provide earlier feedback to access violations and protect
fine-grained operations (such as move cursor) on logical user-interface ob
jects (such as paragraphs) instead of coarse-grained operations on physical
objects (such as files). Suchsupport is important in collaborative environ
ments.

An alternative (or complementary) approach is to have appropriate mod
ules form a framewerk for integrating single-user legacy applications into
a multi-user cooperative environment. The framewerk could route infor
mation between applications without any 'knowing' it is being used in a
new multi-user environment. The COLAapproach developed at AT&T has
created a systems programming basis for such a framework. Extensions to
standard Unix library functions such as open, read, write and close let these
be treated like active values, with other actions being triggered whenever
they are called (Krell and Krishnamurthy, 1992).

Predictability is delivered in one specific form by percent-done indicators
(Myers, 1985) (and the system is morehonest as a result). Response-time
stability aspects of predictability can be supported by materials that let
developers reduce resource usage (paging managers, hypertext pre-fetch
code, dynamic linking and indexing code). Suchmaterials can also improve
the pace tolerance of the system, by reducing adverse system delays.

Pace tolerance is not just concerned with shortest possible responsetime
of a system. Users also need to control the interaction pace, such as spe
cific capabilities for controling mause acceleration and setting double-dick
intervals, as well as Operations for designers to insert delays. Such specific
support currently comes in the form of materials (i.e. library routines) with
limited tools (control panels, resource editors). UIMS generally lacktime
constructs. For example, RAPID only had a time-out construct (Wasser-

Construction Tools and Materials 161

man, 1985). Pace tolerance is also delivered by operations for introducing
delays into the interaction. Materials that calculate the time needed to
read a message before removing it automatically using Bevan's algorithm
(Bevan, 1983) would also make a small contribution to pace tolerance.

However, little attention has been paid to deviation tolerance when reading
set-up files. The simple database manager can detect misnamed parameters
and inappropriate value settings, but there is no provision for error recovery
by the system or the user (there arenot even notifications of problems).

Some programming languages have fail-safe features (e.g. error handlers
in Visual Basic; Microsoft, 1993b). Such features assist deviation toler
ance, by providing an infrastructure for implementing error detection and
recovery. Further support is provided by materials that implement error
recovery from either user or system errors. In the case of system errors,
re-usable checkpointing and roll-back code can be used. Many database
tools can provide these capabilities at the functionallevel of an interactive
system (e.g. the database capabilities of Visual Basic). The most robust
tools maintain their checkpointing logs and repositories independently of
the system to ensure they will not be contaminated by system failure. After
a system failure, the system state can be set to that of a selected backup,
or a selected log can be processed to reach the desired system state.

In the case of user errors, re-usable modules that implement undoing
capabilities can be used (Yang, 1988). Some implementation frameworks
assist with the provision of this feature by providing basic support for undo
ing. For example, Command objects in the MacApp framework (Schmucker,
1986) can have undo methods associated with them. However, the devel
oper must construct an inverse for each command to take advantage of
this. Even so, this is still assistance with the property of deviation toler
ance, despite its very basic and specialized nature.

Suite provides automatic support for (multi-user) undoing of user ma
nipulations of (distributed) active values (Dewan and Choudhary, 1995).
Any side-effects taken in response to these modifications by the application
must be undone by application-defined undo methods. Thus, the responsi
bility for undo is divided between the generator and the application with
the generator undoing its actions and the application undoing the ones it
takes.

Construction phase interactions with robustness properties are summar
ized in Table 5.5. Compared to flexibility, more support takes the form of
delivery, but this is again in the form of local specialized solutions that par
tially deliver a property. Several properties could be assessed during spec
ification, but little can be clone to preserve this during construction, other
than by formal transformation methods and for the limited solutions pro
vided by specific materials. However, the table does not include properties
that can be preserved from specification through the use of model-based
UI tools and UIMS. The use of such tools improves support for interac-

162 Tools and Materials

Table 5.5 Construction Interactions between Tools/Materials and Interaction
Robustness

Property Interaction Comment

Observability Assist Generally, T /Ms supporting representa
tion multiplicity (e.g. view controllers)
support observability
Also assisted by context-sensitive help
and UIMS with Arch/Slinky architecture

lnsistence Deliver By very specialized materials (e.g. mate
rials for modal dialog boxes or repeated
audio replay)

Honesty Assist Generally, T /Ms supporting representa
tion multiplicity, response-time stability
and pace tolerance support honesty

Predictability Deliver Percent-done code delivers partial and
very specialized su pport (response-time
conformance, also achievable by reducing
resource usage)

Access Deliver By access control lists
Control

Pace
Tolerance

Deviation
Tolerance

Assist

Deliver

Assist

Obstmet

By customized overlays as well as by more
basic file system features

Delay introducing operations (e.g. for
reading messages)

By 'clean' dialog abstractions that sup
port processes, by constructs for error re
covery such as fail-safe programming lan
guage features

By resource managers that silently ignore
errors in configuration files (e.g. X Win
dow System)

tion robustness during construction, but only for properties that could be
addressed during specification (see Table 5.2). The table also omits in
teractions with logging code, as that is largely outside the scope of this
chapter. However, the logs produced will highlight adverse patterns of user
interaction, especially failures in robustness.

Conatruction Tools o.nd Mo.terio.ls 163

5.3.3 Internal Properties

Much support for internal properties comes from the architectural model,
but such properties must be preserved in the final architectural refinements
and throughout construction.

Construction tools should always improve development efficiency. This
can be compromised if the underlying configuration or programming lan
guage is not well formed and properly specified. For example, a problern
with the concrete syntax for subnet traversal in RAPID forced cumbersome
'fixes' when a subnetwork needed tobe traversed from more than one point
in a calling network (Cockton, 1985).

Instrumentation code profiles the space and time consumption of exe
cuting processes. It delivers some maintainability (by highlighting adverse
resource usage) and some evaluability. Its main value is in its assistance
for maintainability, where it helps to discover errors (from failures to meet
requirements to system crashes), and to locate the cause ofthe error. Instru
mentation code however does not assist with the key step in maintenance,
i.e. correcting the cause of the error. Tools for discovering errors include:

• video and audio recording facilities that capture user activities and com
mentary;

• quality assurance testing procedures which validate that the system
meets its requirements;

• debugging tools for conducting tests and experiments to locate errors;

• performance and resource monitoring tools;

• logging and evaluation tools (tools for evaluability).

Tools for locating the cause of the error may include profilers and testers.
Tools for correcting the cause of the error include text editors and specifica
tion/programming tools to correct the error andregenerate the appropriate
materials.

At the same, instrumentation code does obstruct run time efficiency.
Thus properties need to be traded-off when selecting tools and materials,
just as they had to be when selecting architectural models.

Further support for assessment of internal properties such as maintain
ability and modifiability comes from the use of inspection techniques. Re
maining properties are only assisted. For example, evaluability is assisted
by materials such as code that logs invocation of each event. Tools that
analyse such logs belong to the evaluation phase.

Portability is supported by the use of code supporting layers and wrap
pers around platform dependent features, or the use of emulators and sim
ulators which let systems coded for one specific hardware and/or software
environment execute in another one (this approach may obstruct runtime
efficiency, but it can 'buy time' for a more thorough conversion of the

164 Tools and Materials

application). For new applications, virtual toolkits (Retter et al., 1992)
deliver portability.

Run time efficiency is supported by virtual separation (Shevlin and Nee
lamkavil, 1991), where any execution inefficiencies due to separating levels
of abstraction at design time can be removed by tight physical integration
of the run time code for the user interface and the functional core. Virtual
separation in this sense is little more than the specialization of compiler
optimizing techniques for separable interactive systems development.

User interface integratability has two distinct aspects. On the one hand,
the user interfaces of separate architectural components should be consis
tent and interoperable. On the other hand, it should be possible to compose
separate interactive components into a single system.

Consistency and interoperability for interactive components are sup
ported by materials that implement components described in style guides
(Microsoft, 1993a, 1995). User interfaces that use common components will
be easier to integrate. Some components cover all levels of abstraction in
interaction. For example, Visual Basic's common dialog boxes (see Section
5.4.3) are common functions that have been factared out of the individual
logical, dialog and functionallevels of their interactive behavior. Visual Ba
sie provides such common dialog boxes along with some underlying func
tionality. Other construction tools provide support for composing dialog
boxes and related functionality. Most X toolkits (e.g. Tcl/Tk; Ousterhout,
1994) supports 'superwidgets' that are such compositions.

'Composability' of interactive components requires basic software sup
port in order to address this aspect of user interface integratability. Ba
sie assistance is provided by materials that implement inter-application
communication protocols. Users can use these to share data among these
applications. For example, users may cut, copy and paste data between ap
plications. Many object-oriented computing environments now support em
bedded objects, which are constructs that assist user interface integration.
For example, Microsoft's OLE (Williams, 1994) lets users of one application
invoke functions provided by another.

Another form of support is found in Field (Reiss, 1990), which addresses
the composability aspect of user interface integratability. In Field, every
user interface broadcasts events of interest and other user interfaces can
register interests in them. For instance, a debugger can broadcast the state
ment being executed and an editor can receive it and then highlight the
current line. This has supported integration in programming environments
(by putting minimal wrappers around tools). The method is now in com
mercial use.

Lastly, one may also regard X pseudo servers (Lauwers and Lantz, 1990)
as delivering user interface integratability by integrating multiple instances
of the same interface without requiring any changes to the user interface.

Construction phase interactions with internal properties are summar-

Construction Tools and Materials 165

Table 5.6 Construction Interactions between Tools/Materials and Internal
Properties

Property

Development
Efficiency

System
Modifiability

Portability

Evaluability

Maintainability

Run Time
Efficiency

User
Interface
Integratability

Interaction

Deliver

Assess

Assist

Deliver

Deliver

Assist

Obstruct

Assist

Assist

Comment

Well-designed tools and materials should
always deliver this property

By inspection techniques, but largely an
architectural property

By virtual toolkits and more generally by
layered wrappers or emulations and
simulators

Instrumentation code

Instrumentation code reveals common
problems
By Inspection Techniques

By Instrumentation code, layered wrap
pers and emulations/simulators, which
slow things down
By virtual Separation, which removes lay
ers at run time

By standardized (style-guide-based) com
ponents and other common components
By tools such as Visual Basic (Microsoft)
and Tcl/Tk
By materials such as inter-application
communicationfacilities and Object Link
ing and Embedding (Microsoft)

ized in Table 5.6. There are no obvious patterns in the table, other than
a wide range of forms of interaction. However, the interactions noted here
are clearly only a sample of possible ones, since there are many general
software tools and module/dass libraries that offer favorable interactions
with internal properties. The analysis above has thus highlighted the more
novel interactions that are especially relevant when constructing interactive
systems.

166 Toola and Materiab

5.4 Commercial Tools

Three commercial tools are now analysed in depth to further validate and
extend the analysis from the previous two sections. They are 'commercial'
in the sense that they are either products or have a widespread user base.

There are two main uses for a tool study. On the one hand, a full anal
ysis of properties would be a (complete) tool evaluation, but on the other
hand a more restricted analysis can confirm existing and expose further in
teractions between properties. The restricted analysis can also expose the
complex ways in which a tool may interact with properties. All examples in
the analyses below are chosen with the second use of a tool study in mind.
They arenottobe taken as complete and balanced evaluations of each tool.
lnstead, they reflect the interest of the authors in the utility of the proper
ties and architectural analyses developed in earlier chapters. They are thus
more evaluations of the value of property profiles and architectural analysis
than summative evaluations of the worth of the three example tools, which
are TAE+ (Szczur and Sheppard, 1993), Tcl/Tk (Ousterhout, 1994) and
Visual BasicVersion 3.0 (Microsoft, 1993b).

External properties are visible to the user of a system. This means that
users of the interactive system being developed will be aware of them. Like
wise, external properties of the tools used during design and development
are visible to developers (as tool users). Tools therefore manifest external
properties to developers and more or less support internal properties being
designed into the system being developed. Each of the following examples
Iooks at these differing aspects of interaction between tools and properties.

5.4.1 TAE Plus

NASA's Goddard Space Flight Center develops and maintains software to
provide for control of all NASA's unmanned spacecraft and for the col
lection and analysis of the resulting scientific data. The Transportable
Applications Environment Plus (TAE+) was designed to handle the de
velopment of user interfaces and the run time management of systems in
this complex, heterogeneous, distributed computing environment. TAE+ is
now distributed commercially by Century Computing.

TAE+ supports the Motif (OSF, 1990) Iook and feel for a wide variety of
platforms. Developers use the TAE+ Workbench to specify the Iayout and
dialog of a user interface. The application 's windows are constructed from
Motif widgets and presentation types that are combinations of Motif wid
gets. The Workbench generates a resource file and code to implement the
user interface in ANSI C, K&R C, C++ or Ada. Developers add functional
core routines to complete the application.

A set of application services, the Window Programming Tools (WPTs),
provides run time support, managing the user-interface Iayout and the

Commercitll Toob 167

dialog that has been specified in the Workbench. In addition, the user
interface may be dynamically updated by the application using a run time
interface library. Communication between the Workbench and the run time
support system occurs via the resource file.

The discussion below evaluates TAE+ very briefly in terms ofthe internal
properties of Chapter 2 and concentrates in more detail on the external
properties of Chapter 3. For the most part the evaluation is done in terms
of the TAE+ user (an interface designer) as opposed to the end user of an
application developed with TAE+.

M odifiability

TAE+ partitions an application into three distinct parts: layout, link-based
dialog, and functional core. Each part may be modified separately. For
instance, if only layout changes are made, the application may be restarted
with the updated resource file. The system does not need to be rebuilt.

Similarly, program code may be attached to the link-based dialog within
the Workbench. This code may be modified externally and the changes will
be maintained when the system is regenerated from the Workbench.

Portability

TAE+ supports the following platforms: Sun (SunOS and Solaris), Hewlett
Packard 9000 series (HPUX), Silicon Graphics (IRIX), IBM RS/6000 (AIX),
Concurrent RT-7000 (RTU), Intel 486-based (SCO Unix and Linux), DEC
station (ULTRIX and OSF/1), and DEC VAX (VMS). A user interface
generated for one platform is completely transportable to any other.

Evaluability

Two tools help TAE+ usability engineers evaluate the 'goodness' of TAE
produced end-user application interfaces. An adjunct tool, CHIMES, can
be used by the User-interface designer to check consistency across windows
(e.g. placement of objects) and compliance of layout with usability guide
lines (such as number of colors and type fonts). A second (adjunct) tool,
the User Action Graphing Effort, uses TAE's Perl scripting capability to
capture data used to compare the actions (keystrokes, mouse clicks) taken
by a novice in performing a task to those of an expert doing the same task.
A graphical display of the actions of the two users and a time-stamping ca
pability enable a usability engineer to identify features of the user interface
that need to be made easier to use. TAE+ support for rapid prototyping
further improves evaluability when combined with co-operative evaluation
(Monk et al., 1993).

168 Tools and Materials

M aintainability

The scripting facility described above can be used to develop test scripts
and an automatic application test suite. TAE+ thus supports maintain
ability (and modifiability) by addressing regression testing (the repetition
of tests passed by code before it was changed). Successful maintenance
requires that changed code should pass these tests again.

Should user problems indicate a need to change displays, then layout
changes can be made quickly and take effect without rebuilding the system.

Dialog changes that affect only the resource file may also be accom
plished without rebuilding the system. TAE+ lets developers make run
time changes in the user interface through library calls from the functional
core. While this feature extends the range of interfaces that can be devel
oped, it negates the separation ofthe functional core from the user interface.
This may result in increased maintenance costs.

Run time Efficiency

The run time efficiency of TAE+ is dependent on the operating environ
ment. Applications running locally on up-to-date workstations seem 'fast
enough'. As with all systems, network delays or out-of-date hardware can
cause problems.

User Interface Integratability

TAE+ generates applications with the Motif 'look'. Motif operation guide
lines are enforced to the extent that standard widgets (e.g. radio buttons)
are used, but other guidelines, such as menu structure, are not enforced.
TAE+ provides the flexibility to model a user interface on existing ones,
but this flexibility leaves the designer with the responsibility for compli
ance on style issues. Local standards can be supported because designers
can modify the Workbench, changing the set of widgets that are available
and customizing property defaults (color, widgets, etc.).

Functional Completeness

TAE+ can be used to create interfaces that look and feellike those created
with Motif-based tools. Additionally, TAE+ implements a number of wid
gets designed for use in control panels. These include: dynamic text whose
color and text string are dependent on threshold values of an attribute, a
strip chart, a rotator for circular gauges, a discrete widget that displays
unique pictures for a finite number of attribute values, and a mover that
animates a defined area of a picture in response to changes in attribute
values. These widgets can be activated by user inputs as well as internally
generated data.

These somewhat esoteric widgets are essential for application programs

Commercial Toob 169

at NASA Goddard Flight Centre. Basic toolkits such as Motif do not
provide this functionality, so these TAE+ extensions make it possible to
achieve functional completeness.

For the developer, there are some remaining inelegancies that obstruct
functional completeness (e.g. support at run time, but not in the Work
bench for geometry management and sub-panels of Dialog Boxes etc., see
below).

There are several issues associated with the current release, Version 5.3,
of TAE+ in terms of functional completeness. Firstly, the widgets are not
all simple Motif widgets; some are a combination of Motif widgets and the
Dynamic Data Objects that are unique to TAE+. Although the developer
can code at the Motif level, it is currently not simple to do so. It is diffi.cult
to add widgets because such additions require modifications to both the
Workbench and the API.

Secondly, TAE+ does not support geometry management. Therefore,
widgets such as the Motif RowColumn widget can only be used by declar
ing an X Window workspace in TAE+. (This workspace is not managed
by TAE+, but by making windowing system function calls.) Third, the
Workbench does not allow a designer to create a panel contained inside
of another sub-panel. The run time library supports subpanels - there are
plans to eliminate these shortcomings in the next release.

Development Efficiency

The TAE API has been shown to be effi.cient in terms of learning and
coding time because the Window Programming Tools operate at a high
level of abstraction. Further development effi.ciency results from support in
the TAE+ Workbench for object re-use through copy and modify.

TAE+ provides a Rehearse function that permits the designer to proto
type the user interface and provide clients with an operational prototype
without coding. The prototype may be used for design reviews and succes
sive refinement of the interface before commitment to a final design. This
has been shown to reduce overall development time. There are several fea
tures that contribute here, for example, being able to make layout changes
without rebuilding the system. However, if user needs must be addressed
by adding new widgets, then development becomes less effi.cient (see user
interface integratability, above).

Fle~ibility and Robustness

TAE+ supports many internal properties. External properties are also sup
ported for developers (in the Workbench) and for the user (in generated
systems). Thus, end user applications can be developed with TAE+ to meet
many of the criteria related to flexibility and robustness, although there is

170 Tools and Materials

no explicit CSCW support for the properties of human role multiplicity
and access control.

Two flexibility properties associated with planning of user actions (i.e.
reachability, multi-threading) and robustness properties associated with the
current state of the system (i.e. observability, insistence and honesty) can
be addressed for those aspects of the dialog that are configured as TAE+
link-based dialogs.

Links (connections in TAE documents) are a type of event-response rule.
The events are limited to things like selections and field completions. Re
sponses can be to alter a panel (window, dialog box) attribute such as
visibility and/or to initiate a call-back. They let designers define simple
dialogs without writing code, such as popping up windows/dialog boxes or
closing them.

Theoretically the link-based dialog can be analysed for reachability and
observability. As long as the designer uses the link-based dialog, it is pos
sible to check that there is a path which will display all relevant data.
However, each event that can have a link associated with it can also gen
erate a call-back to the functional core, or perform (hidden) dialog ac
tions. As most applications require some use of the call-back mechanism
to complete their dialog definition, this also means that automatic analy
sis would be incomplete without analysing the code - a nearly impossible
task. Assessment of reachability and observability in the final system is thus
only supported for the exclusive use of link-based dialogs and data-driven
objects. The latter let designers easily build an object that changes state
when the value of a monitored variable changes. For example, a numeric
output can be displayed with three colors: red for out-of-range error, yellow
for near out-of-range, and black for in-range. Insistence is thus addressed
by this construct.

TAE+ supports interruptible behavior in normal operation. Pre-emption
by the functional core is possible (e.g. error conditions). However, functional
core initiated states are not represented in the link-based dialog. Thus,
while updates initiated asynchronously by the functional core address the
temporal requirements for honesty, they further obstruct the analysis of
reachability. The mix of positive and negative interactions is a good ex
ample of the complexity that can arise in property-oriented analyses of
tools.

TAE+ currently supports keyboard and mouse input and has been in
strumented additionally for speech recognition and synthesis, and thus pro
vides moderate device multiplicity. Representation multiplicity is achieved
with a robust library of objects for representing information, both textual
and graphical, and additional objects can be created. For 1/0 re-use, the
Workbench supports cut/copyfpaste of all objects (automatically renam
ing them). Only the X Window standard cutfcopyfpaste are supported in
applications.

Commercial Tools 171

Reconfigurability can be supported (e.g. in the form of feature modifica
tions) by calls from the functional core to the run time user interface. As
the Workbench itself is a TAE+ application it can be readily reconfigured
by developers.

The general experience with favorable run time effi.ciency extends to pace
tolerance.

Deviation tolerance is given basic support for 1-level undoing. * TAE+
supports restricting the range of numeric fields, but generates an out-of
range error at run time, which could obstruct deviation tolerance.

5.,t.2 Tcl/Tk

The interface building tool Tel/Tk consists of a programming language, Tel
(Tool command language) together with its associated X Window toolkit,
Tk. Being a full programming language, Tel itself is inherently neutral with
respect to the external properties proposed in Chapter 2. However, using
Tel together with the interface building facilities provided by Tk, it is pos
sible to build complete applications which provide any desired combination
of properties. Alternatively, Tel/Tk can be used to develop tools with which
a user may build systems. With this approach system-building tools can be
produced which guarantee a particular set of properties for any resultant
system. While any of the external properties could be delivered in such
systems, the features and facilities provided by Tel/Tk, particularly those
provided to manipulate the Tk widgets, affect the ease with which the de
veloper might achieve certain properties. Overall, tools such as Tel/Tk do
not address as many properties as systematically as do sophisticated tools
such as TAE+. The main consequence is a loss of development effi.ciency
for the more demanding aspects of user interface design.

As with other X Window toolkits, device multiplicity in Tel/Tk is re
stricted to the use of display, mouse and keyboard. Representation mul
tiplicity is facilitated by the provision, within Tk, of a variety of basic
widgets. As both Tel and Tk are designed to be extensible, these widgets
can be combined or extended, and more complex widgets created. Thus
tools or applications can be produced which deliver the required level of
representation multiplicity. The selection retrieval mechanism associated
with Tk widgets simplifies the delivery of basic 1/0 re-use such as 'cut',
'copy' and 'paste'. In addition any inputjoutput re-use at the physical or
functionallevels can be delivered with some programming effort. Although
Tk provides no explicit support for human role multiplicity, several Tel/Tk
applications have been built which deliver this property, ineluding database
systems which support the differing roles of Data Manager, Data Provider

* In 1-level undoing, only the last change can be undone, so an undo followed by an
undo undoes the undo.

172 Tools a.nd Ma.teria.l&

and Data User, and computer assisted learning systems which distinguish
between the roles of teacher and student (Newman and Smith, 1995).

Reconfigurability is facilitated for the developer by the ability to set or
alter key bindings, mouse button bindings, mouse movement interpretation
and defaults for font and colors that can be set for each object dass in Tel
(the latter capability also addresses the internal properties of maintainabil
ity and modifiability). Applications or tools can then be built which allow
the user to customize any of these features. Tcl/Tk is neutral with respect
to the properties of reachability and non-preemptiveness, while adaptivity
and migratability could only be delivered with considerable programming
effort.

Robustness properties are largely design and specification issues, hence
construction tools interact with these properties less than do specification
tools. Nevertheless, Tcl/Tk provides some features which may support the
delivery of some of these properties. Firstly, the availability of modal dia
log boxes, fl.ashing icons and window 'grabs' can assist in the delivery of
insistence. Secondly, the ability to disable and 'grey out' buttons or menu
items, and the ability to change the cursor according to the user's context
can contribute to honesty and predictability.

5.1,.3 Visual Basic Version 3.0

Visual Basic is the name given by Microsoft Corporation to its development
environment for a version of the Basic programming language that exploits
capabilities of their Windows operating systems.

Visual Basic determines the appearance and behavior of a user interface
in two ways:

• Some features are determined by specifying them interactively.

• Other features are set during the execution of the Basic program.

Visual Basic's documentation calls these design-time and run time set
tings respectively. The values that can be set at design-time and run time
are not identical, but there is considerable overlap.

Visual Basic combines features of construction and execution tools. The
development environment supports design-time creation of forms, which
can be used as dialog boxes, document windows or application windows.

Controls (the widgets of user interface toolkits) can be placed on forms.
There are controls for text entry, value entry (sliders and spin-boxes),
value selection (!ist and check boxes, option buttons) and command ini
tiation (command buttons, drop-down and pop-up menus). Controls have
attributes that affect their appearance and behavior.

Attribute values can be set at design-time. Text Iabels and icons are
treated like controls, which lets their attributes be set at design-time.

At run time, controls respond to a fixed set of input and system events.

Commercial Tools 173

Handlers for these events are programmed in Basic. Other Basic procedures
can be written, and these can be called from event handlers. These may
interrogate and alter the values of attributes as required.

There are many capabilities in both the design and run time environ
ments. The analysis of properties which is given here merely addresses
some of the most important of them in relation to the architectural model
described.

Examples have been chosen to illustrate three uses for tool studies: tool
evaluation; to confirm existing and expose further interactions; to expose
the complex ways in which a tool may interact with properties. The analysis
below is based on reports from a few of the authors about their experiences
in using Visual Basic version 3.0, supplemented by an extensive study of
the generally candid programmer's guide (Microsoft, 1993b). Allpage ref
erences below of the form (VBPG xxx) refer to this guide.

Fle~ibility Properties

There is a clear pattern in the support offered by Visual Basic for flexi
bility properties, since its run time architecture largely addresses the log
ical interaction component. It thus lacks most of the functional partitions
adopted for architectural analysis introduced in Chapter 4. Since proper
ties that concern flexible planning of interaction depend heavily on dialog
functions, the absence of a dialog component affects support. Similarly,
most properties that concern flexible representation of information rely on
several functional partitions. The lack of clear dialog and functional core
adapter components means that such properties cannot be systematically
addressed (since they involve interactions via the dialog between the logical
interaction and the functional core adapter).

Support for flexible interaction planning is thus largely restricted to log
ical interaction features. The underlying event model makes it very easy to
write modeless interfaces, and thus mv.lti-threading and non-preemptiveness
are assisted. However, non-preemptiveness is easily obstructed by poorly
written applications. * To achieve full v.ser-oriented non-preemptiveness for
all applications running in a Windows environment, every application has
to regularly surrender control via a DoEvents call (VBPG 417). This re
veals the lack of process or equivalent constructs. In terms of the inter
actions between tools and properties introduced earlier in this chapter,
multi-threading is assisted rather than addressed, since process constructs
have to be built on top of basic events. There is thus a strong risk that
extensive multi-threading will not be achieved when developing with Visual
Basic.

* The user-oriented use of non-preemptiveneu is potentia.lly confusing here, a.s it is
used from the user's point of view, wherea.s in opera.ting systems it is the currently
a.ctive process tha.t is not preempted in a. non-preemptive environment.

174 Toolß and Materials

The control constructs of Visual Basic are restricted to event handlers
and procedure calls. This restriction results in a monolithic run time ar
chitecture, with no modularisation of processes or threads. The analysis of
reachability is effectively obstructed by the lack of a central dialog abstrac
tion to analyse. Furthermore, the lack of a functional core adapter rules
out coarse-grained reachability analysis. It is thus almost inevitable that
proofs of reachability will not be attempted when developing with Visual
Basic, unless separate dialog specifi.cations are either prepared in advance
or reverse-engineered from the code. The latter approach is di:fficult and
error prone.

The lack of a well structured architecture restricts support for represen
tation multiplicity to piecemeal provision of several specific capabilities.
Thus, for example, there are several date formats (VBPG 162) and the
icon displayed during dragging can be changed (VBPG 279). More gener
ally, semantic feedback during dragging is greatly assisted by the provision
of enter and leave events (as discussed in Chapter 4, page 113). Even so,
there is no generalized support for simple user interface animation, which
is often obstructed by the very primitive event timing in Visual Basic's ker
nel. An increasingly common form of user interface representation is thus
not well supported.

Support for representation multiplicity covers a broad but uneven spec
trum. The lack of a complete software architecture for interactive systems
forces compensation to take place as extension to the facilities of Visual
Basic - but outside it (VBX files: VBPG 123). VBX files provide a way
to add new controls (e.g. graphical command buttons with a 3D look and
feel). This (rather indirect) assistance for representation multiplicity has
led to a proliferation of third party controls. However, development of new
controls within Visual Basic itself is di:fficult, as there are many graphics
primitives and attributes that can only be created/set at run time (e.g.
graphics methods for arcs and setting pixels (VBPG 339)).

Representation multiplicity is thus addressed for a few presentation fea
tures, but is at best assisted and may be obstructed. VBX files let missing
features be added, but they do not let unsuitable ones be fixed. Repre
sentation multiplicity is restricted in the Multiple Document Interface, as
Document Windows (but not dialog boxes) must go inside the parent ap
plication window (VBPG 297). Extensions that overcame this restriction
would have to re-implement a major part of Visual Basic itself. Interest
ingly, the Windows 95 user interface has preserved the Multiple Document
Interface- reluctantly, as it appears from the style guide (Microsoft, 1995).
This strongly suggests that re-programming the Multiple Document Inter
face requires resources beyond those available to most application and tool
developers.

Support for reconfigurability is largely similar to that for representa
tion multiplicity. Features such as multinational data formats address both

Commercial Tools 175

properties, but assistance, neutrality or obstruction are more common in
teractions between Visual Basic and fl.exibility properties. Very low-level
language features assist with reconfiguration (e.g. arrays of controls let
controls be added and removed at run time). However, some features can
only be set at design time. This obstructs reconfigurability by ruling out
run time changes. For example, the multi-line text property and scroll bar
properties can only be set at design time (VBPG 40). Also elements of
control arrays that were created at design time cannot be removed at run
time (VBPG 71). Such ad hoc boundaries between design and run time
have a negative impact on other properties (see below).

Support for other fl.exibility properties is limited. Device multiplicity is
obstructed by the absence of multi-media support. Human role multiplic
ity is not addressed in any way (interactions are thus neutral). However,
there is some useful basic assistance for migratability, as keystrokes can be
passed on to other applications, so agents could be implemented that take
responsibility for some tasks. As the receiving application cannot distin
guish between user- and application-generated keystrokes (VBPG 521), a
requirement for migratability identified in Chapter 3 (page 83) appears to
be satisfied, but this requirement is user- rather than system-oriented. In
fact, commands that have been migrated do not require presentation (i.e.
activating main application window, popping up dialog boxes). However,
this will happen when migration is driven at the logical interaction level.
Properties such as pace tolerance and honesty will clearly be obstructed by
this approach to migration.

Lastly, 1/0 re-use is given basic assistance by clipboard capabilities
(VBPG 405) and the ability to pass on keystrokes to other applications
(VBPG 521).

Robustness Properties

As with fl.exibility properties, robustness properties that depend on several
architectural components are not well supported. The lack of clear dialog
and functional core adapter components means that observability, insis
tence and honesty cannot be systematically addressed (since each relates
to interactions via the dialog between the logical interaction and the func
tional core adapter). The result is that interactions with these properties
are generally neutral.

The remaining robustness properties of predictability, access control,
pace tolerance and deviation tolerance are less dependent on extensive ar
chitectural support. Even so, Visual Basic provides limited support.

Access control fares relatively well. Database features address it with
the capability to restriet read or write access to data items (VBPG 461).
However, file operations provide no such support.

Pace tolerance is generally obstructed. At the logical interaction level,

176 Tools and Materials

mouse move events may not be generated for each pixel (VBPG 269).
This will cause problems for some fine sketching, drawing, dragging and
region selection tasks, since Visual Basic may not be able to keep up with
the user. A more generalproblern arises when Microsoft's DLL (Dynamic
Link Library) mechanism is used for integration, because the default time
out for data link accesses is five seconds (VBPG 503)! This suggests that
such delays are to be expected. DLL access to functional core values dur
ing closed-loop interactions, such as slider manipulation during star field
queries (Ahlberg and Schneiderman, 1994) will thus result in pace tolerance
problems.

Deviation tolerance is given better support, since the database rollback
methods provide some assistance with error recovery (VBPG 478). Similar
assistance with error detection is provided by the Data Error event (VBPG
475). However, this focused support for error handling is not matched by
non-database features. Visual Basic has an 'on error' construct (VBPG
238), but the assistance provided by this and related constructs - resume
construct, null return values (VBPG 164) - are too general to provide
effective support for deviation tolerance.

Internal Properties

All things being equal, the design-time capabilities result in high develop
ment efficiency, especially for systems where the functional core is little
more than a database. For example, there is a unified SQL interface for
all database systems which are supported (VBPG 483). Other capabilities
greatly aceeierate the development of a few specific functions. For example,
the grid control manages rows and columns for spreadsheet and other tab
ular presentations. The text box, check box, label, image and picture box
controls can all be bound to database items (VBPG 462), automating the
implementation of dialog links between values in the functional core and
the logical interaction. There is also extensive support for later life-cycle
activities such as installation (VBPG 573).

When these focused features such as SQL interfaces, grid controls and ac
tive data values are inadequate, development effi.ciency is reduced whenever
a key external property is inadequately supported. This problern may be al
leviated if there is compensation from third party shareware or commercial
custom controls. Thus, development effi.ciency is reduced when 'graphics
with semantic content' (in window graphics) are called for, as these must
be written from scratch - jeopardizing functional completeness unless ap
propriate custom controls can be purchased. Where complex dialogs are
required, this can easily result in large amounts of spaghetti code, reducing
development effi.ciency and maintainability, as weil as risking functional
completeness due to errors on dialog logic.

Development effi.ciency is further reduced when run time capabilities are

Commercial Tools 177

inaccessible at design time. For example, graphics methods (the procedures
called to produce graphics) have more extensive capabilities than design
time graphical controls. Similarly, rapid prototyping is obstructed by the
inability to place text in grid cells at design-time, since mock-ups of possible
tabular displays must be programmed rather than specified interactively.

Lastly, some language abstractions are too low-level to allow rapid devel
opment: items must be added to lists one at a time (VBPG 52), bit fields
are used to represent mouse and keyboard status (VBPG 271), and explicit
indices are needed to set the 'tab order' for the controls for a form (VBPG
66 - third party tools do support more direct specification of this order at
design time).

Maintainability and modifiability are addressed by a range of general
software techniques: modules (VBPG 126), objects (VBPG 181), generic
objects (VBPG 132), and public and private procedures (VBPG 132). Spe
cific Visual Basic features also address modifiability. VBX files have already
been mentioned, as have control arrays, which ease modification of the set
of controls on dynamic forms. However, some arbitrary restrictions limit
the effectiveness of some of the constructs: objects cannot be placed in
huge arrays (VBPG 175) or in user-defined types (VBPG 183). More gen
erally, maintainability and modifiability are also bindered because the code
is spread out in many procedures for many objects, and it is di:fficult to
have an updated overview of the code in a development.

Features that directly address run time efficiency place minimal demands
on programmers. For example, bitmaps can be compressed using run-length
encoding, which saves storage (VBPG 262) and imagebox controls allow ef
ficient display of images that do not require the full functionality of picture
controls. However, the advice in the chapter on runtime e:fficiency (VBPG
Chapter 11) is somewhat piecemeal and does place considerable demands
on programmers' memories. Such 'tips and tricks' approaches to runtime
e:fficiency must have a negative impact on development e:fficiency. Further
more, there are some ine:fficiencies for which no work-arounds are suggested.
For example, it can take 'several seconds' to create an OLE object (VBPG
529), which will be unacceptable in many interactive applications.

Userinterface integratability is well addressed in Visual Basic, since the
Windows environment has directly addressed this property in its provi
sion of DLLs (VBPG 493) and OLE. However, Visual Basic places some
limitations on OLE parameters that could limit either user interface inte
gratability or development e:fficiency (VBPG 554).

Support for 1/0 re-use is also relevant to user interface integratability
(clipboard: VBPG 405; sending keystrokes: VBPG 521), and standardiza
tion of Windows features supports user interface integratability. Visual Ba
sie provides implementations of common dialogs (open, save as, print, color,
font) in the CMDIALOG VBX file (VBPG 103 and 114), although inter
estingly there are times when Visual Basic 3.0 does not enforce standards

178 Tools and Material&

in the Windows 3.x style guide (Microsoft, 1993a). For example, titles for
dialog boxes are not required (VBPG 97).

Functional completeness covers the ability to provide functionality at all
levels of abstraction required for a system's adopted tasks. Where abstract
commands at the functional level of abstraction are largely operations on
databases, functional completeness can be readily achieved. There are ex
tensive constructs for information systems (VBPG 453); images can be
stored in the database (VBPG 466). There are, however, several features
that introduce the risk of losing functional completeness. For example, tasks
that require accurate color presentation are obstructed by the use of in
ternal logical palette and system palettes that will produce the 'nearest'
match to a color (VBPG 374). This may not be good enough for many
applications (not only desk top publishing and image processing, but also
Internet applications such as information servers and tele-shopping), even
though Windows 3.x itself has extensive palette functions. Some language
and environment features can also jeopardize robustness. For example, the
DoEvents function must be called to achieve multi-threading, but care must
be taken that the procedure which calls it is not called again before the
first call returns. If it is called again, then a stack overfl.ow will result
(VBPG 417). However unlikely this is, it remains a burden and concern
for programmersthat would not exist were true multi-threading constructs
provided.

The main value of the above analysis is in confirming software architec
ture as a key determinant of support for properties when developing in
teractive applications. More dassie interactions, e.g. the simplicity-power
trade-off between development effi.ciency and functional completeness, are
also exposed by several examples. Functional incompleteness often appears
to have been tackled with a local fix that has resulted in inconsistencies be
tween design-time and run time capabilities. The same is true of the equally
dassie simplicity-effi.ciency trade-off between development effi.ciency and
run time effi.ciency, where a chapter of tips and tricks lengthens the devel
oper's coding agenda.

Any global summative evaluation of Visual Basic based on the above
property analysis would be misleading. It is hard to trade-off poor sup
port for external properties against, for example, its extensive installa
tion support. There are also dearly development projects where Visual
Basic's design-time environment has delivered extensive development effi.
ciency without compromising functional completeness. Even so, it would
be a surprise if these developments had particularly adventurous user in
terfaces, since key external properties are not weil supported by Visual
Basic.

As wi th most 'commercial tools', the dri ving forces in the mar ket concern
are internal properties that are foremost in the developer's mind, since all
benefits here accrue to the developer. lmprovements in external properties

Ezperien.ce11 11t Re11ea.rch a.n.d Developmen.t Site11 179

usually accrue to the end-user, with extra costs for the developer that
may not be recoverable. This balance of provision for external and internal
properties is evident in the site reports in the next section.

5.5 Experiences at Research and Development Sites

The analysis of tools and materials will now be completed by consider
ing broader experiences at four sites, three in Europe, and one in North
America. The two development sites develop business critical hardware and
software for internal usage and for sale as products. The two research sites
develop state-of-the-art prototypes for both internaland external clients.

5.5.1 Development Work at a Large Systems Manufacturer and Integrator

Nature of interfaces

The nature of interfaces designed at this site is not homogeneous: very
different kinds of applications are developed. They extend from legacy ap
plications {including the administration of operating systems) to work-ftow
systems (based on imaging), new PC-based tools, and client-server appli
cations. Thus, some applications have been on the market for many years
and now have a large customer base. These applications continue to evolve.
Other applications are only bespoke {for a single customer) and may have
a relatively short operational period.

Requirements for legacy applications are less demanding with respect to
end-user interaction, but complex with respect to functional completeness.
Requirements from a few other applications, however, have very sophisti
cated and specific demands concerning user interfaces.

Materials

In such an established development environment, well known, state-of-the
art software engineering materials are used for activities such as problern
analysis and requirementsfsystem speci:fication. GUI-related issues have
also been addressed. Specific to GUis are the provision of style guides and
of vocabularies for applications, and the integration of 'heuristic evalua
tions' and walkthroughs into design and quality assurance processes. These
address user interface integratability and support assessment of robustness
properties such as observability and honesty. For the more specific demands
of some applications, the services of a usability laboratory provided by a
related research department are available, but are currently given limited
use.

180 Tooll and Materials

Tools

Given the different kinds of applications, a great variety of tools are in use,
although evaluation tools are not in noticeable use.

A significantly large number of applications have to run on two target
platforms (e.g. Unix and Microsoft Windows) simultaneously. There is a
proprietary tool for specification and construction of GUis which is tailored
to this requirement of platform multiplicity. This tool, called DialogBuilder
(Siemens Nixdorf, 1994), is used predominantly for most interfaces to new
and to legacy applications.

Tools available on the market are used according to individual project
needs (target platforms and software to be included, e.g. by other devel
opment partners). Visual Basic is used for those applications which have
only Microsoft Windows as a target platform and which have demanding
interface features not covered by DialogBuilder. In the rare cases when ap
plications require the support of very different platforms, the XVT package
(XVT, 1991) is used to address user interface integratability. Some inter
faces are based on a proprietary alternative to XVT which addressed pro
prietary legacy GUI platforms very efficiently, especially with respect to
run time efficiency.

This site maintains legacy applications originally equipped with complex
and rather sophisticated forms-based interfaces that support reconfigurabil
ity and access control. In order to provide GUI versions that are function
ally complete compared to state-of-the-art interfaces, there is tool support
for transforming the original forms definition files into GUI definition files.
The resulting GUis can be reworked manually (if necessary) by the stan
dard tool, DialogBuilder. Such tools improve development efficiency.

The deciding factors for selecting tools at this site clearly concern the
required multiplicity of platforms. The main goal is reducing costs for de
velopment and maintenance. Predominant are applications requiring only
modest and standardized interface features (e.g. as covered by style guides,
allowing for the construction of interfaces by specification). For these ap
plications, multi-threading seems to be sufficiently supported by window
managers, i.e. between rather than with~n applications.

Modifiability is often inherited from the original forms-based interfaces
although restricted to a pre-defined scope of interface features (e.g. lan
guage, novice vs expert). Special requirements have tobe met with respect
to learnability, and with the coexistence of legacy interface variants with
GUis.

5.5.2 A Campus Research Centre

This site is using Tcl/Tk in conjunction with the TIMES Distributed Sys
tem Builder (Smith and Newman, 1995) as a 'Rapid Delivery' (RAD)

E:z:periences at Research and Development Sites 181

vehicle for both 'stand-alone' and distributed information systems. Pro
vided that the necessary problern analysis is available with which to 'prime'
a system, TIMES and Tcl/Tk can be used to provide rapid implementa
tions of full working systems with approximately a couple of days of effort
for a stand-alone system and about a week for a distributed system.

The basic system consists of combinations of 'front-end subsystems' (de
noted FESS) and instances of information management subsystems (IMSS).
The FESS are mostly written in Tcl/Tk although other available front-ends
are also used, for example, browsing tools for the World Wide Web such
as Mosaic (Dougherty et al., 1994)) and Netscape (Pfaffenberger, 1995).
The IMSS are usually TIMES systems (a program written in C with an
attached database) but could also be simple files or commercial data man
agement systems. A complete system consists of at least one FESS with at
least one IMSS (Smith and Parks, 1995).

Several link constructs are supported for interconnection between the
subsystems. They can be accomplished by the front-end subsystem directly
reading the file in which the data is stored; more 'sophisticated' alternatives
include socket connections, pipes, e-mail and intermediate files.

As described in Section 5.4.2, Tcl/Tk can be used as an effective tool for
building systems which deliver a number of the external properties detailed
in Chapter 2. However, the use of TIMES as an IMSS considerably extends
the degree to which these external properties (and the internal properties
proposed in Chapter 3) can be delivered while also reducing the amount
of programmer effort required, thus improving both the quality of the user
interfaces and development efficiency.

Most of the properties are achieved by adopting suitable design goals
and then by ensuring that the delivered system meets the design. The
design of the tools assists in achieving effective implementations quickly.
For instance, interfaces are designed which let users make use of appropri
ate representations on appropriate devices for both input and output, and
thus provide device and representation multiplicity. Tcl/Tk assists with
representation multiplicity by providing appropriate widgets. The TIMES
IMSS assists in the acceptance of a variety of input formats and the pro
vision of alternative output formats by providing a rich set of transla
tionfparse/search capabilities that can be accessed from the FESS.

Non-preemptiveness is a goal which can be achieved by always allow
ing the user a choice of actions in the design (the tools have no direct
influence on this except that they do not force pre-emptiveness). Similarly,
multi-threading is not specifically prohibited by the tools and large scale
multi-threading has been chosen as an explicit design decision in the inter
faces built. In a particular situation a user can choose to browse or carry
out a 'what-if' investigation then return to the situation they were in and
continue. However, at most points they only have one window visible and

182 Tools a.nd M a.teria.ls

must deliberately leave this to continue. Multi-threading is thus assisted
by a stack rather than directly addressed by switchable threads.

The IMSS also assists greatly in providing observability and honesty by
making it easy and quick to perform various tasks: locating and retrieving
information that has been stored; changing storage representations with
out losing existing information; and selecting subsets of existing informa
tion. Access control is facilitated by requiring an explicit 'publication' of
information before it can be observed. The publication mechanism is role
oriented, and thus addresses human role multiplicity. Information is only
available for use by users acting in an appropriate role. Information can
still be marle 'publicly' available by creating a 'public search' role which
is given automatically to all users of the system. The ability to quickly
add new storage and indexing capabilities (both statically, by changing the
FESS, and dynamically on user request in the TIMES IMSS) means that
modifiability, migratability and reconfigurability can be readily supported
where required. This same ability means that it is easy to record enquiries
and to construct a 'frequently asked queries' facility with the corresponding
'frequently required answers', a very good example of 1/0 re-use.

By design, reachability has been approached in a rather unusual way. The
TIMES IMSS will not permit deletions, thus it is not possible to remove
history and all previous states ofthe systems are observable. Conversely, no
state of the complete system can be reached which would negate history.
However, it is always possible to create a subsystem containing only part
of the information in the existing system. The IMSS provides assistance
in ensuring that allsuch 'viewpoints' are internally self-consistent. Having
defined a new viewpoint that does not contain the record of a particular
event or does not contain some particular pieces of information, it is then
possible to carry out 'what-if' seenarios using this as a starting point. The
results can then be compared with other subsets without any possibility of
overall system inconsistency arising.

The TIMES IMSS has been designed to be portable and already runs on
most Unix platforms plus MAC and MS/DOS PCs. The ability to use a
variety of communications tools also means that a system can be configured
to make use of existing facilities without, necessarily, needing to port the
IMSS and the possibility of migrating functionality from the FESS to the
IMSS means that a lightweight 'native' FESS (for example Xterm, e-mail
tool or WWW browser) can be used, greatly enhancing portability.

Evaluability is a major design goal, and both the IMSS and the FESS
building tools have been produced with this in mind. The GENIE system
(the UK Global Environmental Change Data Network Facility; Newman et
al., 1995) developed at this site has been configured both to allow users to
supply comments and to record interactions. This permits the actual usage
of the system to be reviewed at regular intervals, providing both usage

E:~:periences at Research and Development Sites 183

statistics and the ability to identify problems with the interface and with
the user's understanding of the functions provided.

The rapid development concept means that development efficiency is not
a major issue. However, run time efficiency, which is often sacrificed for
rapid development, is important. The IMSS is designed to facilitate the
achievement of rapid response with low computing resource use. In addi
tion, the ability to configure an appropriate distributed system allows ex
isting subsystemstobe re-used, where this would minimize resource usage.
Tcl/Tk, being interpreted, is not particularly efficient. However, ifresource
consumption problems or excessively slow performance are observed, it is
possible to migrate the computing requirements to the IMSS.

5.5.3 Research Centre for Large Engineering Company

Apart from normal programming languages and many standard utilities,
this site uses a nurober of tools for testing purposes and for prototyping
purposes. A few of these are briefly reviewed in order of priority.

Visual Basic

This tool for PC software running under Microsoft Windows is used be
cause of its often high development efficiency. The proliferation of third
party shareware and commercial custom controls increases the chance of
functional completeness. Visual Basic provides excellent support for nor
mal user interfaces with standard graphics. Database access is simple. It
is very easy to write modeless 'direct manipulation' (of the interface) in
terfaces due to its underlying event model. However, as noted in Section
5.4.3, there are problems with graphics with 'semantic content', support for
animation and dialog control. At this site, these shortcomings have all im
pacted development efficiency, maintainability, and especially functional
completeness, by forcing changes to prototypes because design decisions
could not be implemented.

Toolbook

Toolbook is another PC tool for applications running under Microsoft Win
dows. For many applications it delivers good development efficiency, and
representation multiplicity is addressed by specific support for animations
and multimedia. Dialog control is scattered onto localized scripts and thus
Toolbook suffers from similar problems as Visual Basic here (e.g. it ob
structs analysis of reachability, obstructs provision of pre-emptiveness when
required by application domain or user expertise, and obstructs maintain
ability and modifiability).

184 Tools and Materials

StartView

This is an Interface Builder set for PCs running under IBM's OS/2. The
tool is primarily used for its CUA conformity aiming at user interface
integratability, but it also delivers good development efficiency, making it
suitable as a rapid prototyping tool.

5.5.1, A Telecommunications Company

Many of the interactive systems developed at this site have real time re
quirements and very often deal with very large systems (customer databases
running into scores of million of records). Several of them are front-ends
to larger systems and often employ standard GUI packages (e.g. Motif).
Others deal with network concentrators or reconfigure problematic digital
switches. This site largely serves two sets of customers:

• internal: large group of heavy users who exercise discretion and can also
get the best out of challenging tools and materials;

• external: larger group, who generally must work with 'industry stan
dards'.

Non-preemptiveness is often felt tobe necessary since craft (operators)
are not expected to be sophisticated users of the system - and can of
ten be the 'front line'. Insistence, predictability and pace tolerance are all
considered vital for these and other users.

Performance monitoring tools are heavily depended on - this can make
or break a prod uct. In both dealing wi th customers (scores of millions) and
calls (120 million/day), this site is constantly confronted with problems of
'scale'. While several systems are of course broken down into smaller pieces,
there are systems that have to deal with a large number of entities. Hence
the critical role of performance monitoring to ensure pace tolerance and
run time efficiency.

Portability is both vital and largely assured thanks to Unix. Every size
of Unix box is deployed at virtually all levels. Thus tools work in many
places. The organization is too large to establish which tools are in regular
use. Common tools and materials include: Unix, Unix tools, the X Window
system, Open Win (the organizational standard for user interface integrata
bility), and Motif (some developers' preference). Several UI builders are in
use, but there are too many tiny and big UI builders throughout the orga
nization to get any coherent sense of current trends.

The site is largely tool- and process-driven in approach. Tools at times
take precedence over process, but in the milieu of large scale software con
struction (not just interactive systems) process plays a very strong role.
A standard deployment cycle is followed that is very similar to the one
presented in Chapter 1. There are on-line methodologies, which are heavily
consulted.

Conclusions 185

Evaluation and re-evaluation are performed at various stages. The local
development methodology dictates a variety of things and has an impact
on other things (choice of tools for example), largely by guidelines of the
form: what to do when X happens during stage Y of a project development.

5.6 Conclusions

Tools and materials for developing interactive systems is a vast topic. Ana
lysis here has been restricted only to tools and materials that have a positive
or negative interaction with an external or internal property, and ones that
are used or produced during the specification and construction phases of
development.

Various forms of interaction arise between tools/materials and proper
ties. These forms have direct implications for development activities, de
termining the extent of work and expertise required from developers, and
the phases of development when properties can be considered. The most
favorable interaction is delivery, which can occur during specification and
require little expertise and no further effort in later phases. Less favorable
interactions are proof, addressing and assessing, which tend to only occur
during specification, require considerable effort and expertise, and require
further attention to properties in later phases. These variations in attrac
tiveness are reflected in the site and tool reports (none of which mention
proofs), where delivery of internal properties during construction is the
predominant form of interaction.

It is clear that tools and materials that are currently used extensively
are largely ones that support internal properties during construction. Few
tools address external properties. The causes of this situation cannot be
established with confidence from the range of examples above, but these
do allow some informed speculation as to why current tools are uneven in
their support for external and internal properties.

One likely cause is the limited attention given to the quality of the final
systems that are produced by tools or incorporate re-usable materials. How
ever, this limited attention may reflect a deeper cause that lies in the nature
of interactions between external properties and tools and materials.

External properties can often be delivered or proved during specification,
but they must still be preserved during construction. Similarly, some prop
erties can be assessed during specification, but the property must still be
preserved during construction, and then re-tested during evaluation. Thus
appropriate specification constructs and assessment tools cannot guarantee
satisfaction ofproperties in the final system. This reduces the attractiveness
of tools and materials that only interact at these levels with key properties.
In contrast, a construction tool that delivers a property does so with no
further effort. This difference in the effectiveness of specification and con
struction phase interactions may be an important cause of uneven tool and

186 Tool• o.nd Mo.terio.l•

material support for external and internal properties. lt cannot however be
the sole cause.

Differences of support between specification and construction are wider
than they need to be. Construction tools often only assist in achieving prop
erties, even though the gap between assistance and addressing/delivery may
not be particularly great, especially when missing supporting constructs
have already been implemented. Thus a construction tool that only assists
with a property will require far less effort from developers if a relevant sup
porting construct is implemented and encapsulated. Such a simple addition
of capabilities can be called an 'assistance upgrade', and this may be the
obvious way to quickly improve on the state-of-the-art.

Formost tools, 'assistance upgrades' should generally succeed. However,
few have clearly been attempted in recent years. As such upgrades would
be technically straightforward, the root cause of slow improvement of tool
support for external properties must lie elsewhere.

The most plausible cause relates to the beneficiaries of 'hard' proper
ties (i.e. ones with which proof, delivery or addressing interactions with
tools/materials occur). When a property is satisfied, there are various ben
eficiaries. The major beneficiary from internal properties is the software
developer. However, when external properties can be delivered, the users
of a system rather than the developers of the tool or material will be the
major beneficiary.

Tools and materials that improve internal properties have an immedi
ate benefit for the software developer. Tools and materials that improve
external properties have less immediate benefits. Although customer re
lationships should be strengthened, and the reputation of the developer
for quality development should improve, the actual return to many devel
opers on investment could remain uncertain, if not unclear. However, the
customer-contractor relationship in software development is not fixed in
stone, and closer, more open and more cooperative relationships are devel
oping, just as they have in many areas of manufacturing. Interestingly, the
one report from an in-house development site does identify specific external
properties that are required by their operators ('craft' in telecommunica
tions speak).

The apparent root cause of unnecessary differences in tool support for
external and internal properties can thus be addressed. The site report from
a campus research laboratory shows that external properties can be given
focused attention when developing software infrastructure. Furthermore,
the facilities in tools like TAE+ that have evolved to meet the needs of a
large demanding and varied internal user base can also provide reasonable
support for external properties. The obstacles to improving tool support at
the specification stage for external properties arenot largely due to techni
cal obstacles to realizing some form of interaction, but, as has already been
noted, due to the unsatisfactory loose ends that have tobe addressed during

Conclusions 187

subsequent construction and evaluation. For these reasons, model-based UI
tools have promise that goes beyond the generally cited improvements in
development efficiency. Such tools could also preserve external properties
that are proved, delivered, addressed, or assessed during specification.

This concludes the informed speculations on the causes of slow improve
ment of tool support for external properties. The main value of these con
jectures is that they identify possible ways forward, especially the value of
model-based development tools.

In summary, interactions with software development that were identi
fied in Chapter 3 have been shown to be substantial, in that examples of
different strengths of interaction can be readily found for existing tools
and materials, but these interactions are diffuse, diverse and lack coher
ence. Internal properties are currently covered more comprehensively and
coherently. Support for external properties is much more piecemeal, due to
the risks of 'property erosion' during construction and evaluation. Model
based tools could be developed to address this 'property erosion'. Thus
the predominance of interactions with internal properties reflects not fun
damentals, but forces operating within software development. Designs for
tools and materials that recognise the nature and degree of these forces are
most likely to harness or counteract them.

Tools alone will not solve all problems associated with properties. There
will still be trade-offs to be made. As with the last example site, method
ology is not irrelevant, and it has some effectiveness even with partial tool
support. Thus the proper combination of tools and methodology is also an
issue that needs to be resolved.

CHAPTER 6

Example: Interface for Air Traffic
Controllers

6.1 Introduction

This chapter introduces a single large example of using the properties and
architecture which have been discussed in earlier chapters. The example
chosen is an Air Traffic Control (ATC) Support System. The concrete
meaning of the abstract properties introduced in earlier chapters will be
discussed in that context, showing how one property interacts with other
properties. The relevance of this to the design is shown by examples, which
are followed by a discussion of possible architectures for the ATC Support
System.

A realistic example of this kind is inherently complex. Different individ
uals within the overall system potentially fulfill multiple roles. Both real
time and safety-critical aspects of the system need to be considered. In this
respect the example provides a challenging test for the merits of the design
approach proposed in this book. It also serves to illustrate situations in
which considerations of the functional domain may need to over-ride user
interface engineering considerations.

6.2 The Air Traffic Service

The global task of Air Traffic Management is provided by individual na
tional Air Traffic Services containing many hundreds of people carrying out
support, maintenance, technical, controling and other activities. The major
real time activity in this overall system provides Air Traffic Control ser
vices to aircrew (pilots of civil, military and private aircraft) during flight
planning and en route.

The main purpose of the Air Traffic Control system is to ensure flight
safety: aircraft must be able to fly from take-off to landing without fear of
collision. Given this strict constraint the ATC system aims to offer optimal
flight paths to the pilots who are the ATC users: aircraft should be able to
take off when planned, fly at a speed desired by the operator at an altitude
suitable to the desired flight path - all dependent on other traffic, weather
conditions and constraints offered by the particular type of aircraft being
used.

190 Example: Interface for Air Traffic Controllers

In order to achieve these goals, the Air Traffic Control Centres involved
in the flight planning and en route control of aircraft need to collect con
siderable quantities of data about each planned flight - time and place
of departure, time and place of arrival, proposed route, height, speed etc.
Based upon this data the duty Air Traffic Controllers (ATCos) make deci
sions about the need for route alteration due to planned traffic, informing
the pilots when accepting the flight plan before take off.

The most important part of Air Traffic Control is exercised while aircraft
are en route. Changes in weather, other aircraft emergencies etc. all have
to be dealt with in real time: duty controllers assisted by an ATC Support
System monitor the minute-to-minute situation in the air, giving advice
and requests to aircrew to avoid conflicts between aircraft flight paths.

The system being considered in the remainder of this chapter is the
ATC Support System needed to help the human Controllers manage the
vast amount of data available and needed at some time or other in order
to make optimal decisions while carrying out controling activities.

The order of presentation of the requirements from the support system
takes into account some simplification necessary for the purposes of this
example. A design would normally begin by reviewing controllers' activities
in an existing system in order to permit a direct comparison to be made
between the new design and existing practice. For brevity this is omitted
and an abbreviated description provided.

The complete ATC Support System interacts with many individuals ful
filling a variety of different roles. This example concentrates on the tasks
performed by and for the en route controllers themselves. In practice,
however, each individual controller must adopt many roles over time -
sometimes even more than one at once - advising pilots, ensuring safety,
communicating with other controllers about air traffic movements etc.
These multiple roles are indicated in the descripton of controllers' tasks
given below.

The descriptions given make use of a simple framework frequently em
ployed in software engineering- first describe the goals and then the inputs
and outputs available to assist in achieving the goals.

6.2.1 A Controller's Tasks

Flight Management

The basic task of an en route controller (an ATCo) consists of monitaring
flights in progress. In an ideal world this would mean checking that every
aircraft follows its pre-planned (accepted) route. Controllers, however, have
to face perturbations as well as poor planning. As soon as a potential
conflict (which may lead to a dangeraus situation) occurs, the controller
must take action to reroute aircraft to avoid the conflict. In order to do

The Air Traffic Ser11ice 191

that, controllers often have to choose an altered (sub-optimal) route. This
means that they have to build (or ask the Support System to build) a new
subset of routes. Once these are determined to be satisfactory the controller
must then undertake the correct actions (e.g. requesting change of course
to pilots) to adopt the revised plan.

Control Co-ordination

No one controller can manage all airspace. The world's air space is divided
into regions roughly in line with national boundaries or other major geo
graphic division. Within each region the sizes of individual control sectors
are designed as far as possible to even out controller load. Each controller
on duty monitors all fl.ights originating in, passing through or terminating
in the single sector assigned - while the aircrafts are in that sector. The
size of control sectors is such that most aircraft in transit (i.e. not merely
carrying out local fl.ying) will usually cross several sectors between take-off
and landing. If the controller of the originating sector for a fl.ight takes an
action to modify the planned route then controllers of all subsequent sec
tors will need to deal with the modified route. Such changes are, of course,
cumulative from sector to sector as modifications are found to be necessary.
This introduces a new task for controllers: Co-ordination and negotiation
with other controllers either in the same Control Centre or in a neighbour
ing one. To simplify this co-ordination, airspace is generally organized into
airways so that fl.ights crossing sector boundaries do so only at pre-defined
points. Negotiations between sector controllers are then about the time and
altitude of such a crossing rather than its position.

Focusing on this en route Air Traffic Control and supposing that take
offs and landings are managed in dedicated sectors (usually referred to as
Terminal Control Areas or Terminal Control Zones), it may be assumed for
the purposes of this example that a controller's duties consist of these two
subtasks: negotiating with other controllers and managing fl.ights within
the sector - which includes monitoring and building new trajectories. In
practice in a busy Air Traflic Control Centre these two subtasks are often
performed by a pair of controllers working together.

6.2.2 Available information

The data used for monitoring airspace is synthesized from different sources.
First, fl.ight plans are used: though the static information they provide may
become obsolete, they make it possible to make assumptions about the
future movements of a plane. Then, radars provide real time information
(refreshed every few seconds) about the positions and altitudes of aircrafts
in fl.ight. Every aircraft carries a device called a transponder that uniquely
identifies it, so that radar information can be correlated with fl.ight plans.

192 Ezample: Interface for Air Traffic Controllers

Finally, even though this is still under development at the time of writing,
the existence of a data link between every aircraft and the ground will be
assumed.

In addition to this information about flights, the system also has knowl
edge about the geography of the sector: its borders, the airways in it, and a
number of pre-defined 'waypoints', used as references to build trajectories
and to communicate with crews and other controllers. Finally, the pieces
of information entered by a controller when dealing with aircraft may be
made available to other controllers during negotiating.

6.2.3 Actions

A controller takes a number of actions when monitoring flights, building
new trajectories, or negotiating with other controllers. Some of these ac
tions are internal to the ATC system, and depend on the interface used.
Using the interface, the controlleralso has to perform a number of actions
that have an impact on the real world. Compared to the information avail
able, the controller has very few ways of acting on the situation, because
every meaningful action is mediated by other humans, especially crews (pi
lots are not yet prepared to let controllers take actions that a:ffect the state
of their aircraft). This is why most actions are in fact communications. The
controller communicates with crews, in order to request them to implement
the decisions made when solving problems.

The first action to be taken as soon as an aircraft enters the sector is
to open and check the communication link. Then, when it is necessary,
the controller asks the crew to change speed, altitude or heading. Finally,
when the aircraft is about to leave the sector, the controller tells the crew
to contact the controller of the next sector, and makes sure that the new
communication link is established.

In the same way, the actions involved in coordination with other con
trollers are basically communications. Negotiations among controllers gen
erally occur when a controller wants to hand over an aircraft to another
controller. If this is not performed automatically by the system, the con
troller has to establish a communication link, name the aircraft and propose
a waypoint, a time and an altitude for the transfer. The other controller
can then accept, or propose other solutions. As controllers share the same
computing system, these pieces of information are easily available, provided
that they are entered into the computer.

6.3 A Simplified ATC Support System

Now that the controller's task and the means available have been described,
the new Support System must be designed. This is, of course, too !arge a
task to be done completely in this example; many of the details are not

Externat Propertie1 193

relevant to this book. For these reasons the support system considered will
be simplified; details will only be introduced when useful in illustrating
points being discussed.

The primary aim of an ATC system is to enable controllers to handle
an important amount of air traffic without jeopardizing the safety of air
crafts. For the purpose of this book, it will be assumed that a reasonable
way of achieving this aim is to create a single integrated computer sup
ported system which includes the various existing subsystems (flight plans
management, radar display, radio links and so on) and provides a uniform,
usable interface for the air traffic controllers.

An ideal support system design suggests that the system should:

• accept flight plans electronically and log them automatically;

• establish communication with the pilot when the aircraft crosses into the
sector (the controller of the previous sector having both informed the
new sector controller of the entry and requested the pilot to establish
communication with the new controller; both pilot and ATC system use
a time-out mechanism to indicate a problern to the preceding sector
controller if successful communication cannot be established);

• make available to the controller in advance the expected times of aircraft
entry to and departure from the sector and the planned flight raute
through the sector;

• provide an information retrieval and computational support system for
investigating putative flight plan alterations ('what if' seenarios), using
existing flight plans, permitted 'routes', actual situations in the past,
simulations of possible revised routes;

• log chosen flight plan revisions and notify the next sector ofthe projected
consequences, if any;

• notify the controller (and perhaps the pilot) if any anticipated event
is not detected when expected (e.g. a failure to establish or maintain
communication; a failure to respond to a request).

6.4 External Properties

As may easily be imagined, external properties are crucial to the success
of an ATC support system. More generally, the relative weighting of the
properties depends on the application domain. Air traffic control is an
open, cooperative and very safety-critical application. Many people (e.g.
controllers, pilots and supervisors) must cooperate for the ATC system to
function at all; because of the nature of the system, the overall system
safety must be the overriding concern. This infl.uences strongly the way in
which the priorities of the desired properties must be balanced; in several
cases domain requirements take precedence over 'nice' software properties.

194 Ezample: Interface for Air Tro.ffic Controllera

Foreach property, with the exception of goal completeness, one or more
situations are described, where this property is of significant importance
in the system to at least one of the many people involved. In a number of
cases, overlaps between properties are identified.

Safety requirements

Because of the application domain of the ATC system, safety requirements
override almost every other requirement. This means that the robustness of
the interaction is very important. Robustness means- among other things
that the system tolerates errors and deviations from 'normal use'. As also
noted in subsections below, redundancy in the system and in the dialog
assists in deviation detection. In order to be able to tolerate deviation,
either the controller, support system or both need to detect potential errors
and take appropriate action before the situation gets out of control. The
examples noted under observability, insistence and honesty are all cases
where the system is tolerating expected deviation of one sort or another. For
these reasons, it is essential to examine interaction robustness properties
before interaction fl.exibility properties.

Furthermore, une:cpected deviation also has to be taken care of. As a
general rule, any safety-critical system such as an ATC system, must have
anticipated all possible events and have provided actions for each. Yet it is
impossible to enumerate all possible events in most real systems - they are
usually countable though infinite. This impasse is normally overcome by
first defining a safe default action which will occur whenever any otherwise
unanticipated event occurs ('unanticipated' means that the event is not
covered by a specified set of conditions). Later on, as unanticipated prob
lems are observed, explicit tests and responses are added for these specific
possibilities.

This method of coping with deviations could be described as Deviation
Intolerance since, unless a specific case has been identified, in which case it
is not a 'deviation', then a specified actionwill always be taken. Conversely,
it could be thought of as Deviation Tolerance, since all user actions lead
to inherently safe operation (but not, necessarily, to what the user would
have desired).

Further discussion of safety aspects is found below in several of the sub
sections on individual robustness properties.

6.4.1 Goal completeness

The principal purpose of the ATC system as a whole is the safe passage of
aircrafts from take-off to landing with minimum disruption to the original
fl.ight plan and minimum extra cost for operators as secondary aims. The
goals of individual humans using the air traffic control system may or may

Ezterna.l propertie.1 195

not be related to these purposes. However, the ATC supportsystemwill be
complete insofar as it enables the controllers interacting with it to achieve
the overall purposes and discourages them from taking actions that are
inimical to those purposes. A full judgement on goal completeness is only
possible when the system is in operation. It may even be necessary to wait
until after the system is taken out of service before the final assessment can
be made.

Basically, a task-analytic approach to completeness would not suffice
in this safety-critical system. The task analysis results in a task model,
and task completeness is demonstrated by showing that all adopted tasks
from the model are covered. As pointed out above, however, the real world
environment interferes with the ATC system in such a critical manner that
task completeness cannot guarantee the safety of the system.

6.4.2 Interaction Robustness

Observability

According to its definition, observability means that a system must make
all information that is relevant to the user perceivable. The key word here
is 'relevant', especially if information overload is tobe avoided: relevance
depends on the situation and time. A differentiation can be made here
between the capability of observing (i.e. making information available on
request) and providing information automatically. Forcing something to be
observable may lead to clutter and to important things being overlooked.

An alternative to basing relevance on the user's current tasks is to al
low the user to perceive anything he or she can name. 'Name' should be
interpreted as meaning 'provide a description for'. lf the description is un
ambiguous then the required information should be provided. If not, the
user should be given information about the choices of things that could
be made available, and which the designer expected could be useful in the
current state.

Some information can be displayed continuously, because it is essential
and/or because its display is inexpensive in terms of perceptive load. For
instance, the current positions of airplanes are always represented on the
display screen because they areessential for managing air traffic. Similarly,
the past positions of airplanes over the last minute or so are also repre
sented, because they give a readily assimilable indication of direction and
speed, and because they can easily be integrated in the display.

Other kinds of information do not merit continuous display, but need
to observable. This can be accommodated by always making search or
browse facilities available. This would allow an ATCo to examine any of the
information in the system if desired, since anything known to the system
which relates to aircraft or to pilots or to the system itself or to other

196 Ezample: Interface for Air Traffic Controllers

air traffic controllers is, potentially, relevant to the ATCo in particular
circumstances. For instance, the ATCo may wish to check the route that
the pilot has entered in the flight management system of the airplane.
Observability will allow the ATCo to detect blatant errors in the route,
and even to decide whether the pilot will need special care and guidance,
because he does not seem to know the area well enough.

The trade-off between observability and browsability (or discoverability)
- i.e. searching - can be thought of as the trade-off between providing very
focused information, specifically oriented to the current task, and providing
additional information because it might be useful. The former strategy may
lead to essential information not being available when it is needed, the
latter to clutter and information overload. Since in any real system, all the
information cannot be observable at all times, it is always possible that the
controller will need to 'search' for the information they require. If a very
focused task-oriented strategy is adopted for what is made observable, it
will be necessary to provide a browse/search mechanism which allows users
to quickly find the information they need.

Finally, awareness (or feedthrough) is a special case of observability, as
indicated in Section 2.4.1. It is also important in an ATC system. Suppose
that a controller has a potential emergency and wants to redirect an aircraft
to another sector, butthat sector is currently overloaded. If the system has
kept the ATCo aware of conditions in the surrounding sectors (perhaps by
varying the color of the boundary with the other section displayed on the
screen - green might mean lightly loaded, white average load, orange heavy
load) then the ATCo is in a position to make an informed choice without
needing to search for information.

Conversely, once the potential emergency is notified to the Air Traffic
Control system, it must (insistently) be made observable to the ATCos in
the surrounding sections (perhaps by making their boundary displays red).
In the emergency situation, it is essential to ensure that these ATCos are
aware that the emergency exists so that they can be considering whether
there is any way in which they can offer help. In this case observability is
not enough. Insistence is required in that the system needs to ensure that
the information has been observed by obtaining a positive feedback from
each of the other ATCos (the only situation where this would not be the
case would be where one of the other ATCos was already dealing with an
emergency of equal or greater magnitude).

Access Control

As discussed in Chapter 2, there are two different aspects to Access Con
trol. Firstly, it is intended to prevent users deliberately viewing or chang
ing information that the owner of the information did not wish them to
be able to access. Secondly, it is there to make it easier for the controller

E:r:ternal properties 197

to use the system by eliminating irrelevant information and/or unneces
sary functionality. The latter aspect of access control is closely related to
both observability (users should not have to observe information that is
not relevant to their role) and honesty (functions should not be offered if
they cannot be used). Putting this in a more positive way, the chance of
accidental mistakes will be minimized if users are only able to access those
items that are relevant to their current task, and are only able to carry
out the operations that are appropriate when performing the task (i.e. this
form of access control offers role-oriented support for the user).

In the ATC system, an ATCo would not normally need to access infor
mation about aircraft which are not currently in their sector and which
are not scheduled to enter their sector. Thus the Access Control mecha
nism should prevent them from getting this information even if they make
a search request that it would apparently satisfy (e.g. the access control
mechanism should attach to the request 'tell me about aircraft that are
scheduled to land in Toulouse at 1400Z' the condition 'an aircraft is only
relevant if it is either in my sector now or it is scheduled to pass through it
between now and 1400Z'). Similarly, and even more importantly, an ATCo
should not be able to make changes to the information relating to aircrafts
that ATCo is not controling. Thus a request to amend the route for an air
craft, which is specified by referring to the aircraft's identification number,
must be rejected, unless it is under the control of the ATCo at this moment
(irrespective of the fact that it may be currently in the air and known to
the system, or was recently being controled by this AT Co). However, in
some circumstances, it must permit an ATCo to change roles and then be
able to access the information that was previously unobtainable, e.g. if a
colleague becomes ill on duty, aircrafts may need to be reassigned.

Insistence

A system is insistent iffeedback to the user is sustained until some specified
user reaction is forthcoming. Note that there is an inherent conflict between
the robustness property of insistence and the flexibility property of pre
emptiveness.

In this air traffic control example, an alert is said to occur whenever some
thing moves outside pre-defined limits possibly specified by the procedures
or by the ATCo. System alert should always be insistent, as mentioned
above for observability.

Suppose that an aircraft that is due in the sector has not arrived: com
munications have not been opened and there is no trace on the radar for
that aircraft, although the previous sector has passed on information of
expected arrival. This could mean that the system in the previous sector
did not notify a change in plan. The system would then need to notify the
ATCo and log a possible system fault condition so that corrective actions

198 E:z:ample: Interface for Air Tra.ffic Controllerß

can be taken. In this case insistence operates on at least two different con
trollers on different time scales. The ATCo needs to 'find' the aircraft, and
the supervisor needs to review the operation of the system. If the ATCo
does not respond within a prespecified time alert priority is raised. How
this is done depends on the alert and preferences - e.g. a klaxon sounds, or
the room supervisor is warned of a possible need to take over. As concerns
the supervisor, the error message will be stored and reminded every day,
until it is handled.

From time to time the controller may need to temporarily suppress a
message in order to deal with a more urgent/dangerous situation. This,
however, must only be possible within context-dependent limits, if safety
criteria are met. Automatie transfer of 'insistent' messages to other peo
ple may be one design solution. Conversely, in an emergency, signals that
ordinarily might be insistent may need to be suppressed to allow the ATCo
to concentrate on the emergency. There is no need to notify the ATCo of
the normal arrival in their sector of an aircraft if it is on time, its flight
plan does not overlap with the airspace involved in the emergency, and it
requires no ATCo action to allow it to proceed.

Honesty

A system is called honest if representations of internal state elements are
designed to be interpreted correctly. Honesty is a fundamental feature of
all aspects of the ATC system. For instance, it is hardly acceptable for
the system to display the position of an aircraft that did not exist; this
is why so much effort is still devoted to the elaboration of algorithms for
radar signal processing. The design of the support system can facilitate the
detection of accidental dishonesty (e.g. due to system malfunction or user
misconception) by providing a high degree of redundant information. This
was illustrated in the previous section, where the transfer of an aircraft
from one sector to another is accompanied by a message exchange between
the systems in the two sectors, a display of the incoming aircraft position
on the receiving controller's console and the opening of a communication
channel between the aircraft and the ATCo. Various controllers should thus
each be able to distinguish between a single device/subsystem failure and
a genuine 'problem event' and not be confused by thinking that the system
was failing to be 'honest', i.e. failing to make the relevant information
available.

Pace tolerance

The definition of a pace tolerant system is a system where the user may con
trol the pace of interaction. Since the Air Traflic Control Support System
has to operate in real time, it is not pace tolerant in the way a text editor or
some computer games could be. A text editor is generally purely reactive,

Ezternal properties 199

and users chose their own pace for typing. Computeractiongames involve
real time, but most of them provide a 'pause' or a 'slow speed' function in
order to provide a form of pace tolerance. But an Air Traffic Control system
cannot offer such a facility. However, pace tolerance can be introduced in
secondary functions. For instance, the system allows the ATCo to tailor the
length of time-outs such as the one given in the insistence example above
(the missing aircraft), but only within pre-specified limits in order not to
compromise safety.

Pace tolerance must take precedence over 'temporal' honesty, for exam
ple, in busy periods where an ATCo receives many data and voice messages
from other controllers and pilots. If the system is to be 'honest' about time,
it must present messages immediately as they arrive. Honesty here must
be relaxed by preserving the sequence in which they occur 'in reality'.

Predictability

In a predictable system, users can know its behavior from their knowledge of
past interactions and current state. As in most other systems, predictability
is, like honesty, a major requirement for the ATC Support System. The
system must provide the information that is requested when it is needed and
it must carry out requested operations reliably and within an expected time
period. For instance, when sending a message to a flight crew, the controller
will want that message to be delivered within a well-known amount of time.
Or, when filtering useless information away from the controller, the system
should make similar decisions for similar situations. Also, as for honesty, the
provision of redundancy helps the controller detect potential malfunctions
and distinguish these from a simple lack of predictability.

Deviation tolerance

A system is cal.led deviation tolerant if it supports the correction of slips
and mistakes. This implies that the system is able to detect 'unwanted'
events, such events being sometimes that the user failed to act. This also
implies that the system is able to take some appropriate action. This could
be to 'take control' (as a kind of forced migration of control), or it may
involve presenting warning information to the user that deviated or to other
users.

Being a safety-critical system, the support system cannot offer much
deviation tolerance for the contents of actions related to real time activities.
Deviation tolerance, however, should at least be affered for the structure
and the sequencing of actions.

For example, the ATCo fails to respond to a routine notification of the
arrival of an aircraft, which is on time and for which there is no anticipated
problem; since the ATCo could have suppressed the notification anyway,
there is no sense in insisting on a response or of immediately notifying

200 Ezample: Interface for Air Traffic Controller&

anyone eise. However, the failure to respond is an indication of a potential
problem, which should be logged and should 'sensitize' the system to Iook
for the possibility that the ATCo is 'malfunctioning' (e.g. the ATC system
might reduce tolerance Iimits on other expected actions by that ATCo -
if a record is kept of the 'normal' time, and the variance on that time,
taken by that individual controller to respond to each sort of notification
then the tolerance Iimits might normally be at a 95% Ievel, the maximum
time needed to contain 95% of actual responses by that ATCo, but after
one failure to respond within the required period, the tolerance might be
reduced to a 75% Ievel until there have been, say, three successful responses;
a second 'slow' response might cause the tolerance to be reduced to the
50% Ievel and a third failure sets alarm bells ringing, literally, asking the
supervisor to go and investigate).

6.1,.3 Interaction Fle:z:ibility

Device multiplicity

Data is provided to an ATC Support System from many devices and sev
eral devices are used to interact with the controllers. ATCos are provided
with displays for graphical radar output (or synthesized aircraft position
displays), secondary displays for routine information, telephone and radio
for communications input and output, sound output for audible warnings,
pointing devices for direct manipulation input of commands, and even key
boards if really necessary.

Multi-device capability means that the controller is affered a choice be
tween several modalities of renderings in a number of cases. The key to
success that has been noted earlier is that redundancy is essential if poten
tial error situations are to be detected and prevented from becoming actual
errors. Multi-device capability is needed to provide the communications re
dundancy: it is no use having many different possible ways of detecting
errors internally, if at the end all messages from the system are displayed
on a single screen, and there is no other method of getting a message to the
ATCo. Conversely, however many facilities a system could offer a user, if
all of them must be chosen using a single input device (be it a mouse or a
touch screen or a keyboard) then the system is useless if that input device
is broken.

Therefore, multi-device capability in the ATC is needed for safety rea
sons, not only for operators' convenience. The design must include multi
device capability to ensure that the ATCo can do the job even in the
presence of some (hardware) faults.

Ezternal properties 201

Representation multiplicity

The discussion in the previous subsection indicates that a 'safe' system
(one that is fault tolerant in that it is not dependent on a single output
device to present its results) must exhibit multi-channel capability. Also,
representation multiplicity adds to the safety, but may make the system
more convenient to the user. In a number of cases, the ATCo should be
allowed a choice between graphical, tabulated or audible presentation of
output.

Consider the following scenario. The controller will need to have infor
mation about aircrafts' current positions presented geographically on the
display, so as to reason geometrically about the situation. On this radar
screen there is not enough room for detailed information about aircrafts,
such as the time at which they are expected at a certain waypoint. The
ATCo probably also wants that kind of data, and this is why another repre
sentation of aircrafts is provided at the same time: card flight strips (current
systems) or electronic flight strips (systems now being designed) hold that
information in a tabular form.

If both device and representation multiplicity are present, all the infor
mation about an object does not need to be presented in one way on one
device. For instance, the event of an aircraft entering a sector can be rep
resented as a change of color of its representation ofthat aircraft, and can
also be represented as a brief sound. The use of multiple devices for mul
tiple representations can thus take advantage of the different qualities of
different devices.

Human role multiplicity

The ATC Support System must support many different controllers, supervi
sors, etc. Even a single controller, however, may take several differing roles
over a period of time (e.g. establishing communication with an aircraft,
performing a 'what-if' simulation, passing information to another ATCo).
Indeed, as far as the ATC system is concerned, the ATCo may be perform
ing several roles at the same time if the system supports multithreading,
since this permits several roles to logically coexist even though the ATCo
can only actually be interacting with one of them at a particular instant.

As has been discussed in the earlier subsections on observability and
access control the role which the system ascribes to a particular interaction
thread with the ATCo will control what information is made observable and
what information can be retrieved (by searching or browsing). It may also
change the functionality, which is provided by the system to the ATCo.

On occasions, a particular ATCo will have to perform roles outside his
or her normal duties. There is thus a close relationship between this form
of human role multiplicity and customizability. On the other hand, where
different humans are performing similar but not identical roles, effective

202 Ezample: Interface for Air Tra.ffic Controller!

support for human role multiplicity might best be achieved by providing
adequate reconfigurability.

Output or input re-use

The second purpose of an ATC Support System, after security, is to enable
controllers to manage air traffic efficiently. Therefore, every service offered
by the system to save time is very useful. I/0 re-use is such a service.
Earlier input can be re-used, because an earlier situation reappears, or
some output should be forwarded to another Controller or to a pilot. Two
examples follow.

When an airplane moves from A's sector to B's sector, the relevant flight
information is presented to controller B. Later, when the airplane moves
on to C's sector, B wants to re-use the flight informationtosend it to C.

When analarm occurs on the display, the ATCo shall re-use the output
as input to send it to all other relevant ATCos and pilots.

Multithreading

Multithreading means that the user can execute several tasks at a time.
Air traffic control is a very demanding activity in terms of multithreading.
Every controller receives input from a variety of sources including radar
systems while communicating with other controllers and pilots. A controller
may be simultaneously working on one or more information searches and
what-if simulations, as well as making amendments to existing plans and
filing revised flight plans.

For instance, suppose that an ATCo is using the radar display to build
a new set of routes for conflicting airplanes. If a pilot calls during that
activity, what the controller wants to do is start a new thread of actions
in order to store the information given by the pilot, identify the possible
new problems it causes, and begin to deal with it. Depending on whether
the system provides multithreading or not, the ATCo will be able to start
that new thread without losing his previous unfinished work, or will have
to choose between losing it or deferring the handling of the call to a later
time.

The ability of a system to support browsing or searching for relevant
information, referred to earlier in the discussion on observability, could
provide another example of multithreading. If the user must explicitly stop
the current task and switch to an information-seeking task which must be
completed, or abandoned, before the original task can be resumed, then the
system is providing only a single thread. If, on the other hand, a user can
initiate a search or browse through the information space while retaining
the ability to continue with the 'current' task, then multithreading is being
provided.

Providing multithreading would also facilitate achieving the next goal,

E:z:terna.l properfies 203

non-preemptiveness. If multithreading is available then, in any situation
where the system requests a response, the user can be allowed to simulta
neously choose one or more of the following:

• reply as requested;

• request further information to assist in choosing the response;

• start a different 'conversation', e.g. a replanning simulation exercise (a
'what if').

For example, an ATCo could start a replanning simulation exercise, then
look for more information, and finally provide the response as requested.

Non- Preemptiveness

Complete non-premptiveness means that the system must tolerate any per
missible event occurring at any time, whether that event be due to user
action, communication from another system or communication from an
other component of the same system (e.g. the radar). Since there are many
users and many subsystems, who all perceive themselves as operating inde
pendently, it is obvious that an action by one user cannot be synchronized
with actions of other users. Furthermore, if the ATCo is to be allowed to
ask for further information at any point (see the paragraph on 'honesty',
above) and to carry out 'what-if' simulations, then it is necessarily the case
that no interaction between one ATCo and the system can be permitted
to be pre-emptive.

Reachability

Reachability means that any perceivable state of the system can be attained
from any other perceivable state. This property cannot be met in its pure
form in air traffi.c control systems, because ATC is a real time task that
models the real world, and some events are irreversible in the real world.
This should be reflected in 'future reachability' states in the system. Thus,
if an aircraft Iands, it is not sensible to want to reach states which represent
it as still being in the air when considering 'what-if' seenarios related to the
immediate future. However, if the aircraft Iands badly, it may be important
to consider what went wrong during the descent. In this case it is essential
to be able to reach the historical record of the actual states of the system
during the descent (this will allow the performance of the system and of
the controllertobe reviewed as weilasthat of the pilot).

Reachability should be provided as often as possible, especially in non
real time interactions. As noted above, reachability is given essential sup
port by 'history', even where things have not gone wrong. For instance, if
the ATCo has discarded a flight strip, and another ATCo asks questions
about that flight, the ATCo will want to retrieve the flight strip. In cur-

204 E;ample: Interface for Air Traffic Controllers

rent systems (with card strips), this is done by searching the waste paper
basket.

'Full' reachability would let the user move from any perceivable state to
any other state, and this should not be possible in the ATC Support System
for safety reasons. Firstly, only states corresponding to the real world should
be reachable. Secondly, system states representing 'dangerous situations' or
conflicts must not be reachable (or only when special conditions are met),
e.g. a warning should be issued if the controller attempts to simulate a flight
replanning in which two aircrafts are flying with too small a separation.

Reconfigurability

Reconfigurability means that the ATCo may change representations and
operations. The ATC Support System will be used by many different per
sons and under many different circumstances. Therefore it should allow for
a certain degree of reconfigurability, and a number of examples of this are
given above (changing time-out times, altering limits, changing defaults
etc.). Each user must be allowed to customize the ATC Support System
for their own use on a short term basis (e.g. for this session) or on a longer
term.

Another type of reconfigurability is necessary when changing over, es
pecially in evenings. A control sector is usually attended by two or three
controllers, but at night a controller alone is enough: there are few enough
aircraft that flight managing and coordination can be performed by a single
person. This means that displays and input devices have tobe reconfigured
so as to allow one person to do the work of two. For instance an ATCo will
not want to switch from one mouse to another every time he or she has
to interact through a console that is usually used by another ATCo. The
mouse on this console would then need to be reconfigured from 'one display
only' operation to 'all displays' operation.

Adaptivity

Adaptivity means that the system changes representation and accessible
operations as a result of surveying the situation and the ATCo's interaction
pattern. For instance, the system may be able to know that some group of
aircrafts poses more problems than other aircrafts in the sector, because
the ATCo keeps interacting with their representation. The support system
could then provide a more visible representation for these aircrafts, e.g. by
using a brighter color.

This kind of adaptation very easily conflicts with both honesty and pre
dictability, because it changes the behavior of the system. During the op
eration of a safety-critical system like the ATC, adaptation must be done
with extreme care and - when used - with full explanation to the ATCo.

Applying the PAC-Amodeua Model 205

Migratability

The ATC possesses migratability if the ATCo can ask the system to auto
matically start some tasks usually initiated by the ATCo and, vice versa,
if the ATCo can 'take control' over some tasks, which the system used to
perform automatically.

The system will have a number of default actions which under normal
conditions are sensible and safe actions. But under extreme conditions
(heavy load or dangerous situations) the ATCo must be able to 'take con
trol' and possibly change the default action to something else.

For instance, algorithms are being developed to automatically resolve
conflicts between aircraft flight paths. These algorithms are still limited,
but can be useful to alleviate the ATCo's load. Then the question is how to
split the task between the ATCo and the computer. Migratability is impor
tant here. For example, a solution would consist in the system deciding that
the ATCo isoverloaded (adaptation) and proposing to take over. Then, if
the ATCo accepts, he or she will want to be able to take over again, either
by telling the system to stop solving that problern or by imposing his or
her choices over the system's.

6.5 Applying the PAC-Amodeus Model

This section presents a software architecture for the Air Traffic Control
Support System. Consider the external specifications that have been used
for designing the software architecture. The system supports two work
stations per sector. Figure 6.1 schematically presents the user interfaces
of the displays of the two workstations. The monitoring tasks supported
by each workstation are complementary and performed by two air traffic
controllers.

On the first workstation the radar display is not editable. The controller
can modify information about an aircraft by using the tool palette, located
on the left of the radar screen.

On the second Workstation, the controller can modify the flight path of
an aircraft on the radar display by direct manipulation. Furthermore the
controller can obtain information about an aircraft by selecting it. Con
sequently visual consistency (see representation multiplicity property de
scribed in Section 2.3.2) ofthe two workstation displays must be maintained
(except when one of the controllers is doing some replanning simulation).

Figure 6.2 shows one possible PAC-Amodeus software architecture for
implementing the proposed Air Traffic Control system. Figure 6.3 presents
the software agents' hierarchy organizing the Dialog Controller.

Palette of Tools
lnformation about planes

CJ
CJ
CJ
CJ

Display Zone

Workstation 1

Editable Zone
Vireet manipu/ation

Workstation 2

Figure 6.1 E:z:ternal 6pecification of the two work6tation6 belanging to one 6ector.
Each di6play 6how6 a radar picture.

Functional Core

Databases:

Network

Functional Core
Adapter

For one sector:
• Flight Routes
• Plane Information

Figure 6.2 Software component6 implementing the Air Traffic Control Support
Sy6tem (applying the PAC-Amodeu6 model).

Applying the PAC-Amodeua Model 207

At the right-hand side of Figure 6.2, the Low-level Interaction Compo
nent {LLIC) denotes the underlying software and hardware platforms. It
receives mouse and keyboard events from the user. It also manages the
presentation and contains functions to display the radar picture inside a
window. The Presentation Techniques Component {PTC) bridges the gap
between the Dialog Controller and the LLIC. Neither Dialog Controller
{DC) depends on the functions displaying the radar screen, for example.

At the left-hand side of the picture, the Functional Core {FC) maintains
and manages the database. The database contains information about:

• sectorization

• flight paths

• aircraft information.

The database is linked to the workstations (two per sector) through the
network. To enhance the run time efficiency on each workstation, the infor
mation about aircrafts and routes of one sector is duplicated and stored in
the Functional Core Adapter {FCA). This option guarantees the stability
of the response time because no request is sent through the network. On the
other hand this option will increase the number of messages through the
network to update the duplicated databases. Moreover the FCA provides
for communication between its two adjacent components (i.e. FC and DC)
by implementing a communication protocol. It is therefore possible to re
ceive information through the network and to handle user events. This will
be managed within the DC, which will be passed network information by
the FCA, and receive events from the presentation techniques components.

The hierarchy of PAC agents organizing the DC is presented in Fig
ure 6.3. A PAC agent is composed of three parts (see Chapter 4):

• the abstraction facet

• the control facet

• the presentation facet.

The Dialog Controller {DC) is comprised of PAC agents. There is one
DC and thus one hierarchy of PAC agents on each workstation. Figure 6.3
shows the two hierarchies. A dedicated agent within the FCA maintains
the visual consistency of the two Workstation displays, and is thus linked
to the two PAC agent hierarchies.

• The root agents 'Rootl' and 'Root2' areincharge of the global control
of the interaction with the users. The Presentation facet of each root
manages high-levellayout and displays ornaments such as frames and
separators. The abstraction of each root facet receives information about
the flights it should display.

• The Radar agents synthesize the radar pictures. The abstraction parts
receive the flight information from the root agent. On workstation 1,

208 Edmple: Interface for Air Traffic Controllera

Dialog Controller 1

Functional Core Adapter

Figure 6.3 PAC agents organizing the two Dialog Controller components.

the Radar 1 agent only displays the information. On workstation 2, the
Radar 2 agent is more complex and handles the interaction with the user
within its zone on screen.

• The 'Palette' agent corresponds to the palette of tools depicted in Fig
ure 6.1.

CHAPTER 7

Conclusions

7.1 Predictable Quality?

The work on this book began with the ambitious aim of forging links be
tween the external and internal aspects of software quality for interactive
systems. To address this aim, the Working Group 2.7(13.4) adopted the
strategy of associating quality factors with software phenomena. As long
as the associations are valid and significant, quality can be addressed via
the development process and the tools and materials that support it, rather
than by well-intentioned but precarious efforts of highly skilled individuals
who invariably lose contact at some point in its life cycle.

The strategy of associating quality factors with software phenomena can
be summarized as follows.

• Quality factors have been expressed as external and internal properties.

• Software phenomena have been addressed as the use of methods, ar
chitectures, tools and materials within a structured and well managed
development process.

• Properties have been associated with selected software phenomena (ar
chitectures, tools and materials) by demonstrating interactions between
the two.

In the process, it has been shown that quality can be addressed, andin parts
proven or delivered, by the judicious use of software architectures, tools and
materials. The goal of this book, which is to describe relationships between
the process of software construction and system quality from the users'
perspective, has therefore been met. Wehave been able to achieve this in
breadth, with some supporting detailed analyses.

The main contribution of the book is to establish a conceptual framework
that supports and guides analysis of interactions between software proper
ties and software phenomena. This framework has been exercised in three
important ways: by applying it to the currently critical area of software
architecture; by applying it to a wide range of tools and materials, with
three in-depth analyses of commercial tools, and some broader site reports;
by applying it to a demanding application area that is safety-critical, in
volves multiple cooperating users and has real time requirements. Taken
together, this is a comprehensive initial validation of the conceptual frame
work. The framework has been shown to be applicable to key aspects of

210

software development and demanding facets of application design. Working
Group 2. 7 believes that more extensive in-depth analysis can be performed
within the framework developed above.

The framework has strong predictive potential for analysis of systems,
architectures, tools and components. This potential was demonstrated by
the consistently broad range of insights that were yielded by the analysis of
existing architectures and tools. The next key step is to go beyond potential
to proven effectiveness. To do this, it is necessary to complete the scientific
process as follows.
• All identified interactions between software properties and phenomena

must be validated by showing that the interaction holds in a represen
tative range of practical scenarios.

• The significance of all identified interactions must be assessed, i.e., what
should the real rewards (or costs) of each interaction be?

• All proposed rewards (or costs) must be validated by showing that they
arise in a range of practical scenarios.
Working Group 2.7's work has reached the point where it is possible

to address the more practical question of significance. Granted that these
interactions exist, then what are the implications? Are they imperceptible
in practice, or a mild nuisance, a moderate concern, a major impedance or
facilitator - or an absolute make or break? They are all of these, some of
the time.

Once the significance of each interaction has been understood, it is pos
sible to set out to test the validity of the proposed implication: does the
interaction really have the identified implication? There will be some very
difficult experiments to design once credible hypotheses can be made about
the significance of interactions.

When the scientific process yields results, these must be finally exploited
by an engineering step:

• Effective methods and tools must be developed that deliver the rewards
of positive interactions and avoid the cost of negative interactions.

This is the hardest step of all. Even when there is scientific validation of the
practical significance of interactions between properties and software phe
nomena such development is far from easy. It expresses in fact the long term
goal of the work of Working Group 2. 7, that is, to let quality be addressed
via the development process and the tools and materials that support it,
instead of via well-intentioned but precarious efforts of highly skilled indi
viduals. The process and practice of developing interactive systems needs
to change so that high quality systems could reliably be developed from
the perspectives of both endusers and developers.

Figure 7.1 summarizes the process of analysis, validation and exploita
tion. There are six steps in this process (where the first step comprises two
parallel substeps).

Gontributions

ldentily lnteractions

be~~=g1:doS:C::r:nd
Phenomena (Archltectures,

Tools, and Materials)

Validale ldentified
Intersetions

Assass Practk:al
Significance of Interaction

(Rewards and Costs)

Deliver Validated Rewards
at Acceptable Costs

by Developing Effective
Methods and Tools

211

Figure 7.1 Strategy for Effective Development of High Quality Interactive
Systems.

7.2 Contributions

We feel that we have made good progress on the first steps towards our
vision of predictably effective software development for inte!"active systems.
This claim may be justified on the basis of a thought experiment that
considers how well the group has done on each of the (sub)steps from
identification of properties/phenomena to the near-inevitable attainment
of quality.

The (sub)steps on the route were shown in Figure 7.1. In summary, they
are:

• identification of external and internal properties (substep);

• identification of relevant software phenomena (substep);

• identification of interactions between properties and phenomena;

• validation of interactions between properties and phenomena;

• determination of practical significance of interactions between properties
and phenomena;

212 Conclusions

• validation of the significance of interactions between properties and phe
nomena;

• effective exploitation of significant interactions between properties and
phenomena.

For each step, we could ask how well we have clone in the work reported
above. We could then ask what the probable attainment for the step would
be if the best work in the world could be synthesized and condensed into a
single (though very lengthy!) report. Lastly, we could ask what our likely
acceleration for the step would be if Warking Group 2. 7 spent another
year on this report (with assistance from any expert we cared to name).
Wehave clone this for each (sub)step, but prefer to leave readers to form
their own judgements. However, we will conclude by summarizing the more
significant answers to some questions for each (sub)step.

7.2.1 Identification of external and internal properties

The work described in this step is an answer to the question: 'Which prop
erties encapsulate desirable properties of an interactive system's external
behavior or internal structure?' Chapters 2 and 3 presented the answer.

Our set of properties is the first to span a range of both external and
internal aspects of quality. In the process, we may have gone slightly be
yond the best synthesis that would otherwise be available, see, e.g., Nielsen
(1994) and Gram (1995). Still, we have omitted several key external and
internal properties, and given this knowledge, we could address these de
ficiencies (e.g., we have omitted 'learnability' and 'guessability' (Jordan et
al., 1991) as external properties).

7.2.2 Identification of relevant software phenomena

The work clone in this area is an answer to the question: 'What are the key
methods, techniques, tools, structures and components for software devel
opment?' Chapter 3 started to give the answer, which was then extended
in Chapters 4 and 5.

The discussions in these chapters cover several aspects of methods, tech
niques and tools, but there are many software phenomena that are not
covered well (e.g., development methodology and process), and thus more
could have clone here. However, the field of software engineering is well
documented, and thus with more work we could catch up with the current
state-of-the-art.

7.2.3 Identification of interactions between properties and phenomena

This gives an answer to the question: 'What are the positive, neutral, and
negative interactions between software quality and software phenomena,

Contribution5 213

and what must developers do to exploit positive interactions?' Chapters
4 and 5 presented answers for selected software phenomena (architectural
models, tools and materials for specification and construction), but repre
sent only a first attempt to explore and describe systematically interactions
between quality and software phenomena. We feel that it is a worthwhile
although limited contribution for this step. Extending the analysis of in
teractions seems to be straightforward, so that the coverage of interactions
in Chapters 3 to 6 should be readily extendible.

7.!L/. Validation of interactions

This area of work attempts to answer the question: 'Do the identified pos
itive, neutral and negative interactions between software quality and soft
ware phenomena arise, as predicted, for real tools, at real development
sites, and for real application developments?'

Chapters 4 to 6 present our partial answer. Some selected interactions
were discussed on a few focused examples. But much more supporting evi
dence could be gathered from the wide-ranging experience of other software
developers.

7.2.5 Significance of interactions

A thorough analysis of the significance of the interactions would answer
the question: 'What is the likely effect, in terms of development costs and
benefits, as well as gains for users, of the identified positive interactions
between software quality and software phenomena?'

We have not addressed this question systematically, although there are
comments relevant to this question at several points in Chapters 4 to 6.
But even the very piecemeal analysis here constitutes an improvement on
the current state-of-the-art, because very little work of this nature has been
reported so far.

7.2.6 Validation of significance of interactions between properties and
phenomena

To validate the significance of interactions means to answer the question:
'What is the real effect, for real application developments, in terms of actual
development costs and benefits, as well as measured gains for users, of
the identified positive interactions between software quality and software
phenomena?'

No such validation has been undertaken, because it requires substantial
work and experimentation. But it is hoped that the framework presented
in the book may be followed up by research groups that use it as a basis
for carrying out individual experiments and studies.

214 Conclusions

7.2. 7 Effective e:cploitation of significant interactions between properties
and phenomena

Work here would answer the question: 'Where are the methodologies and
supporting tools that will deliver systems with a required property profile?'
Tothebest of our knowledge, such methods and tools do not exist and will
not exist for the foreseeable future.

The lack of a good science base for designing CASE tools means that
while there are many tools which are effective for many aspects of many
development tasks, and which support some external properties for users,
progress on this step is piecemeal and unpredictable. As a result, tools and
methods can often be developed that improve some aspects of internal and
external quality, but make others worse. With a better understanding ofkey
properties and their interactions with architectures, tools and materials,
such undesirable setbacks should not arise.

7.3 Epilog

The work reported here has largely been one of conceptual ploughing. The
field formed by the intersection of Human-Computer Interaction and Soft
ware Engineering has turned out to be very !arge, and Working Group 2. 7
has not been able to plough all of it as evenly or as deeply as we had orig
inally hoped. However, a wide range of individual experiences and those
reported by colleagues in their publications have combined to reinforce our
view that we have been ploughing in the right direction. Our hope is that
the field has been ploughed enough for many seeds to take root and flourish.

APPENDIX A

Glossary

This glossary comprises a full lot of the terms used in the book in alpha
betical order, with explanations or definitions in each case. The numbers
in brackets [..] indicate in which section each term is defined.

Access Control: information access can be controled, depending on the
role of the user. [2.4]

Adaptivity: the system can initiate customization of the interaction. [2.3]

Architectural model: Abstract model of an interactive system. [3.3]

Arch/Slinky: architectural metamodel for interactive systems. [4.2]

Articulation: a sequence of user actions to communicate a command.
[1.2]

Binding Services: tools to construct the interactive system from mod
ules. [1.5]

Client: person assessing the scope of a project. [1.4]

Coded module: the software piece which tagether with other modules
implements the interactive system. [5.1]

Coding/Module Construction: implementation arid debugging ofmod
ules. [1.3]

Cognitive walkthrough: inspection of a design by specialists looking for
learning problems. (3.3]

Command: a single user action at the functional level. [1.2]

Construction tool: tool used to transform requirements and specifica
tions into coded modules. [5.1]

Development Efficiency: a measure for how efficient resources are used
during design and construction. [3.2]

Deviation Tolerance: the system supports correction of slips and errors.
[2.4]

Device Multiplicity: the system offers several communication channels
for input and output. [2.3]

Dialog (D): the software component controling task sequencing and con
text management. [4.2]

Dialog Ievel: design level describing temporal aspects and interdependen
cies in the dialog. [1.2]

216 Glossa.ry

Evaluability: a measure for how easy it is to evaluate the system. [3.2]

Evaluation report: report containing an evaluation of a working system.
[5.1]

Evaluation tool: tool used to generate an evaluation. [5.1]

Execution tool: tool used to bind, interpret, and execute coded modules.
[5.1]

Experimental design: a design method requiring a running prototype
to be evaluated. [3.3]

External quality: set of user-perceivable properties ofthe interface. [1.1]

FCDE, Functional Core Development Environment: component sup-
porting the development and testing of the functional core. [1.5]

FCDE Services: construction and testing tools in the FCDE. [1.5]

Flexibility: the system allows for users' choice during task execution. [2.2]

Functional Completeness: all specified tasks are supported by abstract
commands and functional state elements, such that the user can solve
all specified tasks correctly. [3.2]

Functional core (FC): the set of functions performing the application
oriented data processing. [4.2]

Functional Core Adapter (FCA): the software component mediating
between FC and D. [4.2]

Functionallevel: design level describing operations and objects in a sys
tem. [1.2]

Functional partitioning: a grouping of the operations for an application
domain. [4.2]

Global SW re-use: re-use offunctional components/modules from other
systems. [3.3]

Goal: a desired state of the world. [1.2]

Goal Completeness: all goals can be reached. [2.2]

Goal Ievel: the highest level describing real world goals. [1.2]

Goal state: a system state matehing the user's goal, which the user tries
to achieve (only indirectly defined). [1.2]

GOMS method: a design method using a cognitive system model of
goals, operators, methods and selection rules. [3.3]

Honesty: representations of system state elements are designed to be cor
rectly interpreted. [2.4]

Human role multiplicity: the system supports the tasks of multiple hu
man roles simultaneously. [2.3]

1/0 resource management tools: A program allowing several dient pro
grams to share one resource. [3.3]

Gloua.ry 217

1/0 Re-use: the system allows usage of previous I/0 as future I/0. [2.3]

lAS, lnteractive system: A computer system that interacts with one or
morehuman users. [Preface]

lmplementer: person deciding on over-all implementation, managing and
coordinating implementation through the sub-roles: User Interface Im
plementer and Functional Core Implementer. [1.4]

Insistence: system state element representations are preserved until user
acknowledgement. [2.4]

Integration Test: integration of modules into a final system and testing
of the system. [1.3]

Interaction: influence of tools and materials on properties and the ease
of obtaining specific properties. [5.2]

Interaction point: an observable hiatus in an interaction trace. [1.2]

Interaction trace: a sequence of concrete steps bringing the system into
the goal state. [1.2]

Inter-application communication standards: Rules that allow ahar
ing of control and data between applications. [3.3]

Internal quality: set of software properties of the interface. [1.1]

ISDE, Interactive Software Development Environment: a general
and comprehensive environment for the total development. [1.5]

ISDE services: a collection of tools supporting development and testing
at a high level. [1.5]

Iterative design: a design method where each development version is
evaluated by users. [3.3]

Logical Interaction (LI): the software component mediating between D
and PI. [4.2]

Logical interaction level: design level describing the dialog in presenta
tion entities. [1.2]

Maintainability: a measure for how easy it is to manage and maintain
the finished system. [3.2]

Materials: Allkinds of documents and code produced for a specific project.
[5.1]

Migratability: the initiative for abstract command execution can be trans
ferred between user and system. [2.3]

Modifiability: a measure for how easy it is to modify a system, i.e. change
its functionality. [3.2]

Module design: refinement of the system model into software modules.
[1.3]

Module test: testing that modules meet specifications. [1.3]

218 Glossary

Multi-threading: the user can engage m several tasks simultaneously.
[2.3]

Non-preemptiveness: the user has a choice of the next interaction step
within current task execution. [2.3]

Observability: all relevant system state elements are perceivable by the
users. [2.4]

Observable state: the observable part of the system state. [1.2]

Pace Tolerance: the user may control the pace of interaction. [2.4)

Physical Interaction (PI): the software component implementing the
physical interaction between user and system. [4.2]

Physical interaction level: the lowest design level describing all the phys
ical dialog events in detail. [1.2)

Portability: a measure for how easy it is to change hardware or software
environment of the system. [3.2]

Predictability: the user can predict future states and response times from
the current perceivable state. [2.4)

Predictive design: a design method where early versions of the design
are inspected by specialists. [3.3]

Problem analysis: identification of the problern to be solved. [1.3]

Project manager: person providing resources for the project. [1.4)

Property addressing: developer effort (requiring human factor skills) to
construct a system such that it possesses the property. [5.2]

Property assessment: work carried out by a system developer to assess
that a system has the property. [4.1]

Property assistance: an architecture assists a property, if the developer
with some effort can build a system having the property. [4.1]

Property proof: developer effort (requiring skills in formalizing proper
ties) to verify that a system possesses the property. [5.2)

Property provision (or property delivery): an architecture provides a
property, if the system built in that architecture possesses the property
without further developer effort. [4.1)

Quality assurance: method or procedure for testing quality of interactive
systems. [3.3]

Reachability: users can reach any state from any other state.

Reconfigurability: the user can initiate customization of the interaction.
[2.3]

Rendering: a sequence of system actions to present an observable state.
[1.2)

Gloua.ry 219

Representation Multiplicity: the system offers alternative representa
tions of I/0 objects. [2.3]

Requirements (materials): documents specifying the requirements of
an interactive system. [5.1]

Requirements specialist: person performing needs and task analysis and
transforming the users' conceptual models into system requirements.
[1.4]

Requirements specification: capture of constraints and requirements
for the intended system. [1.3]

Requirement tool: tool that may assist in capturing requirements. [1.5]

Robustness: the system facilitates users' actions and helps the user out
of mistakes. [2.2]

Run time Efli.ciency: a measure for how efficient the system uses the
computer resources. [3.2]

Seeheim: architectural metamodel for interactive systems. [4.4]

Software design/Global SW design: transformation of a system model
into a global software structure. [1.3]

Specification language: formallanguage for specifying interfaces. [3.3]

Specifications and design (materials): documents with a detailed spec
ification of an IAS. [5.1]

Specification tool: tool used to transform requirements into specifica
tions. [5.1]

System acceptance: monitoring and helping the users to use the system.
[1.3]

System administrator: person responsible for keeping the system run
ning and providing maintenance. [1.4]

System design: transformation of requirements into a solution expressed
as a system model. [1.3]

System designer: person making the initial system level design and co
ordinating the sub-roles: User Interface Designer and Functional Core
Designer. [1.4]

System state: the internal state of a computer system. [1.2]

System test: checking that the system meets the external specifications.
[1.3]

Target environment: the HW /SW platform on which the interactive
system is finally installed. [3.3]

Task: a concrete activity that can lead to a goal state. [1.2]

Task Completeness: all goals identified in specified seenarios are attain
able with known task methods. [2.2]

220 Glossary

Task level: design level describing tasks by means of which one can achieve
the goals (only indirectly defined). [1.2]

Task support: any feature or action by a person that supports task exe
cution. [1.2]

Tools: Artefacts used by developers to produce materials. [5.1]

UIDE, User Interface Development Environment: component sup-
porting the development and testing of the user interface part. [1.5]

UIDE Services: construction and testing tools in the UIDE. [1.5]

UIMS: user interface management system. [1.5]

UIS, User Interface System: that part of an interactive system that
manages the dialog and performs the dialog functions. [1.5]

User: end-user of the final system. [1.4]

User interface integratability: a measure for how easy it is to integrate
the system with other application systems. [3.2]

User interface standard: a rule - more or less widely accepted and for
malized - that encapsulates good engineering practice. [3.3]

User representative: a person with domain knowledge participating in
design and usability testing. [1.4]

V-model: a phase model for software development. [1.3]

V-model with backtracking: an iterative V-model with recovery steps.
[1.3]

Validator: person responsible for the quality plan and its implementation.
May be split into the sub-roles: Quality Specialist who plans and man
ages the testing; Usability Specialist who plans and conducts usability
evaluation and user testing; Software Validator who plans and manages
testing of interface software. [1.4]

Working system: the set of coded modules when linked together into a
running lAS. [5.1]

APPENDIX B

Summary Tables

Table 2.1 Summary of Flexibility Properties.

Flexibility
Property

Representation:

Description

Device More than one way to
multiplicity do something

Representation
multiplicity

Input/Output
re-use

Planning:
Human role
multiplicity

Multi threading

Non
preemptiveness

Reachability

Adaptivity:
Reconfigur
ability

Adaptivity

Migratability

More than one way to
present something

History repeating itself

Several people doing sev
eral things

One person doing several
things

Doing what you want
when you want

Getting anywhere from
anywhere else

The user changing the
interaction

The system changing
the interaction

Transferring control

Related properties

Multi-media capability

I/0 multiplicity, equal
opportunity,
multi-modality

Use of defaults

Access control

Concurrency, interleaving

User-driven dialog,
mixed-initiative dialog

Commensurate effort

Programmability of the
interface

Automatie macro con
struction

222 Summary Tables

Table 2.2 Summary of Robv.stness Properties.

Robustness User Description Related properties
Property dep.

Observa- +
bility

The user may lmmediacy, browsability,
perce1ve feedback, feedthrough

Insistence + The user will perceive Salience, timeliness, persis
tence, awareness

Honesty

Predicta
bility

Access
control

Pace
tolerance

Deviation
tolerance

++ The user correctly
comprehends

+ Understarrding how
the system will react

Role-sensitive restric
tion of information
availability

Response times
match user's
expectations
User's recovery inten
tions are supported

Affordance, familiarity, sug
gestiveness, guessability

Observability,
consistency, affordance, re
sponse time stability

Human role multiplicity,
feedthrough, awareness, vis
ibility, privacy

Timeliness, adaptivity, mig
ratability

Forward/backward recover
ability, commensurate effort,
pre-emptiveness

T
ab

le
 3

.1
 R

el
at

io
ns

hi
ps

 b
et

w
ee

n
In

te
rn

al
 P

ro
pe

rt
ie

s
a

n
d

 S
of

tw
ar

e
T

ec
hn

iq
ue

s.

T
h

e
U

se
 o

f
S

of
tw

ar
e

T
ec

hn
iq

ue
s

In
te

rn
a!

 P
ro

p
er

ty

D
es

ig
n

A
rc

hi
te

ct
.

S
W

Q

A

S
pe

ci
f.

I/

0
 R

es
.

T
ar

g
et

ur

C

om
m

.
m

et
ho

ds
 m

od
el

s
R

e-
us

e
P

la
n

n
.

L
an

g.

M
an

ag
.

E
nv

ir
.

S
ta

n
d

.
S

ta
nd

.

I1
 M

od
if

ia
bi

li
ty

++

+

+

+

!2

 P
or

ta
bi

li
ty

+

+

+

+

!3
 E

va
lu

ab
il

it
y

+

+
+

+

!4

 M
ai

nt
ai

na
bi

li
ty

+

+

+

+

+

+

!5
 R

u
n

 t
im

e
E

ff
i.c

ie
nc

y
+

+

+

+

!6
 U

I
In

te
gr

at
ab

il
it

y
+

+

+

+

+

+
+

!7

 F
ct

.
C

om
pl

et
en

es
s

+
I-

+

+

+

+

+

!8
 D

ev
.

E
ff

i.c
ie

nc
y

+

+

-
+

+

T
ab

le
 3

.2
 R

el
at

io
ns

hi
ps

 b
et

w
ee

n
F

le
xi

bi
li

ty
 P

ro
pe

rt
ie

s
a

n
d

 S
of

tw
ar

e
T

ec
hn

iq
ue

s.

T
h

e
U

se
 o

f
S

of
tw

ar
e

T
ec

hn
iq

ue
s

F
le

xi
bi

li
ty

 P
ro

p
er

ty

D
es

ig
n

A
rc

hi
te

ct
.

S
W

Q

A

S
pe

ci
f.

I/

0
 R

es
.

T
ar

g
et

U

I
C

o
m

m
.

m
et

h
o

d
s

m
od

el
s

R
e-

us
e

P
la

n
n

.
L

an
g.

M

an
ag

.
E

nv
ir

.
S

ta
n

d
.

S
ta

n
d

.

D
ev

ic
e

M
ul

ti
pl

ic
it

y
+

+

+

+

+

R
ep

re
se

n
ta

ti
o

n

+
+

+

+

M
ul

ti
pl

ic
it

y
I/

0
 R

e-
us

e
+

+

+

+

+
+

R

ol
e

M
ul

ti
pl

ic
it

y
+

+

+

+

+

M
u

lt
it

h
re

ad
in

g

+

+

+
+

+

N

on
-p

re
em

pt
iv

en
es

s
+

+

+

+

+
+

R

ea
ch

a b
il

i t
y

+

+

+

C
u

st
o

m
iz

ab
il

it
y

+

+

+

+
I-

+

M
ig

ra
ta

b
il

it
y

+

+

++

+

+

T
ab

le
 3

.3
 R

el
at

io
ns

hi
ps

 b
et

w
ee

n
R

ob
us

tn
es

s
P

ro
pe

rt
ie

s
a

n
d

 S
of

tw
ar

e
T

ec
hn

iq
ue

s.

T
h

e
U

se
 o

f
S

of
tw

ar
e

T
ec

hn
iq

ue
s

R
ob

us
tn

es
s

P
ro

p
er

ty

D
es

ig
n

A
rc

hi
te

ct
.

S
W

Q

A

S
pe

ci
f.

I/

0
 R

es
.

T
ar

g
et

U

I
C

o
m

m
.

m
et

h
o

d
s

m
od

el
s

R
e-

us
e

P
la

n
n

.
L

an
g.

M

an
ag

.
E

nv
ir

.
S

ta
n

d
.

S
ta

n
d

.

O
bs

er
va

bi
li

ty

+

+

+
+

In

si
st

en
ce

+

++

+

+

H
on

es
ty

+

+

+

+
+

P

re
di

G
ta

bi
li

ty

+
+

+

+

+

A
cc

es
s

C
o

n
tr

o
l

+
+

+

P

ac
e

T
ol

er
an

ce

+
+

D

ev
ia

ti
on

 T
ol

er
an

ce

+

++

+

+
+

-

+

226 Summary Tables

Table 5.1 Specification Interaction between Tools/Materials and
Flexibility.

Property

Reachability

Non-preemptiveness

Multi-threading

Device Multiplicity, 1/0
Re-use and Human Role
Multiplicity

Representation
Multiplicity

Reconfigurability, Adap
tivity and Migratability

Interaction Comment

Prove Most Straightforward with
'clean' dialog abstractions

Assess By inspecting specifications that
support proofs of reachability

Deliver By using dialog abstractions
with process constructs

Obstmet By using any sequential dialog
abstraction

Address

None

Assess

None

By using dialog abstractions
with process constructs

Dependent on construction
tools/materials

Same relationships as observ
ability with constraints, view
controllers, model-based tools
and cognitive walkthrough

Dependent on construction
tools/materials

Summary Tables 227

Table 5.2 Specification Interactions between Tools/Materials and
Robustness.

Property Interaction

Observability Address
Assess

Insistence Assess

Honesty Assess

Predictability Assess

Access None
Control

Pace Deliver
Tolerance

Deviation Address
Tolerance

Address

Assess

Comment

Constraints/View Controllers
Model-Based User Interface Generators
Cognitive Walkthrough Questions 2 and 4

Cognitive Walkthrough Questions 2 and 4

Cognitive Walkthrough Question 4
Temporal aspects assessed in conjunction
with both observability and response time
conformance

Cognitive Complexity Theory (but effec
tiveness disputed (Knowles, 1988))
Response Time Stability assessed along
with pace tolerance
Cognitive Walkthrough Question 3

Dependent on construction materials

Real time scheduling algorithms
(potentially)

Partial support from UI management
tools/builders with input validation
construct
Pre-conditions as used in NUF (Cockton et
al., 1995) and Model-Based User Interface
Generators
Cognitive Walkthrough can establish effects
of errors

228 Summary Tables

Table 5.3 Specification Interaction between Taola/Materials and
Internal Properties.

Property

Development
Effi.ciency

Interaction Comment

Deliver UI Management Tools/Builders with val
idated effi.ciency, but such tools are rare
Model-based UI generators (mostly re
search and industrial prototypes)
Appropriate specification abstractions,
but only dialog level abstractions are well
established
Detailed unambiguous style guides, but
these are rare (toolkit implementations
for construction are better)!

System Deliver Architectural refinement, but only for an
ticipated potential changes Modifiability

User Interface Deliver
Irrtegratability

Run Time Deliver
Effi.ciency

Portability, None
Evaluability and
Maintainability

Model-based UI generators (mostly re
search and industrial prototypes)
Hypertext requirements linking tools such
as RETH (Kaindl, 1993)

Limited support from general (UI) tools

Virtual separation

Preservation of property from architec
tural model

Summary Tables 229

Table 5.4 Construction Interaction between Tools/Materials and
Flexibility.

Property

Device
Multiplicity

Representation
Multiplicity

1/0 Re-use

Human-Role
Multiplicity

Multi-threading

Non-
preemptiveness

Reachability

Reconfigurability

Adaptivity and
Migratability

Interaction Comment

Deliver Resource Manager, but often restricted
to specific drivers in window systems,
unless Plug and Play supported

Assist By View Controllers (SERPENT), but
mostly support from materials (e.g.
Model-View Controller (Smalltalk),
Multi-View Agents

Assist

Assist

Deliver

Assist

Deliver

Obstmet

Assist

Assist

Inter-Application communication facili
ties, if compatability problems avoided
Object Linking and Embedding

By groupware toolkits

Resource Manager

Resource Manager, but pre-emptiveness
can be obstructed

By re-usable history module (or dass)

By virtual toolkits, but situation is
improving
By table-driven software, macro record
ing, feature modification (e.g. changing
menu items) and tools such as Tcl/Tk

Limited support from materials (e.g.
User Modeling Shells, Plug and Play,
Agent Ware?)

230 Summary Tab/es

Table 5.5 Construction Interaction between Tools/Materials and
Robustness.

Property Interaction Comment

Observability Assist Generally, T /Ms supporting representa
tion multiplicity (e.g. view controllers)
support observability
Also assisted by context-sensitive help
and UIMS with Arch/Slinky architecture

lnsistence Deliver By very specialized rnaterials (e.g. mate
rials for modal dialag boxes or repeated
audio replay)

Honesty Assist Generally, T /Ms supporting representa
tion multiplicity, response-time stability
and pace tolerance support honesty

Predictability Deliver Percent-done code delivers partial and
very specialized support (response-time
conformance, also achievable by reducing
resource usage)

Access Deliver By access control lists
Control

Pace
Tolerance

Deviation
Tolerance

Assist

Deliver

Assist

Obstruct

By customized overlays as well as by more
basic file system features

Delay introducing operations (e.g. for
reading messages)

By 'clean' dialag abstractions that sup
port processes, by constructs for error re
covery such as fail-safe programming lan
guage features

By resource managers that silently ignore
errors in configuration files (e.g. X Win
dow System)

Summary Ta.bles 231

Table 5.6 Construction Interactions between Tools/Materials and
Internal Properties.

Property

Development
E:fficiency

System
Modifiability

Portability

Evaluability

Maintainability

Run Time
E:fficiency

User
Interface
Integratability

Interaction

Deliver

Assess

Assist

Deliver

Deliver

Assist

Obstruct

Assist

Assist

Comment

Well-designed tools and materials should
always deliver this property

By inspection techniques, but largely an
architectural property

By virtual toolkits and more generally by
layered wrappers or emulations and
simulators

Instrumentation code

Instrumentation code reveals common
problems
By Inspection Techniques

By Instrumentation code, layered wrap
pers and emulations/simulators, which
slow things down
By virtual separation, which removes lay
ers at run time

By standardized (style-guide-based) com
ponents and other common components
By tools such as Visual Basic (Microsoft)
and Tcl/Tk
By materials such as inter-application
communication facilities and Object Link
ing and Embedding (Microsoft)

References

Ahlberg, C. and Schneiderman, B. (1994). Visual information seeking:
Tight coupling of dynamic query filters with starfield displays. In
Adelson, B., Dumais, S., and Olson, J., editors, Proceedings of CHI'94
Human Factars in Computing Systems, pages 313-17.

Alty, J. (1991). Multimedia: What is it and how do we exploit it? In Diaper,
D. and Hammond, N., editors, People and Computers VI, Proceedings
of the HCI'91 conference, pages 31-44. Garnbridge University Press.

Alty, J. L. (1984). The application ofpath algebras to interactive dialogue
design. Behaviour and Information Technology, 3(2): 119-32.

Alty, J. L. and Ritchie, R. A. (1985). A path algebra support facility for
interactive dialogue designers. In Cook, S. and Johnson, P., editors,
People and Computers: Designing the Interface, pages 128-37. Garn
bridge University Press, Cambridge.

Apple (1991). Macintosh User's Guide for Desktop Computers. Apple
Computer Inc., Ireland. Document Z030-1751-A.

Apple (1992). Human Interface Guidelines: The Apple Desktop Interface.
Addison-Wesley.

Apple (1993). Inside Macintosh: Interapplication Communication.
Addison-Wesley.

Bannon, L. and B(lldker, S. (1991). Beyond the interface: Encountering
artifacts in use. In Carroll, J., editor, Designing Interaction, pages
227-53. Garnbridge University Press, Cambridge.

Bass, L. and Coutaz, J. (1991). Developing Software for the User Interface.
Addison-Wesley.

Bass, L., Clapper, B., Hardy, E., Kazman, R. and Seacord, R. (1990). Ser
pent: A user interface management system. In Proceedings of Winter
1990 USENIX Conference, pages 245-57. USENIX Association, Berke
ley.

Beech, D., editor (1986). Concepts in User Interfaces: A Reference Model
for Command and Response Languages, volume 234 of Lect. Notes in
Comp. Sc. Springer-Verlag, New York.

234 Referencea

Benyon, D. (1992). The role of task analyis in systems design. Interacting
with Computers, 4(1): 102-23.

Berlage, T. and Spenke, M. (1992). The GINA interaction recorder. In
Larson, J. and Unger, C., editors, Engineering for Human-Computer
Interaction '92, pages 69-80. IFIP Transactions A-18. North-Holland,
Amsterdam.

Bernsen, N. 0. (1993). Modality theory: supporting multimodal interface
design. In Workshop ERCIM on Multimodal Human-Computer Inter
action, INRIA, Lorraine. Chambery.

Bersoff, E. H. and Davis, A. M. (1991). Impacts of life cycle models on
software configuration management. Communications of ACM, 34(8):
104-17.

Bevan, N. (1983). The design ofuser-friendly systems for generating intelli
gent dialogues in integrated interactive computing systems. In Degano,
P. and Sandewall, E., editors, Proceedings of ECICS'B2, pages 333-44.
North-Holland, Amsterdam.

Blattner, M. M. and Dannenberg, R. B., editors (1992). Multimedia Inter
face Design. ACM Press Frontier Series. Addison-Wesley.

Boehm, B. W. (1988). A spiral model of software development and en
hancement. COMPUTER, 21(5): 61-72.

Burns, A. (1994). Preemptive priority based scheduling: An appropriate
engineering approach. In Son, S., editor, Advances in Real- Time Sys
tems, pages 225-48. Prentice Hall.

Card, S. K., Moran, T. P., and Newell, A. (1983). The Psychology of
Human-Computer Interaction. Lawrence Erlbaum Associates.

Carroll, J. M. and Carrithers, C. (1984). Training wheels in a user interface.
Communications of ACM, 27(8): 800-6.

Carroll, J. M. and Rosson, M. B. (1991). Deliberated evolution: stalking
the view mateher in design space. Human-Computer Interaction, 6(3
& 4): 281-318.

Chen, M. (1993). A framework for describing interactions with graphical
widgets. In Ashlund, S., Mullet, K., Henderson, A., Hollnagel, E. and
White, T., editors, Human Factors in Computing Systems. Proceedings
of INTERCHI'93, pages 131-2. ACM Press, New York.

Clarke, S., Jordan, P. and Cockton, G. (1995). Applying Aristotle's theory
of poetics to design. In Lovesey, E., editor, Proceedings of UK Er
gonomics Conference: Contemporary Ergonomics, pages 139-44. Tay
lor & Francis.

Heferences 235

Cockton, G. (1985). Three transition network dialogue management sys
tems. In Johnson, P. and Cook, S., editors, People and Computers:
Designing the interface, pages 135-44. Cambridge University Press,
Cambridge.

Cockton, G. (1987a). Interaction ergonomics, control and separation: Open
problems in user interface management. Information and Software
Technology, 29(4): 176-91.

Cockton, G. (1987b). A new model for separable interactive systems. In
Bullinger, H.-J. and Shackel, B., editors, Human-Computer Interac
tion - INTERACT'87, pages 1033-38 (participants edition). North
Holland, Amsterdam.

Cockton, G. (1991). The architectural bases of design re-use. In Duce, D.,
Gomes, M., Hopgood, F. and Lee, J., editors, User Interface Manage
ment and Design, pages 15-34. Springer-Verlag, Berlin.

Cockton, G., Clarke, S., Gray, P. and Johnson, C. (1995). Literate develop
ment: Weaving human context into design specifications. In Benyon,
D. and Palanque, P., editors, Critical Issues in User Interface Systems
Engineering. Springer-Verlag, Berlin.

Coutaz, J. (1987). PAC, an implementation model for dialogue design. In
Bullinger, H.-J. and Shackel, B., editors, Human-Computer Interaction
- INTERACT'87, pages 431-6 (participants edition). North-Holland,
Amsterdam.

Coutaz, J., Duce, D., Duke, D., Faconti, G., Harrison, M., Nigay, L., Pa
terno, F. and Salber, D. (1995). The Amodeus System Reference
Model. Technical report, Amodeus Project. Amodeus Project Docu
ment: System Modelling/WP54.

Cypher, A. (1991). Eager: Programming repetitive tasks by example. In
Human Factars in Computing Systems, CHI'91 Conference Proceed
ings, pages 33-9. ACM Press.

Dewan, P. (1993). Tools for implementing multiuser user interfaces. In
Bass, L. and Dewan, P., editors, Trends in Software: Issue on User
Interface Software, 1: 149-72.

Dewan, P. and Choudhary, R. (1995). A general multi-user undo/redo
model. In Marmolin, H., Sundblad, Y. and Schmidt, K., editors, Pro
ceedings of European Conference on Computer Supported W ork, pages
231-46. Kluwer, Dordrecht.

Dewan, P. and Shen, H. (1992). Access control for collaborative environ
ments. In Proceedings of the ACM Conference on Computer Supported
Cooperative Work, pages 51-8. ACM Press.

236 References

Diaper, D., editor (1989). Task Analysis for Human-Computer Interaction.
Ellis Horwood.

Dix, A. (1991). Formal Methods for Interactive Systems. Academic Press.

Dix, A. (1994). CSCW- a framework. In Rosenburg, D. and Hutchinson,
C., editors, Design Issues in CSCW. Springer-Verlag.

Dix, A., Finlay, J., Abowd, G. and Beale, R. (1993). Human-Computer
Interaction. Prentice Hall International.

Dougherty, D., Roman, R. and Ferguson, P. (1994). The Mosaic Handbook
fortheX Window System. O'Reilly and Associates.

England, D. (1988). Graphical prototyping of graphical tools. In Jones,
D. and Winder, R., editors, People and Computers IV, pages 407-20.
Garnbridge University Press, Cambridge.

Foley, J., Wallace, V. and Chan, P. (1987). The human factors of com
puter graphics interaction techniques. IEEE Computer Graphics and
Applications, 4(11): 13-48.

Fraser, C. W. and Krishnamurthy, B. (1990). Live text. Software- Practice
and E:cperience, 20(8): 851-8.

Garlan, D. and Shaw, M. (1993). An introduction to software architecture.
Advances in Software Engineering and Knowledge Engineering, 1.

Gaver, W. and Smith, R. (1990). Auditory icons in large-scale collaborative
environments. In Diaper, D., Gilmore, D., Cockton, G. and Shackel, B.,
editors, Proceedings of INTERACT'90, pages 735-40. Elsevier Science
Publishers.

Gibbs, S. J. (1989). LIZA: An extensible groupware toolkit. In Proceedings
of CHI'89, pages 29-35. ACM Press.

Goodman, D. (1993). The complete Hypercard handbook. Random House,
New York.

Gosling, J. and McGilton, H. (1995). The Java Language Environment: A
white paper. Sun Microsystems Inc.

Gourdol, A., Nigay, L., Salber, D. and Coutaz, J. (1992). Two case studies
of software architecture for multimodal interactive systems: VoicePaint
and voice-enabled Graphical Notebook. In Larson, J. and Unger, C.,
editors, Engineering for Human-Computer Interaction '92, pages 271-
84. IFIP Transactions A-18. North-Holland, Amsterdam.

Gram, C. (1995). A software engineering view of user interface design.
In Bass, L. and Unger, C., editors, Engineering for Human-Computer

Reference• 237

Interaction '95, pages 293-306. IFIP Working Group 2.7, Chapman &
Hall.

Green, M. (1985). Design notations and user interface management sys
tems. In Pfaff, G. E., editor, User Interface Management Systems,
pages 89-107. Springer-Verlag.

Harel, D. (1988). On visual formalismss. CACM, 31(5): 514-30.

Hartson, H. R. and Gray, P. D. (1992). Temporal aspects of tasks in the
user action notation. Human-Computer Interaction, 7: 1-45.

Hill, R. D. (1987). Event-response systems - a technique for specifying
multi-threaded dialogues. In Human Factors and Computing Systems
- Proceedings of CHI+GI'87, pages 241-8. ACM Press.

Hill, R. (1992). The Abstraction-Link-View paradigm: Using constraints
to connect user interfaces to applications. In Proceedings of CHI '92,
pages 335-42. ACM Press.

Hix, D. and Hartson, H. R. (1994). IDEAL: An environment to support
usability in human-computer interaction. In Blumenthal, B., Gornos
taev, J. and Unger, C., editors, Proceedings of EWHCI'94, pages 95-
106. Springer-Verlag.

ISO (1987). IS09000, Quality Control. ISO, International Standards Orga
nization. A series of standards on quality assurance and requirements
to quality control systems.

Jacob, R. J. K. (1986). A specification language for direct-manipulation
user interfaces. ACM Transactions on Graphics, 5(4): 283-317.

Johnson, P., Johnson, H. and Wilson, S. (1995). Rapid prototyping of user
interfacesdriven by task models. In Carroll, J., editor, Scenario-Based
Design, pages 209-46. John Wiley, New York.

Jordan, P. W., Draper, S. W. and MacFarlane, K. K. (1991). Guessability,
learnability and experienced user performance. In Diaper, D. and Harn
mond, N., editors, People and Computers VI, Proceedings of HCI'91,
pages 237-48, Cambridge University Press, Cambridge.

Kaindl, H. (1993). The missing link in requirements engineering. In Soft
ware Engineering Notes, pages 30-9. ACM Press, New York.

Kazman, R., Bass, L., Abowd, G. and Webb, M. (1994). SAAM: A method
for analyzing the properties of user interface software architectures. In
Proceedings of the 16th International Conference on Software Engi
neering, pages 81-90, Sorrento, Italy.

Kim, W. C. and Foley, J. D. (1993). Providing high-level control and
expert assistance in the user interface presentation design. In Ashlund,

238 Rejerence1

S., MuHet, K., Henderson, A., Hollnagel, E. and White, T., editors,
Human Factars in Computing Systems, Proceedings of INTERCHI'93,
pages 424-9. ACM Press, New York.

Knister, M. J. and Prakash, A. {1990). Distedit: A distributed toolkit for
supporting multiple group editors. In Proceedings of ACM CSCW'90
Conf. on Computer-Supported Cooperative W ork, System Infrastruc
ture for CSCW, page 343. ACM Press, New York.

Knowles, C. (1988). Can cognitive complexity theory (CCT) produce an
adequate measure of system usability? In Jones, D. M. and Winder,
R., editors, People and Computers IV, pages 291-307. Cambridge Uni
versity Press, Cambridge.

Kobsa, A. (1990). Modeling the user's conceptual knowledge in bgp-ms, a
user modeHing shell system. Computational Intelligence, 6.

Krasner, G. E. and Pope, S. T. (1988). A cookbook for using Model-View
Controller user interface paradigm in Smalltalk-SO. Journal of Object
Oriented Programming, August/September: 26-49.

Krell, E. and Krishnamurthy, B. {1992). COLA: Customized Overlaying.
In USENIX San Francisco Winter 1992 Conference Proceedings, pages
3-7. USENIX Association, Berkeley.

Küehme, T. and Schneider-Hufschmidt, M. (1992). SX/Tools- an open de
sign environment for adaptable multimedia user interfaces. Computer
Graphics Forum, 11(3). EUROGRAPHICS'92 Conference Issue.

Küehme, T., Dieterich, H., Malinovski, U. and Schneider-Hufschmidt, M.
(1992). Approaches to adaptivity in user interface tehcnology. In
Larson, J. and Unger, C., editors, Engineering for Human-Computer
Interaction '92, pages 225-52. IFIP Transactions A-18. North-Holland,
Amsterdam.

Lantz, K., Tanner, P., Binding, C., Huang, K. and Dwelly, A. (1987). Win
dow systems, reference models and concurrency. Computer Graphics,
21(2): 87-97.

Lauwers, J. C. and Lantz, K. A. (1990). Collaborationawareness in support
of collaboration transparency: Requirements for the next generation of
shared window systems. In Proceedings of ACM CHI'90, pages 303-12.
ACM Press, New York.

Long, J. (1989). Cognitive Ergonomics and Human-Computer Interaction.
In Warr, P., editor, Psychology at Work. Penguin, Harmondsworth.

Luckham, D., Kenney, J., Augustin, L., Vera, J., Bryan, D. and Mann, W.
{1995). Specification and analaysis of system architecture using rapide.
IEEE Transaction on Software Engineering.

Referenceß 239

Macromind (ca. 1990). MacroMind Director. Macromind Inc., San Fran
Clsco.

Meyer, B. (1988). Object-oriented Software Construction. Prentice-Hall,
Hemel Hempstead.

Microsoft (1992). The Windows Interface: An Application Design Guide.
Microsoft Corporation.

Microsoft (1993a). Windows Application Design Guide. Microsoft Corpo
ration.

Microsoft (1993b). Visual Basic, Programmer's Guide. Microsoft Corpo
ration.

Microsoft (1995). The Windows Interface Guidelines for Software Design.
Microsoft Corporation.

Monk, A., Wright, P., Haber, J. and Davenport, L. (1993). Improving your
Human-Computer Interface. Prentice Hall.

Moran, T. (1981). The command language grammar: a representation for
the user interface ofinteractive systems. International Journal of Man
Machine Studies, 15(1): 3-50.

Muller, M. J., Wildman, D. M. and White, E. A. (1993). Taxonomy of PD
Practices: A Brief Practitioner's Guide. Communications of ACM,
36(4): 26-8.

Myers, B. A. (1985). The importance ofpercent-done progress indicators for
computer-human interfaces. In CHI '85, Proceedings of ACM SIGCHI
Conference, pages 11-17. ACM Press, New York.

Myers, B. A. (1988). Creating User Interfaces by Demonstration. Academic
Press, Boston.

Newman, I. A. and Smith, P. A. (1995). Meeting and managing user ex
pectations in large scale distributed systems: a case study. Technical
report, Midlands Regional Research Laboratory, Loughborough Uni
versity of Technology. Genie Research Report 3.

Newman, I. A., Campbell, S. P., Medyckyj-Scott, D. J., Parks, L. M. and
Smith, P. A. (1995). Building large scale federal distributed informa
tion management systems - a method (TIMES) and an application
(GENIE). Technical report, Midlands Regional Research Laboratory,
Loughborough University of Technology. Genie Research Report 2.

Nielsen, J. (1992). Finding usability problems through heuristic evaluation.
In Proceedings of CHI'92, pages 373-80. ACM Press, New York.

Nielsen, J. (1993). Usability Engineering. AP Professional, Boston.

240 References

Nielsen, J. (1994). Enhancing the explanatory power of usability heuristics.
In Proceedings of CHI'94, pages 152-8. ACM Press, New York.

Nigay, L. (1994). Conception et modelisation logicielles des systemes inter
actifs: application aU3J interfaces multimodales. PhD thesis, University
of Grenoble.

Nigay, L. and Coutaz, J. (1993). A design space for multimodal systems:
Concurrent processing and data fusion. In Human Factars in Com
puting Systems, Proceedings of INTERCHI'93, pages 172-8. ACM,
Addison-Wesley.

Nigay, L. and Coutaz, J. (1995). A generic platform for addressing
the multimodal challenge. In Proceedings of CHI'95, pages 98-105.
ACM/SIGCHI, ACM Press.

Norman, D. A. (1986). Cognitive engineering. In Norman, D. A. and
Draper, S. W., editors, User-CentredSystems Design. Erlbaum Asso
ciates, Hillsdale, NJ.

Norman, D. (1988). The Psychology of Everyday Things. Basic Books.

OSF (1990). OSF/Motif Style Guide. Prentice-Hall. (One of five books on
the Motif user interface.)

Ousterhout, J. K. (1994). Tel and the Tk Toolkit. Addison-Wesley.

Pfaff, G., editor (1985). User Interface Management Systems. Springer
Verlag, New York.

Pfaffenberger, B. (1995). Netscape Navigator. AP Professional, Boston.
(Also available on CD-ROM. Netscape documentation is found on
World Wide Web on URL-address
http:/ /merchant.netscape.com/netstorefpubs/index.html.)

Polson, P., Lewis, C., Rieman, J. and Wharton, C. (1992). Cognitive walk
throughs: A method for theory-based evaluation of user interfaces.
Internat. Journal of Man-Machine Studies, 36(5): 741-73.

Reiss, S. P. (1990). Connecting tools using message passing in the field
environment. IEEE Software, 7(4): 57-66.

Retter, P., Mousel, P. and Nogacki, G. (1992). Maximumabstraction as
a path towards portability in multiple graphical environments. In
Larson, J. and Unger, C., editors, Engineering for Human-Computer
Interaction '92, pages 51-68. IFIP Transactions A-18. North-Holland,
Amsterdam.

Sadler, H. J. (1993). Making it Macintosh: An interactive human interface
instructional product for software developers. In Ashlund, S., Mul
let, K., Henderson, A., Hollnagel, E. and White, T., editors, Human

Heferences 241

Factors in Computing Systems. Proceedings of INTERCHI'93, pages
37-8. ACM Press, New York.

Scheißer, R. W., Gettys, J., Flowers, J. and Rosenthal, D. (1992). X Win
dow System. Digital Press, 3rd edition.

Schmucker, K. (1986). MacApp: an application framework. Byte, 11(8):
189-93.

Sha, L. and Sathaye, S. (1993). Distributed real-time system design: Theo
retical concepts and applications. Technical Report CMU /SEI-93-TR-
2 ADA2265199, CMU.

Shevlin, F. and Neelamkavil, F. (1991). Designing the next generation
of UIMSs. In Duce, D., Gomes, M., Hopgood, F. and Lee, J., edi
tors, User Interface Management and Design, pages 123-34. Springer
Verlag, New York.

Siemens Nixdorf (1994). Dialog Builder User Guide Manual. Siemens
Nixdorf Informationsysteme AG, 81730 Munich, Germany. Manual
U20644-J-Z357 -2-7600.

SmethersBarnes (1990). Prototyper: Reference Manual. SmethersBarnes,
Portland, Oregon. (Developed by G. R. Cossey.)

Smith, P. A. and Newman, I. A. (1995). Rapid applications implementa
tion and design: the concept, a realisation and some issues. Technical
report, Midlands Regional Research Laboratory, Loughborough Uni
versity of Technology. (Available from the authors.)

Smith, P. A. and Parks, L. M. (1995). Exemplar user interfaces for the
TIMES distributed sysstem builder. Technical report, Midlands Re
gional Research Laboratory, Loughborough University of Technology.
Genie Research Report 6.

Sukaviraya, P., Isaacs, E. and Bharat, K. (1992). Multimedia help: A pro
totype and an experiment. In Bauersfeld, P., Bennett, J. and Lynch,
G., editors, Human Factors in Computing Systems: CHI'92 'Striking
a Balance', pages 433-4. ACM Press, New York.

Sukaviraya, P., Foley, J. D. and Gri:ffith, T. (1993). A second generation
user interface design environment: The model and the runtime archi
tecture. In K. MuHet, S. A., Henderson, A., Hollnagel, E. and White,
T., editors, Human Factors in Computing Systems. Proceedings of IN
TERCHI'93 , pages 375-82. ACM Press, New York.

Szczur, M. and Sheppard, S. (1993). TAE Plus: Transportable applications
environment plus: A user interface development environment. ACM
Transactions on Information Systems, 11 (1).

242 References

Szekely, P., Luo, P. and Neches, R. (1993). Beyond interface builders:
model-based interface tools. In Ashlund, S., MuHet, K., Henderson,
A., Hollnagel, E. and White, T., editors, Human Factars in Computing
Systems. Proceedings of INTERCHI'93 , pages 383-90. ACM Press,
New York.

Taylor, R. and Johnson, G. (1993). Separation of concerns in the Chiron-1
user interface development and management system. In Proceedings
of INTERCHI'93, pages 367-74. ACM Press, New York.

Thimbleby, H. (1990). User Interface Design. Addison Wesley.

Took, R. K. (1990). Surface Interaction: Separating Direct Manipulation
Interfaces from their Applications. PhD thesis, Univ. of York.

Trefz, B. and Ziegler, J. (1989). The user interface management system
diamant. In Cockton, G., editor, Engineering for Human-Computer
Interaction '89, pages 177-96. North-Holland, Amsterdam.

UIMS (1992). The UIMS tool developers workshop: A metamodel for the
runtime architecture of an interactive system. SIGCHI Bulletin, 24(1):
32-7.

Vanderdonckt, J. and Bodart, F. (1993). Encapsulating knowledge for in
telligent automatic interaction objects selection. In Ashlund, S., Mul
let, K., Henderson, A., Hollnagel, E. and White, T., editors, Human
Factars in Computing Systems. Proceedings of INTERCHI'93 , pages
430-7. ACM Press, New York.

Wasserman, A. I. (1985). Extending state transition diagrams for the spec
ification of human-computer interaction. IEEE Transactions on Soft
ware Engineering, SE-11(8): 699-713.

Wharton, C., Rieman, J., Lewis, C. and Polson, P. (1994). The cognitive
walkthrough: A practitioner's guide. In Nielsen, J. and Mack, R.,
editors, Usability Inspection Methods. Wiley.

Wiecha, C., Bennett, W., Boies, S., Gould, J. and Greene, S. (1990). ITS: A
tool for rapidly developing interactive applications. ACM Transactions
on Information Systems, 8(3): 204-36.

Williams, A. S. (1994). The OLE 2.0 object model. In ACM OOPS Mes
senger, Addendum to the Proceedings of OOPSLA 1993, pages 68-70.
Published as ACM OOPS Messenger, Addendum to the Proceedings
of OOPSLA 1993, volume 5, number 2.

XVT (1991). XVT Programmer's Manual. XVT Software Inc., Boulder,
Colorado.

Yang, Y. (1988). Undo support models. International Journal of Man
Machine Studies, 28: 457-81.

Index

Abstract command, 5
Abstract data type

in Chiron-1, 126
Abstraction

component, PAC, 122
level, 4, 46

Acceptance test, 7
Access control, 37, 42, 86, 108

in ATC, 196
Active value, 154
Adaptivity, 28, 35, 82, 105

in ATC, 204
Addressing, 91, 140
Affordance, 40
Agent, 121

PAC, 121, 123, 207
Air traffic control, 189
Architectural model, 68
Arch model, 95, 115
Arch/Slinky metamodel, 93, 117, 118
Articulation, 3
Assessing, 140
Assessment of property, 91
Assistance of property, 91
ATC, 189

support system, 190, 192
ATCo, 190
Awareness, 40

in ATC, 196

Backward reachability, 34
Binding services, 19
Branching, 117, 118
Browsability, 38

in ATC, 196

Capability, 92
Chiron-1 architecture, 126

CLG, 4
Client, 14
Client/server, Chiron-1, 126
Climate control system

in Chiron-1, 129
functional partitioning, 94

Coded module material, 134
Coding, 7
Cognitive

complexity theory, 144
walkthrough, 143

Cognitive walkthrough, 66
Command, 5
Command Language Grammar, 4
Commensurate effort, 35, 45
Communication standard,

interapplication, 73
Completeness, xiii, 26

functional, 55, 62, 77
scenario, 27

Composition, 115
Concurrent multithreading, 32
Consistency, 41
Construction, 136

material, 150
tool, 135, 150

Control component, PAC, 122
cscw, 39, 40, 119
Customizability, 28, 82

D (Dialog), 94
Dangerous state, 107
Delivery, 91, 140
Designer

functional core, 15
interactive system, 15
system, 15
user interface, 15

244

Development
effective, 210
efficiency, 55, 62, 78, 110
model, 8
participative, 11
process, 6

Deviation tolerance, 37, 44, 87, 106
in ATC, 194, 199
formalized, 48

Device multiplicity, 28, 29, 80, 103
in ATC, 200

Dialog, 94
component, Arch, 116
controller, PAC, 121
level, 5, 46

DialogBuilder, 180
Dispatcher in Chiron-1, 126
Division of labor, 115
Domain-Adapter in Arch, 116

Encapsulation, 115
Evaluability, 55, 58, 76, 112
Evaluation, 136

report, 134
tool, 135

Evolutionary prototyping, 10
Execution tool, 135
Experimental design method, 67
External property, xiii, 25, 59, 62, 78,

98
in ATC, 193

External quality, 2

FC, 93
FCA, 93
FCDE, 19
FCX, 22
Feedthrough, 39

in ATC, 196
Flexibility, xiii, 26, 27, 78, 99, 109

in ATC, 200
in construction, 153
formalized, 46
in specification, 138
in TAE+, 169
in Visual Basic, 173

Flight management, 190

Formal model, 46
Forward reachability, 34
Functional

completeness, 55, 62, 77, 114
core, 22, 93, 121

adapter, 93, 121

Indez

development environment, 19
level, 4, 46
partitioning, 92, 109

Functionality of system, 92

Global software
design, 7
re-use, 68

Goal, 3
completeness, 26, 99

in ATC, 194
state, 3

Goals, operations, methods,
selections, 4

GOMS, 4
design method, 67

Guidelines, GUI, 148
Gulf of evaluation, 40

Heuristic evaluation, 67
Honesty, 37, 40, 86, 107

in ATC, 198
Human role, 14

multiplicity, 28, 31, 81, 100
in ATC, 201

Impact on property, 91
lmplementation, 152
lmplementer, 16
lndirection, 112
lnsistence, 37, 39, 84, 106, 130

in ATC, 197
formalized, 50

lnspection, 140
principle-based, 66
style conformance, 66

lntegratability of user interface, 55,
61, 77, 114, 131

Integration test, 7

Index

Interaction
flexibility, xiii, 27, 78, 99, 109

in ATC, 200
point, 3, 48
robustness, xiii, 37, 83, 106, 109

in ATC, 194, 195
between SW properties and

phenomena, 210

trace, 3
Interaction component, Arch, 116

Interactive SW development
environment, 17

Interapplication communication
standard, 73

Interleaved multithreading, 32

Intemal property, xiii, 55, 110
in specification, 147

in Visual Basic, 176
Intemal quality, 2
Interoperability, 73

I/0 resource management, 71

I/0 re-use, 28, 30, 80, 104
in ATC, 202
formalized, 47

ISDE, 17
services, 19

Iterative design, 66

ITS, 149

Keystroke level, 5

Labeled transition system, 46

Leamability, 51
Level

of abstraction, 4, 46
dialog, 5

functional, 4
keystroke, 5
logical, 5
physical, 5
session, 5

LI, 94
Life cycle, xiii
Logical

interaction, 94
level, 5, 46

Machine model, 46
Maintainability, 55, 59, 111

Maintenance, 7
Material, 133

construction, 150
requirement, 134

specification, 134, 138
Measurement of property, 91

Metamodel, Arch/Slinky, 93
Migratability, 28, 36, 82, 105

in ATC, 204
Migration, 117
Model

Arch, 95
formal, 46
MVC, 95
PAC, 95
PAC-Amodeus, 95
Seattle, 95
Seeheim, 95

Model-based tool, 136
Modifiability, 55, 56, 74, 111, 131

Module
construction, 7
design, 7
test, 7

Multi-agent, PAC, 122
Multiplicity

device, 28, 103
in ATC, 200

human role, 28, 31, 81, 100
in ATC, 201

representation, 28, 103, 130
in ATC, 200

Multithreading, 28, 32, 81, 101
in ATC, 202
formalized, 47

Multi-user system, 42

MVC model, 95

NASA's Goddard Space Flight
Center, 166

245

Network latency, 43
Non-preemptiveness, 28, 33, 81, 101

in ATC, 203
formalized, 4 7

Norman's seven stage model, 143

246

Observability, 37, 38, 84, 106
in ATC, 195
formalized, 48

Observable state, 4, 46, 49
Obstruction, 141

PAC
agent, 121, 123, 207
model, 95

PAC-Amodeus, 95, 120
applied on ATC, 205
Dialog component in ATC, 207
F\mctional core in ATC, 207
Interaction component in ATC, 207
Presentation component in ATC,

207
Pace tolerance, 37, 43, 87, 108

in ATC, 198
Participative design, 67
Participative development, 11
Partitioning, functional, 92
Physical

interaction, 94
level, 5, 46

PI, 94
Portability, 55, 57, 76, 112
Predictability, 37, 41, 86, 107

formalized, 49
in ATC, 199

Predictive design method, 66
Pre-emption, 28, 33
Presentation component

Arch, 116
PAC, 121, 122

Principle-based inspection, 66
Problem analysis, 6
Project manager, 14
Proof, 140
Property

addressing, 91, 140
assessment, 91, 140
assistance of, 91, 151
delivery, 91, 140
external, xiii, 2, 25, 59, 62, 78, 98

in ATC, 193
impact on, 91
inspection, 140

internal, xiii, 2, 55, 110
in construction, 163
in specification, 147

measurement of, 91
obstruction, 141
profile, 91
proof, 140

Prototyping, 66, 136
evolutionary, 10
rapid, 10

Quality, xiii, 1
assurance, 69
control, 69
external, 2
internal, 2
plan, 8
predictable'!, 209
specialist, 16

RAPID, 138
Rapid prototyping, 10
Reachability, 28, 34, 82, 102

in ATC, 203
formalized, 46

Reconfigurability, 28, 35, 82, 104
in ATC, 204

Reference model, ix
Regression test, 7
Rendering, 4

lndez

Replanning simulation, 203
Representation multiplicity, 28, 29, 80,

103, 130
in ATC, 200

Requirement
analysis, 7
material, 134
specialist, 14, 137
specification, 7
tool, 135

Resource management, 71
Re-use

of 1/0, 28, 30, 80, 104
in ATC, 202

of software, global, 68
Robustness, xiii, 26, 37, 83, 106, 109

in ATC, 194, 195

Indez

in construction, 158
formalized, 48
in specification, 142
in TAE+, 169
in Visual Basic, 175

Roles in ATC, 201
Run time effi.ciency, 55, 61, 77, 112

Safe default action, 194
Safety requirement in ATC, 194
Scenario completeness, 27
Seattle model, 95
Seeheim model, 95, 113
Separation of concerns, 115
Serpent architecture, 124
Session level, 5
Software

design, 7
methodology, 65
re-use, 68
standard, 65
technique, 65
tool, 65
validator, 17

Specification, 136
language, 70
material, 134, 138
tool, 70, 135, 138

Standard, 65, 72, 73
Start View, 184
State, 4, 46

'dangerous', 107
goal, 3
machine, 46
observable, 4, 49
trajectory, 48
transition, 46

Style conformance inspection, 66
Summative evaluation, 67
Support of property, 91
System

acceptance, 7
administration, 59
administrator, 17
design, 7
designer, 15, 137
functionality, 92

state, 4, 46
test, 7

TAE+, 166
flexibility, 169
robustness, 169

Target environment, 71
Task, 3

completeness, 26, 62, 99
description, 3
migratability, 36
SUpport, 3

Tcl/Tk, 171, 180
Temporal stability, 42
TIMES Distributed System, 180
Tool, 134

construction, 135, 150
evaluation, 135
execution, 135
model-based, 136
requirement, 135
specification, 135, 138

Toolbook, 183
Trace, interaction, 3
Trajectory of states, 48
Transition

function, 46
system, labeled, 46

Type-ahead, 43

UIDE, 19
services, 21

UIMS, 18
UIS, 22
Usability specialist, 16
Usage observation, 67
User, 17

representative, 14
satisfaction, 51

User interface
design method, 66

247

development environment, 19
integratability, 55, 61, 77, 114, 131
management system, 18
part, 22
standard, 72

248

V-model, 8
with backtracking, 9

Validator, 16, 17
Virtual separation, 147
Visual Basic, 172

fl.exibility, 173
internal property, 176
at research centre, 183
robustness, 175

Waterfall model, 8
What-if scenario, 203
Working system material, 134

lndez

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF000d004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

