
Introducing
Ethereum and
Solidity

Foundations of Cryptocurrency and
Blockchain Programming for Beginners
—
Chris Dannen

Introducing
Ethereum and

Solidity
Foundations of Cryptocurrency

and Blockchain Programming for
Beginners

Chris Dannen

Introducing Ethereum and Solidity: Foundations of Cryptocurrency and Blockchain
Programming for Beginners

Chris Dannen
Brooklyn, New York, USA

ISBN-13 (pbk): 978-1-4842-2534-9 ISBN-13 (electronic): 978-1-4842-2535-6
DOI 10.1007/978-1-4842-2535-6

Library of Congress Control Number: 2017936045

Copyright © 2017 by Chris Dannen

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Technical Reviewer: Massimo Nardone
Coordinating Editor: Nancy Chen
Copy Editor: Sharon Wilkey
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this
book is available to readers on GitHub via the book’s product page, located at
www.apress.com/9781484225349. For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484225349
http://www.apress.com/source-code/

Many thanks to Brandon Buchanan, Christopher McClellan,
Dr. Solomon Lederer, and the entire Iterative Instinct team

for their support and enthusiasm. Thanks also to
Joseph Lubin and the team at ConsenSys for

acting as a sounding board during
the writing of this book.

v

Contents at a Glance

About the Author �� xix

About the Technical Reviewer �� xxi

 ■Chapter 1: Bridging the Blockchain Knowledge Gap ���������������������� 1

 ■Chapter 2: The Mist Browser �� 21

 ■Chapter 3: The EVM �� 47

 ■Chapter 4: Solidity Programming ��� 69

 ■Chapter 5: Smart Contracts and Tokens ��������������������������������������� 89

 ■Chapter 6: Mining Ether �� 111

 ■Chapter 7: Cryptoeconomics Survey �� 139

 ■Chapter 8: Dapp Deployment �� 149

 ■Chapter 9: Creating Private Chains �� 159

 ■Chapter 10: Use Cases �� 165

 ■Chapter 11: Advanced Concepts ��� 173

Index �� 181

vii

Contents

About the Author �� xix

About the Technical Reviewer �� xxi

 ■Chapter 1: Bridging the Blockchain Knowledge Gap ���������������������� 1

Blockchain Roll Call! �� 1

What Ethereum Does ��� 2

Three Parts of a Blockchain �� 4

Ethereum Assumes Many Chains ��� 5

This Is a Scam, Just Like Bitcoin! ��� 5

Ether as a Currency and Commodity ��� 6

Gresham’s Law ��� 6

The Path to Better Money ��� 7

Cryptoeconomics and Security ��� 7

Back to the Good Old Days ��� 8

Cryptochaos �� 8

The Power Is in the Protocol ��� 8

You Can Build Trustless Systems �� 9

What Smart Contracts (Really) Do ��� 10

Objects and Methods for Value ��� 10

Just Add Commerce ��� 11

Content Creation ��� 11

Where’s the Data? ��� 12

What Is Mining? �� 12

Ether and Electricity Prices��� 12

 ■ Contents

viii

Going Inside the EVM �� 13

The Mist Browser ��� 13

Browser vs� Wallet or Keychain �� 13

Solidity Is Kind of Like JavaScript, But … �� 13

What Ethereum Is Good For ��� 14

A Critical Take ��� 14

State of Smart Contract Development Today �� 15

Deciding Where You Fit In �� 16

A Note to New Programmers �� 17

Ethereum Is Free and Open Source �� 17

The EVM Is Here to Stay �� 17

What You Can Build Today ��� 18

Private and Public Chains ��� 18

The Promise of Decentralized Databases ��� 19

What’s Next: New Ways of Working �� 20

Summary ��� 20

 ■Chapter 2: The Mist Browser �� 21

Wallets as a Computing Metaphor �� 22

Your Address Is What? �� 22

Where Is My Ether? �� 23

The Bank Teller Metaphor�� 24

In Cryptocurrency, You Hold Your Own Assets��� 24

Visualizing Ethereum Transactions ��� 24

Breaking with Banking History �� 26

How Encryption Leads to Trust �� 26

System Requirements ��� 28

 ■ Contents

ix

More about Eth�guide and This Book �� 28

Tools for Developers ��� 29

CLI Nodes �� 29

Recommended: Using Parity with Geth ��� 30

Finally, into the Mist! ��� 30

Downloading and Installing Mist �� 30

Configuring Mist ��� 32

Finding Your New Address �� 36

Sending and Receiving Ether �� 36

Understanding Ethereum Account Types �� 38

Backing Up and Restoring Your Keys �� 39

Using Paper Wallets �� 40

Using Mobile Wallets �� 40

Working with Messages and Transactions ��� 42

So, What Is a Blockchain? ��� 43

Paying for Transactions �� 43

Understanding Denominations ��� 44

Getting Ether ��� 44

Anonymity in Cryptocurrency �� 45

Blockchain Explorers �� 45

Summary ��� 46

 ■Chapter 3: The EVM �� 47

The Central Bank Network of Yesterday �� 47

What are Virtual Machines, Exactly? ��� 48

The Role of the Ethereum Protocol in Banking ��� 48

Anyone Can Make a Banking Platform ��� 48

 ■ Contents

x

What the EVM Does ��� 49

EVM Applications Are Called Smart Contracts ��������������������������������������� 51

The Name “Smart Contracts” ��� 51

The EVM Runs Bytecode ��� 51

Understanding State Machines ��� 51

Digital vs� Analog �� 51

“State-ments” �� 52

Data’s Role in State �� 53

How the Guts of the EVM Work �� 53

The EVM Constantly Checks for Transactions ��� 54

Creating a Common Machine Narrative of What Happened������������������������������������ 54

Cryptographic Hashing ��� 55

What Hash Functions (or Hash Algorithms) Do ��� 55

Blocks: The History of State Changes �� 55

Understanding Block Time �� 56

The Drawbacks of Short Blocks �� 56

“Solo Node” Blockchain ��� 56

Distributed Security �� 57

Mining’s Place in the State Transition Function ������������������������������������ 57

Renting Time on the EVM �� 58

Hello, Gas �� 58

Why Is Gas So Important?��� 59

Why Isn’t Gas Priced in Ether?�� 59

Fees as Regulation ��� 59

Working with Gas �� 60

Gas Specifics �� 60

How Gas Relates to Scaling the System ��� 60

 ■ Contents

xi

Accounts, Transactions, and Messages ��� 61

Externally Owned Accounts �� 61

Contract Accounts �� 61

Transactions and Messages �� 62

Characteristics of Transactions �� 62

Characteristics of Messages �� 62

Estimating Gas Fees for Operations �� 63

Opcodes in the EVM �� 64

Summary ��� 67

 ■Chapter 4: Solidity Programming ��� 69

Primer �� 69

Global Banking Made (Almost) Real �� 70

Extra-Large Infrastructure �� 70

Worldwide Currency? ��� 70

Complementary Currency �� 71

The Promise of Solidity ��� 71

Browser Compiler ��� 72

Learning to Program the EVM ��� 72

Easy Deployment �� 73

The Case for Writing Business Logic in Solidity�� 74

Code, Deploy, Relax ��� 74

Design Rationale ��� 74

Writing Loops in Solidity ��� 75

Expressiveness and Security �� 76

The Importance of Formal Proofs �� 76

Historical Impact of a Shared Global Resource �� 76

How Attackers Bring Down Communities ��� 77

Hypothetical Attack Written in Solidity ��� 77

 ■ Contents

xii

Automated Proofs to the Rescue? ��� 78

Determinism in Practice ��� 78

Lost in Translation ��� 78

Testing, Testing, Testing ��� 79

Command Line Optional! �� 79

Formatting Solidity Files ��� 81

Tips for Reading Code ��� 81

Statements and Expressions in Solidity �� 82

What Is an Expression? �� 82

What Is a Statement? ��� 82

Functions, Public and Private ��� 82

Value Types �� 83

Booleans ��� 83

Signed and Unsigned Integers �� 83

Addresses ��� 83

Members of Addresses ��� 83

Address-Related Keywords �� 84

Less-Common Value Types ��� 84

Complex (Reference) Types �� 84

Global Special Variables, Units, and Functions �������������������������������������� 85

Block and Transaction Properties ��� 85

Operators Cheat Sheet�� 86

Global Functions ��� 87

Exceptions and Inheritance �� 88

Summary ��� 88

 ■Chapter 5: Smart Contracts and Tokens ��������������������������������������� 89

EVM as Back End ��� 89

Smart Contracts to Dapps��� 90

 ■ Contents

xiii

Assets Backed by Anything ��� 90

Bartering with Fiat Currency ��� 90

Ether as Glass Beads �� 90

Cryptocurrency Is a Measure of Time �� 91

Asset Ownership and Civilization ��� 92

Coins are Collectibles ��� 93

The Function of Collectibles in Human Systems ����������������������������������� 94

Early Counterfeiting �� 95

Jewelry and Art as Money �� 95

The Step Toward Banknotes ��� 95

Platforms for High-Value Digital Collectibles �� 96

Tokens Are a Category of Smart Contract ��� 97

Tokens as Social Contracts ��� 97

Tokens Are a Great First App ��� 98

Creating a Token on the Testnet �� 98

Getting Test Ether from the Faucet ��� 99

Registering Your Tokens ��� 106

Deploying Your First Contract �� 107

Same House, Different Address �� 108

Playing with Contracts �� 110

Summary ��� 110

 ■Chapter 6: Mining Ether �� 111

What’s the Point? �� 111

Ether’s Source ��� 112

Defining Mining ��� 112

 ■ Contents

xiv

Versions of the Truth�� 113

Difficulty, Self-Regulation, and the Race for Profit ��� 114

How Proof of Work Helps Regulate Block Time �� 115

What’s Going on with the DAG and Nonce? ��� 116

All This for Faster Blocks? ��� 117

Making Fast Blocks Work ��� 117

How Ethereum Uses Stale Blocks ��� 118

Uncle Rules and Rewards ��� 119

The Difficulty Bomb ��� 119

Miner’s Winning Payout Structure �� 120

Limits on Ancestry �� 120

The Block Processing Play by Play ��� 120

Evaluating the Ancestry of Blocks and Transactions ��������������������������� 121

How Ethereum and Bitcoin Use Trees ��� 122

Merkle-Patricia Trees�� 122

Contents of an Ethereum Block Header �� 123

Forking �� 123

Mining Tutorial ��� 124

Installing Geth on macOS ��� 125

Installing Geth on Windows �� 125

Getting Comfortable with the Command Line ��� 125

Installing Geth on Ubuntu 14�04 ��� 126

Executing Commands in the EVM via the Geth Console ���������������������� 128

Launching Geth with Flags �� 131

Fire Up Your Miner! ��� 132

 ■ Contents

xv

Mining on the Testnet �� 134

GPU Mining Rigs �� 134

Mining on a Pool with Multiple GPUs �� 136

Summary ��� 136

 ■Chapter 7: Cryptoeconomics Survey �� 139

How We Got Here ��� 139

New Technologies Create New Economies ��� 140

Rules of the Game �� 141

Why Is Cryptoeconomics Useful? �� 141

Understanding Hashing vs� Encryption ��� 142

Encryption �� 142

Hashing ��� 143

Why the Speed of Blocks Matters ��� 144

Ether Issuance Scheme ��� 144

Common Attack Scenarios �� 145

Social Proof Between Machines ��� 146

Security as the Network Scales �� 146

More About Cryptoeconomics ��� 147

Summary ��� 147

 ■Chapter 8: Dapp Deployment �� 149

Seven Ways to Think About Smart Contracts �������������������������������������� 150

Dapp Contract Data Models ��� 150

How an EVM Back End Talks to a JS Front End ����������������������������������� 151

JSON-RPC ��� 151

Web 3 Is Here (Almost) �� 152

 ■ Contents

xvi

Experimenting with the JavaScript API ��� 153

Using Geth for Dapp Deployment �� 153

Using Meteor with the EVM ��� 154

Install Web3�js to Build an Ethereum-Enabled Web Application ��������������������������� 154

Executing Contracts in the Console ��� 155

How Contracts Expose an Interface �� 155

Recommendations for Prototyping �� 156

Third-Party Deployment Libraries ��� 156

Summary ��� 157

 ■Chapter 9: Creating Private Chains �� 159

Private and Permissioned Chains �� 159

Setting Up a Local Private Chain ��� 160

Optional Flags to Use with New Chains��� 162

Private Blockchains in Production Usage �� 162

Summary ��� 163

 ■Chapter 10: Use Cases �� 165

Chains Everywhere �� 165

The Internet of Ethereum Things ��� 166

Retail and E-Commerce �� 167

Community and Government Financing �� 167

Human and Organizational Behavior ��� 168

Financial and Insurance Applications �� 169

Inventory and Accounting Systems ��� 170

Software Development �� 171

 ■ Contents

xvii

Gaming, Gambling, and Investing �� 171

Summary ��� 172

 ■Chapter 11: Advanced Concepts ��� 173

Who Is Leading Software Developers Toward Decentralization? �������� 173

Vitalik’s Best Technical Blog Posts ��� 174

The Ethereum Release Schedule ��� 174

Whisper (Messaging) �� 175

Swarm (Content Addressing) �� 175

What the Future Holds ��� 176

Other Interesting Innovations �� 177

Full Ethereum Roadmap �� 177

Frontier Release (2015) �� 177

Homestead Release (2016) ��� 178

Metropolis (2017) ��� 178

Serenity (2018) ��� 178

Summary ��� 178

Index �� 181

xix

About the Author

Chris Dannen is a partner and founder at Iterative
Instinct, a hybrid investment fund focused on
cryptocurrency trading and seed-stage venture
investments. He first began working with Bitcoin and
Ethereum as a miner, and became gradually more
enthralled in researching how smart contracts could
be used to automate business logic and create new
kinds of experiences with software. He was formerly
a corporate strategist for Fortune 500 companies. A
self-taught programmer in Objective-C and JavaScript,
he holds one computer hardware patent. This is his
fourth book. Chris is an avid traveler who has trekked
across 20 countries, bicycled from Rome to Barcelona
in 30 days, and summited Mount Fuji in under
six hours. He was formerly a senior editor at Fast
Company and today consults on technical content for

major publishers such as Quartz and Bloomberg. He graduated from the University of
Virginia and now resides in New York, NY.

xxi

About the Technical
Reviewer

Massimo Nardone has more than 22 years of
experience in security, web/mobile development, and
cloud and IT architecture. His true IT passions are
security and Android. He has been programming and
teaching how to program with Android, Perl, PHP, Java,
VB, Python, C/C++, and MySQL for more than 20 years.
He holds a master of science degree in computing
science from the University of Salerno, Italy.

He has worked as a project manager, software
engineer, research engineer, chief security architect,
information security manager, PCI/SCADA auditor
and senior lead IT security/cloud/SCADA architect
for many years. Technical skills include security,
Android, cloud, Java, MySQL, Drupal, Cobol, Perl,
web and mobile development, MongoDB, D3, Joomla,

Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS, Jekyll, Scratch, and more.
He currently works as chief information security officer (CISO) for CargotecOyj.

He worked as visiting lecturer and supervisor for exercises at the Networking Laboratory
of the Helsinki University of Technology (Aalto University). He holds four international
patents (PKI, SIP, SAML and Proxy areas).

Massimo has reviewed more than 40 IT books for various publishing companies.
He is the coauthor of Pro Android Games (Apress, 2015).

1© Chris Dannen 2017
C. Dannen, Introducing Ethereum and Solidity, DOI 10.1007/978-1-4842-2535-6_1

CHAPTER 1

Bridging the Blockchain
Knowledge Gap

Acclimating to the fast-moving blockchain world can
be challenging. This book is your guide. Before we
get started, let’s define some of the terms you’ll
encounter ahead

A blockchain is a fully-distributed, peer-to-peer software network which makes use of
cryptography to securely host applications, store data, and easily transfer digital instruments
of value that represent real-world money. Cryptography is the art of communication via
coded messages. In Bitcoin and Ethereum, cryptography is used to conjur one secure
computing environment out of thousands of similar machines, running with no central
authority and no single owner. With that kind of potential, it’s obvious why the technology
has been subject to unprecedented speculation, hype, confusion, and prognostication.

The term “Ethereum” can be used refer to three distinct things: the Ethereum
protocol, the Ethereum network created by computers using the protocol, and the
Ethereum project funding development of the aforementioned two. On the heels of
Bitcoin, Ethereum has become its own macrocosm, attracting enthusiasts and engineers
from numerous industries. Many of civilization’s most nagging imperfections could
become the domain of blockchain’s killer apps, and the Ethereum protocol (which was
derived from Bitcoin, and extended) is widely considered to be the network where these
“distributed” apps will spring up. For developers, designers, and product managers,
there’s no better time to begin prototyping applications for the Ethereum network.

Blockchain Roll Call!
Two big groups of thinkers are interested in blockchain systems, and Ethereum more
specifically: application developers interested in building products and services, and
nonprogrammers who are curious about the potential of Ethereum, perhaps owing
to work or interest in financial services, consulting, insurance, law, game creation,

Chapter 1 ■ Bridging the BloCkChain knowledge gap

2

government, logistics, product design, or IT.1 This book is similarly cross-disciplinary.
It provides a contextual guide for programmers and non-programmers alike to develop
ideas about what to build, and how to build it. It fills a gap between computer science,
economics, financial services, and where necessary, banking history.

For programmers, the challenging thing about Ethereum isn’t usually the code; like
most open source software projects, this one has on-ramps for people who already program
in other environments. Rather, the challenge is wrapping your head around the concept of
“cryptoeconomics,” or the system of incentives and disincentives which secure the network.

For nonprogrammers, the challenge is divining how the ecosystem will develop, and
how you fit in. Claims that blockchains will modernize the banking system, revolutionize
insurance, and lay waste to counterfeiting may be overblown—but by how much?2

What Ethereum Does
In the abstract, open source blockchain networks such as Ethereum and Bitcoin are
kits that allow you to pop up an economic system in software, complete with account
management and a native unit of exchange to pass between accounts. Kind of like
the game Monopoly. People call these native units of exchange coins, tokens, or
cryptocurrencies, but they’re no different from tokens in any other system: they’re a form
of money (or scrip) that is usable only within that system.

Blockchains work something like mesh networks or local area networks (LANs); they
are merely connected to other “peer” computers running the same software. When you want
to make one of these peer-to-peer (P2P) networks accessible through a web browser, you
need to use special software libraries such as Web3.js to connect an application’s front end
(the GUI you see in a browser), via JavaScript APIs, to its back end (the blockchain).

In Ethereum, you can take this concept one step further by easily writing financial
contracts with other users inside the system. As you’ll see, these financial contracts are
called smart contracts.

The key component is this idea of a Turing-complete blockchain. … As a
data structure, it works kind of the same way that Bitcoin works, except
the difference in Ethereum is, it has this built-in programming language.

—Vitalik Buterin, inventor of Ethereum3

In Ethereum, smart contracts are written in the programming language Solidity,
which you’ll learn about in Chapter 4. Turing completeness was an advantage that many
developers quickly latched onto, but more important is Ethereum’s ability to save state.
In computing, a simple definition of a stateful system is one that can detect changes to
information and remember them over time.

1Ethereum Blog, “Visions, Part 1: The Value of Blockchain Technology,” https://blog.
Ethereum.org/2015/04/13/visions-part-1-the-value-of-blockchain-technology/, 2015.
2American Banker, “Blockchain Won’t Make Banks Any Nimbler,” www.americanbanker.com/
bankthink/blockchain-wont-make-banks-any-nimbler-1079190-1.html, 2016.
3YouTube, “Technologies That Will Decentralize the World,” www.youtube.com/watch?v=
er-k3ehpFaM&feature=share, 2016.

http://dx.doi.org/10.1007/978-1-4842-2535-6_4
https://blog.ethereum.org/2015/04/13/visions-part-1-the-value-of-blockchain-technology/
https://blog.ethereum.org/2015/04/13/visions-part-1-the-value-of-blockchain-technology/
http://www.americanbanker.com/bankthink/blockchain-wont-make-banks-any-nimbler-1079190-1.html
http://www.americanbanker.com/bankthink/blockchain-wont-make-banks-any-nimbler-1079190-1.html
http://www.youtube.com/watch?v=er-k3ehpFaM&feature=share
http://www.youtube.com/watch?v=er-k3ehpFaM&feature=share

Chapter 1 ■ Bridging the BloCkChain knowledge gap

3

Imagine a computer with no hard drive; you couldn’t do much with it. It would be
like a calculator, the contents of its memory fleeting. The ability to engineer interactions
between users in the future, and under certain conditions, is a powerful addition to a
blockchain. It allows developers to introduce control flow into cryptocurrency transaction
programming. This is the biggest distinction between Ethereum and Bitcoin, but not the
only one, as you’ll see.

 ■ Note Control flow refers to the order in which computing instructions are executed
or evaluated. examples are conditional statements (if this, then that) and loops (which run
repeatedly until certain conditions are met).

In Bitcoin, all transactions happen as soon as possible. Because of Bitcoin’s lack of
statefulness, it has to execute transactions all in one go. The blockchain as envisioned
by Bitcoin’s creator(s) was a distributed transaction ledger that kept a running tally of
everyone’s bitcoin balances in the network. (A stylistic note for close readers: Bitcoin the
network is written in the uppercase, and bitcoin the token in lowercase.) In Ethereum, a
similar system is made extensible in a standardized way.

Secondarily, this common scripting language makes it more straightforward for
blockchains that share the Ethereum protocol to share data with one another, enabling
groups that use separate blockchains to share information and value with each other.

WHAT IS A PROTOCOL?

if you’re new to software development, a 10-second crash course in information
technology (it) will be useful here. IT can be defined as the study of computer
systems to store, edit, retrieve, and send information.4 how that information is
represented and updated over time, to reflect changes internal and external,
depends on which technological system is in use.

in a telecommunications context, a protocol is a system of rules that describes
how a computer (and its programmer) can connect to, participate in, and transmit
information over a system or network. these instructions define code syntax and
semantics that the system expects. protocols can involve hardware, software, and
plain-language instructions. no special hardware is needed for ethereum, and the
software is entirely free.

in ethereum, the protocol is designed for building decentralized applications, with
emphasis on rapid development time, security, and interactivity.

4Harvard Business Review, “Management in the 1980s,” https://hbr.org/1958/11/management-
in-the-1980s, 1953.

https://hbr.org/1958/11/management-in-the-1980s
https://hbr.org/1958/11/management-in-the-1980s

Chapter 1 ■ Bridging the BloCkChain knowledge gap

4

Three Parts of a Blockchain
A blockchain can be thought of as a database that is distributed, or duplicated, across
many computers. The innovation represented by the word blockchain is the specific
ability of this network database to reconcile the order of transactions, even when a few
nodes on the network receive transactions in various order.

This usually happens because of network latency due to physical distance; for
example, a transaction created by a user buying a hot dog in Tokyo will be dispatched
first to nodes in Japan. By the time a node in New York gets word of this transaction a
few milliseconds later, a nearby transaction in Brooklyn sneaks in “ahead” of the one in
Tokyo. These inconsistencies due to subjective perspective in distributed systems is what
makes them a challenge to scale. The power of blockchain systems is that they represent a
combination of technologies we can deploy to crack the problem.

What is widely called a blockchain is really the combination of three technologies, a
recipe first concocted by Bitcoin’s pseudonymous creator. Those three ingredients are as
follows:

Peer-to-peer networking: A group of computers such as the
BitTorrent network that can communicate among themselves
without relying on a single central authority and therefore not
presenting a single point of failure.

Asymmetric cryptography: A way for these computers to send a
message encrypted for specific recipients such that anyone can
verify the sender’s authenticity, but only intended recipients can
read the message contents. In Bitcoin and Ethereum, asymmetric
cryptography is used to create a set of credentials for your account,
to ensure that only you can transfer your tokens.

Cryptographic hashing: A way to generate a small, unique
“fingerprint” for any data, allowing quick comparison of large
datasets and a secure way to verify that data has not been
altered; in both Bitcoin and Ethereum, the Merkle tree data
structure is used to record the canonical order of transactions,
which is then hashed into a “fingerprint” that serves as a basis
of comparison for computers on the network, and around
which they can quickly synchronize.5

The combination of these three elements grew out of experiments with digital cash
in the 1990s and early 2000s. Adam Back released Hashcash in 2002, which pioneered
the use of mining to send transactions. The pseudonymous Satoshi Nakamoto added
distributed consensus to this innovation with the creation of Bitcoin in 2009.

Together, these three elements can mimic a simple database that is decentralized
and stored in the nodes of the network. In the same way that a group of ants constitute
a functioning colony, you can think of Bitcoin as a machine. In computing terms, it’s a
virtual machine, the particulars of which we’ll get into later.

5Wikipedia, “Merkle tree,” https://en.wikipedia.org/wiki/Merkle_tree, 2016.

https://en.wikipedia.org/wiki/Merkle_tree

Chapter 1 ■ Bridging the BloCkChain knowledge gap

5

Ethereum adds, in computer science terms, a trustful global object framework
messaging system to the paradigm established by the Bitcoin virtual machine. Ethereum
was first proposed in 2014 with the Ethereum White Paper.6

Ethereum Assumes Many Chains
The Bitcoin we know today is not the only large-scale deployment of Bitcoin software.
Litecoin, for example, uses the Bitcoin software, modified, as do dozens more. Ethereum
was built with the assumption that copycats are a foregone conclusion, and that there
may be many blockchains, and thus there should be a set of protocols in place by which
they can communicate.

 ■ Note working with the ethereum protocol benefits from knowledge of both economic
and programming concepts. this book contains definitions for both, where necessary.

With a radically different perspective to that of the creators of Bitcoin, the Ethereum
creators implicitly took the position that cryptocurrency, if it exists in the future, will not
be one decentralized system. Instead, it will be a distributed network of decentralized
systems, enabling many different cryptographic tokens of value, with various purposes
and interpretations to be easily and quickly defined and then brought to life.

This Is a Scam, Just Like Bitcoin!
If you work in financial services or you studied economics, searching Google for further
information has probably brought you to the conclusion that Bitcoin is essentially a
global Ponzi scheme. Let’s put this to rest.

You are half correct: the value of a bitcoin is determined by the market for bitcoins.
Sure, certain bitcoin-holding entities have obtained domestic money transmitter licenses
and will redeem your bitcoins for US dollars, Euros, gold, or other fiat currency. But these
entities are private businesses that charge fees and could go out of business at any time.

So, Bitcoin and networks like it are vulnerable only to the extent that there is no
“redeemer of last resort,” no trusted (governmental or corporate) entity you can be sure
will redeem your bitcoins or ether for US dollars in the future. Short of paying a private
money changer, the only option for converting bitcoins to something of real value is to
connect to an online exchange and trade the coins for fiat currency, thus finding another
buyer.

Just as the Bitcoin network moves bitcoin tokens, the Ethereum network moves ether
tokens. Ether works differently than bitcoin, as you’ll see, and can more properly be called
a cryptocommodity than a currency. Let’s take a look at how the economics of Ethereum
relate to the underlying technology.

6GitHub, “Ethereum White Paper,” https://github.com/ethereum/wiki/wiki/White-Paper,
2014.

https://github.com/ethereum/wiki/wiki/White-Paper

Chapter 1 ■ Bridging the BloCkChain knowledge gap

6

Ether as a Currency and Commodity
It’s commonly said that the bitcoin isn’t backed by anything, and that’s true. Of course,
modern fiat currencies aren’t backed by anything either. But they’re different: endorsed
by a government, a fiat currency is held by default by anyone paying taxes and buying
government bonds. Some international commodities sales are denominated in dollars,
too (for example, oil) giving people another reason to hold dollars.

For cryptocurrencies, challenges to adoption remain. Today, these digital tokens
remain a fast, secure, public payment layer on top of the existing fiat money system; an
experimental deployment that might someday grow to replace the centralized payments
networking technologies used by companies like Visa and MasterCard today.

However, incredible possibilities are on the horizon as governments and private
institutional investors begin to create large markets for financial products and services
denominated in cryptocurrencies. Central banks may even adopt the technology. As
of this writing, at least one country has issued a digital dollar using Bitcoin software:
Barbados.7 Others are actively researching the prospect.

Gresham’s Law
Why does it matter if financial products, contracts, insurance policies, (and so on) are
being denominated in a cryptocurrency? And what does this have to do with Ethereum?

A currency that can buy a lot of valuable securities and assets is a currency worth
saving. The Ethereum network allows anyone to write a trustworthy, self-executing
financial contract (smart contract) that will move ether in the future. Conceivably, this
could allow financial contracts that project far into the future, giving stakeholders in the
contract a reason to hold and use ether as a store of value.

Originally applied to gold and silver currency, Gresham’s Law states that in an
economy, “bad” money drives out “good.” In other words, people save and hoard
currencies they expect to appreciate in value, while spending currencies they expect to
depreciate in value.8

Although the law is named for a 16th-century English financier, the concept appears
to date all the way back to Medieval writings, and indeed all the way back to ancient texts
including Aristophanes’ poem “The Frogs,” usually dated to around 405 BC:

Coins untouched with alloys, gold or silver, Each well minted, tested each
and ringing clear. Yet we never use them! Others pass from hand to hand …

For millennia, people have saved the value of their work-product in a monetary
instrument that will stay stable, appreciate in value, or inflate in price—not something
prone to crashing in value. Today, cryptocurrencies are volatile in price, and are accepted
by only a handful of governments and corporations worldwide as of this writing. Few, if
any, decentralized smart contracts are in use in businesses today. But by the same token,

7Coindesk, “Bitt Launches Barbados Dollar on the Blockchain,” www.coindesk.com/bitt-
launches-barbados-dollar-on-the-blockchain-calls-for-bitcoin-unity/, 2016.
8Wikipedia, “Gresham’s Law,” https://en.wikipedia.org/wiki/Gresham%27s_law, 2016.

http://www.coindesk.com/bitt-launches-barbados-dollar-on-the-blockchain-calls-for-bitcoin-unity/
http://www.coindesk.com/bitt-launches-barbados-dollar-on-the-blockchain-calls-for-bitcoin-unity/
https://en.wikipedia.org/wiki/Gresham's_law

Chapter 1 ■ Bridging the BloCkChain knowledge gap

7

fiat currencies issued by central banks have an awful historical record, demonstrably
prone to bubbles, depressions, and manipulation. Can cryptocurrency ever be real
money, and will it be better than the money to which we are accustomed?

The Path to Better Money
Today, Bitcoin (denoted by the ticker symbol BTC) is used by people, governments, and
corporations to transfer value and buy products or services. Each time they send bitcoins,
they pay a small fee to the network, which is denominated in bitcoins. Ether, denoted by
the ticker symbol ETH, can be used similarly. To understand the path forward, you need
to know a few things.

First, ether has another use: it can pay to run programs on Ethereum’s network.
These programs can move ether now, or in the future, or when certain conditions are met.

Because of its ability to pay for the execution of transactions in the future, ether can also
be considered a commodity, like fuel for the network to run applications and services. So it
has an additional dimension of intrinsic value over bitcoins; it is not just a store of value.

Today, the overwhelming usage of fiat currencies might suggest that
cryptocurrencies are worse money—that is, more prone to worthlessness in the long run.
And yet, bitcoins and ether are famously hoarded by holders, and even held in a trust by
at least one company as of this writing: Grayscale, a subsidiary of Digital Currency Group.
Meanwhile, central banks in the West experiment with near-zero interest rates and
quantitative easing, also known as money printing, in ever more dangerous and desperate
attempts to keep inflation and deflation in check.

With the bitcoin reward halving every four years, global monetary policy woes, general
economic uncertainty, and waning confidence in fiat currencies, huge amounts of latent
“hoarded” cryptocurrencies are being drawn into the market by higher prices to service
genuine demand. This is reflected in the ever-increasing prices of most cryptographic tokens,
however volatile their prices intraday. This balancing act between hoarders, speculators, and
spenders creates a thriving and healthy marketplace for cryptocurrency, and suggests that
cryptotokens as an asset class are already serving the purposes of money, and much more.

Cryptoeconomics and Security
One reason to bring up currencies and commodities in the discussion of smart contracts
is to train yourself to think in terms of building economic systems in pure software. That’s
the promise of Ethereum.

The design of software systems with game theoretic rules constitutes the emerging
field of cryptoeconomics, which we will discuss alongside the technical lessons in this
book. What may seem simple at first—an equity coin, for example—creates worlds of
complexity when rendered in code. In fact, what makes systems like Ethereum and
Bitcoin so secure is that they are not based on any hack-proof technology but rather rely
on powerful financial incentives and disincentives to keep malefactors at bay.

These are attractive value propositions that every engineer and software designer
should be excited about. But bootstrapping currency (or scrip) coins is an altogether
separate, added challenge to getting people excited about end-user applications. This
book addresses both halves of the challenge.

Chapter 1 ■ Bridging the BloCkChain knowledge gap

8

And although the most obvious applications of this software might be found in
financial services, future applications may also use the same levers—trust, transactions,
money, and scripting—for entirely other purposes. Just as the command line eventually
led to a GUI and now virtual reality (VR) applications, it’s up to you to decide what to
create with Ethereum. But we’ll discuss some examples anyway.

Back to the Good Old Days
It’s true that Bitcoin and Ethereum add a bit of complexity—economics—to writing
software programs. But they are also simpler in some ways; working with decentralized
protocols is similar to working with computers of the 1970s. They were enormous and
expensive shared resources, and individuals could rent time on these machines from a
university or corporation that owned one. The Ethereum network functions as one large
computer which executes programs in lockstep; it is a machine which is “virtualized” by
a network of other machines. Being composed of many private computers, the Ethereum
Virtual Machine (EVM) itself can be said to be a shared computer which is ownerless.

Changes to the EVM are achieved through hard forking: persuading the entire
community of node operators to upgrade to a new version of the Ethereum software.
Changes to the network can’t simply be pushed by the core development team. They
involve a political process of persuasion and exposition. This ownerless configuration is
meant to maximize uptime and security, while minimizing the incentive for subterfuge.

Cryptochaos
At this point, your head might be spinning. Don’t worry—all this information will make
more sense when you dive into the specifics in later chapters. Still, never fear: everybody
who looks at blockchain development for the first time feels overwhelmed. It’s a new
technology, things are changing rapidly, and expertise in decentralized systems is rare.

Nobody knows what’s coming next, but it’s clear the technology is working—to the
tune of over $26 billion USD (as of this writing), which is roughly the market capitalization
of all cryptocurrencies combined. Retailers big, small, online, and offline are beginning to
accept payments in digital coins. (Note that unless otherwise specified, all dollar amounts
are denominated in US dollars.)

So, even if you’ve never programmed before, don’t stop here. The Ethereum project
is built with new developers in mind, and gives you the tools to create unheard-of
solutions to age-old problems. It’s up to you to figure out what to build with this powerful
new toolset. How to build it, and why you should learn blockchain development are the
subjects of the rest of this book.

The Power Is in the Protocol
In today’s technology industry, the application layer rules: it’s where all the user data
lives. Multibillion-dollar companies such as Google, Facebook, and Twitter have built
enormous infrastructure to support international user groups. All on top of Transmission
Control Protocol/Internet Protocol (TCP/IP), Hypertext Transfer Protocol (HTTP), Simple
Mail Transfer Protocol (SMTP), and a handful of other protocols.

Chapter 1 ■ Bridging the BloCkChain knowledge gap

9

In Ethereum, as in Bitcoin, the application layer is thinner, at least so far, because the
protocol gives you a lot. In fact, many Bitcoin-based companies to date are fairly minimal
layers on top of what is already an incredibly effective payments network.9

 ■ Note Market capitalization is a measure of the value of an organization or ecosystem.
it is calculated by multiplying the price of one share of the equity for example, one ether)
by the number of shares in circulation. Market cap is widely cited as an indication of
cryptocurrency adoption; however using monetary base might be more appropriate. the
monetary base is the total amount of a currency circulated by the public, or held in reserve
by institutions that use the currency.

As a result, the Bitcoin startup explosion that so many venture capitalists anticipated
just five or six years ago never came. Instead, the Bitcoin industry went quickly into
consolidation.10 But the market capitalization of Bitcoin as a network has ballooned to
almost $19 billion in less than a decade. The market cap of Ethereum is about $1 billion.
This is an unprecedented, fast new way to bootstrap a new network protocol.11

Traditional web applications are costly in large part because they must be
engineered to store and exchange user data, and thus must have systems in place to
isolate bad actors in order to elicit trust. Many private data centers operate behind
bomb-resistant defensive landscaping and layers of razor wire. When the security offered
by these layers of private infrastructure can be exceeded by a secure decentralized
network, the operators of online businesses experience drastically lower overhead costs,
which they can pass on to customers to disrupt legacy players. Blockchain-based apps
and services are disruptive not only because of their secure nature, but because of how
economical they can be to operate at scale.

You Can Build Trustless Systems
Once you learn the Solidity language, you will quickly get to wondering what kind of programs
you can write—and that is where the real learning curve sets in. The goal of the projects in this
book is to show exactly how, and where, blockchains can improve or automate the end-user
experience of all sorts of businesses, and enable the creation of new kinds of products and
services. You will see how the banking products and services we know today, which evolved
over a thousand years of trial-and-error, can change, benefit, or be brought to scale
by trustless distributed or semidistributed systems. Trustless is used in this context to mean

9USV Blog, “Fat Protocols,” www.usv.com/blog/fat-protocols, 2016.
10Daily Fintech, “Bitcoin Market Going into Consolidation Before Product Market Fit,” https://
dailyfintech.com/2016/02/03/bitcoin-market-going-into-consolidation-before-
product-market-fit/, 2016.
11Coinbase Blog, “App Coins and the Dawn of the Decentralized Business Model,” https://
medium.com/the-coinbase-blog/app-coins-and-the-dawn-of-the-decentralized-
business-model-8b8c951e734f#.cweqnimd2, 2016.

https://www.usv.com/blog/fat-protocols
https://dailyfintech.com/2016/02/03/bitcoin-market-going-into-consolidation-before-product-market-fit/
https://dailyfintech.com/2016/02/03/bitcoin-market-going-into-consolidation-before-product-market-fit/
https://dailyfintech.com/2016/02/03/bitcoin-market-going-into-consolidation-before-product-market-fit/
https://medium.com/the-coinbase-blog/app-coins-and-the-dawn-of-the-decentralized-business-model-8b8c951e734f#.cweqnimd2
https://medium.com/the-coinbase-blog/app-coins-and-the-dawn-of-the-decentralized-business-model-8b8c951e734f#.cweqnimd2
https://medium.com/the-coinbase-blog/app-coins-and-the-dawn-of-the-decentralized-business-model-8b8c951e734f#.cweqnimd2

Chapter 1 ■ Bridging the BloCkChain knowledge gap

10

“not requiring faith that counterparties will operate honestly and without failure, thus
impervious to fraud and other counterparty risks.”

There is already some good information on the Web about Ethereum and Solidity for
software developers looking to get started. However, if you’ve read these docs, you were
probably left with more questions than answers. Next, we’ll clarify some jargon.

What Smart Contracts (Really) Do
Even in just these first few pages, you may have encountered some wildly new concepts.
But there’s one term which will continue to pop up in Ethereum, and that is the notion
of a smart contract: some business logic that runs on the network, semi-autonomously
moving value and enforcing payment agreements between parties.

Smart contracts are often equated to software applications, but this a reductive
analogy; they’re more like the concept of classes in conventional object-oriented
programming. When developers speak of “writing smart contracts,” they are typically
referring to the practice of writing code in the Solidity language to be executed on the
Ethereum network. When the code is executed, units of value may be transferred as easily
as data. As stated in this chapter already, the promise of digital money is immense. But
how does it work, exactly? How can data act like money in a decentralized system?

The answer to that question depends on how technical you are. So let’s take a fairly
in-depth example.

Objects and Methods for Value
In computing, an object is usually a little chunk of data—information—encapsulated in a
particular structure or format. Often this data has associated instructions called methods
indicating how the object can be used or accessed. Now let’s imagine the information
held in this object is valuable to someone, and this person would be willing to pay to
trigger a method which displays it.

In the example below, let’s imagine a user wants to pay a small fee to use a cake
recipe he or she discovered online. This recipe is the data object in our example. At the
most literal level, the characteristics of the cake object, called attributes, are stored along
with the methods at a certain address in the computer’s memory.

The object below represents the attributes of a cake, and contains a method whereby
the computer can display instructions for how to combine these ingredients to make
the cake. Storing the information in this way makes it easy for the program and the
programmer to swap in and out the attributes without needing to change the code for the
display instructions. In other words, objects are modular chunks of information which
can be combined and recombined to suit. This will be important to remember in later
chapters when we discuss the anatomy of the blocks that comprise the blockchain. In
JavaScript, you can write a cake object as follows:

var cake = {
firstIngredient: "milk",
secondIngredient: "eggs",

Chapter 1 ■ Bridging the BloCkChain knowledge gap

11

thirdIngredient: "cakemix",
bakeTime: 22
bakeTemp: 420

mixingInstructions: function() {
return "Add " this.firstIngredient + " to " + this.secondIngredient +
" and stir with " + this.thirdIngredient + " and bake at " + bakeTemp +
" for " + bakeTime + " minutes." ;
}
};

This is an example of how computers “move” data around to display useful results
to their human users. In Ethereum, you can write functions that send money around, just
as this little object’s method called mixingInstructions, when executed, can display the
mixing instructions for a cake.

Just Add Commerce
As you’ll see in Chapter 4, Solidity code can be used on the back-end of an application
to add micro-payments, user accounts, and functionality to even simple computer
programs, without the need for third-party libraries or advanced programming
know-how.

Imagine for a moment that the mixingInstructions function cost a few cents in
ether to execute. After the price of the cake recipe is deducted from the user’s Ethereum
wallet balance—which takes a few seconds, on average—your smart contract would call
the mixingInstructions method and show the user how to make the cake. All this can be
done without authentication, payment APIs, accounts, credit cards, extensive web forms,
and all the typical work that comes with building an e-commerce application. In fact, all
your JavaScript application needs to interact with the global public Ethereum chain is that
software library mentioned earlier, Web3.js.

Content Creation
So far in this chapter, we’ve focused on the pecuniary uses of ether, but the cake recipe
example showcases another big area of potential for Ethereum: intellectual property,
licensing, and content royalties. Today, selling content on the Web or through apps
means dealing with powerful distributors including Apple, Google, and Amazon, who
make punitive rules about selling digital content and levy large fees.

Ethereum makes it possible to facilitate microtransactions whereby a user pays
only, say, $0.25 for a recipe—an amount that would be impractical to pay using fee-laden
credit-card networks. There are challenges to content creators doing business this way
today, including the price volatility of the ether token, but as you’ll see in subsequent
chapters, these issues will find resolution as the network matures.

http://dx.doi.org/10.1007/978-1-4842-2535-6_4

Chapter 1 ■ Bridging the BloCkChain knowledge gap

12

Where’s the Data?
Hang on: if the network protocol provides so much functionality out of the box, and this
is a distributed system, where is the user data held? Exactly how the Ethereum network
works is the subject of the next chapter, but in the spirit of addressing nagging questions
first, here’s a quick run-down of how transactions are recorded in Ethereum: it’s all stored
on every node of the network.

All transactions in Ethereum are stored on the blockchain, a canonical history of
state changes stored on every single Ethereum node.

When you pay for computing time on the Ethereum network, this includes the cost
of running the transaction and for storage of the data included in your smart contract.
(If your contract gets smaller after executing, you’ll get a partial refund in the form of a
reduced transaction fee.)

As soon as you execute your smart contract and the fees are paid from your ether
balance, that data will then be included in the next block. Because the Ethereum network
requires all nodes to keep a full state database of all contracts, any node can query the
database locally. If this sounds unscalable, you are paying good attention. Ethereum
versions 1.5 and 2.0 define a roadmap that addresses this scalability issue.

We’ll get deeper into how the Ethereum blockchain works in the next chapter.

What Is Mining?
Because a distributed system has no single owner, machines are free to join the Ethereum
network at will and begin validating transactions. This process is known as mining. But to
what end?

Mining nodes confer to arrive at a consensus about the order of transactions across
the system, which is necessary to tabulate everyone’s account balances on the fly, even as
many transactions pass through the network. This process consumes electricity, which
costs money, and so miners are paid a reward for each block they mine: about 5 ether.

Ether and Electricity Prices
Miners are paid this ether for mining, and also for running scripts on the network (in
the form of gas, which will be explained later). The cost associated with electricity
expenditure of servers running on the Ethereum network is one of the factors that gives
ether, as a cryptocommodity, its intrinsic value—that is, someone paid real money to
their electricity company to run their mining machine. Specialized mining rigs, which use
arrays of graphics cards to increase their odds of completing a block and getting paid, can
run up electricity bills anywhere from $100 to $300 a month per machine, depending on
rates in your area.

Mining is fundamental to both Bitcoin and Ethereum, and in principle works
similarly in both networks, with a few caveats. Ethereum has revised the paradigm here
too, especially around the issuance of ether. How exactly this works is the subject of
Chapter 5.

http://dx.doi.org/10.1007/978-1-4842-2535-6_5

Chapter 1 ■ Bridging the BloCkChain knowledge gap

13

Going Inside the EVM
The goal of this book is to teach programmers and product owners how the Ethereum
Virtual Machine (EVM)—the name for the system just described—can be programmed, and
to what ends. It is written in a way that should make sense to both financial and technical
thinkers, so that developers and domain experts can more easily arrive at a common
understanding of what they should build together, and which tools are right for their
project. But first we’ll need to spend some time on the basics of using and holding ether.

 ■ Note if you’re not sure what a virtual machine is, don’t worry; it will become apparent
later. For now, you can think of it as a computer comprising many other computers.

The Mist Browser
At this stage, deploying applications is still difficult, but there are ways to prototype smart
contracts simply, with just the Solidity scripts. To do this, you’ll use the native Ethereum
browser, nicknamed Mist. This browser also holds your ether. Chapter 2 covers more
about wallets, browsers, command-line tools, and blockchain explorers, but first a note
on terminology.

Browser vs. Wallet or Keychain
Mist is sometimes referred to as a wallet, a term borrowed from Bitcoin parlance. Why are
Bitcoin applications called wallets? Not because they hold your money, although wallet apps
do let you send and receive payments. These applications, when installed on your phone, are
issued cryptographic keys that allow you to read and write data to a decentralized database.
So although keychain might be a better metaphor, wallet is the term we got.

If you want to jump ahead and check out Mist, you’ll find the download for Mac,
Windows, and Linux on the Ethereum GitHub project: https://github.com/Ethereum/
mist/releases.

With Mist and the Ethereum command-line tools, sample contracts can be tested with
fake ether to ensure that you don’t lose any real money while debugging. And although
doing this feels a bit primitive if you’ve used modern development environments, it’s a great
starting point for less-technical learners, because it forces them to learn about networking
and low-level computer systems just to make a simple demo app.

Solidity Is Kind of Like JavaScript, But …
Written in a vacuum, much of Solidity is intuitive for anyone familiar with JavaScript,
Java, or C languages. Although Ethereum applications aren’t hosted on any single server,
the guts of an Ethereum app are a series of (relatively) simple smart contract files that
look like JavaScript. You create them locally before deploying them to propagate around

http://dx.doi.org/10.1007/978-1-4842-2535-6_2
https://github.com/Ethereum/mist/releases
https://github.com/Ethereum/mist/releases

Chapter 1 ■ Bridging the BloCkChain knowledge gap

14

the whole network to be hosted in a decentralized manner. In this sense, Ethereum
development combines both networking, app hosting, and databasing into one.

Like many new technologies, deployment of these systems is challenging. We’ll
talk about some ways to make it easier. But after creating your first minimally functional
application, you’ll quickly hit the fun part: imagining what new applications and systems
are possible with your new skills.

What Ethereum Is Good For
Ethereum is suited to building economic systems in pure software. In other words, it’s
software for business logic, wherein people (users) can move money (data representing
value) around with the speed and scale that we normally get with data.12 Not the three-
to seven-day floating period you get with the commercial banking system. Or the fees
associated with vendors such as Visa, MasterCard, and PayPal. With a simple Ethereum
application, for example, it is fairly trivial to pay hundreds of thousands of people, in
hundreds of countries, small amounts every few minutes, whereas in the legacy banking
system you would need an entire payroll department working overtime to constantly
rebalance your account ledgers and deal with the cross-border issues.

A Critical Take
If you’ve looked at the marketing for Ethereum, you probably have a slightly more
dramatic vision of what this software can create. Here is a selection of starry-eyed
declarations about Ethereum, and the blockchain in general, with obvious and common
rebuttals.

“Without any possibility of downtime, censorship, or third-party
interference”
If you aren’t familiar with the world of open source development, then the way the
codebase is governed will appear obscure at first. Even though the Ethereum protocol
was written by a small group of core developers, many classes of stakeholders must
cooperate to change the way the network functions, now that it is up and running. As the
network grows, these so-called hard forks will become less feasible and less necessary,
and therefore less frequent. Remember, the Ethereum network is not yet complete. It is
operational today, but will not be complete until sometime in 2019. Funds for continued
development are endowed to the Swiss nonprofit Ethereum Foundation.

12Ethereum Blog, “The Business Imperative Behind the Ethereum Vision,” https://blog.
Ethereum.org/2015/05/24/the-business-imperative-behind-the-Ethereum-vision/, 2015.

https://blog.ethereum.org/2015/05/24/the-business-imperative-behind-the-ethereum-vision/
https://blog.ethereum.org/2015/05/24/the-business-imperative-behind-the-ethereum-vision/

Chapter 1 ■ Bridging the BloCkChain knowledge gap

15

“A secure, free, and open platform for the Internet of Things”
Machines may be the executors of many smart contracts, so the thinking goes. Let’s say
you wander into a neighborhood you’ve never been to, and you lose your cell signal. Your
phone might automatically “rent” some time off a nearby femtocell in another network,
and pay the router a tiny fee, all without needing to ask your permission. The price and
speed might be variables in a smart contract authored by the router, almost like a service-
level agreement (SLA) that can move money when you agree to it.

“Enabling transparent governance for communities and
businesses”
Okay, this one is tricky: transparent companies are a likely outcome. But decentralized
autonomous companies (alternately referred to as DAOs or DACs) are probably a long
way off. The term used in this book is the one the industry seems to be settling on:
decentralized organization, or DO. Progress in this area is tricky. Governance by way of
cryptographic instrument is subject to all the same manipulations that have plagued
democracies for ages. Is one vote one wallet address? Well, who gets a wallet address?
If a coin is a vote, do rich people rule? That conversation is mostly outside the bounds
of this book, but anyone selling you on the concepts of fully autonomous organizations,
corporate or governmental, probably also has a bridge you might be interested in.

“Handles user authentication and secure payments for you, as
well as messaging and even decentralized storage”
This one will be fully true when Ethereum is further along its roadmap. User
authentication and secure payments are indeed in the box when you connect to the
Ethereum blockchain, but peer-to-peer communication and decentralized storage (itself
a nascent segment of blockchain software businesses) is presently available with only
third-party integrations. However, the Ethereum roadmap does include these elements
as planned under the names Swarm and Whisper. Both are currently available in limited
experimental versions.

“No need to sign up or pay for application host; the world’s first
zero-infrastructure platform”
Technically true, but time is money, and as we discuss hosting and deployment, it will be
clear that free and straightforward might be mutually exclusive terms in this new software
world.

State of Smart Contract Development Today
Few sample projects for Solidity development are available today. If you’re thinking about
deploying a full end-user application, you won’t have much competition. Yet.

Chapter 1 ■ Bridging the BloCkChain knowledge gap

16

However, most of the power of the blockchain is in creating applications enabling
users to make transactions: buying, selling, licensing, trading, streaming, and so forth.
This means people need to be holding some ether, or a native coin belonging to your
project. The circulation and availability of such a native coin is called its liquidity. High
liquidity can also lead to more-stable prices in a currency and has network effects.

Often, entrepreneurial-minded developers will attempt to bootstrap their coins into
circulation to achieve the benefits of liquidity. Indeed, the EVM and ether work exactly
this way. The Ethereum Foundation was crowdfunded to the tune of $18 million upon
launch in 2014. Contributions paid in bitcoins were returned in ether, and a community
was born.

Copycat Coins
Alt-coins are Bitcoin copycats that use the Bitcoin codebase. There can be legitimate
reasons to start an alt-coin; they’re not always attempts to brute-force a user base into
existence.

Ethereum retains many of the underlying concepts of Bitcoin, but can be considered
an altogether new network, as its key components are different.

Funding Your Project
Crowdfunding is one way for entrepreneurs to combat the pain and expense of live beta
testing and fundraising, by selling early access to a product or service to prospective
users. In cryptocurrencies, this is called a token launch. Some companies have adopted
the term initial coin offering (ICO), because it sounds like the Wall Street term initial
public offering (IPO). However this term is misleading, as tokens do not always represent
equity. This holds for both ether and bitcoins, which do not represent equity in anything.

If you’re thinking of raising money to fund your Ethereum project, you don’t need
to fly by night. Asset managers and executives are quickly waking up to the power of
this technology, and whether you are looking for employment, investment, or business
development, it’s out there (or will be soon). Look for local Bitcoin or Ethereum events on
Meetup (www.meetup.com) to find other cryptoenthusiasts and form a team.

Deciding Where You Fit In
In addition to covering the technical aspects of Ethereum, this book presents a wider
array of contextual information that can help you decide how Solidity programming and
distributed applications should fit into your career. This book also aims to identify new
vectors for innovative thinking about software.

One example is longevity. In legacy web services, uptime depends on whether
developers have paid their hosting bills and maintained their servers. As a result, few
people build software applications meant to execute commands in, say, 30 years.

The Ethereum network is also a fully redundant distributed database, with copies
on every node. That means you can trust your application to fire off a call when a certain
condition is met, even if that condition happens decades into the future—and even if the
nodes have all changed.

http://www.meetup.com/

Chapter 1 ■ Bridging the BloCkChain knowledge gap

17

The removal of the old constraints of software and banking, and the introduction of
new ones, are constant themes in every chapter ahead.

A Note to New Programmers
Knowing how the existing monetary, banking, and insurance systems work will be of
enormous advantage when imagining applications for Ethereum. If you can combine that
with some technical knowledge, all the better.

 ■ Note You don’t have to dog-ear the Urls or references in this book. You’ll find up-to-
date links for all the citations in this book, indexed by chapter, at http://eth.guide.

So even if you’re not a programmer, and you don’t intend to become one, follow
along in the sections that discuss code anyway. It will help you grasp the limits of what’s
possible. And if you do decide to learn Solidity programming from scratch—having never
programmed—this book’s lessons are accessible to you, too.

In some ways, learning Ethereum development may be easier and more intuitive
than learning web development from scratch.

Ethereum Is Free and Open Source
Ethereum can be forked and replicated into other systems that remain compatible. In the
future, it may even be possible for coins to be transferred from chain to chain. Although
this is far from a straightforward process, academic papers about how it may be done are
already emerging.

It’s worth noting, for the nonprogrammers reading, that free and open source are not
synonymous. Open source is a methodology for creating software; freedom is a social
construct. According to the GNU Foundation, “When we call software free, we mean that
it respects the users’ essential freedoms: the freedom to run it, to study and change it, and
to redistribute copies with or without changes.”13

The EVM Is Here to Stay
As you’ll see, Ethereum has an ambitious roadmap and even more ambitious goals.
Whether it develops as the core development team plans, its lasting contribution to
blockchain development may be the EVM. The Solidity language may become one of
many that compile down to EVM bytecodes.

Solidity itself will no doubt grow and change, and it’s far from perfect or complete
today. But it allows us to build and test use cases for cryptocurrency now, in ways which
arguably would happen slower in the Bitcoin community.

13GNU Foundation, “Why Open Source Misses the Point of Free Software,” www.gnu.org/
philosophy/open-source-misses-the-point.html, 2016.

http://eth.guide/
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/open-source-misses-the-point.html
https://www.gnu.org/philosophy/open-source-misses-the-point.html

Chapter 1 ■ Bridging the BloCkChain knowledge gap

18

In short, Ethereum seeks to create a system in which economic models can be tried
and proved. For the time being, Solidity looks poised to become the de facto language of
such models, as long as they are run on a global virtual machine such as the EVM.

What You Can Build Today
Enough talk about potential; what is possible today? Quite a lot, but let’s break things
down into two categories: private and public. So far, Ethereum has been described
both as a single public blockchain, and a protocol for the creation of many blockchains.
Understanding the potential in different domains (and how it might manifest) is mostly
a question of understanding how the public chain differs from private Ethereum chains,
deployed by corporations or other silo’d communities.

Private and Public Chains
Because anyone can fork the Ethereum project, it’s possible to “make your own
Ethereum” rather than building on the public chain. This is called a private blockchain,
and like Bitcoin’s alt-coins, it represents a duplication of effort by the existing Ethereum
development community.

As you’ll discover by the end of this book, private chains are generally a terrible
way to do things for a startup product or service, but that hasn’t stopped some
companies from trying to launch one. Instead of reinventing the wheel, a better idea for
entrepreneurs is to build on top of the public Ethereum chain.

As you’ll see, the public chain has a lot of computing power dedicated to its security,
making it fairly turn-key for small companies to launch large-scale secure web services.
However, the public Ethereum blockchain today is entirely public, and some corporations
may choose to keep their sensitive transactions on a private chain, which has some bridge
to the public chain. In an enterprise software context, where corporate stakeholders are
given certain rights and privileges to read and write to the company chain, the deployment
is known as a permissioned blockchain. For permissioned blockchains, wallet addresses are
typically issued by a trusted third-party who verifies your permission to enter the system, just
the way an office building’s security pass allows you to transact inside the building. By the
same metaphor, the public chain would be considered a city park or other common space.

The positive correlation between a blockchain’s scale and its trustworthiness will
become apparent in later chapters. However, we will walk through the setup of private
chains in Chapter 9 to gain a better understanding of the similarities between blockchains
and databases.

In both public or private Ethereum chains, you can do the following:

•	 Send and receive ether

•	 Write smart contracts

•	 Create provably fair applications

•	 Launch your own token based on ether

Each is described in the following subsections.

http://dx.doi.org/10.1007/978-1-4842-2535-6_9

Chapter 1 ■ Bridging the BloCkChain knowledge gap

19

Send and Receive Ether
You can send and receive ether, though on a private chain you have private ether that’s a
value-less scrip. Anyone can get a public Ethereum wallet address by downloading the Mist
wallet, which we’ll cover in the next chapter. Alternatively, mobile wallet applications are
available in both the iOS App Store and Google Play. In order to trade dollars for ether, you
need to join a cryptocurrency exchange, or buy from a commercial money transmitter such
as Coinbase. Most people simply buy bitcoins (which are more widely available in ATM
form, and also through the LocalBitcoins.com cash dealer network) and convert them to
ether via an exchange or via a cryptomoney-changing service such as ShapeShift.io.

Write Smart Contracts
You can control payments and transfers between accounts (and even between other
contracts) even if they have lots of contingencies, or extend far in the future and across
national borders. The true potential here rests on how unstoppable the public chain
really is, and that depends on who is participating and how many bad actors come
into the system. Alternately, private chains may allow groups with resources the same
functionality, just privately.

Create Provably Fair Applications
Creating provably fair applications is especially important for gaming and gambling.
Expect video games and virtual reality games to introduce points that represent real
money and can be spent in the real world.

Launch Your Own Token
In practical terms, rolling your own token is something like spinning up a system of user
accounts.

With an Ethereum token contract, you can create a subcurrency for use in a private
transaction ledger, accessible to only you and your private group, but that uses the public
chain in all other ways—forgoing the need to fork or maintain your own network of
mining machines. This is convenient, and a superior approach for most developers and
organizations. The dynamics of tokens and chains will become clearer in Chapters 5 and 9.

The Promise of Decentralized Databases
Like all databases, a blockchain has a schema: rules define, constrain, and enforce
relationships between entities. Motivations to break or alter these relationships can be found
across industries, leading to bribery and corruption, and making blockchain’s trustless
qualities even more attractive to business than prior generations of software and networking.14

14Nesta.org.uk. “Why you should care about blockchains: the non-financial uses of blockchain
technology,” http://www.nesta.org.uk/blog/why-you-should-care-about-blockchains-
non-financial-uses-blockchain-technology, 2016.

http://dx.doi.org/10.1007/978-1-4842-2535-6_5
http://dx.doi.org/10.1007/978-1-4842-2535-6_9
http://www.nesta.org.uk/blog/why-you-should-care-about-blockchains-non-financial-uses-blockchain-technology
http://www.nesta.org.uk/blog/why-you-should-care-about-blockchains-non-financial-uses-blockchain-technology

Chapter 1 ■ Bridging the BloCkChain knowledge gap

20

In all databases, shared read/write access creates enormous complexity. Machines
all over the world may experience varying latency, depending on where the database is
physically located, leading to some write operations arriving out of order. This gets even
more difficult if several parties are supposed to equally share a database; for example,
several companies forming an industry trade group. This has made it extremely expensive
for large organizations to enable shared read/write status with other organizations, and
today, the leaking of customer information is all too common.

Today, corporate IT departments have found ways of mostly making sure these
systems work as planned. But as they scale, the opportunity for malfeasance becomes too
large for some bad actors to ignore.

What’s Next: New Ways of Working
In September 2016, thousands of employees of Wells Fargo bank were fired for
manipulating account databases to juke sales numbers and trigger bonuses intended
to reward salespeople opening new accounts.15 The costs of those errors in judgement
will be enormous, as will the cost of building software that can somehow prevent
administrators from making erroneous changes. Ethereum represents a new opportunity
for businesses and consumers to interact in a more trustworthy milieu than the
application data layer that has been built on the HTTP web today.

Summary
In this chapter, you learned that Ethereum offers another approach to building software,
one in which security and trust are baked in at the protocol level. This may have a
substantial global impact. As the world digitizes, large-scale systems become increasingly
mission-critical for all kinds of organizations—not just in banking and insurance, but also
in city services, retail, logistics, content distribution, journalism, apparel manufacturing,
and any other industry that has provenance or payments in play.16

Next, you’ll get hands-on with Ethereum by creating keys to access the Ethereum
blockchain through programs known as clients. The next chapter covers using Ethereum
client apps for Windows, macOS, Linux, iOS, and Android.

15CNN Money, “5300 Wells Fargo Employees Fired Over 2 Million Phony Accounts,” http://
money.cnn.com/2016/09/08/investing/wells-fargo-created-phony-accounts-bank-fees/,
2016
16Daily Fintech, “How Blockchain Technology Could Integrate Financial & Physical Supply
Chains and Revolutionize Small Business Finance,” https://dailyfintech.com/2016/06/14/
how-blockchain-technology-could-integrate-financial-physical-supply-chains-and-
revolutionize-small-business-finance/, 2016.

http://money.cnn.com/2016/09/08/investing/wells-fargo-created-phony-accounts-bank-fees/
http://money.cnn.com/2016/09/08/investing/wells-fargo-created-phony-accounts-bank-fees/
https://dailyfintech.com/2016/06/14/how-blockchain-technology-could-integrate-financial-physical-supply-chains-and-revolutionize-small-business-finance/
https://dailyfintech.com/2016/06/14/how-blockchain-technology-could-integrate-financial-physical-supply-chains-and-revolutionize-small-business-finance/
https://dailyfintech.com/2016/06/14/how-blockchain-technology-could-integrate-financial-physical-supply-chains-and-revolutionize-small-business-finance/

21© Chris Dannen 2017
C. Dannen, Introducing Ethereum and Solidity, DOI 10.1007/978-1-4842-2535-6_2

CHAPTER 2

The Mist Browser

In the realm of cryptocurrency software, there are
generally two essential types of client applications:
wallets and full nodes

 ■ Note Wallet usually denotes a lightweight node that connects to a blockchain to
perform basic functions, such as sending and receiving cryptocurrency. Full nodes are
command-line interfaces that can perform the full gamut of operations allowed by the
network.

As we covered in the last chapter, Ethereum can refer to both the Ethereum protocol and
the Ethereum network created by computers using the protocol. Operating a node on the
network allows you to upload smart contracts. For sending and receiving cryptocurrency
(in our case, ether) all you need is a wallet application for your computer or smartphone.

Ethereum has several client applications that are discussed in this book. The most
useful (for most readers) is the Mist browser, a user-friendly wallet that can perform some
of the duties of a full node—namely, executing smart contracts.

Eventually, entire web-app-like programs will be accessible through Mist, with
their back ends built on Ethereum; that’s why it’s called a browser. Don’t be fooled by
Mist’s simplicity. Today, it’s useful for sending and receiving the ether cryptocurrency.
But tomorrow, it may also be a distribution point for consumer and enterprise software
applications, almost like an App Store.

 ■ Note The term currency, as in cryptocurrency, refers to a fungible unit of value for
the system, much like a token, or scrip. What exactly these little tokens represent will
become clear later in this chapter. The term fungible, applied to a currency, means
“mutually interchangeable.” In fiat currency terms, one dollar can be said to be fungible
for another dollar.

ChapTer 2 ■ The MIsT BroWser

22

In this chapter, you’ll learn how to access the network by using Mist and other
applications, in order to understand the basics of sending and receiving ether tokens
between accounts. Subsequent chapters break down how the system works and how to
program smart contracts for it.

Wallets as a Computing Metaphor
Wallets are software applications for desktop or mobile devices that hold your keys
to the EVM. These keys correspond to an account, which is referred to by a long
account address. In Ethereum, accounts do not store your name or any other personal
information. They are pseudonymous. Anyone can generate an Ethereum account by
connecting to the network with any Ethereum client (such as Mist). You can generate as
many as you’d like.

If you’ve already downloaded an Ethereum wallet or full node on your computer
or phone, you were probably prompted to create an account. The wallet application
probably also asked you to create a password to protect your keys with encryption. As you
can gather, these keys are an important part of sending and receiving ether.

Let’s begin by looking at your account address, also called a public key. Your public
key has a matching private key that allows access to your account. This private key should
be kept secret and not published anywhere.

Accounts in both Bitcoin and Ethereum are represented by long hexidecimal
addresses. An Ethereum address looks like this:

0xB38AA74527aD855054DC17f4324FE9b4004C720C

In the Bitcoin protocol, the raw hexidecimal address is encoded in base 58 with
a built-in version number and checksum, but underneath looks just like an Ethereum
address. Here’s an example of a Bitcoin address:

1GDCKfdTo4yNDd9tEM4JsL8DnTVDw552Sy

To receive ether or bitcoins, you must give the sender your address, which is
why it’s called a public key. Of course, these strings are not memorable. If you’re new
to programming, you might be wondering what’s going on here; why the unwieldy
alphanumeric mess? Experienced programmers may already know that these public and
private keys are part of asymmetric key cryptography.

Your Address Is What?
Why do account addresses—which are meant to be public, and which some people
even list on their web sites—consist of such long, cryptic strings? Why can’t we just have
usernames?

The answer is that someday soon you probably will be able to generate plain-English
usernames, but they’ll function more like top-level domain names today. You’ll rent a
name from a decentralized network registrar, and it will redirect to your real account
address, much the way that top-level domains redirect to IP addresses today.

ChapTer 2 ■ The MIsT BroWser

23

A lot of plans for the Ethereum network are in the pipeline that will eventually
replicate the niceties of today’s HTTP Web as we know it. To learn more about the
Ethereum roadmap, skip to Chapter 11.

 ■ Note an account is a data object: an entry in the blockchain ledger, indexed by its
address, containing data about the state of that account, such as its balance. an address is
a public key belonging to a particular user; it’s how users access their accounts. In practice,
the address is technically the hash of a public key, not the public key itself, but for simplicity,
it’s better to ignore this distinction.

In the EVM, asymmetric cryptography is used by the network to generate and
recognize valid Ethereum addresses, and also to “digitally sign” transactions. In secure
communications, asymmetric cryptography is used to encipher private communications,
so that even if they are intercepted by enemies, they remain unreadable. In blockchain
the principle works the same; it’s a method for ensuring that messages (in the form
of EVM transaction requests) are coming from the actual address holder, and not an
interloper trying to hijack their funds.

Where Is My Ether?
It’s important to note that ether is not contained in any particular machine or application.
Your ether balance can be queried, and ether sent or received, by any computer running
an Ethereum node or wallet. Even if the computer where your Mist wallet lives gets
destroyed, never fear: all you need is your private key, and voila, you can access your
ether from another node.

However, if you hand over your private keys to someone else, that person can access
the EVM and pull your money out without you ever knowing. As far as the network is
concerned, anyone with your private key is you.

Because the EVM is a global machine, it has no way of knowing which node you’ll
create a transaction from. Unlike today’s web apps, Ethereum does not look for a
“trusted” computer; it doesn’t know your phone from any other phone. If this seems
unusual, think of it like a bank ATM system, which provides account access for anyone
holding your debit card number and your four-digit pin.

As mentioned in Chapter 1, losing your phone or computer to theft or destruction
does not mean you lose your money, provided the following are true:

You have backed up your private key.

You didn’t give your private key to anyone else.

Backing up a private key is as simple as copying and pasting it into a text file, and
saving it on a USB stick. Or writing it down on paper. You’ll find more private-key backup
methods later in this chapter.

http://dx.doi.org/10.1007/978-1-4842-2535-6_11
http://dx.doi.org/10.1007/978-1-4842-2535-6_1

ChapTer 2 ■ The MIsT BroWser

24

The Bank Teller Metaphor
In a way, using a wallet or full node is like getting behind the bank teller’s desk and being
in control of your own money. Not in the sense that you can get paper cash, but in the
sense that a bank teller controls a node within the bank’s computer system that can execute
transactions in a global database of transactions. A teller controls the bank’s database,
which connects to other bank databases.

In conventional banking, by extension, a paper check is a written instruction for the
bank teller to make a transaction using the bank’s computer system. On the check is your
account number and a routing number. (We’ll talk more about the conventional banking
system in the next chapter.)

For now, it’s only important to point out that buildings full of people (plus vast
computing resources) are required to take your paper check, turn it into an electronic
transaction, send the transaction to another party, and then update the balances of both
parties. In cryptocurrency, this legacy banking system—a hodgepodge of human and
computer processes—is completely obviated by the use of an algorithmic consensus
engine running on a peer-to-peer computer network. Settlement and clearing of
transactions happens on the network itself within seconds (or, with bitcoin, minutes) of
the transaction being digitally signed and broadcast by a node. Thus it can be said in in
cryptocurrency transaction that “the settlement is the trade.”

In Cryptocurrency, You Hold Your Own Assets
Cryptocurrencies are different from the fiat currencies used by conventional banks, which
are centralized. Your tokens are virtual, and your balance (along with that of everyone
else who holds ether) is tabulated by the blockchain network. There is no tangible
ether or bitcoin currency, although some third parties have created “collectible” coins
preloaded with cryptocurrency.

Be extremely wary of any online service or organization that offers to hold, store,
or act as custodian of ether, bitcoins, or any other cryptocurrency. The advantage of
distributed public systems is to eliminate counterparties from transactions, and allow
entities to transact on a peer-to-peer basis. The point is, you can hold these assets
securely, without a custodian.

That said, we live in a fiat currency world. Even if cryptocurrencies are indeed the
future (and as you’ll see in this book, there is stupendous evidence they are) perhaps
several years or more will serve as a transitional period, wherein people have both a
cryptocurrency wallet and a traditional bank account.

To summarize: Do not use any wallet or online service that holds your private keys
for you. Only use applications that store your private keys on your device. Later in this
chapter, you’ll find recommendations for desktop and mobile wallets. Let’s get back to
explaining the purpose of Mist as your first gateway to the EVM.

Visualizing Ethereum Transactions
The best way for new Ethereum programmers to visualize the concept of a blockchain
is to imagine a paper transaction ledger that can be synchronized with other paper
transaction ledgers around the world.

ChapTer 2 ■ The MIsT BroWser

25

When a wallet application attempts to make a change to the database, the change is
detected by the nearest Ethereum node, which then propagates the change around the
network. Eventually, all the transactions are recorded on every ledger.

In the abstract, this works something like the polygraph machine patented by John
Isaac Hawkins in 1803. This was the first “copy machine,” although its name today is used
to refer to so-called lie-detecting devices. This duplicating machine, famously praised
by Thomas Jefferson as the finest invention of its day, is shown in Figure 2-1. Just like the
polygraph, the blockchain is an apparatus for allowing many “machines” to change the
state of a ledger in the same way, nearly simultaneously.

As mentioned previously, your address is sometimes called your public key, but a
better metaphor would be a lockbox with a unique serial number. The private key is the
only thing in this whole system that is named sensibly: it unlocks your account and allows
you to move ether out.

What is ether, exactly? It’s merely a balance in your account. When you send and
receive either, nothing is actually sent or received.

In the EVM, when one account increases, the system makes sure it’s because another
account has sent a payment, and thus decreased the same amount. It’s a closed system.
It’s practically impossible to give yourself free ether, or at least it wouldn’t be worth
the costs you’d incur trying falsify the ledger. Ethereum uses financial incentives and
disincentives for security, as you’ll see in Chapter 7.

Figure 2-1. The polygraph machine is similar to the blockchain in principle: many
machines working in concert to write similar data to similar local databases. In Bitcoin
and Ethereum, the technological innovation lies in the fact that these state changes can
come in out of order, owing to network latency, and the network can reconcile them into a
single ledger.

http://dx.doi.org/10.1007/978-1-4842-2535-6_7

ChapTer 2 ■ The MIsT BroWser

26

Breaking with Banking History
One of the most interesting facets of the Ethereum protocol is its issuance scheme, which
will be discussed later. For now, it’s only important to point out that (as with Bitcoin) no
individual has the power to create more ether. This characteristic stands in stark contrast
to the last 400 years of financial markets and central bankers, which reads like a history of
large-scale scam artists.

Since the stock-jobbing days of the late 17th century in London’s Exchange Alley,
entrepreneurs and scammers (then called stock projectors) have been selling equity
in ventures both legitimate and not. Often they would secretly issue new shares to
themselves and their confederates when the price would go up—known to Americans in
the 19th century as watering the stock.

Over time, speculating on stocks became a pastime that people of all ages and
backgrounds enjoyed on both sides of the Atlantic, and the modern stock markets
were born, with their processes and counterparties to act as middlemen who ensure
trustworthy transactions. But even with the banking regulations passed after the Great
Depression, dishonest entrepreneurs still found ways to carve out secret stock pools, or
unload the shares they had without the public knowing—only to let the business collapse
after getting their money out.

Few times in modern history have speculative bubbles wiped out as much wealth
and human progress as the crash of 1929 in the United States. However, similar
depressive episodes in the United States and Europe (including the Panic of 1873–1879)
were caused by someone, either central banks or investors themselves, messing with the
base quantity of money, equities, or bonds in a large marketplace.

How Encryption Leads to Trust
Chapter 1 breezed past any real discussion of cryptography, and focused instead on
the impact of crypto-networks. But, there’s something strange about a secure network
comprised of a bunch of strangers’ PCs working in concert. How come a single bad apple
can’t hack the network and steal everyone’s ether? To answer that question, first recall
that a blockchain uses the following methodologies:

Asymmetric cryptography

Cryptographic hashing

Peer-to-peer distributed computing

Let’s spend some time briefly talking about the first item on this list: asymmetric
cryptography, which is sometimes broadly called public-key cryptography. A quick
detour here will help us better grasp how a public network can be secure. We’ll address
the other two elements in Chapter 6.

Asymmetric cryptography is a method of sending secure messages back and forth over
a network, where the sender and the recipient do not trust the channel of communication.
In the case of the EVM, those messages are transactions, being signed and sent to the
network in order to change the state of some of its accounts. It’s called “asymmetric”
because each party has a pair of two different, but mathematically related, keys.

http://dx.doi.org/10.1007/978-1-4842-2535-6_1
http://dx.doi.org/10.1007/978-1-4842-2535-6_6

ChapTer 2 ■ The MIsT BroWser

27

Public-key cryptography was developed for wartime communications, and when
used properly, can be extremely secure. Unlike symmetric-key cryptographic, public key
cryptographic communications don’t require a secure channel between parties. This is
essential in Bitcoin and Ethereum, because any computer running the protocol can join
the network, without any vetting. However, the computational complexity involved in
encrypting data makes it useful only for small data objects, like the alphanumeric string
that becomes your private key. This is why encryption must be used sparingly.

At a high level, it can be said that Ethereum uses encryption to validate and verify
that any and all changes made to account balances in the EVM are legitimate, and that no
account has been increased (or decreased) erroneously.

If you’re new to computer science, the very mechanism of encryption might be hazy.
For the time being, here are some definitions that will help moving forward:

Symmetric Encryption: A process by which a snippet of plain
text, usually held in a document, is smashed together with
a shorter data string called a key to produce a ciphertext
output. This output can be reversed, or decrypted, by the
party that receives it, so long as they also have that same
key. Trying to decode the message without the key would
be, computationally speaking, immensely time-consuming
and expensive—so much so that some kinds of encryption
are considered practically unbreakable, even with huge
computing resources.

Asymmetric encryption: This way of encrypting information
requires the program to issue two keys simultaneously, one
that is public and one that you keep private. The public
key is public in the sense that you can list it on your web
site or social profile, such as an e-mail address. (When
communicating, parties can use one anothers’ public keys to
encrypt information, as described below.)

Secure Messaging: In our first example, Alice uses Bob’s public
key to encrypt a message. When he receives the ciphertext,
he can decrypt it using his matching private key, ensuring
that only Bob can read the message. This is called secure
messaging. But it leaves a dangerous possibility open: anyone
could send Bob a message claiming to be Alice. How does he
know that Alice is the real sender of the message?

Secure and Signed Messaging: If Alice wanted to assure Bob
that she is the true sender, she would do things differently.
First, she would take her plaintext message and encrypt it
using her private key. Then, she would encrypt it again using
Bob’s public key. When Bob receives the message, he decrypts
it first using his private key, but he’s still left with ciphertext.
He must decrypt it again using Alice’s public key. This second
layer of encryption assures him that Alice is indeed the
sender, because presumably, nobody has Alice’s private key
but Alice. This is known as “secure and signed” messaging.

ChapTer 2 ■ The MIsT BroWser

28

If Alice were to only encrypt her plaintext using her own
private key, then anyone with her public key could decrypt it.
This is known as an “open message format” because, while
it proves the identity of the sender, it can be decrypted by
anyone.

Digital signature: For maximum security, Alice would take
another step: she would hash the plaintext of her message,
and attach it along with the message. She would then encrypt
this bundle with her own private key, and again with Bob’s
public key. When Bob receives and decrypts the ciphertext he
can run Alice’s plaintext message through the same hashing
algorithm Alice used. If for some reason the fingerprint of
the message turns out differently, then it means the actual
message text was damaged or altered en route.

As you’ll appreciate more in Chapter 6, which covers mining, the method by which
individual transactions are broadcast to the EVM is similar to the description of the digital
signature above, where the contents of the transaction are hashed and enciphered before
being broadcast to peers. Now that you can appreciate the security of the Ethereum
network, let’s get to the brass tacks of Mist installation.

System Requirements
Most users will opt for the Mist browser, but this section lists other tools that developers
may find just as interesting. Mist makes it easy to send and receive ether. It also contains
an interface for executing smart contracts quickly and easily. We’ll talk more about how to
run contracts in Mist in Chapter 4.

Mist runs well on a modern computer with at least 2 GB of RAM and 30 GB of hard
disk space free. For lower-performing machines, try the MetaMask Chrome extension. It’s
described later in this section.

You’ll find the latest version of Mist on the Ethereum project GitHub site (https://
github.com/ethereum/).

More about Eth.guide and This Book
Because Ethereum is a new and fast-moving project, some of the project and
documentation links may change after the publication of this book. For this reason,
commonly needed links and references for this book are also listed at http://eth.guide
and updated regularly with new material. Similarly, all footnoted links are indexed on this
page by chapter, and updated if and when they change.

To make the site more useful as a reference, subdomains have been created for
popular topics. You’ll see these shortcuts mentioned throughout the text.

The Eth.guide site is linked to the GitHub project for the book itself, so you will
also find the sample code projects from this book at the same URL. The full URL for
the GitHub project for this book is https://github.com/chrisdannen/Introducing-
Ethereum-and-Solidity.

http://dx.doi.org/10.1007/978-1-4842-2535-6_6
http://dx.doi.org/10.1007/978-1-4842-2535-6_4
https://github.com/ethereum/
https://github.com/ethereum/
http://Eth.guide/
https://eth.guide/
https://github.com/chrisdannen/Introducing-Ethereum-and-Solidity
https://github.com/chrisdannen/Introducing-Ethereum-and-Solidity

ChapTer 2 ■ The MIsT BroWser

29

If you’re a nontechnical reader just looking to get started with the basics, go ahead
and skip to the section entitled “Finally, into the Mist!” Developers, read on to see what
other tools to peruse at this stage of your Ethereum journey.

Tools for Developers
Developers will want to check out these three tools in addition to Mist:

•	 MetaMask Chrome extension (useful for everyone)

•	 Geth (useful for intermediate developers)

•	 Parity (useful for advanced developers)

The Chrome extension MetaMask is the simplest way to get up and running with
Ethereum. It lets you execute smart contracts and transactions right in your browser
without needing a full Ethereum node. MetaMask has the power to create accounts, and
to send and receive ether. You can download MetaMask from the Google Chrome Add-
Ons menu, or by navigating to the project URL at https://metamask.io/.

For all its convenience, MetaMask does not download the entire blockchain to
your computer; nor can it mine transactions and earn ether. However, these are minor
drawbacks for users just looking to get up and running with Ethereum quickly.

MetaMask was built by Aaron Davis (a.k.a. Kumavis) of ConsenSys, an Ethereum
development and consulting company whose free tools you’ll encounter frequently in
this nascent Ethereum blockchain space. ConsenSys is a 60-person Ethereum venture
studio and consulting company in Brooklyn, NY, run by Ethereum project cofounder
Joseph Lubin.

MetaMask was funded in part by development grants (DEVgrants) from the
Ethereum Foundation. These grants are open to anyone working on an Ethereum
project, and do not require the project creator to give up any equity. To learn more about
DEVgrants, visit the program’s Gitter channel at https://gitter.im/devgrants/public
or follow its Twitter handle @devgrants.

CLI Nodes
If you already know you want to begin development with Solidity, download a full
command-line node. The most popular command-line interface (CLI) nodes for
the Ethereum network are written in Go and C++, and they’re called Geth and Eth
(alternately, go-ethereum and cpp-ethereum).

 ■ Note Because there are many ethereum clients for various operating systems, this book
uses the most straightforward development environment: Ubuntu 14.04 running Geth. Mac
or Windows users may want to try installing a virtual machine such as VirtualBox that can
run an Ubuntu instance.

https://metamask.io/
https://gitter.im/devgrants/public

ChapTer 2 ■ The MIsT BroWser

30

Advanced developers may also want to pair Geth with Parity, a super-fast Ethereum
client written in the Rust programming language. In the Chapter 6 we’ll talk about basic
Geth commands.

Recommended: Using Parity with Geth
Ethcore.io is a private Ethereum development company composed of a few former
contributors to the Ethereum project, including Gavin Wood, another Ethereum project
cofounder, who created the Solidity language and authored the Ethereum Yellow Paper.1

He and his team have created a powerful node written in the Rust programming
language. Parity works on macOS, Windows, Ubuntu, and in a Docker instance. You can
find out more by checking out the GitHub project at https://github.com/ethcore/
parity.

 ■ Note If you plan on using a Mist wallet through your parity node, you’ll need to
manually start parity before you open Mist. otherwise, Mist will connect via its own node.
Under the hood, the Mist browser runs a Geth node.

Detailed step-by-step instructions for setting up the Mist wallet with Parity running
on the back end are available on YouTube from the Ethcore team (www.youtube.com/
watch?v=sta-p5d1blQ).

Finally, into the Mist!
Now that you have a better sense of what an Ethereum client does, let’s put one on your
computer. The Mist browser is compatible with Linux, macOS, and Windows computers
with both 32- and 64-bit architectures. If you don’t know whether your computer is 32- or
64-bit, check your system’s hardware profile. Most newer systems are 64-bit.

Downloading and Installing Mist
First, download Mist from https://github.com/ethereum/mist/releases, as shown in
Figure 2-2.

1Gavin Wood, GitHub, “Ethereum Yellow Paper,” https://github.com/ethereum/yellowpaper,
2014.

http://dx.doi.org/10.1007/978-1-4842-2535-6_6
https://github.com/ethcore/parity
https://github.com/ethcore/parity
http://www.youtube.com/watch?v=sta-p5d1blQ
http://www.youtube.com/watch?v=sta-p5d1blQ
https://github.com/ethereum/mist/releases
https://github.com/ethereum/yellowpaper

ChapTer 2 ■ The MIsT BroWser

31

You’ll find this download link among the other client downloads at:

http://clients.eth.guide

On Windows, double-click the executable that downloads. On macOS, open the
disk image that downloads and drag the Ethereum wallet to your Applications folder. On
Ubuntu, download the Debian package or unzip the zip file and open it to install.

 ■ Note It’s not possible or advantageous to run more than one node at once. If, for
example, you try to open Geth while Mist is already running, you’ll get an error telling you a
node is already operational on your machine.

Figure 2-2. From the Ethereum project on GitHub, click to download the executable for
your OS, or download the source code to compile it yourself

ChapTer 2 ■ The MIsT BroWser

32

Configuring Mist
After you download and open the installer, you’ll see a welcome screen like the one in
Figure 2-3. (There are some of those big promises from Chapter 1!)

Here you’ll be asked which chain, or network, you want to connect to. At this stage, it
doesn’t matter which one you choose; you’ll be able to switch networks later. But for our
purposes, let’s make you a real wallet address: click Use the main network.

Notice the bottom of the window, which indicates downloading blocks. This
application runs a full node on the Ethereum network; that means it keeps its own copy
of the blockchain, which it must first download before any real action can take place. This
will take a long time, because the blockchain contains a record of every transaction ever
on the Ethereum chain.

Figure 2-3. The main network is also known as the main chain. The test network is a
sandbox environment for playing with fake ether and debugging contracts.

http://dx.doi.org/10.1007/978-1-4842-2535-6_1

ChapTer 2 ■ The MIsT BroWser

33

Next you’ll see the screen shown in Figure 2-4, which you can skip—unless
you participated in the Ethereum crowdsale back in 2014. In that case, follow those
instructions to redeem your ether.

After you pick your password, as seen in Figure 2-5 (and write it down or memorize it),
you’ll see a prompt that requires some explaining.

Figure 2-4. The Ethereum crowdsale, which entitled participants to a file representing
ether, took place in 2014. Click the Skip option if you didn’t participate.

ChapTer 2 ■ The MIsT BroWser

34

 ■ Note There is no Forgot password functionality in the ethereum network. That’s
because your password is only for this local instance of the Mist wallet; it’s not saved on
the ethereum blockchain. In fact, your private key is all you need to re-create this account
on any other computer running Mist. The password you create merely protects you from
an interloper sitting down at your computer and spending your money through the Mist
interface. It does not stop anyone from stealing your private keys from your computer’s file
system, if it’s left unprotected. Take precautions, such as turning of the automatic Login at
startup feature on your Mac, Linux, or Windows pC.

On the next screen, shown in Figure 2-6, you’ll get your first glimpse at your
etherbase address, which is like the Ur-address for this machine as long as this node and
its data are intact. If you delete the Mist application and its data from your system library,
this public-private key pair—your etherbase—will be deleted. That’s why it’s necessary to
back up your accounts, which we’ll go over at the end of this chapter.

Figure 2-5. Next, choose a password

ChapTer 2 ■ The MIsT BroWser

35

Finally, you’ll see the screen in Figure 2-7 as the blockchain syncs to your computer.
If you click Launch Application, the Mist interface will load. Don’t be distressed if your
new account doesn’t show up yet. It will appear when the node is fully synchronized.

Figure 2-6. Here you can see the new address. You can also deposit bitcoins to be converted
into ether by the Shapeshift.io API.

ChapTer 2 ■ The MIsT BroWser

36

Finding Your New Address
You can create more addresses, but they will all exist under the aegis of this etherbase
address, which makes backup easier.

If you click through the following screens, you’ll notice these are just time-killers to
let you learn more about Ethereum while the blockchain downloads. If you’re curious,
click any of the examples in these screens to see the contract code.

Sending and Receiving Ether
Sending ether requires first holding some ether. On the main network, tokens either
cost money or can be mined. However, this is an unwieldy way to get started for most
Ethereum beginners.

We’ve gone ahead and created an account on the main network, just in case you’re
interested in holding real ether for speculative value, or if you already have friends and
collegues who use it for payments. For most readers, using test ether (which you can
generate for free on the testnet, dubbed Ropsten) is better than paying money for real
ether for use on the main network. Instructions for connecting to Ropsten are presented
in Chapter 5.

For now, it’s worth describing how ether is sent and received, without going through
the motions, because it will help clarify the way the underlying system works. Ether is sent
via the Send dialog box, shown in Figure 2-8.

Figure 2-7. This will take a while. Your new account will show up when it’s done.

http://dx.doi.org/10.1007/978-1-4842-2535-6_5

ChapTer 2 ■ The MIsT BroWser

37

To send ether, you follow these steps:

 1. In real life, ask the recipient for their Ethereum address.

 2. Open Mist. Click Send in the top bar of the Mist wallet. The
Send dialog box opens.

 3. Choose which wallet you would like to send from,

 4. Paste in the recipient’s address.

 5. Enter the amount.

 6. Click Send.

You’ll notice two more options that you can toggle: a data field for entering extra
text (for example, an order number or thank-you note) and a slider bar for choosing a
transaction fee. The purpose of transaction fees will become clearer in Chapter 6. For
now, leave the slider in the default position, and your transactions will process just fine.

Figure 2-8. The Send dialog box in Mist makes it easy to send, receive, and check ether
balances without using a command-line interface.

http://dx.doi.org/10.1007/978-1-4842-2535-6_6

ChapTer 2 ■ The MIsT BroWser

38

 ■ Note For practical purposes, when sending ether, your Mist wallet must be fully
synchronized. That means that you may need to wait some time for Mist to download
the blockchain before you can be sure your transactions will process without an error. as
you’ll see later, this isn’t technically required; recently offline nodes are indeed capable of
initiating transactions, but only if the user creates the transaction in the command line, with
up-to-date information about the account in use.2

To receive ether, your node does not have to be synchronized. If you’d like to check
your balance, you can safely click Launch Application and skip the synchronization
process when Mist launches.

Understanding Ethereum Account Types
Users interact with the Ethereum blockchain through accounts. In Ethereum lingo,
accounts created and used by humans are called externally owned accounts. This is in
contrast to contract accounts, as in an address that is occupied by a smart contract.

 ■ Note external accounts aren’t always controlled by humans. sometimes they’re
controlled by trusted endpoints somewhere else. The point is, they’re external to the eVM.

If this distinction is confusing, remember that contracts can take actions in lieu of
people in the Ethereum network. You can send value (ether) to people or you can send
it to a smart contract, which will take some automated action. For example, a remittance
contract might take the sender’s deposit, split it in three, and send the amounts onward
to three different human relatives. In this way, contracts can act in lieu of humans to
automate tasks within a decentralized organization or to mediate transactions between
individuals that would otherwise need a counterparty.

 ■ Note Both contract accounts and external accounts are state objects. Contract accounts
have both account balance state and contract storage; external accounts have only balance
state. however, it’s important to note that there is currently a development proposal under
review by the ethereum development community for more abstraction in the eVM. It’s intent
is to abstract out the duality we have today by turning all accounts into smart contract
themselves. This way, users are free to define their own security model.

2StackExchange, “When Transferring Ether, Who Needs to be in Sync with the Blockchain,”
https://ethereum.stackexchange.com/questions/2273/when-transferring-ether-who-
needs-to-be-in-sync-with-the-blockchain, 2016.

https://ethereum.stackexchange.com/questions/2273/when-transferring-ether-who-needs-to-be-in-sync-with-the-blockchain
https://ethereum.stackexchange.com/questions/2273/when-transferring-ether-who-needs-to-be-in-sync-with-the-blockchain

ChapTer 2 ■ The MIsT BroWser

39

To review some of the basics:

•	 A key pair is issued when you register a new account.

•	 You can register for as many accounts as you like.

•	 Creating an account (a key pair) can be done by any Ethereum
node (even when it is offline).

•	 There is no master list of key pairs or accounts anywhere on Earth.

•	 Account numbers are not associated with you, your identity, or
your computer.

•	 You can access the Ethereum network with your private key from
any computer running an Ethereum node.

Backing Up and Restoring Your Keys
While in the Mist browser, and after Mist has completed synchronizing to the blockchain,
go to the File menu of your operating system and choose the Accounts menu, then
Backup Accounts. This opens a folder. Inside this folder are text files that have long names
starting with the date of creation, such as UTC--2016-09-01 (...) Each of these plain-
text files represents an account.

Back up this keystore folder by zipping it and putting it somewhere safe, such as a
USB key or encrypted hard drive.

If you open one of these text files, you will find your private and public key pair,
formatted in a certain notation.

To restore an account on a different node than it was created upon, simply locate the
keystore folder by the same method described previously. Instead of duplicating the files
already there, restoring an Ethereum account in Mist simply involves copying a text file
containing a private key inside the keystore folder, and restarting Mist. For a full tutorial,
visit http://backup.eth.guide and http://restore.eth.guide.

If you’d like to find the keystore folder on your hard drive via the terminal, it’s usually
located in the following directories:

•	 Mac: ~/Library/Ethereum/keystore

•	 Linux: ~/.ethereum/keystore

•	 Windows: %APPDATA%/Ethereum/keystore

http://backup.eth.guide
http://restore.eth.guide

ChapTer 2 ■ The MIsT BroWser

40

The preceding process will back up only your normal accounts. Wallet contracts are
held in the data folder, so (once you’ve done the exercises in later chapters) back that up
as well:

•	 Mac: ~/Library/Application Support/Mist/

•	 Linux: ~/.config/Mist or, in earlier versions, ~/.config/
Chromium/Mist (folder is hidden)

•	 Windows: C:\Users\< Your Username >\AppData\Roaming or
~\AppData\Roaming\Ethereum\keystore

Each time you create a new account in Mist, be sure to grab the key file and back it up!

Using Paper Wallets
You may have spotted in the preceding section that an Ethereum node doesn’t need to be
online to create an account. This has to do with the way the Ethereum network generates
addresses; it can create a new and valid key pair with near-zero chance that key pair
already exists.

This characteristic of the system allows for something most web applications can’t
offer: a “paper” account. Sites such as MyEtherWallet (www.myetherwallet.com) allow
users to create a key pair right in the browser, stored locally on the machine. This site also
makes it easy to print your key pair on paper, for safekeeping.

This is called a paper wallet because it contains a Quick Response (QR) code,
allowing people to make deposits to your Ethereum account simply by snapping the QR
code on the paper sheet. In theory, you could go around collecting Ethereum payments
this way, but you’d need to put that private key into an instance of Mist (or another client)
to access that ether and send it anywhere else.

Using Mobile Wallets
There are a growing number of mobile wallet applications for iOS and Android that store
private keys on the mobile device itself. The most popular and trustworthy to date is Jaxx,
shown in Figure 2-9, which is made by a Canadian software company called Decentral. Their
software runs on Mac, Linux, Windows, and even a few other platforms including Firefox and
Chrome. Decentral is operated by Ethereum project cofounder Anthony Di Iorio.

https://www.myetherwallet.com/

ChapTer 2 ■ The MIsT BroWser

41

The basic interface layout you see in Figure 2-9 has become a fairly standard UI in
wallet applications. Users are presented with their wallet addresses, and can view those
same addresses as QR codes. The QR codes make it easier to send ether or bitcoins in
person, much the same way that Snapchat uses QR codes to allow users to follow each
other by simply snapping the other user’s code. Here you’ll find a list of trustworthy wallet
applications: http://wallets.eth.guide.

Before going any further, it’s worth mentioning that an understanding of QR codes is
all that’s needed to participate in the cryptoeconomy. To send someone ether or bitcoins
with a mobile wallet, you click Send, scan the other party’s QR code (or paste in their
public key) and enter an amount. They’ll receive their ether within seconds.

Figure 2-9. Jaxx is probably your best bet for wallet applications that run on iOS and
Android. It holds bitcoins, ether, and a selection of other cryptocurrencies.

http://wallets.eth.guide

ChapTer 2 ■ The MIsT BroWser

42

Working with Messages and Transactions
In both Ethereum, transactions are used to refer to state changes in the distributed
database (that is, in the blockchain). Transactions change account balances within the
EVM. Messages are data objects passed back and forth across the network between smart
contracts, and do not necessarily result in any changes being made on the chain. For
example, if one contract checks the balance of another.

Transactions Change State
A transaction in Ethereum refers to a piece of data bearing a cryptographic signature,
which goes in the blockchain, and is thus recorded on every node in the network. Every
transaction triggers a message to accomplish this state change, but messages are also sent
by EVM code. These messages are private to the parties and are not represented in the
blockchain.

Editing a Global Database
One reason that blockchain networks like Ethereum are touted as immutable is that
once a transaction is written to the global shared database, it cannot be reversed by any
other transaction. In modern payments terminology, this is known as a system without
chargebacks.

A chargeback in North American payment channels is defined as the forcible return
of funds to an account holder, initiated by the issuing bank of the instrument. Because
Ethereum has no central issuing authority, there is no one to appeal to if you mis-key
a transaction. Presently, the only way to roll back a transaction is a state fork, which
requires all nodes on the network to agree to manually revert a transaction. This is an
extremely difficult and unlikely scenario reserved for network-wide attacks of one form or
another.

The reason for this transaction model is security. Compare sending cryptocurrency
from one account to the other, to the process of writing a conventional paper check. In the
latter example, your bank receives news of the outgoing transaction from your account.
The bank first checks your balance to see whether you have the funds to pay the amount
you endorsed on the check; if you don’t, the depositor’s bank does not increase the
deposit account. Instead, you are issued a fee for writing a bad check.

Transactions in the Ethereum network work similarly. The system ensures that the
outgoing amount from one account is always added to the destination account. If for
some reason the destination account can’t be accessed—say because the cryptographic
signature is not valid—then the source account doesn’t have its balance decremented,
and thus funds are not lost. In Ethereum, externally-generated transactions are always
signed cryptographically with the keys of the sender and the recipient, making it
straightforward to ensure that bad actors can’t create transactions, and money can’t be
lost just because of a mis-keyed address.

ChapTer 2 ■ The MIsT BroWser

43

So, What Is a Blockchain?
So far we’ve carefully avoided breaking down the concept of blocks, and focused on how
transactions are initiated. Next we’ll discuss how those transactions are cleared and
settled by the network. A block is a unit of time that encompasses a certain number of
transactions, just as a heartbeat is a period of time in which a certain quantity of blood is
moved through an animal’s body. Inside that period, transaction data is recorded; when
the unit of time elapses, the next block begins. The blockchain represents the history of
state changes within the network database of the EVM. To quote the Ethereum docs:

The blocks on the blockchain represent units of time; the blockchain itself
is a temporal dimension and represents the entire history of states at the
discrete time points designated by the blocks on the chain.3

Smart contracts may be uploaded to the network in a given block, but may not
actually send any messages or transactions until a much later block.

Paying for Transactions
When a human sends a transaction, the EVM requires a tiny fee to process the
transaction. This works similarly for the uploading of smart contracts: users must pay for
the computational effort the EVM will expend running each contract. By forcing users to
pay for transactions on the EVM, the likelihood of wasteful never-ending programs being
executed is theoretically reduced. These costs are priced in a unit called gas.

You can think of gas as a metric indicating the number of steps the EVM will have
to take to complete the instructions in the transaction. If this is a simple instance of one
person sending money to another, the transaction fee will be cheap, because this requires
a small number of computational steps. In the case of a complex smart contract, however,
the fee will be higher, because the EVM has to use its global resources to execute the
Solidity code in the contract and figure out what transactions to then execute as a result.

Transaction senders are required to include a gas limit that says how much they’re
willing to pay to have their transaction executed. Full nodes on the network which
are mining, or securing the network for pay, provide the hardware for these many
transactions to be collated, validated, cleared, settled, and stored within the blockchain,
thus they receive the transaction fees a user pays when he or she sends ether to a friend,
or executes a smart contract. Miners who execute the transaction collect the fee, so an
implicit market process is at play. Whether or not a transaction executes is determined
by the amount of gas the sender is willing to pay. If the total number of steps exceeds the
gas budgeted for a transaction, all steps are rolled back, and no part of the transaction is
executed. If a user sends a transaction with too low a transaction fee, it will be processed
only after some time, or not at all.

3Ethdocs.org, “Account Types, Gas, and Transactions,” http://ethdocs.org/en/latest/
contracts-and-transactions/account-types-gas-and-transactions.html, 2016.

http://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html
http://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html

ChapTer 2 ■ The MIsT BroWser

44

For context, it’s true that every operation costs some amount of gas; most operations
cost 1 unit of gas. A complex transaction can cost hundreds of units of gas. However, in
dollar terms, this adds up to very little.

Understanding Denominations
Like fiat currencies, ether balances and values have standardized denominations for
small units. All ether balances are typically denominated in ether, and remainders are
denominated in wei. For example, 10.234 ether = 10,234,000,000,000,000,000 wei.

If you think of ether as dollars, wei are like dimes, quarters, pennies, and nickels.
Table 2-1 details the wei denominations.

You can find an ether denomination converter tool at http://ether.fund/tool/
converter.

Getting Ether
The easiest way to obtain ether is to convert bitcoins inside the Mist wallet, as described
earlier in this chapter. You can earn ether by mining, but as mentioned previously, this
requires initial setup; you can’t mine from within Mist, unless it’s on the testnet. (This has
to do with the way smart contracts are tested and executed on the network, as you’ll see
in Chapter 5.)

If you’d like to buy ether with fiat currency, such as US dollars, you need to do so on
an exchange or with a licensed money transmitter. To see a table of online platforms that
sell ether, see http://vendors.eth.guide.

Testnet ether is free, as stated earlier in this chapter. Instructions for getting test ether
from a “faucet” are in Chapter 5, with more details about creating transactions.

Table 2-1. Denominations of ether. In the Unit column at left, the equivalent bitcoin
denominations are provided in parentheses

Unit Wei Value Number of Wei

Wei 1 wei 1

Kwei (babbage) 13 wei 1,000

Mwei (lovelace) 16 wei 1,000,000

Gwei (shannon) 19 wei 1,000,000,000

Microether (szabo) 112 wei 1,000,000,000,000

Milliether (finney) 115 wei 1,000,000,000,000,000

Ether 118 wei 1,000,000,000,000,000,000

http://ether.fund/tool/converter
http://ether.fund/tool/converter
http://dx.doi.org/10.1007/978-1-4842-2535-6_5
http://vendors.eth.guide
http://dx.doi.org/10.1007/978-1-4842-2535-6_5

ChapTer 2 ■ The MIsT BroWser

45

Anonymity in Cryptocurrency
Bitcoins and ether are not anonymous payment instruments. Anyone who knows your
public key can look on the blockchain and see the dates and amounts of transactions
coming in and out of your account. From this data, they might be able to put together a
pattern of transactions from which they could deduce your activities. Federal authorities
are already using machine-learning transactions to decode spending patterns on dark-
market sites such as AlphaBay.4

Anonymity, secrecy, and privacy in cryptocurrency are generally conflated by newbies,
sometimes with disastrous ends. Bitcoin and Ethereum addresses are pseudonymous by
nature; they’re not linked to your real name or information. But every transaction you send
is public, in the sense that anyone can see the transaction on the blockchain. This is why
public blockchains are touted for their transparency; if you know someone’s public key, you
can look up all their transactions.

Data within smart contracts themselves are encoded but not encrypted. Encryption
is used only to hash large datasets and verify transaction senders and recipients. However,
you can encrypt data yourself before putting it into an Ethereum smart contract, if you’d like
to use the public Ethereum chains in a private manner.

As you’ll see later, every Ethereum transaction leaves room for an extra payload
of text labeled Input Data. Don’t be tempted to store secret things here for safekeeping
unless you plan to encrypt them. Even then, it is generally a bad idea to store strings such
as passwords or account pin numbers on the Ethereum blockchain because it is public
and can never be removed. Anyone can explore a blockchain such as Ethereum by using a
web-accessible application known as a blockchain explorer.

Blockchain Explorers
As with Bitcoin, every transaction in and out of the EVM is recorded publicly. The
transaction shown in Figure 2-10 is a typical one for the Ethereum blockchain. Clicking
the sender or recipient address allows you to see the transactions for that address since it
was created. This screen capture is from Etherscan (https://etherscan.io), but anyone
is free to make a blockchain explorer for the public Ethereum chain.

 ■ Note Blockchain explorers show you a historical record of all transactions in the
network, and allow you to string together a history of transactions. There’s no need to
manually record your transaction details!

As you can see in Figure 2-10, transactions have quite a few attributes. We’ll talk
more about what these fields mean in Chapter 3, but for now here’s the takeaway: sending
and receiving ether is private to the participants and anyone they tell, because public keys

4Science Magazine, “Why Criminals Can’t Hide Behind Bitcoin,” www.sciencemag.org/
news/2016/03/why-criminals-cant-hide-behind-bitcoin, 2016.

https://etherscan.io/
http://dx.doi.org/10.1007/978-1-4842-2535-6_3
http://www.sciencemag.org/news/2016/03/why-criminals-cant-hide-behind-bitcoin
http://www.sciencemag.org/news/2016/03/why-criminals-cant-hide-behind-bitcoin

ChapTer 2 ■ The MIsT BroWser

46

are pseudonymous by nature—but these transactions are not strictly secret, in the sense
that all transactions are publicly viewable on the blockchain. It’s easy to trace money
hopping from one account to another.

Summary
So far we’ve moved quickly. In this chapter, you learned more about wallets and
Ethereum clients. If you began synchronizing your instance of Mist as you were reading
this chapter, it’s probably not even finished yet!

In the meantime, let’s get prepared for deploying a smart contract.
Although you won’t need access to an Ubuntu machine for the next chapter, it’s

worth lining up for Chapters 4, 5, 8, and 9. In the meantime, move on to the next chapter,
where you’ll learn how the Ethereum Virtual Machine works.

Figure 2-10. All ether and bitcoin transactions are public. Some users avoid having their
public key linked to their identity by creating a new account for every transaction. Others
use the same public key for years, advertising it as a conduit for donations or contributions
of one kind of another.

http://dx.doi.org/10.1007/978-1-4842-2535-6_4
http://dx.doi.org/10.1007/978-1-4842-2535-6_5
http://dx.doi.org/10.1007/978-1-4842-2535-6_8
http://dx.doi.org/10.1007/978-1-4842-2535-6_9

47© Chris Dannen 2017
C. Dannen, Introducing Ethereum and Solidity, DOI 10.1007/978-1-4842-2535-6_3

CHAPTER 3

The EVM

The Ethereum Virtual Machine (EVM) is a worldwide
computer that anyone can use, for a small fee,
payable in ether

The EVM is a single, global 256-bit “computer” in which all transactions are local on each
node of the network, and executed in relative synchrony. It’s a globally accessible virtual
machine, composed of lots of smaller computers.

This giant computer, which anyone who has a node or wallet application can access,
makes it simple to move arbitrarily large amounts of value (money) nearly instantly.
Although anyone can use this global virtual machine, nobody can create counterfeit
money inside it, or move funds without permission.

If it seems wasteful to have the entire EVM, all those nodes, replicating the same
transactions and slavishly maintaining the same state among thousands of individual
computers, it’s important to have a proper basis for comparison for how financial services
IT works today. The EVM is a paragon of simplicity and efficiency by comparison! More
importantly, all that work isn’t for naught. In fact, as you’ll see in this chapter, it’s the
evidence of this work that actually secures the network.

The Central Bank Network of Yesterday
Today, corporations, insurers, universities, and other large institutions spend incredible
amounts of money building and maintaining software services and IT for their own
employees, and all their lines of business. Their various inflows and outflows are
reconciled by large commercial banks, which have their own architecture, policy,
codebase, databases, and layers of infrastructure. This, of course, is all on top of the
Fedwire, which is the Federal Reserve’s real-time gross settlement system, or RTGS.

The Federal Reserve is the central bank of the United States. The Fedwire is used by
all Federal Reserve member banks to settle final payments in electronic US dollars. Any
qualified state-chartered bank may become a member of the system by buying shares
in it. Fedwire is owned and operated by the 12 Federal Reserve Banks themselves, and
although it does charge fees, it isn’t operated for profit.

This system processes unthinkable amounts of US dollars every day—trillions
upon trillions. It has some great features, too: there’s an overdraft system covering all

Chapter 3 ■ the eVM

48

existing and approved accounts, and the system is famously reliable, even for remittances
overseas. It has been in operation in some form or another for about 100 years.

As you can imagine, maintaining the security and reliability of the Fedwire software
is extremely expensive. Yet, the cost of building and maintaining layers on top of an RTGS
is higher still, owing to its security requirements. Ultimately, these costs are passed on to
corporations who use commercial banks, in the form of fees. Those companies have their
own IT infrastructure costs. In the aggregate these costs ultimately drive up prices and
fees for consumers.

What are Virtual Machines, Exactly?
If you were unfamiliar with virtual machines at the outset of this book, you’ve probably
gathered by now that a virtual machine (VM), in the Ethereum context, is one giant global
computer composed of constituent nodes, which are themselves computers too.

Generally speaking, a virtual machine is an emulation of a computer system by another
computer system. These emulations are based on the same computer architectures as the
target of their emulation, but they’re usually reproducing that architecture on different
hardware than it may have been intended for. Virtual machines can be created with
hardware, software, or both. In the case of Ethereum, it’s both. Rather than securely network
thousands of discrete machines, as with Fedwire, Ethereum takes the approach of securely
operating one very large machine that can encompass the whole Earth.

As you’ll see from the long list of Ethereum clients for various operating systems,
the EVM is a collective emulation being run on thousands of machines that—on an
individual level—may be running any one of dozens of versions of Windows, Linux,
ethOS, and macOS (more about ethOS in Chapter 6).

The Role of the Ethereum Protocol in Banking
It’s beyond the scope of this book to posit whether blockchain-based systems are
appropriate for use by, or are indeed the replacement for, sovereign central banks.
It’s much more likely that central banks themselves will adopt the technology. The
commerical banks are certainly interested; you’ll find more information about the banks
and enterprises involved in Ethereum development in Chapter 11.

The Fedwire system is a settlement system with a user experience tailored to state-
chartered banks and their operators. It makes little or no concern for the end user of a
retail bank, for example; that’s the job of the retail bank.

Software developers will recognize Fedwire as a “platform for banks.” What the
bank chooses to build on top of Fedwire (the customer experience, the online banking
tools, the brick-and-mortar branches, the financial products, the cross-selling) is what
distinguishes it from other banks on the Fedwire system.

Anyone Can Make a Banking Platform
Ethereum is far more generalized. It allows anyone to spin up a network with as good
or better security and reliability than Fedwire, and with the ability to make secure value
transfers nearly instantly. But this is only where Ethereum starts. Developers can build
any sort of financial products or business logic they want on top of this secure ledger, with

http://dx.doi.org/10.1007/978-1-4842-2535-6_6
http://dx.doi.org/10.1007/978-1-4842-2535-6_11

Chapter 3 ■ the eVM

49

automated and immutable scripts, and without needing to pay the overheads dumped on
them by the traditional centralized hosting and banking infrastructure.

But does it scale to the speed and size of a system like Fedwire? The answer is,
yes, it can, but this will take several years. There are no direct or fixed limit neither for
transaction sizes or block sizes. In Bitcoin, the size of the block is limited to 1MB, which
works out to about 7 transactions per second. In Ethereum these limits increase and
decrease in accordance with demand and network capacity.

However, this does not mean that blocks can be unlimited size. Recall that units
of work in the Ethereum network are priced in gas. Thus, larger, more complex smart
contracts cost more gas to store and execute. The maximum amount of gas which can be
spent per block is variable, but there is a maximum. Theoretically, one large transaction
could consume the entire gas limit of a single block. But if there is continuous demand
for higher gas limits, the system will increase the gas limit per block in increments of 0.09
percent. (For more detail on how this works, see the Ethereum Yellow Paper, equations
40-42.) As of this writing, the gas limit is 4,041,325 gas per block.

What does this mean for the financial services industry? Certainly not doom, but
perhaps some unexpected competition. The impact could be an unbundling of banking
services into ever smaller brands as the public Ethereum chain scales and is capable
of processing more transactions, faster and faster. Laura Shin, author and host of the
blockchain-centric podcast Unchained, interviewed Adam Ludwin of San Francisco
blockchain startup Chain in 2016 and wrote this:

As for who owns the network, in the current system, if you go to Chase to
deposit $50 cash, Chase holds that money, which was issued by the Federal
Reserve, on its network. But Ludwin said you could imagine, instead of
banks running the network, Fedwire, the current system for electronically
settling payments between member banks, being reconstructed on a
blockchain for which banks hold keys to make transfers.

That could then lead to nonfinancial institutions being custodians of such
currency. “With small enough amounts, you don’t need a bank,” said
Ludwin. “Could Google, could Apple, could Facebook be holding small
amounts of digital cash? Does that change the model of who a custodian
is or could be? And the answer is yes.” It could also open up more avenues
for peer-to-peer lending, reducing consumers’ reliance on banks for loans.1

What the EVM Does
By now, the EVM may be coming into focus: a generalized, secure, ownerless virtual
machine that offers cheap Fedwire-like functionality with a bunch of other magic on top.
How exactly does it do this?

1Forbes, “Central Banks Explore Blockchains: Why Digital Dollars, Pounds Or Yuan Could Be A
Reality In 5 Years,” www.forbes.com/sites/laurashin/2016/10/12/central-banks-explore-
blockchains-why-digital-dollars-pounds-or-yuan-could-be-a-reality-in-
5-years/#5ef54e7176d8, 2016.

http://www.forbes.com/sites/laurashin/2016/10/12/central-banks-explore-blockchains-why-digital-dollars-pounds-or-yuan-could-be-a-reality-in-5-years/#5ef54e7176d8
http://www.forbes.com/sites/laurashin/2016/10/12/central-banks-explore-blockchains-why-digital-dollars-pounds-or-yuan-could-be-a-reality-in-5-years/#5ef54e7176d8
http://www.forbes.com/sites/laurashin/2016/10/12/central-banks-explore-blockchains-why-digital-dollars-pounds-or-yuan-could-be-a-reality-in-5-years/#5ef54e7176d8

Chapter 3 ■ the eVM

50

The EVM can run arbitrary computer programs (the smart contracts mentioned in
Chapter 1) written in the Solidity language. These programs, given a particular input, will
always produce the output the same way, with the same underlying state changes. This
makes Solidity programs fully deterministic and guaranteed to execute, provided you’ve
paid enough for the transaction; but we’ll talk about paying for gas later in this chapter.

Solidity programs are capable of expressing all tasks accomplishable by computers,
making them theoretically Turing complete. That means that the entire distributed network,
every node, performs every program executed on the platform. When one user uploads
a smart contract through their Ethereum node, it is included in the latest block and
propagated around the network, where it is stored on every other node in the network.

As we’ve discussed already, it’s the job of each and every node in the EVM to run
the same code, as part of the block processing protocol. The nodes go through the block
they are process and run any code enclosed within the transactions. Each node does this
independently; it is not only highly parallelized, but highly redundant.

Despite all appearances, this is an efficient way to balance a global ledger in a
trustworthy way. It’s important to remember just how much money, power, and human
energy is spent for each bank everywhere to cobble together its own unique IT system or
cocktail of systems for each of its lines of business. In an Ethereum-based banking system,
all users (whether corporations or customers) get direct access to the same Fedwire-like
system at no cost, with the ability to program transactions. Because the protocol is free
and open source, anyone can fire up a node and connect. Unfortunately, the preceding
explanation of the Fedwire system is often left out of cryptocurrency discussions, despite
being necessary context to understanding the benefits of large public blockchains.

You can find up-to-date community-written documentation for the Ethereum
project in the Homestead Documentation Initiative (www.ethdocs.org/en/latest).
These docs are not endorsed by the Ethereum Foundation, but have grown into a popular
resource for their plain-language explanation of technical concepts.

For more-nuanced technical discussions and to view Ethereum Improvement Proposals
(EIPs), turn to the Ethereum wiki at https://github.com/ethereum/wiki/wiki. On the
wiki, you’ll find the Ethereum White Paper. If you have remaining questions about the way
Ethereum works after reading this book, chances are the answer you seek is in the White
Paper or the aforementioned Yellow Paper, which you’ll also find linked on the Ethereum wiki.

Chapter 11 provides an additional index of academic papers associated with the
Ethereum project. These relate to the future of the project, including scalability and
interoperability of the Ethereum public chain with private or corporate chains, among
other topics.

GLOBAL SINGLETON MACHINE

the eVM is a transaction singleton machine with shared state. In computing, this
means it behaves like one giant data object, rather than what it is: a network of
discrete machines, themselves singletons, in constant communication. (If you’re a
nonprogrammer, you may remember from Chapter 1 that an object is a little chunk
of information that is formatted just so, and that contains attributes as well as
methods for reading or changing those attributes.)

http://dx.doi.org/10.1007/978-1-4842-2535-6_1
http://www.ethdocs.org/en/latest
https://github.com/ethereum/wiki/wiki
http://dx.doi.org/10.1007/978-1-4842-2535-6_11
http://dx.doi.org/10.1007/978-1-4842-2535-6_1

Chapter 3 ■ the eVM

51

EVM Applications Are Called Smart Contracts
From the perspective of a software developer, the EVM is also a runtime environment for
small programs that can be executed by the network.

The Name “Smart Contracts”
Rather than bore you with the etymology of this word, let’s clear up one thing: in this
context, contract refers to a specific kind of contract: a financial contract, also known
more colloquially as a derivative, or option. Financial contracts are agreements to buy
and sell at some point in the future, usually at a specified price. In the Ethereum context,
smart contracts are agreements between accounts, to render a transfer of ether (that is, a
payment) when certain conditions are met.

The reason these contracts are “smart” is that they’re executed by machine, and
the assets (ether or other tokens) are moved automatically. These contracts could be
enforced even hundreds of years after they’ve been written, assuming the network is
still running then—and even if a lot of bad actors try to interfere. The EVM is totally
sandboxed and free from interference, and isolated from other networks too, making it
impossible for a party to back out of a smart contract. In practical terms, this is because
smart contracts are empowered to hold assets (ether or other tokens) in escrow and move
them when the terms of the contract are met.

The EVM Runs Bytecode
The EVM has its own language, the EVM bytecode, to which your smart contracts compile.
Solidity, which is a high-level language, is compiled into bytecode and uploaded onto the
Ethereum blockchain by using a client application such as the Mist browser or a full node.

Understanding State Machines
The EVM, as we’ve discussed several times so far, is a state machine. Instead of simply
defining this concept and moving on, let’s take a moment to discuss exactly what a
computer is before moving on to the ways that Ethereum advances the concept.

Digital vs. Analog
Foundational to the concept of a stateful computer is the idea of a switch that can be on
or off. The 1s and 0s always referred to as the lingua franca of machines refer to arrays
of metaphorical switches, so to speak, put in a certain configuration in order to code for
specific letters, numbers, or other keyboard symbols. All of the symbols on a keyboard
(and more) can be represented with just eight switches, which is why computing memory
is stacked in multiples of eight. The so-called character code for a comma, for example, is
0010 1100.

Chapter 3 ■ the eVM

52

In computer programming, letters and numbers can be used to write machine
instructions colloquially known as code. American researcher and US Navy Rear Admiral
Grace Hopper, shown in Figure 3-1, invented the first compiler, which automatically
turned human-readable code into machine code (like the EVM’s bytecode), which is less
abstract and therefore one step closer to the 1s and 0s we hear so much about.2

“State-ments”
Individual snippets of code, when considered by themselves, fall broadly into two
buckets: expressions and statements. Expressions are used to evaluate a particular
condition; statements (note the root word!) are used to write information into the
computer’s memory. Together, expressions and statements let computers modify a
database in a predictable way when specific conditions are met. This is the crux of
automation, and it’s the reason we find computers so useful!

Statements can evaluate to true or false, and depending on the code, this binary
outcome can result in information being added, removed, or altered within one of the
computer’s many, many memory addresses. (Because the Solidity language is strongly
typed, there are no “truthy” and “falsey” statements as in JavaScript.) The clear distinction
between true and false, yes and no, on and off, is what allows computers to safely make
decisions in lieu of humans.

Figure 3-1. Rear Admiral Grace Hopper was one of the first programmers to write code for
Harvard’s Mark I computer in 1944. (Credit: Wikipedia.)

2Wikipedia, “Grace Hopper,” https://en.wikipedia.org/wiki/Grace_Hopper, 2016.

https://en.wikipedia.org/wiki/Grace_Hopper

Chapter 3 ■ the eVM

53

Data’s Role in State
Every time you change data in a computer’s memory, you can think of its zillions of
internal switches (most of them virtualized in the same way we discussed earlier in this
chapter) as being in a slightly different configuration. State generally refers to the present
condition of the system: the objective series of changes in information, across various
memory addresses of the machine, that led to the current contents of its memory.

It’s important to distinguish between an attribute and state. State is something that
can change easily and predictably. Let’s use the example of a car.

Repainting a car is hard work, but it can be done. Paint color is an example of an
attribute. In pseudocode, you might say the following about a car:

bodyColor = red

In computer programming, this is called a key/value pair. The key, bodyColor, has a
value assigned to it, which is red. To change the value of this key, your code makes a new
statement of the value to be something else:

bodyColor = green

And now your car has been repainted. It has a new color value.
Now let’s say you instruct the computer that the color of this car will change

frequently. In other words, you make the car’s color a variable. Well, it can be said that
the variable (in this case, the color) can have a state, which is a value that changes. But an
individual value, such as green, has no state; green is simply green.

An odometer provides another example of a variable with a changeable state. The
odometer’s value might be 1,000, a number that itself has no state; it’s just a number.
Soon, the state of the odometer will change to a new value (1,001), but that will happen
only if the cockpit of the car expresses commands that cause the motor and transmission
to change state from neutral to first gear, and so on.

Working familiarity with the concept of state transition will help nonprogrammers
gain insight into the truly hard problems incumbent in the design of decentralized
systems. The next several sections of this chapter provide a crash course.

How the Guts of the EVM Work
If this is your first encounter with the internals of a computer, it’s important to remember
that a computer is never truly “at rest” as long as it’s powered on. The computer itself is
running a state function, constantly checking for changes to its state. It’s like an overeager
intern who wonders thousands of times per second if any new work has landed on his desk.

When new instructions are triggered, the computer runs code and may write new
data to its memory. It’s important to note that each state change must be based on the last
state change; a computer doesn’t just toss information into memory addresses willy-nilly.

Chapter 3 ■ the eVM

54

Should something go wrong—let’s say one of these instructions isn’t mathematically
possible—the state of the machine will become invalid, and the program will exit or stop.
In fact, the entire system may crash.

Programs that constantly check for a certain condition are known as loops in
programming, because they continue to run (to loop) until the specified condition is
met. The EVM runs a loop continuously that attempts to execute whatever instructions
are at the current program counter (whatever program is “on deck” to be processed).
The program counter works like a delicatessen queue: each program takes a number and
waits its turn.

This loop has a few jobs: it calculates the cost of gas for each instruction; and it uses
memory, if necessary, to execute the transaction if the preamble calculation succeeds.
This loop repeats until the VM either finishes running all the code on deck, or it throws an
exception, or error, and that transaction is rolled back.

Thus far we’ve walked breezily through a century of computer science just to catch up
to the EVM. Now we’ll begin to slow down and see how some of the parts work in action.

The EVM Constantly Checks for Transactions
State machines (machines with memory) can be thought of as beings who never sleep. As
a state machine, the EVM has a constant history of all transactions within their memory
banks, leading all the way back to the very first transaction. Unlike people, who have to
deal with imperfect memory, a computer’s state (as it exists today) is the specific outcome
of every single state-change that has taken place inside that machine since it was first
switched on.

The latest version of the machine’s state can be said to be this machine’s canonical
“truth” about reality as it stands right now. In Ethereum, this truth deals with account
balances, and the series of transactions that make your balance whatever it is today.

Creating a Common Machine Narrative of What
 Happened
Transactions, therefore, represent a kind of machine narrative—a computationally valid
arc between one state and another. As Gavin Wood’s Ethereum Yellow Paper says:

There exist far more invalid state changes than valid state changes.
Invalid state changes might, e.g., be things such as reducing an account
balance without an equal and opposite increase elsewhere. A valid state
transition is one which comes about through a transaction.3

As time advances, the system (as in Bitcoin) seeks to create a trustworthy history for
ensuring that each subsequent state change is legitimate, and not an instruction inserted
by a bad actor.

3Gavwood.com, “Ethereum: A Secure Decentralised Generalised Transaction Ledger”, http://
gavwood.com/paper.pdf, 2016.

http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf

Chapter 3 ■ the eVM

55

Cryptographic Hashing
The next section explains blocks: what’s in them, how they work, and how they
make a chain. To properly understand that discussion, you first need to learn about
cryptographic hashing algorithms and what they’re good for.

What Hash Functions (or Hash Algorithms) Do
Generally speaking, the purpose of hash functions, in the context of a blockchain, is to
compare large datasets quickly and evaluate whether their contents are similar. A one-
way algorithm processes the entire block’s transactions into 32 bytes of data—a hash,
or string, of letters and numbers that contains no discernible information about the
transactions within. The hash creates an unmistakable signature for a block, allowing the
next block to build on top of it. Unlike the ciphertext that results from encryption, which
can be decrypted, the result of a hash cannot be “un-hashed.”

 ■ Note the hash of a given dataset is always the same. It is computationally infeasible
that two datasets might resolve to similar hashes. Changing even one character of the
dataset will completely jumble up the hash.

Blocks: The History of State Changes
Transactions and state changes in the Ethereum network are segmented into blocks, and
then hashed. Each block is verified and validated before the next canonical block can
be placed on “top” of it. In this way, nodes on the network do not need to individually
evaluate the trustworthiness of every single block in the history of the Ethereum
network, simply to compute the present balances of the accounts on the network. They
merely verify that its “parent block” is the most recent canonical block. They do this
quickly by looking to see that the new block contains the correct hash of its parent’s
transactions and state.

All the blocks strung together, and including the genesis block, an honorific
describing the first block the network mined after coming online, are called the
blockchain. In some circles, you will hear the blockchain referred to as a distributed ledger
or distributed ledger technology (DLT).

Ledger is an accurate description, as the chain contains every transaction in the
history of the network, making it effectively a giant, balanced book of accounts. However,
most so-called digital ledgers do not use proof of work to secure the network, as Bitcoin
and Ethereum do.

Chapter 3 ■ the eVM

56

Understanding Block Time
In Bitcoin, a block is 10 minutes. This so-called block time is derived from constants hard-
coded into Bitcoin’s issuance scheme, with a total of 21 million coins to be released from
2009 to 2024, and rewards halving every four years.4

In Ethereum, block time is not a function of the issuance schedule of ether. Instead,
block time is a variable that is kept as low as possible, for the sake of speedy transaction
confirmation. It averages about 15 seconds as of this writing. Ethereum’s shorter block
time is the beneficiary of blockchain research done after the launch of Bitcoin, which
showed that shorter block times were not only technically feasible, but desirable in many
ways. However, shorter block times do have some drawbacks that are explored more
thoroughly in Chapter 6.

The Drawbacks of Short Blocks
It’s important to note that Bitcoin’s long confirmation times make retail commerce and
other practical applications difficult. When blocks are shorter and transactions move
faster, user experience is better. However, shorter blocks and faster transactions make it
more likely that a given node will get the order of transactions wrong, because it may not
have heard about some transactions originating from far away (or heard about them late).

To compensate for this, the miners who find blocks that are valid, but nonetheless
not the winning block, are paid a reduced fee as consolation. In Ethereum, these blocks
are called Uncles.

What makes a block valid vs. the winner is the subject of Chapter 6.
To see the full Ethereum block protocol, visit https://github.com/ethereum/wiki/

wiki/Block-Protocol-2.0.
For now, let’s continue with our overview of the EVM.

“Solo Node” Blockchain
In theory, you could reconcile changes from many nodes with a single computer: a
centralized server processing the order of transactions. Indeed, web applications such as
Google Docs have sophisticated real-time engines that help them deal with conflicting
changes made by multiple users, some of whom may be on faster connections than
others, and still others who may be editing a document offline.

As you’ll see when you spin up your own blockchain in Chapter 9, it’s possible to use
the Ethereum protocol with a single machine. It will process your transactions just fine, as
long as one or more nodes are mining on the chain. But if someone knocks that machine
offline, your chain is inaccessible, and transactions stop going through.

For this reason, despite Ethereum being free and open software, the necessity for
many, many nodes to create a resilient network causes developers to converge and work
(for the most part) as one community, on a small number of public chains.

4Bitcoin Wiki, “Controlled Supply,” https://en.bitcoin.it/wiki/Controlled_supply, 2016.

http://dx.doi.org/10.1007/978-1-4842-2535-6_6
http://dx.doi.org/10.1007/978-1-4842-2535-6_6
https://github.com/ethereum/wiki/wiki/Block-Protocol-2.0
https://github.com/ethereum/wiki/wiki/Block-Protocol-2.0
http://dx.doi.org/10.1007/978-1-4842-2535-6_9
https://en.bitcoin.it/wiki/Controlled_supply

Chapter 3 ■ the eVM

57

Distributed Security
The distributed nature of the Ethereum Virtual Machine, and the fact that it is composed
of many nodes around the world, means that it must be purpose-built to solve the diff-
matching problem that can arise when there are many near-simultaneous changes to the
same database, from many users, all over the world.5

Indeed, solving this problem in a verifiable and trustworthy way is the purpose of
the EVM as well as the Bitcoin virtual machine. The EVM’s resilience and security arise
from the large number of machines mining on the network, incentivized by the earning
of fees denominated in ether or bitcoins. We’ll go over this briefly before diving into a full
explanation in Chapter 6.

Mining’s Place in the State Transition Function
Mining is the process of using computational work to nominate a block—that miner’s
version of recent transaction history—as the canonical block for this, the most recent
block on the chain. How exactly this happens is the subject of Chapter 6, but the point of
bringing it up now is to show that mining incentive awards take place as part of the state-
transition function. Mining achieves the consensus required to make valid state changes,
and the miners are paid for contributing to the consensus building. This is how ether and
bitcoin are “created.”

Recall that each time a new block is created, it is downloaded, processed, and
validated by node on the network. During processing, each node executes all the
transactions contained therein. This is a long process with many steps, but we’ll
summarize. Written out in English, the Ethereum state transition function can be
defined as the following six steps.6 For each transaction in a block, the EVM performs
the following:

 1. Check whether the transaction is in the right format. Does it
have the right number of values? Is the signature valid? Does
the nonce—a transaction counter—on the transaction match
the nonce on the account? If any of these are missing, return
an error.

 2. Calculate the transaction fee by multiplying the amount
of work required (represented by STARTGAS, as you’ll see
in table 3-1) by the gas price. Then deduct the fee from the
user’s account balance, and increment the sender’s nonce
(transaction counter). If there’s not enough ether in the
account, return an error.

 3. Initialize the gas payment; from this point forward, take off a
certain amount of gas per byte processed in the transaction.

5Google Code, “Diff-Match Patch,” https://code.google.com/p/google-diff-match-patch/,
2016.
6Ethereum White Paper, “Ethereum State Transition Function,” https://github.com/ethereum/
wiki/wiki/White-Paper#ethereum-state-transition-function, 2016.

http://dx.doi.org/10.1007/978-1-4842-2535-6_6
http://dx.doi.org/10.1007/978-1-4842-2535-6_6
https://code.google.com/p/google-diff-match-patch/
https://github.com/ethereum/wiki/wiki/White-Paper#ethereum-state-transition-function
https://github.com/ethereum/wiki/wiki/White-Paper#ethereum-state-transition-function

Chapter 3 ■ the eVM

58

 4. Transfer the value of the transaction—the amount being
sent—to the receiving account.

If the receiving account doesn’t exist yet, it will be created.
(Offline Ethereum nodes can generate addresses, so the
network may not hear of a given address until a transaction
takes place.)

If the receiving address is a contract address, run the
contract’s code. This continues either until the code finishes
executing or the gas payment runs out.

 5. If the sending account doesn’t have enough ether to complete
the transaction, or the gas runs out, all changes from this
transaction are rolled back. A caveat are the fees, which still go
to the miner and are not refunded.

 6. If the transaction throws an error for any other reason, refund
the gas to the sender and send any fees associated with gas
used to the miner.

 ■ Note Smart contract data is executed in Step 4 of the state transition function, as
described above.

Renting Time on the EVM
As you may be gathering, the EVM is a rather deliberate machine, albeit far more
trustworthy and reliable than any network we have today. For every instruction the
EVM executes, there must be a cost associated, to ensure the system isn’t jammed up by
useless spam contracts.

Every time an instruction executes, an internal counter keeps track of the fees
incurred, which are charged to the user. Each time the user initiates a transaction, that
user’s wallet reserves a small portion (selected by the user) to pay these fees.

After a transaction has been broadcast to the network from a given node—let’s say
Bob sends Alice some ether from his computer—the network propagates the transaction
around so that all the nodes can include it in the latest block.

Believe it or not, the explanation so far in this chapter barely scrapes the surface of
the EVM’s internals. You’ll learn more in Chapters 5 and 6. For now, it will be useful to
break down the fees, their role in transaction execution, and their impact on development
patterns.

Hello, Gas
Gas is a unit of work used to measure how computationally expensive an Ethereum
operation will be. Gas costs are paid with small amounts of ether.

http://dx.doi.org/10.1007/978-1-4842-2535-6_5
http://dx.doi.org/10.1007/978-1-4842-2535-6_6

Chapter 3 ■ the eVM

59

The purpose of gas is twofold. First, it guarantees a prepaid reward for the miners
that execute code and secure the network, even if the execution fails for some reason.
Second, it works around the halting problem and ensures that execution can’t go on
longer than the time it prepaid for.

Gas is a unit of work; it’s not a subcurrency, and you can’t hold or hoard it. It simply
measures how much effort each step of a transaction will be, in computational terms.

To be able to pay for gas costs, you simply need to add ether to your account. You
don’t have to acquire it separately; there is no gas token. Every operation possible on the
EVM has an associated gas cost.

 ■ Note It’s the combination of total gas used multiplied by gas price paid that results in
the total fee accrued by a given transaction.

Why Is Gas So Important?
Gas costs ensure that computation time on the network is appropriately priced. This
works differently in Bitcoin, where the fee is based on the size of the transaction in
kilobytes. Because Solidity code can be arbitrarily complex, a short snippet of instructions
could generate a lot of computational work, whereas a long snippet could generate less.
That’s why fees in the EVM are based on the amount of work being done, not on the size
of the transaction.

Why Isn’t Gas Priced in Ether?
Because ether is traded publicly on cryptocurrency exchanges, it is subject to speculative
periods of inflation and deflation. Using the gas unit of account for computational work is
helpful because it separates the price of computation from the highly volatile price of the
ether token.

Fees as Regulation
As you’ll see in Chapter 7, networks such as Bitcoin and Ethereum use economic
incentives and disincentives to render certain attack vectors moot. Fees fall into the
category of disincentive.

To begin with, it’s important to recognize that the operation of an Ethereum node
represents some risk. There’s the cost of the hardware, plus the time and energy of the
operator, and the network’s cost of downloading and verifying the proof of work and
the block header. Thus it makes sense that a transaction fee be put in place to prevent
pranksters from wasting the network’s capacity.

Blocks that consume excessive amounts of gas are a big danger in Ethereum. They
can take a long time to propagate because of their sheer size. How the system adapts
to the demands of users, who may have legitimate uses for large smart contracts, will

http://dx.doi.org/10.1007/978-1-4842-2535-6_7

Chapter 3 ■ the eVM

60

become clear later on in this chapter, and in Chapter 6. The protocol helps cut off late
blocks using various methodologies we’ll explore in Chapter 6, and places a floating cap
on operations, which currently sits at 65,536 per block.7

Working with Gas
In this section, you’ll explore the details of working with gas and then see how gas relates
to scaling the system.

Gas Specifics
Let’s review some details about working with gas:

•	 Unfortunately, the term gas creates some confusion. Every
transaction requires a STARTGAS value. This value is referred to
as gasLimit in the Yellow Paper and often just as gas in Geth and
Web3.js.

•	 Every transaction also requires the user to specify a gas price.

•	 The amount stipulated in STARTGAS, multiplied by the gas price, is
held in escrow while your transaction executes.

•	 If the gas price you offer for a transaction is too low, nodes won’t
process your transaction, and it will sit unprocessed on the network.

•	 If your gas price is acceptable to the network, but the gas cost runs
over what’s available in your wallet balance, the transaction fails and
is rolled back; this failed transaction is recorded to the blockchain,
and you get a refund of any STARTGAS not used in the transaction.

•	 Using excessive STARTGAS does not cause your transactions to
be processed more quickly, and in some cases may make your
transaction less appealing to miners.8

How Gas Relates to Scaling the System
If you send a computationally difficult set of instructions to the EVM, the only person this
hurts is you. The work will spend your ether, and stop when the ether you allocated to the
transaction runs out. It has no effect on anyone else’s transactions. There is no way to jam
up the EVM without paying a lot, in the form of transaction fees, to do it.

Scaling is handled in a de facto way through the gas fee system. Miners are free to
choose the transactions that pay the highest fee rates, and can also choose the block gas
limit collectively. The gas limit determines how much computation can happen (and how
much storage can be allocated) per block.

7GitHub, “Ethereum White Paper,” https://github.com/ethereum/wiki/wiki/White-Paper, 2016.
8ConsenSys Media, “Ethereum, Gas, Fuel and Fees,” https://media.consensys.net/ethereum-
gas-fuel-and-fees-3333e17fe1dc#.ozbhydyz6, 2016.

http://dx.doi.org/10.1007/978-1-4842-2535-6_6
http://dx.doi.org/10.1007/978-1-4842-2535-6_6
https://github.com/ethereum/wiki/wiki/White-Paper
https://media.consensys.net/ethereum-gas-fuel-and-fees-3333e17fe1dc#.ozbhydyz6
https://media.consensys.net/ethereum-gas-fuel-and-fees-3333e17fe1dc#.ozbhydyz6

Chapter 3 ■ the eVM

61

In this way, the price of computation on the EVM stays flexible and responsive to the
demand of the users of the system, as well as the costs incurred by the miners who do the
important work of processing transactions, maintaining hardware, and paying electricity bills.

Accounts, Transactions, and Messages
Recall from Chapter 2 that Ethereum has two types of accounts:

Externally owned accounts

Contracts accounts

Let’s look more deeply into exactly what each account type can do.

Externally Owned Accounts
An externally owned account (EOA) is also known as an account controlled by a pair of
private keys, which may be held by a person or an external server. These accounts cannot
hold EVM code. Characteristics of an EOA include the following:

•	 Contains a balance of ether

•	 Capable of sending transactions

•	 Controlled by the account’s private keys

•	 Has no code associated with it

•	 A key/value database contained in each account, where keys and
values are both 32-byte strings

Contract Accounts
Contract accounts are not controlled by humans. They store instructions and are activated
by external accounts or other contract accounts. Contract accounts have the following
characteristics:

•	 Have an ether balance

•	 Hold some contract code in memory

•	 Can be triggered by humans (sending a transaction) or other
contracts sending a message

•	 When executed, can perform complex operations

•	 Have their own persistent state and can call other contracts

•	 Have no owner after being released to the EVM

•	 A key/value database contained in each account, where keys and
values are both 32-byte strings

http://dx.doi.org/10.1007/978-1-4842-2535-6_2

Chapter 3 ■ the eVM

62

Transactions and Messages
Transactions come from external accounts, which are usually controlled by human users.
It’s a way for an external account to submit instructions to the EVM to perform some
operation. In other words, it’s a way for an external account to get a message into the
system. In computing terminology, a message is a chunk of data containing instructions.
Programmers can think of messages as function calls.

A transaction in the EVM is a cryptographically signed data package storing a
message (as described previously), which tells the EVM to transfer ether, create a new
contract, trigger an existing one, or perform some calculation. Contract addresses can be
the recipients of transactions, just like users with external accounts. Recall the discussion
of cryptographic communication from Chapter 2, in which we discussed encrypted
communications: a transaction is like a private communication between two users in an
unsecured network, who are nevertheless able to “send” value to each other.

Characteristics of Transactions
Transactions contain the following:

•	 A recipient address; specifying no recipient (and attaching smart
contract data) is the method for uploading new smart contracts.
As you’ll see, a contract address is returned so that the user knows
where to access this contract in the future.

•	 A signature identifying the sender

•	 A value field showing the amount being sent

•	 An optional data field, for a message (if this is being sent to a
contract address)

•	 A STARTGAS value, indicating the maximum number of
computational steps the transaction are prepaid

•	 A GASPRICE value, representing the fee the sender is willing to pay
for gas

Characteristics of Messages
A message is a chunk of data sent by a contract to another contract (never to or from a
human). Messages are virtual objects that are never serialized and exist only in the EVM.
When a miner is paid in the Ethereum network, this is accomplished by way of a message
to increment the miner’s payment address; it does not constitute a transaction.

A message is sent when a contract is being run by the EVM, and it executes the
CALL or DELEGATECALL opcodes. You will learn about opcodes in the next section of this
chapter.

http://dx.doi.org/10.1007/978-1-4842-2535-6_2

Chapter 3 ■ the eVM

63

 ■ Note Because the ethereum network is not connected to the http Web, it does not use
http methods. Instead, it uses operation codes traditionally used to pass messages within
the same localhost. this is what is meant by descriptions which include language such as
“one global machine.” Bitcoin works similarly.

Messages are sent to other contract accounts, which in turn run the code enclosed in
the message. Thus, contracts can have relationships with each other.

A message contains the following:

•	 The sender address of the message

•	 The recipient address of the message

•	 The value field (indicating how much ether, if any, is being sent)

•	 An optional data field (containing input data for the contract)

•	 A STARTGAS value limiting the amount of gas the message can use

Estimating Gas Fees for Operations
Transactions need to provide enough STARTGAS to cover all computation and storage.
However, but there are many operations in the EVM, and it’s hard to memorize what each
one costs.

Table 3-1 shows the costs of some common EVM operations.

Table 3-1. Costs of Common EVM Operations

Operation Name Gas Cost Description

step 1 Default amount per execution cycle

stop 0 Free

suicide 0 Free

sha3 20 SHA-3 hash function

sload 20 Gets from permanent storage

sstore 100 Puts into permanent storage

balance 20 Queries account balance

create 100 Contract creation

call 20 Initiating a read-only call

memory 1 Every additional word when expanding memory

txdata 5 Every byte of data or code for a transaction

transaction 500 Base fee transaction

contract creation 53,000 Changed in homestead from 21,000

Chapter 3 ■ the eVM

64

An up-to-date Google Doc containing the costs of various EVM operations can be
found at http://gas.eth.guide.

Opcodes in the EVM
As you’ll see, some of these operations can be called as methods. One of the most
confusing things about the blockchain paradigm is that it combines technical
conventions from several domains of computer science and networking. One example
is Ethereum’s (and Bitcoin’s) use of opcodes, or operation codes. Table 3-2 shows all the
opcodes available on the EVM, and their respective functions.

In traditional web development, the rough equivalent of an opcode would be a
HTTP verb, also known as an HTTP method. These include GET, POST, HEAD, OPTIONS, PUT,
DELETE, TRACE, and CONNECT. These semantics are reliable and well-known.

In Ethereum and Bitcoin, things work differently. Because the network is also
a global machine, the “methods” you use to make calls across the network are just
machine-language codes, of the ilk used inside an individual computer.

The following is a full list of EVM opcodes:

0s: Stop and Arithmetic Operations

0x00 STOP Halts execution.

0x01 ADD Addition operation.

0x02 MUL Multiplication operation.

0x03 SUB Subtraction operation.

0x04 DIV Integer division operation.

0x05 SDIV Signed integer.

0x06 MOD Modulo.

0x07 SMOD Signed modulo.

0x08 ADDMOD Modulo.

0x09 MULMOD Modulo.

0x0a EXP Exponential operation.

0x0b SIGNEXTEND Extend length of 2s (complement signed integer).

10s: Comparison and Bitwise Logic Operations

0x10 LT Lesser-than comparison.

0x11 GT Greater-than comparison.

0x12 SLT Signed less-than comparison.

0x13 SGT Signed greater-than comparison.

0x14 EQ Equality comparison.

Table 3-2. This is a complete list of EVM opcodes

(continued)

http://gas.eth.guide

Chapter 3 ■ the eVM

65

0x15 ISZERO Simple NOT operator.

0x16 AND Bitwise AND operation.

0x17 OR Bitwise OR operation.

0x18 XOR Bitwise XOR operation.

0x19 NOT Bitwise NOT operation.

0x1a BYTE Retrieve single byte from word.

20s: SHA3

0x20 SHA3 Compute Keccak-256 hash.

30s: Environmental Information

0x30 ADDRESS Get address of currently executing account.

0x31 BALANCE Get balance of the given account.

0x32 ORIGIN Get execution origination address.

0x33 CALLER Get caller address. This is the address of the account
directly responsible for this execution.

0x34 CALLVALUE Get deposited value by the instruction/transaction
responsible for this execution.

0x35 CALLDATALOAD Get input data of current environment.

0x36 CALLDATASIZE Get size of input data in current environment.

0x37 CALLDATACOPY Copy input data in current environment to memory.
Pertains to the input data passed with the message call
instruction or transaction.

0x38 CODESIZE Get size of code running in current environment.

0x39 CODECOPY Copy code running in current environment to memory.

0x3a GASPRICE Get price of gas in current environment.

0x3b EXTCODESIZE Get size of an account’s code.

0x3c EXTCODECOPY Copy an account’s code to memory.

40s: Block Information

0x40 BLOCKHASH Get the hash of one of the 256 most recent complete blocks.

0x41 COINBASE Get the block’s beneficiary address.

0x42 TIMESTAMP Get the block’s timestamp.

0x43 NUMBER Get the block’s number.

0x44 DIFFICULTY Get the block’s difficulty.

0x45 GASLIMIT Get the block’s gas limit.

Table 3-2. (continued)

(continued)

Chapter 3 ■ the eVM

66

50s: Stack, Memory, Storage, and Flow Operations

0x50 POP Remove item from stack.

0x51 MLOAD Load word from memory.

0x52 MSTORE Save word to memory.

0x53 MSTORE8 Save byte to memory.

0x54 SLOAD Load word from storage.

0x55 SSTORE Save word to storage.

0x56 JUMP Alter the program counter.

0x57 JUMPI Conditionally alter the program counter.

0x58 PC Get the value of the program counter prior to the increment.

0x59 MSIZE Get the size of active memory in bytes.

0x5a GAS Get the amount of available gas, including the
corresponding reduction.

0x5b JUMPDEST Mark a valid destination for jumps.

60s and 70s: Push Operations

0x60 PUSH1 Place 1-byte item on stack.

0x61 PUSH2 Place 2-byte item on stack.

0x7f PUSH32 Place 32-byte (full word) item on stack.

80s: Duplication Operations

0x80 DUP1 Duplicate first stack item.

0x81 DUP2 Duplicate second stack item.

0x8f DUP16 Duplicate 16th stack item.

90s: Exchange Operations

0x90 SWAP1 Exchange first and second stack items.

0x91 SWAP2 Exchange first and third stack items.

0x9f SWAP16 Exchange 1st and 17th stack items.

a0s: Logging Operations

0xa0 LOG0 Append log record with no topics.

0xa1 LOG1 Append log record with one topic.

0xa4 LOG4 Append log record with four topics.

Table 3-2. (continued)

(continued)

Chapter 3 ■ the eVM

67

f0s: System Operations

0xf0 CREATE Create a new account with associated code.

0xf1 CALL Message-call into an account.

0xf2 CALLCODE Message-call into this account with alternative
account’s code.

0xf3 RETURN Halt execution returning output data.

0xf4 DELEGATECALL Message-call into this account with an alternative
account’s code, but persisting the current values for
sender and value. Halt execution; mark for deletion.

0xff SUICIDE Halt execution and register account for later deletion.

Summary
This chapter has provided a more complete vision of the EVM as a database, and how
changes are made to its state. Although the design rationale should be clearer to you now,
there’s still a lot left to discuss. If you’d like to read more ancillary documentation about
how the EVM executes programs, you’ll find a list of resources at http://evm.eth.guide.

The question to tackle next: what does it mean to run programs on the EVM? The
answer lies in writing and deploying smart contracts, which work in concert to form
distributed applications.

As we discussed in this chapter, each contract has its own address with storage,
where it can hold any arbitrary code. When a transaction hits this address, or the contract
is called by another contract, its code springs to life inside every node on the EVM,
leading to further message passing or ether transactions.

The instructions that make up smart contracts are stored in EVM bytecode. But
before they are compiled into bytecode, they are written by a human, in the Solidity
programming language. That language is the subject of the next chapter.

Table 3-2. (continued)

http://evm.eth.guide

69© Chris Dannen 2017
C. Dannen, Introducing Ethereum and Solidity, DOI 10.1007/978-1-4842-2535-6_4

CHAPTER 4

Solidity Programming

Solidity is a new programming language used to
write programs called smart contracts, which can be
run by the EVM. This new language is a hodgepodge
of conventions from networking, assembly language,
and web development

Imagine you’re on a beach in another country. You took a trip here on a whim and
breezed past the currency exchange booth in the airport, figuring you could use your
credit or debit card while visiting—no need for cash. In your rush, you forgot to bring
sunglasses. A vendor walking along the beach has a pair that happen to be your style.
In fact, they’re better than the pairs you remember passing in the duty-free area of the
airport. Alas, he doesn’t have a credit card reader—just his Android phone—and you
don’t have any local currency. He gives you a little card with an e-mail address and a
phone number, in case you’d like to buy the glasses later.

Think about this scenario for a moment, and you’ll see the power of protocol-based
digital currency. Why can you send this man a text message or an e-mail, or even call him
on the phone, but you can’t send him money the same way?

Primer
The preceding chapter described how the EVM transitions state, and in this chapter you’ll
see what kind of instructions the EVM can process as it makes state transitions.

In general, a computing environment is an infinite loop that repeatedly carries out
whatever operation is current in the system’s program counter. (Jumping the queue in
the program counter is where the JUMP opcodes derive their name.) The program counter
iterates one by one until the end of that particular program is reached. The machine
exits the execution loop only if it encounters (throws) an error, or hits an instruction
designating the machine to STOP or RETURN a result or value.

Chapter 4 ■ Solidity programming

70

These operations have access to three types of space in which to store data:

The stack, a container in which values can be added or removed
(pushed or popped). Stack values are defined within a method.

Dynamic memory, also known as the heap, an infinitely
expandable byte array. This resets when the program finishes.

A key/value store for account balances and, in the case of
contract addresses, Solidity code.

Solidity contracts can also access certain attributes about the incoming message,
such as the value, sender, and data of the incoming message, as well as the data from the
block header.

Global Banking Made (Almost) Real
The banks of the world have computer systems that, while upgraded and mostly modern,
are the descendants of machines that predate the Internet and certainly the World Wide
Web. As a result, they’re architected to be silos. There is no single global banking network,
but rather an interconnected mass of national systems and private banking software
stacks, all with their own quirks.

Extra-Large Infrastructure
A system such as Ethereum has nodes all over the world, being operated by private
individuals who are paid for their activity in the form of mining fees, denominated in
ether. How this works is the subject of Chapter 6. The system is highly decentralized.

As a result, cryptocurrency protocols have the power to elevate financial transactions
to the level of convenience we now enjoy with our telecommunications. So, how does a
decentralized system of peer-to-peer nodes run “programs,” anyway?

Worldwide Currency?
As you can see, the idea of a universal cryptocurrency seems to rest on the assumption
that every human on Earth will eventually download a cryptocurrency wallet onto their
cell phone. However, such a pipe dream is not the roadmap for Ethereum. Instead,
the Ethereum Core developers have chosen to make it easy for third parties to create
complementary currencies, or custom tokens, that will be branded and used for special
purposes (similar to credit card rewards points today). These third parties (whether
existing corporations, startups, municipalities, universities, or nongovernmental
organizations) could rely upon the public chain, or large permissioned chains, to push
around many different types of tokens, much the way that the global banking system is
equipped to handle many different currencies.

It’s unlikely that most people’s first experience with ether will be for the sake of
cryptocurrency experimentation. It’s more likely they will end up holding digital tokens
or points as part of a brand loyalty program, university program, or employer-sponsored

http://dx.doi.org/10.1007/978-1-4842-2535-6_6

Chapter 4 ■ Solidity programming

71

system. Sports stadiums, theme parks, city summer camps, shopping malls, large office
parks—anywhere there’s a community exchanging money, a complementary currency
might make sense.

Complementary Currency
Why would a country ever need more than one form of money? In the decades leading
up to the establishment of the Federal Reserve, the United States’ present-day central
bank, many local currencies circulated. These paper bills generally represented gold on
deposit somewhere, and were thus local by nature; a certificate for gold is worth little if
the redeeming institution is thousands of miles away. In the period before widespread,
systematic private money systems (a period of American history known as the Wildcat
banking era), many printing houses made their primary incomes from printing money
with various anticounterfeiting features to rival their competing printing houses.

Benjamin Franklin was one such printer who enriched himself on the printing of
complementary currencies. In fact, he was known for his anticounterfeiting measures
that went above and beyond. According to the Smithsonian Institution, he once printed
an official issuance of local Pennsylvania currency with the name of the state spelled
wrong, in the hopes of foiling counterfeiters who assumed those bills must be fake.1 Many
of Franklin’s colonial bills bore the words to counterfeit is death.2

The term complementary currency refers to a medium of exchange functioning
alongside national fiat currency, meeting a need the national coin cannot. These
currencies generally have four purposes3:

To promote local economic development within a small
community

To build social capital in that community

To nurture more-sustainable lifestyles

To meet needs that mainstream money does not

Solidity programming allows anyone to create a complementary currency, with a
simple token contract. Those tokens can have whatever parameters the situation calls for,
as you’ll see when you deploy a token contract in Chapter 5.

The Promise of Solidity
Solidity is a high-level contract-oriented language with similarities to JavaScript and C
languages. It allows you to develop contracts and compile to EVM bytecode. It is currently
the flagship language of Ethereum. Although it’s the most popular language library to be
written for the EVM, it was not the first and probably will not be the last.

1Smithsonian Education, “Revolutionary Money,” http://www.smithsonianeducation.org/
educators/lesson_plans/revolutionary_money/introduction.html, 2016.
2Wikipedia, “Counterfeit Money,” https://en.wikipedia.org/wiki/Counterfeit_money, 2016.
3Investopedia, “Complementary Currency,” www.investopedia.com/articles/economics/11/
introduction-complementary-currencies.asp, 2016.

http://dx.doi.org/10.1007/978-1-4842-2535-6_5
http://www.smithsonianeducation.org/educators/lesson_plans/revolutionary_money/introduction.html
http://www.smithsonianeducation.org/educators/lesson_plans/revolutionary_money/introduction.html
https://en.wikipedia.org/wiki/Counterfeit_money
http://www.investopedia.com/articles/economics/11/introduction-complementary-currencies.asp
http://www.investopedia.com/articles/economics/11/introduction-complementary-currencies.asp

Chapter 4 ■ Solidity programming

72

There are four languages in the Ethereum protocol at the same level of abstraction,
but the community has slowly converged on Solidity, which has edged out Serpent (similar
to Python), Lisp-Like Language (LLL), and Mutan, the latter of which is deprecated.

Learning Solidity enables you to move tokens of value in any Ethereum-based
system. And because Ethereum and Solidity itself are free and open source technology,
clever minds will likely alter and re-release it, or deploy it privately. In fact, several groups
have already done just that; you’ll learn about these third parties and their approaches in
later Chapter 11.

You can find the official Solidity documentation at http://solidity.readthedocs.
io/en/develop/index.html. However, other sites also offer useful Solidity docs. For
convenience, all the most popular Solidity documentation is linked under the
http://solidity.eth.guide subdomain.

Browser Compiler
The most common way to test Solidity is by using the browser-based compiler. It can be
found at http://ethereum.github.io/browser-solidity. For quick reference, you’ll
also find it at http://compiler.eth.guide.

If you’ve read this far, you might already be curious about how to learn Solidity
yourself. Although it’s certainly easier to begin programming in Solidity if you already know
another programming language, don’t let this discourage you if you’re a nonprogrammer.

Learning to Program the EVM
Sometimes it’s easier to learn a new habit than to break an old one. Many conventions
in distributed application programming will strike today’s web and native application
programmers as odd or quirky. Plus, they may already be professionally or personally
invested in other languages or subject areas. So don’t feel like the whole world has a head
start on you if you’re just starting out. It is still early days in the world of Ethereum.

 ■ Note Key programming terms will be defined as we go, and you’ll pick up a lot from the
context. try looking through a JavaScript book aimed at beginners (http://www.apress.com/
us/book/9781484217863) for a deeper explanation of some of the core concepts in this
chapter.

New coders can approach Ethereum without preexisting assumptions. Better
yet, they’ll find a system they can (admittedly, after some time) understand from top
to bottom. Not all hackers, nor even software engineers, know the intricacies of the
underlying networks in the layers below their application hosting provider.

In conventional web applications, you have many individual servers with databases,
communicating and sharing data over a network. This data may be manipulated by
applications that live on still other servers. Even more servers may be in the mix to
balance surges in demand.

http://dx.doi.org/10.1007/978-1-4842-2535-6_11
http://solidity.readthedocs.io/en/develop/index.html
http://solidity.readthedocs.io/en/develop/index.html
http://solidity.eth.guide
http://ethereum.github.io/browser-solidity
http://compiler.eth.guide
http://www.apress.com/us/book/9781484217863
http://www.apress.com/us/book/9781484217863

Chapter 4 ■ Solidity programming

73

 ■ Note a server is a computer that acts in a dedicated role, as part of a certain kind of
service you want to offer people via the Web. Some servers hold data (think of spreadsheets
of information, such as customer names and addresses) in what are known as databases.
Some servers run applications that other computers can access over the network.

In Ethereum, the network is the database, and this network can run applications
available to everyone on it. So you end up learning quite a bit about all three.

Watching a blockchain explorer report new transactions is something of a marvel
when you know what’s happening underneath. Although learning Ethereum may seem
like a lot of work, it would be much more work to understand today’s Web with a similar
breadth and depth.

The following subsections present other reasons you should begin experimenting
with Solidity.

Easy Deployment
In Ethereum, you don’t necessarily have much of the hassle of deploying and scaling a
normal web application. All the required smart contracts for the back-end of distributed
app, also known as a dapp, can be neatly bundled up in a few documents and sent to the
EVM, and boom—your program is available instantly to anyone on Earth who installs an
Ethereum wallet or command-line node. Today, developers may want to build “hybrid”
Ethereum dapps that are accessible through normal Web browsers, in which case adding
ether payments is just adding more work. But by the time the network is complete in 2-3
years, it will be able to far easier to host all the components of an application using the
Ethereum protocol.

 ■ Note in business jargon, time to value, or TTV, is the amount of time that passes from
the moment the customer requests something to the moment the customer gets it. this
something can be tangible or intangible. But a low ttV suggests that it is easy to think up a
product or service and deliver it quickly to the people who want to use it.

In Ethereum, it is fast and inexpensive (if not yet easy) to develop and deploy
unalterable, always-up, uncensorable applications that move real value over arbitrary
distances. And everything is free, except the gas costs generated by your programs, and your
own time (and computer). For software engineers, service providers, system administrators,
and product managers, the long-term impact of working in the Ethereum ecosystem means
less brittle systems, faster product iterations, and far less time developing infrastructure to
support new applications or services. In short, this may amount to a drastic reduction in
TTV for enterprise software vendors and in-house teams alike.

Chapter 4 ■ Solidity programming

74

The Case for Writing Business Logic in Solidity
Because of its novel characteristics, the fate of Ethereum in 2017 and beyond doesn’t
necessarily rest on the mainstream popularity or adoption of today’s Ethereum clients.
Instead, it relies on popularity with developers, brands, corporations, organizations,
governments, and other institutions that are in a position to create an Ethereum token for
their community, and perhaps even their own branded wallet.

They might do so in the interest of quickly and safely rolling out cool new products and
services with ultra-low overhead. This also goes for large marketing campaigns, which must
be deployed faster and faster today to keep up with the speed of Internet meme culture. The
frictionless nature of the payments in cryptonetworks makes it easier than ever to build a
seamless sales and marketing experience for customers, with payments built in.

A complementary currency is also a highly valuable tool for use in rewards programs,
membership clubs, and large retail districts. Customers who hold money in the form of a
branded coin are apt to spend more regularly on that brand, just as frequent flyers today
stay loyal to the airline miles and credit-card point schemes that give them the best bang
for the buck.

Today, loyalty programs can be obscure and even slightly scammy. But the
transparency of a blockchain-based loyalty coin would make it as good as any other
form of cryptocurrency—meaning it might be traded on exchanges or accepted by other
parties as payment.

Code, Deploy, Relax
Many Ethereum-enabled applications might be used through the Mist wallet, or another
Ethereum-native application running a node under the hood. For developers of client
applications, adding compatibility with new Ethereum-based tokens is trivial, meaning
that a high degree of overlap and intercompatibility will exist between Ethereum wallets
and tokens, just as there are many IMAP- and POP-compatible e-mail clients today.

It’s also possible to create an Ethereum program today that is accessible through the
regular old Web, with a little bit of work. However, deployment will be made increasingly
easy with the use of new third-party frameworks, examples of which are provided in
Chapter 8.

However, this isn’t to say that conventional web apps will go away. Many individuals
and organizations have enormous resources invested in legacy web apps. That said, the
Ethereum network makes it far easier and cheaper to roll out and operate applications at
large scale, as you’ll see, tempting more and more teams to consider decentralizing their
applications.

Design Rationale
The Solidity programming language has a syntax like JavaScript, but it is specially
designed to compile into bytecode for the Ethereum Virtual Machine. As noted in
Chapter 3, the EVM runs code that is fully deterministic; the same algorithms with the
same inputs will always yield the same results. You can prove this mathematically, as
you’ll see later in this chapter.

http://dx.doi.org/10.1007/978-1-4842-2535-6_8
http://dx.doi.org/10.1007/978-1-4842-2535-6_3

Chapter 4 ■ Solidity programming

75

Solidity is statically typed, supports inheritance, libraries, and complex user-
defined types, among other features. Conscientious use of types can help programmers
understand how their programs will execute. A list of types in Solidity is presented at the
end of this chapter.

 ■ Note Data types are exactly what they sound like. a programmer has the option of
telling the machine what type of data to expect: for example, will it be a number or a string
of letters? loosely typed languages don’t require the programmer to be specific; strongly
typed languages do.

Interestingly, in Solidity you can write assembly code inline. If you prefer to do a
certain operation by using one of the EVM’s opcodes, listed in Chapter 3, you can do so
inline in your Solidity contracts. Just write assembly {...} with your code in place of a
Solidity statement.

Writing Loops in Solidity
Loops are foundational to control flow in programming—that is, the codification of
if-this-then-that contingencies or do-this-while-doing-that concurrencies. In most
programming languages, loops are initiated with similar syntax. Solidity adheres to all the
same syntactical regularities as JavaScript and C when it comes to loops.

An iterator loop is an object that enables a programmer to move through a container
or list. Sometimes, iterators are used to instruct the computer to perform the same
operation a certain number of times, or on a number of elements in the code.

A general-purpose loop has the same syntax in JavaScript, C, and Solidity. It instructs
the computer to count up from 0 to 10:

for (i = 0; i < 10; i++) {...}

If you looked carefully at the list of opcodes in the preceding chapter, you may have
noticed that the EVM allows looping in two ways. You can write loops in Solidity, or you
can create them using JUMP and JUMPI instructions. This jumps ahead a specified number
of steps in the program counter. Recall that the program counter keeps track of the
number and order of computational steps in a given program as it is being executed on
the EVM.

This is just one way that Solidity and EVM opcodes can be used together to create
a contract that is mostly expressive and readable, but also cheap to run. It’s important
to point out that because of the way gas price is calculated, some functionality might be
easier to enforce or less expensive to execute if written using opcodes, and this can be
especially useful if you’re writing your own language library.

If you’ve never looked seriously at code before, and this loop concept is hard to
grasp, don’t sweat it now; the following sections provide more context.

http://dx.doi.org/10.1007/978-1-4842-2535-6_3

Chapter 4 ■ Solidity programming

76

Expressiveness and Security
The adjective expressive is used in computer science to mean code that is easy for a
human programmer to write and to understand. Expressive languages are the bridge
between human thought patterns and machine execution patterns. For a language to be
expressive, its various constructs must be intuitively readable, and its boilerplate code
(such as keywords, special variables, and opcodes) must use human-readable words that
help programmers remember what they represent.

Expressive languages must be compiled down into something more machine-friendly
before they can be run, and this requires work on the part of the computer. After all,
expressive languages tend to be harder to reason about (harder to predict the behavior of),
whereas more-restricted, lower-level, less-abstract languages make that reasoning easier.

The final frontier is smart contracts that can be easily formally verified, but also
written in an expressive high-level language such as Solidity. This problem begs for
automation, and indeed, automated formal verification is now on the horizon—a fact
that computer scientists must be excited about, and that Ethereum developers will
unknowingly benefit from.

The Importance of Formal Proofs
If you learn Solidity programming, you may encounter the curiosity of other developers,
who will get right to the point: how do you prevent someone writing an infinite loop and
locking up the machine?

Far from being a niche argument, this is the most relevant issue related to software
engineering’s role in the world today: can human beings make a free, openly accessible
virtual computer that other human beings can’t sabotage? If the answer is yes, then it
stands in stark defiance of the theory of the tragedy of the commons.

Historical Impact of a Shared Global Resource
In economics, the tragedy of the commons is the idea that a shared resource can’t last.
Eventually, users acting in their own self-interests will deplete the resource, because it
comes at no cost to themselves to do so. A scenario like this, whereby someone can enrich
themselves or act profligately while externalizing the costs to other people, is known as a
moral hazard.

Here’s an example: In New York City in late 2016, the municipal government installed
computing terminals on the streets of Lower Manhattan. These terminals offered free Wi-
Fi to passing pedestrians. However, these terminals also came with a small touchscreen
allowing walk-up Internet access. No sooner were these shared resources up and running
before people were pulling up chairs, watching YouTube or pornography, and loitering
for hours.4 Program administrators were forced to quickly restrict the onscreen Internet
access, and now the terminals serve mostly as just Wi-Fi hotspots.

4New York Times, “Internet Browsers to Be Disabled on New York’s Free Wi-Fi Kiosks,” www.
nytimes.com/2016/09/15/nyregion/internet-browsers-to-be-disabled-on-new-yorks-
free-wi-fi-kiosks.html?_r=0, 2016.

http://www.nytimes.com/2016/09/15/nyregion/internet-browsers-to-be-disabled-on-new-yorks-free-wi-fi-kiosks.html?_r=0
http://www.nytimes.com/2016/09/15/nyregion/internet-browsers-to-be-disabled-on-new-yorks-free-wi-fi-kiosks.html?_r=0
http://www.nytimes.com/2016/09/15/nyregion/internet-browsers-to-be-disabled-on-new-yorks-free-wi-fi-kiosks.html?_r=0

Chapter 4 ■ Solidity programming

77

Thus, the notion of an extremely inexpensive public computer such as the EVM is
nothing short of fantastic. It can be accessed by anyone, with any computer, anywhere,
and will run programs far into the future. Nobody owns it and nobody can tamper with it.
It can even store your money for you.

How Attackers Bring Down Communities
Decentralized economies represent a nascent threat to all sorts of private vested interests
around the world, especially in developing economies, where powerful people would
prefer the world continue on without a solution to the tragedy of the commons (and thus,
remain at the mercy of the latest autocrat or crazy mob). The security of the Ethereum
network is the subject of Chapter 7. But Ethereum’s defenses are everywhere, even in the
programming language itself, so it bears mention here.

For this discussion, you can think of a network as a community of people connecting
with each other via computer. An attacker is someone who hates this group, and seeks to
cause them grief at any expense.

Hypothetical Attack Written in Solidity
Imagine that an attacker wants to lock up the EVM with a super memory-intensive smart
contract, written in Solidity. The attacker is willing to pay the gas costs, however large.
(This is a real scenario, as you’ll see in Chapter 7.) Keep in mind that for the purposes
of this example, the contract could also be written in any language created for the EVM,
such as Serpent or even the lower-level EVM code, not just Solidity.

According to Rice’s theorem, the behavioral properties of some computer programs are
mathematically undecidable, meaning it is not possible to write another computer program
that can definitively predict whether Solidity code you show it will ever terminate.5 Thus,
there is no way to write any kind of effective “gatekeeper” program that will swat down a
hypothetically memory-hungry smart contract written by the attacker in this scenario.

 ■ Note Smart contracts are distinct from distributed applications, or dapps, even though
both are distributed and application-like. a dapp is a gUi application that uses ethereum
smart contracts on the back end, in lieu of a conventional database and web application
hosting provider. dapps may be accessed through the mist browser or over the Web.

The EVM deals with this reality in various ways, including a hard limit on the number
of computational steps per block, its deterministic language, and gas costs. Nevertheless,
gray areas will always be explored by attackers if a financial incentive exists, and at $1 billion
market capitalization, there’s significant incentive to crack the EVM and steal ether.

Although gray areas can’t be engineered away at once, they can be dealt with in
a series of protocol forks over time. As far as accidentally destructive programs, it’s up

5Wikipedia, “Rice’s Theorem,” https://en.wikipedia.org/wiki/Rice%27s_theorem, 2016.

http://dx.doi.org/10.1007/978-1-4842-2535-6_7
http://dx.doi.org/10.1007/978-1-4842-2535-6_7
https://en.wikipedia.org/wiki/Rice's_theorem

Chapter 4 ■ Solidity programming

78

to the Ethereum community to develop patterns and practices that are conducive to
straightforward, easy-to-prove contracts that can develop into boilerplate standards.
Chapter 5 covers some of these best practices.

Automated Proofs to the Rescue?
Although it’s not possible to create a gatekeeper that kicks out bad programs, it is
increasingly feasible to produce provably correct programs by using a machine-checkable
proof—an automated program that mathematically proves other programs.

Because smart contracts move money, they make great lab rats for automated
mathematical proofs. The goal of this area of computer science and mathematics research
is to ensure, in a systematic way, that source code satisfies a certain formal specification.
It’s a way for independent auditors to come in and mathematically verify that the program
is actually doing what it’s supposed to do.

Automating the proving process is a boon for businesses but won’t do much for
the average programmer learning Solidity. Proofs merely show you whether what you
intended to happen actually did happen in the program. If your program doesn’t prove
out, there is no way for an automated system to tell you how to write it better.

Nevertheless, the point of exploring this topic is to signal that Ethereum networks
may indeed one day carry high volumes of automated money-moving bots pushing
around trillions of dollars safely; and that developing these bots may not be as slow, risky,
and obscure a process as it is today.

Determinism in Practice
Combining the concepts from the preceding sections, you can see that in some ways, the
whole idea of Turing completeness may be an idealized concept of limited usefulness
when designing a public system in the real world.

Thus, it could also be said that in practice, the EVM is not really Turing complete,
because the bounded nature of execution in Solidity contracts could soon make it
possible to theoretically predict the behavior of any program the EVM will run.

Bitcoin escapes none of these issues. The gray areas that exist between expressive
languages and machine languages exist for Bitcoin’s scripting language too, which is also
compiled down at runtime into machine code.

Lost in Translation
Interestingly, the question of proofs has a lot to do with the concept of expressiveness,
discussed earlier in this chapter. A human can perform a mathematical proof on only a
high-level, abstract language—that is, a human-readable programming language such
as Solidity. Performing such a proof on assembly code or machine code would be next to
impossible for even the most dedicated mathematical minds.

The compilation process—the transmission of human-readable code into lower-
level machine code—sacrifices a lot of (human interpretable) information about how
to reason about the program. It also sacrifices information that would be useful to an

http://dx.doi.org/10.1007/978-1-4842-2535-6_5

Chapter 4 ■ Solidity programming

79

automated theorem prover. Thus, some ambiguity is always introduced into the process.
Today, you can never be fully sure that even a mathematically proven smart contract
written in Solidity will still be provable after being compiled.

Testing, Testing, Testing
The way to prevent ambiguous code from losing your money is to test vigorously. The
Ethereum network comes with a testnet called Ropsten that uses play ether, which costs
nothing and can be drawn from a faucet quickly in a sandbox-like environment.

In reality, Ropsten is no different from the main chain. It is simply a different chain
that was designated for testing. Like the Titanic and its sister ship the Britannic, they are
identical except for the names, as is every other chain someone spins up. There is nothing
special or sanctified about these chains; you will create chains just like them in Chapter 8.

Command Line Optional!
Keep in mind that most of the important functions of Ethereum can be done in the Mist
wallet: sending and receiving ether, tracking tokens, and deploying contracts. Using Geth
(or the other command-line clients) is a good choice for developers who intend to learn
to write dapps. Chapter 6 deals more with Geth.

In this section, we will look briefly at a real smart contract, to explore one simple
example of how a smart contract can be used.

 ■ Note if you can’t read or write code, don’t worry. a tutorial on syntax and structure
follows this example that will help you reason about what the code is doing. in the next
chapter, we’ll deploy a standard ethereum token, with zero coding required.

You’ll learn how to deploy a contract like this in Chapter 5. You’ll be pleased to learn
that there are only three requirements for deploying a simple contract in Solidity:

 1. A text editor such as TextEdit on macOS, Gedit on Ubuntu, or
Notepad on Windows. Be sure to switch to plain-text mode,
which strips away all fonts, underlining, bold, hyperlinks, and
italics. (Never use rich text to write code!)

 2. The Mist wallet, covered in Chapter 2.

 3. The Browser Solidity Compiler located at https://ethereum.
github.io/browser-solidity/ or available at the following
shortlink:

http://compiler.eth.guide

As we’ll demonstrate in Chapter 5, all that you need to do to “upload” a contract is to
copy-paste your Solidity code from your text editing application into the Solidity Browser

http://dx.doi.org/10.1007/978-1-4842-2535-6_8
http://dx.doi.org/10.1007/978-1-4842-2535-6_6
http://dx.doi.org/10.1007/978-1-4842-2535-6_5
http://dx.doi.org/10.1007/978-1-4842-2535-6_2
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
http://compiler.eth.guide
http://dx.doi.org/10.1007/978-1-4842-2535-6_5

Chapter 4 ■ Solidity programming

80

Compiler. From there, you’ll compile the code into bytecode, and copy-paste that
bytecode into Mist. It’s really very easy, but let’s not get bogged down in the logistics just
yet. Instead, we’ll examine the behavior of the sample smart contract below, so you can
begin to grasp the potential of an automated contract which sends and receives money.
The following example was originally written by Cyrus Adkisson (fivedogit on GitHub),
a Kentuckian software engineer and Ethereum enthusiast now living in New York. It has
been adapted for this book.

You’ll name this contract PiggyBank, using CapsCase (rather than camelCase) per the
Solidity naming conventions. You can find those naming conventions, and the rest of the
Solidity style guide, at http://solidity.readthedocs.io/en/develop/style-guide.html.

Now, let’s look at PiggyBank.sol:

contract PiggyBank {

 address creator;
 uint deposits;

// Declaring this function as public makes it accessible to other users and
smart contracts.
 function PiggyBank() public
 {
 creator = msg.sender;
 deposits = 0;
 }

// Check whether any ether has been deposited. When it is deposited, the
number of deposits go up and the total count is returned

 function deposit() payable returns (uint)
 {
 if(msg.value > 0)
 deposits = deposits + 1;
 return getNumberOfDeposits();
 }
 function getNumberOfDeposits() constant returns (uint)
 {
 return deposits;
 }

// When the external account that instantiated this contract calls it again,
it terminates and sends back its balance.
 function kill()
 {
 if (msg.sender == creator)
 selfdestruct(creator);
 }
}

http://solidity.readthedocs.io/en/develop/style-guide.html

Chapter 4 ■ Solidity programming

81

You can find more examples of Solidity scripts for programmers of all skill levels and
abilities at http://solidity.eth.guide.

Formatting Solidity Files
One major detail is missing from the preceding contract example. Every Solidity file
should have (but does not require) a version pragma, a statement indicating which
Solidity version this contract was written in. Over time, this should prevent older
contracts from being rejected by future versions of the compiler.

The version pragma for this file is 0.4.7, so you should add the following to the file header:

pragma solidity ^0.4.7;

For more information on the structure of Solidity files, see http://solidity.
readthedocs.io/en/develop/layout-of-source-files.html.

Tips for Reading Code
Here are seven facts that will make this contract more legible for beginners:

Computers read code from top to bottom, left to right, just like
English speakers. Putting one line before another generally
means the computer will see that instruction first.

Typically, programs take an input and return some kind of
output. Computable functions (mathematical functions that
can be performed by a computer) are defined as functions
that can be written as algorithms.

Algorithms take in data, perform an operation on it, and
return some kind of output. Programs are algorithms with
other algorithms nested in them.

An algorithm is like a machine: you can reuse it many times.
Thus, writing algorithmic instructions—programming—will
strike you as being a lot like writing Mad Libs, which the
computer will later autocomplete with information that a
user (or in Ethereum, a contract) gives it, via a transaction or
message call. Sometimes this information is just a number
(for example, 5 ether).

Operators are the symbols between the English words, such as
the equal sign, plus sign, and minus sign. These work mostly
as you’d expect, with a few exceptions. You’ll see Solidity
operators in Table 4-1.

Types are the nouns of computer programming. So when you
see a type, you know what is allowed in that space of the Mad
Lib. A common type in Solidity is an address.

http://solidity.eth.guide
http://solidity.readthedocs.io/en/develop/layout-of-source-files.html
http://solidity.readthedocs.io/en/develop/layout-of-source-files.html

Chapter 4 ■ Solidity programming

82

The original use of computers was to do math quickly. For decades, the people who
used computers were mostly physicists who wanted to crunch hard math problems in
order to figure out answers to questions such as this: What time and day is the best to
launch Apollo 11, so that it has the shortest distance to travel to the Moon?

The EVM is much closer to this original kind of computer, but it’s suited to thinking
about sophisticated accounting and fiscal reconciliation, as you might learn to do in
business school by programming spreadsheets in Microsoft Excel. Recall that databases
are merely spreadsheets themselves, and computer programs manipulate these
databases. Thus, when you declare something, you are telling the computer to put it in the
spreadsheet—specifically, to put it in the stack.

The computer will figure out, on its own, how much memory to have ready to store
the values in any temporary, or so-called dynamic, computations—small, pivotal logical
statements used to compute contingencies such as if-then. (It’s important to define the
stack and heap in order to see that this is where the danger of memory-hog programs lies:
in asking the computer to use more dynamic memory than it has to spare.)

Statements and Expressions in Solidity
As you’ll see, there are functions all over the place in Solidity. However, they’re used in
different ways.

Some functions produce a value, such as a number, or an answer to a true/false
question. What exactly this value can be is determined by Solidity’s types, mentioned
earlier; the true/false value is called a Boolean.

What Is an Expression?
Functions that produce a value are known as expression functions. Because expressions
evaluate to a value of one type or another, in programming they can be used in place of
values.

Other functions are declarative, and lead to the creation of a dedicated space in the
computer’s memory, which will be used each time it runs this routine. These declarative
functions are important because they are crucial to writing statements.

What Is a Statement?
Speaking in grossly general terms, a statement tells the computer to perform an action.
The computer uses expressions to figure out how to take this action, and when. Thus,
computer programs are composed of statements, and statements are often composed of
expressions (or other statements).

Functions, Public and Private
In JavaScript and Solidity, you can use semicolons to chain statements, and tell the
computer that another statement is coming up in the code:

function first(); function second()

Chapter 4 ■ Solidity programming

83

In Solidity, you can also declare whether you want certain functions to be available
outside that program. These designations are as follows:

•	 public: Visible externally and internally (an accessor function for
storage/state variables is created)

•	 private: Visible only in the current contract (default)

 ■ Note Functions written in Solidity code are not public by default. you must declare them
as public when you make them, or they will not be available to contracts outside of the one
they’re in.

Although this is just an introduction to code literacy, it should be enough for you to
begin to decode what some of the smart contracts we’ll discuss later are doing.

Value Types
When writing Solidity code, you can tell the computer what type of value to expect in each
algorithmic instruction. This section describes the types of values the EVM can interpret.

Booleans
Known in code as bool, the Booleans are true/false expressions that evaluate to true or
false.

Signed and Unsigned Integers
Known in code as int and uint, these are numbers. They can be negative if they have a
sign, or minus, indicating they are signed. Unsigned integers are thus positive numbers.

Addresses
The address type holds a 20-byte value, which is the size of an Ethereum address (40 hex
characters, or 160 bits). Address types also have member types.

Members of Addresses
These two members allow you to query the balance of an account, or to transfer ether to
an account. Be careful with transfer in smart contracts. It’s better to use a pattern where the
recipient is allowed to withdraw the money, than to have a contract initiating transfers.

•	 balance

•	 transfer

Chapter 4 ■ Solidity programming

84

Address-Related Keywords
Keywords come with the Solidity language. They are methods, so to speak, for using the
language in predetermined ways. You can use these keywords in your code to accomplish
common tasks needed in smart contracts. These include the following:

•	 <address>.balance (uint256): Returns the balance of the
address in wei

•	 <address>.send(uint256 amount) returns (bool): Sends given
amount of wei to address, and returns false on failure

•	 this(current contract’s type): Explicitly converts to the
address

•	 selfdestruct(address recipient): Destroys the current
contract, sending its funds to the given address

 ■ Note it is possible to query the balance of the current contract by using the keyword
this.balance.

Less-Common Value Types
Several other value types may be useful if you’re already an advanced or intermediate
programmer:

•	 Dynamically sized byte arrays

•	 Fixed-point numbers

•	 Rational and integer literals

•	 String literals

•	 Hexadecimal literals

•	 Enums

Complex (Reference) Types
Generally speaking, types in Solidity are allotted 256 bits of memory in the EVM’s storage;
that’s 2,048 characters. Types that are any longer than that can incur more-significant gas
costs to move around. You’ll need to choose carefully when assigning persistent storage
in the EVM’s stack. Here are the complex types that exceed 256 bits:

•	 Arrays

•	 Array literals / inline arrays

http://solidity.readthedocs.io/en/develop/types.html
http://solidity.readthedocs.io/en/develop/types.html
http://solidity.readthedocs.io/en/develop/types.html

Chapter 4 ■ Solidity programming

85

•	 Structs

•	 Mappings

Arrays, structs, and other complex types have a data location that can be used by
Solidity programmers to manipulate whether they are stored dynamically in memory or
persistently stored. This can help you manage fees.

Global Special Variables, Units, and Functions
Global special variables can be called by any Solidity smart contract on the EVM; they’re
built in to the language. Most of them return information about the Ethereum chain.
Units of time and ether are also globally available. Literal numbers can take a suffix of wei,
finney, szabo or ether and will auto-convert between subdenominations of Ether. Ether
currency numbers without a suffix are assumed to be Wei.

Time-related suffixes can be used after literal numbers to convert between units of
time. Here, seconds are the base unit, and units are treated as general units. Owing to the
existence of leap years, be careful when using these suffixes to calculate time, as not all
years have 365 days, and not days have 24 hours.

1 == 1 seconds

1 minutes == 60 seconds

1 hours == 60 minutes

1 days == 24 hours

1 weeks = 7 days

1 years = 365 days

Block and Transaction Properties
Note that these global variables are only available in Solidity smart contracts. These
shouldn’t be confused with JavaScript Dapp API calls that you can make in Geth, which
you’ll learn about in Chapter 6.

•	 block.blockhash(uint blockNumber) returns (bytes32):
Hash of the given block, works for only the 256 most recent blocks

•	 block.coinbase (address): Current block miner’s address

•	 block.difficulty (uint): Current block difficulty

•	 block.gaslimit (uint): Current block gas limit

•	 block.number (uint): Current block number

•	 block.timestamp (uint): Current block timestamp

•	 msg.data (bytes): Complete call data

http://dx.doi.org/10.1007/978-1-4842-2535-6_6

Chapter 4 ■ Solidity programming

86

•	 msg.gas (uint): Remaining gas

•	 msg.sender (address): Sender of the message (current call)

•	 msg.sig (bytes4): First 4 bytes of the call data (function
identifier)

•	 msg.value (uint): Number of wei sent with the message

•	 now (uint): Current block timestamp (alias for block.
timestamp)

•	 tx.gasprice (uint): Gas price of the transaction

•	 tx.origin (address): Sender of the transaction (full call chain)

Note that the values of all members of msg (that is, msg.sender and msg.value) can
change for each external function call, even if they are library functions. If you desire
implementation of library functions with access restrictions on the use of msg.sender,
then you’ll need to manually supply the value of msg.sender as an argument.

Operators Cheat Sheet

Table 4-1 shows the operators you can use in Solidity expressions.

(continued)

Table 4-1.

Precedence Description Operator

1 Postfix increment and decrement ++, --

Function-like call <func>(<args...>)

Array subscripting <array>[<index>]

Member access <object>.<member>

Parentheses (<statement>)

2 Prefix increment and decrement ++, --

Unary plus and minus +, -

Unary operations delete

Logical NOT !

Bitwise NOT ~

3 Exponentiation **

4 Multiplication, division, and modulo *, /, %

5 Addition and subtraction +, -

6 Bitwise shift operators <<, >>

7 Bitwise AND &

Chapter 4 ■ Solidity programming

87

Global Functions
In general in Solidity, special functions are mainly be used to provide information about
the blockchain, but some can also perform mathematical and cryptographic functions.
They are as follows:

•	 keccak256(...) returns (bytes32): Computes the Ethereum-
SHA-3 (Keccak-256) hash of the (tightly packed) arguments

•	 sha3(...) returns (bytes32): An alias to keccak256()

•	 sha256(...) returns (bytes32): Computes the SHA-256 hash
of the (tightly packed) arguments. “Tightly packed” means that
the arguments are concatenated without padding. To see how
to add padding to arguments, see the following URL: http://
solidity.readthedocs.io/en/develop/units-and-global-
variables.html#mathematical-and-cryptographic-functions.

•	 ripemd160(...) returns (bytes20): Computes the
RIPEMD-160 hash of the (tightly packed) arguments

•	 ecrecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
returns (address): Recovers address associated with the public
key from elliptic curve signature, returns 0 on error

•	 addmod(uint x, uint y, uint k) returns (uint): Computes
(x + y) % k, where the addition is performed with arbitrary
precision and does not wrap around at 2**256

Table 4-1. (continued)

Precedence Description Operator

8 Bitwise XOR ^

9 Bitwise OR |

10 Inequality operators <, >, <=, >=

11 Equality operator, does-not-equal
operator

==, !=

12 Logical AND &&

13 Logical OR ||

14 Ternary operator <conditional> ? <if-true> :
<if-false>

15 Assignment operators =, |=, ^=, &=, <<=, >>=, +=, -=, *=,
/=, %=

16 Comma operator ,

http://solidity.readthedocs.io/en/develop/units-and-global-variables.html#mathematical-and-cryptographic-functions
http://solidity.readthedocs.io/en/develop/units-and-global-variables.html#mathematical-and-cryptographic-functions
http://solidity.readthedocs.io/en/develop/units-and-global-variables.html#mathematical-and-cryptographic-functions

Chapter 4 ■ Solidity programming

88

•	 mulmod(uint x, uint y, uint k) returns (uint): Computes
(x * y) % k, where the multiplication is performed with
arbitrary precision and does not wrap around at 2**256

•	 this (current contract's type): The current contract,
explicitly convertible to its address

It’s also worth mentioning contract-related variables that can be useful in writing
Solidity contracts:

•	 super: The contract one level higher in the inheritance hierarchy.
For more information about inheritance, see the link in the
section below.

•	 selfdestruct(address recipient): Destroys the current
contract, sending its funds to the given address

•	 assert(bool condition): throws if the condition is not met.

•	 revert(): abort execution and revert state changes

Exceptions and Inheritance
Some situations automatically cause exceptions. To see them all, go to
http://exceptions.eth.guide. The Solidity language also supports multiple
inheritance. Even if a contract inherits from multiple other contracts, only a single
contract is created on the blockchain, the code from the base contracts is always copied
into the final contract. Details about the general inheritance system can be found at
http://solidity.readthedocs.io/en/develop/contracts.html#inheritance.

Summary
In this chapter, you took the first steps toward understanding the impact of programs
written for the EVM. You also took a critical look at the way these programs can achieve
a meaningful degree of Turing completeness without sacrificing the security of the
network.

We’ve only touched briefly on the formal mathematics that make these programs so
exciting for enterprise information technology. But with any luck, you’ve seen enough to
motivate you to dig deeper into the Ethereum White Paper and Yellow Paper and see for
yourself how the EVM reaches provable consensus.

In Chapter 5, you’ll deploy your first token contract on the EVM. You’ll also learn
the social and cultural history of monetary instruments, and what it means for your
understanding of the potential of Ethereum.

http://exceptions.eth.guide
http://solidity.readthedocs.io/en/develop/contracts.html#inheritance
http://dx.doi.org/10.1007/978-1-4842-2535-6_5

89© Chris Dannen 2017
C. Dannen, Introducing Ethereum and Solidity, DOI 10.1007/978-1-4842-2535-6_5

CHAPTER 5

Smart Contracts and Tokens

Small reusable code templates (in programming
terms, classes) written in Solidity are called smart
contracts, a nod to financial contracts. You can think
of smart contracts as being suited to creating financial
derivatives as a web service—with a few twists
In the preceding chapter, you learned how to use Solidity to create instructions for the
Ethereum Virtual Machine. However, you stopped short of uploading your program to the
EVM, a process known generally in computer application development as deployment.
This chapter presents the process by which you can deploy your Solidity scripts to the
EVM, making them available as a real product or service.

EVM as Back End
Software apps, as they currently exist for the Web, iOS, macOS, Windows, Android, Linux,
and so forth, are typically discussed in two halves: the front end and the back end. The
back end usually refers to the database and the logic around interacting with it, which
(as you learned in Chapter 3) is where the program stores its information. The front end
usually refers to the part of the application the user sees: the interface with its various
labels and controls. In software interface design, controls is the general term for the little
buttons, sliders, dials, hearts, stars, thumbs-up icons, and any other little thing you can
click to make something happen.

As we’ve discussed already, modern-day web-enabled applications use a
constellation of computers and servers, most of them running some version of Linux,
which plays a vital role in a sometimes-fragile choreography of computers working
together to deliver a “seamless” experience to your smartphone or computer (usually in
the hopes that you’ll pay for this experience).

Neither EVM nor the Bitcoin virtual machine are powerful today. The EVM will
continue to get faster as the core developers iterate toward a faster block time; how
that works will become clearer in Chapter 6. The takeaway for now is that the EVM is
something like a replacement for the traditional application back end of a conventionally-
hosted web or mobile application. Although the EVM itself is a fully fledged computer, it
is not yet a complete end-to-end platform capable of hosting HTML/CSS interfaces; the
most useful role it can play is as the back end to a distributed application.

http://dx.doi.org/10.1007/978-1-4842-2535-6_3
http://dx.doi.org/10.1007/978-1-4842-2535-6_6

Chapter 5 ■ Smart ContraCtS and tokenS

90

Smart Contracts to Dapps
A smart contract is just a unit of functionality you upload to the EVM. The term
distributed application, or dapp, typically describes a web- or smartphone-accessible
front end which GUI application that uses the EVM as its back end. Unless it’s a very
simple dapp, its back end functionality will rely on several smart contracts.

Assets Backed by Anything
In financial parlance, an asset is a valuable resource that you expect will produce a benefit
or value in the future. Assets can include physical natural resources or abstract financial
instruments, but by definition, the price of an asset should go up over time. (If it goes
down, it is known as a depreciating asset.)

It can be said that cryptocurrencies are assets backed by anything. What exactly this
means will become clear by the end of this chapter. Let’s look at an example next.

Bartering with Fiat Currency
Let’s say you are Alice, and you live in Japan. For the purposes of this example, assume
you are paid in Japanese yen and that the prices of things such as rent, food, and basic
services are denominated in yen.

Now let’s say you want to pay someone in New York to do some translation work. His
name is Bob. Bob the translator uses US dollars; he holds them as savings; he pays taxes
in USD, too.

This creates a problem. For most people, foreign currency is not much use, and
exchanging it incurs high fees and risks of price slippage. Slippage refers to the price
dropping before you have a chance to sell your lot. Bob doesn’t want yen, and Alice
doesn’t hold any dollars.

Although this example uses fiat moneys, Alice and Bob may as well have cabbage
and glass beads to barter. Although it’s true that one of them can simply drive to
the nearest bureau of exchange, probably at an international airport, that’s not a
parsimonious solution.

With cryptocurrency, they need only establish a conversion rate, or multiplier,
between their local currency and the cryptocurrency, and then convert the local price
of the barter goods by using that multiplier. Whether they’re using paper money or glass
beads isn’t relevant. For a trade to take place, they merely need to agree on a price.

Ether as Glass Beads
This example demonstrates one of the fundamental properties of ether and bitcoins:
they are standard accounting units of value, and simultaneously media of exchange
themselves. Money also serves these functions, but in actuality, the medium of exchange
(paper) is just a representation of value that exists in some bank’s ledger. Here, they are
one in the same.

Chapter 5 ■ Smart ContraCtS and tokenS

91

As you’ll learn more in Chapter 6, these standard account units essentially tabulate
themselves and balance the entire ledger anytime a payment moves from one place to
another. This is another advantage over the money of today, which being inert has no
“awareness” of other money in the system. As you may be imagining already, this makes
smart contracts perfect for writing self-executing financial agreements.

A derivative contract is a financial “bet” between two or more parties made on the
value of the underlying asset. A derivative basically says that under certain conditions,
Alice agrees to pay Bob a particular amount. The number of financial derivatives
currently on Earth tops $1 quadrillion dollars. They are popular little instruments!

What gives cryptocurrency the power to be used this way? The answer to that will
become increasingly clear in Chapters 6 and 7, but for the sake of expediency, let’s do
some thought experiments that will shorten the learning curve.

Cryptocurrency Is a Measure of Time
Because cryptoassets and cryptocurrencies are impossible to counterfeit, this gives them
an interesting property as a measure of time. Chapter 7 covers the issuance scheme of
ether, but the point here is that these tokens are almost like the rings of a tree—their
manufacture happens by a sophisticated process that cannot be “sped up.” Thus
when trading with someone from a faraway economy, it becomes easy to trust prices
denominated in cryptocurrency, because counterfeiting isn’t possible, no matter how
rich or powerful the group you’re trading with.

Cryptocurrencies, as of this writing, are not redeemable by any central authority for
gold or fiat currency. However, they are classified as property or currency in a handful
countries.1

Nevertheless, it can be said that cryptocurrency get their price from the marketplace:
they are worth whatever someone in the marketplace will pay. This is in contrast to say,
a gold-backed currency, which is redeemable from the local treasury, or even a treasury
bond, and which a government guarantees it will redeem for its own fiat currency
decades into the future.

As a result of its status as a decentralized digital medium of exchange,
cryptocurrencies can be conceptualized as “assets backed by anything.” It doesn’t matter
whether you’re trading cattle, bananas, soybean futures, or private equities—the deal can
be done in cryptocurrency. The only challenge is agreeing on a price.

Today, even if the buyer and seller agree to complete their transaction in
cryptocurrency, it’s likely they will quickly sell the cryptocurrency for local fiat money, to
avoid price slippage. This will be less and less common as the prices of cryptocurrencies
stabilize. Prices become more stable as the volume of transactions increases around the
world, and the markets for trading cryptocurrencies become deeper, or more liquid.

Ether is similar to other cryptocurrencies such as bitcoins in this regard, but it does
gain some intrinsic value from its usefulness in paying gas costs on the EVM. As we
discussed in Chapter 3, this makes ether more like a commodity such as oil or corn, which
get their respective intrinsic values from their uses as fuel and food, respectively.

1Wikipedia, “Legality of Bitcoin by Country,” https://en.wikipedia.org/wiki/Legality_of_
bitcoin_by_country, 2017.

http://dx.doi.org/10.1007/978-1-4842-2535-6_6
http://dx.doi.org/10.1007/978-1-4842-2535-6_6
http://dx.doi.org/10.1007/978-1-4842-2535-6_7
http://dx.doi.org/10.1007/978-1-4842-2535-6_7
http://dx.doi.org/10.1007/978-1-4842-2535-6_3
https://en.wikipedia.org/wiki/Legality_of_bitcoin_by_country
https://en.wikipedia.org/wiki/Legality_of_bitcoin_by_country

Chapter 5 ■ Smart ContraCtS and tokenS

92

Asset Ownership and Civilization
It almost goes without saying that the invention of money as a social construct is
foundational to civilization. In the pantheon of Great Human Ideas, it probably ranks
among innovations such as animal domestication, geometry, and stone tools.

Being highly susceptible to the network effect, money seems to evolve more slowly
than other technologies. Because people prefer money that can be saved for long periods
of time, retaining value far into the future, human societies aren’t exactly eager to jump to
new media of exchange, lest their savings become worthless!

The concept of network effect describes how technologies become more useful on
an individual basis as their popularity grows and widens across geographical space. Being
able to use bitcoins to buy retail goods all over the world is an example of its positive
network effect. It makes trade possible, everywhere you go, as demonstrated in the beach
vendor example in Chapter 4.

Savings, or surplus value, enables people to invest in the future. Whether 50,000 years ago
or today, having extra food, fuel, or human labor at your disposal allows you to plan ahead
and take actions that use that surplus to facilitate even bigger surpluses for future generations.
An example is a community that, after a bumper crop of food, expands its population and
collectively builds a dam to irrigate its fields, improving farming yields even further.

So what does this ancient history have to do with cryptocurrency?

Your Pile of Savings = Reputation
People who accumulate savings in a certain form of money, whether gold, wampum, or
US dollars, will reinvest for their future. Typically, people invest in the geographic areas
where they and their families reside. This is known in economics as home bias. It is one
way that humans achieve status in a community: by donating public works, leading
constructive social movements, or providing large-scale employment.

As discussed in Chapter 1, and in the preceding section, bitcoins and ether are not
guaranteed by any organization to be redeemable for anything at any point in the future.
Thus, a family seeking to protect its inheritance might consider bitcoins or ether a poor
choice for long-term savings. The same goes for other farsighted institutions such as
charities, pension funds, trusts, and endowments.

Who knows if anyone will be using these networks in 50 years! By contrast, nation-
states tend to stick around for centuries. When they issue fiat currency, they also raise
armies to protect their economic systems; there is no such central power enforcing the
use of bitcoins or ether. To make matters even less certain, computer networks in general
haven’t been around long enough to really know the lifespan of their utility, as compared
to, say, governments, which have existed (in some form or another) for millennia and can
last thousands of years. How will cryptocurrency become more durable than the moneys
we already have?

Money, Tokens, Reputation … So What?
Longevity is an asset’s killer feature: the longer an asset will grow in value, and the more
impossible to counterfeit it, the more desirable it is. That’s why so many people store their
wealth long-term in bonds and real estate.

http://dx.doi.org/10.1007/978-1-4842-2535-6_4
http://dx.doi.org/10.1007/978-1-4842-2535-6_1

Chapter 5 ■ Smart ContraCtS and tokenS

93

The point of ramming home this reality is to think of bitcoins and ether as digital
collectibles. As you’ll see, this is the most useful approach when considering the many
uses of smart contracts. After all, learning how to write programs for the EVM is just as
challenging as figuring out what to build. And the long history of money gives us many
clues as to what kind of novel business transactions or social constructs may be possible
with this new asset class.

Much has been written about the potential of Ethereum to bring to bear the real
potential of the Internet, especially the Internet of Things.2 From the literature about
Ethereum that’s already on the Web, it’s easy to imagine industrial or retail scenarios in
which small computers can execute microtransactions.

But this view limits us to transactions we already make today. The promise of the
Ethereum and Bitcoin protocols is the introduction of new kinds of transactions and
instruments. In this Internet of Things, what about the world of everyday consumer
goods? Aren’t they “things” too? Let’s say you print an Ethereum address (a public key) on
a physical item, and it belongs to a smart contract.

Or more practically, consider a QR code, shown in Figure 5-1, which is a machine-
readable code in a nested-square pattern. This one points to the links for this book,
http://eth.guide. If you go to the iOS App Store or Google Play apps on your mobile
devices, you should find any number of free QR code reader apps. Just search QR reader.
You can imagine how these QR codes, printed on everyday valuables such as clothing,
jewelry, artworks, or other physical goods, could combine the concepts of derivative
contracts, everyday reloadable debit cards, and collectibles.

Figure 5-1. QR codes provide an easy way for machines to read cryptocurrency addresses
and URLs. This one goes to http://eth.guide.

Coins are Collectibles
Before going any further down this rabbit hole, let’s encounter some anthropological
history courtesy of Nick Szabo, a cryptocurrency pioneer whose prolific web essays
influenced many of today’s cryptocurrency enthusiasts and cypherpunks.

2ConsenSys Media, “Programmable Blockchains in Context: Ethereum’s Future,” https://
medium.com/consensys-media/programmable-blockchains-in-context-ethereum-s-
future-cd8451eb421e#.rwdqmpvu0, 2015.

http://eth.guide/
http://eth.guide/
https://medium.com/consensys-media/programmable-blockchains-in-context-ethereum-s-future-cd8451eb421e#.rwdqmpvu0
https://medium.com/consensys-media/programmable-blockchains-in-context-ethereum-s-future-cd8451eb421e#.rwdqmpvu0
https://medium.com/consensys-media/programmable-blockchains-in-context-ethereum-s-future-cd8451eb421e#.rwdqmpvu0

Chapter 5 ■ Smart ContraCtS and tokenS

94

In 2002, Szabo wrote about the intersection of physical goods representing abstract
value throughout the course of human history. These collectibles allowed us to engage in
bigger, more complex financial transactions, he explained. 3

Collectibles were crucial in making these kinds of transactions possible
for the first time. Collectibles augmented our large brains and language
as solutions to the Prisoner’s Dilemma that keeps almost all animals
from cooperating via delayed reciprocation with nonkin.

Without a trustworthy collectible to trade back and forth, you might not be willing to
trade resources with anyone outside your extended familial network. This doesn’t bode
well for peaceful coexistence in larger nation-states.

The Function of Collectibles in Human Systems
Keeping track of favors over time is a major function of money: to serve as a closed
accounting system for a community to keep track of favors owed and favors given. This
gets useful as bigger and bigger groups try to interact and cooperate.

Using collectibles to count favors is the essence of primordial accounting. Eventually,
the value of these favors became abstracted, leading to the generalized instruments of
value such as gold. This accounts for the modern-day association between wealth and
esteem.

Ethereum and Bitcoin strike at the heart of a problem that is tens of thousands of
years old, which is that reputation-accounting a natural human behavior, but also an
imperfect one. Szabo continues:

Reputational beliefs can suffer from two major kinds of errors—errors
of about which person did what, and errors in appraising the value or
damages caused by that act. In both Homo sapiens neanderthalis and
Homo sapiens, with the same large brain size, it is quite likely that every
local clan member kept track of every other local clan member’s favors.…
Between clans within a tribe both favor tracking and collectibles were used.

Two clans within a tribe exchanging collectibles within a closed system is something
like a private bank database. Or a private blockchain. Szabo writes:

Between tribes, collectibles entirely replaced reputation as the enforcer
of reciprocation, although violence still played a major role in enforcing
rights as well as being a high transaction cost that prevented most kinds
of trade.

3Nick Szabo, “Shelling Out: The Origins of Money,” http://nakamotoinstitute.org/shell-
ing-out/, 2002.

http://nakamotoinstitute.org/shelling-out/
http://nakamotoinstitute.org/shelling-out/

Chapter 5 ■ Smart ContraCtS and tokenS

95

Just like the banks of today, human groups of yesteryear had trouble trading outside
their accounting system. Whose money system do you use? Who keeps track of inter-tribe
favors? No wonder there was so much bloodshed: the opportunity for cheating is just too
persistent.

Early Counterfeiting
The solution to inter-tribe trade was to use rare art objects: not just rare earth elements,
but any objects that were not trivial to find or create from scratch. They couldn’t be just
any set of beautiful objects. They had to be hard to come by, or the product of skilled
craftsmanship, which ensured that each collectible represented a certain amount of
human work-time. The resulting collectible can be considered “proof of work” by the
craftsman. And thus we’re back to the concept from earlier: bitcoins and ether as a store
of time. As Szabo says:

It had to have certain functional properties, such as the security of
being wearable on the person, compactness for hiding or burial, and
unforgeable costliness. That costliness must have been verifiable by the
recipient of the transfer—using many of the same skills that collectors use
to appraise collectibles today.

Jewelry and Art as Money
There’s perhaps nothing more essential to human economic progress as a reliable set of
collectibles that can be used as money. This is because money facilitates cooperation.
Szabo goes so far as to say that cooperation is our defining adaptive feature at the group
level:

Today, most large animals on the planet are afraid of projectiles—an
adaption to only one species of predator.

Yes, that’s us, the tool-creating apes who hunt like wolves and live in social
colonies like termites! In a sense, modern cryptocurrencies are a super-lubricant for our
sophisticated human cooperative systems, because they introduce the building blocks of
an immutable system of account that can span the geography of the entire world.

The Step Toward Banknotes
Money, reputation, and status have always been wrapped up together. It makes sense that
primitive valuables were things you could wear; think gold jewelry or diamond-studded
crowns. After all, why not show off the status that your hard work (or luck!) had bestowed
on you?

However, as a society gets wealthier, everyone gets to own a little gold; then a little
more, then a little more. A rising tide creates markets for new goods and services that allow
the wealthiest people to enjoy themselves in ways that also exhibit their social status.

Chapter 5 ■ Smart ContraCtS and tokenS

96

At some point, it’s too much to wear and carry, and people begin competing on
abstractions such as brand name of goods, or the particular school where their children go.

By this point in a developing society, there’s enough wealth stocked up in the banks
that individual account holders begin trading in banknotes. How this works is best
explained by economic researcher Martin Armstrong.4 He says:

The distinction between banknotes and deposit receipts issued by
goldsmiths was a simple one. A receipt for deposit was transformed
into a banknote if the receipt was payable to the “bearer” rather than
an account. Therefore, Paterson’s Bank of England cleverly created the
circulating notes by de facto since its receipts were payable to the “bearer,”
thereby creating circulating “banknotes” when there was no provision
for such an instrument.

Bitcoin revised this relationship only slightly by creating bearer accounts; whoever
has the password and private key of an account is by default the owner. Bitcoin
addresses, like Ethereum addresses, are not registered to individuals. They are created
pseudonymously.

Ether is like an issuance of banknotes that is also redeemable for computing time on
the EVM.

Platforms for High-Value Digital Collectibles
In a digital context, a reliable store of time has incredible potential as a platform for
digital collectibles: valuable items that can be displayed, worn, or hung in one’s personal
space—either online or in real life—and that are not possible to knock off, nor easily
stolen from their rightful owner.

When most people think of the Internet of Things, they think of sensor motes,
self-diagnosing industrial equipment, and driverless vehicles. The Internet of Value, a
euphemism referring to blockchain technologies, one of the many metaphors used to
represent Ethereum and Bitcoin conceptually. But rather than think abstractly, it may be
more useful to think about the potential in terms of valuable artwork, jewelry, fashion,
or premium goods that look much like today’s, but feature verifiable provenance and
ownership stored on a blockchain.

In the future, the ownership, value, and provenance of a physical thing may never
be “forgotten” as long as the blockchain where it was inventoried is still up and running.
There will be no Antiques Roadshow on TV in 100 years. (We could even write a smart
contract to take that bet!)

4Armstrong Economics, “Money and the Evolution of Banking,” www.armstrongeconomics.com/
research/monetary-history-of-the-world/historical-outline-origins-of-money/
money-and-the-evolution-of-banking/, 2016.

https://www.armstrongeconomics.com/research/monetary-history-of-the-world/historical-outline-origins-of-money/money-and-the-evolution-of-banking/
https://www.armstrongeconomics.com/research/monetary-history-of-the-world/historical-outline-origins-of-money/money-and-the-evolution-of-banking/
https://www.armstrongeconomics.com/research/monetary-history-of-the-world/historical-outline-origins-of-money/money-and-the-evolution-of-banking/

Chapter 5 ■ Smart ContraCtS and tokenS

97

Tokens Are a Category of Smart Contract
Generally speaking, the Ethereum protocol prides itself on being featureless, which is one
reason that tokens (as a concept) overlap so heavily with smart contracts (as a concept).
Tokens are just one application of smart contract functionality on the EVM.

 ■ Note In this chapter, you will deploy your own token. tokens are one specific (and
popular) application of smart contracts. thus, the mist wallet makes it especially easy to
make tokens. there is currently no other category of smart contract which is accommodated
this way in mist.

That said, Ethereum does make provisions for one common use-case of smart
contracts, which is a subcurrency, a.k.a. token. In the hopes of making it easy to get up and
running, the Ethereum developers have put an easy-to-use template inside the Mist wallet
for quickly launching your own tokens. Presumably, other templates for common smart
contracts will follow. But at present, the one we get out of the box is the ability to create a
custom unit of value which can be passed around, alongside ether, within the EVM.

If you were to phrase the user-friendly token-making progress as an elevator pitch
for its value proposition to users, it would be something like this: “ultra-secure digital
monetary system with automatic ledger balancing delivered as a service.”

Now that you’ve gotten a taste of the historic potential of Ethereum and Bitcoin to
create a new era of cryptocollectibles and smart devices, let’s get back to the brass tacks of
deploying a token in the wild.

 ■ Note this chapter contains exercises that use the mist wallet you installed in Chapter 2.
after installation on your machine, it may appear labeled as ethereum Wallet. this book
refers to it as mist to differentiate it from the many other ethereum wallets available for
desktop and mobile computers today.

Tokens as Social Contracts
Tokens are sometimes called coins, as you learned in the Chapter 3. You also learned
that tokens themselves are smart contracts. (With enough repetition, these terms will
hopefully enter your natural vocabulary by the end of this book!)

But tokens themselves (like all forms of money) can also be seen as social contracts,
or agreements between groups of users. In plain English, the implicit agreement of
a group using a token would be as follows: “We all agree this token is money in our
community.” It’s also a tacit agreement not to counterfeit, undermining the system!

http://dx.doi.org/10.1007/978-1-4842-2535-6_2
http://dx.doi.org/10.1007/978-1-4842-2535-6_3

Chapter 5 ■ Smart ContraCtS and tokenS

98

The closest thing we have to a social contract in software form today is probably the
end-user license agreements, or EULAs, that users sign when they create an account on
services such as Facebook, Twitter, iTunes, or Gmail. This agreement usually includes
language barring activities such as spamming other users, which would degrade the user
experience.

Thinking this way allows us to imagine how our digital media and digital goods today
might become digital collectibles that are discussed, marketed, sold, and displayed inside
the social networks of the future, in which online artifacts like selfies and podcasts can be
sold, licensed, or rented for fees of arbitrary size.

Tokens Are a Great First App
When making a token, consider that it is only as valuable as the community using it
believes it will be. Thus, it is far easier to launch a token into an existing community that
already trades using some kind of money or scrip.

However, making sub currencies is not the only use of a cryptoasset. The concept of
an asset is highly generalized. Assets, in the form of financial contracts or smart contracts,
can be used to represent shares of equity, or lottery tickets, or just scrip within a local
economy. The price can be determined by the market, or it can be pegged to another
asset. The rules are largely up to you.

 ■ Note Scrip is a term derived from the word subscription. It has a variety of definitions
going back in history, but refers primarily to an IoU. It can also refer to private currency such
as air miles or rewards points. It’s used in this book to mean a general unit of account: the
“beans” used by the eVm’s giant decentralized bean counter!

In Ethereum, tokens exist within, and rely upon, the public blockchain: you can
create a subcurrency of ether, but ether will always remain the priviliged token with which
miners and gas costs are paid. If you want a purely independent blockchain network, you
can create your own private blockchain and be completely disconnected from the main
Ethereum chain.

Making a subcurrency is easier and will satisfy most use cases for curious developers.
If you’re working at an institution interested in using its own blockchain, never fear:
you will look at making your own private chain and cryptoeconomy that is separate and
distinct from the Ethereum public chain in Chapter 8.

Creating a Token on the Testnet
You’ll need to connect to the Ropsten testnet and get used to sending ether around before
you can deploy a contract.

http://dx.doi.org/10.1007/978-1-4842-2535-6_8

Chapter 5 ■ Smart ContraCtS and tokenS

99

 ■ Note the ropsten testnet was formerly called morden, so you may still see that name
in older documentation.

Launch the Mist wallet on your desktop computer. Navigate to the Develop menu of
the Mist wallet, and you should find a Network menu that allows you to select the testnet,
as shown in Figure 5-2.

Figure 5-2. Connecting to the testnet

Once you’re using the testnet, you should see an alert in the Mist browser
highlighted in red, as shown in Figure 5-3.

Figure 5-3. Once connected to the testnet, you’ll see an indicator in the Mist UI

Getting Test Ether from the Faucet
In Ethereum, it is trivial to set up a faucet that spouts faux ether you can use on the
Ropsten testnet. In this section, you won’t set up your own faucet, but will use a third-
party faucet pictured in Figure 5-4 and available at http://faucet.ropsten.be:3001/.

You’ll also find an up-to-date shortlink to this faucet at http://faucet.eth.guide.
Follow these steps to receive testnet ether from the faucet:

 1. After making sure your Mist wallet is on the testnet with the
steps above, create an address if you haven’t already. Copy
this long hexidecial address (beignning with 0x...) to your
system clipboard and then paste it into the address field:

 2. To get ether, click the button entitled “send me 1 test ether.”

http://faucet.ropsten.be:3001/
http://faucet.eth.guide

Chapter 5 ■ Smart ContraCtS and tokenS

100

If you’d like to test out the transfer of ether, you can do that by transferring test
ether from one address in your Mist wallet to another address in your Mist wallet. To do
this: Go back to Mist and create a new wallet address in the Home view. You can use the
Send dialog box to send ether from one of your wallet addresses to another. It will be
approximately the same speed whether you are sending ether to yourself or to someone
on the other side of the world; that’s the beauty of distributed systems.

The testnet also has a blockchain explorer, where you can see all your testnet
transactions. Simply enter one your testnet Mist addresses into the search box at
the following testnet blockchain explorer, and you’ll see all its transactions listed:
https://testnet.etherscan.io/

Now that we’ve messed around with test ether on the Ropsten chain, let’s take the next
step toward making your own ether subcurrency, also known as a token, with zero coding.

 ■ Note What separates the testnet and the main network? they are different chains. kind
of like a computer with many hard drives, your ethereum node can connect to many chains.

In the next section, you will copy and paste your way to the future of money-as-a-web-
service. In other words, you’ll use boilerplate code to create your own custom accounting
and value transfer system—your own asset database, secured by the public Ethereum chain!

EXERCISE: CREATE A CUSTOM TOKEN WITH NO CODE

Creating your own token can be done in about 5 minutes. all you need is the mist
browser, which you downloaded in Chapter 2, and a text editor. If you’re using
macoS, Windows, or Ubuntu, your computer comes with a text editor application, but
you can also opt for a third-party app such as Sublime text.

Figure 5-4. The Ethereum testnet comes with the facility for dispensing test ether that can
be used while writing or debugging contracts

https://testnet.etherscan.io/
http://dx.doi.org/10.1007/978-1-4842-2535-6_2

Chapter 5 ■ Smart ContraCtS and tokenS

101

recall that download links for all ethereum client applications, including mist, can be
found at http://clients.eth.guide.

 ■ Note In this exercise, you will create your token on the testnet for the time being.
recall that all smart contracts, including tokens, cost money (ether) to deploy on the eVm.
It’s not particularly dangerous to create a token on the main network, but you will need to
pay a small amount of real ether to deploy it there, and there’s no sense in wasting real
money—no matter how small the amount!

If you’ve programmed before, you’ll know that most developer environments force
you to work in an integrated suite of applications to create your application. In the
ethereum protocol, it’s possible to write and deploy an application by using just your
computer’s text editor and the mist wallet. pretty amazing!

In preparation, open the ethereum mist wallet. Click the Contracts tab at the upper
right, as shown in Figure 5-5.

Figure 5-5. The Contracts tab is where you can paste and deploy your contract

1. Click the deploy new Contract option, as shown in Figure 5-6.

http://clients.eth.guide

Chapter 5 ■ Smart ContraCtS and tokenS

102

2. navigate to this book’s Github project (https://github.com/
chrisdannen/Introducing-Ethereum-and-Solidity/) and
find the document mytoken.sol. Copy the code from this file. It
looks like the code in Figure 5-7.

Figure 5-6. Click the Deploy New Contract option to enter contract code

Figure 5-7. The code for this sample project, viewed in GitHub

https://github.com/chrisdannen/Introducing-Ethereum-and-Solidity/
https://github.com/chrisdannen/Introducing-Ethereum-and-Solidity/

Chapter 5 ■ Smart ContraCtS and tokenS

103

3. Copy this code. then go back to the mist wallet and paste
the code in the deploy view, in the box labeled Solidity
Contract Source Code, shown in Figure 5-8. Be sure to
replace everything when you paste; the content shown here is
placeholder text.

Figure 5-8. Replace all the placeholder text when you paste in your contract source code

Figure 5-9. After you’ve pasted in your contract code, you should see a new drop-down
become available at the right of the screen

4. now the code should look like the view in Figure 5-9.

Chapter 5 ■ Smart ContraCtS and tokenS

104

5. now you’ll see the name of the contract autoload into the menu
at right. It should be called My Token. Select it. the fields shown
in Figure 5-10 should appear.

Figure 5-10. After you paste in contract code, you’ll need to enter your token paramters

 ■ Note notice the light-gray text after each label, and recall our discussion of types from
Chapter 4. You’ll see that the supply and decimal place fields need to be of the type uint, or
positive numbers; the rest can be strings of arbitrary text or numbers.

6. next let’s fill out these fields:

 Supply: how many tokens do you want to create?

 Name: What should this token be called?

 Symbol: Use any symbol on the keyboard as your “dollar sign.”

 Decimals: do you want 100 subunits to a token, as in dollars and cents? or
1,000? or 10,000?

http://dx.doi.org/10.1007/978-1-4842-2535-6_4

Chapter 5 ■ Smart ContraCtS and tokenS

105

7. now that you’ve set parameters, scroll to the bottom and click the
deploy button. You can leave the fee slider at the default; anything
your token deployment doesn’t spend will get refunded.

8. In the Wallets tab, scroll down to the latest transactions and you
should see the address of the contract you just deployed.

to see your balance of tokens, you’ll need to “watch” this token. that’s the subject
of the next exercise.

after you’ve created a token, you can send it to anyone else with a mist wallet, after
they’ve given you their wallet address. In order for them to see it, you’ll have to tell
them to “watch” for it. more details about these particularities follow.

EXERCISE: WATCH TOKENS

Whether it’s a token you created yourself, or a token created by some big organization,
all tokens are created equal in the ethereum system. Your mist wallet will ignore them
unless told to do otherwise. much as your iphone wouldn’t download every app in the
app Store, mist lets you seek out and download the ones you want.

as you can see from the Watch Contract dialog box in Figure 5-11, you don’t need
much to follow a token. Let’s dive in.

Figure 5-11. Knowing the basics about a token allows Mist to keep track of your balance in
that token

Chapter 5 ■ Smart ContraCtS and tokenS

106

after a smart contract has been uploaded to the eVm, that’s all it takes for the world
to access it. downloading apps isn’t necessary in the mist wallet paradigm, although
the code for contracts does get put into each block, and thus passively downloaded
onto any machine that is mining.

Because all smart contracts are both delivered as a service and executed locally at
approximately the same time, it’s almost as if you have the entire app Store already
on your machine, and you simply need to invoke an app.

this invocation of a specific app, or contract, is most common in the use case of the
token category of apps that you’re currently exploring. In token terminology, we call
this watching a token. Because tokens are such a common and useful application
of smart contracts, you will find a ready-made token-watching interface in the mist
wallet. here’s how it works:

1. Go back to the Contracts tab in mist.

2. Click Watch token.

3. paste in the token address. Write in the name of this token, if it has one.

4. You don’t need to enter anything in the JSon box because mist
comes with a front-end interface for tokens. You will enter some
data here when you deploy a bespoke contract later in this chapter.

5. Click the Watch button. You should now see this token’s balance
show up in your main mist wallet dashboard.

Watching other contracts requires searching the contract address in a blockchain
explorer. many blockchain explorers are available for the ethereum chain, which
you’ll find at http://explorer.eth.guide.

In the exercises in this chapter, you will deploy contracts on the testnet, so they will
not be viewable in the preceding explorers. explorers are like database readers, and
the testnet is a different database (or chain) than the main network, where real ether is
transacted, and for which the vast majority of blockchain explorers provide an interface.

Registering Your Tokens
Tokens are publicly discoverable, provided you register your tokens with a blockchain explorer
such as Etherscan and conform to the ERC Token Standard. ERC stands for Ethereum Request
for Comment, and refers to a common convention called RFC (Request for Comment) used
by the principal technical development and standards-setting bodies for the Internet.

In addition to ERC documents, Ethereum community development is also led by
Ethereum Improvement Proposals, or EIPs. You can a see a list all the preprogrammed
standardized functions accessible to a standard token at https://github.com/ethereum/
EIPs/issues/20. The Ethereum venture studio ConsenSys has also released free and
open source standard smart contract code at https://github.com/ConsenSys/Tokens.
Both of these URLs are also linked at http://tokens.eth.guide.

http://explorer.eth.guide
https://github.com/ethereum/EIPs/issues/20
https://github.com/ethereum/EIPs/issues/20
https://github.com/ConsenSys/Tokens
http://tokens.eth.guide

Chapter 5 ■ Smart ContraCtS and tokenS

107

Deploying Your First Contract
The launch of the Ethereum protocol did feature several standard contracts, but these
have been largely deprecated. As of this writing, only tokens are standardized, as
evidenced by the token wizard you just used in the Mist browser to deploy your tokens.

However, thanks to Gavin Wood, you have a group of simple contracts released
under the Apache 2 license, with which you can experiment. Below, we’ll deploy one of
these contracts, but you can find the rest at https://github.com/ethcore/contracts.
While no longer considered “standard,” the contract below is a useful learning tool
because it effectively demonstrates some of the autonomy exhibited by smart contracts,
as you saw them in Chapter 4—in particular, how they can hold your ether, and give it
back only if you instruct them in advance.

 ■ Note recall that there are two types of accounts in ethereum: the first are smart
contract accounts, and the second are externally owned accounts that are controlled by a
key pair and usually held by a human or an external server.

If the lack of standard contract libraries seems strange, never fear. Plenty of third-
party groups are creating standard smart contract libraries, some of them even specialized
to certain industries. Many resources including Solidity sample contracts, best practices,
guides, tutorials, and contract libraries are listed at http://solidity.eth.guide.

Double-check before you deploy contracts for the first time that you are indeed on
the testnet! Whether you are on macOS, Windows, or Ubuntu, you will see the Develop
menu in the top bar, as shown in Figure 5-12 in the Ubuntu 14.04 environment. Also note
that Mist can perform mining on the testnet. This allows you to test contracts locally.
More details on that in the next sections.

Figure 5-12. Double-check you are on the testnet

EXERCISE: DEPLOY A SIMPLE CONTRACT IN 5 MINUTES

the owned contract is perhaps the most popular smart contract learning aid. that’s
because it establishes one of the fundamental relationships possible in the eVm: the
relationship between an externally owned account and a contract account. make no
mistake: these accounts are discrete entities, but relationships between a contract
account and an external account can be programmed.

recall that a contract account, if incorrectly programmed, could conceivably lock up
money sent to it—without offering any recourse for getting that money back. there

https://github.com/ethcore/contracts
http://dx.doi.org/10.1007/978-1-4842-2535-6_4
http://solidity.eth.guide

Chapter 5 ■ Smart ContraCtS and tokenS

108

are no backdoors into contracts, even for the people who create them. the eVm is
fairly unforgiving this way! this is also why we use the testnet and fake ether, which
we get from a faucet when creating contracts in this sandbox environment.

You will find the contract code at https://github.com/chrisdannen/
Introducing-Ethereum-and-Solidity/.

Because of the risky nature of contracts, it’s important to practice writing contracts
that you, the programmer, can control. hence the named for the owned contract: it
teaches how to write a little ether class that is controlled by other Solidity code. Let’s
have a look at owned.sol:

//! Owned contract.
//! By Gav Wood (Ethcore), 2016.
//! Released under the Apache Licence 2.

pragma solidity ^0.4.6;

contract Owned {
modifier only_owner { if (msg.sender != owner) return; _; }

event NewOwner(address indexed old, address indexed current);

function setOwner(address _new) only_owner { NewOwner(owner, _new);
owner = _new; }

address public owner = msg.sender;

}

 ■ Note don’t forget to add the Solidity version pragma as the first line of your smart
contract before you deploy it. this isn’t strictly necessary, but it helps prevent compiler errors.

You’ll deploy the owned contract in a moment, at which point the eVm will give you back
a contract address. once it’s uploaded to the testnet, you can paste this contract address
into the mist wallet in the to field and send it some amount of ether to activate it. this
would make your external account msg.sender, and therefore the owner of this contract.

What does this mean? this contract will be hosted forever on the eVm and it has one
function: it belongs to whichever person or contract who calls it, at that given address.
keep in mind that if someone else copies this contract and deploys it themselves, it’s
on the same eVm but lives at a different address. It would be a separate instance of
the same contract.

Same House, Different Address
In computing, we might say that two people deploying the same exact contract on the
same EVM, at necessarily different addresses, equates roughly to building two houses
from the same blueprint. They can’t occupy the same physical space, but are merely
instances of the same class, or blueprint, writ in real life.

https://github.com/chrisdannen/Introducing-Ethereum-and-Solidity/
https://github.com/chrisdannen/Introducing-Ethereum-and-Solidity/

Chapter 5 ■ Smart ContraCtS and tokenS

109

Owned.sol is the golden retriever of smart contracts: call it, and it runs right over and
assigns you ownership of itself—regardless of whether you are a human operating an external
account, or simply another smart contract that is calling owned.sol programmatically.

If Alice uploads owned.sol to the EVM from India, it can be accessed as a local script,
and thus extended, by a contract you upload to the EVM from New York. Cool, huh?

In the last deployment—the token—you simply pasted in the Solidity code and let Mist
do the work. That’s cool but a little too easy. To learn more about what’s happening under
the hood, let’s manually compile the Solidity code into EVM bytecode by using the online
compiler. As a reminder, you can find the online compiler at http://compiler.eth.guide.

After you have the compiler open in your browser, return to this book’s GitHub page
(https://github.com/chrisdannen/Introducing-Ethereum-and-Solidity/). Let’s
compile and test the Owned contract. Locate the Solidity script named owned.sol in the
Github repo and open it to complete the following steps:

 ■ Note Copy all the text in the file. this includes the version pragma header at the top.
this tells the compiler which version of the Solidity language this contract was written in.

 1. Copy the text of this contract onto your computer’s clipboard.
(Ctrl+C on Windows or Linux, and Command+C on Mac.)

 2. Paste your code (Ctrl+V or Command+V) into the main text
box of the browser compiler. If there’s some sample code there,
clear it all out first. You don’t want any of that junk in your nice
clean contract. It should look something like Figure 5-13.

Figure 5-13. Paste in the contract code to the compiler window in your browser

http://compiler.eth.guide
https://github.com/chrisdannen/Introducing-Ethereum-and-Solidity/

Chapter 5 ■ Smart ContraCtS and tokenS

110

 3. Click the Compile button, and your contract will compile.
Select the bytecode that appears in the bytecode field and
copy that to your clipboard.

 4. Go back to the Mist browser.

 5. Repeat the Contract Deploy process from the Token contract:
in the Mist wallet, go to the Contracts tab in the upper right,
and click Deploy New Contract. Paste your new bytecode into
the Contract Bytecode box.

 6. Scroll to the bottom and click the Deploy button.

 7. In the Wallets tab, scroll down to the latest transactions and
you should see the address of the contract you just deployed.

 8. Go through the same Watch Contract flow as you did with
the token. Paste the contract address you got from your
transaction feed, and name the contract Owned. This time,
you’ll add some JSON code in the box.

 9. Next, return to the Browser-Solidity compiler and copy
the content in the JSON Interface section of the page. This
provides a basic front end for your contract, based on what the
compiler could glean from your Solidity code.

Playing with Contracts
Now that your contract is deployed with an interface in Mist, you can activate it. To call a
contract in the EVM, you do not necessarily need to send any ether; you can call it simply
by sending zero ether to the contract address. Boom, now you are the owner! If this
doesn’t work, be sure that the contract was uploaded to the testnet, and that the Mist you
are using to send the zero-ether transaction is also on the testnet.

For the Owned contract, activation is a yes-or-no question. You can call it with zero
ether or 100. In more-sophisticated contracts, the amount you send is vital to how the
contract behaves subsequently after being called.

Owned is just a reference contract that might live on the EVM, a pivotal public
resource contract with lots of incoming references, for years and years.

By working with a small smart contract, you can see how smart contracts are used
piecemeal to cobble together entire distributed apps, largely using boilerplate code or
public-use instances, enabling the end programmer to just write the most customized of
functionality, reducing the room for error.

Summary
In this chapter, you were able to deploy two separate smart contracts. In the process, you
learned about the most basic application you can write for the EVM, a token contract. You
also considered some of the unique properties of distributed programs by playing with
owned.sol. By now, you should begin to see how powerful the Ethereum protocol can be,
and how simple and easy it is to deploy contracts that leverage the power of the network.

Next, it’s worth learning more about how the EVM network-database achieves
consensus: a process known as proof-of-work mining. That is the subject of the next chapter.

111© Chris Dannen 2017
C. Dannen, Introducing Ethereum and Solidity, DOI 10.1007/978-1-4842-2535-6_6

CHAPTER 6

Mining Ether

Mining is the process by which the Ethereum
network reaches consensus about the order of
transactions in a given period of time, which in turn
allows the EVM to make valid state transitions

We learned a lot about how the EVM works in Chapter 3, but one area of its
functionality—mining—requires its own chapter. Mining is important because it is the
process by which consensus is reached in the system, and by which ether is created.
Bitcoin also uses mining to reach consensus, but the way things work in Ethereum is a
little bit different, owing to its ability to execute smart contracts.

What’s the Point?
In the pursuit of something as idealistic as the EVM, a world computer that anyone can
use, it’s important to be realistic about how its advantages and disadvantages are assessed.
At this point, you may be wondering whether such a sophisticated (or complicated)
network can ever succeed.

The chapter that follows describes a system that, for some readers, will appear
unapproachable and overwhelming. However, like many of our modern-day systems,
it’s important to understand the problem being solved. The solutions may change, and
indeed the Ethereum protocol (like the Bitcoin protocol) will adapt and change over time.
But the problem of trust in human societies is persistent.

It’s also important to recall that the creators of decentralized networks are
cryptographers at heart, interested in one goal: the creation of an accessible, trustless
world computer that is much harder to destroy than it was to create. To quote Vitalik
Buterin:

Cryptography is truly special in the 21st century because cryptography is
one of the very few fields where adversarial conflict continues to heavily
favor the defender. Cypherpunk philosophy is fundamentally about
leveraging this precious asymmetry to create a world that better preserves
the autonomy of the individual, and cryptoeconomics is to some extent

http://dx.doi.org/10.1007/978-1-4842-2535-6_3

Chapter 6 ■ Mining ether

112

an extension of that, except this time protecting the safety and liveness
of complex systems of coordination and collaboration, rather than
simply the integrity and confidentiality of private messages. Systems that
consider themselves ideological heirs to the cypherpunk spirit should
maintain this basic property, and be much more expensive to destroy or
disrupt than they are to use and maintain. The “cypherpunk spirit” isn’t
just about idealism; making systems that are easier to defend than they
are to attack is also simply sound engineering.1

With that in mind, let’s begin our discussion of mining with the issuance of ether
itself.

Ether’s Source
Ether is considered the native token of Ethereum because it gets created out of thin
air during the mining process, as payment for mining work performed by computers.
Because mining is computationally intensive, it can generate large electricity costs for
your home or office. Miners take their rewards seriously.

Mining rewards are accomplished through an account balance increase
programmed into the EVM’s state transition function. They are payable to whichever
random miner finds a block. (In order to mine, you need to pass the mining method an
Ethereum address to pay, so that it knows whose balance to increase.)

Let’s take a closer look by starting with some vocabulary definitions.

Defining Mining
In Ethereum, miners refers to a vast global network of computers, operated mostly by
enthusiasts in their homes and offices, running Ethereum nodes that are paid in ether
tokens for the work of executing smart contracts and validating the canonical order of
transactions around the world. The process of mining is undertaken by each individual
node, but the term also refers to the collective effort of the network: individual nodes
mine, and the network itself can be said to be secured by mining.

Miners process transactions in groups known as blocks. We previously defined a
block, in the abstract, as a collated set of transactions that take place over a given period
of time. However, a block can also refer to the data object containing those transactions,
stored on Ethereum nodes. Each time a node starts, it must download the blocks it missed
while offline. Each block contains some metadata from the previous block, to prove it is
authentic and build on the existing blockchain.

The “true” order of transactions is hard for the network to determine. Mining nodes
in different parts of the world may receive new transactions out of order. In fact, there

1Vitalik Buterin, “A Proof of Stake Design Philosophy,” https://medium.com/@VitalikButerin/
a-proof-of-stake-design-philosophy-506585978d51#.7n3x85gvs, 2016.

https://medium.com/@VitalikButerin/a-proof-of-stake-design-philosophy-506585978d51#.7n3x85gvs
https://medium.com/@VitalikButerin/a-proof-of-stake-design-philosophy-506585978d51#.7n3x85gvs

Chapter 6 ■ Mining ether

113

exist many more incorrectly ordered blocks than correctly ordered ones. Some malicious
node operators may modify their machines to submit fraudulent blocks in the hopes of
sending free ether to their accounts.

Thus, mining can properly be defined as dedicating computational effort to
the bolstering of a given version of history as the correct one. The mining process is
computationally demanding for nodes because it involves executing a memory-intensive
hashing algorithm known as as a proof-of-work algorithm. The proof-of-work algorithm
(or PoW algorithm) for the Ethereum protocol is Ethash, a new function created by
the core developers in order to address the problem of mining centralisation evident
in Bitcoin. You’ll sometimes hear this algorithm referred to as Ethereum’s consensus
algorithm or consensus engine. The block that is selected as canonical is the one with the
greatest amount of proof of work behind it. What this means will become clear by the end
of the chapter; for now, let’s continue to define some key terms.

The amount of computation a miner can apply to the network is known
as hashpower. Hashpower is a reflection of an individual computer’s parts and
specifications—in particular, the speed, power, and quantity of graphics processing cards;
the computer system’s overall power supply; and the availability of adequate voltage from
the wall outlet and the breaker panel it’s connected to.

The cryptographic proof which results from mining can be completed more quickly
when more hashpower is applied. Therefore, miners often form mining pools to increase
their chances of winning rewards, which they then split among the group.

Now that we’ve defined some vocabulary, let’s talk about why mining is necessary in
the first place and how exactly it works in Ethereum.

Versions of the Truth
To understand why there are so many versions of transaction history, let’s turn to Gavin
Wood, who says it best in the Ethereum Yellow Paper:

Since the system is decentralized and all parties have an opportunity
to create a new block on some older preexisting block, the resultant
structure is necessarily a tree of blocks. In order to form a consensus as
to which path, from root (the genesis block) to leaf (the block containing
the most recent transactions) through this tree structure, known as the
blockchain, there must be an agreed-upon scheme.2

We’ll talk more about this tree structure in later sections. For now, simply note that
when nodes disagree about which root-to-leaf path is the true blockchain, then a state
fork happens, and that is usually disastrous—the equivalent of the EVM splitting into two
EVMs. We’ll talk more about forks later in this chapter, too.

2Gavin Wood, “Ethereum Yellow Paper,” https://github.com/ethereum/yellowpaper, 2016.

https://github.com/ethereum/yellowpaper

Chapter 6 ■ Mining ether

114

Difficulty, Self-Regulation, and the Race for Profit
Mining is designed to be a money-maker for the people who engage in it; they are paid for
providing security to the network. What exactly is drawing thousands of IT hobbyists and
professionals to build and run these machines at their own expense?

The first thing to know is that time is a factor! When a new cryptocurrency launches,
miners rush to turn on their machines. With less competition for fees in the early days,
they earn more. Even better, tokens belonging to useful cryptonetworks usually inflate in
price over their lifetime, so earning them earlier gives miners more opportunity to profit
from appreciation.

Difficulty
Ethereum and Bitcoin are self-regulating networks. As a network gets more popular, more
mining hashpower joins in search of profits, and blocks might be found too quickly. To
stay within range of its ideal 15-second block time, a dynamically self-adjusting value
called difficulty will increase. If blocks are found too quickly or slowly, the system changes
the difficulty to get within range of its ideal block time.

Generally speaking, as time progresses, network difficulty increases. However,
the actual difficulty value is calculated with a formula that includes several variables.
Network difficulty may decrease or go flat if miners begin to drop off the network or if
overall hashpower decreases.3

After the Ethereum network experienced attacks in October and November 2016, the
market price of ether dropped, and hashrate was reduced as miners who couldn’t make
a profit turned off their machines. It rose to its pre-attack highs several months later,
commensurate with the recovery in the price of ether.

You can think of this difficulty variable as being part of the incentive structure to
get miners on the network as soon as possible and to stay there. However, difficulty
has another use in the EVM, as one of several factors used to determine a block’s score,
sometimes referred to as its heaviness. The heaviest, or highest-scoring, path through the
transaction data structure can be said to be the longest, the one that most miners have
historically converged upon as the true root-to-leaf path.

 ■ Note in ethereum and Bitcoin, the longest or heaviest chain is considered the canonical
one. each time the network finds a block, it selects the heaviest block with the highest
score, and pays the miner who nominated it. this high score is the outcome for a block that
is supported by the most proof of work.

3Ethereum Community Forum, “How Is Mining Difficulty Calculated,” https://forum.ethereum.
org/discussion/5002/how-is-the-mining-difficulty-calculated-on-ethereum, 2016.

https://forum.ethereum.org/discussion/5002/how-is-the-mining-difficulty-calculated-on-ethereum
https://forum.ethereum.org/discussion/5002/how-is-the-mining-difficulty-calculated-on-ethereum

Chapter 6 ■ Mining ether

115

Factors Required for Block Validation
Every candidate block that each individual miner constructs and seeks to validate
contains four pieces of data:

Hash of the transaction ledger for this block (as this machine
heard about it)

Root hash of the entire blockchain

Block number since the chain started

Difficulty of this block

If all these things check out, this block is a candidate for winning block. However,
even with this information correct, the miner must still solve the proof-of-work algorithm.
As you’ll see, the algorithm is essentially a guessing game designed to take a certain
amount of time, in service of the ideal 15-second block time.

When the guess is correct, this correct value, or nonce, is the final condition to
render a block true, canonical, and valid. The nonce is known as evidence of solving the
proof-of-work algorithm. Recall from Chapter 3 that blocks which are valid, but not the
canonical winning block, are known as uncle blocks.

How Proof of Work Helps Regulate Block Time
Anyone who can optimize for the proof-of-work algorithm can find valid blocks faster,
causing uncles to lag further and further behind. In the Bitcoin network, a small group of
hardware companies has acquired a disproportionately huge amount of power over the
network by creating hardware specifically built to run the Bitcoin PoW algorithm. The
centralisation of mining efforts is highly profitable in Bitcoin, because it allows these big
miners to find blocks faster, reaping all the block rewards. Slower machines never get
a chance to solve a block, and eventually, even their uncle blocks come in further and
further behind the winning block. In Ethereum, uncle blocks are required to bolster the
winning block. As uncles lag more, it becomes harder for the network to find a true block,
being that valid uncles are a requirement.

Enter the Ethash algorithm: The Ethereum protocol’s defense against mining
hardware optimization. Ethash is a derivative of Dagger-Hashimoto, which is a memory-
hard algorithm that can’t be brute-forced with a custom application-specific integrated
circuit (ASIC), like the kind that are popular with Bitcoin mining enterprises.

Key to this algorithm memory-hardness is its reliance on a directed acyclic graph
(DAG) file, which is essentially a 1 GB dataset created anew every 125 hours, or 30,000
blocks. This period of 30,000 blocks is also known as an epoch.

Directed acyclic graph is a technical term for a tree in which each node is allowed to
have multiple parents, with ten levels including the root, and a total of up to 225 values.

http://dx.doi.org/10.1007/978-1-4842-2535-6_3

Chapter 6 ■ Mining ether

116

What’s Going on with the DAG and Nonce?
In effect, each node is playing a guessing game with itself, trying to guess a nonce that
will validate the current block; if it guesses the right nonce, it wins the block reward. If
not, it continues guessing until it gets word that another node on the network has found
a winner. Then, it discards the block it was mining downloads the new block, and begins
mining a new block on top of that one. But the node gets both parameters of the guessing
game, as well as a new pair of dice (so to speak) with each potential block as it rolls in.
The rules of the guessing game are designed this way to prevent clever individual nodes
from outsmarting the system in the pursuit of more mining rewards.

Therefore, you can think of the DAG file as a way of standardizing the solution time
of the proof-of-work algorithm. It levels the playing field for miners, but more important,
helps cluster block times around the 15-second mark by ensuring that—even with
massive computing power—you can’t guess the correct nonce a whole lot faster than your
competitors.

All the data a node needs to participate in the guessing came is drawn from the
blockchain itself. In cryptography, an encryption seed can be used to help generate a
pseudorandom number, thus increasing the randomness of whatever encrypted output
the Ethash algorithm produces. In Ethereum and Bitcoin, each node gets the seed from
looking at the hash of the last known winning block. In this way, the node must be mining
on the correct, canonical chain in order to play the game correctly. Performing proof of
work on an erroneous block (say, an uncle) cannot yield a winning block. This is helpful
if you’re trying to reduce unfair advantage in a proof-of-work scheme, which could be
used by a large pool of miners to highjack the network onto a version of the truth in which
everyone’s ether is transferred to the hijacker’s accounts. Here is the process by which a
node sets itself up to perform the PoW guessing game:

 1. From an encryption seed derived from the block header, the
mining node creates a 16 MB pseudorandom cache.

 2. In turn, the cache is used to generate a larger 1 GB dataset that
should be consistent from node to node; this is the DAG. This
dataset grows over time, in a linear fashion, and is stored by
all full nodes.

 3. Guessing the nonce requires the machine to grab random
slices of the DAG dataset and hash them together. This works
similarly to using a salt with the hash function.

In cryptography, a random data chunk you toss into a one-way hash function is
called a salt. Salts are like nonces: they make things more random, and thus more secure.

Chapter 6 ■ Mining ether

117

All This for Faster Blocks?
Believe it or not, all these modifications to the original Bitcoin paradigm were made in the
service of faster block times. Block times as low as 3–5 seconds may be mathematically
feasible.4

In both Bitcoin and Ethereum, we’ve said that block time is an idealized period for
collecting transactions. Why is this? The system works to keep blocks as near as possible
to the ideal, much the way that the human body tries to preserve homeostasis.

The Bitcoin protocol targets 10-minute block times, and Ethereum targets 15 seconds.
Once a true block is found, it takes a short while for other nodes to find out about it. Up
until they discard their orphan block and begin mining on the new one, they are actually
competing against the new block instead of building upon it. Thus, the effort expended
on the orphan is wasted. Think of it this way: if latency causes miners to hear about new
blocks an average of one minute late, and new blocks come every 10 minutes, then the
overall network is wasting roughly 10 percent of its haspower. Lengthening the time
between blocks reduces this waste. In the opinion of some blockchain theorists, Satoshi
Nakamoto chose this ratio because it seemed an acceptable level of waste. Ethereum’s
faster block time is desirable because it makes transactions confirm faster, but the
Ethereum protocol has had to make provisions in its design for the commensurate
decrease in security brought on by faster block times, as you’ll see later in this chapter.
Block time can be compared to settlement time in a securities trading, which in the United
States, stands at three days after the trade date, also known as T+3. A proposal is under
consideration by the SEC to quicken settlement time to T+2.

In Bitcoin, which has no smart-contract execution, blocks take a theoretical 10
minutes on average, but in reality, transactions process this quickly only about 63 percent
of the time. About 13 percent of the time, it takes longer than 20 minutes for a transaction
to receive a confirmation. During this time, it’s possible to reverse a transaction up to 20
percent of the time.5

While merely irksome for Bitcoin enthusiasts and businesses, these conditions are
unacceptable for a smart-contracts platform designed to power distributed software
applications, so Ethereum takes a slightly different approach to mining, in order to
achieve faster block times.

Making Fast Blocks Work
We’ve already discussed how faster block times are more desirable from the perspective
of user experience. However, they can also produce undesirable effects.

Because nodes are located all over the world, it’s hard for them to stay perfectly in
sync. That’s because information takes time to travel across the Internet from node to
node, also known as latency. Although it may not seem like much time to humans, it’s
enough to create collisions in the transaction record where the books don’t balance.

4Ethereum Blog, “Toward a 12-Second Block Time,” https://blog.ethereum.org/2014/07/11/
toward-a-12-second-block-time/, 2014.
5Ibid.

https://blog.ethereum.org/2014/07/11/toward-a-12-second-block-time/
https://blog.ethereum.org/2014/07/11/toward-a-12-second-block-time/

Chapter 6 ■ Mining ether

118

On average, it takes about 12 seconds for a transaction to propagate around the
Ethereum or Bitcoin networks; in actuality, much of this time is consumed by the
downloading of transactions to the node.6 In the intervening time before it hears about
a new block being found, a miner may continue to work on an old block briefly, before
discarding it for the new winner. As described in the section above, uncles that receive
mining effort after a valid block has already been found elsewhere in the network are also
known as stale or extinct blocks.

Faster block times create a higher likelihood of stale blocks, and stale blocks
decrease the network’s absolute strength against attacks.7 Worse yet, higher rates of stale
blocks make it easier for mining pools to win increasing efficiency advantages over solo
miners, consistently beating them out of mining rewards. At best, this is unfair, and at
worst, it makes the network less expensive to attack.

 ■ Note Stale blocks are sometimes called orphaned blocks in Bitcoin, although this
phraseology is confusing. these stale blocks do not have any blocks being built upon
them—no child blocks—but they may have a perfectly valid block header. thus, orphans do
in fact have “parent” blocks.

How Ethereum Uses Stale Blocks
In Ethereum, as we’ve said already, orphans or stales have yet another name: they are
called uncles, and they are counted toward the score, or weight, of a block. The way this
is done in the Ethereum protocol is similar to the blockchain scoring system proposed
in the GHOST protocol, which was outlined in a paper by Aviv Zhoar and Yonatan
Sompolinsky in December 2013.

Vitalik Buterin describes the way he has adapted the GHOST idea for Ethereum, and
how it compares to Bitcoin:

The idea is that even though stale blocks are not currently counted as
part of the total weight of the chain, they could be; hence they propose a
blockchain scoring system which takes stale blocks into account even if
they are not part of the main chain. As a result, even if the main chain is
only 50 percent efficient or even 5 percent efficient, an attacker attempting
to pull off a 51 percent attack would still need to overcome the weight
of the entire network. This, theoretically, solves the efficiency issue all
the way down to 1-second block times. However, there is a problem: the
protocol, as described, only includes stales in the scoring of a blockchain;
it does not assign the stales a block reward.

6Ibid.
7Ibid.

Chapter 6 ■ Mining ether

119

Uncle Rules and Rewards
The following are rules regarding uncles:

In Ethereum’s implementation of GHOST, uncles that are
validated along with a block receive 7/8 of the static block
reward, or 4.375 ether.8

A maximum of two uncles are allowed per block.

These two places are won on a first-come, first-served basis.

No transaction fees are collected or paid out for uncle blocks,
because users are paying these costs once already in the valid
block, which actually executes their commands.

Crucially, in order to be worthy of a reward, an uncle block
must have an ancestor in common with the true block within
the last seven generations.

This implementation of GHOST solves the issue of security loss by including uncle
blocks in the calculation of which block has the largest total proof of work backing it. The
uncle rewards are intended to solve the second issue, centralization, by paying miners
who contribute to the security of the network, even if they do not nominate a winning
block.

The Difficulty Bomb
It’s worth mentioning that the GHOST protocol (even as Ethereum has adapted it) is the
subject of some criticism. Although its flaws are known, they are generally regarded to be
harmless. Fixing the GHOST implementation may not be worthwhile anyway, as it will be
rendered deprecated when the Ethereum protocol moves away from a proof-of-work to
what is known as a proof-of-stake consensus algorithm.9

One reason why cryptocurrencies have value in the marketplace is that they are
limited in issuance. Today, 12.5 bitcoins are awarded per block (that is, every 10 minutes).
This rate will continue until mid 2020, when 6.25 bitcoins per block will be awarded for
each block. Rewards halve this way every four years until approximately the year 2110–40,
when 21 million bitcoins will have been issued.

Ethereum achieves its limited issuance by planning to end the proof of work period
entirely. The effective mining period for Ethereum will come to a close sometime in
2017–2018 when the Ethereum system makes the switch; one of the big selling points of
proof of stake (or PoS) is that it does not require mining (and the accompanying energy
expenditure) to reach consensus.

8GitHub, “Modified Ghost Implementation (Ethereum White Paper),” https://github.com/
ethereum/wiki/wiki/White-Paper#modified-ghost-implementation, 2016.
9Bitslog, “Uncle Mining: an Ethereum Protocol Flaw,” https://bitslog.wordpress.
com/2016/04/28/uncle-mining-an-ethereum-consensus-protocol-flaw/, 2016.

https://github.com/ethereum/wiki/wiki/White-Paper#modified-ghost-implementation
https://github.com/ethereum/wiki/wiki/White-Paper#modified-ghost-implementation
https://bitslog.wordpress.com/2016/04/28/uncle-mining-an-ethereum-consensus-protocol-flaw/
https://bitslog.wordpress.com/2016/04/28/uncle-mining-an-ethereum-consensus-protocol-flaw/

Chapter 6 ■ Mining ether

120

In an effort to force this transition, and simultaneously limit the issuance period
for ether, the core developers have built in a difficulty bomb that makes proof-of-work
mining less and less feasible beginning in the latter half of 2017, before finally becoming
impossible in 2021.10

How this new proof-of-stake system will work is the subject of much research and
debate within the community. To read more about the research being done in this area,
skip to Chapter 11.

Miner’s Winning Payout Structure
A successful miner of a winning block receives a flat payment, plus transaction fees, plus
a share of the bounty of all uncles that helped it win. Thus it can be said the rewards in the
Ethereum protocol are determined as follows:

 1. A set block reward of 5.0 ether (for the miner that finds the
winning block)

 2. Fee payments of the gas expended within the block (for the
miner that finds the winning block)

 3. 1/32 ether per uncle of this block (for miners that find uncles)

Limits on Ancestry
The part of the protocol requiring uncles to be within seven blocks of the winning block
to receive a partial award exists to make block history “forgettable” after a small number
of blocks. The number seven was picked because it offers a reasonable amount of time for
a miner to find an uncle, but not so long that it imposes centralization risks.

The Block Processing Play by Play
In order to escape uncle-hood and become the heaviest block, a true block (sometimes
called a nephew) needs to pass muster with a long series of steps used in the processing
of each block. An important component of this process is the block validator algorithm.
This algorithm seeks to validate the hash that comes with the block, located in the block’s
header. This aspect of block processing makes a good on-ramp to the anatomy of a block
as a data object.

 ■ Note in programming, data structures often have a header containing certain essential
information that the computer must read first. Just as in human word processors, the header is
merely the top of a body of text. in this analogy, the body of text is the block data structure.

10StackOverflow, “When Will the Difficulty Bomb Make Mining Impossible?” http://ethereum.
stackexchange.com/questions/3779/when-will-the-difficulty-bomb-make-mining-
impossible/3819#3819, 2016.

http://dx.doi.org/10.1007/978-1-4842-2535-6_11
http://ethereum.stackexchange.com/questions/3779/when-will-the-difficulty-bomb-make-mining-impossible/3819#3819
http://ethereum.stackexchange.com/questions/3779/when-will-the-difficulty-bomb-make-mining-impossible/3819#3819
http://ethereum.stackexchange.com/questions/3779/when-will-the-difficulty-bomb-make-mining-impossible/3819#3819

Chapter 6 ■ Mining ether

121

Before a completed block can undergo processing and acceptance by the rest of the
network, and before nodes can begin mining on top of a new block, each and every node
must independently download and validate the block before begining to mine in top of it.
Here are all the steps the block validator algorithm takes, in order:

 1. Check if the previous block referenced exists and is valid.

 2. Check that the timestamp of the block is greater than that of the
referenced previous block and less than 15 minutes into the future.

 3. Check that the block number, difficulty, transaction root,
uncle root and gas limit (various low-level Ethereum-specific
concepts) are valid.

 4. Check that the nonce on the block is valid, showing the
evidence of proof of work.

 5. Apply all transactions in this now-validated block to the
EVM state. If any errors are thrown, or if total gas exceeds the
GASLIMIT, return an error and roll back the state change.

 6. Add the block reward to the final state change.

 7. Check that the Merkle tree root final state is equal to the final
state root in the block header.

Only after these seven steps is a block canonized as valid and true!
Why all this fuss about the block header? To make a blockchain, it would be theoretically

possible to create block headers that directly contain data about every transaction, but this
would pose scalability challenges and require immensely powerful hardware to run a node.11

In Bitcoin and Ethereum, a data structure called a Merkle tree is used to avoid putting
every single transaction in the header, which would be large and unwieldy. Ethereum
adds a data structure representing the state of the EVM, called a state tree. Global state is
presented in an Ethereum block by another tree structure known as a Patricia tree. These
tree structures are the subject of the next section.

Evaluating the Ancestry of Blocks and
Transactions
To understand what’s in a block header, and why the contents of the block header are
important to determining the longest, heaviest chain, you need to take a step back and
explore how computers store data—and how they go about changing that data once stored.

First and foremost, the role of tree structures is to help the node verify the data it
receives inside blocks, such as the transaction ledger. Secondarily, their role is to do this
fast, so that computers of all shapes and sizes can read the blockchain quickly.

11Ethereum Blog, “Merkling in Ethereum,” https://blog.ethereum.org/2015/11/15/merkling-
in-ethereum/, 2015.

https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/
https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/

Chapter 6 ■ Mining ether

122

In computer science, an associative array (or dictionary) refers to a collection of
(key/value) pairs. Recall the concept of key/value pairs from the discussion of data
objects in Chapter 1. In an associative array, the association between keys and values can
be changed. This association is called a binding.

Operations associated with dictionaries include the following:

Adding key/value pairs to the collection

Removing pairs from the collection

Modifying existing pairs

Looking up a value associated with a given key

Hash tables, search trees, and other specialized tree structures are common
solutions to the dictionary problem, where a dictionary is a generic term for a database of
records. Solving dictionary problems involves methodologies for querying for a key
(a word) and calling up its value (a definition).

How Ethereum and Bitcoin Use Trees
In mathematics, a tree is an ordered data structure used to store an associative array of
keys and values. A radix tree is a variant that is compressed, requiring less memory. In a
normal radix tree, each character in the key describes a path through the data structure to
get to the corresponding value, like a set of directions.

Creating a Merkle tree requires hashing a large number of “chunks” of transaction
data together until they become only one: a root hash. In Ethereum and Bitcoin, the
Merkle tree structure is used to record the transaction ledger in each block. The root
for the Merkle tree is hashed in with other metadata and included in the header of the
subsequent block. Thus, it can be said that each additional transaction (within each
block) irrevocably changes the Merkle root; even one wrong transaction will make the
root hash look completely different and thus, obviously wrong. This is how blocks can
prove their legitimate ancestry to the block validator algorithm, which is part of the
overall block processing routine.

For a Bitcoin client, determining the status of a single transaction is as easy as
looking at the header of the most recent block of the main chain. There, the client should
find the Merkle proof showing that the root hash for the block contains the transaction
in one of its Merkle trees. The Merkle root is a fingerprint of all the transactions, correctly
ordered, that have occurred in the blockchain up until that block.

Merkle-Patricia Trees
Thanks to the block header, it’s quick and easy for a node to look for, read, or verify block
data. In Bitcoin, the block header is an 80-byte chunk of data that includes the Merkle
root as well as five other things. The Bitcoin block header contains:

A hash of the previous block header

A timestamp

A mining difficulty value

https://en.wikipedia.org/wiki/Attribute–value_pair
http://dx.doi.org/10.1007/978-1-4842-2535-6_1

Chapter 6 ■ Mining ether

123

A proof-of-work nonce

A root hash for the Merkle tree containing the transactions for
that block

Merkle trees are ideal for storing transaction ledgers, but that’s about it. From the
perspective of the EVM, one limitation of the Merkle tree is that although it can prove or
disprove the inclusion of transactions in the root hash, it can’t prove or query the current
state of the network, such as a given user’s account holdings.

Contents of an Ethereum Block Header
To remedy this shortcoming and allow the EVM to run stateful contracts, every block
header in Ethereum contains not just one Merkle (transaction) tree, but three trees for
three kinds of objects:

Transaction tree

Receipts tree (data showing the outcome of each transaction)

State tree

To make this possible, the Ethereum protocol combines the Merkle tree with the
other tree structure we described above, the Patricia tree. This tree structure is fully
deterministic: two Patricia trees with the same (key/value) bindings will always have the
same root hash, providing increased efficiency for common database operations such as
inserts, lookups, and deletes.12 It is therefore possible for Ethereum clients to get verifiable
answers to all sorts of queries it makes to the network, such as the following:

Has transaction X been included in block? (Handled by the
transaction tree.)

Tell me all instances of event Y in the last 30 days. (Handled by
the receipts tree.)

What is the current balance of contract account Z? (Handled
by the state tree.)

For more about how these tree structures work and why they were chosen, check out
http://trees.eth.guide.

Forking
As discussed earlier in this chapter, a network of miners may split in two, if they
cannot agree on the longest, heaviest chain. There’s much ado about forking in the
cryptocurrency community, where it seems to imply the fracture of a community of
humans along with a loss of consensus in the machine network.

12Ethereum Wiki, “Merkle Patricia Tree Specification,” https://github.com/ethereum/wiki/
wiki/Patricia-Tree#merkle-patricia-tree-specification, 2016.

http://trees.eth.guide
https://github.com/ethereum/wiki/wiki/Patricia-Tree#merkle-patricia-tree-specification
https://github.com/ethereum/wiki/wiki/Patricia-Tree#merkle-patricia-tree-specification

Chapter 6 ■ Mining ether

124

In reality, nascent forks are constantly happening. Sometimes one branch dies,
sometimes both die, and sometimes one lives on to propagate a winning nephew block.
A fork occurs when two valid blocks point to the same parent, but some of the miners
see one, and the rest see the other. Effectively, this creates two versions of “the truth,”
ensuring that these two groups can no longer be said to be on the same network.

 ■ Note a state fork is a much bigger deal than a protocol fork. in a protocol fork, no
data is changed, but miners may adjust parameters or update code on their nodes to make
them perform to a modified specification that the community has agreed is an overall
improvement. protocol forks can thus be said to be voluntary, whereas state forks are not
necessarily so.

In Ethereum, these constant budding forks are resolved within four blocks, as a
matter of mathematical certainty, as one chain finds a winner, gets longer, and begins
to “pull” other nodes toward it with the incentive of not only the miner fee for finding
and executing the correct block, but all the added incentive of collecting the uncle block
rewards.

Sometimes a node will find the “right” chain after already receiving a reward for
about one to three blocks. Once the node jumps to a better, longer, more winning chain,
that mining reward may disappear. However, this all happens within four blocks—that is,
one minute—so these small errata are considered no big deal.

Deliberate forks are typically deployed by attackers in order to double-spend funds: to
make money out of thin air by simultaneously sending one balance to many accounts.

In fact, anyone with more than 50 percent of the hashpower can engender a “hostile”
deliberate fork, so to speak. In a double spend attack, an attacker operating a fleet of
miners, with a large amount of hashpower, sends an ether transaction to purchase a
product. After getting hold of the product, the attacker puts together an erroneous block
with a second transaction. This second transaction attempts to send the same funds
back to the attacker. He or she then creates a block at the same level as the block which
contained the original transaction, but containing the second transaction instead, and
dedicates all possible hashpower to mining on the fork. Should the attacker have more
than 50 percent of haspower, the double spend is guaranteed to succeed eventually at any
block depth. Below 50 percent it’s far less prone to succeed. But this attack is still feared
enough that, in practice, most exchanges and other institutions who use ether wait for
several confirmations before considering the transfer complete.

Mining Tutorial
Mining is a great excuse to try Geth. Because Geth is such a great tool for learning, and
because it’s fairly easy to install, this section provides installation instructions for macOS,
Windows, and Ubuntu.

Chapter 6 ■ Mining ether

125

 ■ Note Beyond installation here, the following exercises assume you are in a *nix
environment—that is, running the terminal application in either macOS or Ubuntu 14.04
(trusty). For links to documentation and tutorials about geth, and instructions for all
ethereum clients on all platforms, visit clients.eth.guide.

Installing Geth on macOS
First, open the Terminal on your Mac, located in the Applications folder. Then, type the
following at the command line:

brew update
brew upgrade

Once updating is complete, and the command line returns, type the following:

brew tap ethereum/ethereum
brew install ethereum

Installing Geth on Windows
Download the latest stable binary. Extract geth.exe from zip, open a command Terminal
and type this:

chdir <path to extracted binary>
open geth.exe

Getting Comfortable with the Command Line
After you install Geth on Ubuntu (described next), you’ll proceed right into some exercises.
These exercises assume the use of macOS or Ubuntu Terminal applications. Windows Geth
commands will not be discussed here, but can be found at http://clients.eth.guide.

The following guide is written for people who may be using the command line for the
first time. If this is you, then you should notice a few things right away.

When you first open your Terminal application, located in the Applications folder on
macOS and Ubuntu, you’ll see a blinking cursor. This indicates the computer is ready to
receive instructions.

 ■ Note in this interface, the computer has a one-track mind. When you type in a
command, it may take a few seconds to complete. in the intervening time, text will fly by on
the screen. Don’t panic; this is normal. You cannot break your computer by experimenting
with geth or the command line.

http://clients.eth.guide

Chapter 6 ■ Mining ether

126

Installing Geth on Ubuntu 14.04
To install Geth on Ubuntu, first open the Terminal and type this, then hit Enter:

sudo apt-get install software-properties-common

One caveat to this installation, depending on hardware configuration, is that some
Ubuntu users may need to install a font library, or the Geth installation will throw an
error. You can find this library at https://community.linuxmint.com/software/view/
ttf-ancient-fonts or clients.eth.guide. The error is shown in Figure 6-1.

Simply install this font package and things should go smoothly.
Then type the following:

sudo add-apt-repository -y ppa:ethereum/ethereum

The program will ask you to type your password. It may not appear on the screen, or
even look like anything is being entered at all, but ignore that and press Enter. You should
see a result similar to Figure 6-2.

Putting sudo in front of a Terminal command to execute commands as the root user,
or most the most powerful user role in the Unix architecture, with access to all files and
commands. Next, at the prompt, type this and hit Enter:

sudo apt-get update

Figure 6-1. Some Ubuntu users may get this error

Figure 6-2. Enter your password to complete installation, and you’ll see this result

https://community.linuxmint.com/software/view/ttf-ancient-fonts
https://community.linuxmint.com/software/view/ttf-ancient-fonts

Chapter 6 ■ Mining ether

127

And then type this and hit Enter:

sudo apt-get install ethereum

Enter your computer’s administrator password, probably the one you use to login to
your computer after it boots up. When the program asks whether you’d like to allow the
installation to take some hard drive space, type Y (for yes) and press Enter.

Next, let’s run Geth. After installation is finished, you can start Geth by typing its
name at the command prompt:

geth

You’ll see some code whizz by, looking like Figure 6-3.

This will go on forever if you let it. Press Control+C to get the synchronization to stop,
and you’ll be dropped back at your same old command-line prompt. You have now exited
Geth.

So what’s happening here? Geth is not mining, but it is synchronizing itself with the
blockchain by downloading past blocks. It does this in order to show you an up-to-date
balance on your accounts, and to quickly send and receive transactions, just like Mist. In
fact, Mist does this synchronization thing too, remember? It looks like Figure 6-4.

Figure 6-3. Geth is synchronizing

Chapter 6 ■ Mining ether

128

However, Geth is fairly dumb; it can do only one thing at a time: synchronize. You
can’t run any EVM code from here. To gain some control, you’ll need to take advantage of
Geth’s built-in JavaScript console, which allows you to execute commands directly in the
EVM via the Terminal on your computer. How cool is that?

Executing Commands in the EVM via the Geth
Console
You can use Geth commands in the Terminal to execute many essential functions on the
Ethereum network. The formula for Geth commands is:

geth [options] command [command options] [arguments...]

And you can find a full list of commands, options, and arguments at https://
github.com/ethereum/go-ethereum/wiki/Command-Line-Options. However, since the
ultimate promise of the Ethereum network is truly distributed apps, we’ll focus on using
the Ethereum JavaScript API through a console you can open up in Geth. The console is
really a JSRE, or JavaScript Runtime Environment that operates inside of Geth. Ethereum’s
JSRE exposes the full Web3.js JavaScript dapp API, which is covered more in Chapter 8.
The JSRE can be used actively (in the console) or non-interactively (with written scripts).

In addition to the dapp API, Geth also supports a whole slew of management APIs
for remote management of your Ethereum note. An example is the personal and admin
APIs, which exposes a method for access the file system, execute commands, and monitor
your node remotely. These APIs and follow the same conventions as used in the dapp
API. You can learn more about the management API at: https://github.com/ethereum/
go-ethereum/wiki/JavaScript-Console#management-apis.

Figure 6-4. When Geth synchronizes, it’s performing the same operation you see in the
Mist wallet, pictured here

https://github.com/ethereum/go-ethereum/wiki/Command-Line-Options
https://github.com/ethereum/go-ethereum/wiki/Command-Line-Options
http://dx.doi.org/10.1007/978-1-4842-2535-6_8
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console#management-apis
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console#management-apis

Chapter 6 ■ Mining ether

129

 ■ Note that running geth and Mist at the same time will cause an error. a node can run
only one network daemon per machine.

To restart Geth with the console, type the following:

geth console

If you already have Mist running and synchronized, you can tell Geth to use Mist’s
node to connect by starting Geth via the following command. This saves you from having
to wait for Geth to sync all over again if your machine already has most of the blockchain
stored locally:

geth attach

You can call console and attach one after the other. Why is this useful? You can
begin using the JavaScript console in Geth right away if you have a fully synchronized
Mist client running. That doesn’t matter much for now, but if you were sending and
receiving real transactions to the public blockchain with Geth, you might need to wait for
it to synchronize before your balance queries are returned correctly.

Below, we’ll use some JavaScript API calls in the console. A full guide to these calls
is here: https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console. Next,
we’ll learn how to work with accounts and balances by calling some JavaScript methods
interactively. To learn more about using the JSRE non-interactively, visit https://
github.com/ethereum/go-ethereum/wiki/JavaScript-Console#non-interactive-use-
jsre-script-mode.

 ■ Note these geth commands connect to the main network. recall that the testnet has
fake ether you can use to test, whereas the main network requires you to buy ether on an
exchange. Mining it is not an easy way to get ahold of ether these days, but we’re going to
try it anyway for fun.

Your Geth client should be running with the console enabled, giving you a command
prompt. Let’s create an account by using a JavaScript API call. In your head, choose a
password. In the console, type this, then hit Enter:

personal.newAccount("your_new_account_password_here")

Replace the text between the quotes with the password you chose. Your primary
account is account 0 by default. You will be returned a public key, in green type, as
pictured in Figure 6-5.

https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console#non-interactive-use-jsre-script-mode
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console#non-interactive-use-jsre-script-mode
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console#non-interactive-use-jsre-script-mode

Chapter 6 ■ Mining ether

130

You can check out all your accounts in the console by typing the following:

personal.listAccounts

No doubt the balance will return zero. But, no matter: the private key for this new
account will be stored with the other private keys you create, in the very same directory
you looked at in Chapter 2; any value you add here will be backed up when you back up
the rest of your private keys. To review the process for doing so, go to the following:

http://backup.eth.guide

Recall at the beginning of this section, with the description of the Geth JSRE as the
gateway to the Ethereum JavaScript API. This API is part of the Web3.js library, which
must be installed on your machine for you to take advantage of many of the commands.
It is available as an Node Package Manager (npm) module, a Meteor.js package, and in
other forms. You can learn more about this library at https://github.com/ethereum/
web3.js/. For a complete listing of JavaScript Dapp API calls, check out http://js.eth.
guide or see the Ethereum JavaScript API at

https://github.com/ethereum/wiki/wiki/JavaScript-API.

For developers with pre-existing JavaScript skills, the JS console in Geth may be
more intuitive than writing Solidity scripts using the global varables and functions we

Figure 6-5. Creating a new account in the JavaScript console couldn’t be easier. Your new
public key appears in green. Don’t forget your password!

http://dx.doi.org/10.1007/978-1-4842-2535-6_2
http://backup.eth.guide
https://github.com/ethereum/web3.js/
https://github.com/ethereum/web3.js/
http://js.eth.guide
http://js.eth.guide
https://github.com/ethereum/wiki/wiki/JavaScript-API

Chapter 6 ■ Mining ether

131

described in Chapter 4. The web3 object provides access to all sorts of methods that
will feel familiar to JavaScript developers. Spend some time perusing the console wiki
to get an idea of the kinds of scripts you could run locally on your machine, in order to
automate actions taken in Geth. Next, you’ll learn how to get on the testnet with Geth,
and finally, you’ll start up your miner on the main network and even attempt to mine a
block with your own custom signature on it.

Launching Geth with Flags
Another popular way to get things done at the Geth command line is to launch Geth
with certain flags. A full list of options, and their corresponding flags, are located here:
https://github.com/ethereum/go-ethereum/wiki/Command-Line-Options.

To start Geth on the testnet, type this:

geth --testnet

You’ll see text output similar to the screen in Figure 6-6, except that this mining is
taking place on the testnet. Press Control+C to stop it.

For quick access to the CLI options, this short link is also available: http://cli.eth.
guide.

As of this writing, network difficulty is fairly high, and solo miners might take a very
long time to find a block. But in the next section, we’ll start mining to our new wallet
address anyway, to understand the experience of the miners who secure the network.

Figure 6-6. Output from testnet

http://dx.doi.org/10.1007/978-1-4842-2535-6_4
https://github.com/ethereum/go-ethereum/wiki/Command-Line-Options
http://cli.eth.guide
http://cli.eth.guide

Chapter 6 ■ Mining ether

132

Fire Up Your Miner!
Geth does not begin mining automatically; you will give it the command to start or stop
mining. In these examples, you will be mining with your machine’s CPU. Mining with a
GPU is more effective, but slightly more complicated, and is more suitable for specialized
mining rigs anyway. We’ll discuss these later in the chapter.

To begin mining on the main network, open a new Terminal window and enter the
JavaScript console by typing the following:

geth console

You’ll see the node begin to synchronize, but it will quickly return a command-line
prompt where you can enter commands as Geth works in the background, so to speak.

 ■ Note in the console, don’t worry if the output text from mining or synchronization
appears to overwrite your commands; it just appears that way. When you press enter in the
console, your command will be executed as normal, even if it seems to have broken onto
several lines.

In order to get paid, you’ll need to tell your node the Ethereum address for receiving
your mining payments. Remember that because the EVM is a global virtual machine, it
doesn’t care whether the Ethereum address, or public key, you enter was created, or is
currently associated with, your local computer. Everything is local to the EVM.

To set your etherbase as the recipient address for your payout, type this command in
the console:

miner.setEtherbase(eth.accounts[your_address_here])

To finally begin mining, type this:

miner.start()

Boom! Your miner will begin. In the off-chance you find a block, your payment will
be received at the address you set above, but don’t be surprised if it takes days or even
weeks. You’ll see the node generating the DAG file and beginning the mining process, as
shown in Figure 6-7. Why isn’t ether mining an instant money-maker? That has a lot to do
with your hardware, as you’ll see below.

Chapter 6 ■ Mining ether

133

You can stop this process by typing the following:

miner.stop()

Next, you’ll put a personal tag on the blocks you mine, just because.

EXERCISE: ADD YOUR NAME TO THE BLOCKCHAIN

Using the JavaScript console, you can add extra data—a grand total of 32 bytes, or
enough to write some plain text or enter some ciphertext for someone else to read.

in the console, your miner should be stopped. now type this JavaScript command
with your name or a message between the quotes:

miner.setExtra("My_message_here")

then type this:

miner.start()

the console will return true and begin mining. Should you find a block, it will be
marked with your signature, which you can view on any blockchain explorer such as
etherchain (https://etherchain.org).

Figure 6-7. The miner gets ready to mine

https://etherchain.org/

Chapter 6 ■ Mining ether

134

EXERCISE: CHECK YOUR BALANCE

install the Web3.js library (https://github.com/ethereum/wiki/wiki/
JavaScript-API#adding-web3) as described in the last section, to try out some
of the ethereum JavaScript api calls. these include checking a balance, sending
a transaction, creating an account, and all sorts of other mathematical and
blockchain-related functions. if your etherbase private key is held on your machine,
for example, you can get the balance by typing in the console:

eth.getBalance(eth.coinbase).toNumber();

hopefully by now, you have a working understanding of mining, and you’ve see it
happen before your own eyes. in reality, the most effective way to see how mining
moves state transition forward, executing contracts, is to work with the testnet.

Mining on the Testnet
One quick final note about mining. Recall in Chapter 5 that the Mist wallet can mine on
the testnet, but not the main net. Why is this?

Actually, there is no need for Mist to mine on the main net and take up your
computer’s resources, because your contracts will execute without you mining. This is
because there are currently thousands of nodes already mining on the public Ethereum
chain, and being paid real ether to do so.

 ■ Note if your contracts aren’t executing on the testnet, don’t go berserk! turn your Mist
or geth testnet miner on, and your contracts will execute. this is a common mistake.

While there may coincidentally be others mining on the testnet while you are testing your
contracts, there may also not be. Because there’s no real financial incentive to leave a miner
running on the testnet, you might find yourself in a lull, with nobody else on the testnet. This
is why Mist allows testnet mining along with its GUI contract deployment interface.

GPU Mining Rigs
Most ether mining is done with specialized GPU miners like the ones in Figure 6-8, which
are operated by me. Two of the machines pictured are running the Claymore Dualminer,
a custom mining program written by a Bitcointalk.org forum member named Claymore,
and which mines both ether and another cryptocurrency simultaneously on multi-GPU
rigs. You can learn more about the Claymore Dualminer at https://bitcointalk.org/
index.php?topic=1433925.0.

https://github.com/ethereum/wiki/wiki/JavaScript-API#adding-web3
https://github.com/ethereum/wiki/wiki/JavaScript-API#adding-web3
http://dx.doi.org/10.1007/978-1-4842-2535-6_5
https://bitcointalk.org/index.php?topic=1433925.0
https://bitcointalk.org/index.php?topic=1433925.0

Chapter 6 ■ Mining ether

135

The third and fourth rigs pictured here are running ethOS, a special Linux distro
specifically created for rigs mining Ethereum, Zcash, or Monero. This is a far easier solution if
you’re building from scratch. You can learn more about ethOS at http://ethosdistro.com.

Several software patches are available for Windows, macOS, and Ubuntu that enable
multi-GPU mining. However, this is easiest done on Ubuntu.

If you’re running Ubuntu and you’d like to mine with multiple GPUs, it’s easiest done
with AMD hardware. Once your video cards are physically installed, a few quick commands
are all that are needed. In Ubuntu 14.04, open your Terminal and type the following:

sudo apt-get -y update
sudo apt-get -y upgrade -f
sudo apt-get install fglrx-updates
sudo amdconfig --adapter=all --initial

Then reboot. Next, enable OpenCL by entering the following Terminal commands:

export GO_OPENCL=true
export GPU_MAX_ALLOC_PERCENT=100
export GPU_SINGLE_ALLOC_PERCENT=100

You can check that the configuration worked correctly by opening the Terminal back
up again and typing this:

aticonfig --list-adapters

Figure 6-8. Four Ethereum miners running in the author’s basement

http://ethosdistro.com/

Chapter 6 ■ Mining ether

136

You should now see your AMD graphics cards in a list. The card denoted with an
asterix (*) is the computer’s default video output. If you see a black screen, your monitor
may be plugged into the wrong video card.

Mining on a Pool with Multiple GPUs
It may be a little bit late to get serious about mining for profit. The outset of this chapter
covered the concept of network difficulty. As we’ve discussed already, network difficulty
is already quite high, and the effective mining period for Ethereum will end sometime in
2017 or 2018. Competition for mining rewards is intense. You can think of your miner’s
chances of finding a winning block as being represented by the ratio of your miner’s
hashing power to network difficulty. People who are mining for profit seek to gain an edge
by using powerful hardware to improve their chances.

As Ethereum becomes more popular, time passes, and mining hashpower on the
network increases, mining becomes less and less appealing for most users. However, it
can still be fun and useful to learn how Ethereum mining works, if for no other reason
than to mine new cryptocurrencies in the future. If you have hardware accessible, there’s
no reason not to experiment with mining, even if buying ether outright may be cheaper
than mining it in some localities.

There are several mining pools, as you’ll see if you visit http://mining.eth.guide,
but for simplicity’s sake we’ll use a program called QtMiner for Ubuntu 14.04, which you
can download from http://ethpool.org/downloads/qtminer2.tgz.

Once downloaded, extract the archive and make the qt.miner script executable:

tar zxvf qtminer.tgz
cd ./qtminer
chmod +x qtminer.sh

Finally, start QTMiner with the following command, where address is the Ethereum
address you want to be paid mining rewards, and name is the name of this particular
mining rig:

./qtminer.sh -s us1.ethermine.org:4444 -u address.name -G

To check your earnings without opening Mist, which can take forever to sync, go
to Ethermine.org and enter the same Ethereum address you included previously in the
upper-right search box.

Summary
In this chapter you’ve tackled the most complex facet of the Ethereum protocol: the
mining process. You learned how miners are paid, how much, and how the system
ensures that no single mining pool with advanced equipment can dominate the network.
You installed Geth and began executing JavaScript methods at the command line. You
started small with testnet mining, and moved all the way up to multi-GPU mining on a

http://mining.eth.guide
http://ethpool.org/downloads/qtminer2.tgz

Chapter 6 ■ Mining ether

137

pool. If you’d like to see a dynamic picture of all these factors at work in the live chain,
visit https://ethstats.net.

Let’s integrate what you’ve learned in this chapter into the prior chapters with a short
summary from end to end:

A block in Ethereum is a record of transactions that transpire over a given 12 to
15-second interval. Each time a node synchronizes with the network, it downloads
blocks from nearby nodes, before assembling them into a data structure that allows the
root hash to be computed and verified. Thus, it can trust it has an accurate history of the
blockchain, and it can safely begin mining new blocks or sending new transactions. This
is the synchronization process you glimpsed when installing Mist and Geth.

In the next chapter, you’ll learn about the economic incentives and disincentives that
make proof-of-work mining so resilient against attacks. This emerging field is known as
cryptoeconomics.

https://ethstats.net

139© Chris Dannen 2017
C. Dannen, Introducing Ethereum and Solidity, DOI 10.1007/978-1-4842-2535-6_7

CHAPTER 7

Cryptoeconomics Survey

The study of economic activity conducted
across secure computer networks is known as
cryptoeconomics

Let’s take a break from mining and deployment and talk about some of the design choices
that went into Ethereum: specifically, those around its system of economic incentives and
disincentives. Broadly speaking, this facet of Ethereum overlaps with the field of game
theory, the study of rational, intelligent decision-making in situations involving conflict
and cooperation.

Game theory is used in economics, defense planning, psychology, political science,
biology, and even the study of gambling (!) as a methodology for studying, analyzing, and
predicting the behavior of humans and computers working inside a known system.

This book is about understanding the purpose of the Ethereum network, and how to
get connected to it. We’re fortunate that we don’t have to be mathematicians to do so. If
you happen to be one, and you’d like a more technical explanation of the concepts in this
brief but important chapter, consult the Ethereum White Paper and Yellow Paper, located
at the following URLs, respectively:

•	 https://github.com/ethereum/wiki/wiki/White-Paper

•	 http://gavwood.com/paper.pdf

How We Got Here
Ciphers have existed in one way or another for thousands of years as a way of sending
coded messages, but the study of cryptography became formalized as a discipline only
within the decades since World War II. During that war, Allied powers were able to
intercept and crack enciphered messages transmitted in Morse code by the Axis powers
Enigma machine, a factor that General Dwight D. Eisenhower considered decisive in the
Allied victory.1

1F.W. Winterbotham, The Ultra Secret: The Inside Story of Operation Ultra, Bletchley Park and
Enigma (London: Orion Publishers, 2000).

https://github.com/ethereum/wiki/wiki/White-Paper
http://gavwood.com/paper.pdf

Chapter 7 ■ CryptoeConomiCs survey

140

Today, with digital communications, we don’t have to rely on transmission over
the fuzzy analog radio spectrum, where information can fade in and out with the hiss
and jumble of interference. We get crisp, clear, digital signals across many devices and
protocols. The digital communication age we know today was ushered in by cryptanalysis,
also known as code-breaking. The new field of information theory that resulted from it
made modern computers, computer languages, and networking into reality, decades after
they were envisioned by futurist inventors.

New Technologies Create New Economies
The great promise of information theory is certainty and privacy. Ones and zeros
allow computers to send signals that are unmistakable; we can trust computers to
execute the same code the same way each time, thus enabling the high degree of
automation we enjoy today. Cryptography makes it possible to keep the meaning
of those signals private to the sender and recipient, even when messages travel
across the globe, riding along many networks along the way—some of which may be
equipped with a spying apparatus.

To secure the information they send across networks, today’s computers can encrypt
information with far greater strength than the Enigma machine circa 1945. Cryptographic
messaging can be loosely defined as communication in an untrustworthy environment, or
under any circumstances where your information is prone to exploitation or destruction.
War is one example, but so are industrial espionage, religious persecution, or even
natural disasters.

The field of economics typically studies interactions between people, sometimes
in hostile contexts such as war. The emerging field of cryptoeconomics is the study of
economic activity conducted across network protocols in an adversarial environment.

The domains of cryptoeconomics include the following:

•	 Online trust

•	 Online reputation

•	 Cryptographically secure communication

•	 Decentralized applications

•	 Currency or assets as a web service (so to speak)

•	 Peer-to-peer financial contracts (smart contracts)

•	 Network database consensus protocols

•	 Antispam and anti-Sybil attack algorithms

In a Sybil attack, an attacker floods a peer-to-peer network with a large number of
pseudonymous identities, in order to gain a disproportionately large influence. This is
a noteworthy vulnerability for peer-to-peer networks. The 51-percent attack described
in Chapter 6 is similar to a Sybil attack. As you’ll see, most of what you might call
applied cryptoeconomics is creating a game-like system with workable incentives and
disincentives, which create a stable tension that keeps the network up and running.

http://dx.doi.org/10.1007/978-1-4842-2535-6_6

Chapter 7 ■ CryptoeConomiCs survey

141

Rules of the Game
The people who build cryptoeconomic systems (public blockchain developers) go
about their days with a series of about how these networks should work. Most of these
assumptions are predicated on real-life experience with other cryptonetwork protocols,
past and present. These assumptions are as follows:

Beware of centralization: Any two individuals who each hold
close to 25 percent of either network mining hashpower or the
cryptocurrency itself are dangerously close to being able to
induce a hostile fork and destroy network integrity.

Most people are rational: However, some quota of every
network will consist of users who behave in ways that are
difficult to reason about. Some of these people may attempt
to bring down the network, either on purpose or by some
incredible accident.

Large networks have people who churn in and out: This creates
ebbs and flows in network traffic and usership, but some users
will stick and maintain high levels of activity.

Censorship is not possible: Contracts can trust they are
receiving complete messages from other contracts.

Nodes can talk freely: Any two nodes can pass messages
quickly and easily.

Debt and negative reputation claims are unenforceable:
Because anyone using a public chain can create a new wallet
address at any time, some kinds of communities can exist
only on private chains with limited-issue wallet addresses
controlled by a software contract or central authority.

Although many of these assumptions apply to Bitcoin, it doesn’t fully exploit them
in the service of all the various problems humanity faces today. Its unwieldiness in the
creation of long-term debt instruments such as bonds or mortgages is just one example of
a major area of human activity—debt financing—that Bitcoin seems ill-suited for.

This is not a knock on Bitcoin, but rather an admission of its forte as a global liquid
payments layer. It is not a storage medium, or a useful commodity, or a visible sign of
wealth. Expressions of monetary value are numerous in human culture, and the discovery
of new ones is, in part, what drives the current flurry of activity around cryptoeconomics.

Why Is Cryptoeconomics Useful?
First and foremost, applied cryptoeconomics is about engineering a layer of defense
between public networks and attackers of all sizes. It combines game theoretical system
design, encryption, and cryptographic hashing to protect a commonly used, commonly
operated resource—in this case, a global transaction state machine.

Chapter 7 ■ CryptoeConomiCs survey

142

Because public chains are public, they need to be resilient against attackers with large
amounts of computing power. Hence, networks with more nodes, and more geographically
distributed nodes, owned by discrete unlinked owners, are considered more secure.

Mining pools contribute to centralization, which is why any pool with larger than
25 percent hashpower is approaching the threshold of network threat. Should two such
pools emerge, they might quickly get control of a network.

By using the custom, ASIC-resistant Ethash algorithm and designing the network
to quickly increase in difficulty, the protocol designers ensured there would be little
incentive for miners to professionalize and consolidate.

Understanding Hashing vs. Encryption
Recall from Chapter 1 that a blockchain consists of three constituent technologies
working in combination. They are as follows:

Cryptographic hashing

Asymmetric public-key cryptography

Distributed P2P computing

In the previous chapter, you learned that each block header contains the root hash
of the entire chain, along with a hash of the transactions in the block. These two bits of
data in the block header are used to create an encryption seed, which in turn generates
the DAG file, which expands to 1 GB and serves as a kind of pop-up ingredient tray for the
proof-of-work algorithm, which hashes together chunks of data from the DAG in order to
look for a winning nonce value that will validate the block.

 ■ Note Large corporations benefit from public chains, too, because they can offset
the large cost of a secure, private application data layer. at the launch of the ethereum
enterprise alliance on February 28, 2017 in Brooklyn, new york, ethereum co-founder Joe
Lubin noted that, for large organizations, “it doesn’t make sense to build on a blockchain
that doesn’t have a public component, because the cryptoeconomics of going from private
to public are pretty much impossible.”

Both processes are algorithmic: some information goes in, and different information
comes out. But they’re used toward different ends.

Encryption
We’ve talked about encryption already in this book, but let’s review: Both Ethereum
and Bitcoin accounts use a pair of cryptographic keys, one public and one private, to
encrypt transactions sent to their respective virtual machines. (Both networks use the
same algorithm called secp256k1 curve to perform encryption.) Recall that this is known
as public-key encryption, also known as asymmetric encryption. This is in contrast to

http://dx.doi.org/10.1007/978-1-4842-2535-6_1

Chapter 7 ■ CryptoeConomiCs survey

143

symmetric encryption, in which both parties share a public and private key, much the way
you and a spouse might share an address and have duplicate house keys.

The symmetric encryption pattern is the one used by most servers today. When
servers communicate, they often use the same private key to authenticate each other. This
is safe only if you trust the server on the other end of the transaction to keep this private
key, which is presumably of mutual value to both parties, secret from any saboteur.

Encryption turns a human-readable string of letters or numbers into an unreadable
blob of random letters and numbers with one important caveat. The ciphertext that
comes out of encryption algorithms does not have a fixed length.

Pretty Good Privacy (PGP) and Advanced Encryption Standard (AES) are popular
algorithms for doing this. The RSA encryption algorithm is another widely-used standard
in IT departments around the world. However, sometimes public keys generated by these
popular encryption algorithms can be very long and unwieldy. Ethereum uses the same
elliptic-curve-based encryption protocol as Bitcoin, also known as an ECDSA algorithm,
which has the advantage of both security and brevity: ECDSA allows for a smaller key size,
which reduces storage needs and transmission requirements. However, Vitalik Buterin
has said the protocol will likely move away from the current implementation of ECDSA in
the future, towards something offering even greater security.

Weaknesses of Encryption
However, encryption also has weaknesses. For one, it has a reputation for being
CPU-intensive. For another, private keys may be cryptographically secure, but they aren’t
impervious to human folly. Private keys must be carefully managed. In fact, the National
Institute of Standards and Technology (NIST) provides guidelines for the life cycle of
cryptographic keys, based on the sensitivity of the data or keys to be protected, and how
much data (or how many key pairs) are being protected.2

It should be noted that, if you don’t want anyone to decode your message,
encryption is not your best choice. The existence of a private key is practically begging for
your information to someday be unlocked, presumably by you, but also by anyone who
gets ahold of it!

Hashing
Hashing is more secure than encryption, at least in the sense that there exists no private key
that can “reverse” a hash back into its original, readable form. Thus, if a machine doesn’t
need to know the contents of a dataset, it should be given the hash of the dataset instead.

Hashing algorithms take in data just like encryption algorithms, but they produce a
string or number of fixed length. Changing just one character in a large dataset will cause the
hash to come out completely different. It’s basically impossible to put hashed data back into
its original form. Popular hashing algorithms include MD5, SHA-1, and SHA-2. Ethereum
and Bitcoin protocols both use SHA-256, the strongest hashing algorithm out there.

2NIST, “Recommendations for key management,” https://www.nist.gov/node/563271, 2012.

https://www.nist.gov/node/563271

Chapter 7 ■ CryptoeConomiCs survey

144

What Hashes Are Good For
If you recognize the names of those hashing algorithms that start with SHA, it’s probably
because you’ve seen them in your smartphone or computer’s network interface when
connecting to Wi-Fi and entering a password. Because hashes are one-way by nature,
they’re great for comparing two secret values without revealing what they are. Thus, if
your computer hashes the Wi-Fi password and hands it to the Wi-Fi router—which knows
the password—it should hash the password itself and get the same result. This confirms
that you have the right password and are allowed to connect. The advantage here is that
anyone snooping on the network never sees the password, only the hash.

Why the Speed of Blocks Matters
Chapter 6 defined a block as a period of time: 15 seconds, to be exact. Many of the
subroutines in the mining process are engineered to maintain that block time. However,
we haven’t stopped to ask whether that block time is “better” than Bitcoin’s 10-minute
blocks, or whether it is merely characteristic of the way the Ethereum protocol works.

One fact you should know is the latency for Bitcoin nodes around the world. About
95 percent of them can be reached in 12.6 seconds, as measured by an academic team in
2013.3 This number is proportional to block size, so in a “faster” block time currency, you
could have a more responsive network.

However, fast blocks are less secure in the near term, for reasons that we won’t
get into here. But in their favor, they produce fast confirmation times; in order words,
they benefit from more granularity of information. Thus, while nodes may be easier
to fool initially, they are drawn powerfully toward the “true” chain within a few
generations. The idea that faster blocks are proportionally less secure than slower
blocks is false.

To read more about how the speed of block times affects various network
characteristics, read this post on the Ethereum blog: https://blog.ethereum.org/
2015/09/14/on-slow-and-fast-block-times/.

Ether Issuance Scheme
Ether is created by the network to pay miners. However, some ether was presold in mid-
2014 to bootstrap the funding of the network. Approximately 60 million ETH were sold at
prices varying from 1,000 to 2,000 ETH per bitcoin. (About 10 percent was allocated to the
Ethereum Foundation, and another 10 percent was maintained as a reserve at the time of
the presale.)

From the presale forward, the system will issue 15.6 million ether per year in the
form of rewards paid to miners. Ether never stops being issued, but the amount issued per
year is a smaller and smaller percentage of the overall pool. As you can see in Figure 7-1,
the small uptick in the curved line at 2014–2015 indicates the presale period.

3Swiss Federal Institute of Technology, Zurich, “Information Propagation in the Bitcoin Network,”
www.tik.ee.ethz.ch/file/49318d3f56c1d525aabf7fda78b23fc0/P2P2013_041.pdf, 2013.

http://dx.doi.org/10.1007/978-1-4842-2535-6_6
https://blog.ethereum.org/2015/09/14/on-slow-and-fast-block-times/
https://blog.ethereum.org/2015/09/14/on-slow-and-fast-block-times/
http://www.tik.ee.ethz.ch/file/49318d3f56c1d525aabf7fda78b23fc0/P2P2013_041.pdf

Chapter 7 ■ CryptoeConomiCs survey

145

Thus, ether’s issuance scheme is inflationary (in terms of quantity, not price) until
approximately 2025, and deflationary in quantity thereafter. The price of ether is whatever
the market dictates, and is predicated mostly on demand of time on the EVM. Like
gasoline, the price fluctuations have more to do with how much people are driving—or
who’s manipulating the price through trading!

Common Attack Scenarios
Next, we’ll briefly discuss how the Ethereum protocol addresses some of the most
common attack vectors in a P2P network. As covered in Chapter 3 in our exploration of
the EVM, the state transition function is bounded to a limited number of computational
steps per block. If execution runs longer, it is cut off, and those state changes are reverted.
However, fees are still paid to the miners for these rolled-back changes.

The rationale for this design decision in the protocol becomes apparent when viewed
through a cryptoeconomic lens. The Ethereum White Paper uses the following examples to
demonstrate the usefulness of its specification when the network is under attack:

•	 If an attacker sends a miner a contract containing an infinite loop,
it will eventually run out of gas. However, the transaction is still
valid in the sense that the miner can claim a fee from the attacker
for each computational step the program took.

•	 Even if an attacker tries to pay the appropriate gas fee to
keep the miner working, the miner will see that the STARTGAS
value is excessively high and will know ahead of time that the
computation will take too many steps.

Figure 7-1. Ether’s supply is inflationary, but that isn’t necessarily reflected in the price

http://dx.doi.org/10.1007/978-1-4842-2535-6_3

Chapter 7 ■ CryptoeConomiCs survey

146

•	 Imagine that an attacker is careful with his gas payment: the attacker
sends contract code with just enough to make a withdrawal, but not
enough to make the balance of the account go down. This is similar
to a double-spend attack, in that it creates money out of thin air.
However, in Ethereum, this transaction would be entirely rolled back
because it ran out of gas in the middle.

Social Proof Between Machines
It’s weird to think of machines as being social, but a network of machines is just that:
always talking. Proof of work is kind of like social proof among human beings. Social proof
is a form of conformity, in which one individual—unsure about how to behave—emulates
the behavior of those who seem to know better. In many cases, this means emulating a
majority.

How can this phenomenon possibly secure a network? Well, in the Ethereum and
Bitcoin networks, the order of transactions that is benighted as “true” is simply the
order that a majority of nodes say is true. It’s no more factual than that. This is why the
51 percent attack is a real phenomenon: it’s an enormous carrot for anyone to spin up a
plurality of miners and fork the network to begin siphoning value. It’s nothing more than
the enormous cost—the sheer stupid unprofitability—of such an attack that stops it from
happening. It’s expensive to buy, lease, or operate thousands of gigahashes of computing
power.

Security as the Network Scales
Today the market cap of ether is small, but if only a fraction of global web services shift to
utilize it, the value of ether could grow in excess of its natural price deflation. However,
the price of ether doesn’t matter much if you’re thinking of it as a commodity: that is, fuel
for paying application hosting costs on the EVM.

As the price increases and decreases, it attracts speculators and market makers, who
drive volatility even higher in times of excessive trading volume. This in turn changes the
profit margin for miners, who may choose to turn off their nodes until ether is at a price
where they are again getting a net profit.

Volatility creates the possibility for malicious node operators and financial market-
makers to collude, driving down the price to reduce network hashpower, and then
flipping on an entire farm of miners intended to fork the chain into a new state—while
performing a double-spend in the process. As of this writing, such collusion hasn’t
succeeded, and it may never. Already many prominent Wall Street banks have announced
Ethereum development programs to be run internally or in cooperation with outside
consultants, so the network’s robustness is under less doubt every passing day

Chapter 7 ■ CryptoeConomiCs survey

147

More About Cryptoeconomics
The title of this section comes from a Reddit post by Vitalik Buterin in which he lays
out four more attack scenarios, with some thoughts about how they might transpire.
You can find those at www.reddit.com/r/ethereum/comments/453sid/empirical_
cryptoeconomics/.

If you’re interested in the cultural impact of cryptoeconomic activity, try this essay by
CoMakery founder Noah Thorp: https://medium.com/@noahthorp/how-society-will-
be-transformed-by-crypto-economics-b02b6765ca8c#.e10qayhio.

Summary
The briefness of this chapter is one indication of the novelty of this subgenre of
economics. Though new, it will inevitably be complex, as each cryptocurrency comes
with its own issuance parameters.

For some guidance on the future, it might be useful to look to none other than
the Federal Reserve for how these questions might mete out over the decades. David
Andolfatto of the St. Louis Fed wrote in a blog post in early 2015 that the US central bank
might have reason to consider a national cryptocurrency. He described it as follows:

Imagine that the Fed, as the core developer, makes available an open
source Bitcoin-like protocol (suitably modified) called Fedcoin. The
key point is this: the Fed is in the unique position to credibly fix the
exchange rate between Fedcoin and the USD (the exchange rate could
be anything, but let’s assume par). What justifies my claim that the Fed
has a comparative advantage over some private enterprise that issues
(say) BTC backed by USD at a fixed exchange rate? The problem with
such an enterprise is precisely the problem faced by countries that try to
peg their currency unilaterally to some other currency. Unilateral fixed
exchange rate systems are inherently unstable because the agency fixing
the BTC/USD exchange rate cannot credibly commit not to run out of
USD reserves to meet redemption waves of all possible sizes. In fact, the
structure invites a speculative attack.4

In a talk given in Frankfurt earlier that year where he first aired these proposals, he
referred to the system as Fedwire for all. With any luck, you’ll recall our discussion of the
Fedwire system from Chapter 3 and our discussion of the EVM.

Next, we’ll get back to the command line and learn how dapps are deployed.

4MacroMania, “FedCoin: The Desirability of a Government Cryptocurrency,” http://andolfatto.
blogspot.co.uk/2015/02/fedcoin-on-desirability-of-government.html, 2015.

https://www.reddit.com/r/ethereum/comments/453sid/empirical_cryptoeconomics/
https://www.reddit.com/r/ethereum/comments/453sid/empirical_cryptoeconomics/
https://medium.com/@noahthorp/how-society-will-be-transformed-by-crypto-economics-b02b6765ca8c#.e10qayhio
https://medium.com/@noahthorp/how-society-will-be-transformed-by-crypto-economics-b02b6765ca8c#.e10qayhio
http://dx.doi.org/10.1007/978-1-4842-2535-6_3
http://andolfatto.blogspot.co.uk/2015/02/fedcoin-on-desirability-of-government.html
http://andolfatto.blogspot.co.uk/2015/02/fedcoin-on-desirability-of-government.html

149© Chris Dannen 2017
C. Dannen, Introducing Ethereum and Solidity, DOI 10.1007/978-1-4842-2535-6_8

CHAPTER 8

Dapp Deployment

As you’ll see, deploying dapps is an adventure in the
frontier of a new computing paradigm

A distributed application, or dapp, shares some of the same ideals as the rest of the EVM
protocol: the promise immutability. Dapps are composed of smart contracts that, as
noted many times in this book, are executed by all nodes on the Ethereum network at
approximately the same time.

Dapps in practice are like universally available web services running on the EVM,
but made accessible to users via a normal HTML/CSS/JavaScript front end that they can
access through their web browser or a smartphone application, or an Ethereum browser
such as Mist.

 ■ Note This chapter tackles topics aimed at developers with preexisting skills. If you’re
a new coder, read this chapter thoroughly along with Chapter 9. Then, pick up a JavaScript
beginner book to improve your scripting skills. Next, visit http://solidity.eth.guide for
more Solidity language tutorials.

Running blockchain-based application clients is far easier than managing clients in
a cloud-hosted paradigm. Hub-and-spoke web applications scale vertically, reflecting the
individual servers they run on. In contrast, an Ethereum application scales horizontally—
the way you’d want a cloud application to scale.

Although it’s true that today cryptonetworks are significantly constrained in terms
of transaction processing power, they will get faster as other components of the protocol
mature.

http://dx.doi.org/10.1007/978-1-4842-2535-6_9
http://solidity.eth.guide

ChapTer 8 ■ Dapp DeploymeNT

150

Seven Ways to Think About Smart Contracts
Behind every dapp is a series of smart contracts. Smart contracts are useful in these
scenarios, which may make fun problem areas for prototyping:

Maintain an accounting system for something in the real
world, or for other contracts

Create forwarding contracts, such as a savings account that
resends income to a separate bucket automatically

Manage a relationship between several parties, such as a
freelancer agreement or payroll

Act as a software library for other contracts

Act as controllers for other systems or sets of contracts

Serve as application-specific logic for a communal web
service

Serve as a utility that developers can use on a single-serving
basis, such as a random number generator

Dapp development brings with it all sorts of new concerns for application
developers, as well as an understanding of the Web3 JavaScript API and the Solidity
programming language. Hopefully, you feel prepared to work with these tools directly
after reading most of this book!

To get a better idea of the kinds of dapps being built today, check out http://dapps.
ethercasts.com, operated by EtherCasts.

Dapp Contract Data Models
The first thing you’ll need to know to deploy a working contract is what kind of data you
can store in the EVM, and where you’re storing it.

As we discussed in prior chapters, every contract address in the Ethereum network
has storage space for its smart contracts. This storage space has no limit, except what
you’re willing to pay. As of this writing, storage space costs about $0.018 per kilobyte.

The Solidity language makes it easy to use contracts as little relational databases. To
make this easier, the Solidity language has two familiar data types we haven’t mentioned yet:

Mappings

Structs

To learn more about using these types in Solidity, consult http://solidity.eth.guide.
At its most basic, a contract’s individual storage space is a key/value store with 2256

possible keys and the same number of values. That’s enough space for pretty much any
kind of database structure you feel like creating.

http://dapps.ethercasts.com
http://dapps.ethercasts.com
http://solidity.eth.guide

ChapTer 8 ■ Dapp DeploymeNT

151

 ■ Note recall that object attributes are sometimes referred to by developers as keys,
as in the phrase key/value pair or key/value store. In our human example, a key/value pair
might be footSize = 11. a table containing everyone’s foot size on a dedicated server is an
example of a key/value store. as a stateful transaction machine, you can think of the entire
eVm as a giant key/value store that shows account balances.

Hopefully by now, you are already picturing the kinds of simple data structures you
could create and use in Solidity contracts. In the next section, we’ll begin breaking down
distributed app architecture.

How an EVM Back End Talks to a JS Front End
The gap between the Ethereum network and what might be called the HTTP network,
otherwise known as the Web, can indeed be traversed. Let’s say a customer enters a
lunch order on a dapp-powered web site from a conventional web browser. In order to
successfully pass data about her order (how many milkshakes?) between her browser and
the EVM, the dapp’s front end must “send” the data to the EVM in a certain format.

 ■ Note Dapps may not require their own set of contracts; instead, they may be able to
call certain public functions in other contracts to make use of their functionality. For every
function declared public in a smart contract, Solidity automatically creates an accessor
function so that other contracts can call it.

In computing, data-interchange formats work much like the international postal
service. Although different servers around the world may be running different operating
systems, written in different languages, by totally different minds, they must at some point
exchange data with a server that is not like them.

To get the “translation” correct, programmers engineer their programs to send
information to other programs in a certain notations. Usually, the notation describes a
format for an entire object (defined in Chapter 1 as a set of attributes and values). For
example, a human data object might include height, weight, eye color, foot size, and so on.

JSON-RPC
In today’s web applications, JavaScript code can pass information across the Web by using
a common object notation called JavaScript Object Notation (JSON). JSON objects can
contain numbers, strings, and ordered sequences of values for certain attributes.

http://dx.doi.org/10.1007/978-1-4842-2535-6_1

ChapTer 8 ■ Dapp DeploymeNT

152

There are two important data objects in Web3.js, which are roughly equivalent to
JSON in the way they are passed between the front and back ends of an Ethereum-powered
application. They are called JSON-RPC objects and they come with the Web3.js library.
Installation of Web3.js is covered below. These two objects are used in the following ways:

•	 web3.eth is used specifically for blockchain interactions.

•	 web3.shh is used specifically for Whisper interactions.

Whisper is a private messaging protocol that is itself a part of the larger Ethereum
protocol. You’ll learn more about Whisper and its place on the roadmap in Chapter 11.

In motion, you can think of JSON-RPC objects as passing back and forth constantly
between the front end (on the HTTP Web) and the back end (the Ethereum Web).

Web 3 Is Here (Almost)
The JavaScript library called Web3.js is part of the new Web 3 specification. You can find
the GitHub page for the Web 3 project at https://github.com/ethereum/web3.js/.

Web 3 is a general term for the decentralized web, just as Web 2 was defined by web-
hosted applications and services. Web 1 refers to the original World Wide Web, which
hosted static pages. Ever since, the Hypertext Transfer Protocol has been evolving to add
more methods and to support ever more sophisticated content and scripts.

Web 3 is very much a vision that centers on the Ethereum protocol in particular. It is
generally considered to have three components:

Peer-to-peer identity and messaging system

Shared state (a blockchain)

Decentralized file storage

The first two check boxes are complete: the Ethereum network is up and running,
and transactions work! The third leg on the stool, decentralized file storage, is part of the
Swarm project, which you’ll learn more about in Chapter 11.

In the Web 3 paradigm, there are no web servers. There are no caches, reverse
proxies, load balancers, content delivery networks (CDNs), or other vestiges of legacy
large-scale web application deployment. Even decentralized domain name servers (DNS)
will be free. When Swarm storage comes online, it will be cheap, just like Ethereum’s web-
hosting component.

For developers and hackers of all types, Web 3 blows up the “freemium” application
deployment model, in which more and more users and scale bring you higher and higher
hosting bills. In the EVM, you can control your costs by writing efficient code, and you can
count on anyone on Earth being able to access your application from day one.

Let’s zoom back into the specifics of dapp development and see how the Web we
know today talks to the EVM.

http://dx.doi.org/10.1007/978-1-4842-2535-6_11
https://github.com/ethereum/web3.js/
http://dx.doi.org/10.1007/978-1-4842-2535-6_11

ChapTer 8 ■ Dapp DeploymeNT

153

Experimenting with the JavaScript API
In Chapter 6, you saw how easy it is to interact with the EVM by typing commands
into the JavaScript console in Geth. When you’re doing this, you’re really just calling
individual JavaScript methods that come with the Ethereum JavaScript API. These
JavaScript methods you type into the Geth console are being interpreted by a JIT-like
JavaScript interpreter that is unique to Geth. This is called interactive use of the JSRE, or
using it in interactive mode.

However, the Ethereum JavaScript API methods can also be exposed to normal web
applications, allowing them to talk to the EVM.

Using Geth for Dapp Deployment
Although other Ethereum clients are popular, Geth (which is written in the Go language
developed at Google) and its easy-breezy interpretations of JavaScript make it the
quickest way to connect a front-end web application on the traditional HTTP Web with a
back-end EVM contract.

Because these are JavaScript methods being interpreted by Geth into EVM code,
it’s possible to string them together into scripts, which of course is the natural use for
JavaScript in the first place. This is referred to as using it noninteractively.

 ■ Note Noninteractive use of the JavaScript apI is the whole reason for what we call
computer programming. This is, generally speaking, the goal of programming, or writing a
program: to automate what would be otherwise manual commands typed into the terminal,
like the ones you typed to install Geth. When performing complex computations or building
analytical models, these strings of instructions can get long and tiresome.

By writing strings of instructions in a plain-text file, the programmer can make a
program condensed, quick, efficient, and repeatable.

Another goal of programming is to separate the tasks a human operator would be
entering, and do them concurrently in threads, so the whole job takes less time. As you
saw with Geth when it first started up, you couldn’t do anything with that command-line
window while it was synchronizing, and indeed that thread would not stop as long as
Geth was running.

By building a console on top of Geth, the Ethcore developers have allowed you,
the operator of the console, to issue commands while Geth is synchronizing in the
background, in another thread on your local machine.

Next, you’ll learn about ideal web development frameworks for connecting to the
EVM as a back end.

http://dx.doi.org/10.1007/978-1-4842-2535-6_6

ChapTer 8 ■ Dapp DeploymeNT

154

Using Meteor with the EVM
If you’re a JavaScript developer, you may have heard about Meteor.js, a library that lets
you write reactive web applications that run symmetrical code on the server and client.

This full-stack framework is excellent for real-time web applications, but is useful
for Ethereum front-end development because it is so well suited to writing single-page
applications, or SPAs.

Here’s why so many Ethereum developers love Meteor:

It’s written entirely in JavaScript, as are the tools.

You get a whole developer environment out of the box.

Deployment is super easy.

Interfaces are fully reactive (similar to Angular.js).

Uses a NoSQL data model called MiniMongo, which can be
autopersisted to local smart-contract storage.

To learn more about building Ethereum apps with Meteor.js, check out https://
github.com/ethereum/wiki/wiki/Dapp-using-Meteor.

This URL is also listed on tutorials.eth.guide. Next you’ll learn about installing
the Web3.js library onto your development machine so you can begin messing around
with contracts locally.

Install Web3.js to Build an Ethereum-Enabled Web
 Application
The Web3.js library communicates through RPC to a local node. The library works with
any Ethereum node, as long as it is exposing its RPC layer. You’ll need to install this library
on your local machine to do development, and on your web server to run your front-end
application.

This is exposed by default on private chains, even if you do not start your chain in
Geth with this command flagged.

In effect, you can think of your Ethereum node as the bare-metal layer, exposing the
EVM through its RPC layer. That RPC layer can send and receive web3.eth and web3.shh
objects with a web server that is also running Web3.js.

To install Web3.js in your local development environment, open the Terminal and
use the installation library that you’re most comfortable with:

•	 npm: npm install web3

•	 bower: bower install web3

•	 meteor: meteor add ethereum:web3

•	 vanilla: link the dist./web3.min.js

Then you need to create a Web3 instance and set your localhost as a provider. To
continue learning how to work with Web3.js, go to http://dapps.eth.guide.

Next, you’ll see how to execute JavaScript files in the Geth console.

https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor
http://dapps.eth.guide

ChapTer 8 ■ Dapp DeploymeNT

155

Executing Contracts in the Console
A full tutorial in dapp deployment would take many pages and could be performed
dozens of possible ways. This section instead focuses on getting started quickly.

You can upload your smart contract files directly in Geth, sending them in a
transaction to the EVM by simply adding the --exec argument and then writing
JavaScript code pointing to a local script. For example:

$ geth --exec 'loadScript("/Desktop/test.js")'

In fact, you can even execute JavaScript that is sitting on another machine, as long as
it is running Geth:

$ geth --exec 'loadScript("/Desktop/test.js")' attach
https://100.100.100.100:8000

The next section covers the architecture of Ethereum-enabled applications, and how
they diverge from traditional web architecture.

How Contracts Expose an Interface
When using the JavaScript dapp API, calling a contract via an abstraction layer such as the
eth.contract() function will send back an object with all the functions that contract can
run when called in JavaScript.

To standardize this introspective functionality, the Ethereum protocol comes with
something called the application binary interface, otherwise known as the Contract ABI.
The ABI behaves like an API, creating a standard syntax for contracts to be called by
applications.

The ABI dictates that the contract will send back an array that delineates the proper
call signature and the available contract functions.

It may be surprising to some developers, especially those hailing from the Apple
developer environment, that there are no frameworks that “come with” Ethereum to
enable the easy writing of common application components.

Although the Ethereum protocol may be generally featureless, there’s still a need
to make contracts interact in predictable ways in common use cases. These scenarios
include currency units, name registry, and trading on exchanges. The ABI is a concession
to such scenarios.

ABI contains the word binary because in the EVM, the level below the application
layer is the one that runs EVM bytecode.

You can find this specification at https://github.com/ethereum/wiki/wiki/
Ethereum-Contract-ABI#functions or at http://abi.eth.guide.

Standards for smart contracts usually consist of sets of function signatures for a few
common methods, such as sending, receiving, registering, deleting, and so on.

https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#functions
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#functions
http://abi.eth.guide

ChapTer 8 ■ Dapp DeploymeNT

156

Recommendations for Prototyping
The first thing to know about prototyping Solidity contracts is that you do not necessarily
need an Ethereum node to test your contracts. You can use the Ethereum VM Contract
Simulator, https://github.com/EtherCasts/evm-sim/. This simulator allows developers
to test their contracts in isolation when they don’t have access to the testnet; for example,
when working from a netbook.

Here are other best practices for prototyping, when you get to the stage where you
are testing with live ether:

Don’t use too much ether per contract, and when possible,
program upper limits on how much contracts will hold. This
is a good fail-safe in the event that a bug traps your funds.
Simply don’t use too much when testing with live ether.

Keep your contracts modular and easy to understand.
Whenever possible, abstract out functionality into libraries
that can be individually tested. Limit the number of variables
and length of your functions. Document everything.

Use the Checks-Effects-Interactions pattern. This means
you shouldn’t write programs that wait for return data from
another contract before proceeding; this will cause time-outs.
Generally speaking, you can avoid this by performing checks
on the data you get back before changing state.

Write your own intermediaries. Because the EVM is such
an unforgiving platform, it’s incumbent on you to create
mechanisms for your own programs that act as fail-safes.

As mentioned in Chapter 5, in the token contract tutorial,
developers are converging around standards for some types
of contracts. You can register your contracts with a third-party
service such as Etherchain so that other people can use them.
You’ll see publicly listed contracts at https://etherchain.
org/contracts.

Test, test, test! You’ll find testing resources at http://test.
eth.guide.

You’ve looked at several contracts that were clearly written for demonstration purposes.
What kind of simple smart contracts might you create in the service of real dapps, and what is
the best way to deploy them? That’s the subject of the last section of this chapter.

Third-Party Deployment Libraries
Deploying more-sophisticated smart contracts and connecting them to the Web is slightly
beyond the scope of this book—in part because it is an area of rapid development and
constant changes. It’s also fairly difficult, and requires some patience, as of this writing.

https://github.com/EtherCasts/evm-sim/
http://dx.doi.org/10.1007/978-1-4842-2535-6_5
https://etherchain.org/contracts
https://etherchain.org/contracts
http://test.eth.guide
http://test.eth.guide

ChapTer 8 ■ Dapp DeploymeNT

157

As a result, developer tools are a major area of active development in the Ethereum
community.

Leading groups of developers have created tools to make contract and dapp
deployment easier to achieve. Here are some of the projects you should be aware of:

•	 Monax tutorials and Solidity contracts

•	 OpenZeppelin smart contracts

•	 Truffle deployment, testing, and asset creation environment

•	 Dapple, a developer environment for complex contract systems

•	 Populus, contract development framework written in Python

•	 Embark, dapp development framework written in JavaScript

•	 Ether Pudding, a package builder

•	 Solium, a linter for Solidity

There are many more dapp guides, tutorials, best practices, and sample projects than
this book can cover. You will find up-to-date links for all of these tools and libraries, plus a
lot more, at http://dapp.eth.guide.

In addition, a collection of Gitter channels where you can find help with
development and deployment can be found at http://help.eth.guide.

Summary
In this chapter, you learned about the kinds of contracts Ethereum is useful for writing
and how to go about deploying them. Also covered were the ways that smart contracts
can communicate with an application’s front end.

Ethereum dapp development isn’t easy, but it’s becoming more and more
approachable every day. Join the Gitter channels or join a local developer community. As
of this writing, 81,424 members and 2,257 interested people are in 450 Ethereum Meetups
all over the world—in 218 cities and 57 countries to be exact. To find one near you, search
Meetup (www.meetup.com).

In the next chapter, you’ll deploy your own private blockchain to get a better
understanding of how chains work.

http://dapp.eth.guide
http://help.eth.guide
http://www.meetup.com/

159© Chris Dannen 2017
C. Dannen, Introducing Ethereum and Solidity, DOI 10.1007/978-1-4842-2535-6_9

CHAPTER 9

Creating Private Chains

Contrary to what public-chain enthusiasts argue,
private chains do have merit as learning tools, and
may ultimately have uses for large corporations,
nation-states, or nongovernmental organizations
(NGOs). However, it should be said that blockchains
are not inherently better for all databases and
networks
In the last few chapters, we’ve focused on deploying smart contracts, dapps, and tokens.
In this chapter, we’ll engage in a brief discussion of blockchains as databases to more
thoroughly understand how the chains themselves are deployed.

Private and Permissioned Chains
A private chain is just a cloud database achieved by way of the peer-to-peer Ethereum
protocol: it’s a silo that you control and that you can grant access to.

This should be contrasted with a permissioned blockchain, which like an enterprise
software application has defined roles with permissions that can be set by a central
administrator.

Big picture, private chains are in no way inherently better than cloud databases. In
practice, the utility of the Ethereum protocol comes from bringing disparate groups together
to share secure infrastructure, instead of duplicating effort. Today, the Ethereum network
is fully operational, however it has not scaled to the point where existing web application
providers could migrate. But this is after only two years of development, and as you’ll see in
Chapter 11, the future milestones are fairly incredible and coming to pass on schedule.

By contrast, the HTTP Web has been under development since 1989.1 Decentralized
cloud storage, namespaces, and other common elements of the HTTP Web have yet to be
reproduced in the Ethereum Web, but will be soon. Let’s move on so you can create your
very own custom blockchain, to get a better understanding of how they work.

1Wikipedia, “Hypertext Transfer Protocol,” https://en.wikipedia.org/wiki/Hypertext_
Transfer_Protocol, 2016.

http://dx.doi.org/10.1007/978-1-4842-2535-6_11
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Chapter 9 ■ Creating private Chains

160

Setting Up a Local Private Chain
A private chain is of limited usefulness because, as established in Chapters 6 and 7, the
security of a chain is proportional to the number of nodes that are mining on it. When you
start up your chain, it will have only one miner: you.

However, starting up a local private chain is a nice way to create a testnet in a
classroom environment, enabling students to mine and thus execute their and their
classmates’ transactions and smart contracts. Once you see how easy it is, you will
appreciate the highly generalized nature of the EVM.

The content is the same as the genesis field provided by the config parameter:
Because you already have Geth installed, and you know how to use the command

line, you need only three things to create a private chain:

Custom genesis JSON file

Custom network ID (a number)

A directory where the network ID file is stored

You can make up the network ID; it simply can’t be numerals 1 or 2, which are
already taken by the testnet (2) and the main network (1). We’ll go over the custom

genesis file next.

every blockchain has to start somewhere, and in this, your very own garden of eden,
you get to plant the seed that becomes a private chain. Block 0 does not point to
a predecessor block, and is thus unlike any other block in the chain. the protocol
ensures that your chain will accept only blocks that can trace their roots back to this
genesis block by looking at the root hash in the block header.

here’s how you create the custom genesis file.

First, open your text editor. You’re going to create a network called 765, so you’ll
set 765 as the nonce value. it needs to be a nonzero number. You can find the code
at https://github.com/chrisdannen/Introducing-Ethereum-and-Solidity/
blob/master/genesis765.json or under the Chapter 9 heading at http://eth.
guide.

in your text editor, paste in the following text:

{
"nonce": "0x0000000000000765",
"timestamp": "0x0",
"parentHash": "0x00
000000000000",
"extraData": "0x0",

CREATING YOUR BLOCKCHAIN GENESIS FILE

http://dx.doi.org/10.1007/978-1-4842-2535-6_6
http://dx.doi.org/10.1007/978-1-4842-2535-6_7
https://github.com/chrisdannen/Introducing-Ethereum-and-Solidity/blob/master/genesis765.json
https://github.com/chrisdannen/Introducing-Ethereum-and-Solidity/blob/master/genesis765.json
http://dx.doi.org/10.1007/978-1-4842-2535-6_9
http://eth.guide
http://eth.guide

Chapter 9 ■ Creating private Chains

161

"gasLimit": "0x4c4b40",
"difficulty": "0x400",
"mixhash": "0x000
000000000",
"coinbase": "0x00",
"alloc": {
}

save this file to your desktop and call it genesis765.json.

to open your new chain with a Javascript console, like the one you used in Chapter 6,
open the terminal and then type the following seven elements on one line:

• geth

• console

• --networkid

• --genesis

• the path to the genesis file

• --datadir

• a data directory to store your new chain

You will create a hidden directory called ~/.ethereum/chain765 to store your chain.
Your complete terminal command should look like this:

geth console --networkid 765 --genesis ~/Desktop/genesis765.json
--datadir ~/.ethereum/chain765

 ■ Note type eth at the console of your new chain to see a list of available Javascript
methods. in a group testing environment, you can use commands such as net.peercount
to see how many other people are mining on your chain, and other miscellany.

and that’s it! Your new chain is up and running, and you can use the console just
as you did in Chapter 6. remember that you need to turn on your miner with the
miner.start() command in the console before your contracts will execute on this
testnet.

http://dx.doi.org/10.1007/978-1-4842-2535-6_6
http://dx.doi.org/10.1007/978-1-4842-2535-6_6

Chapter 9 ■ Creating private Chains

162

Optional Flags to Use with New Chains
You can use other flags when creating a new chain to customize your testnet
environment:

--nodiscover: This prevents anyone with the same genesis
file and the same network ID from connecting to your chain
accidentally.

--maxpeers 0: If you know how many peers you want
connected to your node (say you have a classroom with a
limited number of students), you can delimit your chain’s
number of participants with this flag.

--rpcapi "db,eth,net,web3": Enables RPC and various
Web3.js APIs that are accessed over RPC.

--rpcport "8080": The default port for Geth is 8080, but you
can choose a different one with this flag.

--rpccorsdomain "http://eth.guide/": Use this flag to
specify the domains of servers that are allowed to connect to
your node and make RPC calls.

--identity "TestnetMainNode": This gives your chain a
human-readable name, which makes it easily identifiable
when in a list of peers.

Private Blockchains in Production Usage
In this chapter we’ve presented the concept of private blockchains as a sandbox for
learning Solidity and the Ethereum smart contract deployment paradigm. However, some
people are quite serious about taking private blockchains out of the testnet role and using
them in an enterprise or small-to-medium business computing context, to create real
web services.

This is antithetical to the security model that the Ethereum developers had in mind
when they designed the protocol. In practice, your private chain presents little incentive
for hackers to compromise it. After all, the value of the tokens mined on your chain (or
any chain, for that matter) is only what other people will pay for them.

Stop and think about that for a moment! The main network, the network we consider
the Ethereum public blockchain, is no different than any other chain. Testnets and the
main network are technically indistinguishable, except for the rate of participation they
get, and the fact that one is socially accepted as the main public chain. If you’re surprised,
then you’ve forgotten the core mantra of Ethereum: generalize everything, and keep the
protocol featureless.

What makes the main network main is the fact that it was started (and later forked)
by Vitalik Buterin and the rest of the Ethereum Core development team. It is only the
trust, interest, and curiosity in those individuals that keeps people using the main chain.

http://eth.guide/

Chapter 9 ■ Creating private Chains

163

There is no technical feature inside Mist or Geth that could not be changed with a
protocol fork, which would designate a new chain as the main one. (In fact, this happened
after the DAO hack incident in summer of 2016, leaving behind an “old” chain called
Ethereum Classic, which is still being mined today by some miners.)

This is the inherent flexibility—and impermanence—that makes the network
resilient. This kind of agility is necessary now, in the early days of the network, but will
become less and less appealing as the network grows and users seek more predictability
and reliability. Before long, state forks will be almost impossible to pull off owing to the
sheer size of the network, and the likelihood of another Ethereum chain popping up
becomes less and less.

Indeed, Ethereum has much maturation to endure before it is running large,
mission-critical business logic contracts. However, when you consider the incredible ease
of use, it’s easy to see why Ethereum, and networks like it, are bound to replace the stiff
and aging Hypertext Transfer Protocol.

Summary
With all the ease and guarantees of private and permissioned blockchains, why have a
public chain at all? Why don’t large corporations merely spin up large networks of nodes
in their worldwide offices, creating their own private Ethereum networks?

The short answer is that it’s easier and cheaper for large organizations to build on
top of distributed infrastructure which they don’t have to pay to build and maintain.
Even better, they don’t have to pay to secure it; the network itself grows more secure as
organizations add their nodes.

Indeed, only a public chain is truly trustworthy for high-value transactions,
because only a public chain is secured by so much proof of work. For all its users know,
a private or permissioned EVM instance has been altered in ways that make it unfair or
untrustworthy. With the public chain, protocol forks would need to be initiated by all
miners to become effective network-wide.

In the next chapter, we’ll discuss what individuals and companies might choose to
build on the public chain.

165© Chris Dannen 2017
C. Dannen, Introducing Ethereum and Solidity, DOI 10.1007/978-1-4842-2535-6_10

CHAPTER 10

Use Cases

Proof of work, decentralization, Merkle and Patricia
trees, asymmetric cryptography, smart contracts …
What can you make with such ingredients?

Whether Ethereum is useful, and indeed groundbreaking, is best evaluated in the same
terms as other network protocols. It’s been so long since Ted Nelson coined the term
hypertext in 1965, with his Xanadu project, that it’s easy to forget why people liked HTTP
and its sibling, HTML. It had exactly one method, GET, which would request a page from a
web server. The only acceptable response was an HTML page.1

In many respects, the Ethereum network today is in the same stages as the Hypertext
Transfer Protocol and the Hypertext Markup Language back in 1989. Its existence alone is
a boon compared to what came before, so much so that the first iteration of the network
feels almost like a one-trick pony.

Subsequent iterations will show that its seemingly sparse specification produces
immensely sophisticated software. This chapter is dedicated to illustrating the kinds of
applications that are on the near horizon.

Chains Everywhere
To many cryptocurrency maximalists, the future will be replete with blockchains, which
will have long since replaced every other technological paradigm. This will probably
never come to pass—because traditional databases work fine for most things—but
new interactions will result from these stateful networks that software developers and
designers may not foresee today. And these interactions will encompass not just humans,
but also machines working with an unprecedented free will. In the future, you may
encounter the Ethereum protocol running below the surface in many of the everyday
technological interactions you make. We’ll talk about how this future might develop in
the following sections.

1W3.org, “W3 History,” www.w3.org/History/19921103-hypertext/hypertext/WWW/Protocols/
HTTP.html, 2016.

https://www.w3.org/History/19921103-hypertext/hypertext/WWW/Protocols/HTTP.html
https://www.w3.org/History/19921103-hypertext/hypertext/WWW/Protocols/HTTP.html

Chapter 10 ■ Use Cases

166

The Internet of Ethereum Things
For large hardware makers, settling on industry standards for Internet of Things (IoT) has
been difficult. Ethereum offers a secure, ownerlesss protocol that anyone can use. As a
result, it has widely been seen as a boon for IoT. Some examples of IoT interactions on the
Ethereum network might include the following:

Device-to-device payment policies: Let’s say you want to allow
your phone to spend up to $5 without asking your permission.
Such an agreement could be presented much as an end-
user license agreement (EULA) is for a mobile application
today, but today EULAs are not empowered to move money.
In a smart contract, the terms of an agreement you might
customize, your phone would be able to buy things it knows
you need. For example, say you run out of data on your LTE
plan; it could pay for extra bandwidth, and even negotiate a
price, without interrupting you to “approve” the purchase.

Encoding value or financial contracts onto retail objects: It is
difficult to merchandize intellectual property such as music or
video, without a physical good to put in a product photo or on
a store shelf. The same goes for financial products, which are
hard to market because of their abstract nature. Gift-card-like
objects in any size and shape could be used to sell financial
products and services in a retail setting, by merely printing or
encoding a contract address onto the item.

Hardware wallets: You may have seen small computer-like
devices being marketed as hardware wallets for bitcoins
or ether. Hardware wallets are USB-powered devices that
connect to your computer and use its Internet connection to
access the blockchain. Like any other node, a hardware wallet
creates itself an address, and stores the private key (encrypted,
of course) right there on the piece of hardware. Held in a
media safe, hardware wallets are revolutionary in wealth
management because they allow you to safely keep in your
possession an arbitrarily large number of cryptoassets yourself.

 ■ Note hardware wallets are generally safer than storing coins on your smartphone or
pC, where you might forget they’re there, and accidentally lose them—for example, by
formatting your hard drive without first backing up your private key. these devices are also
quite durable. More important, they are typically built from audited, open source code and
specifications, so you can rest assured your coins are kept safe from malware that might
infect a computer or phone.

Chapter 10 ■ Use Cases

167

To see options for hardware wallets and other retail Ethereum gear, check out the
product listing at http://wallets.eth.guide.

Retail and E-Commerce
The Ethereum and Bitcoin blockchains also promise to change the way we buy normal
retail goods.

Peer-to-peer marketplace escrow contracts: Escrow contracts
are used in a marketplace in which the buyer and seller do
not know, or trust, each other. In an escrow contract, both
the buyer and seller of a given item put up collateral in the
same amount as the purchase. Collateral is something of
value, held in trust, to secure a transaction in good faith. Only
after the buyer confirms that the item has been delivered will
the collateral be released back to the buyer and seller. This
ensures that if either party tries to cheat the other, they end
up sacrificing approximately the same amount they gain by
cheating—pretty irrational!

Machine-readable patterns in public spaces: In programming,
there is a concept of a pull request, whereby one collaborator
requests for a project administrator to merge in code he or she
has written. You can imagine an invoice to be a pull request
for payment. Providing machine-readable codes on clothing
or name tags would allow customers in retail spaces to
interact with products or services and be invoiced passively,
with a guarantee (presumably in a collateralized smart
contract form) that the invoices will be resolved.

Community and Government Financing
The way we finance everything from home loans to national debt might radically change
as a result of smart contacts. In the US, Ethereum projects might take advantage of the
JOBS Act passed in 2012 to relax restrictions on small business funding. The Title III
component of this act, known as the CROWDFUND Act, creates a way for companies to
use crowdfunding to issue securities, and went into effect May 16, 2016.

Crowdfunding: Because cryptocurrencies are so liquid
(fast and easy to send from account to account), they have
become a popular choice for denominating donations in
crowdfunding campaigns. With the advent of the equity
crowdfunding laws in the United States, we may see Ethereum
smart contracts being used to create all kinds of incentive,
payout, or dividend structures for backers who contribute to a
new project. The crowdfunding of the Ethereum project itself,
which raised $18 million in bitcoins, pioneered an unheard-
of strategy for popularizing and endowing an open source

http://wallets.eth.guide

Chapter 10 ■ Use Cases

168

protocol and governing nonprofit foundation. It’s easy to
imagine how a similar crowdfunding paradigm could be used
to finance local public works, such as bridges and parks.

Federal currency issuance: Both central banks and retail banks
around the world have expressed interest in the issuance of
digital currencies. It’s conceivable that a government might
beat private currencies to the punch by starting a federally
mined chain and issuing a native fiat coin on that network.

Human and Organizational Behavior
People outside large organizations may also benefit from Ethereum in the following
domains:

Freelance employment: Ethereum’s de facto role as an
accounting service makes it ideal for managing teams of far-
flung freelancers. Better yet, contracts can be used to form
new teams or get two existing groups collaborating, without
needing to alter the organizational structure of the business.

Coordinated private transit: Paying strangers for ride sharing,
apartment sharing, bike sharing, and other communal services
becomes easy and cheap, no matter who is administering the
group. There’s no need to build an entire reputation system
as long as the group members use consistent wallet addresses
from week to week or month to month.

 ■ Note In the first year of the ethereum network, there was much ado about the concept
of a decentralized autonomous organization, or DaO. any Fortune 500 management
consultant can tell you that businesses of all sizes are already highly automated. perhaps
someday this automation will all take place with ethereum, but until then, we’ll acknowledge
the acronym and move on to more practical discussions.

Customer and employee “pulse” surveys: The concept of
a pulse survey is exactly what it sounds like: a regular
check-in with a stakeholder you value, to make sure
things are going well. Both employees and customers can
benefit from regular surveying, but it’s challenging. With
customers, it’s a marketing challenge; it’s hard to get space
on their smartphone screens without a phone number or a
mobile application installed on each user’s device. For HR
departments, the problem is even more tricky; employees
might spend all day in the building and never speak their

Chapter 10 ■ Use Cases

169

mind about what’s really going on. As an application,
Ethereum-enabled wallets are Trojan horses for all kinds of
messaging. They could be used for multiple subcurrencies
and communities, making them into highly trafficked virtual
spaces where people can send and receive information, as
well as payments, tokens, and currencies.

Small companies doing big things: In the past, banks,
insurance companies, and other institutions attempted
to grow as large as possible in an attempt to maximize
credibility. When many services—perhaps even
government—are provided by the EVM, the threshold for
doing business with an unknown entrepreneur naturally
drops. Without the risk of them absconding with your cash,
why not invest or participate in a crowdfunding event? In a
world where fraud and embezzlement are next to impossible,
owing to the transparent, predictable, and public nature of
public-chain smart contracts, it becomes much easier to offer
monetary support to people who need it.

Financial and Insurance Applications
Some of the functions performed by banks will be possible for small businesses to
undertake in the Ethereum network.

Everything a bank does, unbundled and delivered as a
service in pure software: Unbundled financial services would
include complementary currencies, savings accounts, escrow
accounts, trusts, wills, and various financial contracts such as
swaps, derivatives, and hedging contracts.

Semifinancial applications in which work is being done for
money: When proof of an employee’s work product can be
ascertained by a computer (say, by looking at that employee’s
sales records in a database), applications might provide
provably fair bonus structures with dynamic terms, which
exist outside the legacy payroll system. These systems might
be referencing employment contracts that are also smart
contracts.

Crop insurance: Commodities traders are fond of trading
futures and other derivatives that are based on farm crops
as the underlying assets. Scientifically observable data such
as temperature, barometric pressure, or humidity could be
collected by independent sensor motes connected to the
Ethereum network, providing accurate endpoints for weather
data that might trigger a contract to pay out one way or
another.

Chapter 10 ■ Use Cases

170

Community trust: A savings bank written in pure software,
whereby one customer can stake another funds, could be
trustlessly executed by a smart contract that has the authority
to pull collateral, and even loan payments, from an account.
Multisignature addresses might ensure appropriate sign-off
by human intermediaries in the case of custodial accounts or
other special cases.

Inventory and Accounting Systems
Keeping immutable inventory of physical goods, in a supply chain context, may be
another area where public chains can shine:

Representing serialized assets such as gold stored in a vault:
If you store gold in a bank vault, how do you know it’s really
there a year later? Because many banks lend out deposits
with only a fractional reserve, it’s comforting to know your
currencies or precious metals are there. Gold, silver, and other
instruments inventoried on a blockchain allow owners piece
of mind that their wealth won’t be lost to a “bail-in” should
the bank become insolvent.

Proving the provenance of goods: If a manufactured good has
its components inventoried on blockchains by all the original
equipment manufacturers, or OEMs, it becomes possible to
find out whether a given product is original equipment, or has
been altered or repaired.

Token systems that perform simple accounting operations:
One easy way of balancing a transaction ledger for a pop-up
event (say, for Earth’s largest bake sale) would be to create a
token which serves as scrip for making purchases at the event.
At the door, a smart contract terminal gives every potential
customer a certain amount of tokens to spend at the bake sale
in exchange for ether. When the event is finished, the sum of
the cupcakes you bought will be recorded along with every
purchase facilitated by the contract, making it easy for the
operators of the bake sale to know if they made a profit.

Chapter 10 ■ Use Cases

171

Software Development
Without a doubt, Ethereum’s most disruptive potential lies in its ability to host software
and services.

Cloud computing: With data storage coming to the EVM in late
2017, the network will finally begin to resemble a fully fledged
web application hosting environment. Distributed consensus
protocols make excellent cloud computing platforms because
of their trustless architecture: there is no need to worry about
your complex networking configuration keeping data safe
or handling heavy traffic. Such a system may not be suited
to every kind of application, but certain easily parallelized
software will be.

Long-term application hosting: Some financial contracts
are written like time capsules. But how do you ensure that a
computer program will still be around to execute in 50 or 100
years? One way is to develop it as a public service; individuals
can host documents and be sure the network will still be
running, even if they’re long gone.

Cheap, resilient, censorship-free public document hosting:
Vital documents such as birth certificates, tax returns, court
summons, immigration forms, health records, and other
unstructured data could easily be encrypted and stored in
a blockchain for certain retrieval by third parties. Private
organizations today account for most background-check
activity and credit reporting. This is problematic to say the
least; a public chain might offer a “permanent web” where
these documents can be hosted for posterity.

Gaming, Gambling, and Investing
Already, blockchain developers have launched a number of provably fair games of
chance, to demonstrate the power of the network. In the future, this sort of application
might extend to the following scenarios:

Peer-to-peer gambling: Laws notwithstanding, it’s hard to set
up geographically extensive gambling networks, because
few people trust their bookmaker to hold large amounts of
money. Creating bets in pure software—a Main Street way
of describing a smart contract—is all too easy in Ethereum.
Imagine, for example, a betting contract that simply bets on
the value of the nonce, or some other such random event that
takes place anyway as the chain maintains consensus.

Chapter 10 ■ Use Cases

172

Prediction markets: Prediction markets attempt to use large-
scale betting markets to determine the real-life outcome of
events. A government that bases decisions upon prediction
markets, in an attempt to automate itself and improve
efficacy, is called a futarchy.

Stable-value cryptoassets: Cryptocurrencies are notoriously
volatile. Because their exchange is not mediated by any third
party, there are no chargebacks, making it a perfect medium
through which fast-moving market makers can devour less-
experienced traders. Creating a stable asset that people will
hold, save, and even pass down to their children is a challenge
no financial institution has undertaken yet.

This is a good survey of the things you can build with smart contracts and dapps on
the Ethereum network, but it’s hardly a comprehensive list.

Summary
This is only the beginning of a new world of application development made possible by
distributed applications. You’ll find more dapp examples and concepts at http://dapps.
eth.guide.

Finally, the next chapter covers what’s to come for the Ethereum network: future
components and the roadmap that guides their development.

http://dapps.eth.guide
http://dapps.eth.guide

173© Chris Dannen 2017
C. Dannen, Introducing Ethereum and Solidity, DOI 10.1007/978-1-4842-2535-6_11

CHAPTER 11

Advanced Concepts

Where the Ethereum Protocol is going, and where it
came from

A book introducing Ethereum and Solidity would not be complete without mention of the
nascent cult of personality forming around Vitalik Buterin, the inventor of Ethereum and
a collaborator on a handful of other high-profile blockchain projects.

Who Is Leading Software Developers Toward
Decentralization?
Perhaps the best description of Buterin comes in the form of an article published about
him in Spring of 2014 by writer Morgan Peck in the online magazine Backchannel.1 The
article describes the writer’s first encounter with the Ethereum cofounder:

Buterin was the only person awake. He was sitting outside in a deck
chair, working intensely. I didn’t bother him, and he didn’t say hello.
But, I remember the impression he made on me at the time. This skeletal,
19-year-old boy, who was all limbs and joints, was hovering above his
laptop like a praying mantis, delivering it nimble, lethal blows at an
incredible speed.

Buterin, it turned out, was the reason everyone was there in the first
place. Two months earlier, he had published a white paper describing
an impossibly ambitious technology, one that looked beyond Bitcoin’s
mission of enabling unstoppable, unmediated digital payments, and
envisioned a platform for autonomous software of all kinds.

1Backchannel, “The Uncanny Mind That Build Ethereum,” https://backchannel.com/the-uncanny-
mind-that-built-ethereum-9b448dc9d14f#.ct4n4b561, 2016.

https://backchannel.com/the-uncanny-mind-that-built-ethereum-9b448dc9d14f#.ct4n4b561
https://backchannel.com/the-uncanny-mind-that-built-ethereum-9b448dc9d14f#.ct4n4b561

Chapter 11 ■ advanCed ConCepts

174

At the center of this free and open source network protocol movement, Buterin’s
intellectual leadership stands alone. Perhaps the most shocking thing about it, besides
the jaw-dropping ambition of the project to replace the HTTP Web with something better,
is the speed.

The Ethereum project was launched in 2014, operational by 2015, and was the
number two cryptocurrency network after Bitcoin by 2016. The current listing for all
Ethereum Foundation members can be found at www.ethereum.org/foundation.

In 2017, the core development team plans to roll out other components that will see
Ethereum reach parity with the web applications we know and love today—but with an
astounding new set of capabilities like those described in all the previous chapters.

The rest of this chapter concerns the Ethereum roadmap, and some of the yet-
unsolved and unbuilt components.

If you’d like to stop here to dig into the mathematics, economics, and business
rationale behind the Ethereum network as it works today, you’ll find no better place for
long, in-depth essays than the Ethereum blog, where Buterin has laid out his thinking
about some of the protocol’s core concepts.

Vitalik’s Best Technical Blog Posts
Following are some interesting blogs to consider:

•	 https://blog.ethereum.org/2015/06/06/the-problem-of-
censorship/

•	 https://blog.ethereum.org/2015/04/13/visions-part-1-the-
value-of-blockchain-technology/

•	 https://blog.ethereum.org/2015/04/27/visions-part-2-the-
problem-of-trust/

•	 https://blog.ethereum.org/2015/01/10/light-clients-
proof-stake/

•	 https://blog.ethereum.org/2015/01/23/superrationality-
daos/

To see a longer list of people and companies contributing to the Ethereum
ecosystem, visit http://ecosystem.eth.guide.

The Ethereum Release Schedule
Modern server applications do three things well: they compute and run programs, they
remember our data, and they facilitate human interaction. Today, the Ethereum Virtual
Machine can compute, but it can’t store much data, and it can’t serve as an intermediary
for messaging between people.

http://www.ethereum.org/foundation
https://blog.ethereum.org/2015/06/06/the-problem-of-censorship/
https://blog.ethereum.org/2015/06/06/the-problem-of-censorship/
https://blog.ethereum.org/2015/04/13/visions-part-1-the-value-of-blockchain-technology/
https://blog.ethereum.org/2015/04/13/visions-part-1-the-value-of-blockchain-technology/
https://blog.ethereum.org/2015/04/27/visions-part-2-the-problem-of-trust/
https://blog.ethereum.org/2015/04/27/visions-part-2-the-problem-of-trust/
https://blog.ethereum.org/2015/01/10/light-clients-proof-stake/
https://blog.ethereum.org/2015/01/10/light-clients-proof-stake/
https://blog.ethereum.org/2015/01/23/superrationality-daos/
https://blog.ethereum.org/2015/01/23/superrationality-daos/
http://ecosystem.eth.guide

Chapter 11 ■ advanCed ConCepts

175

As it happens, the two latter components are in the works as we speak. The near-
term Ethereum roadmap consists of three major components:

EVM: Decentralized state (done!)

Swarm: Decentralized storage

Whisper: Decentralized messaging

Whisper (Messaging)
Whisper is a distributed messaging system that is part of the Ethereum protocol and will
be available to web applications that use the EVM for their back end. Unlike previous
chapters in this book, in which message refers to a data object being passed from one
smart contract to another, in this case we’re using it the old-fashioned way: one human
communicating with one or more other humans over a network protocol.

Swarm (Content Addressing)
Swarm is a content-addressed accounting protocol. It works with immutable data, sharding
it and storing it across a distributed network in ways that make it easy to recall when an
application needs. The goal of Swarm is to be able to find different versions of a file under the
same memory address, mimicking domain paths in today’s URLs, with their folder structure.

It’s important to note that this addressing protocol is hardware-agnostic. It’s merely
serving the purpose of an index to which chunks of data are stored where. This blob
storage scenario is a popular application for decentralized systems, and Swarm would
make it even easier, thanks to some of the innovations pioneered by BitTorrent. If you
don’t want to wait for Swarm, check out an existing distributed file storage protocol called
Interplanetary File System, or IPFS, which can also be made to work with Ethereum dapps.

Let’s say it’s the year 2020 and you visit an Ethereum application in the Mist browser.
By this point, let’s imagine there’s a human-readable namespacing system in place;
Ethereum is at full parity with the Web complete with its own domain name lookup
system. Here’s how the data retrieval process would work with a dapp using the Swarm
protocol:

 1. Navigate to app in Mist. Enter an Ethereum Domain Name.

 2. Domain is translated into a Swarm hash.

 3. Swarm retrieves HTML/CSS/JS files linked to this hash.

 4. Requests for new files linked to this hash load recent data as it
comes in.

For users, the experience won’t be much different from using an existing web
application. However, the goal here is to achieve P2P storage that is distributed denial
of service (DDoS) resistant and offers 100 percent uptime, and can be easily accessed
programmatically by all sorts of clients, accessing files on all different storage networks.

You can learn more about Swarm by reading the white paper at http://swarm-
gateways.net/bzz:/swarm/#the-thsph-orange-paper-series.

http://swarm-gateways.net/bzz:/swarm/#the-thsph-orange-paper-series
http://swarm-gateways.net/bzz:/swarm/#the-thsph-orange-paper-series

Chapter 11 ■ advanCed ConCepts

176

What the Future Holds
In Spring 2016, Buterin released a new white paper with the jocular title “Mauve Paper.”
In this paper he laid out seven primary focal points for the remainder of the Ethereum
roadmap:

Transitioning from a proof-of-work to a proof-of-stake
consensus algorithm. As a consensus system, proof of
work is effective but expensive from a power-consumption
perspective. Securing consensus without mining would
reduce electricity waste as well as the need for the inflationary
issuance scheme.

Faster block times should result from proof of stake, resulting
in greater granularity of data and efficiency without a loss of
security or risk of centralization.

Economic finality. As covered in Chapter 3, the promise
of Ethereum for enterprises is a decentralized system for
transaction settlement finality. Proof-of-stake systems might
include roles for validator nodes that fully commit to a
block, meaning they lose their ETH balance (which could be
millions of dollars) if they collude to propagate a false block.

Scalability is a problem when full nodes require the
computing resources they do today. The large blockchain,
1 GB DAG, and intensive CPU or GPU requirements make
smartphones and other low-power devices a no-go for
Ethereum node daemons. To read the team’s white paper
on scalability, visit https://github.com/vbuterin/
scalability_paper/blob/master/scalability.pdf.

Another vital read about scalability is the use of so-called chain
fibers, at www.reddit.com/r/ethereum/comments/31jm6e/
new_ethereum_blog_post_by_dr_gavin_wood/.

Sharding blockchain data and enabling cross-shard
communication is another crucial element of scaling. Sharding
is the process of breaking up a single chunk of data across
databases, in such a way that it can be reassembled when
needed. Blockchains don’t shard. However, it should be feasible
to let different parts of the EVM state be stored by different
nodes, and to build applications that can address them there.

Being resistant to censorship in the form of attempts by
validator nodes, in a proof-of-work scheme, to collude across
all shards in order to block certain transactions from reaching
finality. This already exists in Ethereum 1.0, but will be
strengthened in subsequent releases.

The Mauve Paper is located at http://vitalik.ca/files/mauve_paper.html.

http://dx.doi.org/10.1007/978-1-4842-2535-6_3
https://github.com/vbuterin/scalability_paper/blob/master/scalability.pdf
https://github.com/vbuterin/scalability_paper/blob/master/scalability.pdf
http://vitalik.ca/files/mauve_paper.html

Chapter 11 ■ advanCed ConCepts

177

Other Interesting Innovations
As the Ethereum team works toward their vision for the EVM, the Ethereum developer
community continues to experiment with solutions of their own. Some promising
technical innovations that have attracted attention are as follows:

State channels: Like micropayment channels, a state channel
is a link between two blockchain-based databases whereby
ledgers are synchronized and updated without needing to
wait for the main chain to process the transaction. To
read more about how these might work, check out
www.jeffcoleman.ca/state-channels/.

Light clients: Light clients would allow smartphones and other
low-power computers to use the Merkle-Patricia tree—or part
of it—to construct a proof showing that a certain transaction
is indeed in a block. This would forgo the need to download
and synchronize the entire blockchain, but could still validate,
send, and receive transactions. To read more about how light
clients might work, consult this web archive: https://web.
archive.org/web/20140623061815/http://sourceforge.
net/p/bitcoin/mailman/message/31709140/.

Ethereum computation marketplace: A computation
marketplace would be one way to allow some transactions
to happen off-chain, and be reconciled to the public chain
later. One project experimenting with this approach can be
found at https://github.com/pipermerriam/ethereum-
computation-market.

Full Ethereum Roadmap
Although software development can be an unpredictable process, the Ethereum
developers have been remarkably adept at hitting timeline milestones. Here are the ones
they’ve completed, and those that are yet to come, as of this writing.

Frontier Release (2015)
Frontier had several main goals, all of which were met on time. Everything in this phase of
Ethereum was done via the command line. Priorities at the time included the following:

•	 Getting mining operations running (at a reduced reward rate)

•	 Getting ether listed on cryptocurrency exchanges

•	 Establishing a live environment to test dapps

http://www.jeffcoleman.ca/state-channels/
https://web.archive.org/web/20140623061815/http://sourceforge.net/p/bitcoin/mailman/message/31709140/
https://web.archive.org/web/20140623061815/http://sourceforge.net/p/bitcoin/mailman/message/31709140/
https://web.archive.org/web/20140623061815/http://sourceforge.net/p/bitcoin/mailman/message/31709140/
https://github.com/pipermerriam/ethereum-computation-market
https://github.com/pipermerriam/ethereum-computation-market

Chapter 11 ■ advanCed ConCepts

178

•	 Creating a sandbox and faucet for acquiring ether

•	 Allowing people to upload and execute contracts

Homestead Release (2016)
The Homestead release brought many more mainstream cryptocurrency enthusiasts into
the fold with the Mist browser. Its characteristics are as follows:

•	 Ether mining goes up to 100 percent reward rate

•	 No network halts

•	 Slightly-less-beta status (fewer warnings)

•	 More documentation for command line and Mist

Metropolis (2017)
As of this writing, work is underway on Metropolis, the second phase of Ethereum
protocol development. This release will be the true coming-out party for Mist, which
when fully featured, will look something like a cross between Chrome and the iOS App
Store. It will include several heavyweight third-party applications. By this point, Swarm
and Whisper will be operational.

Serenity (2018)
This phase is so-named for its planned transition away from proof of work and onto
something less hectic: ideally, some form of proof-of-stake algorithm. For now, the
tentative code name for Ethereum’s POS-based consensus engine is Casper.2 Although
nobody has perfected such a consensus system yet, progress happens by the week,
and mathematicians and computer scientists working in this area seem confident a
breakthrough is near. Two posts that include background material on this aspect of
Ethereum research can be found at the following URLs:

https://blog.ethereum.org/2015/12/24/understanding-
serenity-part-i-abstraction/

https://blog.ethereum.org/2015/12/28/understanding-
serenity-part-2-casper/

Summary
What will the world look like by the time Serenity is released, and proof-of-work mining
ends? It’s hard to say. But Ethereum, Bitcoin, and other cryptonetworks will have several
fairly predictable impacts on business IT.

2Ethereum Blog, “Introducing Casper, the Friendly Ghost,” https://blog.ethereum.org/2015/
08/01/introducing-casper-friendly-ghost/, 2015.

https://blog.ethereum.org/2015/12/24/understanding-serenity-part-i-abstraction/
https://blog.ethereum.org/2015/12/24/understanding-serenity-part-i-abstraction/
https://blog.ethereum.org/2015/12/28/understanding-serenity-part-2-casper/
https://blog.ethereum.org/2015/12/28/understanding-serenity-part-2-casper/
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/

Chapter 11 ■ advanCed ConCepts

179

One of the great 20th-century economists, Ronald Coase, is famous for his insight
that firms exist in the first place to avoid the “transaction costs” of going to the market
every day looking for workers. Firms create long-term employment agreements that
increase efficiency. But these same bureaucratic processes that increase efficiency among
a group of a few dozen workers can become a hindrance at scale, making large firms
slow and uncompetitive. As a result, they attempt to find an equilibrium point where the
minimal amount of bureaucracy creates maximum efficiency.

For the last 20 years, technology has increased the speed of business, as corporations
have developed expertise in large-scale software systems. Of late, great amounts of
effort have been put into making these systems more adept at dealing with contractors,
consultants, and freelancers. These temporary workers enable companies to spin up
teams quickly when demand arises, and spin them back down without needing to lay
off full-time employees. The boundaries of the modern company are becoming more
permeable. According to a study by the software company Intuit, roughly 40 percent of
the American workforce will be “contingent workers” by 2020.3

Ethereum promises to bolster the trend. When the entire world can operate within
a global transaction singleton that can execute trustless applications, the confines of
the office building (or the virtual private network, or the firm itself) become less and
less necessary. When compensation packages can easily be composed of a series of
if-then statements in a smart contract, the distinction between a salary and a bonus
become blurred. The size, age, or location of a company may no longer carry cultural
connotations about its trustworthiness or importance. The era of the lifetime employee,
the company man or company woman, may be ending.

This shift is being recognized at the highest levels of government and banking.
On January 18, 2017, Federal Reserve Chair Janet Yellen was asked about the promise
of blockchain technology during a fireside chat held at the Commonwealth Club of
California. Her response:

We are looking at its promise in terms of some of the technologies that we
use ourselves, and many financial institutions are looking at it. It could
make a big difference in the way in which transactions are cleared and
settled in the global economy.4

A paradigm shift may be in store: first, a period of flux as individuals and businesses
come to grips with their freedom to engage in business agreements, some even long-
term, with little need for counterparties, and little concern for corporate or even state
boundaries. Multimillion-dollar deals may (for a while) still be inked on pen and paper,
but how many $1 to $100,000 contracts might be handled by Ethereum machines running
boilerplate policies? How many wasted dollars and work hours could be saved? How
many disagreements rendered immaterial? How many business agreements might be
made more fair and enforceable? Many, no doubt. Ultimately, that is the promise of
Ethereum.

3Intuit, “The Intuit 2020 Report,” http://about.intuit.com/futureofsmallbusiness/, 2010.
4YouTube, Janet Yellen interview, www.youtube.com/watch?v=ktBgb4xHKGY, 2016.

http://about.intuit.com/futureofsmallbusiness/
https://www.youtube.com/watch?v=ktBgb4xHKGY

181© Chris Dannen 2017
C. Dannen, Introducing Ethereum and Solidity, DOI 10.1007/978-1-4842-2535-6

��������� A
Algorithms, 81
Anonymity, 45–46
Application binary interface (ABI), 155
Application-specific integrated

circuit (ASIC), 115
ASIC-resistant Ethash

algorithm, 142
Assets

ether, 90–91
fiat currency, 90
physical natural resources/abstract

financial instruments, 90
Asymmetric cryptography, 4, 23, 26
Asymmetric encryption, 142
Automated proofs, 78–79

��������� B
Banking platform, 48–49
Bank teller metaphor, 24–25
Bitcoin, 2–5, 9
Blockchain

asymmetric cryptography, 4
blocks, 43, 56
cryptographic hashing, 4
definition, 1
encryption, 26–28
explorers, 45
genesis file, 160–161
peer-to-peer networking, 4
renting time, 58
schema, 19
smart contracts, 2

Blocks, 55–57, 114
Block times, 144

��������� C
Character code, 51
Chargeback, 42
Ciphers, 139
Cloud computing, 171
Code-breaking, 140
Collectible function

banknotes, 95–96
early counterfeiting, 95
in human systems, 94–96
jewelry and art, 95

Command-line interface (CLI) nodes, 29
Community trust, 170
Compiler, 52
Complementary currency

browser compiler, 72
definition, 71
official Solidity

documentation, 72
Computable functions, 81
Computation marketplace, 177
Consensus system, 176
Contract application binary interface, 155
Contract accounts, 38, 61
Control flow, 3
Converter tool, 44
Coordinated private transit, 168
Crop insurance, 169
Crowdfunding, 16, 167
Cryptanalysis, 140
Cryptochaos, 8
Cryptocommodity, 5
Cryptocurrency(ies), 5, 7, 24, 45, 147, 172

asset ownership and civilization, 92
collectibles, 93
gold/fiat currency, 90

Index

■ INDEX

182

Cryptoeconomics, 7–8
assumptions, 141
common attack scenarios, 145–146
definition, 139
domains, 140
encryption, 142
hashing, 143

Cryptographic hashing, 4
Cryptography, 140
Cryptotokens, 7

��������� D
Deliberate forks, 124
Depreciating asset, 90
Derivative contract, 91
Design rationale, 74–76

expressiveness and security, 76
write loops, 75

Device-to-device payment policies, 166
Digital collectibles, 93
Digital dollar, 6
Digital signature, 28
Directed acyclic graph (DAG) file, 115
Distributed application (Dapp), 90

contract data models, 150–151
contracts execution, 155
EVM

back end talks, JS front end, 151
Meteor, 154
Web 3, 152

JavaScript API
Geth, 153
interactive use of JSRE, 153

prototyping recommendations, 156
smart contracts, seven scenarios, 150
third-party deployment libraries,

156–157
web services, 149

Distributed ledger, 55
Dynamic memory, 70

��������� E
Encryption, 142
Escrow contract, 167
Ethcore.io, 30
Ethereum

account addresses, 22
account generation, 22

account management, 2
authentication and secure

payments, 15
blocks, 55
bureaucratic processes, 179
Buterin description, 173
characteristics, 26
CLI nodes, 29–30
computation marketplace, 177
computing time, 12
configuration, 32
contract accounts, 38, 61
cryptochaos, 8
cryptocurrency, 5
cryptoeconomics, 7–8
development, 17
download and installation, 30–31
downtime, censorship, or third-party

interference, 14
electricity prices, 12
Ethcore.io, 30
EVM, 8, 13–14, 17–18
evolution, 172
externally owned accounts, 38, 61
Forgot Password functionality, 34
Gresham’s law, 6–7
light clients, 177
messages and transactions, 42
mining, 12
Mist, 13, 19, 21
new address, 35
paradigm shift, 179
private keys, 23
protocol, 3
public and private chains, 18
public key, 22
roadmap

EVM, 175
Frontier release (2015), 177–178
Homestead release (2016), 178
Metropolis (2017), 178
Serenity (2018), 178
Swarm (content addressing), 175
Whisper, 175

security, 18
smart contract, 15–16
software free and open source, 17
state channels, 177
state transition function, 57–58
transactions, 12, 24

■ INDEX

183

transparent governance, 15
up-to-date community-written

documentation, 50
1.5 and 2.0 versions, 12
Vitalik’s best technical blog, 174
wallets, 22
wei denominations, 44
wiki, 50
zero-infrastructure platform, 15–16

Ethereum-enabled web application, 154
Ethereum Improvement Proposals

(EIPs), 50
Ethereum network

community and government
financing, 167–168

coordinated private transit, 168
freelance employment, 168
Internet

device-to-device payment
policies, 166

hardware wallets, 166
inventory and accounting systems,

170
peer-to-peer gambling, 171
prediction markets, 172
stable-value cryptoassets, 172
traditional databases, 165

Ethereum Virtual Machine (EVM), 8, 13,
17–18, 23, 42

back end, 89–90
business logic, 74
bytecode, 51
distributed application, 90
easy deployment, 73
Ethereum-enabled applications, 74
front end, 89
global ledger, 50
loops, 54
messages, 62
opcodes, 64–67
operations cost, 63–64
smart contracts, 51
Solidity programs, 50
transaction singleton machine, 50

Ethereum VM Contract
Simulator, 156

Ether issuance scheme, 144–145
Eth.guide, 28–29
EVM. See Ethereum Virtual

Machine (EVM)
Expression functions, 82

External accounts, 38
Externally owned account (EOA), 61

��������� F
Federal currency, 168
Fedwire, 47–49
Formal proofs

decentralized economies, 77
Ethereum network, 78
hypothetical attack, 77–78
shared global resource, historical

impact of, 76–77
Full nodes, 21
Full-stack framework, 154

��������� G
Gas, 58–59

costs, 58
definition, 58
halting problem, 59
prepaid reward, 59
scaling, 60
specifics, 60

Global singleton machine, 50
Grayscale, 7
Gresham’s law, 6

��������� H, I
Hash algorithms, 55
Hashcash, 4
Hashing, 143
Hashpower, 113
High-value digital collectibles, 96
Home bias, 92
Homestead release (2016), 178
Hypertext Transfer Protocol (HTTP), 8

��������� J
JavaScript Object Notation (JSON),

151–152
Jaxx, 40
JSON-RPC objects, 152

��������� K
Key/value pair, 54
Key/value store, 70

■ INDEX

184

��������� L
Latency, 117
Legacy banking system, 14
Light clients, 177
Liquidity, 16
Litecoin, 5
Long-term application hosting, 171

��������� M
Machine narrative, 54
Machine-readable patterns, 167
Main network, 162
Market capitalization, 9
Mauve Paper, 176
MetaMask, 29
Metropolis (2017), 178
Mining ether

blocks and transactions, 121–122
DAG file, 115
definition, 112
difficulty bomb

effective mining period, 119
GHOST protocol, 119
limits on ancestry, 120
payout structure, 120
proof-of-stake system, 120

executing commands, 128–131
exercise, 133
faster blocks, 117–118
forking, 123–124
Geth installation

command line, 125
on macOS, 125
QtMiner, 136
testnet, 131, 134
Ubuntu 14.04, 126–128
on Windows, 125

GPU mining rigs, 134–136
Merkle-Patricia trees, 122–123
miners, 112
process, 132–133
radix tree, 122
receipts tree, 123
source, 112
stale blocks, 118
state tree, 123
transaction tree, 123
truth version

block validation, 115
difficulty, 114

Mining pools, 142
Mining process, 12, 57–58
Mist, 13, 19, 21

keys backing up and
restoration, 39–40

sending and receiving ether, 36–38
Mobile wallets, 40
Money printing, 7
Monopoly, 2
MyEtherWallet, 40

��������� N, O
Noninteractive use, JavaScript API, 153

��������� P
Paper wallet, 10
Parity, 29
Peer-to-peer (P2P)

gambling, 171–172
marketplace, 167
networks, 2, 4

Permissioned blockchain, 159
Polygraph machine, 25
Prediction markets, 172
Private chains, 18

and permissioned chain, 159
production usage, 162–163

Proof-of-stake systems, 176
Proof-of-work algorithm, 113
Public chains, 18
Public-key cryptography, 27

��������� Q
Quick Response (QR) code, 40–41, 93

��������� R
Rice’s theorem, 77
RPC layer, 154

��������� S
Scalability, 176
Semifinancial

applications, 169
Serenity (2018), 178
Serialized assets, 170
Sharding process, 176
Short blocks, 56

■ INDEX

185

Simple Mail Transfer Protocol (SMTP), 8
Single-page applications (SPAs), 154
Smart contracts, 2, 10, 15–16, 51
Snapchat, 41
Solidity programming

algorithms, 81
automated proofs, 78–79
block and transaction properties,

85–86
command line optional, 79–81
complementary currency

browser compiler, 72
definition, 71
official Solidity documentation, 71

design rationale
expressiveness and security, 76
write loops, 75

EVM
business logic, 74
easy deployment, 73
Ethereum-enabled applications,

74
exceptions, 88
expression functions, 82
formal proofs

decentralized economies, 77
Ethereum network, 77
hypothetical attack, 77–78
shared global resource, historical

impact of, 76–77
formatting solidity files, 81
functions, 83
global bank, 70
primer, 69–70
private, 82–83
public, 82–83
statement, 82
value types

addresses, 83
booleans, 83
complex (reference) types, 84–85
dynamically sized byte arrays, 84
fixed-point numbers, 84
hexadecimal literals, 84
keywords, 84
members of addresses, 83
rational and integer literals, 84

signed and unsigned integers, 83
string literals, 84

Solidity script, 109
Solo node blockchain, 56
Stack, 70
Stale/extinct blocks, 118
State, 52
State channels, 177
State fork, 124
Stateful system, 2
Statements, 52
Symmetric encryption, 143

��������� T, U
Testnet ether, 44
Tokens

money/scrip, 98
social contracts, 97–98
testnet

connection, 99
contracts tab, 101
Deploy New Contract option,

101–102
fields, 104
GitHub project, 102
registeration, 106
select contract code, 104
Solidity Contract Source

Code, 103
Sublime Text, 100
watch contract, 105

Transmission Control Protocol/Internet
Protocol (TCP/IP), 8

Trustless, 9–10

��������� V
Virtual machine (VM), 48

��������� W, X, Y, Z
Wallets, 22–23
Web.js, 2, 128, 153
Wei denominations, 44
Whisper, messaging

protocol, 152, 175

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Bridging the Blockchain Knowledge Gap
	Blockchain Roll Call!
	What Ethereum Does
	Three Parts of a Blockchain
	Ethereum Assumes Many Chains
	This Is a Scam, Just Like Bitcoin!

	Ether as a Currency and Commodity
	Gresham’s Law
	The Path to Better Money
	Cryptoeconomics and Security
	Back to the Good Old Days
	Cryptochaos

	The Power Is in the Protocol
	You Can Build Trustless Systems

	What Smart Contracts (Really) Do
	Objects and Methods for Value
	Just Add Commerce
	Content Creation

	Where’s the Data?
	What Is Mining?
	Ether and Electricity Prices

	Going Inside the EVM
	The Mist Browser
	Browser vs. Wallet or Keychain
	Solidity Is Kind of Like JavaScript, But …

	What Ethereum Is Good For
	A Critical Take
	“Without any possibility of downtime, censorship, or third-party interference”
	“A secure, free, and open platform for the Internet of Things”
	“Enabling transparent governance for communities and businesses”
	“Handles user authentication and secure payments for you, as well as messaging and even decentralized storage”
	“No need to sign up or pay for application host; the world’s first zero-infrastructure platform”

	State of Smart Contract Development Today
	Copycat Coins
	Funding Your Project

	Deciding Where You Fit In
	A Note to New Programmers
	Ethereum Is Free and Open Source

	The EVM Is Here to Stay
	What You Can Build Today
	Private and Public Chains
	Send and Receive Ether
	Write Smart Contracts
	Create Provably Fair Applications
	Launch Your Own Token

	The Promise of Decentralized Databases
	What’s Next: New Ways of Working

	Summary

	Chapter 2: The Mist Browser
	Wallets as a Computing Metaphor
	Your Address Is What?
	Where Is My Ether?

	The Bank Teller Metaphor
	In Cryptocurrency, You Hold Your Own Assets
	Visualizing Ethereum Transactions

	Breaking with Banking History
	How Encryption Leads to Trust
	System Requirements
	More about Eth.guide and This Book
	Tools for Developers
	CLI Nodes

	Recommended: Using Parity with Geth
	Finally, into the Mist!
	Downloading and Installing Mist
	Configuring Mist
	Finding Your New Address
	Sending and Receiving Ether
	Understanding Ethereum Account Types
	Backing Up and Restoring Your Keys
	Using Paper Wallets
	Using Mobile Wallets
	Working with Messages and Transactions
	Transactions Change State
	Editing a Global Database

	So, What Is a Blockchain?
	Paying for Transactions
	Understanding Denominations
	Getting Ether

	Anonymity in Cryptocurrency
	Blockchain Explorers

	Summary

	Chapter 3: The EVM
	The Central Bank Network of Yesterday
	What are Virtual Machines, Exactly?
	The Role of the Ethereum Protocol in Banking
	Anyone Can Make a Banking Platform

	What the EVM Does
	EVM Applications Are Called Smart Contracts
	The Name “Smart Contracts”
	The EVM Runs Bytecode

	Understanding State Machines
	Digital vs. Analog
	“State-ments”
	Data’s Role in State

	How the Guts of the EVM Work
	The EVM Constantly Checks for Transactions
	Creating a Common Machine Narrative of WhatHappened
	Cryptographic Hashing
	What Hash Functions (or Hash Algorithms) Do

	Blocks: The History of State Changes
	Understanding Block Time
	The Drawbacks of Short Blocks
	“Solo Node” Blockchain
	Distributed Security

	Mining’s Place in the State Transition Function
	Renting Time on the EVM
	Hello, Gas
	Why Is Gas So Important?
	Why Isn’t Gas Priced in Ether?
	Fees as Regulation

	Working with Gas
	Gas Specifics
	How Gas Relates to Scaling the System

	Accounts, Transactions, and Messages
	Externally Owned Accounts
	Contract Accounts

	Transactions and Messages
	Characteristics of Transactions
	Characteristics of Messages

	Estimating Gas Fees for Operations
	Opcodes in the EVM
	Summary

	Chapter 4: Solidity Programming
	Primer
	Global Banking Made (Almost) Real
	Extra-Large Infrastructure
	Worldwide Currency?

	Complementary Currency
	The Promise of Solidity
	Browser Compiler

	Learning to Program the EVM
	Easy Deployment
	The Case for Writing Business Logic in Solidity
	Code, Deploy, Relax

	Design Rationale
	Writing Loops in Solidity
	Expressiveness and Security

	The Importance of Formal Proofs
	Historical Impact of a Shared Global Resource
	How Attackers Bring Down Communities
	Hypothetical Attack Written in Solidity

	Automated Proofs to the Rescue?
	Determinism in Practice
	Lost in Translation

	Testing, Testing, Testing
	Command Line Optional!

	Formatting Solidity Files
	Tips for Reading Code
	Statements and Expressions in Solidity
	What Is an Expression?
	What Is a Statement?
	Functions, Public and Private

	Value Types
	Booleans
	Signed and Unsigned Integers
	Addresses
	Members of Addresses
	Address-Related Keywords
	Less-Common Value Types
	Complex (Reference) Types

	Global Special Variables, Units, and Functions
	Block and Transaction Properties
	Operators Cheat Sheet
	Global Functions
	Exceptions and Inheritance

	Summary

	Chapter 5: Smart Contracts and Tokens
	EVM as Back End
	Smart Contracts to Dapps

	Assets Backed by Anything
	Bartering with Fiat Currency
	Ether as Glass Beads

	Cryptocurrency Is a Measure of Time
	Asset Ownership and Civilization
	Your Pile of Savings = Reputation
	Money, Tokens, Reputation … So What?

	Coins are Collectibles

	The Function of Collectibles in Human Systems
	Early Counterfeiting
	Jewelry and Art as Money
	The Step Toward Banknotes

	Platforms for High-Value Digital Collectibles
	Tokens Are a Category of Smart Contract
	Tokens as Social Contracts
	Tokens Are a Great First App

	Creating a Token on the Testnet
	Getting Test Ether from the Faucet
	Registering Your Tokens

	Deploying Your First Contract
	Outline Placeholder
	Same House, Different Address

	Playing with Contracts
	Summary

	Chapter 6: Mining Ether
	What’s the Point?
	Ether’s Source
	Defining Mining
	Versions of the Truth
	Difficulty, Self-Regulation, and the Race for Profit
	Difficulty
	Factors Required for Block Validation

	How Proof of Work Helps Regulate Block Time

	What’s Going on with the DAG and Nonce?
	All This for Faster Blocks?
	Making Fast Blocks Work

	How Ethereum Uses Stale Blocks
	Uncle Rules and Rewards

	The Difficulty Bomb
	Miner’s Winning Payout Structure
	Limits on Ancestry
	The Block Processing Play by Play

	Evaluating the Ancestry of Blocks and Transactions
	How Ethereum and Bitcoin Use Trees
	Merkle-Patricia Trees
	Contents of an Ethereum Block Header

	Forking
	Mining Tutorial
	Installing Geth on macOS
	Installing Geth on Windows
	Getting Comfortable with the Command Line
	Installing Geth on Ubuntu 14.04

	Executing Commands in the EVM via the Geth Console
	Launching Geth with Flags
	Fire Up Your Miner!
	Mining on the Testnet
	GPU Mining Rigs
	Outline Placeholder

	Mining on a Pool with Multiple GPUs
	Summary

	Chapter 7: Cryptoeconomics Survey
	How We Got Here
	New Technologies Create New Economies
	Rules of the Game

	Why Is Cryptoeconomics Useful?
	Understanding Hashing vs. Encryption
	Encryption
	Weaknesses of Encryption

	Hashing
	What Hashes Are Good For

	Why the Speed of Blocks Matters
	Ether Issuance Scheme
	Common Attack Scenarios
	Social Proof Between Machines
	Security as the Network Scales

	More About Cryptoeconomics
	Summary

	Chapter 8: Dapp Deployment
	Seven Ways to Think About Smart Contracts
	Dapp Contract Data Models
	How an EVM Back End Talks to a JS Front End
	JSON-RPC

	Web 3 Is Here (Almost)
	Experimenting with the JavaScript API
	Using Geth for Dapp Deployment

	Using Meteor with the EVM
	Install Web3.js to Build an Ethereum-Enabled WebApplication

	Executing Contracts in the Console
	How Contracts Expose an Interface

	Recommendations for Prototyping
	Third-Party Deployment Libraries
	Summary

	Chapter 9: Creating Private Chains
	Private and Permissioned Chains
	Setting Up a Local Private Chain
	Optional Flags to Use with New Chains
	Private Blockchains in Production Usage
	Summary

	Chapter 10: Use Cases
	Chains Everywhere
	The Internet of Ethereum Things
	Retail and E-Commerce
	Community and Government Financing
	Human and Organizational Behavior
	Financial and Insurance Applications
	Inventory and Accounting Systems
	Software Development
	Gaming, Gambling, and Investing
	Summary

	Chapter 11: Advanced Concepts
	Who Is Leading Software Developers Toward Decentralization?
	Vitalik’s Best Technical Blog Posts

	The Ethereum Release Schedule
	Whisper (Messaging)
	Swarm (Content Addressing)

	What the Future Holds
	Other Interesting Innovations
	Full Ethereum Roadmap
	Frontier Release (2015)
	Homestead Release (2016)
	Metropolis (2017)
	Serenity (2018)

	Summary

	Index

