

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

iii

Contents at a Glance

About the Author��xiii

About the Technical Reviewer��� xv

Acknowledgments��� xvii

Introduction�� xix

Chapter 1: An Introduction to Game Development■■ ���1

Chapter 2: An Introduction to the Android Game Development Ecosystem■■ ������������������������7

Chapter 3: Game Design for Beginners: Droid Runner■■ ��25

Chapter 4: Building a Game Engine■■ ��33

Chapter 5: Writing a Renderer■■ ��47

Chapter 6: Game Entities■■ ��87

Chapter 7: Building Game Levels with Collision■■ ���121

Chapter 8: Virtual Cameras■■ ��149

Chapter 9: Lighting and Materials■■ ��185

Chapter 10: Game Audio■■ ���217

Chapter 11: Self-Publishing 101■■ ���249

iv Contents at a Glance

Appendix A: Using the Android Development Environment■■ ��263

Appendix B: Android Hardware Overview■■ ��269

Appendix C: C++ Programming■■ ��273

Appendix D: C++ Math■■ ��277

Index��289

xix

Introduction

Over the last few years, game development has become more open to bedroom programmers. In
the 1980s and early 1990s, this was a common route into game development. In the late 1990s and
early 2000s, game development budgets, schedules, and technical requirements meant that it was
very uncommon to find game programmers creating games in their own right.

This all changed with the release of mobile phones and more recently tablets with 3D graphics
capabilities which surpass consoles such as the Playstation 2 and Sega Dreamcast.

This book will introduce the reader to the world of game development on the Android platform.
The reader will learn how to plan, begin, and execute a game development project from beginning
to end.

I hope you enjoy it.

1

Chapter 1
An Introduction to Game
Development

Video games have become an important part of our culture in a relatively short period of time. The
industry is also developing into a major pillar of many modern economies, with game development
tax schemes being introduced into many developed countries. These are coinciding with a period
of time where it has never been easier to release a game into the commercial market. For the last
two decades, game development teams have required financial backing and a level of expertise
to pass stringent tests by platform holders to be allowed access to their development hardware.
Today, anyone with a mobile phone or a tablet and a computer, even a laptop, can build a game and
have it for sale with a minimum of time and financial backing. This does not mean that every game
is successful: it is still essential to have a good understanding of the technical aspects involved in
making games and the considerations involved in designing games which people will want to play.
Sometimes the best way to develop this knowledge is to begin at the very beginning, so we’ll look at
some video game history.

A Brief History of Video Games
One of the first video games is widely acknowledged to be Spacewar!. Spacewar! was created by
Stephen Russell at MIT and released in 1962 as a demonstration of the power of the recently released
PDP-1 computer system. Games such as Spacewar!, however, did not reach a mass critical appeal.

The era of commercially successful video games arguably began when a student of Russell’s
at Stanford, Nolan Bushnell, along with his partner Ted Dabney, formed Atari in 1972. Atari was
responsible for releasing massively popular and commercially successful games such as Pong,
Asteroids, and Breakout. Atari would remain one of the biggest players in the video game business
until the entry of two major competitors.

Nintendo and Sega both entered the video game business in 1983 with the Nintendo Entertainment
System and Sega SG-1000 (and later the Master System). These companies would become the

2 CHAPTER 1: An Introduction to Game Development

major players in the video game business through to the late nineties and would spawn the creation
of massive gaming franchises such as Mario, Legend of Zelda, Sonic the Hedgehog, and Sega Rally.

Almost as importantly, Nintendo and Sega would popularize the concept of handheld gaming.
Through their platforms such as the Game Boy, Game Gear through to the Nintendo 3DS, and
current competition from Sony’s Playstation Vita, Nintendo and Sega proved that there was an
appetite for people to play games on the move.

This branch of gaming has been converging with the mobile phone platforms ever since phones
begun to have processors and graphics capabilities to run programs which we can recognize as
games. Nokia handsets in the late nineties were released with a version of the game Snake, which
was very popular. Qualcomm released the BREW (Binary Runtime Environment for Wireless) platform
in 2001. Nokia tried to develop a dedicated mobile phone–based gaming platform called NGage
and released this in 2003. Both of these platforms showed what a mobile phone platform could
eventually be capable of.

The first breakout success in mobile phone gaming came from Apple in 2008, when they released
their App Store onto the iPhone 3GS in 2008. This was followed shortly after by Google’s Android
Market (currently Google Play), which launched in September 2008. These stores democratized
console game development by, for the first time, allowing any company or individual to register as
a developer and release games for sale directly to the public. Video game consoles up to this point
required a developer to be registered and pay considerable sums to gain access to development
versions of the hardware which they were targeting. Now anyone could make apps and games with
their home computer and their own mobile phone.

The App Store and Google Play have gone from strength to strength as the hardware in mobile
phones has improved rapidly. In the last four years, the mobile platforms have moved from
single-core processors with no hardware floating point support to multi-core setups, which are
arguably as capable as low-end desktop CPUs. Similarly, the GPUs available have gone from
fixed-pipeline OpenGL ES 1.1–capable parts to modern chips with at least OpenGL ES 2.0 support
as well as some of the most modern GPUs supporting version 3.0.

Some of those terms still sound daunting for a complete newcomer to the game development scene,
and this can create a barrier to entry. Many people can be put off at this point, so it’s important to
dispel these feelings and take a look at who can and should make games.

Who Makes Games?
As I touched on in the previous section, with the modern app platforms on mobile phones, the
traditional model of well-established companies signing publishing deals with massive game
publishing houses is no longer the most common method for releasing video games.

There are currently all manner of developers on these mobile platforms. Some of the biggest remain
the traditional companies such as Electronic Arts, who make very popular and successful games.
However, there is a growing community of independent developers who are creating meaningful
game experiences which are also hitting some very large numbers of downloads and creating
substantial revenues. A great example of this is Temple Run. Temple Run is developed by Imangi
Studios, a husband-and-wife team who added an extra member to create the art for their game.

3CHAPTER 1: An Introduction to Game Development

I think Jesse Schell put it best in his book, The Art of Game Design, when discussing who can be a
games designer. In his very first chapter he addresses how to become a game designer by asking
the question:

“How do you become a game designer?”

His response is:

“Design games. Start now! Don’t wait! Don’t even finish this conversation!
Just start designing! Go! Now!”

By the time you finish this book, you’ll have made a game from scratch and will be ready to move on
to developing your own games from your own designs.

It’s also worth noting that games don’t always have to be video games. Many of the most popular
games throughout history have been board games, and examples such as chess and Monopoly
spring instantly to mind. So what is it that makes video games different?

The Difference between Computer Games and Board Games
Traditional games have been around for thousands of years, yet there is an appeal to modern video
games which sets them apart from those games. Traditional games have a formal structure. They
usually have a set of rules, an element of randomness, a conflicting goal for players to achieve, and
a win condition.

An example would be Monopoly. The goal of the game for each player is to be the last with money
remaining. You can reduce the amount of money others have by developing property squares which
you own, and the rules of the game dictate how and when you can carry out this development. There
is an element of randomness added to the game by way of having dice to roll, which determine
which property squares your piece lands on.

Despite the endless variations which can occur when playing a game such as Monopoly, the rules
and actions are still fairly limited in scope. These games still rely on the players to remember how
to play the game for it to be successful. Video games have an advantage in the sense that the
computer can simulate a game without the need for the player to remember the state of the game.

Video games can therefore be much more complicated systems than traditional games. Today’s
console and PC games are perfect examples of this complexity. Games such as Microsoft’s Halo 4
have an enormous set of rules which are all executed in real time. Each weapon has different
characteristics; there are vehicles and enemies which each have a unique tuning in their AI to represent
differing personalities. To many on the surface, it might seem much like many other first-person
shooter games, but the interplay among the different game rules is what separates video games
from traditional games and also separates the good games from the great ones. Great games almost
seamlessly blend complicated rules, AI, and player interaction into a believable world and story.

Now that we’ve looked at the differences between board games and console games, we’ll take
a look at what makes games designed for mobile devices different from games designed for a
home console.

4 CHAPTER 1: An Introduction to Game Development

Comparing Mobile Phones to Game Consoles
This may come as a surprise, but there is actually very little difference between current Android
mobile phones and the traditional game platforms such as the Microsoft Xbox 360, the Sony
Playstation 3, and Nintendo’s Wii U.

Each system has its own trade-offs and potentially unique controller interfaces, but under the
surface each system conforms to a few set standards.

They all have a CPU which executes the game code.	

Each has a GPU which renders the game geometry.	

Each has a display of varying resolution and aspect ratio.	

They all output sound.	

They all take user input.	

The major differentiating factor from a user’s perspective is the aspect of input. Traditionally, PC
games have been played with a keyboard and mouse, console games with a controller, and modern
mobile games with a touch screen. This requires that the games be designed differently to best suit
the input device of the system being targeted.

From a development perspective, mobile phones are currently weaker than the consoles and much
weaker than PCs. Despite supporting modern features such as vertex and fragment shaders, the
number of vertices which can be processed and the number of pixels which can be drawn is limited
on a phone compared to a PC or console. There are also stricter limits to the memory bandwidth
between the phone’s memory and the GPU, making it important to send only relevant information
which the GPU can use to render the current frame.

These restrictions can impact a game at the lowest level of its implementation, and game
programmers have become adept at designing their technology to accommodate these differences.
Many of the challenges will be common to all mobile games, and sharing the advances made from
one project will only help to benefit games which follow. To that end, game engines have become
a fundamental part of developing games on console and ever more increasingly on mobile
platforms also.

An Overview of Game Engines
In the 1980s, it was not uncommon for every individual game to be written from scratch, with very
little code reuse between projects. This began to change with the emergence of game engines in the
early to mid-1990s. With the advent of 3D accelerators, the complexity of game code was increasing
rapidly. It was quickly becoming necessary to understand a large number of topics related to game
development, such as audio, physics, AI, and graphics programming. As the complexity increased,
so did the sizes of teams necessary to create games and also the money required. It wasn’t long
before there was a dual track developing within game development. There were technical teams
writing the systems which games run upon and there were the game programming teams developing
the games themselves.

5CHAPTER 1: An Introduction to Game Development

From this was born the concept of a game engine. The low-level systems were written in an abstract
manner so that games could be developed over the top. A key player in the engine market at this
time was Id Software, which licensed its Id Tech engines to other developers. A notable franchise
which was born on Id’s game engines was Half-Life, which was created using the Quake engine.
Id’s own Quake 3, released in 1999, was their largest release at the time and was developed on their
Id Tech 3 engine. This engine was also licensed, and the most notable example was the use of the
engine by Infinity Ward to create Call of Duty.

Since then, Unreal has become a massively successful engine licensed by many game teams from
the United States, Europe, and Japan to create some of the largest console games of the current
generation, and the Unity engine is currently used in a wide range of titles on both Android and iOS.

From an individual perspective, it’s important to realize the core concept of what makes a game
engine an attractive prospect, whether it’s through licensing another developer’s technology or
writing your own code in an engine-like manner. Using this technique allows you to reuse large
sections of code between projects. This reduces the financial cost of developing titles as you move
forward and increases your productivity by allowing you to spend more and more time on game
features and less time on the engine. In reality, it’s never quite that simple, but it is important to try
to separate engine code from game logic code as much and as often as possible. This is something
which we will be trying to achieve as we move through this book: from the beginning to the end,
we’ll be sure to look at the separation of reusable engine code and game logic which is specific to
an individual app.

Summary
That concludes a whirlwind introduction to video game development, from its roots all the way
through to the current state of modern development. Each of these topics could be covered in depth
in volumes of their own, but the grounding we have established here should stand us in good stead
for the rest of this book.

We’re going to walk through the development of a game, from setting up a game project in Eclipse,
designing a small game, and implementing a game engine, all the way through to publishing our first
title in Google Play.

Let’s get started.

7

Chapter 2
An Introduction to the Android
Game Development Ecosystem

After our brief introduction to the history of video games, we’ll look at taking our first steps into
defining their future. The Android platform provides us with easier access to cross-platform
development tools and 3D graphics hardware than has ever been available before. This makes it an
ideal candidate platform for an introduction to game development. All you need is a computer, so
let’s get started.

Java and the Dalvik Virtual Machine
The Java programming language was released in 1995 by Sun Microsystems and is currently
maintained by Oracle. The syntax for the language was based on C and was therefore familiar to many
programmers who were already well practiced in C and C++. The major differences between C++ and
Java are that Java is a managed language and the code is executed on the Java Virtual Machine.

Java was the only language option available for app developers when Android was launched. The
Android developers did not use the Java Virtual Machine and wrote their own implementation,
which they named Dalvik. Dalvik originally did not have many of the features which were associated
with other mature Java Virtual Machines. One particularly notable omission was just-in-time (JIT)
compilation. As Java is a managed language which runs in a virtual machine, the code is not
compiled directly into native CPU instructions but rather into bytecode which can be consumed by
the virtual machine. With JIT, the virtual machine can compile blocks of bytecode into machine code
ahead of it being needed by the program and therefore can provide a speed boost to the running
program. These compiled units can also be cached for future speed improvements. Android did not
have this feature until version 2.2.

Many of the low-level APIs relevant to game programming are also still implemented in C on the
Android platform, such as Open GL. Java on Android supports these APIs by using the Java Native
Interface (JNI). The JNI provides a mechanism to support the passing of parameters to function calls

8 CHAPTER 2: An Introduction to the Android Game Development Ecosystem

of native libraries from the Java Virtual Machine and also for the native libraries to return values to
the Java Virtual Machine.

This creates suboptimal conditions for game developers. The managed nature of the Java language
means that the developer is not responsible for the game’s memory management during its lifetime.
While there are many arguments for why this may be a good thing for normal apps, games which
require execution in real time cannot afford to hand control of memory allocation and garbage
collection exclusively to an external system, which also adds hidden costs to calling certain
functions in Java.

A good example of a hidden cost is found when using iterators on collections. As with many other
Java objects, iterators are immutable. This means that once you have an iterator, it cannot be
changed. When moving from the current iterator to the next position in a collection, Java allocates
a new iterator and returns it in the new position to the caller while marking the old iterator for
deletion. Eventually, Dalvik will call the garbage collector to free all of the orphaned iterators, and this
will cause a noticeable drop in framerate and even cause your game to stall. This leads us to C++
and the NDK.

C++ and the NDK
Google released the Android Native Development Kit (NDK) to provide developers with another
option for developing their apps on Android. The first version was released for Android 1.5 but did
not contain essential support for SDKs such as OpenGL ES. The Revision 5 release of the NDK is
the version which I would consider to be the first viable version of the NDK for game programming.
This revision added the ability to support NativeActivity and the native app glue library, which
allows developers to write Android apps entirely in C++ without any need for Java. This is possible
because this revision of the NDK also added support for audio through OpenGL ES, native audio
support, native access to the system’s sensors such as the accelerometers and gyroscope, and also
native access to files stores within the app APK package.

There are a number of benefits to being able to write Android apps in C++. Existing developers
can add support for the platform to their existing C++ codebases without requiring the expense of
maintaining Java code as well as C++ code for the system, and new developers can begin writing
apps for Android, which can then be ported to other platforms or developed for multiple platforms
simultaneously.

Developing games in C++ doesn’t come without challenges. As C++ is compiled to native code
and Android supports multiple CPU instruction sets, it becomes important to ensure that the code
written compiles and executes without error and as expected on all of these. Android to date
supports the following:

ARM	

ARM v7a	

MIPS	

x86	

There are devices on the market which support each of these instruction sets. As Java compiles to
bytecode and runs on a virtual machine, this is transparent to the Java developer. The NDK toolset at

9CHAPTER 2: An Introduction to the Android Game Development Ecosystem

the time of writing is also not as mature as the Java toolset, and the integration with the Eclipse IDE
is a little more complicated and troublesome, especially with regard to code completion, building,
and debugging functionality.

Despite the troubles and drawbacks, the performance benefits to developing on Android in C++
still outweigh the downsides to working with the NDK toolsets, and hopefully the maturity and
functionality of these tools will only improve over time. Now that you can see the advantages of
C++ over Java for game development, it’s important to take a look at some of the issues which
are common to both languages in the Android ecosystem. These sets of problems are not entirely
new and have been encountered, tackled, and solved for many years in PC development in both
the OpenGL and DirectX space; however, these considerations are new to many mobile phone
developers. These problems have been grouped together, and the term “fragmentation” has been
coined to encompass them all.

Fragmentation and the Android Ecosystem
There are many opinions and varying definitions of what fragmentation on the Android platform
means to different people. I will look at the problem purely from a game development perspective.

Android Versions
The first issue from a development perspective is to choose a version of Android which we would
like to target as the minimum. As I discussed in the previous section, many essential features of
the NDK were added only with Revision 5. NDK r5 supports Android API level 9 and, at the time of
writing, the Android Developers Dashboard shows that 86.6% of Android devices which accessed
Google Play in the proceeding 14 days supported this version; 13.4% may be a considerable chunk
of the market which you may not be willing to forego from your potential customer base. For ease of
development, I have decided that it is acceptable to not support this ever-decreasing percentage of
Android versions. So, to be clear, this book will target Android API level 9.

Screen Resolution and Aspect Ratio
The next often discussed aspect of fragmentation is screen resolution and aspect ratio. This is one
aspect of the argument which I have never fully understood. Games have been written for the last
couple of decades to support multiple resolutions and aspect ratios. This is a common requirement
on PC, Xbox 360, and PS3 as well as for developers who previously developed cross-platform titles.
It is less convenient that the early versions of iOS devices supported the same resolutions or a
multiple of those and maintained the same aspect ratio, but that is also no longer the case. We will
be developing our games with multiple screen resolutions and aspect ratios in mind.

Input Device Support
Another area of fragmentation is with input device support. Some Android devices support single
touch, some varying levels of multi-touch. Some have accurate sensors; some don’t have those
sensors at all. The best approach is to design the game you would like to make which supports an
acceptable number of devices. If your design doesn’t require multi-touch support, you will reach

10 CHAPTER 2: An Introduction to the Android Game Development Ecosystem

a wider audience, but if the game would be noticeably better with that support it may not be worth
diminishing the quality of your work and damaging the sales by supporting devices which don’t allow
for the best experience. Another option is to offer multiple control schemes if and where possible
and choosing which to use at runtime.

GPUs
The last major area of fragmentation is with GPUs. There are four major players in the Android GPU
space, and more advanced graphics programming techniques will run into issues where some
are not optimal for certain GPUs or not supported at all. Each has different support for texture
compression formats, for instance, but mostly these issues are outside the scope of this book.

HelloDroid - Our First Android Game
After digesting all of the information so far on games, development, and the Android platform, now
would be a great time to look at a small game example. The game is a basic Breakout clone. You
can control the paddle using the left and right arrows on the screen. Figure 2-1 is a screenshot from
the game running on a Galaxy Nexus.

Figure 2-1.  HelloDroid, a Breakout clone

Parts of the code are quite complex and will be the subject of discussion in later chapters; some of
this code involves setting up Open GL, polling for Android system events, and handling user input.
Breakout is a great first attempt at writing our own game, as it incorporates several key concepts
from larger games.

First, there is a player entity which is controlled by the user, the paddle.	

There is a basic UI in the buttons to control the paddle.	

There are basic nonplayer entities in the ball and blocks, which also cause us to 	
have to consider real-time collision detection and response.

11CHAPTER 2: An Introduction to the Android Game Development Ecosystem

Despite the relatively primitive graphics and simple gameplay mechanics, it’s a good exercise in
creating a fully formed game experience, and it really wasn’t all that long ago when games weren’t
much more than what we’re about to create in the next few sections.

To achieve our goals, you’re going to run through the steps required to organize, write, and build the
game for Android. You’ll organize your game into a project using Eclipse, write your code using the
NDK, and build your game using the NDK build process.

Creating a New Eclipse Project
Eclipse is the IDE of choice for Android development. The Android team at Google provides a
version of Eclipse with most of the Android tools bundled for all platforms. The latest information on
how to obtain this IDE can be obtained from http://developer.android.com/sdk/index.html.

The NDK is a separate download which is updated frequently. For the best installation instructions,
please visit http://developer.android.com/tools/sdk/ndk/index.html.

Once you have these downloaded, installed, and configured for your chosen platform, it’s time to
begin your first Android game. The first step in this process is to create a new project.

1.	 Ensure that the Eclipse IDE is aware of the location of the NDK on your
computer by setting the option in Preferences. You can find the option by
opening Window ➤ Preferences, then navigating to Android ➤ NDK and
setting the appropriate path into NDK Location.

2.	 Start the New Project wizard (see Figure 2-2) from the File ➤ New ➤ Project
menu.

http://developer.android.com/sdk/index.html
http://developer.android.com/tools/sdk/ndk/index.html

12 CHAPTER 2: An Introduction to the Android Game Development Ecosystem

3.	 From here, select the Android Application Project and click Next. The New
Android Application box as shown in Figure 2-3 should be shown.

Figure 2-2.  The New Project Dialog

13CHAPTER 2: An Introduction to the Android Game Development Ecosystem

4.	 On the New Android Application Dialog, enter the application name for your
app; I have chosen HelloDroid. The project name will be automatically filled
out as you enter the application name and is the name used by Eclipse to
identify the project in the Project Explorer.

5.	 The package name is a unique identifier to be used by the Android
ecosystem. It is usually broken up into separate sections which are delimited
by a period. The first section is usually com and identifies the developer of
the app as a company. The next entry is usually a derivative of a company
name, a personal name, or a project name. For my example, I have used
beginndkgamecode. The last entry is generally the name of the project. My final
package name was com.beginndkgamecode.hellodroid.

6.	 Changing the Minimum Required SDK to API 9: Android 2.3 (Gingerbread)
is the other change to be made to these options.

7.	 Once those options are set, click Next.

8.	 On the next screen, uncheck Create custom launcher icon and Create
activity. If you are happy with the path for the project, click Finish.

Figure 2-3.  The New Android Application Dialog

14 CHAPTER 2: An Introduction to the Android Game Development Ecosystem

Your project should now exist in the Project Explorer and we can move on to setting the project up
to support the Android NDK.

Adding NDK Support
Adding NDK support to the project is a straightforward task.

1.	 Right-click the project in the Project Explorer window and navigate to Android
Tools. Select Add Native Support . . . from the popup menu.

2.	 You will now be asked to provide a name for the native code library which will
be generated by the build process. The name provided should be sufficient
provided that the name for your app is reasonably unique. Click Finish when
you are satisfied with the name.

We now have a few more changes to make before we are ready to begin adding code to our project.

First we need to set up the NativeActivity support, which will allow us to create apps without
adding any Java code. We do this by adding the android.app.NativeActivity node to our manifest.

1.	 Open the AndroidManifest.xml file, which can be found in the project folder
(see Figure 2-4).

Figure 2-4.  Eclipse Android Manifest Editor View

15CHAPTER 2: An Introduction to the Android Game Development Ecosystem

2.	 The options we need to access can be found on the Application tab, so click
that now (see the bottom of Figure 2-4).

3.	 Click Browse beside the Theme selection box and select
Theme.NoTitleBar.Fullscreen from the options provided. This option
informs our app to run in full screen and also hides the Android status bar.

4.	 Set HasCode to true. This is necessary to ensure that our app builds
properly.

5.	 Click the Add button, which can be found beside the Application Nodes
window. Select Activity and click OK.

6.	 Click Browse beside the Name entry in the Attributes for Activity section.
Untick Display classes from sources of project '<project name>' only and
type NativeActivity into the filter box. Select the NativeActivity class and
click OK.

7.	 For label, enter @string/app_name.

8.	 Select landscape for the screen orientation to ensure that our game will
always run in landscape mode.

9.	 Click the NativeActivity node in the Application Nodes window and click
Add once more. Enter the Name as android.app.lib_name and the Value
as the LOCAL_MODULE name, which can be found in the Android.mk file in the
project’s jni folder.

10.	 Select the NativeActivity node in the Application Nodes window (this is the
last time, phew!) and Add an Intent Filter. Add an Action and a Category to
the Intent Filter by selecting it and using the Add menu.

11.	 Set the name of the Action to android.intent.action.MAIN and the name of
the Category to android.intent.category.LAUNCHER.

Your project setup is now complete. We can now move on to the NDK build process.

A Look at the NDK Build System
The NDK provides a build process called ndk-build. This process reads Android-specific makefiles
which contain all the information needed to build a native library.

Note  The Android NDK contains a build system which is based on Make. Make is a popular program-building
utility, especially within Linux-based operating systems, which can specify the parameters for building programs
in files known as makefiles. The Android NDK has a modified version of these files which we will look at
during various chapters in this book.

16 CHAPTER 2: An Introduction to the Android Game Development Ecosystem

The default Android.mk file, which can be found in the jni folder, will contain the following text:
 
LOCAL_PATH := $(call my-dir)
 
include $(CLEAR_VARS)
 
LOCAL_MODULE := hellodroid
LOCAL_SRC_FILES := hellodroid.cpp
 
include $(BUILD_SHARED_LIBRARY)
 
This basic makefile carries out only a few steps.

1.	 It sets the local build path for the makefile which allows it to find other files
relative to its own path.

2.	 It then calls an external command which clears the previously set build
variables.

3.	 It defines the name of the library to be built in the LOCAL_MODULE variable and
the source files to be compiled in the LOCAL_SRC_FILES variable.

4.	 To wrap the file up, it calls the command which causes the build system to
execute the build process and compiles and then links the code.

Modifying the Build File
We need to modify this file to add the external libraries necessary for building games using the NDK,
which requires these features. More information on the available libraries can be found in the
STABLE-APIS.html file included in the docs folder in the NDK.

First, we define the external libraries which our app will need to load by using LOCAL_LDLIBS.
 
LOCAL_LDLIBS := -llog -landroid -lEGL -lGLESv2
 
This line tells the build system that we would like our app to be able to use Android’s existing log,
android, EGL, and GLESv2 (Open GL ES 2.0) libraries. As these are common to many apps and the
Android OS itself, they are linked in dynamically.

We will also require a static NDK library to be linked in with our app. This static library is called
android_native_app_glue and provides the functionality which we require to enable us to write our
app in C++ without using any Java. We include this as a static library by using the following line:
 
LOCAL_STATIC_LIBRARIES := android_native_app_glue
 
We have one last line to add to our makefile. This line tells the build system to import the static
library into our app.
 
$(call import-module, android/native_app_glue)
 

17CHAPTER 2: An Introduction to the Android Game Development Ecosystem

The final Android.mk file will look like this:
 
LOCAL_PATH := $(call my-dir)
 
include $(CLEAR_VARS)
 
LOCAL_MODULE := hellodroid
LOCAL_SRC_FILES := hellodroid.cpp
LOCAL_LDLIBS := -llog -landroid -lEGL -lGLESv2
LOCAL_STATIC_LIBRARIES := android_native_app_glue
 
include $(BUILD_SHARED_LIBRARY)
 
$(call import-module, android/native_app_glue)
 

Adding Application-Level Build Options
There are also application-level build options which we need to have set. These are added to a file
named Application.mk. This file is not created as part of the default project setup in Eclipse, so you
will have to create this one yourself. You can right-click the jni folder and select New ➤ File from
the menu. Name the new file Application.mk and enter the following line:
 
APP_PLATFORM := android-9
 
This line informs the NDK that we are using API level 9 of its libraries. That’s all we need for now, but
we’ll be adding more to these files further down the track.

At this point, you should be able to right-click the project name and select Build Project. This
should output text in the output console and hopefully be error free. If you do encounter any errors at
this point, try to tackle the first error in the list and then retry. Many errors cause cascading effects,
and often fixing the first then fixes all subsequent errors. If the errors are proving to be stubborn,
you should go back over everything from the beginning and try to look for differences between the
code, makefiles and projects which you have, and the sample provided for this chapter. Once you
find differences which fix the errors in question, try to have a play around with the configuration or
code to become familiar with the errors, how to spot them, and, importantly, how to fix them. Game
developers are not infallible, and learning how to decipher errors created by our tools, such as the
compiler, is an important skill to develop and one you will likely need to use often.

Enabling Debugging
Setting up the build for debugging support is the next task which we must complete.

1.	 Right-click the project, mouse over Build Configurations, and select
Manage.

2.	 Select New in the window which appears. Name the new configuration
Debug and copy the settings from Default; click OK. Click OK again in the
Manage Configurations window.

18 CHAPTER 2: An Introduction to the Android Game Development Ecosystem

3.	 Right-click the project once more and select Properties. Navigate to the
C/C++ Build menu and switch to the Debug configuration. Untick
Use default build command and change the entered line to the following:
 
ndk-build NDK_DEBUG=1
 

Note  If you have a multi-core machine and would like to utilize the extra processors in your system, you
can also add the option -jX, where X is the number of jobs to be created. I use the option -j8 on my
quad-core system with Hyper-Threading support.

Now you can switch between a debuggable and an optimized build via the Build Configurations ➤
Set Active menu.

Our project setup is complete and ready to go; now we can add some code to make a game.

Running the Game
The source code for the game can be found in the file Chapter2.cpp included with this book or
available from the book’s website at http://www.apress.com/9781430258308.

You can copy the contents of this file directly into the cpp file in your project, and build and run the
game on your device.

The core game functionality lives in the following function:
 
static void enigine_update_frame(struct engine* engine)
{
 if (engine->touchIsDown)
 {
 if (engine->touchX < 0.15f && engine->touchY < 0.2f)
 {
 engine->playerX -= 0.015f;
 if (engine->playerX < PADDLE_LEFT_BOUND)
 {
 engine->playerX = PADDLE_LEFT_BOUND;
 }
 }
 else if (engine->touchX > 0.85f && engine->touchY < 0.2f)
 {
 engine->playerX += 0.015f;
 if (engine->playerX > PADDLE_RIGHT_BOUND)
 {
 engine->playerX = PADDLE_RIGHT_BOUND;
 }
 }
 }
 

http://www.apress.com/9781430258308

19CHAPTER 2: An Introduction to the Android Game Development Ecosystem

 engine->ballX += engine->ballVelocityX;
 if (engine->ballX < BALL_LEFT_BOUND || engine->ballX > BALL_RIGHT_BOUND)
 {
 engine->ballVelocityX = -engine->ballVelocityX;
 }
 
 engine->ballY += engine->ballVelocityY;
 if (engine->ballY > BALL_TOP_BOUND)
 {
 engine->ballVelocityY = -engine->ballVelocityY;
 }
 
 if (engine->ballY < BALL_BOTTOM_BOUND)
 {
 // reset the ball
 if (engine->ballVelocityY < 0.0f)
 {
 engine->ballVelocityY = -engine->ballVelocityY;
 }
 
 engine->ballX = BALL_START_X;
 engine->ballY = BALL_START_Y;
 
 engine_init_blocks(engine);
 }
 
 float ballXPlusVelocity = engine->ballX + engine->ballVelocityX;
 float ballYPlusVelocity = engine->ballY + engine->ballVelocityY;
 
 const float ballLeft = ballXPlusVelocity - BALL_HALF_WIDTH;
 const float ballRight = ballXPlusVelocity + BALL_HALF_WIDTH;
 const float ballTop = ballYPlusVelocity + BALL_HALF_HEIGHT;
 const float ballBottom = ballYPlusVelocity - BALL_HALF_HEIGHT;
 const float paddleLeft = engine->playerX - PADDLE_HALF_WIDTH;
 const float paddleRight = engine->playerX + PADDLE_HALF_WIDTH;
 const float paddleTop = engine->playerY + PADDLE_HALF_HEIGHT;
 const float paddleBottom = engine->playerY - PADDLE_HALF_HEIGHT;
 if (!((ballRight < paddleLeft) ||
 (ballLeft > paddleRight) ||
 (ballBottom > paddleTop) ||
 (ballTop < paddleBottom)))
 {
 if (engine->ballVelocityY < 0.0f)
 {
 engine->ballVelocityY = -engine->ballVelocityY;
 }
 }
 )
 bool anyBlockActive = false;
 for (int32_t i=0; i<NUM_BLOCKS; ++i)

20 CHAPTER 2: An Introduction to the Android Game Development Ecosystem

 {
 block& currentBlock = engine->blocks[i];
 if (currentBlock.isActive)
 {
 const float blockLeft = currentBlock.x - BLOCK_HALF_WIDTH;
 const float blockRight = currentBlock.x + BLOCK_HALF_WIDTH;
 const float blockTop = currentBlock.y + BLOCK_HALF_HEIGHT;
 const float blockBottom = currentBlock.y - BLOCK_HALF_HEIGHT;
 if (!((ballRight < blockLeft) ||
 (ballLeft > blockRight) ||
 (ballTop < blockBottom) ||
 (ballBottom > blockTop)))
 {
 engine->ballVelocityY = -engine->ballVelocityY;
 
 if (ballLeft < blockLeft ||
 ballRight > blockRight)
 {
 engine->ballVelocityX = -engine->ballVelocityX;
 }
 
 currentBlock.isActive = false;
 }
 anyBlockActive = true;
 }
 }
 
 if (!anyBlockActive)
 {
 engine_init_blocks(engine);
 }
})
 
The lack of comments in the code reflects the fact that code should be fairly self-documenting in
its simplicity. The first section of this function is concerned with updating the paddle position if the
player is pressing on the top left or right corner of the screen.

touchIsDown is set to true in the function engine_handle_input when Android informs the app that
the user has put their finger on the screen; it is set to false again when Android informs us that the
finger has been lifted.
 
if (engine->touchIsDown)
{
 
The touch coordinates start from 0,0 in the top left corner and go to 1,1 in the bottom right corner.
The if check below tells the app if the player is touching the top left corner; if so, we move the
player’s position to the left. Once the player is as far to the left as we would like to allow, we clamp
their position at that point.
 

21CHAPTER 2: An Introduction to the Android Game Development Ecosystem

 if (engine->touchX < 0.15f && engine->touchY < 0.2f)
 {
 engine->playerX -= 0.015f;
 if (engine->playerX < PADDLE_LEFT_BOUND)
 {
 engine->playerX = PADDLE_LEFT_BOUND;
 }
}
 
This next test is doing exactly the same, except that it is checking the top right corner for touch and
is moving the player to the right.
 
 else if (engine->touchX > 0.85f && engine->touchY < 0.2f)
 {
 engine->playerX += 0.015f;
 if (engine->playerX > PADDLE_RIGHT_BOUND)
 {
 engine->playerX = PADDLE_RIGHT_BOUND;
 }
 }
}
 
The next section updates the ball’s position.

The first line moves the ball horizontally by its horizontal velocity.
 
engine->ballX += engine->ballVelocityX;
 
This test reverses the direction of travel for the ball if it moves off the left or right of the screen.
 
if (engine->ballX < BALL_LEFT_BOUND || engine->ballX > BALL_RIGHT_BOUND)
{
 engine->ballVelocityX = -engine->ballVelocityX;
}
 
This code does the same but for the vertical direction and tests against the top of the screen only.
 
engine->ballY += engine->ballVelocityY;
if (engine->ballY > BALL_TOP_BOUND)
{
 engine->ballVelocityY = -engine->ballVelocityY;
}
 
This code checks if the player has allowed the ball to drop off of the bottom of the screen. If the ball
has gone off the bottom, we reset the ball to its starting positing, ensure it is travelling up the screen,
and re-enable all of the blocks.
 
if (engine->ballY < BALL_BOTTOM_BOUND)
{
 // reset the ball
 if (engine->ballVelocityY < 0.0f)

22 CHAPTER 2: An Introduction to the Android Game Development Ecosystem

 {
 engine->ballVelocityY = -engine->ballVelocityY;
 }
 
 engine->ballX = BALL_START_X;
 engine->ballY = BALL_START_Y;
 
 engine_init_blocks(engine);
}
 
The next piece of code is checking if the player has successfully hit the ball by carrying out an
overlap test on the two rectangles.

First we get the ball x and y coordinates plus the current velocity. This allows us to determine if there
will be a collision next frame and allows us to react accordingly.
 
float ballXPlusVelocity = engine->ballX + engine->ballVelocityX;
float ballYPlusVelocity = engine->ballY + engine->ballVelocityY;
 
We then calculate the positions of the edges of the ball’s bounding rectangle.
 
const float ballLeft = ballXPlusVelocity - BALL_HALF_WIDTH;
const float ballRight = ballXPlusVelocity + BALL_HALF_WIDTH;
const float ballTop = ballYPlusVelocity + BALL_HALF_HEIGHT;
const float ballBottom = ballYPlusVelocity - BALL_HALF_HEIGHT;
 
And do the same for the paddle:
 
const float paddleLeft = engine->playerX - PADDLE_HALF_WIDTH;
const float paddleRight = engine->playerX + PADDLE_HALF_WIDTH;
const float paddleTop = engine->playerY + PADDLE_HALF_HEIGHT;
const float paddleBottom = engine->playerY - PADDLE_HALF_HEIGHT;
 
We then use if tests to determine if the two are overlapping. A plain-English example of the test
would be as follows:

If the right edge of the ball is to the left of the paddle’s left edge, then we are not 	
overlapping.

Or if the ball’s left edge is further right than the paddle’s right edge, then we are 	
not overlapping.

Or if the ball’s bottom edge is higher than the paddle’s top edge, then we are not 	
overlapping.

Or if the ball’s top edge is lower than the paddle’s bottom edge, then we are not 	
overlapping.

If none of those tests are true, then we are overlapping.	
 
if (!((ballRight < paddleLeft) ||
 (ballLeft > paddleRight) ||
 (ballBottom > paddleTop) ||

23CHAPTER 2: An Introduction to the Android Game Development Ecosystem

 (ballTop < paddleBottom)))
{
 if (engine->ballVelocityY < 0.0f)
 {
 engine->ballVelocityY = -engine->ballVelocityY;
 }
}
 

This overlapping-rectangles algorithm can be quite confusing, and while illustrations at this point
may help make this clear, I’d advocate sitting down with a pen and paper or cutting out two
rectangles and working through the different scenarios until it makes sense. You can also edit the
code to slow down the ball velocity and try to work out the mechanics with the running game. A firm
grasp of collisions and visualizing geometry will come in handy during a game development career.

We then loop over all of the blocks and carry out the same test between the ball and each of the
blocks individually.

The first bool is used to track whether we have any blocks remaining. We initially set this to false.
 
bool anyBlockActive = false;
 
We then loop over the blocks.
 
for (int32_t i=0; i<NUM_BLOCKS; ++i)
{
 block& currentBlock = engine->blocks[i];
 
We check if the block is still active:
 
if (currentBlock.isActive)
{
 
And then calculate the bounding edges of the rectangle
 
const float blockLeft = currentBlock.x - BLOCK_HALF_WIDTH;
const float blockRight = currentBlock.x + BLOCK_HALF_WIDTH;
const float blockTop = currentBlock.y + BLOCK_HALF_HEIGHT;
const float blockBottom = currentBlock.y - BLOCK_HALF_HEIGHT;
 
And if the ball and block are overlapping.
 
if (!((ballRight < blockLeft) ||
 (ballLeft > blockRight) ||
 (ballTop < blockBottom) ||
 (ballBottom > blockTop)))
{
 
We reverse the vertical direction of the ball.
 
engine->ballVelocityY = -engine->ballVelocityY;
 

24 CHAPTER 2: An Introduction to the Android Game Development Ecosystem

This test determines if the ball has hit the block on the left or right edges. If the left edge of the ball
is further left than the left edge of the block, the ball must have come from the left side. We can work
out whether the ball hit from the right with a similar condition.
 
if (ballLeft < blockLeft ||
 ballRight > blockRight)
{
 
If the ball hit from the side, we reverse its horizontal velocity.
 
 engine->ballVelocityX = -engine->ballVelocityX;
}
 
We set this block to inactive.
 
 currentBlock.isActive = false;
}
 
We set anyBlockActive to true if the block was active this frame.
 
 anyBlockActive = true;
 }
}
 
Once all of the blocks have been destroyed, we reset them all and carry on playing.
 
if (!anyBlockActive)
{
 engine_init_blocks(engine);
}

Summary
Congratulations: at this point, you can set up, build, and run your very first Android NDK game app.
It may be missing many of the polished features of a professional title but it still covers all of the
basics. We have initialized the graphics library, polled for Android events, handled input, and created
a game loop which updates and renders the state of the game frame by frame.

Now we can move on to build a commercial-quality title from the ground up.

25

Chapter 3
Game Design for
Beginners: Droid Runner

Developing a video game is generally a collaborative effort among a group of people. There are
usually artists, designers, programmers, and production staff involved from the beginning of the
game development cycle right through to the end. It’s also possible that you will be pitching your
ideas to a third party, possibly a platform holder or a publisher, to acquire funding or marketing
support for your title.

In all of these scenarios, it is vitally important that you have good lines of communication among
staff members to ensure that production of your title goes to plan. The central focus of this
communication in the initial stages of development is the game design document.

As the document is such a key pillar in the development of a game, we will dive into looking at how
we can write our own before we look at writing our code.

An Introduction to Design Documents
Design documents serve a few different purposes. First and foremost, they contain a functional
specification of the game. This functional specification details the game world, mechanics, and
gameplay systems from the point of view of the user. It helps determine how the game will play and
how different parts of the game come together to create the user experience.

The second purpose of the design document is the technical specification. The technical design
section will describe in more detail how certain aspects of the game will be implemented. This will
be useful when it comes to implementing the game as it can provide a high-level overview of how
the different systems will interface with each other. It’s also essential to have at least a rough spec to
help with scheduling development. An attempt at creating an accurate schedule is vitally important if
you’re developing your game in a commercial environment with a limited amount of time and budget.

It’s not uncommon for there to be multiple documents containing different aspects of the design but for
our small game, a single document will be good enough. The first required section is the overview.

26 CHAPTER 3: Game Design for Beginners: Droid Runner

Creating a World, Telling a Story, and Setting the Scene
Every game needs to tell a story. This story, however detailed, helps to create a sense of urgency
and empathy within the player and can turn a collection of mechanics into a compelling experience.
Even the earliest successful games managed to tell a story: Donkey Kong was released by Nintendo
in 1981 and told the story of Jumpman trying to save the Princess from the giant ape. Pac-Man’s
story is in the relationship between the player and the AI. Each of the four ghosts try to catch
Pac-Man in their own way up until the point where the player collects a power pellet, the tables are
turned, and the ghosts then run away from Pac-Man. The power of storytelling is evident in the fact
that the developers even gave the ghosts unique names: Blinky, Pinky, Inky and Clyde.

Modern games are becoming more and more story driven as the technology used to play games
advances. Home console and PC games are now commonly written by writers who have been
involved with Hollywood movies. Games for mobile platforms such as Android have already been
written and developed in a similar fashion at the larger game publishers, and while this is out of the
reach of most small developers, a sense of story and journey is still important.

Our back story will be covered in the overview, and we don’t really need to add any more for our
simple game. What we should do is keep our story in mind and ensure that everything we add to the
game is in keeping with the narrow theme we wish to portray. For our game, that’s a theme of trying
to escape from a place where we’re held captive and have little power.

The Droid Runner Design Overview
In the following sections, we’ll cover the different sections of our game design document. This example
covers the minimum number of sections which we need to fully describe our game to others.
There is not a hard set of rules which you can follow when laying out your game design. This makes
some sense, as each game is different and no two documents could possibly contain the same
information and also describe completely different designs for games. We’ll begin by looking at the
game overview.

Section 1 - Game Overview
Droid Runner is a side scrolling game where the player automatically moves from
left to right on the screen. The main character in the game is Droid, a green android
who is trying to escape from an environment where he is utilized as a tool. The red
security droids patrolling the environment will prevent Droid from leaving if they
manage to catch him. The environment contains different obstacles which Droid
must overcome to reach the exit.

The short overview above sets the basic scene for Droid Runner. It helps lay out who the player is
and the antagonists who are trying to prevent the player from achieving their goal. As we’re creating
our first game using a new platform, this is an adequate overview of the game we will be aiming to
create. The following sections will cover the details of the gameplay.

27CHAPTER 3: Game Design for Beginners: Droid Runner

Defining the Gameplay and Mechanics
The gameplay section of the design document should cover a description of the actions which the
player will be carrying out during the game. This section is split between a high-level overview of the
gameplay structure as well as a more detailed analysis of the game mechanics which will be used to
create the high-level experience. More complicated games will have a description of different levels
in which the game will take place, and for games with role-playing elements, a description of the skill
system would also be found here.

Section 2 - Gameplay and Mechanics

Section 2.1 - Gameplay
A level will progress from left to right and have no vertical movement. As the camera
moves along, the player will be exposed to enemy characters as well as obstacles
which he must avoid. The core fun experience of the game will be created by
designing levels which position enemies and obstacles in a manner which presents
the player with a challenge which increases in difficulty as the player progresses
through the level.

The player will complete the level by reaching the goal area at the far right extremity
of the level.

The game over scenario will be triggered by the player coming into contact with an
obstacle or an enemy droid.

Section 2.2 - Mechanics

Section 2.2.1 - Movement
The player will move automatically from left to right. The speed at which the
player moves will be tuned to an appropriate velocity to ensure that a challenge is
presented by the positioning of obstacles and enemies which is neither too easy nor
too difficult.

The player will be able to jump at a height which represents 33% of the height of
the level. The upward and downward velocity will be symmetrical as to provide a
consistent and predictable jumping behavior. There will be no delay between landing
a jump and starting another as the gameplay relies on responsive controls and timing
to create a sense of tension and fun. The velocity of the jump should slow around
the peak to create an area of floating to allow the player some ability to preemptively
jump over obstacles and utilize timing to their advantage.

28 CHAPTER 3: Game Design for Beginners: Droid Runner

Section 2.2.2 - Obstacles
Crates - The level will contain stacked crates which the player must jump over or
onto. Crates will be square, and obstacles will be created by placing crates side by
side or one on top of another. All crates will have equal dimensions with the sides
being equal to 25% of the height of the screen. This will allow the player to be able
to comfortably clear the crates with their 33% jump height.

Enemies - The level will contain enemy droids which will be following a set path
between two points. These paths will be linear, either vertically or horizontally.
Horizontal paths should cover no more than 75% of the visible width of the screen
at 720p. Vertical paths can cover the entire height of the level. Enemies will move at
a speed which is slightly slower than the player’s horizontal velocity. This will allow
the player to move past enemies and only be concerned with new enemies coming
from the right.

Section 2.2.3 - Pickups
The player will be able to pick up an invincibility pickup which allows them to pass
through obstacles and enemy players without triggering the game-over scenario.

Level Design
A lot of developers who are new to making games look for a perfect set of rules on how to construct
levels. From my experience, such a set of rules doesn’t exist. If such a set of rules did exist, we may
end up in a situation where the levels of different games become very similar as they are designed
from the same formula but those levels may not fit in with the game which is being developed.
This is the crux of why I feel there are no hard-and-fast rules on level design: every game strives to
have slightly different mechanics and therefore slightly different design considerations. What do exist
are some tenets of level design which can be considered when designing a level for a game.

Pacing
The first tenet of level design, I believe, is pacing. When constructing a full game across multiple
levels, it’s important to consider how often you introduce new gameplay mechanics and then build
the use of these mechanics into the world.

The Legend of Zelda games provide a classic blueprint of ramping difficulty through their games
using pacing. A new weapon is introduced and there will be a small task which is required to be
completed with the new ability provided by the weapon to instruct the player on how it can be used.
There will then be a boss encounter which requires the new ability to complete the dungeon and
advance in the story. The player will then be able to access new areas of the map in the outer world
which were previously inaccessible and, more often than not, more difficult than the areas which had
come before.

29CHAPTER 3: Game Design for Beginners: Droid Runner

Games can also use pacing of intensity to create engagement for the player. High intensity levels
for sustained periods of time may cause players to become stressed. If this stress is perceived as
difficulty then many players will feel overwhelmed and decide to stop playing the game. What you
should strive for is variations in the pacing to create a sense of interest. Periods of high intensity with
lots happening and high levels of engagement for the player should be followed by relative calm.
This will give the player a chance to recover and regain some composure. In the beginning, a game
can have longer periods of calm with short bursts of high intensity, and the opposite closer to the
end once the player is experienced and requires a higher level of challenge.

We will attempt to use the complexity of the obstacles and placement of the AI characters in our
level to alternate between periods in which the player will be required to tap on the screen in rapid
succession to clear areas and periods of lower levels of input, which will denote calm. Towards the
end of the level, the periods of relative calm may be as intense as the areas of high intensity from
earlier in the level, but the player should be more experienced and therefore less stressed by the
level of these areas towards the end of the level.

Aesthetics
The aesthetics of a level are vitally important in conveying the setting and theme to the player. If an
area of a game is to feel intense for a player, depending on the type of game, the aesthetics will help
to convey that sense of intensity if they are done properly.

Aesthetics can also be used to lead a player through a level. Generally, the path the designer wants
a player to take through the level will be lit using bright lights at key points. If you ever find yourself
lost in a first-person shooter such as Halo 4, take a while to stand still and look around for any path
openings or doors which look like they may be lit more brightly or with different colors to the rest;
there’s a reasonable chance that this is the way you should go. Placing secrets in darker areas also
makes them less likely to be found by players who are subconsciously following the directed path
and therefore warrant the reward offered to those exploring off the beaten track.

Scale
The scale of a level is important in determining how long it will take to build. Everyone would like a
game of unlimited scope. RPGs such as Skyrim are heralded for their scale. Scale does not come for
free and the scope of your game will be intrinsically linked to the scale of your levels and vice versa.

Larger levels generally require a large number of game mechanics to ensure that they remain
compelling to play. A large level will quickly become repetitive and boring to a player if it requires
them to repeat the exact same challenges over and over. Levels which are also small for the
number of available mechanics may also mean that the player may not get to use some of the most
compelling features which they are being offered, damaging the perceived quality of the title.

The scale of the level is also impacted by the target hardware which the game is intended for.
A PC game can make use of several gigabytes of RAM and can store very large data sets for levels
in memory all at once. A Playstation 3, on the other hand has only 256MB of system memory and
can therefore store data only for much smaller levels and the objects contained within. Issues such
as these will be reliant upon the technical requirements we look at in the next section.

30 CHAPTER 3: Game Design for Beginners: Droid Runner

Technical Requirements
The technical requirements document details the engineering specs of the low-level systems which
will be used to create the game. This documentation will rarely contain implementation details but
will instead give an overview of how such a system should work, algorithms to be used, and the
interfaces which will allow different systems to communicate.

There are a couple of important reasons for writing a requirements document. This first is for team
communication, which is relevant even if you’re developing a game on your own to communicate
with your future self about how you envisioned the system integrates with other systems in the
framework.

Another is for scheduling. With experience, you’ll begin to learn how much effort will be required to
implement a given system while writing the requirements document. This in turn will lead to better
budgeting and planning, an important aspect of building games which are commercially successful.

The technical requirements of a given system should define the interface which the system will
expose to the outside world. Taking the time to design the interface will allow you to understand
how data will flow into and out of the system and will help identify any areas of high coupling and
low cohesion. Identifying areas where these properties exist at design time can help to avoid costly
refactoring once development has already begun.

The Unified Modeling Language was created in the 1990s to help technical writers visualize their
object-oriented designs. Some software has been written to aid in the construction of the models
of your system, and the example in Figure 3-1 was created using ArgoUML. The design is for the
Kernel and Task system, which we will be using to create our game loop a little later in the book.

31CHAPTER 3: Game Design for Beginners: Droid Runner

The technical documentation can contain as much or as little documentation as you feel is
necessary; however, it is important to note that it is generally accepted that the more time spent
planning means less time spent implementing. Implementing systems is usually the process in
software development which takes the most time and costs the most money, so anything which
can help reduce this period is welcome. It isn’t necessary to write all of the documentation before
beginning any development. Using a development methodology such as Agile can mean that the

Figure 3-1.  The Kernel UML Class Diagram

32 CHAPTER 3: Game Design for Beginners: Droid Runner

documentation is filled out as you go; however, it is still a good idea to plan some work in advance
to be sure that system interfaces will be adequate for the job at hand.

Writing good documentation comes with experience and at this point we have little experience with
the Android system. It would be a good exercise for you to write some tech docs for the systems
which we will be implementing as we move through the following chapters. Writing technical
documentation can be a daunting prospect and a difficult task to undertake. A selection of example
documents is available via the web site along with the source code for the samples used throughout
this book.

Summary
This chapter has taken a look at the design document which is produced during what is commonly
referred to as pre-production. This is the stage of development where prototypes are created,
brainstorming sessions take place, and the look and feel of the game are thrashed out.

We’ve seen that it’s useful to split the design into two discrete sections; one covering the gameplay,
logic, and story and another covering the technology which will be used to create the vision.
The remainder of this book will look at both of these sections simultaneously moving forward.
We’ll do this by looking at building games from the ground up, starting with creating a game loop,
communicating with the Android OS, then initializing OpenGL before moving onto more game
logic–focused code from Section 2 onwards.

We will begin in the next chapter by tackling the creation of a task-based game loop and
encapsulating the Android native app glue event polling into a task.

33

Chapter 4
Building a Game Engine

Productivity in modern game companies is primarily driven by the reuse of code and tools from one
project to the next. By reusing code, companies and individuals can free up more time to developing
actual game titles rather than reimplementing technology which, while necessary, will not have a
visible impact on the finished product.

The sample game we looked at in Chapter 2 did not have any code which could be reused from
one project to the next in an easy manner. That may be acceptable for a small example but for
someone who would like to make more than one game or has hopes to start a business in the game
development field, this approach would not be particularly beneficial.

We are going to begin the development of our own game engine in this chapter. The engine itself
will be light-years away from the complexity of the commercial engines such as Unreal or Unity, but
it will help us develop an understanding of why engines are a good idea and how we can approach
the separation of game code and framework code. We’ll begin by looking at a reusable game loop,
communicating with the Android OS, and learning how to time our frames.

Let’s start by looking at our application object.

Creating an Application Object
One of the first lessons in object-oriented design is to create classes which represent the nouns in
your application design. The very first noun we encounter when creating a game for Android is the
word app. It makes sense for us to create a class to encapsulate our app, and it also makes sense
for this to be our first class which we write to be a reusable object; this means that no code specific
to the app you are building should be contained within the class itself. Fortunately, C++ provides
us with a mechanism through inheritance where this is not an issue, but to begin we will just look at
creating the class itself, which is shown in Listing 4-1.

34 CHAPTER 4: Building a Game Engine

Listing 4-1.  The Application Class: Application.h 

namespace Framework
{
 class Application
 {
 private:
 
 public:
 Application(android_app* state);
 virtual ~Application();
 
 bool Initialize();
 void Run();
 };
}
 
This is the class definition for the application. At the moment, there isn’t anything particularly
interesting about this code, but we will be adding objects to the application as we move forward.
You can think of Application as being the root object in your app. We will use it from main as shown
in Listing 4-2.

Listing 4-2.  android_main, the App Entry Point: Chapter4.cpp 

void android_main(struct android_app* state)
{
 app_dummy();
 
 Framework::Application app(state);
 
 if (app.Initialize())
 {
 app.Run();
 }
}
 
Here you can see that the contents of main are relatively simple in comparison to the basic game we
created earlier. This is good as we’ve managed to create an interface which will allow us to hide a lot
of the more complex operations from this level and should give us code which is easier to read and
to work with.

The definitions of the Initialize and Run methods are similarly basic and empty at the moment, as
you can see in Listing 4-3.

Listing 4-3.  Application’s Initialize and Run Methods: Application.h 

bool Application::Initialize()
{
 bool ret = true;
 return ret;
}
 

35CHAPTER 4: Building a Game Engine

void Application::Run()
{
}
 
All real-time games run in what is known as the game loop. In the next section, we’ll look at an
object which we will use to create this loop.

Creating the Game Loop Using a Kernel and Tasks
The object which will encapsulate our game loop is called the kernel. The basic design for this object
was proposed by Richard Fine in his Enginuity series, which can be found at www.gamedev.net. The
kernel works by maintaining a list of tasks. The tasks are added to the list in priority order and the
kernel updates the tasks sequentially, once per frame.

Starting the Kernel Class
Again, the Kernel class has been declared within the Framework namespace but for brevity I’m going
to omit this line from the text; you can see the important code in Listing 4-4. You can see how the
classes are written with their relevant includes, etc., in the sample code for this chapter.

Listing 4-4.  The Kernel Class: Kernel.h 

class Kernel
{
 private:
 typedef std::list<Task*> TaskList;
 typedef std::list<Task*>::iterator TaskListIterator;
 
 TaskList m_tasks;
 TaskList m_pausedTasks;
 
 void PriorityAdd(Task* pTask);
 
 public:
 Kernel();
 virtual ~Kernel();
 
 void Execute();
 
 bool AddTask(Task* pTask);
 void SuspendTask(Task* task);
 void ResumeTask(Task* task);
 void RemoveTask(Task* task);
 void KillAllTasks();
 
 bool HasTasks() { return m_tasks.size(); }
};
 

http://www.gamedev.net/

36 CHAPTER 4: Building a Game Engine

The definition for the Kernel class is fairly self-explanatory. As I noted earlier, we have a list which
contains pointers to Task objects. We also declare public methods which allow us to add and
remove as well as suspend and resume individual tasks. There is also a KillAllTasks method
which will allow us to kill all of the current tasks, and we can also check if the Kernel has any current
running tasks using the HasTasks method.

There is also a member which we hadn’t discussed previously, and that’s the list of paused tasks
(m_pausedTasks). We’ll look at what that is used for when we come to looking at the SuspendTask and
ResumeTask methods.

Defining the Task Interface
First we’ll take a look at the Task interface, shown in Listing 4-5.

Listing 4-5.  The Task Interface: Task.h 

class Task
{
private:
 unsigned int m_priority;
 bool m_canKill;
 
public:
 explicit Task(const unsigned int priority);
 virtual ~Task();
 
 virtual bool Start() = 0;
 virtual void OnSuspend() = 0;
 virtual void Update() = 0;
 virtual void OnResume() = 0;
 virtual void Stop() = 0;
 
 void SetCanKill(const bool canKill);
 bool CanKill() const;
 unsigned int Priority() const;
};
 
This interface is the base class which all future Task classes will inherit. We can see that each Task
will have a priority and a flag to tell whether it can be killed (m_canKill).

The pure virtual methods are also the interface which the kernel uses to interact with Tasks. Each
child of Task will override these to provide the specific functionality for the given Task. We’ll be
looking at those more in detail when we come to implement actual Tasks but for now we can take a
look at Kernel’s methods and see how it uses the Task interface.

Examining the Kernel Methods
Listing 4-6 shows the PriorityAdd and AddTask methods. In PriorityAdd, we get an iterator to
the task list and loop through the list until the current task’s priority is greater than the new task’s
priority. This means that zero will be the highest priority in our system as the Task::m_priority field

37CHAPTER 4: Building a Game Engine

is unsigned. The task is then inserted into the list at that point. As you can see, this means that our
priority determines the order in which our tasks are updated.

We can see that Kernel::AddTask calls Task::Start in its very first line. This is important as it means
that we are adding tasks to the kernel only if they have been successfully started. If the task was
started, we call PriorityAdd.

Listing 4-6.  Kernel’s PriorityAdd and AddTask: Kernel.cpp 

void Kernel::PriorityAdd(Task* pTask)
{
 TaskListIterator iter;
 for (iter = m_tasks.begin(); iter != m_tasks.end(); ++iter)
 {
 Task* pCurrentTask = (*iter);
 if (pCurrentTask->Priority() > pTask->Priority())
 {
 break;
 }
 }
 m_tasks.insert(iter, pTask);
}
 
bool Kernel::AddTask(Task* pTask)
{
 bool started = pTask->Start();
 
 if (started)
 {
 PriorityAdd(pTask);
 }
 return started;
}
 
RemoveTask is straightforward; we find the task in the list and set it to be killable, as shown
in Listing 4-7.

Listing 4-7.  Kernel’s RemoveTask: Kernel.cpp 

void Kernel::RemoveTask(Task* pTask)
{
 if (std::find(m_tasks.begin(), m_tasks.end(), pTask) != m_tasks.end())
 {
 pTask->SetCanKill(true);
 }
}
 
SuspendTask finds the task if it is currently running and calls OnSuspend on the task. It then removes
the task from the running tasks list and adds it to the paused tasks list. Listing 4-8 shows the
SuspendTask method.

38 CHAPTER 4: Building a Game Engine

Listing 4-8.  Kernel’s SuspendTask: Kernel.cpp 

void Kernel::SuspendTask(Task* pTask)
{
 if (std::find(m_tasks.begin(), m_tasks.end(), pTask) != m_tasks.end())
 {
 pTask->OnSuspend();
 m_tasks.remove(pTask);
 m_pausedTasks.push_back(pTask);
 }
}
 
ResumeTask checks if the task is currently paused (see Listing 4-9). Next, it calls Task::OnResume,
removes it from the paused list, and then adds the task back into the running list at the correct
priority.

Listing 4-9.  Kernel’s ResumeTask: Kernel.cpp 

void Kernel::ResumeTask(Task* pTask)
{
 if (std::find(m_pausedTasks.begin(), m_pausedTasks.end(), pTask) != m_pausedTasks.end())
 {
 pTask->OnResume();
 m_pausedTasks.remove(pTask);
 
 PriorityAdd(pTask);
 }
}
 
KillAllTasks is another straightforward method (see Listing 4-10). It simply loops over all of the
running tasks and sets their can-kill flag to true.

Listing 4-10.  Kernel’s KillAllTasks: Kernel.cpp 

void Kernel::KillAllTasks()
{
 for (TaskListIterator iter = m_tasks.begin(); iter != m_tasks.end(); ++iter)
 {
 (*iter)->SetCanKill(true);
 }
}
 
The Execute method is where our game loop resides and is shown in Listing 4-11. This method
loops over the tasks and calls Task::Update on each one.

Listing 4-11.  Kernel’s Execute, the Game Loop: Kernel.cpp 

void Kernel::Execute()
{
 while (m_tasks.size())
 {
 if (Android::IsClosing())

39CHAPTER 4: Building a Game Engine

 {
 KillAllTasks();
 }
 
 TaskListIterator iter;
 for (iter = m_tasks.begin(); iter != m_tasks.end(); ++iter)
 {
 Task* pTask = (*iter);
 if (!pTask->CanKill())
 {
 pTask->Update();
 }
 }
 
 for (iter = m_tasks.begin(); iter != m_tasks.end();)
 {
 Task* pTask = (*iter);
 ++iter;
 if (pTask->CanKill())
 {
 pTask->Stop();
 m_tasks.remove(pTask);
 pTask = 0;
 }
 }
 }
 
 Android::ClearClosing();
}
 
Here we can see that Execute will run in a while loop for as long as it has tasks to execute.

If the system is closing the app, we call KillAllTasks to make them aware that the game will be
closing. Execute then iterates over the list of tasks and calls Task::Update on any which have not
been flagged for destruction. This is important, as we cannot guarantee that any tasks which expect
to be removed still have valid data. A second loop is run to remove any tasks which are flagged for
destruction from the running loop.

At this point, you will have noticed the reference to a class named Android. This class is used to poll
the Android event system; we’ll look at that in the next section.

Android’s Native App Glue
The Android NDK provides a framework which provides an interface to the OS without needing
to implement the basic app structure using the Java programming language. This interface is the
NativeActivity. Despite this, programmers would still have to implement a lot of glue code to get
the lifecycle updates from NativeActivity into a usable format in their own app. Fortunately, the
Android NDK developers also provided this layer in their Native App Glue code.

40 CHAPTER 4: Building a Game Engine

First and foremost, this glue code provides us with easy access to an interface to the Android app
lifecycle, which will be the focus of this section. In later chapters, we’ll also be looking at the other
interfaces which this framework provides such as input and sensor information.

The Android class will require to be updated every frame to get the latest events from the Android
OS. This makes it a perfect candidate to be our first task; see Listing 4-12 for details of the
Android class.

Listing 4-12.  An Android Task: Android.h 

class Android
 : public Task
{
private:
 static bool m_bClosing;
 static bool m_bPaused;
 android_app* m_pState;
 
public:
 Android(android_app* pState, const unsigned int priority);
 virtual ~Android();
 
 android_app* GetAppState() { return m_pState; }
 
 virtual bool Start();
 virtual void OnSuspend();
 virtual void Update();
 virtual void OnResume();
 virtual void Stop();
 
 static void ClearClosing() { m_bClosing = false; }
 static bool IsClosing() { return m_bClosing; }
 static void SetPaused(const bool paused) { m_bPaused = paused; }
 static bool IsPaused() { return m_bPaused; }
};
 
Here we can see that the Android class inherits from Task. We have used static variables for the
closing and paused flags for convenience. The kernel needs to know if the app is closing or not, but
it does not necessarily need access to the Android object to do so. We also override the methods
from Task and we’ll take a look at these now.

OnSuspend, OnResume, and Stop are all empty methods. At the moment, there is nothing which we
would need to put into those. Similarly, Start does nothing but return true. We do not have any
initialization code which we need to run to allow the Android system to execute, so there is no need
to prevent our task from being added to the kernel’s running list. That leaves us with Update, shown
in Listing 4-13.

41CHAPTER 4: Building a Game Engine

Listing 4-13.  Android’s Update: Android.cpp 

void Android::Update()
{
 int events;
 struct android_poll_source* pSource;
 int ident = ALooper_pollAll(0, 0, &events, (void**)&pSource);
 if (ident >= 0)
 {
 if (pSource)
 {
 pSource->process(m_pState, pSource);
 }
 
 if (m_pState->destroyRequested)
 {
 m_bClosing = true;
 }
 }
}
 
The Update method is fairly straightforward. The ALooper_pollAll method is called and retrieves any
current events for our app from the Android OS.

The first parameter passed is a timeout value. As we are running in a real-time 	
loop, we do not want this call to remain blocked for longer than a certain time.
We tell the method to return immediately without waiting for events by passing
zero as the first parameter.

The second parameter can be used to get a pointer to a file descriptor in certain 	
circumstances. We are not concerned with this and pass zero.

We are also not interested in the third parameter, but we are required to pass an 	
address of an int to retrieve its value.

The fourth parameter retrieves the source structure for the event. We call 	
process on this structure and pass it the state object for our app.

We can look at where the state object is initialized now, as shown in Listing 4-14.

Listing 4-14.  Android’s Constructor and Event Processor: Android.cpp 

static void android_handle_cmd(struct android_app* app, int32_t cmd)
{
 switch (cmd)
 {
 case APP_CMD_RESUME:
 {
 Android::SetPaused(false);
 }
 break;
 

42 CHAPTER 4: Building a Game Engine

 case APP_CMD_PAUSE:
 {
 Android::SetPaused(true);
 }
 break;
 }
}
 
Android::Android(android_app* pState, unsigned int priority)
 : Task(priority)
{
 m_pState = pState;
 m_pState->onAppCmd = android_handle_cmd;
}
 
Android provides a callback mechanism for dealing with system events. The callback signature
returns void and is passed an android_app struct pointer and an integer which contains the value of
the event to be processed. For Win32 programmers, this setup is not all that dissimilar to WndProc.

We do not yet have any need to handle any Android OS events, but for the sake of example I’ve
added a switch statement which handles the APP_CMD_RESUME and APP_CMD_PAUSE cases.

We can see from the Android constructor that we have stored the android_app pointer which we
have been provided and set the onAppCmd function pointer to the address of the static command
handler method. This method will be called during the process call on the event structure we were
supplied by ALooper_pollAll.

The only thing left to do with the Android class is to instantiate an instance and add it to our kernel,
as shown in Listing 4-15.

Listing 4-15.  Instantiating the Android Task: Application.h, Task.h, and Application.cpp 

class Application
{
private:
 Kernel m_kernel;
 Android m_androidTask;
 
public:
 Application(android_app* state);
 virtual ~Application();
 
 bool Initialize();
 void Run();
};
 
class Task
{
private:
 unsigned int m_priority;
 bool m_canKill;
 

43CHAPTER 4: Building a Game Engine

public:
 explicit Task(const unsigned int priority);
 virtual ~Task();
 
 virtual bool Start() = 0;
 virtual void OnSuspend() = 0;
 virtual void Update() = 0;
 virtual void OnResume() = 0;
 virtual void Stop() = 0;
 
 void SetCanKill(const bool canKill);
 bool CanKill() const;
 unsigned int Priority() const;
 
 static const unsigned int PLATFORM_PRIORITY = 1000;
};
 
Application::Application(android_app* state)
 : m_androidTask(state, Task::PLATFORM_PRIORITY)
{
}
 
bool Application::Initialize()
{
 bool ret = true;
 
 m_kernel.AddTask(&m_androidTask);
 
 return ret;
}
 
void Application::Run()
{
 m_kernel.Execute();
}
 
Those are the changes required to instantiate the Android object and add it to the kernel. You can
see that we added the Kernel and Android objects as private members to the application. The
Android constructor is called in the Application constructor initialization list and is passed the
android_app struct and its priority. The Android object is added to the kernel in the Initialize
method and we call Kernel::Execute in Application::Run.

We now have a working game loop which properly interfaces with the Android OS. We still have a lot
of low-level plumbing to be done before we are in a position to begin writing game code. Next up is
frame timing.

44 CHAPTER 4: Building a Game Engine

Timekeeping
One of the more important benchmarks in gaming through the years has been the fps or frames per
second. For the current generation of games consoles, 30fps has been the standard achieved by
most games. A few companies such as id still aim for 60fps and the benefits to responsiveness that
provides through reduced latency.

Whichever frame rate you wish to target, timekeeping in game is going to be important. An accurate
frame time is necessary for moving objects around in the game in a consistent manner. In the
early 1990s, it was common on the SNES and Sega Genesis for games to run at different speeds
in different countries. This was due to games being written with characters moving at consistent
speeds per frame. The issue was that TVs updated at a rate of 50 times per second in Europe but
at 60 in North America. The effect was that games appeared to be noticeably slower for European
players.

The situation could have been avoided altogether if the developers had written their games to
update with respect to time rather than frame rate. We achieve that by storing how long the last
frame took to process and moving objects relative to that time. We’ll consider that’s done in Chapter
6, but for now we’ll look at how to store the time for the previous frame, as shown in Listing 4-16.

Listing 4-16.  The Timer Task: Timer.h 

class Timer
 : public Task
{
public:
 typedef long long TimeUnits;
 
private:
 TimeUnits nanoTime();
 
 TimeUnits m_timeLastFrame;
 float m_frameDt;
 float m_simDt;
 float m_simMultiplier;
 
public:
 Timer(const unsigned int priority);
 ~Timer();
 
 float GetTimeFrame() const;
 float GetTimeSim() const;
 void SetSimMultiplier(const float simMultiplier);
 
 virtual bool Start();
 virtual void OnSuspend();
 virtual void Update();
 virtual void OnResume();
 virtual void Stop();
};
 

45CHAPTER 4: Building a Game Engine

Unsurprisingly, we are using a Task to update the Timer each frame. The Timer will be given a priority
of zero and will be the first task to be updated each frame.

We have two notions of time in our Timer. We have the frame time, which is the actual time taken
to complete the last frame, and we have sim time. Sim time is the time we will use in the gameplay
sections of our code. The sim time will be modified by a multiplier. This multiplier will allow us to
modify the speed at which our game updates. We might be able to use this for gameplay purposes,
but it will also be useful for debugging purposes. If we have a bug to reproduce which happens at
the end of a sequence of events, we can speed up the reproduction process by increasing the time
multiplier and making everything in game occur more quickly. Listing 4-17 shows the method for
calculating the current system time.

Listing 4-17.  Timer, nanoTime: Timer.cpp 

Timer::TimeUnits Timer::nanoTime()
{
 timespec now;
 int err = clock_gettime(CLOCK_MONOTONIC, &now);
 return now.tv_sec*1000000000L + now.tv_nsec;
}
 
As Android is a Linux-based OS, we have access to many of the Linux methods from the C++
environment. One example of this is clock_gettime. clock_gettime is included in the time.h header
file and provides us with an interface to the system clock in the computer we are running on. We
are specifically using the monotonic clock, which gives us an arbitrary time since a past event. We
don’t know when that event was, but since we are comparing our own frame time, we are not overly
concerned.

The timespec structure contains two members:

The first is time in seconds;	

The second is nanoseconds.	

The value we return is in nanoseconds; we multiply the seconds by 1,000,000,000 to convert them
to nanoseconds and we add the nanosecond value.

The Timer task has its initial value set in Start, as shown in Listing 4-18.

Listing 4-18.  Starting and Restarting the Timer: Timer.cpp 

bool Timer::Start()
{
 m_timeLastFrame = nanoTime();
 return true;
}
 
void Timer::OnResume()
{
 m_timeLastFrame = nanoTime();
}
 

46 CHAPTER 4: Building a Game Engine

Setting the initial value here is necessary, as we always need a previous value to compare to.
If we didn’t initialize this value when starting our timer, our initial frame time would be completely
unreliable. By initializing the previous time here, we are limiting our worst case to an initial frame time
of zero, which isn’t disastrous. We do the same in OnResume, although I can’t imagine a case where
the Timer would ever be paused under normal running.

The last method of importance for the Timer class is Update, which is shown in Listing 4-19.

Listing 4-19.  Timer’s Update: Timer.cpp 

void Timer::Update()
{
 // Get the delta between the last frame and this
 TimeUnits currentTime = nanoTime();
 const float MULTIPLIER = 0.000000001f;
 m_frameDt = (currentTime-m_timeLastFrame) * MULTIPLIER;
 m_timeLastFrame = currentTime;
 m_simDt = m_frameDt * m_simMultiplier;
}
 
In this method, you can see that we are getting the delta time between the last frame and the current
frame. We start by getting the latest nanoTime value from the system clock. We then calculate the
frame time by subtracting the previous nanoTime from the current nanoTime. During this step, we also
convert the time into a float which contains the frame time in seconds. This format is the simplest
way to deal with times in gameplay code, as we can deal with all movement speeds in terms of
per-second values and use the time as a multiplier.

The currentTime is then stored into the last frame time member for calculating the time in the next
processed frame, and finally, we calculate the sim time as the result of the frame time multiplied by
the sim multiplier.

Summary
We’ve covered a lot of groundwork for our engine in this chapter. We have created a reusable task
and kernel system and populated it with an Android task, which communicates with the OS, and
a Timer task which can work out how long our frames are taking to process. Now that these tasks
have been written, we will hopefully never have to write them again. This is the beginning of a game
engine, and we’ll extend this framework in the next chapter by looking at our OpenGL Renderer.

As with all of the chapters in this book, full sample source code can be obtained from the Apress
web site.

47

Chapter 5
Writing a Renderer

One of the key tasks carried out by a game engine is to feed geometry data to the graphics processing
unit (GPU). A GPU is a highly specialized piece of hardware which operates on streams of data in
parallel. This parallelization of processing is what makes GPUs essential in modern real-time graphics
applications and is the reason why they were dubbed hardware accelerators.

A renderer’s job is to feed the geometry to the GPU as efficiently as possible. In a game engine there
will be a distinct split between processing the game updates, that is, moving game objects, AI, physics,
etc., and rendering the scene.

It is entirely possible to write a software renderer which operates on the CPU, but this would be a
futile task on a mobile phone, where CPU processing power is at a premium. The best solution is to
use the GPU. In this chapter, we’re going to look at a basic renderer.

Initializing the Window and OpenGL Using EGL
That heading throws into the mix a few acronyms and concepts with which new programmers may
not be familiar. Operating systems have used a window-based system for the last couple of decades,
and most people will be aware of the concept of a window. You might however be surprised to see the
window concept in relation to mobile operating systems, which generally do not have repositionable
windows. Android still uses a window system under the hood to describe the abstract object which
we use to access the screen on our device.

OpenGL is a graphics library which has been around since 1992. OpenGL was initially developed by
SGI and is currently maintained by the Khronos Group. It is one of the two main graphics APIs which
are primarily used in games development. The other is DirectX, which was developed by Microsoft
and is exclusive to Windows-based operating systems. OpenGL therefore has been the API of
choice on Linux and mobile-based operating systems for a long time.

EGL (the Embedded-System Graphics Library) is a library provided by Khronos, which is a not-for-profit
consortium in control of several industry standard APIs such as OpenGL, OpenCL, and many others.
EGL is an interface API which provides an easy method for developers to communicate between the
operating system’s window architecture and the OpenGL API. This library allows us to initialize and

48 CHAPTER 5: Writing a Renderer

use OpenGL with only a few lines of code, and anyone who developed applications using graphics
APIs ten or more years ago will appreciate its brevity.

To get started with our renderer, we will create a new class named Renderer which will inherit from
the Task class which we created in the previous chapter. The class definition in Listing 5-1 shows the
Renderer interface.

Listing 5-1.  The Renderer Class

class Renderer
 : public Task
{
private:
 android_app* m_pState;
 EGLDisplay m_display;
 EGLContext m_context;
 EGLSurface m_surface;
 int m_width;
 int m_height;
 bool m_initialized;
 
public:
 explicit Renderer(android_app* pState, const unsigned int priority);
 virtual ~Renderer();
 
 void Init();
 void Destroy();
 
 // From Task
 virtual bool Start();
 virtual void OnSuspend();
 virtual void Update();
 virtual void OnResume();
 virtual void Stop();
 
 bool IsInitialized() { return m_initialized; }
};
 
The usual Task methods are in place: we’ll take a look at those now (see Listing 5-2).

Listing 5-2.  Renderer’s Overridden Task Methods

bool Renderer::Start()
{
 return true;
}
 
void Renderer::OnSuspend()
{
 
}
 

49CHAPTER 5: Writing a Renderer

void Renderer::Update()
{
 
}
 
void Renderer::OnResume()
{
 
}
 
void Renderer::Stop()
{
 
}
 
For now, the Renderer class doesn’t do very much. We’ll fill it out as we move through this chapter.
The next method of interest is Init (see Listing 5-3).

Listing 5-3.  Initializing OpenGL Using EGL

void Renderer::Init()
{
 // initialize OpenGL ES and EGL
 
 /* Here, specify the attributes of the desired configuration. In the following code, we select
an EGLConfig with at least eight bits per color component, compatible with on-screen windows. */
 const EGLint attribs[] =
 {
 EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT,
 EGL_SURFACE_TYPE, EGL_WINDOW_BIT,
 EGL_BLUE_SIZE, 8,
 EGL_GREEN_SIZE, 8,
 EGL_RED_SIZE, 8,
 EGL_NONE
 };
 
 EGLint format;
 EGLint numConfigs;
 EGLConfig config;
 
 m_display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
 
 eglInitialize(m_display, NULL, NULL);
 
 /* Here, the application chooses the configuration it desires. In this sample, we have a very
simplified selection process, where we pick the first EGLConfig that matches our criteria. */
 eglChooseConfig(m_display, attribs, &config, 1, &numConfigs);
 
 /* EGL_NATIVE_VISUAL_ID is an attribute of the EGLConfig that is guaranteed to be accepted by
ANativeWindow_setBuffersGeometry(). As soon as we pick a EGLConfig, we can safely reconfigure the
ANativeWindow buffers to match, using EGL_NATIVE_VISUAL_ID. */
 eglGetConfigAttrib(m_display, config, EGL_NATIVE_VISUAL_ID, &format);
 

50 CHAPTER 5: Writing a Renderer

 ANativeWindow_setBuffersGeometry(m_pState->window, 0, 0, format);
 
 m_surface = eglCreateWindowSurface(m_display, config, m_pState->window, NULL);
 
 EGLint contextAttribs[] =
 {
 EGL_CONTEXT_CLIENT_VERSION, 2,
 EGL_NONE
 };
 m_context = eglCreateContext(m_display, config, NULL, contextAttribs);
 
 eglMakeCurrent(m_display, m_surface, m_surface, m_context);
 
 eglQuerySurface(m_display, m_surface, EGL_WIDTH, &m_width);
 eglQuerySurface(m_display, m_surface, EGL_HEIGHT, &m_height);
 
 m_initialized = true;
}
 
This code is essentially a copy of the code which is provided in the sample app. There are many
other things which can be achieved with different configurations and combinations of settings, some
of which are more advanced than we would like for now, so we’ll stick with this basic setup until we
are up and running.

From a quick glance through Listing 5-3, you can see that we are setting up a rendering surface
using OpenGL ES 2.0 which can store eight-bit values for red, green, and blue.

We then set up EGL through subsequent calls to eglInitialize, eglChooseConfig, and
eglGetConfigAttrib (the EGL documentation can be found at www.khronos.org/registry/egl/).
The information obtained via these methods is then used to tell the Android OS how we would like
the window to be configured for displaying our game. Last but not least, we set our display, surface,
and context to be the current objects with EGL and get the width and height of the screen.

Everything we need to be able to draw graphics onto the screen is now set up and working. The next
step is to look at how to clean up after ourselves properly (see Listing 5-4).

Listing 5-4.  Destroying OpenGL

void Renderer::Destroy()
{
 m_initialized = false;
 
 if (m_display != EGL_NO_DISPLAY)
 {
 eglMakeCurrent(m_display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
 if (m_context != EGL_NO_CONTEXT)
 {
 eglDestroyContext(m_display, m_context);
 }

http://www.khronos.org/registry/egl/

51CHAPTER 5: Writing a Renderer

 if (m_surface != EGL_NO_SURFACE)
 {
 eglDestroySurface(m_display, m_surface);
 }
 eglTerminate(m_display);
 }
 m_display = EGL_NO_DISPLAY;
 m_context = EGL_NO_CONTEXT;
 m_surface = EGL_NO_SURFACE;
}
 
As you can see from Listing 5-4, tearing down OpenGL is an easy process. This is necessary to properly
hand back resources to the operating system in a timely fashion and to ensure that our game stands
the best chance possible of properly resuming when the user restarts their session. By setting no surface
and context to be present for the current display, we can ensure that there are no other resources
which can successfully request to use these at a later point and cause issues. We then also destroy the
context and surface to free their resources. Lastly, we terminate EGL to finalize the shutdown. Simple,
straightforward, and a good step toward creating a well-behaved app.

With our renderer set up and ready to go, now would be a good time to look at how a programmable
GPU operates with vertex and fragment shaders.

An Introduction to Shaders
When consumer hardware 3D accelerators first appeared in the mid-1990s, they contained
fixed-function pipelines. This meant that each accelerator operated in exactly the same way, as the
algorithms they carried out were built into the chips created for these specific purposes.

The first generation of cards from all manufacturers carried out hardware-accelerated rasterizing of
polygons; for example, the algorithms to take a texture and to apply it to a polygon were the first
specific tasks carried out by these cards.

Vertices were still being transformed and lit in software on the CPU at this point in time. The first
consumer graphics card to implement what was known as hardware transform and lighting (T&L) was
the Nvidea GeForce 256. This shift from software to hardware-accelerated vertex processing had a
slow adoption rate as it took quite a while for drivers and APIs to catch up with the hardware. Eventually,
hardware T&L became more widely adopted and this resulted in the demise of almost all GPU
manufacturers outside of Nvidia and ATI, who had moved quickly into producing budget cards with T&L
support which outperformed much more expensive cards which did not feature this hardware.

The next big shift in consumer GPU hardware again came from Nvidia with the release of the
GeForce 3. Released in 2001, it was the first GPU to incorporate programmable pixel and vertex
shaders. It coincided with the release of the DirectX 8.0 API, which included support for writing
shaders using assembly language.

Assembly language shader support in OpenGL was added through extensions in OpenGL 1.5. Full
shader support would not come until the release of OpenGL 2.0 in 2004. A major paradigm shift
also occurred at this time with assembly language shaders being replaced by the OpenGL shading
language, GLSL. The introduction of a programming language for shaders opened up the feature set
to more people as the language was much more intuitive than assembly programming.

52 CHAPTER 5: Writing a Renderer

This history leads us right up to modern-day Android. Mobile graphics processors were generally
designed to run on small battery-operated devices and as such forego some features which are
found in desktop systems to preserve battery life. This led to the development of a mobile-specific
version of OpenGL, called OpenGL for Embedded Systems (OpenGL ES). Version 1.0 of OpenGL
ES did not support vertex and pixel shaders; however, these were introduced with the release of
OpenGL ES 2.0, which was incorporated into the Android operating system and made available via
the SDK from version 2.0 onwards.

With this book, I have decided to look at OpenGL ES 2.0 only, as the previous version is being
phased out and very few new devices which support only this version of the API are being released.
This means that we need to have some knowledge of how to write and use vertex and pixel shaders
in our games. The next section will introduce us to vertex shaders.

An Introduction to Vertex Shaders in OpenGL ES 2.0
The purpose of a vertex shader is to transform vertices from their local space, the space in which
they were modeled in the modeling package, into the canonical view volume. This volume is a cube
which goes from 1,1,1 to –1,–1,–1 and it is necessary to get our vertices into this cube for the next
step in the pipeline to ensure that they are not discarded by the GPU before the fragment-shading
stage. A look at the pipeline can be seen in Figure 5-1. The clipping stage removes sections of the
polygons which will not be rendered to prevent these fragments being sent through the expensive
rasterizing stage.

Local Space Clip Space

Clipping

Vertex Shader

Fragment ShaderColor Output

Figure 5-1.  The graphics pipeline

Vertex data is fed to the GPU in streams, and there are two ways to construct these data streams.
The common terms to describe these constructs are

The array of structures;	

The structure of arrays.	

We will be looking only at examples of an array of structures. The reason for this is that an array of
structures interleaves the vertex data in the stream, which makes the data contiguous in memory.
Modern processors work best when the data they require can be prefetched into a cache, and this
works by grabbing data from memory in blocks. If the next set of data required by the processor is
already in the block, we save a copy from memory, which could stall the GPU.

Listing 5-5 shows our array of structures for a quad which will be transformed with the vertex shader.
It consists of an array of floats where we have three floats which describe the position of the vertex
and then four floats describing the color of the vertex. We then repeat this same format for each
vertex we require to render our object, in the case of a quad that’s four.

53CHAPTER 5: Writing a Renderer

Listing 5-5.  The Quad Vertex Specification

float verts[] =
{
 –0.5f, 0.5f, 0.0f, // Position 1 x, y, z
 
 1.0f, 0.0f, 0.0f, 1.0f, // Color 1 r, g, b, a
 0.5f, 0.5f, 0.0f, // Position 2 x, y, z
 0.0f, 1.0f, 0.0f, 1.0f, // Color 2 r, g, b, a
 –0.5f, –0.5f, 0.0f, // Position 3 x, y, z
 0.0f, 0.0f, 1.0f, 1.0f, // Color 3 r, g, b, a
 0.5f, –0.5f, 0.0f, // Position 4 x, y, z
 1.0f, 1.0f, 1.0f, 1.0f, // Color 4 r, g, b, a
};
 
GPUs render triangles and therefore to be able to render our quad, we need to supply some additional
information. We could supply six vertices in order; however, at seven floats totaling 28 bytes, we would
need to send duplicate vertices of that size, which wastes some memory and bandwidth when we
transfer these to the GPU. Instead, we send a stream of indices describing the order in which the GPU
should use the vertices we supplied to render our triangles. Our indices can be seen in Listing 5-6.

Listing 5-6.  Quad Indices

unsigned short indices[] =
{
 0, 2, 1, 2, 3, 1
};
 
With our indices, you can see that we’re uploading only two bytes per vertex, and therefore even in
our simple example, we are making a considerable saving over specifying duplicates. Now we’ll take
a look at the code for our vertex shader in Listing 5-7.

Listing 5-7.  A Basic Vertex Shader

attribute vec4 a_vPosition;
attribute vec4 a_vColor;
varying vec4 v_vColor;
void main()
{
 gl_Position = a_vPosition;
 v_vColor = a_vColor;
}
 
The preceding listing shows a very basic vertex shader written in GLSL. The first two lines specify
attributes of the shader. Our attributes are the data which comes from the data stream which
we supply. Despite specifying only the x, y, and z elements of the position values in our array in
Listing 5-1, we use a four-element vector here (vec4). The graphics driver can fill in this additional
information when we set up our data. As you can see, we specify one attribute for the position and
one for the color of our vertex. The next line specifies a varying. A varying is an output variable
which we wish to pass from this vertex into our pixel shader. It has an important property in that it
interpolates the value from one vertex to the next.

54 CHAPTER 5: Writing a Renderer

The gl_Position variable is a special variable within GLSL which is specifically designed to store
the output vertex position from the vertex shader. It’s necessary to use this, as it indicates the data
which is required to be passed through the subsequent pipeline stages such as clipping. We can see
from the first line in main() that we’re simply passing the input vertex position out to this variable.
We also similarly pass the input color out to our varying color variable.

That’s all we have for now with a simple vertex shader program. The next major step is to look at a
basic fragment shader and see how we access the output from our vertex shaders in the fragment
shader stage.

An Introduction to Fragment Shaders in OpenGL ES 2.0
Listing 5-8 shows the code of a basic fragment shader written in GLSL.

Listing 5-8.  A Basic Fragment Shader

varying vec4 v_vColor;
void main()
{
 gl_FragColor = v_vColor;
}
 
A vertex shader and a fragment shader are bundled together into a program object. For a program to
be valid, any varying objects from the vertex shader must be matched by a varying of identical type
and name in the fragment shader. Here we can see that we have a varying called v_vColor which is
of type vec4. The purpose of a fragment shader is to provide the color for the pixel being processed,
and GLSL provides the gl_FragColor variable to store this output result; as you can see, we are
storing the value of the varying v_vColor into this variable.

That’s all we need to create an exceptionally basic fragment shader. Combined with the preceding
vertex shader, we have a basic shader program which can render a colored primitive. The benefit of
this structure is that it scales exceptionally well; GPUs achieve the high levels of performance that
they do compared to general CPUs because they combine multiple vertex and shader processors
in parallel and execute the shaders of multiple vertices and fragments simultaneously. Modern
desktop GPUs have unified shader processors which can execute vertex and fragment shaders and
implement load balancers to spread the load based on the demand at any given time. I’m sure this is
a development which we will see in mobile architectures in the not-too-distant future.

Now that we know about vertex and pixel shaders, we’ll take a look at what we need to do in code
to build these into shader programs.

Creating a Shader Program
As our engine will only support OpenGL ES 2.0, all of our rendering operations will use shaders.
This gives us a clear design goal, as our renderer will have to set up a shader for use before it can
execute a draw call. We also know that we are likely to want to specify different shader operations
for different objects. Some of our shaders may be complex and carry out operations to give key
objects high-quality lighting and material properties. A mobile GPU is not capable of carrying out
these complex shaders too often in a single frame, so we’re going to have to support switching out

55CHAPTER 5: Writing a Renderer

our shaders to support more basic operations for simpler objects to achieve a real-time frame rate.
To achieve this, we will specify an interface for a shader, as shown in Listing 5-9.

Listing 5-9.  A Shader Interface

class Shader
{
private:
 void LoadShader(GLenum shaderType, std::string& shaderCode);
 
protected:
 GLuint m_vertexShaderId;
 GLuint m_fragmentShaderId;
 GLint m_programId;
 
 std::string m_vertexShaderCode;
 std::string m_fragmentShaderCode;
 
 bool m_isLinked;
 
public:
 Shader();
 virtual ~Shader();

 
 virtual void Link();
 virtual void Setup(Renderable& renderable);
 
 bool IsLinked() { return m_isLinked; }
};
 
Listing 5-9 shows the class definition of the Shader. It contains identifiers for the vertex and fragment
shaders as well as for the program object. It also has member variables to contain the source code
for the vertex and fragment shaders and a Boolean to track whether the shader has been linked.

The LoadShader method is used to load, compile, and attach the shader code for the vertex and
fragment shaders to the program object. It is specified in Listing 5-10.

Listing 5-10.  Shader’s LoadShader Method

void Shader::LoadShader(GLuint id, std::string& shaderCode)
{
 static const uint32_t NUM_SHADERS = 1;
 
 const GLchar* pCode = shaderCode.c_str();
 GLint length = shaderCode.length();
 
 glShaderSource(id, NUM_SHADERS, &pCode, &length);
 
 glCompileShader(id);
 
 glAttachShader(m_programId, id);
}
 

56 CHAPTER 5: Writing a Renderer

LoadShader begins by getting a pointer to the source code and the length of the source. We then call
glShaderSource to set the source code into the GL context at the specified shader ID. glCompileShader
is called to compile the source, and glAttachShader attaches the compiled shader object to the program.
Listing 5-11 shows how the LoadShader method fits into the context of the program as a whole.

Listing 5-11.  Shader’s Link Method

void Shader::Link()
{
 m_programId = glCreateProgram();
 
 m_vertexShaderId = glCreateShader(GL_VERTEX_SHADER);
 LoadShader(m_vertexShaderId, m_vertexShaderCode);
 
 m_fragmentShaderId = glCreateShader(GL_FRAGMENT_SHADER);
 LoadShader(m_fragmentShaderId, m_fragmentShaderCode);
 
 glLinkProgram(m_programId);
 
 m_isLinked = true;
}
 
Here we can see that Link begins by calling glCreateProgram, which requests the GL context to
create a new shader program object. We are not given access to the object but instead are returned
an identifier which we use when calling subsequent shader methods. We then ask OpenGL to create
a VERTEX_SHADER object for us and call LoadShader with the vertex shader id and code as parameters.
We then repeat this process for a FRAGMENT_SHADER object. Finally, we call glLinkProgram to finalize
the shader object.

Our Setup method will be used to tell the OpenGL context which shader is the active shader for the
next draw call. The base Shader class has a very basic task at this point and calls glUseProgram,
as shown in Listing 5-12.

Listing 5-12.  Shader::Setup( )

void Shader::Setup(Renderable& renderable)
{
 glUseProgram(m_programId);
} 

Rendering a Quad with OpenGL
It’s finally time for us to render our first triangles to the screen. This is an important point in creating a
game system, as all graphics which we render from this point on will be extensions to this simple task.
All complex models and effects in games are born from the ability to render a list of triangles which
are created with an array of vertices and an array of indices. This simple example will show you how
to render a quad using two triangles made from the four vertices and six indices which we looked at in
Listings 5-5 and 5-6 earlier in this chapter.

57CHAPTER 5: Writing a Renderer

Representing Geometry
Representing vertices and indices is something which we are likely to want to do repeatedly
throughout our games, and therefore it makes sense to encapsulate their representation within a
class. We’ll do this in our Geometry class, as shown in Listing 5-13.

Listing 5-13.  The Geometry Class

class Geometry
{
 
private:
 static const unsigned int NAME_MAX_LENGTH = 16;
 
 char m_name[NAME_MAX_LENGTH];
 int m_numVertices;
 int m_numIndices;
 void* m_pVertices;
 void* m_pIndices;
 
 int m_numVertexPositionElements;
 int m_numColorElements;
 int m_numTexCoordElements;
 int m_vertexStride;
 
public:
 Geometry();
 virtual ~Geometry();
 
 void SetName(const char* name) { strcpy(m_name, name); }
 void SetNumVertices(const int numVertices) { m_numVertices = numVertices; }
 void SetNumIndices(const int numIndices) { m_numIndices = numIndices; }
 
 const char* GetName() const { return m_name; }
 
 const int GetNumVertices() const { return m_numVertices; }
 const int GetNumIndices() const { return m_numIndices; }
 
 void* GetVertexBuffer() const { return m_pVertices; }
 void* GetIndexBuffer() const { return m_pIndices; }
 
 void SetVertexBuffer(void* pVertices) { m_pVertices = pVertices; }
 void SetIndexBuffer(void* pIndices) { m_pIndices = pIndices; }
 
 void SetNumVertexPositionElements(const int numVertexPositionElements);
 int GetNumVertexPositionElements() const { return m_numVertexPositionElements; }
 
 void SetNumColorElements(const int numColorElements);
 int GetNumColorElements() const { return m_numColorElements; }
 
 void SetNumTexCoordElements(const int numTexCoordElements);
 int GetNumTexCoordElements() const { return m_numTexCoordElements; }
 

58 CHAPTER 5: Writing a Renderer

 void SetVertexStride(const int vertexStride) { m_vertexStride = vertexStride; }
 int GetVertexStride() const { return m_vertexStride; }
 };
 
 inline void Geometry::SetNumVertexPositionElements(const int numVertexPositionElements)
 {
 m_numVertexPositionElements = numVertexPositionElements;
 }
 
 inline void Geometry::SetNumTexCoordElements(const int numTexCoordElements)
 {
 m_numTexCoordElements = numTexCoordElements;
 }
 
 inline void Geometry::SetNumColorElements(const int numColorElements)
 {
 m_numColorElements = numColorElements;
 }
 
Listing 5-13 gives the definition of the Geometry class. As well as storing pointers to the vertices and
indices, the class contains fields which are used to describe how the vertex data is stored in the
array. These members include the number of vertices and indices but also the number of position
elements in the position data, the number of color elements, and the number of texture coordinate
elements per vertex. We then also have a field which stores the stride of a vertex. The stride is the
number of bytes which we jump from the beginning of one vertex to the next and is required when
we describe the data to OpenGL, which we’ll look at shortly.

First, we’ll take a look at creating an object which the renderer can consume.

Creating a Renderable
We know that the job of the Renderer will be to feed Geometry to the OpenGL API to be drawn to
the screen. Therefore, it makes sense for us to be able to describe the objects which the Renderer
should consider in a consistent manner. Listing 5-14 shows the class which we will use to send
Renderable objects to the renderer for drawing.

Listing 5-14.  Defining a Renderable

class Renderable
{
private:
 Geometry* m_pGeometry;
 Shader* m_pShader;
 
public:
 Renderable();
 ~Renderable();
 
 void SetGeometry(Geometry* pGeometry);
 Geometry* GetGeometry();
 

59CHAPTER 5: Writing a Renderer

 void SetShader(Shader* pShader);
 Shader* GetShader();
};
 
inline Renderable::Renderable()
 : m_pGeometry(NULL)
 , m_pShader(NULL)
{
}
 
inline Renderable::~Renderable()
{
}
 
inline void Renderable::SetGeometry(Geometry* pGeometry)
{
 m_pGeometry = pGeometry;
}
 
inline Geometry* Renderable::GetGeometry()
{
 return m_pGeometry;
}
 
inline void Renderable::SetShader(Shader* pShader)
{
 m_pShader = pShader;
}
 
inline Shader* Renderable::GetShader()
{
 return m_pShader;
}
 
This is a straightforward class at the moment, as it simply contains a pointer to a Geometry object
and a Shader object. This is another class which will develop as we move forward.

We also need to augment the Renderer class to handle these Renderable objects. Listing 5-15 shows
how the Renderer handles the objects which we have added to be drawn.

Listing 5-15.  Updating the Renderer

class Renderer
{
private:
 typedef std::vector<Renderable*> RenderableVector;
 typedef RenderableVector::iterator RenderableVectorIterator;
 
 RenderableVector m_renderables;
 
 void Draw(Renderable* pRenderable);
 

60 CHAPTER 5: Writing a Renderer

public:
 void AddRenderable(Renderable* pRenderable);
 void RemoveRenderable(Renderable* pRenderable);
}
 
void Renderer::AddRenderable(Renderable* pRenderable)
{
 m_renderables.push_back(pRenderable);
}
 
void Renderer::RemoveRenderable(Renderable* pRenderable)
{
 for (RenderableVectorIterator iter = m_renderables.begin();
 iter != m_renderables.end();
 ++iter)
 {
 Renderable* pCurrent = *iter;
 if (pCurrent == pRenderable)
 {
 m_renderables.erase(iter);
 break;
 }
 }
}
 
void Renderer::Update()
{
 if (m_initialized)
 {
 glClearColor(0.95f, 0.95f, 0.95f, 1);
 glClear(GL_COLOR_BUFFER_BIT);
 
 for (RenderableVectorIterator iter = m_renderables.begin();
 iter != m_renderables.end();
 ++iter)
 {
 Renderable* pRenderable = *iter;
 if (pRenderable)
 {
 Draw(pRenderable);
 }
 }
 
 eglSwapBuffers(m_display, m_surface);
 }
}
 
We store the Renderable objects in a vector and loop over these during the call to Update. Each
Renderable is then passed to the private Draw method, which we describe in Listing 5-16.

61CHAPTER 5: Writing a Renderer

Listing 5-16.  Renderer’s Draw Method

void Renderer::Draw(Renderable* pRenderable)
{
 assert(pRenderable);
 if (pRenderable)
 {
 Geometry* pGeometry = pRenderable->GetGeometry();
 Shader* pShader = pRenderable->GetShader();
 assert(pShader && pGeometry);
  
 pShader->Setup(*pRenderable);
 
 glDrawElements(
 GL_TRIANGLES,
 pGeometry->GetNumIndices(),
 GL_UNSIGNED_SHORT,
 pGeometry->GetIndexBuffer());
 }
}
 
Our Draw method shows that we carry out only two tasks per object. After verifying that we have a
valid Renderable pointer and that our Renderable contains valid Geometry and Shader pointers, we
call Shader::Setup() and then glDrawElements. glDrawElements is passed parameters which let the
context know that we would like to render triangles, how many indices we are passing it, the format
of our indices, and the index buffer itself.

One thing you may notice is that we do not pass any information about the vertices to the draw call.
This is because this information is part of the shader setup stage and is passed as a data stream to
the shader. We’ll look at how we handle passing data to the shader now.

Creating the Basic Shader
Earlier, we looked at a base class for representing shaders in our framework; now we’ll take a look
at a specific implementation. To create a shader which we can use on the GPU, we’ll begin by
deriving a new class from the Shader class. Listing 5-17 shows the BasicShader class.

Listing 5-17.  The BasicShader Class

class BasicShader
 : public Shader
{
private:
 GLint m_positionAttributeHandle;
 
public:
 BasicShader();
 virtual ~BasicShader();
 
 virtual void Link();
 virtual void Setup(Renderable& renderable);
};
 

62 CHAPTER 5: Writing a Renderer

As you can see from Listing 5-17, we inherit from Shader and overload its public methods. We also
have added a field to store the index of the position attribute in the GL context. For simplicity, this
shader will render the color directly from the fragment shader and will forego the color values in the
stream which we looked at previously. Listing 5-18 shows the BasicShader class constructor which
contains the shader source code.

Listing 5-18.  The BasicShader Constructor

BasicShader::BasicShader()
{
 m_vertexShaderCode =
 "attribute vec4 a_vPosition; \n"
 "void main(){\n"
 " gl_Position = a_vPosition; \n"
 "} \n";
 
 m_fragmentShaderCode =
 "precision highp float; \n"
 "void main(){\n"
 " gl_FragColor = vec4(0.2, 0.2, 0.2, 1.0); \n"
 "} \n";
}
 

Note  The first line of the fragment shader source code sets the precision of floating point variables for the
shader. Variable precision is an advanced topic which we will not cover here. The minimum which you need
to know for beginning is that in OpenGL ES 2.0, your fragment shaders must declare the default precision for
floats to be valid. In this text, we will always use the value highp.

As you can see, our basic shader simply sets the output position to match the input vertex position,
and our fragment shader sets the color to be a dark gray. We’ll now look at the methods which we
need to override. The first is shown in Listing 5-19.

Listing 5-19.  BasicShader’s Link Method

void BasicShader::Link()
{
 Shader::Link();
 
 m_positionAtributeHandle = glGetAttribLocation(m_programId, "a_vPosition");
}
 
Here you can see that we first need to call our parent class’ Link method. This ensures that the
shaders have been compiled and linked into our program object. We then call glGetAttribLocation;
this method returns to us with the index of the a_vPosition attribute which we will use in the next
method, Setup, as shown in Listing 5-20.

63CHAPTER 5: Writing a Renderer

Note  It is possible to use the attribute name each time you wish to set the vertex stream for the position
attribute, but it’s good practice to query for the location as it’s much faster than looking up the position by
name each time you call.

Listing 5-20.  BasicShader::Setup( )

void BasicShader::Setup(Renderable& renderable)
{
 Shader::Setup(renderable);
 
 Geometry* pGeometry = renderable.GetGeometry();
 assert(pGeometry);
 
 glVertexAttribPointer(
 m_positionAttributeHandle,
 pGeometry->GetNumVertexPositionElements(),
 GL_FLOAT,
 GL_FALSE,
 pGeometry->GetVertexStride(),
 pGeometry->GetVertexBuffer());
 glEnableVertexAttribArray(m_positionAttributeHandle);
}
 
In this method, we again call our parent class to ensure that any operations required on the base
have been completed and that our shader is ready to be used.

We then call the glVertexAttribPointer OpenGL method to specify the vertex stream.
glVertexAttribPointer’s arguments are as follows:

The first parameter is the location of the attribute in the shader which we are 	
describing. In this case, we have data only for the position of the vertex.

The second parameter tells OpenGL how many elements are contained per 	
vertex. This value can be one, two, three, or four. In our case, it will be three, as
we are specifying the x, y, and z coordinates of the vertex.

The third parameter specifies the type of data that this location uses.	

The fourth determines whether we would like the values to be normalized.	

We then pass a parameter which tells OpenGL how many bytes to jump from 	
the beginning of the data for this vertex to the next, called the stride. Zero is a
valid value when there is no data between vertices, or they are tightly packed, as
it is known. We will look at the stride in more detail when we look at vertex data
which requires it to be nonzero.

Last but not least, we pass a pointer to the address in memory, where the vertex 	
data for the object can be found.

64 CHAPTER 5: Writing a Renderer

Before we can use the shader, we are then required to call glEnableVertexAttribArray to ensure
that the OpenGL context is aware that the data is ready for use.

Now that we have a shader which can be instantiated and used within our program as well as Geometry
and Renderable classes, let’s create an app which can use these to draw a quad to the screen.

Creating an App-Specific Application and Task
Each app that we create is likely to contain different functionality. We’ll want to have different menus,
different levels, and different gameplay. To differentiate functionality between apps, we can inherit
our Framework Application class into an app-specific implementation and contain a Task inside it,
as shown in Listing 5-21.

Listing 5-21.  The Chapter5Task

class Chapter5Task
 : public Framework::Task
{
private:
 State m_state;
 
 Framework::Renderer* m_pRenderer;
 Framework::Geometry m_geometry;
 Framework::BasicShader m_basicShader;
 Framework::Renderable m_renderable;
 
public:
 Chapter5Task(Framework::Renderer* pRenderer, const unsigned int priority);
 virtual ~Chapter5Task();
 
 // From Task
 virtual bool Start();
 virtual void OnSuspend();
 virtual void Update();
 virtual void OnResume();
 
 
 virtual void Stop();
};
 
Listing 5-21 shows our Task for this app. It contains a pointer to the Renderer and members to
represent Geometry, a BasicShader, and a Renderable. Using these is fairly straightforward.

Listing 5-22 shows the basic setup required in the constructor.

Listing 5-22.  Chapter5Task Constructor

Chapter5Task::Chapter5Task(Framework::Renderer* pRenderer, const unsigned int priority)
 : m_pRenderer(pRenderer)
 , Framework::Task(priority)

65CHAPTER 5: Writing a Renderer

{
 m_renderable.SetGeometry(&m_geometry);
 m_renderable.SetShader(&m_basicShader);
}
 
Here we set m_pRenderer to be the passed in Renderer and we call through to the Task constructor
with the priority which we have assigned.

We also call SetGeometry and SetShader on m_renderable with the addresses of the member
variables for the corresponding parameters.

In Listing 5-23, we look at what needs to happen when the Task is started on being added to
the kernel.

Listing 5-23.  Chapter5Task Start

namespace
{
 float verts[] =
 {
 –0.5f, 0.5f, 0.0f,
 0.5f, 0.5f, 0.0f,
 –0.5f, –0.5f, 0.0f,
 0.5f, –0.5f, 0.0f,
 };
 
 unsigned short indices[] =
 {
 0, 2, 1, 2, 3, 1
 };
}
 
bool Chapter5Task::Start()
{
 Framework::Geometry* pGeometry = m_renderable.GetGeometry();
 pGeometry ->SetVertexBuffer(verts);
 pGeometry ->SetNumVertices(4);
 pGeometry ->SetIndexBuffer(indices);
 pGeometry ->SetNumIndices(6);
 pGeometry ->SetName("quad");
 
 pGeometry ->SetNumVertexPositionElements(3);
 pGeometry ->SetVertexStride(0);
 
 m_pRenderer->AddRenderable(&m_renderable);
 
 return true;
}
 
Here we are specifying the vertex and index data in a local anonymous namespace before the
method declaration. In the future, we will be loading this data from a file.

66 CHAPTER 5: Writing a Renderer

The Start method gets the valid pointer from the Renderable object and then sets all of the relevant
data. The vertex and index buffers and sizes are set, we give the object a name, and we set the
number of position elements per vertex to be three and the stride to be zero.

We then add m_renderable to the Renderer for drawing.

The Stop method (Listing 5-24) has a simple task, and that is to remove the renderable object from
the renderer. The destructor should do the same.

Listing 5-24.  Chapter5Task Stop

void Chapter5Task::Stop()
{
 m_pRenderer->RemoveRenderable(&m_renderable);
}
 
We’ll now look at how to add Chapter5Task to the Kernel, as shown in Listing 5-25.

Listing 5-25.  Chapter5App

class Chapter5App
 : public Framework::Application
{
private:
 Chapter5Task m_chapter5Task;
 
public:
 Chapter5App(android_app* pState);
 virtual ~Chapter5App();
 
 virtual bool Initialize();
};
 
Creating the Chapter5App class is as simple as inheriting from Application. We override the
Initialize method and add a member of type Chapter5Task.

The methods for Chapter5App are very simple, as shown in Listing 5-26.

Listing 5-26.  Chapter5App Methods

Chapter5App::Chapter5App(android_app* pState)
 : Framework::Application(pState)
 , m_chapter5Task(&m_rendererTask, Framework::Task::GAME_PRIORITY)
{
}
 
bool Chapter5App::Initialize()
{
 bool success = Framework::Application::Initialize();
 

67CHAPTER 5: Writing a Renderer

 if (success)
 {
 m_kernel.AddTask(&m_chapter5Task);
 }
 
 return success;
}
 
The simplicity you see here is a result of us hiding all of the tasks which will be shared between future
apps into the Framework layer of the code. We are well on our way to creating a reusable base, and
hopefully the benefits you are beginning to see will be even more evident in the next section. Our
simple constructor has the easy task of calling its parent and initializing the Chapter5Task object.

Initialize simply calls its parent and then adds the Chapter5Task object to the Kernel if all is well.

We’re doing well so far, but the code we have looked at to now will render only a blank quad onto
the screen, and that isn’t particularly interesting. A screenshot of the output is shown in Figure 5-2.

Figure 5-2.  The rendered output from the basic shaders

Let’s quickly move on to look at how we can render a textured quad instead.

Applying Textures to Geometry
Specifying geometry and vertices in the code was a straightforward task. Representing texture data
in the same way would be a much more difficult proposition. I could supply you with a preset texture
in a code format; however, now seems like as good a time as any to look at loading files with the
Android NDK.

68 CHAPTER 5: Writing a Renderer

Loading a File
The word “file” is quite obviously a noun, and basic object oriented-design tells us that nouns make
for great candidates to be turned into classes, so that’s where we will begin. The interface for the
File class is shown in Listing 5-27.

Listing 5-27.  The File Class Interface

class File
{
public:
 explicit File(std::string name);
 virtual ~File();
 
 bool Open();
 void Read(void* pBuffer, const unsigned int bytesToRead, size_t& bytesRead);
 void Close();
 
 unsigned int Length() const;
};
 
The interface defines the basic operations which we would like to carry out on an individual file.
Now we’ll take a look at the functions for implementing these operations supplied by the NDK.

If you look at the folders created in your project, you should see one called assets. Any files which
we would like to be accessible from within our app will be added to this folder. The NDK class
provides us with an interface object to this folder called the AAssetManager. We need only a single
reference to the AAssetManager object, so we create a static pointer to it in the File class, shown
in Listing 5-28.

Listing 5-28.  Adding the AAssetManager to File

class File
{
private:
 static AAssetManager* m_pAssetmanager;
 
public:
 static void SetAssetManager(AAssetManager* pAssetManager)
 {
 m_pAssetManager = pAssetmanager;
 }
};
 
To ensure this is set before creating an instance of File, it’s a good idea to assert on the pointer not
being NULL in the constructor, as shown in Listing 5-29.

69CHAPTER 5: Writing a Renderer

Listing 5-29.  File Constructor

File::File(std::string name)
{
 assert(m_pAssetManager != NULL);
}
 
The first operation carried out on a file is to open it. We do this via a call to AAssetManager_open,
which is shown in Listing 5-30.

Listing 5-30.  File Open

bool File::Open()
{
 m_pAsset = AAssetManager_open(m_pAssetManager, m_filename.c_str(), AASSET_MODE_UNKNOWN);
 return !!m_pAsset;
}
 
As you can see, this is relatively straightforward. You will need to add an AAsset pointer and a string
for the filename to the class definition to represent m_pAsset and m_filename. m_filename can be
initialized with the string passed into File’s constructor.

At this point, we can ask the NDK how long the file is in bytes, as shown in Listing 5-31.

Listing 5-31.  File Length

unsigned int File::Length() const
{
 return AAsset_getLength(m_pAsset);
}
 
We can also close the file when we are finished with it, as shown in Listing 5-32.

Listing 5-32.  File Close

void File::Close()
{
 if (m_pAsset)
 {
 AAsset_close(m_pAsset);
 m_pAsset = NULL;
 }
}
 
It’s good practice to ensure that all files are closed before shutting down a program; therefore,
I’d also advise calling Close from File’s destructor (Listing 5-33).

Listing 5-33.  ~File

File::~File()
{
 Close();
}
 

70 CHAPTER 5: Writing a Renderer

Now for the real workhorse of the File class, the Read method, as shown in Listing 5-34.

Listing 5-34.  File’s Read Method

void File::Read(void* pBuffer, const unsigned int bytesToRead, size_t& bytesRead)
{
 bytesRead = AAsset_read(m_pAsset, pBuffer, bytesToRead);
}
 
Hardly complicated, but there’s a good reason for that. Many file types have headers which the
program may wish to read without having to read the entire contents of a large file. This is especially
true of files which are collections of other files.

As it would be impossible for the File class itself to know the intentions of the code which is
calling it, we do not encumber it with any unwarranted code. We’ll look at how we can handle a
texture file next.

Loading a TGA File
TGA files are widely used within game development. There is a simple reason for their widespread
adoption: they are very easy to read and write and they support all of the information which a game
requires, which includes an alpha channel. There is also a developer area specified in the TGA format
which devs can use for whatever purposes they wish, which makes the format very flexible. For now,
we’ll deal with a basic TGA file. Listing 5-35 shows the exact byte pattern of a TGA file’s header.

Listing 5-35.  TGAHeader

struct TGAHeader
{
 unsigned char m_idSize;
 unsigned char m_colorMapType;
 unsigned char m_imageType;
 
 unsigned short m_paletteStart;
 unsigned short m_paletteLength;
 unsigned char m_paletteBits;
 
 unsigned short m_xOrigin;
 unsigned short m_yOrigin;
 unsigned short m_width;
 unsigned short m_height;
 unsigned char m_bpp;
 unsigned char m_descriptor;
} __attribute__ ((packed));
 
This 18-byte section exists at the beginning of every valid TGA file and always in the same format.
A lot of the data is unnecessary for us to consider at the moment. Initially, we will be dealing with
uncompressed bitmap data. While TGA files can support compression and palletized textures, they
are not in a format which is supported by OpenGL, and as such we will avoid creating textures in this
format. In the case where we have a normal bitmap file, the only fields of interest in the header are

71CHAPTER 5: Writing a Renderer

width, height, and bpp. bpp represents the bytes per pixel, a value of one would indicate that we
are dealing with a grayscale image, three would indicate RGB, and four would indicate RGBA.
We can work out the size of the image data which follows on from the header by calculating
m_width * m_height * m_bpp.

Unfortunately, we have to cover a relatively advanced concept at this time. When we load our file
data, we will load the entire 18 bytes of the header, or the entire file, from memory. We can then cast
the pointer addressing the data loaded from the file into a TGAHeader pointer; using a cast in this
manner prevents us from having to copy the loaded data into a structure and is commonly referred
to as memory mapping. The __attribute__ ((packed)) directive is essential when doing this. Its job
is to ensure that the compiler does not add any padding between the members in the structure.
For instance, the first three fields, m_idSize, m_colorMapType, and m_imageType, are represented
within three bytes. Most processors are more efficient at copying and accessing data from a memory
address which is aligned on a boundary of a certain number of bytes. The compiler therefore can
pad out the structure by skipping over the fourth byte and storing m_paletteStart on the next
address which is divisible by four.

The problem this creates for us is that different compilers are free to pad whichever way they please for
the processor they are targeting, while our files which we are loading from memory are guaranteed to
not have any padding present; this means that compilers are likely to make the addresses of the fields
of the structure not match the position of the data in the binary chunk. The __attribute__ ((packed))
line at the end of the struct definition prevents the compiler from adding padding which we do not want.

Sorry for the slight detour and bump in difficulty. If that last piece of information was a little complex,
rest assured that you do not have to understand exactly what is happening at this point in time; you
just need to know that it’s needed in this instance. I’ve also added it everywhere else in this book
where it is necessary, so you won’t have to worry about getting it correct later.

Let’s take a look at the TGAFile class as a whole (see Listing 5-36).

Listing 5-36.  TGAFile

class TGAFile
{
public:
 struct TGAHeader
 {
 unsigned char m_idSize;
 unsigned char m_colorMapType;
 unsigned char m_imageType;
 
 unsigned short m_paletteStart;
 unsigned short m_paletteLength;
 unsigned char m_paletteBits;
 
 unsigned short m_xOrigin;
  
 
 unsigned short m_yOrigin;
 unsigned short m_width;
 unsigned short m_height;

72 CHAPTER 5: Writing a Renderer

 unsigned char m_bpp;
 unsigned char m_descriptor;
 } __attribute__ ((packed));
 
 TGAFile(void* pData);
 virtual ~TGAFile();
 
 unsigned short GetWidth() const;
 unsigned short GetHeight() const;
 void* GetImageData() const;
 
private:
 TGAHeader* m_pHeader;
 void* m_pImageData;
};
 
inline unsigned short TGAFile::GetWidth() const
{
 unsigned short width = m_pHeader
 ? m_pHeader->m_width
 : 0;
 return width;
}
 
inline unsigned short TGAFile::GetHeight() const
{
 unsigned short height = m_pHeader
 ? m_pHeader->m_height
 : 0;
 return height;
}
 
inline void* TGAFile::GetImageData() const
{
 return m_pImageData;
}
 
It’s quite easy to understand for the most part. Now we can take a look at how we will represent a
texture to the Renderer.

Representing a GL Texture
Textures are used in computer graphics to give flat surfaces more detail than would otherwise be
possible using geometry alone. The classic example is a brick wall. The bricks themselves have a
rough surface, and the mortar between the bricks is usually a different color from the bricks.

Representing these surfaces using a purely geometric method would require many more vertices
than we could possibly process at a real-time frame rate. We get around the processing limitation by
faking the appearance of the surface by drawing an image over it. These images are textures.

73CHAPTER 5: Writing a Renderer

Textures are now used for many purposes. They can be used in the traditional manner by defining
the color of each pixel on a polygon. They are also now used for diverse applications such as to
map normals and lighting data. These are known as normal maps and light maps, respectively.
We’ll stick with the traditional use at this beginner level and will take a look in this chapter at how
we use texture maps. Listing 5-37 shows how we represent a texture map in code.

Listing 5-37.  Framework’s Texture Class

class Texture
{
public:
 struct Header
 {
 unsigned int m_width;
 unsigned int m_height;
 unsigned int m_bytesPerPixel;
 unsigned int m_dataSize;
 
 Header()
 : m_width(0)
 , m_height(0)
 , m_bytesPerPixel(0)
 , m_dataSize(0)
 {
 }
 
 Header(const Header& header)
 {
 m_width = header.m_width;
 m_height = header.m_height;
 m_bytesPerPixel = header.m_bytesPerPixel;
 m_dataSize = header.m_dataSize;
 }
 };
 
private:
 GLuint m_id;
 Header m_header;
 void* m_pImageData;
 
public:
 Texture();
 ~Texture();
 
  
 
 void SetData(Header& header, void* pImageData);
 
 GLuint GetId() const { return m_id; }
 
 void Init();
};
 

74 CHAPTER 5: Writing a Renderer

This class is another fairly straightforward affair and is mostly self-documenting. It takes some
pointers and stores the information it needs to describe the texture data in a struct named Header.
The one method worth taking a proper look at is Init, which we do in Listing 5-38.

Listing 5-38.  Texture’s Init

void Texture::Init()
{
 GLint packBits = 4;
 GLint internalFormat = GL_RGBA;
 GLenum format = GL_RGBA;
 switch (m_header.m_bytesPerPixel)
 {
 case 1:
 {
 packBits = 1;
 internalFormat = GL_ALPHA;
 format = GL_ALPHA;
 }
 break;
 };
 
 glGenTextures(1, &m_id);
 
 glBindTexture(GL_TEXTURE_2D, m_id);
 
 glPixelStorei(GL_UNPACK_ALIGNMENT, packBits);
 
 glTexImage2D(
 GL_TEXTURE_2D,
 0,
 internalFormat,
 m_header.m_width,
 m_header.m_height,
 0,
 format,
 GL_UNSIGNED_BYTE,
 m_pImageData);
}
 
For now, Init is written to handle only GL_RGBA or GL_ALPHA textures. glGenTextures creates a new
texture and returns an id through the parameter reference. It would be possible to create multiple
textures at once, but for now we’re happy with creating single textures at a time.

glBindTexture serves to attach the texture at the specified ID to the named texture unit and also
locks the texture to that type. At the moment, we are interested only in traditional two-dimensional
textures, so we have specified that in the first parameter.

glPixelStorei informs OpenGL how many bytes are in each pixel. For grayscale, we have one byte
per pixel and for RGBA textures, we have four. Specifically, this function tells OpenGL how it should
read the texture into its own memory.

75CHAPTER 5: Writing a Renderer

We then use glTexImage2D. This function has the OpenGL context copy the image data from our
source array into its own usable memory space. The parameters are as follows:

	target - the texture unit to read into, in our case GL_TEXTURE_2D.

	level - the mip level to read into; for now we are interested only in level zero.

	internalFormat - the format of the texture to copy into. This can be different
from format but we are not using this functionality.

	width - the width of the texture in pixels.

	height - the height of the texture in pixels.

	border - this value must always be zero.

	format - the format of the source pixel data. We are using GL_ALPHA or GL_RGBA
and will match the value passed to internalFormat.

	type - the data type of the individual pixels. We are using unsigned bytes.

	data - the pointer to the first pixel in the image data.

Once this function has been successfully called, we will have a usable texture at the ID created.

Creating TextureShader
We can write the shader which will be used to apply the texture to the geometry now that we
know what a texture looks like to OpenGL. We start by again inheriting a new class from Shader
in Listing 5-39.

Listing 5-39.  The TextureShader Class

class TextureShader
 : public Shader
{
private:
 Texture* m_pTexture;
 GLint m_positionAttributeHandle;
 GLint m_texCoordAttributeHandle;
 GLint m_samplerHandle;
 
public:
 TextureShader();
 virtual ~TextureShader();
 
 virtual void Link();
 virtual void Setup(Renderable& renderable);
 
 void SetTexture(Texture* pTexture);
 Texture* GetTexture();
};
 

76 CHAPTER 5: Writing a Renderer

The code is not all that much more complicated than the BasicShader which we created earlier.
The standout differences are that we do not have an attribute handle for texture coordinates or one
for something called a sampler, which I will explain more in the following text. Let’s take a look at
the constructor for TextureShader, as shown in Listing 5-40.

Listing 5-40.  The TextureShader Constructor

TextureShader::TextureShader()
 : m_pTexture(NULL)
{
 m_vertexShaderCode =
 "attribute vec4 a_vPosition; \n"
 "attribute vec2 a_texCoord; \n"
 "varying vec2 v_texCoord; \n"
 "void main(){ \n"
 " gl_Position = a_vPosition; \n"
 " v_texCoord = a_texCoord; \n"
 "} \n";
 
 m_fragmentShaderCode =
 "precision highp float; \n"
 "varying vec2 v_texCoord; \n"
 "uniform sampler2D s_texture; \n"
 "void main(){ \n"
 " gl_FragColor = texture2D(s_texture, v_texCoord); \n"
 "} \n";
}
 
The shader code should look a little familiar by now. We have attributes which will correspond to the
data being passed in to the vertex shader, one to represent the position and another to represent the
texture coordinates. We then also have a varying named v_textCoord which will be used to interpolate
the current texture coordinate for processing in the fragment shader. You can see this varying being
set up in the vertex shader, where we pass the texture coordinate attribute into the varying.

The fragment shader introduces a new concept, that of the sampler. Sampling is the process by
which a GPU takes a texture coordinate and looks up the texel color. Note the change in terminology
there: when talking about textures, we tend to talk about the individual elements as texels rather
than pixels.

The coordinates themselves are also usually referred to as UV coordinates when they are used in
discussion about looking up texels in a texture. U corresponds to the usual x axis and V to the y
axis. The origin of UV coordinates is at position (0, 0) and is found in the top left-hand corner of the
image. The coordinates are specified as numbers ranging from zero to one, where U at zero is the
left-hand edge and one is the right-hand edge, the same applied for V from top to bottom.

The program gets access to the locations of the shader’s variables in a familiar manner. As you can
see in Listing 5-41, we gain access to the sampler’s location by using glGetUniformPosition rather
than glGetAttribLocation.

77CHAPTER 5: Writing a Renderer

Listing 5-41.  TextureShader Link

void TextureShader::Link()
{
 Shader::Link();
 
 m_positionAttributeHandle = glGetAttribLocation(m_programId, "a_vPosition");
 m_texCoordAttributeHandle = glGetAttribLocation(m_programId, "a_texCoord");
 m_samplerHandle = glGetUniformLocation(m_programId, "s_texture");
}
 
The last thing left to do with our shader is set it up ready for use, as shown in Listing 5-42.

Listing 5-42.  TextureShader Setup

void TextureShader::Setup(Renderable& renderable)
{
 assert(m_pTexture);
 Geometry* pGeometry = renderable.GetGeometry();
 if (pGeometry && m_pTexture)
 {
 Shader::Setup(renderable);
 
  
 
 glActiveTexture(GL_TEXTURE0);
 glBindTexture(GL_TEXTURE_2D, m_pTexture->GetId());
 glUniform1i(m_samplerHandle, 0);
 
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
 
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
 
 glVertexAttribPointer(
 m_positionAttributeHandle,
 pGeometry->GetNumVertexPositionElements(),
 GL_FLOAT,
 GL_FALSE,
 pGeometry->GetVertexStride(),
 pGeometry->GetVertexBuffer());
 glEnableVertexAttribArray(m_positionAttributeHandle);
 
 glVertexAttribPointer(
 m_texCoordAttributeHandle,
 pGeometry->GetNumTexCoordElements(),
 GL_FLOAT,
 GL_FALSE,

78 CHAPTER 5: Writing a Renderer

 pGeometry->GetVertexStride(),
 &static_cast<GLfloat*>(pGeometry->GetVertexBuffer())

[pGeometry->GetNumVertexPositionElements()]);
 glEnableVertexAttribArray(m_texCoordAttributeHandle);
 }
}
 
Listing 5-42 shows us what is required to set up the shader for use with a texture. After calling the
parent object’s Setup method, we then activate a texture sampler with OpenGL for our use using
glActiveTexture. We then attach our texture to the GL_TEXTURE_2D unit and set our sampler location
to be the texture unit zero. These steps are necessary to have OpenGL setup the correct texture for
use in our shader at the correct location.

The next step is to set a wrapping format for our texture. Certain effects can be achieved using the
wrapping value. Textures can be made to repeat or mirrored, for example, by specifying texture
coordinate smaller or larger than zero and one. In our case, we will simply set the texture coordinates
to be clamped to the range between zero and one.

We then specify a filtering type. Filtering is applied to a texture when it is not being drawn at one
texel per screen pixel. When the texels are far away from the camera, multiple texels may be visible
inside a single pixel. Linear filtering averages the four pixels in a block surrounding the point where
the UV coordinates are pointing on the surface of the texture. The result is that the image is slightly
blurred, and while this may not sound ideal, it helps to reduce a shimmering effect on textures as
objects move toward and away from the camera.

We then specify the vertex data to OpenGL just like we did in the BasicShader. After specifying the
vertex data, we specify the texture coordinate data. Everything looks the same for the most part,
except that we pass the texture coordinate attribute location and the number of texture coordinate
elements into glVertexAttribPointer. We then need to pass the address of the first texture
coordinate into the last parameter. Remember that we discussed earlier that we would be using an
array of structure formats for our data and that this means our vertex attributes are interleaved into a
single array. You can see that we calculate the address of the first texture coordinate by casting the
vertex buffer to a float pointer and then use an array index with the number of position elements to
jump the pointer over the first position.

This is all we need for setting up our texture and shader for use. We can now look at how we go
about making sure that OpenGL is in the correct state to handle our textures and shaders.

Initializing Textures and Shaders
As we saw when we initialized OpenGL, the API has a context which is set up at a time when the
Android OS informs us that it has created the window structures for our app. We also saw how
setting up textures and shaders involves getting positions of variables from shader programs which
have been linked or attached. These processes are carried out within the current context. The
implication of this is that we need a valid context before we can carry out these operations on our
shaders and textures. It also means that if the context is destroyed, which occurs if the user puts the
phone to sleep, then each texture and shader must be reinitialized.

To ensure that this is possible, we will add a vector of textures and shaders which are in use to the
Renderer, as shown in Listing 5-43.

79CHAPTER 5: Writing a Renderer

Listing 5-43.  Renderer’s Texture and Shader Vectors

class Renderer
{
private:
 typedef std::vector<Shader*> ShaderVector;
 typedef ShaderVector::iterator ShaderVectorIterator;
 
 typedef std::vector<Texture*> TextureVector;
  
 
 typedef TextureVector::iterator TextureVectorIterator;
 
public:
 void AddShader(Shader* pShader);
 void RemoveShader(Shader* pShader);
 
 void AddTexture(Texture* pTexture);
 void RemoveTexture(Texture* pTexture);
};
 
void Renderer::AddShader(Shader* pShader)
{
 assert(pShader);
 if (m_initialized)
 {
 pShader->Link();
 }
 m_shaders.push_back(pShader);
}
 
void Renderer::RemoveShader(Shader* pShader)
{
 for (ShaderVectorIterator iter = m_shaders.begin(); iter != m_shaders.end(); ++iter)
 {
 Shader* pCurrent = *iter;
 if (pCurrent == pShader)
 {
 m_shaders.erase(iter);
 break;
 }
 }
}
 
void Renderer::AddTexture(Texture* pTexture)
{
 assert(pTexture);
 if (m_initialized)
 {
 pTexture->Init();
 }
 m_textures.push_back(pTexture);
}
 

80 CHAPTER 5: Writing a Renderer

void Renderer::RemoveTexture(Texture* pTexture)
{
 for (TextureVectorIterator iter = m_textures.begin(); iter != m_textures.end(); ++iter)
 {
 Texture* pCurrent = *iter;
 if (pCurrent == pTexture)
 {
 m_textures.erase(iter);
 break;
 }
 }
}
 
The preceding code is all we need to maintain a current list of textures and shaders in use. To
reinitialize these when the phone becomes awake and the Renderer has been initialized or to
initialize any which were added before the Renderer was ready, we add the code from Listing 5-44 to
Renderer::Init after the OpenGL setup has completed.

Listing 5-44.  Reinitializing Textures and Shaders

for (TextureVectorIterator iter = m_textures.begin(); iter != m_textures.end(); ++iter)
{
 Texture* pCurrent = *iter;
 pCurrent->Init();
}
 
for (ShaderVectorIterator iter = m_shaders.begin(); iter != m_shaders.end(); ++iter)
{
 Shader* pCurrent = *iter;
 pCurrent->Link();
} 

Loading Textures in a Task
Before we can load a texture, we need to specify the relevant variables required. We do this in
Listing 5-45.

Listing 5-45.  Adding a Texture to Chapter5Task

class Chapter5Task
 : public Framework::Task
{
private:
 enum State
 {
 LOADING_FILE,
 CREATE_TEXTURE,
 RUNNING
 };
 
 State m_state;
 

81CHAPTER 5: Writing a Renderer

 Framework::File m_file;
 Framework::Renderer* m_pRenderer;
 Framework::Geometry m_geometry;
 Framework::TextureShader m_textureShader;
 Framework::Renderable m_renderable;
 Framework::Texture m_texture;
 
 void* m_pTGABuffer;
 unsigned int m_readBytes;
 unsigned int m_fileLength;
};
 
We’ll look at what each is for as we move through the modified methods. Let’s start with the
constructor, as shown in Listing 5-46.

Listing 5-46.  Chapter5Task Constructor

Chapter5Task::Chapter5Task(Framework::Renderer* pRenderer, const unsigned int priority)
 : m_pRenderer(pRenderer)
 , Framework::Task(priority)
 , m_state(RUNNING)
 , m_file("test.tga")
 , m_pTGABuffer(NULL)
 , m_readBytes(0)
{
 m_renderable.SetGeometry(&m_geometry);
 m_renderable.SetShader(&m_textureShader);
}
 
Here you can see that we have set up the variables with default values, which includes specifying
the filename test.tga.

Listing 5-47 shows the Start method.

Listing 5-47.  Chapter5Task Start

float verts[] =
{
 –0.5f, 0.5f, 0.0f,
 0.0f, 1.0f,
 0.5f, 0.5f, 0.0f,
 1.0f, 1.0f,
 –0.5f, –0.5f, 0.0f,
 0.0f, 0.0f,
 0.5f, –0.5f, 0.0f,
 1.0f, 0.0f
};
 
bool Chapter5Task::Start()
{
 Framework::Geometry* pGeometry = m_renderable.GetGeometry();
 pGeometry->SetVertexBuffer(verts);
 pGeometry->SetNumVertices(4);

82 CHAPTER 5: Writing a Renderer

 pGeometry->SetIndexBuffer(indices);
 pGeometry->SetNumIndices(6);
 pGeometry->SetName("quad");
 
 pGeometry->SetNumVertexPositionElements(3);
 pGeometry->SetNumTexCoordElements(2);
 pGeometry->SetVertexStride(sizeof(float) * 5);
 
 bool success = false;
 if (m_file.Open())
 {
 m_fileLength = m_file.Length();
 
 m_pTGABuffer = new char[m_fileLength];
 
 m_state = LOADING_FILE;
 success = true;
 }
 
 return success;
}
 
Here we have modified the array of vertices to have the four corners of the texture coordinates
specified at each position. The corresponding changes have been made to the Geometry class
parameters, namely, the number of texture coordinates have been set to two and the vertex string
to be the size of a float multiplied by five. This calculates our stride to be 20 bytes, which is easily
verified. We have three floats for position and two for texture coordinates. A float is 4 bytes in size,
so 5 times 4 is 20; perfect. An important point to notice with the texture coordinates is that they
are “upside-down.” While it would be normal for zero to be the top and one to be the bottom, TGA
files actually save their image data vertically flipped. Rather than look at complex code for flipping
the image data or preprocessing the files, we simply invert our texture coordinates here. All of the
textures in this book are TGAs, so this is an acceptable approach, but this is an issue you will want
to be aware of if you decide to use other image formats.

We then have a new block of code which opens our file, retrieves its length, and allocates an array
of bytes large enough to store its entire contents. Our state variable is then set to LOADING_FILE; we’ll
take a look at the significance of that in the Update method, shown in Listing 5-48.

Listing 5-48.  Chapter5Task::Update( )

void Chapter5Task::Update()
{
 switch (m_state)
 {
 case LOADING_FILE:
 {
 void* pCurrentDataPos =
 static_cast<char*>(m_pTGABuffer) + (sizeof(char) * m_readBytes);
 
 size_t bytesRead = 0;
 m_file.Read(pCurrentDataPos, 512 * 1024, bytesRead);
 

83CHAPTER 5: Writing a Renderer

 m_readBytes += bytesRead;
 if (m_readBytes == m_fileLength)
 {
 m_state = CREATE_TEXTURE;
 }
 }
  
 
 break;
 
 case CREATE_TEXTURE:
 {
 Framework::TGAFile tgaFile(m_pTGABuffer);
 
 Framework::Texture::Header textureHeader;
 textureHeader.m_height = tgaFile.GetHeight();
 textureHeader.m_width = tgaFile.GetWidth();
 textureHeader.m_bytesPerPixel = 4;
 textureHeader.m_dataSize =
 textureHeader.m_height *
 textureHeader.m_width *
 textureHeader.m_bytesPerPixel;
 
 m_texture.SetData(textureHeader, tgaFile.GetImageData());
 
 m_pRenderer->AddShader(&m_textureShader);
 m_pRenderer->AddTexture(&m_texture);
 
 m_textureShader.SetTexture(&m_texture);
 
 m_pRenderer->AddRenderable(&m_renderable);
 
 m_state = RUNNING;
 }
 break;
 };
}
 
What we have in Update is a rudimentary state machine. A state machine is a code construct which
specifies the current stage of an operation in an object. Our Task has three states: LOADING_FILE,
CREATE_TEXTURE, and RUNNING. The following process shows how the states change.

1.	 The LOADING_FILE state reads the test.tga file into the allocated memory
buffer in blocks of 512 kilobytes at a time. It calculates the current position
to read into by offsetting into m_pTGABuffer by the number of bytes already
read. File::Read passes out the number of bytes it read into the supplied
buffer for each call, and we add that to the value in m_readBytes. Once the
number of read bytes matches the size of the file, we can be satisfied that we
are finished and move onto the next state, CREATE_TEXTURE.

84 CHAPTER 5: Writing a Renderer

2.	 The CREATE_TEXTURE state takes the read file and creates an instance of
TGAFile from it. We then create a Texture::Header object with the data
from tgaFile and use this to initialize m_texture along with the image
data from tgaFile.

3.	 The texture and shader are then added to the Renderer, which will ensure
that they are properly initialized. The texture is also added to the shader for
rendering the quad and finally the renderable is added to the Renderer before
we switch to the RUNNING state.

Before we move onto the next chapter, I’d like to show you what adding textures to geometry can
achieve (see Figure 5-3).

Figure 5-3.  A textured quad

Rendering text is a complicated topic which we will not be covering in detail in this book, but by
embedding text into a texture, we can add written words into our game engine. With the same
simple rectangle we had earlier, texturing gives us a method to provide much more detail and data to
our player.

85CHAPTER 5: Writing a Renderer

Summary
We didn’t cover every single line of code necessary to get to this point; instead, I have focused on
the main methods which are important to the tasks we have tried to achieve. I’d recommend that
you take a look at the sample code which accompanies this chapter, build it, and use break points in
the debugger to work out exactly how everything fits together.

I want to reiterate the benefits of writing a game engine. A lot of the code we have just covered is
laborious to work through. The benefit of encapsulating this into reusable code is that you’ll never
have to write any of this again. It’s quite clear to see from the Chapter5Task class that we can add
geometry, textures, and shaders to future apps now with relative ease, which will increase our
productivity moving forward, and that’s exactly what we will do.

Part 1 of the book is now complete, and we have looked at video game development from its history
to the present day and have begun to write code which we will hopefully use to affect its future. In
the next section, we’ll begin to look at code which will shape the gameplay of the game we are going
to build, Droid Runner.

87

Chapter 6
Game Entities

All games are made up of different objects and the way that these objects behave. Pac-Man has
objects such as Pac-Man himself, the ghosts, pac-dots, power pellets, and walls. Each of these
objects has a different behavior. Pac-Man responds to the player’s input and can change from being
the prey to being the predator by eating a power pellet. This changes the behavior of the ghosts,
who are placed into a state where they run away from the player.

Our game calls for a simpler set of behaviors, but we will construct the objects using state-of-the-art
methods to get a feel for how modern games structure their game objects. Traditionally, game objects
have been built with a normal class hierarchy, starting with a base class and adding specializations in
each level up to the point where we have a class which is usable in-game. The problem with this
approach is its inflexibility. Once a game reaches a reasonable level of complexity, it can be particularly
difficult to add new types. There may also be problems related to diamond inheritance and particular
objects not fitting into the hierarchy all that well, leading to the overly complex construction of objects
which should in theory be quite simple.

Today, modern game architectures are more likely to be built using a component-based system.
In this chapter, we will take a look at how we can construct objects using such a system.

We’ll also look at an event system which will allow us to tell game objects about game events which
they can then react to. This again is a modern system which is extremely useful and allows objects
to opt in to events which they are interested in. Previously, the system which generates the event
was responsible for notifying every object it thought was likely to need to react.

Finally, we’ll move on to implementing the player and AI objects which will be used throughout
our game.

What Is a Game Entity?
The game entity is a very simple concept. Any object which exists in the game world is an entity.
From cars to people, exploding barrels, power-ups, and projectiles, if the object is one which needs
to be modeled in the game world to have an impact on gameplay, it is an entity.

88 CHAPTER 6: Game Entities

There are also entities which may not be as clear to the beginner game programmer. These would
be objects which must exist in the world but may not necessarily be visible. Lights, cameras, trigger
boxes, and sound emitters could all be examples of game objects which could fall under this
category. Figure 6-1 shows a traditional class hierarchy for vehicles.

BaseObject

Mover

CollidableMover

Vehicle

Car Truck

Figure 6-1.  A vehicle object hierarchy

Rather than use this hierarchy of classes to define the types of objects we will use in the game,
we will have a single class called GameObject. Complex objects will be constructed by adding
components to this object. We’ll take a look at what types of components we will need later in this
chapter; for now, Listing 6-1 shows the GameObject class.

Listing 6-1.  The Game Object Class

class GameObject
{
 template <class T>
 friend T* component_cast(GameObject& object);
 
 template <class T>
 friend T* component_cast(GameObject* pObject);
 

89CHAPTER 6: Game Entities

private:
 typedef std::tr1::unordered_map<unsigned int, Component*> ComponentUnorderedMap;
 typedef ComponentUnorderedMap::iterator ComponentUnorderedMapIterator;
 ComponentUnorderedMap m_components;
 
 template <class T>
 T* GetComponent() { return static_cast<T*>(GetComponent(T::GetId())); }
 
 Component* GetComponent(unsigned int id);
 
public:
 GameObject();
 ~GameObject();
 
 template <class T>
 bool AddComponent();
};
 
Listing 6-1 contains some of the most complicated code which we’ve looked at so far, so we’ll go
through it line by line. The friend keyword in C++ is used to allow other classes or functions to call
private methods which belong to instances of this class. In our case, we have defined a method named
component_cast which will be used to convert an object into a pointer to a type of component. The
component_cast method is overloaded to take a pointer or a reference to a GameObject for convenience
so that we are not required to dereference pointers throughout our codebase. The methods are also
templatized so that we can use the template syntax to specify which type of component we want to
convert the object into.

We can then see a typedef for an unordered_map of Component pointers and another for an iterator of
the map type.

The template method GetComponent is the method which will be called from the friend component_cast
function which we’ll look at shortly in Listing 6-2. This method calls the non-templatized version of
GetComponent and passes the id obtained from the static GetId method from the template type.
If the class passed as the type via the template does not contain a static GetId method, we will be
given an error at compile time.

We then declare our constructor and destructor before also declaring another templatized method
for adding components to the object.

Listing 6-2 shows the function definitions for the overloaded component_cast methods.

Listing 6-2.  component_cast

template <class T>
T* component_cast(GameObject& object)
{
 return object.GetComponent<T>();
}
 

90 CHAPTER 6: Game Entities

template <class T>
T* component_cast(GameObject* pObject)
{
 T* pComponent = NULL;
 if (pObject)
 {
 pComponent = pObject->GetComponent<T>();
 }
 
 return pComponent;
}
 
The major difference between the two methods is that the pointer-based version checks to see that
the pointer is not null before calling GetComponent on the passed object. For programmers familiar
with C++ cast types such as static_cast, this method of implementing the accessor for Component
objects which our GameObject contains will be very familiar in use. The code in practice will look like
that shown in Listing 6-3.

Listing 6-3.  component_cast example usage

ComponentType* pComponent = component_cast<ComponentType>(pOurObject);
 
We will be looking at this more when we cover the Component implementations for Droid Runner later
in this chapter.

Listing 6-4 shows GetComponent, which is a simple method.

Listing 6-4.  GetComponent

Component* GameObject::GetComponent(unsigned int id)
{
 ComponentUnorderedMapIterator result = m_components.find(id);
 return result == m_components.end()
 ? NULL
 : result->second;
}
 
Our map is keyed using the id of each Component, so we can retrieve a Component from the map by
simply calling find and passing the id as its argument.

The AddComponent method shown in Listing 6-5 does exactly what its name suggests: it adds a
component to our object.

Listing 6-5.  AddComponent

template <class T>
bool GameObject::AddComponent()
{
 bool added = false;
 
 ComponentUnorderedMapIterator result = m_components.find(T::GetId());
 if (result == m_components.end())

91CHAPTER 6: Game Entities

 {
 T* pNewComponent = new T(this);
 
 if (pNewComponent)
 {
 std::pair<unsigned int, Component*> newComponent(
 T::GetId(),
 pNewComponent);
 std::pair< ComponentUnorderedMapIterator, bool> addedIter =

 m_components.insert(newComponent);
 added = addedIter.second;
 }
 }
 
 return added;
}
 
First, it calls find on m_components to check if we have this type of Component already added to the
object. If the Component does not already exist in the unordered_map, we create a new instance of the
class type passed via the template parameter. The validity check on the pointer will help to prevent
our code from crashing in the case where the object was not created. new generally fails in situations
where we are out of memory, so we will likely see very bad things happening shortly after if it was
not successful.

To add an element to unordered_map, we are required to create a std::pair. Our pair creates a
mapping between the key, which in our case is the value returned by T::GetId(), and the pointer to
the newly created component. m_components.insert is called with the pair passed as its argument.
insert returns another pair which consists of an iterator into the map and a bool. If the new
Component was successfully added to the map, the value of the bool will be true.

The last method of note in the GameObject is the destructor. We take a look at this in Listing 6-6.

Listing 6-6.  GameObject::~GameObject

GameObject::~GameObject()
{
 for (ComponentUnorderedMapIterator iter = m_components.begin();
 iter != m_components.end();
 ++iter)
 {
 Component* pComponent = iter->second;
 if (pComponent)
 {
 delete pComponent;
 pComponent = NULL;
 }
 }
}
 

92 CHAPTER 6: Game Entities

The destructor of GameObject has a simple job: it iterates over the m_components unordered_map and
deletes each Component which was added.

The base class for a component is a simple piece of code and is shown in Listing 6-7.

Listing 6-7.  Component Declaration

class Component
{
private:
 GameObject* m_pOwner;
 
public:
 explicit Component(GameObject* pOwner)
 : m_pOwner(pOwner)
 {
 }
 
 virtual ~Component() {}
 
 virtual void Initialize() = 0;
 
 GameObject* GetOwner() { return m_pOwner; }
};
 
As you can see, a Component will simply contain a pointer to its owner and a pure virtual initialization
method. The GetOwner method will be useful later, as it allows Components to access the GameObject
which they belong to and use component_cast to access other Components if necessary.

Now that we have a class which will encapsulate our objects and a base interface for components,
we should take a look at the event system which will be used to communicate with the objects.

Communicating with Game Objects via Events
The normal process for communicating with an object is to call the methods which make up the class.
This requires that we have a suitable process for gaining access to the object and that we know which
methods to call on that object. If we had a need to call the same method on multiple objects, we would
increase the complexity of our code by requiring a method to collect all of the objects which we are going
to call the method on. As game projects grow, these tasks become more and more difficult to manage
properly and require proper planning and management to ensure that they do not consume too much time.

We can avoid all of these problems by switching to an event-based system. Rather than call methods
on each class when we would like objects to carry out a task, we simply broadcast an event message.
It is the responsibility of other objects to subscribe to the events which they wish to be informed of.
It really is as simple as that.

The Event Class
To get started, we’ll take a look at the class which encapsulates an Event. The code can be seen
in Listing 6-8.

93CHAPTER 6: Game Entities

Listing 6-8.  The Event Declaration

typedef unsigned int EventID;
 
class Event
{
private:
 typedef std::vector<EventHandler*> EventHandlerList;
 typedef EventHandlerList::iterator EventHandlerListIterator;
 
 EventHandlerList m_listeners;
 EventID m_id;
 
public:
 explicit Event(EventID eventId);
 ~Event();
 
 void Send();
 void SendToHandler(EventHandler& eventHandler);
 void AttachListener(EventHandler& eventHandler);
 void DetachListener(EventHandler& eventHandler);
 
 EventID GetID() const { return m_id; }
};
 
The class for an Event is another simple class. You can see that we will be storing a list of
EventHandler pointers in m_listeners. Our Event will also have an id field which we will ensure is
unique to each Event.

The public methods Send, SendToHandler, AttachListener, and DetachListener are where the main
work of the object is carried out.

Listing 6-9 shows the Send method.

Listing 6-9.  Event::Send( )

void Event::Send()
{
 for (EventHandlerListIterator iter = m_listeners.begin();
 iter != m_listeners.end();
 ++iter)
 {
 EventHandler* pEventHandler = *iter;
 assert(pEventHandler);
 if (pEventHandler)
 {
 pEventHandler->HandleEvent(this);
 }
 }
}
 

94 CHAPTER 6: Game Entities

This method simply loops over all of the members of the m_listeners list, retrieves the EventHandler
pointer from the iterator, and calls EventHandler::HandleEvent on the object. Pretty simple.
Listing 6-10 shows how we can send an Event to a single object.

Listing 6-10.  Event::SendToHandler( )

void Event::SendToHandler(EventHandler& eventHandler)
{
 for (EventHandlerListIterator iter = m_listeners.begin();
 iter != m_listeners.end();
 ++iter)
 {
 if (&eventHandler == *iter)
 {
 eventHandler.HandleEvent(this);
 }
 }
}
 
Here you can see that we will send the event only to the specific object which is passed in the
parameter, and only if that object exists in our list of listeners. We manage the list through the
AttachListener and DetachListener methods. First, AttachListener as shown in Listing 6-11.

Listing 6-11.  Event::AttachListener( )

void Event::AttachListener(EventHandler& eventHandler)
{
 m_listeners.push_back(&eventHandler);
}
 
Attaching an object to the event is as simple as pushing its address onto m_listeners.

DetachListener is shown in Listing 6-12.

Listing 6-12.  Event::DetachListener( )

void Event::DetachListener(EventHandler& eventHandler)
{
 for (EventHandlerListIterator iter = m_listeners.begin();
 iter != m_listeners.end();
 ++iter)
 {
 if (&eventHandler == *iter)
 {
 m_listeners.erase(iter);
 break;
 }
 }
}
 
To remove a listener, we iterate over m_listeners and call erase on the iterator which matches the
address of the EventHandler passed in the arguments.

95CHAPTER 6: Game Entities

What you may have noticed is that these methods do not protect against the same object being
attached multiple times and will remove only a single instance of the listener from the list. I have left
ensuring that objects are not added multiple times to calling code in the interests of simplicity.

The EventHandler Classes
Now that we know what the Event class looks like, we will take a look at the EventHandler class
in Listing 6-13.

Listing 6-13.  The EventHandler Class Declaration

class EventHandler
{
public:
 virtual ~EventHandler() {}
 
 virtual void HandleEvent(Event* pEvent) = 0;
};
 
This class couldn’t really be any simpler. We provide a pure virtual method, HandleEvent, for our
inherited classes to override.

The EventManager
The EventManager is shown in Listing 6-14. The EventManager is the interface between the game
code and the event system.

Listing 6-14.  The EventManager Class Declaration

class EventManager
 : public Singleton<EventManager>
{
 friend void SendEvent(EventID eventId);
 friend void SendEventToHandler(EventID eventId, EventHandler& eventHandler);
 friend bool RegisterEvent(EventID eventId);
 friend void AttachEvent(EventID eventId, EventHandler& eventHandler);
 friend void DetachEvent(EventID eventId, EventHandler& eventHandler);
 
private:
 typedef std::tr1::unordered_map<EventID, Event*> EventMap;
 typedef EventMap::iterator EventMapIterator;
 
 EventMap m_eventMap;
 
 void SendEvent(EventID eventId);
 void SendEventToHandler(EventID eventId, EventHandler& eventHandler);
 bool RegisterEvent(EventID eventId);
 void AttachEvent(EventID eventId, EventHandler& eventHandler);
 void DetachEvent(EventID eventId, EventHandler& eventHandler);
 

96 CHAPTER 6: Game Entities

public:
 EventManager();
 ~EventManager();
};
 
The first piece of important information to glean from Listing 6-14 is that we have made the class a
Singleton object. The Singleton is a slightly contentious design pattern which allows us access to
a single instance of a class from any point in the code base. Both of these properties are important
for our EventManager implementation. For more details of how the Singleton is implemented, please
take a look in the appendixes of this book.

EventManager’s Friend Functions
You can see from the class in Listing 6-14 that we have once again made use of the friend keyword
to reduce the complexity of the code for the callers of this class. We’ll take a look at the friend
functions in Listing 6-15 to see why.

Listing 6-15.  EventManager’s Friends

inline void SendEvent(EventID eventId)
{
 EventManager* pEventManager = EventManager::GetSingletonPtr();
 assert(pEventManager);
 if (pEventManager)
 {
 pEventManager->SendEvent(eventId);
 }
}
 
inline void SendEventToHandler(EventID eventId, EventHandler& eventHandler)
{
 EventManager* pEventManager = EventManager::GetSingletonPtr();
 assert(pEventManager);
 if (pEventManager)
 {
 pEventManager->SendEventToHandler(eventId, eventHandler);
 }
}
 
inline bool RegisterEvent(EventID eventId)
{
 EventManager* pEventManager = EventManager::GetSingletonPtr();
 assert(pEventManager);
 if (pEventManager)
 {
 pEventManager->RegisterEvent(eventId);
 }
}
 

97CHAPTER 6: Game Entities

inline void AttachEvent(EventID eventId, EventHandler& eventHandler)
{
 EventManager* pEventManager = EventManager::GetSingletonPtr();
 assert(pEventManager);
 if (pEventManager)
 {
 pEventManager->AttachEvent(eventId, eventHandler);
 }
}
 
inline void DetachEvent(EventID eventId, EventHandler& eventHandler)
{
 EventManager* pEventManager = EventManager::GetSingletonPtr();
 assert(pEventManager);
 if (pEventManager)
 {
 pEventManager->DetachEvent(eventId, eventHandler);
 }
}
 
Each friend function wraps the code which retrieves the Singleton pointer for the object, validates
that it has been created, and then calls through to the EventManager class methods of the same
name. This reduces the six lines necessary for a safe call to a single line in the calling code, which
should make for more readable and more productive code.

Big O Notation
If you take another look at Listing 6-14, you can see that we have once again used an unordered_map
to store our Events. We last used an unordered_map in the GameObject to store our Components, but
we did not discuss at the time why we used this structure. Algorithms can be evaluated based on
the amount of time they are expected to take to complete. The method for evaluating this time is
called Big O Notation. Big O Notation doesn’t measure time itself; rather, it gives us a method for
evaluating how long an algorithm will take to complete for a given set of elements of size n.

When we access an unordered_map, we give the container the hash value and it converts that value
into the address at which it has stored our element. This takes the same length of time regardless of
how many elements are in our unordered_map and therefore is said to execute in constant time or O(1)
in Big O Notation. If we had used a list container to store the elements, each new element in the
list could increase the time taken to find any given element in a linear manner. In Big O Notation, this
would be O(n), and for a well-balanced tree container we would be looking at a Big O of O(log(n)).

I chose to use unordered_map because the most common operation which we will carry out on
components and events is retrieving them from their containers. As a game is trying to execute
its code as quickly as possible and we may have situations where we have numerous events and
components attached to any given object, it makes sense for us to make use of the O(1) property of
unordered_map accesses for this purpose.

98 CHAPTER 6: Game Entities

EventManager’s Interface Methods
Listing 6-16 shows the code used to call the Send and SendToHandler methods of the Event class.

Listing 6-16.  EventManager::SendEvent( )

void EventManager::SendEvent(EventID eventId)
{
 EventMapIterator result = m_eventMap.find(eventId);
 if (result != m_eventMap.end())
 {
 assert(result->second);
 if (result->second)
 {
 result->second->Send();
 }
 }
}
 
void EventManager::SendEventToHandler(EventID eventId, EventHandler& eventHandler)
{
 EventMapIterator result = m_eventMap.find(eventId);
 if (result != m_eventMap.end())
 {
 assert(result->second);
 if (result->second)
 {
 result->second->SendToHandler(eventHandler);
 }
 }
}
 
We retrieve the iterator from the m_eventMap container and then call the relevant method on the
Event object which it contains.

The method in Listing 6-17 shows how we add a new event to the m_eventMap container.

Listing 6-17.  EventManager::RegisterEvent( )

bool EventManager::RegisterEvent(EventID eventId)
{
 bool added = false;
 
 EventMapIterator result = m_eventMap.find(eventId);
 if (result == m_eventMap.end())
 {
 Event* pNewEvent = new Event(eventId);
 
 if (pNewEvent)

99CHAPTER 6: Game Entities

 {
 std::pair<EventID, Event*> newEvent(eventId, pNewEvent);
 std::pair<EventMapIterator, bool> addedIter = m_eventMap.insert(newEvent);
 added = addedIter.second;
 }
 }
 
 assert(added);
 return added;
}
 
Just as we did with our unordered_map earlier, we create a new element, bundle it into a pair with its
key, and insert the pair into the unordered_map.

Listing 6-18 shows the destructor of EventManager and the code required to clean the elements
from m_eventMap.

Listing 6-18.  EventManager::~EventManager( )

EventManager::~EventManager()
{
 for (EventMapIterator iter = m_eventMap.begin(); iter != m_eventMap.end(); ++iter)
 {
 Event* pEvent = iter->second;
 if (pEvent)
 {
 delete pEvent;
 iter->second = NULL;
 }
 }
 
 m_eventMap.clear();
}
 
The last two methods of importance for the EventManager are the AttachEvent and DetachEvent
methods. These are used to ensure that objects which wish to receive certain events are set up to
do so and are shown in Listing 6-19.

Listing 6-19.  EventManager’s AttachEvent and DetachEvent

void EventManager::AttachEvent(EventID eventId, EventHandler& eventHandler)
{
 EventMapIterator result = m_eventMap.find(eventId);
 assert(result != m_eventMap.end());
 if (result != m_eventMap.end())
 {
 assert(result->second);
 result->second->AttachListener(eventHandler);
 }
}
 

100 CHAPTER 6: Game Entities

void EventManager::DetachEvent(EventID eventId, EventHandler& eventHandler)
{
 EventMapIterator result = m_eventMap.find(eventId);
 assert(result != m_eventMap.end());
 if (result != m_eventMap.end())
 {
 assert(result->second);
 result->second->DetachListener(eventHandler);
 }
}
 
This is all we have for the EventManager class for now. In the next section, we’ll create a Component
which can be added to GameObjects and tell them to add themselves to the Renderer. We’ll achieve
this by using an Event which will be sent when the game should tell its objects to render.

Rendering an Object
As we just touched upon, in this section we are going to look at putting the classes we have just
gone over into practice by creating a RenderableComponent.

The TransformComponent Class
Before we can render an object, we need to know where in the game world it should be placed.
We’ll store this information inside another Component, the TransformComponent, which is shown
in Listing 6-20.

Listing 6-20.  The TransformComponent Class Declaration

class TransformComponent
 : public Component
{
private:
 static const unsigned int s_id = 0;
 
 Transform m_transform;
 
public:
 static unsigned int GetId() { return s_id; }
 
 explicit TransformComponent(GameObject* pOwner);
 virtual ~TransformComponent();
 
 virtual void Initialize();
 
 Transform& GetTransform() { return m_transform; }
};
 
The TransformComponent’s constructor, destructor, and Initialize methods are all empty, as they
are not required to carry out any tasks. The TransformComponent’s sole job is to provide our game
objects with a Transform object.

101CHAPTER 6: Game Entities

The Transform Class
The definition of the Transform class is shown in Listing 6-21.

Listing 6-21.  The Transform Class Declaration

class Transform
{
private:
 Matrix3 m_rotation;
 Vector3 m_translation;
 float m_scale;
 Matrix4 m_matrix;
 
public:
 Transform();
 virtual ~Transform();
 
 void Clone(const Transform& transform);
 
 void SetRotation(const Matrix3& rotation);
 const Matrix3& GetRotation() const;
 
 void SetTranslation(const Vector3& translation);
 const Vector3& GetTranslation() const;
 
 void SetScale(const float scale);
 const float GetScale() const;
 
 void ApplyForward(const Vector3& in, Vector3& out) const;
 void ApplyInverse(const Vector3& in, Vector3& out) const;
 
 void UpdateMatrix();
 
 const Matrix4& GetMatrix() const;
 void GetInverseMatrix(Matrix4& out) const;
 void GetInverseTransposeMatrix(Matrix4& out) const;
};
 
This Transform class is derived from the implementation provided by David Eberly on his website
at http://www.geometrictools.com/. If you need to brush up on your math skills, I have provided a
quick rundown of vectors and matrices in the appendixes of this book.

The accessor methods for the Transform class are fairly self-explanatory, so let’s take a look at
UpdateMatrix in Listing 6-22.

Listing 6-22.  Transform::UpdateMatrix( )

void Transform::UpdateMatrix()
{
 m_matrix.m_m[0] = m_rotation.m_m[0] * m_scale;
 m_matrix.m_m[1] = m_rotation.m_m[1];

http://www.geometrictools.com/

102 CHAPTER 6: Game Entities

 m_matrix.m_m[2] = m_rotation.m_m[2];
 m_matrix.m_m[3] = 0.0f;
 m_matrix.m_m[4] = m_rotation.m_m[3];
 m_matrix.m_m[5] = m_rotation.m_m[4] * m_scale;
 m_matrix.m_m[6] = m_rotation.m_m[5];
 m_matrix.m_m[7] = 0.0f;
 m_matrix.m_m[8] = m_rotation.m_m[6];
 m_matrix.m_m[9] = m_rotation.m_m[7];
 m_matrix.m_m[10] = m_rotation.m_m[8] * m_scale;
 m_matrix.m_m[11] = 0.0f;
 m_matrix.m_m[12] = m_translation.m_x;
 m_matrix.m_m[13] = m_translation.m_y;
 m_matrix.m_m[14] = m_translation.m_z;
 m_matrix.m_m[15] = 1.0f;
}
 
UpdateMatrix does exactly what its name suggests: it updates the internal matrix with the current
state of the transform. Each member of the 3×3 rotation matrix is copied to the correct entry of the
4×4 transform matrix as well as being scaled where appropriate on the diagonal of the matrix. The
translation values are copied into the translation entries of the matrix at positions 12, 13, and 14, just
as OpenGL would expect.

GetMatrix simply returns a reference to our internal matrix which we saw set up in Listing 6-22,
so we’ll move on to look at the method GetInverseMatrix, shown in Listing 6-23.

Listing 6-23.  Transform::GetInverseMatrix( )

void Transform::GetInverseMatrix(Matrix4& out) const
{
 float invScale = 1.0f / m_scale;
 out.m_m[0] = m_rotation.m_m[0] * invScale;
 out.m_m[1] = m_rotation.m_m[3];
 out.m_m[2] = m_rotation.m_m[6];
 out.m_m[3] = 0.0f;
 out.m_m[4] = m_rotation.m_m[1];
 out.m_m[5] = m_rotation.m_m[4] * invScale;
 out.m_m[6] = m_rotation.m_m[7];
 out.m_m[7] = 0.0f;
 out.m_m[8] = m_rotation.m_m[2];
 out.m_m[9] = m_rotation.m_m[5];
 out.m_m[10] = m_rotation.m_m[8] * invScale;
 out.m_m[11] = 0.0f;
 out.m_m[12] = -m_translation.m_x;
 out.m_m[13] = -m_translation.m_y;
 out.m_m[14] = -m_translation.m_z;
 out.m_m[15] = 1.0f;
}
 
If you have studied the mathematics behind matrices previously, you may already be aware that the
inverse is the matrix which is used to reverse the effects of the original matrix. In terms of simple
algebra 1 × 10 = 10. The inverse of multiplying by 10 is multiplying by 1/10, so 10 × (1/10) = 1.
The inverse matrix carries out the same job. Calculating the inverse of a matrix is a computationally

103CHAPTER 6: Game Entities

expensive process, but with games development a transform matrix has an inverse that is much
simpler to calculate.

In this case, we can use some special properties. Since scaling is simple multiplication, we can
multiply by the inverse multiple, and as you can see in the first line of GetInverseMatrix, we
calculate the inverse scale by dividing 1 by m_scale.

The next special property we can take advantage of is the case of the rotation matrix. A rotation
matrix is a special type of matrix known as an orthogonal matrix. This means that each row in the
matrix represents a unit vector. In our case, each row of our rotation matrix should be a unit vector
representing the x, y, and z axes of our rotation to be applied. The inverse of an orthogonal matrix is
simply its transpose, so we’re in luck as we can transpose the matrix very easily. Looking at
Listing 6-23, you can see this in practice in the way we index into the arrays representing the
matrices: notice how they don’t exactly match. Rather than copying in the order 0, 1, 2, for instance,
in the first row, we have taken the first column of 0, 3, 6.

Last but not least is the translation component. Translations can be simply thought of as addition
operations, so we can work out the inverse by adding the negative value of translation vector elements.

You might agree that this was much simpler than calculating the inverse using traditional methods.

The RenderableComponent
Now that we have a method for placing objects in the world, let’s take a look at how we will render
them (see Listing 6-24).

Listing 6-24.  RenderableComponent

class RenderableComponent
 : public Component
 , public EventHandler
{
private:
 static const unsigned int s_id = 1;
 
 Renderable m_renderable;
 
public:
 static unsigned int GetId() { return s_id; }
 
 explicit RenderableComponent(GameObject* pOwner);
 virtual ~RenderableComponent();
 
 virtual void Initialize();
 
 Renderable& GetRenderable() { return m_renderable; }
 
 virtual void HandleEvent(Event* pEvent);
};
 

104 CHAPTER 6: Game Entities

Once again, we have a very simple component. The only field is the Renderable, which we will
be able to pass to the Renderer. The major difference between this declaration and that for the
TransformComponent is that the RenderableComponent inherits from EventHandler along with
Component. This means that we are required to override HandleEvent; its code is listed in Listing 6-25.

Listing 6-25.  RenderableComponent::HandleEvent( )

void RenderableComponent::HandleEvent(Event* pEvent)
{
 assert(pEvent);
 if (pEvent->GetID() == RENDER_EVENT)
 {
 TransformComponent* pTransformComponent =
 component_cast<TransformComponent>(GetOwner());
 if (pTransformComponent)
 {
 m_renderable.GetTransform().Clone(pTransformComponent->GetTransform());
 }
 
 assert(Renderer::GetSingletonPtr());
 Renderer::GetSingleton().AddRenderable(&m_renderable);
 }
}
 
Things are starting to come together for the first time in this method. The first task is to check if the
event which we have been passed is the RENDER_EVENT. We then use the component_cast method
we wrote earlier to cast the owner pointer to a TransformComponent pointer. Once we have a valid
TransformComponent pointer, we clone its Transform into another Transform object which we have
added to the Renderable class.

Another change to the code from Chapter 5 which you can see in this method is that we have
inherited the Renderer from Singleton. This allows us to add the Renderable object to the Renderer
directly from this call.

The TransformShader Class
The next step involved in being able to render an object with a Transform is to create a Shader which
supports a matrix. Listing 6-26 shows the declaration for our TransformShader.

Listing 6-26.  The TransformShader Class Declaration

class TransformShader
 : public Shader
{
private:
 Matrix4 m_projection;
 
 GLint m_transformUniformHandle;
 GLint m_positionAttributeHandle;
 GLint m_colorAttributeHandle;
 

105CHAPTER 6: Game Entities

public:
 TransformShader();
 virtual ~TransformShader();
 
 virtual void Link();
 virtual void Setup(Renderable& renderable);
};
 
This shader will have a uniform for the transform and attributes for the vertex position and color.
We also have a 4×4 matrix in the class. This is a temporary measure which will allow us to set up
a projection matrix. We will be covering projections in more detail in Chapter 8 when we look at
implementing game cameras.

Listing 6-27 shows the GLSL code for our vertex and fragment shader.

Listing 6-27.  TransformShader’s Constructor

TransformShader::TransformShader()
{
 m_vertexShaderCode =
 "uniform mat4 u_mModel; \n"
 "attribute vec4 a_vPosition; \n"
 "void main(){ \n"
 " gl_Position = u_mModel * a_vPosition; \n"
 "} \n";
 
 m_fragmentShaderCode =
 "precision highp float; \n"
 "uniform vec4 a_vColor; \n"
 "void main(){ \n"
 " gl_FragColor = a_vColor; \n"
 "} \n";
}
 
In the vertex shader we have a uniform mat4 matrix which will store the transform matrix passed
from the Renderer. This matrix is used to multiply the vertex position and stores the result in
gl_Position.

For the fragment shader, we have a uniform for the fragment color. This will allow us to use the
shader to render multiple objects and have each one be a different color.

Now we’ll take a look at the code required to gain access to the uniform and attribute locations
in Listing 6-28.

Listing 6-28.  TransformShader::Link( )

void TransformShader::Link()
{
 Shader::Link();
 
 m_transformUniformHandle = glGetUniformLocation(m_programId, "u_mModel");
 m_positionAttributeHandle = glGetAttribLocation(m_programId, "a_vPosition");
 m_colorAttributeHandle = glGetUniformLocation(m_programId, "a_vColor");
 

106 CHAPTER 6: Game Entities

 float halfAngleRadians = 0.5f * 45.0f * (3.1415926536f / 180.0f);
 float m_top = 1.0f * (float)tan(halfAngleRadians);
 float m_bottom = -m_top;
 float m_right = (1280.0f / 720.0f) * m_top;
 float m_left = -m_right;
 float m_near = 1.0f;
 float m_far = 100.0f;
 
 m_projection.m_m[0] = (2.0f * m_near) / (m_right - m_left);
 m_projection.m_m[1] = 0.0f;
 m_projection.m_m[2] = 0.0f;
 m_projection.m_m[3] = 0.0f;
 m_projection.m_m[4] = 0.0f;
 m_projection.m_m[5] = (2.0f * m_near) / (m_top - m_bottom);
 m_projection.m_m[6] = 0.0f;
 m_projection.m_m[7] = 0.0f;
 m_projection.m_m[8] = -((m_right + m_left) / (m_right - m_left));
 m_projection.m_m[9] = -((m_top + m_bottom) / (m_top - m_bottom));
 m_projection.m_m[10] = (m_far + m_near) / (m_far - m_near);
 m_projection.m_m[11] = 1.0f;
 m_projection.m_m[12] = 0.0f;
 m_projection.m_m[13] = 0.0f;
 m_projection.m_m[14] = -(2.0f * m_near * m_far) / (m_far - m_near);
 m_projection.m_m[15] = 0.0f;
}
 
In this listing, you can see that we use glGetUniformLocation to retrieve the location of the transform
u_mModel and glGetAttribLocation to get the locations for a_vPosition and a_vColor.

We then have a section of code which works out the sides of a shape called a frustum and uses this
frustum to construct a perspective projection matrix. This topic will be covered in detail in Chapter 8
and will be built into a formal Camera class.

The TransformShader::Setup method in Listing 6-29 shows how we supply our matrix to the shader.

Listing 6-29.  TransformShader::Setup( )

void TransformShader::Setup(Renderable& renderable)
{
 Geometry* pGeometry = renderable.GetGeometry();
 if (pGeometry)
 {
 Shader::Setup(renderable);
 
 Matrix4 mMVP;
 renderable.GetTransform().GetMatrix().Multiply(m_projection, mMVP);
 glUniformMatrix4fv(m_transformUniformHandle, 1, false, mMVP.m_m);
 
 glVertexAttribPointer(
 m_positionAttributeHandle,
 pGeometry->GetNumVertexPositionElements(),
 GL_FLOAT,
 GL_FALSE,

107CHAPTER 6: Game Entities

 pGeometry->GetVertexStride(),
 pGeometry->GetVertexBuffer());
 glEnableVertexAttribArray(m_positionAttributeHandle);
 
 Vector4& color = renderable.GetColor();
 glUniform4f(m_colorAttributeHandle, color.m_x, color.m_y, color.m_z, color.m_w);
 }
}
 
We set up a temporary matrix, mMVP. This matrix stores the result of the multiplication of the renderable’s
matrix by the projection matrix. We then pass the matrix to OpenGL using glUniformMatrix4fv. The first
parameter is the location of the transform uniform, and the second is the number of matrices to upload,
which in our case is one. The next parameter is passed false, which tells the driver that we do not wish
for it to transpose our matrix before sending it to the shader. Finally, we pass the pointer to the matrix data.

The next few lines set up the vertex data stream just as we have with shaders previously.

The last task in the function is to set the color uniform using glUniform4f. We pass this method the
location of the color uniform in the shader and the four float values for our color’s rgba values.

Now we have finally written a couple of components, a shader which supports transforms, and taken
a look at how EventHandlers can respond to events. We will put these components to use in the next
section, where we’ll make a basic player GameObject and have it rendered in an app.

The Player Object
Before we can work with a player object, we will create a task for this example app, shown in
Listing 6-30.

Listing 6-30.  The Chapter6Task Class Declaration

class Chapter6Task
 : public Framework::Task
{
private:
 Framework::Geometry m_geometry;
 Framework::TransformShader m_transformShader;
 
 Framework::GameObject m_playerObject;
 
public:
 Chapter6Task(const unsigned int priority);
 virtual ~Chapter6Task();
 
 // From Task
 virtual bool Start();
 virtual void OnSuspend();
 virtual void Update();
 virtual void OnResume();
 virtual void Stop();
};
 

108 CHAPTER 6: Game Entities

We have an instance of the Geometry class, a TransformShader, and a GameObject which we have
named m_playerObject. Now let’s take a look at the Start method, as shown in Listing 6-31.

Listing 6-31.  Chapter6Task::Start( )

bool Chapter6Task::Start()
{
 using namespace Framework;
 
 Renderer* pRenderer = Renderer::GetSingletonPtr();
 if (pRenderer)
 {
 pRenderer->AddShader(&m_transformShader);
 }
 
 m_geometry.SetVertexBuffer(verts);
 m_geometry.SetNumVertices(sizeof(verts) / sizeof(verts[0]));
 m_geometry.SetIndexBuffer(indices);
 m_geometry.SetNumIndices(sizeof(indices) / sizeof(indices[0]));
 m_geometry.SetName("android");
 
 m_geometry.SetNumVertexPositionElements(3);
 m_geometry.SetVertexStride(0);
 
 RegisterEvent(UPDATE_EVENT);
 RegisterEvent(RENDER_EVENT);
 RegisterEvent(JUMP_EVENT);
 
 m_playerObject.AddComponent<MovementComponent>();
 MovementComponent* pMovementComponent =
 component_cast<MovementComponent>(m_playerObject);
 if (pMovementComponent)
 {
 Framework::AttachEvent(Framework::UPDATE_EVENT, *pMovementComponent);
 Framework::AttachEvent(Framework::JUMP_EVENT, *pMovementComponent);
 }
 
 m_playerObject.AddComponent<TransformComponent>();
 TransformComponent* pTransformComponent =
 component_cast<TransformComponent>(m_playerObject);
 if (pTransformComponent)
 {
 Vector3 translation(-10.0f, 0.0f, 50.0f);
 Transform& transform = pTransformComponent->GetTransform();
 transform.SetTranslation(translation);
 }
 
 m_playerObject.AddComponent<RenderableComponent>();
 RenderableComponent* pRenderableComponent =
 component_cast<RenderableComponent>(m_playerObject);

109CHAPTER 6: Game Entities

 if (pRenderableComponent)
 {
 Renderable& renderable = pRenderableComponent->GetRenderable();
 renderable.SetGeometry(&m_geometry);
 renderable.SetShader(&m_transformShader);
 Vector4& color = renderable.GetColor();
 color.m_x = 0.0f;
 color.m_y = 1.0f;
 color.m_z = 0.0f;
 color.m_w = 1.0f;
 Framework::AttachEvent(Framework::RENDER_EVENT, *pRenderableComponent);
 }
 
 return true;
}
 
At long last, Listing 6-31 shows the client code which the user can write to use the Framework
systems we have created for the Event, Component, and GameObject systems.

We begin the Start method by registering our TransformShader with the Renderer and then
configuring the Geometry object. The number of vertices and indices are now calculated at runtime
by dividing the size of the array containing the data by the size of a single element in the array using
the sizeof operator.

We them move on to registering some events. We register UPDATE_EVENT, RENDER_EVENT, and
JUMP_EVENT. We’ve already seen that the RenderableComponent will use the RENDER_EVENT to add the
Renderable to the render queue, but we haven’t yet seen the events for update and jump; we’ll look
at those soon.

At this point, we begin to add components to our GameObject. After adding a MovementComponent,
we also add a TransformComponent and a RenderableComponent. After adding the RenderableComponent,
we use component_cast to retrieve it from m_playerObject and then set the Geometry, Shader, and
color we would like to use with its Renderable. Finally, we attach the RENDER_EVENT.

Before moving on to take a look at the MovementComponent, we’ll take a look at the Update method,
as shown in Listing 6-32.

Listing 6-32.  Chapter6Task::Update( )

void Chapter6Task::Update()
{
 Framework::SendEvent(Framework::UPDATE_EVENT);
 Framework::SendEvent(Framework::RENDER_EVENT);
}
 
The beauty of the Event system is now becoming apparent. The code can be very clean in most areas.
To update and render all GameObjects, we simply send the update and render events, and all GameObject
instances which have these events attached will update and render. It couldn’t be any simpler.

We’ll now use this system to have the player interact with the game. The code will detect when the
player has touched the screen and the player’s character will jump in the air.

110 CHAPTER 6: Game Entities

Making the Player Jump
We’ll begin this section by jumping straight into the code for the MovementComponent, as shown
in Listing 6-33.

Listing 6-33.  The MovementComponent Class Declaration

class MovementComponent
 : public Framework::Component
 , public Framework::EventHandler
{
private:
 static const unsigned int s_id = 9;
 
 Framework::Vector3 m_acceleration;
 Framework::Vector3 m_velocity;
 
public:
 static unsigned int GetId() { return s_id; }
 
 explicit MovementComponent(Framework::GameObject* pObject);
 virtual ~MovementComponent();
 
 virtual void Initialize();
 
 virtual void HandleEvent(Framework::Event* pEvent);
};
 
You can see that we have defined two Vector3 objects, one for acceleration and one for velocity.
You might be able to tell from those names that in the HandleEvent method, we’re going to take a look
at some basic physics. Take a look at Listing 6-34.

Listing 6-34.  MovementComponent::HandleEvent( )

void MovementComponent::HandleEvent(Event* pEvent)
{
 if (pEvent->GetID() == JUMP_EVENT)
 {
 TransformComponent* pTransformComponent =
 component_cast<TransformComponent>(GetOwner());
 assert(pTransformComponent);
 if (pTransformComponent &&
 pTransformComponent->GetTransform().GetTranslation().m_y < FLT_EPSILON)
 {
 static const float JUMP_ACCELERATION = 80.0f;
 m_acceleration.m_y = JUMP_ACCELERATION;
 }
 }
 else if (pEvent->GetID() == UPDATE_EVENT)
 {
 TransformComponent* pTransformComponent =
 component_cast<TransformComponent>(GetOwner());

111CHAPTER 6: Game Entities

 assert(pTransformComponent);
 if (pTransformComponent)
 {
 const Vector3& position =
 pTransformComponent->GetTransform().GetTranslation();
 bool onFloor = false;
 if (position.m_y < FLT_EPSILON)
 {
 onFloor = true;
 }
 
 bool falling = m_acceleration.m_y < 0.0f;
 
 Timer& timer = Timer::GetSingleton();
 Vector3 translation = m_velocity;
 translation.Multiply(timer.GetTimeSim());
 translation.Add(position);
 if (falling && translation.m_y < 0.0f)
 {
 translation.m_y = 0.0f;
 }
 
 pTransformComponent->GetTransform().SetTranslation(translation);
 
 Vector3 accel = m_acceleration;
 accel.Multiply(timer.GetTimeSim());
 m_velocity.Add(accel);
 
 static const float GRAVITY_MULTIPLIER = 15.0f;
 static const float GRAVITY_CONSTANT = -9.8f;
 m_acceleration.m_y +=
 GRAVITY_MULTIPLIER *
 GRAVITY_CONSTANT *
 timer.GetTimeSim();
 if (falling && onFloor)
 {
 m_acceleration.m_y = 0.0f;
 m_velocity.m_y = 0.0f;
 }
 }
 }
}
 
The first task carried out in Listing 6-34 is handling JUMP_EVENT. When this event is sent to the
MovementComponent, we first use component_cast to get the TransformComponent from the owner
object. For now, we are using the position of y to see if the player is currently on the ground and
allowed to jump again. We’ll address this in the next chapter, when we cover level collision, but for
now if the player is allowed to jump we set his vertical acceleration.

112 CHAPTER 6: Game Entities

Game physics is based on the mathematical concepts of derivatives and integration. The derivative
of the position, or displacement, of the object is its velocity. The derivative of velocity is acceleration.
Given this fact, if we have an acceleration that we can integrate to achieve the desired velocity,
we can also integrate the velocity to get the new position.

The basic equation to calculate acceleration is as follows: acceleration = force / mass. For simplicity’s
sake, we are using a mass of 1, so for now we can simplify the equation to acceleration = force.
Therefore, we can get away with just setting the acceleration value directly as we have done when the
JUMP_EVENT is handled. The code in Listing 6-35 shows the integration of the position from the
current velocity.

Listing 6-35.  Integrating Position

Vector3 translation = m_velocity;
translation.Multiply(Timer::GetSingleton().GetTimeSim());
translation.Add(position);
 
This simple multiplication of the velocity by the current time step and addition to the position is
a simple implementation of the numerical method known as Euler Integration. There are good
reasons as to why you would not use Euler Integration in a commercial game title, but for our simple
purposes and in the interests of speed we have used it here.

Euler Integration can be unstable and give unreliable positions if the acceleration is not constant
and the time step varies from frame to frame, which could definitely occur when our game scene
becomes busy. Fortunately, our acceleration is constant and our simple game should run at
consistently high frame rates. For anyone who would like to look into a numerical integration
technique which is more stable and highly recommended for game development, you should look
into the fourth-order Runge Kutta integrator.

Listing 6-36 shows our Euler Integration of the acceleration into the velocity.

Listing 6-36.  Integrating Acceleration with Euler

Vector3 accel = m_acceleration;
accel.Multiply(timer.GetTimeSim());
m_velocity.Add(accel);
 
Once again, we multiply by the current simulation time step and add to the existing value.

To make our player fall back down to the ground, we need to apply the force of gravity to our model.
Again, we can simplify the code slightly by using a useful feature of gravity. The force of gravity is
applied to objects and pulls them toward the ground. You might expect that as the equation for
the force multiplies the acceleration by mass, larger objects may fall faster. That’s not the case, as
objects also have a property known as inertia which is also tied to mass. Therefore, the mass in the
equation for gravity cancels with the mass in the equation for inertia, and we find that all objects on
earth accelerate under gravity at a rate of roughly 9.8 meters per second. Listing 6-37 shows how
we use of this value to make our object fall back to the ground.

113CHAPTER 6: Game Entities

Listing 6-37.  Applying Gravity to the Acceleration

static const float GRAVITY_MULTIPLIER = 15.0f;
static const float GRAVITY_CONSTANT = -9.8f;
m_acceleration.m_y += GRAVITY_MULTIPLIER * GRAVITY_CONSTANT * timer.GetTimeSim();
 
At this point, we have a jump acceleration of 80 and a gravity multiplier of 15. I arrived at these
numbers purely through trial and error. You can try out the sample code which accompanies this
chapter and increase or decrease these numbers to see what effect they have on our jump simulation.

This code runs each frame when the UPDATE_EVENT is received, so once the player has jumped they
will rise and then fall back down to the ground. The three if statements in the code block for the
UPDATE_EVENT also help to decide when the jump should end by working out if the player was on the
floor, is now on the floor after the update and if they are falling (due to the velocity being negative in
the y direction).

The last piece of code to look at in this section is how we send the jump event (see Listing 6-38).

Listing 6-38.  Android::Android( )

Android::Android(android_app* pState, unsigned int priority)
 : Task(priority)
{
 m_pState = pState;
 m_pState->onAppCmd = android_handle_cmd;
 m_pState->onInputEvent = android_handle_input;
}
 
We’ve updated the previous android_app state object to hold another function pointer, this time for
when input events are ready for the game. Listing 6-39 shows the function declaration.

Listing 6-39.  android_handle_input

static int android_handle_input(struct android_app* app, AInputEvent* event)
{
 int handled = 0;
 if (AInputEvent_getType(event) == AINPUT_EVENT_TYPE_MOTION)
 {
 int action = AMotionEvent_getAction(event);
 if (action == AMOTION_EVENT_ACTION_DOWN)
 {
 Framework::SendEvent(Framework::JUMP_EVENT);
 handled = 1;
 }
 }
 return handled;
}
 
Our simple game requires the player to jump only when the player touches the screen. When the
AMOTION_EVENT_ACTION_DOWN is received, we send our JUMP_EVENT and any EventHandlers listening for
this event will be processed.

Now that we have a player object, we’ll add an AI object which follows a path.

114 CHAPTER 6: Game Entities

A Basic AI Entity
To begin, we’ll add another GameObject to the Chapter6Task class, as shown in Listing 6-40.

Listing 6-40.  Adding an AI Object

private:
 Framework::Geometry m_geometry;
 Framework::TransformShader m_transformShader;
 
 Framework::GameObject m_playerObject;
 Framework::GameObject m_aiObject;
 
We add the setup code for this object to Chapter6Task::Start, as shown in Listing 6-41.

Listing 6-41.  Updating Chapter6Task::Start( )

 m_playerObject.AddComponent<RenderableComponent>();
 RenderableComponent* pRenderableComponent =
 component_cast<RenderableComponent>(m_playerObject);
 if (pRenderableComponent)
 {
 Renderable& renderable = pRenderableComponent->GetRenderable();
 renderable.SetGeometry(&m_geometry);
 renderable.SetShader(&m_transformShader);
 Vector4& color = renderable.GetColor();
 color.m_x = 0.0f;
 color.m_y = 1.0f;
 color.m_z = 0.0f;
 color.m_w = 1.0f;
 Framework::AttachEvent(Framework::RENDER_EVENT, *pRenderableComponent);
 }
 
 m_aiObject.AddComponent<TransformComponent>();
 pTransformComponent = component_cast<TransformComponent>(m_aiObject);
 
 m_aiObject.AddComponent<PatrolComponent>();
 PatrolComponent* pPatrolComponent = component_cast<PatrolComponent>(m_aiObject);
 if (pPatrolComponent)
 {
 Vector3 startPoint(10.0f, -10.0f, 75.0f);
 pPatrolComponent->SetStartPoint(startPoint);
 Vector3 endPoint(15.0f, 7.5f, 25.0f);
 pPatrolComponent->SetEndPoint(endPoint);
 pPatrolComponent->SetSpeed(25.0f);
 Framework::AttachEvent(UPDATE_EVENT, *pPatrolComponent);
 }
 
 m_aiObject.AddComponent<RenderableComponent>();
 pRenderableComponent = component_cast<RenderableComponent>(m_aiObject);

115CHAPTER 6: Game Entities

 if (pRenderableComponent)
 {
 Renderable& renderable = pRenderableComponent->GetRenderable();
 renderable.SetGeometry(&m_geometry);
 renderable.SetShader(&m_transformShader);
 Vector4& color = renderable.GetColor();
 color.m_x = 1.0f;
 color.m_y = 0.0f;
 color.m_z = 0.0f;
 color.m_w = 1.0f;
 Framework::AttachEvent(Framework::RENDER_EVENT, *pRenderableComponent);
 }
 
 return true;
}
 
We add a TransformComponent and a RenderableComponent to our AI object just as we did for the
player. This time, however, we make the enemy object red whereas the player object was green.

The new Component which we add for the enemy object is a PatrolComponent, shown in Listing 6-42.
This component is written to move back and forward between two points in space. We set the start
and end points as well as the speed we would like the object to move at here. We also attach the
PatrolComponent to UPDATE_EVENT.

Listing 6-42.  The PatrolComponent Class Declaration

class PatrolComponent
 : public Framework::Component
 , public Framework::EventHandler
{
private:
 Framework::Vector3 m_direction;
 Framework::Vector3 m_startPoint;
 Framework::Vector3 m_endPoint;
 Framework::Vector3* m_pOriginPoint;
 Framework::Vector3* m_pTargetPoint;
 float m_speed;
  
 static const unsigned int s_id = 10;
 
public:
 static unsigned int GetId() { return s_id; }
 
 explicit PatrolComponent(Framework::GameObject* pObject);
 virtual ~PatrolComponent();
 
 virtual void Initialize();
 
 virtual void HandleEvent(Framework::Event* pEvent);
 

116 CHAPTER 6: Game Entities

 void SetStartPoint(Framework::Vector3& startPoint);
 void SetEndPoint(Framework::Vector3& endPoint);
 void SetSpeed(float speed) { m_speed = speed; }
};
 
The PatrolComponent has three Vector3 fields, one for the current direction of movement, one for the
start point, and one for the end point. We also have two Vector3 pointers and a float for the speed.
We’ll look at how these pointers are used in Listing 6-45. First, we need to look at the SetStartPoint
method, as shown in Listing 6-43.

Listing 6-43.  PatrolComponent::SetStartPoint( )

void PatrolComponent::SetStartPoint(Vector3& startPoint)
{
 m_startPoint.Set(startPoint);
 TransformComponent* pTransformComponent = component_cast<TransformComponent>(GetOwner());
 assert(pTransformComponent);
 if (pTransformComponent)
 {
 pTransformComponent->GetTransform().SetTranslation(m_startPoint);
 }
}
 
SetStartPoint sets the m_startPoint field to match the Vector3 passed in via the parameter.
We also use this vector to set the position of the object’s TransformComponent.

Next is the SetEndPoint method, as shown in Listing 6-44.

Listing 6-44.  PatrolComponent::SetEndPoint( )

void PatrolComponent::SetEndPoint(Vector3& endPoint)
{
 assert(m_startPoint.LengthSquared() > FLT_EPSILON);
 
 m_endPoint.Set(endPoint);
 
 m_direction = m_endPoint;
 m_direction.Subtract(m_startPoint);
 m_direction.Normalise();
 
 m_pOriginPoint = &m_startPoint;
 m_pTargetPoint = &m_endPoint;
}
 
The assert at the beginning of SetEndPoint is used to warn us when the SetStartPoint method
has not been called. We need the start point to have been set so that we can calculate the initial
direction of travel. We do this by subtracting the start point from the end point with the results
being stored in m_direction. The direction is normalized so that we can use the unit normal as a
parametric line when the component updates. Finally, we store the address of the start point in the
m_pOriginPoint pointer and the address of the end point in the m_pTargetPoint pointer. Now we are
ready to update our PatrolComponent, as shown in Listing 6-45.

117CHAPTER 6: Game Entities

Listing 6-45.  PatrolComponent::HandleEvent( )

void PatrolComponent::HandleEvent(Event* pEvent)
{
 if (pEvent->GetID() == Framework::UPDATE_EVENT && m_pTargetPoint)
 {
 assert(m_direction.LengthSquared() > FLT_EPSILON);
 assert(m_speed > 0.0f);
 
 TransformComponent* pTransformComponent =
 component_cast<TransformComponent>(GetOwner());
 assert(pTransformComponent);
 if (pTransformComponent)
 {
 Vector3 translation = m_direction;
 translation.Multiply(m_speed * Timer::GetSingleton().GetTimeSim());
 translation.Add(pTransformComponent->GetTransform().GetTranslation());
 pTransformComponent->GetTransform().SetTranslation(translation);
 
 Vector3 distance = *m_pTargetPoint;
 distance.Subtract(translation);
 if (distance.LengthSquared() < 2.0f)
 {
 Vector3* temp = m_pTargetPoint;
 m_pTargetPoint = m_pOriginPoint;
 m_pOriginPoint = temp;
 
 m_direction = *m_pTargetPoint;
 m_direction.Subtract(*m_pOriginPoint);
 m_direction.Normalise();
 }
 }
 }
}
 
We decide if the current component is ready to be processed if we receive an UPDATE_EVENT and we
have a valid m_pTargetPoint. If we do, we then assert on the validity of m_direction and the m_speed
fields just to ensure that we don’t have any problems at runtime.

Once we are satisfied that we are ready to process, we retrieve the TransformComponent for our
object’s owner. The assert here will fire if we have added a PatrolComponent to an object with no
TransformComponent. We update the translation element of the Transform by using the direction
multiplied by the speed and the current simulation time delta. We then add the velocity for the
current frame to the old position of the object.

Once the position has been updated, we test to see if the object has reached the target point. We do
this by subtracting the new position of the object from the position which we are currently travelling
toward and checking if the squared length of the remaining vector is less than 2.

If we have reached the target point, we switch the m_pOriginPoint and m_pTargetPoint addresses
and recalculate the direction of travel. This sends our object back toward the point it just came from.

118 CHAPTER 6: Game Entities

I’m sure you’ve played basic games with enemies which just seem to travel back and forward
with very little actual intelligence, and now you have just seen one method for achieving the same
behavior in your own game.

At this point in the process of developing a game engine, we have a player object being rendered on
the screen. A screenshot from the game in its current state is shown in Figure 6-2.

Figure 6-2.  Droid Runner’s Current State

Summary
This was another whirlwind tour of topics related to how games are currently being produced by
large companies. Some of the topics we just covered ranged from engine system and graphics
programming to gameplay and AI programming and even a brief introduction to game physics. Each
of these topics has many, many books written about them, and there’s no way to do them all justice in
a single chapter, but we have covered enough of the basics to give us a start with our own projects.

The component system is a cutting edge approach to creating game entities. This method is the
beginning block required to create flexible and extensible systems which move forward with ease.
By using such a system we can avoid the complexities involved with planning and maintaining a
complex hierarchical tree of inheritance and duplication of code required when entities on different
branches require similar behaviors. It also allows us to update the behavior of objects at runtime by
adding and removing components on the fly. This could be a powerful method in AI development where
you could add and remove components based on the current state of a complex player or AI object.

119CHAPTER 6: Game Entities

Our event system similarly reduces the complexity of our code by making it very easy to respond
to events throughout or game. The simple examples which we have looked at so far involved
responding to input, updating game objects and rendering those objects. Moving forward we will
be able to add more and more events. Game events such as playing sounds and informing objects
of collisions can all be handled with our event system. This system also gives individual objects a
degree of control over their operation. A valid alternative for handling the case where we receive
multiple jump events in the MovementComponent could have been to detach the jump event after the
first time it is handled until such a time that we are ready to receive another jump event. There are
many possible uses for such as system and we’ll look at more as we move forward.

Now that we have two objects on the screen, it’s time to look at building a world around them and
make our app feel more like a game. In the next chapter we’ll take a walk through a collision system
and then build a level to play in.

121

Chapter 7
Building Game Levels
with Collision

A key part of almost every game is having the ability to detect and react to collisions between
different objects. Even when going back to look at classic games such as Pong or Space Invaders
we can see that collisions have been integral to the gameplay experience.

It should come as no surprise that collision detection is handled using math. Some of the math
involved can be particularly complicated if you have to deal with collisions between the polygon
meshes of objects. In this chapter we're going to look at collisions at a higher level. Bounding
volumes are used as a test to detect if two objects are candidates for collisions at a more detailed
level. The design of our game is simple enough that this level of collision detection will be good
enough.

Detecting collisions can also be a computationally expensive business, and this causes us to look
for ways to optimize the collision detection stage in our engine. We will achieve this by splitting our
scene into discrete sections and checking for collisions between objects only within these sections.
This is known as the broad phase of the collision detection algorithm and the testing of individual
objects is called the narrow phase.

Once we have determined that objects have collided, we have to carry out a collision response. This
will be handled in our code by sending a collision event. We looked at the event and component
systems in the previous chapter and will be building upon these as we implement our collision
detection systems.

Now that we know what we will be looking at in this chapter, let's make a start.

Representing Game World Objects with Collision Data
The meshes which we use to render game objects are becoming more and more complex as the
capabilities of GPUs increase. This means that the meshes used for rendering objects are no longer
suitable for use in collision detection systems. Detecting collisions between very complex objects

122 CHAPTER 7: Building Game Levels with Collision

can be so time-consuming that achieving real-time frame rates would simply be impossible. We have
no need to detect collisions between different objects at that level of detail for our simple game, so
we can optimize the collision detection process early by simply comparing the bounding volumes of
our objects.

Bounding volumes are shapes which represent the extents of the space taken up by your model.
3D shapes such as spheres, cubes, and capsules are commonly used to represent these volumes.
For our example, we're going to use a type of bounding volume known as an axis-aligned bounding
box (AABB). An AABB is a cuboid with sides which lie parallel to the x, y, and z axes. As all of the
sides of all AABBs are parallel to these axes, we can use a very quick algorithm to detect if two of
our objects are colliding. This algorithm is known as the separating axis theorem. This sounds much
more complicated than it actually is, and in fact, you've already implemented a 2D version of the
algorithm in the simple Breakout game we developed in Chapter 2.

The easiest way to see how this algorithm works is to take a look at the code we use to implement it.
Listing 7-1 shows the CollisionComponent which we will use to add to our objects.

Listing 7-1.  The Collision Component Class Declaration

class CollisionComponent
 : public Component
{
private:
 static const unsigned int s_id = 2;
 
 Vector3 m_min;
 Vector3 m_max;
 
public:
 static unsigned int GetId() { return s_id; }
 
 explicit CollisionComponent(GameObject* pOwner);
 virtual ~CollisionComponent();
 
 virtual void Initialize();
 
 void SetMin(const Vector3& point) { m_min = point; }
 void SetMax(const Vector3& point) { m_max = point; }
 
 bool Intersects(CollisionComponent& target);
};
 
Our CollisionComponent has two Vector3 objects which will be used to store the extents of the
bounding volume. The m_min Vector3 object will store all of the minimum values for the x, y, and z
axes and the m_max will store the maximum values for the x, y, and z axes.

The Intersect method is where the work of the component will be carried out and where the
separating axis algorithm will be implemented. Before we look at the code which accomplishes this,
we will look at how the algorithm works in theory. Figure 7-1 shows a graph which we will use to
think about the separating axis algorithm.

123CHAPTER 7: Building Game Levels with Collision

As the name suggests, we detect overlapping objects by looking for gaps between them on each
separate axis at a time. For an axis-aligned bounding box, each of the sides of the volume will be
parallel to the corresponding axis in world space. If the preceding graph was looking along the z
axis, the x axis would be going to the right and the y axis going up. This graph would allow us to
visualize the gaps between the AABBs on the x axis.

If we were testing the second line against the first, then we would say that we know they are not
overlapping as the left-hand edge of the line is further right than the right-hand edge of the first line.
If we were testing the lines in the opposite situation and testing the first against the second, we
would say that they are not overlapping because the right-hand edge of the first line is further left
than the left-hand edge of the second line.

At runtime in our game, we cannot be sure which object is on which side, so we check against
both situations. We also repeat this test against the edges on the y and z axes. It is also now clear
why we need to store the min and max values of the lines in their respective Vector3 objects in the
component: we need to know which side of the line is furthest left and which is furthest right for the
algorithm to work easily.

Let's take a look at the implementation of CollisionComponent::Intersect now that we have
covered the theory behind the algorithm (see Listing 7-2).

Listing 7-2.  CollisionComponent::Intersect()

bool CollisionComponent::Intersects(CollisionComponent& target)
{
 bool intersecting = true;
 
 Vector3 thisMin = m_min;
 Vector3 thisMax = m_max;
 

Figure 7-1.  The separating axis theorem

124 CHAPTER 7: Building Game Levels with Collision

 TransformComponent* pThisTransformComponent =
 component_cast<TransformComponent>(GetOwner());
 if (pThisTransformComponent)
 {
 Transform& transform = pThisTransformComponent->GetTransform();
 thisMin.Add(transform.GetTranslation());
 thisMax.Add(transform.GetTranslation());
 }
 
 Vector3 targetMin = target.m_min;
 Vector3 targetMax = target.m_max;
 
 TransformComponent* pTargetTransformComponent =
 component_cast<TransformComponent>(target.GetOwner());
 if (pTargetTransformComponent)
 {
 Transform& transform = pTargetTransformComponent->GetTransform();
 targetMin.Add(transform.GetTranslation());
 targetMax.Add(transform.GetTranslation());
 }
 
 if (thisMin.m_x > targetMax.m_x ||
 thisMax.m_x < targetMin.m_x ||
 thisMin.m_y > targetMax.m_y ||
 thisMax.m_y < targetMin.m_y ||
 thisMin.m_z > targetMax.m_z ||
 thisMax.m_z < targetMin.m_z)
 {
 intersecting = false;
 }
 
 return intersecting;
}
 
The first task to be completed in the Intersect method is to translate the AABB of each object. We
simply add the position from the TransformComponent for each object in the test to their bounding
box rather than applying the entire transform. If the entire transform were applied, we would end up
rotating the axis-aligned box, which would turn it into an oriented bounding box, and our AABB test
would no longer be reliable. We are also ignoring the scale of the transform here as we know we are
not using it, but if you were to decide to scale your objects, this would also need to be applied.

We then have an if test which determines if the objects are not overlapping. Thinking back to the
graph in Figure 7-1, we can see that the min values represent the left-hand edges of the lines and
the max values represent the right. We test each of the two cases where we know the objects are
not overlapping for each axis. First, we check if the left-hand edge of the first object is further right
than the right-hand edge of the second object. We then check if the right-hand edge of the first
object is further left than the left-hand edge of the second object. If either of these conditions is true,
then our objects are not overlapping. The same tests are then completed for the y and z axes. If any
one of these tests is positive, we know that our objects do not overlap.

125CHAPTER 7: Building Game Levels with Collision

And that's all there is to detecting collisions between objects using axis-aligned bounding boxes.
Collision detection is not always this trivial, but this is a good place to begin as it covers the basics
of how we detect collisions between two objects in the world. At this point, we still don't really have
much of a world, so we'll address this in the next section by creating a level.

Building a Game Level
Now that we can make objects to collide, it's time to think about how we will position our objects
in the game world. Side-scrolling games have been around for a long, long time, and many of the
challenges which surround the placement of objects in side-scrolling game levels were solved over
two decades ago. A prime example of this is the Super Mario Bros. series which built its levels out
of uniform sized blocks. These blocks were known as tiles and they allowed the game developers
to solve a number of problems which included limited memory for textures, limited color palettes
and limited amounts of system RAM to store level data information. Therefore building levels from
reusable blocks with repeating patterns was a very effective technique for building larger game levels
than would otherwise be possible.

Our simple game will be built from this same basic technique. For the purposes of this book, our
design is purposely written to be as simple as possible to demonstrate the techniques used to build
games. The single block type we will use will simply be a platform for our player to stand on.

In the last chapter, we created game objects directly in the Chapter6Task class. This time, we'll be
creating a class to contain our level, as this would allow us to create multiple levels in the future.
Listing 7-3 shows the DroidRunnerLevel class declaration.

Listing 7-3.  The DroidRunnerLevel Class

class DroidRunnerLevel
 : public Framework::EventHandler
{
private:
 Framework::CollisionComponent* m_pPlayerCollisionComponent;
 
 Framework::Geometry m_sphereGeometry;
 Framework::Geometry m_cubeGeometry;
 Framework::TransformShader m_transformShader;
 
 enum TileTypes
 {
 EMPTY = 0,
 BOX,
 AI,
 PLAYER
 };
 
 typedef std::vector<Framework::GameObject*> GameObjectVector;
 typedef GameObjectVector::iterator GameObjectVectorIterator;
 
 GameObjectVector m_levelObjects;
 

126 CHAPTER 7: Building Game Levels with Collision

 void SetObjectPosition(
 Framework::GameObject* pObject,
 const unsigned int row,
 const unsigned int column);
 
 void AddMovementComponent(Framework::GameObject* pObject);
 
 void AddCollisionComponent(
 Framework::GameObject* pObject,
 const Framework::Vector3& min,
 const Framework::Vector3& max);
 
 void AddPatrolComponent(
 Framework::GameObject* pObject,
 const unsigned int startRow,
 const unsigned int startColumn,
 const unsigned int endRow,
 const unsigned int endColumn);
 
 void AddRenderableComponent(
 Framework::GameObject* pObject,
 Framework::Geometry& geometry,
 Framework::Shader& shader,
 Framework::Vector4& color);
 
 static const float TILE_WIDTH = 6.0f;
 static const float TILE_HEIGHT = 6.0f;
 
 Framework::Vector3 m_origin;
 
public:
 DroidRunnerLevel();
 ~DroidRunnerLevel();
 
 void Initialize(const Framework::Vector3& origin);
 
 virtual void HandleEvent(Framework::Event* pEvent);
};
 
The private section of the DroidRunnerLevel class is where we now find the Geometry and Shader
objects for our scene. We still have a sphere, cube, and TransformShader for this chapter. In addition
to these, we are also storing a pointer to the player object's CollisionComponent; we'll look at why
we do this when we cover the code for DroidRunnerLevel::HandleEvent.

The enum TileTypes defines the different types of tiles which we will be supporting in our game
level. We have a need for a player tile, an AI tile, and a box tile. These are the basic building blocks
which we will be using to create our levels.

We define a vector and iterator for storing the GameObjects which belong to this level and then also
some helper methods which will be used to construct the objects when the level is initialized.

127CHAPTER 7: Building Game Levels with Collision

Next, we have two static floats, which store the 2D dimensions of the tiles, and a Vector3, which
stores the point in space which defines the origin of the level. All of our objects will be created offset
from this origin.

The only public methods required by this class are the constructor and destructor, Initialize
and HandleEvent. As usual, HandleEvent is an overridden virtual method which is defined in the
EventHandler parent class.

The Initialize method listed in Listing 7-4 runs through the setup of our level.

Listing 7-4.  DroidRunnerLevel::Initialize

void DroidRunnerLevel::Initialize(const Vector3& origin)
{
 m_sphereGeometry.SetVertexBuffer(sphereVerts);
 m_sphereGeometry.SetNumVertices(sizeof(sphereVerts) / sizeof(sphereVerts[0]));
 m_sphereGeometry.SetIndexBuffer(sphereIndices);
 m_sphereGeometry.SetNumIndices(sizeof(sphereIndices) / sizeof(sphereIndices[0]));
 m_sphereGeometry.SetName("android");
 
 m_sphereGeometry.SetNumVertexPositionElements(3);
 m_sphereGeometry.SetVertexStride(0);
 
 m_cubeGeometry.SetVertexBuffer(cubeVerts);
 m_cubeGeometry.SetNumVertices(sizeof(cubeVerts) / sizeof(cubeVerts[0]));
 m_cubeGeometry.SetIndexBuffer(cubeIndices);
 m_cubeGeometry.SetNumIndices(sizeof(cubeIndices) / sizeof(cubeIndices[0]));
 m_cubeGeometry.SetName("cube");
 
 m_cubeGeometry.SetNumVertexPositionElements(3);
 m_cubeGeometry.SetVertexStride(0);
 
 m_origin.Set(origin);
 
 CollisionManager::GetSingleton().AddCollisionBin();
 const Vector3 min(–3.0f, –3.0f, –3.0f);
 const Vector3 max(3.0f, 3.0f, 3.0f);
 
 const unsigned char tiles[] =
 {
 EMPTY, EMPTY, EMPTY, EMPTY, AI, AI, AI, AI,
 EMPTY, EMPTY, EMPTY, EMPTY, BOX, BOX, BOX, BOX,
 EMPTY, PLAYER, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY,
 BOX, BOX, BOX, BOX, BOX, BOX, BOX, BOX
 };
 
 const unsigned int numTiles = sizeof(tiles) / sizeof(tiles[0]);
 
 const unsigned int numRows = 4;
 const unsigned int rowWidth = numTiles / numRows;
 

128 CHAPTER 7: Building Game Levels with Collision

 for (unsigned int i=0; i<numTiles; ++i)
 {
 if (tiles[i] == BOX)
 {
 const unsigned int row = i / rowWidth;
 const unsigned int column = i % rowWidth;
 
 GameObject* pNewObject = new GameObject();
 
 SetObjectPosition(pNewObject, row, column);
 AddCollisionComponent(pNewObject, min, max);
 
 Vector4 color(0.0f, 0.0f, 1.0f, 1.0f);
 AddRenderableComponent(
 pNewObject,
 m_cubeGeometry,
 m_transformShader,
 color);
 
 m_levelObjects.push_back(pNewObject);
 }
 else if (tiles[i] == PLAYER)
 {
 const unsigned int row = i / rowWidth;
 const unsigned int column = i % rowWidth;
 
 GameObject* pNewObject = new GameObject();
 
 SetObjectPosition(pNewObject, row, column);
 AddMovementComponent(pNewObject);
 
 AddCollisionComponent(pNewObject, min, max);
 
 MovementComponent* pMovementComponent =
 component_cast<MovementComponent>(pNewObject);
 
 m_pPlayerCollisionComponent =
 component_cast<CollisionComponent>(pNewObject);
 
 if (pMovementComponent && m_pPlayerCollisionComponent)
 {
 m_pPlayerCollisionComponent->AddEventListener(pMovementComponent);
 }
 
 Vector4 color(0.0f, 1.0f, 0.0f, 1.0f);
 AddRenderableComponent(
 pNewObject,
 m_sphereGeometry,
 m_transformShader,
 color);
 

129CHAPTER 7: Building Game Levels with Collision

 m_levelObjects.push_back(pNewObject);
 }
 else if (tiles[i] == AI)
 {
 const unsigned int row = i / rowWidth;
 const unsigned int column = i % rowWidth;
 
 unsigned int patrolEndRow = 0;
 unsigned int patrolEndColumn = 0;
 
 for (unsigned int j=i; j<numTiles; ++j)
 {
 if (tiles[j] != AI)
 {
 i = j;
 
 --j;
 patrolEndRow = j / rowWidth;
 patrolEndColumn = j % rowWidth;
 break;
 }
 }
 
 GameObject* pNewObject = new GameObject();
 
 SetObjectPosition(pNewObject, row, column);
 AddCollisionComponent(pNewObject, min, max);
 
 AddPatrolComponent(pNewObject, row, column, patrolEndRow, patrolEndColumn);
 
 Vector4 color(1.0f, 0.0f, 0.0f, 1.0f);
 AddRenderableComponent(
 pNewObject,
 m_sphereGeometry,
 m_transformShader,
 color);
 }
 }
 
 Renderer* pRenderer = Renderer::GetSingletonPtr();
 if (pRenderer)
 {
 pRenderer->AddShader(&m_transformShader);
 }
}
 
Initialize begins by initializing the Geometry and Shader classes just as we did in Chapter 6.

We then initialize the position of the origin vector, m_origin, with the value of origin which was
passed as a parameter to the method.

130 CHAPTER 7: Building Game Levels with Collision

A new collision bin is then added to the CollisionManager; we'll cover the CollisionManager in
Listing 7-15.

An array of unsigned char values is then initialized to contain the layout of tiles which we would
like to construct for the level. Here we have specified where the AI should patrol, where the world
collision boxes should be placed, and where the starting position of the player should be. For now,
we have split the level into four rows and eight columns. This level is large enough to fit onto a single
screen; we will be expanding this level to cover multiple screens in Chapter 8.

The number of tiles is then calculated by dividing the size of the tile array by the size of a single
element, and we use the fact that we will always have four rows to calculate the number of columns
we have currently defined in the tile array.

A for loop is then used to pass over every element of the array. When we encounter an empty tile,
no action is taken. If the tile is a box, then we will be creating a box object at this point in the world.
First, we need to calculate which row and column we are occupying. We can work out the row by
dividing the current index by the width of the row. For example, element 16 is the first tile of the third
row: this would give us column 0 and row 2 (as we begin counting from row 0). We calculate the row
using the divide operator, 16 / 8 = 2, and we can calculate the column using the mod (or remainder)
operator, 16 % 8 = 0.

A new game object is created, and we set the position on the object which we derive in the
SetObjectPosition method, which is shown in Listing 7-5.

Listing 7-5.  DroidRunnerLevel::SetObjectPosition

void DroidRunnerLevel::SetObjectPosition(
 Framework::GameObject* pObject,
 const unsigned int row,
 const unsigned int column)
{
 assert(pObject);
 pObject->AddComponent<TransformComponent>();
 TransformComponent* pTransformComponent = component_cast<TransformComponent>(pObject);
 if (pTransformComponent)
 {
 Vector3 translation(m_origin);
 translation.m_x += TILE_WIDTH * column;
 translation.m_y -= TILE_HEIGHT * row;
 pTransformComponent->GetTransform().SetTranslation(translation);
 }
}
 
SetObjectPosition is a helper method which adds a TransformComponent to our object. The
translation of the TransformComponent is then set to the position in world space which we would like
our object to occupy. We calculate this by multiplying the width of the tile by the column index and
then adding this to the x position of the origin of the level. Similarly, we calculate the y position by
multiplying the height of a tile by the row index and subtracting this value from the origin y position.

After setting the position of the object in SetObjectPosition, DroidRunnerLevel calls
AddCollisionComponent on the object; this method is shown in Listing 7-6.

131CHAPTER 7: Building Game Levels with Collision

Listing 7-6.  DroidRunnerLevel::AddCollisionComponent

void DroidRunnerLevel::AddCollisionComponent(
 Framework::GameObject* pObject,
 const Framework::Vector3& min,
 const Framework::Vector3& max)
{
 assert(pObject);
 pObject->AddComponent<CollisionComponent>();
 CollisionComponent* pCollisionComponent = component_cast<CollisionComponent>(pObject);
 if (pCollisionComponent)
 {
 pCollisionComponent->SetMin(min);
 pCollisionComponent->SetMax(max);
 AttachEvent(COLLISION_EVENT, *pCollisionComponent);
 CollisionManager::GetSingleton().AddObjectToBin(0, pCollisionComponent);
 }
}
 
This is another straightforward helper method. We simply add a CollisionComponent to the object
and initialize its min and max fields. We do have an update to make to the CollisionComponent at
this point. We have registered a new event type name, COLLISION_EVENT, and have inherited the
CollisionComponent from EventHandler. We look at CollisionComponent::HandleEvent in Listing
7-28. The CollisionComponent is also added to the CollisionManager's bin at index 0. We'll cover
the CollisionManager in the following section of this chapter.

The last helper method applied to the box is AddRenderableComponent, shown in Listing 7-7.

Listing 7-7.  DroidRunnerLevel::AddRenderableComponent

void DroidRunnerLevel::AddRenderableComponent(
 GameObject* pObject,
 Geometry& geometry,
 Shader& shader,
 Vector4& color)
{
 assert(pObject);
 pObject->AddComponent<RenderableComponent>();
 RenderableComponent* pRenderableComponent = component_cast<RenderableComponent>(pObject);
 if (pRenderableComponent)
 {
 Renderable& renderable = pRenderableComponent->GetRenderable();
 renderable.SetGeometry(&geometry);
 renderable.SetShader(&shader);
 Vector4& renderableColor = renderable.GetColor();
 renderableColor.Set(color);
 Framework::AttachEvent(Framework::RENDER_EVENT, *pRenderableComponent);
 }
}
 

132 CHAPTER 7: Building Game Levels with Collision

This is another straightforward method which adds a RenderableComponent to our object and
initializes its fields. In the case of the box, we specify the m_cubeGeometry, m_transformShader, and
the color blue as the parameters to this method.

DroidRunnerLevel::Initialize can also create a player object when the tile is set to represent a
player. The only differences between initializing a box and initializing a player are that the player is
represented by the sphere geometry and the color green and has the method AddMovementComponent
called with it as a parameter. This method is shown in Listing 7-8.

Listing 7-8.  DroidRunnerLevel::AddMovementComponent

void DroidRunnerLevel::AddMovementComponent(GameObject* pObject)
{
 assert(pObject);
 pObject->AddComponent<MovementComponent>();
 MovementComponent* pMovementComponent = component_cast<MovementComponent>(pObject);
 if (pMovementComponent)
 {
 AttachEvent(JUMP_EVENT, *pMovementComponent);
 AttachEvent(UPDATE_EVENT, *pMovementComponent);
 }
}
 
Just as with the other helper methods, we add our target component to the object, in this
case the MovementComponent, and initialize any data. The only initialization required for the
MovementComponent is to attach the JUMP_EVENT and UPDATE_EVENT messages.

In the previous chapter's Listing 6-34, we saw that we stopped the MovementComponent from falling
if it moved below 0 on the y axis. For this chapter, we would like to stop the player falling if they are
resting on a box. We will look at how we achieve this in Listings 7-24 and 7-26, but for now we can
see that the initialization code is adding the MovementComponent as a Listener object to the player's
CollisionComponent.

The last type of tile which we will be handling is the AI type. Our AI tiles do not cover single tiles but
cover a range of tiles which denote the path our AI object should patrol. Listing 7-9 recovers the
code which works out the beginning and end of the patrol path.

Listing 7-9.  Calculating the AI Patrol Path

const unsigned int row = i / rowWidth;
const unsigned int column = i % rowWidth;
 
unsigned int patrolEndRow = 0;
unsigned int patrolEndColumn = 0;
 
for (unsigned int j=i; j<numTiles; ++j)
{
 if (tiles[j] != AI)
 {
 i = j;
 
 --j;

133CHAPTER 7: Building Game Levels with Collision

 patrolEndRow = j / rowWidth;
 patrolEndColumn = j % rowWidth;
 break;
 }
}
 
As you can see, Listing 7-9 begins by working out the row and column for the current tile. We then
use an inner loop to step along until we find a non-AI tile. At this point, we increase i to skip the AI
tiles and then decrease j so that it is pointing at the last tile in the patrol path. The row and column
of this end point are then calculated. This basic method for defining paths has a drawback in that
we must always have a non-AI tile after the last tile in the path. This includes a path which ends at
the end of a row; the first tile of the following row cannot be an AI path or this code will treat it as a
continuation of the path from the previous row, and in addition the very last tile in the level cannot be
an AI tile or the path will not terminate and will use tile 0, 0 as the end point.

Just as with the boxes and player objects, the AI object has a TransformComponent,
CollisionComponent, and RenderableComponent added by our helper methods.

We also use AddPatrolComponent to add a PatrolComponent to our AI objects, as shown in Listing 7-10.

Listing 7-10.  DroidRunnerLevel::AddPatrolComponent

void DroidRunnerLevel::AddPatrolComponent(
 Framework::GameObject* pObject,
 const unsigned int startRow,
 const unsigned int startColumn,
 const unsigned int endRow,
 const unsigned int endColumn)
{
 assert(pObject);
 pObject->AddComponent<PatrolComponent>();
 PatrolComponent* pPatrolComponent = component_cast<PatrolComponent>(pObject);
 if (pPatrolComponent)
 {
 Vector3 startPoint(m_origin);
 startPoint.m_x += TILE_WIDTH * startColumn;
 startPoint.m_y -= TILE_HEIGHT * startRow;
 
 Vector3 endPoint(m_origin);
 endPoint.m_x += TILE_WIDTH * endColumn;
 endPoint.m_y -= TILE_HEIGHT * endRow;
 
 pPatrolComponent->SetStartPoint(startPoint);
 pPatrolComponent->SetEndPoint(endPoint);
 pPatrolComponent->SetSpeed(12.0f);
 
 AttachEvent(UPDATE_EVENT, *pPatrolComponent);
 }
}
 

134 CHAPTER 7: Building Game Levels with Collision

AddPatrolComponent adds a PatrolComponent to the object and initializes the start and end fields.
The positions in world space of the start and end points are calculated using the same method as
we used to position the objects' TransformComponents.

Last but not least, DroidRunnerLevel::Initialize adds m_transformShader to the Renderer.

This method contains all of the code which we required to build our level. At this point, we are in
a position where we have the objects in place but still do not have a method for detecting and
responding to interactions between them. We'll look at how we determine if objects have collided in
an efficient manner in the next section.

Broad-Phase Filtering
Game levels can contain a substantial number of GameObjects. The simplest method for detecting
collisions between objects is to brute force the operation. This involves testing every single
object against every other object in the scene. Detecting collisions between objects can be a
computationally expensive process. The large game engines used in modern FPS games, for
example, may have a large number of destructible objects which must be tested against a large
number of bullet objects in the world. Calculating the point and exact timing of impacts is essential
in these destructible environments for gameplay, as players can very quickly tell if something has not
deformed in the correct manner, or if their shots are not being counted against correct body parts.

When using the brute-force method, the number of collision tests to be carried out increases
quadratically using the following equation, x(x–1) / 2. For ten objects, this gives a number of tests to be
carried out as 45, which isn't too bad. For 1,000 objects, you're looking at having to test 499,500 times.

The process of reducing the number of objects to test between is known as broad-phase filtering.
This pass on objects usually consists of a spatial algorithm. This means that we use the fact that
objects are far apart to ignore any collision tests between these objects and only consider collisions
between close objects.

Quadtrees and Octrees
A Quadtree is a data structure which subdivides a 2D space into equally sized spaces; an Octree
carries out the same job but includes the third dimension.

As Figure 7-2 shows, a Quadtree is used to subdivide a 2D space into equally sized sections at each
level. First the outer section is split horizontally and vertically, creating four quarters. Each quarter
is then split depending on the number of objects which exist in each section. The more objects
which exist in a given area then the more subdivisions we will use to reduce the number of collisions
between objects.

135CHAPTER 7: Building Game Levels with Collision

An Octree behaves in exactly the same way but splits up a 3D space into equally sized cuboids with
up to eight divisions per section instead of the four used by a Quadtree.

Binary Space Partitions
A Binary Space Partition (or BSP) works in a similar fashion to the Quadtree and Octree in terms of
subdividing space. Doom and Quake used this algorithm to render their scenes, as they were very
efficient at culling geometry which should not be rendered in their 3D software rendering engines.

While the BSP is no longer used as a rendering algorithm due to its inefficient use of hardware 3D
accelerators, it is still a valid choice to accelerate collision detection involving static geometry. The
most common type of BSP involves splitting geometry using planes. A plane is an efficient piece of
geometry for the task, as it has a simple test for determining which side of the plane an object sits.

The BSP structure is generated offline before the game is run and the algorithm operates by picking
a root polygon, constructing a plane on which the polygon sits, and then continuing to pick polygons
on each side of the plane to construct new planes. The process repeats until the subdivisions are at
a fine-enough level of detail.

If you're building large outdoor levels with a large mesh, this is a valid technique to use.

Broad-Phase Filtering in Droid Runner
Our needs for broad-phase filtering are much more modest. Our level is of a fixed height, and all
objects exist on a 2D plane, so we can get away with splitting our level into equally sized bins. We've
already seen that our level is defined with an array split into rows and columns, so we will use a bin
for every eight columns.

Figure 7-2.  A Quadtree

136 CHAPTER 7: Building Game Levels with Collision

Collision Bins
We take a look at the code for a collision bin in Listing 7-11.

Listing 7-11.  The CollisionBin Class Declaration

class CollisionBin
{
private:
 typedef std::vector<CollisionComponent*> CollisionComponentVector;
 typedef CollisionComponentVector::iterator CollisionComponentVectorIterator;
 
 CollisionComponentVector m_collisionObjects;
 CollisionComponentVectorIterator m_currentObject;
 
public:
 CollisionBin();
 ~CollisionBin();
 
 void AddObject(CollisionComponent* pCollisionComponent);
 CollisionComponent* GetFirst();
 CollisionComponent* GetNext();
};
 
This is a simple class. As a bin, its task is simply to store a collection of objects and
provide accessor methods to those objects. In this case, CollisionBin stores a vector of
CollisionComponent pointers. The bin stores a current iterator which is used to supply the first and
next objects to the calling class.

Listing 7-12 shows the code required to add a new object to the CollisionBin.

Listing 7-12.  CollisionBin::AddObject

void CollisionBin::AddObject(CollisionComponent* pCollisionComponent)
{
 m_collisionObjects.push_back(pCollisionComponent);
}
 
The method AddObject has a simple job: it adds the passed CollisionComponent pointer to its array.

Listing 7-13 shows how GetFirst sets the internal iterator to be the beginning of the vector. The
return statement uses the ternary operator to determine if the iterator points to a valid object. If
so, we return the dereferenced iterator; if not, we return NULL.

Listing 7-13.  CollisionBin::GetFirst

CollisionComponent* CollisionBin::GetFirst()
{
 m_currentObject = m_collisionObjects.begin();
 return m_currentObject != m_collisionObjects.end()
 ? *m_currentObject
 : NULL;
}
 

137CHAPTER 7: Building Game Levels with Collision

In Listing 7-14, we test the current iterator for a valid object twice in the method GetNext. We need
to ensure that the iterator is not at the end of the vector before attempting to increment so that we
ensure that we do not walk off the end. Once we have incremented the iterator, we again check if the
iterator is valid before returning the dereferenced object or NULL.

Listing 7-14.  CollisionBin::GetNext

CollisionComponent* CollisionBin::GetNext()
{
 CollisionComponent* pRet = NULL;
 
 if (m_currentObject != m_collisionObjects.end())
 {
 ++m_currentObject;
 pRet = m_currentObject != m_collisionObjects.end()
 ? *m_currentObject
 : NULL;
 }
 
 return pRet;
}
 
The bins themselves do not carry out any collision testing; they are just storage algorithms. The
actual testing will be carried out by the CollisionManager.

The Collision Manager
CollisionManager, the declaration of which is described in Listing 7-15, is responsible for storing the
collision bins and providing an interface for collision testing to the rest of the code.

Listing 7-15.  The CollisionManager Class Declaration

class CollisionManager
 : public Singleton<CollisionManager>
{
private:
 typedef std::vector<CollisionBin> CollisionBinVector;
 
 CollisionBinVector m_collisionBins;
 
public:
 CollisionManager();
 ~CollisionManager();
 
 void AddCollisionBin();
 void AddObjectToBin(const unsigned int binIndex, CollisionComponent* pObject);
 void TestAgainstBin(const unsigned int binIndex, CollisionComponent* pObject);
};
 
We make use of the vector once again in this class, this time storing a vector of CollisionBin
instances. We provide public methods for creating new bins, for adding CollisionComponents to
bins, and for testing a single object against all others in the bin.

138 CHAPTER 7: Building Game Levels with Collision

In AddCollisionBin, we push a new bin onto the back of the vector. This is shown in Listing 7-16.

Listing 7-16.  CollisionManager::AddCollisionBin

void CollisionManager::AddCollisionBin()
{
 m_collisionBins.push_back();
}
 
AddObjectToBin, described in Listing 7-17, asserts that the index supplied is lower than the size of
the bin vector. It then calls AddObject on the bin found at binIndex.

Listing 7-17.  CollisionManager::AddObjectToBin

void CollisionManager::AddObjectToBin(const unsigned int binIndex, CollisionComponent* pObject)
{
 assert(binIndex < m_collisionBins.size());
 m_collisionBins[binIndex].AddObject(pObject);
}
 

Narrow-Phase Collision Detection
Narrow-phase collision detection is concerned with accelerating the process of determining if two
specific objects have collided. The entire process of filtering collisions is based on the assumption
that the most expensive part of the collision detection algorithm is the intersection tests between
geometric primitives. This may be triangles, rays, or whatever other type of geometry is used to
represent the surface of the object. For modern video games, the detail required in models results
in meshes which consist of thousands of geometric primitives, and testing each of these would be
expensive.

We've already discussed our approach to this earlier in the chapter: we will be approximating our
objects using axis-aligned bounding boxes. If we were building humanoid characters, we would
have an overall bounding volume and then a volume roughly representing each body part. This may
mean having a sphere for a head, capsules for the upper and lower sections of limbs, and an AABB
for the torso.

Due to our test being very simple, the entire algorithm fits into a single method. CollisiongManager::
TestAgainstBin is listed in Listing 7-18.

Listing 7-18.  CollisionManager::TestAgainstBin

void CollisionManager::TestAgainstBin(const unsigned int binIndex, CollisionComponent* pObject)
{
 assert(binIndex < m_collisionBins.size());
 CollisionBin& bin = m_collisionBins[binIndex];
 CollisionComponent* pBinObject = bin.GetFirst();
 while (pBinObject)
 {
 if (pBinObject != pObject &&
 pBinObject->Intersects(*pObject))
 {

139CHAPTER 7: Building Game Levels with Collision

 CollisionEventData collisionData;
 collisionData.m_pCollider = pBinObject->GetOwner();
 SendEventToHandler(
 COLLISION_EVENT,
 static_cast<EventHandler>(pObject),
 &collisionData);
 }
 pBinObject = bin.GetNext();
 }
}
 
We pass the object which we'd like to test against the bin as a parameter. The brute-force method
we discussed earlier would involve testing every object in a bin against every other; however, we
know that we're only ever interested in testing against the player object which gives us a good
optimization.

The method simply loops over each object in the bin and calls the Intersect method if the objects
are not the same. When the Intersect method returns true, we send COLLISION_EVENT to the
CollisionComponent passed as a parameter.

The CollisionEventData structure simply holds a pointer to the GameObject we have collided with.
We look at this structure in Listing 7-19.

Listing 7-19.  The CollisionEventData Structure

struct CollisionEventData
{
 GameObject* m_pCollider;
};
 
The TestAgainstBin method highlights an update which we will make to the event system. Often
when sending an event it is convenient to pass data along with the event. In this case, we would like
to know which object we have collided with.

To facilitate sending data with an event, we have added a void pointer to the event class. We have also
added void pointers to the Send and SendToHandler methods. We do this in Listings 7-20 and 7-21.

Listing 7-20.  Updating the Event Class

 EventHandlerList m_listeners;
 EventID m_id;
 void* m_pData;
 
public:
 explicit Event(EventID eventId);
 ~Event();
 
 void Send(void* pData);
 void SendToHandler(EventHandler& eventHandler, void* pData);
 void AttachListener(EventHandler& eventHandler);
 void DetachListener(EventHandler& eventHandler);
 

140 CHAPTER 7: Building Game Levels with Collision

Listing 7-21.  Updating Event::Send and Event::SendToHandler

void Event::Send(void* pData)
{
 m_pData = pData;
 for (EventHandlerListIterator iter = m_listeners.begin();
 iter != m_listeners.end();
 ++iter)
 {
 
void Event::SendToHandler(EventHandler& eventHandler, void* pData)
{
 m_pData = pData;
 for (EventHandlerListIterator iter = m_listeners.begin();
 iter != m_listeners.end();
 ++iter)
 {
 
Along with this change, each of the Send and SendToHandler methods which pass the event along to
and from the EventManager will also be required to be updated to include the void pointer parameter.

Now that we have a method to detect collisions and an event which tells an object when it has been
involved in a collision, we can write code to respond to these collisions.

Responding to Collisions
Our game design calls for two distinct responses to the collisions which occur. We can be supported
on top of boxes, or we can be killed by hitting the side of boxes or by hitting enemies.

Our player object's update code is mostly contained within the MovementComponent. The trouble we
have now is getting the COLLISION_EVENT from the CollisionComponent to the objects which are
interested in the specific collision data.

We will achieve this by turning to the Observer pattern. What we want to do in this instance is
have objects which can be notified using a specific method when the CollisionEvent occurs. The
CollisionListener interface will be used to achieve this and is shown in Listing 7-22.

Listing 7-22.  The CollisionListener Interface

class CollisionListener
{
public:
 virtual void HandleCollision(CollisionEventData* pData) = 0;
};
 
In Listing 7-23, the MovementComponent inherits from this class.

Listing 7-23.  Updating the MovementComponent

class MovementComponent
 : public Framework::Component
 , public Framework::EventHandler

141CHAPTER 7: Building Game Levels with Collision

 , public Framework::CollisionListener
{
private:
 static const unsigned int s_id = 9;
public:
 
 virtual void HandleCollision(Framework::CollisionEventData* pData);
};
 
The method body in Listing 7-24 handles the collision.

Listing 7-24.  MovementComponent::HandleCollision

void MovementComponent::HandleCollision(Framework::CollisionEventData* pData)
{
 PatrolComponent* pPatrolComponent = component_cast<PatrolComponent>(pData->m_pCollider);
 if (pPatrolComponent)
 {
 // We're colliding with an AI; we're dead!
 }
 else
 {
 // We're colliding with a block
 TransformComponent* pColliderTransformComponent =
 component_cast<TransformComponent>(pData->m_pCollider);
 
 CollisionComponent* pColliderCollisionComponent =
 component_cast<CollisionComponent>(pData->m_pCollider);
 
 assert(pColliderTransformComponent && pColliderCollisionComponent);
 
 const Vector3& translation =
 pColliderTransformComponent->GetTransform().GetTranslation();
 
 Vector3 minPosition(pColliderCollisionComponent->GetMin());
 minPosition.Add(translation);
 
 TransformComponent* pObjectTransformComponent =
 component_cast<TransformComponent>(GetOwner());
 
 if (pObjectTransformComponent->GetTransform().GetTranslation().m_x <
 minPosition.m_x)
 {
 // We're dead because we've hit the side of the block
 }
 else
 {
 SetIsSupported(
 true,
 pColliderCollisionComponent->GetMax().m_y + translation.m_y);
 }
 }
}
 

142 CHAPTER 7: Building Game Levels with Collision

As you can see here, we determine if the object we have hit is a box or AI by checking if it has a
PatrolComponent; boxes do not have these.

If it's a box, we then need to determine if we have hit the top or the side. To do this, we get the
TransformComponent and CollisionComponent for the collider object.

As we'll be moving from left to right, we will only ever die from hitting the left-hand side of the box,
so we need to check the min position of the bounding box. The min position is translated into
world space and stored in the minPosition vector. We then get the TransformComponent for our
MovementComponent's owner. If the x position of the object's translation is to the left of the box's
minimum left position, we decide that we have hit the side of the box. If we are to the right of the left
position, we have hit the top.

If we are on top of the box, we call SetIsSupported and pass the translated top of the bounding box.
It is shown in Listing 7-25.

Listing 7-25.  MovementComponent::SetIsSupported

void MovementComponent::SetIsSupported(bool isSupported, float floor = 0.0f)
{
 m_isSupported = isSupported;
 m_floor = floor;
}
 
To allow the player to sit on top of the box, we also have to update the HandleEvent method; we do
this in Listing 7-26.

The SetIsSupported method simply sets the m_isSupported field and the m_floor field.

Listing 7-26.  Updating MovementComponent::HandleEvent

else if (pEvent->GetID() == UPDATE_EVENT)
{
 TransformComponent* pTransformComponent = component_cast<TransformComponent>(GetOwner());
 assert(pTransformComponent);
 CollisionComponent* pCollisionComponent = component_cast<CollisionComponent>(GetOwner());
 assert(pCollisionComponent);
 if (pTransformComponent && pCollisionComponent)
 {
 const Vector3& position = pTransformComponent->GetTransform().GetTranslation();
 
 bool falling = m_acceleration.m_y < 0.0f;
 
 Vector3 bvMin = pCollisionComponent->GetMin();
 
 Vector3 translation = m_velocity;
 translation.Multiply(Timer::GetSingleton().GetTimeSim());
 translation.Add(position);
 
 const float offsetFloor = m_floor – bvMin.m_y;
 if (m_isSupported && falling && (translation.m_y < offsetFloor))

143CHAPTER 7: Building Game Levels with Collision

 {
 translation.m_y = offsetFloor;
 }
 
 pTransformComponent->GetTransform().SetTranslation(translation);
 
 Timer& timer = Timer::GetSingleton();
 Vector3 accel = m_acceleration;
 accel.Multiply(timer.GetTimeSim());
 m_velocity.Add(accel);
 
 static const float GRAVITY_MULTIPLIER = 15.0f;
 static const float GRAVITY_CONSTANT = –9.8f;
 m_acceleration.m_y += GRAVITY_MULTIPLIER * GRAVITY_CONSTANT * timer.GetTimeSim();
 if (falling && m_isSupported)
 {
 m_acceleration.m_y = 0.0f;
 m_velocity.m_y = 0.0f;
 }
 }
 
 // Always undo support after an update: we'll be resupported if we are colliding with a block.
 SetIsSupported(false);
}
 
Now that we are testing for collisions, the decision on whether we are supported or not is made
for us. In this case, we need to get the CollisionComponent so that we can determine how far our
translation sits from the bottom of the object. We do this by subtracting the bounding volume's
minimum y position from the floor value.

We then test to see if our position should be fixed to the floor. It should be if we are supported, are
falling, and our translation's y field is below our offsetFloor value.

Our acceleration and velocity are cleared if we are falling and we are supported on a surface.

Finally, we always want to clear the supported flag. Our collision system will retest to determine if we
are still colliding with the box we are resting upon and we will be set to supported once more next
frame if we are.

Now we know how the MovementComponent handles the collision. We haven't yet handled the death
case, as we aren't yet moving. We will cover dying in Chapter 8 once we make the player move
along with a camera. We also don't yet know how the CollisionListener interface is used. We need
to take another look at an updated CollisionComponent and do this in Listing 7-27.

Listing 7-27.  Adding Listeners to the CollisionComponent Class

class CollisionComponent
 : public Component
 , public EventHandler
{
private:
 static const unsigned int s_id = 2;
 

144 CHAPTER 7: Building Game Levels with Collision

 Vector3 m_min;
 Vector3 m_max;
 
 typedef std::vector<CollisionListener*> CollisionListenerVector;
 typedef CollisionListenerVector::iterator CollisionListenerVectorIterator;
 
 CollisionListenerVector m_eventListeners;
 
public:
 static unsigned int GetId() { return s_id; }
 
 explicit CollisionComponent(GameObject* pOwner);
 virtual ~CollisionComponent();
 
 .
 .
 .
  
 void AddEventListener(CollisionListener* pListener)
 {
 m_eventListeners.push_back(pListener);
 }
};
 
We saw the call to AddEventListener in Listing 7-4, so we've come full circle from when we initially
created our objects. Managing the listeners is as simple as maintaining a vector of pointers to the
CollisionListener objects.

The CollisionComponent is not concerned with responding to collisions itself; it simply needs
to distribute the COLLISION_EVENT data to the objects which are interested in collisions involving
this object. In Listing 7-28, we traverse the vector of CollisionListener objects and call their
HandleCollision method.

Listing 7-28.  CollisionComponent::HandleEvent

void CollisionComponent::HandleEvent(Event* pEvent)
{
 if (pEvent->GetID() == COLLISION_EVENT)
 {
 CollisionEventData* pCollisionData =
 static_cast<CollisionEventData*>(pEvent->GetData());
 if (pCollisionData && pCollisionData->m_pCollider)
 {
 for (CollisionListenerVectorIterator iter = m_eventListeners.begin();
 iter != m_eventListeners.end();
 ++iter)
 {
 (*iter)->HandleCollision(pCollisionData);
 }
 }
 }
}
 

145CHAPTER 7: Building Game Levels with Collision

Now that the collision handling is all hooked up, we need to trigger the system each frame to
detect collisions.

Running the Collision Test
Collisions are best detected after the objects in the scene have been updated. To achieve this, we
will register a new event, POSTUPDATE_EVENT.

We saw in Listing 7-3 that the DroidRunnerLevel class was storing a pointer to the player object's
CollisionComponent. We also saw in the section on narrow-phase collision detection that we can
optimize our detection algorithm by testing only the player's object for collisions. These two facts go
hand in hand. We use our stored pointer to test for collisions in Listing 7-29.

Listing 7-29.  DroidRunnerLevel::HandleEvents

void DroidRunnerLevel::HandleEvent(Event* pEvent)
{
 if (pEvent->GetID() == POSTUPDATE_EVENT && m_pPlayerCollisionComponent)
 {
 CollisionManager::GetSingleton().TestAgainstBin(0, m_pPlayerCollisionComponent);
 }
}
 
That's all the code we need for running our collision detection algorithm.

Listing 7-30 shows the update to the chapter's Update method, which is required to trigger
POSTUPDATE_EVENT. Here we ensure that any tasks which should be completed after the update are
completed in the correct order.

Listing 7-30.  Triggering POSTUPDATE_EVENT

void Chapter7Task::Update()
{
 if (Renderer::GetSingleton().IsInitialized())
 {
 Framework::SendEvent(Framework::UPDATE_EVENT);
 Framework::SendEvent(Framework::POSTUPDATE_EVENT);
 Framework::SendEvent(Framework::RENDER_EVENT);
 }
}
 
That's all we need for collision detection for our game. There is one more change that we need to
make to the Renderer which you should be aware of.

Using the Z Buffer
When objects are rendered to the frame buffer, the default behavior is to render every single pixel to
the screen. Problems arise when an object is rendered but should be behind an object which has
been rendered previously. As the pixels are always written to the frame buffer, our second object will
overwrite the first even though we'd prefer it not to.

146 CHAPTER 7: Building Game Levels with Collision

We can solve this issue by using the z buffer. A z buffer, or depth buffer, stores the depth of each
rendered pixel when it is written to the frame buffer. Each pixel in the depth buffer is initially set to 1.
After the vertices for an object are transformed and ready for fragment shading, the z value of each
fragment will be calculated and will contain a depth between 0 and 1. If the new fragment's depth is
less than the existing depth at that position, it is processed in the fragment shader and the color is
written to the frame buffer. If the depth is greater than the existing pixel, that fragment is discarded
and the existing value in the frame and depth buffers will be retained.

We enable depth testing in OpenGL by doing the following.

1.	 Select an EGL configuration which supports a depth buffer, shown
in Listing 7-32.

Listing 7-31.  EGL Depth Configuration Attributes

const EGLint attribs[] =
{
 EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT,
 EGL_SURFACE_TYPE, EGL_WINDOW_BIT,
 EGL_BLUE_SIZE, 8,
 EGL_GREEN_SIZE, 8,
 EGL_RED_SIZE, 8,
 EGL_DEPTH_SIZE, 24,
 EGL_NONE
};
 

2.	 Enable the depth test (Listing 7-32).

3.	 Clear the depth buffer (Listing 7-32).

Listing 7-32.  Enabling GL_DEPTH_TEST and Clearing the Depth Buffer

void Renderer::Update()
{
 if (m_initialized)
 {
 glEnable(GL_DEPTH_TEST);
 glClearColor(0.95f, 0.95f, 0.95f, 1);
 
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 

The three altered lines in Listings 7-31 and 7-32 are all that were required to enable depth testing
in our game code. From now on, we can be sure that all of the pixels in our scene are those which
were rasterized as part of objects which were closest to the camera.

Summary
This chapter has been a whirlwind introduction to building game levels and collision detection
systems. What we've seen is that the challenges which surround game levels are largely those which
involve creating the objects to populate the level. In our game, we have used the tried and tested
tiling method from older-style 2D games to build a 3D level out of equally sized blocks.

147CHAPTER 7: Building Game Levels with Collision

The major benefit of using such a system when learning game programming is that it's very easy to
create computationally. Modern games are more likely to use offline tools to build levels which can
be preprocessed before being loaded at runtime. Many of the problems which are faced by these
systems, however, are the same as we have seen in this chapter and which we began to address
in the previous chapter, namely, how to communicate between objects and how to manage large
numbers of objects. Our component and event systems made some of these tasks trivial when it
came to building the initial level.

Once we had our level data in place, we took a look at calculating collisions between the objects.
We learned why broad-phase filtering of objects is important to reduce the number of pairs which we
need to test and also why a narrow phase helps reduce the computational complexity of the collision
tests themselves. We have applied these lessons to our game by creating a binning system which
allows us to store objects together in any way the game code chooses, and we have implemented
the most optimal test algorithm for our game where we are concerned only with the effects of
collisions on a single object.

To end the chapter, we took a little detour into graphics programming and looked at how to enable
depth testing to ensure that the pixels being rendered to the frame buffer are actually the pixels we
would like to see.

In the next chapter, we will be expanding our level significantly and be making better use of the
discrete bins in our collision manager. We will also look at creating a game camera, moving the
player through the level, and writing the code which will determine what to do when the player dies.
We'll also be looking at how we can use the camera object to reduce the amount of geometry which
we will be sending to the GPU.

149

Chapter 8
Virtual Cameras

Cameras are an obvious tool for photographers and filmmakers. They enable the artist to capture the
living world around them by using position and settings which control the capture of light to create a
representation of their chosen scene. Video games are no different.

Until now, our scene has remained essentially static, but this wouldn’t make for a particularly fun
game. Most of you will have played 3D games before, and I’m sure you would agree that the ability
to move through the world is a key aspect of what makes a game compelling. This would not be
possible without defining a camera.

In the fields of photography and filmmaking, cameras are a relatively easy-to-understand concept.
To capture a different point of view, you simply move the camera to a position where it captures
the scene as you would like to portray it. Cameras in 3D graphics are not quite that simple. In this
chapter, we’re going to look at how we define a camera game object and how we use the object to
move through our Droid Runner level.

Let’s begin and take a look at the theory behind game cameras.

The Model and View Matrices
As we have already seen, we can move objects around in a 3D world by altering a transform matrix,
supplying that matrix to the vertex shader, and multiplying the vertices by this matrix. The transform
matrix contains scaling, rotation, and translation elements which affect the size, orientation, and
position of a game object.

Figure 8-1 shows the effects of the scale matrix on a game object.

150 CHAPTER 8: Virtual Cameras

The rotation elements of a transform rotate vertices around the object’s origin. This is shown
in Figure 8-2.

Figure 8-1.  Scaling a cube

Figure 8-2.  The effects of rotation on a game object

The translation components of a transform matrix are responsible for moving the object in 3D space.
Figure 8-3 shows the offset applied to a game object’s position.

151CHAPTER 8: Virtual Cameras

The TransformComponent which we created Listing 6-20 was responsible for storing this transform
information on a per-object basis. The vertex shader code in Listing 6-28 was used to apply the
transform matrix to the vertices as they are processed in the rendering pipeline.

Our camera object will be a game object just like any other. It will be moved around the scene
by updating its Transform contained in its TransformComponent, but the camera itself will not be
rendered; instead the position and orientation of the camera will be used to manipulate the other
objects in the scene.

In Chapter 5, we introduced the concept of the canonical view volume. We discussed that the vertex
shader was responsible for transforming vertices to a position relative to this volume. Up until now,
our lack of a camera model has meant that we have had to move objects around in world space
to have them appear properly within this volume. It will now be the responsibility of the camera to
modify vertices to fit into this volume.

When we are taking pictures with a camera, we know that we can move the camera around to get a
different view of the scene. We can achieve the same effect in our game world by manipulating the
camera by using its TransformComponent; however, this will not help us manipulate the vertices of
other objects in the vertex shader. We must visualize the camera in the rendering pipeline as an object
which never moves. All other objects must be moved around relative to the camera object. To help
with this, imagine that you were taking a family portrait with a camera. If you decided that you would
actually like the shot taken from a position slightly to your right, you could take a step to your right. In
3D games, this isn’t possible, as the camera in the rendering pipeline is essentially fixed, so we must
imagine that we have to move the objects in the world instead. In our visualization, you could imagine
that to get the same view of the scene, rather than taking a step to the right you could ask the people
in the picture to take a step to the left. You would have stayed still with the camera but you would get
the same angle to take the picture of your subjects as if you had stepped to the left.

We achieve this in 3D mathematics by applying the inverse of a transform. The easiest part of the
transform to visualize this for is the translation component. If our camera object’s translation contains
a positive offset of ten units along the z axis, we would manipulate every other object in the scene by

Figure 8-3.  Translating a game object

152 CHAPTER 8: Virtual Cameras

applying an offset of –10 to their vertex positions. We have already written a method for obtaining an
inverse transform in Listing 6-23.

To quickly recap, our camera object will be a GameObject with a TransformComponent like any other.
We will apply forward transforms to the camera to move it around the game world. We will supply the
inverse matrix of the camera’s Transform to the Renderer to be used as the view matrix.

This covers two bases of the transformation of vertices in the fragment shader. The model matrix
manipulates the object’s vertices from its local space into world space. The view matrix then
manipulates the vertex from world space into camera or view space.

The last piece if the process for transforming vertices in a vertex shader is the projection matrix.

The Projection Matrix
To understand why the projection matrix is so important, especially in mobile development, we must
once again consider the canonical view volume. This volume is the space in which vertices sit after
they have been processed through a vertex shader. The canonical view volume is a cube with sides
of equal dimensions in OpenGL ES 2.0 (it may have different properties in other APIs; DirectX, for
example, uses a cube which only ranges from 0 to 1 on the z axis). If you see a range of Android
devices sitting side by side, it is immediately apparent that the screens may all be different sizes.

The sizes of the devices themselves are not a problem, as our game will just stretch to fit the larger
screens. The problem comes from screens with different aspect ratios. We calculate the aspect ratio
by dividing the width by the height. My current device is a Galaxy Nexus with a screen resolution of
1280 * 720 and an aspect ratio of 1.778. The screen resolution of the original Asus Transformer was
1280 * 800, giving an aspect ratio of 1.6. These may not seem like significant differences; however,
they directly impact our output. If we didn’t correct for the device aspect ratio, we would allow the
cube view volume to be stretched horizontally to fit the device’s screen. Squares would become
rectangles and spheres would not appear as perfect circles.

This is one of the problems solved by the projection matrix.

There are two distinct types of projection matrix commonly used in 3D graphics. One is the orthographic
projection and the other perspective projection. The key property of orthographic projection is that
parallel lines remain parallel after projection. Perspective projection does not maintain parallel lines, and
this allows us to create a sense of perspective, as the name suggests. Most of us will be aware of the
concept of a vanishing point. This effect in drawing is achieved by having parallel lines converge on a
single point in the distance, and this is the same effect we get from using perspective projection.

Figure 8-4 shows the cuboid orthographic projection volume and the frustum for a perspective view
volume overlaid onto the canonical view volume from a top-down view.

Orthographic Perspective

Figure 8-4.  The projection view volumes

153CHAPTER 8: Virtual Cameras

As Figure 8-4 shows, the perspective view volume is represented by a frustum. The near plane of
the frustum is mapped onto the cube in the same manner as the far plane. As the far plane is much
wider, objects which are at the back of the frustum are squashed in size to fit into the canonical view
volume. This squashing of objects the further they are from the camera is how we achieve the sense
of perspective. This squashing does not occur with orthographic projection and objects appear to be
the same size regardless of how close they are to the camera.

We will be using the perspective method of projection in our camera, and we will look at how we
achieve this in the next section.

Defining a Camera Object
As with all of our other objects so far, our camera will be a GameObject with a new component type,
CameraComponent.

The class declaration in Listing 8-1 shows the interface for the CameraComponent. We have the usual
static int and GetId method to add support for the component system.

Listing 8-1.  The CameraComponent Class Declaration. CameraComponent.h

class CameraComponent
 : public Component
 , public EventHandler
{
private:
 static const unsigned int s_id = 3;
 float m_frustumParameters[Renderer::NUM_PARAMS];
public:
 static unsigned int GetId() { return s_id; }
 explicit CameraComponent(GameObject* pOwner);
 virtual ~CameraComponent();
 
 virtual void Initialize() {}
 void SetFrustum(
 const float verticalFieldOfView,
 const float aspectRatio,
 const float near,
 const float far);
 
 virtual void HandleEvent(Event* pEvent);
};
 
We then see storage for the frustum parameters. These parameters define the bounds of the edges
of the view frustum. There is a parameter for each of the top, bottom, left, right, near, and far planes
of the frustum.

154 CHAPTER 8: Virtual Cameras

We also have two public methods, SetFrustum and HandleEvent.

We’ll take a look at SetFrustum in listing 8-2.

Listing 8-2.  CameraComponent::SetFrustum. CameraComponent.cpp

void CameraComponent::SetFrustum(
 const float verticalFieldOfView,
 const float aspectRatio,
 const float near,
 const float far)
{
 float halfAngleRadians = 0.5f * verticalFieldOfView * (3.1415926536f / 180.0f);
 
 m_frustumParameters[Renderer::TOP] = near * (float)tan(halfAngleRadians);
 m_frustumParameters[Renderer::BOTTOM] = -m_frustumParameters[Renderer::TOP];
 m_frustumParameters[Renderer::RIGHT] =
 aspectRatio * m_frustumParameters[Renderer::TOP];
 m_frustumParameters[Renderer::LEFT] = -m_frustumParameters[Renderer::RIGHT];
 m_frustumParameters[Renderer::NEAR] = near;
 m_frustumParameters[Renderer::FAR] = far;
}
 
SetFrustum calculates the frustum parameters from the passed-in parameters. We will calculate our
frustum based on the aspect ratio of the screen and a vertical field of view in degrees. The field of
view is an angle which denotes how wide the frustum will be: the larger the field of view, the larger
the difference between the width of the near and far planes.

A larger field of view will give us an effect of zooming out on a traditional camera; a narrower field of
view gives us a sense of zooming in on an object. The most common example of this effect would
be a sniper scope in first-person shooter games. The scope view will have a much narrower field of
view and the scale of distant objects is greatly increased in the frame buffer.

Our frustum is calculated in halves, and the opposite half is simply its counterpart negated.
Since we are calculating in halves, we multiply the vertical field of view by 0.5f. We then multiply
verticalFieldOfView by 3.1415926536f / 180.0f; this converts the past angle from degrees to
radians. Combined, this gives us the field halfAngleRadians.

The top of the frustum is calculated by getting the tan of the half angle in radians multiplied by the
near value. This is simple trigonometry, where tan(x) = opposite / adjacent, and in our case the
distance of the near plane is the adjacent, so opposite = adjacent * tan(x). The tan method in C++
takes angles in radians, and this was the reason for the conversion into radians in the first line in this
method. It’s normal that people are more accustomed to dealing with degrees, so we pass our angle
in degrees and convert internally.

The bottom of the frustum is simply the negative of the top.

Our right parameter is the top parameter multiplied by the supplied aspect ratio; left is simply the
negative of right. These lines show why we have used the vertical field of view method for calculating
the dimensions of the frustum. By supplying a vertical field of view, we have locked the height of the
frustum on all devices. This will be consistent regardless of whether our aspect ratio is 16:9, 16:10, or
something else entirely. In the cases where our aspect ratio is wider, we will be able to see more of the

155CHAPTER 8: Virtual Cameras

scene at each side, and the opposite is true when the screen is narrower. Vertical field of view works
in our case because we are developing a game for the landscape orientation; if you were developing
for a portrait orientation, you might want to consider using a locked horizontal field of view.

The distances of the near and far planes are stored as supplied in the function parameters.

Updating the CameraComponent involves supplying the current state of the camera to the Renderer so
that we can properly render the objects in our scene (see Listing 8-3).

Listing 8-3.  CameraComponent::HandleEvent. CameraComponent.cpp

void CameraComponent::HandleEvent(Event* pEvent)
{
 if (pEvent->GetID() == POSTUPDATE_EVENT)
 {
 TransformComponent* pTransformComponent =
 component_cast<TransformComponent>(GetOwner());
 assert(pTransformComponent);
 Renderer& renderer = Renderer::GetSingleton();
 
 Matrix4 inverseCamera;
 pTransformComponent->GetTransform().GetInverseMatrix(inverseCamera);
 renderer.SetViewMatrix(inverseCamera);
 renderer.SetFrustum(m_frustumParameters);
 }
}
 

The CameraComponent reacts to the POSTUPDATE_EVENT to ensure that the TransformComponent has
been updated in the UPDATE_EVENT if necessary.

We obtain a pointer to our owner’s TransformComponent and ask it for the inverse of its Transform
object. We discussed why we should use the inverse of the camera’s Transform earlier in this
chapter.

The inverse view matrix and current frustum parameters are supplied to the Renderer via the
SetViewMatrix and SetFrustum methods.

Now that we have a CameraComponent to add to a game object and simulate a virtual camera, we
need to look at how we update the Renderer to accommodate the view and projection matrices.

Updating the Renderer
Now that we have a method for representing a Camera as a GameObject, we need to add support for
view and projection matrices to our Renderer.

We do this in Listing 8-4 by adding the following updates to the Renderer class.

Listing 8-4.  Adding View and Projection Matrix Support to Renderer. Renderer.h

class Renderer
 : public Task
 , public Singleton<Renderer>

156 CHAPTER 8: Virtual Cameras

{
public:
 enum FrustumParameters
 {
 TOP,
 BOTTOM,
 RIGHT,
 LEFT,
 NEAR,
 FAR,
 NUM_PARAMS
 };
 
private:
 android_app* m_pState;
 EGLDisplay m_display;
 EGLContext m_context;
 EGLSurface m_surface;
 Int m_width;
 Int m_height;
 Bool m_initialized;
 
 typedef std::vector<Shader*> ShaderVector;
 typedef ShaderVector::iterator ShaderVectorIterator;
 
 typedef std::vector<Texture*> TextureVector;
 typedef TextureVector::iterator TextureVectorIterator;
 
 typedef std::vector<Renderable*> RenderableVector;
 typedef RenderableVector::iterator RenderableVectorIterator;
 
 RenderableVector m_renderables;
 TextureVector m_textures;
 ShaderVector m_shaders;
 
 float m_frustumParameters[NUM_PARAMS];
 
 Matrix4 m_viewMatrix;
 Matrix4 m_projectionMatrix;
 
 void Draw(Renderable* pRenderable);
public:
 explicit Renderer(android_app* pState, const unsigned int priority);
 virtual ~Renderer();
 void Init();
 void Destroy();
 
 void AddRenderable(Renderable* pRenderable);
 void AddShader(Shader* pShader);
 void RemoveShader(Shader* pShader);
 
 void AddTexture(Texture* pTexture);
 void RemoveTexture(Texture* pTexture);
 

157CHAPTER 8: Virtual Cameras

 // From Task
 virtual bool Start();
 virtual void OnSuspend();
 virtual void Update();
 virtual void OnResume();
 virtual void Stop();
 
 bool IsInitialized() { return m_initialized; }
 void SetViewMatrix(const Matrix4& viewMatrix)
 {
 m_viewMatrix = viewMatrix;
 }
  
 const Matrix4& GetViewMatrix() const { return m_viewMatrix; }
 
 void SetFrustum(const float frustumParameters[]);
 const Matrix4& GetProjectionMatrix() const { return m_projectionMatrix; }
 
 int GetWidth() cons { return m_width; }
 int GetHeight() const { return m_height; }
};
 
The first addition is the enum which adds the definitions of the six frustum parameters. There is also
a float array to store the parameters and two matrices to store the view and projection matrices.

There are then accessor methods for getting and setting the new fields.

The only method which is not straightforward is the SetFrustum method. The
CameraComponent::SetFrustum method took in the vertical field of view and aspect ratio to build the
frustum parameters necessary for creating the bounds of the virtual camera frustum. Renderer’s
SetFrustum method takes these parameters as input and builds a projection matrix from them.
We take a look at this method in Listing 8-5.

Listing 8-5.  Renderer::SetFrustum. Renderer.cpp

void Renderer::SetFrustum(const float frustumParameters[])
{
 for (unsigned int i=0; i<NUM_PARAMS; ++i)
 {
 m_frustumParameters[i] = frustumParameters[i];
 }
 
 m_projectionMatrix.m_m[0] =
 (2.0f * m_frustumParameters[NEAR]) /
 (m_frustumParameters[RIGHT] - m_frustumParameters[LEFT]);
 m_projectionMatrix.m_m[1] = 0.0f;
 m_projectionMatrix.m_m[2] = 0.0f;
 m_projectionMatrix.m_m[3] = 0.0f;
 
 m_projectionMatrix.m_m[4] = 0.0f;
 m_projectionMatrix.m_m[5] =
 (2.0f * m_frustumParameters[NEAR]) /
 (m_frustumParameters[TOP] - m_frustumParameters[BOTTOM]);

158 CHAPTER 8: Virtual Cameras

 m_projectionMatrix.m_m[6] = 0.0f;
 m_projectionMatrix.m_m[7] = 0.0f;
 m_projectionMatrix.m_m[8] =
 -((m_frustumParameters[RIGHT] + m_frustumParameters[LEFT]) /
 (m_frustumParameters[RIGHT] - m_frustumParameters[LEFT]));
 m_projectionMatrix.m_m[9] =
 -((m_frustumParameters[TOP] + m_frustumParameters[BOTTOM]) /
 (m_frustumParameters[TOP] - m_frustumParameters[BOTTOM]));
 m_projectionMatrix.m_m[10] =
 (m_frustumParameters[FAR] + m_frustumParameters[NEAR]) /
 (m_frustumParameters[FAR] - m_frustumParameters[NEAR]);
 m_projectionMatrix.m_m[11] = 1.0f;
 m_projectionMatrix.m_m[12] = 0.0f;
 m_projectionMatrix.m_m[13] = 0.0f;
 m_projectionMatrix.m_m[14] =
 -(2.0f * m_frustumParameters[NEAR] * m_frustumParameters[FAR]) /
 
 (m_frustumParameters[FAR] - m_frustumParameters[NEAR]);
 m_projectionMatrix.m_m[15] = 0.0f;
}
 
The perspective projection matrix is created by combining a scaling matrix with a matrix which
modifies the vertices to be squashed into and a matrix which is used to prepare the vertices for
a step in the rendering pipeline known as the perspective divide.

The math involved in perspective projection can become quite complicated, so we won’t go into
details here, as all we need to know is that the preceding code will create a perspective projection
matrix which is suitable for transforming vertices into the canonical view volume used by OpenGL
ES 2.0 on Android.

Concatenating the Model, View, and Projection Matrices
A property of matrix transforms which we are going to rely on is that of concatenation. Matrices can
be multiplied together, and their respective transforms will be combined into a single matrix. The
order in which these matrices are multiplied is very important. In our case, we want to ensure that we
apply the model transform, then the view transform, and finally the projection transform. We achieve
this by starting with the model matrix and multiplying it by the view matrix. We then take the resulting
matrix and multiply it by the projection matrix.

This code is found in TransformShader::Setup, which we can see in Listing 8-6.

Listing 8-6.  Updating TransformShader::Setup. TransformShader.cpp

void TransformShader::Setup(Renderable& renderable)
{
 Geometry* pGeometry = renderable.GetGeometry();
 if (pGeometry)
 {
 Shader::Setup(renderable);
 Renderer& renderer = Renderer::GetSingleton();
 const Matrix4& viewMatrix = renderer.GetViewMatrix();

159CHAPTER 8: Virtual Cameras

 const Matrix4& projectionMatrix = renderer.GetProjectionMatrix();
 Matrix4 modelViewMatrix;
 renderable.GetTransform().GetMatrix().Multiply(viewMatrix, modelViewMatrix);
 Matrix4 modelViewProjectionMatrix;
 modelViewMatrix.Multiply(projectionMatrix, modelViewProjectionMatrix);
 glUniformMatrix4fv(
 m_transformUniformHandle,
 1,
 false,
 modelViewProjectionMatrix.m_m);
 
 glVertexAttribPointer(
 m_positionAttributeHandle,
 pGeometry->GetNumVertexPositionElements(),
 GL_FLOAT,
 GL_FALSE,
 pGeometry->GetVertexStride(),
 pGeometry->GetVertexBuffer());
 glEnableVertexAttribArray(m_positionAttributeHandle);
 Vector4& color = renderable.GetColor();
 glUniform4f(
 m_colorAttributeHandle,
 color.m_x,
 color.m_y,
 color.m_z,
 color.m_w);
 }
}
 
The updated code in Listing 8-6 shows how we concatenate the matrices together.

The Renderable’s Transform provides the model matrix for this object. We multiply this model matrix
by viewMatrix, which we have obtained from the Renderer. The resulting matrix, modelViewMatrix, is
then multiplied by projectionMatrix, also obtained from the Renderer.

The final matrix is then supplied to OpenGL via the glUniformMatrix4fv call (at the end of the bold
code block in Listing 8-6).

Now that our framework has been updated to support camera objects, we should add code to
update the position of our camera each frame.

Updating the Camera’s Transform
The design of Droid Runner which we laid out in Chapter 3 calls for our game to update the player’s
position automatically from left to right. If we didn’t update the camera at the same time as the player,
our player’s GameObject would move off the screen and the player would not be able to see the action.

There are a few options for how we could address such a situation. We could choose to update the
camera’s position in exactly the same manner as the player object each frame and rely on the two
objects moving at the same rate to keep the player’s GameObject on the screen.

160 CHAPTER 8: Virtual Cameras

Another option would be to “attach” the camera to the player’s object and to have the camera
update its position each frame using an offset from the player’s position. This is the method I have
decided to use.

To achieve this, we will create a new component, BoundObjectComponent, and the declaration for this
component is shown in Listing 8-7.

Listing 8-7.  The BoundObjectComponent Class Declaration. BoundObjectComponent.h

class BoundObjectComponent
 : public Component
 , public EventHandler
{
private:
 static const unsigned int s_id = 4;
 Transform m_offsetTransform;
 
 const TransformComponent* m_pBoundObject;
 
public:
 static unsigned int GetId() { return s_id; }
 explicit BoundObjectComponent(GameObject* pOwner);
 virtual ~BoundObjectComponent();
 
 virtual void Initialize() {}
 Transform& GetTransform() { return m_offsetTransform; }
 const Transform& GetTransform() const { return m_offsetTransform; }
 
 void SetBoundObject(const TransformComponent* pComponent)
 {
 m_pBoundObject = pComponent;
 }
 
 const TransformComponent* GetBoundObject() const { return m_pBoundObject; }
 virtual void HandleEvent(Event* pEvent);
};
 
The BoundObjectComponent is set up in the same way as our other Component classes and
EventHandlers. The important fields are m_offsetTransform and m_pBoundObject.

m_offsetTransform will store the Transform information for the offset from the parent object.
m_pBoundObject will store a pointer to the TransformComponent for the object which we wish to track
through the level.

All of the hard work carried out by this Component is contained in the HandleEvent method. We take a
look at this method in Listing 8-8.

161CHAPTER 8: Virtual Cameras

Listing 8-8.  BoundObjectComponent::HandleEvent. BoundObjectComponent.cpp

void BoundObjectComponent::HandleEvent(Event* pEvent)
{
 if (pEvent->GetID() == UPDATE_EVENT && m_pBoundObject)
 {
  
 TransformComponent* pTransformComponent =
 component_cast<TransformComponent>(GetOwner());
 assert(pTransformComponent);
 Transform& ourTransform = pTransformComponent->GetTransform();
 const Transform& boundTransform = m_pBoundObject->GetTransform();
 Vector3 translation = m_offsetTransform.GetTranslation();
 translation.Add(boundTransform.GetTranslation());
 ourTransform.SetTranslation(translation);
 ourTransform.UpdateMatrix();
 }
}
 
As you can see, HandleEvent is attached to UPDATE_EVENT. When this object is being updated, we get
the Transform of our owner object and the Transform of the object we are bound to.

The most interesting piece of code are the three lines where we create a new Vector3, translation.
The initial value is initialized to match the translation of m_offsetTransform. We then add the
translation of our bound object and set our Transform to contain the newly calculated translation.
Finally, we update the matrix stored by our Transform object.

This code will allow our camera to follow the player object through our level. As the player jumps, the
camera will rise and fall with the player, and once we write the code to have the player move to the
right through the level, the camera will follow along.

Now it’s time to tie everything together and add a GameObject with a CameraComponent to our level.

Adding a Camera to DroidRunnerLevel
Our camera object will be added to our list of level objects. Let’s take a look at the code in
Listing 8-9.

Listing 8-9.  An Update to DroidRunnerLevel::Initialize. DroidRunnerLevel.cpp

void DroidRunnerLevel::Initialize(const Vector3& origin)
{
 m_sphereGeometry.SetVertexBuffer(sphereVerts);
 m_sphereGeometry.SetNumVertices(sizeof(sphereVerts) / sizeof(sphereVerts[0]));
 m_sphereGeometry.SetIndexBuffer(sphereIndices);
 m_sphereGeometry.SetNumIndices(sizeof(sphereIndices) / sizeof(sphereIndices[0]));
 m_sphereGeometry.SetName("android");
 m_sphereGeometry.SetNumVertexPositionElements(3);
 m_sphereGeometry.SetVertexStride(0);
 

162 CHAPTER 8: Virtual Cameras

 m_cubeGeometry.SetVertexBuffer(cubeVerts);
 m_cubeGeometry.SetNumVertices(sizeof(cubeVerts) / sizeof(cubeVerts[0]));
 m_cubeGeometry.SetIndexBuffer(cubeIndices);
 m_cubeGeometry.SetNumIndices(sizeof(cubeIndices) / sizeof(cubeIndices[0]));
 m_cubeGeometry.SetName("cube");
 m_cubeGeometry.SetNumVertexPositionElements(3);
 m_cubeGeometry.SetVertexStride(0);
 
 m_origin.Set(origin);
 CollisionManager::GetSingleton().AddCollisionBin();
 const Vector3 min(-3.0f, -3.0f, -3.0f);
 const Vector3 max(3.0f, 3.0f, 3.0f);
 
 TransformComponent* pPlayerTransformComponent = NULL;
 const unsigned char tiles[] =
 {
 EMPTY, EMPTY, EMPTY, EMPTY, AI, AI, AI, AI,
 EMPTY, EMPTY, EMPTY, EMPTY, BOX, BOX, BOX, BOX,
 EMPTY, PLAYER, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY,
 BOX, BOX, BOX, BOX, BOX, BOX, BOX, BOX
 };
 
 const unsigned int numTiles = sizeof(tiles) / sizeof(tiles[0]);
 const unsigned int numRows = 4;
 const unsigned int rowWidth = numTiles / numRows;
 
 for (unsigned int i=0; i<numTiles; ++i)
 {
 if (tiles[i] == BOX)
 {
 const unsigned int row = i / rowWidth;
 const unsigned int column = i % rowWidth;
 
 GameObject* pNewObject = new GameObject();
 SetObjectPosition(pNewObject, row, column);
 AddCollisionComponent(pNewObject, min, max);
 Vector4 color(0.0f, 0.0f, 1.0f, 1.0f);
 AddRenderableComponent(
 pNewObject,
 m_cubeGeometry,
 m_transformShader,
 color);
 
 m_levelObjects.push_back(pNewObject);
 }
 else if (tiles[i] == PLAYER)
 {
 const unsigned int row = i / rowWidth;
 const unsigned int column = i % rowWidth;
 
 GameObject* pNewObject = new GameObject();
 SetObjectPosition(pNewObject, row, column);

163CHAPTER 8: Virtual Cameras

 AddMovementComponent(pNewObject);
 AddCollisionComponent(pNewObject, min, max);
 MovementComponent* pMovementComponent =
 component_cast<MovementComponent>(pNewObject);
 m_pPlayerCollisionComponent =
 component_cast<CollisionComponent>(pNewObject);
 if (pMovementComponent && m_pPlayerCollisionComponent)
 {
 m_pPlayerCollisionComponent->AddEventListener(pMovementComponent);
 }
 
 pPlayerTransformComponent = component_cast<TransformComponent>(pNewObject);
 Vector4 color(0.0f, 1.0f, 0.0f, 1.0f);
 AddRenderableComponent(
 pNewObject,
 m_sphereGeometry,
 m_transformShader,
 color);
 
 m_levelObjects.push_back(pNewObject);
 }
 else if (tiles[i] == AI)
 {
 const unsigned int row = i / rowWidth;
 const unsigned int column = i % rowWidth;
 
 unsigned int patrolEndRow = 0;
 unsigned int patrolEndColumn = 0;
 
 for (unsigned int j=i; j<numTiles; ++j)
 {
 if (tiles[j] != AI)
 {
 i = j;
 --j;
 patrolEndRow = j / rowWidth;
 patrolEndColumn = j % rowWidth;
 break;
 }
 }
 
 GameObject* pNewObject = new GameObject();
 SetObjectPosition(pNewObject, row, column);
 AddCollisionComponent(pNewObject, min, max);
 AddPatrolComponent(pNewObject, row, column, patrolEndRow, patrolEndColumn);
 Vector4 color(1.0f, 0.0f, 0.0f, 1.0f);
 AddRenderableComponent(
 pNewObject,
 m_sphereGeometry,
 m_transformShader,
 color);
 

164 CHAPTER 8: Virtual Cameras

 m_levelObjects.push_back(pNewObject);
 }
 }
 
 // Create a camera object
 GameObject* pCameraObject = new GameObject();
 
 pCameraObject->AddComponent<TransformComponent>();
 pCameraObject->AddComponent<BoundObjectComponent>();
 BoundObjectComponent* pBoundObjectComponent =
 component_cast<BoundObjectComponent>(pCameraObject);
 assert(pBoundObjectComponent);
 pBoundObjectComponent->SetBoundObject(pPlayerTransformComponent);
 pBoundObjectComponent->GetTransform().SetTranslation(Vector3(6.0f, 4.25f, -45.0f));
 AttachEvent(UPDATE_EVENT, *pBoundObjectComponent);
 pCameraObject->AddComponent<CameraComponent>();
 CameraComponent* pCameraComponent = component_cast<CameraComponent>(pCameraObject);
 assert(pCameraComponent);
 const Renderer& renderer = Renderer::GetSingleton();
 float width = static_cast<float>(renderer.GetWidth());
 float height = static_cast<float>(renderer.GetHeight());
 pCameraComponent->SetFrustum(35.0f, width / height, 1.0f, 100.0f);
 AttachEvent(POSTUPDATE_EVENT, *pCameraComponent);
 m_levelObjects.push_back(pCameraObject);
 Renderer* pRenderer = Renderer::GetSingletonPtr();
 if (pRenderer)
 {
 pRenderer->AddShader(&m_transformShader);
 }
 
 m_initialized = true;
}
 
Our updated DroidRunnerLevel::Initialize method now has the code necessary to create a
camera object from the new Components which we have created in this chapter.

The first change involves caching a pointer to the player object’s TransformComponent. This is
necessary for binding the camera to the player object once it is created.

The camera itself requires a TransformComponent, a BoundObjectComponent, and a CameraComponent.
It is the first game object we have created which does not have a RenderableComponent. The
BoundObjectComponent is bound to the player and the offset is set to Vector3(6.0f, 4.25f, –45.0f).
This offset means that the player object is slightly below and slightly to the left of the camera in the
scene. This will allow the player to see ledges at a height above the player and more of the scene
which is coming into the right of the view.

The SetFrustum method is called with a vertical field of view of 35 degrees. The aspect ratio is
calculated by dividing the width of the frame buffer by the height of the frame buffer. The width
and height of the frame are held by the Renderer, and these are retrieved from EGL when the
Renderer is initialized.

165CHAPTER 8: Virtual Cameras

This leads to another change which is required. Previously, we were initializing the level in
Chapter7Task::Start. For Chapter 8, the CameraComponent requires the display to be initialized so that
we can access the width and height of the frame buffer. We look at how we achieve this in Listing 8-10.

Listing 8-10.  Chapter8Task::Update. Chapter8Task.cpp

void Chapter8Task::Update()
{
 if (Renderer::GetSingleton().IsInitialized())
 {
 if (!m_level.IsInitialized ())
 {
 Framework::Vector3 levelOrigin(–21.0f, 7.75f, 35.0f);
 m_level.Initialize(levelOrigin);
 Framework::AttachEvent(POSTUPDATE_EVENT, m_level);
 }
 
 Framework::SendEvent(Framework::UPDATE_EVENT);
 Framework::SendEvent(Framework::POSTUPDATE_EVENT);
 Framework::SendEvent(Framework::RENDER_EVENT);
 }
}
 
As you can see, we now don’t do any work in Update until after the Renderer has been initialized. We
set a bool in Listing 8-9 at the very end of DroidRunnerLevel::Initialize, and we call Initialize
on m_level if it only has not already been done.

Delaying our update until after the Renderer and Level have both been initialized is part of our app
trying to be a good citizen within the Android ecosystem. We’ll look at how we can update our
Renderer and Android classes to be better behaved when we pause and resume.

Proper App Behavior When Pausing and Resuming
Until now, our app has not been behaving properly when the Android ecosystem sends us pause
and resume events. Listing 4-14 contained code which our app used to detect if it should be paused
or resumed, but we have not as of yet made any practical use of this information. When we receive
a pause event while executing an OpenGL app, the phone will have destroyed our OpenGL context
and rendering surfaces. This doesn’t have a fatal effect on our app, but if you look at the output
coming from LogCat, you will be able to see a stream of red output errors in the log. We can prevent
these errors from occurring by stopping our game from rendering at this point.

Adding Events for Pausing and Resuming
We’ll handle the pause and resume events by adding new events to broadcast when these occur.
Listing 8-11 shows the new events.

Listing 8-11.  The PAUSEAPP_EVENT and RESUMEAPP_EVENT Definitions. EventId.h

static const EventID UPDATE_EVENT = 0;
static const EventID POSTUPDATE_EVENT = 1;
static const EventID RENDER_EVENT = 2;

166 CHAPTER 8: Virtual Cameras

static const EventID JUMP_EVENT = 3;
static const EventID COLLISION_EVENT = 4;
static const EventID PAUSEAPP_EVENT = 5;
static const EventID RESUMEAPP_EVENT = 6;
 
We register these events using RegisterEvent in Application::CreateSingletons, shown in
Listing 8-12.

Listing 8-12.  Registering PAUSEAPP_EVENT and RESUMEAPP_EVENT. Application.cpp

void Application::CreateSingletons()
{
 new Timer(Task::TIMER_PRIORITY);
 new Renderer(m_pAppState, Task::RENDER_PRIORITY);
 new EventManager();
 new CollisionManager();
 
 RegisterEvent(PAUSEAPP_EVENT);
 RegisterEvent(RESUMEAPP_EVENT);
}
 
Now that the events are registered, Listing 8-13 shows how we send them from within
android_handle_cmd.

Listing 8-13.  Sending PAUSEAPP_EVENT and RESUMEAPP_EVENT. Android.cpp

static void android_handle_cmd(struct android_app* app, int32_t cmd)
{
 switch (cmd)
 {
 case APP_CMD_INIT_WINDOW:
 {
 assert(Renderer::GetSingletonPtr());
 Renderer::GetSingleton().Init();
 }
 break;
 case APP_CMD_DESTROY:
 {
 assert(Renderer::GetSingletonPtr());
 Renderer::GetSingleton().Destroy();
 }
 break;
 case APP_CMD_TERM_WINDOW:
 {
 assert(Renderer::GetSingletonPtr());
 Renderer::GetSingleton().Destroy();
 }
 break;
 case APP_CMD_RESUME:
 {
 SendEvent(RESUMEAPP_EVENT);
 }

167CHAPTER 8: Virtual Cameras

 break;
 case APP_CMD_PAUSE:
 {
 SendEvent(PAUSEAPP_EVENT);
 }
 break;
 }
}
 
You can remove the static methods and m_bPaused field from this class as we will no longer be
using these.

Handling the Pause and Resume Events in the Renderer
Objects which are interested in learning when the app has been paused and resumed by the system
can now attach to these events. Listing 8-14 shows our Renderer being updated to inherit from
EventHandler.

Listing 8-14.  Adding Pause and Resume Support to Renderer. Renderer.h

class Renderer
 : public Task
 , public EventHandler
 , public Singleton<Renderer>
{
public:
 enum FrustumParameters
 {
 TOP,
 BOTTOM,
 RIGHT,
 LEFT,
 NEAR,
 FAR,
 NUM_PARAMS
 };
 
private:
 android_app* m_pState;
 EGLDisplay m_display;
 EGLContext m_context;
 EGLSurface m_surface;
 int m_width;
 int m_height;
 bool m_initialized;
 bool m_paused;
 
 typedef std::vector<Shader*> ShaderVector;
 typedef ShaderVector::iterator ShaderVectorIterator;
 

168 CHAPTER 8: Virtual Cameras

 typedef std::vector<Texture*> TextureVector;
 typedef TextureVector::iterator TextureVectorIterator;
 
 typedef std::vector<Renderable*> RenderableVector;
 typedef RenderableVector::iterator RenderableVectorIterator;
 
 RenderableVector m_renderables;
 TextureVector m_textures;
 ShaderVector m_shaders;
 
 float m_frustumParameters[NUM_PARAMS];
 
 Matrix4 m_viewMatrix;
 Matrix4 m_projectionMatrix;
 
 void Draw(Renderable* pRenderable);
 
public:
 explicit Renderer(android_app* pState, const unsigned int priority);
 virtual ~Renderer();
 void Init();
 void Destroy();
 
 void AddRenderable(Renderable* pRenderable);
 void AddShader(Shader* pShader);
 void RemoveShader(Shader* pShader);
 
 void AddTexture(Texture* pTexture);
 void RemoveTexture(Texture* pTexture);
 
 // From Task
 virtual bool Start();
 virtual void OnSuspend();
 virtual void Update();
 virtual void OnResume();
 virtual void Stop();
 
 virtual void HandleEvent(Event* event);
 bool IsInitialized() { return m_initialized; }
 
 void SetViewMatrix(const Matrix4& viewMatrix)
 {
 m_viewMatrix = viewMatrix;
 }
 const Matrix4& GetViewMatrix() const { return m_viewMatrix; }
 
 void SetFrustum(const float frustumParameters[]);
 const Matrix4& GetProjectionMatrix() const { return m_projectionMatrix; }
 
 int GetWidth() const { return m_width; }
 int GetHeight() const { return m_height; }
};
 

169CHAPTER 8: Virtual Cameras

You should initialize m_paused to false in the constructor of Renderer. Listings 8-15 and 8-16 show
that we attach and detach from PAUSEAPP_EVENT and RESUMEAPP_EVENT in Renderer's Start and Stop
methods.

Listing 8-15.  Attaching PAUSEAPP_EVENT and RESUMEAPP_EVENT in Renderer::Start. Renderer.cpp

bool Renderer::Start()
{
 AttachEvent(PAUSEAPP_EVENT, *this);
 AttachEvent(RESUMEAPP_EVENT, *this);
 
 return true;
}
 
Listing 8-16.  Detaching from PAUSEAPP_EVENT and RESUMEAPP_EVENT in Renderer::Stop. Renderer.cpp

void Renderer::Stop()
{
 DetachEvent(RESUMEAPP_EVENT, *this);
 DetachEvent(PAUSEAPP_EVENT, *this);
}
 
Once we are attached to the events, we must watch for them in HandleEvent, shown in Listing 8-17.

Listing 8-17.  Renderer::HandleEvent. Renderer.cpp

void Renderer::HandleEvent(Event* pEvent)
{
 if (pEvent->GetID() == PAUSEAPP_EVENT)
 {
 m_paused = true;
 }
 else if (pEvent->GetID() == RESUMEAPP_EVENT)
 {
 m_paused = false;
 }
}
 
When we receive these events, we set the m_paused field to true or false respectively. Now we
update the Renderer::Update method to prevent rendering while the app is paused. Listing 8-18
shows this.

Listing 8-18.  Pausing Rendering in Renderer::Update. Renderer.cpp

void Renderer::Update()
{
 if (m_initialized && !m_paused)
 {
 glEnable(GL_DEPTH_TEST);
 glClearColor(0.95f, 0.95f, 0.95f, 1);
 
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 for (RenderableVectorIterator iter = m_renderables.begin();

170 CHAPTER 8: Virtual Cameras

 iter != m_renderables.end();
 ++iter)
 {
 Renderable* pRenderable = *iter;
 if (pRenderable)
 {
 Draw(pRenderable);
 }
 }
 
 eglSwapBuffers(m_display, m_surface);
 m_renderables.clear();
 }
}
 
You should no longer see error messages related to a missing OpenGL context and Surface once
this code has been added to the Renderer. As stated earlier, the app would not have crashed without
this, but it is generally better for our app to behave as Android expects to ensure that we are fully
compatible with all past, present, and future Android versions and device drivers.

After our little detour, it’s time to get back into working with cameras. This next section will use the
information which we have in our camera related to its position and what it can see to optimize our
rendering process. The specific technique which we will implement is called view frustum culling.

View Frustum Culling
A modern GPU is a very efficient co-processor and can carry out calculations on the data which
we supply it much, much faster than the CPU. The reason for this is that GPUs are designed to be
massively parallel and are specifically designed to do nothing but churn through streams of data.
Our game logic code is written for the much more flexible CPU in the phone. The benefit of the CPU
is that it can carry out a much wider set of tasks which also are not necessarily suited to be broken
up into small chunks. The implications of this are that the code which executes on the CPU has
access to much more information about our game world than the GPU ever could. This includes our
camera object and the other objects in our scene.

We can use this to our advantage. Our camera object can be represented by a frustum. Figure 8-5
shows the shape of a camera frustum in 3D space.

171CHAPTER 8: Virtual Cameras

Figure 8-5 shows the shape of the perspective camera frustum. The frustum is a truncated pyramid.
When we loop over the vector of Renderables in our scene, we can do a test to determine if part
of the object is within the camera frustum; if it is, then we draw the object. If we can detect that
the whole of the object is outside the frustum, we can discard this object and never send it to the
GPU. The point where the lines meet in Figure 8-5 is the position of the camera, and the frustum is
oriented to point along the z axis of the camera’s transform matrix.

The first task we must complete to implement frustum culling in our Renderer is to store the
camera matrix and frustum parameters each frame. Listing 8-19 shows the updates we must make
to Renderer.

Listing 8-19.  Adding Frustum Culling Support to the Renderer. Renderer.h

class Renderer
 : public Task
 , public EventHandler
 , public Singleton<Renderer>
{
public:
 enum FrustumParameters
 {
 TOP,
 BOTTOM,
 RIGHT,
 LEFT,
 NEAR,
 FAR,
 NUM_PARAMS
 };
 

Figure 8-5.  A camera frustum when using perspective projection

172 CHAPTER 8: Virtual Cameras

private:
 android_app* m_pState;
 EGLDisplay m_display;
 EGLContext m_context;
 EGLSurface m_surface;
 int m_width;
 int m_height;
 bool m_initialized;
 bool m_paused;
 
 typedef std::vector<Shader*> ShaderVector;
 typedef ShaderVector::iterator ShaderVectorIterator;
 
 typedef std::vector<Texture*> TextureVector;
 typedef TextureVector::iterator TextureVectorIterator;
 
 typedef std::vector<Renderable*> RenderableVector;
 typedef RenderableVector::iterator RenderableVectorIterator;
 
 RenderableVector m_renderables;
 TextureVector m_textures;
 ShaderVector m_shaders;
 
 float m_frustumParameters[NUM_PARAMS];
 
 Matrix4 m_cameraMatrix;
 Matrix4 m_viewMatrix;
 Matrix4 m_projectionMatrix;
 
 void Draw(Renderable* pRenderable);
 void BuildFrustumPlanes(Plane frustumPlanes[]);
 bool ShouldDraw(Renderable* pRenderable, Plane frustumPlanes[]) const;
 
public:
 explicit Renderer(android_app* pState, const unsigned int priority);
 virtual ~Renderer();
 void Init();
 void Destroy();
 
 void AddRenderable(Renderable* pRenderable);
 void AddShader(Shader* pShader);
 void RemoveShader(Shader* pShader);
 
 void AddTexture(Texture* pTexture);
 void RemoveTexture(Texture* pTexture);
 
 // From Task
 virtual bool Start();
 virtual void OnSuspend();
 virtual void Update();
 virtual void OnResume();
 virtual void Stop();
 

173CHAPTER 8: Virtual Cameras

 virtual void HandleEvent(Event* event);
 bool IsInitialized() { return m_initialized; }
 
 void SetCameraMatrix(const Matrix4& cameraMatrix)
 {
 m_cameraMatrix = cameraMatrix;
 }
 const Matrix4& GetCameraMatrix() const { return m_cameraMatrix; }
 
 void SetViewMatrix(const Matrix4& viewMatrix) { m_viewMatrix = viewMatrix; }
 const Matrix4& GetViewMatrix() const { return m_viewMatrix; }
 
 void SetFrustum(const float frustumParameters[]);
 const Matrix4& GetProjectionMatrix() const { return m_projectionMatrix; }
 
 int GetWidth() const { return m_width; }
 int GetHeight() const
 {
 return m_height;
 }
};
 
Our Renderer now has another Matrix4 to store the current camera’s matrix. We also have two new
methods, BuildFrustumPlanes and ShouldDraw.

Frustum culling takes advantage of a property of a geometric plane. A plane can be used to split
a 3D space into two halves. We can then use a simple dot product to determine if the point we are
testing is in front of the plane or behind. Don’t worry if you don’t understand the math behind this
right now; there is code supplied with this book at http://www.apress.com/9781430258308, and
Appendix D covers the math classes which are included with the code samples. I recommend that
you read through the appendix and the source code until it becomes clear how the planes work.

BuildFrustumPlanes will be used to construct six planes (one for the near clip plane, one for the far
clip plane, and one to represent each of the four sides of the frustum: top, bottom, left, and right).
We will want each of these planes to have a positive half space which points toward the center of
the frustum. The positive half space of the plane is the side to which the normal of the plane points.
Listing 8-20 shows the code for BuildFrustumPlanes.

Listing 8-20.  Renderer::BuildFrustumPlanes. Renderer.cpp

void Renderer::BuildFrustumPlanes(Plane frustumPlanes[])
{
 // Get the camera orientation vectors and position as Vector3
 Vector3 cameraRight(
 m_cameraMatrix.m_m[0],
 m_cameraMatrix.m_m[1],
 m_cameraMatrix.m_m[2]);
 Vector3 cameraUp(
 m_cameraMatrix.m_m[4],
 m_cameraMatrix.m_m[5],
 m_cameraMatrix.m_m[6]);

http://www.apress.com/9781430258308

174 CHAPTER 8: Virtual Cameras

 Vector3 cameraForward(
 m_cameraMatrix.m_m[8],
 m_cameraMatrix.m_m[9],
 m_cameraMatrix.m_m[10]);
 Vector3 cameraPosition(
 m_cameraMatrix.m_m[12],
 m_cameraMatrix.m_m[13],
 m_cameraMatrix.m_m[14]);
 
 // Calculate the center of the near plane
 Vector3 nearCenter = cameraForward;
 nearCenter.Multiply(m_frustumParameters[NEAR]);
 nearCenter.Add(cameraPosition);
 
 // Calculate the center of the far plane
 Vector3 farCenter = cameraForward;
 farCenter.Multiply(m_frustumParameters[FAR]);
 farCenter.Add(cameraPosition);
 
 // Calculate the normal for the top plane
 Vector3 towardsTop = cameraUp;
 towardsTop.Multiply(m_frustumParameters[TOP]);
 towardsTop.Add(nearCenter);
 towardsTop.Subtract(cameraPosition);
 towardsTop.Normalize();
 towardsTop = cameraRight.Cross(towardsTop);
 frustumPlanes[TOP].BuildPlane(cameraPosition, towardsTop);
 
 // Calculate the normal for the bottom plane
 Vector3 towardsBottom = cameraUp;
 towardsBottom.Multiply(m_frustumParameters[BOTTOM]);
 towardsBottom.Add(nearCenter);
 towardsBottom.Subtract(cameraPosition);
 towardsBottom.Normalize();
 towardsBottom = towardsBottom.Cross(cameraRight);
 frustumPlanes[BOTTOM].BuildPlane(cameraPosition, towardsBottom);
 
 // Calculate the normal for the right plane
 Vector3 towardsRight = cameraRight;
 towardsRight.Multiply(m_frustumParameters[RIGHT]);
 towardsRight.Add(nearCenter);
 towardsRight.Subtract(cameraPosition);
 towardsRight.Normalize();
 towardsRight = towardsRight.Cross(cameraUp);
 frustumPlanes[RIGHT].BuildPlane(cameraPosition, towardsRight);
 
 // Calculate the normal for the left plane
 Vector3 towardsLeft = cameraRight;
 towardsLeft.Multiply(m_frustumParameters[LEFT]);
 towardsLeft.Add(nearCenter);
 towardsLeft.Subtract(cameraPosition);
 towardsLeft.Normalize();
 towardsLeft = cameraUp.Cross(towardsLeft);
 frustumPlanes[LEFT].BuildPlane(cameraPosition, towardsLeft);
 

175CHAPTER 8: Virtual Cameras

 Vector3 towardsNear = cameraForward;
 frustumPlanes[NEAR].BuildPlane(nearCenter, towardsNear);
 Vector3 towardsFar = cameraForward;
 towardsFar.Negate();
 frustumPlanes[FAR].BuildPlane(farCenter, towardsFar);
}
 
As we can see, there’s a section of code in the BuildFrustumPlanes method for each side of the
camera frustum. The near and far planes can be optimized, and this means that there is less code
required to calculate those.

Going through the method in order will show how we arrive at six planes representing the frustum.
First off, we deconstruct the camera matrix. If you recall, in Chapter 6 we discussed that a rotation
matrix is an orthogonal matrix. This means that each row of the matrix represents an axis in 3D
space. The first row of a 3x3 matrix represents the right vector (x axis), the second row represents
the up vector (y axis), and the third row represents the at vector (z axis). The first section of code
extracts the three normal vectors for each axis from the matrix and also the translation component of
the matrix. Each is converted into a Vector3.

We then calculate the center points of the near and far planes. The at vector of the camera matrix is
a unit normal, so multiplying this by distance to the near plane gives us the center point of the near
plane relative to the origin (the point at 0, 0, 0). We then add the position of the camera to get the
center of the near plane relative to the camera’s position. We repeat this process for the far plane but
use the distance to the far plane.

We should now recap how we calculated the frustum parameters in Listing 8-2. The top parameter
was calculated by multiplying the distance to the near plane by the half angle of the vertical field of
view. This is actually taking advantage of right-angled triangles and trigonometry. Figure 8-6 shows
the side view of the two right-angled triangles formed by splitting the field of view in half.

Figure 8-6.  A side profile of the camera position to the near plane

176 CHAPTER 8: Virtual Cameras

By using trigonometry, we were able to calculate the vertical height of the top half of the near plane
by using the tan function. We can use this value again along with the up vector from the camera’s
transformation matrix to calculate the normal of the plane which represents the top of the frustum.

Listing 8-21 is a snippet of code taken from the BuildFrustumPlanes function already shown in
Listing 8-20.

Listing 8-21.  Calculating the Top Plane of the Frustum. Renderer.cpp

// Calculate the normal for the top plane
Vector3 towardsTop = cameraUp;
towardsTop.Multiply(m_frustumParameters[TOP]);
towardsTop.Add(nearCenter);
towardsTop.Subtract(cameraPosition);
towardsTop.Normalize();
towardsTop = cameraRight.Cross(towardsTop);
frustumPlanes[TOP].BuildPlane(cameraPosition, towardsTop);
 
We start by assigning the camera’s up vector to Vector3, towardsTop. Figure 8-7 shows this vector at
the origin: the dotted lines show the y and z axes in profile, with y pointing up and z pointing to the
right. The x axis is pointing away from you into the page. We are going to step through this process;
in each stage, the dotted lines will show the previous steps.

Figure 8-7.  Step one of creating the top frustum plane

We then multiply this vector by the height of the top half of the near plane, which is stored in
m_frustumParameters[TOP], shown in Figure 8-8.

177CHAPTER 8: Virtual Cameras

Figure 8-9 shows the next step, which involves adding this vector to the nearCenter position.

Figure 8-8.  The camera up vector multiplied by the height of the top half of the frustum

Figure 8-9.  Adding the nearCenter position to our vector in process

The next two steps are hard to represent with figures, so we will just talk through them. Vector
subtraction is useful, as it allows us to move a vector around in 3D space. At this moment in the
process, we have managed to get ourselves a vector which represents the line pointing from the
camera’s position to the top of the near plane.

We now want to convert our vector into a unit normal pointing in this direction. To achieve this, we
need to move the vector to the origin by subtracting the camera position. Remember that we added
the nearCenter vector to our new up vector at the beginning of this process, and the nearCenter

178 CHAPTER 8: Virtual Cameras

vector was originally calculated using the cameraPosition vector. This is why we can shift the vector
back to the origin by subtracting cameraPosition. Now we call Normalize on the vector to create a
unit normal pointing in the direction of the top of the near plane.

The vector we now have is pointing along the top plane of the frustum. The camera’s right vector
also lies on this plane. What we want is a unit vector pointing into the frustum, and we can obtain
one of these using a cross product. The cross product of two unit vectors is another unit vector
perpendicular to the plane in which the two vectors lie. The direction of the resulting vector is
determined by the right-hand rule. The right-hand rule can be hard to wrap your head around, so I
use the analogy of a screwdriver to work out which direction my cross product will give me.

If you have used a screwdriver before, you will know that turning the screw clockwise results in
the screw moving into the object. Turning anticlockwise results in the screw coming back out. The
cross product is the opposite of this: turning clockwise results in a vector coming toward you and
anticlockwise away from you. I visualize this by imagining the screw pointing toward me with the
head at the other end. If the screw is turning clockwise it means it will get closer to me, and if it’s
turning anticlockwise it will be moving away. The logic is a little confused but it has always served
me well.

You can see how we achieve a vector pointing into the frustum by positioning your left hand with the
palm down, thumb pointing right, the index finger pointing forward, and your middle finger pointing
down. Your thumb represents the cameraRight vector and your index finger the towardsTop vector.
Now rotate your hand so that your thumb moves to where your index finger was. This is what we
are doing with the operation cameraRight.Cross(towardsTop), and the resulting vector is our plane
normal. We now construct our plane using the BuildPlane method.

The process is now repeated for each of the other planes using their respective frustum parameters
and the appropriate cross product direction. It’s interesting to note here that the cross product for
the bottom plane is the opposite of the cross product for the top. This is how we achieve vectors
pointing into the frustum for both sides. The same is true for the right and left planes.

The process for calculating the near and far planes is much more straightforward. Those planes
already point along the existing camera at vector. The near plane points in the same direction as the
camera, and the far plane points in the opposite direction. The points on the plane which we use
in the BuildPlane method are the nearCenter and farCenter points, respectively, rather than the
cameraPosition vector.

Now that we have constructed our frustum planes, we can detect if an object lies within the frustum
before calling Draw.

The View Frustum Culling Test
To be able to test our objects against the frustum, we must first know where in space their bounds
are. Luckily, we can reuse our data from the CollisionComponent for this task. We begin by adding
the min and max bounds vectors to the Renderable class in Listing 8-22.

179CHAPTER 8: Virtual Cameras

Listing 8-22.  Adding Bounds to Renderable. Renderable.h

class Renderable
{
private:
 Geometry* m_pGeometry;
 Shader* m_pShader;
 Transform m_transform;
 Vector4 m_color;
 
 Vector3 m_min;
 Vector3 m_max;
 bool m_useBounds;
 
public:
 Renderable();
 ~Renderable();
 
 void SetGeometry(Geometry* pGeometry);
 Geometry* GetGeometry();
 
 void SetShader(Shader* pShader);
 Shader* GetShader();
 
 Transform& GetTransform() { return m_transform; }
 Vector4& GetColor() { return m_color; }
 
 void SetBoundMin(const Vector3& min) { m_min = min; }
 const Vector3& GetBoundMin() const { return m_min; }
 
 void SetBoundMax(const Vector3& max) { m_max = max; }
 const Vector3& GetBoundMax() const { return m_max; }
 
 void SetUseBounds(bool enabled) { m_useBounds = enabled; }
 bool GetUseBounds() const { return m_useBounds; }
 
 bool IsInitialized() const
 {
 return m_pGeometry && m_pShader;
 }
};
 
In Listing 8-23, we update the method RenderableComponent::HandleEvent to set the bounds when
we add the object to the render list.

Listing 8-23.  Updating RenderableComponent::HandleEvent. RenderableComponent.cpp

void RenderableComponent::HandleEvent(Event* pEvent)
{
 assert(pEvent);
 if (pEvent->GetID() == RENDER_EVENT)
 {

180 CHAPTER 8: Virtual Cameras

 TransformComponent* pTransformComponent = component_cast<TransformComponent>(GetOwner());
 if (pTransformComponent)
 {
 m_renderable.GetTransform().Clone(pTransformComponent->GetTransform());
 }
 
 CollisionComponent* pCollisionComponent = component_cast<CollisionComponent>(GetOwner());
 if (pCollisionComponent)
 {
 m_renderable.SetBoundMin(pCollisionComponent->GetMin());
 m_renderable.SetBoundMax(pCollisionComponent->GetMax());
 m_renderable.SetUseBounds(true);
 }
 else
 {
 m_renderable.SetUseBounds(false);
 }
 
 assert(Renderer::GetSingletonPtr());
 Renderer::GetSingleton().AddRenderable(&m_renderable);
 }
}
 
HandleEvent now sets the bounds on the Renderable if the object being rendered has a
CollisionComponent object.

Now we can add the code to Renderer::Update to determine if the object is within the frustum.
Listing 8-24 shows this update.

Listing 8-24.  Updating Renderer::Update. Renderer.cpp

void Renderer::Update()
{
 if (m_initialized && !m_paused)
 {
 Plane frustumPlanes[NUM_PARAMS];
 BuildFrustumPlanes(frustumPlanes);
 
 glEnable(GL_DEPTH_TEST);
 glClearColor(0.95f, 0.95f, 0.95f, 1);
 
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 for (RenderableVectorIterator iter = m_renderables.begin();
 iter != m_renderables.end();
 ++iter)
 {
 Renderable* pRenderable = *iter;
 if (pRenderable)
 {
 bool bDraw = ShouldDraw(pRenderable, frustumPlanes);
 if (bDraw)

181CHAPTER 8: Virtual Cameras

 {
 Draw(pRenderable);
 }
 }
 }
 
 eglSwapBuffers(m_display, m_surface);
 m_renderables.clear();
 }
}
 
Now the Renderer’s Update method builds new frustum planes each time it is called. This is due to the
fact that the camera will have moved each frame and we must build new planes to represent this.

We also now determine if an object should be rendered using the ShouldDraw method. Listing 8-25
shows the contents of this method.

Listing 8-25.  Renderer::ShouldDraw. Renderer.cpp

bool Renderer::ShouldDraw(Renderable* pRenderable, Plane frustumPlanes[]) const
{
 bool shouldDraw = true;
 if (pRenderable && pRenderable->GetUseBounds())
 {
 shouldDraw = false;
 Vector3 min = pRenderable->GetBoundMin();
 min.Add(pRenderable->GetTransform().GetTranslation());
 Vector3 max = pRenderable->GetBoundMax();
 max.Add(pRenderable->GetTransform().GetTranslation());
 static const unsigned int NUM_POINTS = 8;
 Vector3 points[NUM_POINTS];
 points[0] = min;
 points[1] = max;
 
 points[2].m_x = min.m_x;
 points[2].m_y = min.m_y;
 points[2].m_z = max.m_z;
 
 points[3].m_x = min.m_x;
 points[3].m_y = max.m_y;
 points[3].m_z = max.m_z;
 
 points[4].m_x = max.m_x;
 points[4].m_y = min.m_y;
 points[4].m_z = max.m_z;
 
 points[5].m_x = max.m_x;
 points[5].m_y = max.m_y;
 points[5].m_z = min.m_z;
 
 points[6].m_x = min.m_x;
 points[6].m_y = max.m_y;
 points[6].m_z = min.m_z;
 

182 CHAPTER 8: Virtual Cameras

 points[7].m_x = max.m_x;
 points[7].m_y = min.m_y;
 points[7].m_z = min.m_z;
 
 for (unsigned int j=0; j<NUM_POINTS; ++j)
 {
 unsigned int numPlanesInFront = 0;
 for (unsigned int i=0; i<6; ++i)
 {
 if (!frustumPlanes[i].IsInFront(points[j]))
 {
 break;
 }
 
 ++numPlanesInFront;
 }
 
 if (numPlanesInFront == 6)
 {
 shouldDraw = true;
 break;
 }
 }
 }
 
 return shouldDraw;
}
 
ShouldDraw begins by checking whether the Renderable pointer is valid and if the object has bounds
which we can test against. If this is true, we set shouldDraw to false; this object will now be rendered
only if it passes our tests. We then get the min and max bounds with the object’s translation added
so that we position the bounds in world space. The min and max positions represent two extreme
corners of a cuboid; we use the elements of min and max to create the other six corners and store
all eight into the points array.

The first for loop iterates over the points in turn. An inner loop then tests the point against each of
the six frustum planes. For a given point to be inside the frustum, all six tests against the frustum
planes must pass. Remember that a plane divides the world into two halves, positive space in front
of the plane and negative space behind. If a point falls behind any plane, it is not inside the camera
frustum. We break as soon as we detect that the point is not within the frustum to ensure that we are
not wasting time testing against more planes than necessary.

Once an object has passed the test against all six planes, the shouldDraw boolean is set back to
true and the function returns.

We have now successfully implemented an optimization strategy, and only objects which are actually
going to contribute to the final rendering of the scene will be processed by the GPU. This would
allow us to achieve a higher frame rate or render a more detailed scene in a commercial title.

183CHAPTER 8: Virtual Cameras

Summary
This chapter has seen us take a quick tour through what we can achieve with in-game cameras. You
should now understand how essential a virtual camera is to any game. Being able to move around
in 3D space is an integral feature to every modern game. We have only scratched the surface here in
terms of camera development. Commercial titles today use complex physics and AI to control their
cameras, especially in third-person titles, and even then many gamers can become frustrated with
the way the camera in a given game behaves. Creating good cameras is a complex but rewarding
endeavor, and hopefully this chapter has given you a good introduction to the topic.

We’ve also seen how to use the information the camera provides to accelerate our rendering
process. Frustum culling becomes an invaluable acceleration algorithm once we want to create
levels and worlds of any significant size. Open world games such as Oblivion would not be possible
on today’s hardware if it was to try to render every object in the world at any given time. A large
part of a game team’s job is to find ways to create as detailed worlds as possible with the limited
resources at their disposal. These techniques are especially important on mobile devices, as there is
a limited amount of memory bandwidth available for transferring data from the CPU to the GPU. We
can use this bandwidth more efficiently by never transferring objects which will not be seen in the
current frame to our GPU.

Now that we have our basic game up and running, it’s time to make it look more appealing. So far,
everything in our world has been colored with a flat color. In the next chapter, we are going to look at
simulating lighting and materials to make our scene much more interesting and make it begin to look
like a 3D game.

185

Chapter 9
Lighting and Materials

The programming team can help the art team achieve the look they desire for a game through the
application of lighting and material models. Many techniques over the years have been developed
to give games a specific style; Jet Grind Radio (Jet Set Radio outside North America), which was
published in the year 2000, was one such game. Jet Grind Radio was famous for its cell-shaded
graphical style which set it apart from the competition at the time.

The style of Jet Grind Radio was all the more impressive given that it was developed on a platform
which did not have vertex and fragment shaders. Special lighting and material effects have become
much more prevalent in video games over the last ten years as consumer hardware has advanced
to a point which has made real-time shaders a possibility. These features are now also prevalent on
mobile devices, and flexibility of shaders has opened up the use of advanced graphical techniques
to game developers.

In this chapter, we’re going to be looking at the basic lighting and material techniques which are
used as a foundation for the more advanced effects. The basic lights and materials in this chapter
are a recreation of the fixed function lights and materials from OpenGL ES 1.0.

Note  OpenGL ES 2.0 does not have any inbuilt support for lighting; it is up to the programmer to implement
the model they desire using shaders.

To begin, we’ll take a look at what how light is defined to a programmer and how light interacts with
our game entities via materials.

A Basic Lighting and Material Model
Light in the natural world is a complex phenomenon. Fortunately, as game developers we do not
have to model light with physical reality; we instead use a model which approximates what light does
and how it interacts with the objects in our scene.

186 CHAPTER 9: Lighting and Materials

At the most basic level, whether we are dealing with lights in a vertex or fragment shader, our light
sources will eventually boil down to having a direction and a color which affect the output color of
our object using some form of equation.

The light’s properties make up one set of inputs for our lighting equations; another set of inputs
will be the properties of the object itself. We refer to these object properties as materials. When
discussing materials, we say that we are applying materials to objects.

A material definition in a modern game engine includes the shader program to be used to shade the
model, the textures to be applied, as well as any other special effects and render states which are
necessary for proper rendering of the object.

This is the brief overview of lighting, and you won’t be surprised to learn that the actual
implementation of the model is slightly more complex. Our lights and materials are going to be used
to calculate three different components of light: ambient, diffuse, and specular. In this chapter, we
are going to cover each of these components and look at the effects of each.

Once we have looked at the components of the lighting equation, we will look at three different
representations of light sources in our engine. These will be directional lights, positional lights, and
spotlights.

Per-Vertex or Per-Fragment Shading
The shading model which was used in OpenGL ES 1.0 is called the Blinn-Phong shading model.
It is named after Jim Blinn and Bui Tuong Phong. Phong described his lighting model in 1973, and
this was later modified by Blinn, giving rise to the name.

The model itself describes the equations we will use in this chapter to calculate the ambient, diffuse,
and specular components of the color to be applied to the object. Another aspect of the model
which we must consider is how accurate we would like the computations to be. If we calculate the
color of the result of the interactions among the light, the surface, and the material in the vertex
shader, the color will be stored in a varying and then interpolated across the rest of the polygon.
This form of interpolating color is known as Gouraud shading, again named after the author of the
technique, Henri Gouraud.

This technique can give acceptable results, but it is often possible to easily see the edges of
polygons. An alternative form of interpolation is the Phong shading model, which was described
by Bui Tuong Phong, along with the rest of his shading model technique. This form of interpolation
involves interpolating the normal of the vertex across the surface of the fragment and calculating
lighting color for each individual pixel in the fragment shader. This gives much better results but is
obviously much more computationally expensive.

Fortunately for us, the equations of lighting are the same in both cases, and as we have a very
simple scene in comparison to commercial games, we will be using the Blinn-Phong lighting model
and Phong shading to give us the best results.

Before we get on with the task of implementing the lighting in our scene, we have to create a class
which can represent a material.

187CHAPTER 9: Lighting and Materials

Representing Materials
The Material class will be used to store all of the information which is relevant to the final
appearance of the surfaces of the objects present in our scene. This includes any shaders, textures,
and the colors which we will use to represent the separate sections of the lighting equation.
Listing 9-1 describes the Material class. We haven’t yet covered what the fields of this class will be
used for, so don’t worry about them for now.

Listing 9-1.  The Material Class Declaration. Material.h

class Material
{
 private:
 Shader* m_pShader;
 Texture* m_pTexture;
 
 Vector4 m_ambientColor;
 Vector4 m_diffuseColor;
 Vector4 m_specularColor;
 float m_specularExponent;
 
public:
 Material()
 : m_pShader(NULL)
 , m_pTexture(NULL)
 , m_specularExponent(0.0f)
 {
 
 }
 
 ~Material()
 {
 
 }
 
 void SetShader(Shader* pShader)
 {
 m_pShader = pShader;
 }
 
 Shader* GetShader() const
 {
 return m_pShader;
 }
 
 void SetTexture(Texture* pTexture)
 {
 m_pTexture = pTexture;
 }
 

188 CHAPTER 9: Lighting and Materials

 Texture* GetTexture() const
 {
 return m_pTexture;
 }
 
 void SetAmbientColor(Vector4 ambientColor)
 {
 m_ambientColor = ambientColor;
 }
 
 const Vector4& GetAmbientColor() const
 {
 return m_ambientColor;
 }
 
 void SetDiffuseColor(Vector4 diffuseColor)
 {
 m_diffuseColor = diffuseColor;
 }
 
 const Vector4& GetDiffuseColor() const
 {
 return m_diffuseColor;
 }
 
 void SetSpecularColor(Vector4 specularColor)
 {
 m_specularColor = specularColor;
 }
 
 const Vector4& GetSpecularColor() const
 {
 return m_specularColor;
 }
 
 void SetSpecularExponent(float specularExponent)
 {
 m_specularExponent = specularExponent;
 }
 
 const float GetSpecularExponent() const
 {
 return m_specularExponent;
 }
};
 
As you can see, our Material class is just a container to store some data which we can associate
with an object. We do this by adding it to our Renderable class. Listing 9-2 shows our new
Renderable class with a Material in place of the Shader pointer and color Vector4 field which were
there previously.

189CHAPTER 9: Lighting and Materials

Listing 9-2.  Adding a Material to Renderable. Renderable.h

class Renderable
{
private:
 Geometry* m_pGeometry;
 Material* m_pMaterial;
 Transform m_transform;
 
 Vector3 m_min;
 Vector3 m_max;
 bool m_useBounds;
 
public:
 Renderable();
 ~Renderable();
 
 void SetGeometry(Geometry* pGeometry);
 Geometry* GetGeometry();
 
 void SetMaterial(Material* pMaterial);
 Material* GetMaterial();
 
 Transform& GetTransform() { return m_transform; }
 
 void SetBoundMin(const Vector3& min) { m_min = min; }
 const Vector3& GetBoundMin() const { return m_min; }
 
 void SetBoundMax(const Vector3& max) { m_max = max; }
 const Vector3& GetBoundMax() const { return m_max; }
 
 void SetUseBounds(bool enabled) { m_useBounds = enabled; }
 bool GetUseBounds() const { return m_useBounds; }
 
 bool IsInitialized() const
 {
 return m_pGeometry && m_pMaterial;
 }
};
 
inline Renderable::Renderable()
 : m_pGeometry(NULL)
 , m_pMaterial(NULL)
{
 
}
 
inline Renderable::~Renderable()
{
 
}
 

190 CHAPTER 9: Lighting and Materials

inline void Renderable::SetGeometry(Geometry* pGeometry)
{
 m_pGeometry = pGeometry;
}
 
inline Geometry* Renderable::GetGeometry()
{
 return m_pGeometry;
}
 
inline void Renderable::SetMaterial(Material* pMaterial)
{
 m_pMaterial = pMaterial;
}
 
inline Material* Renderable::GetMaterial()
{
 return m_pMaterial;
}
 
Now that we have a class which can store material properties for our Renderables, we will look at
how we can use these in Shaders which add light to our scene.

Ambient Lighting
The ambient component of the lighting model is used to approximate the background light which will
be present in our scene. You can think of this much like daylight in a room with windows.

Nothing in the room is being lit directly by a light source; however, everything has light bouncing off
of it. This is because the light from the sun is powerful enough that it can bounce off of many objects
yet still carry on and light many more. Once the sun goes down, everything is much darker, as there
is much less ambient light bouncing around.

In this sense, ambient light is treated much like a base level of lighting to ensure that objects in the
scene do not appear to be completely black. The equation for the ambient lighting component is
very straightforward.

final color = ambient light color × ambient color

The current rendering we have been using in TransformShader so far has effectively been the
equivalent of having an ambient light value of (1, 1, 1, 1), which specifies that our object should be lit
fully by ambient lighting; Figure 9-1 shows how the game currently renders with no lighting present.

191CHAPTER 9: Lighting and Materials

We’ll change this now by adding a new shader. Listing 9-3 shows the TransformAmbientShader class.

Listing 9-3.  The TransformAmbientShader Class Declaration. TransformAmbientShader.h

class TransformAmbientShader
 : public Shader
{
private:
 GLint m_transformUniformHandle;
 GLint m_positionAttributeHandle;
 GLint m_colorUniformHandle;
 GLint m_ambientLightUniformHandle;
 
public:
 TransformAmbientShader();
 virtual ~TransformAmbientShader();
 
 virtual void Link();
 virtual void Setup(Renderable& renderable);
};
 
Our TransformAmbientShader class is almost identical to our TransformShader; the only addition is a
new field to store the handle to the ambient light uniform.

The constructor for TransformAmbientShader contains the new GLSL code for our new shader. The
fragment shader contains a new uniform, u_vAmbientLight. This uniform is a vec4 and contains the
ambient light constant. This constant is multiplied with the fragment color to determine the ambient
color for the fragment which is stored into gl_FragColor. Listing 9-4 shows the new GLSL code.

Figure 9-1.  An unlit scene from Droid Runner

192 CHAPTER 9: Lighting and Materials

Listing 9-4.  TransformAmbientShader's Constructor. TransformAmbientShader.cpp

TransformAmbientShader::TransformAmbientShader()
{
 m_vertexShaderCode =
 "uniform mat4 u_mModel; \n"
 "attribute vec4 a_vPosition; \n"
 "void main(){ \n"
 " gl_Position = u_mModel * a_vPosition; \n"
 "} \n";
 
 m_fragmentShaderCode =
 "precision mediump float; \n"
 " \n"
 "uniform vec4 u_vColor; \n"
 "uniform vec4 u_vAmbientLight; \n"
 " \n"
 "void main(){ \n"
 " gl_FragColor = u_vAmbientLight * u_vColor; \n"
 "} \n";
}
 
We need to obtain the handle to the new uniform, and we do this in TransformAmbientShader::Link,
shown in Listing 9-5.

Listing 9-5.  TransformAmbientShader::Link. TransformAmbientShader.cpp

void TransformAmbientShader::Link()
{
 Shader::Link();
 m_transformUniformHandle = glGetUniformLocation(m_programId, "u_mModel");
 m_positionAttributeHandle = glGetAttribLocation(m_programId, "a_vPosition");
 m_colorUniformHandle = glGetUniformLocation(m_programId, "u_vColor");
 m_ambientLightUniformHandle = glGetUniformLocation(m_programId, "u_vAmbientLight");
}
 
This new Shader’s Setup method is also similar to that of TransformShader. Only the lines required to
set up the ambient light color are new. Listing 9-6 highlights the changes.

Listing 9-6.  TransformAmbientShader::Setup. TransformAmbientShader.cpp

void TransformAmbientShader::Setup(Renderable& renderable)
{
 Geometry* pGeometry = renderable.GetGeometry();
 if (pGeometry)
 {
 Shader::Setup(renderable);
 Renderer& renderer = Renderer::GetSingleton();
 const Matrix4& viewMatrix = renderer.GetViewMatrix();
 const Matrix4& projectionMatrix = renderer.GetProjectionMatrix();
 Matrix4 modelViewMatrix;
 renderable.GetTransform().GetMatrix().Multiply(viewMatrix, modelViewMatrix);
 Matrix4 modelViewProjectionMatrix;

193CHAPTER 9: Lighting and Materials

 modelViewMatrix.Multiply(projectionMatrix, modelViewProjectionMatrix);
 glUniformMatrix4fv(m_transformUniformHandle, 1, false, modelViewProjectionMatrix.m_m);
 glVertexAttribPointer(
 m_positionAttributeHandle,
 pGeometry->GetNumVertexPositionElements(),
 GL_FLOAT,
 GL_FALSE,
 pGeometry->GetVertexStride(),
 pGeometry->GetVertexBuffer());
 glEnableVertexAttribArray(m_positionAttributeHandle);
 const Vector4& color = renderable.GetMaterial()->GetAmbientColor();
 glUniform4f(m_colorUniformHandle, color.m_x, color.m_y, color.m_z, color.m_w);
 const Vector4& ambientLightColor = renderer.GetAmbientLightColor();
 glUniform4f(m_ambientLightUniformHandle,
 ambientLightColor.m_x,
 ambientLightColor.m_y,
 ambientLightColor.m_z,
 ambientLightColor.m_w);
 }
}
 
This listing shows that we must also add some new methods to our Renderer. Listing 9-7 shows this
minor addition; simply add a new private Vector4 field to the Renderer class and also add methods
to set and get the values.

Listing 9-7.  Adding m_ambientLightColor to Renderer. Renderer.h

class Renderer
 : public Task
 , public EventHandler
 , public Singleton<Renderer>
{
public:
 enum FrustumParameters
 {
 TOP,
 BOTTOM,
 RIGHT,
 LEFT,
 NEAR,
 FAR,
 NUM_PARAMS
 };
 
private:
 android_app* m_pState;
 EGLDisplay m_display;
 EGLContext m_context;
 EGLSurface m_surface;
 int m_width;
 int m_height;
 bool m_initialized;
 bool m_paused;
 

194 CHAPTER 9: Lighting and Materials

 typedef std::vector<Shader*> ShaderVector;
 typedef ShaderVector::iterator ShaderVectorIterator;
 
 typedef std::vector<Texture*> TextureVector;
 typedef TextureVector::iterator TextureVectorIterator;
 
 typedef std::vector<Renderable*> RenderableVector;
 typedef RenderableVector::iterator RenderableVectorIterator;
 
 RenderableVector m_renderables;
 TextureVector m_textures;
 ShaderVector m_shaders;
 
 float m_frustumParameters[NUM_PARAMS];
 
 Matrix4 m_cameraMatrix;
 Matrix4 m_viewMatrix;
 Matrix4 m_projectionMatrix;
 
 void Draw(Renderable* pRenderable);
 void BuildFrustumPlanes(Plane frustumPlanes[]);
 bool ShouldDraw(Renderable* pRenderable, Plane frustumPlanes[]) const;
 
 Vector4 m_ambientLightColor;
public:
 explicit Renderer(android_app* pState, const unsigned int priority);
 virtual ~Renderer();
 void Init();
 void Destroy();
 
 void AddRenderable(Renderable* pRenderable);
 void AddShader(Shader* pShader);
 void RemoveShader(Shader* pShader);
 
 void AddTexture(Texture* pTexture);
 void RemoveTexture(Texture* pTexture);
 
 // From Task
 virtual bool Start();
 virtual void OnSuspend();
 virtual void Update();
 virtual void OnResume();
 virtual void Stop();
 
 virtual void HandleEvent(Event* event);
 bool IsInitialized() { return m_initialized; }
 void SetCameraMatrix(const Matrix4& cameraMatrix)
 {
 m_cameraMatrix = cameraMatrix;
 }
 
 const Matrix4& GetCameraMatrix() const { return m_cameraMatrix; }
 

195CHAPTER 9: Lighting and Materials

 void SetViewMatrix(const Matrix4& viewMatrix)
 {
 m_viewMatrix = viewMatrix;
 }
 const Matrix4& GetViewMatrix() const { return m_viewMatrix; }
 
 void SetFrustum(const float frustumParameters[]);
 const Matrix4& GetProjectionMatrix() const { return m_projectionMatrix; }
 
 int GetWidth() const { return m_width; }
 int GetHeight() const { return m_height; }
 
 void SetAmbientLightColor(const Vector4& ambientLightColor)
 {
 m_ambientLightColor = ambientLightColor;
 }
 const Vector4& GetAmbientLightColor() const
 {
 return m_ambientLightColor;
 }
};
 
Figure 9-2 shows the state of the game with the ambient lighting being applied to the Renderables.

Figure 9-2.  The ambient lit scene

As Figure 9-2 shows, an ambient light level of 0.2f for each color component means that our objects
are almost black. It’s almost impossible to make out any shade of red on the AI enemies, but the
player does have a slight shade of green. The crates are also very slightly blue. This is ideal for our
scene, as we will see when we add more color.

196 CHAPTER 9: Lighting and Materials

Before we move onto the next element in the lighting equation, we must update our Geometry.
The diffuse and specular components of the lighting equation need to know in which direction the
polygons in our models are facing. We can do this by supplying a normal vector into our shader
along with each vertex.

Vertex Normals
We have come across normal vectors a few times so far in this book. If you recall, a normal
vector is a vector which is a single unit long and is used to show a direction rather than represent
a displacement.

We can work out the normal for a polygon using the plane equation. Since we are always dealing
with flat triangles when developing OpenGL ES 2.0 games for Android, we can use the three points
of the triangle to generate the surface normal for the triangle. The math for this process is covered in
Appendix D, along with the listing of the Plane class and its methods.

Fortunately, all of our models are generally exported from 3D modeling packages. These 3D
modeling packages are usually more than capable of generating and exporting the surface normals
for any models which we are creating. For this book I have been using the free modeling package,
Blender, which you can obtain from www.blender.org.

Given that we will be exporting the vertex normals for our meshes from a 3D package, we should
look at how we will represent this data in code. Listing 9-8 shows the updates which are needed in
the Geometry class to support vertex normals.

Listing 9-8.  Updating Geometry to Handle Vertex Normals. Geometry.h

class Geometry
{
private:
 static const unsigned int NAME_MAX_LENGTH = 16;
 char m_name[NAME_MAX_LENGTH];
 int m_numVertices;
 int m_numIndices;
 void* m_pVertices;
 void* m_pIndices;
 
 int m_numVertexPositionElements;
 int m_numNormalPositionElements;
 int m_numTexCoordElements;
 int m_vertexStride;
 
public:
 Geometry();
 virtual ~Geometry();
 
 void SetName(const char* name) { strcpy(m_name, name); }
 void SetNumVertices(const int numVertices) { m_numVertices = numVertices; }
 void SetNumIndices(const int numIndices) { m_numIndices = numIndices; }
 
 const char* GetName() const { return m_name; }
 

http://www.blender.org/

197CHAPTER 9: Lighting and Materials

 const int GetNumVertices() const { return m_numVertices; }
 const int GetNumIndices() const { return m_numIndices; }
 
 void* GetVertexBuffer() const { return m_pVertices; }
 void* GetIndexBuffer() const { return m_pIndices; }
 
 void SetVertexBuffer(void* pVertices) { m_pVertices = pVertices; }
 void SetIndexBuffer(void* pIndices) { m_pIndices = pIndices; }
 
 void SetNumVertexPositionElements(const int numVertexPositionElements)
 {
 m_numVertexPositionElements = numVertexPositionElements;
 }
 
 int GetNumVertexPositionElements() const
 {
 return m_numVertexPositionElements;
 }
 
 void SetNumNormalPositionElements(const int numNormalPositionElements)
 {
 m_numNormalPositionElements = numNormalPositionElements;
 }
 
 int GetNumNormalPositionElements() const
 {
 return m_numNormalPositionElements;
 }
 
 void SetNumTexCoordElements(const int numTexCoordElements)
 {
 m_numTexCoordElements = numTexCoordElements;
 }
 
 int GetNumTexCoordElements() const
 {
 return m_numTexCoordElements;
 }
 
 void SetVertexStride(const int vertexStride)
 {
 m_vertexStride = vertexStride;
 }
 
 int GetVertexStride() const
 {
 return m_vertexStride;
 }
};
 
We have added fields to store the number of normals to our Geometry class. This further extends
our storage of vertex data in our array of structures format. This is the most optimal method for
streaming geometry data to current mobile GPUs.

198 CHAPTER 9: Lighting and Materials

With the Geometry class now able to handle models which contain vertex normal data, let’s move on
to look at how the diffuse lighting shader will utilize them.

Diffuse Lighting
The lighting equation which we are attempting to implement with our shaders in this chapter is an
additive equation. This means that our lighting components add together to make the final result.
In this section on diffuse lighting, we are going to look at the second part of the following equation:

final color = ambient color + diffuse color + specular color

We’ve already seen how the ambient color sets the base light value of our objects. On its own,
however, the ambient light still leaves our objects looking flat. This is because the ambient light
function does not take into account the angle between the light source and the direction which the
surface is facing.

For now, we are going to implement the simplest version of a light source for a game, a directional
light. A directional light is used to simulate a light source which is an extreme distance away. If you
imagine the sun, we could simplify the light which is given off by thinking of it in terms of a sphere of
equal intensity in all directions. By the time the light from the sun reaches earth, the light rays from
the sphere are coming from a very small fragment of the overall sphere. In a game situation,
we simplify this down to a model where we suggest that all light from this source is traveling in
parallel and hits all of our objects from exactly the same direction.

The words “direction” and “directional” have been used several times in the last paragraph, and
you might have guessed that we will be using another normal vector to represent the direction of
our light. However, we will not be storing the direction in which our light is traveling; we will actually
be storing the opposite. The reason for this will become clear when you look at the equation for the
diffuse lighting component of our color:

diffuse color = max(L.N, 0) × diffuse light color × diffuse material color

The term L.N in the preceding equation represents the dot product between our directional light
vector and the current vertex normal. The dot product gives us the following result:

L.N = |L||N|cos(alpha)

The lines surrounding L and N represent the length (or magnitude) of those vectors. Our vectors in
the lighting equation are normals; therefore, their length is 1. This means that the result of the dot
product between two normal vectors is the cosine of the angle between the two. The cosine of 0
degrees is 1, the cosine of 90 degrees is 0, and the cosine of 180 degrees is −1. As our fragment
color values are output in the range from 0 to 1, we will use the higher of either the dot product
result or 0. For any angle between 0 and 90 degrees, we will add a diffuse color component to this
fragment.

Diffuse Component Vertex Shader
Before we can look at the fragment shader code for the diffuse component, we will examine the
vertex shader necessary to set up the vertex position and normal. Listing 9-9 contains the code for
TransformAmbientDiffuseShader’s vertex shader.

199CHAPTER 9: Lighting and Materials

Listing 9-9.  TransformAmbientDiffuseShader's Vertex Shader Source. TransformAmbientDiffuseShader.cpp

m_vertexShaderCode =
 "uniform mat4 u_mModelViewProj; \n"
 "uniform mat3 u_mModelIT; \n"
 "attribute vec4 a_vPosition; \n"
 "attribute vec3 a_vNormal; \n"
 "varying vec3 v_vNormal; \n"
 "void main(){ \n"
 " gl_Position = u_mModelViewProj * a_vPosition; \n"
 " v_vNormal = normalize(u_mModelIT * a_vNormal); \n"
 "} \n";
 
Our vertex shader is straightforward to read. We have a matrix, u_mModelViewProj, which we use to
transform our vertex’s position attribute into normalized device coordinates as usual.

We now also have an attribute for our vertex normal and a varying variable to store the output.
Varyings in GLSL are used to interpolate values between the three vertices which make up a triangle.
As we are now specifying a normal vector per vertex, we must store each into a varying to be
interpolated for each fragment to be shaded.

When we store our normal into v_vNormal, we are also multiplying it by the matrix u_mModelIT. This
matrix is responsible for transforming the matrix from the model’s local space into world space. As
a normal vector does not require any translation, the matrix itself is only a 3x3 rotation and scaling
matrix. Unfortunately, we cannot simply transform normals with the model’s transform matrix directly.
Any scaling which could be applied to the model will cause the normal to change direction relative to
its surface. Instead, we must transform normals using the inverse transpose of the model’s matrix.

If you recall, a rotation matrix is an orthogonal matrix. This type of matrix is special in that its inverse
is also its transpose; therefore, the inverse transpose of the rotation part of the model’s transform
will remain unchanged. A scaling matrix is a diagonal matrix, and as such the transpose of a scaling
matrix is no different from the standard matrix. The inverse scale elements contain one divided by
the original scales, giving us the inverse. Multiplying normals by this inverse transpose of the model
matrix allows us to rotate our normals into world space in the same manner as our model but also to
preserve the direction of the original normal relative to the surface it represents.

Diffuse Component Fragment Shader
With the vertex shader out of the way, we can look at the fragment shader. We do this
in Listing 9-10.

Listing 9-10.  TransformAmbientDiffuseShader's Fragment Shader Source. TransformAmbientDiffuseShader.cpp

m_fragmentShaderCode =
 "precision mediump float; \n"
 "varying vec3 v_vNormal; \n"
 " \n"
 "uniform vec4 u_vAmbientColor; \n"
 "uniform vec4 u_vDiffuseColor; \n"
 "uniform vec4 u_vAmbientLight; \n"
 "uniform vec4 u_vDiffuseLight; \n"

200 CHAPTER 9: Lighting and Materials

 "uniform vec3 u_vLightDirection; \n"
 " \n"
 "const float c_zero = 0.0; \n"
 "const float c_one = 1.0; \n"
 " \n"
 "void main(){ \n"
 " gl_FragColor = vec4(c_zero, c_zero, c_zero, c_zero); \n"
 " \n"
 " float ndotl = dot(u_vLightDirection, v_vNormal); \n"
 " ndotl = max(ndotl, c_zero); \n"
 " gl_FragColor += ndotl * u_vDiffuseLight * u_vDiffuseColor; \n"
 " \n"
 " gl_FragColor += u_vAmbientLight * u_vAmbientColor; \n"
 " \n"
 " gl_FragColor.a = c_one; \n"
 "} \n";
 
The fragment shader for the diffuse lighting component begins by declaring the default precision
of the floating-point operations for this shader program. Shader precision qualifiers can be a
complicated topic when looking into the specific details. For the purposes of this book, it’s sufficient
to know that the precision affects the range of values available to a given data type.

There are three precision qualifiers available, lowp, mediump, and highp. For the purposes of a lighting
equation, lowp usually does not provide enough precision and highp usually provides more than we
require. The increase in precision at each level results in a shader taking longer to execute; therefore,
it is important to select a level of precision which is suitable for any given shader. I’ve used mediump
here; however, I can’t actually see any difference when changing the setting to lowp.

It’s also worth remembering that some platforms may not support all of the precision qualifiers. The
OpenGL ES 2.0 standard states that the minimum required precision qualifier is mediump for fragment
shaders and highp for vertex shaders.

Note  At this time, Nvidia’s Tegra 3 platform is the only chipset which does not support the highp qualifier
in fragment shaders. If you do use highp, however, the Tegra 3 shader compiler will automatically use
mediump, but it is worth bearing this in mind.

Next, we declare the varying which will contain our interpolated normal vector. Remember that
the vertex shader will compute a transformed normal for each vertex, and the GPU will use linear
interpolation to calculate the normal position at each fragment. Linear interpolation is calculated by
using the values 0 and 1 at each extreme. A linear interpolation of halfway between the digits 5 and
10 would look like the following equation.

((10 – 5) * 0.5) + 5 = 7.5

Here we calculate the difference between our two extremes, which in this case is covered by the
sum 10 – 5. We then multiply the range by the interpolation factor, which is 0.5 to represent halfway
between the extremes. The last step involves adding the first extreme to calculate the point which
rests between the first and second points.

201CHAPTER 9: Lighting and Materials

We then have our uniform values. The uniforms are variables which are supplied to all instances of the
fragment shader from the game code. In our diffuse shader, we are supplying uniforms which represent
the ambient and diffuse color of the object’s material, the ambient and diffuse colors of the light,
and the direction of the light. We have also specified constants to represent the values 0.0 and 1.0;
these are c_zero and c_one, respectively.

Our main method is defined after all of our variables are declared. We begin by initializing
gl_FragColor to a vec4 containing c_zero at each element.

The dot method is then used to calculate the dot product of the vectors v_vLightDirection and
v_vNormal. We have achieved the technique known as per-pixel lighting by carrying out this
calculation in our fragment shader. We would be implementing per-vertex lighting if we had
calculated the dot product in our vertex shader. Calculating the lighting equation in the vertex shader
is much faster but does not give as nice results. If you were implementing a full game, having key
objects lit with a per-fragment shader and other less important objects lit with a per-vertex shader
could be one technique used to optimize your game.

The next line in the shader uses max to limit the lowest possible value of the dot product to 0.
We then multiply the three elements needed to calculate the diffuse color, ndotl, u_vDiffuseLight,
and u_vDiffuseColor.

With our diffuse color component computed, we then add the result of the ambient component.
This is calculated in the same way as in Listing 9-4 by multiplying the ambient light vector with the
ambient color vector.

Initializing the Shader Using OpenGL ES 2.0
Listing 9-11 contains the Link method needed to acquire the handles to our uniforms and attributes.

Listing 9-11.  TransformAmbientDiffuseShader::Link. TransformAmbientDiffuseShader.cpp

void TransformAmbientDiffuseShader::Link()
{
 Shader::Link();
 m_modelViewProjUniformHandle = glGetUniformLocation(m_programId, "u_mModelViewProj");
 m_modelITMatrixUniformHandle = glGetUniformLocation(m_programId, "u_mModelIT");
 m_positionAttributeHandle = glGetAttribLocation(m_programId, "a_vPosition");
 m_normalAttributeHandle = glGetAttribLocation(m_programId, "a_vNormal");
 m_ambientColorUniformHandle = glGetUniformLocation(m_programId, "u_vAmbientColor");
 m_diffuseColorUniformHandle = glGetUniformLocation(m_programId, "u_vDiffuseColor");
 m_ambientLightUniformHandle = glGetUniformLocation(m_programId, "u_vAmbientLight");
 m_diffuseLightUniformHandle = glGetUniformLocation(m_programId, "u_vDiffuseLight");
 m_lightDirectionUniformHandle = glGetUniformLocation(m_programId, "u_vLightDirection");
}
 
Recall from Listing 9-9 that we had to provide the model’s inverse transpose Transform matrix
to the vertex shader to transform the vertex normal. Listing 9-12 shows the
TransformAmbientDiffuseShader::Setup method, which contains the code to calculate this matrix.

202 CHAPTER 9: Lighting and Materials

Listing 9-12.  TransformAmbientDiffuseShader::Setup. TransformAmbientDiffuseShader.cpp

void TransformAmbientDiffuseShader::Setup(Renderable& renderable)
{
 Geometry* pGeometry = renderable.GetGeometry();
 if (pGeometry)
 {
 Shader::Setup(renderable);
 Renderer& renderer = Renderer::GetSingleton();
 const Matrix4& viewMatrix = renderer.GetViewMatrix();
 const Matrix4& projectionMatrix = renderer.GetProjectionMatrix();
 const Matrix4& modelMatrix = renderable.GetTransform().GetMatrix();
 Matrix4 modelViewMatrix;
 modelMatrix.Multiply(viewMatrix, modelViewMatrix);
 Matrix4 modelViewProjectionMatrix;
 modelViewMatrix.Multiply(projectionMatrix, modelViewProjectionMatrix);
 glUniformMatrix4fv(
 m_modelViewProjUniformHandle,
 1,
 false,
 modelViewProjectionMatrix.m_m);
 
 Matrix3 modelIT;
 renderable.GetTransform().GetInverseTransposeMatrix(modelIT);
 glUniformMatrix3fv(m_modelITMatrixUniformHandle, 1, false, modelIT.m_m);
 glVertexAttribPointer(
 m_positionAttributeHandle,
 pGeometry->GetNumVertexPositionElements(),
 GL_FLOAT,
 GL_FALSE,
 pGeometry->GetVertexStride(),
 pGeometry->GetVertexBuffer());
 glEnableVertexAttribArray(m_positionAttributeHandle);
 glVertexAttribPointer(
 m_normalAttributeHandle,
 pGeometry->GetNumNormalPositionElements(),
 GL_FLOAT,
 GL_FALSE,
 pGeometry->GetVertexStride(),
 static_cast<float*>(pGeometry->GetVertexBuffer()) +
 pGeometry->GetNumVertexPositionElements());
 glEnableVertexAttribArray(m_normalAttributeHandle);
 const Vector4& ambientColor = renderable.GetMaterial()->GetAmbientColor();
 glUniform4f(
 m_ambientColorUniformHandle,
 ambientColor.m_x,
 ambientColor.m_y,
 ambientColor.m_z,
 ambientColor.m_w);
 

203CHAPTER 9: Lighting and Materials

 const Vector4& diffuseColor = renderable.GetMaterial()->GetDiffuseColor();
 glUniform4f(
 m_diffuseColorUniformHandle,
 diffuseColor.m_x,
 diffuseColor.m_y,
 diffuseColor.m_z,
 diffuseColor.m_w);
 
 const Vector4& ambientLightColor = renderer.GetAmbientLightColor();
 glUniform4f(
 m_ambientLightUniformHandle,
 ambientLightColor.m_x,
 ambientLightColor.m_y,
 ambientLightColor.m_z,
 ambientLightColor.m_w);
 
 const Vector4& diffuseLightColor = renderer.GetDiffuseLightColor();
 glUniform4f(
 m_diffuseLightUniformHandle,
 diffuseLightColor.m_x,
 diffuseLightColor.m_y,
 diffuseLightColor.m_z,
 diffuseLightColor.m_w);
 
 const Vector3& lightDirection = renderer.GetLightDirection();
 glUniform3f(
 m_lightDirectionUniformHandle,
 lightDirection.m_x,
 lightDirection.m_y,
 lightDirection.m_z);
 }
}
 
We begin this method by obtaining references to the current view matrix, projection matrix,
and model matrix. modelMatrix is then multiplied with viewMatrix to obtain modelViewMatrix.
modelViewMatrix is then multiplied with projectionMatrix. This gives us modelViewProjection
matrix, which is necessary to transform our model’s vertices into the canonical view volume. We use
glUniformMatrix4fv to upload this matrix to the GPU to be used with the uniform u_mModelViewProj
in our vertex shader.

The next step in the method is to get the inverse transpose of the model’s transform matrix. We do
this using Transform::GetInverseTransposeMatrix. The class declaration for Transform was shown
in Listing 6-21; we describe the code for GetInverseTransposeMatrix in Listing 9-13.

Listing 9-13.  Transform::GetInverseTransposeMatrix. Transform.cpp

void Transform::GetInverseTransposeMatrix(Matrix4& out) const
{
 float invScale = 1.0f / m_scale;
 out.m_m[0] = m_rotation.m_m[0] * invScale;
 out.m_m[1] = m_rotation.m_m[1];
 out.m_m[2] = m_rotation.m_m[2];

204 CHAPTER 9: Lighting and Materials

 out.m_m[3] = 0.0f;
 out.m_m[4] = m_rotation.m_m[3];
 out.m_m[5] = m_rotation.m_m[4] * invScale;
 out.m_m[6] = m_rotation.m_m[5];
 out.m_m[7] = 0.0f;
 out.m_m[8] = m_rotation.m_m[6];
 out.m_m[9] = m_rotation.m_m[7];
 out.m_m[10] = m_rotation.m_m[8] * invScale;
 out.m_m[11] = 0.0f;
 out.m_m[12] = -m_translation.m_x;
 out.m_m[13] = -m_translation.m_y;
 out.m_m[14] = -m_translation.m_z;
 out.m_m[15] = 1.0f;
}
 
void Transform::GetInverseTransposeMatrix(Matrix3& out) const
{
 float invScale = 1.0f / m_scale;
 out.m_m[0] = m_rotation.m_m[0] * invScale;
 out.m_m[1] = m_rotation.m_m[1];
 out.m_m[2] = m_rotation.m_m[2];
 out.m_m[3] = m_rotation.m_m[3];
 out.m_m[4] = m_rotation.m_m[4] * invScale;
 out.m_m[5] = m_rotation.m_m[5];
 out.m_m[6] = m_rotation.m_m[6];
 out.m_m[7] = m_rotation.m_m[7];
 out.m_m[8] = m_rotation.m_m[8] * invScale;
}
 
Listing 9-13 contains two versions of the method to obtain the inverse transpose matrix from a
Transform. As we already know, the inverse transpose of a rotation matrix is the original matrix, so
we copy the rotation matrix in the normal order. The transpose of the scale matrix doesn’t change
anything and we can calculate the inverse of the scale components very easily by dividing the scale
into 1. Our code in Listing 9-12 is using the version of this method, which obtains a 3x3 matrix, as
our normals do not require the translation component to be present.

Our vertex attributes are then set up. The m_positionAttributeHandle is initialized with the proper
parameters from the geometry class and is enabled with glEnableVertexAttribArray. We then do
the same for the normals. The address of the first normal is calculated by casting the vertex buffer
pointer to a float pointer and adding the number of vertex position elements.

The vectors containing the material and light color properties are then initialized using glUniform4f
and glUniform3f.

Our code should now be complete, and we will see some diffuse lighting in our game. This is the
first time where we can actually see some depth in our scene and be able to tell that we have
successfully created a three-dimensional game. Figure 9-3 shows a screenshot of the scene with
diffuse lighting enabled.

205CHAPTER 9: Lighting and Materials

As is evident from the preceding screenshot, we have set up our diffuse light source to be situated
above and to the right of our objects. The light shines most brightly in those areas and becomes
darker on the bottom left of the objects. We can also see the spherical shape of the player and AI
objects, as well as the depth of our cubes.

The remaining component of the Blinn-Phong lighting model is the specular component. We look at
this next.

Specular Lighting
The specular component of the lighting equation is responsible for the apparent shininess of a given
object. So far, the ambient component has given a base level of light to show color in the darkest
areas of our objects. The diffuse component has added the majority of lighting to the object, which
helps determine the color and shape of the object in our scene. The specular component is now
added to these to make an object appear more or less reflective. Just as with the diffuse component,
the specular component has an equation which we will implement in our fragment shader. That
equation is as follows:

specular color = max(H.N, 0)^S × specular light color × specular material color

The preceding equation contains the modification to the Phong shading model made by Blinn. The
original model contained the vector R instead of H. R represented a reflected light vector which had
to be calculated for every vertex in a given model. The vector H represents a half vector and can be
calculated once for each model:

half vector = normalize(eye vector + light vector)

Figure 9-3.  Diffuse lighting

206 CHAPTER 9: Lighting and Materials

The preceding equation relies on the eye vector and the light vector being normal vectors pointing to
the camera position and the light source, respectively.

The specular exponent, S from the specular equation, controls the shininess of a material. The higher
this exponent, the less shiny the surface.

We’ll now take a look at the vertex shader for this component of the lighting equation.

Specular Component Vertex Shader
The vertex shader for the specular component of the Blinn-Phong model is shown in Listing 9-14.

Listing 9-14.  TransformAmbientDiffuseSpecularShader's Vertex Shader. TransformAmbientDiffuseSpecularShader.cpp

m_vertexShaderCode =
 "uniform mat4 u_mModelViewProj; \n"
 "uniform mat3 u_mModelIT; \n"
 "attribute vec4 a_vPosition; \n"
 "attribute vec3 a_vNormal; \n"
 "varying vec3 v_vNormal; \n"
 "void main(){ \n"
 " gl_Position = u_mModelViewProj * a_vPosition; \n"
 " v_vNormal = normalize(u_mModelIT * a_vNormal); \n"
 "} \n";
 
Hopefully, it comes as no surprise that our vertex shader does not differ from the vertex shader used
in TransformAmbientDiffuseShader. We are using Phong shading to calculate our lighting values at a
per-pixel level. We’ll move straight on to the fragment shader.

Specular Component Fragment Shader
Our fragment shader will add the next additive component of the Blinn-Phong model, the specular
component. We have already looked at the equation for this component, so Listing 9-15 gets straight
into the fragment shader source code.

Listing 9-15.  TransformAmbientDiffuseSpecularShader's Fragment Shader. TransformAmbientDiffuseSpecularShader.cpp

m_fragmentShaderCode =
 "precision mediump float; \n"
 "varying vec3 v_vNormal; \n"
 " \n"
 "uniform vec4 u_vAmbientColor; \n"
 "uniform vec4 u_vDiffuseColor; \n"
 "uniform vec4 u_vSpecularColor; \n"
 "uniform float u_fSpecularExponent; \n"
 "uniform vec4 u_vAmbientLight; \n"
 "uniform vec4 u_vDiffuseLight; \n"
 "uniform vec4 u_vSpecularLight; \n"
 "uniform vec3 u_vLightDirection; \n"
 "uniform vec3 u_vLightHalfVector; \n"
 " \n"

207CHAPTER 9: Lighting and Materials

 "const float c_zero = 0.0; \n"
 "const float c_one = 1.0; \n"
 " \n"
 "void main(){ \n"
 " gl_FragColor = vec4(c_zero, c_zero, c_zero, c_zero); \n"
 " \n"
 " float ndoth = dot(u_vLightHalfVector, v_vNormal); \n"
 " ndoth = max(ndoth, c_zero); \n"
 " float dotPow = pow(ndoth, u_fSpecularExponent); \n"
 " gl_FragColor += dotPow * u_vSpecularColor * u_vSpecularLight; \n"
 " \n"
 " float ndotl = dot(u_vLightDirection, v_vNormal); \n"
 " ndotl = max(ndotl, c_zero); \n"
 " gl_FragColor += ndotl * u_vDiffuseLight * u_vDiffuseColor; \n"
 " \n"
 " gl_FragColor += u_vAmbientLight * u_vAmbientColor; \n"
 " \n"
 " gl_FragColor.a = c_one; \n"
 "} \n";
 
As our new shader contains both the ambient and diffuse components, it retains all of the
uniforms necessary for those calculations. Our newly introduced uniforms are u_vSpecularColor,
u_fSpecularExponent, u_vSpecularLight, and u_vLightHalfVector.

There are four new lines in the shader which calculate the specular component. The first calculates
the dot product between u_vLightHalfVector and v_vNormal. This gives us the angle between the
half vector and the fragment’s normal vector. We then take the higher of either the dot product or
zero. The result of the previous steps is then raised to the power of the specular component, and
finally the dot product raised to the specular exponent is multiplied by the specular material and
light colors.

As the equation is an additive process, we add the diffuse component and then the ambient
component to get to the final fragment color.

With our shader code complete, the last step is to look at the OpenGL ES 2.0 code we require to put
the shader into use.

Initializing TransformAmbientDiffuseSpecularShader
Like all of our shaders, we must override the Link and Setup methods to be able to use this
specific shader.

We look at TransformAmbientDiffuseSpecularShader::Link in Listing 9-16.

Listing 9-16.  TransformAmbientDiffuseSpecularShader::Link. TransformAmbientDiffuseSpecularShader.cpp

void TransformAmbientDiffuseSpecularShader::Link()
{
 Shader::Link();
 m_modelViewProjUniformHandle = glGetUniformLocation(m_programId, "u_mModelViewProj");
 m_modelITMatrixUniformHandle = glGetUniformLocation(m_programId, "u_mModelIT");
 m_positionAttributeHandle = glGetAttribLocation(m_programId, "a_vPosition");

208 CHAPTER 9: Lighting and Materials

 m_normalAttributeHandle = glGetAttribLocation(m_programId, "a_vNormal");
 m_ambientColorUniformHandle = glGetUniformLocation(m_programId, "u_vAmbientColor");
 m_diffuseColorUniformHandle = glGetUniformLocation(m_programId, "u_vDiffuseColor");
 m_specularColorUniformHandle = glGetUniformLocation(m_programId, "u_vSpecularColor");
 m_specularExponentUniformHandle = glGetUniformLocation(m_programId, "u_fSpecularExponent");
 m_ambientLightUniformHandle = glGetUniformLocation(m_programId, "u_vAmbientLight");
 m_diffuseLightUniformHandle = glGetUniformLocation(m_programId, "u_vDiffuseLight");
 m_specularLightUniformHandle = glGetUniformLocation(m_programId, "u_vSpecularLight");
 m_lightDirectionUniformHandle = glGetUniformLocation(m_programId, "u_vLightDirection");
 m_lightHalfVectorUniformHandle = glGetUniformLocation(m_programId, "u_vLightHalfVector");
}
 
In Link, we obtain all of the handles required for setting the uniforms and attributes using the
OpenGL ES 2.0 methods glGetUniformLocation and glGetAttribLocation. We put these handles to
use in TransformAmbientDiffuseSpecularShader::Setup, shown in Listing 9-17.

Listing 9-17. TransformAmbientDiffuseSpecularShader::Setup. TransformAmbientDiffuseSpecularShader.cpp

void TransformAmbientDiffuseSpecularShader::Setup(Renderable& renderable)
{
 Geometry* pGeometry = renderable.GetGeometry();
 if (pGeometry)
 {
 Shader::Setup(renderable);
 Renderer& renderer = Renderer::GetSingleton();
 const Matrix4& viewMatrix = renderer.GetViewMatrix();
 const Matrix4& projectionMatrix = renderer.GetProjectionMatrix();
 const Matrix4& modelMatrix = renderable.GetTransform().GetMatrix();
 Matrix4 modelViewMatrix;
 modelMatrix.Multiply(viewMatrix, modelViewMatrix);
 Matrix4 modelViewProjectionMatrix;
 modelViewMatrix.Multiply(projectionMatrix, modelViewProjectionMatrix);
 glUniformMatrix4fv(
 m_modelViewProjUniformHandle,
 1,
 false,
 modelViewProjectionMatrix.m_m);
 
 Matrix3 modelIT;
 renderable.GetTransform().GetInverseTransposeMatrix(modelIT);
 glUniformMatrix3fv(m_modelITMatrixUniformHandle, 1, false, modelIT.m_m);
 glVertexAttribPointer(
 m_positionAttributeHandle,
 pGeometry->GetNumVertexPositionElements(),
 GL_FLOAT,
 GL_FALSE,
 pGeometry->GetVertexStride(),
 pGeometry->GetVertexBuffer());
 glEnableVertexAttribArray(m_positionAttributeHandle);
 glVertexAttribPointer(
 m_normalAttributeHandle,
 pGeometry->GetNumNormalPositionElements(),

209CHAPTER 9: Lighting and Materials

 GL_FLOAT,
 GL_FALSE,
 pGeometry->GetVertexStride(),
 static_cast<float*>(pGeometry->GetVertexBuffer()) +
 pGeometry->GetNumVertexPositionElements());
 glEnableVertexAttribArray(m_normalAttributeHandle);
 const Vector4& ambientColor = renderable.GetMaterial()->GetAmbientColor();
 glUniform4f(
 m_ambientColorUniformHandle,
 ambientColor.m_x,
 ambientColor.m_y,
 ambientColor.m_z,
 ambientColor.m_w);
 
 const Vector4& diffuseColor = renderable.GetMaterial()->GetDiffuseColor();
 glUniform4f(
 m_diffuseColorUniformHandle,
 diffuseColor.m_x,
 diffuseColor.m_y,
 diffuseColor.m_z,
 diffuseColor.m_w);
 
 const Vector4& specularColor = renderable.GetMaterial()->GetSpecularColor();
 glUniform4f(
 m_specularColorUniformHandle,
 specularColor.m_x,
 specularColor.m_y,
 specularColor.m_z,
 specularColor.m_w);
 
 glUniform1f(
 m_specularExponentUniformHandle,
 renderable.GetMaterial()->GetSpecularExponent());
 const Vector4& ambientLightColor = renderer.GetAmbientLightColor();
 glUniform4f(
 m_ambientLightUniformHandle,
 ambientLightColor.m_x,
 ambientLightColor.m_y,
 ambientLightColor.m_z,
 ambientLightColor.m_w);
 
 const Vector4& diffuseLightColor = renderer.GetDiffuseLightColor();
 glUniform4f(
 m_diffuseLightUniformHandle,
 diffuseLightColor.m_x,
 diffuseLightColor.m_y,
 diffuseLightColor.m_z,
 diffuseLightColor.m_w);
 

210 CHAPTER 9: Lighting and Materials

 const Vector4& specularLightColor = renderer.GetSpecularLightColor();
 glUniform4f(
 m_specularLightUniformHandle,
 specularLightColor.m_x,
 specularLightColor.m_y,
 specularLightColor.m_z,
 specularLightColor.m_w);
 
 const Vector3& lightDirection = renderer.GetLightDirection();
 glUniform3f(
 m_lightDirectionUniformHandle,
 lightDirection.m_x,
 lightDirection.m_y,
 lightDirection.m_z);
 
 Vector3 lightHalfVector = renderer.GetCameraTransform().GetTranslation();
 lightHalfVector.Subtract(
 Vector3(modelMatrix.m_m[12], modelMatrix.m_m[13], modelMatrix.m_m[14]));
 lightHalfVector.Normalize();
 lightHalfVector.Add(lightDirection);
 lightHalfVector.Normalize();
 glUniform3f(
 m_lightHalfVectorUniformHandle,
 lightHalfVector.m_x,
 lightHalfVector.m_y,
 lightHalfVector.m_z);
 }
}
 
The lines of code which are in bold in the preceding listing are the lines which differ between Transfo
rmAmbientDiffuseSpecularShader::Setup and TransformAmbientDiffuseShader::Setup.

The first block is responsible for uploading the specular color and exponent of the object’s material
to the GPU. The second identified section uploads the light’s specular color to the GPU.

The last section is responsible for calculating the light’s half vector. We begin by getting the position
of the camera object in world space. By subtracting the model’s position, we obtain a vector which
points in the direction of the camera from the model. We then turn this into a unit normal by calling
the Normalize method. Now we find the vector halfway between the eye vector and the light vector
by adding them together. Once we have this vector, we would like to be a unit normal once again, so
we call Normalize for a second time. Calculating this vector once for each model is the optimization
which Blinn made to the original Phong lighting model.

With the specular component now added to the shader, we can see the results of the complete
lighting equation. Figure 9-4 shows a screenshot containing the final result.

211CHAPTER 9: Lighting and Materials

Figure 9-5 shows each of the figures from this chapter together.

Figure 9-4.  The complete Blinn-Phong lighting model

Figure 9-5.  A composite of the screenshots seen in Chapter 9

Starting in the top left corner, we have the unlit scene. The colors are fully saturated and the objects
in the scene all look completely flat.

212 CHAPTER 9: Lighting and Materials

Moving to the top right tile, we see the ambient lit scene. While the first tile shows the scene unlit,
in reality it’s fully lit with ambient color. An unlit scene would actually appear completely black. Our
ambient scene adds a base layer of light and we can slightly see the green shade of the player object.

The bottom left image shows the scene with some definition to the objects for the first time. This is
thanks to the diffuse lighting, which is the first lighting component that takes into account whether a
given fragment is pointing toward the light source or away.

The last image shows our scene with the specular component of the lighting equation added. This
adds a hint of reflectivity to our objects’ surfaces. Where the diffuse lit objects look like solid objects,
they are slightly uninteresting. The specular highlight on the final image manages to make our
spheres take a more realistic appearance.

This simple model is more than enough to add lighting to our game. The following sections of this
chapter will describe some different options for adding lighting and materials to a game via shaders.

Different Types of Lights
The type of light which we have developed in this chapter is called a directional light. This is a
computationally simple light model, which benefits our mobile-based game. Mobile GPUs are currently
not as powerful as those available in game consoles or desktop PCs. Undoubtedly, the next few years
will see a vast increase in the processing power of GPUs in mobile phones and tablets, but for now,
games targeting these devices cannot use overly complicated lighting models in their shaders.

This section will discuss two other types of lights which might find greater use as mobile GPUs
become more powerful.

Forward Shading
In forward shading, a single pass is used where all computations to create the final image are carried
out. The directional lights which we have implemented in this chapter are examples of lights which
fall into the forward shading category.

The major drawback from this approach is that it requires a large amount of computation to
calculate the lighting components from multiple light sources for every rendered object. This cost of
computation per light source constrains the number of active lights in any given scene, and many
games resort to precalculating their lighting and including it in the textures to be applied to the game
levels themselves, either by changing the textures used in the levels or by implementing light maps.
The benefit, especially on modern mobile graphics hardware, is that a single target rendering surface
is used, and therefore there is not a cost associated with switching render targets when running
multiple rendering passes.

Other types of lights which are useful in forward shading are point lights and spotlights.

Point Lights
A point light is different from the directional light which we have described in our shaders, in that it
has a position in the world. This means that the light can be placed inside the world and light objects
from different directions.

213CHAPTER 9: Lighting and Materials

A point light affects all objects by calculating the light direction at each vertex by subtracting the
vertex’s position from the light position. Doing this creates a spherical shape for the light source.

Point lights are usually also implemented with an attenuation algorithm. The attenuation of a light
causes it to have less of an effect on an object the further away from the light that object becomes.
Directional lights are used to simulate lights which are infinitely far away, such as a simple sunlight
model, so the attenuation factor makes little sense for them.

The addition of the calculation of the light vector and the attenuation factor increases the
computational complexity of the vertex shader. If your game is very simple, this type of light may be
feasible, but in most games multiple lights of this type are needed to create the desired effects. This
usually puts this technique out of the reach of most low-end mobile GPUs for scenes which have
some geometric complexity.

Spotlights
Spotlights are another type of light which are even more complex than point lights. Spotlights
have a position and a direction. When spotlights are implemented, they resemble the effects of a
torch. Spotlights contain an attenuation factor like point lights but they also have a spotlight cutoff
parameter.

This cutoff parameter defines the half angle of the cone of the spotlight. This determines how wide
the spotlight is. Anything outside of the cone created by the direction and angle will not be lit by the
spotlight. Spotlights also have another attenuation factor which determines the brightness of the light
from the center of the cone out to the sides. This allows the spotlight to be brighter in the middle and
gradually fade toward the edges of the cone.

Point lights and spotlights were the types of lights which were supplied by OpenGL ES 1.0, and
their implementation in the traditional manner is known as forward shading. A modern technique for
compositing a scene in modern games is known as deferred rendering.

Deferred Rendering
An alternative technique which has been put to use in many games on the Xbox 360 and
Playstation 3 is deferred rendering.

Deferred rendering is usually implemented in two passes. The first pass renders into several buffers.
The diffuse color of objects is stored in the diffuse color G buffer. This is different from the diffuse
color as we implemented it in the Blinn-Phong model. The stored color is simply the single diffuse
material color of the object. No ambient light is used in deferred rendering, and any specular lighting
is calculated later. Along with the diffuse G buffer, a normal G buffer stores the normal vectors for
each fragment, and the z buffer stores the depth of each fragment at each location.

The second pass then renders a geometric shape for each light. The lighting equation is calculated
at each location using the light’s information along with the color, normal, and depth read from the
buffers written in the first pass.

The benefit of this model is that hundreds of lights can be rendered in a scene, as they are
calculated only for pixels in the frame which will actually make it into the final image. The downside
is that it can’t handle transparent objects, so you still need a traditional rendering pass for these.

214 CHAPTER 9: Lighting and Materials

Another advanced topic which can be implemented with shaders is different types of materials. This
is done using different lighting equations in the shaders. These equations are known as bidirectional
reflectance distribution functions (BRDFs).

Bidirectional Reflectance Distribution Functions
BRDFs are a group of equations which describe methods for calculating reflected vectors. The
Blinn-Phong equation which we have implemented in this chapter is just one example of this set of
equations.

The Blinn-Phong model is very good for approximating materials which have a look similar to plastic.
Fixed-function graphics pipelines such as those found in OpenGL ES 1.0 have exposed only this
model to game developers, but with OpenGL ES 2.0 programmers are free to implement more types
of BRDFs thanks to shaders.

Entire books have been written on the subject of lighting in computer graphics, and if you are
interested in learning more about BRDFs, the major models to begin with are the Torrance-Sparrow
model, the Oren-Nayer diffuse reflection model, and Ward’s reflection model.

These different lighting equations are better suited to recreating the look of different materials such
as metals, paper, velvet, sand, and wood.

Summary
In this chapter, we have finally added a sense of depth to our scene. We have achieved this by
adding new shader programs which implement a directional light.

We’ve learned that directional lights are used in games to create a simple model of light sources
which are very far from our game objects. A real-world example of a directional light source is the
sun. We all know that the sun does not emit parallel rays of light, and this shows how we can use
simplifications to simulate simple models of real-world phenomenon. This ability to simplify the
physical world is a key skill for a game programmer who is working on real-time games which rely on
completing the computations for an entire frame in 33 milliseconds or less.

The Blinn-Phong shading model was covered and implemented in GLSL shaders. The sample
code provided at http://www.apress.com/9781430258308 to accompany this chapter contains
implementations of all of the shader stages described in this chapter. You can switch between
them to see how each lighting component behaves, and you can alter the material and light
colors as well as the specular exponent to get a feeling for how this lighting model behaves with
different parameters.

You should now also be aware that the Blinn-Phong model consists of three different components
which make up the final color in a fragment shader. The ambient color is a base level of light applied
to an object. The diffuse color determines the main aspect of the objects color and takes into
account the intensity of the reflected light based on the angle between the vertex normal and the
light vector. The last component is the specular component. This component adds an element of
reflectivity to the surface and is also the component of the Phong model which was adapted by Blinn
to create the Blinn-Phong model.

http://www.apress.com/9781430258308

215CHAPTER 9: Lighting and Materials

We finished the section by covering some details of further topics in the area of lighting and
materials. While this is a beginner-level text, it’s important to know that the lighting and material
properties of a game engine constitute a deep and very interesting topic. Vertex and fragment
shaders have opened up the possibilities of photo-realistic material rendering to game developers,
and shader programming will be an ever-evolving and interesting topic as GPUs become capable of
implementing ever-more-complex lighting models.

In the next chapter, we are going to move on from the player’s sense of sight and engage their
sense of sound. Audio is an exceptionally important aspect of modern video games, and while audio
used to be an overlooked part of the development process, this is no longer the case. Successful
titles plan their audio early in production, and audio designers and engineers are hired for these
specialized roles.

217

Chapter 10
Game Audio

Audio is a key component to making a compelling modern video game. Sound and music design
in AAA games has begun to reach a level of quality comparable to some Hollywood movies with
high-quality effects and orchestral scores.

Unfortunately this level of production is very expensive, in terms of both costs of production and
processing power required to apply all of the required effects, stream multiple audio sources, and
mix all of the results into the final output.

In this chapter, we're going to look at adding sound effects to our game which are more in line
with the types of effects you used to hear on the 16-bit consoles. These sounds were created by
manipulating sound waves and noise using digital filters to create the desired effects. Modern
games tend to use Foley artists to recreate and record sounds using a wide variety of techniques.
A classic rumored example is the melee attack in the Halo series. It is said that the sound effect
for this maneuver was created by wrapping a watermelon in tin foil and hitting it with a baseball
bat while recording in a studio. If you have the time, equipment, and inclination to give this sort of
thing a go it could be a fun and interesting avenue to explore.

Before we can begin the process of creating effects, it would be beneficial to know a little about how
audio works in the physical world.

The Physics of Sound
The physics involved when dealing with sound is a complicated mathematical topic. Fortunately,
we do not need to much more than the basics of audio physics to recreate some suitable
sound effects.

Sound travels through a medium. Typically for us, that medium is air but it can also travel through
solid objects and substances such as water. The tag line for the movie Alien, “In space no one can
hear you scream,” is completely accurate. Space is a vacuum and the lack of a medium for sound
to travel through would mean that there is actually no sound present in space. Despite this, many
movies and games set in space have sound effects; the scenes of a space battle would be quite dull
without laser beams and explosions.

218 CHAPTER 10: Game Audio

Sound travels through mediums as a set of areas of high compression and low compression.
We visualize this phenomenon using graphs representing sound waves. Figure 10-1 shows the graph
of a sine wave created using Audacity.

Figure 10-1.  The sine wave graph

The peaks of this graph represent the areas of high compression in the sound wave and the troughs
represent the areas of low compression.

There are two main properties of this sound graph which we are interested in manipulating. The first
is its amplitude.

Amplitude
The amplitude of a sound wave represents the intensity of the energy stored by the wave. The higher
the amplitude, the louder the perceived volume of that sound to the listener. Figure 10-2 shows
another sine wave created in Audacity but this time with a much lower amplitude.

219CHAPTER 10: Game Audio

A direct comparison between Figures 10-1 and 10-2 shows that the sound wave has exactly the
same number of peaks and troughs. The only difference is the distance of the peaks and troughs
from the black center line. The graph in Figure 10-2 represents the same sound wave as Figure 10-1
but with much less energy and intensity. The difference between the two waves to a listener is simply
in the volume. The first wave will sound much louder than the second when both are heard from the
same distance.

When dealing with sounds at different intensities, we can order them on a scale. This scale is defined
using decibels (dB). Decibels are a relative unit of measurement and therefore are used to describe
the difference in intensity between two levels of sound.

If we take a human’s perception of sound, we can say that the level of sound at which we hear
nothing represents 0dB. Table 10-1 contains some common sounds with their decibel levels relative
to perceived silence (source: http://articles.washingtonpost.com/2009-03-10/news/36815953_1_
db-temporary-threshold-shift-subway-train).

Figure 10-2.  A low-amplitude sound wave

http://articles.washingtonpost.com/2009-03-10/news/36815953_1_db-temporary-threshold-shift-subway-train
http://articles.washingtonpost.com/2009-03-10/news/36815953_1_db-temporary-threshold-shift-subway-train

220 CHAPTER 10: Game Audio

When we are trying to work out the decibel difference between two sounds, we use the following
equation:

10 log (P2/P1) = dB

Using the preceding equation, we can tell that when a sound is twice as intense as another
(so P2/P1 is 2) the difference in decibels is 3dB. When a sound is ten times as intense, the difference
is 10dB, and when it is a million times as intense, the difference is 60dB.

The preceding numbers show us the benefit of using a logarithmic scale to represent decibels. We
can use relatively small numbers to represent the differences between vastly different intensities of
sound waves. Unfortunately, this isn’t immediately intuitive when comparing sounds at 3dB, 10dB,
and 60dB.

The second property of the sound wave which interests us is its frequency.

Frequency
The frequency of a sound wave affects its pitch. Different pitches of sounds are perceived by people
to be higher or lower notes in music. When dealing with sound effects, altering the frequency of
sound effects can give us subtle variations of the same effects for variety. It’s also important to know
which level of pitch is most likely to be effective when designing a particular sound. A quick example
is that high-frequency sounds would be better suited to laser gun effects and low-frequency sounds
for explosions.

Frequency also plays an important role in human hearing. The average person’s ears are sensitive
to only a narrow range of frequencies between 20Hz and 20,000Hz. The symbol Hz denotes the unit
of measurement hertz. Hertz is used to measure repetition. If you recall from Figure 10-1, our sound
wave consisted of three peaks and two troughs. Increasing the frequency of the sound wave will give
us a higher-sounding effect and is visualized on the graph by having a larger number of peaks and
troughs in the same amount of time. Figure 10-3 shows the sound wave with increased frequency.

Table 10-1.  Sounds at Different Decibel Levels

Decibel Level Example Sound

0dB No perceived sounds

20dB Ticking watch

50dB Rainfall

70dB Washing machine

80dB An alarm clock at two feet

105dB Lawn mower

130dB Jet plane at 100 feet

221CHAPTER 10: Game Audio

Other Types of Sound Waves
The graphs shown in Figures 10-1 through 10-3 show the waveform of the sine wave. The waveform
represents a graphical representation of how the sound travels through a given medium. Under
normal circumstances for human hearing, that medium is air; however, the medium could also be
water, concrete, or metal.

The sine wave oscillates smoothly between its peaks and troughs; other types of sound waves can
be represented by different-looking waveforms.

Figure 10-4 shows the waveform for a square wave.

Figure 10-3.  A higher-pitched sound wave

222 CHAPTER 10: Game Audio

As Figure 10-4, the square wave has flat high- and low-frequency sections which alternate and
produce a different sound from the sine wave.

Another common type of wave is the sawtooth wave. This is shown in Figure 10-5.

The sawtooth wave creates a sound which is distinct from the sine and square waves. Each of these
waves can be used as the base for a sound effect, and combinations of waves and filters are used to
generate different types of sound.

Figure 10-5.  The sawtooth wave

Figure 10-4.  A square wave

223CHAPTER 10: Game Audio

Aliasing
Aliasing is an undesired effect caused when using digital sampling techniques. Games programmers
are more likely to have heard the term anti-aliasing used with respect to jagged edges seen in game
screenshots. Anti-aliasing in this respect is used to remove jagged edges which appear in rendered
graphics. The same ”jaggies” can appear in sampled audio.

Digital audio works by taking discrete samples of audio at certain points in time, but digital audio
also applies certain other constraints such as the maximum and minimum amplitudes which it can
store. If there are audio frequencies above and below these frequencies, the sampled amplitude
might be above or below the point it should be. This leads to the audio sounding different from the
original sound when the digital representation is recreated through a digital-to-analog converter.
We are not going to be concerned with audio aliasing in this chapter but you should be aware of its
existence.

Now that we have covered the basics of a sound wave, we’ll look at the software package which we
will use to generate our sound effects.

Audacity
Audacity is a free sound editing suite and is available for Windows, Mac OSX, and Linux. The version
of Audacity which I have used during the writing of this chapter is 2.0.2. Figure 10-6 shows the main
window which is presented when Audacity is opened.

Figure 10-6.  Audacity’s main window

224 CHAPTER 10: Game Audio

In Figure 10-6, the main recording controls can be seen in the top left. The next panel to the right
contains the selection tools for modifying sound waves. We then have the output and input meters
followed by another panel of controls which contains volumes, copy/paste, trim, zoom, and so on.
The bar below this contains the input and output source selectors.

Of the menu bars which run along the top of the Windows, we will be using the Generate and Effect
panels.

The Chirp Generator
A chirp signal is one which increases or decreases in amplitude over time. It should therefore not be
a surprise to learn that Audacity’s Chirp Generator can be used to create sound waves which behave
in exactly this way. This section contains the exact details on how we will use this type of wave to
begin the creation of our sound effect.

Figure 10-7 shows the Generate Menu.

The Generate Menu is used to generate basic sound waves. The specific option which we will be
using is the Chirp Generator. When clicking on Chirp, we are presented with the dialog box shown in
Figure 10-8.

Figure 10-7.  Audacity’s Generate Menu

225CHAPTER 10: Game Audio

The Chirp Generator allows us to specify a waveform to be generated. The options presented are
Sine, Square, Sawtooth, and Square, no alias. Each of these produces a slightly different basic
sound wave.

The Chirp Generator is useful as it allows us to specify a beginning and ending frequency and
amplitude. The selections shown begin with a low-frequency sound which increases by the end of
the wave. The generated wave will also decrease in amplitude as it reaches the end.

The Interpolation type allows us to select Linear or Logarithmic. Linear interpolation will allow us to
create effects change from the start state to the end state evenly. The Logarithmic option creates
waves which change more smoothly. The last variable is the required duration of sound to be
generated.

Once we have a basic sound wave, we can modify it using the filters available in the Effect Menu.

Effects
Audacity supplies some preconfigured filters which can manipulate sound waves. These filters can
be found in the Effect Menu. Effects can be used to increase the frequency or amplitude of a sound
wave. They can also be used to remove high- or low-frequency sounds from a wave or even remove
noise.

This section will look at how we can use some of the supplied effects to shape our sound wave into
a specific effect.

Figure 10-9 shows the Effect Menu from Audacity.

Figure 10-8.  The Chirp Generator dialog

226 CHAPTER 10: Game Audio

The effects from this menu which we will be interested in for our sound effects are the Amplify
Effect, Change Pitch, Change Speed, Change Tempo, Fade In, Fade Out, High Pass Filter, and Low
Pass Filter. These effects can be applied to whole sound waves or just selections within waves and
combinations of these effects can create some interesting sounds.

Figure 10-9.  The Audacity Effect Menu

227CHAPTER 10: Game Audio

The Amplify Effect does exactly what you think it might do. It allows us to 	
change the amplitude, and thus the volume, of a sound wave. We can either
increase or decrease the amplitude using this tool.

The Change Speed Effect allows us to alter the duration of a sound effect. 	
Shortening the effect’s play time has the effect of increasing the sound wave’s
frequency, making it appear to be played at a higher pitch. Lengthening a sound
reduces the frequency and makes the effect sound lower.

Change Pitch allows us to alter the frequency of the sound wave without 	
affecting its duration.

Change Tempo allows us to alter the length of the effect without altering its 	
frequency.

Note  These last two effects can add some noticeable clicks to the sound wave due to the way they process
the sound wave.

Fade In and Fade Out work exactly as they are named; they will linearly fade in 	
or fade out a selection of a sound effect. This is useful for effects which sound
too harsh at the beginning or which we would like to get louder or quieter over
time. They affect the amplitude of the selected section of the sound wave.

The Low Pass Filter allows us to decrease the amplitude of frequencies above 	
a certain specified frequency. This effect takes a rolloff value and a frequency
as its parameter. The cutoff frequency allows us to specify which frequencies
will not be affected by the filter. For example, if we specified 1000Hz as the
cutoff, no frequencies below 1000Hz would be reduced in amplitude. The rolloff
allows us to specify how aggressive the filter is. The options we can choose are
between 6dB and 48dB. The rolloff dB value is applied as a multiple based on
how far above the cutoff frequency the sound is. The higher the rolloff value, the
more the amplitude of high-frequency sounds is reduced.

The High Pass Filter works in exactly the opposite manner to the Low Pass 	
Filter. We can specify a frequency above which no sound waves are affected and
a rolloff value to specify how aggressively the filter is applied.

With our whirlwind tour of Audacity over, we can use these tools to create a basic jump sound effect.

Creating a Jump Sound Effect with Audacity
The only interaction our player will have with Droid Runner will be to make the character jump, so
this action is an ideal candidate for our first sound effect. This section is going to be a step-by-step
walk through the process of creating a sound which we can use to represent jumping.

1.	 From the Generate menu, select Chirp. In the Chirp Generator dialog box,
generate a Square Waveform with the parameters set as shown in Figure 10-10.

228 CHAPTER 10: Game Audio

Figure 10-10.  The Square Chirp Generator Dialog for the jump sound effect

Figure 10-11.  The Jump Effect square wave

The resulting sound wave should resemble the one in Figure 10-11.

229CHAPTER 10: Game Audio

2.	 In the Effect Menu, select High Pass Filter to run a high-pass filter over the
entire wave with the parameters from Figure 10-12.

3.	 Next, we select Amplify from the Effect Menu and amplify the sound wave by
-2.8dB, as shown in Figure 10-13.

4.	 Again, select High Pass Filter from the Effect menu and use the same
parameters as in Figure 10-11, that is, 6db rolloff and 1000Hz cutoff
frequency.

5.	 Select Effect ➤ Amplify and run another Amplify Filter with the amplification
parameter set to 1.2.

6.	 Run the Fade Out Filter by selecting Effect ➤ Fade Out; then run
Effect ➤ Change Speed with the parameter set to 60. At this point, your
sound wave should resemble the one shown in Figure 10-14.

Figure 10-12.  Jump High Pass Filter dialog

Figure 10-13.  Jump Amplify dialog

230 CHAPTER 10: Game Audio

At this point, we have an effect which is increasing in pitch over 0.6 seconds and sounds like
an effect which we could use for a jump. We’ll now use some more effects to embellish the sound
a little.

1.	 First off, duplicate the sound wave using the Duplicate option from the Edit
menu. Audacity should now resemble Figure 10-15.

Figure 10-14.  The first stage of the jump effect

231CHAPTER 10: Game Audio

2.	 Now use the Time Shift Tool from the Tools toolbar to move the second
sound wave over to the right. Drag it over until the selection start time reads
0.025s. The result of this step is shown in Figure 10-16.

Figure 10-15.  The duplicated jump effect

232 CHAPTER 10: Game Audio

3.	 Now, with both tracks selected, use the menu option Tracks ➤ Mix and
Render.

4.	 This duplicate, shift, and mix step has added a little bit of an echo to our
sound effect but has left the beginning of the sound a little sharp and the
effect as a whole a little harsh and pitchy. We’ll reduce the high-pitched tones
using Low Pass Filter from the Effect Menu with the parameters rolloff 6dB
and frequency 1200Hz. Once this has been done, run Effect ➤ Amplify with
7.3dB to boost the volume.

5.	 We’ll now boost the low end once more by applying Effect ➤ Bass Boost
with the parameters 600Hz and 12dB. We’ll now run Effect ➤ Low Pass
Filter with 6dB and 1200Hz parameters. After the last Low Pass Filter, the
amplitude is a little low, so we’ll boost it again by running Effect ➤ Amplify
with the parameter 3.2dB.

Figure 10-16.  The jump effect duplicate shift

233CHAPTER 10: Game Audio

6.	 Our effect now has a harsh double pop at the beginning left over from our
duplicate and shift, so we’ll use Effect ➤ Fade In to smooth it out a little.
Select the first 0.025s of the track using the Selection Tool from the Tools
toolbar, then select Effect ➤ Fade In. With the amplitude of the beginning
of the track fading in, we now boost the amplitude of the whole track using
Effect ➤ Amplify with the parameters 2.5dB and the Allow Clipping check
box ticked.

7.	 The final step is to use Effect ➤ Fade In on the first 0.75 seconds of the
track. The finished effect in Audacity should resemble the track shown in
Figure 10-17.

Figure 10-17.  The finished jump effect

We are now ready to export our sound file. We will be using the Ogg Vorbis audio format for our
sounds. OpenSL on Android supports loading and playing Ogg files without any real effort on our
part and they are compressed, so they are an ideal option for Android game development.

234 CHAPTER 10: Game Audio

The Ogg Vorbis audio format consists of two components. The Vorbis component specifies the
compression algorithm for the audio. This is a lossy compression format created by the Xiph.Org
foundation. The Ogg component specifies a container which dictates how the data is stored into files
for saving. Combined, these components create the Ogg Vorbis format.

The sound files should be placed in the Assets folder of your project. Use the File ➤ Export option to
export the audio into jump.ogg under assets/sounds as shown in Figure 10-18.

Figure 10-18.  The Ogg files in the Asset folder

Figure 10-18 also shows that we need an audio file named impact.ogg. This file is supplied with
the accompanying sample code which complements this chapter and can be found at the book’s
website, http://www.apress.com/9781430258308.

The impact effect was created by following the Audacity explosion audio tutorial, which can be found
in the Sound Effects section, http://wiki.audacityteam.org/wiki/Category:Tutorial#Sound_Effects,
via the explosion link from “How to create explosion and laser-gun sound effects in Audacity.”

Now that we have our sounds created and in place, we can write the code necessary to play the
effects from our native code.

http://Xiph.Org
http://www.apress.com/9781430258308
http://wiki.audacityteam.org/wiki/Category:Tutorial#Sound_Effects
http://scaryreasoner.wordpress.com/2008/04/13/video-tutorial-how-to-create-explosion-sound-effects-in-audacity/
http://scaryreasoner.wordpress.com/2008/08/02/how-to-make-laser-gun-sound-effects-in-audacity/

235CHAPTER 10: Game Audio

Playing Audio Using OpenSL ES
So far in this book, we have been using the Android NDK to create a game without using any Java
code whatsoever. We have used EGL to interact with Android’s windowing system, OpenGL,
to submit data to the GPU for rendering, and now we will use the native OpenSL ES API to submit
audio data for playback.

When we are displaying graphics, we have created the Renderer class to encapsulate the code and
separate our OpenGL code from our gameplay logic. We will be doing the same with our audio code.
The AudioManager class will be created to encapsulate the OpenSL code and simplify our gameplay
logic code going forward. This helps us to make a game engine and promote code reuse across
multiple projects.

Creating the AudioManager
The AudioManager class will be used to create an interface between the game logic and the OpenSL
ES API. Listing 10-1 shows the class declaration for the AudioManager class.

Listing 10-1.  The AudioManager Class Declaration

class AudioManager
 : public Singleton<AudioManager>
{
public:
 typedef unsigned int AudioHandle;
 static const AudioHandle INVALID_HANDLE = 0xFFFFFFFF;
 
private:
 AAssetManager* m_pAssetManager;
 
public:
 explicit AudioManager(AAssetManager* pAssetManager);
 virtual ~AudioManager();
 
 bool Initialize();
 void Destroy();
 
 AudioHandle CreateSFX(std::string& filename);
 void PlaySFX(AudioHandle handle);
 void DestroySFX(AudioHandle handle);
};
 
This simple interface will allow us to initialize and destroy OpenSL ES as well as create, play, and
destroy individual sound effects. We are using a typedef of an unsigned int to store handles to
specific audio events once they have been created.

The constructor to AudioManager takes a pointer to the Android NDK’s AAssetManager class and is
used to access the files which we added to the project previously. Listing 10-2 shows the code for
the constructor.

236 CHAPTER 10: Game Audio

Listing 10-2.  AudioManager’s Constructor

AudioManager::AudioManager(AAssetManager* pAssetManager)
 : m_pAssetManager(pAssetManager)
{
 Initialize();
}
 
The constructor simply calls the Initialize method. The destructor is shown in Listing 10-3.

Listing 10-3.  AudioManager’s Destructor

AudioManager::~AudioManager()
{
 Destroy();
}
 
As you may have expected, the destructor calls Destroy.

This covers the interface of the AudioManager class and the constructor and destructor. Now we will
look at the code necessary to initialize OpenSL.

An Introduction to OpenSL ES
OpenSL ES is another API provided by Khronos. Where OpenGL ES is their graphics library API for
embedded systems, OpenSL ES is their sound library API for embedded systems. The philosophies
between the two APIs are completely different due to the way that these APIs have developed.
OpenGL has a more C-like interface where we call functions; there are no objects involved in the API
itself. OpenSL, on the other hand, is an object-based API.

The main structure of the API involves creating instances of objects and instances of interface
objects which interact with those objects. The very first object which we must interact with is the
Engine object. The Engine object is used to create the other objects which we need for our sound
system. We need to add some fields to the AudioManager class before we can work with OpenSL.
These fields are added in Listing 10-4.

Listing 10-4.  Adding OpenSL Objects to AudioManager

class AudioManager
 : public Singleton<AudioManager>
{
public:
 typedef unsigned int AudioHandle;
 static const AudioHandle INVALID_HANDLE = 0xFFFFFFFF;
 
private:
 SLObjectItf m_engineObject;
 SLEngineItf m_engine;
 SLObjectItf m_outputMixObject;
 
 AAssetManager* m_pAssetManager;
 

237CHAPTER 10: Game Audio

public:
 explicit AudioManager(AAssetManager* pAssetManager);
 virtual ~AudioManager();
 
 bool Initialize();
 void Destroy();
 
 AudioHandle CreateSFX(std::string& filename);
 void PlaySFX(AudioHandle handle);
 void DestroySFX(AudioHandle handle);
};
 
We have added two SLObjectItf fields and a SLEngineItf and to AudioManager in Listing 10-4.
We look at how these are used in the Initialize method in Listing 10-5.

Listing 10-5.  AudioManager::Initialize

bool AudioManager::Initialize()
{
 SLresult result;
 
 result = slCreateEngine(&m_engineObject, 0, NULL, 0, NULL, NULL);
 assert(result == SL_RESULT_SUCCESS);
 
 result = (*m_engineObject)->Realize(m_engineObject, SL_BOOLEAN_FALSE);
 assert(result == SL_RESULT_SUCCESS);
 
 result = (*m_engineObject)->GetInterface(m_engineObject, SL_IID_ENGINE, &m_engine);
 assert(result == SL_RESULT_SUCCESS);
 
 result = (*m_engine)->CreateOutputMix(m_engine, &m_outputMixObject, 0, NULL, NULL);
 assert(result == SL_RESULT_SUCCESS);
 
 result = (*m_outputMixObject)->Realize(m_outputMixObject, SL_BOOLEAN_FALSE);
 assert(result == SL_RESULT_SUCCESS);
 
 return result == SL_RESULT_SUCCESS;
}
 
There aren’t many lines of code involved in initializing OpenSL for basic use in the Android NDK.
First off, we call slCreateEngine. This method is passed the address of m_engineObject as its
first parameter. The remaining parameters are all default values, as we do not require any specific
functionality from the engine object.

OpenSL objects are created in two steps. The first step is to tell the OpenSL object which features
you would like it to support. Once this has been done, we then instruct OpenSL to formally
create the object; this is called realization and is done with the Realize method. After calling
slCreateEngine, we instruct OpenSL to realize the engine.

Once the engine has been created and realized, we can get the engine interface. You can see this
being done with a call to GetInterface on m_engineObject. We pass the object as the first parameter.

238 CHAPTER 10: Game Audio

The second parameter, SL_IID_ENGINE, tells OpenSL which interface we would like to retrieve for the
object, and the last parameter is the field where we would like to store the interface.

We now use the engine interface to create an output mix object. The output mix is exactly what
its name suggests. It is the object responsible for receiving the audio, mixing it, and playing it out
through the operating system and eventually the device’s speakers. Again, once the output mix
object is created it must be realized.

That’s all there is to initializing a basic setup for OpenSL ES on Android. We have an engine object,
an engine interface, and an output mix object. Now we will look at the code required to create
sounds from our Ogg files.

Creating OpenSL ES Player Objects for Files
At the beginning of this chapter, we walked through the process of creating sound effects and saving
them in the Ogg Vorbis audio format. In this section, we are going to take a look at how we can use
these sound effects in our game.

Before we can play a sound effect, we must create an audio player object which can reference the
file containing the sound and retrieve a play interface from the object.

We are likely to want to create multiple player objects, so we begin by adding a PlayInstance struct
and an unorderer_map to the AudioManager class in Listing 10-6.

Listing 10-6.  Adding PlayInstance to AudioManager

class AudioManager
 : public Singleton<AudioManager>
{
public:
 typedef unsigned int AudioHandle;
 static const AudioHandle INVALID_HANDLE = 0xFFFFFFFF;
 
private:
 SLObjectItf m_engineObject;
 SLEngineItf m_engine;
 SLObjectItf m_outputMixObject;
 
 AAssetManager* m_pAssetManager;
 
 struct PlayInstance
 {
 SLObjectItf m_playerObject;
 SLPlayItf m_playerPlay;
 };
 typedef std::tr1::unordered_map<AudioHandle, PlayInstance*> PlayInstanceMap;
 typedef PlayInstanceMap::iterator PlayInstanceMapIterator;
 
 PlayInstanceMap m_playInstances;
 

239CHAPTER 10: Game Audio

public:
 explicit AudioManager(AAssetManager* pAssetManager);
 virtual ~AudioManager();
 
 bool Initialize();
 void Destroy();
 
 AudioHandle CreateSFX(std::string& filename);
 void PlaySFX(AudioHandle handle);
 void DestroySFX(AudioHandle handle);
};
 
Our sound effect instances will be stored in the structure represented by PlayInstance. To facilitate
having multiple sound effects, we store instances of PlayInstance in an unordered_map with a pair
consisting of AudioHandle and a pointer to a PlayInstance object. We also define a type for the
iterator to the map and create an instance of the map in m_playInstances.

Listing 10-7 shows the code for AudioManager::CreateSFX which creates a new instance of a sound
effect.

Listing 10-7.  AudioManager::CreateSFX

AudioManager::AudioHandle AudioManager::CreateSFX(std::string& filename)
{
 AudioHandle handle = INVALID_HANDLE;
 
 AAsset* asset = AAssetManager_open(
 m_pAssetManager,
 filename.c_str(),
 AASSET_MODE_UNKNOWN);
 
 if (asset != NULL)
 {
 handle = Hash(filename.c_str());
 
 PlayInstanceMapIterator iter = m_playInstances.find(handle);
 if (iter == m_playInstances.end())
 {
 PlayInstance* pNewInstance = new PlayInstance();
 
 if (pNewInstance)
 {
 std::pair<AudioHandle, PlayInstance*> newInstance(handle, pNewInstance);
 std::pair<PlayInstanceMapIterator, bool> addedIter =
 m_playInstances.insert(newInstance);
 }
 
 off_t start;
 off_t length;
 int fd = AAsset_openFileDescriptor(asset, &start, &length);
 assert(0 <= fd);
 AAsset_close(asset);
 

240 CHAPTER 10: Game Audio

 // configure audio source
 SLDataLocator_AndroidFD loc_fd = {
 SL_DATALOCATOR_ANDROIDFD,
 fd,
 start,
 length};
 
 SLDataFormat_MIME format_mime = {
 SL_DATAFORMAT_MIME,
 NULL,
 SL_CONTAINERTYPE_UNSPECIFIED};
 
 SLDataSource audioSrc = {&loc_fd, &format_mime};
 
 // configure audio sink
 SLDataLocator_OutputMix loc_outmix = {
 SL_DATALOCATOR_OUTPUTMIX,
 m_outputMixObject};
 
 SLDataSink audioSnk = {&loc_outmix, NULL};
 
 // create audio player
 const unsigned int NUM_INTERFACES = 1;
 const SLInterfaceID ids[NUM_INTERFACES] = {SL_IID_PLAY};
 const SLboolean req[NUM_INTERFACES] = {SL_BOOLEAN_TRUE };
 SLresult result = (*m_engine)->CreateAudioPlayer(
 m_engine,
 &pNewInstance->m_playerObject,
 &audioSrc,
 &audioSnk,
 NUM_INTERFACES,
 ids,
 req);
 assert(SL_RESULT_SUCCESS == result);
 
 // realize the player
 result = (*pNewInstance->m_playerObject)->Realize(
 pNewInstance->m_playerObject,
 SL_BOOLEAN_FALSE);
 assert(SL_RESULT_SUCCESS == result);
 
 // get the play interface
 result = (*pNewInstance->m_playerObject)->GetInterface(
 pNewInstance->m_playerObject,
 SL_IID_PLAY,
 &pNewInstance->m_playerPlay);
 assert(SL_RESULT_SUCCESS == result);
 (*pNewInstance->m_playerPlay)->RegisterCallback(
 pNewInstance->m_playerPlay,
 play_callback,
 NULL);

241CHAPTER 10: Game Audio

 (*pNewInstance->m_playerPlay)->SetCallbackEventsMask(
 pNewInstance->m_playerPlay,
 SL_PLAYEVENT_HEADATEND);
 }
 }
 
 return handle;
}
 
We begin the CreateSFX method by using the Android NDK’s AAssetManager to attempt to open the
file supplied in the filename method parameter. AAssetManager_open will return a pointer to an Asset
if the file exists.

We then create a hash of the filename using the method Hash. Hash returns an SDBM hash of the
filename. The code for the Hash method is covered in Listing 10-9.

After creating the hash, CreateSFX tries to find if this sound effect has already been added to the
map by calling the find method on m_playInstances. This means that any sound effect we would
like to use in the game must have a unique filename.

If this is a new sound effect, we create a new instance of PlayInstance and create a pair with the
hash handle and the pointer, pNewInstance. This new pair is added to m_playInstances.

The next step required is to get a file descriptor for the opened Asset. We do this by calling AAsset_
openFileDescriptor. This method also supplies an offset to the start of the file and the length of the
file. Once we have our file descriptor, we call AAsset_close on asset.

We now have all of our dependencies in check to be able to create an audio player object using
OpenSL. The first dependency required by the audio player is the source of the audio data. We
inform OpenSL where it can find the data for this sound effect by creating a SLDataLocator_
AndroidFD object. This object stores the fd, start, and length variables we obtained when we called
AAsset_openFileDescriptor.

We must also supply OpenSL with a MIME type for the file. MIME types traditionally are used when
creating websites to determine the type of file which has been transferred from the server. Luckily for
us, we can pass SL_CONTAINERTYPE_UNSPECIFIED and OpenSL will determine the type from the file.
We could have specified SL_CONTAINERTYPE_OGG if we knew we would only ever use Ogg files, but
you may choose to use MP3 files or some other supported media format. Both loc_fd and format_mime
are then bundled into the structure audioSrc, which is of type SLDataSource.

While SLDataSource specifies the input for our sound effect, we need to create a SLDataSink object
to specify the output. Our output object will be represented by SLDataSink and it takes a single
element of type SLDataLocator_OutputMix. The second field is left empty. The variable loc_outmix is
used to specify our m_outputMixObject as the output receiver.

We’re now ready to create the player object for this effect. OpenSL supports multiple types of
interfaces for player objects but we are interested only in the Play interface. NUM_INTERFACES is
used to specify that we want a single interface. ids stores the identifier for the Play interface, and
SL_IID_PLAY and req store SL_BOOLEAN_TRUE. req is used to inform OpenSL that the Play interface is
not optional.

The engine interface is then used to create the player object. This is done using the method
CreateAudioPlayer. If this call is successful, we will then have a reference to a player object stored

242 CHAPTER 10: Game Audio

in pNewInstance->m_playerObject. As with all of our OpenSL objects, we then call Realize to finalize
the creation process.

With our player object realized, we can obtain the interface to allow us to play our sound effect.
We do this by calling GetInterface with SL_IID_PLAY as the second parameter.

We’re not quite finished with CreateSFX. We also want to know when the sound effect has finished
playing and to specify a function to be called when this event takes place. We register the callback
method play_callback using RegisterCallback called on m_playerPlay. Callbacks can also have
masks specified to ensure that the callbacks are triggered only for events which we are interested in.
In this case, we mask for the SL_PLAYEREVENT_HEADATEND. This will cause the play_callback function
to be called whenever the sound effect reaches the end of its playback. There is more code here for
creating a new instance of a player object than for setting up OpenSL itself, but we are finally done
with CreateSFX. Listing 10-8 looks at the play_callback function.

Listing 10-8.  play_callback

void SLAPIENTRY play_callback(SLPlayItf player, void *context, SLuint32 event)
{
 if(event & SL_PLAYEVENT_HEADATEND)
 {
 (*player)->SetPlayState(player, SL_PLAYSTATE_STOPPED);
 }
}
 
There isn’t much to play_callback. SLPlayItf interfaces do not automatically stop themselves when
they finish playing and this prevents them from being replayed later. To ensure this does not happen,
we use the SetPlayState method to set our player to the SL_PLAYSTATE_STOPPED state.

Now we’ll go back and look at the Hash method we used in this section.

SDBM Hashes
Our unordered_map requires unique keys to be used to identify objects stored in the map. The SDBM
hash function allows us to turn the filenames of the sound effects into unique identifiers. The code
which achieves this is described in Listing 10-9.

Listing 10-9.  The SDBM Hash Function

inline unsigned int Hash(const std::string& key)
{
 unsigned int result = 0;
 
 for (unsigned int i=0; i<key.length(); ++i)
 {
 int c = key[i];
 result = c + (result << 6) + (result << 16) - result;
 }
 
 return result;
}
 

243CHAPTER 10: Game Audio

Hashing is a fast operation on small strings and it creates unsigned integer results which are very
fast to compare in our game loop; this is why we hash once when we create new sound effects then
use the hashed values for lookups. The key to the hashes generating unique values for a string is
in the line where the current character is used in the result. The hash is built iteratively with each
character being used to calculate the current value of the hash. It is possible to have clashes (where
two strings create the same hash) but very rare, especially for short strings such as filenames.

We’ve now covered all of the code which was necessary to create a new instance of a sound effect;
we will now look at how to play sounds.

Playing Sounds Using OpenSL
Playing sounds with OpenSL is very straightforward once the player object has been created and the
play interface obtained.

The PlaySFX method is simple. It gets the PlayInstance object from m_playInstances and then calls
SetPlayState twice: once to stop the sound if it is already playing and once again to set the state to
SL_PLAYSTATE_PLAYING.

Listing 10-10 shows the code for PlaySFX.

Listing 10-10.  AudioManager::PlaySFX

void AudioManager::PlaySFX(AudioHandle handle)
{
 PlayInstanceMapIterator iter = m_playInstances.find(handle);
 if (iter != m_playInstances.end())
 {
 SLPlayItf pPlayInstance = iter->second->m_playerPlay;
 if (pPlayInstance != NULL)
 {
 // set the player's state
 (*pPlayInstance)->SetPlayState(pPlayInstance, SL_PLAYSTATE_STOPPED);
 (*pPlayInstance)->SetPlayState(pPlayInstance, SL_PLAYSTATE_PLAYING);
 }
 }
}
 
The last task for the AudioManager is to clean up unused sounds and shut down the system.

Cleaning Up Sounds
Once we are finished with a sound effect, it’s a good idea to destroy the resources which it takes up.
We do this for sound effects by calling DestroySFX. The code for this is shown in listing 10-11.

Listing 10-11.  AudioManager::DestroySFX

void AudioManager::DestroySFX(AudioHandle handle)
{
 PlayInstanceMapIterator iter = m_playInstances.find(handle);
 if (iter != m_playInstances.end())

244 CHAPTER 10: Game Audio

 {
 PlayInstance* pInstance = iter->second;
 if (pInstance && pInstance->m_playerObject)
 {
 (*pInstance->m_playerObject)->Destroy(pInstance->m_playerObject);
 pInstance->m_playerObject = NULL;
 pInstance->m_playerPlay = NULL;
 }
 
 m_playInstances.erase(iter);
 }
}
 
In DestroySFX, we retrieve the PlayInstance object for the supplied handle, verify that the object and
m_playerObject are valid, and then call Destroy on m_playerObject.

We also free our resources in the Destroy method which is called from the destructor. Listing 10-12
shows this code.

Listing 10-12.  AudioManager::Destroy

void AudioManager::Destroy()
{
 for (PlayInstanceMapIterator iter = m_playInstances.begin();
 iter != m_playInstances.end();
 ++iter)
 {
 PlayInstance* pInstance = iter->second;
 if (pInstance && pInstance->m_playerObject)
 {
 (*pInstance->m_playerObject)->Destroy(pInstance->m_playerObject);
 pInstance->m_playerObject = NULL;
 pInstance->m_playerPlay = NULL;
 }
 }
 m_playInstances.clear();
 
 if (m_outputMixObject != NULL)
 {
 (*m_outputMixObject)->Destroy(m_outputMixObject);
 m_outputMixObject = NULL;
 }
 
 if (m_engineObject != NULL)
 {
 (*m_engineObject)->Destroy(m_engineObject);
 m_engineObject = NULL;
 m_engine = NULL;
 }
}
 

245CHAPTER 10: Game Audio

AudioManager::Destroy cleans up all of our OpenSL resources. We first iterate over all of our sound
effects in m_playInstances and call Destroy on each. We then also free up m_outputMixObject and
m_engineObject.

With all of our AudioManager code complete, we can now add some sound effects to our game logic.

Adding Sound Effects to Droid Runner
Our first sound effect is a jump sound, so we need to add a new event for when the player jumps.
We register this new event in the DroidRunnerLevel constructor shown in Listing 10-13.

Listing 10-13.  Registering PLAYERJUMP_EVENT in DroidRunnerLevel Constructor

DroidRunnerLevel::DroidRunnerLevel()
 : m_pPlayerMovementComponent(NULL)
 , m_pPlayerTransformComponent(NULL)
 , m_pPlayerCollisionComponent(NULL)
 , m_levelEnd(0.0f)
 , m_initialized(false)
 , m_levelBuilt(false)
{
 m_levelObjects.reserve(64);
 
 RegisterEvent(PLAYERJUMP_EVENT);
}
 
With our event registered, we now create our sound effects and attach the messages in
DroidRunnerLevel::Initialize. Listing 10-14 shows how to create two sound effects: a jump effect
and an explosion effect that represents the impact of a player hitting a wall or an AI character.

Listing 10-14.  DroidRunnerLevel::Initialize

 .
 .
 .
 CollisionManager::GetSingleton().AddCollisionBin();
 
 BuildLevelData();
 
 Renderer* pRenderer = Renderer::GetSingletonPtr();
 if (pRenderer)
 {
 pRenderer->AddShader(&m_shader);
 }
 
 AudioManager& audioManager = AudioManager::GetSingleton();
 std::string jumpEffectName("sounds/jump.ogg");
 m_jumpHandle = audioManager.CreateSFX(jumpEffectName);
 AttachEvent(PLAYERJUMP_EVENT, *this);
 

246 CHAPTER 10: Game Audio

 std::string explosionEffectName("sounds/impact.ogg");
 m_explosionHandle = audioManager.CreateSFX(explosionEffectName);
 
 m_initialized = true;
}
 
We look at where we play both of these sound effects in Listing 10-15 and the method
DroidRunnerLevel::HandleEvent.

Listing 10-15.  Playing Sounds in DroidRunnerLevel::HandleEvent

void DroidRunnerLevel::HandleEvent(Event* pEvent)
{
 if (pEvent->GetID() == POSTUPDATE_EVENT)
 {
 bool endLevel = false;
 
 if (m_pPlayerTransformComponent)
 {
 if (m_pPlayerTransformComponent->GetTransform().GetTranslation().m_x >
 m_levelEnd)
 {
 endLevel = true;
 }
 }
 
 if (m_pPlayerMovementComponent && m_pPlayerMovementComponent->IsDead())
 {
 AudioManager* pAudioManager = AudioManager::GetSingletonPtr();
 if (pAudioManager)
 {
 pAudioManager->PlaySFX(m_explosionHandle);
 }
 endLevel = true;
 }
 
 if (endLevel)
 {
 CleanLevel();
 BuildLevelData();
 }
 
 if (m_pPlayerCollisionComponent)
 {
 CollisionManager::GetSingleton().TestAgainstBin(
 0,
 m_pPlayerCollisionComponent);
 }
 }

247CHAPTER 10: Game Audio

 else if (pEvent->GetID() == PLAYERJUMP_EVENT)
 {
 AudioManager* pAudioManager = AudioManager::GetSingletonPtr();
 if (pAudioManager)
 {
 pAudioManager->PlaySFX(m_jumpHandle);
 }
 }
}
 
The new code in HandleEvent plays the two sound effects. The first plays m_explosionHandle
when the player has died; the second plays the m_jumpHandle when the player jumps. Our new
PLAYERJUMP_EVENT is sent from the method MovementComponent::HandleEvent. We look at this in
Listing 10-16.

Listing 10-16.  Updating MovementComponent::HandleEvent

void MovementComponent::HandleEvent(Event* pEvent)
{
 if (m_isDead)
 {
 return;
 }
 
 if (pEvent->GetID() == JUMP_EVENT)
 {
 TransformComponent* pTransformComponent =
 component_cast<TransformComponent>(GetOwner());
 assert(pTransformComponent);
 if (pTransformComponent &&
 m_isSupported)
 {
 static const float JUMP_ACCELERATION = 220.0f;
 m_acceleration.m_y = JUMP_ACCELERATION;
 SendEvent(PLAYERJUMP_EVENT);
 }
 }
 else if (pEvent->GetID() == UPDATE_EVENT)
 .
 .
 .
 
Our one new line in this method is to call SendEvent on PLAYERJUMP_EVENT. Now every time this
method is called, our jump effect will be triggered.

248 CHAPTER 10: Game Audio

Summary
We have now covered all of the basics required to create a game engine when using the Android
NDK. This chapter covered adding audio to our engine using the OpenSL ES API.

We have looked at the basics of the physics of sound to try to understand how we can alter the
frequency and amplitude of basic sound waves to create sound effects using Audacity. Audacity is
an excellent free tool and has many different filters which can be applied to create all sorts of sound
effects.

Once we had created some sound effects, we looked at the code for initializing OpenSL ES. While
Android provides a Java interface for playing sound effects, OpenSL ES provides the native interface
for doing the same.

This chapter has seen the completion of the core functionality of the game engine framework which
we have been creating in this book. We now have a renderer which uses OpenGL ES 2.0 to create
a 3D scene using geometry, shaders, textures, lighting, and perspective projection. The engine
also has functionality to support audio playback and modern features such as a component-based
system for creating game objects and an event-based system for communicating between different
objects and systems.

This engine will give you a good foundation to create a shippable title for Android. The next chapter
will look at how we can use the Google Developer Console to do just that.

249

Chapter 11
Self-Publishing 101

Once you have built your app and are happy with the contents and quality, it’s time to publish your
work on the Google Play Store. The Play Store is Google’s official distribution network for Android
developers. It’s worth noting that it’s not the only option but it is definitely the easiest and most
visible option for distributing all types of apps on Android.

Distributing apps via the Play Store is not free; like any retailer, Google makes money from every app
sold. Google’s fee is 30% of the sales price after tax. It’s worth bearing this in mind whenever you
are doing any calculations with regards to working out how much to charge for your app.

Getting ready to sell your app is an exciting time but it can also be daunting. There are many tasks
which need to be completed before your app can show up in the Play Store. The purpose of this
chapter is to take a look at what those are.

The Google Play Developer Console
Before you can get your app on the Google Play Store you must register as a developer.
Google charges a one-time fee of $25 to register as a developer and obtain a Google Play
Developer Console account. The page to sign up can be found here:
https://support.google.com/googleplay/android-developer/answer/113468.

The Google Play Developer Console is a full-featured web app to control the distribution of your app.
This is where you will upload your app, upload updates, set pricing, upload marketing material, and
see your number of downloads and revenue.

Before we can upload any apps to the Developer Console we must create secure, signed versions of
our app.

Keys, Keystore, and Digital Signatures
The Play Store uses digital signatures to verify the authenticity of apps which are uploaded via the
Google Play Developer Console. The basis of the signature process lies in the public-private key
system which is also used in some forms of encryption.

https://support.google.com/googleplay/android-developer/answer/113468
https://support.google.com/googleplay/android-developer/answer/113468

250 CHAPTER 11: Self-Publishing 101

Keys used for these purposes come in pairs: the public key and the private key. The private key is a
file which you must keep secure. Private keys allow you to create encrypted messages or signatures
which you can then share with others. The public key is a file which you can share with others to
allow them to unecrypt this data. In the Android ecosystem, the APKs themselves are simple zip
files which can be opened by any capable program. These are not encrypted but the application will
have a digital signature included. This signature includes data which is encrypted with the private
key you create and includes the public key so that others can read the signature. This two-step
process allows the Android OS on a device to validate that an app is legitimate. If the signature
cannot be read using the supplied public key, or if the data it contains cannot be recreated from the
data contained within the APK, the OS can be sure that the app is not legitimate. The exact process
which Google uses to create signatures for Android APKs is not available to the public; this in itself is
an added layer of security.

Keystores are the files used to provide public-private key signatures for use with your APKs. A keystore
may contain multiple aliases; each alias represents a public-private key pair. The entire keystore is
also password encrypted. This configuration allows you to create different public-private key pairs
for each app which you plan to release and to easily manage these keys by storing them within a
single keystore.

At this point, you may be wondering why the applications need to be signed in this way. Essentially it
is a method for securing your identity. By signing the applications with your private key, of which you
have the only unique copy, Google can trust that any applications uploaded using this key are new
versions of the same application and safe to upload to users. This prevents others from being able to
hijack your applications and upload compromised APKs to the store.

Keys used to encrypt data being transmitted via the Internet are generally issued by an authorized
certificate authority. Certificate authorities are organizations which provide third-party verification of
public keys. Web browsers contain built-in lists of certificate authorities who are on trusted lists and
are contacted by the program to verify that a key is legitimate and should to be used. Android does
not require that APKs be signed by keys provided by a certificate authority. It is acceptable to create
your own keys which you generate using the tools supplied with the Android SDK. You can only be
sure that your APKs are safe, however, if you properly secure your own keys. Make sure that you
keep them in a safe location and never share your keystore or your passwords.

Signing an APK for the Play Store
When you create an app for the Play Store, you must package it into an Android application package
file (APK), which is Google’s distribution format. This format is Google’s proprietary format but is
essentially a zip file and can be opened using a utility such as 7-Zip.

Every time you have built an app during the process of reading through this book, the ADT plug-in
for Eclipse has been automatically creating APKs and transferring them to your device. All Android
apps must be signed, the ADT plug-in signs these debug APKs with a debug key. The Google Play
Developer Console will show an error if you try to upload an APK signed with a debug key to the
Play Store.

251CHAPTER 11: Self-Publishing 101

1.	 To be able to upload an app to the Play Store, we must create a version which
is signed with a unique key. The Android SDK contains methods for achieving
this and the ADT plugin provides an easy-to-use wizard to aid in this process.
The following instructions will walk you through the process of creating an
APK signed with a unique key which you can use to upload to the Google
Play Store. Run Eclipse and open your project in the Project Explorer window.

2.	 Right-click your project folder and select the Export Signed Application
Package … option under the Android Tools menu. The menu option is shown
in Figure 11-1. Selecting this option will cause the Export wizard to begin to
create your signed APK.

Figure 11-1.  The Export Signed Application Package option

3.	 In the wizard, select the project which you are going to use to export the
APK. If you right-clicked the project you would like to export, the name
should already be entered. Figure 11-2 shows the Export Android Application
window.

252 CHAPTER 11: Self-Publishing 101

4.	 Click Next; you will be taken to the Keystore Selection window. Figure 11-3
shows this dialog.

Figure 11-2.  The Export Android Application window

253CHAPTER 11: Self-Publishing 101

5.	 Select the radio button for “Create new keystore” if this is the first time you
have exported an Android application. Otherwise, you will want to select
“Use existing keystore.”

Figure 11-4 shows the Key Creation window. This window is used to enter the information used to
identify the owner of the key.

Figure 11-3.  The Keystore Selection window

254 CHAPTER 11: Self-Publishing 101

The Key Creation window requires that you supply some detailed information about the owner of the
keystore.

The alias is most likely to be the name of the company or organization which is releasing the game.

A password is also required for the alias.

Keys expire; therefore, selecting a long-validity period is essential to ensure that your
keystore’s validity does not expire while you are likely to still be using it. Google recommends
a minimum validity period of 25 years in its documentation, which can be found at
http://developer.android.com/tools/publishing/app-signing.html. An expired key does not
prevent your app from being used on user’s devices but it does prevent you from issuing updates to
your app. If your key were to expire, you would need to register a new app to issue updates.

Then, the personal details for an employee or company director should be entered. The candidate
for this is an easy selection in a one-person operation.

Figure 11-5 shows the last step of the export process, which is to select an output location for your
exported APK.

Figure 11-4.  The Key Creation window

255CHAPTER 11: Self-Publishing 101

This last window performs some last-minute error checking on your keystore and will list any errors
which are found. More often than not, there will be no errors, as in Figure 11-5.

Once you click Finish, your APK will be written to your selected location and will be ready for upload
to the Play Store Developer Console.

Uploading to the Google Play Developer Center
The Google Play Developer Console is your portal to the Play Store. This web app is provided
by Google to allow developers easy access to their distribution channel without needing to form
complicated publishing agreements. This is ideal for small developers, as it allows self-publishing
without needing an external relationship with a publishing partner.

The first step in having your game appear on the Play Store is to create a new application
in the Developer Console. The Developer Console can be found at the following URL:
http://play.google.com/apps/publish.

When you first log in, your console will be empty and appear as it does in Figure 11-6.

Figure 11-5.  The Perform Checks window

http://play.google.com/apps/publish
http://play.google.com/apps/publish

256 CHAPTER 11: Self-Publishing 101

At this point, we must create a new application.

1.	 We do this by clicking the Add New Application button. Doing this presents
us with the Add New Application dialog, shown in Figure 11-7.

Figure 11-7.  The Add New Application dialog

Figure 11-6.  Google Play Developer console All Applications

2.	 This dialog allows us to select the default language for our application and
the app’s title. There are two options which we can now take: Upload APK
and Prepare Store Listing. Figure 11-8 shows the screen which appears after
selecting Upload APK. This screen now consists of the title for our app and
screens which allow us to control our Store Listing, Pricing and Distribution,
In-app products, and Services and APIs.

257CHAPTER 11: Self-Publishing 101

3.	 When you select Upload, the web application will present a dialog where you
can drag and drop your APK file. Once you have done this, you will see the
progress bar shown in Figure 11-9.

Figure 11-8.  The APK screen

Figure 11-9.  Upload APK progress bar

Once the APK has finished uploading, your app will be in the draft state. This means that it has been
set up and configured on the Play Store but not yet “live.”

Before you can make your app appear in the Play Store listings on users’ devices, you must finishing
configuring the details needed to list the app in the store. The Developer Console provides a list of
this information in the Why Can’t I Publish dialog box. We look at this list in Figure 11-10.

258 CHAPTER 11: Self-Publishing 101

As you can see, there are quite a few steps which must still be completed before you can push your
app into the live Play Store environment.

The icon and screenshots are essential to your listing. These attract customers and should be
created with a purpose of showing your game in its best light. You should take a look at some of the
listings of the most popular apps and games and try to determine if there are any particular trends
which may be contributing to their success. It’s also important to select the appropriate category for
your app and a description which entices people to play your game.

These details are supplied via the Store Listing screen. The title of your app can be changed here and
can consist of up to 30 characters. It’s also possible to provide translations for different languages.

Figure 11-10.  The Why Can’t I Publish dialog

259CHAPTER 11: Self-Publishing 101

Your description can be up to 4,000 characters long. It’s important to provide an enticing
introduction to your app in the description. The description will convey the type of gameplay and
experience the player can expect to have when downloading your app. It’s also possible to provide
a list of the latest updates which are included in your app if this is not the first release in the recent
changes section.

The graphic assets are vitally important to the success of your app. While not all players will read
the lengthy description of your app, almost all users will look at the screenshots which you provide.
It’s important to provide screenshots which show the graphics of your game in their best light and
also some screenshots which show the gameplay of your app. Google has also provided a link to
a Youtube video for your game. If you have created a trailer for the app, it would be a very good
idea to upload this to Youtube and include the link with your store listing. The Google Play Store
app will automatically embed the Youtube video you supply into your store listing. Providing all of
the requested assets at any given time is important if you wish to be featured in the Play Store. It’s
important to periodically check the required assets, as Google is known to change and update these
to suit different types of devices and resolutions. If the Play Store app or website changes, then you
will be less likely to be featured if you have not provided the assets Google needs to show your app
off on their new layout.

Selecting the appropriate category is important for your game. This category determines where in
the Play Store your app will be listed. Selecting an accurate category will help people find your game
when they are looking for apps of that type. You can expect your game to be more successful due to
the category properly targeting your users.

It’s likely that you will have a website to promote your company or your app. Google requires that
you provide a URL to your privacy policy, so it’s a good idea to think about what you would like this
important declaration to contain. Sites such as http://www.docracy.com/mobileprivacy/ can be
used as a good starting point, but it’s important that your privacy policy covers all of the ways in
which you may be using your users data.

Monetization
The Developer Console is also the place where you will set up the monetization strategy for your
app. The traditional business model where apps are sold for a price is available, and you can set the
price for your app in the Pricing and Distribution section of the Google Play Developer Console.

When setting a price, you initially set the default price for your application in your own local currency.
This is the price for your app excluding local sales tax. You then have the choice to automatically
convert the price of the app to all of the foreign markets which you choose to support. The Google
Play Developer Console currently supports distribution in 135 different countries. It is also possible
for you to set specific prices for some of these countries in their local currencies. Certain countries
also support limiting distribution to specific mobile network operators.

Caution  It’s also entirely possible to set your app to be free. Make sure that this is something which you
wish to do before finalizing the setting; changing your app’s price to free cannot be reversed.

http://www.docracy.com/mobileprivacy/

260 CHAPTER 11: Self-Publishing 101

Another option for making money with your app is to support in-app purchases. There are two types
of in-app purchases, permanent purchases and consumables. Downloadable content packs, which
include levels, weapons, characters, or cars, can be considered as permanent purchases. With
this type of purchase, a player pays once for the content and it permanently belongs to them. The
other type of purchase is consumables. An example of this may be health potions. A user may buy
a potion but once it is used they would be required to buy another. Getting the balance of cost and
benefits of in-app purchases is a delicate and complicated topic but is one which can reap rewards
for a developer who gets it right. The decisions you eventually make with regards to how much to
charge will include factors such as the cost of development, your expected return, and also how
much you believe customers will be willing to spend for the product you have produced. There are no
easy methods to determine how you should make these decisions; however, an excellent starting point on
the theory of pricing can be found at http://book.personalmba.com/pricing-uncertainty-principle/.

Last but not least are subscriptions. Google now offers subscription services and billing via the Play
Store. This could allow developers to create massively multiplayer online (MMO)–type experiences
on mobile platforms. If you believe your game could sustain players for a considerable period of
time, then this may be a viable option.

Once you have released your game and begin having users make purchases, data will begin to
appear in the Financial Reports sections of the Play Store. This allows you to track the revenue
which your app is making. You can use this section to determine if new features, updates, or
publicity is making any impact on the revenue generated by your app.

App Quality
The Google Play Developer Console is also able to provide you with crash data from your application,
data on App Not Responding notifications to users, and other recommendations for optimizing your
store listing.

It’s important to take any suggestions made by the Developer Console seriously. These
recommendations and notices help indicate areas where your application may not meet the standards
of other applications, thus reducing the rating of your app. High ratings and high quality listings are key
to gaining traction among users and possibly even being featured in the Play Store. Being featured by
Google in the Play Store will make a massive difference to the earning potential of your game.

The quality of your applications can be improved over time in a number of ways, and this can tie
into an overall strategy for increasing your user base and revenues. In the past, it was common for
game developers to develop every part of a game title before launch. This was especially true for
cartridge-based games and disc-based games, which were distributed on physical media.

Today, the Internet has opened brand-new methods of game development for developers. The
Internet has allowed developers to create games gradually by building minimum viable versions of
their games and releasing them to the public. Feedback is then received from people who play the
games and developers can follow paths of development which their users have found interesting.

A perfect current example of this is Minecraft. Minecraft was developed as a very minimal product
in the initial stages. Each new release has added more and more content and gameplay elements
to build the product up into something which is a modern phenomenon and a massively successful
title. While it won’t be possible for every game to reach the levels of success which Minecraft has

http://book.personalmba.com/pricing-uncertainty-principle/

261CHAPTER 11: Self-Publishing 101

achieved, it is a business model and development practice which smaller, independent studios
should be looking to emulate as opposed to developing full titles with large budgets and lots of risk.

To support this type of development, I recommend using a three-part game versioning system which
categorizes builds using the major, minor, and maintenance method. An example of such a version
number would be 1.0.1.

The major version of the preceding build is 1.0 should be used for prerelease builds such as alpha
and beta builds which are given to internal or external testers. Build 1 should be the first public
release of a title.

The minor version here is 0. Minor versions are generally useful for updates which include new
content. The mechanics and structure of the game are likely the same between minor versions, but
new content has been added which denotes that the game is a reasonable update over the previous
minor revision.

The maintenance number should be used to indicate versions which contain only bug fixes. It is
common for titles to ship with bugs. Some of these bugs will be serious and some will be minor, but
it is good for developers to issue updates to resolve bugs which are frustrating users. Players have
taken to using the Google Play 5-star rating system to encourage developers to fix bugs in their
games. If you take a look at the reviews for any top title in the Play Store, it won’t be long before you
come across some comments from users letting the developer know that they would score the game
with a higher score if a certain bug which frustrates them could be fixed.

The last point is especially important to game developers. Google will feature apps which are
popular, are of high quality, and receive good reviews. Any developer who would like to have
their game featured in the Play Store by Google should absolutely be responding to the feedback
supplied by Google in the Developer Console and to the reviews of users who may be unhappy with
a certain aspect of your game.

Summary
This chapter has covered the final step of taking an app from development to distribution. We have
looked at the process of signing an APK for distribution and creating a keystore to uploading to the
Developer Console. Lastly, we looked at the options available to developers to monetize their game
products.

Shipping a product is not the end of the journey for a game title. For independent, small developers
finishing the game code and putting the app on sale is just the end of the first stage of the game
business cycle. At this point it’s important to begin to learn what players of the game think and feel
about the product and make changes and updates to the app on a regular basis to maintain interest
and create a dedicated following.

Some of the biggest games on the Android platform do not follow the old style of game development,
where the game is finished up front then put out for sale. It’s more common now for successful
games to ship and then grow to a large committed user base.

It’s an exciting time to be an independent developer. Services such as the Play Store allow anyone
with the skill and determination to create commercially successful games without necessarily having
a large budget or team.

263

Appendix A
Using the Android Development
Environment

Google provides the Android SDK to developers to allow them to create apps for the Android
platform. The SDK contains all of the tools and libraries necessary to create applications which can
be deployed to Android devices. Google also provides the Android Native Development Kit (NDK).
The NDK is used to create native code libraries which can execute much more efficiently than Java
code. This is important for certain applications such as games. This appendix will walk through the
process of setting up the Android SDK, the Eclipse IDE, and Android NDK and then building
a sample app.

Setting Up the Android SDK and Eclipse
Google provides their SDK and the Eclipse IDE in a single preconfigured download. At the time
of writing this can be found at http://developer.android.com/sdk/index.html.

These bundles and software versions update reasonably frequently. You can find the
latest installation instructions for the bundle at the following web address:
http://developer.android.com/sdk/installing/bundle.html.

Once you have the bundle installed, it is time to try building a Java app. The process for building
a Java app is the basis for building apps using the NDK. Google provides up-to=date instructions
for building your first Android SDK based app here:
http://developer.android.com/training/basics/firstapp/index.html.

Installing the Android NDK
The Android NDK is a stand-alone suite of libraries and command-line tools which are downloaded
separately from the Android SDK. The appropriate version of the NDK for your platform can be
downloaded from http://developer.android.com/tools/sdk/ndk/index.html.

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/installing/bundle.html
http://developer.android.com/training/basics/firstapp/index.html
http://developer.android.com/tools/sdk/ndk/index.html

264 APPENDIX A: Using the Android Development Environment

Once you have downloaded the compressed package for the NDK, you should extract it to a
suitable folder on your computer.

Once we have installed the NDK, we need to let Eclipse know where the NDK folder has been placed
on our computer. We can do this by launching the preferences dialog by selecting the Window (the
Application on OS X) ➤ Preferences option. Once we have the Preferences dialog open, we can set
the NDK location by browsing to Android ➤ NDK and then setting the NDK Location field.

Building a Native App
Before we can build an example native app, we need to create a project in Eclipse to hold the code.

1.	 When we first run Eclipse, we will be shown the welcome screen as in
Figure A-1.

Figure A-1.  The Eclipse welcome screen

2.	 We then create a new project by Selecting File ➤ New ➤ Project. This will
show the New Project dialog which we see in Figure A-2.

265APPENDIX A: Using the Android Development Environment

3.	 After clicking Next, we will be presented with the New Android Application
dialog. Figure A-3 shows this dialog with the Application Name, Project
Name, and Package Name fields all set. We also set the Minimum Required
SDK field to API 9 and the Theme to None.

Figure A-2.  The New Project dialog

Figure A-3.  The New Android Application dialog

266 APPENDIX A: Using the Android Development Environment

4.	 After clicking Next, we will be presented with the Configure Project dialog.
In this dialog, we should uncheck the Create Custom Launcher icons and
Create Activity icons. Finally, we click Finish.

We now have a basic Android SDK application. Before we can work with the NDK, we must add
NDK support to the project. You do this by right-clicking the project name and then selecting
Android Tools ➤ Add Native Support. The dialog shown will contain a library name: leave this
at the default value and click Finish.

At this point, we will be able to right-click the project name and select Build Project to have Android
build the default code.

At this point, let’s copy the contents of main.c from the native-activity sample found in the
samples directory of the Android NDK into Native-Sample.cpp.

Listing A-1 contains the contents we need to place in your Android.mk file. This file can be found
in the jni folder.

Listing A-1.  Android.mk

LOCAL_PATH := $(call my-dir)
 
include $(CLEAR_VARS)
 
LOCAL_MODULE := native-activity
LOCAL_SRC_FILES := Native-Sample.cpp
LOCAL_LDLIBS := -llog -landroid -lEGL -lGLESv1_CM
LOCAL_STATIC_LIBRARIES := android_native_app_glue
 
include $(BUILD_SHARED_LIBRARY)
 
$(call import-module,android/native_app_glue)
 
You also need to create an Application.mk file in the jni folder with the single line shown in Listing A-2.

Listing A-2.  Application.mk

APP_PLATFORM := android-9
 
Finally, the AndroidManifest.xml file should contain the content from Listing A-3.

Listing A-3.  AndroidManifest.xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.begingamecode.native_sample"
 android:versionCode="1"
 android:versionName="1.0" >
 
 <uses-sdk
 android:minSdkVersion="9"
 android:targetSdkVersion="17" />
 

http://schemas.android.com/apk/res/android

267APPENDIX A: Using the Android Development Environment

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
  
 <activity
 android:label="@string/app_name"
 android:configChanges="orientation|keyboardHidden"
 android:name="android.app.NativeActivity">
 <!-- Tell NativeActivity the name of or .so -->
 <meta-data
 android:name="android.app.lib_name"
 android:value="native-activity"/>
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
</manifest>
 
With everything configured, we can now right-click the project and select Run As ➤ Android
Application to have the application run on your chosen device or emulator.

269

Appendix B
Android Hardware Overview

Unsurprisingly, the Android operating system runs on computer hardware. Developers for other
mobile platforms can rely on supporting a single CPU architecture, instruction set, and GPU type.
Android developers do not have this luxury if they would like to maximize the reach of their apps.

We take a look at the major CPU and GPU architectures in used on the Android platform in this
appendix.

CPU Architectures
There are currently three major CPU architectures in use on the Android platform today. These are
based on the ARM, MIPS, and x86 instruction sets.

ARM
ARM currently enjoys the position of being the dominant CPU architecture in the mobile space. The
ARM architecture was originally created in the 1980s by Acorn for use in desktop computer systems.
In recent years, ARM has been more commonly known as a designer of CPU instruction sets and
architectures and has not manufactured its own CPUs.

There are currently two different types of ARM licensee. Companies can either license the design
of an entire CPU which they can then fabricate for their devices or they can obtain a license to the
architecture itself and then design their own CPUs.

ARM’s most popular licensed CPUs at the moment are the Cortex-A9 and the Cortex-A15. The
Cortex-A9 is an older and less flexible design which can be found in many modern smartphones
and architectures today. The Tegra 3 platform from NVIDIA contained a quad-core Cortex-A9 CPU,
and phones such as the Galaxy Nexus contained dual-core A9s.

The Cortex-A15 is a more powerful CPU which runs at higher temperatures and uses more power
than the A9. To date, it has been used only in high-end products such as the Nexus 10, Samsung
Galaxy S4 Octal-core variant, and the upcoming Tegra 4 chipset from NVIDIA.

270 APPENDIX B: Android Hardware Overview

Qualcomm creates their own CPUs based on an ARM architecture license. The Snapdragon
system on chip (SoC) parts which the company manufactures are found in many modern devices.
A high-profile example is the Nexus 4 smartphone.

MIPS
There is not much to say on the MIPS front when it comes to Android, as there are not many devices
which currently use this architecture. MIPS as a company, however, has a rich history in the games
business. Consoles such as Playstation, Playstation 2, and Nintendo 64 all have CPUs created
by MIPS.

More recently, MIPS was purchased by Imagination Technologies, the company behind the PowerVR
GPUs. The Android NDK supports building for the MIPS architecture, and this is a CPU which may
be used in more devices in the future.

x86
The x86 architecture has a long-established role in desktop and laptop computers. To date, there
has not been much of a presence for x86 on the mobile scene. This may be about to change, as
Intel has been making massive strides in power efficiency and performance with their Atom range
of processors. This year, their Haswell architectures will be even more power efficient, and in the
coming years we may begin to see a convergence of Intel’s desktop and mobile processors.
At that point, ensuring that your games work on x86 will be important.

GPU Architectures
Android supports the OpenGL ES APIs from Khronos, which allows our games to target graphics
drivers as an external chip, which we do not need to concern ourselves with. This has been a
perfectly fine approach for the purposes of learning the basics of creating games with the NDK in
this book; however, creating high-performance games on Android requires a deeper understanding
of the available GPU architectures.

PowerVR
The most common PowerVR GPU chipset is currently the SGX range of chips. PowerVR GPUs have
a unique architecture in the GPU world. The unique selling point of these chips is their tile-based
deferred rendering engine. We’ll break that phrase down to understand how the PowerVR SGX
operates.

The first phrase to consider is tile based. The SGX works by splitting the screen up into a series of
small tiles. When we submit a glDrawElements command to the driver, it carries out a process known
as binning. Each draw command is binned into a tile. The tiles are then rendered in order with all
of the draw commands which will affect that tile being executed. The benefit from this expensive
step comes in the GPU itself. Rather than having to constantly access main memory to read depth
values and write out pixel colors, the GPU contains a small amount of very fast on-chip memory.
This memory is large enough to contain the data needed for reading and writing a single tile while

271APPENDIX B: Android Hardware Overview

processing this frame. The process of filling in the data needed to read from the tile (such as depth
or stencil values) is known as a restore, and the process for writing out the data from the tile pass is
known as a resolve.

The deferred part of the term involves PowerVR’s unique Hidden Surface Removal (HSR) algorithm.
When processing a tile, the GPU calculates the depth of the closest polygon to the camera before
executing the fragment shaders. This completely eliminates overdraw for opaque objects and saves
memory bandwidth by not having to sample textures for hidden polygons or write out their depth
and colors as well as saving the fragment processing time associated with executing fragment
shaders for pixels which will be overwritten.

The drawback to this approach is that it may limit performance on scenes with large numbers of
vertices.

Mali and Adreno
For the developer, the high-level architecture of the Mali and the Adreno are very similar. Both of these
GPU architectures implement tile-based rendering. The draw commands are binned and executed
per tile just like on PowerVR chips but they do not carry out the hidden surface removal step.

Instead, they execute the commands per tile in the order they were received. This is known as
Immediate Mode Rendering (IMR). The GPU does, however, execute early-z rejection; therefore,
the developer can improve performance in games where the GPU is a bottleneck by sorting
geometry from the closest to the camera to the furthest away to reduce overdraw.

Tegra
Last but not least is NVIDIA’s Tegra architecture. Tegra works much more like a traditional desktop
GPU compared to the others in that it does not use tiled rendering. It simply executes all rendering
commands in the order in which they were received. It also contains the early-z rejection testing
and would benefit from the front-to-back sorting of geometry.

273

Appendix C
C++ Programming

C++ is a programming language which provides an almost infinite number of options for solving
problems. This book uses some techniques which may not be familiar to beginner programmers.
This appendix aims to cover some of the more advanced language features used.

The Friend Keyword
C++ classes can contain fields and methods which are of different scopes. These available scopes
are public, private, and protected.

Public scope ensures that all fields and methods can be accessed from outside 	
the class itself.

Private fields and methods can be accessed only from methods which are also 	
declared in the same class.

Protected fields and methods are similar to private but can also be accessed by 	
derived classes.

It is often desirable to be able to access private fields or methods from outside a class but only in
restricted places. These restricted places may be other classes or functions. One method to achieve
this would be to make the fields and methods public; however, this allows any class or function
access. Another option is to use the friend keyword. Consider the class shown in Listing C-1.

Listing C-1.  A Simple Class

class Simple
{
private:
 void Interact();
}
 

274 APPENDIX C: C++ Programming

As you can see, the Interact method is private and therefore could be accessed only from other
methods inside this same class. If we had another class with which we would like to be able to
access this method, we could make it a friend, as in Listing C-2.

Listing C-2.  Simple Class’ Friend

class SimpleFriend
{
public:
 void Interact(Simple* pSimple)
 {
 pSimple->Interact();
 }
}
 
class Simple
{
 friend class SimpleFriend;
 
private:
 void Interact();
}
 
Listing C-2 shows how we can use the friend keyword to provide access to private fields and data
to specific classes.

Templates
C++ is a type safe language. This means that the compiler must know the expected types of all
variables at compile time. Sometimes this rigid use of types can lead to lots of duplicate code just
to provide the same functionality to work on different types of objects. Fortunately, C++ provides a
solution to this in the form of templates.

Templates allow us to create generic code implementations and specify the specific types when we
need them in the code.

Listing C-3 shows two methods to return the minimum value of two numbers.

Listing C-3.  min Functions

inline int min(int a, int b)
{
 return (a<b) ? a : b;
}
 
inline float min(float a, float b)
{
 return (a<b) ? a : b;
}
 

275APPENDIX C: C++ Programming

If we were to continue down this path, we would have to supply different versions of min for every
type supported by C++. Instead, Listing C-4 shows how we can implement min using a template.

Listing C-4.  Templatized min

template<class T>
inline const T& min(const T& a, const T& b)
{
 return (a < b) ? a : b;
}
 
Here you can see that we do not specify multiple versions of the function and that the types have
been replaced with T. The T comes from the first line, which tells the compiler that this method is a
template and to use T in place of specific types. If you change T to be something different, you will
also need to change it in the function itself. Another difference in this template is that the function
parameters and the return value are passed by reference. The original int and float methods
returned built-in types and therefore were simple four-byte copies. As this template may be used
with classes, it’s important to pass by reference to ensure that the copy constructor is not invoked
on these objects.

Now to the code which uses the template in Listing C-5.

Listing C-5.  Using Templates

min<int>(1, 2);
min<float>(1.0f, 2.0f);
 
The code here shows that we can now specify the type of min which we would like to use where and
when we need it. C++ will create specific versions of min only for the types which we actually use in
our code.

The Singleton Pattern
The code samples supplied with this book make use of the singleton pattern. The specific
implementation of the pattern can be seen in the sample code, which can be obtained from this
book’s accompanying web site at http://www.apress.com/9781430258308.

The singleton pattern is used to provide global access to a single instance of an object throughout
the code. Many people disagree with the use of global objects; however, they can provide useful
features in game development. Renderers and audio managers, for example, are objects which we
often need only a single instance of in game development.

By using a singleton, we can ensure that we have a single instance of these objects which we can
access from anywhere in the code. Implementing singletons in a manner where we still must call
new and delete on the object also means that we are in control of how and where the memory is
allocated for the objects. The only global aspect of the objects is the static pointer which we use
to access our instance.

The original author of the singleton class used was Scott Bilas. Scott has full source code and detailed
explanations of the technique on his web site at http://scottbilas.com/publications/gem-singleton/.

http://www.apress.com/9781430258308
http://scottbilas.com/publications/gem-singleton/

277

Appendix D
C++ Math

Video games cannot be created without at least a basic understanding of math, especially geometry.

This appendix covers the basic math classes provided with the samples on this book’s web site at
http://www.apress.com/9781430258308.

Vectors
A vector is used for two purposes: to represent displacement and direction.

Vectors in games can come in three different varieties: two-dimensional (2D), 3D, and 4D
homogenous vectors. This book only makes use of 3D and 4D vectors.

Listing D-1 shows the class declaration for the 3D Vector3 class.

Listing D-1.  The Vector3 Class Declaration

class Vector3
{
public:
 float m_x;
 float m_y;
 float m_z;
 
 Vector3();
 Vector3(const float x, const float y, const float z);
 virtual ~Vector3();
 
 void Set(const Vector3& in);
 void Multiply(const float scalar);
 void Divide(const float scalar);
 void Add(const Vector3& in);
 void Subtract(const Vector3& in);
 void Negate();

http://www.apress.com/9781430258308

278 APPENDIX D: C++ Math

 float Length() const;
 float LengthSquared() const;
 void Normalize();
 void GetNormal(Vector3& normal);
 
 Vector3& operator=(const Vector3& in);
 Vector3& operator=(const Vector4& in);
 
 float Dot(const Vector3& in) const;
 Vector3 Cross(const Vector3& in) const;
};
 
The data stored in the Vector3 class is represented by three floats, one for each of the three cardinal
axes: x, y, and z.

We then have a set of methods which can be used to work with the Vector3 class. Listing D-2
contains the constructors and destructor for Vector3.

Listing D-2.  Vector3 Constructors and Destructor

Vector3::Vector3()
 : m_x(0.0f)
 , m_y(0.0f)
 , m_z(0.0f)
{
}
 
Vector3::Vector3(const float x, const float y, const float z)
 : m_x(x)
 , m_y(y)
 , m_z(z)
{
}
 
Vector3::~Vector3()
{
}
 
We also have a method, Set (Listing D-3), which overwrites the values in the vector.

Listing D-3.  Vector3::Set

void Vector3::Set(const Vector3& in) {
 m_x = in.m_x;
 m_y = in.m_y;
 m_z = in.m_z;
}
 
Vectors can be multiplied and divided by floating point numbers. This has the effect of lengthening
or shortening a vector. Multiplying a vector by two, for example, doubles the length of the vector.
Listing D-4 shows these methods.

279APPENDIX D: C++ Math

Listing D-4.  Vector3 Multiply and Divide

void Vector3::Multiply(const float scalar) {
 m_x *= scalar;
 m_y *= scalar;
 m_z *= scalar;
}
 
void Vector3::Divide(const float scalar) {
 float divisor = 1.0f / scalar;
 m_x *= divisor;
 m_y *= divisor;
 m_z *= divisor;
}
 
Vectors can also be added and subtracted from other vectors. Listing D-5 shows the Add and
Subtract methods.

Listing D-5.  Vector3 Add and Subtract

void Vector3::Add(const Vector3& in) {
 m_x += in.m_x;
 m_y += in.m_y;
 m_z += in.m_z;
}
 
void Vector3::Subtract(const Vector3& in) {
 m_x -= in.m_x;
 m_y -= in.m_y;
 m_z -= in.m_z;
}
 
Another common operation which we carry out on vectors is to negate them. Listing D-6 shows the
method which achieves this.

Listing D-6.  Vector3::Negate

void Vector3::Negate()
{
 m_x = -m_x;
 m_y = -m_y;
 m_z = -m_z;
}
 
We use Pythagoras’ theorem to calculate the length of a vector. The function to calculate the length
of a hypotenuse in a triangle is as follows:

length of hypotenuse = √(x2 + y2 + z2)

280 APPENDIX D: C++ Math

The standard implementation of Pythagoras’ theorem includes a square root. Calculating the square
root can be an expensive operation; therefore, we also implement a method to calculate the squared
length of a vector. We can use this to determine if a vector is longer or shorter than another by
comparing the squared lengths of both vectors. Listing D-7 shows the Length and LengthSquared
methods.

Listing D-7.  Vector3 Length and LengthSquared

float Vector3::Length() const
{
 return sqrt((m_x*m_x) + (m_y*m_y) + (m_z*m_z));
}
 
float Vector3::LengthSquared() const
{
 return (m_x*m_x) + (m_y*m_y) + (m_z*m_z);
}
 
A common variant of vectors which we use in games programming is the unit normal vector. A unit
normal is a vector which represents a direction and has a length of one. These are useful as we can
then use the fact that the normal has unit length in other situations. Listing D-8 shows the code
necessary to obtain normal vectors from a Vector3 object.

Listing D-8.  Vector3 Normalize and GetNormal

void Vector3::Normalize()
{
 Divide(Length());
}
 
void Vector3::GetNormal(Vector3& normal)
{
 normal = *this;
 normal.Normalize();
}
 
The dot (or scalar) product is an operation which is performed on two vectors. One of the most
common uses for the dot product is to calculate the angle between those vectors. The details of the
dot product are covered in Chapter 9. Listing D-9 describes the Vector3::Dot method.

Listing D-9.  Vector3::Dot

float Vector3::Dot(const Vector3& in) const
{
 return (m_x * in.m_x) + (m_y * in.m_y) + (m_z * in.m_z);
}
 
The cross product is used to calculate a new vector which is perpendicular to the two input vectors.
This is also covered in more detail in Chapter 9; however, the code is shown in Listing D-10.

281APPENDIX D: C++ Math

Listing D-10.  Vector3::Cross

Vector3 Vector3::Cross(const Vector3& in) const
{
 return Vector3(
 (m_y * in.m_z) - (m_z * in.m_y),
 (m_z * in.m_x) - (m_x * in.m_z),
 (m_x * in.m_y) - (m_y * in.m_x));
}
 
4D vectors cover largely the same operations as 3D vectors with one small addition, the w
component. This component is used to determine the difference between a displacement vector and
a normal vector. When the w component of a 4D vector is set to 1, we are signifying that this vector
is a positional vector, and when it is 0 we are signifying that it is a directional vector.

The significance of this change comes when we are multiplying the vectors by 4×4 transformation
matrices. When the w component is set to 0, the vector will not be translated by the position
elements of the 4×4 matrix.

Matrices
Matrices are used in 3D game programming to represent transform information. A matrix can contain
information suitable to increase or decrease the size of an object, rotate an object, and translate an
object in 3D space. Listing D-11 contains the class declaration of the Matrix4 class.

Listing D-11.  The Matrix4 Class Declaration

class Matrix4
{
public:
 enum Rows
 {
 X,
 Y,
 Z,
 W,
 NUM_ROWS
 };
 
 float m_m[16];
 
 Matrix4();
 virtual ~Matrix4();
 
 void Identify();
 Vector3 Transform(const Vector3& in) const;
 Vector3 TransformTranspose(const Vector3& in) const;
 Vector4 Multiply(const Vector4& in) const;
 void RotateAroundX(float radians);
 void RotateAroundY(float radians);
 void RotateAroundZ(float radians);
 void Multiply(const Matrix4& in, Matrix4& out) const;
 

282 APPENDIX D: C++ Math

 Matrix4 Transpose() const;
 
 Matrix4& operator=(const Matrix3& in);
 Matrix4& operator=(const Matrix4& in);
 
 Vector4	 GetRow(const Rows row) const;
};
 
The listing shows that our matrix contains 16 floating point values which can be represented as a set
of 4 vectors each containing 4 elements, which gives us our 4×4 matrix. We have defined an enum,
Rows, to represent the rows of the matrix.

Identity Matrix
A special type of matrix is a diagonal matrix. This is a matrix where only the diagonal values are set.
Each of the diagonal values in the identity matrix is 1. The identity matrix represents the matrix which
leaves another matrix or vector unchanged when they are multiplied together. Listing D-12 shows
the method Identify, which we use to set a matrix to be the identity matrix.

Listing D-12.  Matrix4::Identify

void Matrix4::Identify()
{
 m_m[0] = 1.0f;
 m_m[1] = 0.0f;
 m_m[2] = 0.0f;
 m_m[3] = 0.0f;
 m_m[4] = 0.0f;
 m_m[5] = 1.0f;
 m_m[6] = 0.0f;
 m_m[7] = 0.0f;
 m_m[8] = 0.0f;
 m_m[9] = 0.0f;
 m_m[10] = 1.0f;
 m_m[11] = 0.0f;
 m_m[12] = 0.0f;
 m_m[13] = 0.0f;
 m_m[14] = 0.0f;
 m_m[15] = 1.0f;
}

Rotation Matrices
It is possible to create rotation matrices which rotate around each of the cardinal axes. Listing D-13
shows the necessary code to create matrices which rotate around the x, y, and z axes.

283APPENDIX D: C++ Math

Listing D-13.  Matrix4 Rotation Matrix Creation Methods

void Matrix4::RotateAroundX(float radians)
{
 m_m[0] = 1.0f; m_m[1] = 0.0f; m_m[2] = 0.0f;
 m_m[4] = 0.0f; m_m[5] = cos(radians); m_m[6] = sin(radians);
 m_m[8] = 0.0f; m_m[9] = -sin(radians); m_m[10] = cos(radians);
}
 
void Matrix4::RotateAroundY(float radians)
{
 m_m[0] = cos(radians); m_m[1] = 0.0f; m_m[2] = -sin(radians);
 m_m[4] = 0.0f; m_m[5] = 1.0f; m_m[6] = 0.0f;
 m_m[8] = sin(radians); m_m[9] = 0.0f; m_m[10] = cos(radians);
}
 
void Matrix4::RotateAroundZ(float radians)
{
 m_m[0] = cos(radians); m_m[1] = sin(radians); m_m[2] = 0.0f;
 m_m[4] = -sin(radians); m_m[5] = cos(radians); m_m[6] = 0.0f;
 m_m[8] = 0.0f; m_m[9] = 0.0f; m_m[10] = 1.0f;
}
 

Multiplying Matrices
Matrix operations can be combined; this process is known as concatenation and is achieved by
multiplying matrices together. It’s important to note that the order of operations when concatenating
matrices is important. Rotating an object then translating it will give you different results compared
to translating an object then rotating. Matrix4::Multiply is described in Listing D-14.

Listing D-14.  Matrix4::Multiply

void Matrix4::Multiply(const Matrix4& in, Matrix4& out) const
{
 assert(this != &in && this != &out && &in != &out);
 out.m_m[0]
 = (m_m[0] * in.m_m[0]) +
 (m_m[1] * in.m_m[4]) +
 (m_m[2] * in.m_m[8]) +
 (m_m[3] * in.m_m[12]);
 
 out.m_m[1]
 = (m_m[0] * in.m_m[1]) +
 (m_m[1] * in.m_m[5]) +
 (m_m[2] * in.m_m[9]) +
 (m_m[3] * in.m_m[13]);
  
 out.m_m[2]
 = (m_m[0] * in.m_m[2]) +
 (m_m[1] * in.m_m[6]) +
 (m_m[2] * in.m_m[10]) +
 (m_m[3] * in.m_m[14]);
 

284 APPENDIX D: C++ Math

 out.m_m[3]
 = (m_m[0] * in.m_m[3]) +
 (m_m[1] * in.m_m[7]) +
 (m_m[2] * in.m_m[11]) +
 (m_m[3] * in.m_m[15]);
 
 out.m_m[4]
 = (m_m[4] * in.m_m[0]) +
 (m_m[5] * in.m_m[4]) +
 (m_m[6] * in.m_m[8]) +
 (m_m[7] * in.m_m[12]);
 
 out.m_m[5]
 = (m_m[4] * in.m_m[1]) +
 (m_m[5] * in.m_m[5]) +
 (m_m[6] * in.m_m[9]) +
 (m_m[7] * in.m_m[13]);
 
 out.m_m[6]
 = (m_m[4] * in.m_m[2]) +
 (m_m[5] * in.m_m[6]) +
 (m_m[6] * in.m_m[10]) +
 (m_m[7] * in.m_m[14]);
 
 out.m_m[7]
 = (m_m[4] * in.m_m[3]) +
 (m_m[5] * in.m_m[7]) +
 (m_m[6] * in.m_m[11]) +
 (m_m[7] * in.m_m[15]);
 
 out.m_m[8]
 = (m_m[8] * in.m_m[0]) +
 (m_m[9] * in.m_m[4]) +
 (m_m[10] * in.m_m[8]) +
 (m_m[11] * in.m_m[12]);
 
 out.m_m[9]
 = (m_m[8] * in.m_m[1]) +
 (m_m[9] * in.m_m[5]) +
 (m_m[10] * in.m_m[9]) +
 (m_m[11] * in.m_m[13]);
 
 out.m_m[10]
 = (m_m[8] * in.m_m[2]) +
 (m_m[9] * in.m_m[6]) +
 (m_m[10] * in.m_m[10]) +
 (m_m[11] * in.m_m[14]);
 
 out.m_m[11]
 = (m_m[8] * in.m_m[3]) +
 (m_m[9] * in.m_m[7]) +
 (m_m[10] * in.m_m[11]) +
 (m_m[11] * in.m_m[15]);
 

285APPENDIX D: C++ Math

 out.m_m[12]
 = (m_m[12] * in.m_m[0]) +
 (m_m[13] * in.m_m[4]) +
 (m_m[14] * in.m_m[8]) +
 (m_m[15] * in.m_m[12]);
 
 out.m_m[13]
 = (m_m[12] * in.m_m[1]) +
 (m_m[13] * in.m_m[5]) +
 (m_m[14] * in.m_m[9]) +
 (m_m[15] * in.m_m[13]);
 
 out.m_m[14]
 = (m_m[12] * in.m_m[2]) +
 (m_m[13] * in.m_m[6]) +
 (m_m[14] * in.m_m[10]) +
 (m_m[15] * in.m_m[14]);
 
 out.m_m[15]
 = (m_m[12] * in.m_m[3]) +
 (m_m[13] * in.m_m[7]) +
 (m_m[14] * in.m_m[11]) +
 (m_m[15] * in.m_m[15]);
}
 
A matrix multiplication is an expensive process, as each row from the member’s matrix and column
from the input matrix which intersect at each element are used as vectors and the dot product is
calculated at each position.

Matrix Transpose
Another common operation in graphics programming is calculating the transpose of a matrix. This is
done by switching a matrix’s rows with its columns, and the method for this is shown in Listing D-15.

Listing D-15.  Matrix4::Transpose

Matrix4 Matrix4::Transpose() const
{
 Matrix4 out;
 out.m_m[0] = m_m[0];
 out.m_m[1] = m_m[4];
 out.m_m[2] = m_m[8];
 out.m_m[3] = m_m[12];
 out.m_m[4] = m_m[1];
 out.m_m[5] = m_m[5];
 out.m_m[6] = m_m[9];
 out.m_m[7] = m_m[13];
 out.m_m[8] = m_m[2];
 out.m_m[9] = m_m[6];
 out.m_m[10] = m_m[10];
 out.m_m[11] = m_m[14];

286 APPENDIX D: C++ Math

 out.m_m[12] = m_m[3];
 out.m_m[13] = m_m[7];
 out.m_m[14] = m_m[11];
 out.m_m[15] = m_m[15];
}
 
The transpose of a matrix proves to be useful in graphics programming as the transpose of an
orthogonal rotation matrix is also its inverse. Orthogonal matrices are covered in Chapter 6.

Transforming Vectors
The last methods which make up the Matrix4 class are the Transform and TransformTranspose
methods. These methods are used to multiply vectors by the matrix. Listing D-16 contains the code
to achieve this.

Listing D-16.  Matrix4 Transform and TransformTranspose

Vector3 Matrix4::Transform(const Vector3& in) const
{
 return Vector3((m_m[0] * in.m_x) + (m_m[1] * in.m_y) + (m_m[2] * in.m_z),
 (m_m[4] * in.m_x) + (m_m[5] * in.m_y) + (m_m[6] * in.m_z),
 (m_m[6] * in.m_x) + (m_m[7] * in.m_y) + (m_m[8] * in.m_z));
}
 
Vector3 Matrix4::TransformTranspose(const Vector3& in) const
{
 return Vector3((m_m[0] * in.m_x) + (m_m[3] * in.m_y) + (m_m[6] * in.m_z),
 (m_m[1] * in.m_x) + (m_m[4] * in.m_y) + (m_m[7] * in.m_z),
 (m_m[2] * in.m_x) + (m_m[5] * in.m_y) + (m_m[8] * in.m_z));
}
 

Planes
Planes are used to separate space. They are flat and extend infinitely. Planes are useful for
constructing shapes to determine if objects lie inside a space or outside. Planes are used in this
book to implement view frustum culling in Chapter 8. Listing D-17 shows the class declaration of the
Plane class.

Listing D-17.  The Plane Class Declaration

class Plane
{
private:
 Vector3 m_normal;
 float m_d;
 
public:
 Plane();
 Plane(const Vector3& point, const Vector3& normal);
 ~Plane();
 

287APPENDIX D: C++ Math

 void BuildPlane(const Vector3& point, const Vector3& normal);
 
 bool IsInFront(const Vector4& point) const;
 bool IsInFront(const Vector3& point) const;
};
 
Our Plane class is very basic. We have need only for methods to build a plane and test if a point lies
in front of the plane. We know if a point is behind the plane if it is not in front. The constructor which
takes the Vector3 parameters simply calls BuildPlane, so we look at the code for BuildPlane in
Listing D-18.

Listing D-18.  The Plane::BuildPlane Method

void Plane::BuildPlane(const Vector3& point, const Vector3& normal)
{
 m_normal = normal;
 m_normal.Normalize();
 m_d = m_normal.Dot(point);
}
 
BuildPlane uses trigonometry to calculate the plane constant d. The dot product is covered in detail
Chapter 9. We know that the dot product’s result is the length of the two vectors multiplied by the
cosine of the angle between the vectors. In BuildPlane, we normalize the normal vector to ensure
that the length of that vector is 1. This will mean that the result of our dot product is the length of the
point vector multiplied by the cosine of the angle between the two. This gives us the length of the
adjacent edge of the right-angled triangle between the line along the normal and the point vector.
This length is the distance of the plane from the origin along the direction of the normal vector.

We can now use this to determine if other points are in front of or behind the plane. We do this in the
IsInFront method, which we show in Listing D-19.

Listing D-19.  Plane::IsInFront

bool Plane::IsInFront(const Vector4& point) const
{
 return IsInFront(Vector3(point.m_x, point.m_y, point.m_z));
}
 
bool Plane::IsInFront(const Vector3& point) const
{
 return m_normal.Dot(point) >= m_d;
}
 
The Vector4 version of IsInFront constructs a Vector3 from the m_x, m_y, and m_z fields of the
Vector4 and calls the Vector3 version.

The Vector3 version of IsInFront simply calculates the dot product or the normal and the supplied
point and determines if it is larger than the plane constant. If it is larger, then we know that this point
lies in front of the plane.

A■■
AddComponent method, 90
Android application package file (APK)

Android application window, 251–252
export process, 254–255
key creation, 253–254
keystore selection, 252–253
long-validity period, 254
signed application package, 251
unique key, 251
zip file, 250

android.app.NativeActivity node, 14–15
Android development

native app
AndroidManifest.xml file, 267
Android.mk file, 266
application.mk file, 266
Configure Project dialog, 266
Eclipse screen, 264
New Android Application dialog, 265
New Project dialog, 264

NDK, 263
SDK and Eclipse, 263

Android game, 7
Android.mk file, 16
C++, 8–9
fragmentation, 9

Android version, 9
GPU, 10
input device support, 9
screen resolutions and aspect ratio, 9

HelloDroid, 10
application-level build option, 17
ball’s position, 21
block, 23

bounding edge, 23
Breakout, 10
debugging, 17
engine_handle_input, 20, 22
file modification, 16–17
makefile, 16
NDK support, 14–15
new eclipse project creation, 11–14
overlapping, 23
overlapping-rectangles

algorithm, 22–23
program-building utility, 15
static void engine_update_frame, 18–20
velocity, 23

Java and Dalvik virtual machine, 7–8
NDK, 8–9

Android hardware
CPU architecture

ARM, 270
MIPS, 270
x86, 270

GPU architecture
Mali and Adreno, 271
PowerVR, 271
Tegra, 271

Android.mk file, 16
Audacity

Chirp Generator, 224
definition, 223
effects

amplitude, 227
fade in and fade out, 227
high pass filter, 227
low pass filter, 227
pitch, 227
sound wave, 225–226

Index

289

speed effect, 227
tempo, 227

recording controls, 224
Axis-aligned bounding box (AABB), 122

B■■
Bidirectional reflectance distribution

functions (BRDFs), 214
Binary space partitions (BSP), 135
Blinn-Phong lighting model, 211
Blinn-Phong shading model, 205
Brute-force method, 134
BuildFrustumPlanes function, 176

C■■
C++, 8–9
C++ Math

matrix
class declaration, 281
identity matrix, 282
multiplication, 285
rotation matrix, 282
transforming vectors, 286
transpose matrix, 286

planes, 287
vector

Add and Subtract methods, 279
class declaration, 277
constructors and destructor, 278
cross product, 280
3D and 4D homogenous vectors, 277
displacement and direction, 277
dot (or scalar) product, 280
floating point numbers, 278
Length and LengthSquared methods, 280
Pythagoras’ theorem, 279–280
Set, 278
two-dimensional (2D), 277
w component, 281

component_cast method, 89
Computer games vs. board games, 3
Consoles and mobile phones, 4
C++ programming

friend keyword, 274
singleton pattern, 275
templates, 275

CreateSFX method, 241–242
CREATE_TEXTURE state, 84

D■■
Dalvik virtual machine, 7–8
Decibels (dB), 219
Design document

Droid Runner, 26
functional specification, 25
gameplay and mechanics, 27–28
level design

aesthetics, 29
pacing, 28
scale, 29

modern games, 26
technical requirements

interface, 30
Kernel and Task system, 30–31
low-level systems, 30
scheduling, 30
software development, 31
team communication, 30
Unified Modeling

Language, 30
technical specification, 25
telling story, 26

Diffuse lighting
diffuse component fragment

shader, 201
diffuse component vertex

shader, 198
directional light, 198
equation, 198
GetInverseTransposeMatrix, 203
glUniform4f and glUniform3f, 204
link method, 201
model matrix, 203
modelViewMatrix, 203
projection matrix, 203
screenshot, 205
TransformAmbientDiffuseShader::Setup

method, 202
view matrix, 203

DroidRunnerLevel
Android ecosystem, 165
BoundObjectComponent, 164
SetFrustum method, 164
source code, 161–163

290 Index

Audacity (cont.)

E■■
Electronic Arts, 2
Embedded-System Graphics Library (EGL), 47
engine_handle_input, 20–22
Event class

AttachEvent and DetachEvent
methods, 99–100

AttachListener method, 94
Big O Notation, 97
declaration, 93
DetachListener method, 94
EventHandler Class, 95
EventManager, 95
Event::SendToHandler( ), 94
friend functions, 96
m_eventMap, 98
Send and SendToHandler methods, 98
Send method, 93

EventHandler class, 95

F■■
Friend functions, 96

G■■
Game audio

audacity
amplify effect, 227
Chirp Generator, 224
definition, 223
fade in and fade out, 227
high pass filter, 227
low pass filter, 227
pitch, 227
recording controls, 224
sound wave, 225
speed effect, 227
tempo, 227

jump sound effect
amplification, 229
asset folder, 234
Chirp Generator, 227–228
duplicate, 231–232
duplicate option, 230
Fade In, 233
fade out filter, 229–230
high-pass filter, 229

impact effect, 234
low pass filter, 232
Ogg component, 234
square wave, 228
Vorbis component, 234

OpenSL ES (see OpenSL ES)
sound

aliasing, 223
amplitude, 218
frequency, 220
sawtooth wave, 222
sine wave graph, 218
space, 217
square wave, 221–222

Game engine development
Android NDK

ALooper_pollAll method, 41
Android class, 40
Android’s update, 40
constructor and event processor, 41–42
NativeActivity, 39
task instantiating, 42

application object
android_main, 34
class, 33
Initialize and Run methods, 34

game loop
Kernel class, 35–36
Task interface, 36

Kernel method (see Kernel’s method)
timekeeping

frame rate, 44
nanotime, 45
sim time, 45
start and restart process, 45
timer’s update, 46
timer task, 44
timespec structure, 45

Game engines, 4
Game entity

AddComponent method, 90–91
AI object

Droid Runner, 118
m_direction, 116
PatrolComponent class, 115–116
PatrolComponent::HandleEvent( ), 117
position, 117
SetEndPoint method, 116

291Index

SetStartPoint method, 116
setup code, 114–115

class hierarchy, 87
component_cast method, 89
component declaration, 92
events (see Event class)
function definitions, 89
GameObject class, 88–89
GameObject method, 91
GetComponent, 90
GetOwner method, 92
m_components, 91
Pac-Man, 87
player jumping

acceleration, 113
android_handle_input, 113
Euler integration, 112
gravity force, 112
HandleEvent method, 110–111
integration position, 112
JUMP_EVENT, 111
MovementComponent class, 110
UPDATE_EVENT, 113

player object
declaration, 107
events, 109
Start method, 108–109
Update method, 109

RenderableComponent, 103
static_cast, 90
template method, 89
Transform class

declaration, 101
GetInverseMatrix, 102
rotation matrix, 103
traditional methods, 103
UpdateMatrix, 101–102

TransformComponent class, 100
TransformShader class

declaration, 104
fragment shader, 105
glUniform4f, 107
glUniformMatrix4fv, 107
TransformShader::Link( ), 105
TransformShader::Setup method, 106
vertex shader, 105

vehicle object, 88

Game levels and collision detection systems
AddCollisionComponent, 130
blocks, 125
broad-phase filtering

brute-force method, 134
BSP, 135
collision bin, 137
collision manager, 138
Droid Runner, 135
Quadtrees and Octrees, 134

CollisionComponent, 131
CollisionManager, 130
collision responses

CollisionComponent class, 144
CollisionListener interface, 140
handle collision, 141
HandleCollision method, 144
HandleEvent method, 143
MovementComponent, 140
offsetFloor value, 143

DroidRunnerLevel class, 125–126
for loop, 130
game world objects

AABB, 122
axis-aligned bounding boxes, 125
axis theorem, 122–123
CollisionComponent, 122
CollisionComponent::Intersect, 123–124
Intersect method, 122, 124
meshes, 121
real-time frame rates, 122
testing, 123
y and z axes, 124

HandleEvent, 127
Initialize method, 127–129
narrow-phase collision detection

algorithm, 138
axis-aligned bounding boxes, 138
CollisionEventData structure, 139
geometry, 138
Intersect method, 139
Send and SendToHandler

methods, 139–140
TestAgainstBin method, 139

SetObjectPosition method, 130
side-scrolling games, 125
test, 145
TileTypes, 126

292 Index

Game entity (cont.)

TransformComponent, 130
unsigned char values, 130
vector and iterator, 126
z buffer, 145

GetComponent method, 90
Google Play Store

APK
Android application window, 251–252
export process, 254–255
key creation, 253–254
keystore selection, 252–253
long-validity period, 254
signed application package, 251
unique key, 251
zip file, 250

App quality, 260
developer console, 249
keys, keystore, and digital signatures, 249
monetization, 259
upload

APK screen, 256–257
application, 256
description, 259
Developer Console, 255
graphic assets, 259
icon and screenshots, 258
progress bar, 257
publish dialog box, 257–258
website, 259

Graphics processing unit (GPU), 47

H■■
HandleEvent method, 110–111, 160

I■■
Interact method, 274

J■■
Java, 7–8
Java native interface (JNI), 7

K■■
Kernel’s method

Execute, 38
KillAllTasks, 38
PriorityAdd and AddTask, 37

RemoveTask, 37
ResumeTask, 38
SuspendTask, 37

L■■
Legend of Zelda games, 28
Lighting and materials model

ambient lighting
addition, 195
ambient lit scene, 195
component of, 190
Droid Runner, 191
GLSL code, 191
Link method, 192
Setup method, 192
TransformAmbientShader class, 191
TransformShader, 190
vertex normals, 198

components, 186
definition, 186
diffuse lighting

diffuse component fragment shader, 201
diffuse component vertex shader, 198
directional light, 198
equation, 198
GetInverseTransposeMatrix, 203
glUniform4f and glUniform3f, 204
Link method, 201
model matrix, 203
modelViewMatrix, 203
projection matrix, 203
screenshot, 205
TransformAmbientDiffuseShader::Setup

method, 202
view matrix, 203

material class, 188
per-vertex/per-fragment shading, 186
properties, 186
renderable class, 190
specular lighting

Blinn-Phong lighting model, 211
Blinn-Phong shading model, 205
equation, 205
link method, 208
screenshots, 211
setup method, 210
specular component vertex shader, 206

293Index

types of
BRDFs, 214
deferred rendering, 213
forward shading, 212
point lights, 212
spotlights, 213

LOADING_FILE state, 83
LoadShader method, 55–56

M■■
Minecraft, 260
Mobile phones and game consoles, 4

N■■
Native development kit (NDK), 8–9, 263

O■■
OpenGL for Embedded Systems (OpenGL ES), 52
OpenSL ES

Android NDK, 237
AudioManager class, 235
definition, 236
destroy method, 244
DestroySFX, 243
EGL, 235
engine object, 236
file creation

AAsset_openFileDescriptor, 241
AudioManager::CreateSFX, 239, 241
CreateAudioPlayer, 241
CreateSFX method, 241–242
Hash method, 241
MIME types, 241
play_callback function, 242
PlayInstance, 238–239

initialize method, 237
playing sounds, 243
realize method, 237
SDBM hashes, 242
SL_IID_ENGINE, 238
sound effect

DroidRunnerLevel constructor, 245
HandleEvent plays, 247
jump and explosion effect, 245–246

overlapping objects, 123

P■■
Pac-Man’s story, 26
play_callback function, 242

Q■■
Quake engine, 5

R■■
Renderer

class definition, 48
destroying, 50
EGL, 47, 49–50
GPU, 47
OpenGL, 47
quad

BasicShader class, 61
constructor, 64
definition, 58–59
Draw method, 61
Framework Application class, 64
Geometry class, 57
glDrawElements, 61
output, 67
Start method, 65–66
Stop method, 66
updation, 59–60

shaders
fragment, 54
interface, 55
Link method, 56
LoadShader method, 55–56
OpenGL, 51
OpenGL ES, 52
Setup method, 56
transform and lighting, 51
vertex, 52

Task methods, 48
textures (see Textures)
window-based system, 47

RUNNING state, 84

S■■
SetEndPoint method, 116
SetFrustum method, 164
SetObjectPosition method, 130

294 Index

Lighting and materials model (cont.)

SetStartPoint method, 116
Shaders

fragment, 54
interface, 55
Link method, 56
LoadShader method, 55–56
OpenGL, 51
OpenGL ES, 52
Setup method, 56
transform and lighting, 51
vertex, 52

ShouldDraw method, 181–182
Singleton pattern, 275
Snapdragon system on chip (SoC), 270
Specular lighting

Blinn-Phong lighting model, 210
Blinn-Phong shading model, 205
equation, 205
Link method, 208
screenshots, 211
Setup method, 210
specular component fragment shader, 207
specular component vertex shader, 206

Start method, 108–109
static void engine_update_frame, 18–20

T■■
Temple Run, 2
Textures

File class, 68
GL texture

frameworks, 73
geometric method, 72
glBindTexture, 74
glPixelStorei, 74
glTexImage2D, 75
Init method, 74
normals and lighting data, 73

shaders, 78
task

addition, 80
constructor, 81
CREATE_TEXTURE state, 84
LOADING_FILE state, 83
quad, 84
RUNNING state, 84
Start method, 81

Update method, 82–83
upside-down, 82

TextureShader
class, 75
constructor, 76
filtering, 78
location, 76–77
sampling, 76
Setup method, 77–78
UV coordinates, 76
wrapping format, 78

TGA files, 70
TransformShader class

declaration, 104
fragment shader, 105
glUniform4f, 107
glUniformMatrix4fv, 107
TransformShader::Link( ), 105
TransformShader::Setup method, 106
vertex shader, 105

U■■
Update method, 109

V, W, X, Y, Z■■
Video games, 1
View frustum culling

advantage, 173
BuildFrustumPlanes, 173–176
BuildPlane method, 178
cameraPosition vector, 175, 178
cross product, 178
GPU, 170
implications, 170
matrix, 175
near and far planes, 175
nearCenter position, 177
perspective projection, 170–171
process, 178
Renderer, 171–173
testing

HandleEvent, 179–180
inner loop, 182
min and max positions, 182
Renderable class, 178–179
ShouldDraw method, 181–182
update method, 180–181

295Index

top frustum plane, 176
trigonometry, 176
vector subtraction, 177

Virtual cameras
DroidRunnerLevel

Android ecosystem, 165
BoundObjectComponent, 164
SetFrustum method, 164
source code, 161–162, 164

frustum culling (see View frustum culling)
model and view matrices

fragment shader, 152
inverse transform, 152
rotation elements, 150
scale matrix, 149
transform matrix, 149
translation components, 150–151
vertex shader code, 151
visualization, 151

model matrix, 159
objects

CameraComponent class, 153, 155
frustum, 154
SetFrustum, 154

tan method, 154
vertical field, 155
view frustum, 153
zooming out, 154

pause and resume
events, 165
HandleEvent, 169
OpenGL app, 165
PAUSEAPP_EVENT and

RESUMEAPP_EVENT, 169
Renderer, 167–168
Update method, 169

photography and filmmaking, 149
projection matrix, 152, 158
renderer class

perspective projection, 158
SetFrustum method, 157–158
view and projection matrices, 155–157

transform
BoundObjectComponent, 160
HandleEvent method, 160–161
m_offsetTransform, 160–161
m_pBoundObject, 160
player object, 159

296 Index

View frustum culling (cont.)

Beginning Android C++
Game Development

Bruce Sutherland

Beginning Android C++ Game Development

Copyright © 2013 by Bruce Sutherland

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-5830-8

ISBN-13 (electronic): 978-1-4302-5831-5

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The images of the Android Robot (01 / Android Robot) are reproduced from work created and shared by Google and
used according to terms described in the Creative Commons 3.0 Attribution License. Android and all Android and
Google-based marks are trademarks or registered trademarks of Google, Inc., in the U.S. and other countries.
Apress Media, L.L.C. is not affiliated with Google, Inc., and this book was written without endorsement from Google, Inc.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Developmental Editor: Matthew Moodie
Technical Reviewer: Onur Cinar
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Jill Balzano
Copy Editor: Brendan Frost
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing
web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

v

Contents

About the Author��xiii

About the Technical Reviewer��� xv

Acknowledgments��� xvii

Introduction�� xix

Chapter 1: An Introduction to Game Development■■ ���1

A Brief History of Video Games���1

Who Makes Games?���2

The Difference between Computer Games and Board Games���3

Comparing Mobile Phones to Game Consoles��4

An Overview of Game Engines���4

Summary��5

Chapter 2: An Introduction to the Android Game Development Ecosystem■■ ������������������������7

Java and the Dalvik Virtual Machine��7

C++ and the NDK���8

Fragmentation and the Android Ecosystem���9

Android Versions��� 9

Screen Resolution and Aspect Ratio��� 9

vi Contents

Input Device Support�� 9

GPUs��� 10

HelloDroid - Our First Android Game��10

Creating a New Eclipse Project�� 11

Adding NDK Support��� 14

A Look at the NDK Build System��� 15

Running the Game�� 18

Summary��24

Chapter 3: Game Design for Beginners: Droid Runner■■ ��25

An Introduction to Design Documents��25

Creating a World, Telling a Story, and Setting the Scene��26

The Droid Runner Design Overview�� 26

Defining the Gameplay and Mechanics�� 27

Level Design���28

Pacing��� 28

Aesthetics��� 29

Scale��� 29

Technical Requirements���30

Summary��32

Chapter 4: Building a Game Engine■■ ��33

Creating an Application Object���33

Creating the Game Loop Using a Kernel and Tasks��35

Starting the Kernel Class�� 35

Defining the Task Interface��� 36

Examining the Kernel Methods��� 36

Android’s Native App Glue��39

Timekeeping���44

Summary��46

viiContents

Chapter 5: Writing a Renderer■■ ��47

Initializing the Window and OpenGL Using EGL��47

An Introduction to Shaders���51

An Introduction to Vertex Shaders in OpenGL ES 2.0�� 52

An Introduction to Fragment Shaders in OpenGL ES 2.0�� 54

Creating a Shader Program�� 54

Rendering a Quad with OpenGL���56

Representing Geometry�� 57

Creating a Renderable�� 58

Creating the Basic Shader�� 61

Creating an App-Specific Application and Task�� 64

Applying Textures to Geometry���67

Loading a File��� 68

Loading a TGA File�� 70

Representing a GL Texture�� 72

Creating TextureShader�� 75

Initializing Textures and Shaders�� 78

Loading Textures in a Task�� 80

Summary��85

Chapter 6: Game Entities■■ ��87

What Is a Game Entity?��87

Communicating with Game Objects via Events��92

The Event Class�� 92

The EventHandler Classes�� 95

The EventManager�� 95

EventManager’s Friend Functions�� 96

Big O Notation��� 97

EventManager’s Interface Methods�� 98

viii Contents

Rendering an Object���100

The TransformComponent Class��� 100

The Transform Class��� 101

The RenderableComponent�� 103

The TransformShader Class�� 104

The Player Object���107

Making the Player Jump��110

A Basic AI Entity���114

Summary��118

Chapter 7: Building Game Levels with Collision■■ ���121

Representing Game World Objects with Collision Data��121

Building a Game Level��125

Broad-Phase Filtering��134

Quadtrees and Octrees��� 134

Binary Space Partitions�� 135

Broad-Phase Filtering in Droid Runner��� 135

Collision Bins�� 136

The Collision Manager�� 137

Narrow-Phase Collision Detection��138

Responding to Collisions��140

Running the Collision Test��145

Using the Z Buffer��145

Summary��146

Chapter 8: Virtual Cameras■■ ��149

The Model and View Matrices��149

The Projection Matrix���152

Defining a Camera Object���153

Updating the Renderer���155

Concatenating the Model, View, and Projection Matrices��158

ixContents

Updating the Camera’s Transform��159

Adding a Camera to DroidRunnerLevel��161

Proper App Behavior When Pausing and Resuming���165

Adding Events for Pausing and Resuming�� 165

Handling the Pause and Resume Events in the Renderer�� 167

View Frustum Culling���170

The View Frustum Culling Test���178

Summary��183

Chapter 9: Lighting and Materials■■ ��185

A Basic Lighting and Material Model��185

Per-Vertex or Per-Fragment Shading���186

Representing Materials��187

Ambient Lighting��190

Vertex Normals���196

Diffuse Lighting��198

Diffuse Component Vertex Shader�� 198

Diffuse Component Fragment Shader�� 199

Initializing the Shader Using OpenGL ES 2.0�� 201

Specular Lighting���205

Specular Component Vertex Shader��� 206

Specular Component Fragment Shader�� 206

Initializing TransformAmbientDiffuseSpecularShader�� 207

Different Types of Lights���212

Forward Shading�� 212

Point Lights��� 212

Spotlights��� 213

Deferred Rendering�� 213

Bidirectional Reflectance Distribution Functions�� 214

Summary��214

x Contents

Chapter 10: Game Audio■■ ���217

The Physics of Sound���217

Amplitude��� 218

Frequency��� 220

Other Types of Sound Waves�� 221

Aliasing��� 223

Audacity���223

The Chirp Generator�� 224

Effects�� 225

Creating a Jump Sound Effect with Audacity���227

Playing Audio Using OpenSL ES���235

Creating the AudioManager�� 235

An Introduction to OpenSL ES��� 236

Creating OpenSL ES Player Objects for Files�� 238

SDBM Hashes��� 242

Playing Sounds Using OpenSL�� 243

Cleaning Up Sounds��� 243

Adding Sound Effects to Droid Runner��� 245

Summary��248

Chapter 11: Self-Publishing 101■■ ���249

The Google Play Developer Console���249

Keys, Keystore, and Digital Signatures���249

Signing an APK for the Play Store��250

Uploading to the Google Play Developer Center���255

Monetization���259

App Quality���260

Summary��261

xiContents

Appendix A: Using the Android Development Environment■■ ��263

Setting Up the Android SDK and Eclipse��263

Installing the Android NDK���263

Building a Native App���264

Appendix B: Android Hardware Overview■■ ��269

CPU Architectures���269

ARM�� 269

MIPS��� 270

x86�� 270

GPU Architectures���270

PowerVR��� 270

Mali and Adreno�� 271

Tegra��� 271

Appendix C: C++ Programming■■ ��273

The Friend Keyword���273

Templates���274

The Singleton Pattern���275

Appendix D: C++ Math■■ ��277

Vectors���277

Matrices���281

Identity Matrix��� 282

Rotation Matrices��� 282

Multiplying Matrices��� 283

Planes���286

Index��289

xiii

About the Author

Bruce Sutherland is a video game developer from Dundee, Scotland. He graduated from the
University of Abertay, Dundee’s Computer Games Technology degree program in 2005. He began
work at 4J Studios the same year where he worked on several titles including The Elder Scrolls IV:
Oblivion for the PS3. After leaving Dundee in 2008, he moved to Melbourne and began work at
Visceral Games, where he was part of the development team on Dead Space, The Godfather II, and
Dead Space 3. Most recently, Bruce has been working on the Android version of Real Racing 3 for
Firemonkey Studios.

xv

About the Technical
Reviewer

Onur Cinar is the author of Android Apps with Eclipse, and
Pro Android C++ with the NDK books from Apress. He has over 17 years
of experience in design, development, and management of large-scale
complex software projects, primarily in mobile and telecommunication
space. His expertise spans VoIP, video communication, mobile
applications, grid computing, and networking technologies on diverse
platforms. He has been actively working with the Android platform since
its beginning. He has a B.S. degree in Computer Science from Drexel
University in Philadelphia, PA. He is currently working at the Skype
division of Microsoft as the Principal Development Manager for the
Skype client on Android platform.

xvii

Acknowledgments

I’d like to thank the team at Apress for their help and support during the process of writing this book.
To Steve Anglin for being easy to work with during the initial pitch process. To Matthew Moodie,
Dhaneesh Kumar, Onur Cinar, and the editing team at Apress for providing valuable feedback on my
writing; as a new author it was greatly appreciated.

A special thanks to Jill Balzano at Apress. Jill has had to help me through the entire process of
writing the book, from forgetting passwords to reminding me of when chapters were due to be
finished. Thank you Jill.

I’d also like to thank my wife, Claire. Claire has been exceptionally supportive as I invested a lot of
time into both working and writing. This book would not have been possible without that support.

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer

	Acknowledgments
	Introduction
	Chapter 1: An Introduction to Game Development
	A Brief History of Video Games
	Who Makes Games?
	The Difference between Computer Games and Board Games
	Comparing Mobile Phones to Game Consoles
	An Overview of Game Engines
	Summary

	Chapter 2: An Introduction to the Android Game Development Ecosystem
	Java and the Dalvik Virtual Machine
	C++ and the NDK
	Fragmentation and the Android Ecosystem
	Android Versions
	Screen Resolution and Aspect Ratio
	Input Device Support
	GPUs

	HelloDroid - Our First Android Game
	Creating a New Eclipse Project
	Adding NDK Support
	A Look at the NDK Build System
	Modifying the Build File
	Adding Application-Level Build Options
	Enabling Debugging

	Running the Game

	Summary

	Chapter 3: Game Design for Beginners: Droid Runner
	An Introduction to Design Documents
	Creating a World, Telling a Story, and Setting the Scene
	The Droid Runner Design Overview
	Section 1 - Game Overview

	Defining the Gameplay and Mechanics
	Section 2 - Gameplay and Mechanics
	Section 2.1 - Gameplay
	Section 2.2 - Mechanics
	Section 2.2.1 - Movement
	Section 2.2.2 - Obstacles
	Section 2.2.3 - Pickups

	Level Design
	Pacing
	Aesthetics
	Scale

	Technical Requirements
	Summary

	Chapter 4: Building a Game Engine
	Creating an Application Object
	Creating the Game Loop Using a Kernel and Tasks
	Starting the Kernel Class
	Defining the Task Interface
	Examining the Kernel Methods

	Android’s Native App Glue
	Timekeeping
	Summary

	Chapter 5: Writing a Renderer
	Initializing the Window and OpenGL Using EGL
	An Introduction to Shaders
	An Introduction to Vertex Shaders in OpenGL ES 2.0
	An Introduction to Fragment Shaders in OpenGL ES 2.0
	Creating a Shader Program

	Rendering a Quad with OpenGL
	Representing Geometry
	Creating a Renderable
	Creating the Basic Shader
	Creating an App-Specific Application and Task

	Applying Textures to Geometry
	Loading a File
	Loading a TGA File
	Representing a GL Texture
	Creating TextureShader
	Initializing Textures and Shaders
	Loading Textures in a Task

	Summary

	Chapter 6: Game Entities
	What Is a Game Entity?
	Communicating with Game Objects via Events
	The Event Class
	The EventHandler Classes
	The EventManager
	EventManager’s Friend Functions
	Big O Notation
	EventManager’s Interface Methods

	Rendering an Object
	The TransformComponent Class
	The Transform Class
	The RenderableComponent
	The TransformShader Class

	The Player Object
	Making the Player Jump
	A Basic AI Entity
	Summary

	Chapter 7: Building Game Levels with Collision
	Representing Game World Objects with Collision Data
	Building a Game Level
	Broad-Phase Filtering
	Quadtrees and Octrees
	Binary Space Partitions
	Broad-Phase Filtering in Droid Runner
	Collision Bins
	The Collision Manager

	Narrow-Phase Collision Detection
	Responding to Collisions
	Running the Collision Test
	Using the Z Buffer
	Summary

	Chapter 8: Virtual Cameras
	The Model and View Matrices
	The Projection Matrix
	Defining a Camera Object
	Updating the Renderer
	Concatenating the Model, View, and Projection Matrices
	Updating the Camera’s Transform
	Adding a Camera to DroidRunnerLevel
	Proper App Behavior When Pausing and Resuming
	Adding Events for Pausing and Resuming
	Handling the Pause and Resume Events in the Renderer

	View Frustum Culling
	The View Frustum Culling Test
	Summary

	Chapter 9: Lighting and Materials
	A Basic Lighting and Material Model
	Per-Vertex or Per-Fragment Shading
	Representing Materials
	Ambient Lighting
	Vertex Normals
	Diffuse Lighting
	Diffuse Component Vertex Shader
	Diffuse Component Fragment Shader
	Initializing the Shader Using OpenGL ES 2.0

	Specular Lighting
	Specular Component Vertex Shader
	Specular Component Fragment Shader
	Initializing TransformAmbientDiffuseSpecularShader

	Different Types of Lights
	Forward Shading
	Point Lights
	Spotlights
	Deferred Rendering
	Bidirectional Reflectance Distribution Functions

	Summary

	Chapter 10: Game Audio
	The Physics of Sound
	Amplitude
	Frequency
	Other Types of Sound Waves
	Aliasing

	Audacity
	The Chirp Generator
	Effects

	Creating a Jump Sound Effect with Audacity
	Playing Audio Using OpenSL ES
	Creating the AudioManager
	An Introduction to OpenSL ES
	Creating OpenSL ES Player Objects for Files
	SDBM Hashes
	Playing Sounds Using OpenSL
	Cleaning Up Sounds
	Adding Sound Effects to Droid Runner

	Summary

	Chapter 11: Self-Publishing 101
	The Google Play Developer Console
	Keys, Keystore, and Digital Signatures
	Signing an APK for the Play Store
	Uploading to the Google Play Developer Center
	Monetization
	App Quality
	Summary

	Appendix A: Using the Android Development Environment
	Setting Up the Android SDK and Eclipse
	Installing the Android NDK
	Building a Native App

	Appendix B: Android Hardware Overview
	CPU Architectures
	ARM
	MIPS
	x86

	GPU Architectures
	PowerVR
	Mali and Adreno
	Tegra

	Appendix C: C++ Programming
	The Friend Keyword
	Templates
	The Singleton Pattern

	Appendix D: C++ Math
	Vectors
	Matrices
	Identity Matrix
	Rotation Matrices
	Multiplying Matrices
	Matrix Transpose
	Transforming Vectors

	Planes

	Index

