MULTIPHYSICS MODELING VOLUME 2

Introduction to the Numerical Modeling
of Groundwater and Geothermal Systems



INTRODUCTION TO THE NUMERICAL MODELING
OF GROUNDWATER AND GEOTHERMAL SYSTEMS



THE COVER

The main figure represents a conductive-convective geothermal system with fluid, heat and solute
transport through pores and fractures. The simplified geological model corresponds to the Los
Azufres, Mexico geothermal field.

The equations (from top to bottom) are mathematical models of:

1) The groundwater flow equation in terms of pressure, density and permeability (eq. 4.16).

2) The Terzaghi effective stresses and the pore-fluid pressure (eq. 2.69b).

3) The poroelastic strains, the stresses and the inverse matrix of poroelastic coefficients
(eq. 2.77D).

4) The pore-fluid pressure in terms of mechanical and thermal stresses (eq. 2.120).

5) The general solute transport equation with dispersion and advection (eq. 4.111).

6) The Fourier’s law of heat conduction (eq. 4.79).

7) The general heat flow equation with conduction and convection (eq. 4.104a).



Multiphysics Modeling

Series Editors

Jochen Bundschuh

University of Applied Sciences, Institute of Applied Research,
Karlsruhe, Germany
Royal Institute of Technology (KTH), Stockholm, Sweden

Mario César Suarez Arriaga

Department of Applied Mathematics and Earth Sciences,

Faculty of Physics and Mathematical Sciences, Michoacan University UMSNH,
Morelia, Michoacan, Mexico

ISSN: 1877-0274

Volume 2






Introduction to the Numerical
Modeling of Groundwater
and Geothermal Systems

Fundamentals of Mass, Energy and Solute
Transport in Poroelastic Rocks

Jochen Bundschuh

University of Applied Sciences, Institute of Applied Research,
Karlsruhe, Germany
Royal Institute of Technology (KTH), Stockholm, Sweden

Mario César Suarez Arriaga

Department of Applied Mathematics and Earth Sciences,
Faculty of Physics and Mathematical Sciences,
Michoacan University UMSNH, Morelia, Michoacan, Mexico

CRC Press
Taylor & Francis Group

Boca Raton London New York Leiden

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A BALKEMA BOOK



CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2010 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140602

International Standard Book Number-13: 978-0-203-84810-4 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the
validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the
copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to
publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let
us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or
utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho-
tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permis-
sion from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of
users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has
been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com



About the book series

Numerical modeling is the process of obtaining approximate solutions to problems of scientific
and/or engineering interest. The book series addresses novel mathematical and numerical tech-
niques with an interdisciplinary emphasis that cuts across all fields of science, engineering and
technology. It focuses on breakthrough research in a richly varied range of applications in phys-
ical, chemical, biological, geoscientific, medical and other fields in response to the explosively
growing interest in numerical modeling in general and its expansion to ever more sophisticated
physics. The goal of this series is to bridge the knowledge gap among engineers, scientists, and
software developers trained in a variety of disciplines and to improve knowledge transfer among
these groups involved in research, development and/or education.

This book series offers a unique collection of worked problems in different fields of engineering
and applied mathematics and science, with a welcome emphasis on coupling techniques. The book
series satisfies the need for up-to-date information on numerical modeling. Faster computers
and newly developed or improved numerical methods such as boundary element and meshless
methods or genetic codes have made numerical modeling the most efficient state-of-the-art tool for
integrating scientific and technological knowledge in the description of phenomena and processes
in engineered and natural systems. In general, these challenging problems are fundamentally
coupled processes that involve dynamically evolving fluid flow, mass transport, heat transfer,
deformation of solids, and chemical and biological reactions.

This series provides an understanding of complicated coupled phenomena and processes, its
forecasting, and approaches in problem solving for a diverse group of applications, including
natural resources exploration and exploitation (e.g. water resources and geothermal and petroleum
reservoirs), natural disaster risk reduction (earthquakes, volcanic eruptions, tsunamis), evaluation
and mitigation of human induced phenomena (climate change), and optimization of engineering
systems (e.g. construction design, manufacturing processes).

Jochen Bundschuh

Mario César Suarez Arriaga
(Series Editors)
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Preface

No comprehensive textbook on the groundwater related issues of geothermal energy use is avail-
able yet. This book addresses this gap and appears at a crucial point in time where we all need
to explore non-fossil alternative energy sources. Despite some recent irritations related to earth-
quakes induced by geothermal projects there is no way to ignore this vast energy resource and
I'am sure it will prevail in the long run. In all design and scoping tasks involved in its development
the tool of numerical modelling will be essential. It is this tool which is described in depth and
detail in this book.

The treatment of heat related groundwater flows requires the coupling of the ordinary isothermal
Darcy flow with heat transport, density changes, deformation of the matrix, two-phase flow under
steam conditions and eventually the geochemistry and thermodynamics of dissolved minerals.
This leads to a highly complex, highly non-linear problem, the mere numerical solution of which
even today still presents a major scientific challenge, not to speak of the problems associated with
the natural heterogeneity of the subsurface properties.

The book limits itself to the physical aspects, leaving out the geochemical coupling. It describes
in great detail the thermal and mechanical properties of the rock and the transported fluids. The
aspect of heterogeneity is taken into account by its treatment through the conceptualisation of
the medium as multi-porous. This is a pragmatic way of parameterizing unresolved and unknown
heterogeneity of the medium. However it has to be remembered that it is not predictive but rather
requires substantial observation data in order to be identifiable.

After discussion all partial aspects of the modelling procedure, in the final chapter, the coupled
approach is applied in a more integral fashion to a geothermal field in Mexico, giving the student
a practical example of how to approach the geothermal modelling task.

The text is very comprehensive and can therefore be used not only as a textbook but also as a
reference source especially on all temperature related properties of rocks and fluids.

I wish this book a friendly reception in the scientific and engineering communities involved
with geothermal energy and its groundwater and hydrogeology aspects.

Ziirich, February, 2010
Wolfgang Kinzelbach
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Foreword

Modern theory of flow through deformable porous media is based on Darcy’s law, which owes its
origin to a simple one-dimensional filtration experiment first performed by Henry Darcy in 1856.
By varying the experimental parameters, Darcy showed that the volumetric flow rate is directly
proportional to the area of the filtration bed, and the liquid head gradient across the bed. The
constant of proportionality K, introduced by Darcy, is now known as hydraulic conductivity and
depends on the properties of both the fluid and the porous media. Since the publication of Darcy’s
monograph in 1856, Darcy’s law has been generalized to describe multi-phase multi-component
compressible fluid flow through anisotropic and heterogeneous porous and fractured media. An
understanding of the theoretical framework for flow through porous media and material properties
is essential for modeling groundwater and geothermal systems. The current volume contains a
thorough exposition of poroelasticity and thermomechanical properties of porous rocks and water
in addition to mass and energy transport in geologic media.

Until the availability of computing machines in the second half of the 20th century, only a
few groundwater problems could be solved analytically. The advent of computers has radically
altered the situation. These days large-scale multidimensional computer codes are in routine use
for complex groundwater, geothermal, oil and gas, and environmental applications. The authors
provide a discussion of all the principal numerical methods used to solve the system of partial
differential equations that govern mass and energy transport in porous media. Application of
computer codes to solve practical groundwater and geothermal problems requires an estimation
of certain model parameters (e.g. formation porosity and permeability). It is only fitting that
the authors have devoted considerable space to model parameter estimation, construction of the
conceptual model, and procedures for developing numerical models.

Readers new to numerical modeling will find the groundwater and geothermal examples con-
tained in the last part of the book to be very helpful in learning the “art” and “science” of
the numerical modeling of groundwater and geothermal systems. Experienced modelers and
researchers will find this volume to be a valuable addition to their reference shelf. The authors
and the publisher are to be congratulated for producing an interesting and comprehensive work.

Sabodh K. Garg
Science Applications International Corporation
San Diego, California
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Authors’ prologue

I don’t know where I'm going But I know I'm on the way...
American Folk Song

The main purpose of writing this book was to make basic knowledge on mathematical modeling
and fundamental concepts of the flow of mass and energy in deformable porous rocks available to
a broad readership. It is impossible to cover this subject within the space limitations of any normal
book. Therefore, a selection of topics has been made among those essential for a full understanding
ofthe area. However, almost all the developments described herein are discussed in detail. The fun-
damental concepts, the physical laws, and the majority of equations modeling different phenomena
are described and presented in a simple and logical manner. Some mathematical knowledge is
required by the reader, including an understanding of differential and integral calculus in two
or three variables, basic matrix algebra, and some interpolation techniques for the numerical
approximation of functions and the solution of differential equations. The laws of conservation
of mass, momentum and energy, including the two laws of thermodynamics, are gradually intro-
duced in the context of natural reservoirs formed by poroelastic rocks subjected to pressure and
temperature changes. The experimental coefficients supporting the theory are presented from a
practical point of view, with a short description of how they are measured in the laboratory.

This book is oriented to the presentation of the scientific fundamentals of groundwater and
geothermal systems. It explains in a simple and didactic manner the different water and energy
problems and the existing mathematical and numerical tools that lead to modeling and solving
them. We believe that this approach provides the reader with a thorough understanding of several
subjects including the basic physical laws of poroelastic rocks, the partial differential equations
representing these laws and the principal numerical methods, which allow finding approximate
solutions of the corresponding mathematical models. The book also presents the form in which
specific useful models can be generated and solved.

The text is introductory in the sense that it discusses elementary topics in three areas: mathemat-
ics, physics and engineering of the mentioned systems. All the laws and equations introduced in
this book are formulated carefully from physical principles. In this way, the reader will understand
the key importance of mathematics applied to all the subjects. Simple models are emphasized and
solved with numerous examples. The numerical techniques are described and developed carefully
for the more sophisticated and advanced models. In all cases we emphasize the physical interpre-
tation of equations and mathematical results. The various parameters and coefficients appearing
in both isothermal and geothermal aquifers are introduced after explanations based on well doc-
umented experimental outcomes. We introduced several new ideas, including, for example, a
four-dimensional formulation of linear poroelastic theory and the use of the Gibbs and Helmholtz
potentials to deduce the thermoporoelastic matrix equations also in four dimensions. An exact
model to estimate the collapse of fractures and faults, direct examples of porous rock thermody-
namics, relationships and numerical values of the poroelastic coefficients, practical correlations
for aquifers, low-enthalpy and two-phase hydrothermal reservoirs, the graphical properties of
water and various modeling examples of groundwater and geothermal systems are also novel in
this introductory context.

Water and energy related sciences play a major, but often overlooked role in regard to economic
and social development. During recent decades, the world has witnessed an unrelenting succession
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of problems related to shortage of water resources and energy supply. Risks have increased sharply
during the last few decades and will continue to grow in the near future. Reasons for this dangerous
increase include population growth and human activities such as industry in continually expanding
economies.

Geologic resources need to be better assessed, via improved exploration and exploitation.
Geothermal resources can be exploited as an environmentally sound domestic energy source to
cover large parts of the worlds projected electricity demand. Freshwater resources are becoming
increasingly limited and thus are assuming the status of the world’s “gold” of the 3rd millennium.
Energy and water, their purification, and equitable distribution pose great social and political
challenges for humanity. A better understanding of these natural resources can contribute to
reduce such menaces on our planet. Numerical modeling is an indispensable tool for any wise
decision-making.

Particularly within the last 20 years, numerous important investigations have been performed in
different fields of numerical modeling in different systems, and new methods and concepts were
introduced by various groups of researchers. The most important results of these investigations
are presented in numerous publications which are covering either highly specific topics or which
are restricted to very special types of systems. This indicates the need of a synoptic compendium
of the fundamentals of fluid, solute and heat transport, which is applicable for all types of sub-
surface systems, ranging from shallow aquifers down to deep geothermal reservoirs. We wanted
to showcase these new studies, as well as the trends of ongoing research in a broad spectrum
of topics in numerical modeling applied to groundwater resources and geothermal reservoirs.
Additionally, the book clearly reveals that a lot of further investigations need to be performed,
and it hopefully will give the reader appropriate stimulus. We show that numerical models are
tools and that their results must be considered critically. The quality of the results depends on the
preparation of the model, the knowledge of the hydrogeological situation, and data as well as on
the knowledge of the initial and boundary values of the reservoir.

The book aims to address professionals and academics equally. It shall further assist key insti-
tutions that deal with water and energy resources planning as an introduction for what and how
numerical modeling can be applied in these fields. This also includes international and bilat-
eral bodies concerned with technical and economic cooperation in developing countries—Ilike
those of the United Nations family and the international and regional development banks, finan-
cial institutions, donors, etc. Referring to this group it addresses in particular the newly founded
International Renewable Energy Agency IRENA. We hope this book will become a standard, used
by educational institutions, and Research and Development establishments involved in the respec-
tive issues. The book should prove to be a useful textbook to senior undergraduate and graduate
students, postgraduates, professional geologists and geophysicists, engineers, mathematicians
and others working in the areas concerned to groundwater and geothermal resources.

Not least, this book fills a gap in the literature, not only in the combination of deep insights into
numerical modeling, but it also joins diverse specialist into a framework of a closer cooperation
related to better using the worlds freshwater and geothermal resources contributing to global
climate change mitigation. We hope that the book will not only benefit its readers, but that it also
will contribute to bring scientists of geosciences, engineering and applied mathematics closer
together, through cooperative work in problem solving, and that this effort will prove to be a
catalyst and starting point for many new collaborations and scientific research projects. We hope
that this book will help us all to rededicate ourselves to wise and responsible use of the world’s
geological resources. Our goal must be to use water and energy resources in an optimal and
sustainable way, to fulfill the water and energy needs of our present generation and to maintain
and to protect them for the sake of the subsequent generations, and to avoid jeopardizing their
future through inept use of natural resources.

Jochen Bundschuh
Mario-César Suarez Arriaga
June 2010
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CHAPTER 1

Introduction

Accessibility to water and energy in sufficient quantity and quality are essential for human
development. Hence provision of both these commodities accounting for their sustainable use
and the need to mitigate global climate change by reducing greenhouse gas emissions are pri-
mary tasks of the 21st century. Increasing stress on water resources, and the need to better assess
‘clean’ energy resources such as geothermal energy, require the development and application
of sophisticated, state-of-the art tools such as numerical modeling. To illustrate this present-day
world concern, we will start this introductory chapter with some information, mostly from the
UN organizations on the global water problem and from the Intergovernmental Panel on Climate
Change about the process of global warming related to the energy issue and cite their most impor-
tant findings (sections 1.1 and 1.2). These reports highlight the importance of better addressing
these issues guaranteeing the development and survival of humanity.

1.1 THE WATER PROBLEM—THE UN VISION

“Global freshwater consumption rose sixfold between 1900 and 1995—more
than twice the rate of population growth. About one third of the world's popula-
tion already lives in countries considered to be ‘water stressed’ —that is, where
consumption exceeds 10% of total supply. If present trends continue, two out of
every three people on Earth will live in that condition by 2025.”

Kofi Annan (2000)*

No one can live without water. Water and air are the essential elements for life in this planet and
for the development and survival of humanity. Neither nature nor human technology can generate
or create more water. The water existing on Earth transits through the continuous hydrological
cycle of evaporation, condensation, infiltration, and flow. This water is the same fluid that existed
for millions of years. The great difference nowadays is its quality and distribution.

It has recently entered public awareness that drinking water is a fragile and rare commodity.
The immensity of the oceans and the constant renewal of the water cycle create the illusion that
water is a simple and eternal fluid. However, recent figures from the UN (UNEP 2009) show
that some 1200 million human beings lack access to drinking water and another 2000 million
receive contaminated water. In other words, serious deficiencies in the supply and quality of
this vital liquid currently affect almost half of humanity (February 2010: 6,912,334,200; source:
http://www.breathingearth.net/). The ecological, social, technical, and political problems related
to the supply of water are not caused by its amount, but by the irregular distribution of water on
the planet, as well as the polluting influence of human activity.

The Earth contains approximately 1400 x 10° km? of water and the oceans contain 97.5% of
this total (1365 x 10° km3, UNEP 2009). Freshwater resources represent about 2.5% of the total
volume (35 million km3). Of the total water, 1.7% (24 million km?) is in the form of ice and
perennial snow cover in the mountains, the Antarctic and Arctic regions. Therefore, only 0.8%

* Source: Kofi Annan in: We the Peoples, 2000.
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(11 million km?) of the Earth’s vital fluid is available to humanity and even this small portion is
subject to constant pollution. (UNEP 2009).

Each year the oceans lose some 5 x 10° km? of water into the atmosphere by evapora-
tion. Only 9% of this amount falls as rain on land. Some 8 million km? is stored in the form
of groundwater basins, soil moisture and permafrost. This constitutes about 73% of all the
freshwater that is potentially available for human use. Lakes and rivers contain approximately
105,000 km? (0.3%) of the world’s freshwater (UNEP 2009). Many ecologists, scientists and
international experts believe that water availability will become a critical factor for the sur-
vival of mankind in the very near future. Water issues will determine the very future of life on
Earth.

Today, water is considered as a finite, valuable resource of inequitable and unbalanced world-
wide distribution in both social and geographical spaces. Industrial wastes, pesticides, natural
arsenic, and diverse chemicals cause contamination of drinkable water. The demand increment
produced by the demographic augmentation and water wastage creates a dangerous situation.
Population pressures, increasing demands for space and resources, and poor economic perfor-
mances can all undermine the sustainable use of water. Since 1900, water demand has been
multiplied six times (UNEP 2009). Since 1940 the world population has an annual growth of
about 2% while water extraction increases about 3% per year (Ledn Diez 2005). At the present
time people need an average of between 27 and 200 liters per day to satisfy their needs (Ledn
Diez 2005). Africa and the Middle East are the two regions of the world where there is less
water. The American continent is the richest in hydraulic resources (Leon Diez 2005). The
inequity in the consumption of water is evident when comparing figures of the UN (2003):
Brazil, Canada, China, United States, India and Russia have the 40% of rivers and lakes of
the planet. In Canada each inhabitant disposes of 91,640 m> of water per year; in Australia,
26,032 m3; in Mexico, 4547 m3; in South Africa, 1109 m? and in Egypt, 29 m3. According
to the UN, (Leén Diez 2005) the quantity of water that a person needs is about 5000 m>/year.
Having less than 1700 m?/year is called water stress; having less than 1000 m?/year is considered
scarcity.

The United Nations Environment Programme (UNEP) compiled an updated a very useful report
(Vital Water Graphics) on the state of the world’s waters. This report focuses on the critical issues
of water quantity, quality and availability—issues that are vital to the quality of life on Earth.
Highlights from assessment activities over the past two decades, reveal the following conclusions
(cited from UNEP 2009):

e Freshwater resources are unevenly distributed, with much of the water located far from human
populations. Many of the world’s largest river basins run through thinly populated regions.

e Groundwater represents about 90% of the world’s readily available freshwater resources, and
some 1.5 billion people depend upon groundwater for their drinking water supply. Groundwater
is by far the most abundant and readily available source of freshwater, followed by lakes,
reservoirs, rivers and wetlands.

o The amount of groundwater withdrawn annually is roughly estimated between 600 and 700 km?,
representing about 20% of global water withdrawals. A comprehensive picture of the quantity
of groundwater withdrawn and consumed annually around the world does not exist.

e Agricultural water use accounts for about 75% of total global consumption, mainly through
crop irrigation, while industrial use accounts for about 20%, and the remaining 5% is used for
domestic purposes.

e It is estimated that two out of every three people will live in water-stressed areas by the year
2025. In Africa alone, it is estimated that 25 countries will be experiencing water stress (below
1700 m? per capita per year) by 2025. Today, 450 million people in 29 countries suffer from
water shortages.

e Clean water supplies and sanitation remain major problems in many parts of the world, with
20% of the global population lacking access to safe drinking water. Water-borne diseases from
faecal pollution of surface waters continue to be a major cause of illness in developing countries.
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Polluted water is estimated to affect the health of 1.2 billion people, and contributes to the death
of 15 million children annually.

1.2 THE ENERGY PROBLEM—VISION OF THE INTERGOVERNMENTAL
PANEL OF CLIMATE CHANGE

“Modern society continues to rely largely on fossil fuels to preserve economic
growth and today's standard of living. However, for the first time, physical limits
of the Earth are met in our encounter with finite resources of oil and natural
gas and its impact of greenhouse gas emissions onto the global climate. Never
before has accurate accounting of our energy dependency been more pertinent to
developing public policies for a sustainable development of our society, both in
the industrial world and the emerging economies.”

Minutes, Debate of Senate (Eerste Kamer), 2009 (in Dutch)*

Today (2010) the world is consuming about 85 millions barrels of oil/day (Mbod). In 2008, this
consumption was 86 Mbod and was growing in that period by more than one Mbod per year. This
increment is equivalent to discover a new oil province like Azerbaijan each year. Oil prices in July
2008 reached 145.29 USD per barrel (WTI). Because of the economical crisis, oil consumption
reduced 0.5 Mbod in 2008 and 1.75 Mbod in 2009, and the oil prices decreased as well. However,
the price in February 2010 was around 80 USD per barrel and the trend is to grow again (Oil-
Price.Net 2010). Between 40 and 50% of worldwide oil demand is for transportation. In addition to
the huge amount of gasoline required by the industrialized territories, there is an uncontrollable
increase in the appetite for automotive fuel in several countries of Asia, Latin America, and
Africa. On the other hand, the production costs of oil in reservoirs located in different regions are
increasingly high (Chevron Corporation 2009). The total OPEC’s oil spare capacity was 10 Mbod
in 1995; this capacity decreased to 2 Mbod in 2008. With or without crisis, there is no longer
a safety margin to ensure price stability in the face of demand spikes and supply interruptions.
Therefore, in the very near future we will have limited oil supply, increasing demand, higher oil
prices, increasing pollution, and environmental impact from global emissions of greenhouse gases.

The Working Group I of the Intergovernmental Panel on Climate Change (IPCC), (Solomon
et al. 2007, and IPCC homepage http://ipcc-wgl.ucar.edu/wgl/) provided an authoritative inter-
national assessment of how the activities of the human industry are affecting the radiative energy
balance in the atmosphere. Their objective is to provide a scientific understanding of climate
change. Concerning the key question: how are temperatures on Earth changing? the Working
Group I furnished the following conclusive information:

“Instrumental observations over the past 157 years show that temperatures at the surface
have risen globally, with important regional variations. ... An increasing rate of warming has
taken place over the last 25 years, ... Confirmation of global warming comes from warming
of the oceans, rising sea levels, glaciers melting, sea ice retreating in the Arctic and diminished
snow cover in the Northern Hemisphere, ... (and) decreases in the length of river and lake ice
seasons. . . . the oceans are warming; and sea level is rising due to thermal expansion of the oceans
and melting of land ice ... Expressed as a global average, surface temperatures have increased
by about 0.74°C over the past hundred years (between 1906 and 2005; Figs. 1.1 and 1.2).”

The human impact on climate during this era greatly exceeds that due to known changes in
natural processes, such as solar changes and volcanic eruptions (Solomon et al. 2007) (Fig.
1.2). In the light of the available information, there is an urgent need to replace hydrocarbons
by other, diversified, and clean primary sources of energy. Solar, wind, and geothermal energy

* Source: Minutes of the debat of the Senate (Eerste Kamer) of the Dutch Parliament, March 31st, 2009
http://www.eerstekamer.nl/stenogram/stenogram_254/f=x.pdf.
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Figure 1.1.  Annual global mean observed temperatures (black dots, from the HadCRUT3 data set) along
with simple fits to the data. The left hand axis shows anomalies relative to the 1961 to 1990
average and the right hand axis shows the estimated actual temperature. Linear trend fits
to the last 25 (yellow), 50 (orange), 100 (purple) and 150 years (red) are shown, and corre-
spond to 1981 to 2005, 1956 to 2005, 1906 to 2005, and 1856 to 2005, respectively. From
about 1940 to 1970 the increasing industrialisation following World War II increased pollution
in the northern hemisphere, contributing to cooling, and increases in carbon dioxide and other
greenhouse gases dominate the observed warming after the mid-1970s. (Solomon et al. 2007).
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Figure1.2. Summary of the principal components of the radiative forcing of climate change (Solomon

et al. 2007).

are some of these sources able to replace advantageously coal, oil, gas and nuclear. Particularly,
submarine offshore hydrothermal energy is one of the most important and enormous geothermal
source that has never been used on Earth (Suarez-Bosche et al. 2005). Supercritical geothermal
resources will enable the generation of electricity on an efficient, economical basis through
turbine-generators on the ocean floor that will supply the grid’s demand for electricity. This
approach generates electricity from geothermal energy from a vast, high-temperature resource
never before accessed. Technological improvements will increase efficiency enough to enable
geothermal energy to compete with traditional power plants on cost. This approach will also
access much more extensive geothermal resources than the land conventional resources currently
used.
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1.3 MULTIPHYSICS MODELING OF ISOTHERMAL GROUNDWATER
AND GEOTHERMAL SYSTEMS

“Scientific computing has often been called the third approach to scientific discov-
ery, emerging as a peer to experimentation and theory. Historically, the synergy
between theory and experimentation has been well understood. Experiments give
insight into possible theories, theories inspire experiments, experiments reinforce
or invalidate theories, and so on. As scientific computing has evolved to increas-
ingly produce computational results that meet or exceed the quality of theoretical
and experimental results, it has become and indispensable third approach. ..
The synergy of theory, experimentation, and computation is very rich.”

Michael A. Heroux, Padma Raghavan and Horst D. Simon, 2006*

The scientific study of transport processes in natural porous fractured systems, such as aquifers,
petroleum, gas and geothermal reservoirs, is relatively recent. Over the last 40 years, sev-
eral research methods have been developed based on experimental data and mathematical
approaches. To understand the complicated mechanisms of flow occurring in these scenarios,
various mathematical methods have been employed: analytical methods were initially used, fol-
lowed by analog models and most recently, numerical models. One of the main problems is
the difficulty in accurately representing the dimensions and spatial distribution of fractures and
faults created by geologic and tectonic processes of a random nature. In hydrothermal systems
(convection-dominated geothermal reservoirs), the transport of mass, momentum and energy is
a non-isothermal process with phase changes, where dissolved salts, non-condensable gases and
the distribution of petrophysical parameters are of great importance.

In the scientific study of nature it is necessary to make numerical operations of diverse degrees
of complexity, from elementary to high mathematical sophistication. The development of mathe-
matical models is justified by the help they bring in the understanding and verification of specific
mechanisms and behaviors of natural systems. In addition, their cost is considerably lower com-
pared to any other technique. Furthermore, numerical models can be subjected, without any
risk, to the most critical operation conditions. The utility of modeling is specific to the natural
systems because physical scale models of them cannot be made in the laboratory. The “pre-
diction” and “retro-diction” capacities of mathematical models allow the quantitative estimation
of future behaviors that are yet to be observed, as well as the estimation of processes that are no
longer observed, but that were the antecedent of the current phenomenon. Numerical simulation
is irreplaceable as a tool for analysis and synthesis, to achieve an ongoing coherent integration
of information on the reservoir, as its lifespan advances. Other research techniques offer only a
partial perspective on the global system. The mathematical model and its associated numerical
code can be used to combine and to verify several complex hypotheses and to test them against
the observed facts and data. Petroleum, gas, water and heat reservoirs are examples of complex
natural systems. To understand the mass and energy flows in these systems, the development of
integrated models is required.

In this book we define aquifers in the classical sense: groundwater systems of low temperature
(<37°C), which correspond generally to freshwater resources, providing water for drinking,
irrigation and industrial purposes. With very few exceptions, these aquifers can generally be
treated as isothermal systems, where temperature variations in time and space are not of interest.
In addition, we will focus on geothermal systems of variable temperature (>37°C), which are used
as energy resources either for direct use or for electric power generation. These systems—with
the exception of very simple cases—should be treated as non-isothermal reservoirs and in some
instances, the occurrence of both the liquid and the vapor phase of water has to be considered.
The presence of other phases such as non-condensable gases and dissolved species such as ions,

* Source: Parallel Processing for Scientific Computing, SIAM, 2006.
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further increase the complexity of the system. To simplify the nomenclature, we will distinguish
these two groups with regard to their use, by referring to the first group as “cold aquifers”
(isothermal groundwater, freshwater aquifers, etc.) and the second group as “geothermal systems”
(geothermal reservoirs, geothermal resources, geothermal fluid, etc.). It is worth remembering
that the physical laws and mathematical descriptions which apply to geothermal systems are also
valid for isothermal aquifer systems.

Numerous interacting parameters, variables and functions drive the movement of groundwater
and steam, and the transport of heat, solutes and gases. With the exception of some very special
cases, these transport processes are coupled through (1) the interstitial pore velocity, (2) the depen-
dence of fluid density on pressure, temperature and solute-mass fraction, (3) the dependence of
the fluid viscosity on temperature and solute-mass fraction, and (4) the rock poroelasticity. As a
consequence these processes can only be described using numerical methods. The influences of
the numerous variables, which may be functions of space and time and may also be dependent on
temperature, pressure, etc., govern mass and heat transport and their interactions. All of these func-
tions should be considered at the same time. Hence, mathematical, computational and numerical
modeling become vital tools for the analysis of isothermal aquifers and geothermal systems.

The most important problem for the general scientific development of reservoir engineering is
the dearth of data in some areas and its abundance in others. The nature of this discipline means
that it is always necessary to formulate ideas based on incomplete information. It is also not pos-
sible to construct physical scale models which fully represent the reservoir. Computer numerical
simulation can then achieve an integral detailed description of the reservoir by reproducing the
available robust data. Once some approximate reproduction is achieved, extrapolation may be
applied to predict the future behavior of the system as it is subjected to different exploitation
scenarios with different levels of uncertainty.

As mentioned above, the principal difficulty in establishing an accurate numerical model is
due to the very limited availability of spatial and chronological field data. This can be readily
appreciated if we consider, for example, the parameter dispersivity. It is now well recognized that
this parameter, which is important in modeling solute transport in aquifers, is not measurable in
field situations unless we have a very well-defined simple aquifer fabric, such as that found at
some experimental test sites. For real problems, dispersivity is merely a fitting parameter that
covers our lack of knowledge of the true flow patterns. It cannot be inexpensively measured
except in the immediate vicinity of a well. Furthermore, it is often spatial-scale-dependent and
time-dependent; thus, a single constant value does not often adequately describe what we measure
or wish to predict in the field. Such a lack of input data must be overcome by indirect estimation of
data ranges, and the model has to be applied carefully to obtain useful results from the modeling
analysis. Therefore, a good understanding of the limitations of the data and modeling tools is
vital for the intelligent application of modeling.

1.4 MODELING NEEDS IN THE CONTEXT OF SOCIAL
AND ECONOMIC DEVELOPMENT

The availability of freshwater and energy are intrinsically linked to human social and economic
development. Water and energy resources are increasingly limited. At the same time, the demand
for these resources is increasing sharply due to population and economic growth. This effect is
greatest in the developing world with their higher population growth rates, their fast-expanding
emerging economies and related increase in living standards. This can be clearly demonstrated
using the parameter “electricity demand”, the world-average of which is predicted to increase by
a factor of two from 2004 to 2030 (EIA 2007), with an annual average grow rate of 3.5% in devel-
oping countries (non-affiliated with OECD: Organization for Economic Cooperation and Devel-
opment), compared with a growth rate of 1.3% in industrialized countries (OECD) (EIA 2007).
Several regions of the planet are experiencing a worsening water shortage. The supply of
freshwater is a crucial issue in the many countries that have very limited resources. For example,
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the Mediterranean region is considered to be “poor” in water because 180 million people living
there have less than 1000 m> per capita per year (LeMonde, 23 December, 2008). Of these,
sixty million are surviving with less than 500 m?/year. This situation is worsening because of
increasing population growth, the consequences of climate change and pollution, which renders
the water unsuitable for consumption. In many regions, rivers and aquifers are shared between
different countries, which increases the risk of conflict. Some examples are the Guarani aquifer in
South America, the Nubian sandstone aquifers in northern Africa, the Karoo aquifers in southern
Africa, the Vechte aquifer in western Europe and the Slovak Karst-Aggtelek aquifer and the
Praded aquifer in Central Europe. Nations facing a lack of water look first to secure new sources
of supply by the expansion of drilling, the creation of dams, and the construction of pipelines.
These policies have their limits due to problems associated with overexploitation of aquifers,
jeopardizing the natural groundwater recharge, or drawing on fossil reserves.

In consequence, the security of long-term freshwater and energy supplies is a global cause of
concern. In order to meet future freshwater and energy demands, it will be necessary to develop
“improved tools” for better exploration and exploitation of groundwater resources, which consti-
tute over 99% of the world’s freshwater and energy sources including the geothermal resources,
which have a potential for power generation that is much greater than that of all fossil fuel resources
combined. Geothermal resources can be tapped to meet the increasing demand for electric
power by applying modern heat-exchanger technologies, binary-fluids, drilling-technologies, and
submergible-pumps. These technologies allow the exploitation of previously technically and eco-
nomically inaccessible low-enthalpy (<150°C) convection-dominated geothermal resources and
conduction-dominated enhanced geothermal systems (EGS) (both, high- and low-enthalpy sys-
tems) that are found in practically every country on the Earth (Chandrasekharam and Bundschuh
2008).

Although numerical modeling has been used in past decades as a standard application in differ-
ent fields of mechanical, civil engineering and design its application to isothermal groundwater
systems and geothermal systems has developed slowly during the last four decades and still today
is not implemented to its optimal capacity. The improvement of computer technologies during
the last two decades allows actual modeling of complex coupled subsurface processes, which
was not possible a few years ago. This development in hardware today makes the limitation of
field-data the principal limitation of the application of numerical modeling in hydrogeology and
geothermics.

Before we describe a natural real-world problem, such as an isothermal aquifer system (fresh-
water resources), or a geothermal system (non-isothermal fluids) by applying numerical modeling,
it should be appreciated that these systems are much more complex than most other mechanical
engineering problems, where numerical modeling has been used as a standard tool for several
decades. An isothermal aquifer system is a complex natural underground system involving cou-
pled mechanisms which control mass, solute, and energy transfer in poroelastic rocks, with
the Earth’s surface acting as a boundary. In the case of geothermal systems, the circulation of
hydrothermal fluids, comprising liquid, steam, and gases, is a fundamental complex coupled
process controlling mass, solute and energy transfer from the Earth’s mantle and crust through
the subsurface up to the surface, where geothermal fluids may emerge as hot springs, fumaroles
or steam vents.

In the following part of this chapter we will discuss recent developments in the area of freshwater
and energy resources and give some examples of the worldwide importance of increasing the
implementation of numerical modeling for improved assessment and sustainable exploitation of
these resources, and for problem solving.

1.4.1 The role of groundwater for drinking, irrigation, and other purposes

Increasing limitations on the availability of surface water caused by its seasonal fluctuations and
its continuously quality degradation due to anthropogenic contamination, make groundwater the
principal water source in many areas. The importance of groundwater will undoubtedly increase
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in the future as it is required as drinking water and for crop irrigation to sustain food supplies to
an increasing world population (Bhattacharya et al. 2008). However, groundwater resources are
under increasing stress, both in terms of quantity and quality. This, together with the growing
importance of groundwater, demands a better understanding of the critical processes related to
aquifer systems, which necessitates the development and application of improved tools, such
as numerical modeling, to permit the identification and quantification of processes occurring
in the aquifer and allow the prediction of these processes and their effects. This action should
mitigate the negative impacts of these processes and help to identify optimal approaches for the
assessment, management, and protection of groundwater resources, in order to achieve long-term
sustainability.

Groundwater flow simulation can be applied to investigate groundwater recharge and recovery,
where the consequence of the groundwater withdrawal through wells, horizontal wells of filter
galleries on the natural groundwater flow field (e.g. decrease of the groundwater table or pressure),
can be simulated and used to determine the optimal type and location of a withdrawal installation
(a group of wells and the location of single wells in it, horizontal well, filter gallery), and
respective withdrawal rate(s). Beyond its use for groundwater management tasks, groundwater
flow simulation can also be used for other applications, including the simulation of well hydraulics
and the evaluation of pumping and infiltration tests to determine aquifer parameters, and for
numerous tasks in civil engineering, such as designing proper drainage in excavation pits or
determine water influx in tunnel constructions. In hydroelectric projects, the accurate simulation
of water percolation through, below, and around storage dams, is important for the design of proper
measures to reduce the respective flow rates, for example, by the use of liners or injections. In
addition, the filling of storage lakes and the impact on the natural groundwater flow field can
also be simulated. In areas with limited natural aquifers, numerical modeling is an important tool
to optimize the augmentation of water supplies, e.g. by artificial recharge.

Groundwater flow simulation can be coupled with solute transport simulation and may be
applied to model natural or anthropogenic-induced chemical species transport, including pro-
cesses of solute sorption, production and decay. This procedure may be applied to analyze
groundwater contaminant transport problems, and aquifer vulnerability (contamination hazard
and risk), to define aquifer remediation measures in cases of contamination, and to delimit pro-
tection zones around groundwater capture areas. Numerical transport modeling can be further
applied to the analysis of problems such as those related to subsurface-waste injection, land-
fill leaching, and the evaluation of tracer tests. It is suitable to simulate complex redox- and
pH-dependent chemical and biochemical reactions which occur in the groundwater during its
movement in an aquifer. One example is the occurrence of geogenic contaminants in ground-
water such as arsenic, which is found at toxic levels in many regions of the world, making it
a major environmental health risk for the 21st century (see e.g., Bundschuh et al. 2005, 2009,
Bhattacharya et al. 2007a, b and 2008). In order to supply safe drinking water to the tens of millions
of people affected, an improved understanding of the hydrogeochemical processes responsible
for high levels of arsenic in groundwater is required. Hence, numerical modeling is a reliable
tool with which to examine natural and anthropogenic contamination processes of aquifers, by
forecasting contamination propagation, and defining optimal remediation measures.

Another important application is the modeling of salt water intrusions into freshwater aquifers.
Worldwide, coastal aquifers are increasingly affected by salinization due to sea water intrusions
caused by excessive groundwater exploitation in coastal areas. Here, numerical modeling com-
bined with extensive groundwater monitoring, can optimize freshwater exploitation and avoid or
reduce salinization of aquifers.

In special cases, heat transport has to be considered, e.g. in relation to applications such as
seasonal heat storage underground, the storage of radioactive waste and other situations where
temperature changes in aquifers are of importance. Heat transport may also be of interest if we
wish to describe the mixing of waters of different temperatures, as occurs during groundwater-
surface water interactions. In this case, heat may be used as a tracer to identify and quantify mixing
processes, such as infiltration of river water into an aquifer, or groundwater recharge processes due
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to precipitation, which can further be used for assessing the groundwater contamination potential
from contaminated surfaces or rivers. In addition, heat transport is of interest, e.g. if we want
to model processes resulting in temperature variations in spring water or shallow groundwater,
which are related to temperature changes at the Earth’s surface (Bundschuh 1992, 1993a, b, 1995).

1.4.2 Geothermal resources

The geothermal option for electricity generation has recently been recognized as the optimal—
economically and environmentally sound— choice to meet much of the future electricity demand
and guarantee energy security and energy independence of both developing and developed coun-
tries (Chandrasekharam and Bundschuh 2002, 2008, Aaheim and Bundschuh 2002, Bundschuh
et al. 2002, 2007, Bundschuh and Coviello 2002; further information can be found on the home-
pages of the International Geothermal Association (IGA2009a, b) the Geothermal Resources
Council (GRC 2009) and the Geothermal Education Office (GEO 2009)).

Recent innovations in the form of binary fluids, heat exchangers, and drilling technologies have
made the commercial exploitation of low-enthalpy convective geothermal resources (< 150°C) and
conductive enhanced geothermal systems (low- and high-enthalpy) possible (Chandrasekharam
and Bundschuh 2008).

Convection-dominated high-enthalpy geothermal systems (vapor- or liquid-dominated;
>150°C) are related to volcanic and/or tectonic active areas, and therefore are only found along
active plate boundaries in both the continents and the oceans. At these locations, uprising magma
or deep-seated intrusives are the main source of heat for low- and high-enthalpy convective
geothermal systems, whose main source of thermal fluid is meteoric water. Convective low-
enthalpy resources have considerably greater geothermal potential than high-enthalpy systems,
and much larger regional distribution since they are not limited to active tectonic plate boundaries.
Despite these benefits, low-enthalpy systems are practically unutilized for electricity genera-
tion in both developed and developing countries (Chandrasekharam and Bundschuh 2002, 2008,
Bundschuh and Chandrasekharam 2002, Bundschuh et al. 2002, 2007), even though geother-
mal water with temperatures as low as 80°C can be used for economical commercial electricity
generation with currently available technologies.

Enhanced geothermal systems (EGS), which are not limited to volcanic and/or tectonic active
areas such as convective high-enthalpy geothermal systems, have even greater potential. In these
systems, heat is provided by the natural radioactivity of elements like U, Th, and K, and the con-
duction of heat from the mantle to shallower levels along deep continental crust (Chandrasekharam
and Bundschuh 2008). EGS, which are available in practically every country, have received greater
attention in recent years. According to the MIT report (MIT 2006), the USA alone has an EGS
potential of about 13,000,000 Exa Joules (EJ = 10'8 Joules) (depth 3—10 km), of which 200,000
EJ can be extracted for utilization, which corresponds to about 2000 times the annual primary
energy consumption of the country in 2005. By 2050 the USA could economically generate
about 100,000 MW, with modest R&D investment (MIT 2006). Recent increases in the cost and
uncertainty surrounding conventional energy supplies make these EGS resources increasingly
attractive. These developments in the USA are following the international progress in the devel-
opment of EGS and related technologies, which has obtained considerable interest in Europe and
Australia over the last few years. It is especially important that developing countries, which can all
access low-enthalpy convective and conductive EGS sources for electricity generation, are aware
of these resources. For many of these countries, the exploitation of low-enthalpy resources is not
new since they have been used over the past centuries for bathing, and for direct applications the
last few decades (Chandrasekharam and Bundschuh 2008). Lund et al. (2010) reported direct use
production data from these systems in 78 countries in the year 2010 (72 in the year 2005).

The accelerated growth of interest in geothermal systems requires further development of
sophisticated software and the creation of numerical models to facilitate geothermal exploration
and exploitation, and to sustain long-term productivity. To understand both convective and con-
ductive geothermal systems, the geological and tectonic features that control them needs to be
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thoroughly understood. Simple numerical models of geothermal reservoirs (including scenario
modeling) can assist in understanding these systems during pre-drilling stages, and as more data
become available, more sophisticated models, e.g. those that include thermoporoelastic processes,
can be developed. The development of these tools can be ongoing during drilling and exploita-
tion, to help ensure that convection-dominated geothermal reservoirs are utilized optimally in a
sustainable way. In the case of EGS, the heat exchange between rock and the artificially circulated
fluids along the reservoir fractures can be modeled to assist managers during the exploration phase
(e.g. in decisions about artificial fracturing used to increase the volume of the fluid space), and
to ensure optimal exploitation of the system. This involves modeling hydraulic fracturing using
high fluid pressure on a reservoir to enhance the existing permeability and establish connectivity
between adjacent fractures by opening sealed joints or by creating new fractures to allow geofluids
to move more freely through the rock formation. This is an interesting application that is used to
assist in the design and to optimize the outcome of the fracturing process.

1.5 THE NEED TO ACCELERATE THE USE OF NUMERICAL MODELING
OF ISOTHERMAL AQUIFERS AND GEOTHERMAL SYSTEMS

Compared to the aforementioned advances in computer technologies, numerical methods, and
the identification of application possibilities, the use of numerical modeling in hydrogeology,
particularly its application to geothermal systems, is still rare. The main reason for this is the gap
between the people involved in this issue and their respective knowledge. The principal groups
on one side include software developers, engineers, and applied mathematicians, who may have
insufficient knowledge about the geological, hydrogeological or geothermal background and
hence of the application possibilities of numerical models and the respective software needs,
so that the design of the software is not optimal. An insufficient understanding of subsurface
processes occurring in groundwater and geothermal systems makes the developers unaware of
the numerical needs to optimize model calibration subprograms and tools that handle the problem
of irreguarly available data in time and space. On the other side, there are the hydrogeologists and
other groundwater professionals or geothermists, who may have little knowledge of numerical
methods, application possibilities, or the correct application of models. In particular these groups
lack expertise in (1) the elaboration of an accurate conceptual model, (2) the selection of the
appropriate model code suitable for the elaborated conceptual model (or in a few cases the proper
elaboration of a numerical program code), (3) the discretization of the model area in space and
time to establish the numerical model, (4) the correct calibration and validation of the model by
selecting the appropriate calibration and validation parameters, and (5) the correct evaluation of
the simulation results and reliability considering the model uncertainties, that are related to the
uncertainty of the data used to test the selected conceptual model.

This book aims to bridge these knowledge gaps and to provide integrated information on
numerical modeling in hydrogeology and geothermics for all those involved. We hope to show
that numerical modeling is a reliable tool, which should be implemented for the improved integral
management of groundwater and geothermal resources. However, users must always approach
numerical models and their simulation results with a critical eye. It should be remembered that
numerical models are tools and that the quality of the simulation results depends on the prepa-
ration of the conceptual model, knowledge of the geological situation, the hydrogeological and
hydrogeochemical parameters and the data, particularly the initial and boundary values.

The basis of this book is the idea that specific mathematical models can be generated and solved:
models that are useful in underground hydrology and in geothermal systems with transport of
mass, heat and solutes. The fundamental laws and concepts of fluid, energy and solute transport
in poroelastic rocks, as well as their mathematical representation, are introduced and discussed in
detail. Thereby the mass and heat transport processes and models have been expressed in general
form, valid for all types of aquifers: isothermal aquifers, where heat transport is normally not
of interest, and convective geothermal systems, where heat transport and the presence of liquid
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and steam are of particular interest. In addition, the models and methodologies that have been
developed are valid for conductive enhanced geothermal systems, where the fluid is artificially
circulated through natural or artificially produced fractures within the geothermal reservoir.

The major themes of the book are divided into chapters arranged according to their fundamen-
tal and practical importance. After a detailed overview of rock and fluid properties (chapter 2),
special properties of heterogeneous aquifers are discussed (chapter 3) followed by a description
of the hydraulic properties, the processes and respective governing equations of fluid flow, solute
and heat transport (chapter 4). In chapter 5, the principal numerical methods, comprising the
finite difference method (FDM), finite element method (FEM), surface-integrated finite differ-
ence method (SIFDM) or finite volume method (FVM), and the boundary element method (BEM)
are addressed. Chapter 6 gives a step by step overview of how to construct a numerical model:
(1) defining the specific objectives, (2) development of an accurate conceptual model suitable
for the specific case and modeling objectives, (3) construction of the mathematical model,
(4) elaboration of the numerical model and its calibration and validation, and finally sensitivity
analysis. This process is illustrated by a simple practical example. In chapter 7, inverse methods
for parameter estimation that are useful, e.g. for numerical model calibration, are introduced
and applied to simple examples. Chapter 8 contains a number of simple illustrative examples of
modeling applications used for different hydrogeological tasks, and shows how they were con-
structed based on limited data, while chapter 9 presents selected examples of modeling geothermal
systems. Chapters 6, 8, and 9 describe the standard procedure for constructing models using sim-
plified examples from practical applications. The correct formulation of the initial values and
boundary values are treated in detail. Special emphasis is given to the incorporation of the field
investigations and field data into the model, with consideration of the necessary and permitted
simplifications and the resulting consequences to the quality of the simulation results. There is free
software for the book available at the site: http://www.fismat.umich.mx/~marioc/ in FORTRAN,
Mathematica and Matlab programming languages. This site will be interactive, containing soft-
ware in continuous growth, and focusing on the numerical aspects of different topics treated in
the book.

Each of the natural phenomena and processes discussed here are the product of several inter-
acting components that form a “complex system”, or a so-called “multiphysics system”. The
properties and behavior of complex systems cannot be thoroughly explained by understanding
each of the separate parts in isolation. These systems act as a whole and the interactions of all
components must be considered to understand their operation. Sophisticated numerical modeling
is the only tool able to accomplish these integrated studies. For example, crustal rocks are poroe-
lastic and the presence of fluid inside the pores affects their geomechanical properties; therefore,
a realistic model of groundwater flow must take into account the rock deformation.

The most important step in engineering practice and in applied science is the idealization of
reality, which is the process of creating a mathematical model from a physical system. The word
“model” has the traditional meaning of a small-scale representation of a real object. Here, we use
this term to mean a symbolic device built to compute, simulate, and predict aspects of reservoir
processes. Mathematical modeling is an abstraction tool by which complexity can be controlled
by “filtering out” physical details that are not relevant to the analysis process. A continuum
material model of porous rocks, for example, filters out the crystal, molecular and atomic levels
of matter. Creating a mathematical model is equivalent to choosing an information filter. In this
book, different models and numerical techniques useful in reservoir engineering are explained in
detail. To read the book it is not necessary to be an expert in mathematical modeling, or to have
an extensive knowledge of computational mathematics. Each chapter is self contained, starting
with an explanation of the problem, and then describing the form of the model and the numerical
techniques available to solve it. It is hoped that the reader will acquire a thorough understanding
of each topic covered. In the future other volumes will be dedicated to specific problem solving
techniques and to real-world case studies, where numerical modeling has been applied to simulate
non-isothermal processes in groundwater and geothermal systems.






CHAPTER 2

Rock and fluid properties

“Soil [and rock] mechanics arrived at the borderline between science and art.
1 use the term “art” to indicate mental processes leading to satisfactory results
without the assistance of step-for-step logical reasoning. .. To acquire compe-
tence in the field of earthwork engineering one must live with the soil [rock]. One
must love it and observe its performance not only in the laboratory but also in
the field, to become familiar with those of its manifold properties that are not
disclosed by boring records. ..”

Karl Terzaghi (1883-1963)*

2.1 MECHANICAL AND THERMAL PROPERTIES OF POROUS ROCKS

Porosity and conductivity (or permeability) are the two main hydraulic properties of rocks in
subsurface reservoirs (freshwater aquifers, geothermal systems, hydrocarbon reservoirs). Porosity
measures the ability of the rock to store fluids in pore spaces and in fractures. The hydraulic
conductivity Kz describes the ease with which a fluid can move through open rock conduits.
The main geomechanical parameters of rocks are: absolute permeability £, Young’s modulus of
elasticity £, rock bulk compressibility Cp, Poisson’s ratio v, Lamé coefficient A, shear or rigidity
modulus G, bulk modulus K and thermal expansivity y. All the petrophysical properties are
measured in the laboratory specifically for each system.

Apart from convection and radiation, there are three main modes of storage and heat exchange
between rocks and fluids in aquifers and in geothermal reservoirs. These modes are thermal
conductivity k7, isobaric heat capacity c, and thermal diffusivity 7. The conduction of heat occurs
by contact, at the molecular level, between two media with different temperatures. Heat capacity
measures the quantity of thermal energy required by a rock mass to change its temperature.
This property quantifies the capacity of the reservoir to store heat. The thermal diffusivity is the
reservoir’s property of driving heat with respect to its capacity to store it. We will introduce the
rock parameters in this chapter from a practical and experimental point of view.

2.1.1 Absolute permeability

The permeability &k of a porous rock is its natural capability to transmit fluids through intercon-
nected pores. The permeability of a fractured rock is its intrinsic ability to transmit fluids through
interconnected fissures. Fluids prefer the path of least resistance flowing always into trajectories
with the highest permeability. Rocks that transmit fluids easily are described as permeable, having
many large, well-connected pores and fractures. Absolute permeability is the measurement of this
capacity when a single fluid is present in the rock. Global permeability depends on the quantity,
size and form of the pores, on the topology of fissures and on their mutual interconnections
(Fig. 2.1). These concepts can also be applied to the permeability of faults and fractures. The
units of permeability are the m?, the Darcy [D] (1 D = 9.86923 x 10~ '3 m?), and the millidarcy
[mD] (1 mD = 1073 D ~ 1013 m?). The permeability can be a simple number or a matrix

* Source: D. Goodman: Karl Terzaghi, the Engineer as an Artist. ASCE Press, 1999.
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Figure2.1. A microphotograph of a volcanic porous rock with a sealed fissure (~1 mm width) and
microfractures (~10~3 mm), Los Azufres geothermal field (Mexico).

(tensor), depending on the availability of measured data. Cores from geothermal rocks show four
types of coexistent permeabilities (Suarez 1995):

permeability related to the intergranular spaces of the porous rock,
micropermeability associated to interconnected microfractures,
permeability related to nets of fractures,

macropermeability of open faults.

The first two permeabilities obey Darcy’s law of laminar flow. The last two permeabilities
are especially sensitive to high fluid extraction rates that can generate turbulence. In this case
non-linear or non-Darcian laws are applied (see section 4.5.4).

A purely quantitative definition of permeability is obtained directly from Darcy’s law (see
equation 4.12) in horizontal direction (x) of one dimensional flow:

ky Ap Ax
=—2"" = k= - 0 2.0
Vy ; Ax o vax( ) > (2.0)

where vy is specific flow rate [m/s], iy is fluid dynamic viscosity [Pa - s] and Ap/Ax [Pa/m] is the
pressure gradient. It follows that k, has natural units of [m?]. A value of k, = 1 D, fora Ap/Ax =
10° Pa/cm and wy = 1073 Pa - s, gives v, = 1 cm/s. Measurements of %, in rock cores and
pressure tests carried out in fractured reservoirs (Suarez 2000a, Suarez et al. 1989), show a very
wide range of permeability values, from microdarcys up to hundreds of darcys (1018, 10710 m?).
The lower values correspond to porous rock without fractures; the higher values are typical of
intensely fractured rocks (nets of fractures) or of open faults. Thermal and mechanical stresses
affect the rock’s absolute permeability. Experimental data show that, independently of the nature
of the fluid, the compressions created by high confining pressures always reduce permeability.
This poroelastic effect can cause the partial or total collapse of pores and fractures reducing the
effective fluid flow area.
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On the other hand, the temperature effect on the permeability depends on the type of fluid
present. In oil saturated cores, a slight permeability increment has been observed when the
temperature increases, possibly because of both the increment of pore pressure and the reduction
of oil viscosity. In the case of gas-saturated rock cores, the permeability is independent of the
temperature. However, in liquid water saturated cores, permeability reductions up to 65% have
been observed inside an experimental range between 21°C and 163°C (Suarez 2000a). Ramey
etal. (1974) reported similar results for cores of sandstone, where a permeability value of 1350 mD
at 24°C, falls down to 500 mD at 163°C. This effect can be created by the extra thermo-mechanical
stress in the rock, caused by dilatation of the solid due to increased temperature. The fluid-rock
geochemical interaction also affects the absolute permeability by the accumulation of minerals
in pores and fractures.

2.1.2  The skeleton: Bulk, pore and solid volumes; porosity

There exist two overlapping continua, the skeleton and the fluid, which form the reservoir porous
rock. The volume of interconnected pores and fractures that contribute to fluid flow in the porous
system is the effective pore volume Vg [m?]. The solid volume ¥ is the volume of the rock
solid grains, omitting the volume of the holes (Fig. 2.2). The volume of the simple pores V'p and
the volume of the fractures VF compose the total pore volume Vg. The bulk volume Vp is the
skeleton formed by the union of Veand V:

Vg ="Vo + Vs (2.1a)
Vo =Vp+VE (2.1b)
The natural porosity is the fraction of void space in the rock where the void may contain water,

brine, oil, air or other fluids. In a fully saturated rock, the effective pore volume V¢ defines the
dimensionless effective porosity ¢ [ad] and V establishes the fraction of the solid phase in Vp:

Vo Vs
_ ) — =21 2.1
G=e=g e= g @ (2.1¢)
1 % Ps
=1, T 2.1d
QYT ¢s = Ve Ve v, ( )

Figure2.2. Skeleton of a sandstone with pore spaces in 3D. Dimensions: ~33 mm?> (adapted from Piri
2003).
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The skeleton is the bulk or global volume V3 occupied by the solid rock with its pores and
fractures. Note that ¢ and ¢; are the fractions of porous and solid volumes with respect to the
bulk volume Vp. In this book we identify AVp as the representative elementary volume (REV)
of the porous rock, as it was accurately defined by Bear (1972). Total porosity also takes into
account the rock isolated pores, but they do not contribute to the fluid flow. The sealed pores
are considered as part of the solid. For this reason, we consider only the effective porosity. In a
fractured porous rock, we can define two partial porosities, the porosity of the fractures, and the
porosity of the simple pores. Their mathematical definitions are:

Vp
; op+or + ¢ =1 (2.1e)

Effective rock porosity is an important parameter when evaluating the volume of water or
hydrocarbons the system may contain. Effective porosity depends on many factors, but it is
always reduced by the lithostatic load and decreases with depth. Permeability shows the same
trend, it increases when porosity augments. Four common approximate relationships between
porosity and depth and between porosity and permeability for homogeneous rocks are given by
the following formulae:

a) Athy’s equation (1930):  ¢(z) = @1 e™ %~ (2.2a)

f
b) Kozeny’s equation (1927): S = S0y (k) = k. §2 (2.2b)
pore volume

¢) Pearson’s equation (1976): k() = 10113614 9=18126) » 0 987 » 1015 [mz] (2.2¢)

k
d) Rutqvist’s equation (2002):  ¢(k) = ¢o (1 + Co Lnk—) (2.2d)
0

where ¢ is surface reference porosity, ¢ [m~!] is the compaction coefficient and z [m] is depth
in equation (2.2a). For the second and third equations (eq. 2.2b,c), ¢ is porosity and £ is the
permeability. In equation (2.2b) k. (0.5 m?) is the Kozeny constant. In equation (2.2d), o
and ko are porosity and permeability at zero stress and Cp is an experimental parameter to be
measured for different rocks. Using data from Table 2.1, we obtain 1073 < ¢; < 3.2x 10™*m™!

Table 2.1.  Petrophysical properties of andesite cores from the Los Humeros, Mexico geothermal reservoir
(adapted from Contreras ef al. 1990).

Depth  p, 7 k E Cp kr Cp
Well  (m) (kg/m®) (%) (mD)  (10* MPa) v (10~ pa~ly (W/m/rC) (J/kg/°C)
HO2 616 2160 197  0.019  2.09* 027 -— 1.54 1046.7
H22 663 2250 18.1 0.096  2.08* 028 86 1.96 1088.6
HO4 907 2240 19.4 0.08  1.60* 039 92 1.96 1046.7
H29 1200 2250 184 0334 253 030 125 1.86 1046.7
HI0 1469 2620 6.1 0.026  1.99* 0.18 73 1.61 1088.6
H27 1500 2400 10.1  0.145  3.32% 023 -— 1.89 1130.4
HI18 1750 2340 147 0.005  2.69 020 85 242 921.1
HI9 1769 2460 115 0147  2.05* 031 7.7 1.91 11723
H26 1810 2670 45 1873 2.77* 042 7.7 1.95 1004.8
H23 1924 2370 13.9 1252  3.19* 037 65 1.82 1088.6
H24 2297 2370 11.6 0070  4.11% 042 48 2.14 1130.4

Superscript /' means absolute permeability & in microfractures, ¢ is porosity, p, is rock density, k7 is rock
thermal conductivity, ¢, is isobaric rock specific heat capacity, E is the Young’s modulus, v is Poisson’s ratio
and Cp is rock bulk compressibility measured at a confining pressure of 35 MPa. Measurements are reported
in saturated rock. The symbol (*) means uniaxial tests.



Rock and fluid properties 17

and Cy ~ 1.9532 for andesites (data from wells H-04 and H-24 of Los Humeros, Mexico),
respectively.

2.1.2.1 The variation of the fluid mass content
Let My [kg] be the mass of the fluid in the pores and o [kg/m?] its density, the fluid mass content
my per unit reference volume Vg of the porous rock is:

M, MV, M, k
mp= L T W, [%] (2.32)
Vg VBV Vy m

Biot introduced in 1941 a poroelastic dimensionless variable ¢, which he defined as “the
volume of fluid which enters the pores of a unit volume of bulk material” (Biot 1941), or “the
variation in water content”, or for a generic fluid, “the variation of fluid content” (eq. 2.3a). If
mg and pg are the mass content and the fluid density in a reference state, respectively, then the
variation of fluid content ¢ in the pores is defined as:

_mp—my Amy _ orAp + olApr

¢ = [ad] (2.3b)
£0 £0 L0

In other words, “¢ is the volume of fluid transported into or out of storage” (Wang 2000). The
variation of m, occurs by changes in the fluid density and in the porosity.

2.1.2.2  The advective derivative of the density

The fluid and the rock in a reservoir are assumed to be continuum media. Both are changing
in space and time. The changes in the rock are in general, very slow and small com-
pared with the changes in the fluid, but we need to take the changes into account to study
poroelastic strains. To understand the rock deformations we introduce here a very important
mathematical concept which is useful to represent those variations. The advective or convec-
tive derivative of the density of each phase, fluid or solid, is the global rate of change or
total time derivative of the phase density considered as a function of space and time p (x, y,
z, t). We can compute this total derivative Dp/Dt using the differential concept and the chain rule
for functions of several variables:

- a 9 d 0
PED. D = dp (v, y.2.0) = —odx + —ody + dz + o di
ax ay 0z at
Dp opdx dpdy Odpdz Odpdt dp -
= Dt(x’y’z’ ) ax dt+3ydt+8z dt 0t dt 3t+ Py (2:4)
- dx dy dz -
h =\, -, — d 1) = t t t
where v <dt’dt’dt> and r(f) = (x(1), ¥(1), 2(1))

Vector v is the phase velocity field and 7(¢) is the changing vector position of any particle of
the porous rock. From this formula we deduce that the advective derivative originates from the
fact that the phase density changes with time experiencing a spatial variation because of the phase
motion. If v = 0 or the density gradient is null, then the advective derivative becomes equal to
the traditional time derivative.

2.1.3  The principle of conservation of mass in porous rocks

The density of an object is equal to its mass divided by its volume. The total density of a porous
rock should be defined taking into account the presence of the fluid (oy) in the pores together with
the solid phase (o). The global density is an average of both densities p = ¢ pr + ¢ ps. The total
mass M = My + Mj is the sum of the masses of both phases; at time # > 0. Their mathematical
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definitions are:

solid mass: M, = /(ps ps(F,0)dV,  fluid mass: My = /(ppf(?, Hdv (2.5)
7 7

Let v; = 97/t be the vectorial velocity of a particle in the phase volume V; (i = f,s). If
the mass of each phase is conserved, then it remains constant under motion. Thus, the advective
derivative D/Dt of each one of the integrals in equation (2.5) is zero. This derivative is computed
for each phase velocity v; (i = f, s) using equation (2.4):

DM; D/ (7, 0)dV = /D(» ~J)dV—/ = (gip)J + DI iy
Dt Dt @i Pi 7" Dt Di Pi 0= @i Pi %Pz

Vi Vo "o

DJ - D d - .
where:  dV = J()dVy, Dr =JV.v, and D (pi pi) = 3 (i pi) + V(@i pi) - vi

The term J(¢) is the determinant of the Jacobian matrix that transforms the initial volume V)
into the deformed volume V(). The interested reader may consult any book on advanced calculus
for more details on these concepts (e.g., Dill 2007). Therefore:

DM; (@i pi = R
_ (M 4V (i v,»))dV:O (2.6a)

This equation is the integral form of the principle of conservation of mass for a porous rock,
valid in any part of the fluid-rock continuum. Assuming that V; is any arbitrary part of phase i in
the porous rock, the integrand of equation (2.6a) must be identical to zero, therefore:

(i pi) | = - D(gi pi)
#'FV'(%‘/);‘W)— Dll

+ (i pl)v vi=0 (2.6b)

were the advective derivative is:

D(yipi) _ 9(gi pi)

T +V(pip) -V and V- (g pi i) = Vg o) - Vi 4 @i 0V - i

Formula (2.6b) is also known as the continuity equation which expresses the same principle of
conservation of mass of equation (2.6a) in the form of a partial differential equation. This law can
be related directly to the deformations of the fluid volume and of the solid phase in the porous
rock. Applying equation (2.6b) to the fluid phase (i = f):

D(wpf) S, —1Dppy) _ 1 Dmy
- V. V. -—— 2.7
Dt (wer) vf = W= wpr Dt my Dt 2.72)

Therefore, the divergence of the fluid phase velocity is equal to the advective derivative of the
fluid mass content per unit mass. If we assume that the porosity is constant:

V.5 = UL (Y= YD 2 L Py
Vo= b (k") = D (vr) = o Di (2.7b)
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In this case the divergence of the fluid phase velocity is equal to the advective derivative of the
fluid specific volume vy = 1/py. If we assume that the fluid mass is constant:

5= L2 IKD (M) D% _Dar g
/ wpr Dt WMy Dt \ Vg .

Vg Dt Dt
The divergence of the fluid phase velocity is equal to the advective derivative of the bulk
volumetric strain when the fluid mass My is constant. This is because:

= . AVB DSB

- 1 DVp
V.up =¢p= = —

- = — -
0 0
Vg Dt vy Dt
If we assume that both the fluid mass and the porosity are constants:

- —Vr D g 1 DV; Dey
9.5 = .f7<7"i&>=77f=i (2.7d)
T wM Dt \ Iy Vi Dt Dt

In this case the divergence of the fluid phase velocity is equal to the advective derivative of the
fluid volumetric strain.

Applying equation (2.6b) to the solid phase (i = s) when the solid mass and the porosity are
constants:

D = - = - —1 D(gps ps)
E(‘psps)=_(¢sps)v’vs = V'Vs=ﬁ#
—Vs D MM D DV 1 DV
— s = KM\ — _Vsi(Vs)il — Vs I/sz S - K
WM Dt \ Vs Dt Dt Vs Dt

Hence, the divergence of the solid phase velocity is equal to the advective derivative of the
solid volumetric strain:

AT L Bl (2.7¢)
T v\ Dt )] Dt ’

The variable ¢, is defined as the volumetric deformation (dilatation or compaction) of the
solid phase (see section 2.2.4). If the rock is assumed to be non-deformable or incompressible
then DV /Dt = 0 and the divergence of the solid velocity is null. This is the most common
approximation in reservoir engineering. If in equation (2.6b) we assume that the porosity is
constant and that the density does not change with time:

V.(oiv) =0 (2.7f)

Equations (2.7a—f) are other forms of the continuity equation; they give a clear physical
interpretation of the divergence of the deformation velocity of both phases.

2.1.4 Thermal conductivity of porous rocks

Heat transfer in porous rocks saturated with fluids occurs by convection and by thermal con-
duction in the fluid, among the solid grains and between the grains and the fluid. The effective
thermal conductivity in a porous system with fractures and microfractures depends on the thermal
conductivity of the solid matrix, the fracturing intensity, the saturating phase, if the fluid is single
phase, and on the saturation of both phases in two-phase fluids.

The thermal conductivity k7 [W/m/°C] of rocks increases with lithostatic pressure at the low
rate; e.g. those of granites at ~2.6x10~> W/m/K per kilometer (Beardsmore and Cull, 2001).
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Thus, the influence of pressure on rock thermal conductivity is negligible in the crust. In most
reservoir rocks kr decreases when the temperature increases up to 650°C. Starting at this temper-
ature the rock thermal conductivity remains almost constant, until nearing the Earths’s mantle,
where it starts to grow linearly (Passmore and Archer 1985). Table B1 in the Appendix B indicates
values of some rock forming minerals found in the upper part of the Earth’s crust as function of
temperature in the range generally found in aquifers and geothermal systems and in dependence
of the direction in the crystal lattice.

Using data for granite (Beardsmore and Cull 2001) and for andesite (Contreras et al. 1988),
we deduced quadratic relations between thermal conductivity and temperature. The following
formula for granite is valid in the range [0, 300]°C; the corresponding formula for andesite is
valid in the range [20, 250]°C, at the confining pressure of 8 MPa (Fig. 2.3a):

krgranite(T) = 3.50 — 5.83333 x 1077 + 8.33333 x 107°72
(2.8)
Frandesite(T) = 2.02333 — 2.24889 x 10737 +4.62222 x 107°7?

Data from the Los Humeros geothermal field, Mexico (Table 2.1) show that k7 has an irregular
distribution in the vertical direction (Fig. 2.3b). This is because of the several factors influencing
this parameter.

Laboratory experiments show that the thermal conductivity of the rock/fluid system is increased
when the effective rock tensions increase (Contreras ef al. 1988). The increment of confining
pressure tends to improve the thermal contact among grains, resulting in a net increment of k7.

Several experiments show that k7 increases with increasing hydraulic permeability (e.g.,
Passmore and Archer 1985). This effect can be due to convective heat transfer in pores and
inside of interconnected micro-fractures. On the other hand, the porosity increment reduces the
effective thermal conductivity. The fluid-rock geochemical interaction also affects the thermal
conductivity, because the minerals are hydrothermally altered and some of the pores or fractures
are filled modifying the nature of the intergranular contact. Experiments reported by Ramey et al.
(1974) found that if the saturating fluid is water with its liquid and vapor phases in equilibrium, the
effective thermal conductivity has much larger values than those predicted by empirical correla-
tions. The increment depends on the permeability, on the latent heat of vaporization and on vapor
saturation. Formulae to calculate effective averages of k7 in heterogeneous rocks are described
in chapter 3.
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Figure2.3. Thermal conductivity of volcanic rocks: (a) k7 of granite and of andesites as function of T’
(b) Distribution of k7 as function of depth (cores of andesites, data from Contreras et al. 1990).
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2.1.5 Heat conduction, Fourier's law and thermal gradient

The conduction of heat is a macroscopic process, and is also a microscopic process originated
from molecular agitation producing thermal energy, which is transported from one place to
another in the porous rock. The conduction is reflected by changes in the temperature of the
medium; this energy transit always takes place in the direction of decreasing temperature. If the
temperature varies at two distinct points within the porous rock, this difference will produce heat
conduction from the hotter point to the colder point. The physical process of heat conduction
is different in solid rocks, liquids, and gases. This is because the molecular activity is different
in each one of the three states (Alonso and Finn 1967). The fundamental equation describing
this process is the experimental Fourier’s law of heat conduction in one (1D), two (2D), or three
dimensions (3D):

in 1D : qr: = —de—T
dz
in2D or 3D: g7 = —kt - VT 2.9
ke 00 . 0T 9T
in3D:kr=| 0 kz 0], VI=|T|, &IT=—
0 0 kz 3.7 dx

The matrix kr is the thermal conductivity tensor for anisotropic media and is specific to each
rock. The thermal conductivity has units of [J/m/s/K] or of [W/m/°C], because both temperature
scales are parallel (K =°C+273.15) and the temperature change is one to one ratio. The increment
of one degree Celsius is exactly equal to the increment of one Kelvin. The vector thermal gradient
VT quantifies the variation of temperature in three directions of space (x, y, z), it has units of
[°C/m = K/m]. The vector g7 is the flow of heat and has units of power per unit area [W/m?].
The negative sign appears because heat always flows in the direction in which the temperature
decreases. With respect to Earth surface temperatures, the normal average geothermal gradient
is about 25°C/km in depth. In abnormal geothermal zones, this gradient is higher. For example
at the Los Azufres hydrothermal field (Mexico), its values are between 87 and 138°C/km. The
average heat flow at the Transmexican Volcanic Belt is 0.10 W/m? at the surface, while the
estimated submarine heat flow in the Gulf of California is about 0.34 W/m? (Sudrez 2000a,
2004). Concerning the whole Earth, the average heat flow for the continents is about 0.06 W/m?
and about 0.10 W/m? for the oceans. The approximate total thermal power out of the Earth is
45%10'2 W (Lautrup 2005).

2.1.6 Heat capacity and enthalpy of rocks

The heat capacity C, [I/K] at constant pressure is defined as the amount of energy required to
raise the temperature of a rock volume Vg by 1°C; Cy is the volumetric heat capacity under
constant deformation per unit volume. Both parameters quantify the ability of rocks to store
thermal energy. The specific heat capacity (or simply specific heat) is defined as the quantity of
heat required to raise the temperature of one kilogram of rock mass by 1 K or 1°C. It is important
to mention here that there are two types of specific heat: ¢, at constant pressure p in terms of the
enthalpy 4, and cy at constant volume ¥ (or constant strain) in terms of the internal energy e.
They are defined as follows:

oh 0 J
p=\=], = ) S| ——| both
aT ), T )y kg K

(2.10)
q Vg — |~ =2 L

= —_— =

PE@PYET R YT, T miK
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The rock thermodynamic functions, specific internal energy e and specific enthalpy % are
discussed in section 2.2.11. Their mutual relationships are:

t constant h=e+ o 2 v 2.11a)
at constant pressure: 5 = — —=—=+—= dla
P CTUP g of — or ' ar?
J de oh  dp
t tant volume: e =/h — — —_ === 2.11b
at constant volume: e vp [kg} = 5T — 3T a1V ( )

The function v is the specific volume, p is pressure and T [K] is the rock temperature. Let
qr[W] be the power of a heat source producing a temperature growth of AT in the porous rock
during a period At, in one-dimensional spatial interval Az = z; — z;. The amount of heat Hg [J]
or geothermal energy transferred between both points of this interval is:

Hg =Cy AT =gqu At [J] (2.12)

Using Fourier’s law in one dimension, the volumetric heat generation Qg (z) = g /Vp produced
by the source can be approximated by the following equation (Carslaw and Jaeger 1959):

P L O VS - Ny il (2.13)
= _— n —_— = = — | — | = _— .
== M Y T A H=MAz az )~ T2
w
On = 9H _ \olumetric heat generation in | —
Vg m3
Then, we obtain from equation (2.12):
qu  Cp AT 3T
Hg =C, AT = Al = @ —=-—"F—xkp——s 2.14
¢ ’ aH Ve Ve At T 922 ( )
Taking the limit when both Az — 0 and A¢ — 0 we obtain the exact equality:
aT 3T
Cy— =kr— 2.15
v =k (2.15)

This equation relates the evolution of the temperature with its spatial changes, through the
physical rock parameters, heat capacity, thermal conductivity, and volume. The more general
heat equation in three dimensions is discussed in section 4.6. It is common to use the specific heat
capacity at constant pressure ¢, instead of C, or Cy. Dividing by the rock mass M, we obtain the
classical heat equation in one dimension for homogeneous and isotropic rocks:

aT  Cp M, 3T aT 9T
- ~ o2

or _ N or _ 2.16
Vot T M, v ot PPyt 2.16)

Several thermal characteristics of rocks can be estimated with these formulae. We use data from
Table 2.1 to compute some useful parameters. Given a volume ¥z = 10 km?, and the data for
well H-29 p, = 2250 kg/m?, and ¢p = 1046.7 J/kg/°C, the heat capacity can be determined C,, =
2.36 x 1016 J/°C. With additional data from the same well H-29, k7 = 1.86 W/m/°C, AT = 100°C
and Az = 1000 m, we obtain the heat Hg = 2.36 x 108 J, and the temperature gradient d7/dz =
0.1°C/m. The heat flow is 0.183 W/m? at one point and 0.186 W/m? at another point located
1000 m deeper. The heat generation is estimated from the quotient Ag,/Az = (0.186-0.183)/
103 = 3x 10~ W/m?. Published data of radiogenic heat generation for rhyolites point out a value
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of qu/Vp = 2.8 x 1076 W/m?; as a general trend, acidic rocks present larger radiogenic heat
production (~2x 10~®W/m?) than basic rocks ([10~%, 10~7] W/m?, Beardsmore and Cull 2001).
These values are only for solid rocks; to take into account the fluid presence, the use of averages of
Ps, ¢p and kr are necessary. The formulae to calculate effective averages are treated in chapter 3.

The heat capacities of complex heterogeneous, multiporosity reservoirs, are calculated using
Kopp’s law, which states that the heat capacity of a compound is equal to the sum of the heat
capacities of its constituent elements. This law was experimentally verified for complex mixtures
of sandstone and shales, with a maximum deviation smaller than 2% (Passmore and Archer 1985).
This result supports the hypothesis that the heat capacity of saturated rocks can be estimated in a
similar way.

Diverse experimental laboratory measurements demonstrate that the heat capacity of a fluid
saturated rock depends on both pressure and temperature. Table 2.2 shows the specific heat
capacity for principal rock forming minerals and some selected elements at temperatures in the

Table 2.2. Experimental measurements of specific heat capacity ¢, (kJ/kg/K) for different temperatures
in the range of (0-800°C) for rock forming minerals and some selected elements. (Ab: albite;
An: anorthite). (After [Goranson 1942], modified from Clauser 2006).

Mineral/element Formula 0°C 200°C 400°C 800°C
acanthite AgS 0.32 - - -
adularia KAISi;Og 0.732 0.84 1 -
alabandite MnS 0.569 - - -
albite NaAlSizOg 0.709 0.99 1.09 1.2
amphibole MgSiO3 0.74 1.03 1.13 1.24
andalusite Al;SiOs 0.77 1.03 1.11 1.17
andesine 3Ab - 2An 0.7 0.97 1.07 1.18
anglesite PbSO4 0.364 at 60°C

anhydrite CaSOy4 0.52 0.58 0.6 0.64
anorthite CaAl;Si;Og 0.7 0.95 1.05 1.17
aragonite CaCO;3 0.78 1 1.13 -
argentite AgyrS - 0.37 - -
arsenopyrite FeAsS 0.43 at 55°C

barite BaSOq4 0.45 0.5 0.55 0.65
berzelianite («) Cu,Se 0.42 - - -
berzelianite (8) Cu,Se - 0.41 - -
boracite (Ol) Mg7B16C12025 0.796 1.18 - —
boracite (B) Mg7B16Cl2 025 - - 1.41 -
borax Na;B407 - 10H,0 0.161 at 35°C

bournonite CuPbSbS3 0.31 at 50°C

brucite Mg(OH), 1.30 at 35°C

calcite CaCOs3 0.79 1 1.13 —
cassiterite SnO3 0.34 0.43 0.48 0.55
cerussite PbCO4 0.318 — - —
chalcocite («) Cu,S 0.47 - - -
chalcocite (8) Cu;S - 0.55 0.55 0.55
chalcopyrite CuFeS, 0.54 at 50°C

chloromagnesite MgCl, 0.805 0.84 0.87 -
chrysoberyl BeAl,O4 0.84 at 50°C

cinnabar (&) HgS 0.214 0.23 0.24 -
copper (native) Cu 0.384 0.4 0.42 0.46
corundum Al O3 0.72 1 1.1 1.19
covellite CuS 0.49 0.52 0.54 0.59
cryolite NazAlFg 0.909 1.18 1.39 1.78
cuprite Cu0 0.47 0.51 0.54 0.61
cyanite Al,SiOs5 0.7 1 1.1 1.2

(Continued)
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Table 2.2. (Continued)

Mineral/element Formula 0°C 200°C 400°C 800°C
diamond C 0.435 1.06 1.37 1.86
diopside CaMgSiyO¢ 0.69 0.98 1.06 1.15
dioptase CuSiO;3 - H,O 0.77 at 34°C

dolomite CaMg(CO)3 0.93 at 60°C

epsomite MgSO4 - 7TH,0 1.51 at 32°C

fayalite Fe,SiOy4 0.551 0.79 091 1.1
fluorite CaF, 0.85 0.89 0.93 1.01
galena PbS 0.207 0.22 0.24 -
garnet Mgz Al Si301; 0.74 at 58°C

gehlenite Cay AL SiO7 0.75 0.97 1.03 1.09
graphite (8) C 0.635 1.18 1.45 1.88
greenockite CdS 0.445 0.5 0.55 0.65
gypsum CaSOy4 - 2H,0 1.03 - - -
halite NaClI 0.855 0.92 0.98 1.1
hematite Fey03 0.61 0.79 0.9 1.08
hypersthene Fe,SirOg 0.80 at 60°C

iron (o) Fe 0.44 0.52 0.6 -
iron (8) Fe - - - 0.73
kaolin Al Si,07 - 2H,0 0.99 1.17 1.35 -
kaolinite AlgSizOqg 0.93 1.02 - -
kieserite MgSO4 - H,O 1.00 at 9°C

labradorite 2Ab - 3An 0.82 at 60°C

leucite KAISi;Og 0.74 at 80°C

limonite 2Fe,;03 - 3H,0 0.94 at 60°C

magnesite MgCO3 0.864 - -
magnetite (o) Fe3 04 0.6 0.8 0.93 -
magnetite (8) Fe304 - - 1.03
malachite 2Cu0O - CO; - H,O 0.74 at 57°C

manganite Mn, 03 - H;O 0.74 at 36°C

metakaolin Al>Sip O7 0.71 1 1.1 1.2
microcline KAISi;Og 0.68 0.95 1.04 1.14
millerite NiS 0.506 0.57 - -
molybdenite MoS, 0.537 0.55 0.57 -
mullite AlgSir O3 0.77 0.97 1.03 1.09
oligoclase 4ADb - 1An 0.85 at 60°C

olivine Mg, Fe;SiOy 0.79 at 36°C

orthoclase KAISi,Og 0.61 0.94 1.05 1.15
periclase MgO 0.87 1.09 1.16 1.24
petalite LiAlSi;Os 0.85 at 58°C

prehnite Cay Al H»(S104)3 0.84 at 50°C

proustite Ag3AsS;3 0.34 at 50°C

pyrargyrite Ag3SbS3 0.32 at 50°C

pyrite FeS, 0.5 0.59 0.69 -
pyrolusite MnO, 0.975 1 1.01 -
pyroxene MgSiO; 0.752 1.03 1.15 -
pyrrhotite Fe7Sg 0.594 0.77 - -
quartz (o) SiO; 0.698 0.97 1.13 -
quartz (B) SiO, - - - 1.17
rhodochrosite MnCO; 0.7 1.08 1.46 —
rutile TiOz 0.7 0.8 0.88 -
scheelite CaWOyq4 0.40 at 50°C

sellaite MgF» 0.906 1.08 1.21 1.43
siderite FeCO3 0.68 - — -
sillimanite Al SiOs 0.743 1 1.08 1.16

(Continued)
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Table 2.2. (Continued)

Mineral/element Formula 0°C 200°C 400°C 800°C
smithsonite ZnCO;3 0.632 — - -
sphalerite (8) ZnS 0.45 0.53 0.56 0.59
spodumene LiAlSi;O¢ 0.90 at 60°C

stibnite Sb,S3 0.342 0.38 0.41 -
strontianite SrCO;3 0.536 — - -
sylvite KCl1 0.682 0.72 0.75 -
talc MgzH;,Si4017 0.87 at 59°C

tenorite CuO 0.52 0.63 0.68 -
topaz 2(AIF)O - SiO; 0.83 at 50°C

troilite (o) FeS 0.606 - - -
troilite (B8) FeS - 0.64 0.66 0.71
tungstite WO;3 0.33 0.36 0.38 0.44
villiaumite NaF 1.034 1.1 1.29 -
witherite («) BaCO; 0.44 0.5 0.55 0.66
wurtzite (o) ZnS 0.45 0.53 0.56 0.59
zincite ZnO 0.48 0.58 0.62 0.66
zircon ZrSiOy4 0.61 at 60°C

range of 0—800°C. The presence of gas has a negligible effect in the corresponding coefficient.
Nevertheless, the presence of liquid water can increase, by more than 35% the specific heat ¢, of
the sample (Passmore and Archer 1985). If the pores are saturated with oil, the saturated rock heat
capacity is increased by less than 20%. The mathematical expression of the rock specific heat at
constant pressure is given by the same rock enthalpy partial differential equation (2.11a). Faust
and Mercer (1975) outlined an experimental formula for the calculation of ¢, and rock enthalpy
hg in sandstones (Fig. 2.4):

J
¢p(T) = 849.88860 + 0.752854 T [k oc]
& | (2.17)
hy(T) = 204,061.52 + 849.8886 T+ 0.376427 T2 [1?]
g

With these formulae, we can estimate the heat capacity and the specific enthalpy of sandstones
as a function of temperature (7' in °C). However, many high-enthalpy geothermal reservoirs
are located in volcanic rocks. We extend the previous formulae to andesites in the following
way (the same method can be applied to other rock types). In one core of well Az-19 of Los
Azufres, a single value of specific heat capacity, equal to c,19 = 1164.82 J/kg/°C, was measured
at 8.0 MPa and 250°C (Contreras et al. 1988). In andesites, the relationship between specific
heat and temperature continues to be linear and the slopes are assumed similar. Applying formula
(2.17) to the previous temperature: ¢,(250) = 1038.1021 J/kg/°C. The difference between both
coefficients is: ¢p19 — ¢(250) = 126.7179 J/kg/°C; therefore:

hy T
cp(T) = 976.6065 + 0.752854 T, dhy ~ c,dT = /dhs = / cpdT
0 —273.15 (2.18)

J
= hy(T) = 238,674.50 + 976.6065 T + 0.376427 T> [17]
g

With both formulae the specific heat and enthalpy of andesites can be calculated, under the
typical thermodynamic conditions of geothermal reservoirs (~[150, 350]°C; Fig. 2.4).
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Figure2.4. Specific heat (a) and enthalpy (b) of sandstones and andesites as functions of 7(°C).
2.1.7 Rock heat capacity and geothermal electric power

A practical important application of the heat capacity is the estimation of the electric power
generation potential from a geothermal reservoir. This potential depends on the stored geothermal
energy in the system and on the global efficiency factor with which the geothermal energy can
be converted to electricity. The reservoir thermal energy is:

Hg = pscp V(T4 — To) (2.19)

where pgc), is the isobaric volumetric specific heat of the reservoir rock, V3 is the volume of the
reservoir, 74 is the characteristic average reservoir temperature, and 7y is a reference value close
to the average ground surface temperature. It is reasonable to compute first the energy contained
in every cubic meter of rock, especially if the total volume of the reservoir is unknown. For
example, using the following data from the Los Azufres reservoir (Table 3.7 in chapter 3): p =
8 MPa, AT =250°C, p, = 2290 kg/m3, cp = 1165 J/kg/°C, the available volumetric geothermal
energy is:

Hg - MJ
— = pscp(Ty — Tp) = 2290 x 1165 x 250 = 667 —
VB m

If the fluid is considered, oy and ¢, must be averaged (see chapter 3). This thermal energy
can be related to electric power production through the application of appropriate recovery and
conversion factors. The electric geothermal power [MW,] is defined as:

Hg pscp Vp (Tqg — To)

Gp = UGg =nG MW, ] (2.20)

19

where 7z represents a period of commercial exploitation of the reservoir, usually taken as 30 years
(transformed to seconds) and 1 is the geothermal energy-electricity conversion factor. The global
estimated 7 for the Los Azufres geothermal field is ng & 2.5% (Suarez and Viggiano 1992). In
this reservoir the volume of hot rock subjected to heat extraction is approximately 50 km?, thus
its electric geothermal potential is:

ps cp V(T — To)
30 x 365.25 x 86400

Gp = 0.025 x = 880.6 MW,

This figure is close to five times the present installed capacity in this field (188 MW,, Maya-
Gonzalez, R. and Gutiérrez-Negrin 2007) thus its real geothermal potential is larger. To make the
conversion years to seconds we used the real duration of the year in days (1 year = 365.25 days).
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2.1.8 Thermal diffusivity and expansivity of rocks

As a consequence of Fourier’s law, of the isobaric specific heat ¢, of the medium and of thermo-
dynamic considerations (see chapter 4), the partial differential equation modeling the transitory
heat conduction in the rock in three dimensions is:

kr - -
T ¢.97 =

Ps Cp Ps Cp

kr (82T 9T 82T> aT
at

o )= 221
2 T2 Tz (2:21a)

2.1.8.1 Thermal diffusivity
The composed parameter é7 affecting the Laplacian in equation (2.21a) is the rock thermal
diffusion coefficient:

k aT
T | o spvir=2" (2.21b)
Ps Cp ot

ot =

The differential equation (2.21b) is applicable only to homogeneous, isotropic rocks. 87
represents the capacity of the porous rock to transfer heat with respect to its capacity of thermal
storage per unit volume of rock. Any temperature increment results in an increase of heat capacity
and in a decrement of thermal conductivity (Figs. 2.3 and 2.4). Using the data of Table 2.1 for
well H-19, with the highest p,c,, value, we obtain §7 = 6.62 x 10~7 m?/s, while for well H-18,
with lower pscp,, we have 67 = 11.2 x 10~7 m?/s. This is a typical range of diffusivity values
for volcanic rocks (Fig. 2.5). For sandstones, §7 = 9x10~7 m?/s is an average value at 200°C
(Contreras et al. 1990).

Therefore the effect of temperature on rock diffusivity can be significantly large. As a general
trend, diffusivity is reduced when temperature increases. Experimental data show that many
porous rocks have similar trends in this dependence of diffusivity on temperature, although one
exception is the tufaceous sandstone (Passmore and Archer 1985), whose diffusivity decreases
from 90°C up to 540°C and then it grows up to 980°C. To calculate accurately the rock diffusivity
in every particular case, it is necessary to build semi-empiric correlations as those illustrated in
equations (2.9) and (2.18).

Thermal diffusivity (10-'m?/s)

8 - -0-0-¢ k.= 3.0 J/kkg/'C
) -m-m-8 k. =25 J/kg/'C
-A-a-a k. =20 J/kg/'C
6 — -0-0-0 k. =1.5J/kg/'C
r -e-e-e k. =1.0J/kg/'C
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800 900 1000 1100 1200

Specific heat capacity (J/kg/"C)

Figure2.5. Thermal diffusivity of andesites as a function of ¢, for different values of thermal conductivity:
kr = 1.0, 1.5, 2.0, 2.5, 3.0 [W/m/°C]; rock density is p; = 2460 kg/m3,
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2.1.8.2  Volumetric thermal expansivity

The heat absorption is manifested as a dilatation of rock volume size. However, if the rock is
cooling its volume decreases. This thermal rock expansion/contraction can be linear, areal or
volumetric and it causes internal stresses. The volumetric expansivity concept is applicable to
solids, liquids and gases. The bulk expansivity is measured by the volumetric thermal expansion
coefficient at constant confining pressure py (see section 2.2.4):

1 [aV] 1 /9 1 1
p=—(22) = (% “or| — (2.22a)
Vg \ oT /,, ps \oT /,, K °C
The general trend is that thermal expansion increases when temperature rises. yp is about

10=3 K~! for solids, 10~* K~! for liquids and 10~3 K~! for gases. The thermal expansion
coefficient of the pores at constant p; and constant pore pressure p is:

:i Wy :L 3 (@Vp) :l ¢ (2.22b)
=y, \or ), T e \ar ), T o \ar), '

The last term of equation (2.22b) defines the expansivity of the pores in the rock, coupling the
fluid and heat flow to the rock deformation. The linear thermal expansion is commonly used in
geomechanics and in mechanical and civil engineering:

1 /(9
= — <—x> (2.22¢)
xo \ 0T 2

If the temperature difference AT = T — Ty is relatively small, a very practical formula can be
deduced from equation (2.22c¢):

x~ (1 + ay AT)xg (2.22d)

This equation allows to approximate the linear dilatation of cylindrical cores when temperature
increases. For example, a core of granite of initial length xo = 20 cm, with o, = 20 x 107 1/°C
will expand to x &~ 20.02 cm, fora AT = 50°C.

The areal thermal expansion coefficient at constant pressure is defined as:

1 (04
Ao \dT ),

For isotropic, homogeneous rocks, the bulk, areal and linear expansivities are related by approx-
imate formulae that are constructed for a volume V5 = x> of area Ag = x2. The approximation
is based on the small deformation hypothesis; if x & xp, we obtain:

1 (zm) 1 <8x2> 2x0<ax)
ay=—\—= = — | — ~ — | —
Ao \3T /), xg \OT Pr xg AT/ py

1 (8V3> 1 (ax3> 3x§<ax)
m=— =) =57 ~=2|=
Ve a7 Pk X0 aT Pk xg T Pk
= oy~ 20, and yp~ 3oy (2.221)

Both approximations are valid only for small deformations. The thermal expansion of fluids
is calculated using equation (2.22a), replacing Vp by the fluid volume ¥y and py by the fluid
density pr. Other thermal expansion coefficients, for the rock and for the fluid, are defined in
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section 2.2.11. The expansivity of geothermal rocks is relatively small, but its effects can produce
severe structural damages in rocks subjected to strong temperature gradients, as happens during
the injection of cold fluids. This is of great importance for enhanced geothermal systems, when
the injected fluid circulates in the underground. This action can change both, the permeability
and the rock thermal conductivity.

2.1.9  Mechanical parameters of rocks

Petrophysical properties are influenced by geomechanical stresses acting in the reservoir (Farmer
1968, Dandekar 2006). In this subsection, we introduce the fundamental parameters describing
the solid rock elastic properties. In section 2.2.5 we define the corresponding poroelastic rock
coefficients.

2.1.9.1 Stress and strain

Any applied force tends to modify the rock dimensions by tension or dilatation (o, > 0), com-
pression (o < 0), or shear (o, # 0). The stress acting in the OX direction is defined as the
applied force F), per unit area 4 (Fig. 2.6):

Fy N P
Oy = 7 [E = a] (2233)

The strain is a measure of the relative deformation of a rock when a stress is acting. If a
cylindrical core of diameter dy and initial length xq is subjected to an axial stress o, (Fig. 2.6)
in such a way that its original length changes to a value x, then the axial strain in the OX
direction is:

&y = — =ad (2.23b)

m

X=X Ax Oty [m ]
X0 X0 ax

where u, represents the displacement of the solid particles, defined in section 2.1.2. This experi-
ment is extended to the other axis OY and OZ to define 0, 0 -, €, and ¢, respectively. An elastic
deformation occurs if the strain becomes null when the stress is removed and the rock returns to
its original shape. If the strain is not zero the deformation is called plastic or permanent.

2.1.9.2  Young’s modulus

The Young’s modulus is an elastic parameter, which is defined as the ratio of longitudinal stress
to longitudinal strain; it describes the response to linear stress. In the same OX axis (uniaxial
stress state):

_ B/ Ox [%:Pa] (2.24a)

T Ax/xo &

Figure2.6. A cylindrical rock sample.
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2.1.9.3 Poissons modulus

The Poisson’s modulus is an important elastic parameter that measures the rock compressibility
perpendicular to applied stress. It is experimentally defined as the ratio of transversal (diameter in
the OY or OZ axis) to longitudinal strain (OX axis). For the same cylinder in Figure 2.6 (uniaxial
stress state):

Ad/d .
po B/ & &g (2.24b)
AXx/xg &y &x

The minus sign appears because when the cylinder is dilated in the OX direction, its diameter is
reduced and vice versa, if the cylinder is compressed, ¢, decreases and both perpendicular strains
&y and &, augment because the cylinder’s diameter is dilated.

2.1.9.4  Bulk modulus
The bulk modulus is a coefficient, which measures the change in hydrostatic pressure when the
rock volume changes with respect to an initial volume Vo = Vp:

Ap

Ky=——"—
AVg/Vp

[Pa] (2.24¢)

2.1.9.5 Rock compressibility

The rock compressibility is a coefficient, which measures the change in volume when the hydro-
static pressure changes with respect to an initial volume V. Itis the reciprocal of the bulk modulus;
when the test is done at constant temperature, Cp is the rock isothermal compressibility:

1 AV, 1
Cp=——=""B _ — [pa (2.24d)
Ve Ap  Kp

2.1.9.6 Rigidity and Lamé moduli
Rigidity and Lamé moduli are important elastic parameters, which measure the resistance of the
rock to change in shape. The rigidity modulus describes the response to shear; that is why it is
also known as the shear coefficient:

shear stress 1 oy

—— = —— [Pa 2.24¢
shear strain =~ 2 g, [Pal ( )

The Lamé module A, expresses the rock response to tension or compression:
2
r=Kp— §G [Pa] (2.241)

Elastic energy conditions require that Kp = A +2G/3 > 0 and —1 < v < 0.5 always hold in
isothermal, isotropic rocks (Mavko et al. 2003). Measured values of some of these coefficients
in different rocks are shown in Tables 2.1, 2.3 and 2.4. For a complete description of laboratory
measurements of all these basic rock elastic constants, the interested reader should consult the
excellent book of Dandekar (2006).

2.1.9.7 Volumetric strain

Adding the three longitudinal strains in the OX, OY and OZ axis, respectively, we obtain the
volumetric strain, a fundamental variable of porous mechanics (note that in classic elasticity
EB = Ekk = Exx + Eyy + &2z):

Ax A Az 20 AX + x9 zo Ay + X Az AV
Ep=er ey te= — + 24— = 1K RV TRNDE - VB (2.24g)

X0 Yo 20 X0 Y0 20 1
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The ratio of volume change to the original rock volume is equal to the sum of the principal
strains and is called the volumetric strain. In section 2.1.3 we showed that the divergence of the
velocity of the rock deformation is equal to the rate of change of the rock volume (eq. 2.7). This
was a consequence of the rock mass conservation. The same result can be obtained if we take the
time derivatives of both sides of ¢p in the previous equation. As a numerical example we take
the dimensions xo = yp = zop = 2 cm and Axg = Ayg = Azp = 0.1 cm. Then the volume Vp =
8cm?, AVp = 1.2 cm? and g5 = 0.15.

Among the six elastic coefficients, only two are independent; the other four are deduced from
them. The mutual relationships among the elastic parameters in isotropic rocks are (Mavko et al.
2003, Dill 2007):

Ev E 2 2Gv

=, Gzi, KB:)\“}—*G, )\-:
1 +v)(1-2v) 2(14+v) 3 1 —-2v
(2.25)
342G A E E
= —7—"20aG, V= ——T""—]-1, KBzi, \):7—1
A+ G 20+ G) 3(1 —2v) 2G

2.1.10 Elasticity equations for Hookean rocks

We introduce the equations of simple elastic solids relating stresses and deformations (Mase and
Mase 1999, Dill 2007). In this case, the bulk volume is the solid volume V3 = V and 5 = &
because there are no pores. If the tensorial relations between stresses and strains are linear, the
solid rock is called Hookean. In an inertial frame of reference OXYZ (Fig. 2.6), these classic
relationships are (subscript s means solid phase):

vakk l—l—v

stress: 0g = Aepl +2Geg & strain: gg = — I+ o5
Ox Oxy Oxz )\ Exy  Exz
os=\|oy o0y 0| = +2G evy &y &y
Oxz Oyz Oz ) &yz &z )
&  Exy  Exz voy 1 0 0 14y [0 Ow Ox
& =&y & &z | =-— z 01 0]+ z Oy 0y Oy
Exz &z & 0 0 1 Oxz Oyz 0z )

N

(2.26a)
E
ep =3Kpep  (2.26b)
— ZV

where: e =6y + 6y +6;; o =0y +0,+0; =30y = I

Let us = (uy, uy, u;) be the vector displacement of the solid particles. Using the compact
tensorial notation described in books on continuum mechanics (e.g., Dill 2007), the components
of the symmetric matrix equations (2.26a) for isotropic rocks have the equivalent form:

1+v
— 0 —

v ..
T =0 8ij;  Lj=X,,z

Gi/‘:)\SB(sij-‘rZGé‘i/@Sij: 7

2.27)

U four o dui =
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Note that this is a three-dimensional generalization of previous relations between stress and
strains introduced in section 2.1.9 (Fig. 2.6). The symbols in the preceding equation are of common
and ordinary use: o ;; holds for the six applied stresses in [Pa]; &;; are the six strains [ad], describing
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the global elastic response of the solid. Coefficients A, G, E and v were already defined; 6 is
the unit tensor (§;; = 1, §;; = 0if i # j) and o) is the average stress. The term & = £44 represents
the volumetric deformation of the solid rock and oy is the trace of the stress tensor oy.

Tensors o and &5 are symmetric, this is a consequence of Newton’s second law applied to
solid dynamics (Duc and Bellet 1976). Both tensors are equivalent to a couple of six dimensional
vectors and the matrix system can be transformed into a more convenient expression for the elastic
deformation and poroelastic coupling. Adding a null column and a null row (to include later, in
section 2.2.8 the fluid stress), and arranging the linear equations defined by the system (2.26a)
in the order (0x, 0y, 0z, Oy, Oxz, 0)2), We obtain:

o A +2G A A0 0 0 0 £x
o Ao A¥26 A 0 0 0 0 &
o, » A A426 0 0 0 0 £
Go=|ow| =] 0 0 0 26 0 0 0] -|ey (2.28)
Oz 0 0 0 0 26 0 of [ex
0y 0 0 0 0 0 2G 0] |ee
0/, 0 0 o 0o o o o \0/,

This is the vectorial form of Hooke’s law for an isotropic solid rock with zero porosity. It
establishes a linear vector-tensor relationship between stresses and strains acting in a homogeneous
rock. The elastic coefficients A and G are assumed constant and the same at every point of the
rock volume.

2.2 LINEAR THERMOPOROELASTIC ROCK DEFORMATION

The world literature on rock mechanics describes the existence of land subsidence in aquifers,
in petroleum and gas fields, and in geothermal reservoirs caused by their exploitation (Biot
1962, Colback and Wiid 1965, Lippmann et al. 1977, Blés and Feuga 1986, Wang 2000). This
phenomenon is a direct consequence of the rock deformation. In enhanced geothermal systems
(EGS), artificial stimulation is applied to deform the rock and to increase porosity and permeabil-
ity. Poroelasticity is the branch of geomechanics that studies the behavior of porous elastic rocks
containing viscous fluids such as water, brine, gas and oil. A poroelastic rock is characterized
by its porosity, its elastic moduli and by the physical properties of the fluids that it contains. The
poroelastic rock deformation can be linear or non-linear, isothermal or non-isothermal. In this
section, we describe the basic poroelasticity concepts.

2.2.1 Effects of the fluid on porous rock properties

Water contained in a rock, reduces its strength compared to dense rocks (¢ = 0). The cohesive
structure of rocks is weakened by the presence of liquid. All the geomechanical parameters
are influenced by this cohesion and are directly affected by the pressure and amount of liquid
present in both pores and fractures. This is generally called the pore-water effect (Terzaghi 1943).
Rock compaction, fracturing, time dependent deformations, as well as creep and subsidence
are essentially produced by volcanic and tectonic activities, by lithostatic pressure and by fluid
extraction/injection.

In water-saturated rocks, density and wave propagation speed are increased compared with
dry gas-saturated rocks, while strength is reduced. In aquifers and in geothermal reservoirs,
the different values in parameters of dry rock and wet rock are determined by the amount of
liquid water saturation, porosity, permeability, pressure and temperature. Compared with steam
or with air, liquid water is almost incompressible, and this property tends to reduce both rock
deformation and stiffness. The main hypothesis in linear poroelasticity is that the fluids flow
through a deformable porous rock whose solid skeleton can be deformed elastically. Assuming
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that rocks are only subjected to small deformations, Hooke’s law (2.28) can be applied to relate
strains and stresses.

Fluid extraction in natural reservoirs causes the reduction of the internal pore-fracture pressure
and of the effective aperture of pores and fissures. Many naturally fractured systems experienced
intense tectonic activity in their remote past and their original fracturing was equally intense.
However, some of the systems contain fissured zones where most of the fractures appear closed
(S. Arriaga and Verduzco 1998). This phenomenon is partially explained by the fact that dry rock
deformation and saturated rock deformation are different. In the next subsection, we develop a
simple model to calculate elastic fissure deformations.

2.2.2 A simple model for the collapse of fractures in poroelastic rocks

The reduction of the internal pore pressure in reservoir rocks produces subsidence. A similar event
occurs in fissures of naturally fractured reservoirs. Fractures in these systems can also be closed
because of fluid lost by natural means or through human activity. Some hydrothermal reservoirs
contain portions of fractured rock where many fractures appear closed. Studies carried out in the
Los Humeros, Mexico geothermal field, a prototype of this type of systems, strongly suggest that
at the moment of its formation, for unknown reasons, the reservoir was unable to store enough
water in its pores and fissures (Suarez and Samaniego 1995, Suarez 1998). This lack of fluid could
produce the collapse of fractures and faults, which could result in a global drop in permeability. At
the same time, the collapse of fissures permits the coexistence of very strong pressure gradients
between the matrix blocks and the residual open fractures. Autosealing processes, during water-
rock interactions at high temperature, can accentuate this last effect. The tectonic movements in
this field did not have enough intensity to produce faults of great penetrability beneath the surface.
At the same time, the shortage of water prevented the fracturing from being more intense. The
created fractures collapsed because of the lack of hydraulic support. Based on the classical elastic
continuum theory of rock mechanics (Farmer 1968, Asszonyi and Richter 1979, Bles and Feuga
1986), and using the following data and assumptions, we can calculate approximately how the
fluid in a fractured rock matrix affects the internal stresses.

Let 2 be a rock portion of a reservoir saturated with water in liquid phase. The rock is confined
and crossed by a single fracture ', which is perpendicular to the plane YZ (Fig. 2.7). The fracture
is inclined at an angle 8 with respect to the Z-axis. The water in €2 has very low compressibility
and the pore-water pressure is almost equal to the hydraulic pressure p,, in €2, which can be
represented by a spherical tensor p,, 8;;. We assume that X, Y, Z are the principal axes and Q
is subjected to the stresses (o x, oy, oz) as shown in Figure 2.7. To simplify, we also assume
that the main pressure effects are contained in the plane YZ and that o y (lateral confining stress)

Figure2.7. Principal stresses acting in a single fracture f/* of a porous rock.
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and oz (vertical stress) are the principal stresses, minimum and maximum, respectively, having
a zero shear stress on this plane 7yz = 77y = 0, after the fracture was created.

A compressive stress o is applied to €2, as shown in Figure 2.7. The plane YZ is orthogonal to
the plane of failure. The stress tensor inside the fracture can be simplified if it is represented by
an orthonormal coordinate system (?, 7), where 7 and 7 are unit vectors, tangential and orthogonal
tof', respectively. In this frame of reference, if the rock is dry, the normal stress o and the tangential
shear stress T acting in the direction 6 of the fracture are given by the following equations:

= "Z;i"y Sin20 and: o= % er or | % ;“Y Cos 26 (2.29)

On the other hand, in saturated rock the effective stresses acting in the fracture will be decreased
by pyw. Terzaghi (1943; section 2.2.6) discovered this effect when he showed experimentally that
the effective stress tensor acting in saturated rocks is reduced by p,, in the form: o7 — p,, (I =
X,Y, Z) in every principal stress component. Replacing these effective stresses in equation (2.29),
we obtain the shear or tangential stress 7,, and the normal stress oy, acting in the fracture saturated
with liquid water. The following formulae show that the shear stresses in dry rock or in wet rock
are the same, while the effective normal stress is reduced by an amount equal to p,,:

oy = oz +or + 9z —or Cos 260 — py,
2 2
(0z —pw) — (oy — pw)
Ty = 5

(2.30)

Sin20 =1

If the fracture is vertical, & = 0° and o,, = oy — p,,. If the fracture is horizontal & = 90°
and o,, = oz — py. If the fracture is inclined at an angle 6 = 45°, o), = (067 + oy)/2—py.
To illustrate an application of this model to the Los Humeros geothermal reservoir, we take
the parameters of well H-27 in Table 2.1. The rock density is ps = 2400 kg/m> at a depth z =
1500 m; the pore-water pressure p,, is 12.5 MPa. The corresponding temperature is 310°C and the
liquid density is 700 kg/m>. The confining lateral pressure and the lithostatic load, respectively,
are the numerical values of the principal stresses oy and 0z: 07 = psgz + po = 35.38 MPa,
oy = ap,gz = 31.75 MPa. Here g = 9.8 m/s? is the acceleration of gravity, po = 0.1 MPa is
the atmospheric pressure, and « is an experimental correction coefficient, which ranges between
0.5 and 0.9 (Farmer 1968). The first value (0.5) corresponds to saturated rock with high porosity
while the second one (0.9) is for almost dry rock with low porosity. Assuming « = 0.9 and an
angle & = 60° for the inclination of the fracture we obtain from equation (2.29) in dry rock:
Odry = 32.66 MPa, 74ry = 7,, = 1.57 MPa. The same data applied to equation (2.30) for saturated
rock give: oy, = 20.16 MPa. In the same reference frame, (?, 1), the strain tensor is:

VT o
& = —E, &n = E (23D

The average modulus of elasticity and Poisson’s ratio are listed in Table 2.1. They are equal to
E =3.32 x 10* MPa and v = 0.23. Elastic strain is also different in each case. For the practical
purpose of estimating fracture deformation in the orthogonal direction, we define 6z, =z ¢, as the
small normal compression experienced by the fracture relative to dimension z in the orthogonal
direction. We also assume that fractures are separated by a distance z = 1 m. Introducing these
data into equations (2.31) for dry rock we obtain:

0.23 x 157 _

326.59
—m = —1.09 x 10_5,
. X

— — —4 ~
&p = 33 %105 = 9.84 x 10 = 06z;=1mm

(2.32a)

& =
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Substituting the available data in equation (2.31) we obtain for saturated rocks:

201.6 —4 ~

In the previous example, we assumed that the modulus of elasticity £ is not affected by the
presence of water. Nevertheless, practical experiences show that liquid saturation affects the
value of £ in porous rocks. The behavior of this coefficient in rock with water is supported
by experimental results obtained by Colback and Wiid (1965), when they measured a strength
reduction of 50% in saturated sandstone. The effect of the pore-water pressure p,, on the elasticity
of the rock leads to an equivalent decrease in strain that can be approximated by the next formula
(Farmer 1968), which suggests a decreased modulus of elasticity:

05 0.5 x 201.6 . N
o = (f) Ou= o e =304x 107 5 5z, =03 mm (2320)

From this simple model, we can deduce that in dry, low porosity rocks, natural fractures present
a clear tendency to be closed by normal lithostatic stresses. Under the same loading conditions,
fractures filled with water will not collapse because of the presence of a fissure-pore-water
pressure opposing the normal stress. High porosity saturated rocks will be considerably weakened
by the presence of water even at low pressure, facilitating the formation of fractures. That is why
artificial fracturing of the underground can be done with water injection. The Rehbinder effect
(Farmer 1968) postulates that p,, causes a reduction of the cohesive structure of the rock, which is
weakened by the presence of liquid in the pores. Since all deformation and failure characteristics
are influenced by this cohesion, they will be affected in direct proportion to the pressure and
to the liquid saturation. Strength and elastic modulus will be decreased. The following practical
conclusions are extracted from these results:

e Some reservoirs contain small amounts of liquid, but their original porosity and permeability
were probably high. The lack of fluid can result in the collapse of pores and fissures because
their internal hydraulic stresses could not balance the lithostatic load. Water-rock interaction
facilitated the selfsealing of fractures. Under these natural conditions, fractures can be closed
by the vertical compression, unless there is an opposite local force equilibrating the lithostatic
load.

2.2.3 Linear deformation of rocks containing isothermal fluid

Several factors affect the geomechanical behavior of crustal rocks: porosity, pressure, temperature,
and the presence of fluids, fissures and faults. Diverse phenomena produce rock deformations,
compaction, fracturing, creep and subsidence in reservoirs. Stress variations lead to changes
in seismic velocities affecting the time-lapse seismic response. These processes are thermody-
namically irreversible, yielding permanent plastic deformations that could reduce the reservoirs’
storage capacity. There are other important thermo-mechanical effects in aquifers, in geothermal
reservoirs and in hydrocarbon fields. High pressure and temperature increase ductility and lower
the yield point of the rock. The high confining pressure effects induce plastic flows.

Faults and fractures within geothermal systems are produced by stresses from tectonic events
in brittle rocks producing deformations beyond the limit of elastic strain. We have observed
that fissures and microfractures are more numerous near large, regional faults (S. Arriaga and
Verduzco 1998). Other authors (e.g., Bles and Feuga 1986) reported similar experiences. This
phenomenon occurs because at the time a fault is generated within massive rocks, the original
stress distribution is modified in a neighborhood around the fault, producing the development of
different tension fractures especially near the end of the fault. In volcanic geothermal reservoirs,
highly heterogeneous structural systems are developed, whereas in large sedimentary basins and
in old basement rock areas, both useful for EGS, heterogeneity is lower.
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2.2.3.1 Differential relationships between porosity and volumes

The structural volume V5 or bulk volume is the global volume occupied by the solid rock ¥V with
its pores and fractures V. The differential relationships between these three volumes and the
porosity (eq. 2.2), are:

14 V v,
volumes: Vpg=Vo+V, = 1= B Yot s and dVp =dVe +dV, (2.33a)
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We can include explicitly the matrix and fractures volumes and porosities s and ¢ r introduced
in section 2.1.2:
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A detailed description of geomechanics coupled to a matrix-fractures dual porosity model was
published by Chen et al. (1997). Let V' be the volume of the fluid in the pores. Then the volumetric
strains for the fluid e, the bulk rock £p and the solid rock & are:

vy

7 (2.35)
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The physical meaning of a differential volume dV p, when it is experimentally measured in the
laboratory, is simply: dVp =~ AVp = Vp — Vy (see eq. 2.24g). These equations constitute an
important part of the experimental bases of porous fractured rock mechanics.

2.2.4  Poroelastic rock parameters: Drained and undrained conditions

Different types of compressibility can be defined that are crucial to coupling the mass and
energy flows to the rock deformation. The experimental relations between stress and volumetric
deformations are based on the definition of the following pressures:

e confining lithostatic pressure: py

e fluid or pore pressure: py = p = —opy
o differential pressure: p; = py — pr

o cffective pressure: p. = py — bpy

where b is the Biot-Willis coefficient defined in section 2.2.5; py is the pressure of the fluid
filling up the pore space and considered positive. Note that the hydrostatic pressure is always
compressive and opposed to the fluid pressure, thus oy = —ps < 0. When the differential
pressure is constant, the corresponding experiment is performed under unjacketed conditions. If
the pressure py inside the pores increases, the absolute permeability is increased. This is the main
benefit obtained with fluid reinjection.
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Ramey et al. (1974) reported an empiric correlation to compute this effect in saturated
sandstones, (the pressure is in atmospheres; kg is the initial permeability):

-1

127 x 1072
= (2.36)
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In experimental poroelasticity, there are four different kinds of bulk moduli and two types of
deformations, drained and undrained. Both modes represent limiting responses of the rock (Biot
1941, Fjaer et al. 1992, Wang 2000, Guéguen and Bouteca 2004):

e Drained conditions: During the test, the rock is confined and subjected to support an external
hydrostatic pressure o i equal to o (eq. 2.25b). In this test, the fluid in the pores is allowed
to escape and the total stress is entirely supported by the rock skeleton. The deformations
are achieved at constant pore-fluid pressure py. Biot (1962) called these conditions, an “open
system”.

e Undrained conditions: During this test, the deformations are measured at constant fluid mass
content ny(A¢ = 0). The rock is entirely submerged in a fluid in such a way that the external
hydrostatic pressure is balanced by the pore pressure oy = —py. In this test, the fluid in the
pores remains constant; no fluid is allowed to move into or out of the control volume. The fluid
remains trapped in the skeleton. For Biot (1962) this was characteristic of a “closed system”.

One of the central concepts in poroelasticity is the bulk elastic modulus (eq. 2.24c). For the
bulk rock with pores and grains and for the solid without pores, the bulk elastic moduli are
experimentally defined as the ratio of the hydrostatic stress oy relative to the volumetric strains
under isothermal conditions:

OH OH

oy = oy = Kp=—, K;= (2.37a)
EB Eg

2.2.4.1 Drained bulk compressibility

In a porous rock, the solid and the fluid phases are compressible; the skeleton has its own
structural compressibility. The elastic modulus K measures the resistance of the bulk rock against
deformations produced by the confining lithostatic pressure when the fluid pressure remains
constant:

A
preonstant = oy =-—pg=—p;, and Kp=— <ﬂ> (2.37b)
’ A&‘B s

The jacketed volumetric or bulk compressibility, Cp, is defined as the drained deformation
obtained when the rock is subjected to compressive stresses in all directions and the pressure of
the fluid contained in the pores remains constant. Then Apy = 0 and Apy; = Apy. The confining
pressure is hydrostatic during the test. The rock compressibility Cp is the inverse of Kz. The
measurements of Cp evaluate the changes of the bulk volume Vg, which includes pores, fractures
and solid grains. Therefore, Cp is the compressibility of the rock’s skeleton, also known as the
drained jacketed bulk compressibility (Chen et al. 1995). Its mathematical expression is:

1 [0V 1 [oVg 1
Cp=—— (2BY __ 1 (Vs _ 1 (2.37¢)
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2.2.4.2  Undrained bulk compressibility
The elastic undrained bulk modulus Ky measures the resistance of the bulk rock against
deformations produced by the confining lithostatic pressure when the fluid content ¢ remains
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constant (eq. 2.35a):

Apk
og = —pr, and ¢ constant = Ky=-—|— (2.38a)
ASB ¢

The undrained bulk compressibility Cy; is defined as the undrained deformation obtained when
the rock is subjected to compressive stresses in all directions and the fluid contained in the pores

remains constant:
1 [/aV 1
Cy=—— <J> - — (2.38b)
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2.2.4.3 Compressibility of the solid phase
The elastic modulus K measures the resistance of the solid rock against deformations produced
by the hydrostatic compression:

A
oy = —ps, and pyconstant = Ky=— <ﬂ> (2.39a)
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The non-jacketed volumetric compressibility Cs is defined as the undrained deformation
obtained experimentally under constant differential pressure conditions, that means: Ap; = 0 =
Apr = Apy. In this case any change of the confining pressure is similar to the change of py;
the measurements evaluate the changes of the structural volume only when the fluid pressure
changes. Therefore, C; measures the grain compressibility of the solid matrix. The solid bulk

modulus Kj is the inverse of Cs:
1 [aV] 1
Co=—— (J) = — (2.39b)
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If the porosity and the solid mass remain constant during the non-jacketed test:
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During this unjacketed, undrained test, the stress-strain response of the rock is completely
given by the intrinsic elastic properties of the solid skeleton.

2.2.4.4 Compressibility of the pore volume
The unjacketed compressibility of the pore volume Cg, is defined as the change of pore volume
with respect to the pore pressure change per unit volume when p, remains constant:

1 [aV 1 /0
o= (B2) =-1(12) (2.400)
VCD 8pf Pd 4 apk Pd

The isothermal compressibility of the fluid Cr, when temperature 7 and fluid mass My are
constants, is defined as the change of fluid volume with respect to the effective pressure change
per unit volume:

1 (v : & 1 (9
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Equations (2.39a) to (2.40b) define two different forms of unjacketed compressibilities C; and
Cq. The compressibility of the pore volume varies with the effective compression, the temperature
and the porosity. Ifthe pressure in the pores decreases during the reservoir’s fall off, then important
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reductions in the pore volume can occur, even with partial or total collapse of pores and fractures
(S. Arriaga and Verduzco 1998). The bulk isothermal compressibility is:

1 (a7,
Cr=-— (—B> (2.40¢)
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Reported effects of pressure in the pore volume (Ramey et al. 1974) show that its compressibil-
ity decreases when pressure increases within a range of 0.1 to 55 MPa, for temperatures between
24 and 205°C. For higher pressure values the variation is lower. The effect of temperature on the
compressibility of the pore volume is appreciated in experiments with different rocks. Several
results show that at 205°C the compressibility can be between 12 and 55% higher than at 24°C.
The average of all the samples analyzed by Passmore and Archer (1985) shows a compressibility
increment of 21% when the temperature increases inside this range. Other experimental results
from the same authors, using sandstone cores, show that compressibility increases with porosity
in the range between 19 to 28%. Below 19% porosity there was no trend.

2.2.5 The Biot-Willis coefficient

A very important parameter in poroelasticity, which will be used in the next sections, is the Biot-
Willis coefficient b (Biot and Willis 1957, Wang 2000, Guéguen and Bouteca 2004). We deduce
this coefficient adding both strains of equation (2.37a):

ep+ey = & pf—p—j———<pk—(l——3>pf>=£ (2.41)
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where ¢ is the overall volumetric strain. The coefficient b is defined as:

Kp Cs
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Consequently, from equation (2.41) we can write:

9
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Equation (2.42b) is another deduction of the Biot-Willis parameter, expressing that b is equal to
the change of pressure p; with respect to the fluid pressure change when the total volumetric strain
remains constant. From experiments it is found that C; < Cp then Kp < Kj, thus: 0 < b < 1;
the Biot-Willis coefficient b = 0 if and only if there are no pores and C; = Cp. Experimental
relationships for porous rocks (Biot and Willis 1957, Fjaer et al. 1992, Wang 2000) showed that
¢ < b < 1. In the case of poroelastic soft media like soils and in unconsolidated rocks, it is
obvious that Cg >> Ci, therefore Kp << K and thus b ~ 1, which results in the classical
Terzaghi equation (2.30). Using the compressibility of the pore volume (eq. 2.40a), the total
compressibility of the porous rock, for a drained experiment, is equal to the compressibility of
the solid grains plus the compressibility of the pore space:

1 1 ) Kp Kp
S 1=28 14,28 2.43
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Figure2.8. Karl Terzaghi (1883—1963). Photo taken in 1926.

This expression gives another definition of b as the ratio of pore volume change to total bulk
volume change under drained conditions. Equations (2.43a,b) also provide two ways of computing
the drained bulk modulus of the pore space K¢ . These formulae were obtained from an experiment
in which pore fluids can flow in or out of the pores to maintain the pore pressure constant.

2.2.6 Biot’s classical poroelasticity theory

Aquifers, hydrocarbon reservoirs and geothermal systems are compressible and elastic. Their
elasticity is evidenced by the compression that results from the decline of the fluid pressure,
which can shorten the pore volume. This reduction of the pore volume can be the principal
source of fluid released from storage (Wang 2000). Karl von Terzaghi, an Austrian civil engineer
considered the father of soil mechanics (Fig. 2.8), developed the first experimental studies to
determine the concept of effective stress in a poroelastic rock containing water. This effect states
that in saturated rock the pore-water pressure will decrease the effective stresses acting in the
pores. In a porous fractured medium, this law is a pore-fissure-water effect. Fluid extraction, for
example, causes the reduction of the internal pore-fracture pressure. Terzaghi (1943) explained
that the effective total axial load in the porous medium is determined by the sum of the solid stress
and the pore pressure o, = 0} — py.

2.2.6.1 Fundamental concepts and coefficients in Biot’s poroelastic theory

Maurice A. Biot (Fig. 2.9), an American, engineer, physicist and applied mathematician, born in
Antwerp, Belgium in May 25, 1905, formulated the first consistent theory of coupled fluid-solid
interaction in soil mechanics and consolidation in 1940. In the 1950s, Biot extended his theory
to a general context of rock mechanics connected to problems in the oil industry (Poronet 2009).
Biot published his work in a well-known series of classical papers (Biot 1941, 1955, 1962, and
1972; Biot and Willis 1957). Other people made improvements or added some new ideas to Biot’s
original work (Verruijt 1969, Rice and Cleary 1976, Brownell ef al. 1977, Garg and Pritchett
1977, Lippmann et al. 1977, Garg, 1984 and 1985, Coussy 1991, 1995, Chen et al. 1995, Cheng
et al. 1998, Wang 2000, Morland et al. 2004).

Poroelasticity is a continuum theory for the analysis of a porous medium consisting of an
elastic matrix containing interconnected pores and fluids. Terzaghi’s effective stress concept is
the beginning of the first theory on the mechanics of deformation of porous rocks saturated with
fluids. In physical terms, the theory postulates that when a porous material is subjected to stress,
the resulting matrix deformation leads to volumetric changes in the pores saturated with a fluid.
The presence of the moving fluid in the porous rock modifies its mechanical response. In this
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Figure2.9. M. Biot, (1905-1985). Photo supplied by Mme. Biot (Poronet 2009).

theory, the rock skeleton is treated as an elastic solid with a laminar flow of pore fluid coupled
to the framework by equilibrium and continuity conditions. The main hypothesis in the classical
theory of poroelasticity is that the fluid flows through a deformable porous rock whose framework
can be elastically deformed. The pore fluid transport obeys Darcy’s law integrating the mechanics
of deformable solids. A central hypothesis in this theory is that the rock is Hookean and exposed
only to small, reversible strains. Poroelasticity explains how the water inside the pores bears a
portion of the total load supported by the porous rock. The solid matrix supports the remaining
part of the load. Terzaghi’s law is a special case of Biot’s poroelastic theory, which is a macroscopic
approach.

A geomechanical model is a group of differential equations capable of predicting the porous
rock deformation under different internal and external forces. There are different objectives in this
matter followed in different areas such as soil mechanics, hydrogeology, seismology, geomechan-
ics, petroleum and geothermal reservoir engineering. That is why there are different coefficients
and formulations to represent the porous rock deformation coupled to fluid flow. According to
the several authors previously cited, there are two fundamental poroelastic phenomena and two
mechanisms playing a key role in the interaction between the pore fluid and the rock:

e Solid-fluid coupling occurs when a change in applied stress produces a change in the fluid
pressure or in the fluid mass.

e Fluid-solid coupling occurs when a change in the fluid pressure or in the fluid mass produces
a change in the volume of the porous rock.

e An increase of pore pressure induces a dilation of the rock.

e Compression of the rock causes a rise of pore pressure, if the fluid is prevented from escaping
the pores.

2.2.6.2 The fundamental parameters of poroelasticity

This subsection follows the basic developments of Wang (2000), “who made a significant con-
tribution to the poroelasticity field” (Shemin Ge, ibid.). We use the concepts and some of the
original notation of Biot and Willis (1957) and Biot (1962). In non-porous solids only two moduli,
(X, G) or (E, v), are necessary to describe the relationship between strains and stresses (eq. 2.28).
In isothermal poroelasticity, we need four poroelastic moduli for the same relationships, but only
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three of them are independent. The Biot’s field variables for an isotropic porous rock are the stress
o acting in the rock, the bulk volumetric strain ¢, the pore pressure py and the variation of fluid
content ¢. The linear relations among these variables are the foundations of Biot’s poroelastic
theory:

(2.44a)

The matrix form of these relationships is:

eg _(Cp H™! o o) 1 (R —H! &R
(@)=Gr #)-G) o GG & )-(2) e
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where the matrix determinant is: — = ————
Dy H? —KpR

;ﬁ 0 and o = —Dk (2.440)

The sign conventions are: the stress 0 > 0 in tension and o < 0 in compression; the volumetric
strain e > 0 in expansion and e < 0 in contraction; ¢ > 0 if fluid is added to AVp and
¢ < 0if fluid is extracted from A Vp; the pore pressure py > 0 if it is larger than the atmospheric
pressure. Here AVp is the bulk control volume. The coefficients of both matrices (2.44b) are
experimentally defined as follows (Wang 2000):

Co— 1 _(AEB) 1_<A83> _<A§‘> 1_(A§) (2.45)
2= ks~ Ao p/_’ H \Aps), \Ao pf, R \Apr/, '

The drained coefficients Kz and Cp were introduced in equations (2.37a—c); 1/H is a special
poroelastic expansion coefficient, which describes how much AV changes when p; changes
while keeping the applied stress o constant; 1/H also measures the changes of ¢ when o changes
and py remains constant. Finally 1/R is the unconstrained specific storage coefficient, which
represents the changes of ¢ when py changes. This parameter is measured when the applied stress
o remains constant, “the value of 1/R is determined by the compressibilities of the frame, the
pores, the fluid and the solid grains” (Wang 2000). The three poroelastic coefficients given by
equation (2.45) entirely describe the poroelastic response of the rock for isothermal, isotropic
stresses. Writing explicitly the relationships for ¢ in equation (2.44a) and replacing the value of
o in ¢, we obtain:

Kp Kp 1 Kp
o=Kgep——rpr = ¢ H83+<R w2 )P (2.46)
Biot (1941) introduced a fourth poroelastic coefficient 1/M, called the constrained specific
storage, which is equal to the change of ¢ when p; changes and measured at constant strain. This
parameter is expressed in terms of the three fundamental coefficients defined in equation (2.45).
Using equation (2.46):

1 A 1 Kz RH?
—=(—=) =--7F = M=_—>—-— (2.47)
M Apr),, R H H2? —KgR

There is an additional important parameter B, called the Skempton coefficient (Wang 2000,
Guéguen and Boutéca 2004), which represents the change in pore pressure when the applied
stress changes for undrained conditions (see section 2.2.9). This parameter is calculated directly,
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using equation (2.44a):

o A A R
§:E+% . B:<Aif> :_<ﬂ) == (2.48)
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Biot (1962) introduced another important poroelastic coefficient C:

1 KgRH _ Kp

C= = =
D\H H?—-KgR H

(2.492)

In this equation, if we take the limit when Apy — 0 and o = —py, in the definitions of K}, and
H (eq. 2.45), we find three extra fundamental relationships for the Biot’s coefficient:

C K Apr A opy 0 0
S 2B i (2PE2EBY) _ (CPRCOEBY _ (°Pk) _,, (2.49b)
M H Apr—0 \ Aep Apy dep dpr apr /),
The coefficient C represents the coupling of deformations between the solid grains and the
fluid. The coefficient M is the inverse of the constrained specific storage, measured at constant
strain (Wang 2000); this parameter characterizes the elastic properties of the fluid (Fjaer et al.

1992) because it measures how the fluid pressure changes when ¢ changes. These three parameters
b, M and C are the core of the poroelastic equations.

2.2.6.3 Relationships among the bulk moduli and other poroelastic coefficients
Writing explicitly the inverted relations for o and py in the matrix equation (2.44b) and using
equation (2.49a):

Kp H? KzRH KBM c (2.502)

= &g — = —Mep — .50a
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RH? KsRH Me (2.500)
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Using the definition of the undrained bulk modulus (eq. 2.38a) in equation (2.50a), we deduce

that:
A A K Kg H? Kg R\ 7!
Ky —— (2P — 70) :lM:Bi:KBO_if)
Aep ¢ Aep ¢ R H? —KpR H H

Ku—Ks bM
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From these relationships, we can define the fluid pressure in the undrained regime, when ¢
remains constant. From equation (2.42b) and the definition of Ky/:

Pk —bpu Dk Ky — Kp
= = pyu=——""

=B 2.51
X5 Ko P Dk (2.51¢)

Ep =

thus, the fluid pressure variation for undrained conditions is (%) = B (eq. 2.48).
¢
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Using expression (2.50c) we obtain the variation of the fluid content in the drained regime
(eq. 2.49b):

: bps b
BL o _p B L 20 0 () —Bp) (2.51d)

=) =
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We have defined the bulk moduli Kp and K of the porous rock in equations (2.37b) and (2.39a).
From equation (2.51a), we can construct several relationships between these three different bulk
moduli and the other poroelastic parameters. Using equations (2.51a) and (2.49b):

K K
Kp = Ky (l—bB)=KU—?BMbB=KU—?BCB (2.52a)

Using equations (2.48) and (2.49b):

Kp ) c?
Kp=Ky— - C=Ky—bC=Ky—b'M =Ky~ — (2.52b)

We can include K from equation (2.41):

Kz Kz Ky —bC Ky—b*M MKy — C?
T, T METTIT T 1—b M—C

(2.52¢)

The symbol K is the rock undrained bulk modulus. The relationship given by equation (2.24f)
is also valid for this undrained modulus, but the other elastic parameters, A and G should be
measured under the same conditions. Since there are no shear stresses in the fluid, the shear
coefficient must be the same in both situations and G = Gy = Gp. For the undrained Lamé
modulus, we have (Biot 1962, Wang 2000):

2
hy=Ky—3G [Pa] (2.53a)

From equation (2.53a) and with A as the drained Lamé modulus, we deduce that:

2
3

G=Ky-ru=Kg—% = |ly=Ky—Kp+1] (2.53b)

From equation (2.52b) we obtain another useful expression for both coefficients:

Ky —Kg=bC=b0M = |ry=i+bC (2.53¢)

In a similar form, we deduce the undrained Poisson’s coefficient:

_ 3v+bB(1-2v)

_ 2.53d
YU B =20 (2.53d)

2.2.7 Porosity and the low-frequency Gassmann-Biot equation

“One of the most important problems in the rock physics analysis of logs, cores and seismic data
is the prediction of seismic velocities in rocks saturated with one fluid from rocks saturated with
a second fluid or, equivalently, saturated rock velocities from dry rock velocities, and vice versa.
This is the fluid substitution problem.” (Mavko et al. 2003). There are many examples of natural
and artificially induced seismicity corresponding to this description. In The Geysers, California,
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small earthquakes were reported when starting the fluid reinjection into the geothermal reservoir
in 1999. In December 2006, several earthquakes were felt in the region of Alsace, France. A
company of geothermal perforation near Bale recognized its responsibility (Le Monde, ““Le jour
ou la France tremblera”, 10/04/2009).

Biot extended his theory to poroelastodynamic phenomena in two parts: low and high frequency
ranges, respectively (Biot 1956a,b). The low frequency theory developed by Gassmann (1951)
and Biot (1956a) allows to predict the resulting increase in the undrained bulk modulus Ky of a
saturated rock when an increment of pore pressure is induced from a passing seismic wave (Mavko
et al. 2003). This theory is condensed in the so called Gassmann-Biot equation, which combines
porosity and all the poroelastic bulk moduli, in a single formula. Assuming a hydrostatic pressure
oy acting in the rock solid grains, using the second part of equation (2.50b) and the relation
(2.37a) for the solid phase and introducing the bulk modulus of water, we have from the analytic
definition of the strain ¢ (see eq. 2.65b):

oy oy ¢ 1 1
K=" k=" and ¢=¢(,— LY . 2.54
=, o ks =e(a-g) 5 o=y ( X Kf) (2.54a)

On the other hand, the hydrostatic stress acting in the solid phase in equation (2.50b) is:
pr=—og=M;—-C¢y = —=————=——— (2.54b)

Equating both formulae (2.54a) and (2.54b):

¢ 1 1 b 1 [(/Kv
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This last expression leads to write the Biot coefficients C and M in terms of the bulk moduli.
Directly from equations (2.49b) and (2.42a):

K, Kr K, K
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From these coefficients, Biot (1962) derived another parameter N called the tangent modulus,
defined as the pressure variation with respect to the porosity variation when both strain and
temperature are held constant (Coussy 2004):

1 1 [0 b © b—o

— = —— == - — = (2.55b)
N M K C Ky K
From equations (2.52b) and (2.55a) we finally obtain the Gassmann-Biot equation:
b2
Ky —Kg=bM = |Ky=Kp+ R (2.56)
KK
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The Biot-Willis coefficient b is given by equation (2.55a). Another formulation of equa-
tion (2.56) is:

Ko=kp+ X (1-%8 ’ ! (2.57)
e ey
Ky \o K

The reciprocal form of equation (2.57) is obtained by computing (K7 — K)/(Ky Kp):

( L >2
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Other equivalent formulations of equation (2.56) are obtained after doing some algebra:

Ky  Kp n Ky
Ks—Ky Ki—Kp ¢ (K, —Ky)

(2.59)

From this equation, we obtain a formula for the porosity in terms of the bulk moduli:

1 K —K K K
S ( v___25 ) (2.60)
2 va Ky — Ky Ky —Kp

From equation (2.56), we obtain another useful formula for the porosity, which includes the
Biot coefficients and the Skempton parameter:

K Ky b
YTk-K (M(l—bB)_(l—b)_b> (261

We can deduce the limit cases of poroelastic behavior from the Gassmann-Biot equation (2.56)
that simplify equations (2.55a). For the case of a hard volcanic rock with very low porosity
(Table 2.3):

Ky Kp Ky
bx0 = Ky~Kp~K;>>Kf = C~—|1-— and M~ — (2.62)
’ % K %

The parameter C depends on both, the fluid properties and the bulk rock properties, whereas
coefficient M depends only on the porosity and on the fluid bulk modulus. This last approximation
corresponds to the case of a rigid frame.

The other limit case is for sedimentary rocks with high porosity, for example unconsolidated

rocks or sandstones (Table 2.3). In this case equations (2.52c) and (2.56) become:

K 1 K
bl = Ky~Kp+-L, Kp<<K = —~2498 cam~L (63
@ Ky Kf K %

The non-negative character of the poroelastic energy (Biot 1962, Wang 2000; see also
section 2.2.11.2) directly implies the same characteristic for the poroelastic constants: £ > 0,
G>0,Kp>0,Ky>0,M>0,C>0,1.>0,Ay >0, etc.

Tables 2.3 and 2.4 present both experimental and computed numerical values of the poroelastic
parameters herein defined. Note that C, H and some other coefficients are not included in these
tables, but they can be easily calculated using the formulae introduced in this section.
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2.2.8 Numerical values of the poroelastic coefficients

Many coefficients are introduced to support poroelastic theory, but only three of these parameters
are actually independent. Three basic parameters selected to constitute an experimental reference
set were the drained bulk compressibility Cp = 1/Kp, the expansion coefficient 1/H and the
unconstrained specific storage 1/R (Wang 2000). Other three possible basic coefficients are the
drained bulk modulus Kp, the undrained bulk modulus Ky, and the Biot-Willis coefficient b
(Detournay and Cheng 1993). However, it is impossible to compute all the coefficients of the
theory using only the classical elastic constants (eq. 2.27), because at least five mixed coefficients
are necessary for the whole poroelastic coupling. A sufficient set of measured parameters is for
example {E, G, ¢, K, Kr}. With these moduli, we can compute the full set of 16 poroelastic
constants.

From an experimental point of view, it appears that some coefficients are more difficult to
measure than others are. This is the case of the variation of the fluid mass content. To describe
the saturating fluid, we need its pressure and its temperature. It is possible to make other choices
of the basic experimental parameters using the relationships developed in this section.

Table 2.3. Poroelastic parameters measured and calculated for different types of rocks.

Rock ¢ E v vw G A AU Kp Ky K B b M R
type (%) (GPa) (ad) (ad) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (ad) (ad) (GPa) (GPa)

[0] 650 0.18 0.01 049 0.09 0.001 6.1 0.062 62 10° 099 1.00 6.1 0.06
[1] 26.0 9.7 0.15 031 42 1.8 7.3 46 101 420 0061 089 69 32
[21 19.0 13.1 0.17 030 56 29 109 6.6 146 289 0.71 077 134 6.1
[3] 13.0 305 026 032 121 131 232 212 312 726 046 0.71 20.0 136
[4] 2.0 60.0 025 027 240 242 283 400 443 500 049 0.19 107.3 97.0
[5] 05 422 042 042 149 739 740 838 839 850 0.06 001 384.3 384.0

The rock types are: [0] Clay (K = 3.9 GPa), [1] Boise sandstone (Ky = 2.0 GPa), [2] Berea sandstone
(Ky = 3.5 GPa), [3] Indiana limestone (Ky = 3.1 GPa), (Wang 2000); [4] Tennessee marble (Ky = 3.5
GPa), (Detournay and Cheng 1993); [5] Rock with celestite (Ky = 2.0 GPa), (Mavko et al. 2003). Rocks of
Type [0] and [5], are the two limit cases of linear poroelastic theory, for » ~ 1 and b ~ 0, respectively. The
figures in italics were estimated using the poroelastic formulae.

Table 2.4.  Poroelastic parameters of the Los Humeros geothermal field (Mexico).

Pr () E v VU G A )\.U KB KU KS B b M R
(kg/m3) (%) (GPa) (ad) (ad) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (ad) (ad) (GPa) (GPa)

2770 38 348 029 033 135 185 252 275 352 50.1 049 045 38.0 29.6
2500 85 358 031 032 13.7 21.7 248 30.8 339 497 024 038 21.6 19.6
2340 16.3 30.0 0.29 031 11.6 164 190 242 268 452 0.21 047 119 10.7
2210 209 253 030 032 9.70 151 17.1 215 235 400 0.19 046 94 8.64
2210 209 253 030 037 9.70 151 155 215 220 400 0.04 046 20 195

Basic experimental data set used: {£, G, ¢, Ky and Ky }. The rocks are andesites. The measured coefficients
were obtained under drained conditions, except for K. The confining pressure was 25 MPa, the ambient
temperature was constant and equal to 25°C. The bulk modulus of water was constant, K,, = 2.1 GPa. The
last row was computed with a lower bulk modulus of water K,, = 0.42 GPa, corresponding to 7' = 290°C and
pr = 11 MPa. This last example illustrates the influence of the temperature on the poroelastic coefficients.
For cold water, the estimated value of ¢ &~ 2.1 x 1073, while for hot water £ &~ 11.1 x 1073. Therefore, the
variation of the fluid content is much higher in geothermal reservoirs than in cold aquifers. The figures in
italics were estimated using the poroelastic formulae.
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2.2.9 Tensorial form of Biot's poroelastic theory in 4D

Let iy, ity be the solid and fluid particles displacements and # = iy — i be the vector displacement
of the fluid phase relative to the solid matrix (seepage displacement). Let &5, &7, @5, @, Vs and
Vr be the volumetric dilatations, porosities and volumes of each phase; —ey is the volumetric
deformation of the fluid phase relative to the solid phase. The mathematical expressions of these
variables are (see eq. 2.24g):

AV SN - I -
7=8S=V-us, T:sf:V-uf, gy =& —&f, U=1Uf — U
s f

ouy  Ouy,  Ou, (2.64)

17{=(llx7uyau2) = _£V=_%(ﬁ3_;{f)=%a=§ 3_)/ 0z

We extend Hookean equations (2.26) and (2.28) to isotropic poroelastic phenomena. Biot and
Willis (1957) introduced the strain variable ¢ (u, ¢), defined in equations (2.35b) and (2.46) to
describe the volumetric deformation of the fluid relative to the deformation of the solid:

For inhomogeneous rock: ¢ (i, 1) = —V - (pi1) = V - [pGiy —iip)] (2.65a)
For homogeneous rock:  ¢(#, £) = @V - ity — Uf) =pes—Qer =qQey (2.65b)

The function ¢ represents the variation of fluid content in the pore during a poroelastic deforma-
tion. Introducing ¢ in the same OXYZ frame of reference (Fig. 2.6), we reformulate the theoretical
and experimental results of M.A. Biot in tensorial form. The total applied stresses in the porous
rock are similar to equations (2.26). However, we need to couple the effect of the fluid in the
pores. The linear components of the global stresses, deduced experimentally by Biot (Biot 1941,
1962, Biot and Willis 1957, Wang 2000) are:

Au=A+Cb; fori,j=xy,z:05=»Ayepd;+2Ge;—Cidy (2.66a)

The Biot-Willis coefficient b was introduced in equation (2.42a); Ay is the Lamé bulk modulus
of'the porous rock measured for undrained conditions, and A is the drained Lamé modulus defined
in equation (2.53c¢). Note that Ay > A, and Ay = X only if there are no pores and b = 0.

The global stresses acting in the porous rock cannot be deduced from the relationships in
equation (2.50a) because the shear components acting on the skeleton are absent in those for-
mulae. The fluid stress o7 is equal to the fluid pressure ps and it is deducible from equation
(2.50b):

K RH? [g B

i E e L S I VI 2.66b
H? —KzR | Ks H] f-Ces (2.66b)

of =pf =
In the poroelastic case, the variables (g;;) are bulk strains, because they measure the defor-
mation of the skeleton composed of the solid grains in the matrix and pores containing fluid.
For the same reason, ep = &, + &), + &, is the bulk volumetric strain. For the shear modu-
lus, it is obvious that Gg = G. The stress poroelastic parameters C and M (in [Pa]) were
defined in terms of the fundamental poroelastic moduli given by equations (2.47), (2.49a) and
(2.55a).
From equations (2.66a) and (2.66b), we can define a symmetric two-order tensor ot in four
dimensions, represented by a (4 x 4) matrix, which includes the bulk stress tensor op acting in
the porous rock and the fluid stress o acting in the fluid filling up the pores, both influencing
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the bulk rock deformation:
Ox  Oyy Oxz

o1 = 0B + 6f = (0j) =

w0 0 0 b e Ex O cC oo 0 2.67)
04y 0 0 e & g 0] [0 Cc 0 0

=0 0ap 0 [ T2 e e, e o) 5 o 0 ¢ o0
00 0-C 0 0 0 0 00 0 —M
< OB d < of —

Equation (2.67) is analogous to equation (2.26a); they become identical when the rock has
zero porosity and b = 0. The symmetry of this system occurs for the same reasons explained in
the development of equation (2.26a): it is a consequence of the fundamental law of poroelastic
dynamics (see subsection 2.2.10.1).

The total stresses in the poroelastic rock are obtained by coupling two tensors, og for the bulk
rock and o¢ for the fluid. The inclusion of the fourth dimension is necessary to extend the classical
theory of solid elasticity to linear poroelastic rocks, taking into account the effect of the fluid
phase.

2.2.9.1 Terzaghi effective stresses in poroelastic rocks
From equation (2.50b), we deduce that:

C rf
=—s+L = oj=(es0u—Ch) —bps)sj+2Ge;
C=uB T o = (es v ) —bpr) 8ij +2G & (2.68)
thus, ojj = ()\ B (Sij +2G Sij) - bpf 8,']'
Therefore, we obtain:
v =hegdy +2Gey = oy =1y —bprdy| (2.69)

Tensor (z;) is called the Terzaghi effective stresses that act only in the solid matrix; bpy is
the pore-fluid pressure. For this reason, b is called the effective stress coefficient. Since there are
no shear tensions in the fluid, the pore-fluid pressure affects only the normal strains o; (i = x,
¥, z). The functions (o) are the applied stresses acting in the porous rock saturated with fluid.
They express that the poroelastic response is controlled by the difference between effective stress
and pore pressure. Equation (2.69a) is called the “law of effective stress” (Wang 2000, Terzaghi
1943). This equation illustrates the mechanism of the poroelastic coupling. The solid matrix (z;;)
supports one portion of the total applied tensions in the rock and the fluid in the pores (bpy)
supports the other part. This is a maximum for soils, when b & 1 and is minimum for rocks with
very low porosity where b & 0 (Table 2.3). The matrix form of equation (2.69a) becomes:

or =0 +0¢ = (05) =t—bps

Oy Oy 0y 0 Ty Ty Tz O b 0 0 0
Oy 0y Oy O ™ 5 o 0 [0 b5 0 0
C Now o0 oo 0 |7 1 72 7 0 00b 0 |¥
0 0 0 o 0O 0 0 0 0 0 0 —1
(2.69b)

The simplicity of the 4D poroelastic formulation becomes clear and evident with this last tensor
formula.
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2.2.9.2  Vectorial formulation of the poroelastic equations

Analogously to equation (2.28), we can make the tensor o¢ equivalent to a seven dimensional
stress vector. Using the relation C = b M, the matrix of coefficients in equation (2.67) for the
fluid becomes:

o 0 0 0 000 —C £
oy 0 0 0 000 —C &
o, 0 0 0 000 —C £

=)oy | =] 0 0o 0 000 o0 0 (2.70)
O 0 0 0 000 0 0
0y 0 0 0 000 0 0
o /, -C -C =C 00 0 M ¢/,

With this equation, we can construct the total stress vector acting in the porous rock, which
includes two components, one for the skeleton and one for the fluid, respectively:

-

- - - 1

or=0g+o6r <& or=Cg-e71 & ¢er=Cy -or
(2.71)

pd T. 2 T

or = (UX50ya 0z, Oxy» Oxz,s UyZaGf) ;&1 = (&x, €y5 €25 Exys Exz, Sstg-)

Equation (2.71) represents the total stresses acting in the rock through o plus the tension force
o acting in the pores. It shows the equivalence between two coupled vector-tensorial equations
preserving a similar form as the classic elastic equation (2.28). The vector symbols are seventh
dimensional transposed vectors with six classic components and extra poroelastic elements. The
total poroelastic stress and the total strains are the vectors 67 and £7, respectively. The matrix
Cj for isotropic, isothermal rocks is a seventh order constant tensor obtained by the addition of
coefficient matrices in equations (2.28) and (2.70), one for the solid phase and one for the fluid:

ru+2G AU AU 0 0 0 -C
AU Ay +2G AU 0 0 0 -C
AU AU A+2G 0 0 0 -C
Cg = 0 0 0 2G 0 0 0 (2.72)
0 0 0 0 26 O 0
0 0 0 0 0 2G O
—-C -C —C 0 0 0 M

The determinant of this matrix is:
det(Cp) = 32G°[=3C% + M3y +2G)] = 32G°M (3L 4+ 2G) = 96G° Kz M # 0
Therefore the components of 67 are:

lMep+2Ge, —C¢

Ox Ex
o e AU83+2G8y—C§'
y y
o & rvep+2Ge, —C¢
5']" = Oxy = CB . ET = CB . Sxy = 2G 8xy (2.73)
Oxz Exz 2G Exz
Oyz Eyz 2Ge
oy e vz

—Cep+M¢
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Using the compact index notation, these components are:

o, =Ayep+2Ge —bM{ = (hep+2Ge;) — bpy
0j=2Gey;, Vi, j=x,y,z,i#] (2.74)
of=—Cep+M¢ =py

Matrix Cg is always invertible, and its inverse Cy I = (cij) is easily calculated:

ct ci2 c2 0 0 0 er7
c2 ¢ c2 0 0 0 er7
c2 ci2 ¢ 0 0 0 er7
cGG'=l0 0 0 & 0 0 0 (2.75a)
0 0 0 0 ¢ 0 0
0 0 0 0 0 ¢ O

ci7 ci7 ci7 0 0 0 ¢

The five non-zero inverse poroelastic coefficients are:

—C*+M(y + G) C?—Miry 3ru +2G
1= GD s 2= o e F T
1 B c B B (2.75b)
¢=-—, ci1=—; Dp=-3C*+M@Bry+2G)=MQ3r+2G)
2G Dp
These coefficients form the exact inverse matrix Cgl and the inverted equations are:
. Oij .
g = (c1 —ci)oi + 3oy cia+cirpr; i=xy,2; &= G #J
ot 5 (2.76)
ox + o, + o
¢ =3oycii+cipr; oy = % =@+ 50)83 -C¢

Note that the shear strains (s;;) (i # j) are independent of the fluid pressure. Instead of
the constant terms in equation (2.76) of the inverse matrix, we can also use the traditional
poroelastic coefficients. Using previous relationships (eq. 2.25) and after doing some algebra we
obtain:

B2M2 — M — B2 M2 —x A v
C = = = = —_——
12 2GM(3A +26) 2632 +2G) 2E(L+G) E
( ) —3C%? + M3 +2G) 1 N 1 v 1
Ccl —C = = — = cl=— — — = —
T G322+ MG +2G)] T 26 'S %G ETE
342G 3A+2G+30PM 1 +b2_1 Kz Kz 1
c3_M(3A+2G)_ M@BA+2G) M Kz R H? H? R
C b b 1 Kz 1
c17 =T =

T MGr+26) :3(A+2G> 3Kz 3Kg H 3H
3
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Therefore, the explicit inverse matrix of the elastic coefficients is simply:

1 v v 1
- ——= —= 0 0 0 —
E E E 3H
v 1 v 1
-— = ——= 0 0 0 —
E E E 3H
v v 1 1
- —= = 0 0 0 —
E E E ) 3H
G'=l o 0o 0o — 0 o0 0 2.77a
B Ye ; (2.77a)
0 0 0 0 — ©0 0
2G .
0 0 0 0 0 — 0
2G
1 1 1 1
— — — 0 0 0 —=
3H 3H 3H R
Replacing these coefficients in equation (2.76), we obtain the compact relationships
= -1 = i v pPr
er=Cg -or & & =-—=—-3-oy+
o 26 E 3H (2.77b)
.. 5 ij . .
I, =X,),z; gif:ﬁ Vi #£j
ox + 0y +o0; 2 oM | Pr
=—— " =|A+=-G —-bM¢, = — 4+ = 2.77
oM 3 < + 3 ) €B ¢ &= 7 + R (2.77¢)

The Biot strain variable ¢ (u, ¢) is also expressed in terms of Ky, C, M, average stress and pore
fluid pressure. Using equations (2.47), (2.49) and (2.52b) in the last expression for ¢ we obtain:

_ Coy +KUpf

VK= C? (2.77d)

This last equation illustrates, in another way, the coupling of the pore pressure and the global
stress acting on the skeleton. There is another useful stresses-strains formulation deduced from
equations (2.74) and (2.77b) in terms of the bulk coefficient K/, the Poisson’s modulus vy
(eq. 2.53d), both undrained, the shear constant G and the Skempton coefficient B (Wang 2000):

.. VU Ekk
Fori,j=x,y,z:0; =2G &+ ———38; | —BKy ¢ d; (2.78a)
1-— 2UU
1 VU Ok
< 8= 5s ( % T 81, + 3BG; 81,) (2.78b)

Both expressions are deduced from the relations presented in previous sections. The linear
theory herein outlined is appropriate for isothermal, isotropic and homogeneous porous rocks.
The presence of fluid in the pores adds an extra tension due to the hydrostatic pressure, which is
identified with the pore pressure, because it is supposed that all the pores are interconnected. Up
to this point, all the fundamental poroelastic concepts for isothermal linear deformations have
been introduced and defined.

2.2.10 Mathematical model of the fluid flow in poroelastic rocks

The mathematical model of a poroelastic rock volume, fully saturated with a moving fluid, is
a group of coupled partial differential equations governing the fluid flow inside the pores of
the deformable skeleton. All the coefficients, concepts and relationships developed in previous
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sections are sufficient to develop this model. We only need to define the unknowns and arrange
methodically the appropriate equations.

There are eleven fundamental unknown variables in poroelasticity. The six stress elements
(o) of equation (2.67), the three coordinates (uy, uy, u;) of the relative fluid-solid displacement
(eq. 2.64), the variation of the fluid content ¢ (eq. 2.44a) and the pore pressure py (eq. 2.50b).
The six strain components (&) can be computed using either equation (2.77b) or their definition
in terms of the vector displacement (eq. 2.27). The corresponding equations are the seven com-
ponents relating stresses, strains and the pore pressure (eq. 2.71 or 2.73), and four extra partial
differential equations; three come from equilibrium conditions in the skeleton and one comes
from the conservation of the fluid mass relating ¢ with the Darcy’s law. This group of equations
provides an equilibrated system that can be numerically solved using the techniques described in
chapter 5. The four partial differential equations are developed in the next sections.

2.2.10.1 Dynamic and static poroelastic equations for Hookean rocks

The Newton’s second law of continuum rock dynamics is a mathematical expression relating
the total force acting on the medium 2 and the vectorial acceleration of the rock particles. The
integral form of this fundamental law (Duc and Bellet 1976) is:

/ﬁed9+fog-ﬁdszfpradsz

Q Q Q (2.79a)
- . d%u
Fe= (Fy,Fy,F.); a= SE PT=ep T eshs

We define Fe as the external body force acting on the porous rock; a is the vectorial acceleration
and pr is the average density, where py and p; are the fluid and solid phase densities, respectively.
Vector 7 is the normal to the surface d$2 wrapping the domain 2. The term oy is the bulk stress
tensor of equation (2.67) acting within the rock. This is a (3 x 3) matrix. The two matrix
components of equation (2.67) are (4 x 4) matrices, one acting in the skeleton and the other
one in the fluid both of which give rise to the internal forces acting in the porous rock. The
fluid matrix component is going to be treated separately. Applying the divergence theorem to
the integral that contains o'g and using the fact that the volume of integration €2 is arbitrary, we
deduce the differential form of the fundamental law of rock mechanics:

- - . 9%u
Fe‘-i-V-GB:,OTa:,OTW
2.79b
F L. F+30,‘j 3214,' ( )
ori,j=x,y,z. Fi + — = pra; = pr—~
J y i o, PTai = PT55

To include the fluid in the pores, we compute the divergence of the total stress vector in
equation (2.73) as follows:

divor =LY .67 ;67 =Cg-8r;ér=L-u (2.79¢)

L is a special tensorial differential operator defined in three dimensions as follows:

Oy 0 0 Oyl &y
0 dy 0 oyt &
0 0 9, Uy 0:u; &z
L= 0y Oy 0 = L-[| u = Oyt + Oxlty =| &y =ér
0z 0 Oy Uz 0zty + Oxitz Exz
0 0, 0y 0;uy —L— Oyuz Eyz
—@dx —pdy —@o: —oV - ¢

(2.79d)
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where gj; = 2¢;;. Using this notation, the fundamental law of dynamic poroelasticity is:

9%

d;V8T+ﬁ:pTa = (LT‘CB~L)-Zl+I_}':pT87

(2.80)

This vectorial system provides a solution for the displacement vector it = (uy, uy, u:) of the
rock particles in equation (2.64). In two dimensions, the fundamental law is written as:

Oy 0 Ox Uy Ex

L.i— 0 0y ) Oyuy _ &y _z
0y Oy Uy Oyux + Oxty Exy
—@0x _(pay —@(Oxuy + ayuy) ¢

ru+2G AU 0 -C
AU rv+26 0 —C

0 0 2G 0
—-C -C 0o M

the matrix of the poroelastic coefficients is: Cp =

Therefore, the fundamental law of dynamic poroelasticity in two dimensions is:

82 82 32 2
Coo ™ 4262 4 Y 4 R, 071y
2 2
(LT Cp-L)- G+ Fo— dx ay 0xdy — pr PYZ
C 82uy +2G82uy i C 9%u, VF 82uy
075y2 ax2 " Ogxgy Y ar2

(2.81)

Jur+u?

I <<1, Cy=Ay+2G+2Cp+ M¢?
0

Zl(t) = (uX5 uy)a

This model is valid only for small, reversible deformations of Hookean poroelastic rocks, where
Ly is a representative dimension of the porous skeleton (Coussy 2004).

We consider next the important case of static poroelastic equations when the external body force
is the vertical gravitational force per unit bulk volume and the acceleration in equation (2.79b) is
zero. The governing poroelastostatic equations become:

R 0 - Ox Oxy Oxz 9
F = 0 and V.op= (BX 0y 82) oy oy oy |; 0= = (2.82a)
—PTE& Oxz Oy; Oz *

0xox + ayaxy 4+ 0.0, +0=0

- - - 30,‘/
Viop+F=0 & F;+

T =0 & 1oy 0y +0: +0=0  (282b)
J

0xOxz + 8yayz + 0.0 = prg

These are the three force equilibrium equations governing quasistatic problems. The study
of poroelastostatic phenomena assumes that mechanical equilibrium is attained in a very short
time or immediately after any change in fluid pressure or in stress occurs in the porous rock. “In
reality, a finite amount of time is required for a dynamic wave to transmit stress changes across
the problem domain, but the wave propagation term is ignored in the quasistatic approximation.”
(Wang 2000). To obtain the other three partial differential equations required for the mathematical
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model, we replace the stress components of equation (2.74) into equation (2.82b):
0i0i = 0; (Lep+2Ge;)) —b0ipr; 00 =2G 055, {i,j=x,y,z}
_ Oue | 0wy, Ou du; du;  duy (2.83)

&g = s, &=/, &= T PN .’.:aa
5 ox ay 0z ! i v 8]+ i ,j =x7.2)

Developing these compact equations and arranging the appropriate factors, we obtain:

92 a2 32 92 a2 92 B
G( = ux)+(x+G) T

9x2 dy 922 9x2  9xdy 9xdz dx
9%u 8%u 8u 9%u 8u 82u opr
Gl-F+——F+-F|+0+G = —— ) =b-2L 2.84
( dx? 9y? 0z2 ( ) ox dy 9?2 dy 0z ay ( 2)

2u,  Pu,  0%u. 0%u, Bzuy 0%u, opr
G "+ G -
<3x2+8y2+322>+(+ Nowo: T apo: T 922 0z PTE

In condensed tensorial notation, this system is equivalent to the following formula:

0%u; baﬂ

P 8i

GViu;, + (A +G

+Fi = 07 {l>] =X,), Z} (284b)

Many other expressions of equations (2.84a, b) are easily obtained using the relationships
among poroelastic coefficients developed in previous sections. For example, taking the first
formula of equation (2.74) with the undrained Lamé modulus and replacing equation (2.66b) in
equation (2.84b), the corresponding group of partial differential equations for the variation of the
fluid content is:

IS

?u;
M el L F=0; Vij=x,2) (2.84¢)
di df i

GV2u; + (hy + G)

Both equations (2.84b) and (2.84c) are coupling the poroelastic mechanism between the pore
pressure or the fluid content, and the displacement of the porous rock particles. Two drained
coefficients A and G emerge in equation (2.84b) because the coupling term is the fluid pressure.
The undrained modulus Ay (Gy = G) appears in equation (2.84¢) because the coupling term is
the variation of the fluid content. Other coupling interpretations can be found in Wang’s excellent
book (Wang 2000).

To complete the system of eleven equations mentioned at the beginning of this section, we
need a last partial differential equation. It is obtained using the function ¢ and Darcy’s law, which
is introduced in chapter 4. From the definition of the variable ¢ given by equation (2.65):

- > L SR ac - ou
¢, ) =@V - (ig—if) =—¢V-ui = Pyl v-g (2.85a)
On the other hand, Darcy’s velocity is given by equation (4.13), (see section 4.1):
Ve Ou . k- -
—=— and vy =——(Vpr—prg (2.85b)
0 Y s 1y r —Pr

Equating both equations (2.85a) and (2.85b), neglecting the gravity gradient, we obtain:

v.0% 5.5 G 9y o Xk (2.86a)
-—=V.yp=——V. — = — .86a
¢ Jt 4 ur ’r at wr 4
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This parabolic partial differential equation is a diffusion equation; it characterizes the transient
laminar fluid flow in a porous rock as a function of the fluid pressure and the variation of the
fluid content. It is worthwhile to express equation (2.86a) solely in terms of ¢ or in terms of fluid
pressure. Using equations (2.66b) and (2.26b) relating ¢ and py:

¢ _Lopr 0 om Tk KyB

_ ey =M = TRy RUB 2.86b
or Mot o PRy MT3 b (2-86b)
Ccao 19 k b 9 b 0 k
S0 O Egry | o [ L0M L 0 E g2 (2.86¢)
M ot M ot wy Kp ot Ky B ot ur
Using the fundamental moduli of equation (2.44a) we obtain:
00 _loow lopp ko, 1L _ b 11 _ b
ot H or Roat g 7 HT Ky R BH BKg
(2.86d)

30‘M 3pf BKB k 2
poM T _ 2B Ty
= o Tt oo Y

Any of the equations (2.86a—d) complete the group of 11 equations required to solve the 11
poroelastic unknowns. They can be solved using the techniques discussed in chapter 5.

2.2.11 Diffusion equations for consolidation

Consolidation is a transient process occurring in porous rocks when “pore pressure equilibrium
is re-established after a change in the stress state. This process involves a flow of the pore
Sfluid through the porous rock”™ (Fjaer et al. 1992). This fluid flow obeys Darcy’s law, which is
detailed in chapter 4. Using the material of previous sections, we illustrate the construction of
a simple mathematical model for the coupled process of consolidation. We apply the diffusion
equation (2.81) to a vertical column of homogeneous porous rock, in one dimension. We suppose
that the lateral strains are negligible, the rock has high permeability, especially at the top of the
column, and it is impermeable at the bottom, at a depth equal to zg. Using formulae (2.66a)
and (2.66b) in the vertical dimension OZ:

o;=@Au+2G)e; — Cg; Pf:Mf—C& =
(2.87a)

M C a
= o+ Cpy and ﬂ:Mai_C%
M (Ay +2G) — C2 ot ot ot

&z

The formula for ¢; in this equation shows that the vertical strain depends on both the vertical
stress and the fluid pressure. If py changes, ¢; is going to change during the same interval it takes
for the pore pressure to reach equilibrium (Fjaer ez al. 1992). Substituting the last two expressions
of equation (2.82) into equation (2.81), we obtain:

9 AU +2G apr C 9o, k 9%ps
£ vt <p/ “)— L] (2.87b)

MOy +26)—C2\ar Ay +2G ot ) p 822

This is a coupled equation, which relates the spatial and temporal changes of the fluid pressure
with the vertical stresses acting in the porous rock. It involves the undrained Lamé and shear
moduli, the Biot coefficients, the permeability and the dynamic viscosity of the fluid. If the
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vertical stress does not change with time, equation (2.83) becomes simpler and we have the
following differential model (p, is the atmospheric pressure in Pa):

r _ o Vs
ar P a2

ot = Pl —o: — -
pf(ZOat) = Pa; E(Oat) _Oa pf(Z,O) = Po;

(2.88a)

MOy +2G) - C* k 2
where: Cp = ( [)]»:_—i— 2)G ; [%], pr(z,1);z € [0,20];£ >0

Equation (2.84) is the partial differential equation of consolidation and Cp, is the consolidation
diffusion coefficient (Fjaer ef al. 1992). We can deduce another form of equation (2.83), using
the initial equations (2.44a):

3 19 19 1/ 8 9 3 G} k 9?
9¢ _ Loz 1% _ 1 (glo= O BZZ L L _REZDL (588
ot H ot R It R ot ot ot ot uw 9z2

This is another poroelastic model coupling the changes in vertical stress o, to the pore pres-
sure. Constant R is the inverse of the unconstrained storage coefficient (Wang 2000) given in
equations (2.45) and R k/u is another form of the diffusion coefficient for consolidation.

2.2.12  Basic thermodynamics of porous rocks

General thermodynamics studies the laws that describe the continuous transformations of moving
physical systems. Thermostatics is a branch of thermodynamics that studies the equilibrium states
of physical systems during their exchanges of energy and work (Germain 1973, Coussy 2004).
Energy, heat, enthalpy, mechanical work, entropy, pressure, density, and temperature are the key
concepts in this science. They are called essential variables. A potential is a numeric real function
from where other variables derive. The present knowledge in thermostatics (Coussy 2004) allows
us to describe accurately the behavior of porous rocks using one thermodynamic potential and one
energy dissipation function. To introduce both concepts, we need the laws of thermodynamics in
natural reservoirs or systems formed of porous rocks.

2.2.12.1 The first and second law of thermodynamics for porous rocks

The immediate physical experience shows that the supply or extraction of heat produces defor-
mations in all types of rocks. Any variation of temperature induces a thermo-poroelastic behavior
that influences the elastic response of porous rocks. Liquid water has very low compressibil-
ity. This property tends to reduce rock elasticity, stiffness and strength. Thus, the presence of
hot water in porous rocks affects their geomechanical behavior and always makes them fracture
more easily. Let U [J] and S [J/K] be two functions representing the internal energy and the
entropy of the reservoir, Q [J] is the heat exchanged between the system and its surroundings, and
W [J] is the work done by the system (W < 0) or on the system (W > 0). The first two laws of
thermodynamics (Alonso-Finn 1968) state that:

e First law: The change of internal energy of a reservoir is equal to the heat extracted plus the
work done by (on) the reservoir system:

AU=U-Uy=W+0Q (2.892)

e Second law: The most probable processes that may occur in a reservoir are those in which the
entropy either increases or remains constant:

AS=8-S5 >0 (2.89b)
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If the process is reversible and T is a reference temperature then:
AQ =Ty AS (2.89¢c)

To illustrate the use of these functions consider a volume V3 of rock, which is at the initial state
(po, To, po)- Let pg = 1/vug be the density of the rock and My be its constant mass. We assume
that the rock is subjected to an isothermal compression o = —p; < 0, reaching another state
(1, To, po).- A heating process under constant pressure follows the compression. The rock
goes from the previous state to the final state (p1, T, po). We assume that both processes are
reversible and that the change of the rock density is negligible. Using the definitions given by equa-
tions (2.22a) and (2.40c), we can compute the work done by each process, the entropy change and
the change in the internal energy of the system. The differential work done on A Vg per unit rock
mass is:

Jv Jv
dW = pidv = —d —dT ),
Prdv = pi <8pk Pk + 9T )

d d (& ad
where: (—U> =— <—U) =Cruyy = —T, and (—U> =YRpUy = B (2.90a)
opr ) r do ) £0 T /), £0

J
hence: dW = pyvo (ypdT + Crdpy) — [@]

For the isothermal compression, we must have d7" = 0; therefore:

4 Pl

/dW:Wl :UOCT/Pdek:UOCT
0 Po

p—r}

(2.90b)

For the isobaric heating, we must have dp; = 0, and consequently the work done by the thermal
stress is:

/23 T
/dW — W — W) = &yB/dT =Pl = Ty (2.90¢)
0 o
/4] To

Therefore, the total work done on the rock is:

2 2
P —P 1
Wy = Cr P20 4y Plry — 1) (2.90d)
2p0 £0

Note that the total work must be positive #> > 0. The change in the entropy of the system at
the end of the second process is:

T T Far S; -5 T

1 =00 1
/dS = / 7 = MO Cp 7 = MO =¢p Ln (FO) (2906)
So Qo To

Using the numerical values of Table 2.1 for well H-10: pp = 2620 kg/m3, Cr =173 x
107! Pa~!, ¢, = 1088.6 J/kg/°C, y5 = 5 x 107> °C~! and py = 5 MPa, p; = 35 MPa,
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My = 1.0kg, To = 25°C, T1 = 250°C, we obtain:

2 2
- J J J
Ll 670 L PN (T — 1) = 15029 . W =167.0 —;
2po kg 0 kg kg
Si— S I U-U AS J
L=20 250659 : O — Wy + Tp— = 167 + 25 x 2506.59 = 62832 —
Mo kg°C My My kg

Note that the thermomechanical specific work done on the rock is relatively small when com-
pared with the change of its specific entropy. This is because the andesitic rock has very small
compressibility and expansivity. Consequently, it is hard to change its volume. Nevertheless, the
rock internal energy variation is important, reflecting the heat absorption.

2.2.12.2 Differential and integral forms of the first and second law
The first and second law of thermostatics for reversible processes can be written in differential
form in a solid REV of volume AVjg:

U ]
O _n S L s0=Tds— | L (2.91b)
AV YAV B P :

where § W and §Q represent the volumetric work and heat exchanged, respectively, and e and s are
the volumetric internal energy and entropy, respectively. The symbol § means that the differential
of’both quantities ¥ and Q is not exact. Because e is an equation of state and s is the corresponding
entropy, de and ds are total differentials.

Note that if the volumetric work is done at constant volume, then the variation of internal
energy is equal to the volumetric heat exchanged (eq. 2.10):

T
dv
8W=pV—=03de=8Q:>e—eo=QV=/CVdT (2.92a)
B
To
Note also that if the confining pressure is constant, then heat exchanged is equal to the variation
of the volumetric enthalpy (eq. 2.10):
T
8W:0:>de:dh:8Q:>h—ho:Qp:/deT (2.92b)
To
Note that in both cases, the heat exchanged is independent of intermediate states and the
formulae (2.92a) and (2.92b) are valid for any system that receives work only from stresses at
constant volume and constant pressure, respectively. In the case of solids and low-enthalpy liquids,
their specific volume is very small, consequently dh ~ de ~ c, dT.

It is easy to prove a useful thermodynamic formula relating the difference between specific
heats ¢, — ¢y and volumetric expansivity, density, isothermal compressibility and temperature:

1 [V 2T
oL ( B) ey = BL (2.92¢)
Ve \ opk ) r o Cr

For solids and liquids such as oil and water, y  is relatively small (10~> K1), and, therefore,
¢p — cy is small. For this reason, “many tables simply give the specific heat of a solid or a liquid
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without designating that it is at constant pressure or volume” (Sonntag and van Wylen 1982).
Integrating the rate of change of equation (2.91a) over a rock domain €2, we obtain the power of
the system:

[E] L de W 50 /—dQ /%dmr/@m S W] (2.93)

m3 dt &t 8t 8t
Q

The rate of heat exchanged is computed using the following general integral formula:

) . ES
fs—?dﬂ_—fqndA=—/qT-ndA=—/V~quQ (2.94a)
Q a0 aQ Q

8 d >
and, therefore: 8—? = Toa—j =-V.gqr (2.94b)

The term ¢, is the normal component of the heat flow given by equation (2.9). The application
ofthe divergence theorem in equation (2.91b) completes the integral expression of the rate of heat
exchanged by conduction between the domain €2 and its surroundings. All of the relationships
introduced up to this point are valid for general thermostatics processes in any continuum medium.

A particular result for the rock solid matrix is that the integral work can be computed using the
following classic formula for thermoelastic solids (Germain 1973, Duc and Bellet 1976):

8 W 8(91]
i 2.95
st~ Ve (295

The results given by equations (2.94b) and (2.95), replaced in equation (2.93) lead to the
following energy conservation equations for the solid matrix:

de dgj o de dej; -
V. dQ=0 — V.-gr=0 2.96
/(az % t qT) @ g i VAT (2.96)

Both equations (2.96) are equivalent because the integration is performed over an arbitrary
domain Q2 of the solid matrix. Using Fourier’s law (eq. 2.9) of heat conduction in equation (2.96b)
we obtain:

de Oej

=—kr-VT = —
r T ar T

_v. (kT : %T) -0 (2.97)

This formula is a thermoelastic equation coupling the rate of changes of the internal energy,
the strains, and the heat transported by conduction.

2.2.12.3 The Helmholtz free energy: A thermoelastic potential for the matrix

The Helmholtz free internal energy Fy (g, T') derives its name from the German physician and
physicist, Hermann Ludwig von Helmholtz (Fig. 2.10). This thermodynamic potential is useful
to derive the equations of solid non-isothermal elasticity. The function Fj (its units are in Joules
and subindex s means solid), establishes mathematical relationships among heat, strains and
stresses. Despite the important theoretical character of F; (Coussy 2004), it is little used in classic
thermoelasticity (Mase and Mase 1999). This potential is equal to the algebraic difference of
the solid internal energy U, minus the heat exchanged Q. If we assume that the internal energy
dissipation is zero and that the processes involved are reversible, then the heat exchanged is equal
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Figure2.10. Hermann Ludwig von Helmholtz (1821-1894), German scientist, creator of the free energy
concept.

to the product of the absolute temperature and the entropy of the system (eq. 2.89c¢):
Fy=Us — TSS (298a)

The Helmholtz potential F is an equation of state for the matrix. Itis called free energy because
in every isothermal compression:

AF; = AU, — TAS, (2.98b)

The term AUy in this equation is the matrix-stored energy, while the term 7' AS, represents the
unusable energy. Therefore, AF acts as a useful energy, able to be totally transformed into work.
It is more convenient to formulate equation (2.98a) per unit volume of rock:

F. U S. J N
fi = f - 5 _r = = fi=e — Tsy > |:—3 = — = Pa] (2.98¢)
m

A VB A VB A VB m2

The functions f;, ey, and s, represent the volumetric Helmholtz potential, the volumetric energy
and the volumetric entropy, respectively. The potential f; (¢, T') is the volumetric thermoelastic
energy of the matrix [J/m?]. For small changes in the REV, the total differential of f; (g, T) is:

dfs (6‘!7, T) =d (es — Tsg) = des — dTss — T dss = oy dejj — ss dT

ofs ofs s A (2.984d)

= dfy= d,,-i-de = Gij—gass_ oT
y

Oejj

Computing the transient derivative of equation (2.98c) and combining with (2.91a), we obtain
the rock energy dissipation:

dfs deg 0sy 8T 88,,

Us _ 0 p%s (0L _v. iy,

ar ot ar o T %y i — SS + i
o, ey aT

T T TSy

(2.98¢)

= =0
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We consider the following initial conditions, corresponding to a free strain natural state:

e Zero initial strain: £;; (0) =0, and 05 (0) << 0.
e Uniform initial temperature: 7(0) = Ty , consequently: £; (0, Tp) = £2.
e The second condition implies a zero initial thermal gradient.
Under these hypotheses, we can expand f; (¢;;, T') using a Taylor development in a neighborhood
of the initial state:

ad a 9 0 9
fst,T>=:3{%[(a£l 3T> (ex» T — n»] Z;‘—f;-%813f‘-+(T To f

Efr represents the error of quadratic order in the approximation. For small deformations, this
error is negligible and we obtain a linearization of f; (g4, 7). From the partial derivatives of f; in
equation (2.98d), we deduce the following expressions:

0 52 £0 52 £0
oy N 0; + ep s + (T — Tp) Js
dej dejj dey dej; 0T
(2.99a)
o~ fO 9 fO e a2fSO
ST ar2 " Mgy aT
According to the initial conditions, we deduce the existence of two tensors such that:
(T —To)
oy = o)) + dmen + By (T —To); 55 =50 + CViTO — Bijey
2.99b
N N 32]20 aZfSO c r aZfSO ( )
where: A = , Bij= , =—
W= Segoen TV degore T 0ar?

The thermoelastic tensors (8;7) and (/) are symmetric because (o ;) is symmetric. There are
particular expressions of these tensors for isotropic, homogeneous solids in terms of previously
defined coefficients (Duc and Bellet 1976):

Aijit = A 8ij 0l + G (sik 8j1 + 8y Sjk) = A & = Aepdij +2G gy

3L+ 2G 1 AVp g (2.99¢)

§: = —K 8ii; =
3 VB Ojj BYBSij; VB= V AT “T-1

Bij = —

The parameter y p is the thermal volumetric dilatation defined in equation (2.22a). The group of
formulae (2.99a,b,c) relates temperature changes, deformations and tensions within any Hookean
solid. The Helmholtz potential leads, in a direct way, to the construction and coupling of the
classical thermoelastic linear equations for strains, thermal stresses, temperature and entropy.
This thermodynamic potential can be computed explicitly by solving together equations (2.98d)
and (2.99b). Using the initial conditions for f;, starting from a free stress natural state, and
integrating twice:

Js T T c
T — T
—/st=fssaT= /(m+¥—ﬁy8ij>”—¢e(€y)
f;,O To To 0
s Eij Eij
/afg:f(7,'/‘38,']':/(k835i1+268ij+(T—To)ﬂij)aé‘ij-‘r-q)T(T)
7 0

>

T — Tp)?
CV( 0)

eey) = Jep+ Gej ®r(T) = —so(T = To) — T
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®. and ®r are arbitrary functions of ¢;; and T, respectively; both are fixed during the integra-
tions. Both integrals lead to an analytic formula for the Helmholtz free energy function f(e;;, T)
for Hookean solids:

Cy (T — Ty)? A
fileg T) =12 — so(T — Tp) — R Bi (T — To) + Eg}; +Gej  (2.100)

This potential has practical and theoretical utility; it provides an elegant formulation of non-
isothermal processes in elastic solids. Its derivatives are important thermoelastic relationships:

d
gij:Tﬁ:A838U+2Geij—K3yB(T—To)8U (2.101a)
ij
14+v Vo,
b=t Gij_( Ekk—i-yB(T—TO))‘SU (2.101b)
d C
w=-Y s T Tt Kaypes (2.101¢)
aT To

Equations (2.101a, b) are known as the Duhamel-Neumann law, which generalizes Hooke’s
law for non-isothermal processes including thermal stresses. Developing the second term of
equation (2.94b) and using equation (2.98c¢):

G.ar=T 05 o,
qr = 081_ 0

dss dey | 0sg 0T\ 3% ey 3% 9T
de; ot oT o) "\ eyoT or 0T ot

(g2 YT (s By CraTY e T
TP Ty e ) T O\ RE B Ty e ) T BB O v

Finally, introducing the expression of the volumetric heat capacity given by equation (2.10) we
deduce the heat equation for the isotropic solid matrix:

9 aT
ZB ey o = kp VAT (2.102)

K, T
BYB 10 5 Y

Equations (2.101a,b,c) and (2.102) complete the system of linear thermoelasticity, to calculate
thermal and mechanical deformations in isotropic, homogeneous elastic solids. We are going to
extend this model to non-isothermal poroelastic rocks.

2.2.12.4 The Gibbs free enthalpy: Skeleton thermodynamics with null dissipation

The basic thermodynamical state potentials in a porous rock are the internal energy and the
specific enthalpy for the fluid phase. The free energy describes the matrix while for the skeleton
the appropriate potential is the free enthalpy (Coussy 2004). The Helmoltz free energy is also
used for the thermodynamic properties of water that are described in section 2.3. These potentials,
together with other thermodynamic variables such as stresses, strains, entropy, porosity, fluid
pressure, density and absolute temperature, completely describe the exchanges of energy in a
porous medium. The Gibbs free internal enthalpy G derives its name from the American physicist,
mathematician and chemist Josiah Willard Gibbs (Fig. 2.11), who founded physical chemistry.
The potential G (subindex S means skeleton) is useful to derive the equations of the rock skeleton
in non-isothermal, reversible processes. The function Gs establishes mathematical relationships
among heat, strains, stresses and pore pressure. This potential is equal to the algebraic difference
of the skeleton enthalpy Hg minus the heat exchanged Q. If we assume that the internal energy
dissipation is zero and that the processes involved are reversible, then the heat exchanged is equal
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Figure2.11. Josiah W. Gibbs (1839-1903), founder of chemical thermodynamics.

to the product of the absolute temperature and the entropy of the system (eq. 2.89¢):
Gs=Hs—TS — [J] (2.103a)

The Gibbs potential Gy is an equation of state for the skeleton called free enthalpy because, in
every isothermal compression of the form:

AGs = AHg — TAS (2.103b)

The term AHy of this equation is the skeleton-stored enthalpy, while the term 7'AS represents
the unusable energy. Therefore, AGg acts as a useful energy, able to be totally transformed into
work. It is more convenient to formulate equation (2.103a) per unit volume of rock:

Gs Hg S J
gs = 73 = 7B—T7B = gs=hs—TSs — [E:I (2.103c¢)

The functions gg, /g, and S, represent the volumetric Gibbs potential, the volumetric enthalpy
and the volumetric entropy of the skeleton, respectively. gs(e;;, p, T) is the thermoporoelastic
available enthalpy per unit volume [J/m3]. Coussy (2004) deduced the energy dissipation function
Wy in the skeleton, using the Gibbs potential, the stresses, the porosity, the pore pressure and the
density of entropy per unit volume of porous rock Ss [J/m3/°C] as follows:

dW¥g d&‘ij dT dp dgs
Rt R R N - 2.104
da % T a4 T (2.104)



Rock and fluid properties 65

Assuming that there is no energy dissipation in the porous rock (dWs/dt = 0) and for small
changes in the REV, the Gibbs’ potential describes the behavior of the skeleton (Coussy 2004).
The total differential of g5 (¢, p, T) is by definition:

0gs 0gs 0gs
dgs = oydey — pdp = SsdT = oy = -2, wz—%, S5 = — 288
; / ; » (2.105)

the respective units are: gg — |:—3: Pai| ; and Sy — [37] = [—a]
m m>°C °C

These partial differential equations are integrated between an initial state gg, when the strain
was zero, (¢;; (0) =0, p = po, T = Tp) and a final state g (¢, p, T) as was done in the previous
section. Note that we need an initial reference temperature 7y and an initial pore pressure po,
because both thermodynamic variables 7 and p are going to change in a non-isothermal process.
Integrating equations (2.105), Coussy (2004) obtained an exact expression of the Gibbs potential
for the skeleton:

Initial state: gg =gs (sij =0,p=po, T = TO) >
Final state: gg = gs (Sij, ». T )

e
= gs(ej,p, T) = opyep + (al-jQ — 01818,7) (eij - ?51}) —pop—S¢T
(2.106)

K
+73(83)2—b(P—po)SB-F%(P—PO)(T—To)—KB)/B(T—To)EB

2 2
- Cy (T — T ) 2
_(—po)”  Cy( 0) +G(£l_']'_ Baij)

2N 27 3

The parameters y g and o,[1/K] are volumetric thermal dilatation coefficients. The first one
v B (eq. 2.22a) measures the dilatation of the skeleton, while oy, = —¢y,, is related to the variation
of the porosity when the skeleton temperature changes (eq. 2.22b). Cy is the skeleton volumetric
heat capacity coefficient (section 2.1.6) under constant deformations, when strains and pore
pressure are held constant. The pore pressure is equal to the fluid pressure (p = py), which can
be measured in the field or calculated using the equation of state for the fluid.

Using the relationships of equations (2.105) and (2.106), we obtain (Coussy 2004):

8 —
o= 285 _ Gt beg—a, (T —To) + L=P0 (2.107a)
ap N
3 T—T
SS=—§:Sk(g)-i-)/BKB&B—Olw(p_pO)‘l‘CVu (2.107b)
oT To
ags
o = % =o§+k835U—+2G£ij—b(p—po)ﬁij—KB)/B(T—TO)Sij (2.107¢)
) 02 1 92
t=gey=—ep 85, p=_ 08 _ 08 (2.107d)
ap dejjop N op?
82gs 1 d%gs 9°gs J
_ Sy = —— LGy =Ty | 2.107
= orop VT TKpoeyor VT ar2 [m3K] 21079

The Helmbholtz free energy fs of the skeleton, is given by the following expression:

fs (e, 0, T) = gs (g4, p, T) + p o [Pa] (2.108)
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Replacing the average fluid-solid density p = ¢ pr + (1—¢) p; in equation (2.102) instead
of the solid density oy, and using an average specific heat capacity c,, we complete the set of
formulae for the skeleton with the heat equation. To include the reservoir heat production and
the effect of the advective transport of energy by the moving fluid in the pores and fractures, it
is necessary to add the volumetric heat produced or extracted and a fluid velocity term (Lautrup
2005):

383 oT L5 = 2
KBVBTOW‘i‘CpIO E—{-V-VT =kr V°T + Qpn (2.109)

where vector v represents the Darcy’s velocity and Oy [W/m?] is the volumetric thermal energy
production. For isothermal processes in rocks with zero porosity ¢ = 0, T = Ty and p = py, the
system of equations (2.107) is reduced to Hooke’s law for linear elastic solids.

2.2.12.5 Thermodynamics of the fluid mass content
We can obtain an explicit thermodynamic expression for ¢, using equations (2.35a) and (2.35b),
which define the fluid mass content ¢ and its relationship with ¢:

dmys

me=prp = dmy=¢dor+prdp = di= o

4
o™ Lap (21100
Pr

On the other hand, the fluid density is a function of both, the fluid pressure and the temperature
pr (p, T). Computing its total differential, we obtain:

d 19 1
o (0T = L= gy P ar (2.110b)
or prdp pr 9T

We need to use, in this expression, the definitions of the fluid bulk modulus (eq. 2.54a) and of
the fluid thermal expansivity:

1 1 /9 1 [0V 1 /0
Tk o \dp )y CopNor /. e \OT )/,

Substituting these definitions in equation (2.110a) and setting py = p:
dc = dg + Kﬁdp — gy drl (2.110d)
&

Integrating this expression, between the initial and final states, in terms of the porosity differ-
ential dgp and plugging the result into equation (2.107a), we obtain an equivalent expression for
the variation of the fluid content in a linear non-isothermal process:

C=Co+b83+w

+ K%(p )+ 00T —T) —py(T—Tp)  (2.111a)

This important equation is simplified using the first expression for the Biot tangent modulus
1/N in equation (2.55b):

P —Po
M

(=t +bep+ + (e — yr)(T — To) (2.111b)
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Equation (2.111b) is also written in terms of the relationship between ep and oz = 30 in
equation (2.25b):
P —DPo
M

¢ =1to+ b% + + oy — (T — To) @2.111¢)

We can obtain another expression of this equation using the relationships for the moduli M and
Kp in terms of the Skempton coefficient, b and Ky, given by equation (2.51):

B b(p — po)
§=m+§m+—iai+ﬂm—mw—m) 2.111d)

Equations (2.111a—d) express the dependence of the variation of the fluid content in terms
of the bulk strain, the average stress, the fluid pressure, the temperature and the corresponding
thermal and poroelastic coefficients. It is worthwhile to define another special thermal expan-
sion coefficient y,, measuring the changes in the fluid mass content when o s and py are held

constant:
1 [oms 1 [(0dpr 1 [0d¢p
ym:f<if> :f<7f) +f<7> =ty @112
me \ T o P aT P aT o

In other words, we find again the thermal coefficients introduced in equation (2.111a),
giving them a global physical sense through the thermal change of the fluid mass content. Using
the definition of my in equation (2.3a,b) we find from equation (2.111c) another expression
for my (p, T):

b po £0
my =mo+ ——om + —(p—po) + po @ ym(T — To) (2.113)
Kp M

From equation (2.111b) we deduce the variations of ¢ (p, T') when the volumetric strain remains

constant:
d 1
(—C) = — (2.114a)
/e, M
d
L (2.114b)
aT .

From expression (2.111c), when p and T are constant, using equations (2.45) and (2.48), we
obtain:

9 b B 1
(i ) L _Bs_1 (2.114c)
BO’M p.T KB R H

From equation (2.111c) or from (2.111e), we deduce an important relationship to compute
the fluid pressure variation when the temperature changes and keeping constant the confining
pressure o s and the fluid content ¢:

BKy

ap
—_— =Mooy —vyr)=——— 2.114d
(8T>§,JM ( (% f) / @ Vm ( )

In the drained experimental regime, any temperature change can produce either a thermal
expansion or a contraction of the rock. Consequently, the volumetric strain should contain an
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additional thermal deformation, besides the strain produced by the effective pressure p,:

—-b
s 1 (2.115)
Kp

Substituting this equation into formula (2.111b) for p = pg and including equation (2.112):

b
s“=§0—F3@k—bp)+(<pym+by3)(T—To) (2.1162)

Guéguen and Boutéca (2004) obtained another expression for equation (2.111c) for drained
conditions, when oy = —py:

b
=0+ g @=Bp) + ¢ yn(T —To) (2.116b)
B
Substituting the pressure py of equation (2.115) into this formula:

b b
{=§0+7p_7(_KBSB+bP+KBVB(T_TO))"F‘PVm(T_TO)
BKp Kp

b
=¢o+bes+ —L-(1 = bB) + (¢ ym — bys)(T — Tp)
BKp

Using the first part of equation (2.52a) to simplify the term (1 — bB):

b
C=Co+b83+%+(¢ym—byB)(T—To) (2.116¢)
U

From this equation, we deduce the variation of the fluid mass content when the temperature
changes, keeping constant the volumetric strain and the fluid pressure:

0
(i) — 0 Ym—bys (2.116d)
aT EBs P

The variation of the fluid pressure when the temperature changes at constant ¢ and ¢p:

ap BKy
e =_-=7 —b 2.116
<3T>85,; 5 (@ ¥Ym—Dbyp) ( e)

The undrained thermal expansivity is (Guéguen and Boutéca 2004):

Yu=vB—Boym (2.117)

In most cases y,, < 0 (see example below) and therefore yp < yy. In the undrained
experimental regime, the additional thermal deformation for the volumetric strain is:

k v —bpu
o5 = — 15 L yu(T—Ty) = 222U 4 (1 — 1) (2.118)
Ky Kp

Therefore, the non-isothermal undrained fluid pressure becomes:

Pk Kp Kp
=— 11— — — — T — T 2.119
pu=" < KU) + 5 (yu — vB)( 0) ( a)
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This formula is simplified using equations (2.52a) and (2.117):

BK3
pu=Bpr——=¢ymT —To) (2.119b)

The changes of the undrained fluid pressure when the temperature changes at constant py are
given by:

(%) =-220m="t0u - 2.119)
or Jp, b b
2.2.12.6  Numerical values of the thermal expansivity coefficients
In this section, we give some experimental values of the volumetric thermal dilatation coefficients
YBs V> Yg» Ym and yy [1/K]. As a general trend, thermal expansion increases when temperature
rises (see Figs. 2.18 and 2.22 for water). The volumetric thermal expansivity y is about 107> K~!
for solids, 10~* K~! for liquids and 10~3 K~ for gases. For the expansivity of the pores in granite
we estimated y, ~ 1.7 x 10~4 K~!. For water, at 80°C and 10 MPa, vy =63 X 10~* K~!. For
low porosity hard volcanic rocks such as granite, having a porosity ¢ = 0.0018, b = 0.3,
and B = 0.9, Guéguen and Boutéca (2004) published the values y3 = 5.0 x 107> K~!,
Ym = —46.0 x 107 K~! and yu = 5.075 x 107> K~! and the bulk moduli Kz = 27 GPa
and Ky = 38 GPa.

Using these data, the corresponding variations of the fluid mass content and of the fluid pressure
for drained and undrained conditions are:

9 1
(%) =Qyn—byp=—158x1073 [E]
[2:29 4

3 BK P
<ﬁ> - Y (0 ym — byg) = 18.04 x 10° [ia]
€B, ¢

aT b

apU BKp Kp 5 Pa

== =——= = —(yy — =0.67 x 10 —
( o )pm p Prm= (vu — vB) X <

These numerical values confirm that in low porosity and low permeability rocks, the thermal
variation of the fluid content is very small because of the values of the hydraulic parameters. For
the same reason, a significant fluid pressure increase occurs in the presence of thermal stresses,
specifically under undrained conditions. This is a common case when cold water is injected into
hot dry rock reservoirs.

The last example presented in Table 2.4 illustrates the great sensitivity of poroelastic parameters
with regard to temperature changes in non-isothermal processes. The bulk modulus of hot water
in the pores is lower in deep geothermal reservoirs compared to cold water, producing larger
variations of the fluid content and inducing higher thermoporoelastic deformations. This effect
is more important in high porosity sedimentary rocks.

2.2.12.7 Tensorial form of the thermoporoelastic equations

As we did for the isothermal poroelasticity case, we can write in a single four-dimensional
tensorial equation the results of thermoporoelasticity relating stresses and strains. We solve first
equation (2.111b) in terms of the pore pressure:

of=p—po=M(Q — %) —Cep—Mp(y, — yr)(T — To) (2.120)
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Grouping equation (2.107c) as in equation (2.67), we obtain the thermoporoelastic matrix
equations, which include the thermal tensions in the total stress tensor:

ox Oy Oy 0 A 0 0 O & &y &xz 0
0 Oy Oy Oy 0| 0O x 0 O &xy & &z 0
or — 01 = Oxz Oyz O 0 =t 0 0 x 0 +20 Exz E&yz &z 0
0 0 0 o 0 0 0 —-C 0 0 0 0
b 0 0 0 vg 0 0 0
0 b 0 0 0 vy 0 0
—@-p)| 0 0 b 0 —Kp(T—=To)| 0 O s 0
— M
000 M~ 00 0 ZLu,—y
P —Po Kp

(2.121)

Replacing these components in equation (2.73) we obtain the total stress vector or:

Ay ep+2Gey — C (& — o)+ ve (T —To)

i N hues +2G ey = C (¢ — o)+ yo (T = To)
Gy gy rvep+2Ge; — C(C — o)+ ye (T — Tp)
- z z 2G &y
or = ny = CB ° Sxy = 2G P
UXZ €XZ 2G 8;;
oz &z M (£ =) — Cep — M @y (T — Tp)
of ¢ —%o

(2.122)

where the composed thermal expansivity is y¢c = C¢ v, — Kp ¥p , we use the global pore-
fluid thermal coefficient y,, = yy — yr defined in equation (2.112). Note that the matrix of

thermoporoelastic constants Cp is exactly the same matrix as equation (2.72). Equation (2.122)
includes all of the thermal stresses acting in the skeleton and in the fluid contained in the porous
rock. It becomes equal to equation (2.73) if the process is isothermal.

The theoretical and numerical results developed in these sections suggest that rock poroelastic
deformation is larger at high temperature. This outcome has important consequences on the
interpretation of petrophysical data obtained from geothermal reservoirs and from any other
experiments involving non-isothermal porous rocks. These results are useful in the study of the
deformation of aquifers, in the modeling of enhanced geothermal systems, in deep petroleum
reservoirs, in hot dry rock fields and in the interpretation of microseismicity data and in other
seismic events.

2.3  MECHANICAL AND THERMODYNAMICAL WATER PROPERTIES

The behavior of water is a complex subject that has been studied since the classical Greek era.
Our present scientific knowledge of water is founded upon the works of Carnot, Joule and Kelvin
in the 19th century. Two hydrogen atoms and one oxygen atom compose a typical molecule of
pure water (H,O). The three atoms make an angle of approximately 104.5 degrees. Water forms
a molecularly stabilized structure in which a hydrogen atom is in line with the oxygen atom of
its own molecule and the oxygen atom of a neighbor molecule. These hydrogen bonds, with their
extra attractive energy, are the cause of many of the unusual properties of water, including its large
heat of vaporization and its expansion upon freezing (http://www.iapws.org/). Water reaches its
maximum density at approximately 4°C. Below this point, water density declines.

The thermodynamic properties of pure water, under the typical conditions of both aquifers
and geothermal reservoirs, are computed accurately using the equations of state described in
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Figure2.12. The pressure-enthalpy curve of water in the ranges p € [0.01, 100] MPa, T < [0, 800]°C and
h € [0,4200] kJ/kg (data from Schmidt and Grigull 1979).

section 2.3.3. The general form of the fundamental variables and coefficients are described and
shown graphically in this section. Special emphasis on capillarity and relative permeabilities is
made. Qualitative descriptions of some fluid parameters for oil and gas are included, because
many hydrocarbon reservoirs are closely related to aquifers. The thermodynamic properties of
water are given by the following functions and essential variables (firnction [units]): pressure p
[MPa], density p [kg/m3], temperature T [°C or K], specific enthalpy / [kJ/kg], internal energy
e [kJ/kg], Helmholtz free energy f,, [kl/kg], Gibbs free enthalpy g,,[kJ/kg], viscosity u [Pa - s],
compressibility C,, [Pa—!], isobaric specific heat ¢p [J/kg/°C], thermal conductivity k7 [W/m/°C],
volumetric thermal expansion y, [°C~1], thermal diffusivity 8,, [m?/s], surface tension o, [N/m]
and salinity concentration (mass fraction) ¢,, [kg/kg]. All these properties are functions of pressure
and temperature in single phase water. In two-phase systems p and T are related in the saturation
line (K-function), and another variable must be used, for example steam quality, liquid saturation
or fluid enthalpy. Figure 2.12 illustrates the main thermodynamic properties of ordinary water in
the whole region of practical interest (0.01 to 100 MPa and from 0 to 800°C).

2.3.1 Practical correlations for aquifers and low-enthalpy geothermal systems

Water in liquid state is almost incompressible over a wide range of pressures. Its simplest equation
of state is the mathematical relation between density and pressure at constant temperature. From
the definition of water isothermal compressibility:

1 av, 1 /0
Co= -1 (J) _ (ﬂ) S pu(p) = po £V (2.123)
Vo \Op )7  pw\dp /)7

From a practical viewpoint and assuming that the isothermal compressibility C,, is constant,
this formula is approximately valid in the interval [0.001, 10] MPa. For example at 20°C,
Cy= 4.590x1071% Pa~!, for p = 0.05 MPa; and C,, = 4.474x10710 Pa~! for p = 10 MPa.
So, C,, = 4.53 x 10719 Pa~! is a reasonable average in this range of pressure. Many other
correlations can be obtained by interpolation or by using least squares in the same interval of
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pressures p € [0.001,10] MPa. For example, we constructed the following formulae valid in
the range 7' € [0, 150]°C, which applies for isothermal aquifers and low-enthalpy geothermal
reservoirs (Figs. 2.13 and 2.14). An approximation for the enthalpy of water is (Sudrez 1985):

hy(p, T) = 0.103703286 + 0.104535515 p + 4.178354567 T
—3.243701 - 10~*p? — 2.23906 - 10~*pT 4+ 9.70340 - 107572

(2.124)
The approximations for the specific volume and density of water are (Suarez 1985):
v (p, T) = 999.8427563 - 1076 — 4.4888741 - 1078 p + 4.6382459 - 10787
+ 6.8717562 - 10~1%9% — 2.4966892 - 10~1%pT + 3.9625548 - 10~°T

1
w(p, T) = ——— 2.125
pw(p, T) o D) ( )

Pressure (MPa) 10
7.5 s

Enthalpy 400
(kJ/kg)

100

Temperature (°C) 50

0

Figure2.13. Three-dimensional surface of water enthalpy 4, (p, T) [kl/kg] in the ranges p € [0.001,
10] MPa and T € [0, 150]°C. The formula is useful in low-enthalpy geothermal systems.

980

Density 960
kg/m3
Crgim=) 940

920

Temperature (°C) 100

Figure2.14. Three-dimensional surface of water density p,, (p, T) [kg/m?] in the ranges p € [0.001,
10] MPa and T € [0, 150]°C. The formula is useful in low-enthalpy geothermal systems.
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Under low-enthalpy conditions, the variations of the thermodynamic properties of liquid water
are always more important when the temperature changes. Therefore, in this case the properties
of water can be assumed to be functions of 7 only. This approximation is of great practical value
in low-enthalpy geothermal reservoirs (<150°C) (Chandrasekharam and Bundschuh 2008). The
following correlations are adapted from Holzbecher (1998), some of them are also applicable to
high-enthalpy reservoirs (>150°C).

For water density, the following formula can be used in the range 0°C < T < 20°C:

po(T) = 1000.0 (1.0 — 8.0 x 107%(7 — 3.98)%) (2.126)
The density of water in the range 20°C < T' < 300°C is approximated by the equation:
p1(T) = 996.9(1 — 3.17 x 10™4(T — 25.0) — 2.56 x 10~%(T — 25.0)?) (2.127)

The dynamic viscosity of water can be approximated as a function of temperature only by the
equations:

wo(T) = 1073(1 + 0.015512(T — 20.0))~ 1572, 0°C < T < 100°C (2.128a)

247.8
wi(T) =241.4 x 1077 x 107+133.15, 100°C < T < 350°C (2.128b)

The thermal conductivity of water as a function of temperature in low- and high-enthalpy
systems can be estimated with this formula (k7 in 10> W/m/°C):

T +273.15 T +273.15\2
kr(T) = —922.47 +2839.5g — 18007 ( 2=
273.15 273.15
T +273.15\° T4+273.15\*
+52577( — 20 ) 7344 ( —220 7 ) L 0°C < T < 350°C
273.15 273.15

(2.129)

The isobaric heat capacity of water (J/kg/°C)in the range 0°C < T < 100°C is approximated
by the following polynomial:

co(T) = —1.3320081 x 107473 4 0.0328405 7% — 1.9254125 T + 4206.3640128  (2.130)

The isobaric heat capacity of water in the range 100°C < T < 320°C is:

c1(7)
4187.6

=3.3774 — 1.12665 x 1072(T + 273.15) + 1.34687 x 1073(T + 273.15)> (2.131)

This formula is valid only in the liquid region. Consequently, for temperatures higher than
250°C, pressures must be p > 4 MPa. For T ~ 300°C, pressures must be p >8.5 MPa. Equa-
tion (2.131) can be applied up to 320°C if p > 13 MPa. All the other formulae on this page are
reasonable approximations for all pressures in the range [0.01, 10] MPa.

It is important to take into account that equations (2.124-2.131) are simply practical
approaches to water thermodynamics; they must be used with caution. The exact computation of
the thermodynamic properties of water can only be made using the equation of state described in
the next section.
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2.3.2 A brief history of the equation of state for water

In 1921 an International Research Committee on Thermal Properties of Steam was created by the
American Society of Mechanical Engineers (ASME). This committee was formed by researchers
from the USA, Germany, England and the former Czechoslovakia. The purpose of the committee
was to obtain worldwide agreements about the best numerical and experimental values of the
properties of pure water. Such agreements provided, for the first time, standard uniform norms
for steam. The First International Conference on the Properties of the Steam took place in London,
England in 1929. The Sixth Conference took place in New York in 1963. The accepted thermody-
namic ranges covered pressures from 0 to 100 MPa and temperatures from 0 to 800°C, extending
considerably the previously available charts. To assure the accurate numerical reproduction for
interpolation, differentiation and numerical integration of the properties of water, an International
Formulation Committee (IFC) was also formed at that time. Its functions would be: “7o develop
at the earliest practical date a formulation for use with computers of the properties of steam as
they are represented by the International Skeleton Tables of 1963 (IST). This formulation shall
provide values that are, at all points, within the tolerances stated in the IST of 1963, and shall be
thermodynamically consistent.” (Schmidt and Grigull 1979).

In March 1966 the IFC met in Glasgow, Scotland and proposed a mathematical formulation
of the equations that would satisfy the requirements for the international standardization of the
Tables of Water for industrial uses (IFC-67). In spite of the international efforts, it was not
possible to build a single equation of state for the whole thermodynamic range covered by all the
experimental values known at that time. Hence the thermodynamic range of water was divided
into six sub-regions. The boundaries between the sub-domains present discontinuities in the water
properties. However, most of them are insignificant from a practical engineering point of view.
The representation of the water dynamic viscosity was finished and published in April 1975. In
September of the same year, an equation was presented to calculate the surface tension of water.
The corresponding correlations for thermal conductivity of each phase of water and the equation
for its static dielectric constant were published in December 1977 (Schmidt and Grigull 1979).

In 1989, the International Association for the Properties of Steam became the new International
Association for the Properties of Water and Steam (IAPWS; for the historical details see ASME
2005).

The IAPWS approved for scientific use, a new formulation of the thermodynamic properties
of water in 1995. It is called the “ITAPWS Formulation 1995 for the Thermodynamic Properties
of Ordinary Water Substance for General and Scientific Use” (IAPWS-95). This is the present
international standard for thermodynamic properties of water and provides the most accurate
representation of the thermodynamic properties of the fluid phases of water over a wide range
of conditions available at the time this release was prepared. A release was authorized by the
IAPWS in September 1997 in Erlangen, Germany, to replace the previous formulation of 1967
(IFC-67). 1t is called the “IAPWS Industrial Formulation 1997 for Thermodynamic Properties
of Water and Steam” (IAPWS-IF97). This is a separate formulation for industrial use because of
the special requirements of the steam power industry. Papers describing both formulations were
published some years ago (Wagner et al. 2000, Wagner and Pruss 2002). Software and computer
code implementing the IAPWS-95 formulation, a printed tabulation of properties, compilation
of experimental data used to develop the IAPWS-95 formulation, various releases, additional
equations, derivatives and many other useful information on the properties of water are available
at the IAPWS web site (http://www.iapws.org/), updated version September 4, 2007.

The most advanced and up to date correlations for the numeric calculation of the thermodynamic
properties of water, are based entirely on the IAPWS-95 and IAPWS-1F97 formulations (NIST -
National Institute of Standards and Technology, Harvey et al. 2004). These properties are: Gibbs
free enthalpy, Helmholtz free energy, pressure, temperature, enthalpy, internal energy, entropy,
density, specific volume, dynamic viscosity, compressibility, volume expansivity, thermal con-
ductivity, specific heat capacities, Joule-Thomson and Laplace coefficients, surface tension of
two-phase water, dielectric constant, refractive index and speed of sound. The surface tension
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and the coefficient of Laplace have an important influence during the evaporation process at the
liquid-vapor interface and in the calculation of the capillary pressure.

2.3.3 The IAPWS-95 formulation for the equation of state of water

The basic thermodynamical state potentials in this formulation are the internal energy and the
specific enthalpy of the fluid phase. Both potentials, together with the other variables, temper-
ature T, pressure py, density pr and entropy sy, describe the energy exchanges of any fluid
contained in the porous rock. The relationships between both potentials and the thermodynamical
variables are as follows. Let vy and er be the specific volume and the internal energy of the fluid,
respectively:

1 ( ) = der T der
vr = —,er(vr, sf =—— = —
I= o T P= "%y ds; (2.132)

& dep=—pduvy +Tdsy

The equation for dey is the first law of thermodynamics written in differential form and valid for
any fluid. The term —p dvy is the mechanical work done by the fluid and T dsy is the differential
heat extracted or received by the differential volume dvy (eq. 2.89¢c). Thus, the sum of both
quantities is equal to the variation of internal energy. This principle asserts the conservation of
energy for the fluid.

We can define a second potential called the specific enthalpy to express the thermodynamic
variables in another form. If the thermostatics process is at constant pressure then the change in
enthalpy, which includes both the change in internal energy and the work done, is equal to the
heat transfer during the isobaric process:

Ahy(p,sr) = Aep +p Avp = (30, — pAvy) +pXup =80, (2.133)

That is the main reason why the specific enthalpy is an important function commonly used in
geothermal reservoir engineering. The corresponding enthalpy relationships are as follows:

hy(p,sy) +2 5 Wy o dp+Tdsy (2.134)
,Sf) =e vf = ——, = — = vrdp s .
Pesp) =t = o ss = U '

A third thermodynamic potential is the Gibbs’ specific free enthalpy g of the fluid:

O.T) =y — _y 0y
g, T)=h—Tsy = dgr=vrdp+spdl = vr= g, sp= 3T (2.135)

Another thermodynamic potential is the Helmoltz free energy, which measures the useful work
obtainable from a fluid in a closed system at constant temperature and volume. Both potentials
are commonly used in the thermodynamical description of the properties of water:

o, Ty =g —pyy =ef —Tsy = dfy=—pdyr —spdl

Uy Uy
= S =
vy oT

(2.136)
=

The fundamental difference between previous formulations and the IAPWS-95 is the use of
the so-called canonical functions for water. The IFC-67 used the Gibbs function or specific free
enthalpy as the fundamental canonical function g,,(p, T). All other thermodynamic properties are
derived directly by partial differentiation of g,,. The IAPWS-95 uses the Helmholtz free energy
fw in its formulation (Fig. 2.15).
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Figure2.15. Helmholtz free energy for water in the range p € [4,20] MPa, T € [0,350]°C.

In the NIST/ASME steam properties database (version 2.2), the equilibrium thermody-
namic properties for water are calculated from the IAPWS-95 formulation. This formulation
is a fundamental equation for the specific Helmholtz free energy per unit mass, defined as
fw = ey — Tsy,, wWhere e, and s,, are the internal energy and specific entropy of water, respec-
tively. The function f,(p, T) is a function of temperature and density that is made dimensionless
by the term R, T'; R, is a mass-based gas constant. The dimensionless form of this equation is
called the reduced Helmholtz free energy (Watanabe 1996):

Jw(o,T) —® < o E) — (pideal—gas | presidual

R, T pc’ T
(2.137)
kg kJ
where: pc =322 —, Tc=647.096 K, R, =0.46151805 e
m3 kgK

The general function @ is composed of two parts, an ideal-gas part and a residual part. When
both functions are combined, a complete Helmholtz energy surface is defined. All other ther-
modynamic properties are obtained by differentiation of this surface. For example, the water
functions pressure p, internal energy e, enthalpy 4, entropy s, specific heat capacities cy, c,, the
Joule-Thomson coefficient J and the speed of sound vy are constructed as follows:

= (Yo R —ror(P W
O ) R O R A (ORI I

de ah o aT ap
v =\ 7= 5 Cp =\ 7+ 5 §=—\ 5= > J=|—= > Vs = a
ot ), or ), o7 ), ), o0 ),
(2.138)

A complete description of these functions and all the numerical coefficients involved are in
the IAPWS web page. This formulation is valid in the entire stable fluid region of H>O, from
273.15 K to 1273 K and for all positive p > 0 up to 1000 MPa. The absolute limits, beyond which
no calculations are made, are T < 190 K and >5000 K and p > 1.0 x 10° MPa. In terms of
practical applications, this formulation can certainly be used in the ranges 7 € [0, 1000]°C and
p € [0.001, 100] MPa. The graphics of the following sections for the liquid phase of water were
obtained using the software developed by the IAPWS-95 (Wagner and Pruss 2002).
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2.3.4 Exact properties of low-enthalpy water (0 to 150°C)

The main variables presented in this section are density, enthalpy, isobaric heat capacity, isother-
mal compressibility, volume expansivity and speed of sound. The temperatures are on the
International Temperature Scale of 1990. Each property is correlated as a function of temperature
and pressure. Nevertheless, the influence of pressure is insignificant in most variables as can be
seen in the following graphics.

2.3.4.1 Density and enthalpy of the liquid

Density of water decreases and enthalpy augments when temperature increases (Fig. 2.16). The
zero for the enthalpy is determined by the conventions that the entropy and internal energy are
zero for the saturated liquid at the triple point (273.16 K, 611.657 Pa).

2.3.4.2 Isobaric heat capacity and thermal conductivity

The isobaric specific heat of liquid decreases with temperature between 0 and 30°C, then
increases up to 150°C. Heat capacity diminishes when pressure increases at constant temper-
ature (Fig. 2.17a). Thermal conductivity varies with temperature: it increases from 0.562 to
0.685 W/m/°C between 0 and 130°C, then decreases slightly, reaching 0.664 W/m/°C at 150°C
(Fig. 2.17b).
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Figure2.16. Density (a) and enthalpy (b) of water in the range 7" € [0, 150]°C, for two different pressures:
p = 0.5 MPa and 10 MPa (IAPWS-95).
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Figure2.17. Heat capacity at constant pressure (a) and thermal conductivity of water (b) in the range
T € [0, 150]°C, for two different pressures: p = 0.5 and 10 MPa.
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Figure2.18. Compressibility (a) and expansivity of water (b) in the range 7' € [0, 150]°C, for two different

pressures: p = 0.5 and 10 MPa.

2.3.4.3 Compressibility and expansivity

The isothermal compressibility and the volumetric expansivity of water were defined in equa-
tion (2.110c). The compressibility of water grows slightly when pressure decreases (Fig. 2.18a).
Its variability is larger when the temperature changes; it diminishes from 5.1x 1071 Pa~1) to
4.4 x 10719 Pa~! between 0 and 50°C, then augments to 6.2 x 10~1% Pa~!at 150°C. Figure 2.18b
shows that the thermal expansion y,, of liquid water increases in all the intervals considered.

2.3.4.4 Dynamic viscosity and speed of sound

The viscosity of water is a proportionality factor between the amount of advective momentum
transferred per unit time across a unit area perpendicular to the direction in which the advective
velocity changes. If 7 is the shear stress acting on the fluid in the direction of its movement, then:

AT

dy

T=— (2.139a)

The negative sign is because the momentum transfer takes place in the direction in which
the advective velocity decreases (Alonso and Finn 1967). The units of the dynamic viscosity
coefficient are [kg/m/s or Pa - s]. One-tenth of this unit is called Poise. We call ps vy the convective
momentum per unit volume of'the fluid. Several experiments showed that the instantaneous change
in the momentum of the fluid particles inside a control volume is equal to the viscous force per
unit volume plus the gravity acting on the fluid:

a ot
— =—— 2.139b
PAGAL oy +ore ( )
Combining this expression with previous equation (2.139a):
Ove _ B + (2.139¢)
—x_ 2 .139¢
or o 2 S

This is the equation of motion of the viscous fluid, which represents the conservation of
momentum of the moving fluid. Note that the form of this equation is analogous to the heat
equation (2.16). For liquid water at constant pressure, the viscosity decreases exponentially from
the value 1787x107° Pa - s at 0°C, down to 182.3x107¢ Pa - s at 150°C (Fig. 2.19a).
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The speed of sound is greatly affected by temperature, as shown in Figure 2.19b. It grows when
temperature increases from 0 to 80°C; but this effect is less important for temperatures between
60 and 80°C. After 80°C this speed decreases until 150°C.

Fluid viscosity in porous rocks affects the transport of the fluid phases. It is particularly
important in the oil displacement mechanisms in thermal processes of petroleum recovery and
in the displacement of oil by isothermal water and by geothermal brine (Suarez and Samaniego
2008, Suarez et al. 2007, Suarez-Bosche ef al. 2005). In general, the relative mobility of each
phase in the fluid varies with both temperature and pressure. Other studies by Passmore and
Archer (1985) on the temperature effects on viscosity and on the oil flow, pointed out that the
irreducible saturation of water depends almost linearly upon the oil viscous force, because the
viscosity depends mainly on temperature.

2.3.5 Exact properties of high-enthalpy water (150 to 350°C)

The thermodynamic variables presented in this section are density, enthalpy, entropy, Joule-
Thomson coefficient, expansivity, isothermal compressibility, isobaric heat capacity, thermal
conductivity and speed of sound (Figs. 2.20-2.25). Each property is correlated as function of
temperature and pressure. The influence of pressure is insignificant in most variables.
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Figure2.19. Dynamic viscosity (a) and speed of sound (b) in cold water in the range 7' € [0, 150]°C, for
two different pressures: p = 0.5 and 10 MPa.
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Figure2.20. Density (a) and enthalpy (b) of water in the range 7' € [100, 350]°C, for two different pressures:
p =4 and 20 MPa.
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Figure2.21. Entropy (a) and Joule-Thomson coefficient (b) of water in the range 7' € [100,350]°C, for
two different pressures: p = 4 and 20 MPa.
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Figure2.22. Expansivity (a) and isothermal compressibility (b) of water in the range 7 € [100, 350]°C, for
two different pressures: p = 4 and 20 MPa.
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Figure2.23. Heat capacity (a) and thermal conductivity (b) of water in the range 7' € [100, 350]°C, for two
different pressures: p = 4 and 20 MPa.



Rock and fluid properties 81

300 — 1600 —
‘ @ 3 (b)
Z -¢-0-¢ pressure p =4 MPa
o 250 — -©-@-@ pressure p = 20 MPa 1400 —
o o
% £
> 200 — < 1200 4
2 2
S e}
g °
; 150 —} ° 1000 —
£ =1
g 3 -9-¢-¢ pressure p =4 MPa
a 100 — 800 — -@-0-0 pressure p = 20 MPa
50 IIIIIIIIIIIIIIIIIIIIIIIIII 600 IIIIIIIIIIIIIIIIIIIIIIIIII
100 150 200 250 300 350 100 150 200 250 300 350
Temperature (°C) Temperature ("C)

Figure2.24. Dynamic viscosity (a) and speed of sound (b) in water in the range 7' € [100, 350]°C, for two
different pressures: p = 4 and 20 MPa.
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Figure2.25. Dielectric constant of water in the range 7' € [100,350]°C, for two different pressures: p = 4
and 20 MPa.

2.3.6 Properties of two-phase geothermal water (100 to 370°C)

Based entirely on the formulation and data published by Schmidt and Grigull (1979), we pro-
grammed in FORTRAN 77 language the code AquaG370.for, containing an equation of state of
pure water for geothermal uses. All correlations are included in the code, which is freely available
on the Internet (http://www.fismat.umich.mx/~marioc/). The programmed equations are valid for
pressures between 0.1 and 22 MPa, and for temperatures between 5 and 370°C. Above the critical
point of water, both phases melt in one single phase and it is no longer possible to distinguish the
separated properties of the liquid or of the steam. In the single-phase regions, the basic variables
are pressure and temperature. The other thermodynamic properties of water can be calculated as
functions of these two variables, because pressure and temperature are naturally independent in
single-phase water. The corresponding functions for liquid were presented in previous sections.
In the two-phase region, the temperature 7, depends on the saturation pressure psat through
the Clapeyron relationship Tsat = T (psat). For that reason, in a two-phase system it is necessary
to have another variable that determines the quantity of thermal energy or enthalpy in situ or the
relative quantity of steam or of liquid present in each phase. The second variable adapted in this
case is specific enthalpy, or steam quality or liquid saturation. For a two-phase condition, steam
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quality X, is defined as the mass of water in the vapor phase divided by the total mass of water.
Liquid saturation S; is defined as the volume of water in the liquid phase divided by the total volume
of water. For the saturated liquid and saturated vapor, the steam quality is 0.0 and 1.0, respectively.

2.3.6.1 Thermodynamic range of validity of the code AquaG370.For
o, 1), (p, h), (p, S, (0, X,), (T, S)), (T, X,) the first two couples are for steam or vapor. The last
four couples of variables are for two-phase flow.

Liquid phase: 20.0 < 2 < 1842 kJ/kg ;0.1 <p <22 MPa;5°C < T <370°C
Steam phase: 2675.5 < h < 3488 kJ/kg; 0.1 < p <21 MPa; 99.7°C < T < 800°C
Two-phase: 20.0 < & < 1800 kJ/kg ; 0.1 < p <20 MPa; 99.5°C < T < 360°C
Enthalpies of each phase: 21 < h; < 1818 kl/kg , 2510 < h, < 2428 kl/kg.

The following relationships are valid and useful in the two-phase region:

Dsteam < Psaturation < Pliquid; liquid < Tsaturation < Tsteam
hliquid < hsaturation < hAsteam; 0 <X, X, , 87,8, <1

2.3.6.2 Temperature of saturation (subroutine Tsqy)

This subroutine calculates approximately the saturation temperature corresponding to a fixed
saturation pressure (Fig. 2.26). The iterations start from a given pressure py using one of the
empiric correlations given by the following formulae:

Exp [ 24.00— 20060 I Pruess (1988)
= EX . _— ! rruess
p1=7%%p To+273.15
Exp [ 12.508330 206707504\ ) ¢ imey (1974) (2.140)
= . _— I Rame .
p2=%3p To+ 27315 Y

To+17.778
p3=

W) , 1 < p3 < 200 bar ! Ramey (1974)

2.3.6.3 Saturation pressure (subroutine Pgy)
The saturation pressure pg,; corresponding to a given temperature Tgy is calculated exactly with
the K-function (Fig. 2.26).

2.3.6.4 Density and enthalpy of liquid and steam (subroutines Likid and Vapor)
The properties of each phase, liquid and steam, are calculated separately as functions of
temperature and pressure; density and enthalpy are shown in Figure 2.27.
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Function K: p(T)

Saturation pressure (MPa)

¢ |||||||||||||||||||||
50 100 150 200 250 300 350
Saturation temperature (°C)

Figure2.26. State of saturation of two-phase water, or K-line.
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Figure2.27. Properties of liquid and steam phase of water as functions of saturation temperature and
saturation pressure: (a, b) density, (c, d) enthalpy.
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Figure 2.28. Dynamic viscosity of liquid and steam phase of water as functions of saturation pressure (a)
and saturation temperature (b).

2.3.6.5 Dynamic viscosity of two-phase water (subroutine Visf)

This subroutine calculates the dynamic viscosity of the liquid and steam phase in [kg/m/s], as
functions of the absolute temperature of the corresponding phase and of its specific volume. The
general formula is based on the equation of Alexandrov (Schmidt and Grigull 1979). For the
liquid phase, at 200°C, the viscosity grows slightly from 133.7x107® Pa - s at 2 MPa, up to
138.2 x 107° Pa - s at 20 MPa. For the vapor phase the relationships are inverted, the viscosity
of steam increases from 18.14 x 107 Pa - s at 264°C, up to 24.38x107° Pa - s at 400°C at a
constant pressure of 5 MPa. For two-phase water, the viscosities depend mainly on the saturation
temperature (Fig. 2.28).

2.3.6.6 Thermal conductivity of two-phase water (subroutine Terk)

The thermal conductivity of water k,, (T, p) is calculated as a function of both temperature and den-
sity. This equation is valid between 5 and 800°C. The thermal conductivity of the steam increases
slightly when temperature increases and grows faster when pressure increases. The relationship
for the liquid is inverse because its heat capacity decreases continuously with temperature from
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Figure2.29. Thermal conductivity of liquid and steam phase of water as functions of saturation
pressure (a) and saturation temperature (b).
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Figure2.30. Specific heat of liquid and steam phase of water as functions of saturation pressure (a) and
saturation temperature (b).

0 up to 380°C approximately (Fig. 2.29). Crude oil shows a similar behavior as liquid water;
density decrements and thermal conductivity increments when temperature increases.

2.3.6.7 Specific heat of two-phase water (subroutines CPliq and CPvap)

The specific heat capacity of water ¢, (T, p) (isobaric specific heat) is calculated as a function
of temperature and pressure. The specific heat capacity of vapor phase ¢, (7, p) is calculated as
a function of pressure and temperature. The formulae are valid between 1 and 800°C (Fig. 2.30).

2.3.6.8 Surface tension of two-phase water (subroutine Tensa)
The surface tension of two-phase water is the stress existing at the common interface of steam
and liquid. This tension originates from the different types of molecular attraction in each one

of the phases. The surface tension of water o [N/m] is calculated as a function of temperature
(Fig. 2.31).

2.3.6.9 Practical correlations for two-phase flow

The following exact correlations are useful in two-phase water computations. Definitions of liquid
quality X;, steam quality X,, liquid saturation S; and steam saturation S, /s and ey are the average
enthalpy and energy of the two-phase water:

dM; M, dv; dv,
Xi=—1, Xy=—2, Xi+X,=1 S=—, Sy=—2 S+8 =1
! de v dA/[/ 1+ Xy ! de v de 1+ Sy
(2.141)
. . L Pf — Py
Fluid density-saturations: pr = 0;S; + 0, Sy & S§j=——— (2.142)

Pl — Py
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Figure2.31. Surface tension of liquid and steam phase of water as functions of saturation pressure and
saturation temperature.

Quality-enthalpy:

he —h
by X6) = Xih + X by = b+ X (=) & X = L2 (2.143)
v — N1
Enthalpies, densities, internal energies and saturations of the two-phase fluid:
pof hy = Siprhi+ Sy pyhy = pref +p (2.144)
porer = Siprei+Sypvey =prhr—p '
Liquid saturation, enthalpies and densities of the two-phase fluid:
_ ov(hy — hy) (2.145)
hy (o1 = pv) — prhi+ py hy ‘
Liquid saturation, densities and steam quality of the two-phase fluid:
1 hy —h X,
le_wzl pr_Av (2.146)
Si pv(hf - hy) oy (1 =X5)
Saturations, densities and qualities of the two-phase fluid:
(1 =5) p
X, = vi = *V.Sw P1S1 Xy = py Sy X
P P (2.147)

Iova = py Sy; )OfAXl =08

2.3.7 Capillary pressure

Different fluids and two or more fluid phases may be contained in the pores of a rock. This
phenomenon involves concepts such as capillarity, interfacial tension, wettability and relative
permeability to characterize the fluid behavior. Two different immiscible fluids in contact, for
example liquid and gas, are separated by a thin skin or stretched surface of infinitesimal thickness.
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The stretching of the membrane is due to an interfacial tension between both fluids. A discontinuity
in pressure emerges, which depends on the curvature of this surface separating both fluids in the
pores and fractures. The capillarity originates from those forces of superficial stress. AGAT
laboratories (http://www.agatlabs.com/) describe capillarity as follows:

e The combination of surface tension and curvature due to the capillaries causes the two phases
to experience different pressures. As the relative saturations of the phases change, it has been
found that these pressure differences also change. The difference between the pressures of
any two phases is referred to as the capillary pressure. Capillary pressures can be determined
for any two fluid phases; of interest to the oil industry are those for gas-brine, gas-oil and
oil-brine systems. Capillary pressure data is used directly in numerical simulation programs
and to calculate fluid distributions in reservoirs. The residual and irreducible fluid saturations,
determined when measuring capillary pressures, can be used to help estimate the amount of
recoverable oil and the expected connate water saturations. In any porous material with two
fluid phases present, the wetting phase will always have the lower pressure. Therefore, capillary
pressure curves can also be used to determine the wetting characteristics of reservoir rocks.

The capillary pressure pc in a porous medium is defined as the difference of pressures at the
interface of the two immiscible fluids at rest. One of the fluids wets the internal surface of the
pores more than the other. Let p,,, and p,, be the corresponding pressures of the non-wetting and
wetting phases, respectively, the capillary pressure is:

PC = Pnw — Pw (2.148)

If the fluid phases are liquid and vapor pc = p, — py; for oil and water, pc = p, — pw; for
oil and gas pc = pg — po. The phenomenon of capillarity also involves the solid in contact with
the fluid and plays an important role in the process of displacement of one fluid by another in
porous rocks. The static properties of two different fluids coexistent in a rock depend on the
intramolecular distribution of the phases inside the pores, which is controlled by the wettability
of the porous rock. This is a key parameter affecting capillary pressure, relative permeabilities
and liquid distribution (Dandekar 2006). The wettability measures the preference degree of the
pore’s internal surface to be wetted by one of the phases. It is also defined as the relative ability
of a fluid to spread or adhere to a solid surface in the presence of another fluid.

The capillary pressure in a reservoir is also a function of the history and distribution of the
saturation of the fluids in the pores and fractures. To clarify this dependency, it is necessary to
understand the saturation mechanisms of drainage and imbibition. Both processes are dependent
on the wetting characteristics of fluid phases. A drainage process occurs when the wetting phase
decreases. An imbibition process occurs when the wetting phase increases. Drainage in porous
rock refers to a decrement in the saturation of the wetting phase by discharge or removal of this
phase inside the pores. The term imbibition refers to an increment in the saturation of the wetting
phase originated by the trend of the porous rock to absorb this phase, under the sole action of
the attractive capillary force and in the absence of any other pressure. In geothermal reservoirs,
the liquid is the wetting phase and the steam is the non-wetting phase. In oil reservoirs, the water
can be the wetting phase and the oil the non-wetting phase. When water displaces oil from a
water-wet rock, the process is imbibition. But if water displaces oil from an oil-wet rock, the
process is drainage. On the other hand, when steam displaces liquid water or gas displaces oil,
the process is always drainage because gas and steam are always the non-wetting phases.

Diverse experiments show that the two capillary pressure-saturation curves, obtained during a
drainage-imbibition process, are always different. This phenomenon is called capillary hysteresis.
In general, a physical system with hysteresis has memory and exhibits path-dependence. This
means that there is no way to predict the output of the system without knowing the history of the
system’s input. Therefore, it is necessary to know the path that the input followed before it reached
its current value. The drainage and imbibition curves present hysteresis, which is attributed to
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wettability (Dandekar 2006). The capillary pressure depends upon the history of the saturation
process and therefore presents hysteresis.

The vapor pressure on the surface of a liquid is a function of the curvature of the liquid surface.
The same dependence is valid for the capillary pressure. For two-phase water, the liquid is the
wetting phase, and the equilibrium pressure is larger than the vapor pressure pg > p,. Therefore,
the liquid pressure is smaller than the equilibrium pressure p; < pg. Since the capillary pressure
is a function of the liquid saturation, the decline of vapor pressure should also be a function of the
liquid saturation in the porous rock. There are three different geometrical classes of liquid-vapor
interfaces: convex, plane and concave. In the convex interface, the steam equilibrium pressure is
larger than the pressure in a liquid-vapor flat interface. On the other hand, in the concave interface,
the steam equilibrium pressure is smaller than the pressure at the flat interface. The vapor pressure
at the interfacial surface is given by the famous Laplace capillarity equation:

1 1 1 o))
=t - 2.149
v R * Ry - pe ™ ( )

where o is the surface tension in the liquid and ry, is the average radius of curvature of the
interface and R and R; are the radii of two separate points of the curved interfacial surface. The
equation of Laplace postulates that the surface tension existent at the separation surface between
two different fluids at different pressures, maintains both fluids in mechanical equilibrium. As
long as pc > 0, the pressure in the concave side of the surface is greater than the pressure in
the convex side. In porous rocks, if the liquid saturation is small, the liquid-vapor interface is
concave. If the radius 3y — oo then pc — 0, and therefore, the interfacial surface is flat only if
both pressures are the same.

In geothermal reservoirs the capillary pressure is obtained by subtracting the liquid pressure
from the steam equilibrium pressure. However, the exact value of p,, is not known and it should
be obtained from other thermodynamic variables, for example, using the Kelvin equation:

Ln (’ﬂ) _ Zoovm 1 (2.150)
Dv RT ry

where py, is the vapor saturation pressure for a flat interface, p,, is the vapor saturation pressure for a
curved interface of average radius 73, vy is the liquid phase molar volume, R (8.314472 J/K/mol)
is the ideal gas constant and 7" the absolute temperature.

The same surface tension between two immiscible fluids also exists between fluids and solids.
The law of Young-Dupre expresses that a non-zero resulting force cannot exist in the contact among
three media in equilibrium with different molecular compositions (De Wiest 1969). Figure 2.32
illustrates this law. The phenomenon described for water (/), gas (g) and solid (s) or for oil (/),
gas (g) and solid (s), is expressed by the following equation:

Osg — Osl

Osg = 051 + 01 Cos6 = Cos 0 = <1 (2.151)
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Figure2.32. Capillarity in the law of Young-Dupre (De Wiest 1969).
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This equation presupposes that the three phases coexist in equilibrium. However, the
preferential wettability of one of the phases can produce movement without the presence of
any pressure gradient in the fluid. Such a movement by capillarity of one of the phases can
displace the previous phase present in the porous medium. This phenomenon is the imbibition
of the wetting phase. Passmore and Archer (1985) reported that the time necessary to reach the
saturation of equilibrium decreases when the pressure increases and that the hysteresis among the
drainage curves and the imbibition curves decreases when the temperature increases. The imbi-
bition model of Naar and Henderson (Passmore and Archer 1985), also indicates a decrement of
the hysteresis. This model relates the saturations of water imbibition and of water drainage, at a
fixed capillary pressure, with the irreducible water saturation Sy

drai bibit Sdrainage _S..
gdrainage __ ¢gimbi ition __ YW Pwi 2.152
" v 2(1 = Sui) (2.152)

The term S,,; represents the minimum water saturation that is present in the pores of a rock. It is
also called the interstitial saturation of water. For example, the irreducible water saturation of the
reservoir rocks of The Geysers geothermal field is around 15%. The irreducible gas saturation
is 20%; porosity of the core is 4.3% (Habana 2002). The general normalized wetting-phase
saturation S,,, in the drainage case is expressed as follows:

SW - Srw
Spp = ——————— 2.153
1-— Snwi - Srw ( )

where S),,,; is the initial saturation of the non-wetting phase and S, is the residual saturation of
the wetting phase. The normalized saturation is needed in next sections.

Adsorption is the adhesion of fluid molecules to the walls of solid bodies in contact with the
fluid. In porous media, this phenomenon results from the interaction between particles of the solid
rock and the fluid molecules in the pore space. This mechanism originates forces of attraction
between the fluid and the solid surface (Dullien 1979). The phenomenon of adsorption, together
with capillarity, produces a descent in the steam equilibrium pressure in two-phase flows. The
classic relationship of Clapeyron in the thermodynamics of two-phase water becomes dependent
on other factors. The presence of other phases such as non-condensable gases (NCG) and dissolved
chemical compounds species such as ions also produces a pressure drop. This effect is particularly
important in geothermal reservoirs with superheated vapor because a certain quantity of residual
liquid remains in the pores influencing the mass balance of the system. Capillarity tends to keep
the vapor phase in the fractures and the liquid phase in the pores. In this manner, the fractures are
not fully saturated with liquid and the possibility of having a heat pipe is increased.

Capillarity is an important phenomenon in both geothermal and hydrocarbon reservoir engi-
neering. Capillary pressure is an useful parameter in the numerical simulation and evaluation of
the reservoir. Several practical correlations to calculate the capillary pressure are given in the next
section.

2.3.8 Practical correlations for capillary pressures

Capillary pressure is the algebraic difference between two pressures of different phases, gas-
liquid or between two liquids (oil-water), occupying the pores of the rock. Capillary forces play
an important role in determining the natural state of fractured reservoirs and have a significant
effect on fluid distribution, water injection, liquid transfer between fractures and pores, and in
production from geothermal reservoirs (Li and Horne 2007).

2.3.8.1 Correlation of Van Genuchten
Van Genuchten (1980) adopted an implicit capillary pressure function to predict the relative
hydraulic conductivity of unsaturated soils containing water and air. The original equation was
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developed for the soil-water content-pressure head curve:

M) (2.154)

1+ (apc)’) =

(1+ (apc)™) ( .
where a, ¢, and n are parameters to be determined experimentally. The initial saturation of the
non-wetting phase Spy; (€q. 2.153) was set equal to zero in this model. This correlation is the
most frequently used for unconsolidated porous rocks.

2.3.8.2  Correlation of Schulz and Kehrwald

Schulz et al. (2005) obtained the following correlation for the capillary pressure as a function of
water saturation:

pC(SW) =

Q| —
N
[9%)
=
=
|-
I
—_
N——

(2.155)
where: o = 0.137 kPafl, n=4.387

The values of the parameters o and n fitted the Van Genuchten (1980) equation with the
experiments reported by Schulz et al. (2005). The experimental curve for the capillary pressure
is shown in Figure 2.33. It was obtained directly from data of surface tension, curvature, and
contact angle.

2.3.8.3 Correlation of Li and Horne

Li and Horne (2000) proposed two correlations for a porous reservoir with fractures. For porous
blocks, the capillary pressure curves are similar to those derived from a typical The Geysers
isotherm (Satik 1998), as described by the Van Genuchten equation. For fractures, the relation is
linear:

-2,
Su = Sm = ’
porous blocks: S, = T 5. = pc(Sw) =po ((Se) hy — 1) (2.156)

in the fractures:  pcy(Sw) = prmax(l — Sw)

where pg (initial pressure) and A, (pore size distribution coefficient) are constants, S, is the
effective liquid saturation and S,.,, is the residual water saturation, pr max is the maximum fracture
capillary pressure (Pruess and O’Sullivan 1992, Li and Horne 2000). For example, Noel et al.
(1998) used model (2.156) and the values pg = 100 kPa, A, = 0.6 and pr max = 0, 50, 100 kPa
to investigate how capillary forces affect the stability of a water saturated region overlying a
liquid-dominated, two-phase zone.
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Figure2.33. Capillary pressure-saturation curves (modified from Schulz ef al. 2005).
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Figure2.34. Brooks-Corey (1964) capillary pressure curve (modified from Li and Horne 2000).

2.3.8.4 Correlation of Brooks-Corey

The function of Brooks-Corey (1964) is often used to model the capillary pressure curve. This
formula is the most frequently used for consolidated porous rocks and the most appropriate to the
drainage case in geothermal reservoir engineering (Li and Horne 2006). The formula is given by:

Sw - Srw T
pcSw) =pce | ——) 2.157)
1 — Spy

where pc. is the entry capillary pressure and A, is the pore size distribution coefficient; both are
assumed constants. Using the coefficients from a rock of The Geysers (Nevada, USA) geothermal
field: pce =13.96 MPa, 1, = 0.669, S,,, = 0.2, Liand Horne (2000) obtained the following graphic
(Fig. 2.34):

In Brooks-Corey case, S, was the residual oil saturation and S,,,; was equal to zero.

2.3.8.5 Correlation of Li and Horne for geothermal reservoirs

Li and Horne (2007) developed a method to calculate the steam-water capillary pressure using
experimental data from steady-state, two-phase flow experiments. They derived an empirical
model to compute p¢ directly. The resulting mathematical model is useful to calculate the steam-
water capillary pressure in rocks of geothermal reservoirs. The proposed steam-water capillary
pressure model based on experimental data for the drainage case is expressed by:

1

ki 2
pc(Sw) = 4.01209 (—0) (Snw)fl.843
’ (2.158)

mN _6
where: pc  [MPa], oy — |, ko [107°mD]
m

The initial saturation Sj,,; in this model is set equal to zero in the normalized wetting-phase
saturation Sy, (eq. 2.153). The model described by this equation is suitable for drainage processes
and is based on the assumption that the contact angle does not change with permeability and
temperature (Li and Horne 2007).

Figure 2.35 shows theoretical data of steam-water capillary pressures calculated using equa-
tion (1.158) for rock samples with permeability ranging from 1.3 to 500x 10~ D (a typical range
for The Geysers reservoir rocks). The porosity used in the calculation was 1.9%. The surface
tension at a temperature of 240°C is 28.41x 1073 N/m.
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Figure2.35. Drainage steam-water capillary pressure curves at 240°C for rocks of different permeability
(modified from Powell and Li 2003).
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Figure2.36. Imbibition steam-water capillary pressure curves at 240°C for rocks of different permeability

(modified from Li and Horne 2007).

For the imbibition steam-water capillary pressure curve, the proposed empirical model (i.e.,
the “imbibition model”) is expressed as follows:

ko\ 2
pc(Sy) = 88.86 0¢ <$0> (Sovimp) >0
(2.159)
SW _Swi B N -
where: Spimb = m, pc [MPa], oy |:10 35] . ko [10 6 mD]

Both models only need to know the reservoir porosity ¢, the permeability ko, the surface tension
o, the initial water saturation S,,;, the normalized water saturation S,,,,imp and the residual steam
saturation S,y by imbibition. The model in equation (2.159) is suitable for imbibition processes
(water injection) in which water saturation increases and is based on the same assumptions as the
drainage model (Li and Horne 2007).

Example data of steam-water capillary pressure in the imbibition case were calculated using
equation (2.159) for rock samples with permeability ranging from 1.3 to 500x10~% D. The
results are plotted in Figure 2.36. The porosity, surface tension, and temperature are the same as
in the experiments whose results are depicted in Figure 2.35. These models are simple, the only
parameters required being reservoir temperature, pressure, porosity and permeability. Despite
their simplicity, these models could prove useful for geothermal reservoir engineers as they will
help to reduce the uncertainty in numerical simulation and other calculations. Imbibition capillary
pressure is, as we have already mentioned, usually less than that for the drainage case (Figs. 2.35
and 2.36).
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Figure2.37. Typical capillary pressure curves calculated using the new generalized model assuming
different fractal dimension values (modified from Li and Horne 2006).

2.3.8.6 The Li-Horne general fractal capillary pressure model

Li and Horne (2004, 2006, and 2007) proposed and developed a generalized fractal model
to represent capillary pressure functions in porous rocks. This model includes the frequently
used Brooks-Corey (1964) formula (2.157) and other correlations as well. Their initial work
focused on obtaining a model for rock samples (greywacke) of The Geysers geothermal reservoir.
Nevertheless, (Li and Horne 2007) found that:

e fractal curves inferred from capillary pressure data were good straight lines for both the Berea
sandstone, for which the Brooks-Corey model works and The Geysers rock samples, for which
this model does not work. This finding implies that a more general capillary pressure model
may exist to represent both rocks.

The model is expressed as follows:

_L —Ay
pc(Syw) = Pemax(1 —boSyw) 5 bo=1-— (Ppe ) (2.160)
Cmax

where S, is the wetting-phase saturation, S,, the residual saturation of S,, and S, is again
the normalized saturation of the wetting phase (eq. 2.153), with Sy = 0; pcmax 1S the max-
imum capillary pressure at the residual non-wetting phase saturation in the imbibition case, or
the capillary pressure at the residual wetting phase saturation in the drainage case. p, is the entry
capillary pressure; A, = 3 — Dy is the pore size distribution index and Dy is the fractal dimension.

The fractal dimension determines the heterogeneity of the rock sample; the greater Dy, the
greater the heterogeneity. In equation (2.160), by is a constant parameter associated with the rock
pore size. If pcmax — 00 and the fractal dimension Dy < 3 then equation (2.160) becomes equal
to the empirical Brooks-Corey equation (2.157). According to these authors, “one can see that
the Brooks-Corey capillary pressure model has a solid theoretical basis. This may be why the
Brooks-Corey model can be a good fit to capillary pressure curves of many rock samples”.

This new fractal model is “universal” in the sense that it can represent both the capillary
pressure and the relative permeability of rocks of very different nature. The model could be
applied in both complex structured porous rock and in a single capillary tube as well as in both
drainage and imbibitions cases (Li and Horne 2004, 2007). Figure 2.37 shows theoretical capillary
pressure data calculated using the generalized model (eq. 2.160) with different fractal dimensions.
The maximum capillary pressure and entry capillary pressure assumed were 10 and 0.04 MPa,
respectively. The residual wetting-phase saturation was 20%.

2.3.9 Relative permeabilities

When the porous medium contains more than one fluid phase (oil and water; liquid and vapor; oil,
water and gas), the permeability of the rock with respect to one of the phases is called effective
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hydraulic permeability. This permeability depends on the volumetric fraction of each phase in the
porous space (saturation) and on the characteristics of the wettability of the rock. The concept of
relative permeability k,; is dimensionless and refers to the quotient of the effective permeability
k. divided by the absolute rock permeability &. Its mathematical expression is expressed as:

k,
ki = 7 (2.161)

where subindex 7i refers to the particular fluid phase under consideration: i = water, oil, gas, liquid
or steam. The corresponding relative permeabilities for these phases are denoted by ki, ko, kig,
k7 and k., respectively. This concept originated when extending Darcy’s law to a two-phase fluid.
The Oilfield Glossary defines relative permeability as (Schlumberger 2009):

e Relative permeability is the ratio of effective permeability of a particular fluid at a particular
saturation to absolute permeability of that fluid at total saturation. If a single fluid is present in
a rock, its relative permeability is one. Calculation of relative permeability allows comparison
of the different abilities of fluids to flow in the presence of each other, since the presence of
more than one fluid generally inhibits flow.

Relative permeability is a dimensionless variable conceived to adapt Darcy’s law to multiphase
flow conditions. There is evidence that relative permeability may be a function of many more
parameters than solely fluid saturation. AGAT Laboratories (http://www.agatlabs.com/) describe
it like this:

e Temperature, flow velocity, saturation history, wettability changes and the mechanical and
chemical behavior of the matrix material may all play roles in changing the functional depen-
dence of the relative permeability on saturation. The best defined of these dependences is the
variation of relative permeability with saturation history; relative permeability curves show
hysteresis between drainage processes (wetting phase decreasing) and imbibition processes
(wetting phase increasing).

In 1937, Muskat et al. published relative permeability curves for gases and liquids in uncon-
solidated sands, showing that the curves k;, and k,; are independent of the nature of the sand.
This result is exceptional because in all the other cases studied later in diverse experiments
reported in the literature, the relative permeability curves depend on both the type of porous
rock and on the nature of the fluid. Consequently, there does not exist a valid general correla-
tion for these functions for any fluid in any porous medium. The models to calculate relative
permeabilities are determined experimentally in each particular case. For example, labora-
tory measurements indicate that the relative permeability of the wetting phase depends on the
square of the saturation of the corresponding phase, or on the saturation elevated to a higher
power.

Diverse experiments show that the addition of relative permeabilities is always inferior to one
(kw + krmw < 1). This indicates that in two-phase flows, the total capacity of the fluid to flow
inside the porous rock is reduced, in other words, there is phase interference. The lower is the
sum kpy + ke < 1, the greater is the phase interference. The sum (ky + kymyw = 1) could
indicate the absence of phase interference. Physically, this result would imply that each phase
flows in its own path without impeding the flow of the other. The real effects of the sum of
relative permeabilities can also be interpreted assuming that the movement of each individual
phase is slowed by the presence of the other phase, and that the grade of interference depends on
the volumetric proportion of each phase. This fact is an obvious consequence of the molecular
interactions between both phases.

Since the phases movement depends on the relative permeability functions, it was suggested
(Bodvarsson et al. 1980) that the two-phase fluid behaves as a fluid with a kinematic effective



94 Introduction to the numerical modeling

viscosity vy given by:

U ke Kk
— =y (2.162)
vy Vy vy

Similarly, the enthalpy transported by the mixture depends on k,; and on £, and is different
from the static enthalpy (in situ). The enthalpy of the two-phase fluid in movement is:

ke, ki
by =y <h17; " hv—) 2.163)

Vy

The transport of mass and energy in geothermal reservoirs are then strongly influenced by
the magnitude of the dynamic effective viscosity and by the enthalpy of the fluid in movement.
The relative permeability also depends on other important factors such as temperature, pressure
and liquid saturation. It has been found that the mineralogy of the rock also plays a role in its
characterization and, if there is a multiphase fluid, the geometry of pores and fractures also has
an influence.

Several petroleum and water studies, reported by Passmore and Archer (1985), indicated that
the relative permeability of both oil and water increases when temperature increases. Apparently,
this effect is larger for oil than for water. However, other experiments reported that the results are
confusing. Ramey et al. (1974) reported studies of capillary pressure in consolidated sandstones
and in calcareous rocks with oil and water; the range of temperatures was between 24 and 163°C.
These results showed that the irreducible saturation of water is increased, while the saturation of
residual oil comes down when temperature increases. In the specialized literature on petroleum
engineering it is accepted that the residual saturation of oil is reduced (especially in heavy oils),
while the irreducible saturation of water increases when the temperature increases. The relative
permeability also presents hysteresis. The relative permeability of the wetting phase changes
slightly when its saturation varies. On the other hand, the relative permeability of the non-wetting
phase is clearly lower during imbibition than during drainage.

2.3.10 Practical correlations for relative permeabilities

In this section several practical formulae for the effective calculation of relative permeabilities
are described. Relative permeability functions usually depend on phase saturation. The two most
commonly used expressions for relative permeability for homogeneous porous media are the
X-curves and Corey curves. The X-curves describe relative permeability as a linear function of
saturation: k;; = Sy , ki = S, where §; and S, are the liquid and gas saturation, respectively. The
Corey curves relate relative permeability to the irreducible or residual liquid and gas saturation,
S,1 and S

2.3.10.1 Constant functions for perfectly mobile phases
The relative permeabilities are constant in the whole range [0, 1] for any saturation:

k=1 and Kk = 1 (2.164)
2.3.10.2 Linear functions
Both relative permeabilities k., and £k, increase linearly with liquid saturation in the
range [0, 1]:
kw = a1 + b1 Sy,  kpw =az+ b2 Sy (2.165)

The four constants in both linear relationships need to be estimated experimentally.
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2.3.10.3 Functions of Purcel

The original Purcel’s (1949) work was done to estimate absolute permeability by using exper-
imental values of capillary pressure. This formula was extended later to compute the relative
permeabilities in two-phase flow (Li and Horne 2002):

244y
krw = (SNW) ke

(2.166a)

krnw = (1 — SNW)Z(I — krw) (2.166b)

where Sy, is the normalized saturation of the wetting phase given in equation (2.153) and A, is
the pore size distribution index. A practical way of using these correlations is to compute first k.,
with the formula: &, = Snw / Ry, where Ry is the resistivity index that can be calculated from
experimental data (Li and Horne 2002). Archie (1942) showed a relationship between electrical
resistivity and saturation of the form R; = (SW)_2. After k., is obtained, the value of A, is
estimated inverting equation (2.166a):

_ 2Log(Snw)
“ ™ Log(kn) — Log(Syw)

(2.166¢)

Note that A, can also be estimated from capillary pressure data. Once both values A,
and Sy, are computed, the relative permeability of the non-wetting phase is calculated using
equation (2.166b) (Li and Horne 2002).

2.3.10.4 Functions of Corey
On the basis of oil-gas capillary pressure data Corey (1954) developed the following empirical
correlations:

kw = Sys Ko = (1 = Sna)*(1 = S§,,) (2.167)
Sw — Srw . Sw— 3§ s
where: Sy, = ———— (drainage), Sy = —————=— (imbibition)
1 — S 1 — S — Spmw

2.3.10.5 Functions of Brooks-Corey

Because of severe limitations of Corey’s functions, Brooks and Corey (1966) developed a couple
of correlations that have become famous, to estimate the relative permeability of the wetting and
non-wetting phases:

2434y
krw(Syw) = (Swiw) Mo (2.168a)
242y
Frm (Sw) = (1 = Sy (1 — (Snw) ) (2.168b)

Note that Corey’s formulae (2.167) are special cases of equations (2.168a,b) when A, = 2.

Several experiments realized by Li and Horne (2002) with steam-water flows, demonstrated
that the Purcel model was the best fit for the experimental data of the liquid phase relative
permeability for both drainage and imbibitions processes. However, this correlation is not a good
fit for the steam phase. The Brooks-Corey (1966) model was the best fit for the steam phase.
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Figure2.38. Relative permeabilities-saturation curves of Schulz et al. 2005).
2.3.10.6 Functions of Schulz-Kehrwald

Schulz et al. (2005) performed drainage experiments and obtained the following correlation for
the relative permeability functions:

2

1
n 1—-
kri (Sl) — (S')a 1— (1 _Sﬁ> "

kabs (2.169)

where: a =0.844, n=4387, i=w,nw
These curves of relative permeability were obtained by one-phase CFD simulation (Fig. 2.38).

2.3.10.7 Functions for three-phase relative permeabilities

Cunha et al. (1999) developed an experimental and analytical method to calculate the relative
permeabilities for a three-phase flow process involving water, oil and gas. The experiments were
conducted in a Berea sandstone core (permeability 1.8 D, porosity 0.22) at 22°C of laboratory
temperature. The relative permeabilities for oil and water are the Brooks-Corey (1964) correlations
that were verified experimentally with the following numerical values (Cunha ef al. 1999):

S, — 0.363\>"14 0.689 — S, \ 13

The relative permeabilities for oil and gas were obtained only for the drainage process (Cunha
et al. 1999). The analytic expressions of these correlations are as follows:

S, — 0.0528\ 237 S, — 0.480\>1°
ko(S,) = 0324 52—~ o kp(S,) = 1318 22— 2.170b
r¢(Se) ( 0.5842 ) > Ko(So) ( 0.326 ) ( )

In both formulae, the numbers inside the parentheses were measured experimentally, while the
values outside the parentheses, coefficients, and exponents were obtained by least squares fitting
(Cunha et al. 1999).

2.3.10.8 Li-Horne universal relative permeability functions based on fractal modeling of
porous rocks

Li and Horne (2004, 2007) found that fractal functions “inferred from capillary pressure curves

were good straight lines for all the rock samples, both those with and those without fractures . .. ”

These authors developed a generalized model based on fractal modeling of a porous rock to

estimate the curves of relative permeability. The fractal dimension is a manifestation of the rock
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heterogeneity and is represented by the parameter A, of the pore size distribution. The analytic
expressions of these correlations are as follows:

. . N (2+Ayp)
k (Snw) = (pCm(gx — (pCmq;x — Pe w) SNW) boo — (pCmax)_(z-Hw)) (2 l71a)
rw w —(2+1y) . (P )_(2+)\~(p) .
e Cmax
(=2410) A A A 2ty
Koo (Shi) = e v - (pCm‘ilx — (pCmv;x — Pe ) Snw) *e (2.171b)
rnw \OWNw) = —Q2+hy) 2t .
e — (PCmax) ¢

where pcmax 18 the capillary pressure at residual wetting phase saturation in the drainage case.
Note that at the end-points in this model, &,,(1) = k,v(0) = 1 and &,,(0) = k(1) = 0. Both
functions (2.171a,b) depend upon the heterogeneity of the porous rock, the pore size distribution
and the maximum capillary pressure. This model includes the frequently used Brooks-Corey
model (Li and Horne 2007).

2.3.10.9 Linear X-functions for relative permeability in fractures
The so called X-curves are typically assumed for fracture flows and are modeled by the equations:

Sw — Sn
r (Sy) = 2220 (S =1—k
11 (Sw) Sre — Sy v (Sw) rl (2.172)
ks kv < 1

where £, is the relative permeability of the liquid and £, is the relative permeability of the steam.
S,; is the irreducible water saturation and S, is the water saturation at irreducible gas saturation
(air or steam).

2.3.10.10 Relative permeabilities in fractures: The Honarpour-Diomampo model

Diomampo et al. (2002) studied in their experiments the mechanism of two-phase flow through
fractures, using nitrogen-liquid water and steam-liquid water on both smooth and rough parallel
plates to determine the governing flow mechanisms. For both smooth-and rough-walled fractures,
a clear relationship between relative permeability and saturation was observed. There is consid-
erable phase interference in flow through fractures because the sum of the relative permeabilities
of gas and liquid is lower than one. The experiments revealed the unsteady nature of flow through
fractures. This is consistent with the observed flow mechanism where the gas and water compete
in establishing pathways through the fracture (Li and Horne 2005). The calculated relative perme-
ability curves follow Corey-type behavior. The data for both imbibition and drainage experiments
were fitted separately with the Honarpour ef al. (1982) expression:

Sw— S, T 1—-8y— S \"™
— _Pw o Tw koo = k . w Mg 2.173
rw M0<1_Smr_srg> 5 rg rgO(l_SVW_S’g) ( )

where: ko = ki (Swi) s kigo = kg (Spy) for drainage
ker = krw (Srg) 5 krgO = krg (Swi) for imbibition

The term S,,; is the initial water saturation for drainage. In both functions, the fitted Honarpour
curves give good representation of the trend of relative permeability data with saturation. The
fitted curves have different exponents for the Honarpour expression for imbibition and drainage
(Table 2.5).

Steam-water relative permeability can be calculated from capillary pressure. However this
technique still requires measurement of capillary pressure. In this study, a semi-analytical model
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Table 2.5. Honarpour fit parameters for smooth-walled (s) and for rough-walled (r) fracture experiments
(data adapted from Diomampo et al. 2002).

Parameter Drainage (s) Imbibition (s) Drainage (r) Imbibition (r)
Spw 0.81 0.81 0.132 0.141

Srg 0 0.321 0 0.51

Krwo 1 0.564 1 0.27

kg0 0.509 0.509 0.274 0.1

Ny 2.27 4.57 1.75 1.2

ng 3.59 1.92 2.53 0.52

was developed to infer relative permeability from resistivity data. Although it would still be
necessary to conduct experimental measurements of resistivity, these are easier than measuring
capillary pressure (Li and Horne 2005). Gas and water relative permeability can be effectively
modeled in many porous media using the modified Corey (1954) equations (Byrnes 2003):

oy =S\ e =Sw)\" _(SW—SWL,)’
' (1 — Sge — Sweg) (1-Swg) ) = ™ 1 — Swe
fork=1mD: Sg =0.15, Suge =0.16, See=0.1, p=17, g=2, rx~p (2.174)

where S), is water saturation, Sy, is the critical gas saturation (expressed as fraction gas saturation),
Sweg 18 the critical water saturation for gas (expressed as fraction water saturation), Sy, is the
critical water saturation, and p, ¢, and r are exponents reflecting topology and size distribution
of pores. Byrnes (2003) describes it like this:

e Critical water saturation can be operationally defined as the saturation at which water is immo-
bile or water flow is negligible on the time scale of importance for the evaluation of flow
properties. Critical water saturation is also often experimentally defined as the saturation at
which the ratio of the non-wetting phase flow to water (wetting phase) flow is greater than
1000 (i.e., water flow represents less than 0.001 of total flow). Critical gas saturation (Sg)
represents the saturation below which the gas phase is discontinuous and therefore does not
flow. Experimentally this is defined as the saturation at which a threshold pressure achieves
first detectable gas flow.

In rocks with permeability & > 10 mD the measurement and operational definitions of S
and Sy, can be clearly defined within a range of 1%. However, as permeability decreases and
rocks move more into the transition zone interval of the capillary pressure curve, the nature of
both becomes more complex with implications for modeling using relative permeability. Further
details and figures for several cases using equation (2.174) can be found in Byrnes (2003).

2.3.11 Observed effects of dissolved salts (NaCl) and non-condensible gases (CO;)

We must consider that in nature, real geothermal systems or cold aquifers are multi-component
systems formed by water, and numerous dissolved chemical species such as dissolved salts and
gases. The concentrations of these chemical species can be very variable in different aquifers and
may vary strongly between different geothermal reservoirs or even within the same reservoir. As
an example, Tables 2.6 and 2.7 show the main chemical species in the extracted fluid from the
Los Azufres geothermal reservoir (Mexico).

The main effect of salts dissolved in water is to increase its density. Seawater, geothermal brine
and aquifer water are denser than freshwater, which reaches a maximum density of 1000 kg/m?
at a temperature of 4°C. The concentration of dissolved salts in water is usually given in physical
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Table 2.6. Chemical composition of the extracted fluid of the Los Azufres geothermal field (Mexico).

Cl Na HCO; SiO, SO4 B NH; K Li Rb Cs Ca As

mgkg 2581 1500 743 1008 520 237 580 4188 260 50 20 186 200

units relating mass of salt to volume of fluid, for example milligrams per liter (mg/L), or grams
per cubic meter (z/m?). Mass fractions are also commonly used in reservoir engineering, relating
mass of dissolved salt to mass of fluid. In this case the units are dimensionless [ad]: for example
parts per hundred (% by weight), parts per thousand (%o by weight), parts per million (ppm or
mg/kg if we use SI units) or parts per billion (ppb or nug/kg if we use SI units). The density of
fresh water is a reference value equal to 1000 kg/m?; in this case 1 mg/L = 1 ppm (or = 1 mg/kg),
otherwise we must use the relation C [mg/kg] = C [mg/L] x 1/py [1/kg] for converting the mass
and volume related concentration units.

There is a classification of water, which depends on the concentration on dissolved chemical
species, e.g. salts: fresh water (<1000 mg/L), brackish water (1000-10,000 mg/L), saline water
(~10,000-100,000 mg/L), brine (>100,000 mg/L) (Holzbecher 1998). At the surface of the
ocean, seawater has an average density of 1025 kg/m> and a salinity of about 3.5% by weight or
35 g/kg or 35,000 mg/kg).

In the following, we will reduce this complex chemical spectrum to only two representative
compounds, CO; and dissolved NaCl. For the fluid density dependence on salinity, we consider
the following correlations, which are appropriate for aquifers at 20°C but may also be applicable
approximately to low-enthalpy geothermal systems (adapted from Holzbecher 1998).

The water density as a function of the concentration of dissolved salts is:

p = pp 9923Cn (2.175)

where po is the density of fresh water and C,, is the mass fraction of dissolved NaCl in [kg/kg].
For example, using this formula, the corresponding average concentration of seawater is C,, =
0.0357 [kg/kg]. The density of a mixture of two fluids with respective densities pg and p; is
approximated by the following formula:

Cm
P (Cm) = po (ﬁ) (2.176)
P0

where C,, is the mass fraction of NaCl [kg/kg] of equation (2.175) dissolved in the fluid p;.
This correlation is valid in the interval 0 < C,, < 0.26, which is the solubility limit of NaCl at
temperature of 20°C and is valid for a large interval of pressures [0.1, 10] MPa.

A correlation of water density in terms of temperature [°C] and C,, [kg/kg] is given by the
following equation (Holzbecher 1998):

o(T, Cp) = po(1.0 4 0.805 C,, — (T 4 220.0 C,, — 4.0)>- 6.5 x 107%) (2.177)

The steam phase at volcanic reservoirs has a heterogeneous composition, showing a wide range
of NCG concentrations. For example, the steam phase of the fluids from Los Azufres geothermal
field, which is influenced by volcanic processes, contain 1-9% of total gas (by weight). Principal
gases are CO,, H,S, NH3z, CHy4, O,, Hy, Ny, He and Ar (Table 2.7). Carbon dioxide is the
major gas constituent found in the field, representing between 70% and 99% of total NCG weight
(Sudrez and Samaniego 2003). H,S is the second most important gas, varying between 0.2 and
13% in the total weight.
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Table 2.7. Extracted gases (% in weight) at the Los Azufres geothermal field.

CO, H,S NH3 He H, Ar N, (03 CHy

Weight% 96.83 2.279 0.189 0.0002 0.0102 0.01 0.0654 0 0.0254

To take into account the non-condensable gases in the mass and energy-balance equations it
is necessary to include extra components in equations (4.95) and (4.101) described in chapter 4.
The main effect of CO, is that its partial pressure augments the total pressure of the geothermal
fluid because it is present in both the liquid and the steam phases. It is well known that NCG
diminish the efficiency of the turbine in geothermal power plants, reducing notably both the
condensation and the global heat transfer coefficients. This combined effect causes the efficiency
of the geothermal power cycle to decrease. Therefore, the effect of non-condensable gases in
geothermal reservoirs is an important subject. However, its detailed discussion goes beyond the
introductory scope of this book. The interested reader may consult other sources in the specialized
literature (e.g., Kestin 1980, Pruess 2003).



CHAPTER 3

Special properties of heterogeneous aquifers

“Unfortunately, soils [and rocks] are made by nature and not by man, and the
products of nature are always complex... As soon as we pass from steel and con-
crete to earth, the omnipotence of theory ceases to exist. Natural soil [rock] is
never uniform. Its properties change from point to point while our knowledge of
its properties are limited to those few spots at which the samples have been col-
lected. In soil [rock] mechanics the accuracy of computed results never exceeds
that of a crude estimate, and the principal function of theory consists in teaching
us what and how to observe in the field.”

Karl Terzaghi (1883-1963)*

3.1 THE PROBLEM OF HETEROGENEITY IN AQUIFERS

The thermal, mechanical, electrical and transport properties of rocks are determined by their min-
eralogical composition, chemistry and texture. Several experimental studies have demonstrated
correlations between the simple petrology and chemical composition of rocks and some of their
petrophysical properties (Contreras et al. 1994, Viggiano and Gutiérrez 1988). The interrela-
tionships between chemical characteristics and petrophysical properties of rocks are extremely
complex, poorly understood and hard to model, from both a theoretical and practical point of
view. Heterogeneities in the fractured matrix allow us to consider the mechanisms of interaction
among different matrix blocks, fractures, microfractures and faults with different porosities and
permeabilities. The effective treatment of heterogeneities is achieved using special averages at
the contact interfaces.

During the geological development of a reservoir, the primary parameters acquired initial
values at different moments in its formation. Later, unpredictable and aleatory physical pro-
cesses altered these primary values. In this way porosity, permeability, modules of elasticity,
thermal conductivity, density and mobility of the fluid became heterogeneous. The numerical
simulation of the coupled heat and mass flow in multiple porosity systems that we call M ¢—Nk
reservoirs (M-porosities, N-permeabilities), needs to average highly variable physical parame-
ters, at the boundaries between different media. A crucial decision is which type of averaging
formula should be used to represent the global transport processes inside heterogeneous matrix
blocks with fractures and microfractures. This heterogeneity affects the mass and energy flow
and the thermodynamic evolution of the system. The averaging process should represent the fluid
crossing different geologic areas of the reservoir, so the averages have a decisive influence on
the numeric results of reservoir simulation. In this section, several formulae for calculating the
averages of petrophysical parameters are introduced. These formulae are useful in all techniques
of reservoir simulation by any numerical method. The choice of a particular average is dependent
on experience, combining the findings of laboratory tests and studies in the field (Suarez and
Samaniego 1999, Suérez 2002).

* Source: D. Goodman: Karl Terzaghi, the Engineer as an Artist. ASCE Press, 1999.
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3.2 THE CONCEPT OF MULTIPLE POROSITY IN HETEROGENEOUS AQUIFERS

Any medium exhibiting finite discontinuities in the distribution of its porosities should be con-
sidered as a multiple porosity or multiporous system. Microscopic observation of thin core sheets
demonstrates the existence of microfractures connected to the matrix and to the fractured net
(Fig. 2.1). These microfractures form another continuum, with intermediate permeabilities, over-
lapping the previous ones (Fig. 3.1). In this way the notion of multiple porosity-permeability in
heterogeneous reservoirs arises (M ¢—Nk reservoirs). For example, when two different types of
matrix blocks are detected in a fractured, faulted medium, the transfer would be: matrix 1 —
matrix 2 — microfractures — fracture — fault. Under the concept of multiple porosity M (>2)
porous continuous media interact with each other. Each medium has its own parameters and its
own interporosity flow, which can be stationary, pseudo-stationary or transitory. The saturating
fluid may be non-isothermic, two-phase or multiphase and can contain multiple components. The
classic models of double porosity can be classified as special cases of this general theoretical
concept.

A complex system is one whose properties and behavior cannot be totally explained by the
separate understanding of each of its components. The non-isothermal multiporosity idea is a more
general concept applicable to all class reservoirs, forming the highest degree of complex systems
in geothermal and petroleum reservoir engineering. The multiple porosity concept describes a
global interconnected phenomenon that also produces multiple effects on other interdependent
phenomena on a larger scale. However, it is not possible to define multiporosity in a unique way.
Specific models of single, double, triple and multiple porosity-permeability are described below.

The simplest porous medium possesses a continuous distribution of a single type of empty space
with only one permeability. This is a single porous—single permeability medium (M = N = 1).
When the medium is fractured, the net of fractures adds a secondary porosity to the original
porosity, breaking the porous medium into blocks. If the system is highly fractured with a high
permeability matrix, its behavior is equivalent to that of a medium with a single permeability but
two different porosities. If it is not possible to distinguish the permeability between the fractures
and the matrix, this is a double porosity—single permeability medium (M = 2, N = 1). A fractured
reservoir with low permeability but with high global storage, fits this model. The classical pattern
where the matrix has high porosity and low permeability while the fractures have low porosity
and high permeability corresponds to a double porosity—double permeability (M = 2,N = 2)
medium.

Figure3.1. Differential volume dV and surface dS of a heterogeneous rock with different permeabilities:
fault (107! m?), matrix (10~!8 m?), fractures (10~13 m2) and microfractures (10~1° m?2).
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An immediate extension of the concept of double porosity is triple porosity. A reservoir that
has fractures with homogeneous properties interacting with two types of separated matrix blocks,
each with a different porosity but similar permeability, is a medium of triple porosity—double
permeability (M = 3,N = 2). This model occurs when a system with dominant fractures
intercepts a less permeable net of fissures, nested inside a matrix with a different porosity. In this
case the mechanism of flow is matrix — fissures towards the fracture. The triple porosity—triple
permeability model (M = 3, N = 3) is found when the rock has three different porosities and three
different permeabilities. The case of volcanic geothermal reservoirs with matrix-microfracture-
fracture-fault flow, corresponds to a tetra porosity—tetra permeability model (M = 4,N = 4).
Finally, if the matrix is so heterogeneous that four or more porosities and permeabilities can be
clearly distinguished, then five, six or more porosities and permeabilities may be identified in the
same medium. To denote the characteristics of reservoirs in compact form, we use the notation
M @-Nk (M -porosities, N-permeabilities).

3.3 THE TRIPLE POROSITY-PERMEABILITY CONCEPT IN GEOTHERMICS

The main characteristic of the classical double porosity (DP) model is the clear distinction
between two types of flow: along the fractures and intergranularly inside the matrix. The DP
model also supposes the existence of a transfer function describing the fluid exchange between
both continua. Its general formulation allows the treatment of flow through the matrix blocks,
along the fractures and at the contact boundaries between both media. However, the DP concept
is insufficient to explain the behavior of volcanic geothermal reservoirs, traversed by large, open
faults. Experimental observations show that the intensity of fracturing is higher near the fault than
in the distal fractured net. There is a remarkable contrast in permeabilities between the matrix
blocks, the fractures and the fault (Fig. 3.1).

The concept of triple porosity-permeability in geothermics (Suarez and Samaniego 1995),
considers that the diffusivity of the geothermal fluid is larger in the conductive fault than in the
fractured net, and larger in the fractures than in the matrix. The flow towards the exploitation
wells occurs in such a way that the initial response in the extraction area is detected immediately
in the fault, and then becomes apparent in the fractures and much later in the matrix blocks.
The global permeability depends inversely on the distance from the fault. According to this
concept, the three media: matrix, net of fractures and fault are considered as three interacting
continua related through special interporosity transport functions, which depend on the form
and size of the blocks, the intensity of fracturing, the distance to the fault and on their mutual
communication.

3.4 AVERAGES OF PARAMETERS AT DIFFERENT INTERFACES

3.4.1 Permeability and thermal conductivity

To illustrate the averaging process we consider the discretization of Darcy’s law using the finite
volume method, described in section 5.4.1, where k is the absolute permeability of the porous
rock in the X direction. Neglecting gravity and because of the continuity of the flowing mass
when crossing the boundary S,; (Fig. 5.11), the flow at each side of the interface between two
finite volumes with nodal distance d,; (= d,, + d;) is the same, but the density p, viscosity © and
pressure p are different. From equation (5.141) in the steady state case:

i kp d| i dni . o i
Sni w dx kni n 0
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We deduce that:
dpi Q dy Q dyi Q 1 dy 1 dyi
/%dx:/ kmdx—i—/ kmdx=Qm~ E/dx—i—;i/dx
0 0 dy 0 dy 3.2)
di | di\ _ Onidi dy | di\"!
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where k,; is the averaged permeability of the medium at the interface S,;. Similarly, if k7;,; is the
thermal conductivity at the same interface, the flow of heat is:

dy;
Omi _ _ krmdl _, Omidni [ Omi O ( dy di)

- _l’_ -
Shi dx kTni , kr krn ki (3.3)
dni _ dn di
kiwi  kmw  kn

where k,; and kr,; are the effective permeability and effective thermal conductivity at the com-
mon interface S,; separating the elements V, and V;. Both averages are based on the continuity
hypothesis of the mass flow and of the heat flow when crossing that interface.

3.4.2 Special average for thermal conductivity in dry rock

Zierfuss and Van der Vliet (1956) measured the thermal conductivity of 50 samples from different
rocks. They found that as porosity increases, thermal conductivity decreases. However, this
tendency is altered by the influence of different permeabilities and densities of rocks with the same
porosity. Anand et al. (1973), applying multiple regression analysis to 38 data sets, established
the following relationships to predict the thermal conductivity of rocks using other properties:

1
Fe=—, kiy=034p, —32¢+053"" +0.013F, — 0.031 (a)

@
L0g ;o (Fe k7 )ywater = 3.874 — 1529 ¢ + 31.84 > — 27.00 ¢* (b) (3.4)

Log ;o (Fe k7)ol = 3.840 — 15.75 ¢ + 32.37 ¢* — 27.79 ¢ (©)

where F, is the electrical resistivity factor of the formation, which decreases when the size of the
pores increases, and ¢ is a cementation factor (=2 in sandstones). The first correlation of (3.4) is
valid for dry rock. The second and third correlations are valid for sandstones saturated with water
and oil, respectively. Among the samples analyzed by the aforementioned authors, the thermal
conductivity of 31 samples (82%) is reproduced by equations (3.4), with a margin of error of
15%. Porosity is the parameter that has the largest effect on these correlations.

3.4.3 Heat capacity of the rock-fluid system

The heat capacity per unit volume of porous rock saturated with two-phase fluid is evaluated by
means of the specific heat coefficient at constant pressure. The following formula was adapted
from Passmore and Archer (1985):

cp =1 =@)or cr + @81 prer + Sy pycy) (3.5)
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A useful formula for saturated rock with three components, i.e. oil, water and gas, is:

Cp = (I =@)or Cr + 9(So po co + S p1¢1)

(1 —fpvL (3.6)
+‘/’Sg<fng,0g+7£vTV V-I—pVC[)

This equation is valid for five components: rock (r), oil (0), liquid water (/), vapor (v) and
non-condensable gas (g), where L, is the latent heat of vaporization and f, is the volumetric
fraction of incondensible gas referred to the whole gaseous phase.

3.4.4 Linear Lagrange interpolation for densities

Using the classical formula of linear Lagrange interpolation, the interfacial average of the fluid
density is:

X1 — X —
p(x)=100xl ;(C)l 0+§1 )/:Ox
1 —X0 1 — X0
3.7
N p':pn(dn+d[)_pi'0+(pi_pn)dn:pndi+pidn
n d, +d;i —0 dy + d;

In general, any interpolation formula of higher order is a more sophisticated average that
requires a larger number of data points around the interface Sj,;.

3.5 AVERAGES FOR SYSTEMS WITH TWO AND THREE COMPONENTS:
GENERAL MODELS OF MIXTURES

The rock-fluid system with two-phase flow is a compound of three components: solid, liquid
and gas. A key question is how do parameters such as thermal conductivity act in these types
of mixtures? For example, the effective thermal conductivity of rock depends on the relative
amounts, distribution and geometric form of their constituents. Different types of minerals can
form the matrix or rock solid phase, varying in grain size, and containing cracks and pores that
can be saturated with liquid or gas (Contreras et al. 1994).

Some models for mixtures have strong physical and conceptual bases. Others are merely empir-
ical relationships. Some expressions are mathematical analogies of particular models of mixtures
with very wide application, adapted to estimate properties of multicomponent systems. The prob-
lem is complex and there is no unique form for solving it. The following models are proven aver-
ages for performing effective calculations in numerical modeling. Here, K,,, represents any average
physical property; the subindices f, r, / and v are for fluid, rock, liquid and vapor, respectively.

3.5.1 Parallel and serial models
1-Phase: K, = oKy + (1 — @)K,

Parallel : (3.8)
2-Phases: K, = S;¢K; + S, 9K, + (1 — @)K,

1 1—
1-Phase: — = v + ( ¢)
Kn Ky

Serial : (3.9

K,
1 S, S, 1-—

2-Phases: — = 2e + g ( ¢)

Kn K; K, K,
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3.5.2 Geometrical model

Kn=K!=9 K¢ . K5 ¢ (3.10)
3.5.3 Model of Griethe
w=K/ - K¢ (3.11)
3.5.4 Model of Budiansky
L % (1-9)
1-Phase: K—m =K, ﬁ + K, +&
1 3 ¢ 3 3S 3 1w (3.12)
2-Phases: i + v e + ¢

2K, K, 2K | K,

Kn 2Kn  Ki Ky
3 3 3 3 3 3

In both cases Budiansky’s model can be solved exactly. For a single phase:

2K + 131 = ¢) — 2Ky + Bp — 2)K, 1K — K- Ky = 0

—b+ /b + 8K, Ky (3.13)

7 ;0 b=01—-9¢) 2K+ (B¢ — 2)K,

The parameter b is usually a negative quantity (K, > Kr) and one should only take the positive
sign of the square root. For two phases and three components, the algebra provides a cubic equation
for the implicit correlation of Budiansky whose solution is also classic:

= Kp=

K K K,

K>+ bK2 +cKy+d=0;, d=—""1""

b 6(1 — 0)(K; + Ky) + 60(S; Ky, + S, Kp) + (690 — HK, — 4(K; + Ky) (3.14)
o 4

4c = (1 =39)Ki K, + 3¢ K, (S K, + S, K) — 2K, (K + Ky)

The root is given by:

0+2 b
Km:X2:—2\/QCOS( + n)-g
b —3c 2b° —9bc +27d R (.13)
0= , R=————  and: 6 = ArcCos| —
9 54 /03

3.5.5 Model of Hashin-Shtrikman

This very important model results from averaging the maximum and minimum thermal
conductivities given by the following correlations:

o 1—g]!
1-Phase: Kpax =K, + ¢ |:(Kf -K) 'y 3K¢:|
’ o (3.16)
Kinin :Kf + (1 — (p) (Kr —Kf)71 —+ i
‘ 3Ky
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For two-phases:

1 1!
Kmax = K, S| (K — K~
max rto (l|:( l ) +3Kr]

!
+Sv[(1<v—l<r)*‘+ 1] ) _ Y

3K, 3K,
3.17)
~1
@S _ 1
Knin = K+ (1 —¢) <l_¢|:(Kl_Kv) 1+3Kv]
1 ! -
-k 2| v
T 3K, 3K,
In both cases the average conductivity is:
K K

Km — max _2'— min (318)

3.5.6 Model of Brailsford-Major

1
A=0Cps— DK, +Bp—- DKy = K,= 2 <A+,/A2+8Kf1<,> (3.19)

3.5.7 Model of Waff

2
K Ko (1— )3 2
K, = +Kr @3 3.20
"TRNO—o K e Y (320
3.5.8 Model of Walsh-Decker
K, Kr(3
= +Kr(3+ ) (3.21)
oK, + 3Ky
3.5.9 Model of Maxwell
20K; + (3 —2¢)K,
Ky =K % 1+ ( QD) r (322)
G — 9K + ¢k,
3.5.10 Maxwell’s dispersive model
K
2—’+1—2¢(?’—1>
Ky = K, S (3.23)
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3.5.11 Model of Russel

2 K 2
(1—-9¢)3 +?(1 —(1-9)3)
Kn =K r

3 5 3 (3.24)
(I-¢)3 —(1—¢)+E(2—¢—(1—¢)3)

3.6 SOME APPLICATIONS TO FIELD DATA

3.6.1 Application to data from rocks of the Los Azufres and Los Humeros
geothermal fields (Mexico)

All of the previously described correlations may be applied for the creation of a database of
averaged parameters (Table 3.1). The decision as to which type of average is best suited to tackle
each particular problem depends on the subjective opinion of the user. This decission should
be firmly supported by data from laboratory experiments and field studies. The series, parallel,

Table 3.1. Useful averages in a fractured reservoirs with multicomponent fluid?.

Averages for two components Averages for 3 or more components
Name Formula Name Formula
Simple General 1 X
: . Ki + K; . .
arithmetic Pp = — 5 J arithmetic Pga = NZK/
average average j=1
Simple geometric Pg = /K; x K; General 1N
average geometric Py = Nl_[K/
average j=1
K — K;
Logarithmic P = ﬁ Weighted Puc = KOS KSIOSvo
average nA&— LRy geometric wG = lr— U
average ¢s = ¢
Continuity di+d; _d; n 4 Parallel average P, = ¢s K,
average Pc K K +S19Ki+ S, 9K,
. d;i K; + d; K; . 1 S S
Linear Lagrange PL1 = % Serial average —_% + o1 + el
average i +dj Ps K. K K,
Simple weighted Py = (1 —-0)K; + 0K; General weighted N N
average average Pya = Z 0; Ki; Z 0 =1
0<6; <1 0<6 <1 i=1 i=1
_ /b2 K
Budiansky’s Por — b+/b" + 8K: K; Budiansky’s Pry =K,
average 2D? BL= 4 average 3D%
2D Hashin- Prs = Kimax + Kimin 3D Hashin- Pricy — Knax + Kmin
Shtrikman? H 2 Shtrikman? HS2 = 2

D Letter K represents any parameter of the reservoir, S is saturation, ¢ is porosity (the volumetric fraction of
the component). Subindices 7, j, represent two different zones (Fig. 5.11); (d; + d}) is the distance between
the centers of V; and V;.

2) The formulae of Budiansky (Pritchett 1995) are given by the equations (3.12)~(3.15); those of Hashin and
Shtrikman (1962) are given by the equations (3.16)—(3.18).
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harmonic and arithmetic averages provide the general form of the equations to calculate any
average in these systems. The probability that the phases are in series or in parallel is the same
in most of the systems studied. The weighted geometric average gives intermediate values of the
effective parameter. For any value of the involved parameters, the following inequality is always
valid between geometric (Pg), linear (Pr) and arithmetic (Pp) averages: Pg < Pp < Pa. If the
distances d; and d; are similar, then the continuity average Pc <Pg <P <Pp (Table 3.1).

We show results with different averages using data from the Los Azufres, Mexico geothermal
reservoir. This fractured reservoir contains three-component fluid: two-phase water, liquid with
dissolved salts and vapor with carbon dioxide. The numerical examples illustrate that the correct
computation of the parameters at the interfaces V},/V; is critical to obtain precision in modeling
with any numerical method. This influence can be as decisive as the relative permeabilities or the
capillary pressure correlations. The general theory is illustrated with simple averages and some
generalizations from Table 3.1. In some cases, the general relationships among different media
depend on the distances between both regions (Figs. 3.1 and 5.11) and on the numeric values of
the petrophysical parameters.

In 1985, several petrophysical parameters were measured in 24 cores from 17 wells of the
Los Azufres, Mexico geothermal field (Table 3.2). Measurements of thermal and mechanical

Table 3.2. Primary parameters of the reservoir for the mass and energy flows.

Rock Fractured zone

(1-phase, (2-phases
Parameter" liquid) liquid + vapor) Component type kr(W/m/°C)
Distance (m) 10 2 Rock 3
Permeability (m?) 1.0 x 10713 1.0 x 10712 Liquid 0.67
Fluid density (kg/m?) 780 400 Steam 0.043
Mobility (m - s/kg) 503 5600 Gas (carbon dioxide) 0.02
Pressure (MPa) 6.0 5.0 Gas saturation 50%
Temperature (°C) 264 263.9 Liquid saturation 50%

1) The primary numerical values for mobility 5 = k. /s, are: ky; = 0.0504, 1t; = 99.85 x 1076 kg/m/s for the
liquid phase, and £,y = 0.1939, us = 18.13 x 10~ kg/m/s for the vapor phase. k; is relative permeability,
w is fluid dynamic viscosity.

Table 3.3. Calculated averages for some parameters at the boundary between two zones.

Average

Parameter Pc Pg Pr Pa Pr Pw
Permeability

(m?) 12x 1075 32x107"% 15x10713 50x10783 83x10713 1.0x10712
Fluid density

(kg/m?) 673 559 569 590 463 527
Mobility

(m - s/kg) 593 1678 2115 3052 4750 3901
Porosity (ad) 0.06 0.11 0.12 0.15 0.22 0.23
Thermal cond.

(W/m/°C) Pga PgG Pwg Pp Ps Pwa
Two

components 1.84 1.42 2.22 2.53 1.77 2.74
Three

components 1.24 0.44 1.69 2.47 0.37 2.41
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Table 3.4. Some petrophysical properties of a M ¢—Nj, reservoir!).

Well Depth (m) @ (%) p (kg/m?) k (mD) kr (W/m/°C) ¢p (J/kg/°C)
H-18 1750-1753 14.7 2340 0.005 2.42 921.1
H-02 616619 19.7 2160 0.02 1.54 1046.7
H-19 1769-1771 11.5 2460 0.15 1.91 1172.3
H-26 1810-1813 4.5 2670 1.87 1.95 1004.8
H-24 2844-2847 12.7 2450 3.83 1.62 1046.7
Az-33 1350 12 2355 247.6 1.93 1165

H-28 1200 12.3 2430 101.3 x 103 1.99 1069

' The petrophysical data were measured in liquid saturated cores (p = 10 MPa, T = 25°C) using a
Terra-Tek device in the rock mechanics laboratory of the Mexican Institute of Electrical Reasearch—IIE
(Contreras ef al. 1990) The permeabilities in the last two rows of the table come from pressure tests. The
letter H-* denotes wells of the Los Humeros, while well Az-33 is in the Los Azufres reservoir.

properties were reported (Contreras et al. 1988): rock density, porosity (total and effective),
absolute permeability, rock compressibility, Young and Poisson modules, specific heat, diffusivity
and thermal conductivity. Table 3.3 contains the primary measurements and Table 3.4 shows some
averages calculated using these field data.

In Table 3.3 the parameter 6 is equal to 1 for permeability, 2/3 for density and mobility, and 8/9
for porosity and thermal conductivity with 2 components, rock and liquid. The three components
are rock, gas and liquid; the units are the same as those used in Table 3.2. It is noteworthy that each
formula gives very different results using the same data. For example, the permeability varies
from 1 mD for porous simple rock to 1 Darcy for completely fractured rock.

3.7 DISCONTINUITIES OF PARAMETERS WHEN CROSSING
HETEROGENEOUS INTERFACES

In multiporosity and multipermeability media, quantification of the fluid passing from one
medium to another, e.g. from the matrix to fractures, is a highly complex problem. To simplify
this analysis we assume a stationary flow of an isothermic liquid between medium V; and medium
V; through their common interface Sj; (Fig. 5.11). The parameter used to represent the interaction
between both media is g;;, the mass of fluid crossing each second, per unit volume of fractured
rock. Darcy’s law without gravity becomes:

_ Ky dpy Pijvx ~ _ Pijki Ap
x = =
Wi dx Ax Wii Ax Ax
Y (’ ) (3.25)
. ij Pij(pi — pj
if: gj=—25 = ;= oy
T a2 W=y

where pj; is the fluid density and p;; viscosity, both functions can be constant when crossing Sj;,
or they can represent averages between both media. Ax = d; + d; represents the distance between
one point inside the medium 7 at pressure p; and another point in medium ; at pressure p;. This
distance is a critical unknown variable, because a very small value can lead to discontinuities in
the flow parameters. In general o;; is a dimensionless constant that only depends on the geometry
of the boundary S;;. For example if medium i is a matrix block and medium j is a fracture, then
the effective permeability k;; should be interpreted as an average at the block-fracture boundary.
Equation (3.25) is the basic model of Barenblatt et al. (1960) and also implicitly contains the
discretization of the finite volume method for stationary flow (see chapter 5). If there is no
pressure difference, there is no flow and ¢;; = 0. If ¢;; > 0 is constant, then we can calculate the
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pressure in either of the two media. For example, if p; is known:
pj=pi——— (3.26)

Let us examine what happens when k;; is obtained from different averages in a tetra
porosity medium using real data from the Los Humeros geothermal field (Suarez 1995,
Table 3.3).

If the fluid is homogeneous and independent of pressure, then p;; and p1;; are constants. If the
fluid suffers thermodynamic changes from one medium to the next, then the same parameters are
discontinuous when crossing the interface and equation (3.26) is no longer valid. Let us compare
kjj values obtained with different averages. Typical data from the Los Humeros geothermal field
are: p; = 12 MPa, T = 320°C, p; = 669.3 kg/m>, j1; = 78.7 x 107 Pa - s, and the enthalpy
corresponds to compressed liquid: 4; = 1460.9 kl/kg; g; = 0.03 kg/s/m® (Suarez 1995). Let
Ax = 1 m be the distance previously defined. In this case, medium i is a matrix block with
microfractures, with &; &~ 10~!5 m?; medium is an intensely fractured zone close to a fault, with
ki ~ 10~'2 m?. Using equation (3.26) and the formulae from Table 3.1, we obtain the results
shown in Table 3.5.

Table 3.5. Values of the interporosity flow at the interface S,,;.

Formula ki (m?) Br /kqi (MPa) pi (MPa)
PgV 1.03 x 10713 3.422 8.58
Pc 2.00 x 10713 1.764 10.24
Pus 436 x 10713 0.809 11.19
PG 3.16 x 10714 0.112 11.89
PL 145 x 10713 0.024 11.98
Pw 6.67 x 10713 0.005 11.995

1 Note: With Budiansky’s formula we assume a volumetric fraction of fractures equal to 1%, Br = gnilt/p-

Table 3.6. Some petrophysical parameters from the Cerritos Colorados (La Primavera) geothermal field
(adapted from data of JICA 1989 and from Garcia et al. 1991V).

Well Depth (m) @ (%) o (kg/m?) kr (W/m/°C) ¢p (J/kg/°C) 87 (107 m?/s)
Pr-01 93 19.2 2170/1980 1.28 - -

Pr-01 912 21.1 2120/1910 1.09 - -

Pr-02 351 3.6 2340/2300 2.03 - -

Pr-02 670 19.4 1840/1650 0.64 - -

Pr-02 902 25.8 2120/1860 0.89 - -

Pr-02 1361 14.7 2260/2110 1.37 - -

Pr-021 1358 13.7 2056/2218 2.37/1.53 1.25/0.97 0.92/0.71
Pr-04 301 8.3 2300/2220 1.78 - -

Pr-05 201 5.1 2260/2210 1.87 - -

Pr-05 431 32 2210/2170 1.74 - -

Pr-11Y 1717 5.6 2605/2712 2.77/1.98 1.00/0.73 1.06/1.00
Pr-121 2300 5.6 2562/2647 2.97/2.51 1.09/1.03 1.06/0.92
Pr-13V 2000 5.6 2477/2554 2.34/1.85 1.11/0.88 1.11/0.82
RC-1 1717 23.1 2230/2000 1.08 - -

RC-1 2300 12.4 2540/2410 1.38 - -

RC-1 1502 14.8 2280/2140 1.35 - -

kr is thermal conductivity, c, is rock specific heat, §7 is thermal diffusivity. The underlined numbers indicate
that they were obtained in saturated rock.
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From Table 3.5 it becomes clear that the thermodynamic conditions of volume V; are extremely
sensitive to the type of average used to calculate the pressure p;. Assuming isothermal flow
when the fluid is crossing the interface, the first and second pressure falloffs correspond to an
abrupt phase change. The liquid becomes 100% steam with an enthalpy #; = 2710 kJ/kg and
pj = 63.6 kg/m?, its viscosity wi = 20.9 x 10=¢ Pa - s. If the flow is non-isothermal, the
Hashin-Shtrikman formula shows that only a slight decrement in the fluid temperature (~0.6°C)
is required to obtain two-phase conditions, because at 11.2 MPa, the saturation temperature is
319.4°C. Both thermodynamic states are frequently observed at Los Humeros geothermal field
(Suérez 1995).

As previously mentioned, if the fluid is homogeneous then p;; and w;; are constants. However,
if the fluid pressure suffers a sharp falloff when crossing the interface between media then both
parameters become discontinuous at the common boundary S;;. In this case, equation (3.26) is
only valid if appropriate averages are included for p; and w;;. Equation (3.25) also needs to
incorporate a different expression for the discontinuous permeability, which is a function of a
very small distance (x — x¢), where xg is the exact position of the common interface S;;. In terms
of distributions or generalized functions, its mathematical representation in one dimension is:

kij(x) = (kj — ki)H (x — xo) + k;
Hx—xp) =1, ifx>xp; Hkx—x9) =0, ifx <xg (3.27)

. ... dH(x
its derivative is: (X0) =

8(xo)

where H (x) is the Heaviside distribution. The data presented in Table 3.4 are an example of
the discontinuous nature of permeability in a M ¢—Nj real reservoir. In the case where the basic
equations require the derivation of a discontinuous permeability, it becomes necessary to explic-
itly use the Dirac distribution §(x) each time the permeability changes. This description proves
that the multiple porosity and permeability model provides flexibility and a solid theoretical-
practical framework to improve both, the analysis of pressure tests and the numerical simulation
of heterogeneous reservoirs.

3.8 EXAMPLES OF HETEROGENEOUS NON-ISOTHERMAL
AQUIFERS—PETROPHYSICAL PROPERTIES IN MEXICAN
GEOTHERMAL FIELDS

Over a number of years, measurements have been made of the petrophysical properties of
cores extracted from wells of the Los Azufres (Michoacan), Los Humeros (Puebla) and
Cerritos Colorados (formerly La Primavera, Jalisco) geothermal reservoirs in Mexico. A number
of parameters were measured: rock density, effective porosity, thermal conductivity, compress-
ibility and specific heat. To illustrate the physical parameters described above, these data are
presented in Tables 3.6, 3.7 and 3.8 following descriptions of cores from these non-isothermal
aquifers (for more details about these geothermal reservoirs see section 9.1).

3.8.1 Cerritos Colorados (La Primavera), Jalisco

The cores in this geothermal field were collected from seven wells. The effective porosity of
the cores was variable, but most had high values for this parameter. Thermal conductivity is
proportional to density. Thus highly dense rocks with low porosity have high thermal conductivity.
In general, high porosity (>10%) was observed in rocks located above a depth of 1000 m, with
few exceptions. Below a depth of 1500 m the measured effective porosities were generally lower
with an average value of 6%.

Diffusivity, thermal conductivity and specific heat were measured in four different cores
(Table 3.6). Measurements were made in both, dry and water-saturated rock at pressure and
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temperature at atmospheric conditions (0.1 MPa and 25°C). The higher values of thermal conduc-
tivity were recorded in cores from deeper parts of the reservoir, exhibiting larger rock compactation
and smaller porosity. The rock thermal diffusivity values, in dry and saturated rock, were very
close to 10~° m?/s; rock specific heat values were around 1 J/kg/°C (Table 3.6).

General characteristics of Cerritos Colorados (La Primavera) geothermal reservoir:

Average reservoir pressure = 12.0 MPa Average temperature = 304°C
Initial natural state = compressed liquid Maximum temperature = 355°C
Electric capacity = 125 MW, Minimum volume = 6 km?

3.8.2 Los Humeros, Puebla

In 1988 the petrophysical properties of cores taken from wells of the Los Humeros, Puebla geother-
mal field were examined (Contreras et al. 1990). Eighteen cores from 15 wells were divided into
39 fragments for analysis. The range of depth was 616 to 2848 m. The measured parameters were
rock density, porosity, absolute permeability, compressibility, module of elasticity, specific heat,
thermal conductivity and thermal diffusivity. These properties were measured in dry rock and in
water-saturated rock at the ambient temperature of 25°C. The confining pressures were 10.0, 25.0
and 40.0 MPa. An important conclusion from these data is that the big problem at Los Humeros
is not permeability nor porosity, but perhaps insufficient water which, for unknown reasons, the
system was unable to retain in its geological past. From the geochemical data, it may be deduced
that there is no longer a significant entrance of liquid. This system can be classified as a one with
relatively little stored water.

Table 3.7 shows the measurements reported for saturated rock. Additionally, arithmetic aver-
ages of the effective measured values in the different fragments composing each core are given.
The averaged absolute permeability is given separately for matrix blocks and fractures, respec-
tively. The values correspond to arithmetic averages of the effective measured values in the
different fragments composing each core.

Table 3.7. Some petrophysical parameters from the Los Humeros geothermal field (data adapted from
Contreras et al. 1990).

Well Depth (m) @ (%) p (kg/m?) k (mD) kr (W/m/°C) ¢p (Jkg/°C)
H-2 616619 19.7 2160 0.019 1.54 1046.7
H-4 907-910 19.4 2240 0.086 1.96 1046.7
H-10 1469-1473 6.1 2620 0.026 1.61 1088.6
H-10 1825-1830 6.5 2550 0.008 2.29 963.0
H-15 1410-1412 5.2 2520 0.001 - -
H-17 2227-2230 20.5 2600 - 2.74 1214.2
H-18 1750-1753 14.7 2340 0.005 242 921.1
H-19 1769-1771 11.5 2460 0.147 1.91 1172.3
H-20 1403-1406 15.8 2270 0.059 2.19 1046.7
H-22 663—-666 18.1 2250 0.096 1.96 1088.6
H-22 1110-1113 9.1 2460 0.001 - -
H-23 1924-1927 139 2370 1.252 1.82 1088.6
H-24 2297-2300 11.6 2370 0.070 2.14 11304
H-24 2844-2847 12.7 2450 3.829 1.62 1046.7
H-25 1710-1713 4.1 2760 0.001 - -
H-26 1810-1813 4.5 2670 1.873 1.95 1004.8
H-27 1500-1503 10.1 2400 0.145 1.89 1130.4
H-29 1200-1203 18.4 2250 0.334 1.86 1046.7
Averages - 12.3 2430 0.071™ 1.99 1069.0
2.3189

™) in matrix blocks.
D in fractures.
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General characteristics of the Los Humeros geothermal reservoir:

Average reservoir pressure = 12.5 MPa Average temperature = 310°C
Initial natural state = compressed liquid Maximum temperature = 400°C
Estimated electric capacity = 75 MW, Minimum volume = 19 km?

3.8.3 Los Azufres, Michoacdn

Examination of the petrophysical properties of cores from the Los Azufres reservoir was per-
formed in 1988. Data were collected for 24 cores from 18 wells. A single measurement of
diffusivity and specific heat was made at well Az-19: thermal diffusivity is 0.66 x 10~ m?/s,
and specific heat = 1165 J/kg/°C, at 250°C and 8.0 MPa. The measurements were performed in
the Terra Tek laboratory of rock mechanics (Contreras et al. 1988). The petrophysical data are
presented in Table 3.8.

General characteristics of Los Azufres geothermal reservoir:

Average reservoir pressure = 9.2 MPa (N), 10.0 MPa (S)

Average temperature = 301°C (N), 311°C (S)

Initial natural state = liquid (N), two-phase (S)

Maximum temperature = 360°C (S)

Estimated electric capacity = 300 MW, (N), 200 MW, (S)

Minimum volume = 49 km? (N), 23 km? (S)

(N and S stand for northern and southern part of Los Azufres geothermal field, respectively).

Table 3.8. Some petrophysical parameters from the Los Azufres geothermal field (data adapted from
Contreras et al. 1988).

Well Depth (m) @ (%) o (kg/m?) k (mD) kr (W/m/°C) ¢p (J/kg/°C)
Az-01 1825.0-1829.6 2.6 2720 0.0010 - —
Az-03 600.0-605.5 14.8 2300 0.0035 1.68 -
Az-03 1874.0-1880.0 13.2 2560 0.1773 1.84 -
Az-03 2117.0-2119.7 2.1 2740 0.0013 1.99 -
Az-04 1000.0-1000.5 12.6 2430 0.0018 1.56 -
Az-05 600.0-600.5 232 2080 0.0017 1.17 -
Az-05 1160.0-1165.0 11.9 2380 0.1513 - -
Az-08 800.0-804.0 7.8 2590 0.1235 2.34 -
Az-09 1705.0-1710.0 2.6 2660 2.224 - -
Az-10 1004.0-1005.0 4.7 2660 0.0013 - -
Az-19 1000.0-1005.0 15.5 2290 0.015 1.97 1165
Az-20 650.0-654.5 13.1 2260 0.0018 1.58 -
Az-20 1600.0-1603.0 4.7 2660 0.0015 1.71 -
Az-22 800.0-805.0 9.9 2450 0.0017 2.17 -
Az-25 671.0-675.0 14.5 2300 0.0018 1.75 -
Az-26 596.0-601.0 2.6 2610 0.0020 2.20 -
Az-26 1002.0-1007.0 10.4 2410 0.4010 1.55 -
Az-29 400.0-402.0 20.1 2070 0.0410 1.05 -
Az-29 2496.0-2496.2 0.7 2810 - - -
Az-41 600.0-605.0 16.3 2360 0.0013 - -
Az-46 802.0-805.0 7.4 2510 - - -
Az-47 2962.0-2964.0 2.1 2760 0.0020 1.89 -
Az-48 2678.5-2684.5 1.0 2840 - - -
Az-50 1133.0-1136.0 8.9 2470 0.0100 1.52 -

Averages - 9.3 2500 - 1.75 1165




CHAPTER 4

Fluid flow, heat and solute transport

“My first attempt to get at the transient problem was to take Thiem s equation for
confined conditions, apply it to the ground-water body with a free surface, and
imagine that the water withdrawn from storage was miraculously conveyed to the
outer rim of the Thiem's cone and percolated from there to the well. I could then
compute the volume of this Thiem s cone, multiply it by the specific yield as I then
called it, equate this to the rate of pumpage times the time and, of course, get an
equation for the external radius of the Thiems cone in terms of time. This can
be then substituted for the value of the external radius in Thiem's equation. What
you get is a transient equation which is the same as the present non-equilibrium
equation, excepting that the well function of u contained only the log term.
The constant and the long power series were missing.”

Henry Darcy (1803-1856)*

4.1 THE CONSERVATION OF MASS FOR FLUIDS

The total fluid mass in a porous volume can be computed using its density distribution, as it was
done in section 2.1.3; in any differential porous volume dVe:

fluid mass in dVo: dMy = prdVeo =@ prdV = My = /(ppf(?, Hdv
Vs 4.1

7 = (x, y, z) is the position vector of a fluid particle in Vo = ¢Vp; t > 0.

This equation presupposes that the pore fluid density depends on both space and time. If the
mass of the fluid is conserved, it must remain constant under motion. Thus, the advective or total
derivative (eq. 2.4) of the previous integral (4.1) is zero (eq. 2.6a):

DMy D - Aepr) ¢ 5
o Dt/(ﬂpf(”,f) /( o TV @ervp) (4.2)
VB Ve

This equation is the integral form of the principle of conservation of fluid mass in a porous
rock, valid for any part of the rock continuum. Vector 17f = (Vx, vy, v7) is the field velocity of the
fluid particles. Figure 4.1 shows a schematic representation of a differential porous rock volume
with bulk modulus 3 and pore volume V. The volume Vp can be any arbitrary portion of the
porous rock. For example let V'p be a differential volume (REV) Vp =~ dV, consequently the
continuous integrand of equation (4.2) must be identical to zero:

3¢ pr)
ot

= - D(y pr) =
TV @pr ) = =T+ 0V - =0 (43)

* Source: Robert R. White and Alfred Clebsch: C.V. Theis: The Man and his Contributions to Hydrogeology.
In: Selected Contributions to Ground-Water Hydrology by C.V. Theis, and a Review of his Life and Work,
US Geological Survey, Water-Supply Paper 2415, 1994.
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Figure4.1. Differential volume d¥ and surface dS of a simplified porous rock; v is the field velocity of
the fluid particles.

Formula (4.3) is also known as the continuity equation for the fluid, which expresses the
same principle of conservation of mass in the form of a partial differential equation. Under
appropriate conditions, this law can be related directly to the volumetric deformation of the fluid
(see section 2.1.3 for further details):

D(g pr) S - . —1D(ppy)
D @eor)V-vy = U=y o =M
-V D g D DVy 1 (DVy
Y % — _V/,i(Vf)—l =V V*27/ _ (=
¥My Dt \ Vy Dt "\'/ Dt vy \ Dt
Therefore:
. AVy o - iy SN 1 (DVy Deys
th: = —=V. = 2 V. - | L) =2 4.4
with: &f 7 ur, v ” = vr 7 < D Dy 4.4)

Hence, the divergence of the fluid velocity is equal to the rate of change of the fluid volume
Vy. The variable &f is defined as the volumetric deformation (dilatation or compaction) of the
fluid phase. If the fluid and the porosity do not change with time:

(e pr)

=0 = V. (@pri) =0 (4.5)

If the fluid is incompressible and the porosity is constant:
porV-Gp)=0 = V. =0 (4.6)

All previous equations are different forms of the same principle of conservation of fluid mass.
The last formula (4.6) is the simplest form of the continuity equation. If there is extraction or
injection (gy) of fluid mass in one or more parts of the reservoir:

/ <@ +V-(ppr m)w = /W, ndv
Va Vg (47)

Ippr) | = - kg
oo —ar | &
a5 TV e =g 5
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where g represents the volumetric extraction of fluid from the reservoir (sink or well: gr < 0) or
the injection of fluid into the reservoir (source: gy > 0) at the specific locations where the wells
are drilled.

4.2 GENERAL MODEL OF FLUID FLOW: THE NAVIER-STOKES EQUATIONS

In 1822, Claude Louis Navier, a great French mathematician and engineer, introduced the influ-
ence of viscosity in fluid flow equations. In 1845, the British mathematician and physicist George
Gabriel Stokes (Fig. 4.2) derived the same equations in a form similar to what we use today. Since
then, the Navier-Stokes equations have been used to solve fluid flow problems in many branches
of science and engineering. These equations have proven to be among “the most challenging of
all the partial differential equations that arise from physics” (Brodkey 1967). They incorporate
friction effects inside the fluid, so they are physically more realistic than the Euler equations used
before 1822.

The Navier-Stokes equations describe the general flow of real, viscous fluids. They originate
from the combination of the fundamental law of fluid dynamics and the viscous forces in New-
tonian fluids. They are constructed in the following way. We first define the main functions and
coefficients acting on the fluid: o is the stress tensor, Ay and py are the coefficients of fluid
viscosity, p is fluid pressure and Dy is the symmetrical tensor of spatial changes of fluid velocity.
The behavior of a Newtonian fluid is defined by the following equations (Germain 1973):

tensorial form: 6 = —p I+ A¢ Dy, 1+ 2 us D,

components form: oj; = (—p + Ay Dy, )8; + 2 jy Dy 3)

D 1 /v n av; D oVy . vy 4 v, 9.5
L= = _— — 1, = — —_— —_— = -V
T2 oy o T ox gy oz 4

where A is the viscosity of dilatation (or compression) and 11 is the shear fluid dynamic viscosity.
The composed coefficient Ky = As+2uy/3 is the bulk modulus of the fluid or volumetric dynamic
viscosity. The three coefficients have units of [1 Pa-s = 1 kg/m/s = 1 g/cm/s = 1 Poise]. The
fundamental law of fluid dynamics is:

- -

pra=V-o+F (4.9)

where vector a is the acceleration of fluid particles and F is the external vectorial force applied
to the fluid (see section 2.2.10). Computing the divergence of the tensor ¢ in equation (4.8) and

Figure4.2. Left: scientist and engineer C. Navier (2/10/1785-8/21/1836). Right: Sir G. Stokes
(8/13/1819-2/01/1903).
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replacing the result in equation (4.9) we obtain:

tensorial form: pra = F— 6}) + O+ ;/,f')%(% Vp) 4y Avr
ap 3Dy, 3% v

components form: pr a; = F; — — + (Ar + pur) +ur—
ox; ax; 0 X;

where the vector of the Laplacian operator is: Ay, = V. %T{f = V2,

(4.10)

This tensorial form is equivalent to a group of three scalar equations in component form
(i = 1, 2, 3) and are known as the Navier-Stokes equations. They can be applied to the description
of flow of any viscous fluid, in any medium, including the pores network of reservoir rocks. The
shear dynamic viscosity 1y measures the fluid resistance to flow. The dynamic viscosity of liquids
decreases with pressure at constant temperature, but it depends less on pressure and much more
on fluid temperature. For example, for water at 250°C and 15.0 MPa, pus = 109 x 107 Pa-s; at
the same temperature and 4.0 MPa, ur = 106 x 107 Pa - s; while for the same fixed pressure
of 4.0 MPa and at 50°C, us = 548 x 107 Pa - s (Fig. 4.3). The dependence of f4f On pressure
is noticeable only when p reaches large values, for example in reservoirs at more than 2000 m
depth.

The bulk dynamic viscosity A measures the resistance of the fluid to be compressed or dilated.
Experimentally it was found that for different fluids Ay > Ois always true (Truesdell 1963); A, = 0
only if the fluid compressibility is completely negligible, as is the case of cold water. In general
Ar > s and the quotient A/ iy is larger in gases and lower in dense liquids. For water the experi-
mental range is 1 < Ay/us < 3. For gases this quotient is much larger; for example As/ s ~ 103
for CO; at atmospheric conditions (Truesdell 1963). For the case of water in cold aquifers, at
25°C and 2.0 MPa, uyr = 890 x 107° Pa - s and Ar A 2600 x 107% Pa - s. For the case of
geothermal systems, at 250°C and 20 MPa the shear viscosity of liquid water is py = 110.4 x
107% Pa - s. At these conditions the corresponding value of its bulk dynamic viscosity is
Ar A 330 x 107¢ Pa - s. For the steam phase at 300°C and 1.0 MPa, the shear viscosity of
vapor is s = 20.2 x 1079 Pa - s; and at the same temperature and 8.5 MPa, s = 19.7 x 10~
Pa - s. Figure 4.3 shows the dependence on temperature of the shear viscosity of both phases of
water. Notice that close to the critical point of water (374.15°C, 22.12 MPa) the viscosity of both
phases tends to collapse to the common value of 47 x 107 Pa - s. The Euler equations are for
non-viscous fluids, because they neglect the effects of fluid viscosity. These classic equations are
included in the Navier-Stokes system as a special case (A = s = 0). Therefore, a solution of
the Euler equations is only a coarse approximation of the real fluid flow problem.
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Figure4.3.  Shear dynamic viscosity uy for two-phase water.
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um/s

320 um

Figure4.4. Groundwater flow at porous scale using Navier-Stokes equation. The velocity field plot shows
the velocities relative to the inlet velocity within the studied section. The modeling is based
on the data provided by COMSOL-Multiphysics® software model library (COMSOL 2008c;
courtesy COMSOL AB).

4.2.1 Flow of fluids at the scale of the pores

Average approximations of porous flow produce estimates that are sufficient when considering
flow over large areas (macroscopic approach on field scale). However, the approximations miss
the microscopic flow details between grains and pores. These details can be very important to
understand several phenomena, such as permeability reduction, plastic deformations, or testing
the best correlations for relative permeabilities and capillary pressure. These nuances are mod-
eled with equations (4.10). Recent experiments have been made to model the real flow at the
scale of the pores (Fig. 4.4) using the Navier-Stokes equations (e.g., Auset and Keller 2004,
Auset et al. 2005, Keller and Auset 2007). To illustrate this procedure, we present the graphical
results of a numerical model solved with finite elements using COMSOL-Multiphysics® soft-
ware (Version 3.5; Comsol 2008a). This numerical technique will be introduced in chapter 5
(section 5.2). This non-conventional model of porous flow uses a simplified form of the Navier-
Stokes equations (4.10) in two dimensions. This model results from pore-scale flow experiments
conducted by Auset and Keller (2004). This type of modeling with finite elements is shed-
ding new light on the movement of real fluids through variable-pore geometries. To produce
the model geometry, the authors scanned electron microscopic images of thinly sliced rock
sections (Fig. 4.4). The entire model covers 640 x 320 pm (=0.2 x 107% m?). The mesh
representing this microscopic region contains 15,130 triangular elements. Incompressible, isother-
mal water moves from right to left across the geometry of the pores. Flow is laminar in the
pores and does not enter the grains. The inlet and outlet fluid pressures are known. The flow
is symmetrical at the top and bottom boundaries. The water has constant density in the pore
spaces and the corresponding continuity (4.6) and Navier-Stokes (4.10) equations are applied.
Because of the dimensions of this small scale example, micro-units are used: dynamic viscosity
wr(ng/(um - s)), fluid velocity (um/s), fluid density (ng/pm?) and pressure (ug/pm - s).
The model does not include gravity effects. Velocities are zero at the grain boundaries, which
have a non-slip condition. Figure 4.4 shows the obtained solution predicted with a Navier-
Stokes analysis for relative velocities in the pore spaces of a micro-scale porous medium.
The water velocities are higher (50-70 pwm/s) in the narrow pores with high-pressure drops.
The fluid velocities tend to decrease (0—30 pwm/s) in wider sectional areas and close to grain
boundaries.

4.3 DARCY’S LAW: PRESSURE AND HEAD

In porous rocks, the real flow of fluids occurs at a microscopic level, through a tortuous trajec-
tory and complex mesh of interconnected pores and fissures of different dimensions (Fig. 4.4).
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To apply the Navier-Stokes equations at the microscopic scale of the pores in all problems of
underground flow is neither appropriate nor practical. The main problem is the amount of cal-
culus involved and the lack of corresponding data. For example, if we use 15,130 elements to
represent 0.2 x 10~® m? of rock, we will need a mesh composed of 75,650 x 10° triangles to
simulate only one m? of microscopic porous material. In most practical situations, it is preferable
to use a simpler classical equation describing the effective average speed of flow in the porous
rock. This macroscopic approach does not take into account the real geometry of the pores as in
the previous section (Bear and Bachmat 1984).

It is typical to represent fluid flow in the pores as a continuum process using average volumetric
properties rather than detailing the geometry of the solid particles in the porous medium. When
inserting the adequate bulk parameters into an appropriate equation, it is possible to obtain
average flow properties to understand the global phenomenon. Between 1855 and 1856 the French
engineer Henry Philibert Gaspard Darcy (Fig. 4.5) made the first specific porous-flow studies
and conducted experiments of water flow in a vertical homogeneous sand filter. Darcy’s law is
an experimentally derived equation that describes the flow of fluids through a porous medium.
With his experiments, Darcy (1856) estimated the average velocity of the underground flow
of the fountains of the city of Dijon in France. This law can be also derived from the Navier-
Stokes equations. Darcy’s law along with the equation of conservation of mass forms the main
groundwater flow equation, one of the basic relationships of hydrogeology. It is analogous to
Fourier’s law in heat conduction, or Fick’s law in diffusion theory. Darcy’s law is commonly used
to describe the flow of water, oil and gases in aquifers, in petroleum and in geothermal reservoirs.
Darcy’s law contains the scientific definition of permeability k£ used in reservoir engineering.
It is a proportional relationship between the instantaneous discharge rate Oy through the flow
cross-sectional area 4 [m?] of a porous medium, the viscosity of the fluid and the pressure drop
(p2 — p1) over a given distance L:

S

oy =271,
Hf X2 — X1

ke p2 — p1 [m3] @i

where Qy is the volumetric discharge (volume of water per second) and L = x, — x is the length
of space over which the pressure drop is taking place. The negative sign is because water always
flows from high pressure zones to low pressure regions. Dividing both sides of equation (4.11)
by the area and using a compact notation equals:

e A ke 9
&=Vf= x 2P x OP [m] (4.12)
A ’ wy Ax Wy 0x

Figure4.5. French scientist Henry Darcy (06/10/1803—01/3/1858).
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where vy is called the Darcy flux, or volumetric discharge per unit area, or Darcy velocity, or
seepage velocity; and Ap/Ax = Vx p is the pressure gradient vector in one dimension. This flux
is not equal to the microscopic velocity of water traveling through the pores. The real microscopic
velocity is given by the Navier-Stokes equations (4.10). The Darcy flux is an average flow velocity
that occurs only through one portion of the cross sectional area 4 of the porous column. The solid
grains occupy the remaining part of 4. The portion of the area effectively available to flow is
@A (Bear 1979). Thus, the relation between the average pore velocity v4 of the fluid through the
porous column and the apparent discharge is v/ = ¢v,4. The Darcy flux is divided by porosity
to account for the fact that only a fraction of the total formation volume is available for flow.
Darcy’s law is an expression of conservation of momentum when the kinetic energy of the fluid
is neglected. In three-dimensional space, gravity must be accounted for, because the vertical
pressure drop caused by gravity affects the flow. In this case Darcy’s law for a single-phase fluid
in an anisotropic porous medium of permeability tensor K is:

1 S
V= ——K-(Vp—pr8)
’f s 18

Ve | [k 0 0 Ap (4.13)
vr=|w|=-——|(0 kK o] dp
Vz Ky 0 0 k 9:p — rrg

The symbol K is the tensor of absolute permeability at any point (x, y, z) of the porous medium,
g is the acceleration of gravity in the same direction of the Earth’s radius. The validity of Darcy’s
law has been tested in many experiments and has shown itself to be accurate for a wide domain
of flows (Scheidegger 1974).

Equation (4.13) is also valid for two-phase flow; for example, in the case of water, subindex f
represents the liquid phase ( /' = /) or the vapor phase ( f = v). It is useful to define the vectorial
flow of fluid at each point (x, y, z) flowing through a differential area dS surrounding a differential
volume dVp of any fractured porous reservoir (Fig. 4.6). This flow vector is equal to the quantity
of mass passing every second through the unit area and is valid also for non-Darcian flows:

- - k;
FM1 = prvr |:7gi| (4.14)

Microfracture

Figure4.6. A differential volume dV'p of a porous fractured rock.
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4.3.1 Pressure formulation of the general groundwater flow equation

In porous rocks, the real flow of fluids occurs at a microscopic level through tortuous paths.
Equation (4.14) defines the momentum of the fluid, per unit volume of porous rock. The principle
of conservation of the fluid mass (section 4.1) is:

e The instantaneous rate of change of the fluid mass flowing in a differential volume dVp of
porous rock is equal to the total flow of mass through the differential surface dS surrounding
dV, plus the extracted or injected rate of fluid in dV3.

This principle is expressed symbolically as the continuity equation (4.7) for the fluid inside
each differential porous volume (REV) dVp:

9 ..
5((/7 or) ==V -Fy1+qy (4.15)

where g [kg/m>/s] is the volumetric fluid production (<0) or injection (>0) rate in dV'z. Each
term in equation (4.15) has units of [kg/s/m>]. The continuity equation, including Darcy’s law, is:

kg a - P - -
[ ]—> af(wpf)—qf=V~<'iK(Vp—pfg)>
t 2%

m3s
a kx 0 a -k, @ a k. (9
zaf</’f v£>+7(m7p>+7(ﬂf : (ﬁ_pfg»
x \ ur Ox ay \ ur dy 0z \ puy \0z

This partial differential equation is called the groundwater flow equation; it is the pressure
formulation of the fluid flow because p is the only variable. The fluid density is computed as a
function of p and T (see section 2.3). Equation (4.16) is used in hydrogeology, in petroleum and in
geothermal reservoir engineering to describe groundwater flow through aquifers and the flow of
oil and gas in hydrocarbon systems. Its mathematical form is similar to the heat diffusion equation.

(4.16)

4.3.2 Darcy’s law in terms of hydraulic head and conductivity

The original form of Darcy’s law was published for the first time in 1856 in terms of hydraulic
head difference and hydraulic conductivity Ky. This rock property describes the ease with which
a fluid can move through pore spaces or fractures. It depends on the intrinsic permeability of the
material and on the physical properties of the fluid.

Darcy’s law in terms of hydraulic head is a simple proportional relationship between the
instantaneous discharge rate through the porous medium, its hydraulic conductivity and the head
difference (hy — h1) over a given distance L = zp — z;where the head drop occurs (Fig. 4.7); 4 is
also called the piezometric head:

hy—h m3 Al m
oy = —Ky 22—y [—] o Y_, _ g, [—] 4.17)
Zp — 2] S A Az S

where Oy is the water total discharge (volume of water per second), A4 is the cross-sectional area
to flow, L = zp — z; is the length and v; is the Darcy’s velocity. The negative sign indicates that,
under the action of gravity, water always flows from the high head to the low head. Expressed
in words equation (4.17) simply states that v, is proportional to the hydraulic gradient Ah/Az.
Hydraulic conductivity K is the proportionality constant in Darcy’s law, which relates the amount
of water that will flow through a unit cross-sectional area of an aquifer under a unit gradient of
hydraulic head. It is analogous to the thermal conductivity of materials in heat conduction (eq. 2.9).
The hydraulic conductivity Ky is specific to each fluid, water, oil, air or other gases. Intrinsic
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Figure4.7. Simplified scheme of the original Darcy’s experiment using water flowing inside a vertical sand
filter in a column maquette.

permeability k is a parameter of the porous rock, which is independent of the fluid. These two
parameters are related through the following equation deduced from Darcy’s law:

Ah 3
hydraulic conductivity: Qy = —KHAA—, Ky [E] , Or [m71| )
z s s

kA A
permeability: Oy = ———p, k [mD = 10_15m2] , p=prgh

wy Az ’

Ky A A A
= Ap=prgAh = &:1:7H>1 ﬁllf X
Oy kX DX pr g AR
= Ky = %k in tensorial form: | Ky = %K (4.18)
M Hmr

For example, Kx will rise if the water in a porous medium is heated because this reduces the
water viscosity (the related decrease of fluid density, which contributes to an Kz decrease, is
lower than the effect of viscosity decrease), but k£ will remain constant. Permeabilities can be
calculated from hydraulic permeability for any condition using equation (4.18). Let us take for
example Ky ~ 10710 m/s for massive igneous and metamorphic rocks, and K ~ 1072 m/s
for clean sand and gravel. Then, using formula (4.18) the corresponding values of k for water
at 30°C (py = 997.8 kg/m3, py = 796.9 x 1076Pa - 5), are k ~ 1077 m? (0.01 mD) and
k ~ 107° m? (10° mD), respectively. There is a large range of values for hydraulic conductivity
and permeability in different rocks, some examples for principal rocks are listed in Table 4.1.

Bernoulli’s theorem expresses the conservation of mechanical energy in incompressible moving
fluids. Hydraulic head and fluid pressure are related through the total mechanical fluid energy
equation when the fluid kinetic energy is neglected in the aquifer and the groundwater velocity
is very low:

~ 0

_3 (L) s,
Pr8

1 .
Epr} +p—prgz=prgh if
(4.19a)

< w15

= prgh=p—prgz, and:
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Table4.1. Ranges ofhydraulic conductivity Ky and permeability & for principal rocks and organic materials.
The values are valid for cold freshwater with values of viscosity and density of groundwater at
20°C and 0.1 MPa (modified from Bear 1972).

K, (m/s) 100 [10 [ 102 [ 102 [ 10# | 10 [ 10 [ 107 [ 10¢ ] 107 [ 10 [ 101 | 102

Relative pervious semi-pervious impervious

permeability

Unconsolidated  |well sorted | well sorted sand very fine sand, silt,

gravel sand gravel | or sand & gravel loess, loam

Unsolidated clay, peat layered clay fat/unweathered clay

organic materials

Consolidated highly fractured rocks oil reservoirs, fresh fresh fresh

rocks convective sandstone | limestone, granite
geother. systems dolomite

k (millidarcy) = | 108 | 107 | 10° | 10° | 10 | 10® | 10> | 10" | 10° | 10 | 102 | 10 | 10

k (m?) 10710 | 10 | 107" 107"| 107'2| 1073| 1074 107*3| 107'¢ | 1077 | 1078 | 107"

The coordinate z is positive downwards (e;) and therefore —z is the elevation above the reference
level or datum (Fig. 4.7); p is the fluid pressure at that point. Therefore, the hydraulic head, as a
function of space and time, is defined as:

hGe,y, 2, ) = 2= —2 (4.19b)
org

Darcy’s law can be written in terms of hydraulic head and hydraulic conductivity using equation
(4.19b). We assume that the vertical coordinate z is positive in the direction of gravity. Suppose
first that the fluid density is constant; combining equations (4.18) and (4.19b) and replacing both
in equation (4.13):

. 1 , . Vp—prge: =
K:ﬂKH = Vf:——ﬁKH'(Vp—pfgez), and w:Vh
or& My pr& ‘ or&
= |% =-Ku-Vh (4.20a)

In one (vertical) dimension, equation (4.20a) is the original relationship published by the
engineer Henry Darcy in 1856. However, this formula is not valid when the fluid density is
variable. The general form of Darcy’s law in terms of hydraulic head and hydraulic conductivity
for variable fluid density is deduced directly replacing equation (4.19) into equation (4.13):

-

K - . K - K -
r=——" (Vlprgh+2]l—prgé)=—prg— Vh+z —(h+2g—-Vpr
1y 1y 1y

K - - -
+— - prgé = —Ku-Vh—(h+2 K- Vpy
" m

R _h ;
= ¥ =—Ky Vi- %KH Vo (4.20b)

4.3.3 The hydraulic head governing equation of groundwater flow

A groundwater flow equation similar to (4.16) for the hydraulic head /4 can be deduced introduc-
ing two other hydraulic variables: storativity (or storage coefficient) S [ad] and transmissivity
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T, [m?/s] (see next subsection). In order to interpret and implement these concepts it is necessary
to understand the different types of existing aquifers.

Aquifers may be classified as confined or unconfined reservoirs, depending upon the absence
or presence of a free water table (Bear 1979):

e A confined aquifer, also known as a pressure aquifer, is one bounded from above and from
below by impervious formations. A unconfined aquifer, also called phreatic aquifer or water
table aquifer is one in which the upper boundary is the phreatic surface or free water table.
A phreatic aquifer can be directly recharged from the ground surface above it. An artesian
aquifer is a confined aquifer where the elevations of the piezometric surface is above ground
surface. A well in such an aquifer will flow freely without pumping. Aquifers, whether confined
or unconfined, that can lose or gain water through either or both of the semi-permeable rock
layers bounding them from above or below, are called leaky or semiconfined aquifers.

4.3.3.1 Storativity and transmissivity
The storativity is the volume of water V,, of an aquifer released from or taken into storage, per
unit area A4, per unit change in the hydraulic head 4:

S = j—h <%) & AV, =SAhy —hy) (4.21a)

The storage coefficient S [ad] is a concept that can have different meanings depending on the
nature of the reservoir. In an unconfined aquifer, assuming that neither the water nor the rocks
are compressible, the storativity is equal to the effective porosity of the rock (Scheidegger 1974,
Bear 1979) and is equal to the rock specific yield, which is the storage or release of water without
retention, representing the effective pore volume that supplies water to the wells. Unconfined
aquifers have storativity or specific yield, greater than 0.01. Typical values of S for phreatic
aquifers are between 0.05 and 0.3 (Kresic 2007). This type of aquifers release water from storage
by the mechanism of actually draining the pores of the aquifer, releasing relatively large amounts
of water.

In confined aquifers, the storativity depends entirely on the elastic properties (compressibil-
ity and expansivity) of the fluid-rock system (section 2.2.6). Confined aquifers have very low
storativity values, lower than 0.01. Their typical values are between 10~> and 1073 (Kresic
2007). These small values indicate that the skeleton expansion and the compressibility of
water are the main mechanisms of storing water in the reservoir. Both coefficients have typ-
ically quite small values. The value of storativity obtained for example from an aquifer test
(section 4.5; see also chapter 6.7.2.4) can be used to determine if an aquifer is confined or
unconfined.

Transmissivity [m2/s] is the horizontal water flow rate per unit width through the entire average
thickness b, [m] of the aquifer per unit hydraulic gradient (Bear 1979). In mathematical terms:

by
Ty(x, y) = f KuGr,y)db=Kyba < AT, =Ku(ba—b)  (421b)
by

where Ky b, is an average product defining the average transmissivity. Transmissivity measures
the amount of water that can be transmitted horizontally, such as to a pumping well; it appears
only when the flow through the entire aquifer average thickness b, is considered. For a confined
aquifer, transmissivity remains constant in time at a specific point (x, y), as the water-saturated
thickness remains constant. The aquifer thickness of an unconfined aquifer extends from the base
of the aquifer to the water table. The water table can fluctuate as a function of time, changing
the transmissivity of the aquifer. This concept is valid only in two-dimensional (horizontal) flows
where it is generally applied to confined aquifers; in three-dimensional aquifers, the transmissivity
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concept is useless. If the aquifer is anisotropic, the transmissivity Ty is a tensor corresponding to
the tensorial nature of the hydraulic conductivity Ky (see eq. 4.23a).

Another useful related concept is the specific storage (or specific storage coefficient) S, [m~1]
of confined aquifers, defined as the volume of water released or stored by unit volume of porous
rock per unit area. The specific storage is due to the unit change in the component of hydraulic
head normal to the aquifer surface (Kresic 2007). In more simple terms, Sy, is the storativity per
unit aquifer thickness. We give two mathematical expressions:

S =Sypbs and Sy = prg(Cp+9¢Cp) (4.21¢)

where Cp is the aquifer compressibility (eq. 2.24d) and Cy is the water compressibility given
by equation (2.40b). We assume that the aquifer porosity is constant, and that the fluid density
depends only on pressure. Using the definition of fluid compressibility, equation (4.15) becomes:

opr dp op > S
T e Cr = eV 422
ot G =V vty (4.222)

a
¢ or ) =9
We assume negligible both the changes in the fluid density and the aquifer elastic storativity
term (pr g Cp) of Sy, in equation (4.21c). From the relationship (4.19b) between pressure and
hydraulic head and from Darcy’s law (eq. 4.20a), we obtain:

ap dh oh -
oprCro =@ CGre)oro =Sppror ==V -vrtar

oh 5 > 3]
Syt G @+ L, g =L [T
P ot Ry of of s m3

In this way, we can build another general equation that controls the transitory groundwater
flow in porous, anisotropic and heterogeneous rocks:

} (4.22b)

Kuy 0 0 tensorial form: V - (Kqg - %h) = SSPE —qy
Ky = 0 Kuy 0 s (4.23a)
0 0 Ky s f ad % dh S oh
components form: — ) =8,— —
‘ P o\ x; P 1

Considering all the hypotheses we have set, the three-dimensional partial-differential equation
(4.23a) of groundwater flow becomes:

O (ke Y 4 2 (ki Y 4 2 (ki ) 4 gy = 5,2 (4.23b)
ox \ Gy ) Ty \Bv gy ) s \Miz, ) TAV = 0wy, '

This equation, when combined with boundary and initial conditions, describes transient three-
dimensional groundwater flow in an isothermal, heterogeneous, and anisotropic aquifer. Function
h(x,y, z, t) is the hydraulic head in meters. The matrix coefficients Ky, , Ky, , Kp, [m/s] are the
principal values of the hydraulic conductivity tensor Ky, related to the permeability tensor K as
indicated in equation (4.18). The principal axes of hydraulic conductivity must be aligned with
the corresponding aquifer’s coordinate directions. The term gy [m3/s/m® = 1/s] is the volumetric
flow rate per unit volume of the sources or sinks of water in the porous rock; g < 0 for flow out
of the aquifer, and ¢y > 0 for fluid injection, natural recharge or water accretion.

4.3.3.2 Two-dimensional groundwater flow—The Boussinesq approximation
Mathematical models represented by equations (4.16) and (4.23a,b) are general groundwater flow
equations that can be used to predict the flow in porous rocks in two or three dimensions. Often it
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is advantageous to simplify such models treating the groundwater flow in a horizontal plane in two
dimensions. In this case, the governing partial differential equations are simplified accordingly.
The modified forms of the equations are different for confined, phreatic, and leaky aquifers.
They are special cases for equation (4.23b) and were discussed in detail by Bear (1979). In this
subsection, we present deductions of the main results.

The groundwater flow in a confined, inhomogeneous and anisotropic aquifer in two dimensions
can be modeled by replacing the definitions of transmissivity (eq. 4.21b) and storativity (eq. 4.21c)
in equation (4.23b):

T,

Ky, = bVX, S=Sspbaa gn = qy by

a
O A AW
ax Uy ) Ty Uy ) TINT R,

where the term gx [m/s] represents the rate of recharge/extraction in the reservoir. This model is
further simplified if the confined aquifer is homogeneous and isotropic:

(4.24a)

2h  9*h gy S Oh
— == 4.24b
ox? + 02 + T, T,dt ( )

The groundwater flow in a phreatic aquifer is comparatively more complicated than in a con-
fined aquifer. Unconfined reservoirs can replenish from areal recharge such as percolation and
precipitation. The saturated total thickness of these aquifers changes for the reason that the water
table changes because of the recharge and discharge they receive (Kresic 2007). Neglecting the
elastic storativity, replacing the variable % in the aquifer thickness, and using again equation
(4.21c¢), the model of the phreatic, inhomogeneous, anisotropic aquifer is:

S d oh 0 oh oh
Ssp = E’ by,—>h = a Ky ha + 5 Ky h@ +gn :SE (4.25a)

This model is called the Boussinesq equation (1903), in honor of the great French mathe-
matician and physicist Joseph Valentin Boussinesq (1842—-1929). The term gy [m/s] contains the
gain of water due to infiltration (positive sign) or the loss of water due to evapotranspiration or
pumping (negative sign). The hypotheses Boussinesq introduced to develop his model were: the
aquifer has a horizontal impermeable base, which is the reference level; the average thickness
of the aquifer can be considered equal to the hydraulic head, and the changes of /4 are small
(Kresic 2007). Boussinesq also developed linear approximations for homogeneous and isotropic
unconfined aquifers:

0 oh 0 oh S oh
Z(nE) (a2 I 2 (4.25b)
ox ox ay ay Ky Ky ot

. . . . . 2
This equation becomes linear with respect to #%>assuming that % ~ %a%(%):

Lo (0P 10 (0 av S 10 (F
2 9x \ ox 29y \ dy Ky Kghot\ 2

2> 3%h* gy S Oh?
T,~Kyh = —4+— 42" =——
v ox? Ty Tk, T T o

(4.25¢)
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Making the same approximation for the average transmissivity 7, in equation (4.24a) and
defining the hydraulic diffusivity 8z, we obtain a linear equation with respect to A:

Kybe Kph T 2h  9%h gy 1 9h
= N = — b o = —— 4.25d
S S TS T a1 sy (425d)

o

This equation is commonly used to model the unsteady groundwater flow in unconfined
aquifers. Coefficients 7, and Ss will be defined analytically in section 4.5, showing how they can
be determined with pumping tests.

4.3.4 Reservoir anisotropy in two dimensions

Ifthe aquifer is anisotropic, the three components of the symmetric permeability tensor (kyx, = kyx)
depend on the spatial coordinates. In two dimensions, Darcy’s law is:

kxx dp kxy op

K - 1 a a
v —Vp = (Vx> - (kxx kxy) (ax > — My ox Ky 0y (4.26)
" W) N Ky S _Kowdp Ky 2P
Wr 0x w9y

Tensor K is symmetric, therefore it is always possible to find two orthogonal principal flow
directions kx and ky, which are called the permeability eigenvalues. The respective velocity
components are simplified in these principal directions:

bcop | krip

> Yy =
My 9x My 9y

(4.27)

This is a general result from linear algebra (Lang 1969), also valid in three dimensions. From
Figure 4.8 we deduce the following relationships that are useful to transform any flow directions
into the principal directions and vice versa:

ky +hy  ky —k ky +hky  kyx —k
PO G ) A Sk RV R S QL% Sk RN Y
2 2 2 4.28
by =k = — X "M ginoe o Tan2e= 2R *29
=k = — in an2h = -———
e 2 Fex — kyy
Y
y X
k‘/
kXX
kYV
0 ky
X

Figure4.8. Permeability eigenvalues.
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These relations are inverted to determine the main permeability directions or eigenvalues of
K. The formulae are also valid for both tensors Ky and T, (Bear 1979):

kxx + kyy fex — by \? ’ kxx + kyy ber — k) )
ky = 2 . A . +2, (429)

These formulae are useful tools for making field measurements of permeability.

4.4 FLOW TO WELLS IN HOMOGENEOUS ISOTROPIC AQUIFERS

4.4.1 Simple geometries for isothermal stationary groundwater flow

In the following section, we derive some useful equations for simple geometries of isothermal
groundwater flow. The first case is radial horizontal flow (Fig. 4.9a), which describes groundwater
flow towards a well. In this case, flow is distributed uniformly along the entire well axis. This
situation is valid for fully penetrating wells (with filter sections all along) and is an important
approach when the near flow field around a well is considered. Linear horizontal flow (Fig. 4.9b)
to a well is of interest when considering the impact of groundwater extraction by a well on the far
groundwater flow field. Spherical flow (Fig. 4.9c) considers groundwater flow towards a point,
making it applicable to partially penetrating wells or wells with filter sections not extending over
the entire well axis.

4.4.1.1 Radial flow
In the case of steady state radial flow, the gravity is neglected in the aquifer (Fig. 4.9a) and the
fluid discharge per unit porous area is assumed constant (eq. 4.12):
Or k dp
v==,

A=2nrb == 4.30
A wrbe = Qv y dr ( )

Integrating from p(r,,) = p, to p(r):

P r r
wr Qv wr Oy [ dr nr Qv r
/p / k4 T Tamba k) 7T 2wk \ i (43
Pw T'w Ty
The pressure at a distance r from the well 7, is:
f o
Ly r
[d=p-pc = por=p- 2 (L (432)
27 by k Iy

DPw

(c)

T
b
1
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—
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Figure4.9. (a) Radial horizontal, (b) linear horizontal and (c) spherical flow to a well.
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If the pressure at some radial distance r, > ry, p(r.) = p. is known, then the volumetric
extraction or injection rate can be computed:

_ _27bak__ pe—pu [“13] (4.33)
iy Ln(re) — Lo(ry) s
The radial flow pressure is:
Pe — Pw r
p@) =pyw+ mLm <a> (4.34)
To estimate the average reservoir pressure we compute:
r
5= fVldV/p(r)dV - %/ [pw _ Zl;fli[/kLn <%>:|dr (4.35)
4 P
The average reservoir pressure in a homogeneous reservoir of radial geometry is:
P=pwt 2’:31{ [Ln (%) . %] (4.36)

4.4.1.2 Linear flow
In the case of steady state linear flow, gravity is not considered. Knowing the pressure at two
different points x| and x, (Fig. 4.9b), we have:

82
P05 pw=cx+a, {

p1L=cx1+co
dx2

n =cXxy+Co
P (4.37)

- kA (d
= p) =pi+ 27—y, QV=—<—”)
X3 — X] wr \dx ) _g

4.4.1.3 Spherical flow
In a reservoir with steady state spherical flow (Fig. 4.9¢), the flow equation is:

d ( ,dp c .
—\r- )= = pr)=-+co, withp, =p(re), pw=pQrw)
dx dx r

Replacing the known values of the pressure at two different points we obtain the fluid pressure
at any radial distance from the center of the sphere:

(4.38a)

r) = + Pe—Pw (1 1 . Pwpw(Fe — 1) +Tepe(r — 1)
g e 1 i B r(re — ry)

r 'y

Te Ty
The constant volumetric rate can be computed, integrating as follows:

k 4 k pe — pw A k p, —
Ovdr=——dnrdp = Qp=— e P TREPTPv, . (4.38b)
nr nr i_i Mf Fw —Te

Fe Fy




Fluid flow, heat and solute transport 131

4.42 Darcy’s law and the equation of state of slightly compressible water

As in previous examples, again we neglect gravity. We suppose that a single-phase fluid flows in
the reservoir and has a slight and constant compressibility, such as water or oil for example, and
that the pressure gradients are relatively small. We also assume that the physical properties of the
system are approximately constant. The mass conservation and Darcy’s laws are in this case:

ad . - k -
E(,Of @) +div(orv) =0, v= —M—pr (4.39)

The compressibility of isothermal water (eq. 2.40b) implies that:

1 8Vf> 1 dpr —Cr(p— Cr(p—
Cr = ( — = Vi=Vye r(p po)’ or = poe 1 (p—po) (4.40)
f V/ ap or dp S f

The fluid mass is My = prVr, po = pr(po), performing a Taylor series expansion of its density:

<2
pr(p) = po e PP = pg (1 + Cr(p —po) + 7{(P —p0)k- - ) (4.41)

Assuming that Cy is small, we can neglect the terms beyond the quadratic expression to obtain
the equation of state for slight compressible isothermal water:

or (p) = po(1 4+ Cr (p —po)) (4.42)

This equation of state can be combined with previous equations (4.39) to obtain:

a k
— (¢ po eCf(P—po)) — (,00 eCr(p—ro) ~_ Vp)
at wr
pp)OP _kpoz e 2 kpo ¢ 2
= Cropo eCrp—p0) £ = 20y (G Pr0)y . yp 4 22 G PP g2 ) (4.43)
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By hypothesis, the pressure gradient is small; for that reason, the square of its module was
canceled. Thus if we assume constant rock parameters and a small constant Cy, we obtain the
classic hydraulic diffusion equation:

k - 1 op

——, V.-Vp=|Vip=—— (4.44)
¢ 1 Cr

Ny = -

where 1y is the hydraulic diffusion coefficient. It is interesting to compare numerically both fluid
diffusivities, hydraulic and thermal. Using the following data for Water at 5.0 MPa and 250°C:
k= 24%10-1° m? L9 =0.1,r ~ 1074 Pa-s,Cr ~ 0.1 x 1078 Pa~!, we obtainnyy ~ 1.6m?ss.
The coefficient of thermal diffusion is: 7 = kr/prcp. Using kr =~ 0.623 W/m/°C, py ~
800 kg/m?, cp ~ 4856 J/kg/°C, we obtain §7 ~ 1.6 x 10~7 m?/s. Hence the relation between
both coefficients is ny ~ ~ 10787. This means that thermal disturbances spread much more slowly
than pressure waves. In other words, in a porous rock the fluid pressure signal can travel thousands
of times faster than the thermal signal.
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If the rock is anisotropic in the principal directions (X, Y), equation (4.44) becomes:
a ap a ap ap
— | kx—= —kr—= ) = Cr— 4.45
8X<X8X)+8Y<Y8Y> APy (445)

4.4.3 Transient flow of slight compressible fluids, Theis solution

We suppose that the fluid is slightly compressible, the homogeneous, confined reservoir is a
cylinder, the flow is radial and the pressure gradients are relatively small. We also assume that
the physical properties of the aquifer are approximately constant. Therefore, we can apply the
hydraulic diffusion equation (4.44) in cylindrical coordinates (Fig. 4.10):

ap 19 [ dp 19%p 8%
= = A Ap = — — 4 £
o AP = AP=T ( ) 2902 " 322

e (4.46)
Assuming radial symmetry for the whole reservoir, the angular and vertical components 6 and
z have no influence in pressure; thus, the corresponding partial derivatives are zero. The reservoir
has a very large radius; the extraction/injection takes place at its center. The velocity, given by
Darcy’s law, must equal the extraction/injection rate at the center. That means: 4,v, = Qy [m%/s],
where A, = 2mrb, is the flow area; p; represents the initial constant pressure of the aquifer. The
simplified mathematical model, with internal and external boundaries and initial conditions, is:

p p  nmop
Py M ey > 0
a0 = M T % P>

initial condition: p(r, 0) = p;, Vr >0

. (4.47)
external boundary: lim p(r, t) = p;, Vt>0
r—00
0
internal boundary: lim r—p =— Or 1y
r—0\ or 2w by k
To solve this model we use a Boltzmann transformation:
- r? N o 20 o 2o d ow w (4.48)
w(r,t) = > —=—; —=— and — =-—— .
dng t ar r or? r2 at t
Replacing this new variable, equation (4.47) is transformed into:
1 dpdw 9 (9p dw +16p8u) w a’p_a’2p4a)2 dp 4w
ng dw 3t Or \dw or r dw Or ngtdo  do? 2 do r? (4.49)
o d*p dp
Finally, interms of w(p) = w—-—+(@+1)— =0
dw? dw
T
ba
1 —> p(r, 1)

Figure4.10. Theis solution with radial flow to the well.
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This ordinary differential equation can be solved exactly. Let P’ be equal to dp/dw, then:

/

dpP ar’ 1
w— =—(0+1DHP = / = /(a)+ )dw+co
@ y @ (4.50)
= InP =-w-Llnw+c = a)—p =cie ®
dw
The internal boundary condition for the new variable w is:
a d d d
tim (r22) = tim (r2222) 2 tim (208 ) =200 = - 2
r—0 or w—0 d 3}’ w—0 dw 2w by k
(4.51)

dp Ov ur s

= Yo anbok

The corresponding integral solution for the Boltzmann variable is:

P, %
—u
[dr=pi-p=- [ e mps QW [Sa s
dn bk o k u
P 1) 1)

The semi-infinite integral appearing in this solution is a special mathematical function called
the “exponential integral” defined by:

o0

—Ei(—w) = E1(0) = f

0]

—u

¢ du (4.53)
u

This special function can be easily approximated using the following formulae (for a
distinction between E; and E|, see Abramowitz and Stegun 1965):

if0<w<00l = E(w)=Ln(l)-05772

Ej(w) = —0.57721566 4 @ — 0.24991055 w? + 0.05519968 *

—976.004 x 10~5* + 107.857 x 10~50° — Ln(w); Ve € [0, 1] (4.54)

_ w?+2334733 @ + 0250621 7@
Ei(w) = x —; VYo €[1,00]
w? +3.330657 w + 1681534 ©

For a complete reference to the approximation given by equation (4.54), see Abramowitz and
Stegun (1972).

Replacing the value of w, the final solution of model (4.47), satisfying the boundary and initial
conditions, is:

Or W r?
Lt i+ 4.55
pr, t) =pi+ o E; o (4.55)

If Oy > 0, then the fluid is entering the reservoir (injection). If Oy < 0, the fluid is being
extracted from the reservoir (well production). This formula, practical and elegant, is known as the
Theis (1935) solution, after Charles Vernon Theis (1900-1987), an American hydrogeologist who
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Theis solutions for an aquifer with the following parameters: p; = 5.0 MPa, T = 30°C,
Cr = 0442 x 107 Pa™!, b, = 1000 m, Oy = —0.2 m%/s, uy = 7.97 x 1074 Pa - s:
(a) corresponds to an aquifer evolution with k = 100 x 10~15 m2, 5y = 62.7 x 1073 m%/s;
(b) corresponds to a permeability & = 1000 x 10~ 1073 m?/s.
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Radial flow to a finite diameter well in a confined homogeneous isotropic aquifer with uniform
thickness b, where the Theis solution (eq. 4.55), which assumes a zero radius (line source)
well is no further valid. The total volumetric pumping rate Oy = constant, 7. = the inner
radius of well casing in the interval over which the water level declines, r,, = effective radius
of well screen, r = distance from the center of the well, 4(r, ) = hydraulic head of the
confined aquifer with pumping conditions at a distance » and time ¢, hp = hydraulic head
without pumping and Ak = hg — hyeyy = drawdown in the well.

was the first to develop this mathematical expression capable of determining the characteristics
of an aquifer and predicting how water levels change during pumping. The Theis equation is
useful for simple, fast computations in groundwater flow. The formula is used often by petroleum
engineers and hydrogeologists and is the foundation of pressure analysis techniques. The Theis
solution is for flow to a point well and has several practical applications: it is used to calculate
pressure drawdown in aquifers (Figs. 4.11 and 4.12) and oil reservoirs, and to explore the inverse
modeling of aquifer properties (porosity, permeability, reservoir dimensions). It is very useful as
a first analytical approach to aquifer tests (see section 4.5.2 for more details).
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4.4.4 Flow to a well of finite radius, wellbore storage

Wellbore storage is an important example of fluid flow to wells; its effects have been the subject
of many studies in hydrogeology, geothermal and petroleum engineering:

e Pumping from a completed well removes the fluids, in the borehole and the casing (e.g. pipes,
liners, etc.), before fluids from the reservoir enter the well. The magnitude and duration of
the wellbore storage’s impact depends on the size of the well and casing. These effects are
important particularly at early times, typically when engineers assess the viability of reservoirs.
For large-scale projects with big wells, these “early time” effects can linger for many months
and significantly inhibit production (COMSOL 2008d).

Wellbore storage can be modeled by adding a time-dependent ordinary differential equation
to the well boundary (Fig. 4.12). The equation governing the flow is Darcy’s law included in
the continuity equation (4.16), in terms of pressure and specific storativity. The term pr g Cp is
neglected as we did in equation (4.22a):

9 - - -
¥ pr Cfg£ =V [Lfgk(vp - pfgez)] +gqr
ot Hr (4.56a)
Ssp op Ky - = > g4f '
— =—V-(Vp—prge)+—
prgot  prg org

Defining S, [m s2/kg] as the specific storage for pressure and neglecting gravity in Darcy’s law:

S, G K
VAN Sp——Hvzp—f—q—f

S = e
P e Yot prg or

(4.56b)

We apply this mathematical model to the flow at a well of finite radius (Fig. 4.12), employing
radial coordinates in the Laplacian of the pressure (eq. 4.47). We assume that the fluid from the
aquifer moves into the well obeying Darcy’s law:

Ky Bp _ QV

prg or - _Zﬂrwba

(4.57)

where v, is the radial flow velocity and r,, the effective radius of well screen. The model can
account for wellbore storage by including a second drawdown pressure when r = ry,, as follows
(COMSOL 2008d):

= M by P
Oy o g T arwar(rw)+pfg d

S

K 0 gy I [mS] (4.58)

where Qy is the total volumetric pumping rate [m>/s], b, is the production interval (in our case
the thickness of the confined aquifer), 7. is the radius of the well casing, p,,(¢) and dp,, /dt are the
pressure and the pressure drawdown in the well, respectively. This equation states that withdrawals
from the well consist of two parts: the first part is the flux into the well from the aquifer; the
second part is the water coming from the wellbore itself. The main hypothesis is that the pressure
just inside the well equals the pressure just outside of it p,,(#) = p(ry, ). This is a continuity
hypothesis for the pressure at the interior well’s boundary.

The model represented by equations (4.57) and (4.58) can be readily solved using the techniques
developed in chapter 5. In order to illustrate the practical consequences of including the wellbore
storage in the analysis of the fluid flow to wells, we present graphics of this model with the
following data and results from COMSOL (2008d). The zone of interest has a diameter of 1 km;
the effective radius of well screen is r, = 0.1 m; the well casing radius r. = 0.15 m; the
hydraulic conductivity K = 10~% m/s; the aquifer thickness b, = 50 m; the specific storage
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Figure4.13. Hydraulic head drawdown calculated with (dashed lines) and without (solid lines) considering
wellbore storage. Results are shown for the well boundary (» = 0.1 m) and two points at a
distance of ¥ = 1 and 10 m from the well axis (modified from COMSOL 2008d).

Sg = 107> 1/m; density is 1000 kg/m’; g = 9.81 m/s?; the pumping constant volumetric rate
Qy = 0.05 m%/s; the initial pressure is pg = 9.82 x 10° Pa.

Figure 4.13 shows the solution obtained with COMSOL-Multiphysics® software (Version 3.5;
COMSOL 2008a) for drawdown (dp,,/dt) as a function of time (0 < ¢ < 100 s), for the well
boundary itself and two observation points near the well with wellbore storage impacts. For
comparison, the figure also provides results for the case without considering wellbore storage.
The difference in the two solutions is the reduction in reservoir withdrawals owing to fluids present
in the wellbore. This impact diminishes with distance from the well and time.

4.4.5 The Brinkman equation and the coupled flow to wells

Understanding what happens during the transition from slow flow in porous media to fast flow in
fractures, faults, and wells is critical in many practical situations. The modeling of transitioning
flows requires coupling different mathematical expressions of flow laws. The Brinkman equation
(introduced by Brinkman in 1947) is used to account for transitional fluid flow between boundaries
in porous heterogeneous media with more than one porosity, such as micro-porous rocks with
fractures, or rocks with two, three, or more different, contrasting porosities. In these cases, the
global structure of the porous medium is at different length scales. Sometimes it is possible to
divide the porous medium into two regions: one for larger porosity and another one for smaller
pores. In the first region, the Navier-Stokes equation for incompressible flow holds. In the second
region, Darcy’s law describes the flow. The two boundary conditions to be satisfied at the common
interface are continuity of the fluid velocity and the shear stress. Darcy’s law alone is not sufficient
to satisfy these boundary conditions. The Brinkman equation is an extension of the traditional
form of Darcy’s law created to match boundary conditions at an interface between two regions
with very different porosity and permeability (see section 3.2).
Brinkman’s original equation is semi-empirical in nature and defined as:

e V2V5 + V5 = —Ky Vh (4.59a)
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Figure4.14. Model geometry showing zones and boundary conditions for coupling Darcy’s law (1 m < r <
4 m), Brinkman equations (0.1 m < » < 1 m) and the Navier-Stokes equations inside the well
(7 < 0.1 m). Water flows from the right side of the model area to the well and enters through
a perforation in the well casing. Illustration modified from COMSOL (2008¢).

The correction term is defined by the Laplacian of the Brinkman fluid velocity vg. The term
e 1s an effective viscosity parameter that accounts for flow through both media, it is not the real
fluid viscosity. The effective viscosity is only a parameter that allows for matching the shear stress
boundary condition across the free-fluid/porous medium interface. We are going to set equation
(4.59a) in terms of fluid pressure coupling a transitional zone between two different flow regimes
(Fig. 4.14).

In this discussion, we recapitulate the general description of the Darcy-Brinkman model
published by COMSOL (2008e). A fluid moves slowly through a thin porous layer towards a
perforation in a well casing and moves into the well (Fig. 4.14). The coordinate r represents the
radial direction from the well to the reservoir. The fluid flow follows Darcy’s law (eq. 4.13) in the
far field (1 m < r < 4 m) and the Brinkman equations near the well opening (0.1 m < » < 1 m).
The permeable layer is 0.875 m thick and confined at its top and bottom by impermeable materials.
For simplicity, it shall be assumed that the reservoir is homogeneous and has isotropic hydraulic
properties, and that the fluid has constant density and viscosity. The fluid flux at the inlet at the
right side and the pressure at the perforations at the well casing are known. The flow field is
stationary. In terms of fluid pressure the Brinkman equations for steady state flow are:

—V - (6 g+ (V VB)T) = %33 +Vps, V-vp=0 (4.59b)

where j17 is the dynamic viscosity (Pa - s), v equals the velocity vector (m/s), pp is pressure (Pa),
both in the Brinkman region, and k (m?) denotes the permeability, which is assumed to be the
same in both flow zones.

The Brinkman equations allow the description of fluid flow in those porous media where flow
velocities are high enough so that momentum transport by shear stress becomes significant. From
the Brinkman side of the Darcy-Brinkman interface the fluid velocity is constrained since the
boundary condition on the Darcy side fixes the pressure. The velocity constraint on the Brinkman
side of the interface reflects that velocities are dependent variables in the Brinkman equations but
not in Darcy’s law for V. The boundary condition on velocities is:

Vg =Vr (4.59¢)
Since the confining layers and the well casing are impermeable to flow, Vg equals zero to

eliminate all components of the velocity at the boundary. Obtaining a unique solution to this
problem requires the definition of the pressure at the well since the model prescribes fluid flux
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Figure4.15. COMSOL Multiphysics® solution for fluids following Darcy’s law (1 m < r < 4 m) and the
Brinkman equations (0.1 m < » < 1 m). The results shown are pressure (surface plot and
contours) and velocities (streamlines). Note that the vertical axis is expanded. The modeling
is based on the data provided by COMSOL-Multiphysics® software model library (COMSOL
2008e; courtesy of COMSOL AB).

conditions for all other boundaries. The constraint on pressure is pp = py,. To solve equation
(4.59b) the following data were used: layer thickness b, = 1 m; reservoir radius r¢ = 4 m;
well radius 7, = 0.1 m; fluid density (water) 990.2 kg/m?; g = 9.82 m/s?; fluid viscosity
wy = 0.0005477 Pa - s; permeability k = 10710 m? porosity ¢ = 0.40; pumping rate Oy =
0.001 m3/s; well pressure p,, = 10° Pa. The Darcy-Brinkman problem, with these data and
boundary conditions, was numerically solved using finite elements (chapter 5) with the COMSOL-
Multiphysics® software (Version 3.5, COMSOL 2008a). Figure 4.15 shows the solution to this
Darcy-Brinkman problem where Darcy’s law governs slow flow far from the well, Brinkman
equations apply near it. The impacts of the transition between both flow laws occur at » = 1 m.
The streamlines show the fluid moving from the inlet at the right to the well on the left. The
streamlines funnel because the flow is moving into a perforation in the well casing.

4.4.5.1 Coupling the Darcy-Brinkman-Navier-Stokes equations in the flow to wells

We have shown how Darcy’s law describes slow flow velocities in porous rocks at a distance
from the well; closer to the well the Brinkman equations apply when the fluid moves in porous
media but shear is non-negligible. On the other hand, the Navier-Stokes equations (4.10) describe
movement of fluid inside the well and in open faults (Fig. 4.14). More generally, the Navier-Stokes
equations govern open-channel flows.

As another interesting example, we present a transition in three flow regimes: slow flow
in porous media quickens to a perforation in a well casing and ultimately moves into and up
the well. This example couples Darcy’s law with the Brinkman equations and with the Navier-
Stokes equations, which model the flow within the wellbore at a radius » < 0.1 m, producing
a fully coupled simulation for three different flow laws (Fig. 4.14). The interface between the
Brinkman and Navier-Stokes flow zones is the perforation at the midpoint of the casing. The
coupling problem requires the fluid velocity in the well to be equal to the Navier-Stokes velocity.
At the Navier-Stokes/Brinkman boundary the conditions are pys = pp and vys = vp. At the
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Figure4.16. COMSOL Multiphysics® solution for fluids following Darcy’s law (1 m < » < 4 m), the
Brinkman equations (0.1 m < » < 1 m), and the Navier-Stokes equations (» < 0.1 m).
The results shown are pressure (surface plot and contours) and velocities (streamlines). The
vertical axis is expanded for clarity. The modeling is based on the data provided by COMSOL-
Multiphysics® software model library (COMSOL 2008e; courtesy COMSOL AB).

Brinkman/Darcy boundary the conditions are pp = pp and vg = vp (Fig. 4.14). Using the
same data, a simulation of this Darcy-Brinkman-Navier-Stokes coupled problem was performed.
Figure 4.16 shows the solution to the COMSOL (2008e) model for flow that transitions from
Darcy’s law in the far field (» > 1 m), to the Brinkman equations in the intermediate zone (0.1 m
< r < 1 m) and to the Navier-Stokes equation in the well (» < 0.1 m). The pressure distribution
(surface plot and contours) and velocities (streamlines) vary smoothly with no disruption at either
the Darcy-Brinkman interface (» = 1) or the Brinkman-Navier-Stokes interface (» = 0.1 m). The
streamlines show fluid moving through the perforation and up the well.

4.5 PUMPING TEST FUNDAMENTALS

Aquifer tests, which comprise pumping, slug and bail tests are a common tool for hydrogeologists
and groundwater engineers, to evaluate an aquifer (for more details see section 6.7.2.4). Their
results allow the characterization of aquifers, aquitards and flow system boundaries. Aquifer
tests are conducted to evaluate an aquifer by ‘stimulating’ the aquifer and observing the aquifer’s
‘response’ such as water level changes in nearby observation wells or the stimulated well itself.
Stimulation can be done through: (1) pumping in the well (pumping test), (2) changing the
stagnant groundwater level in a borehole or well either by instantaneous addition, or withdrawal
of a measured volume of water (slug test) and (3) withdrawal of a defined water volume using a
bailer or pump (bail test). Aquifer tests are typically interpreted using an analytical aquifer flow
model to match the data observed in the real world, then assuming that the matching hydrologic
parameters from the idealized model correspond to the real-world aquifer (Theis 1935, Ferris
et al. 1962, Stallman 1971, Reed 1980, Franke et al. 1987, Boonstra 1989, Hall 1996, Kruseman
and Ridder 1991, Dawson and Istok 1991, Raghavan 1993, Day-Lewis 1995, Walton 1996, Batu
1998, Brassington 1998, Weight and Sonderegger 2001, Moore 2002, Kresic 2007). In more
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Figure4.17. Representation of a depression cone with Dupuit-Thiem equations: the static hydraulic head is
ho = h(r, t = 0)and Ah = h(r, t) — hg is the drawdown or change in hydraulic head at a point
(r, t) of the aquifer due to pumping at the well site » = 0: (a) confined aquifer; Oy = 2n T,
(hy — 1) /Ln(r2/11); (b) free aquifer; Oy = n Ky (h3 — h?)/Ln(r2/11).

complex cases, a numerical model may be used to analyze the results of an aquifer test, but
adding complexity does not ensure better results (Wikipedia 2009a).

The aquifer characteristics evaluated by aquifer tests are: hydraulic conductivity, transmissiv-
ity, storativity, specific yield or drainable porosity, leakage coefficient, aquifer boundaries and
their distances from pumped wells. Transmissivity 7, is the reservoir’s ability to transmit fluid.
Storativity S is the water volume that a confined aquifer will discharge for a determined change
in hydraulic head. Specific yield is a measure of the amount of water an unconfined aquifer
will give up when completely drained. The leakage coefficient is necessary when the aquifer is
bounded by an aquitard that allows a slow exchange of water. If the aquitard gives up water to
the aquifer, then the drawdown during the pumping test is reduced, if the aquifer releases water
to the aquitard, the drawdown in the pumping well will be increased). An appropriate model to
the groundwater flow equation must be chosen to fit the observed data. Many solutions to aquifer
tests are based on the Theis formula (eq. 4.55), built upon the simplifying assumptions previously
detailed.

The basic measurements carried out during pumping tests are variations in water levels in both
time and space. The depression of the water table or the change in hydraulic head is generally
measured in observation wells located close (distance ») from the pumping well referred to the
initial reference level A (at ¢+ = 0) given as Ah = h(r, t) — hg (Fig. 4.17). Reason is that the
pumping well is affected by construction factors that are hard to assess.

In general, there is no need to wait for equilibrium conditions to be reached, but the deter-
mination of initial levels (before pumping) cannot be omitted. On the other hand, the recovery
process always should be recorded, especially if only the pumping well is available for measure-
ment. Assessing the recovery process does not allow establishing the storage coefficient, because
discharge and recharge contributions are balanced. It is essential that a constant pumping flow be
kept during a given period.

There are a great number of assessment methods for different types of aquifers and external
conditions (Krusemann and De Ridder 1991). Around the year 1900, Dupuit and Thiem developed
the basic equations for the stationary regime based on Darcy’s law (eq. 4.23b). Theis, in 1935,
presented the general equation for non-stationary wells (eq. 4.56). A series of analytical methods
has been developed on this basis (for more details see section 6.7.2.4).

4.5.1 Stationary flow towards a well—Dupuit and Thiem well equations

4.5.1.1 Confined aquifer
For the radial flow of groundwater towards a well, the following holds:

Oy = v, 4 (4.60)
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where A = area; v, = radial velocity of groundwater. For the area receiving the flow, the following
holds (only for confined aquifers):

A=2mrb, (4.61)

where b, = aquifer thickness; » = radial distance from the vertical axis of the well. In accordance
with Darcy’s law, we have for velocity:

v, = —Ky dh/dr (4.62)

By replacing (4.61) and (4.62) in (4.60), the following expression is obtained for the volumetric
flow Qp of the well:

dh
QV = 27 rba KH

— 4.63
dr (4.63)
oh 1
o A_1 O (4.64)
ar r 27 by Ky
By integrating, we obtain:
Oy
h=——"_1L C 4.65
dmboKy T (4.63)

This is the general solution for the groundwater flow equation for a homogeneous, isotropic
and confined aquifer under stationary conditions. The constant Cy results from the boundary
values with & = h,.; and r = r,, in the well:

_ (h - hwell)
Oy = =27 by Kyy oG/ (4.66)

where r,, is the radius of the well and 4, is the water level in the well.

Consequently, in the vicinity of the well, transmissivity 7, = b, Ky can be determined by
observing levels 41 and 4, in two observation wells located at distances »; and r, from the
pumping well:

0r Ln (ra/n)

T, =b, Ky =
VT T 0n (hy — )

(4.67)

4.5.1.2  Unconfined aquifer
With Dupuit’s equation for wells and applying Darcy’s law for radial flow, the following holds for
a free, homogeneous, isotropic and horizontal aquifer (eq. 4.25b):

dr
2n Ky

dh
Oy = 27 Ky hﬁ; hdh = — (4.68)

The integration with levels /1 and /; in two observation wells located at distances 7; and 7,
from the pumping well results in:

W2 — n?
Oy =nk, (U =)

H m (4.69)
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Solving for Kiy we obtain:

_ OrLn(a/r)

Ky
T (h—h?)

(4.70)

where 41 and /; are the piezometric heads of the observation wells located at distances 7| and r;
from the pumping well.

4.5.2 Transient flow—explicit Theis equation for confined aquifers

The Theis equation was adopted from heat transfer literature, for two-dimensional radial flow

(Figs.4.12, 4.17a) to apoint source in an infinite, homogeneous aquifer (Kresic 2007). Introducing

previous definitions (eq. 4.55), the Theis solution in terms of hydraulic head is obtained as follows.
Using previous relationships:

T—kub, |™| s= 1AW lad], Ss=- —pgCstepgCr |-
v = OH Og s b _AAh aa S_ba_png (ppfgf m:
org
pP=prgh+prgz, Ky =25k
Ky

we obtain by direct substitution:

Oy iy r
t) = pj —F
p(l", ) pl + 47_[ ba k 1 47]]—11

Orn r?
= prgh(r,t) + prgXo = prg ho + prghxo + L,

47Tbak 47][_]1‘
k
H:
% .
QVMf r
h(r, t) = h E
= prgh(r,t) = prg 0+47Tbak A
2
mr o p r“ourC
—oghy+ 2 P8 (TG
47 ba Ky 1y 4k
Eliminating redundant terms:
1 2 C, 1 20C
W =ho+ Lty (DG 8 g I Ly (CeG g
47 by Ky 4 Ky wy 47 T, 4 Ky
O 1 r? Sg
"t \aky,
therefore:
0% 2S
h(r,t) =h E
D =ho+ B\ ab Ky
and finally:
w0 =+ 2o (52 @.70)
v = .
’ " 4, \ar,t
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where hg = h(r, 0) and Ah = h(r, t) — ho is the drawdown or change in hydraulic head at a
point (7, t) of the aquifer since the beginning of the test, when r = 0. E1(w) is the “Theis well
function” previously defined as the exponential integral in equations (4.53) and (4.54). Classically
E|(w) function values are tabulated for being used with this formula to evaluate the pumping test
(Table 4.2). The term w = #2S /4Tt is a dimensionless variable; Oy is the discharge or pumping
rate of the well (m3/s), T, and S are the transmissivity and storativity of the aquifer around the
well, r is the distance from the pumping well to the point where the drawdown was observed and
t is the time since pumping began.

The hypotheses required by the Theis solution in terms of hydraulic head are the same as those
assumed in the development of the equation (4.55). It should be noted that the Theis equation is
valid only under these conditions:

Confined aquifers with horizontal basis.

Infinite, homogeneous and isotropic aquifers with constant thickness.
Horizontal level of hydraulic head at rest.

Complete pumping well.

Horizontal laminar viscous flow of groundwater exclusively.
Constant flow from the pumping well as a function of time.

For a non-stationary regime, the following is assumed:

e The aquifer is emptied with no delays.
e The storage capacity of the well itself is negligible.

This has the following consequences:

Rotation symmetry of the depression cone.

Infinite growth of the depression cone.

Extraction purely from the storage of the aquifer.

The first and last sections of the time/depression curve cannot be used.

Even though these assumptions oversimplify the problem, still the Theis solution is very useful
for many practical applications.

Equation (4.71) is used to find the average 7, and S values near the pumping well, from
drawdown data collected during a pumping test. This is a very simple form of inverse modeling
(see chapter 7), since the final adopted values of 7, and S are those which best reproduce the
measured data. Several values of 7, and S are put into equation (4.71) until a best fit is found
between the observed data and the analytic solution. Essentially, field data of drawdown A/ versus
time ¢ are plotted separately for each observation well on field data graphs with the same log-log
scale as the Theis function graph. Once a satisfactory match is found, a match point (A#, E1 (w))
is selected on the overlapping graphs. Afterwards, the transmissivity of the aquifer is calculated
using equation (4.71):

& g () (4.72a)

T =
VT 4 AR

The storage coefficient is calculated using this transmissivity value:

4vat

§S=—

(4.72b)
p

For example, in a real well pumping test, performed during 24 hours in a confined aquifer,
the following data were obtained (Kresic 2007): Oy = 8 x 1072 m?/s, w = 0.054,
Ei(w) = 235,Ah =1m, b, = 18 m, t = 2250 s. The computed hydrogeologic parame-
ters were 7, = 1.5 x 1073 m?/s, storativity S = 5.2 x 107> [ad], and hydraulic conductivity
Ky = Ty/b, = 8.33 x 1073 mys.
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Table 4.2. Ej(w) function values according to Wenzel (1942): n(y) = n x 10” (for example: for l/w =
0.833 x 10% = 0.833 n(6) we obtain E (w) = 1.306(1) = 13.06.

lw = n n(l) n(2) n(3) n(4) n(5)
o= N N(=1) N(=2) N(=3) N(—4) N(-=5)
n = 1.000 N=1.0 2.194(—1) 1.823 4.038 6.332 8.633 1.094(1)
0.833 1.2 1.584(—1) 1.660 3.858 6.149 8.451 1.075(1)
0.714 1.4 1.162(—1) 1.524 3.705 5.996 8.297 1.060(1)
0.625 1.6 8.361(-2) 1.409 3.574 5.862 8.163 1.047(1)
0.556 1.8 6.471(-2) 1.310 3.458 5.745 8.046 1.035(1)
0.500 2.0 4.890(—2) 1.223 3.355 5.639 7.940 1.024(1)
0.455 2.2 3.719(-2) 1.145 3.261 5.544 7.845 1.015(1)
0.417 2.4 2.844(=2) 1.076 3.176 5.458 7.758 1.006(1)
0.385 2.6 2.185(—2) 1.014 3.098 5.378 7.678 9.980
0.357 2.8 1.686(—2) 9.573(-1) 3.026 5.303 7.604 9.906
0.333 3.0 1.305(—2) 9.057(—1) 2.959 5.235 7.535 9.837
0.286 3.5 6.970(-3) 7.942(—1) 2.810 5.081 7.381 9.683
0.250 4.0 3.779(-3) 7.024(—1) 2.681 4.948 7.247 9.550
0.222 4.5 2.073(=3) 6.253(—1) 2.568 4.831 7.130 9.432
0.200 5.0 1.148(-3) 5.598(—1) 2.468 4.726 7.024 9.326
0.182 5.5 6.409(—4) 5.034(—1) 2.378 4.631 6.929 9.231
0.166 6.0 3.601(—4) 4.544(—1) 2.295 4.545 6.842 9.144
0.154 6.5 2.034(—4) 4.115(-1) 2.220 4.465 6.762 9.064
0.142 7.0 1.155(—4) 3.738(—1) 2.151 4.392 6.688 8.990
0.133 7.5 6.583(-5) 3.403(—1) 2.087 4.323 6.619 8.921
0.125 8.0 3.767(-5) 3.106(—1) 2.027 4.259 6.555 8.856
0.118 8.5 2.162(-5) 2.840(—1) 1.971 4.199 6.494 8.796
0.111 9.0 1.245(-5) 2.602(—1) 1.919 4.142 6.437 8.739
0.105 9.5 7.185(—06) 2.387(—1) 1.870 4.089 6.383 8.685
lw = n n(6) n(7) n(8) n(9) n(10)
W= N N(—6) N(=7) N(-8) N(-9) N(—10)
n = 1.000 N=10 2.194(—1) 1.324(1) 1.554(1) 1.784(1) 2.015(1) 2.245(1)
0.833 1.2 1.584(—1) 1.306(1) 1.536(1) 1.766(1) 1.996(1) 2.227(1)
0.714 1.4 1.162(—1) 1.290(1) 1.520(1) 1.751(1) 1.981(1) 2.211(1)
0.625 1.6 8.361(-2) 1.277(1) 1.507(1) 1.737(1) 1.968(1) 2.198(1)
0.556 1.8 6.471(-2) 1.265(1) 1.495(1) 1.726(1) 1.956(1) 2.186(1)
0.500 2.0 4.890(—2) 1.255(1) 1.485(1) 1.715(1) 1.945(1) 2.176(1)
0.455 2.2 3.719(-2) 1.245(1) 1.475(1) 1.701(1) 1.936(1) 2.166(1)
0.417 2.4 2.844(=2) 1.236(1) 1.467(1) 1.697(1) 1.927(1) 2.157(1)
0.385 2.6 2.185(-2) 1.228(1) 1.459(1) 1.689(1) 1.919(1) 2.149(1)
0.357 2.8 1.686(—2) 1.221(1) 1.451(1) 1.681(1) 1.912(1) 2.142(1)
0.333 3.0 1.305(-2) 1.214(1) 1.444(1) 1.674(1) 1.905(1) 2.135(1)
0.286 35 6.970(-3) 1.199(1) 1.429(1) 1.659(1) 1.889(1) 2.120(1)
0.250 4.0 3.779(-3) 1.185(1) 1.415(1) 1.646(1) 1.876(1) 2.106(1)
0.222 4.5 2.073(=3) 1.173(1) 1.404(1) 1.634(1) 1.864(1) 2.094(1)
0.200 5.0 1.148(-3) 1.163(1) 1.393(1) 1.623(1) 1.854(1) 2.084(1)
0.182 5.5 6.409(—4) 1.153(1) 1.384(1) 1.614(1) 1.844(1) 2.074(1)
0.166 6.0 3.601(—4) 1.145(1) 1.375(1) 1.605(1) 1.835(1) 2.066(1)
0.154 6.5 2.034(—4) 1.137(1) 1.367(1) 1.597(1) 1.827(1) 2.058(1)
0.142 7.0 1.155(—4) 1.129(1) 1.360(1) 1.590(1) 1.820(1) 2.050(1)
0.133 7.5 6.583(—5) 1.122(1) 1.353(1) 1.583(1) 1.813(1) 2.043(1)
0.125 8.0 3.767(-5) 1.116(1) 1.346(1) 1.576(1) 1.807(1) 2.037(1)
0.118 8.5 2.162(-5) 1.110(1) 1.340(1) 1.570(1) 1.801(1) 2.031(1)
0.111 9.0 1.245(-5) 1.104(1) 1.334(1) 1.565(1) 1.795(1) 2.025(1)

0.105 9.5 7.185(—6)  1.099(1) 1329(1)  1.559(1)  1.789(1)  2.020(1)
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Figure4.18. Principle of the Theis method for non-stationary groundwater flow regimes in a confined
aquifer.

In practice, 1/w is used instead of w, and the overlaid point is chosen so that £ (w) and 1/w are
easily readable values (Fig. 4.18).

The displacement needed to achieve overlay is somewhat subjective and is hindered when the
previously mentioned conditions required by the Theis equation are not fulfilled in all pairs of
t and r values, for example at the beginning or at the end of the pumping test, when storage in the
well itself is significant (see also section 4.4.4). For some of these special cases there are other
suitable methods (see section 6.7.2.4).

The issue of subjectivity when overlaying cannot be solved by calculation; there is danger of
interference that may go unnoticed. It is therefore best to make a graphic representation to be able
to visually control the quality of the curve.

4.5.3 Transient flow—Hantush equation (semiconfined aquifer)

The following equation describes the incoming groundwater flow to a well in a semi-confined
(leaky) homogeneous, isotropic aquifer (main aquifer), which may exchange water through its
top or bottom with other aquifers in the polar coordinates plane:

Zh 10h  ho—h S dh
a2 ror a3 T, 0t

(4.73)

r = radial distance from the pumping well

T, = transmissivity of the main aquifer

S = storage coefficient of the main aquifer

ho = hydraulic head of the upper or lower aquifer and initial piezometric level of the main
aquifer

Ap = leakage coefficient (dripping coefficient)

L = leakage factor (dripping factor)

by = thickness of the semiconfining layer

Ky, = vertical hydraulic conductivity of the semiconfining layer
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/T, bs T, K
with: Ap = fv where: Ap = 1; Y with: L = bHL
HL s

For the same initial and boundary values considered in the derivation of the Theis equation,
Hantush (1956) obtained the following solution for the flow equation in a semi-confined aquifer,
describing the piezometric levels A(r, t) as a function of the radial distance » from the pumping
well and time ¢ since the beginning of the pumping process:

Oy

Ah=ho—h(r, ) = — Ey(w, r/Ap)
47T,
oo 2
2 1 —u——4
with: @ = and: Ej(w)= [ —e D" du
4T, t u
w

4.5.4 Turbulence and the Forchheimer's law

Since its formulation in 1856, Darcy’s law has been accepted as the fundamental equation of the
flow of fluids in porous media. Nevertheless, very early on it was observed that this basic law is
valid only for slow, laminar, viscous flows. The domain of validity for Darcy’s law is called the
seepage velocity domain (Scheidegger 1974). Fortunately, most groundwater flow cases fall in
this category. Bear (1979) states: “Practically all evidence indicates that Darcy's law is valid as
long as the Reynolds number does not exceed some value between I and 10”. Any flow with a
Reynolds number below 10 is clearly laminar, and it would be valid to apply Darcy’s law. Reynolds
number is a dimensionless parameter; for porous media flow, it is expressed as:

_ Prvdg
Ky

R. (4.74)

where v is the specific discharge and d, is a representative grain diameter for the porous medium,
or the fracture aperture in fissured rocks. Sometimes d, is taken such that 10% or 30% by weight
of the grains are smaller than that diameter. Other authors suggest d, = (k/@)'/? to be the
representative length (Bear 1979). The resistance to flow inside the porous rock is computed by
a friction factor defined by Scheidegger (1974):

_ 2dg dp

m_ﬂwa

(4.75a)

Multiplying this factor by R, we obtain a dimensionless condition for the validity of Darcy’s
law (eq. 2.0):

dy 2d 2dg
_ XReds 24, dp 24 (4.75b)

Ko woh Ry dx  k

The flow in a porous rock obeys Darcy’s law if the product R, f, is constant. This constant
depends on both permeability and diameter dg. Experimental tests have shown that for flow
regimes with Reynolds number values up to 10 are Darcyan. However, experimental values
reported by Scheidegger (1974) indicate that for the interval 0.1 < R, < 75, the flow may still
be Darcyan. Bear (1979) mentioned the value of R, = 100, as the upper limit of the transition
region in which Darcy’s law is no longer valid. At higher values, the flow becomes completely
turbulent (Bear 1979). We assume that when the Reynolds number R, > 100, the porous flow
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is turbulent; in these cases, instead of using equation (4.13), the classic formula of Forchheimer
(1901) or another generalization of this equation must be applied:

-y -
_Vp = va+pfﬂf BlIv... ()
4.76)
dp (
, b
Tan Tk “Lvi+ pr Brv;” (b)

where B is an experimental factor and v; is the velocity component in the direction of the
turbulence. The exponent ng can be a whole number or a fractional number, although 2 is a com-
mon value (Bear 1979). Forchheimer himself established in 1930 an interval for this parameter,
1.6 < ng < 2. Other authors found ng = 1.8, 2.23 and 2.49 for air flowing in porous media
(Bear 1972). Experiments by Thauvin and Mohanty (1997) found that the coefficient B, in the
original equation of Forchheimer depends closely on the morphology of the porous medium. If
the average opening of the pores is increased, porosity and permeability increase, but 8, falls
abruptly. On the other hand, if the pores reduce their size or tend to collapse, the coefficient By is
increased. The experimental measured values are 2.7 x 10% < Br <5.5x 10°.

Using nitrogen as a natural tracer, Sudrez and Mandn (1990), estimated that the average velocity
of'the fluid displacement in a region of the Los Azufres, Mexico, reservoir with faults and fractures
varies between 2.6 x 10~* and 0.53 x 10™> m/s. Applying this information to a traverse section
of a water saturated fault with an aperture of 0.01 m, we could estimate the value of the Reynolds
number in the fault:

pr dgv . 412.6 x 0.01
wre  63x1075x0.2

R. = y=3274603v <10 & v<3.05x107° 2 (4.77)
S

Combining these parameters with field data, we found that v ~ 10~ m/s; thus the coefficient
in the Forchheimer equation is:

_dp aPa oy dp _py \ 1
=17 x10* = =(-—-"Lv)—
dx x m k AR o= br k' prv?
4, 63 x 107 x 2.6 x 107* (4.78)
1.7 x 10* — =P
= =222%x10" m™!

412.6 x (2.6 x 10~4)*

Now the non-Darcy part of the pressure gradient is around ,oj,r,va2 = 0.0006 MPa, which
represents 3.7% of the estimated total pressure gradient. At larger flow velocities in the fault, we
expect a larger pressure drawdown and consequently higher non-Darcyan coefficients.

4.6 HEAT TRANSPORT EQUATIONS

The transfer of thermal energy from a hot region of a porous rock to a colder zone of the same rock
is called heat transport. The transfer always originates from the different temperatures existing in
the rock/fluid system. This phenomenon is a very intuitive matter and its experimental perception
(section 2.1) is at the foundations of porous rock thermodynamics. Heat transport occurs through
three mechanisms: conduction, which is the energy transferred by molecular vibration through a
rock or fluid; convection, which is the energy transferred by the fluid in motion; radiation, which
is the energy transferred through electromagnetic waves, or any combination of these modes. In
this book, we consider only the first two forms of heat transport.



148  Introduction to the numerical modeling

Figure4.19. Joseph Fourier (1768—1830).

4.6.1 Heat conduction

The fundamental law of heat conduction is an experimental result stating that heat flow in a
continuous rock occurs because of temperature differences existing in the medium. The transfer
of energy occurs from the zones of higher temperature to the zones of lower temperature. The
French mathematician and physicist Jean Baptiste Joseph Fourier (Fig. 4.19), who was the first
scientist to experiment with heat conduction, formulated an accurate model for this type of energy
transfer and solved his model using for the first time the Fourier series technique (chapter 5).
His doctoral advisor was Joseph Lagrange and Fourier was the teacher of Gustav Dirichlet and of
Claude Louis Navier (Fig. 4.2). Joseph Fourier discovered also the greenhouse effect on Earth in
1824, stating that “. .. an atmosphere serves to warm a planet . . . gases in the atmosphere might
increase the surface temperature of the Earth.” (Wikipedia 2009b).

Energy flow is equal to the thermal conductivity multiplied by the temperature gradient within
the rock. The statement of the heat conduction is expressed mathematically as the Fourier’s law
introduced in equation (2.9):

Gr = —kr- VT (4.79)

The vectorial flow of heat has units of [W/m?], the components of kr, which is the thermal
conductivity tensor of the porous rock, have units of [W/m/°C] and their properties were discussed
in section 2.1.4. Let Q2 be the domain of a conductive porous rock and let I' = 92 be its boundary.
Let Qf [J] be the thermal energy of Q2 that can be exchanged with its environment. Then the
instantaneous energy flow going in/out of 2 is (eq. 2.94a):

d - J
&:_/gr.ﬁdsz_/v-érdﬂ, [;:W} (4.80)

dt
r Q

We used the divergence theorem to transform the first integral in this equation. There is a basic
thermodynamic relationship connecting Qf to the thermal rock properties and with the volumetric
heat generation Qy (x, y, z) = qu/Vp (eq. 2.13):

e

~ =/%(c,, pr T)dsz:/%-(kT-%DdstQH dQ (4.81)

Q Q Q
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As long as equation (4.81) is valid for an arbitrary domain €2, from this integral rock property,
we deduce the mathematical model for heat transfer in porous rocks:

d > > \\%
(e o )=V (k- V1) + Oy [ﬁ] (4.82)

Model (4.82) is a partial differential equation that describes the spatial distribution and variation
of temperature in the domain 2. Note that if 7 is constant, both sides of equation (4.82) become
nulls and Qi =0. Due to the thermodynamic relations used to derive it, this equation also describes
the heat distribution in the region occupied by the porous rock. The thermal conductivity tensor
kr is specific of ©2; it can depend on the spatial coordinates at any point (x, y, z) € 2 and usually
has the form of a diagonal matrix, with non-zero components (krx, k7, k7;) in the main diagonal.
In three dimensions, equation (4.82) develops into the following system:

5 o fee 00\ [knaT
5@ D) =0n=V-(0 ky 0| VT=V-|kydT

0 k8T+8 k8T+8 kaT
~ax oy ay Tyay az """z

Under some circumstances the porous rock is more or less homogeneous and isotropic, its
density and specific heat are constants and kt = k7 I (I is the unit matrix) and the heat equation
is simplified:

AT kr - - k 2

at  pc oc T pey’ s
i i i (4.84)
N BT _ 5 VZT + (STQ OC
ar T kr i\ S

The coefficient §7 is the thermal diffusion coefficient of the domain €2 discussed in section
2.1.8 of chapter 2. Conduction always decreases with density. Liquid water and steam are less
conductive than solid rock. At 200°C, volcanic rock k7 is about 1.8 W/m/°C; at the same condi-
tions, k7 of liquid water is 0.65 W/m/°C and kr of steam is 0.05 W/m/°C. The pure mathematical
form of'the heat equation is analogous to other phenomena appearing in cold aquifers and geother-
mal systems such as the groundwater flow and the solute transport equations. Fourier’s law of
heat conduction is analogous to Darcy’s law and to Fick’s law of diffusion. Several examples and
fundamental solutions of (4.84) for simple domains are found at Wikipedia (2009c). Complete
references on general heat transfer are found in the free electronic book of Lienhard IV and
Lienhard V (2008).

4.6.2 Heat convection

Thermal energy transported by convection is a fundamental mechanism in geothermal systems.
This type of heat transfer is associated with the circulation of hot fluids in the reservoir. We can
distinguish between two mechanisms of convection: free convection (=natural convection) and
forced convection. Forces convection occurs if heat is transported with a fluid, which moves as
result of a hydraulic gradient. At free convection, the heat is carried by the movement originating
out of fluid density changes (due to variable temperature in space and time) and the buoyancy
for example produced by fluid heating in deeper regions of the reservoir itself. The buoyancy
results from the lower density of the deep warmed fluid, which ascends forming convection cells.
Boiling and condensation are convection transfers associated with the heat carriage during phase
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change of the fluid. For example, when the liquid evaporates, it gains condensation heat; when
steam condenses, it releases the latent heat of vaporization. Boiling is a very efficient energy
transfer mechanism. The amount of heat released is the same as the amount of heat absorbed
during evaporation. The basic equation for convection is Newton’s law of cooling:

dQg J
— =hr AT = Tp) [g] (4.85)

The term A7 [J/s/m?/°C] is the heat transfer coefficient, O is the thermal energy transfer by
convection, A4 is the rock surface area of the heat being transferred, 7 is the temperature of the
rock and 7y is the average temperature of the moving fluid in the porous environment. If there is
thermal equilibrium in the fluid-rock system, T’ ~ Ty and the rate of heat transfer by convection
is zero. This classic formula of cooling applies only under laboratory conditions and is not very
useful in real geothermal systems because it is very difficult to measure all the parameters included
in the formula. Very often, the hypothesis of thermal equilibrium between the porous rock and
the fluid is made in numerical simulations. Therefore, it is necessary to simplify the solution of
the equations involved. The formula normally used for the study of convection in geothermal
reservoirs is:

- R kg m kJ kw
tive fluid : = h Y———|=|— 4.86
convective fluid energy: Oy = pr vr by, |:mii S kg} [mz} ( )

where Qf is the vectorial flow of convective energy related to the fluid movement, vy is the Darcy’s
velocity, oy is the fluid density and Ay its specific enthalpy. Convection in porous media can only
occur in the fluids during the transport of heat by fluid circulation combined with conduction into
the fluid and between the rock and the fluid. The total flow of heat combined in the rock/fluid
system is convection plus conduction:

total flow of fluid energy: Ef = pr vr hy — kgy - vT (4.87)

The coefficient k7y is the fluid thermal conductivity. This formula is used in the next section to
develop the flow equations in single and two-phase geothermal reservoirs. In chapter 5 the same
expression will be used to build the numerical approximations of these two flow models.

4.7 FLOW OF MASS AND ENERGY IN TWO-PHASE RESERVOIRS

4.7.1 Darcy’s law for two-phase systems

Under appropriate thermodynamic conditions (Fig. 2.12), vapor and liquid can coexist simulta-
neously in high-enthalpy geothermal reservoirs. The geothermal reservoir can naturally contain
water in vapor and liquid phase or the reservoir may initially contain only liquid and the fluid
extraction diminishes the pressure producing a steam phase. Then it is said that the reservoir is
a two-phase system. This situation introduces several thermodynamic complications in the fluid
because each phase has its own variables: density, viscosity, enthalpy, specific heat, and thermal
conductivity. In section 2.3 the thermodynamic properties of two-phase water are shown in a wide
range. The main useful relationships for two-phase fluids are listed in subsection 2.3.6.9. The
vectorial flow of a two-phase fluid through a differential area dS wrapping a differential volume
dVg of the porous reservoir is the mass of fluid passing per unit area, per second [kg/m?/s]:

flow of liquid: F; = p % — ... (a)
flow of steam: F, = py ¥y, — /... (b) (4.88)

two-phase flow: FMZ = 1?‘1 + 1_5‘, ... (0
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where subindices /, v represent liquid and vapor; the terms ¢, and &; are the evaporation and
condensation rates of each phase, respectively. In each closed differential volume dVp, we have
&1 + &, = 0. For laminar flow, the average vectorial velocity of each phase is given by Darcy’s
law, generalized by Muskat (1937) for two-phase flows. The specific discharges of each phase
through the differential element of surface dS are:

K k-

v

> Kkrl = - > = >
a)v = —T(sz -p 8, by, =- (Vpy — v 8) (4.89)

where K is the rock absolute permeability tensor at each point (x, y, z), k;; and k-, are the relative
permeabilities of each phase. The two-phase continuity equation is:

9 - -
— - _V. . =

8t(copf) Fyo+aqr; qr = q1+qv (4.90)
or =piSi+povS; Si+S =1 pc=p,—pi

The phase pressures are related through the capillary pressure pc and the two phases are coupled
through the mixture density and by the relationship among saturations.

4.7.2 Flow of energy in reservoirs with single-phase fluid

The vectorial flow of thermal energy at each point (x, y, z) through a differential area dS of a
porous volume dVp of the reservoir (Fig. 4.1), is the total amount of heat by convection plus
the total amount of heat by conduction that passes every second, per unit area [J/m?/s] in the
rock-fluid system:

fluid energy: Ef =Fun hy — Kty - VT... (a)

rock energy: E, =F, h.—kr,-VT... (b) 4.91)
total energy flow: f’El = Ef + Er ... (©

The first term in the second member of equations (4.91a) and (4.91b) represents convection
while the second term is the heat conduction. ks and kT, are the thermal conductivity tensors for
the fluid and for the rock, respectively. We assume that the rock mass flow is negligible (£, ~ 0)
under practical geothermal conditions. Then the total energy flow in the differential volume dVp
(Fig. 4.6) is:

Fgi=Fy by —kr - VT, kr = (1 — )kr, + ¢ kry (4.92)
where /s [I/kg] is the specific enthalpy of the fluid; Fyy1 is the fluid mass flow (eq. 4.14) and
kr is the effective or average thermal conductivity of the rock-fluid system. This parameter can
be used as a tensor or a number, depending on the availability of measured field data. The total

internal energy in the REV or differential volume dVp is:

fluid energy + rock energy

J
—Ur = - - 4.93
volume T @ pref +( ©)pr er |:m3i| ( )

The rock energy is approximated through its specific enthalpy. Using the definition of the rock
specific heat at constant pressure (see chapter 2):

oh
¢ = - = de, ~dh. ~ ¢, dT (4.94)
oT »
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The conservation of energy states that:

e The instantaneous change of thermal energy in a differential volume dVg of porous rock is
equal to the total flow of heat through the differential surface dS surrounding d73, plus the rate
of heat extracted or produced in d/3.

U - IwW
=T ] (4.95)

- _V.F - _ "
5 £1 + On [Sm3 3

The model defined by equation (4.95) is applicable to complex porous media with simultaneous
heat and mass flows in single-phase or in two-phase fluids, as shown in the next section.

4.7.3 Flow of energy in reservoirs with two-phase fluid

The vectorial flow of thermal energy at each point (x, y, z) through a differential area dS of
a porous volume dVp of the reservoir is the total amount of heat by convection plus the total
amount of heat by conduction that passes per unit area in every second [J/m?/s] in the two-phase
fluid-rock system:

liquid energy flow: E; = Fjhj—kp -VT;... (a)
steam energy flow: EV = ﬁv hy — Ky - %Tv ... (b) (4.96)
rock energy flow: E = Ij"r h, — Kk, - %Tr ... (¢

The total heat flow is:
Fgp=E +E,+E. =F hj+Fyhy —kr-VT (4.97)
The effective porous rock thermal conductivity is:
kr = (1 — @)kt + ¢ S k1 + ¢ Sy Ky (4.98)

where kt,, ky; and kT, are the thermal conductivity tensors of the rock, liquid and steam,
respectively. The equation for the flow of thermal energy in the volume dVp has the same form
as in equation (4.95), with the total flow of thermal energy given by equation (4.97). We also
assume that the temperature of both phases is the same as the temperature of the surface of the
rock in contact with the fluid. That means, there is an instantaneous thermal equilibrium in the
rock-fluid system and 7y ~ T, & T,, = T. The variation of the total thermal energy is:

aUr

TR —V Fp + On
(4.992)
fluid energy + rock energy
Ur = =gprer+ (1 —9)pre
volume
The reciprocal relation between internal energy and specific enthalpy is:
prer =Siprer+Sypvey=prhr—p (4.99b)

or by =S prhi + Sy pyhy = prep +p

In chapter 5 we present the solution of all these equations for the flow of mass and energy in
porous media using different numerical methods.
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4.73.1 The Garg’s model for two-phase fluid

Garg (1980) derived a simple diffusivity equation for the two-phase flow of water in geothermal
systems. This model is valid for reservoirs of radial geometry, assuming a fully penetrating well
in a very large homogeneous, isotropic reservoir of thickness b,. The main hypothesis is that the
reservoir is initially a two-phase system with uniform pressure and temperature everywhere. The
resulting partial differential equation is completely analogous to (eq. 4.47) developed in section
4.4.3. The simplified mathematical model (Garg 1980) is:

9 92 9 1 k
L L L ( ) (4.100)
T

ot a2z oo :<pprr ;

In this model, Cr is the total compressibility, vy is the kinematic viscosity, and equation (4.90)
gives the fluid density. The hydraulic diffusivity ny depends on the total kinematic mobility
(k/v)r = (k/v); + (k/v),, which depends on temperature. The internal and external boundaries
and initial conditions are:

initial condition: p(r, 0) =p;, Vr >0
external boundary:  lim p(r, t) =p;, Vt>0
r—00

0 Ou
internal boundary: lin%) (ra—p) = 5. (%’{)
r— 14 T a

(4.101)

To solve this model we use the same Boltzmann transformation of section (4.4.3). Replacing
the corresponding values, the final solution of the model (eqs. 4.100 and 4.101), satisfying the
boundary and initial conditions, is:

Om (vr r?
) = p; L) E 4.102
p(r, 1) pz+4ﬂba(k)r N G ( )

If Our [kg/s] > 0 the fluid is entering the reservoir (injection). If Oy < 0 the fluid is being
extracted from the reservoir (production). The flowing enthalpy is given by the following formula:

k k vr
h=\—h+—h |- 4.103
(Vl ' Vy ) <k >T ( .

4.7.4 Heat pipe transfer in two-phase reservoirs

A heat pipe is a simple device, natural or artificial, that can quickly transfer large amounts of
heat from one point to another. Heat pipes are like heat superconductors because they possess
an extraordinary heat transfer capacity with almost no energy loss. R.S. Gaugler first suggested
the idea of heat pipes in 1942. In two-phase geothermal reservoirs, the heat pipe steam-liquid
counterflow mechanism explains the heat transfer when the system is in its natural state. To under-
stand natural heat pipes in reservoirs we briefly describe how an artificial one works (Wikipedia
2009d):

e A typical heat pipe consists of a sealed pipe made of a material with high thermal conductivity.
Inside the container is a liquid under its own pressure that enters the pores of the capillary
material of the heat pipe, wetting all the internal surfaces. Applying heat at any point along the
surface of the heat pipe causes the liquid at that point to boil and enter a vapor state. When
this happens, the liquid picks up the latent heat of vaporization. The high-pressure gas moves
inside the sealed container to a colder location where it condenses. Thus, the gas gives up the
latent heat of vaporization and moves heat from the input to the output end of the heat pipe.
The main reason for the effectiveness of heat pipes is the evaporation and condensation of the
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working fluid. Almost all of that energy is rapidly transferred to the “cold” end, at the point
where the fluid condenses, making a very effective heat transfer system with no moving parts.
Heat pipes have an effective thermal conductivity many thousands of times that of copper. The
heat transfer or transport capacity of a heat pipe is specified by its “axial power rating (APR)”.
It is the energy moving axially along the pipe. The larger the heat pipe diameter, the greater is
the APR. Similarly, the longer the heat pipe, the lesser is the APR.

Natural heat pipes occur very often in two-phase reservoirs. The corresponding conceptual
model of such systems can be simplified with a vertical section of porous, fractured rock in
which thermal energy is transported from depth by ascending steam. This steam condenses at the
top of the aquifer releasing its heat of vaporization. The condensed liquid descends to the bottom
of the permeable reservoir, where the temperature is higher. The liquid is heated and it evaporates
again. For example, this type of effective heat transfer drives the Los Azufres, Mexico geothermal
system (Suarez et al. 1989). The numerical simulation of a natural heat pipe mechanism in this
two-phase reservoir is described in example 9.6.7.

4.7.5 The general heat flow equation

The general heat flow equation in geothermal reservoirs includes conduction and convection
through an advective term related to the transport of energy by the moving fluid in the pores
(Lautrup 2005). These combined energy transfer processes are modeled by the following partial
differential equation:

T - o o .
o7~V VD) 4V (G p TV = Oy (4.104a)

cp P
where vector v represents the Darcy’s fluid velocity and Qg [W/m?] is the volumetric thermal
energy production. The other parameters were introduced in chapter 2. This equation is valid not
only for heterogeneous, anisotropic porous rocks, but also for moving viscous fluids governed by
the Navier-Stokes equations, at the micro-scale of the pores or for the wellbore for example.

To include convection in the heat flow vector (eq. 2.9) it is necessary to add the corresponding
effect of advection related to the fluid velocity in the reservoir (see eq. 4.87):

Gr=—kr-VT+c,p TV (4.104b)

These two equations complete our discussion of the heat transfer phenomena in porous rocks.

4.8 SOLUTE TRANSPORT EQUATIONS

Diffusion is a common molecular phenomenon in porous rocks that occurs because of the presence
of different concentrations of a substance in the fluid. Diffusion is the mechanism by which
particles of a fluid mixture are transported from regions of high concentration to regions of
lower concentration. The diffusion phenomenon is the macroscopic effect of a molecular random
motion. Diffusion can occur in gases, liquids, and solids. The dissolved substance is the solute
and the substance in which the solute is dissolved is called the solvent. Solutes diffuse at different
speeds, the fastest in gases, and the slowest in solids. In aquifers and in geothermal systems,
the solvent is the water and the solutes are salts, gases, organic or inorganic constituents. The
non-homogeneous distribution of gases and salts in the reservoir fluid starts the diffusion process.
The transport of an artificial tracer injected into a porous system also occurs by diffusion. The
substance dissemination occurs in the same direction in which its concentration decreases. The
resulting flux is proportional to the concentration gradient of the solute. In this section, we
introduce the general solute transport equations.
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Figure4.20. Adolf E. Fick (1829-1901), German physiologist.

4.8.1 Fick’s law of diffusion

In 1855, Adolf Eugen Fick (Fig. 4.20) introduced his Fick’s law to describe the diffusion of a gas
across a fluid membrane. This law was first devised as a technique for measuring cardiac output.
Later it was applied equally to physiology and physics. Fick considered the concentration of
oxygen as a marker substance to calculate the blood flow to the different organs inside the human
body. Fick noticed the physical analogy between heat conduction and diffusion. The concentration
N*(x) of the diffusive substance is the number of molecules of the solute existing per unit volume
of solvent [Nys/m3]. We define the concentration flux ¢* as the number Nj; of molecules of
the substance passing through the unit area of the medium in each time 7 in the direction of
diffusion. Fick discovered a relationship between flow and concentration of the substance that
can be expressed in one-dimensional flow as:

q* — _D*

aN* ) [NM} (4.105)

dx m?2s

The molecular diffusivity D* [m?/s] is a parameter that describes how fast or slow the molecules
of the solute diffuse. For diffusion in porous rocks, this equation is modified to take into account
the presence of both the pores and the solid grains. The first form of Fick’s law in porous media
is a steady state equation (Batu 2006):

oC
in one dimension: ¢p = —¢ Da—(x)
X

aC aC aC
) (4.106)

in3D: gp=-¢D-VC(x,,2) = —¢(Di— +Dy— +D.—
ox ay 0z

- - mol | . cop
x =, ¥, 2),49p = (9Dx, 9Dy, 9Dz) [—2] is the diffusion flux
m-s

The negative sign in equation (4.106) indicates that the diffusing mass flows in the direction
of decreasing concentration. This principle states that a substance put into solution will tend to
diffuse towards constant concentration throughout the solution. The absence of a velocity term in
(eq. 4.106) indicates that diffusive transport of solutes can occur in fluids at rest. If the solution is
flowing, diffusive transport can still occur and becomes part of hydrodynamic dispersion (Bear
1979, Bear and Bachmat 1984, Batu 2006).



156  Introduction to the numerical modeling

The main function C(x) is the molecular concentration of the substance in [mol/m3], which
is the number of molecules of solute per unit volume of the solution; however, other units can
be used (see subsection 2.3.11). For example, grams per liter [g/L] or [kg/m?], if C is defined
as the mass of solute dissolved per unit volume of the solvent. In aquifers and in geothermal
reservoirs, the most common units for C(x) are milligrams per liter [mg/L] and parts per million
[ppm or mg/kg if we use SI units], which equals the number of grams of solute per million grams
of solution [g solute/10°g solution].

The parameter D [m?/s] is called the diffusivity or coefficient of molecular diffusion in the
porous rock and depends on the substances contained in the fluid. It can be a constant number in
one dimension, or a tensor in two or three dimensions. It also depends on the spatial coordinates
and on time. In general, D grows with temperature and decreases with pressure. Diffusivity is
proportional to the velocity of the particles of solute and this velocity depends on both fluid
temperature and viscosity. In two and three dimensions, the diffusion flux becomes a vector, but
because of the tortuous pathway and the presence of the interface between the fluid and the solid
grains (Figs. 2.2 and 4.1), the coefficient D in porous rocks is lower than the diffusivity Dy in
pure aqueous solutions (Batu 2006, Bear 1972):

D=Dyt, 00<7t <10 (4.107)

The tortuosity factor 7y ranges between 0.3 and 0.7, for most soils; 7, ~ 0.707 for unconsoli-
dated granular media and 7 ~ 0.67 for consolidated porous rock. The major ions in groundwater
(Nat, K+, Mg2*, Ca?t, CI-, HCO;, and SOﬁ_) have diffusion coefficients in the range
[1.0,2.0] x 10~2 m2/s at 25°C. Considering water as the solvent substance, there are differ-
ent values of Dy for the following solutes (data from Batu 2006): Dy = 1.46 x 10~° m?/s for
CO; at 10°C; Dy = 1.77 x 107 m?/s for CO, at 20°C; Dy = 1.26 x 1072 m?/s for NaCl at
18°C and 0.05 kmol/m? of solute concentration; Dy = 1.54 x 10~ m?/s for NaCl at 18°C and
5.4 kmol/m> of concentration; Dy = 0.83 x 10~2 m?/s for ethanol at 10°C and 0.05 kmol/m> of
solute concentration.

The difference in concentration between two regions of the porous rock is called the concen-
tration gradient. No mechanical mixing or stirring is involved. For instance, if C represents an
artificial contaminant, a drop of contaminant added to water will diffuse down the concentration
gradient until evenly mixed. Diffusion occurs more rapidly across a higher concentration gradient
and at higher temperatures. Diffusion is quite different from the movement of molecules when a
fluid is flowing. In the last case, movement is not random; all molecules are moving together and
in the direction of groundwater flow. The coefficient D is closely related to the thermodynamic
state of the porous medium and on the diffusing substance.

The second form or non-steady-state of Fick’s law takes into account the change in concentration
of the substance with respect to time. Combining the Fick’s law with the principle of conservation
of mass for the spreading molecules, we obtain the following partial differential equation:

. ) . dgp 9C(x, 1) 92C
1mn one dlmensmn: - =——=D

. . . S aICE, t) = -
in two or three dimensions: — V :-¢gp = ST =V.-D-V0O)

This is the diffusion equation; except for the units and the physical meaning of the parameters
involved, its mathematical form is completely analogous to the groundwater flow equation (4.23a),
deduced from Darcy’s law or to the heat equation, deduced from Fourier’s law of heat conduction
(egs. 2.16 and 4.82).

Typically, a compound’s diffusion coefficient is about 10,000 times greater in gases than in
liquids. Carbon dioxide in air has a diffusion coefficient of 16 mm?/s, and in water, its coefficient
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is 0.0016 mm?/s. In a two-component mixture, if species 1 diffuses to the left, species 2 must
diffuse to the right. In this case, D becomes the “binary diffusivity”.

4.8.2 Fick’s law with advection and dispersion

The general solute flux in porous rocks with fluid movement has three components: diffusion,
advection and mechanical dispersion. Advection occurs because groundwater’s natural movement
can transport the solutes. Dispersion occurs because there is a mixing process produced by local
velocity variations, which is macroscopically similar to molecular diffusion (Bear 1972, Batu
2006). This generalization of Fick’s law is expressed as follows:

oC oC
diffusive flux = —¢ Da—(x, 1), dispersive flux = —¢ Dma—(x, 1)
X X

advective flux = pu, C(x, t); with: Dy =D+ D,, and vy = @uy (4.109)

aC
in one dimension: gpy = vy C(x, t) — <pra—(x, 1)
X

The term u, is the pore fluid velocity and v, is the Darcy velocity. The new parameter D,,
is the mechanical or hydrodynamic dispersion coefficient (Bear 1972) which, together with the
previous diffusion coefficient D, defines a longitudinal dispersion coefficient Dy acting in the
direction of the groundwater flow. In three dimensions, the total flux of the solute concentration
is defined as a tensorial equation:

aC
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The vector gp defined by this equation is the advective-dispersive flux of the solute dissolved
in the fluid contained in the porous rock. If the flow velocity is zero, this vector becomes identical
to the diffusive flux term of equation (4.106). Figure 4.21 shows the schematic representation
of mechanical dispersion in a 2-dimensional aquifer with uni-directional groundwater flow. If
the porous reservoir is homogeneous and anisotropic the tensor D has a simpler form, only the
coefficients in the main diagonal are non zero: D;; # 0 and D;; = 0 fori,j =x, y, z, i #.

Figure 4.22 illustrates the effect of dispersion in a 1-dimensional homogeneous isotropic sed-
iment column with stationary water flow. If a solute is added at one end of the column (initial
solute concentration Cp), either continuously (Fig. 4.22a) or instantaneously, it travels through
the column. If solute transport is only by advection, all solute particles released at the same time
at the source will travel with the same velocity and reach the exit boundary of the column at the
same time; there the solute concentration is C = Co (C/Co = 1) (Fig. 4.22b shows the case of a
continuous solute source). However, laboratory studies have shown, that the solute concentration
is not exactly Cp, when the solute reaches the exit boundary since the flow velocities along the
different parallel flow lines of the water in the column are not exactly the same through a cross
section of the column (Rehfeldt et al. 2004). So generally solute along flow lines in the middle
of the cross section, have a different propagation velocity compared to those closer to the wall.
Therefore, the contaminant particles do not reach exactly the exit boundary at the same time. The
measured concentration of the outflowing water corresponds to a value averaged over the entire
cross-sectional area. For a short time interval, the measured average concentration appears to be
smaller than Cy. However, for a long enough time interval, as the solute from all the flowpaths
arrive at the exit, the average concentration increases to C.
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Figure4.21. Schematic representation of mechanical dispersion in a 2-dimensional sand aquifer section
with uni-directional stationary groundwater flow from left to right. A solute (red) is injected
continuously at the left (red arrow) and is transported by advection (groundwater flow) from left
to right. The advective transport component is overlain by the transport process of longitudinal
(parallel to groundwater flow) and transversal (perpendicular to groundwater flow) mechanical
dispersion, resulting in longitudinal and transversal spreading of the solute plume.
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Figure4.22. Solute propagation in a 1-dimensional homogeneous isotropic aquifer column with continuous
solute injection at one side of the column (a). Solute concentrations at the exit boundary of the
column when the solute is solely transported by advective movement of the groundwater are
given in (b), and when additional mechanical dispersion occurs are given in (c). For further
explanations see the text.

If in addition to the advective transport, we consider also the mechanical dispersion, then in
our simple 1-dimensional case, the solute can only spread in the direction of water flow. The
size of the spreading zone depends on D, and lies between the regions where C/Cyp < 1 and
C/Cy > 0 (Fig. 4.22¢). In the case of a continuous solute source, the concentration behind the
spreading zone is C = Cy (constant; C/Cy = 1) (Fig. 4.22¢). In case of instantaneous solute
source, where a pulse of solute mass is injected at ¢t = ¢y (Fig. 2.23a for ¢ = #y), the maximum
solute concentration along the center line of propagation decreases with increasing distance from
the solute source since the concentration spreading zone becomes wider due to the increasing
effect of the mechanical dispersion. Figure 2.23a shows the distributions at two different times ¢
and #, after solute injection.

If we consider 2- and 3-dimensional transport, dispersion also causes transversal spreading.
This causes a reduction of the solute concentration behind the longitudinal zone of spreading,
since mass spreads laterally. Figure 4.23b shows an example for the 2-dimensional case for both,
instantaneous and continuous solute injection. In case of instantaneous injection at ¢ = #g, the
contamination zone spreads symmetrically around the site of solute concentration maximum
as shown in Figure 4.23b for two times #; and #,. Spreading increases with time and distance
from the solute source and correspondingly the peak concentration decreases along the flowpath.
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Figure4.23. (a) Solute propagation in a 1-dimensional homogeneous and isotropic aquifer with instanta-
neous injection at one side of the column. Solute concentrations are shown for two different
distances from the solute source corresponding to two different times #; and #; (b) In the
2-dimensional case, the dispersion effect is shown for a pulse obtained from an instantaneous
solute injection and for a solute plume resulting from continuous solute injection. Solute
pulses and solute plumes are given for two times #; and #,, which correspond to two different
distances from the solute source. For further explanations see text. Modified from Rehfeldt
et al. (2004).

Since the spreading of the pulse is higher in the direction of water flow compared to those in
perpendicular direction, the longitudinal dispersive flux is greater than the transversal one. The
reason for this behavior is that the center of solute mass moves at the average linear velocity of
the groundwater.

In case of continuous solute injection, the front of the concentration plume at #1, has traveled
as far as in the case of instantaneous injection (Fig. 4.23b). The solute concentrations in the zone
behind the front of the plume remain high increasing towards the source along the center line
of plume. At 1, the plume has become longer and wider than at earlier times. In contrast to the
example of instantaneous solute injection, the concentration gradients are low in the longitudinal
direction, with the exception is at the front of the plume. This indicates that longitudinal dispersion
occurs predominantly at the front of the solute plume. In the transversal direction, the gradient
of the solute concentration is high along the entire length of the plume. Domenico and Schwartz
(1990) expresses that transverse dispersion leads to decreased concentrations (C/Cy < 1) every-
where, with exception of the solute injection site itself, while longitudinal dispersion only results
in spreading at the front of the plume. We have already observed this behavior in our 1-dimensional
example (Fig. 4.22¢).

4.8.3 General solute transport equations

Assuming there is no production or removal of solute by reaction in the reservoir, the governing
partial differential equations describing solute transport in porous rocks are generalizations of the
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second form of Fick’s law:

Dy O 0
with: D=| 0 Dy O
0 0 Dy
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The scalar function C(x, y, z, t) is the solute concentration in moles per m?3; the matrix D
contains the eigenvalues Dy, Dy, Dz [m2/s] of the dispersion coefficients or principal val-
ues of the dispersion tensor D; v; is the cartesian component of Darcy’s velocity. The term
Csol 1s the solute concentration in the source fluid, ¢y [m3/s/m3 ] is the volume flow rate per
unit volume of the source or sink in the aquifer (eq. 4.22b), and ¢ is the effective porosity as
usual.

The most general partial differential equation governing solute transport is:

, dimensi 9 (5.2 Z 20— Coar + %R IC(x, 1)
1n one dimension: —_— —_— ) — — (v — ;= _—
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where R; is the rate of solute production in the reaction number j of a total of Ny different reactions.
For equilibrium-controlled reactions (e.g. sorption and ion exchange processes between solid and
fluid) if they can be described by linear processes (no time-dependence of processes), with
radioactive decay (Javandel et al. 1987), the summation of the terms R; is:

Nr -
K4 0C(x, t
S R = -pCRy— 22 "% (4.113)
j=1 !
In this case equation (4.112) can be written as:
S 2 2 " aC(x, 1)
V(D -VC) =V -(CV) —Csqy —9rrCRy =¢Ri—y—
0.693 K ; (4.114)
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where Ry is called the retardation factor, K is the distribution coefficient, pp is the bulk density
of the rock, and Xy is the radioactive decay constant; #y s represents the value of half-life for the
radioactive substance. For example, Az = 2.71 x 10~12 1/day for 235U (Batu 2006).

The retardation factor Ry is the ratio between the velocities of the fluid v; and the solute v¢.
R; = 1 if no retardation occurs and the solute moves with the same velocity as the transporting
fluid; this is valid e.g. for ideal tracers. Retardation is caused by physical, chemical or biological
interactions between the solute and other chemical species present in the fluid, or interactions
between the solute and the solid aquifer material such as adsorption/desorption and ion exchange
processes (see e.g., de Marsily 1986 for more details).



Fluid flow, heat and solute transport 161

If the velocity v¢ of the contaminant is known, and for a one-dimensional flow in the direction
xi, Rg ~ vi/vc (Javandel et al. 1987). For unconsolidated rocks an interval of values for R; was
found to be: 1 + (3.98 g/cm3)Kd <R; <1+ (10.60 g/cm3)Kd. Using the experimental value
of K = 0.2 cm?/g for tetrachloroethylene, a halogenated organic compound (Batu 2006), we
deduce that 1.80 < R; < 3.12.

In a two dimensional homogeneous and isotropic porous rock without solute sources, equation
(4.114) can be simplified to:

3C 9%C aC aC
Dy— +Dy— ) —vyx— —@AgR;C=¢ Rj— 4.115
‘P<X8x2+ Yay2> VX 5o T @A Ra ¢ Ra— ( )

where Dy and Dy are the hydrodynamic dispersion coefficients, parallel and perpendicular
respectively to the velocity vy in the flow direction OX. They are measures of the extent to which
the solute spreads in the specified direction.

Since the dispersion coefficient D is based on microscopic pore-scale movement of the fluid,
which cannot be measured in the field, we introduce the parameter dispersivity o [m]. Dispersivity
is an empirical field-scale parameter, which indicates how much a solute strays away from the
macroscopic field-scale velocity of the groundwater. Longitudinal dispersivity (o), describes
the spreading of the solute particles behind or in front of the fluid motion (in macroscopic flow
direction), whereas the transversal dispersivity («r) quantifies the spreading of the solute particles
perpendicular to the macroscopic groundwater flow direction.

However, dispersivity is not really a measurable parameter for field problems. It can only be
determined in small areas, e.g. in the direct vicinity of a well or in very well-defined simple
aquifer fabric, such as it is found in some experimental test sites. For real problems, dispersivity
is merely a fitting parameter that covers our lack of knowledge of the true flow patterns. It is not a
real aquifer property. It is considered as an aquifer adjustment for the lack of information about the
modeled system and the error of our assumptions, such as averaging when using a macroscopic
field scale description. So, there are different aquifer characteristics that determine dispersivity.
There may be small-scale inhomogeneitis in the aquifer as well as larger-scale heterogeneities,
such as beds or lentils of gravel or clay in an aquifer that we have assumed as a sand aquifer.
So, in the same aquifer, the dispersivity may be different if we consider a volume of e.g. 1 m3
composed by sand compared with the value considering a larger volume, where the presence
of layers or lentils of gravel or clay determine dispersivity. In consequence, dispersivity is often
spatial-scale-dependent and so a time-dependent variable in the modeling. Thus, a single constant
value does not often well-describe what we measure or wish to predict in the field. In consequence,
both the concept and the methods of its determination are topics of many studies and an issue of
controversy.

Many studies were performed on the scale-dependency of dispersivity, both at the column
scale (Han et al. 1985, Porro et al. 1993, Zhang 1995) and at the field scale (Gelhar et al. 1992,
Yasuda et al. 1994, Ellsworth et al. 1996). Wheatcraft and Tyler (1988) applied fractal theory
to explain the scale effect on dispersivity, whereas Pachepsky et al. (2002) used the fractional
advection-dispersion equation. Other approaches used stochastic methods (Gelhar and Axness
1983, Dagan 1984, Schwarze ef al. 2001). Wang et al. (2006) specified five ways to define
dispersivity. They designated dispersivity as dependant on local time, average time, apparent
time, local distance, or apparent distance in a numerical scheme and tested numerically how
these different ways affected the calculated break through curves. They used generalized linear
and power scale-dependent dispersivity functions for a one-dimensional problem. These authors
found that differences decreased with increasing apparent Peclet number.

The dispersivities o7, and o7 are related to the dispersion coefficients Dy and Dr (which
correspond to Dy and Dy in the simplified 2-dimensional case of equation 4.111) by Dy, = «;,
vc and Dy = a7 ve. Dispersivities can be estimated e.g. by tracer tests (see section 6.7.2.5 and
6.7.3.4 for tracer tests in cold and geothermal aquifers, respectively). There are also methods,
which allow the determination of 7, using the geometric data of a contaminant’s contamination
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plume. So, Xu and Eckstein (1995) give the following formula, which relates o7, to the measured
plume length L:

ar = 0.83(Log;o L)>** (4.116)

In practical applications, and in absence of further data, the transversal dispersivities are often
deduced from the longitudinal dispersivity. Depending whether the transversal dispersion occurs
in horizontal or vertical direction, Gelhar et al. 1992 recommends to calculate a7 as 1/10th and
1/100th of the value of «, respectively.

In the following discussion we resume the findings of Gelhar er al. (1992) who discussed
extensively the issue of dispersivities in various geologic formations. These authors summarized
literature data of o7 values for different scales of individual studies (scale value is defined as
distance between site of originating solute e.g. the point of contaminant release or tracer injection
and the site of observation), the type of rock (sediment or hard rock) and the reliability of the
data (Fig. 4.24). This approach means that «; data points do not present real o7 values at a
particular location (a certain distance from the source), but correspond to apparent dispersivity
that has evolved to that particular scale. In reality, oy values will change along the pathway of
the solute traveling from the source point to the point of observation (for examples of multiple
snapshots of the variation of «; along the pathway at a single site; see e.g., Freyberg 1986,
Garabedian et al. 1991). Gelhar et al. (1992) found no significant difference in dispersivities
determined in fractured and porous rocks. Their most important findings are:

e Not considering the reliability of the data, o7, increases continuously with scale.

e Most of the large-scale data are derived from numerical models. However, the reliability of
dispersivities from numerical models is considered as low. Reasons are: (1) Undocumented
numerical dispersion, may lead to wrong estimates of dispersivity and (2) in other modeling
applications, unrealistic «; were used, which do not correspond to the real field values, but
were introduced into the model either for numerical stability reasons, or to use dispersivity as
merely a fitting parameter that covers the lack of knowledge of the true flow patterns as we
have already mentioned earlier.
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Figure4.24. Scale dependency of «;. Scale is considered as distance from origin of solute (e.g., site of
tracer injection) to the observation point. Note that the data points are apparent ¢, values, and
do not correspond to real values corresponding to o, at a specific point. Modified from Gelhar
et al. (1992).
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e Considering only the most reliable data, a positive correlation between «; and scale data is
still present. However, no clear extrapolation to large scales is possible, since the largest high
reliability data point is («z, = 7; scale = 300 m) (Fig. 4.24).

e Independent on scale, o7 values vary by 2—3 orders of magnitude.

In consequence, the previous equations describing hydrodynamic dispersion require to be mod-
ified, and require the inclusion of terms that include scale-dependent functions of the dispersion
coefficient and/or dispersivity, which results in a time-dependency of these values. However, this
is behind the scope of our introductory book and we refer the reader to specialized literature (see
e.g. Wang et al. 2006).

Solving the general partial differential equations herein presented is a difficult task. Some
analytical methods can handle some simplified aspects of solute transport in porous media.
Nevertheless, because of the complexity of the equations involved, the analytical solutions are
restricted to uniform velocities and to radial flow geometries. Readers interested in modeling and
predicting groundwater contamination can find a more detailed discussion, together with various
analytical and numerical models of different levels of depth and complexity in the excellent
monograph of Batu (2006) and in the handbook by Javandel ef al. (1987). In chapter 5 of this
book, we describe powerful numerical tools able to solve all the equations introduced in this
chapter.






CHAPTER 5

Principal numerical methods

“Mathematics is a language for describing Nature, it is a language of scientific
knowledge of the world. If you wish to speak to Nature, you need to have the
mathematical language. If you wish to comprehend Nature, you need to have the
mathematical language.”

Juri 1. Neimark (2003)*

The description of groundwater flow and the transport of solutes and heat requires the use of
differential equations, with their initial and boundary conditions. Research on reservoir topics
requires the solution of these equations for the hydrogeological or geothermal problem in question.
Unlike a few special idealized cases with very simple geometry, finding analytical solutions
for regions of arbitrary shape is impossible. In real reservoir problems, numerical mathematical
methods must be used to obtain approximate results. Numerical techniques allow finding solutions
in irregularly bounded areas or when boundary conditions vary in time as for instance, in aquifers
whose space, solute, source, and sink parameters vary as fluid is extracted or injected, and in
cases where energy transport varies in time. Logically, an essential condition is the availability of
data describing the system. The characteristic shared by the numerical methods used is, generally
speaking, the substitution of partial differential equations by systems of algebraic equations
or by ordinary differential equations that can be solved by means of different algorithms. The
availability of small and low-cost computers such as PCs or workstations has led to the use of
powerful numerical methods to solve complex hydrogeological or geothermal problems.

Knowledge on how to solve differential equations using numerical methods and algorithms is
essential not only for programming tasks, but also for the use of commercially available modeling
programs that are commonly employed. This knowledge will be useful in detecting weaknesses
in the software and determining program sensitivity. It also gives the user the ability, to a certain
degree, to diagnose computing problems. This chapter provides a general overview of the major
numerical methods currently used for modeling hydrogeological or geothermal problems. This
chapter is by no means a complete compilation of all modeling techniques, since the field of
study is extremely broad and its development has resulted in a significant specialization. With the
exception of the finite difference and finite element method, detailed mathematical derivations are
left aside, since they are described in detail by specialized literature. It would have been impossible
to do so within the scope of this book. Smith (1978), Kinzelbach (1987), Bear and Verruijt
(1987), Bear and Bachmat (1990), Zienkiewicz and Taylor (2000), Katsikadelis (2002), Pruess
(2006), Fish and Belytschko (2007), contain full descriptions, including practical examples of the
different classical numerical methods. However, we have included some methods in connection to
hydrogeological, petroleum and geothermal systems. Users of commercially available programs
should obtain information about the numerical algorithms used and the structure of the program
through the corresponding manual. This book will briefly describe only the principles of the most
important methods, and their benefits and drawbacks will be compared.

* Juri 1. Neimark: Mathematical Models in Natural Science and Engineering. Springer-Verlag, Berlin, 2003.
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5.1 THE FINITE DIFFERENCE METHOD

5.1.1 Fundamentals

The finite difference method is a classic numerical solution technique, which despite its limita-
tions is still widely used in modeling groundwater and geothermal systems due to its simplicity
and consequent easiness in programming. The basis of the finite difference method consists of
replacing differential expressions by quotients of differences. The numerators of those quotients
are the differences that include the values of the unknowns. Thus, the solution of partial differen-
tial equations is performed by means of a system of algebraic equations that can be solved using
different techniques.

To create a finite difference model the area to be modeled should first be spatially discretized.
This is done by dividing the domain under consideration (model area) into a finite number of
cells to which hydrogeological properties are attributed. At the center of each cell there is a node,
denoted (i, j, k), where i represents the cell indice in the x-direction and j represents the cell indice
in the y-direction. Time is also discretized into a finite number of intervals, and represented by k.
At a given node (i, j) and given time k, the hydraulic head is represented by the value 4(i, j, k),
the concentration of dissolved solutes by C(i, j, k) and temperature by 7'(i, j, k). For each cell,
a water and solute balance is carried out for each time interval, e.g., by applying Darcy’s law.
Figure 5.1 shows a two-dimensional example where the study area (e.g. domain) has been divided
into eight cells in the x-direction (i = 1 to 9) and eleven cells in the y-direction (j = 1 to 12).
The total number of nodes is » = i x j and for each of these nodes the hydraulic head % and the
substance concentration C can be described by means of an algebraic equation. Thus, we obtain
a system of equations with # unknowns.

On each given node, the following can be determined:

e hydraulic heads,
o flow velocity (Darcy’s flux),
e solute concentration or temperature (heat content) at each node.

The principle of the finite difference method is presented below in a simplified way for two
specific examples, through the derivation of flow and transport equations. In order to show these
examples, we must first construct partial derivatives that can be used for our various models. We
begin by considering the partial derivative with respect to x of the hydraulic head A(x, y).
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Figure5.1. Network of nodes centered on the cells for the construction of a two-dimensional groundwater
flow model, in accordance with the finite difference method: e node; dashed: examples of cells;
i and j are the indices in the directions x and y for the classification of the network nodes.
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According to the definition of the first partial derivative of the function %(x, y) with respect
to x, the following holds:

oh . h(x+ Ax,y) —h(x,y)
— = lim
0x  Ax—0 Ax

(5.1)

However, in opposition to classical differential calculus, digital computers do not allow cal-
culating limits that approach zero. Therefore, Ax is replaced by a finite value that describes the
distances of the lines of the difference grid. We can further illustrate this idea by considering the
Taylor series expansion. Using this idea, we know that for each coordinate of the grid with y = yy,
function %(x, yg) can be written as a Taylor series centered around the coordinate (xg, yo):

(x —x0)? 8%h
a0 (52)

ah
h(x, yo) = h(xo, y0) + (x — x0) 5()60’ Yo) +
If the terms of order greater than one are neglected, we can then obtain the following
approximation for d//0x:

dh h(x, yo) — h(xo, yo)
a*(xo,J/o) = 20 0 7o (5.3)
X X — X0

Depending upon the method implemented, the following substitutions of x can be used in
equation (5.3):

X =x0+ Ax for the forward difference method 5.4)

x =x9 — Ax  for the backward difference method (5.5)
1

x=x0=x 5 Ax for the centered difference method (5.6)

x=x0=* %Ax i = 3,4,... for higher orders

To write the forward difference formula in terms of the given nodes, we would have for the
forward differences:

oh h(xiy1, y) — h(xi, y;)
v A 5.7
ax (—xl’ yj) , X ( )

Note that this forward difference can also be approximated by using the slope of the secant
defined by the coordinates (x;, y;) and (x;41, y;) as demonstrated in Figure 5.2a.

For the backward finite differences, the derivative is approximated by means of the slope of
the secant corresponding to the cell to the left of x; (Fig. 5.2b):

oh _ hGxa, i) — h(xi1, yp)
ax (xl’ ,V]) ~ Ax

(5.8)

With the central finite difference method (5.6), a greater accuracy in the approximation is
achieved by taking advantage of the symmetry when considering the immediate neighboring
cells, both to the right and to the left, since the secant defined by the coordinates (x;_1,2, y;) and
(xit1/2, ¥;) is almost parallel to the tangent of the function curve A(x, y;) (Fig. 5.2¢):

dh h(xi—172, ¥5) — h(xiv172, ¥5)
— (i, )~ —— /220 RYER (5.9)
0x Ax
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Figure5.2. Use of the different adjacent cells or nodes in the different finite difference methods for the
example of the calculation of the first derivation of the hydraulic head: (a) forward, (b) backward,
and (c) centered. The curves corresponding to function 4(x, yo) have also been represented with
the secants corresponding to the slope of the derivative d/(xg, yo)/0x at point (xg, o).

To further illustrate the principle of the finite difference method, that is, the replacement
of partial derivatives by quotients of differences, two examples are presented below. From the
flow equation, difference methods are formulated for the calculation of hydraulic head /4 in the
study area for these two special cases. One example is an isotropic and homogeneous aquifer
with stationary, two-dimensional groundwater flow; the other example is an anisotropic and
heterogeneous aquifer with non-stationary two-dimensional groundwater flow. Both examples do
not incorporate sink/source terms. Derivations will first be carried out for the inner nodes of the
model. Then, 4 will be calculated for the outer nodes on the contour of the model, for different
types of boundary values.

5.1.2  Stationary two-dimensional groundwater flow

5.1.2.1 Difference method for model nodes and centers
The continuity equation for a two-dimensional groundwater flow in a homogeneous and isotropic
aquifer is expressed by means of Laplace’s equation:

3?h  8%h
) + el 0 (5.10)

To discretize this partial differential equation for each inner node of the model in the finite
difference grid, the second order partial derivatives 3%4/dx2 and 82h/3y* should be replaced
by finite differences. This is done separately, following the same techniques as in the case of
first partial derivatives. We discuss below the three methods (forward, backward, and centered
differences) for approximating the second partial derivatives.
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5.1.2.1.1 Forward difference method
Using the forward difference, we replace x in equation (5.3) by (5.4) and obtain:

oh h(xo + Ax, yo) — h(xo, y0)
3 (0. 30) = 2 4 .11)
X Ax

The desired second partial derivative is obtained through the difference of the first derivative
at xo + Ax and xo combined with division by Ax:

oh
3%h o
@(xo, yo) = s

oh
(xo + Ax, yo) — —(x0, ¥0)
0x
Ax

(5.12)

where the first derivative
x0 by xo + Ax in (5.11):

w in the coordinate of (x + Ax, y) is obtained by replacing

oh h(xg + 2Ax, — h(xp + Ax,
O o+ Ax. o) = (xo Y0) — h(xo Y0) (5.13)
ax Ax

Using equations (5.11) and (5.13) in equation (5.12), the following expression is obtained for
the second partial derivative with respect to x:

3%h h(xo + Ax, yo) — 2h(x0, y0) + h(xo — Ax, o)
—— (%0, y0) = >
ox (Ax)

(5.14)

Equation (5.14) and the similarly derived term corresponding to 8%//8y? introduced in
Laplace’s equation (5.9) yields the necessary finite difference equation. This allows for calculating
the hydraulic head of any point (xp, yo) within the model and is given by:

h(xo + Ax, yo) — 2h(xo, yo) + h(xo — Ax, yo)
(Ax)?
h(xg, yo + Ay) — 2h(xg, yo) + h(xo, yo — Ay)
+ g =
(Ay)

0 (5.15)

In the special case in which the model is composed of squares, Ax = Ay, equation (5.15)
simplifies to:

(2 (hx0 + A, y0) - hixo = Ax, y0) + h(xo. o + A)

+ h(xo, yo — Ay) — 4h(x, y9)) =0 (5.16)

If indices i, j are used to describe the nodes of the model and coordinate (xg, yo) is used as the
(i, j) node, equation (5.16) can then be written as:

1
hij = Z(hi+1’j+hi_l’j+hi’j+l +hij-1) (5.17)
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5.1.2.1.2  Centered difference method
If instead of using the forward difference we choose to use central differences, we then have the
following expression for the first partial derivative:

1 1
h (xo + EAx, yo) —h <xo — EAx, yo>

Ax

a
a*(an yO) = (518)
X

The second partial derivative necessary for Laplace’s equation is obtained through the creation
of differences of the first derivative at (xo + %Ax) and (xg — %Ax) as well as division by Ax:

O (o + 1A o N
— (x0+ zAx — — |x0— - Ax
32h ax \(TOT 2NN T (0T AN 0

@(xo, yo) = Ax

(5.19)

Notice that for the derivative d4(xg + %Ax, 0)/0x we replace xo by (xo + %Ax) in equation
(5.18) and this gives us:

oh 1 h(xg + Ax, — h(xo,
Mo+ LA yo) = (xo Y0) — h(xo, yo) (5.20)
dax 2 Ax

and for the first derivative %(xo — %Ax, o) we replace xp with (xg — %Ax) in equation (5.18)

to obtain:

3h( 1 ) h(xo, yo) — h(xo — AX, o)
X0 — =Ax, y0 ) =

ax 2 Ax

o (5.21)

Using equations (5.20) and (5.21) in equation (5.19) we then have:

(1, ah N
92h ax (0T AR T\ T s

@ (x0, yo) = Ax

(5.22) = (5.14)

This procedure continues and the same result is obtained as in the forward finite difference
method (equation 5.11).

5.1.2.1.3 Backward difference method
Lastly, we briefly mention the result using the backward difference method. For this method, we
use equation (5.5) in equation (5.3) to obtain:

oh h(xo, yo) — h(xo — Ax, yo)
3 (0. 30) = 4 4 (5.23)
X Ax

The procedure continues as in sections 5.1.2.1.1 and 5.1.2.1.2 and also leads to equation (5.14)
for the second partial derivative with respect to x.

We conclude by noting that regardless of the method used, the same equation (5.15 or 5.16) is
obtained for calculating the hydraulic head at the inner nodes of a square model area. Equation
(5.17) means that in a homogeneous and isotropic aquifer with stationary groundwater flow,
the hydraulic head at each inner node of a grid with constant inter-node distances is equal to
the arithmetic mean of the 4 neighboring nodes. The derivatives of the nodes located on the
boundaries of the model area can be determined in a similar way, so as to obtain the difference
method for calculating head /4 for each of the boundary nodes.
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5.1.2.2 Difference method for boundary nodes
The difference method for the calculation of the hydraulic heads of the nodes located on the
boundaries of the model area can also be derived from equation (5.17) for an equidistant grid.
In the following, impermeable boundaries (Neumann type boundary conditions) and boundaries
with a fixed (prescribed) hydraulic head (Dirichlet type boundary conditions) will be considered.
An impermeable boundary does not allow for the flow of groundwater through the boundary.
As a consequence, hydraulic heads outside the boundary of the cell will be equal to that of the
boundary cell. The hydraulic head % for a node of a boundary cell is equal to that of a fictitious
neighboring cell located outside the model area. Depending upon which boundary the model
nodes (i, j) are located, different conditions hold. Figure 5.3 represents a grid with i = 1 to n and
Jj = 1to m nodes. We have the following conditions along the boundaries:

e for the upper and lower boundaries,

hijj—1 = hij1 (5.24)
e for the right and left boundaries,
hi—1j = hiy1,) (5.25)
o for the corners,
hi—1j=hiv1; and ;g =hij 4 (5.26)

The conditions (5.24)—(5.26) give the hydraulic head of the nodes located on the boundaries as
a result for the different types of boundaries used in (5.17). For example, for the lower boundary
of the model, the expression 4; ;1 is replaced in (5.17), according to condition (5.24), by &; j11
(on the other hand, for the upper boundary of the model, #; ;| was replaced by %; ;_1). The
difference equation therefore only shows indices of real nodes:

1
hij = Z(hi+1,j +hi1,; + 2hi j11) (5.27)

and for the left lower corner of the model we have:

1
hij = Z(Zhiﬂ, i+ 2hijy1) (5.28)
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Figure 5.3. Detail of the finite difference model grid shown in Figure 5.2. Derivation of the conditions for
calculating hydraulic head at nodes located on the boundary of the model (——) using fictitious
nodes (o) located outside the model area.
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If there is irregular spacing between the nodes of the grid, conditions (5.24)—(5.26) should be
used in equation (5.15). We note that with Dirichlet type boundary values, the hydraulic head, #,
at the boundaries of the model is preset to fixed values. Thus, the system of equations described
in (5.6) or (5.17) can be solved and the hydraulic head at each inner node (i, j) can be calculated.

5.1.3  Transient groundwater flow

5.1.3.1 Time discretization

The following sections will show how to carry out the discretization in time and space of a
horizontal, isotropic and homogeneous aquifer. As in the previous example, the discretization
is done on a finite number of cells with individual aquifer properties (Fig. 5.4). The nodes are
located in the center of the cells whose hydraulic heads define those of the respective cells. The
thickness, b,, of the aquifer is expressed using the thickness of the cells, which is constant for all
cells in the following example (see section 4.3.3 and eq. 4.23b):

3*h 3%h dh
H dx2 Hy 92 ot ( )
Note that in this case time # must be discretized as well.
For a horizontal confined aquifer with constant thickness b,, transmissivity 7, is equal to the
hydraulic conductivity Kz multiplied by the aquifer thickness. That is, 7, = Ky b,. This gives
us the following relations:

T,

Ky = = (5.30)
X ba
Ty,

Kn, = bv-‘ (5.31)

Figure5.4. Detail of the finite difference model grid in a two-dimensional confined aquifer (x—y plane) and
the discretization of time ¢ in intervals of time with an increment of At. Indices i, j, k are used
to identify the corresponding nodes and cells in directions x and y, as well as in the time axis 7.
The discretization of the aquifer is carried out by the centered finite difference method, whereas
to discretize time, the forward method is used.
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For the storage coefficient, S, we have:

Sep = (5.32)

S
bq

Using relations (5.30)—(5.32) in (5.29) as well as considering that in the case of a homogeneous
isotropic aquifer with b, = constant, 7, = T, =T and we have:

92h 9%h ah
2t T, =5— (5.33)

T -
v " 9y2 ot

If we use the centered method, the second partial derivatives with respect to x and y can be
replaced in equation (5.33), in accordance with condition (5.14). The time discretization is done
by subdividing the total duration of the simulation #yn,x into a finite number of chronological
steps of length A¢; the index used for these time steps is k. By using the indices i, j and the time
discretization, we have:

hiv1,j = 2hij + hi-y,;
Ax?

hijs1 = 2hij+hij—1 Shi,j,k+1 — hijk

T
Y Ay? At

+ T, (5.34)

The spatial derivatives of the continuity equation are first approximated by difference quotients.
However, the specific moment within the time interval at which the spatial difference quotients are
taken, or the hydraulic heads that appear in the left term of (5.34), should be defined. In principle,
these quantities can be selected at any moment within the time interval [k,k + 1]. A simple
formulation for the description of the corresponding terms for hydraulic head 4;, ; for each moment
within the time interval consists of using time weighting between the hydraulic head at the
beginning (4, ; ) and at the end (%; ; x41) of each time step. That is,

hi,j = Shi,j,k + (- g)hi,j,k+l with0 <g <1 (5.35)
Three special cases will be represented for the selection of the weighting factor &:

e =1 explicit difference method
(differences forwarded in time),

& =0 implicit difference method
(differences backwarded in time),

& = 0.5 Crank-Nicholson difference method
(differences centered in time).

5.1.3.2  Explicit difference method (¢ = 1)
By introducing ¢ = 1 in equation (5.35), hydraulic heads 4; ; are obtained for the lower end of
the time interval and we use:

hij = hijk (5.36)

These values for the hydraulic heads are then introduced on the left side of equation (5.34).
Combining this with the forward difference model, we have that:

hiv1,jk — 2hij x +hic1jk
Ax?

hijike = 2hij e+ hij—1k Shi,j,k+1 — hijk

T,
Y Ay? At

+ 7, (5.37)

Solving for the hydraulic head value at the upper time interval, 4; ; 41, gives us:

T, At T, At

SAZ (hiv1,j,6 — 2hij ok +hicy k) + Sa)? (hijr,6 — 2hij ok + hij—1,k)

(5.38)

hij k1 = hij ok +
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The consequence of equation (5.38) is at each node (i, ;) inside the model, the hydraulic head
for the new time interval k£ + 1 can be calculated based upon the hydraulic head corresponding
to the previous interval, using the same node (i, j) as well as the four neighboring nodes. Since
the hydraulic heads of the latter are known and there is only one unknown, the method is fully
explicit. However, one disadvantage of this method is that the selection of the magnitude for
the time interval is restricted by various stability criteria that frequently lead to an excessively
refined discretization compared to the physical model. This results in unnecessary calculations.
For example, in a simulation it is possible to increase the magnitude of the time interval. This
then slows down the transformations of the processes described by the method or they reach a
stationary state in a manner that differs from the physical reality.

5.1.3.3  Implicit difference method (¢ = 0)
Introducing (¢ = 0) in equation (5.35) hydraulic head 4; ; is obtained for the upper end of the
time interval:

hij = hijk+1 (5.39)

Using these values for the hydraulic heads in the left side of equation (5.34) we then have:

Ri1j k1 — 2Rk F i kgt

Ly Ax?
b — 2 o b —h
+T, iLj+1,k+1 1,],1;+1 i,j—1,k+1 -5 i,j,k+1 i),k (5'40)
Ay At
Solving this for 4; ; x4 1:
T, At
hijk+1 = hij g + m(hi+l,j,k+l = 2R j k1 +hic1y k1)
T, At
+ STyz(hi,j+1,k+1 = 2hij k1 + hi 1, k1) (541)

In accordance with (5.41), for each node (i, j) inside the model, the hydraulic head for the
new time interval k + 1 is calculated. This calculation is carried out using the hydraulic head of
node (i, j) of the previous time interval k, which is known, and the unknown hydraulic head of
the new time interval, £ + 1, corresponding to the four neighboring nodes. Since the latter are
unknown, a system of n equations with #» unknowns must be simultaneously solved; the method
is therefore referred to as an implicit method. Comparing this implicit method (¢ = 0) with
the previous explicit method (¢ = 1), we note that the implicit difference approximation is more
stable and does not present limitations regarding the time interval selection. It is therefore versatile
and can be adapted to the requirements of the described example problem. The resolution of the
system of equations can be performed by direct calculations (e.g., Brebbia and Ferrante 1978)
or through iterative methods. Among the latter, ADI (alternating direction implicit methods) and
IADI (iterative alternating direction implicit methods) are the classical methods that are most
widely used (e.g., Peaceman and Rachford 1955, D’Yakonov 1961, Fairweather et al. 1967,
Hadjidimos 1969). Pinder and Bredehoft (1968) adapted this methodology to hydrogeological
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problems, whereas Pinder and Grey (1977) produced a detailed and systematic review of different
methods.

5.1.3.4 Crank-Nicholson difference method (¢ = 0.5)

A similar algorithm that will only be briefly mentioned in this book uses ¢ = 0.5, which causes
the hydraulic head on the left side of equation (5.34) to be taken at the center of the time interval,
k + 1/2. This method is more accurate than purely explicit or fully implicit schemes and is
stable. The Crank-Nicolson method represents a semi-implicit approach and leads accordingly to
stable and precise solutions (Crank and Nicholson 1947). For this method, the obtained system
of equations has to be solved similar to a fully implicit method.

5.1.3.5 Difference method for an inhomogeneous, anisotropic, confined aquifer
In this sub-section, the previous example is modified to obtain an implicit difference method that
allows for calculating the hydraulic head of an anisotropic and inhomogeneous aquifer. The inner
nodes of the model are considered; groundwater can be extracted from or injected into any of the
cells. The discretization of the aquifer is performed in a finite number of cells (i, j) with hydraulic
conductivities Ky, i transmissivities 7, i aquifer thicknesses ba; and storage coefficients S; ;.
The nodes are located in the center of these cells, and the hydraulic heads define those of the
corresponding cells. The thickness of the aquifer is expressed using thickness of the cell, which
is assumed to be constant.

The transient flow equation derived in chapter 4 (eq. 4.23b) for an inhomogeneous and
anisotropic aquifer can be expressed in its three-dimensional form according to:

8K8h+8K8h+8K8h _Sah (5.42)
ax U gx ay Hy ay 9z \ oz ) TPy ’

For the two-dimensional case, since the aquifer, as in the previous example, has a constant
thickness b, and is horizontal and confined, (5.42) can be written as follows:

3 T8h+8 ;OB _g O (5.43)
ax \ ™ ox ay \ ay) o '

where (5.30), (5.31) and (5.32) were used.

To derive the finite difference equation for the hydraulic head of each inner node (i, j), the
partial derivatives must be replaced by the difference quotients, as in the previous example.

The formulation of (5.18) with indices (i, j), using the centered difference method (see section
5.1.2.1.2), yields the following for the first partial derivative with respect to x:

Oh\ - hivip —hicip, (5.44)
ax i)j_ Ax ’

Next, we need to formulate the second derivatives given in (5.43). That is,

b oh
— (Tvv—> (5.45)
ax Y ox

and:

9 (g, 2 (5.46)
gy \" " ay '
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Using (5.44), (5.45) can be written as:

( Bh) ( 8h>
Tvxf - Tin
3 <T ah) 0x /) i1, X /i 1p,

— — | = 5.47
ax \U ™ ox Ax ( )

Similarly, the remaining derivatives can be approximated by means of difference quotients
using (5.44). In accordance with (5.44), for (i+ %, ) we have that:

<%> Wi,y — (Wi (5.48)
x /i1y, Ax
and for (i— %, J) we have:
<7> _ Wij = Wi (5.49)
ox i—1/2, Ax

Using equations (5.48) and (5.49) in equation (5.47) we have that:

9 ohy 4 Wiv1; — Wiy 4 (Mij — Wi,y
o (150 = Ty P g PR ss0

The transmissivities that appear at (i + %) and (i — %) must be replaced by those corresponding
to the nodes in the center of the cells. (Tyx);+1/2,j and (Tyx);—1,2,; are determined, for example, by
applying the arithmetical mean of the transmissivities either between () and (i — 1), or between
(i + 1) and (i):

(Ty)iv1,j + (Ty)i g
(Ty)iv1p,) = R (5.51)

()i + (1)i-1,)
(Tv)i-1p,) = 12 E (5.52)

Inserting equations (5.51) and (5.52) in equation (5.50), the following expression is obtained:

ad oh 1
Bix <TVx87x> = 3@(((Tvx)i+l,j + (Tvx)i,j) ((h)i,j+1 - (h)i,j)

— (i + (T)im1) (i = (icr ) (5:53)

Alternatively, after ordering we have:

d dh 1
a (Tvxa> = m(((Tvx)Hl,j + (Tvx)i,j) ((h)i,j+l)

— ((Tv)ig1,j + 2(T0)ij + (Th)i-1,;) ((B)i )

+ (T + (T)imy) (i) (5.54)
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The second partial derivative with respect to y in equation (5.46) is obtained in a similar
fashion:

0 oh 1
PR <Tvy @) = W(((Tvy)i,+j+l + (T,)ij) (Wi j+1)

— (i1 +2(T)ij + ()i j—1) ((Bi))
+ (i + (i) (Di-1)) (5.55)
Thus, the spatial derivatives of continuity equation (5.32) are presented as difference quotients.

The temporal term S(d//9¢) still needs to be approximated. This can only be done by applying
the backward difference method, with the time interval index being (k — 1, k):

ah Mije — (Wi j k-1
= =5y
ot At

(5.56)

Previously, the spatial derivatives of the continuity equation were approximated by difference
quotients. For this process it is important to define a specific moment in time from the time
interval when either the difference quotients or hydraulic heads are used. To obtain the implicit
difference equation, hydraulic head should be taken at the upper end of the time interval (k — 1, k),
and therefore receives the index k.

We can now replace all derivatives by the difference quotients. By inserting equations (5.54),
(5.55) and (5.56) in equation (5.43), the difference equation for calculating the hydraulic heads
for each inner node of the model is obtained. To summarize the expression of hydraulic heads of
equal indices, we have:

(((Tvx)Hl,j +2(Tv)ij + (Tv)i-1,5)

2(Ax)?
A
1 Si.j
+ 282 (i1 +2(T)ij + (Ty)ij-1) + E) (Wi j,x)
—_——
A> A3
1
= 2(Ay)? ()i + (To)ij=1) ((Wij1jk) + 2602 ((Ty)isr + (T0)i ) ((Wiv k)
B C
1 1
+ a2 ((Tvy)i,j+l + (Tvy)i,j) (Wi jr1,x) + 22 (T + (Ti-1,j) ((Wi-1,,x)
D E
Sij .
+ ((M)ijk—1), withd = A + A2 + A3 (5.57)
[ —;

F
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A more readable expression of the difference method is obtained by summarizing the
transmissivity and storage coefficient parameters in terms of 4 to F:

1 .
hij.k :Z(B(h)i,j—l,k + C(Wig1,,k + D) j1,k + E)iz1 jk + F);  with:

1
=W((Tvx)i+l,j +2(T)ij + (Tn)i-1,)
1 i
* 2y (@it + 2Ty + Tyi) + 55
B :m((Tvy)[,/ + (Tvy)i,j—l)
(5.58)
1
C :m((TVX)H_IJ + (Tvl')i’j)
1
D =m ((Tvy)i,j-H + (Tvy)i,j)
1
=m ((Tvx)i,j + (Tvx)i—l,j)

SA .
F ZAZ*’; (M j.k—1)

This equation is valid for calculating the hydraulic head at the inner nodes of the model.

The nodes where water is injected into or extracted from the aquifer have still not been con-
sidered. For these nodes, equation (5.58) also holds, with the only difference being that a term
Wi j,x must be added to the term F. This allows for taking into account a water source or water
sink, respectively:

S

i,j
A (Wi k-1 + Wijk (5.59)

F =

where W; ;, i can be expressed by a pumping or infiltration flow Oy, , ,:

QVf,j,k
(Ax)?

Wijk= (5.60)

The corresponding equations used for calculating the hydraulic head at nodes located on the
boundaries of the model are derived in a similar way.

5.1.4 Calculating the groundwater flow velocity (average pore velocity)

In section 5.1.2, the hydraulic heads for the cell centers, which are the nodes of the finite difference
model grid, were determined. Using these hydraulic heads and applying Darcy’s law as well as the
effective porosity value, the average pore velocity, v4, of groundwater at the boundary between
two cells can be determined.
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In accordance to Darcy’s law (eq. 4.20a, section 4.3), to determine the velocity in the direction
of x and y, v4, and v4,, we have:

Ky, dh
vy, = — (5.61)
Qeft 0X
Ky, oh
P (5.62)
Y
Qetf 0y

where Ky is the hydraulic conductivity and ¢cfr is the effective porosity. Thus, for example, the
average pore velocities are obtained between two nodes, or between two cells (i, j) and (i + 1, j)
in the x-direction, and cells (i, j) and (i, j + 1) in y-direction for a grid with constant inter-cell
distances in x and y directions so that Ax = Ay (Fig. 5.5):

_ (Ku)itiy2, hij+hi
(@eft)i+1/2,) Ax

Vap)ij (5.63)

~ K)ijt1/2 hij+ hiji
(@eft)i,j+1/2 Ay

(Va,)ij = (5.64)

The hydraulic conductivities, (Kp, )i+1/2, and (K, )ij+1/2, as well as the effective porosities,
(@efr)it+1/2,; and (@efr)i, j+1/2, at the boundaries between the cells involved are calculated by the
arithmetic means of the respective values at the centers of the cells.

The need for precision in velocities to create a transport model frequently requires velocity
values that are not restricted to cell boundaries only. These can be determined by different classical
interpolation methods (e.g., Prickett et al. 1981, Roache 1972). However, there is a limiting factor
when determining velocities. This is caused by the strict discretization into right angles for the
finite difference method. In this case, the finite element or the finite volume methods are more
suitable, since discretization is more flexible and allows, e.g. the creation of triangles or rectangles
or curved cells. Thus, the density of nodes in the model can be locally varied, and velocities can
therefore be determined with no need for the interpolations mentioned above.

5.1.5 Solute and heat transport

Using the knowledge that was gained by creating the previous finite difference approximation for
the continuity equation for water (section 5.1.2), a similar procedure can be performed for the
solute transport equation. The finite difference grid is first created as in the previous examples.

i,j+1

o ° o o

A & ———
WVa
w1
o ijeo mp e/*l] o -[
>
y [ <] o o <‘[
H | H 1 N
x : —Ax—1 ' '

Figure5.5. Determination of the x and y components of the average pore velocity v, at the boundary between
two cells in the finite difference grid. As an example are shown v4, and vy, at the boundaries
of cells (7, j), ( + 1,j) and (i, j + 1).
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The concentration of a solute (or heat content) in a cell is described through its value on the
corresponding node. Instead of establishing a water balance for the continuity equation, we now
establish a solute mass or thermal energy balance for the interval (¢, + Af).

That is,

storage = convective contribution + dispersive contribution

+ contribution from sources/sinks — destruction and disintegration.

This gives n explicit equations with » unknown concentration C; ;(¢ + At) of solutes (or heat
content, respectively) at the » nodes of the grid. These equations can be solved using the solute
concentration C; ;(¢) (or heat content) of the previous time interval as well as the boundary
conditions. By repeating this step for each time interval starting at the initial time #) of the
simulation up to the stipulated simulation time #yx, the spatial distribution of concentration for
each time interval is obtained. Similar to the case of the continuity equation, the difference method
can be explicit, fully implicit, or it can make use of the semi-implicit Crank-Nicholson method.
Some of these classical methods are briefly described by Kinzelbach (1987); a more detailed
description is included in Ortega and Reinboldt (1970).

In the following, we derive the difference method for the transport equation in the simple
one-dimensional case with a constant dispersion coefficient, D. The two- and three-dimensional
difference methods will not be derived because of the great calculation effort demanded, partic-
ularly in the description of dispersive tensor flows. Kinzelbach (1987) discusses this topic and
considers different boundary value types.

The transport equation can be simplified if only one dimension is considered, combined with a
constant dispersion tensor D and a constant flow average pore velocity v4 (stationary groundwater
model, see eq. 4.111):

aC . aC 2C
5,5y pt 5.65
or = Vg TP (5.65)

There are several possibilities for approximating the solution to this partial equation. They
differ in the approximation of the first derivative. If the centered difference method (section
5.1.2.1.2) is used for the spatial discretization (in this case only for the x axis) and the forward
difference method (section 5.1.2.1.1) is used for the temporal discretization, the so-called centered
explicit approximation is obtained for (5.65):

Cx, t+At — Cx,t Cx+Ax,t - foAx,t Cx+Ax,t - 2Cx,t + foAx,t
R = — () +D ;
At 2Ax (Ax)

(5.66)

Note that each equation for a node contains an expression of the unknown concentration
Cx, t++ and can therefore be solved as a function of concentration. Assuming that concentration
values for all the nodes at a the previous time are known, the concentrations can be calculated for
each node separately (explicitly) for each time interval.

5.1.6  Stability and accuracy criteria

The finite difference method, as with other numerical methods, provides an approximation of
the exact solution of differential equations. Numerical calculations must comply with certain
convergence and stability criteria for the results to be reliable. The convergence condition in a
numerical calculation for an approximation is fulfilled if the numerical solution is equal to the
solution of the differential equation on which it is based when the size of the finite intervals in space
and time tend to zero. This condition can be corroborated only with simple examples, since it is
only in these cases that analytical solutions can be obtained. For this reason, the convergence of a
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numerical method is tested in practice with several analytically solvable examples. If the numeric
results obtained match the exact solution within some tolerance, the method is considered to be
convergent.

To obtain the stability of the explicit finite difference method, different stability criteria that
are related to the selection of time intervals and grid spacing are considered. The correct stability
criteria must be used when implementing the model.

The following sections will describe the principal stability criteria for two-dimensional trans-
port problems, but their derivations will not be included. Other stability criteria, including those
corresponding to linear and non-linear adsorption and reaction processes, can be found, e.g. in
Kinzelbach (1977), whereas Forsythe and Wasnow (1960) and Fox (1962) mainly deal with the
mathematical derivations.

5.1.6.1 Courant criterion
Applied to explicit approximation, the Courant criterion (Courant ef al. 1928) requires using
Courant’s magnitude, Co, for spatial centered differences:

Co, = <1 5.67
Ox ’ Ax = ( )
At vy,
Co, = ‘ <1 (5.68)
Ay
or alternatively:
A
Ar< |22 (5.69)
Va,
A
ar< |22 (5.70)
VA,

For the dispersion process, this means that velocities greater than the average pore velocity,
v4, cannot occur. Alternatively, as expressed by Kinzelbach (1987), the concentration in a cell
during a given time interval cannot be higher than the concentrations received from the advective
contributions. In other words, during a time interval, it is not possible for a cell to release more
substance than it had at the beginning of the time interval (Kinzelbach 1987).

5.1.6.2 Neumann criterion

The Neumann criterion (Richtmyer and Morton 1967) for a two-dimensional transport equation
with groundwater flow parallel to either x or y (diagonal dispersion tensor D) can be expressed
as follows for explicit approximations (Reddel and Sunada 1970):

Dix Dyy
+ At <05 5.71
((Ax)z an?) = 7D
This can be simplified, in the case of a one-dimensional transport equation (5.66), to the
expression:
b At <0.5 (5.72)
(Ax)? - '

This criterion requires that during a given time interval, concentration gradients are not inverted
by dispersive mass flows alone (Kinzelbach 1987).
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5.2 INTRODUCTION TO THE FINITE ELEMENT METHOD (FEM)

Modeling of groundwater flow and the transport of mass and heat in reservoirs require solving
differential equations or systems of differential equations, with initial and boundary conditions.
These equations were developed in chapters two and four. The finite element method (FEM) is
the most used numerical technique to solve approximately mathematical models expressed as
partial differential equations (PDE). The CRC Concise Encyclopedia of Mathematics (Weisstein
2003) defines the FEM as follows:

e The FEM is a method for solving an equation by approximating continuous quantities as a set
of quantities at discrete points, often regularly spaced into a so-called grid or mesh. Because
finite element methods can be adapted to problems of great complexity and unusual geometry,
they are an extremely powerful tool in the solution of important problems in heat transfer, fluid
mechanics, and mechanical systems. Furthermore, the availability of fast and inexpensive
computers allows problems which are intractable using analytic or mechanical methods to be
solved in a straightforward manner using finite element methods.

The mathematical background of the method has existed since the first half of the twen-
tieth century. The main ideas spread throughout the works of people working on mechanical
problems. Rayleigh (1896) and Ritz (1909) solved variational problems; Galerkin (1915) found
direct approximate solutions to boundary value problems, without using variational formulations;
Courant (1943), solved vibration problems using the variational Ritz method and Sobolev (1950)
developed tools of functional analysis. These references can be classified as the basis of finite
element analysis from the mathematical standpoint, without being the method itself. In the 1950s,
engineers of the aviation industry, developed, used and published the first coherent ideas regard-
ing the FEM when seeking approximate simple solutions to simulate aircrafts as two-dimensional
structures (Turner et al. 1956). By late 1950s, the key concepts of stiffness matrix and element
assembly existed, for the most part, as they do today. Clough (1960, 1965) used the name “finite
element” for the first time in his famous paper: “The Finite Element in Plane Stress Analysis”.
Later Zienkiewicz (1965) extended its applications to other engineering areas. NASA issued a
request for proposals on the development of the general-purpose finite element software NAS-
TRAN in 1965. In the next decade, mathematicians in different countries coupled functional
analysis tools to the FEM and made a first theory based on variational techniques (Zienkiewicz
1973). Strang and Fix (1973) wrote the first book on the mathematical foundation of the FEM.
Pinder and Gray (1977) synthesized the first applications of the FEM to hydrogeology. Presently
the FEM is the most commonly used numerical simulation tool in engineering and in virtually
all areas of applied sciences (Zienkiewicz and Taylor 2000, Reddy and Gartling 2001, COMSOL
2008a).

The basic physical concept in FEM is the subdivision of the domain of the mathematical
model into disjointed, non-overlapping components of simple geometry, such as triangles or
rectangles, called finite elements. This mental picture assumes that the system is formed from
simpler components. In this way, a geometrically similar model of discrete elements on a structured
or unstructured grid represents the real object. The response of each element is expressed in terms
of a finite number of degrees of freedom characterized by the value of an unknown function at a set
ofnodal points. Equations of equilibrium and physical considerations are applied to each element
using simple interpolators, and a system of simultaneous linear equations is constructed. This
system is solved for the unknown values in the nodal points. The response of the mathematical
model is then considered to be approximated by that of the discrete model obtained by connecting
or assembling the collection of all elements (Zienkiewicz and Taylor 2000). While being an
approximate method, the accuracy of the FEM can be improved in two ways: by refining the
mesh in the model using more elements and nodes and by employing better interpolators. The
FEM is the dominant discretization technique in structural mechanics for the determination of
stresses and displacements in mechanical systems (Liu and Quek 2003). However, it is also
routinely used in the analysis of many other types of problems, including those in heat transfer,
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solid state diffusion and reactions with moving boundaries, fluid dynamics, electromagnetism and
flow of mass and heat in porous media. In the following sections, we present a brief, simplified
introduction to the FEM that can be useful in hydrogeology, including aquifers, hydrocarbon
reservoirs, and geothermal systems. Further information can be found online (COMSOL 2009,
Wikipedia 2009e, Felippa 2007, 2009a, b).

5.2.1 Brief description of the method fundamentals

The FEM is used in hydrogeology to approximately calculate the distribution of unknown functions
(pressure, temperature, velocity) in the spatial domain occupied by the aquifer. The FEM can
be understood easily as a specifically sophisticated interpolation technique. The domain of the
reservoir is subdivided into a finite number of subdomains or elements of very simple geometry
(Fig. 5.6). The physical laws of the problem are applied to each element. The unknown variable,
assumed to be a continuous function, can be approximated by interpolation functions in each
element. For each one of these elements a matrix is obtained, which approaches the behavior
of the corresponding region. The accuracy of this matrix approach depends upon the size and
complexity of the finite elements. The unknowns are the discrete values of the variable in the
nodes linking the elements; all the elements are bound together to obtain a global matrix that
represents the whole domain. In the stationary case, this process leads to a set of simultaneous
linear algebraic equations, or to a system of ordinary differential equations in the transient case.
In both cases, the solutions to these equations allows for approximating the unknown variable.
The same basic procedure can be applied to an immense variety of problems.

Let us consider for example the reservoir pressure p(x, y, z, t), which is distributed in space
and time. This variable is mathematically defined in a space FE that is continuous and, therefore,
of infinite dimension. The technique of finite elements seeks a simpler, approximate solution
p° that comes close to p, by defining a similar problem in another space Ej, of finite dimension,
in such a way that p = p® € Ej,. It is said that p° is the discrete solution that approximates the
continuous function p.

This brief discussion of FEM’s nature shows that the finite element is composed of two parts: a
geometric part, given by the form of the subdomains and an analytical part given by the interpola-
tion function. In this section, we introduce the mathematical foundations of the FEM in a simple,
practical and useful way. The approach we use is called the Galerkin finite element method. The
reader will find examples here that can be solved by hand, using a pocket calculator. However,
when applied to real complex problems, the FEM requires a large volume of computing. There-
fore, the systematic use of computers and programming languages such as Visual Fortran, or
C++, and high-level software like Matlab, Mathematica or even better, COMSOL-Multiphysics
to accomplish the calculations is recommended.

5.2.2 Finite elements using linear Lagrange interpolation polynomials

In this section we illustrate how finite elements are built using linear Lagrange polynomials (see
Appendix for details). Let f'(x) be a real function defined in the interval Q = [a, b]. We partition

Figure 5.6. Discretization of a domain using the FEM. Left: real object; right: simplified object.
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this domain into N subintervals (Fig. 5.7):
A=X) <X| <Xp <+ <Xp—] <Xp <Xpp] <-++<XN—] <XN=0D (5.73)

Let Iy = [xz—1,xx] be the k-subinterval and let &y = x; —x;_ beits size. Allthe [z {k = 1,N}
are non-overlapping subintervals of [a, b] (Fig. 5.7). Each segment /} is the geometric part of the
k-finite element. The assembly consisting of the union of all the intervals is called the mesh M
of the domain 2, which is the solution domain in one dimension:

N
M=k (5.74)
k=1

In one dimension, the mesh M is the same as €2. In two or three dimensions, the mesh is only
a geometric approximation to the real domain, due to the presence of curvatures at the boundary
of  (Fig. 5.6). Let E| be the vector space of continuous piecewise linear functions defined on
the mesh M. Any function p; € E| is linear over each interval /; and continuous in Q = [a, b].
Let us assume that pj (x) = m x + b1, using the known values of the function f'(x) at the nodes
of the interval /; (Fig. 5.7) we obtain:

Vx €1 = [x0, x1], f(x)~pi(x) =mix+ by, therefore:
Si—fH  x1fo—x0N (5.75a)
x+

X1 — X0 X1 — X0

p1(x0) =fo = m1xo + by
p1(x1) =fi =myx1 + by

} = pix)=

Arranging algebraically this expression, we obtain the same interpolation deduced in the
Appendix A for the function f'(x), which could be interpolated in the interval [xg, x1] using
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Figure5.7. Construction of the interpolation of a continuous function f'(x), using linear Lagrange polyno-
mials. The union of intervals forms a mesh with N + 1 nodes and N finite elements. L is the
generic name for the Lagrange polynomials.
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two linear Lagrange polynomials:

1
P = TN A L@+ L) fi = Y L) ()
-

X0 — X1 X1

= (5.75b)

= [ =pikx), Vxelx,x]
The function f'(x) can be interpolated in the interval [xg, x2] = I N1, using the same Lagrange
technique (see Appendix):
X — X1 X — X X —x X — X1
S~ Jo+ Si+ Si+ f2
X0 — X1 X1 — X0 X1 —Xx2 X2 — X1 (5.76)
= Ly() fo+ (L1(0) + L§@) fi +LT@) fo,  Vx € [xo, x2]

L(l) and L} are the linear Lagrange polynomials in the interval /1 = [xg, x1]

L(z) and L% are the linear Lagrange polynomials in the interval I = [x1, x3]

In a very similar way, we can interpolate the function f (x) throughout the whole interval [xg, xy]
using only the two corresponding linear Lagrange polynomials in each subinterval Iy (k = 1, N):

X —x1 X — Xo X —Xx X — X X — Xj—1
S~ 0 1+ 1+ 5+
X0 — X1 X1 — X0 X1 — X2 X2 — X1 Xk — Xk—1
X = Xg+1 X —XN_2 X — XN—1
A an AR fu—1+ v (5.77)
X — Xk XN—1 — XN—2 XN — XN—1

=Lifo+ LI +IDA+ L+ LD+ + L+ LED i+ LY fy

This technique is known as the piecewise linear interpolation of f'(x); its correct use requires
that each one of the unknown values x one wishes to interpolate should be placed in the appro-
priate subinterval ;. The problem with equation (5.77) is that the Lagrange polynomials Lo and
Ly are non-continuous functions in every subinterval. For example, L(l) (x1) =0 # L{ (xp) = 1.
To overcome this difficulty we can build a continuous piecewise linear function in formula (5.77)
by defining the following linear splines or unitary interpolators ¢ (x) (see Fig. 5.7):

o) =LXULET VE=1,N = 1; o) = L) ), v (x) = LY (x)

k : _ —
L (x), ifx € Iy = [xp—1, x¢] Q= I U L4y (5.78a)
or(x) = L’g“(x), ifx € oy =[x, xpp1]y,  and gr(x;) = 8y
0, ifx ¢ Q Vk=1, N—-1
Another equivalent, more explicit form of constructing these functions is as follows:
X1 —X X —XN—-1
o) =——, oNn(X) = ——
X1 — X0 XN —XN-1
X — Xj—1 .
Vk=1,N—1
=1’ if x € [xk—1, x¢] o (5.78b)
— Pk (Xk) =
) =) LD iy € g, ] _
Xje4+1 — Xk Wk(xj) =0

0, if x ¢ [xp—1, Xg41] Vitk=0,N
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The continuous interpolation of /' (x) using only unitary functions becomes:

N
SO =Y o) f (), Vx € Q= a,b] (5.79)
k=0

The N + 1 functions {¢;(x), k = 0, N}, defined explicitly in terms of the Lagrange linear
functions are all continuous in [a, b] and satisfy the properties: @i (xg) = 1, @r(x;) = 0if k # j.
This is the analytic part of the finite element k. Each interpolator ¢y (x) is called nodal function or
shape function or hat function (Fig. 5.7) and is defined on the whole domain [a, 5], but vanishes
outside the corresponding interval [xx_1, Xx41]. The first interval of the mesh is [a, xi], the last
interval is [xy_1, b]. Functions ¢ (x) and gy (x) are associated with the boundary points 0 and N.
Therefore, the total number of interpolators is N + 1 for this mesh M. We deduce that the
dimension of E; is dim(E) = N + 1. Note that /' (x) is approximated by a combination of N
straight lines py (x) (Fig. 5.7) passing through the points (xx—1, f¢—1) and (xg, f¢):

f()—Ufk Jit -|-xkfk_1 —Jk Xt = U mg x + by (5.80)

| Xk X1 Xf — Xp—1 gt

The finite elements of this numerical technique (FEM) are formed by a geometric part and by
an analytic part. This fact can be symbolized as E Fy = (I, ¢x). The functions ¢ (x)(k = 0, N)
form a special basis of E| which is called the unitary basis. The use of these linear functions as
the interpolation basis is just one choice among many other possible choices. We could take the
quadratic and cubic Lagrange polynomials or the Hermite or the Tchebyschev functions as other
types of higher degree interpolators (Eriksson et al. 1996, Zienkiewicz and Taylor 2000; see also
Appendix). In general, any continuous function « of the space E| can be represented as a linear
combination of the ¢; functions:

N

VueEl = u() =) ulp)pr®) =ugpo(®) +---+uyon®  (581)
k=0

This last property is due to the fact that u(xy) = ur@r(xx) = ug. All the remaining terms
with subindex # k are equal to zero because of the previous property (5.78a). We say that
(ug, u1, ..., uy) are the coordinates of u(x) in the vector space E;. Let u(x) be the linear inter-
polator of f'(x) in the nodes xi : f'(x) &~ u(x) and f'(xx) = u(xz) = ux, k = 0, N. Therefore:

N

SO RuE) =) uppx), YxeQ (5.82)
k=0

Equation (5.82) expresses that the function f, continuous in [xg, xp], is approximated by a
piecewise continuous linear polynomial (linear splines) in the space E;. We just demonstrated
that any continuous function could be interpolated by a combination of linear nodal functions.
This is a consequence of the postulate of the Weierstrass theorem enunciated in the Appendix.

5.2.3  Numerical solution of the Poisson's equation with the FEM—Galerkin method

In this section, we show how to build an approximate solution of the Poisson’s equation. This
differential equation appears in previous chapters representing different steady state phenomena
(9/9t = 0): the heat equation (2.16, 2.109, 4.83), the groundwater flow equation (4.16, 4.23b and
4.25a), and the diffusion equation (4.111). To illustrate the method with a specific example, we
use FEM in a one-dimensional flow problem in a homogeneous isothermal aquifer. We employ
two types of interpolators: trigonometric functions and linear Lagrange polynomials. The flow
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domain is [a, b], and the unknown is the steady state water pressure p(x) with the following
boundary conditions (eq. 4.16, in one dimension):

prhcd’p cp o
e L i~ e s AL Rt

(5.83)
Vxe<a,b>; pla)=ps pb) =pp

We assume first that the permeability £y is constant. To solve this general non-homogeneous
equation, an idea is to make this problem homogeneous through a simple change of function
y(x) 4+ u(x), where u(x) belongs to the vector space E:

b—x X—a
= d = _
u@) = pat g pp. and y(x) =plx) —ulx) (5.84)
= u(@=ps, and ub)=pp, = y@=yb) =0
Therefore, the differential problem (5.83) becomes:
d?y
—a =40, Vxe<ab> y@=0 yb)=0 (5.85)

In order to clarify fully the FEM, we solve this problem in two ways: the first one consists
of approximating y(x) using general test functions v;(x), which can be linear or not. The sec-
ond form uses directly the piecewise linear polynomial of the previous section to approximate
y(x) in each one of the subintervals of the mesh. In both cases, the technique used to approx-
imate the solution is known as the Galerkin method, in honor to Boris Grigoryevich Galerkin,
a Russian mathematician, engineer and professor of structural mechanics (Fig. 5.8). In 1915,
Galerkin published his technique as a way to approximate the solutions of differential equations
in plate analysis problems. By exploiting the fact that function y(x) vanishes at the end-points
(xo = a, xy4+1 = b), we make a slightly different partition of this domain into N — 1 subintervals:
X] <Xy < -+r <Xxg--- <xy—1 < xy (Fig. 5.7). Let v(x) be a test function, derivable for all
x € [a, b], and such that it satisfies the homogeneous boundary conditions: v(a) = v(b) = 0.
The Galerkin method consists of multiplying both terms of equation (5.85) by v(x), then integrat-
ing both sides of the equality and transforming through integration by parts the resulting equation

Figure 5.8. Boris Galerkin (1871-1945).
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in the interval [a, b]:

b b

d2
—/E};v(x)dx:/q(x) v(x)dx

a a

(5.86)
dy(x)

/d—y—vdx—/q(x)v(x)dx

The first term in the second line of equation (5.86) is zero because we assume that v(x)
disappears in both extrema of the interval, a and b. This integral equation implicitly contains
the boundary conditions and is equivalent to the original differential problem (5.85), which now
becomes an integral-differential equation, equivalent to the abstract formulation:

dy d
/lld _/ Wv@)dx & <Y,V >=<gqv> (5.87)

Equation (5.87) is the integral form of model (5.85) and is called the “weak formulation”
of the original differential problem. This name originates in the fact that equation (5.87) does
not require y(x) or v(x) to have continuous second derivatives. In the integral formulation, it
is sufficient that both functions are derivable just once. Thus, the condition is weaker than the
original one, which is called the strong form of the differential problem. It is important to note
that the Galerkin method is not associated to any variational method. The variational approach in
these problems is known as the Ritz method (Zienkiewicz and Taylor 2000).

5.2.3.1 Numerical method 1: General test functions

We assume that the test functions {v;(x), i = 1, N}, also known as trial functions, form a basis
of the space Ej, where we are seeking the solution of equation (5.87). The interpolation of the
unknown function y(x) in terms of test functions is y.(x):

N
YO A ye@) =Yy vi@) = y1vi(x) +y2va() + -+ yy vy (x) (5.88)
j=1
where the y; = y(x;), { j = 1, N} are unknown constants, equal to the values of y(x) at each one

of the nodes x; of the partition of the interval [x], x2, ..., xy]. Replacing the interpolation (5.88)
into the weak formulation (5.87):

F dy, d Py a b
kjdx:/Zyjildx—/q(x) vi(x)dx
=1

dx dx = dx d
¢ ¢ ¢ (5.892)
Yo gy ;
Vi dv;
& Zy, d—;d—’ —/q(x)v;(x)dxzqi, for i=1,N
=1 a
For each numerical integral we define: k;; = f b ‘gj “gg dx = k;j. Therefore:
N
Zyj ki=gqi, fori=1,N = kyyi+kiy+--+kviyn=qi (5.89b)

J=1
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In this way, a linear system of algebraic equations in matrix form is obtained; its inverse
provides the approximated solution of the differential equation (5.85):

kn ki . . . kiy n q1

ko kyn . . . knw » q2 K® Yo = g
C S U N (5.90)
. . . . . . . . .)_;e = Ke_l ae

kiy ky . . . kww YN qn

In this groundwater flow context, matrix K¢ is called the conductivity matrix and vector g,
is the flux vector. In structural mechanics, they are called the stiffness matrix and load vector,
respectively. Note that the symmetry of this matrix is due to the commutativity of the product
of derivatives in equation (5.89a). The interpolation coefficients y; are known after solving the
system (5.90). Then they are replaced in equation (5.88) to obtain the approximate solution of y(x).
The final approximation of the water pressure is simply p(x) = y(x) + u(x), which satisfies the
original non-homogeneous boundary conditions. To complete this problem we present a simple
numerical example adapted from Gockenbach (2002). We use the following data estimated from
an aquifer in Mexico: p, = 3.5 MPa, p, = 3.0 MPa, oy = 999.6 kg/m3, nr = 891 x 107°, Pa s,
ky =891 x 10710 m?, qrx) = 1073 kg/s/m3. Consequently, we obtain for g(x):

891 x 107°% x 1073

“f
= (x) = =10x, Vx € ,b
10 = ) = 5996 g9l x 107107 = 0N W Eesab>
We consider the trigonometric basis {Sin 7x, Sin 27x, ... , Sin jmx, ... , Sin Nmwx} of test

functions defined in the interval [a = 0, b = 1] km. Computing the elements of the matrix in
equation (5.90):

1 1 1

ki :/%%dx: /in Cos(i x) - jm Cos(j wx)dx = i 7 Sinfjx) Cos(i x) .
0 0
1
+i2n2/Sin(inx)Sin(jnx)dx:0+0:0 = k=0 ifi#j

0
When i = j we obtain a different result:

1 1
ki = 272 / Cos (i wx) Cos(i wx)dx = i r Simfiwx) Cos(i nx)’:) + % 72 / Sin? (i tx)dx
0 0
1 1 1
=272 /dx - / Cosz(i TX)dx = 2’7’ / Cos2(i x)dx = i nz,
0 0 0

272

then k; =
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In this case, the matrix K€ is diagonal. For all i # 0 we have:

1 1 I 1
— 1
qi = /q(x)vi(x)dx = /x Sin(i mx)dx = ,—xCos(i Tx)| + — / Cos(i wx)dx
in i
0 0 0

0

Cos(im) _ (=D(=D" _ (=D™!
im B i T

=D

The resulting linear system is:

1 00 0 1 1

0 4 0 0 I —-1/2
720 0 9 0 yi | 1 1/3
21000 0 N .

000 0 :

0 00 N2 YN (=N N

The approximate Galerkin finite element solutions of problems (5.85) and (5.83) are:

N

Y R yelr) =Y

i=1

12 Sin(i Tx)
+1
=1 373
;112 Sin(i x)

N
= p~Y (-1

i=1

i3]T3 +(1_x)pd+pr

Problem (5.85) for ¢(x) = x, and homogeneous boundary conditions in the interval [0,1]
has the exact solution y(x) = (x — x3)/6. Table 5.1 shows both values y(x;) and y.(xz)
for N =8.

5.2.3.2  Numerical method 2: Linear polynomials
We return to the original problem (5.83) with inhomogeneous boundary conditions. The
interpolation of the unknown pressure in terms of unitary ¢; (x) is p(x) = p°(x):

N+1

PEO) =Y 3 (0) =3000@) +y191(0) + -+ on ) F v o) (5.91)
j=0

Table 5.1. Comparison of the numerical results y, (x;) obtained with finite elements and the exact solution
y(xx) of the differential equation (5.85).

Xk 0.1 0.2 0.4 0.5 0.6 0.7 0.8 1.0

y(xx) 0.0165 0.032 0.056 0.0625 0.064 0.0595 0.048 0.0
Ye(xr)  0.01648  0.03204  0.05606  0.06244  0.06404  0.05948  0.04797 1.2 x 107V
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By applying the piecewise linear polynomials defined by equation (5.78b) in each interval
[xi—1, x;] of the interior mesh (i = 1, N), one obtains:

e X — X1 X — X0

x € [x0, x1] = pi(x) =0 +n = 0 @o(x) +y1 ¢1(x)
X — X1 x| — Xo
X — X2 X — X

=31 91(%) +y2 2(x)

x € [x1, x2] = p5(x) =y +y2
X1 — X2 X2 — X1

X — X X —Xj—1
4y = Y1 9im1 (%) + i i (x)

x € [xi—1, xi] = pf(x) = yi—1 ;
Xi—1 —Xi Xi — Xi—1

X — Xjt1 X —X;
x € [x, Xip1] = pi () =i o +171x_ = i ¢i(x) + yit1 @it1(x)

1
i~ Xit+1 Xit+1 — Xj

X — XN X —XN—-1
=YN-1PN-1(x) + YN ¢n (X)

[xv—1, xn] = Py () =ynv_1 +yN
XN—-1 — XN XN —XN—-1

(5.92)
At the nodes of the end-points, where the boundary conditions are known we have:
x| —x X —xyN
pox) = Pa=Papo(x), Py (X) = ———— pp=ppen+1(x) (5.93)
X1 — Xo XN+41 — XN

It is clear now that the basis of unitary functions ¢;(x), built from the linear Lagrange polyno-
mials, is just a particular case of trial functions v;(x). Galerkin method is part of a general class of
methods used in converting a continuous operator problem (a differential equation) to a discrete
problem. The aim of Galerkin’s method is the production of a linear system of equations that
represents approximately the original operator. We approximate the solution of problem (5.83)
using the same previous data with ¢(x) = x and the weak formulation in each subinterval for
(G=1i—1,1)(eqgs. 5.92):

i Xi

X,
dp; dy;
pix) =yic19i1(x) +yigi(x) = f L dx = /x‘ﬂjdx
dx dx

il il (5.94a)

Xi

X,

= /[yi—lwf,l(x)+yi i ()] ¢} (x)dx = /ij(x)dxij
1

Xj— Xj—1

Inevery interval [x;_1, x;] we obtain a coupled set of linear equations that can be solved directly:

Xi Xi Xi
J=i—1—=yi /wf_l(X)wé_l(X)dX+y[/w{(X)fp{_l(X)dx: /w;—l dx
Xi-1 Xi-1 Xi-1
Xi Xi Xi
j=i> i /wg,l(xw;(x)dxm/w,f(x)w;(x)dx: /xwidx

Xi—1 Xi—] Xi—1
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This formula generates a local linear system in every subinterval for each FE. By defining the
integrals as the elements of a local matrix, we obtain:

Xi
Xi
Yietkiciio1 +yikiio1 = / X@i—1dx = gi- kyj = @@dx, i,j=1LN
Xi—1 dx dx
Xi = Xi—1
ki—1,i-1 kijic1 i—1 gi-1
- k._ . k: d — . 1 N 1,1 A 1 — 1
Yi—1Ki—1,i + Vi ki i /X(/)t X = (i (ki—l,i ki,i i gi
Xi-1
(5.94b)

This linear system is repeated at every subinterval and represents the solution over each finite
element. At each pair of consecutive FE (i — 1, @), (i, i + 1), the coefficient y; appears as a
common unknown in two successive matrix equations (5.94b). This is the coupling term between
two successive FE. The assembly of all these solutions forms the global conductivity matrix, which
approximates the solution of the differential equation (5.83). The computation of the derivatives
of each ¢;(x) is a very simple task:

X) —X do; -1
x € [x1, x2] = @1(x) = = —W=
Xy — X] dx X2 — X
X — X1 do; 1
x€xi—, xi] > i) =— = —@)=—"—"
Xi — Xi—| dx Xi — Xi—|
(5.95)
Xiy] — X do; —1
xel x> g =" = @) =———
Xit] — Xi dx Xit] — X
X — XN—1 doy
x€xy-1, 8] > oy) =——m— = —fK)=—"—
XN —XN_1 dx XN —XN—1

It is obvious that ¢;(x) is zero except on the interval [x;_1, x;1+1] (eq. 5.78b), therefore, most
of the elements of the global matrix are zero because they are computed with the product of
derivatives of ¢;(x) (eq. 5.95). The diagonal matrix elements k;;(i = 1, N) are:

XHId(p'd(p- Xj d(p- 2 Xi+1 d(p- 2

1 1 1 1

ki = / p de— / (dx) dx + / (dx) dx (5.96a)
Xi—1 Xi—1 Xi

Substituting the values of the derivatives from (eq. 5.95):

Xi Xi+1

1 2 -1 \? 1 1 1
hi= | (——— ) v+ | (——) ax= + — —  (5.96b)
Xi — Xi—1 Xipl — X Xi—Xi—1  Xitl —Xi  hy

Xi—1 Xi
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The off-diagonal matrix elements k;; (i #j = 2, N — 1) are:

b Xi
doi_1 dy; —1 1 —1 —1 —1
ki—li:/ %Iﬁdx:/ dx = = =
’ dx dx Xi — Xi_1 Xi — Xi_] Xi — Xi_1 AX; hi
a Xi-1
b Xit1
do; do; —1 1 -1 —1 -1
Ky = | S e = / dx = = -
’ dx dx Xipl — Xi Xipl — X Xipl =X Axip1 hig
a Xi

Xj

dy; do;
k,-j=kﬁ=/ wlﬂdx:O, ifj>i4+1, orj<i—1, andh =x; —xi—1

dx dx
xj
(5.96¢)
Therefore, the global conductivity matrix K¢ for (N = 5) is:
/1 1 1 0 0 0 7
h hy
1 1 0 0
/’lz h2 h3 h3
k® = 0 1 i—i-i _L 0 (5.96d)
N h3 hy  hy ha '
0 0 1 1 1 1
hy hy  hs hs
0 0 0 1 1 1
L hs hs  hg
2 -1 0 0 o0
-1 2 -1 0 O
If all the intervals have the same size h = h;, Vi = k®= — o -1 2 -1 0
h
o o -1 2 -1
o o0 o0 -1 2

Inverting the matrix (5.96d) we deduce the numerical values of the coefficients y; with the
purpose of completing the interpolation (5.91):

- - - -1 4
K p°=¢. & p°'=K° -ge=Q1ny2....0N) (5.97)

The final approximation of the linear finite element solution for the differential problem (5.83)
has the form:

N
P~ () =Y ¥ @i®) + pa 9o (x) + pp @y 11 (x) (5.98)

i=1

This approximated numerical solution includes the boundary conditions of the problem,
because at the two boundary points of the domain Q = [a, b]:

p(a) = pao(x0) = pas pb) = ppon+1(XN+1) = Db (5.99)
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5.2.3.3 Variable permeability in the weak form of the Galerkin method
Let us assume that the aquifer permeability ky(x) is variable, and depends on the coordinate
x € Q. The differential equation of problem (5.83) now becomes:

d

i (kx(x)j—p) =qkx), Vxe<a b>, pla)=ps, pb) =
o o (5.100)

where: g(x) = Ll qr(x)
ofr

The abstract formulation of this boundary value problem is almost the same weak form of the
differential equation already developed in equations (5.87, 5.94a). The difference here is that the
variable permeability must be explicitly included in the first integration:

Find p°® € Ej such that: p(x) ~ p®(x) in [a,b], and Vj=1,N:

@ = [yt %411, /k W (dex:/q(x) ¢j(x)dx (5.101)
v Q;

By replacing the interpolation (5.91) in equation (5.101), we obtain a similar abstract expression
to obtain the unknown coefficients y; of the polynomial p€(x):

df/’z / doo do; / don 1 d;
s d ke, E0 LY k. 29 4
Zy/ tp dx dx TP T

=g Io Iy

(5.102)
= /Cl(x) pix)dx, VYj=1,N; Iy=I[x0, x1], Iy =[xy, xn41]

Q)

The derivatives of the functions of the unitary basis were computed already in equations
(5.96a,b,c). At the boundaries we define:

ky— ——dx = , a=0 ifx ¢l

/ doo do; Paka
dx dx xl—a

Io

don 1 doy Do kp
J = Pb / T odx dx o b—xy

(5.103)

. b=0 ifx¢ly

Iy

By replacing the integrals with the corresponding matrix components k; as was previously
done, for all j = 1, N the total sum of integrals in equation (5.102) is reduced to a tridiagonal
system of linear algebraic equations:

Yi—-1 Vi Yi+1

Kij—1yi-1+kiyi + iy = ——=—+>=—-7"— =g

hy B hj 5104

q9j Z/q(x)wj(x)dx+aj+b<, Vi=1,N (5.104)
Y

5.2.3.4 The general diffusion equation in the weak form of the Galerkin method
In this subsection, we show how to formulate in the FEM the general diffusion equation
appearing in the conduction-convection formula (4.104a) and in the general solute transport
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equation (4.111). The conditions are for a steady state process in one dimension. Both
equations are reformulated as abstract boundary value problems with generic variable coefficients
and inhomogeneous conditions:

d df df 3
e <ax(X)$> + bx(x)a + o (@) f(x) = q(x)

(5.105)
Vxe<ab>, f(a)=f, [fb)=/f

Let us make the same change of function we did in equation (5.84), f'(x) = y(x) + u(x), where
u(x) belongs to the vector space E:

b— _
Tt fh and Y =f () — ()

u(x) = b_a

= w@=f,, and ub)=fi = y@=yb) =0

Therefore, the differential problem (5.105) becomes:

di (@(ﬂ?) + bx(x)Zl + () yx) =Y (x)
* * * (5.106)
Vxe<a,b>, and y(a) =0, yb)=0
where:
Y&x) = q(x) — (ﬁ’ _f“> <@ + bx> — cyu(x) (5.107)
b—a dx

The interpolation of the unknown function y(x) in terms of hat functions is again y,(x):

N

YO R ye) =Y 390 =y191(0) + 32 92() + -+ +yv en () (5.108)
j=1

The weak formulation of equation (5.105) is similar to the differential equation already devel-
oped in equation (5.87). The difference is that there are more functions to be included in the
integrations. Integrating by parts the first term of equation (5.106):

b b b b

d d d
/— ax—y goidx+/bx—y<pidx+/cxy(x)fp,-dx:/Y(x)(p,-dx

dx dx dx
¢ ¢ ¢ ¢ (5.109)

b b dvd b p b b
)y Ag; )
X /2 x5 T, x5 Vi X ) = Yi

= a%wa /adxdxdx—l—/bdx(pdx—‘r/cy(pdx /godx

a a a a
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This is the weak form of equation (5.106). By replacing the interpolation formula (5.108) of
y(x) into equation (5.109) we find the final linear system:

N b b b b
dgj dei dg;

Zyj —/axggdx-i-/be(PidX‘F/Cxﬁgjﬁoidx =/Y<pidx
J=1 a a a a

b do: d b J b

Yj dpi %

k= [a g b= [0 Zan vi= [ape (5.110)

a a a

N N
= Y yKitLitMp=Y;, & Y Niyi=Yi & |N-F.=Y

j=1 j=1

where: N=-K+L+M

This final matrix equation approaches the solution of the homogeneous problem (5.106). The
finite element solution of the general inhomogeneous diffusion equation (5.105) is:

A (5.111)
b—a

b_
Jol) = ye) + 7o +
—dad

Note that the particular form of the tridiagonal matrix in equations (5.96d) and (5.104) comes
from the fact that we used linear basis functions. When using different bases the shape matrix
changes (Fish and Belytschko 2007). The interested reader will find himself the matrix specific
form of equation (5.110).

The Galerkin method allows increasing the accuracy of the approximation in two ways:

e By augmenting the order of the interpolation polynomials,
e by increasing the size of the space E|.

The latter form implies the simultaneous increase of the number of linear polynomials in [a, b]
and the reduction of the size of the elements in the mesh. Both techniques are applied in two- and
three-dimensional finite elements.

5.2.4 Galerkin weighted residuals method; weak formulation of the heat equation
for a stationary temperature in two dimensions

To illustrate the finite element technique in two dimensions we consider the following clas-
sic differential problem (Poisson’s equation), which is a simplification of the general heat
equation (4.104a), introduced in section 4.7.5. The boundary conditions are mixed:

- 5 0 T ad aT
Vo (kp - VT) = —— (k== ) = = (kr, == | =
(kr ) 8x<Tx8x> 8x<Ty8y> O

(5.112)

T(x,y)=T() onlp =293 Y(x, y) € Q C R?
kr-VT-fi=¢q, onl,=03Q Fr+T,=0Q=T

Let w(x, y) € Ej, be a weight (trial) function which we assume is differentiable and integrable
in the domain Q where we seek the solution. Let u¢(x, y) be a function that approximates the
unknown temperature 7. We suppose that the thermal conductivity tensor is constant and equal
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to k7. The error or residual term of this approximation is defined as:

RE(x, ) = T(x, p) —u’(x, y) #0 (5.113)

We replace this expression in equation (5.112) then, multiplying both sides of the same
equation by the test function w and integrating the result in €2, we obtain an integro-differential
equation for the Laplacian of the residual, which we equate to zero:

0=kawV2Red§2=—/WQHdQ—/kTWVZuedQ (5.114)
Q Q Q

The assumption that this integral is equal to zero is equivalent to assuming that the Laplacian
of the residual and the weight function are orthogonal in 2. We obtain in this way the weighted
residuals formulation or weak form of the heat model (5.112):

3 [ ou 9 [ ou
—/ W (kT " )—i—w— (kT ”) dQ:/wQHdQ (5.115)
ox ox ay ay
Q Q

The Green’s theorem (see Appendix) is useful for simplifying this type of integrals:

Jue ..
/szuedQ:/Wau ds—/VW-VuedQ
n

Q Q2 Q

Applying Green’s theorem to equation (5.115) we obtain the final weak form of the original
PDE problem:

/kT %w.%uedQ=/wQH dQ—i—/quds (5.116)
Q Q r

where the second boundary condition is included:

ou® > o
/krwa—ds:/wkrVue-nds:/ w gy ds
n

r r r

The weak form concept has the same meaning as in section 5.2.7; equation (5.116) does
not contain second order partial derivatives. In this two-dimensional integral formulation, it is
sufficient that functions w and u¢ have continuous first derivatives. On the other hand, in the
original equation (5.112) the second partial derivatives of 7 should be continuous so that the
function is integrable. This is a strong continuity condition for 7.

5.2.5 Finite elements using bilinear Lagrange interpolation polynomials over triangles

The domain of the PDE problem is discretized with triangles of arbitrary form. We consider a
triangle (Fig. 5.9) defined by the coordinates of'its vertexes Py, P,, P3, with respect to an arbitrary
origin O.
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y B(x5.¥5)

B(x5.¥,)

Figure5.9. A triangle of the FEM.

The area of the triangle is calculated as follows:

base x height

. - - - - Sind ,
A¢(x,y) = 5 = ||Py — Py - |IP3 —P1||T, or equivalently:
1Py — Py x Ps—Ppll 1|0 %0 1 o s — 1) — (s —x) (02 — 1)
A = =zl x2 »= 3
2 211 X3 3

(5.117a)

A bilinear interpolation is done on the finite element represented by the triangle. This is the
most simple interpolation in two dimensions:

U, y)=ar+ax+azy

u(x1, y1) = a1 +ax x1 +az y1 = u; 1 x1 aj uy

= u,y)=ataoxntaypy=u |1 xn »n|-|la]|l=|w

u(x3, y3) = a1 +ax x3 +az y3 = u3 I x3 3 az u3
(5.117b)

The interpolation coefficients a1, a», a3 are found by inverting this matrix:

ai 1 X2y3 —X3y2 X3)Y1 —X1)Y3 X1)Y2 —X2)1 uj
@ |=-c| - 3=y n-»n |- |w (5.117¢)
a3 X3 — X2 X1 — X3 Xy — X1 u3

The interpolation function or interpolator in two dimensions is defined as:

3

W, y) =Y ¢ix, y) = g1, ) + 12 92(x, ¥) + u3 93(x, ) (5.118)
i=1

From equation (5.117¢), we deduce that every interpolator has the following form:

1
p1(x, y) = ﬁ[(xzm —x3)2) + (2 —y3)x + (x3 — x2)y]

1
24¢

©(x,y) = [(x3y1 —x173) + (3 —yD)x + (x1 — x3)y] (5.119)

1
p3(x, y) = ﬁ[(xlyz —x2y1) + (1 —y2)x + (x2 — x1)y]
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Each one of these three functions has the following properties:

3
Qi y) =85 Y eilx,y) =1 (5.120)

i=1

The Galerkin method is accomplished by setting the test functions equal to the interpolators
given by equation (5.119), w; = ¢;. In this manner the weak form of Poisson’s equation (5.112)
in each triangle becomes:

3

Zkrui%i.wjm:/ (ijHdQ+/<quf,ds, Vji=1,23
Qo =1 @ r (5.121a)

3
Y kjui=gq & K-u =g
i=1

The integral coefficients are defined as:

kij=/kT%§0i'%(pde, qj=/(ijHdQ+/(quzdSa vVji=12,3 (5.121b)

Qe Qe re
ki = 16 —x2)” + (2 —3)°]
by = 2l —x3)” + (3 =)’
1 2 2

k33 = —[(r2 —x1)" + ()1 —»2)°] (5.121¢)

44¢
ki = [(3 = x2)(x1 —x3) + (02 = ¥3) (13 = y1)1/44° = ka1
ki3 = [ —x2) (2 —x1) + (2 = y3) (1 = y2)1/44° = k3

ks = [(x1 —x3)(x2 —x1) + (73 —y1) (1 —2)1/44° = k3p

Depending on the nature of the two-dimensional physical problem, k¢ is called the matrix of
rigidity, of thermal conductivity, or of hydraulic conductivity, etc. For the same reason, g¢ is
called the load vector, or the heat flow vector, etc. The elements of k¢ are computed explicitly in
the corresponding program used to solve the problem.

5.2.6 Finite elements using bilinear Lagrange interpolation polynomials over rectangles

In this case, the domain of the PDE problem is discretized with rectangles. The coordinates of the
vertexes u1 (—b, —c), ux (b, —c),uz(b, ¢),us(—b, c) (Fig. 5.10) define one rectangle with respect
to the origin O. The bilinear approximation function is:

u(x,y) =ay +ayx+azy+asxy (5.122)
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y
Uy e Us
@ @
> X
-b 0 b
u b 'uz

Figure5.10. A FEM rectangle.

In terms of the coordinates of the nodes, we obtain:

Wi, y)=ui=a+axitazyi+asx;y; i=1,4

1 x1 y1 x1n aj U 1 —=b —c bc ay (5.123)
1 x2 y» x2» a u 1 b —c —bc a
< . = = .
1 x3 y3 x3)3 as u3 1 b c bc as
1 X4 Y4 X4)4 ag Ug 1 —b c —bc aq
The determinant of the second matrix is det(x) = —16 b? ¢ < 0. Therefore we can compute
the corresponding inverse matrix:
al l 1 1 l ul
a | 1 —b! b1 b1 —b7! up
a3 | 4| =t =t c! c! N us (5.124)
a4 (bo)™t (=bo)™t (be)Tt (—bo)7! us
The approximation of u¢ can be written as:
4 4
W, ) =Y u Nix, y), where: Y Ni(x, ) =1, Nilx;, ) =8 (5.125)
i=1 i=1
Explicitly the functions N; are:
(b—x) (c—y) (b+x) (c—y)
1 b e 1) Y1) 2 b e @200 Y1 ()
(5.126)
(b+x) (c+y) (b—x)(c+y)
3 b e P2(x) Y2(»);  Na T e V1) ¥2(»)
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Each one of these functions is a bilinear Lagrange interpolator. The original Poisson equation
in terms of the finite element discretization becomes:

KU_/VN VNdQ=K; = ZKUu, /NQHdQ+/Nqnds_f
Qe i=1

& KO =f° (5.127)
The integral coefficients of the hydraulic conductivity matrix are:

2002+ (BE=23)  —(P+BA) -3
e 1 b* =22 204+ —QBE—c2) —(B*+3)

Tebe| —? 4+ —@bE—c2) 200*+2) (B —2¢2) (5.128)
—@b*—cH P+ P2 207 +P)
while the flow vector f ¢ is computed with the following integrals:
+h+c (M1 +b+c (M1
e N, N, e
fo= N, |9 y)dy dx + N |4 ds (5.129)
—b—c N4 —b —c N4

Depending on the form of the source term Oy (x, ) and on the flow itself, these integrals may
be easy or difficult to calculate. In general, a numerical method is used to evaluate them. Some
of these methods are mentioned in the literature (e.g. Liu and Quek 2003). The interpolation
functions and the matrices in both types of elements, triangles and rectangles, are similar for
every domain discretized with finite elements. The matrices only differ on size and coordinates
of the nodes.

5.2.7 Solution of the transient heat equation using finite elements in 1D

Let us consider the following one-dimensional differential problem:

aT 92T
pcpa_kTW:QH(x,t), VO<x<L, t>t>0

dT dT
T, 1) =9ox),  —-0, 0 =—-(L,H=0 (5.130)

k
87 = —— s the thermal diffusivity.
P Cp

The weak formulation of this problem is obtained by integrating by parts over the interval [0, L]
with respect to a weighted arbitrary function w(x):

oT d
/—wdx—l—/ T——de_

Using the same interpolation of previous section:

L L
+ / 011 (¥) wx)dx (5.131)
0

N

TG, ) ~u(x, 1) = Y uit) gi(x) (5.132)

i=1
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Functions {¢;; i = 1, N} are the interpolators already defined. The Galerkin technique consists
of taking w(x) = ¢;(x) forj = 1, N. Replacing this interpolation in the weak formulation (5.131):

L

N L N L
du; 0 i
) :/ —oigpds+) 5T/u,(t)ﬁ xfdxz /QH(x)wj(x)dx (5.133)
0 =l 9 0

i=1

The same equation (5.133) is repeated for all weighted functions ¢;(x), j = 1, N. In this
manner the following linear system is obtained:

il du;
> My (z)+ZKyuz<r)—f~

i=1
- dii .-
o M-VO+K-un=f o L_Au4F

where: A= -M"'.K, F=M".

(5.134)

~

Therefore, the finite element formulation of the heat transient conduction problem is equivalent
to solving a system of ordinary differential equations.

5.3 THE FINITE VOLUME METHOD (FVM)

The finite volume method, also known as integrated finite differences or surface integrated finite
differences (Narasimhan and Witherspoon 1976, Narasimhan 1982, Pruess 2006), is a numerical
technique used to approximately evaluate partial differential equations. “Similar to the finite
difference method, values are calculated at discrete places on a meshed geometry. Finite volume
refers to the small volumes surrounding each node point on a mesh. In the finite volume method,
volume integrals in a partial differential equation that contain a divergence term are converted
to surface integrals, using the divergence theorem. These terms are then evaluated as fluxes at
the surfaces of each finite volume. Because the flux entering a given volume is identical to that
leaving the adjacent volume, these methods are conservative. Another advantage of the finite
volume method is that it is easily formulated to allow for unstructured meshes. The method is
used in many computational fluid dynamics packages”, (Wikipedia 2009f).

The FVM estimates flow variables, pressure or temperature, averaged across a volume; it can
work in either structured (with regular distribution of nodes) or unstructured meshes of domains
with highly irregular geometries. One of the main advantages of the FVM in groundwater flow
is that it is a conservative method in the sense that it can conserve hydraulic head, pressure,
temperature or solute concentration on coarse meshes easily. In problems demanding high res-
olution schemes, the method of monotone upstream-centered schemes for conservation laws,
(Wikipedia 2008f) can be used to obtain high accuracy in the numerical solution of models
involving discontinuities, shocks or large gradients.

5.3.1 The FVM in the solution of single-phase mass flow

The FVM is used in hydrogeology and in geothermal reservoir engineering to calculate the
distribution of field functions (Pruess 1988, 2006). We consider a reservoir 2 of volume Vp
discretized by Ny finite volumes {V,, n = 1, Ny}, as shown in Figure 5.11.

To illustrate the use of this method we specifically solve the continuity equation (4.15) for a
single phase fluid inside a differential porous volume dV. The FVM consists of directly integrating
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Figure5.11.  Unstructured mesh: Finite volume method in a 2-dimensional region showing its main parts.
C,, is the center of each volume V),; d,, is the orthogonal distance between this center and the
corresponding boundary. Volume ¥, is surrounded by boundaries of areas Sy,;,i = 1, M; where
M is the number of these local boundaries.

this equation over each finite volume V,{n = 1, Ny }:

0 > - > -
a/((p,of)dV:—/V-FMldV—i-/qde:—/FMl -ndS—l—qn/dV (5.135)
Va Va Va Sn Vi

To obtain the last part of equation (5.135) we apply the divergence theorem of integral calculus.
The global boundary §,, of every V,, is composed of three or more surfaces connecting each V,
with the boundaries of other volumes in the neighborhood:

M,
Wy=S8=JS: S[)§=0 ifi#j and Su=S,|]JSi (5.136)
i=1

The mean value theorem for integrals (Weisstein 2003) states that for any integrable
function /" defined in V, or in S,, its average value f;, is:

/de =Vufn, and: fde = Sn fn (5.137)
Va Sy
We use the mean value theorem for all the terms of the integro-differential equation (5.135):

M, M,
/FM.ﬁdS=Z/FM1.ﬁdS=ZFn,-fds
S, i=ISl_ i=1 S;
. (5.138)
- 5 Wt > FuiSui =qn Ve =0
Y ©On Pn)Vn nivni =49n Vn = Un

i=1

Note that O, is the flow rate in [kg/s]. Subindex # indicates that the corresponding integrated
variable is an averaged quantity in each V. The passage from equation (5.135) to formula (5.138)
is the key step in the FVM formulation. The accuracy of the method depends on both the size
and geometry of the volumes in the mesh, as well as the precision of the integral mean value
theorem. The FVM is dependent neither on a coordinate system nor on the region’s dimensions.
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This equation is valid in 1, 2 or 3 dimensions. The averaged flux F},; is computed at every interface
Sy assuming that Darcy’s law is valid (Forchheimer’s law and Navier-Stokes can also be used):

. N R L. . a
—«ﬁﬁﬂfwww—pmgwwm=—Kﬁ@i[”
i Mni | On;

— pni & Cos 0,,,':| Spi = Fni Sni (5.139)

where 6,,; is the angle between gravity and the vector orthogonal to the corresponding boundary
Spi. Here we have used the fact that the scalar product between the pressure gradient and the
normal vector is equal to the directional derivative of pressure. Given that porosity and fluid
density depend on (p, T') at every V,:

9(on pn)% 0(@n pn) 0T,
ap at aT at

9
@n o), T) = a(wnpn)= (5.140)

In this equation the fluid flow is implicitly coupled to the rock deformation through the variation
of porosity. In non deformable rocks ¢, becomes constant. In equation (5.139) we approximate
the normal derivative of pressure by a simple finite difference:

FooS ™ _ Koi pni Sni [Pi — Pn

— pni & Cos 0, 5.141
. d rd g m] (5.141)

All terms with subindex ni represent computed average values at every interface S,,;. Several
averaging techniques were introduced in chapter 3. Grouping all developments herein presented
in equation (5.138) we finally obtain a fully discretized partial differential equation for each finite
volume V,;:

M)’I Q
— pni g Cos 9,,,} + 7” (5.142)

n

8(§0n,0n)8pj 0(@n pn) 0T, _
ap at T at

Kyi Oni Sni |:pi —Pn
=1 Vi tni dy + d;

The partial derivatives of fluid density are calculated with the equation of state of water
introduced in chapter 2. A simple approximation to estimate the porosity variation can be done
employing a linear Taylor expansion:

9% 9o 32<ﬂo>m

o T) = 00+ (0 — p0) 222 4+ (T = T0) 22 4 o 290
p T p? T2

(5.143)
= 0, T) ~ o [14+ Cyp — po) + ¥ (T — To)]

where C, is the compressibility of the pore volume at constant p, (eq. 2.40a) and y,, is the thermal
expansion of the pores at constant p; and constant p (eq. 2.22b):

19 1a
Cp = __ 2% (compressibility); v, = — 2% (expansivity) (5.144)
%0 0 p wo 0T

To simplify the final expression of the model, we define the following functional coefficients:

9(®n pn) 0(®n pn)
A, T) = ———, B, T) = —/——
ap aT
(5.145)
Kyi oni Sni Kyi oni Sni
Cinip, T) = ———, Duni(p,T) = ————pni & CosOp;
Vi ni Vi ni
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where subscript ni represents an average value computed at the interface S,;, while the subscriptl
means that the fluid is single phase. Finally, equation (5.142) can be written as follows:

op AT, & pi—p 0
A =2 B—":E:C-’ D+ 2 =w 5.146
1n Y, + 1n 97 v |: lmdn"‘di 1ni + Vn 1M ( )

The last term Wy, of this differential equation represents the total volumetric flow rate
[kg/s/m?] exchanged between the finite volume ¥, {n = 1, Ny} and its surroundings formed by
all the other volumes V; {i = 1, M), }. Equation (5.146) is a non-linear discretized model, with all
its coefficients dependent on the unknown variables (p, T'). These coefficients also contain the
geometric information of each element of the mesh: volume V,,, areas S,;, and nodal distances
dy, d;. Notice also that the internodal distance d,, + d; is different at every interface, it measures
the pressure gradient strength in the orthogonal direction to S,;. The internodal distances will be
similar or equal only if the mesh is regular and structured, formed by rectangles or squares.

5.3.2 The FVM in the numerical solution of single-phase energy flow

The FVM can be also used in geothermal reservoirs where the flow processes are non isothermal.
The integral equation of the thermal energy flow in every volume V), of the mesh is as follows
(see equation 4.95 with g = Qg):

U 9 L.
o V:a/[(ppfef—i-(l—go)prh,]dV:—/V-FEldV—f-/qudV (5.147a)

Va Va Va Va

Using the mean value theorem in all the terms of this integro-differential equation:

d d > R
E((/)n Pnen)Vn + prn&[(l — OV = — /FEI -ndS + qun Va (5.147b)
Sn

Developing the right term of equation (5.147a): using the same methodology of previous section
we obtain:

—/1351 'ﬁdS:—/(hfﬁMl i+ kp VT - 7)dS
Su Sn
M
- aT,
== <hni Fi Spi + Krni 8Tan"i)

i=1 i

M,
"SR 00 S o T;, — T,
_ Z( ni Pni Mni Oni |:Pz Pn —pnigCOSQm} + Krni Smu)

i1 Mni dy + d; dy + d;
(5.148)
The temporal derivative of averaged internal energy is:
0 a de dp, | 0
—[U] = | en—(®n pn) + @n PnJ — Prn hrnJ P
at ap ap ap | ot
(5.149)

de a aT,
87; + (1 - %),Om Crn — Prn hr (/)ni| 3:

9
+[ena—T(<pn Pn) + ©n Pn "o
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To obtain a compact expression for the energy model we define the following functional
coefficients:

de 10
Eln(p: T) = en (Qun pn) + On on—— 2 — Prn hrn -
ap ap

dey R
Fln(p: T) = en ((pn pn) + On Pnr — P hrn - + (1 - (pn)prn Crn (5150)

aT aT
KTni Sni

Gui(p, T) = A
n

Oun = qun Va

Replacing these coefficients and the previous expressions in equation (5.147b):

M,
3 AT, L _T, ”
Eln D +F1n —Z[Clm md +d Glmd +d Dlm hnij|+ QVn :\IJIE
n i n

(5.151)

The last term of this partial differential equation represents the total volumetric heat flow rate
[J/s/m?] exchanged between the finite volume ¥, and all the other volumes ¥; {i = 1, M,,}, plus
the volumetric energy Quy,/V, which is extracted or injected in V. This equation is a strongly
non-linear discretized model, with all its coefficients dependent on the unknown variables (p, T).
These coefficients contain thermodynamic and geometric information of each element of the
mesh. Both equations (5.146) and (5.151) are coupled through p, and 7,.

5.3.3 The FVM in the numerical solution of two-phase mass flow

When the water of geothermal systems is in a state of saturation, both phases, liquid and steam,
can coexist. The boundary of this two-phase thermodynamic region is called the K-line; here,
the temperature of the fluid depends on the saturation pressure (Fig. 2.31) through the Clapeyron
relationship Tsat = T(psat). In a two-phase system it is necessary to have another variable that
determines the quantity of thermal energy or enthalpy in situ or the relative quantity of steam
or liquid present in each phase. The thermodynamic state of the two-phase fluid in the reservoir
depends on the relative composition of each phase. The second variable adapted in this case
can be the specific enthalpy, the steam quality or the liquid saturation. To simplify the model
for two-phase flow systems we assume that the capillary pressure between liquid and vapor is
negligible. Practical correlations to compute this pressure are found in section 2.3.8; a complete
finite element model using capillary pressure is developed in section 9.4. The integral equation
for two-phase flow is:

9 o s o o
5/(<ppzSz+<pvav)dV+/(V~F1+V~Fv)dV=/(qz+qv)dV:qudV (5.152)
Va

Applying the FVM to this integral equation, the corresponding averaged partial differential
equation is:

My

3
Vo= 2 (@ P1S1+ @ o So)avn = = > Fr+ Fo)i Sni + qn Va (5.153)
i=1

3(@n on)
ot
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Using the fact that the porosity is a function of (p, T) and T(p), the temporal derivative of
(®n pn) is:

9 ] g 97, dpn] 8 30, Oh
(on pn)(psh) = g(ganpn):[< ¢n+ Pn ”) . ., n]ﬁ n 0Ny

O 0T, Opn oo | ot " on, ot
(5.154)
Replacing the fluxes of both phases given by equation (4.88) in equation (5.154):
My v Koi prini ki -
(F) + Fy)p = — Z Z ni Pfni Kfni |:Zl IZI — Dfui g Cos Gnii| (5.155)
i1 f=1 Mefni n+di
My
O¢n 0@y 0Ty 0on | dpn 0ppn 0hy qn Vi Kyi Sni
= + Pn T @n Pn = Z
op, 0T, dp, op, | ot dh, ot Vy = Va
% (klni Pini + ki pvni) (pi _pn> _ ki plzni n kvni pgm' 2 CoS i
Mini Mvni dy + d; Mini Mvni
(5.156)

To obtain a compact expression for the two-phase flow model we define the following func-
tional coefficients:

dgn g 0T, 90n
A , h) =
2(p, h) <8pn a7, apn>p" L.
0pn
Bon(p, h) = @ 220
(D, 1) = @p oh,
.1
Coni(p, h) = Kyi Sni (Plni ki + Pvni kvni) (5.157)
Vi Mini Mvni
Koi Sui  kini 02 Jooi 02
Dzm(P, h) = n;/ ni ( Ini Pjy; + vni pvnl)gCOS Oi
n Mini Myvni

Replacing these coefficients in the corresponding equation (5.146):

op Oy pi—p 0
Apy =2 B—":E:C" Dy |+ =W 5.158
2n ¢ + By 9t g |: 2ni dn +di oni | + Vn 2M ( )

The last term of partial differential equation (5.158), W2, represents the total volumetric two-
phase flow rate [kg/s/m3] exchanged between the finite volume ¥, and its surroundings formed
by all the other volumes V; {i = 1, M, }. This is also a non-linear discretized model, with all its
coefficients dependent on the unknown variables (p, 4).

5.3.4 The FVM in the numerical solution of two-phase energy flow
The total heat flow in a two-phase geothermal system is given by equation (4.97):

ﬁEz :ﬁlhl +i7‘,/’lv — kT6T
kr = —@kn + @ Sikn + ¢ Sy kry
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The integral equation of the thermal energy flow in every volume V, is:

oU ad - S
WEW = a/[(ppfef + (1 =)o 1dV = —/V ~FEde+/quV (5.159)
Vi Vi Vi Vi

Applying the FVM to the two-phase energy flow:

/ﬁEz.ﬁds=/[(h,ﬁ,+hvﬁv).ﬁ—kﬁr.ﬁ]ds

Sy’ Sn
el Kini tni hini (i — P Ii— 1T,
~ Y Sy | K — i g Cos Oy ) + kpi——— ) (5.160
; m( ni i d +d; Pini & COSOpi | + Krni dy +d ( )

i Poni hvmi (Pi — P
v Zsm( Rl (BB g Costy) )

The calculus and algebra for this equation is completely analogous to the single phase energy
flow; the only difference is the number of terms involved, because here there are two phases.

Developing the temporal derivative of equation (5.159) using the corresponding methodology of
the previous section and factorizing we obtain:
T,]d
c, J} n
pn | Ot

1) 0@y, 0T, ap
|:(pnhn _pn_prnhrn)< b4 ”>+(ﬂnh -
a0 ohy, Kyi Spi ( Kni Pini hini kvni Pvni Pyni Pi — Pn
h —
+(‘p”p”+‘/’” "8h> ot Z v, ( * dy+d;

— ®n + (1 - (pn)prn

|

dpn 0T, dpy, " Apu
Mini MHvni

M, 2
B Kui Sni [ Kini Pl hini I keyni pvm hyni 2 CoS O + Z ktni Spi Ti — Tn
= Va Mini Myni i=1 Vu d +d;
L+ Gl + qw;/hm + )V (5.161)
n

To obtain a compact expression for the energy model we define the following functional
coefficients:

ohy,
Kyi Sni <klni Pini Mini kvni Pvni hvni)
+
Va Mini Movni

0 pn
Ex(p,h) =[*1; Fa(p,h) = (‘Pn Pn + O hy—— p )

sz(Pa h) =

(5.162)

2
Honi(p, h) = Ko Sni (K Py + Koni Pu P g Cos by
Va Mini Mvni

OQ2un = (Gin hin + Gvn Pon + @) Va

where the symbol [*] in the first line of equation (5.162) means that the coefficient £, is equal to
the whole expression of the first line of equation (5.161), which is a factor of the partial derivative
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dpp/0t. Finally, we obtain a condensed expression for the energy flow:

Apn —Dn krni Sni Ti — Ty Oun
E + F = E — Hyy; — =V 5.163
2n o, 91 2n |: 2ni d T d; + V. d,+d; 2ni | + v, 2F ( )

The last term of this partial differential equation represents the total volumetric heat flow rate
[W/m?3] of the two-phase flow of fluid exchanged between the finite volume ¥, and all the other
volumes V; {i = 1, M, }, plus the volumetric energy Qu;,/V, which is extracted or injected in V,.
This equation is a strongly non-linear discretized model, with all its coefficients dependent on the
unknown variables (p, T). The discretized equation and its coefficients contain thermodynamic
and geometric information of each element of the mesh. Both equations (5.158) and (5.163) are
coupled through p, and 4.

5.3.5 Numerical approximations of the time-level

The parabolic-type differential equations (5.146), (5.151), (5.158) and (5.163) are numerical
approximations of the total energy and mass flows in single-phase and two-phase geothermal
systems. Those expressions are based on the finite volume method; the following general non-
linear model represents all of them:

a,n(p,X) +ﬂjn(p,X> = Wy (Vpn, VX) (5.164)

The functional coefficients «j,, B, and Wj; can be recognized by comparison with the coef-
ficients of the respective previous equations, for (j = 1, 2) and (k = M, E). The variable X;
represents temperature 7 (j = 1) in single-phase flows, or enthalpy % (j = 2) in two-phase flows.
To complete the solution of these equations it is necessary to use time-level schemes in order to
estimate the evolution of pressure, temperature and enthalpy. Two or three time-level schemes can
be constructed to approximate these parabolic equations using finite-differences (see section 5.1).
The non-linear system of coupled equations (5.164) is equivalent to the following matrix equation,
which is valid in either single or two-phase flows:

9pn . )
Ajn Bjn 9t Wi Ty > 0Ty o=
(E_,,, Fjy 31X Wi ) & A T v " n ( a)
at
where: A, = (4 B il _ 9 (pn and W,(1) = Yt (5.165b)
' " Ejn an >t ot )(jn " \IJ]E . ’

This matrix system should be solved for each finite volume V, (n = 1, Ny), it includes the
mutual flows between V), and its surroundings within the mesh (Fig. 5.11).

5.3.5.1 Explicit numerical approximation of the time-level
The inverse of the matrix in equation (5.165a) is:

1 F. —B;
-1 _ .
A AAn <_Ej}: Aj:) ;0 AN, = Ajn an - Bjn Ejn ?é 0 (5.1650)

The finite-difference explicit approximation of equation (5.165b) is done using either a forward-
difference formula or a backward-difference formula. The truncation error in both formulae is
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linear and of the same order as the time step O(A¢). Using the forward-difference formula, we
obtain a very simple scheme to advance in time:

Pn P =y _ Fin Y = Bin Wi
at At AA, ( )
5.166a
1+ At
0Xin X ™ =X A Wi — Epn Y
at At AA,
Therefore:
Fin Wiy — Bin Wi \'
p;JrA[:p;—f—At( Jjn xj jn xj >
A (5.166b)
A Wig — Ejpy Wi\ ’
t+At _ yt Jn xJ Jn =J
an - )(jn + At( AAn )

where ¢ represents the present time and ¢ + Az the future time. The time iteration ranges from
the initial condition (¢ = 0) up to the maximum time (¢ = #max) the user wants to reach in the
simulation. Equations (5.166b) give simple explicit formulae for the unknown pressure and tem-
perature or enthalpy in each volume V), at the time (f + Af) in terms of known variables along
the time axis .

It is important to note that all non-linear terms included in the functional coefficients only
depend on the present time 7 at each iteration. They are explicitly updated with equations (5.166b).
Therefore, the numerical representation of the simultaneous heat and mass flow in geothermal
reservoirs is quite straightforward using this scheme in the FVM. In spite of its simplicity the
time-level explicit approximation is useful only when the changes in the reservoir variables are
smooth and at slow speed. Otherwise, this scheme has one serious drawback. The size of the
time step At becomes necessarily very small because the process is valid only for Az < 0.5Ad?
(Smith 1978), where d is a representative diameter of V},. Under this condition, the size of each
V,, must be kept small to attain reasonable accuracy. If the flow speed is high as it occurs close to
wells, the simulation becomes overwhelmingly slow.

5.3.5.2  Implicit numerical approximation of the time-level

A more general finite-difference approximation of the time-level consists in averaging the depen-
dence on time of the functions in equation (5.165a) between two consecutive time steps <!
(future) and ¥ (present) as follows:

-

0T >
An(pn, )(jn, 1) - 37: = W, (py, )(jn, £) - With: 8¢ = tk+1 _ tk

o (5.167)
. (.L.r/lc+l _ Tk)

—»kl -
= A, TE =100, +1 -0V, 6el0,1]

Coefficient 6 determines the nature of the weighted average. If &6 = 0 we obtain the explicit
scheme; if 6 = 1 we obtain a fully implicit scheme, which must be solved as a linear system of

equations. If 0 < 6 < 1 the time-level approximation is mixed, implicit-explicit. The truncation
error in this case is of the order O(A#?) (e.g., Smith 1978).

5.3.5.3 Three time-level numerical approximations

Generally speaking, three time-level schemes are used to achieve more advantages over two
time-level schemes, such as smaller local truncation errors, larger numerical stability, or the
transformation of a non-linear problem to a linear one (Smith 1978, Richtmyer and Morton 1967).
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For example the following approximation of equation (5.165b) is a three time-level finite-
difference equation where the time steps are t¥*1 (future), #* (present) and *~! (past):

k+
n

:[9\3 1+(1—9)\I/,’;], 6 c01] (5.168)

A (3@ —EH 1 -Eh
n
2 St 2 8t

The truncation error in this scheme is of the same order O(A¢?) as in the previous mixed,
implicit-explicit algorithm, but this time-level approximation is the better one to use when the
initial data are discontinuous or varies very rapidly with the spatial dimensions (Smith 1978).
The implicit two time-level scheme should be used when the initial data and its derivatives are
continuous.

5.4 THE BOUNDARY ELEMENT METHOD FOR ELLIPTIC PROBLEMS

During the numerical estimation of the initial state of a reservoir it is clear that, after a great
number of time steps, the transient term in equation (5.130) becomes practically zero. Thus, in
this case, the transient equation becomes a PDE of elliptic type. The boundary element method
(BEM) is specifically intended for linear elliptic PDE in homogeneous media. In this type of
physical problems, the BEM is clearly superior to FD, FV and FE methods in both accuracy and
efficiency. Mainly, because all these methods demand the discretization of the whole solution
domain 2. The key feature of the BEM is that only the surface boundary of the porous medium
needs to be discretized. The field variable can be calculated with high precision at any point in
the interior of the domain using only the known values of the function at the boundary of 2. The
BEM provides an effective reduction of the dimension of the PDE solution space. As a result,
improved numerical accuracy is obtained and the use of computational resources is reduced.
Using BEM, differential problems can be solved quite adequately on a notebook type PC. Other
methods would undoubtedly require the use of cluster or a workstation, or even a supercomputer,
to obtain the same level of accuracy when dealing with the degree of geometric complexity of
certain reservoir boundaries (Cruse and Rizzo 1975, Ameen 2001, Pozrikidis 2002). To illustrate
the method, we solve an elliptic problem representing a stationary temperature (or pressure)
distribution, described by Poisson’s equation with mixed boundary conditions (Fig. 5.12):

V2T =f(P), VP=(x,y) e QCR?,

T(P)=ur(P), VPeTly, (5.169)
aT—> - > aQ:F:rTUFN
5 P =unP), VPeTy

n

Let’s assume first that /' = 0 (Laplace PDE). Applying Green’s theorem and the fundamental
solution to the integral form of equation (5.169) (see Appendix) we obtain:

. 1 . L ATG TG
7(P) =_7/ [Ln||P—q|| @ __T@ COS@]ds
7 Jr on IP—4q] (5.170)

VPeQ, §eax, 6 = £ (Fpq, 1), n=normaltoTl atq

The boundary 0<2 is discretized into I';(j = 1,N;) boundary elements which can be lin-
ear, parabolic, or cubic splines in 2D. In the 3D case, the boundary elements can be triangles,
rectangles, shells, etc.
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Figure5.12. Boundary discretization of the domain €2, for the 2D solution of the PDE (5.169).

The main fundamental theorem supporting the BEM is the general form of Stoke’s theorem
(Pita 1995):

/dw:/w,F:BQ,QCR”,FCR”_I
Q@ r (5.171)

n=1,2,3; [ =0 isthe boundary of

where €2 is an open subset of R” and w is any differential form defined in €2. This simple and
elegant theorem has many significant consequences. Let’s define w(x,y) = f(x,y) + g(x,»);
Stoke’s theorem implies that:

/ (g—i—a—g)dxdy:/(fdy—gdx) (5.172)
o \dx dy r

Assuming that (f, g) are the components of a gradient and defining a vector normal to the
curve I, then

B} IF OF Q
VF = (E 5) =(f.8; n=(ng,m)=(dy—dx)

= /Q(AF)dxdy=f%F-7zds=/%ds (5.173)
r r
where: AF =V - (6F) = <82F + BZF)
ax2 92

This result implies the first form of Green’s theorem:

av ou 5
f:ua,g:v@,u,v:Q—HR,u,veCQ

(5.174)
- o ad
/ (uAv+ Vu-Vv)dxdy = f u—vds
Q on
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Interchanging the roles of u and v in this formula and subtracting both results we finally arrive
at the full expression of the general Green’s theorem:

B 0
/(uAv—vAu)dQ:/ u—v—v—u ds
on on
Q Elo}

QCR' and IQCR', n=123

(5.175)

5.4.1 The Dirac distribution (a generalized function)

Another fundamental result that supports the theory of the BEM concerns Dirac’s delta distribution
(Pozrikidis 2002, Katsikadelis 2002). It can be defined in 1, 2 or 3 dimensions and interpreted as
a forced Laplace’s equation for a field around a singular point. Let P and Py € R", be two points
in the n-dimensional space (n = 1,2, 3), where Py is the location of a fixed singular point, Pis
any variable point of the field. The distribution of Dirac §, (P Po) is a generalized function such
that:

- B p_p
8n(P — Py) = lim = exp(—B|P — Po|?)
B—oo T

> - n
IP—Poll =/, x—xo0)? forn=123

where S is a real positive parameter related to an arbitrary length. The following properties are
easily demonstrated:

(5.176)

1) 8P — Po) = 81(x — x0)81 (¥ — y0)
2) 85(P — Po) = 81(x — x0)81(y — %0)81(z — 20)
3) 8,(P—Py)=0VP#P,

4 8,(P—Pp) =00 if P=Py (5.177)

5) fa,,(ﬁ—i-"o)dsz:l VQs P
Q

6) f 5B — Po)f (P)d 2 = f(Py) ¥ 25 Py
Q

This last property shows that the integral of the product of 8, and an arbitrary function over
a domain 2 containing the singular point Po is equal to f (Py), the value of the function at the
singular point. Thus, if €2 does not contain Po this integral is equal to zero.

5.4.2 The fundamental solution in free space

Let P be any point, and Po a heat point source located somewhere in the plane RZ. The influ-
ence of the heat source is described by the Dirac’s delta distribution f (P) = S(P Po)
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The temperature field is described by the fundamental PDE (Pozrikidis 2002) in polar
(see Appendix) coordinates:

_d2V+1dV_8(ﬁ ]—3)

rdr (5.178)
r =11 = Poll =/ — 0% + & = 30

Avy

The solution of this PDE plays a very important role in the BEM and is called the singular or
fundamental solution or Green’s free space function. Its expression is:

Ln(r)

V(P —Po) = =

(5.179)

Applying results (5.175) and (5.178) to the Laplace PDE (5.169) with /' (P) = 0 we obtain:

/ (AT — TAV)dQ = / (0 — T(Py)8(P — Py))d
Q Q

(g, P - TG
v(aq, ) v B (q)) i (5.180)
n an

S GEN| (T(?J)
I=r7+Ty
VP,Pye QCR' and §edQCR", n=1,23

This is the main solution of the classical BEM. The method has been extended to more
complex problems, including transient PDE of parabolic type in heterogeneous media (Archer
2000, Archer et al. 1999, Sato 1992).

5.4.3 BEM solution of the Poisson's equation

Let us assume now that f* # 0 (Poisson PDE 5.169), applying the same methodology proposed
by Katsikadelis (2002) we obtain:

VP,0 e Q: T(P) = / v(P, 0) f(P)dQ
Q

) N
r an on
- Ln(|P—73
whereg € I' and v(P,q) = M
7T

The auxiliary function v is the fundamental solution of the singular form of Laplace equa-
tion (Appendix) and plays a crucial role in the classical BEM. For time-dependent problems of
parabolic type the BEM can also be applied using two subsidiary techniques:

e Solving first the PDE in time using FD, then applying the BEM to the time-discretized equations.
e Removing the time dependence of the PDE using the Laplace transform.
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5.4.4 The BEM numerical implementation: An example

Let us assume that each I'; is a constant linear segment. The discretization of the boundary T’

(Fig. 5.12) in equation (171) implies that:

Consequently equation (5.180) can be discretized as:

. Np

T! aT a is

7=—va(p,, (q)d+Z/T()V(p 9
Jj=1

or equivalently as:

Np

N, :

. 9T
> HyT =) G-
j=1 =

The influence coefficients H;; and Gy; are integral forms equal to:

9 S Lo
Hj = / <—vds) -2, Gjj =/ v(pi, q)ds
I 8nj 2 Iy

From equation (5.184) we finally obtain the linear system:

H-T=G- T,

. 9T .
= ); T{, = W = (uln)

(5.182)

(5.183)

(5.184)

(5.185)

(5.186)

Because of the assumed mixed boundary conditions, #7 in 'z and u,, in Iy, there are unknown
quantities in both sides of equation (5.186). Consequently, we need to separate the identified u’s
from the unknown u’s in order to obtain a consistent system of linear equations. As an example,

the system for N, = 4 is:

Hy Hiy His Hus u' Gt G Giz Gu
Hy1 Hy Hyy Hou u? | Gz G Gz Gog
Hy Hy Hy Hy| |73 | Ga Gn G G
Hy Hip Hyz Hy T4 Gy1 Gao Ga3 Gy

(5.187)

Let us suppose that the «/ are the known quantities and the 7V are the unknown vari-
ables. Moving all the unknowns to the left hand side of equation (5.187) we obtain the
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final linear system:

—Hi3 —His G Gp T3 B!

S —Hy; —Hy Gy G T B?

AT o 23 u G Gn | =12
—Hsz3 —Hy G311 Gxn T, B (5.188)

—Hy3s —His Ga Gy 72 B*

B' = Hjy u' + Hp v* — G u} — Giy 1)

The matrix in this system is full and non symmetric, but is at least four times smaller than the
equivalent matrix obtained by FD, FE or FV. This result can be easily generalized for any N, > 4.
We will apply the BEM to submarine reservoirs in chapter 9.



CHAPTER 6

Procedure of a numerical model elaboration

“We should not overlook the importance of simplicity combined with depth of
understanding, not only for its cultural value, but as a technological tool. It leads
to quantitative predictions without laborious and costly calculations; it suggests
new inventions and simple solutions of engineering problems.”

Maurice A. Biot (1962)*

6.1 INTRODUCTION

Establishing a numerical model can be described as the representation of a conceptional model of
anatural system using numerical algorithms, such as an aquifer or a system of interacting aquifers.
In this chapter, we will distinguish between two groups: cold (non-geothermal) and geothermal
aquifers. Numerical models can be used to simulate responses due to perturbations of the system
in order to evaluate the dominating influences on the more complex real-world systems. Using the
basic laws of physics and chemistry that govern groundwater flow, and solute and heat transport,
the conceptual model is mathematically represented. The conceptual model considers all the
information available on geological setting, geometrical properties, hydraulic parameters, solid
phase properties, including homogeneity and isotropy, fluid properties, boundary condition, both
sources and sinks of fluids, solutes and heat, and their spatial time-dependent distributions within
the study area and its boundaries. The purpose of the numerical model is to solve the differential
equations either at steady state conditions for the unperturbed system, or to model the behavior
of the domain over time.

The development of an accurate numerical model for simulating groundwater flow and solute
and heat transport requires the processing of a large amount of information regarding the domain
area, and is generally comprised of the following seven steps (see Fig. 6.1).

e Defining the specific objectives of the model.

e Developing a conceptual model of the aquifer or the geothermal reservoir that includes all
available information about the geology and existing databases for the physical and chemical
properties of the system that are relevant for the explicit description of the system. These are
the properties that describe groundwater flow and solute and heat transfer.

e Constructing a mathematical model, where all the concepts from the conceptual model are
expressed in mathematical equations. Assumptions about the boundary conditions and other
properties of the conceptual model are included here.

e Elaborating the numerical model by (1) discretizing the domain creating a numerical mesh or
grid of the area to be modeled (or use other discretization methods as e.g., meshless methods);
(2) Discretizing the mathematical equations of the mathematical model (if you write your own
modeling computer program), or selecting a computer program that can solve the mathematical
equations of the mathematical model. The computer program should be verified against known
analytical solutions or previously solved problems to determine whether the computer code is
correct and functioning as intended. Input to the program are the assigned values of hydraulic

* Speech of Maurice A. Biot during the Acceptance speech of Timoshenko Award. American Society of
Mechanical Engineers, Applied Mechanics Reviews 16:2, 1963.
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parameters, fluid and material properties, etc., to each cell or element; (3) Assigning boundary
conditions to the mesh or grid (external and internal ones).

e Calibration of the numerical model, where the values of the numerical or physical modeling
parameters in the computational model are optimized so that a good fit between simulated and
measured field data is achieved, and the derived results are plausible. Model calibration is done
using field data collected in the past and compared with the numerical results.

e Validation of the numerical model is used to determine the degree to which a model is an
accurate representation of the real world from the perspective of the intended uses of the model
(ATAA 1998). It is performed using field data that have not been used for model calibration.

e After model calibration and validation, a sensitivity analysis is done to determine the most
important parameters affecting the behavior of the system. If the model uncertainty is low
(comparison between numerical results and experimental data), the numerical model can be
considered suitable to perform the numerical simulations according to the specific tasks for
which it was developed (e.g., to make predictions).

In this chapter, we will learn, step by step, how to construct and use a numerical model. The
main steps for constructing a conceptual model to be used in the development of the numerical
model and the simulations are explained in a general form. A simplified example illustrates the
different steps. In this example, a regional stationary groundwater flow model is developed.

6.2 DEFINING THE OBJECTIVES OF THE NUMERICAL MODEL

Numerical models are used for performing simulations to reconstruct processes which occurred
in the past, and to forecast processes of complex real subsurface systems, such as aquifers or
geothermal reservoirs, in which numerous coupled processes with interacting parameters and
parameter functions drive groundwater and steam movement, as well as the transport of solutes,
gases, and heat.

Numerical groundwater-flow and transport models can be used as tools for feasibility studies
and planning in the areas of water supply for drinking water, agriculture, industry, mining, energy
production, and civil engineering. Numerical simulations allow the investigation of a wide range
of subsurface conditions. The objectives of the simulations could be: (1) Optimizing groundwater
resources management and interpreting the results of groundwater monitoring, (2) prediction of
groundwater influxes during execution of engineering foundation works, tunnels, and hydraulic
engineering projects, (3) predicting the fate and transport of anthropogenic and natural contam-
inants to evaluate the risk of contamination for aquifers, and design remediation and protection
measures, (4) designing projects for nuclear waste storage underground, (5) designing projects
for seasonal heat storage in the subsurface, and (6) studying the possibility of geothermal energy
exploitation and the evolution of geothermal fields under exploitation.

The type of simulation model constructed depends on the questions considered. Due to the wide
range of possible applications (see Tables 6.1 and 6.2), the model constructed can be very different,
even for similar situations, depending on the specific characteristics of the problem and questions
being addressed. This can be easily recognized when we consider an example in which an aquifer
that is used as a drinking water supply was anthropogenically contaminated by an accident in an
industrial plant. Here, depending on the goals of the questioner, such as the contaminating agent,
legislator, victims, insurance companies, citizen associations, communities, political parties,
mass-media, etc., the aims of the numerical model and the resulting simulation will be different.
For the evaluation of groundwater contaminations, the DVWK (1989) created a questionnaire:

Is contamination accidental?

Which are the major substances causing the contamination?

What is the extent of the damage?

Who caused the contamination?

Can contamination be demonstrated/proven?

To what degree is the person/organization that caused the damage accountable for it?
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Table 6.1. Overview of principal applications of numerical groundwater flow models.

Groundwater exploration and decision-making tool for groundwater management

(1) Modeling an aquifer response (e.g., changes of the groundwater level, changes of groundwater quality,
propagation of contaminant fronts, changes of temperature) caused by a natural or anthropogenic stim-
ulation (stress; e.g., a certain water or energy withdrawal/entrance or contaminant input) on the aquifer,
in evaluations of past processes and future forecasts

(2) Establishing groundwater balances

(3) Delimitation of groundwater protection zones around water works, wellhead protection area delineation

(4) Optimization of groundwater withdrawal by selecting the most appropriate design of the exploitation
method (e.g., single well, group of wells, horizontal well, filter gallery), and optimizing the exploitation
rate(s)

(5) Evaluation of aquifer tests (pumping, slug and bail tests)

(6) Regional numerical models for evaluation of regional groundwater resources and balancing regional
groundwater recharge; forecast of the effect of future groundwater exploitation on groundwater levels

(7) Modeling the infiltration of river water into an aquifer (bank filtration) to assess contamination hazard
of aquifers by contaminated surface waters

Soil and rock excavation and foundation work; tunneling projects

(1) Forecasting of the water influx and optimization of drainage measures in excavation pits (e.g., pumping
rates needed for proper removal of groundwater entering excavation pits, decision about the need of
closed pits or sheet pile walls)

(2) Determination of the pumping rate needed to lower the water table at the required level, and estimation
of pump discharge for reduction of the lifting force on a building to decide if other counter measures
are needed (e.g., increasing the weight of the foundation of the building, etc.)

(3) Estimation of groundwater influx into tunnels during and after the construction phase, in order to define
the specifications of the construction plan, and to determine tunnel casing needs

Hydroelectric projects and hydraulic engineering

(1) Optimization ofthe construction requirements for storage dams: Estimation of water percolation through,
below, and around storage dams, to design proper measures to reduce flow rates, e.g., use of low
permeability bottom layers or liners, or inject special slurries (e.g., cement) to reduce the aquifer
permeability

(2) Modeling changes of the natural groundwater flow field during construction of a dam and changes
caused by the filling of the storage lake, and assessment of the resulting environmental impact

(3) Evaluation of groundwater flow around weirs and below sluices

Mining projects
(1) Estimation of groundwater infiltration in subsurface mining constructions (e.g., galleries)
(2) Estimating groundwater influx in oven pits and optimization of remediation methods

Agriculture
(1) Modeling as tool to optimize groundwater management (see under: Groundwater exploration, water
management)

e Is the person/organization that caused the contamination still continuing the polluting
activity?

What is the chronological evolution of the contamination?

How would contamination evolve if no measures to counteract it are taken?

What urgent measures have to be taken?

What preventive measures can be taken to avoid future damages?

What are the collateral actions of certain measures?

Is it possible to prove the effectiveness and safety of the measures?

How long will the decontamination take?

Corresponding questionnaires can be developed for other cases, e.g., evaluation of geothermal
resources, or the prediction of geothermal field responses using numerical modeling. In any case,
the accuracy and reliability of the answers depend on the level of knowledge available and on the
complexity of the system to be modeled.
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Table 6.2. Overview on principal applications of numerical groundwater flow, solute and heat transport
models.

Solute transport modeling

Natural and anthropogenic contamination, protection, and remediation

(1) Modeling and forecast of the fate and migration of contaminants in aquifers for risk evaluation, to
define remediation methods and their design, and to establish protective measures (including reactive
and multiphase transport modeling; bioremediation modeling)

(2) Delineation of water protection zones around water works, recharge areas, etc.

(3) Groundwater contamination hazard assessment (deep and shallow aquifers) and definition of
protection needs

(4) Evaluation of landfill leaching and its influence on groundwater quality

(5) Evaluation of the impact of injecting waste water into deep aquifers

(6) Modeling of seawater intrusions into freshwater aquifers in coastal areas, uprising deep saline ground-
water in overlying freshwater aquifers (e.g., due to increased stress on the freshwater aquifers caused
by increased exploitation), and definition of sustainable maximal yields

Tracer test evaluation

Immiscible flow of oil and water in hydrocarbon reservoirs

Mining projects

(1) Environmental impact study of mining activities on the chemical quality of groundwater resources

Agriculture
(1) Environmental impact study of agricultural activities on the chemical quality of groundwater resources

Heat transport modeling
Non-geothermal systems (cold aquifers)
(1) Evaluation of groundwater system heat storage: assessment of recharge and discharge areas (water
volumes), heat discharge fluxes, available energy, and evaluation of possible efficiency
(2) Heat pump optimization regarding site selection and design
(3) Evaluation of heat production at radioactive waste storage sites to optimize storage

Geothermal systems

(1) Modeling convective geothermal systems (water-dominated systems, steam-dominated systems, two-
phase systems) during the exploration stage, and during exploitation in order to optimize exploitation
(and to avoid cooling of the reservoir due to unsuitable re-injection of residual fluids and/or over-
exploitation)

(2) Modeling of Enhanced Geothermal Systems (EGS); Simulation of artificial stimulation, to achieve
optimal rock deformation for increasing porosity and permeability of the geothermal reservoir.

(3) Modeling radial and vertical heat flow in geothermal wells to optimize exploitation and to deter-
mine the most suitable well field design, number and location of production and re-injection wells,
production rates, and re-injection rates

(4) Analysis of pressure and injection tests in geothermal wells and slim holes

(5) Evaluation of submarine geothermal systems by modeling

6.3 CONCEPTUAL MODEL

Before selecting commercial software or constructing a custom-built code for establishing a
numerical model, a conceptual model of the problem domain needs to be created. The conceptual
model is our idealization of a hydrogeological system, as described by a mathematical and numeri-
cal model. Itis a virtual representation of a geological system, drawing on maps, cross-sections and
existing databases, such as physical and chemical properties, which allows an explicit description
ofthe most important properties that drive groundwater flow, solute, and heat transfer. The concep-
tual model includes assumptions on (1) governing processes related to groundwater, solute, and
heat transfer, (2) transport at the boundaries of the domain, (3) dimensionality, (4) hydrostratigra-
phy, (5) flow directionality, (6) material properties, and (7) heterogeneity patterns. In other words,
a conceptual model is a simplified and systematized high-level representation of the domain con-
taining a set of assumptions. This model constitutes the best understanding of the processes that
naturally occur in an aquifer.
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Identifying physical, chemical, and biological processes that are relevant to a particular prob-
lem and establishing an accurate conceptual model are the most critical issues in the development
of a successful numerical model. All pertinent geological, hydrogeological, hydrogeochemical,
and other processes and factors that control and drive groundwater flow in aquifers and leakage
through semipermeable layers, need to be described and represented mathematically. If the pur-
pose is to model the transport of solutes or heat, then all processes and factors influencing the
movement and the chemical alteration of solutes as they are transferred by groundwater should be
considered. These processes include the mass and/or heat exchange with the solid aquifer matrix
(e.g., sorption and desorption processes, physical and chemical reactions, biological processes,
decay), advective, diffusive and dispersive solute transport, and convective and conductive heat
transport.

If the conceptual model is not a faithful representation of the real-world system, the numerical
model will make incorrect and/or meaningless predictions. Much care is therefore required for this
modeling step. Careful evaluation of the information, factors, and parameters that are genuinely
necessary for the conceptual model, as well as those that can be excluded is necessary in order
to fulfill the special objectives for which the model will be used. The available field data, the
available time frame, and the monetary resources, should also be taken into account. In addition,
this step should determine whether new field data have to be collected, and which computer codes
are appropriate for using as the basis of the model. The accuracy demands must be considered,
e.g., it should be determined whether or not field data can be averaged over space (or space zones)
and time (or time intervals). An oversimplification may result in inaccurate simulation results.
An undersimplification may exact unreasonable demands for labor, computer resources, and/or
field data collection.

The construction of the conceptual model requires the compilation of detailed information
on geology (geometry of geological layers and matrix properties), hydrogeology (flow regime,
hydraulic parameters, sinks and sources of fluids and solutes), fluid properties, hydrochemistry,
geothermics (sinks and sources of heat, water phases present), and respective boundary values,
which all may be functions of time.

A simple example of a stationary groundwater flow model, which we will use throughout this
chapter, is shown in Figure 6.2. In this example, as well as in most other examples in chapter 8,
we have selected a two- rather than three-dimensional model, since it exhibits the same principles
as a three-dimensional approach, but has the advantage of reduced geometric complexity which
may distract the reader from the important issues that we want to address.

The established conceptual model contains all existing information to fully describe the prob-
lem domain. After the discretization of the domain and the definition of initial and boundary
conditions, the properties of the model (e.g., elevation of the layers, hydraulic conductivity) will
be imported into a mathematical model as base for the numerical model. These conditions are
needed to initialize the numerical simulations.

In practice, it is often not sufficient to work with only one conceptual model. Often, different
conceptual models need to be set up before proper calibration can be obtained. That means that
after running the numerical model, the assumptions of the original conceptual model may be
reexamined, changed, extended by inclusion of newly obtained field data, or otherwise improved,
until the numerical model can be calibrated and validated. This is especially true if the real systems
are complex or if the initial field data are poor.

6.4 TYPES OF CONCEPTUAL MODELS

Previously, we defined a conceptual model as a set of assumptions which are used to make a
simplified model of a real-world system. However, the word “real-world” may be confusing,
since we do not want to model something as detailed as the groundwater flow around each grain
of an aquifer matrix (microscale), which has an irregular form and is surrounded by irregular flux.
We want a simplified version of the real-world system, which represents only the essential points
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of interest needed to solve the tasks according to the defined objectives. So, as in the case of a
groundwater flow model, we want to use a field-scale flow analysis approach that can effectively
describe the groundwater flow in a porous or fractured aquifer.

Generally for the conceptual model of a porous granular aquifer, the continuum approach is
used. Fractured cold (non-geothermal) aquifers and geothermal reservoirs are generally described
by extending the continuum approach to ‘single equivalent continuum formulation’ or ‘dual’ (or
multiple)-continuum formulation, ‘explicit discrete fracture formulation’, or ‘discrete-fracture
network’, and other alternative conceptual models or combinations. These will be discussed in
the following overview; for details we refer to the manifold available literature.

6.4.1 The porous medium continuum model (granular medium)

Since a microscale approach to solve practical modeling tasks is not practical and the necessary
field data for calibrating and validating such models is not available, a suitable macroscale, or
field-scale, conceptual model must be found.

The basic assumption is that the domain of interest is a porous granular medium that can be
regarded as a continuum (e.g., Bear 1972). The continuum assumption ignores the fact that a
medium is comprised of discrete molecules. Instead, properties such as temperature and pressure
are assumed to be well-defined at infinitely small scale, and that they vary continuously from
point to point.

Rocks, including granular and fractured aquifers, and oil and geothermal reservoirs, are
domains of porous media, either granular or fractured, and are composed of a solid matrix and
void space that may be filled by one or more fluid phases, such as water, non-aqueous liquids,
vapor, gas, or air. When considering groundwater flow and solute transport in non-deformable
media, only the interconnected pore space needs to be considered, whereas the solid matrix
can participate in heat transport and solute-fluid interactions such as sorption and ion-exchange
reactions.

The description of the aquifer domain as a continuum greatly simplifies the mathematical
description. However, we must also recognize porous medium domains are not continua, strictly
speaking. By definition, a domain may only be regarded as a continuum with respect to any
variable if that variable can be defined at every point within the domain. This is not possible for a
porous medium since it is composed of at least two phases, characterized by different variables.
For example, the variable “solute concentration” cannot be defined in points within the solid
matrix (point Py in Fig. 6.3), and the variable “solid matrix compressibility” cannot be defined
in points within the fluid phase (point P, in Fig. 6.3).

On a micro-scale, the fluid flow in the interconnected void space of the porous medium can be
described using the state variable fluid velocity obtained from the solution of the momentum bal-
ance equation, which is given by the Navier-Stokes equation for water (see chapter 4). However,
the solution of this partial differential equation would require knowledge of the exact geome-
try of the boundary surfaces of the irregular solid-fluid interphases, to formulate the boundary
conditions. However, due to the inhomogeneity of the media, this information is unknown. For-
tunately, we do not need this level of knowledge in order to find good solutions to real-world
problems.

To overcome the problem of heterogeneities of the porous media, an equivalent continuum that
smoothes these micro-scale heterogeneities is needed. Therefore, the concept of the “representa-
tive elementary volume (REV)” will be used (Bear 1972). The REV is the minimum volume at
which a given parameter measurement becomes independent of the size of the sample. In other
words, the REV corresponds to the minimum volume of the porous media in which volumes of
the solid and liquid phase can be considered large enough to obtain non-random estimates of
the parameters describing the solid, the void space, and fluid phases at any point in the porous
medium domain. At this scale, the estimated parameters behave as the parameters of a homo-
geneous medium or continuum. The REV must be much larger than the microscopic scale of
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microscale ! homogeneous ! macroscale
heterogeneities | porous medium ! heterogeneities

domain

|
|
| of REV
|
|
|

Average ratio surface area covered by

Physical or chemical parameter value
solid/surface area covered by fluid

Figure 6.3. Representative elementary volume (REV) approach: The medium becomes homogeneous
beyond V> (constant value C), where microscale heterogeneities have no more impact being
in the lower REV range limit. Above V4, macroscopic aquifer heterogeneity becomes important
being the upper limit of the REV range, where a continuum exists. The surface area covered
by the solid refers to the solid areas present in the cross-section and similarly to the fluid
phase.

heterogeneity related to the distribution of solid and void spaces, but much smaller than the size
of the considered model domain (Bear 1972).

The principle of the REV concept is shown in Figure 6.3, where in a porous medium composed
of one solid and one fluid phase, different-sized volumes are shown around a point. This figure
shows the minimal REV for which the physical and chemical parameters of solid and fluid
phases are uniform within a certain range of error, and this means the volume beyond which the
corresponding, macroscopic, property shows little change.

The next step is to determine the range of volumes for which the porous medium can be
considered as homogeneous. We therefore need to search the range to find the volumes that are
large enough so that microscale heterogeneity and its effects on variables are negligible, and
small enough so that it avoids impacts caused by macroscale heterogeneity. This homogeneity
concept corresponds to the definition of a continuum. The volume range in which the physical
and chemical properties of a porous media can be represented as homogeneous corresponds
to the volume range in which REVs exist (representative: structure contained in the volume
represents the porous media; elemental: because we can represent the entire model domain and
all its variables within that volume). This principle is illustrated in Figure 6.3 where for a solid-
liquid phase mixture, the solid to fluid ratio compared to the average value (surface fraction in
2D or volume fraction in 3D) of the REV is shown. A region, or volume, can be considered
homogeneous if within each cross-section the ratio of areas covered by the solid and the liquid
phase is constant, or independent of ', and within a small range of error (dashed horizontal lines
in Figure 6.3). The volume range (REV range, V> to V3 in Figure 6.3) for which this applies can
be considered a homogeneous porous medium or continuum.

It can be observed that with increasing volume the influence of the microscopic heterogeneities
decreases. Consequently, the fluctuation of the ratio of the areas covered by solid and fluid phase
decreases and within a small range of error approach (dashed horizontal lines in Fig. 6.3) a constant
value. During a further increase of the volume, this value remains constant until ¥ becomes so
large that macroscopic inhomogeneities have some influence. In the example within this REV
range, the porous medium can be considered a continuum with homogenous behavior in terms of
the property surface or volume fraction of solid and fluid.

Properties within each REV can now be defined as the volume-averaged value of any
macroscopic variable, thus transforming microscale properties to effective macroscale quantities.
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Considering again the two points which previously could not be assigned a value of solute
concentration (P in Fig. 6.3, which is located in a solid phase particle), these points can now use
the REV centered at Py. Take the average value of solute concentration over that REV is assigned at
P;. This means that now, in each point of the porous medium domain, any macroscopic variable
exists, expressed as averages of fluid and solid properties for the fluids or solids contained
within the REV. In this conceptualization, if we have a real porous medium, composed of a solid
and several fluid phases, each is a continuum which fills up the entire REV, resulting in several
overlapping and generally interacting continua. At any point in the domain, chemical and physical
parameters are single-valued functions pinned to geometric coordinates, generating a continuous
field of the specific macroscopic state variable.

Now, after we have developed continuous fields of macroscopic variables, the micro-
scopic models need to be replaced or scaled up by averaging the microscopic description and
microscopic variables over the respective REV to a macroscopic level at which one value for each
macroscopic variable is obtained. This process is then repeated for all the REVs in the entire
model domain. In this way, the complex and unknown geometry of the microscale void-solid
interface will be expressed by different macroscale parameters, such as porosity, hydraulic per-
meability, and dispersivity. These macroscale parameters can now be used as input parameters
for the numerical model.

Next, the governing equations at the macroscale must be considered. If the multiple phases
(solid, fluids, gases) are now represented as continua, or intrinsic phases, we can separately
write for each continuum mass-, momentum-, and heat-balance equations, and later link them to
constitutive relations such as Darcy’s law. The set of governing equations for multiphase fluid flow
can be coupled to the equations for multicomponent fluid transport and heat transfer to generate
the set of simultaneous equations needed to solve the problem. Again, each REV is represented as
a continuous entity. Within each REV in a porous or fractured medium, unique and well-defined
properties for each constituent of each phase exist spatially everywhere (e.g., groundwater flow
velocity and temperature field).

However, there are some limitations to the REV concept. For example, some micro-scale
phenomena cannot be described in macro-scale, such as interfacial properties in multiphase
porous medium systems. For this reason, coupled pore-scale and simulation-scale models were
developed (see e.g., Balhoff 2007). Another issue is that in some coupled problems, the size of
the cells or elements required to obtain stable solutions and convergence of the numerical models,
is too small for practical solutions. In other words, the necessary size of the cells or elements are
smaller than the REV, making it difficult to assign proper values to the properties of the cells or
elements. In most cases the grid/mesh is defined intuitively because the effect and distribution of
the heterogeneities are unknown (see e.g., Bear 1972).

6.4.2 Conceptual models of fracture flow

Due to their importance in many applications of representing field-scale problems in hydro-
geology and in geothermal and petroleum reservoir exploration and exploitation, fractured
rock conceptual models and their numerical implementations have obtained increasing atten-
tion the last two decades. Different conceptual approaches for fracture flow were developed
according to:

e The complexity of the hydraulic conduits and highly variable irregular geometry of fractured
rocks. These conduits are responsible for the rock storage and flow capabilities.

e The rock type (e.g., crystalline rocks, volcanic rocks, carbonate rocks, or clastic formations),
because each type has different hydraulic properties.

Additionally, the selection of the approach depends on the objectives, availability of field
data, and the spatial and temporal scale in which the flow and transport in the fracture system
shall be described. The definition of the scale is of particular importance because it determines
whether temporal or spatial averaging of the flow regime, e.g., over a number of fissures, can be
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applied using a continuum approach, whether all or some fissures need to be treated individually
in the model (non-continuum or discrete approach), or whether a model with a mixture of both
methods is required. The following scales of flows in fractured media are distinguished by Bear
and Berkowitz (1987): (1) the ‘very near field’, with water flow in one single fracture which can
be described by solely porous medium fluid flow, (2) the ‘near field’, with individual flows to
be described individually for each fracture, (3) the ‘far field’, with two coupled flow regimes
corresponding to two overlapping continua describing the flows in the porous domain and the
fracture domain, and (4) the ‘very far field’, where fracture flow can be described similarly to
those of a granular porous medium.

According to these highly variable and different requirements for field-scale fluid flow solutions
in fractured systems of different scales, a variety of conceptual models have been developed. These
models range from the explicit discrete fracture approach used in ‘near field” applications, to the
single equivalent porous medium model used in ‘far field’ applications. The dual, or multiple,
continuum approach covers ‘middle field’ to ‘far field’. Finally, the discrete fracture network
approach, which originally was used for intermediate to small-scale applications, is increasingly
being used for complex large-scale models.

In the following sections we will introduce only the principal conceptual models used to describe
fracture flow. We will address the key points which need to be considered to select a model appro-
priate to fulfill the objectives of the modeling task. For further details on fractured rocks flow we
refer to the resumes in the books of Bear et al. (1993), National Research Council (1996), Singhal
and Gupta (1999), Dietrich et al. 2005), Krasny and Sharp (2007), and the references therein.

6.4.2.1 Equivalent porous medium (EPM) approach

The equivalent porous medium (EPM) flow model is the simplest conceptual model to describe
fluid flow and transport in fractured porous media. It describes the fractured bedrock as a homo-
geneous region with effective properties, and assumes that the scale is large enough that the
fractured bedrock can be considered a porous medium (see e.g., Pankow ef al. 1986, Neuman
1987). Since the fractured bedrock is approximated as a single aquifer or reservoir system, the
continuum approach can be used. Using this approach, the groundwater flow is laminar at this
scale and can be described by Darcy’s law. Criteria for using an EPM approach for fractured
rocks are (Long ef al. 1992): (1) the fracture density is high enough, (2) the fracture orientations
are distributed rather randomly instead of limited to a few distinct orientations, (3) the fracture
apertures have a constant width instead of randomly distributed widths, and (4) the domain of
interest is large (regional extension of model domain).

Due to its simplicity, this approach has been widely used for a gross description of regional flow
systems in fractured rocks, in cases where their permeability can be approximated by an equivalent
permeability that considers the flow throughout the fracture and porous-media matrix. Regional-
scale models are much more likely to be successful compared to intermediate or small-scale
models (Huntoon 1995).

However, this approach becomes unsuitable when short-term temporal predictions are made,
when fractures are irregularly distributed in the model domain, if fracture spacings are too large,
flow velocities too high, and the permeability of the rock matrix too low (see e.g., Pruess et al.
1990a,b).

Although an accurate simulation of transport processes is still problematic in many field-scale
applications, the EPM approach is often adequate to describe and quickly model hydraulic heads,
water fluxes, and general flow direction in the aquifers.

6.4.2.2 Dual and multiple continuum approach

Dual and multiple continuum models are classical and widely used approaches for dealing with
flow and transport in fractured porous media. These models were introduced in the special form
of the double porosity model half a century ago (Barenblatt e al. 1960, Warren and Root 1963),
and were later extended to the multi-porosity, the dual permeability, and the more general multiple
interacting continua (MINC) model (Pruess and Narasimhan 1985, Pruess 1991).
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They are based on the fact that we have two domains: (1) unfractured rock masses (rock matrix)
which account for much of the porous space (storage) and have low permeability (slow fluid flow),
and (2) fractures that have low storage capacity, but high permeability or fast fluid flow (Diodato
1994).

In the dual, or multiple, porosity model the features and properties of fractures and rock matrix
are represented as two (or more) separate overlapping and interconnected domains. In the case
of a classical dual porosity model we have a primary domain formed by the lower porosity and
permeability rock matrix, and a secondary domain with high permeability formed by the fractures.

In the multi-continuum approach two or more continua, representing matrix and fracture sys-
tems with their respective specific porosities or permeabilities, share the same model domain.
Flow and transport processes can be described for each continuum separately.

The multiporosity/multipermeability approach of Bai ez al. (1993), which corresponds to a
multi-continuum approach, shows that single porosity/single permeability, dual porosity/single
permeability, dual porosity/dual permeability, dual porosity/triple permeability, and triple
porosity/triple permeability models are all special cases of the multi-continuum approach.

For each continuum we obtain for our mathematical model parallel sets of coupled constitutive
equations, which can be solved together with the momentum, energy, and/or species balances.
Fluid, solute, and heat exchange, or cross flow between the distinct continua are described by
equations with appropriate exchange coefficients (see e.g., Huyakorn et al. 1983).

Compared to other approaches, especially models that consider individual fractures, the dual
continuum approach does not require as much input data. This approach reduces the effort of
establishing the conceptual, mathematical, and numerical model, as well as running the simula-
tions. On the other hand, it is a much more powerful approach for field scale modeling compared to
EPM approaches. For these reasons, it can be considered the most widely used model to describe
fractured groundwater, geothermal, and petroleum systems.

The use of multiple or dual continuum models which average the transient hydraulic behavior of
rock matrix and fractures are often appropriate for describing large fractured rock units. However,
they often fail to describe local-scale features.

6.4.2.3 Explicit discrete fracture approach

This approach incorporates fractures as explicit discrete elements. In simple approaches, the
orientation of the fractures can only exist along the principal axes of the Cartesian coordinate
system. In some cases, this simplification well describes the field situation. It has the advantage
of reduced need for empirical data, and simplifies construction of the conceptual and numerical
models.

The explicit discrete-fracture models have the significant advantage of an explicit description
of single fractures (and additionally, conduits and other elements in the case of karst) while
allowing the reliable representation of hydraulic head gradients and fluxes between fractures and
rock matrix. However, it requires a great deal of information on all single fractures in the model
domain (location, geometry, fracture matrix, hydraulic properties), whose collection becomes
especially difficult and time-consuming when the number of fractures is high and when fractures
are not planar surfaces, but rather tortuous irregular surfaces. One important and useful application
of this kind of model is the solution of fluid flow, heat transfer, and solute transport equations
at fault zones. Faults can be represented as single fractures. The data describing faults is more
easily obtained than data describing smaller fractures in the domain.

For domains with small multiple fractures, the field data requirements reduce the possible
application of these models, and they are generally applied for near-field applications (see e.g.,
modeling of conduit systems by Halihan and Wicks 1998, Jeannin 2001). The dual-continuum
method, which is conceptually simpler, requires much less computational effort, and similarly
to the discrete-fracture approach can describe fracture matrix interaction. This kind of model is
preferentially applied to the intermediate and far field scale (see e.g., Wu and Pruess 2005).

Another suitable simplification of fractured aquifers is to describe them by a two-domain flow
model, with one domain comprising the dominant fractures (where, if needed, also non-Darcy
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flow laws can be used) and one domain with a network of numerous smaller fractures (using
Darcy’s law). For the former, an explicit discrete fracture approach can be used. For the latter a
continuum medium approach can be used in which the numerous smaller fractures are treated
as a porous medium. These approaches can describe the groundwater flows in both systems,
coupling them through suitable parameters, e.g., hydraulic head, or water and solute/heat fluxes.
This combination allows the simulation of individual groundwater fluxes in the major fractures
as well as the fluxes in the fractured rock aquifer, allowing the modeling of large domains.

Another way to reduce the need for highly resolved empirical data is to substitute the determin-
istic description of each fracture by the statistical attributes of the fractures. The realization
of multiple solutions to the problem using the statistical attributes of the fractures obtains
the statistical distribution of heads, concentrations, or temperatures in the different elements
of the domain. In this case, a unique solution is not obtained, but a range of possible values for
the different parameters can be realized.

The accurate description of solute and heat transport in fractured/karstic media in the numer-
ical model, and later in the numerical modeling phase, is very complex due to the difficulty to
predict a priori, the flow direction, and solute/heat fluxes. These are essential in elaborating on
the physical model and defining the boundary conditions of the model. Over the last two decades,
investigations of transport processes in fractured media and their numerical modeling have
become an important task in the problem solving of hydrogeological, and geothermal reservoir
objectives (see e.g., Bear ef al. 1993, National Research Council 1996, Rausch et al. 2005).

6.4.2.4 Discrete-fracture network (DFN) approach

Discrete-fracture-network models describe flow and transport using a class of dual-continuum
models, where each fracture is treated as a continuous medium which is surrounded by an imper-
meable matrix. In contrast to previously described models, the DNF approach does not consider
the porous medium (rock matrix), and all flow is restricted to the fractures. This significantly
reduces the model complexity and the high computational resources needed for more sophisti-
cated numerical simulations, such as explicit discrete fracture approach discussed in the previous
section. However, the complexity remains high compared to continua approaches. The descrip-
tion of each fracture in the model domain makes the DNF approach a powerful solution in cases
where models based on continua approaches can not be applied, e.g., when working either in the
near or intermediate field, when temporal fast changes are happening, or when fracture distri-
butions are highly irregular. Although the DNF can also be applied in far field to model flow
and transport on a regional scale, in domains with thousands of fractures, we need to consider
that this modeling approach generally requires a huge volume of empirical data (since we need
to describe each individual fracture) and results in high computational expense. The potential for
simplification of the fracture network should always be considered. The data requirement and the
model construction can be significantly simplified if the fractures can be approximated by lines
(in 2-dimensional models) or by planes (in 3-dimensional models).

6.4.3  Simplification by using 2-dimensional horizontal models

In many cases, 2-dimensional horizontal models can be used to describe 3-dimensional ground-
water flow and transport problems. Such simplification has significant advantages because it
requires much less field data, less time, and fewer efforts in constructing the model.

This simplification is based on the assumption that groundwater flow is practically horizontal.
This occurs when the horizontal velocity is much larger than the vertical velocity. This situation
often appears when the horizontal extension of the aquifer or geothermal reservoir is much larger
than its vertical extension. This is the situation in regional models where horizontal extensions
are typically in the range of tens to hundreds of kilometers, whereas the vertical extension ranges
from tens to hundreds of meters (e.g., our example).

Using this simplification, in each point of the model, the value of a variable (e.g., hydraulic
conductivity, porosity, velocity, solute concentration, temperature, etc.) is obtained by integrating
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it over the vertical thickness of the aquifer, and hence, it corresponds to a depth-averaged
value (so called hydraulic approach; Bear et al. 1992). This makes them functions of the
horizontal coordinates only, which then requires much less field data for establishing the
model.

It must be noted that such horizontal flow simplification is not valid in special areas of regional
models where the vertical flow component could be significant, such as near pumping wells. This
is especially true if they are only partially penetrating the aquifer along temporary streams and
other surface water bodies that are in hydraulic contact with the aquifer, or at springs. However, the
horizontal assumption becomes valid again at a certain distance from these elements. According
to Bear (1979), horizontal flow can be assumed at distances larger than 1.5 to 2 times the thickness
of the aquifer from the point of vertical flow disturbance.

The horizontal flow assumption is also valid for leaky aquifers. If the hydraulic conductivity
of the aquifer is much larger (by many orders of magnitude) than that of the semipermeable layer,
and if the aquifer thickness exceeds the thickness of the leaky aquitard, then groundwater flow can
be assumed as horizontal in the aquifer and vertical in the semipermeable layer. This can easily be
described with a quasi-2-dimensional model in which a vertical leakage in, or outflux, is defined.
The validity of this assumption can be easily checked by a modeler through establishing a 2-
dimensional vertical cross-section flow model (chapter 8.6 shows some examples of these models).

If solute or heat transport is considered, it must be taken into account that solute concentrations
and heat energy are often not equally distributed over the aquifer thickness, and that concentration
or temperature values obtained by this kind of model are values averaged over the thickness of
the aquifer. However, 2-dimensional cross-section models can be used in many practical cases to
solve the modeling tasks according to the objectives without the need to generate a 3-dimensional
model with all its complexity. Decades ago, computer resources were not powerful enough to
model aquifers in three dimensions. At the present time, 3-dimensional modeling may still not be
feasible due to the lack of enough data with regard to the vertical distribution of the parameters.
In these cases, 2-dimensional models are still useful.

6.5 FIELD DATA REQUIRED FOR CONSTRUCTING THE CONCEPTUAL MODEL

6.5.1 General evaluation of sufficiency of available field data

Before constructing a numerical model and choosing an appropriate commercial simulation pro-
gram, or writing a custom-designed code, the extent of the experimental data needed for the model
must be explained. Table 6.3 shows different data availability scenarios and the corresponding
possibilities and restrictions of model elaboration for evaluating the contamination of an aquifer
due to an accidental release of contaminants. If existing field data are not sufficiently resolved to
elaborate a model capable of predicting the behavior of the contaminant plume, the acquisition
of additional information should be planned. Finally, the objectives and goals of the problem
statement can be used to guide the modeler to an appropriate formulation. Due to the diversity
of objectives and to the fact that each case has its own characteristics, it is impossible to provide
a standard recipe for specifying the field data needs in a generic fashion. As an example of an
accidental contamination of an aquifer, a scheme of the DVWK (1989) that represents the possible
research phases is given in Figure 6.4.

There is significant difficulty in obtaining the necessary field data to elaborate a model at the
required resolution in space and time. In transport models of low salinity or low temperature
systems, special attention should be paid to the use of pre-calibrated groundwater flow models
since such calibration is a precondition for an accurate modeling of solute and heat transport.
In these systems, fluid density and temperature are approximately constant. This applies to many
groundwater systems, such as most of the aquifers used for drinking water supply. If this condition
isnot fulfilled (e.g. high temperature variability or variable salinity systems), then the groundwater
flow equation must be solved in conjunction with the solute and/or heat transport equations
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Table 6.3.

groundwater contamination problem (modified from DVWK 1989).

Possible use of models depending on various field data available for the example of an accidental

Data situation

Use of numerical

Case  Groundwater flow Solute propagation Chemical reactions models

I Information is not Data on total areal Chemical analyses Impossible
available about extent of are available for a
hydraulic heads and contamination is few selected

flow boundaries of
the contaminated
area

11 Only a few hydraulic
head data are
available that allow
a gross
approximation of
the flow field

1 The groundwater flow
field is well known
because there are
many wells and
hydraulic head
measurements at
different times

v Extensive data
available for
hydraulic heads;
Existence of a
calibrated
numerical
groundwater flow
model

not available

Few solute
concentration
measurements are
available from
some wells

Solute
concentrations at
wells have been
measured
allowing the
estimation of
dispersion
parameters

Concentrations of
contaminant in the
liquid and solid
phase have been
determined. The
magnitude of
contaminant
source and its
location have been
estimated.

points

Limited knowledge
of characteristic
components and
reaction behaviors

Knowledge of
exchange
reactions between
the solute and the
rocks, but the
distribution
coefficients have
not been
measured

Quantitative
description of
chemical
reactions (e.g.,
retardation factor
well known).
Distribution
coefficient
between solid and
liquid phase is
known.

With simple models, it
is possible to assess
the risk and to plan
protective
measures; The
measurement
network must be
completed to
improve the
modeling work

Calibrated
groundwater flow
model is available
(flow time
calculation);
Dispersion
coefficients can be
estimated;
Sensitivity analysis
can be done;
Limited prognosis
possible since
retardation factor
and contaminant
influx rate are
unsure

Prognosis
calculations;
Reliability range
determination;
Selection of the
optimal protection
alternative

because density and viscosity are functions of solute concentration and temperature. This becomes
especially important if we consider water with high salinity, such as geothermal brines, where
the salinity and temperature have substantial impact on fluid viscosity and density. In these
cases, the groundwater flow equation must be simultaneously solved with the solute and heat

transport equation.
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| Contamination accident |

1. Risk Potential risk

assessment
Y Y A y

2. Prior data Prior study with no Prior study with Prior study with no Prior study with

analysis special knowledge knowledge of special knowledge knowledge of
flow conditions flow conditions
A A A A A y

3. Project | Few data | | Few data | |Many datal | Few data | | Few data | |Many datal

development
! , ! ,

4. Model Simple model Simple model Simple model Simple model
transformation (can be expanded) (can be expanded)
and use

y A
Complex model Complex model
A
5. Decision plan | Assessment and/or decision proposal |

Figure 6.4. Possible research phases in the use of transport models to study a contamination accident
(modified from DVWK 1989).

6.5.2 Types of model boundaries and boundary values

Hydrogeological boundaries could be defined as the natural limits of normal regional groundwater
flow/transport. They could be large faults, zones of lithological changes, anticlinorium axes, large
rivers, seashore, etc. Springs, drains, small rivers, and pumping/injection wells represent internal
boundaries. Other internal boundaries can be contacts between different rock layers or rock units
and structural-tectonic elements.

There are first order (Dirichlet), second order (Neuman), and third order boundaries, the last
being a combination of the first two, and all may be functions of time.

First order boundaries describe the borders of the model where hydraulic head, the concentration
of dissolved substances, or temperature is known. Rivers and lakes in complete hydraulic contact
with the groundwater body form important examples of the implementation of this boundary
type. Here it is assumed that the hydraulic heads of the water tables measured in the field can be
considered as fixed, or are changing in a known way, during a simulation. Springs are characterized
by points with fixed hydraulic head, corresponding to the topographic height of the spring outlet
in the field. At first order boundaries with prescribed hydraulic head, substance concentration or
temperature, the respective prescribed values are kept fixed during the simulation by adding the
necessary heat, solute, or water input (Fig. 6.2).

Second order boundaries (Neumann) describe model margins for which there is a known flux
e.g. of groundwater, solutes, or heat. Impermeable boundaries are a special case within this group.
Contacts of the aquifer with impermeable rock units and areas where the groundwater flow lines
diverge (e.g. at ridges) are the most important implementations of this boundary type.

When using second order boundaries, the prescribed fluxes are kept fixed by adapting the
hydraulic head, solute concentration, or temperature (Fig. 6.2).

In our example, the model area is limited to the SW, S, E and NE directions, by rivers with
known water levels. These wide rivers could be considered as first order boundaries (Fig. 6.5).
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Aquifer base
(ma.s.l.)

N

Figure6.5. Example of model area of regional groundwater flow delimited by the rivers 1 and 2 in the SW,
S, E and NE and by a mountain range to the N and NW: (a) Morphology; (b) Location of the
aquifer base showing three NW—SW directed depressions.

Along the boundaries to the N and NW, a groundwater inflow into the model area from the
mountain range constitutes a second order boundary. The existence of this influx is supposed to
exist since the mountain range is composed of strongly fractured metamorphic rocks.

6.5.3 Aquifer geometry, type, solid and fluid properties

The structure and geometry of the different geological layers or units of the model domain
comprising aquifers, aquitards, and semipermeable layers, have to be determined because they
form the inner and outer boundary values of the model. The aquifer materials that make up each
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geological unit and their relevant aquifer, solid and fluid properties, including compressibility,
and density, with their spatial variation, homogeneity or heterogeneity, and isotropy or anisotropy,
must be evaluated in horizontal and vertical directions. For a list of respective properties which
can be a function of temperature, pressure and salinity, see Table 6.4. Spatial variation can be
considered by establishing zones, each with the same representative value. Information on the
aquifer type is a primary need, whether it is a purely porous granular, a purely fractured aquifer,
or a combination of both. The principal groundwater flow directions must be evaluated in order
to define whether the flow is preferentially 1, 2 or 3-dimensional. This information, together with
the modeling objectives, helps in selecting the dimensionality of the conceptual and the numerical
model code.

Depending on model type (stationary or transient flow/transport) different hydraulically rel-
evant parameters with their horizontal and vertical spatial distributions need to be determined.
Only hydraulic conductivity, Kz, is required to describe stationary flow. When transient flow
is considered, in the case of 3-dimensional flow the specific storage coefficient, Sy, (see
section 2.1), and in the 2-dimensional vertical case the storage coefficient, S = Sy, x b, of
the porous medium, is needed (b,: aquifer thickness). In the case of a two-dimensional horizontal
groundwater flow in a confined aquifer, the transmissivity 7, = Ky X b, (see section 2.1) can
be used instead of K. The hydraulic conductivity is a function of fluid viscosity, us, which is
highly dependent on temperature and to a lesser extent on solute concentration. Hence, in cases
where fluid density or viscosity are not constant (in time or space) hydraulic permeability, &,
which is independent of temperature and solute concentration should be used as the fundamental
parameter instead of hydraulic conductivity, Ky = (k x oy X |g])/ s

When transport is modeled, boundary conditions and initial values of solute concentrations, or
temperature distributions need to be specified. Additionally, for the description of the dispersive
solute fluxes, J*, and the diffusive solute flux, J, the longitudinal and transversal dispersivities,
oy and a7, the coefficient of molecular diffusion, y,, and, the effective porosity, @es, must be
known. Heterogeneity of the aquifers must be evaluated and smoothed out by defining zones with
uniform values. Information is required whether there is only one fluid or more, and whether they
are miscible or not. The system must be evaluated to see if the solute concentration or temperature

Table 6.4. Overview on required hydraulic, fluid and aquifer matrix properties.

Aquifer (fluid + solid matrix)

Hydraulic conductivity (or permeability) Ky, (k) [m/s], [m?]
Specific storage coefficient, storage coefficient!) S, S [1/m], [-]
Aquifer thickness b, [m]
Longitudinal dispersivity 73 [m]
Transversal dispersivity or [m]
Coefficient of molecular diffusion Ya [m?/s]
Distribution coefficient, retardation factor Kq, R; [ad], [ad]
Fluid
Compressibility Cy [1/Pa]
Specific heat capacity Cpw [J/kg/K or J/kg/°C]
Thermal conductivity krw [W/m/K or W/m/°C]
Dynamic viscosity " [Pa-s]
Mass density Pw [kg/m3]
Aquifer matrix
Compressibility Cs [1/Pa]
Specific heat capacity Cps [J/kg/K or J/kg/°C]
Thermal conductivity krs [W/m/K or W/m/°C]
Mass density Ps [kg/m3]

DS =S, x b,
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(and their spatial or temporal changes) have a considerable effect on the fluid density, p,, and/or
viscosity, i, and the manner in which the corresponding functions can be quantitatively expressed.
Depending on expected fluid flow velocities, the fluid flow may be laminar or turbulent, and may
correlate best to differing constitutive relations for conserved quantities or fluxes (e.g., Darcy’s
law, Brinkman’s law, Dupuit-Forchheimer equation, Fick’s law). Flow regime may be different at
different parts of the model domain. So, Darcy’s law may be valid for most of the aquifer, whereas
Brinkman’s law is needed near a pumping well to properly characterize the flow velocity, which
tends to be much higher and may also be turbulent.

The description of adsorption processes requires knowledge of the corresponding adsorption
functions. The distribution coefficient, K4, relates the adsorbed concentration of a solute to the
concentration in water and describes the manner in which a solute sorbs to the solid matrix in which
it is located. It is an important parameter for calculating the retardation coefficient, R;, which
expresses the degree to which solute propagation is retarded, compared to the groundwater flow.
Substance production, chemical reactions, chemical decay, degradation, and decomposition may
require specific terms which describe these processes quantitatively. To describe heat transport,
the thermal properties of the system must be known, including heat capacity, c,, and thermal
conductivity, k7, for both the solid matrix and the fluid.

In the case of fractured systems, we need information on the fractures consisting of detailed
information on location, geometry, aperture, filling, hydraulic properties, and information on
exchange coefficients between the fracture and surrounding rock matrix. For details see e.g.,
Bear et al. (1993), National Research Council (1996), Singhal and Gupta (1999), Krasny and
Sharp (2007) and the references therein.

What information is necessary and what can be neglected depends to a large degree on the
objectives of the numerical model and hence, must be envisioned individually by the modeler.

In our simple example of a stationary regional groundwater flow, the model area and the aquifer
geometry are shown in Figure 6.5. The model area boundaries from the SW, S, E and NE directions
are rivers. From the N and NW, the domain is limited by a mountain range composed of fractured
metamorphic rocks of low hydraulic permeability compared to the quaternary aquifers of the basin.
The model area covers approximately 1000 km?. With respect to the morphology of the area, the
following units can be differentiated: old terrace, young terrace, and recent meanders (Fig. 6.5a).

Geometry of the aquifer: A single unconfined aquifer is located above Tertiary sediments
delimiting its base. The location of this base was determined by geoelectrical mapping and is
shown in Figure 6.5b. Three depressions oriented in a NW—SW direction can be distinguished.
They were originated by tectonic processes during the Pleistocene age. The thickness of the aquifer
increases from its average value of 10 to 30 m, and up to 80 m at the location of the depressions.

Aquifer parameters: The aquifer is mainly composed of gravel with different percentages of
sand and has an average hydraulic conductivity of approximately Kz; = 1 x 10~* m/s. Figure 6.6a
shows the distribution of hydraulic permeability values for the aquifer as obtained by pumping
tests. Effective porosity, gefr, was determined for aquifer sediments at 20-25% for sandy gravels,
and 15-20% for gravel-laden sands using general references for these sediments (Scheffer and
Schachtschabel 1989).

The measured piezometric level of the aquifer is shown in Figure 6.6b. The regional distribution
of'the piezometric level indicates a general flow of groundwater towards the east and the southeast.

6.5.4 Sources and sinks within the model area

This group of field data includes all in- and out fluxes of water, dissolved solutes, and heat that
occur within the modeled area and on its inner boundaries. If these quantities vary in time, this
must also be prescribed.

e groundwater recharge/discharge through pumping/injection wells,
e groundwater discharge at springs,
e areal groundwater recharge by rainfall or irrigation (infiltration minus evapotranspiration),
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Figure 6.6. Model area example: (a) Zones and value ranges of hydraulic conductivity Kz ; (b) Measured

hydraulic heads and location of piezometers 1 to 51.

e groundwater recharge/discharge by infiltration/exfiltration from surface water bodies (rivers,

lakes, canals),
e leakage to or from semipermeable layers or from surface water bodies,
e heat inputs,
e heat storage/withdrawal,
e solutes inputs/outputs,
e production/degradation of solutes or heat,
e radioactive decay/production of new substances.
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In the case of anthropogenic groundwater contamination, it must be noted that these are gener-
ally detected after they appear in the aquifer. This frequently poses a problem, because sources of
contamination are usually unknown, both regarding the amount of contaminating solute released
into the aquifer, and the chronological development of the event. However, the sources can often
be determined with reasonable precision by backwards tracing as long as the groundwater flow
field and the current distribution of contaminants are known.

In our example, numerical simulations indicate that aquifer recharge from rainfall is practically
uniform in the entire model area, corresponding to about 7% of annual rainfall amounting in
500 mm/year.

6.6 NUMERICAL FORMULATION OF THE CONCEPTUAL MODEL

6.6.1 From the conceptual to the mathematical and numerical model

Once the conceptual model is constructed, all the information included in it needs to be converted
into a set of mathematical expressions expressing the mass, solute and energy balance and flow
equations (including the respective boundary conditions) as addressed in chapter 4 (mathematical
model). Then, the numerical model is constructed by discretizing these mathematical equations in
space, using a control volume approach, and in time. The resulting matrices of discrete numerical
equations and the input data arrays with the boundary and initial conditions are then used to
numerically simulate the responses of the real-world system. The values of the input variables
can be changed to produce different simulation scenarios.

The control-volume approach uses a mesh, i.e., a field of discrete cells, which covers the model
domain in one, two, or three dimensions. For the control volume of each element an individual
averaging (or interpolation) of flow, transport, and thermodynamic properties or variables is per-
formed. The control-volume approach includes the following widely used discretization schemes:
the conventional finite difference method (see chapter 5.1), different finite element methods, e.g.,
the classical Galerkin finite element methods (see chapter 5.2.3), as well as boundary element
and meshless methods (see chapter 5.2.7), which were developed recently and used for modeling
groundwater and geothermal systems.

In most cases, the user can develop numerical models using existing public domain or com-
mercial codes (an overview of the principal codes is given in section 6.8) and only in a few cases
does s/he write his/her own computer code.

6.6.2 Discretizing the model domain of an aquifer

Numerical solution of flow/transport equations requires discretization of the model area or
volume. The mesh is a web of intersecting lines that are embedded within the domain and on its
boundaries. The cells are defined by the regions within the intersecting lines, and the intersecting
points are denoted as nodes. The cells, or elements, can be triangular, rectangular or of polygonal
shape in two dimensions. The corresponding elements in three dimensions are tetrahedral, quadri-
lateral or prismatic in shape. Volumetric quantities such as temperature or pressure are defined
at the centroids of the elements. Rectangular grids can be rotated if necessary to achieve the best
fit with the conceptual model area. Wells and drains should be located in centers of grid cells
or at nodes of a mesh. For accuracy, a grid or a mesh is refined around important wells or other
points where larges gradient in hydraulic heads, temperature, concentration, or rock properties
are observed.

In the example, the grid constructed for the model area and the boundary cells with respec-
tive boundary conditions (prescribed hydraulic head, constant groundwater influx) are shown in
Figure 6.7a.

In the next step, hydrogeologic data and parameters of the studied area must be dis-
cretized. Rivers, wells, drains, generally with defined hydraulic heads, recharge zones, hydraulic
conductivity zones, etc., are assigned to the grid cells or nodes of the mesh.
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Figure 6.7. Discretization of the conceptual model: (a) Grid (cell size 782.6 x 782.6 m). The cells outside
of the physical model area, which delimit the study area, are neglected in the numerical model
by setting their hydraulic conductivity Ky to zero (impermeable); (b) Discretization of the
hydraulic conductivity to the model grid.

In the example, the discretization of the hydraulic conductivity zones (Fig. 6.6a) to the model
grid is shown in Figure 6.7b. For each zone, the arithmetic mean of the upper and lower value
of the Ky range is assigned. The height of the aquifer base from Figure 6.6b is accordingly
discretized (not shown). Only cells within the area delimited by the two rivers and the mountain
range are active, cells outside are specified as non-active cells.

For the boundary cells, numerical values of the respective parameters (prescribed hydraulic
head values or water influx values) are prescribed. The hydraulic heads in boundary cells
corresponding to rivers (prescribed hydraulic heads) correspond to the measured surface-water
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levels. Since the groundwater flow model for this particular problem is stationary, the storage
coefficient need not be considered. The northeastern border of the model area is initially set up
as a non-flow boundary, but flow later is specified during the model calibration.

6.6.3 Initial values

At the beginning of any numerical transient simulation, a suitable distribution of hydraulic heads,
and/or concentrations must be set for the entire modeled area. In order to avoid unrealistic values
at the first time steps, these values should be as near as possible to the expected real values.
Suitable initial values for transient models can be obtained using the results of the respective
stationary model, e.g., the obtained steady-state hydraulic head distribution.

In the stationary simulation example, the initial hydraulic head of the entire model area is
set to 147 m a.s.1., corresponding to an average obtained from groundwater level measurements
(Fig. 6.6). Exceptions are the boundary cells where the real hydraulic heads corresponding to the
measured surface water levels in the rivers were used.

6.6.4 Ready for numerical simulations

After all the relative information, including parameters, boundary conditions, and initial values,
from the conceptual model, is translated into the discretized numerical model, and after setting
all the dynamic values in function of space and time, the numerical model can be run. However,
before using it for real problem solving, it needs to be calibrated as described in section 6.9.

6.7 PARAMETER ESTIMATION

There are three principal experimental ways to estimate the hydrogeological parameters needed
to construct a conceptual model of a groundwater system or the special case of a geothermal
reservoir: (1) remote sensing, (2) field investigations, and (3) laboratory tests and experiments.
However, the values of the parameters determined from these three methods often do not corre-
spond to the best values needed to construct and to calibrate the model. As discrete measurements
are taken in a continuous, heterogeneous, and often anisotropic medium, the values obtained
through experimental methods often do not represent the real distribution of the parameter. The
values of the parameters and their spatial distribution are better determined through forward
modeling or inverse modeling. The values for the model are refined until a good match between
observed and calculated values of parameters, such as hydraulic heads, solute concentrations, or
temperatures, is found. This method, which is often used as the method for automatic calibration
of numerical models, indirectly determines the parameters (this will be addressed in more detail in
section 6.10). It should be noted that the experimental values of the parameters represent the start-
ing values that can be used in simulations. They are used to restrict the values of the parameters
that can vary in many orders of magnitude (e.g. hydraulic conductivity). Only a short overview of
the first three types of experimental parameter determination methods will be addressed in this
section. Examples of parameter estimation and some selected bibliographical references will be
given to allow the reader access to the appropriate information.

In the following section, a short overview will be given on remote sensing techniques, followed
by a short description of the principal field methods for parameter estimation. Separate methods
for cold (non-geothermal) groundwater systems and geothermal systems will be presented. They
include geological, hydrogeological, geophysical, and geochemical surface surveys as well as
different subsurface measurements, which are performed in boreholes.

6.7.1 Remote sensing

The analysis of geomorphological and geological patterns and processes can be facilitated by
observing the earth’s surface from the air or space. Remote sensing technologies include aerial
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photography, multi-spectral, and hyper-spectral satellite imagery, which are used to identify
regional and local scale land cover and geological structures such as faults. These features are
difficult to recognize from the surface and the use of remote sensing can speed up surface geolog-
ical mapping by identifying the extension of geological stratigraphic units and structures. After
comparison, these can be used to compile regional geological maps using a few points at the
earth’s surface. Interferometric and polarimetric synthetic aperture radar (SAR) can be used for
mapping topography and electrical properties of the earth’s surface. From these properties soil
water content and salinity can be assessed. Light detection and ranging (Lidar) and interferometric
SAR can be applied to map geomorphological changes.

Remote sensing images can be used to identify surface characteristics related to groundwater
movement and storage. These characteristics include land morphology, soils, faults, fractures,
shear zones, recharge and discharge zones, vegetation, and drainage patterns (Wolski 1998).
Several authors highlight the importance of defining lineaments using remote sensing images
with special emphasis on identifying interconnected lineaments and their areal extent, lineament
length, and associated springs (e.g., Teeuw 1995, Shaban et al. 2004, Kresic 1995, Sree Devi
et al. 2001, Smith ef al. 1997). For this purpose, airborne photos and Landsat Thematic Mapper
images are used (Teeuv 1995).

The different hydrogeological features identified by remote sensing may be combined into the
concept of “hydrotopes” (Engelen and Vennecker 1990, Wolski 1998), or units that combine
water balance and internal flow regime. Hydrotopes are delineated using lithology, geology,
geomorphology, permeability, land use, and vegetation. Hydrotopes are units that transform
rainfall into evaporation, surface runoff, and groundwater flow. Advances in remote sensing have
generated the concept of ‘megawatersheds’ (Bisson 1994). In megawatersheds, groundwater
flow throughout large permeable regional faults and fracture zones is recognized as critical for
exploration, groundwater mapping, and modeling. Some of the fracture and fault systems act
as continuous zones where large fluxes of water circulate. The length scales of these systems
can be hundreds of kilometers. Bisson (1994) describes the broadest possible three-dimensional
catchment areas with multiple recharge zones, primary permeability in the rock matrix, and
secondary permeability along the fault and fracture zones.

Remote sensing methods have been used to detect variations in vegetation coverage that can
be interpreted as functions of water table depth (Ringrose et al. 1998). These authors used
two vegetative criteria: dense woody cover and abundance of deep-rooting species as indica-
tive of near-surface groundwater. These two vegetation classes mapped from the Thematic
Mapper Imagery were combined in a GIS environment with other hydrogeological features
such as geomorphic units and bedrock geology to determine the degree of coincidence with
known aquifers. Deep rooting species tend to occur in low-lying aquifers (fossil valleys) and
dense woody cover vegetation occurs in topographically higher aquifers. It seems that this tech-
nique combined with other studies of remote sensing of geological structures for groundwater
flow can provide important information and constraints for conceptual models of groundwater
systems.

Other applications of remote sensing to groundwater problems include the investigation of
seasonal groundwater fluctuations produced by variations in groundwater recharge in Taiwan
(Chang et al. 2004). These fluctuations in the water table generate ground deformation due to
the dewatering of sediments. In another study, suitable areas for artificial recharge of aquifers in
India were identified using remote sensing methods for groundwater exploration (Krishnamurty
et al. 2000).

For the investigation of geothermal reservoirs, airborne investigations have obtained increased
importance in the last few years. Airborne electromagnetics, magnetics, and radiometrics such as
the Forward Looking Infrared Radiometry (FLIR), an airborne imaging technique that compiles
high-resolution temperature maps (see e.g. survey in Chena, Alaska: Yourownpower 2007 and
in New Zealand: Mongillo 2002), allows information on geologic structures to be obtained.
This information is important because fluid flow and discharges are structurally controlled in the
majority of geothermal systems.
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6.7.2 Field surveys of cold (non-geothermal) aquifer systems

Geological, hydrogeological, geophysical, geochemical surface and subsurface field techniques,
their appropriate selection, including the choice of instruments and the correct use, and the
interpretation of the obtained results, are discussed in detail in Brassington (1998), Weight and
Sonderegger (2001), and Moore (2002). Special needs and methods of hydrogeological, geo-
physical, and hydrochemical investigations in fractured rocks are described by Singhal and Gupta
(1999). Goldscheider and Drew (2007) and focus on evaluation methods which are suitable for
use in karst areas including hydraulic investigations, geophysics, hydro(geo)chemistry (including
isotope chemistry), and water tracing.

6.7.2.1 Geological and hydrogeological studies

Obtaining the field data listed in 6.5.1, which are needed to formulate a conceptual model of a
groundwater system, requires detailed knowledge of the rock formations in the area, their strati-
graphic and structural interrelationships, and their hydraulic properties. Additional information
on sources and sinks of fluids, solutes and heat in the model domain, and on its boundaries is also
needed. The availability or the collection of reliable field data is a prerequisite for the construction
of an accurate model.

A generalized program to obtain hydrogeological data for modeling is comprised of the fol-
lowing steps: (1) collection and compilation of available existing information, identification of
the gaps in the available information, and, depending on the gaps, planning a field program to
collect the missing field data needed to establish an accurate conceptual model of the domain, and
(2) field work to complement the missing information. First, surface methods are used to char-
acterize geological and hydrogeological surface manifestations of a three-dimensional domain.
After these investigations, direct measurements and sampling of rocks and fluids in boreholes
allow a correlation between the subsurface properties and the surface observations. In this way
an understanding of the stratigraphic interrelation of the rock units, the hydrogeological flow
systems, and their flow pattern is obtained.

Standard surface and subsurface methods comprise geomorphological, geological, hydro-
geological, and hydrochemical investigations as well as groundwater vulnerability mapping,
measurements of surface and groundwater levels, discharges of springs and rivers, rainfall, estima-
tion of infiltration into the underground, and location of surface and groundwater divides. These
are used to delimit groundwater recharge and discharge zones, and to calculate or estimate their
respective hydrological water balances. The methods comprise direct or indirect measurements
(e.g., isotope or non-isotope tracers or empirical methods). For the areal groundwater recharge
estimation by rainfall, several methods are used. Brassington (1998), Lerner et al. (1990), and
Seiler (2007) use hydrochemical methods (e.g., chloride method, isotope tracers), infiltration
tests, measurements of the vertical water movement in the unsaturated zone, and the more accu-
rate but more complicated lysimeter experiments. Both hydrogeological surface, and subsurface
field techniques, are treated by Brassington (1998), Weight and Sonderegger (2001), and Moore
(2002). A compilation of hydrogeological and hydrochemical maps is given in Struckmeier and
Margat (1995). Mapping groundwater vulnerability is described in Vrba and Zaporozec (1994)
and in Witkowski et al. (2007).

6.7.2.2 Hydro(geo)chemical surveys

Analysis of hydrochemical data obtained from springs, piezometers, wells, and surface waters
allows insight into hydro(geo)chemical processes in the subsurface and on groundwater-surface
water interactions, and may give information on the propagation of solute contaminants in aquifers.
Hydrochemical data comprises physico-chemical parameters (color, odor, taste, smell, turbidity,
pH value, redox potential, dissolved oxygen, electrical conductivity, density), major ions (Ca*,
Mg2+, K+, Nat, HCO3, CI™, SOi_, NOj3), inorganic minor elements (e.g., phosphate, fluoride,
boron), inorganic trace elements (e.g., heavy metals, metalloids, rare earth elements), isotopes,
and organic compounds. Hydrochemical data, graphically displayed, can provide information on
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natural geochemical environments related to distinct stratigraphic units with specific material
composition (hydrochemical facies), giving important insights into subsurface processes. Map-
ping of soil gases on the surface can sometimes be used as indicators for fractures, which cannot
be recognized by other methods. Gases, such as CO; or radon, upraise especially along fracture
zones from deeper layers allowing the identification of high permeability vertical pathways (e.g.,
Padron et al. 2003, Magaiia et al. 2004). However, to obtain reliable accurate hydrochemical
data requires an adequate sampling protocol, conservation and storage, and proper analysis in the
laboratory or directly in the field after sampling for those parameters which can change quickly
in time such as pH, temperature, redox potential, bicarbonate concentration, etc. Sampling and
analysis guidelines include the following points: (1) elaboration and execution of a detailed sam-
pling program that corresponds to the objectives of the investigation and problem to solve. This
includes adequate selection of parameters to measure, sampling equipment, additives to preserve
the sample (if required), and type of sample bottles, and (2) during fieldwork the elaboration of
a detailed sampling protocol with a detailed description of the sampling site (geomorphology,
geology, sampling devices, sample preservation, evaluation of possible anthropogenic contami-
nation at the sampling site, e.g., presence of cattle near a sampling well, and peculiarities of the
sampling water (turbidity, color, odor etc).

Isotope techniques: Natural or anthropogenic, and stable or radioactive isotopes can be used to
trace and identify subsurface processes and are characterized by isotope fractionation and changes
in radioactivity levels of decay isotopes. These include groundwater-surface water interactions,
evaporation trends, and water-rock exchange processes. Isotope techniques can be useful in the
determination of groundwater recharge (areas and quantity), mixing of waters from different
aquifers, determining groundwater flow velocity, detecting injected tracers in wells or boreholes
(absolute value and direction of velocity), effective porosity of the aquifer, and dispersivity (see
section 6.7.2.5.2). Isotope techniques can also be used to derive information about groundwater
circulation systems on a large scale and over large time periods which cannot be obtained through
direct measurements. Overviews on isotope applications in the field of hydrogeology can be found
e.g. in IAEA (1984a, 1984b, 1988), Clark and Fritz (1997), Brassington (1998), Moore (2002),
and Mook (2005).

The most commonly used isotopes are those from hydrogen and oxygen, normally given as
isotope concentration ratios which are much easier to determine as compared to absolute con-
centrations. 2H/'H and '30/!°0 concentration ratios are used for deriving information on water
evaporation/condensation, delineation of recharge areas, and mixing of different waters types.
The radioactive isotopes 3H (half-life 12.4 y1), 85Kr (half-life 10.76 yr), and 14C (half-life 5730 yr)
can be used to obtain information on the source of water and its mean age, or average residence
time in the saturated zone (see e.g. Mook 2005). Due to the very different half-lives, the isotopes
used for groundwater age determination depend on the expected order of age which ranges from
days, up to millions of years. The age obtained is a “mean” age because the sampled waters are
a mixture of water with different residence times.

Groundwater age determination using tritium (3H): Tritium is produced naturally by cosmic
radiation, although a much greater production accompanied the atmospheric testing of thermonu-
clear bombs between 1951 and 1980. Most of this “bomb”-tritium has been washed from the
atmosphere by ~1990 (Clark and Fritz 1997). The continuously decreasing concentration of tri-
tium in recharging rainwater due to radioactive decay and due to dilution effects can be used
to determine groundwater age. The lack of *H in groundwater samples indicates a minimum
residence time of 60 years and a lack of mixing with recently recharged water. The detection of
any >H in the groundwater indicates a young water component, which is of special interest for the
origin and circulation of deep groundwater or geothermal systems (see e.g., Clark and Fritz 1997,
Mook 2005).

Oxygen-18/deuterium (‘0 /? H) applications: The principal process affecting the 30/2H con-
centration ratio is isotope fractionation during phase transformations as evaporation/boiling or
condensation (see e.g., Mook 2005). This temperature dependency makes this method suitable for
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the research of geothermal systems. In low-temperature groundwater systems, the isotope frac-
tionation has three principal effects and applications: (1) the altitude effect, which is caused by a
relative decrease of heavy isotopes in rainwater in comparison to lighter isotopes with increasing
topographic height. This makes the '80/>H method suitable to estimate the average altitudes of a
groundwater recharge area, (2) the seasonal change of the '3 O/2H concentration ratio in rainwater,
which is caused by temperature changes resulting in lower '30/2H concentration ratios in winter
and higher '30/?H concentration ratios in summer. This allows use of the '30/2H method to iden-
tify and quantify seasonal groundwater recharge components in groundwater, (3) temperature
related changes of the '80/*H concentration ratio in recharged groundwater, which are caused
by long-term climate changes (cold periods, warm periods). This effect can be used to determine
the surface temperature during recharge time, or using additional isotopes for groundwater age
determination, to determine air temperature at a certain time (e.g. age determined with the '*C
method) (see e.g., Mook 2005).

Another anthropogenic tracer is krypton-85 which is released predominantly by nuclear plants.
Its atmospheric concentration has continuously increased since the installation of the first nuclear
power plants in the 1950s. Consequently, the 3°Kr input into aquifers via their recharge by rainfall
started at this time and can be used to determine the mean groundwater residence time for waters
that were recharged after the 1950s (see e.g., Clark and Fritz 1997). Using the 3H and the $Kr
method together, the young water component of an aquifer can be determined.

14 originates from cosmic radiation in the atmosphere and reaches the groundwater through
the biosphere where it is measured in the inorganic C compounds. It can be used to determine
mean groundwater ages over the last 30,000 years (Clark and Fritz, 1997). e analysis should
be combined with 13C measurements.

Other isotope techniques used for special applications are: (1) the stable isotope N (which is
determined in groundwater nitrate) is used to trace and forecast anthropogenic groundwater con-
tamination sources releasing nitrate, (2) the stable isotopes 1B, 3*S, 87Sr, and (3) the radioactive
isotopes 32Si, 39Ar, 222Rn, 223Ra, 224Ra, 226Ra, 22°R, 210pb, 210po, 238, 234U, 235U, and “°K
(for special applications of these isotopes see e.g., Clark and Fritz, 1997).

6.7.2.3 Geophysical survey

Geophysical methods can be used to provide a three-dimensional map of the subsurface conditions,
such as delimitation of geological layers, their hydraulic properties, faults, fractures, and to give
information on groundwater quality. Geophysical methods can be divided into two groups, surface
and borehole geophysics. These methods and their application in the field of hydrogeology are
described in detail in Kirsch (2006), whereas Repsold ef al. (1989) give an overview of well
logging.

Surface geophysical methods: The main surface geophysical methods used to obtain infor-
mation on groundwater systems include: seismic reflection and refraction, seismic electrical
imaging, electromagnetic (ground-penetrating radar, GPR, in the frequency domain and in the
time domain), direct current (DC), resistivity, and magnetic methods (e.g., magnetotellurics).

Seismic, electromagnetics, DC-resistivity, and ground-penetrating radar techniques all provide
information about the subsurface structure and the properties of different geological layers under
differing physical site constraints. They are used to locate and delimit the distinct geological
layers, faults, and fractures in order to obtain the geometric properties and stratigraphy of the
bedrock.

Geoelectric soundings (DC-resistivity) are cheap techniques that are widely used to distinguish
zones of high and low electrical conductivity. They can be used to determine the limits of
geological layers characterized by different materials and electrical conductivities, as well as
to determine the limit between the water unsaturated and saturated zones, and the depth to the
groundwater table of an unconfined aquifer. Additionally, this DC-resistivity application can
delimit confining layers and can be used to distinguish aquifer zones of low (potable) from



244 Introduction to the numerical modeling

high mineralized (non-potable) groundwater, which show contrasting electrical conductivity in
aquifers. However, this last application can only be used if the aquifer material is uniform, in
order to ensure that conductivity changes are only related to the changes of the water’s electrical
conductivity, and not to changes of the solid matrix of the aquifer. The intrusion of saltwater in
coastal areas is an example of this application. Resistivity methods can additionally be used to
distinguish and delineate clay or mineral rich zones.

Borehole geophysical methods: The principal geophysical borehole logging methods used for
hydrogeological investigations are comprised of temperature, resistance, natural gamma, resis-
tivity, spontaneous potential, flowmeter, video, gamma, magnetic susceptibility, and caliper logs.

The logs, performed along the entire borehole, provide diverse information on the geological
layers of the underground, their solid phase, and fluid properties, as well as information on
faults and fractures. This information from direct measurements can be compared and correlated
with the results obtained from the surface geophysical surveys in order to calibrate the indirect
measurements and to establish a three-dimensional model of the investigated domain.

Spontaneous potential logs provide information on boundaries between different lithologic
units, whereas electrical resistivity measurements provide information on the porosity, and natural
y-log on the clay content of the rocks. Both temperature and flow meter logs can be used to
delimit water-bearing zones. Caliper logs can be used to identify fracture zones, and together
with video logs allow measurement of strike, dip, and aperture of fractures. This information
on the fracture properties is important. Additionally, physico-chemical and hydrochemical data
on the groundwater (e.g., pH, Eh, electrical conductivity, dissolved oxygen) can be measured along
the borehole profile, and together with the other well logging results can be used to distinguish
between different sections or aquifers composed of different water types.

6.7.2.4 Aquifer tests

Establishing an accurate conceptual and numerical model to describe and simulate groundwater
flow and transport in aquifers requires detailed knowledge of the values and spatial distribution of
the parameters that are responsible for the hydraulic behavior in the system. These are primarily
hydraulic conductivity, storage coefficient, and effective porosity. Additionally, for transport
processes, the dispersivity, «, is determined on a field scale by aquifer and tracer test.

Aquifer tests such as pumping tests, and slug and bail tests, are predominantly used to obtain
values for the hydraulic conductivity, Ky (or transmissivity, 7)), the storage coefficient (stora-
tivity), S, and sometimes the leakage coefficient, L. Tracer tests provide additional information
about flow directions and dispersivities, longitudinal and vertical.

Detailed treatment of most analytical methods for aquifer tests or the background theory can be
found in Theis (1935), Ferris et al. (1962), Stallman (1971), Reed (1980), and Franke et al. (1987).
Analytical aquifer test method and their interpretations are treated by Boonstra (1989), Kruseman
and Ridder (1991), Dawson and Istok (1991), Raghavan (1993), Day-Lewis (1995), Hall (1996),
Walton (1996), Batu (1998), Brassington (1998), Weight and Sonderegger (2001), Moore (2002)
and Kresic (2007). Butler (1998) addresses slug tests, and Singhal and Gupta (1999) include an
overview of pumping tests and slug tests for fractured rocks. Different commercial and public
domain software were developed for evaluating aquifer and tracer tests using analytical methods
(e.g., Aquiferwm32, Aquifer Test, and Aqtesolv). An overview can be found at the International
Groundwater Modeling Center (http://typhoon.mines.edu/software/igwmcsoft/).

Pumping tests: Among the most common techniques to determine hydraulic aquifer properties
are pumping tests. In this test, water is pumped from one well at a steady or step-by-step variable
rate, while measuring the piezometric water levels in nearby monitoring wells and/or in the
well itself. The response of an aquifer (drawdown characteristics) to the perturbation caused by
pumping is measured by the depression of water level as a function of time and the radial distance
between the pumping well and the observation well. The drawdown of the observation well can
therefore be used to determine the hydraulic aquifer properties (Ky or T, in confined aquifers)
and S values. The steady-state drawdown at the observation well is a function of the aquifer
transmissivity alone, and the transient drawdown depends on both transmissivity and storativity.
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Pumping tests under steady state and transient conditions are used to obtain information on
these two important aquifer parameters. Additionally, the subsequent rise of the water level after
terminating the pumping can be interpreted by recovery tests. If there is no observation well
available at a suitable distance from the pumping well, then the decline of the water table in the
pumping well itself can be used for the estimation of hydraulic aquifer parameters.

Based on Darcy’s law, Dupuit and Thiem developed the basic formula for stationary ground-
water flow at the end of the 19th century. In 1935, Theis presented a general equation to evaluate
non-stationary pumping tests. On this basis, a series of analytical methods were developed for
confined, unconfined, and semiconfined aquifers which often require time-consuming graphical
solutions (e.g., matching a type curve with the analytical solution on the measured field data).
Additionally, the analytical solutions evaluated using this method are restricted to following spe-
cial boundary conditions: (1) the aquifer has an unlimited horizontal extension, (2) the aquifer
is homogeneous and isotropic, (3) the aquifer has a constant thickness and its base is horizontal,
and (4) the pumping rate is constant, and the well extraction interval comprises the entire aquifer.

In the last four decades, sophisticated analytical methods were developed incorporating more
complex and realistic boundary conditions such as leaky aquifers, spatial limited aquifer (e.g.,
limited by boundaries of prescribed hydraulic head or an impermeable margin), variable thick-
ness of the aquifer, inclined aquifer base, inclined groundwater table (or hydraulic head level),
incomplete well, presence of more than one pumping well, partial penetration of the pumping and
monitoring wells, multilayer aquifer systems, anisotropic and heterogeneous aquifers, horizontal
filter well, and fractured aquifers (see e.g. Boonstra 1989, Hall 1996, Kruseman and Ridder 1991,
Dawson and Istok 1991, Raghavan 1993, Day-Lewis 1995, Walton 1996, Batu 1998, Brassington
1998, Weight and Sonderegger 2001, Moore 2002, and Singhal and Gupta 1999). However, the
analytical solutions for these problems often become difficult, require large calculation efforts,
and often do not allow the consideration of combinations of several of these special conditions.
Also, it is impossible to solve these problems if a greater number of pumping wells and irregular or
time-dependent boundary conditions are present. In other words, even when these new analytical
solutions are available, they still fail to represent the complex problems that are usually found in
real aquifers. For many real aquifers, computer-aided evaluation, based on analytical solutions,
or numerical evaluation of pumping tests, is needed.

Slug and bail tests: During a slug test, the stagnant groundwater level in a borehole or well
is changed either by instantaneous addition, or withdrawal of a measured volume of water. In a
bail test, withdrawal of a defined water volume is performed using a bailer or pump which is
technically more difficult since instantaneous water removal must be fast and since the equipment
disturbs the water level measurements.

The characteristics and duration of water level restoration to the initial, before the test, quasi-
steady state depends on the hydraulic conductivity of the system. Therefore, the registered
groundwater level versus time curve can be used to derive values for the hydraulic conductivity.

Compared to pumping tests, which normally require measurements in observation wells, slug
tests are easier to perform and do not require pumping, but they lead to less accurate and less
representative results. The results of pumping tests with measurements in surrounding observation
wells are more accurate. The values obtained from slug tests correspond exclusively to a small
area around the borehole itself. It is a very useful method if a large number of wells must be
tested, if no pumps can be used, or if the purpose is to obtain preliminary estimates.

There are many different analytical solutions for the evaluation of slug tests. Classical methods
are the Hvorslev approximation, which approximates the transient water flow by a simple expo-
nential function, and which is valid for confined aquifers and partially for unconfined aquifers
(Hvorslev 1951). The Bouwer-Rice method has been applied for confined and unconfined aquifers
(Bower and Rice 1976, Bower 1989), and the Cooper-Bredehoeft-Papadopulos method is suitable
for large diameter wells (Cooper et al. 1967).

Although slug tests are generally conducted as single-well tests, multi-well slug tests are also
done. In multi-well slug tests, one well is used for the injection or withdrawal of water, and the
others are used as observation wells.
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6.7.2.5 Tracer tests

Tracer techniques comprise marking the groundwater or surface water with substances that can
be sampled and analyzed along the flow path, and trace the hydraulic behavior of the water. Tracer
techniques are the only methods that allow a direct observation of the flow paths and dynamic
behavior of the water. On a field scale, groundwater flow can be traced in a porous or fractured
medium. The discharge of rivers can be determined by tracers, which is especially important for
conditions with a highly torrential flow regime (e.g., mountain rivers) with restricted applications
for other techniques. Tracer tests are an essential tool to derive information for complex transport
processes which are controlled by numerous factors of heterogeneous geologic and geochemical
environments with physical-chemical interactions between the flowing groundwater, dissolved
solutes, immiscible substances (e.g., organic contaminants), and the solid phase (adsorption,
retardation). On a laboratory scale, tracer techniques can be used in column experiments (see
6.7.4). Tracer tests and their evaluation are described by Terry (1981), Késs (1992), Weight and
Sonderegger (2001) and Singhal and Gupta (1999).

6.7.2.5.1 Overview on principal artificial tracers and their applications
The type of tracer applied depends on the local situation, the available equipment, and the
objectives. There are chemical substances (reactive or non-reactive; inorganic or organic;
ionic and non-ionic; volatile and non-volatile), isotopes (stable or radioactive), and particle
tracers.

Regarding the method of measuring tracer concentrations in observation wells, we can
distinguish the following types:

1. Non fluorescent dyes, which can be detected qualitatively by visual methods (color) or quan-
titatively by measuring the concentration of fuchsine acid, basic fuchsine, malachite green
(aniline green), erythrosine, amaranth, carmoisine, Ponceau 4 R, methylenblue, or potassium
permanganate (brillant blue) with a field photometer.

2. Fluorescent dyes, for which concentrations are measured using their fluorescent properties
by fluorimetry; e.g., uranine, eosine, naphthionate, pyranine, rhodamine (B, WT, and WTS),
sulforhodamine (B, G, WT, WTS), lissamine, fluorescent micro- and nano-particles.

3. Salts, the concentration of which can be determined either by measuring the electrical conduc-
tivity (NaCl), using ion-sensitive electrodes, or analyzing specific salts: C1~ (in form of NaCl),
Br~ (in form of KBr), difluorobenzoate, Li* (lithium in form of LiCl), Na;B407 - 10 HO
(borax), In** (indium in form of indium-ethylenediamine tetraacetic acid complex; In-EDTA),
and iodide.

4. Radioactive tracers, which are quantified by measuring the radioactivity of the water sample,
e.g.: 3H, >'Cr, 8Br, 127]).

5. Particle tracers, e.g., spores, bacteria, phages, fluorescent micro-particles.

According to Wernli (2003), uranine, eosine, and rhodamine are suitable for karst aquifers,
and naphthionate and pyranine for short distances. Uranine and eosine are appropriate for tracer
experiments in granular porous aquifers, whereas for short distances (less than 200-300 m)
naphthionate is applicable. If the aquifer is very permeable and if only half-quantitative tracer tests
are needed, then sulforhodamine B can be used as a tracer. For small-scale tracer tests, such as in
laboratory column experiments of mini-aquifers (e.g., testfields), uranine, eosine, naphthionate,
bromide, halite (NaCl), difluorobenzoate, partly nitrate, sulfate, and fluorescent micro-particles
are suitable tracer substances. Halite, sulforhodamine B (in waters with low content of suspended
load), uranine, and rhodamine WTS (it is not approved in turbid waters), are suitable for discharge
measurements in surface waters.

6.7.2.5.2  Field-scale tracer tests performed in boreholes (wells)

Field-scale tracer tests performed in boreholes, or wells, are used to monitor groundwater move-
ment by tracing the path of the moving water and obtaining information on transport parameters
controlling the dispersive transport and behavior of solutes in the groundwater. These parameters
are: effective porosity, dispersivities (longitudinal dispersivity along, and transversal dispersivity
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perpendicular to the flow direction) and retardation factors. The determination of these parameters
becomes especially important for heterogeneous media, such as alluvial sediments and fractured
rocks in karst terrains. The first quantitative tracer test in karst terrains was performed in 1877 in
southern Germany (Kiss 1992).

Different types of tracer test designs can be found: (1) a single-well, injection-withdrawal
tests, in which the tracer is injected into a well, transported through the aquifer, and then pumped
up again; (2) multiwell tests in which a known amount of a tracer is injected into one well or
borehole and monitoring its propagation within the aquifer by measuring the tracer concentration
versus time (break-through curves) in one (or better more) downgradient located monitoring
well(s); (3) multilevel tracer injection and recovery tests, in which vertical variability in transport
characteristics is assessed. Multiwell tests can be performed either as (1) forced-gradient tracer
test where groundwater is pumped from the observation well (radial flow) or (2) as natural-
gradient tracer test, in which the injected tracer propagates according to the natural groundwater
flow field (in the simplest case linear flow with a uniform flow velocity in one direction), and is
measured in an unpumped observation well.

When performing single well tracer tests, it must be considered that only a small area around
the injection well is tested, so that the measured aquifer properties are only representative of this
small area, and may highly depend on local heterogeneities. In contrast, if a two, or more, well
constellation is used, then the resulting parameter values correspond to an average velocity along
the distance between the tracer source and the observation well. In addition, the determination
of the longitudinal dispersivity, «7, from forced-gradient tracer tests can significantly underesti-
mate the real, o7, if the distance between the injection and the observation pumping well is not
large enough (Tiedeman and Hsieh 2004). Hence, to obtain accurate dispersivities for description
of solute dispersion under natural-aquifer conditions, either a natural-gradient tracer test, or a
two-well tracer test with a large well separation, must be performed.

To investigate the groundwater flow pattern of a domain, conservative, non-reactive, tracers
are used, since these are supposed to propagate with the same velocity as the water itself. In this
case, the only solute transport processes are advection and dispersion. Advective movement of the
dissolved tracer is due to groundwater flow with average water velocity. Dispersion is caused by
the variability of pore-water velocities within an aquifer due to heterogeneities and the tortuosity
of the porous media. Some solute particles move slower and others faster than the mean velocity,
resulting in a broadening of the solute plume and a concentration decrease. If the response of the
aquifer to tracer injection is known in a form of the registered break-through curves, then the
parameters describing advection (mean pore-water velocity) and dispersion (longitudinal and
transversal dispersivities) can be determined by analytical or numerical methods using solute
transport models.

Different tracers can be used during the same test (multi-species tracer test, e.g., a combination
of a color tracer, and a salt tracer). Nonreactive tracers which describe dispersive transport can
be combined with reactive tracers to detect and delimit geochemical aquifer conditions such
as dilution, sorption, and reduction reactions as demonstrated in the following example. The
reactive tracer represented by nickel, complexed with an organic ligand, e.g., NiIEDTA, reacts
with the aquifer material. The reaction is a function of pH, adsorption of NIEDTA on Fe and Mn
oxyhydroxides that form the solid aquifer matrix, and results in a loss of a part of the injected
tracer mass from the water. By comparing the breakthrough curves of the ideal, non-reactive,
and the reactive Ni-tracer, the retardation factor of the reactive tracer, defined as the quotient of
groundwater flow velocity and the propagation velocity of the reactive tracer, can be determined.
Comparison with data on retardation factors as a function of pH, obtained from the literature or
in the laboratory, can then be used to reconstruct the pH of the aquifer system.

6.7.3 Field survey of geothermal systems

Similar methods as those used for the determination of hydrogeological parameters describing cold
(non-geothermal) groundwater systems, such as hydrogeological, geophysical, and geochemical
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techniques, are used to obtain knowledge on the structure and properties of deep geothermal
systems.

6.7.3.1 Geological and hydrogeological surface studies

Geological and hydrogeological studies for geothermal reservoir characterization involve the
same basic geological and hydrogeological investigations as low-temperature groundwater sys-
tems (see 6.7.2.1) with some additional studies to assess the particular properties of geothermal
reservoirs. These studies comprise geologic mapping of the area of interest, identification of
tectonic elements, such as active and inactive fractures and fracture zones, caldera structures, and
geothermal surface manifestations, such as hot springs or fumaroles. Together with the results
of the other studies (remote sensing, surface geophysics, and hydrogeochemistry), these studies
allow the construction of a preliminary conceptual model of the geothermal system and the chem-
ical and physical processes occurring within the system. This model is used in decision-making
regarding further steps to investigate and locate gradient wells and slim holes. These results will
allow further refinement of the conceptual model and the selection of sites for the production wells.

6.7.3.2 Hydro(geo)chemical surveys

Hydrogeochemical surveys, including isotope techniques, are used as a low-cost tool, in com-
parison to the more expensive geophysical surveys. These less expensive surveys are applied to
determine whether the geothermal system is water- or vapor-dominated, evaluate the expected
composition and variability of the reservoir fluids, obtain information on the sources of water
and heat, and locate the recharge area and estimate the respective recharge rate. This information
is needed to simulate the response of the reservoir to exploitation. The chemical composition of
waters and gases is used to estimate the temperatures expected in the reservoir (geothermome-
try) assuming equilibrium with respect to some known chemical reactions that are common in
geothermal systems (Chandrasekharam and Bundschuh 2008).

The geochemical survey comprises mapping of geothermal surface manifestations, such as hot
springs, fumaroles, solfatares, etc., sampling of water and gases, and the chemical and/or isotope
analyses of the water and gas samples. The gas samples are obtained from gas vents or stripped
under vacuum from the fluid sample. When drilling has already been performed, water and gas
samples are taken from wells. In addition to the applications of chemical and isotopic methods
described previously for low temperature systems, in geothermal systems the applications of
chemical methods are predominantly based on two principles: (1) to use different water and gas
geothermometers to estimate the expected reservoir temperature, and (2) to use natural markers
that indicate the magmatic component of the fluid compared to the meteoric component, such as
4He/3He ratios in the gas phase and ! ' B/'B ratios in the water phase. The evolution of the geother-
mal fluids as the magmatic fluids mix with groundwater and react with the surrounding rocks, can
also be investigated (e.g., Giggenbach 1988) allowing the assessment of the degree of water-rock
interactions for the system. In addition to water and gas samples from wells and thermal manifes-
tations, the gases released by the geothermal aquifer and diffused throughout the unsaturated zone
to the atmosphere, are also investigated. Examples are soil radon and mercury, and their areal
distribution, and more recently, carbon dioxide fluxes and concentrations of soil gases, such as He
and CO» (e.g., Padron et al. 2003, Magaiia et al. 2004). The purpose of the soil gases studies is the
determination of vertical permeability pathways or fractures close to the surface. Descriptions of
geochemical methods, including isotope techniques to obtain information on geothermal reser-
voirs, can be found in Nickolson (1993), IAEA (2001), Chandrasekharam and Bundschuh (2002,
2008). These methods are generally used in geothermal reservoir exploration, but the chemical
composition of the geothermal fluids is monitored during the exploitation of the reservoirs.

6.7.3.3  Geophysical surveys
In the case of a geothermal aquifer, parameters to describe the reservoir are obtained through
the same surface geophysical methods used for exploration of deep non-geothermal aquifers
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(see 6.7.2.3). Some geophysical methods have been adopted directly from the oil industry and
hence, are not adapted to investigate the more complex and irregular shapes found in geother-
mal reservoirs, as compared to the simpler shapes that are typical of oil reservoirs. However,
well logging equipment is generally unsuitable for the high temperatures found in geothermal
reservoirs.

Geophysical surveys, which are described in a detailed overview by Manzella (2000), are
included in the first study phase of the site carried out at the earth’s surface or from the air. Later,
if drilling is possible, borehole geophysics can be applied.

Surface geophysical methods: In a first approximation, without having deep perforations, these
are used to determine the physical parameters of deep geological layers and structures and their
geometry (shape, size, depth), temperatures, and other characteristics of the geothermal reservoir
from the earth’s surface or from depths close to the earth’s surface. The following parameters
can be investigated for this purpose: (1) magnetic susceptibility (magnetic survey), (2) electrical
conductivity (electrical and electromagnetic methods), (3) propagation velocity of elastic waves
(seismic survey), (4) rock density (gravimetric survey), and (5) temperature (thermal survey:
determination of geothermal gradients and terrestrial heat flow using temperatures measured at
the surface, in sediment columns, or in gradient wells). Knowledge of the geothermal gradient
can provide a good approximation of the temperature at the top of the reservoir. Seismic, gravity,
and magnetic methods can give information on the geometry of the deep structures (shape, size,
depth) of a geothermal reservoir, but they do not provide information about the presence of
geothermal fluids in the structure considered a geothermal reservoir. To obtain information on
the presence of geothermal fluids in the investigated structure, electrical and electromagnetic
surveys are used. The presence of water and dissolved ions decreases the electrical resistivity,
allowing the detection of the conductive layer. The magnetotelluric survey can define deeper
structures better than electric and other electromagnetic methods.

Borehole geophysical methods: Compared to well logging in low-temperature aquifers or in
oil reservoirs, the use of borehole geophysics is limited in geothermal reservoirs since high
temperatures and, in some cases, strong corrosion caused by very acidic geothermal fluids, affect
not only the sensors of the equipment but also the measuring results because precise instruments
cannot be used at these high temperatures. Nevertheless, direct measurements in boreholes remain
an important tool, since they allow a comparison of directly measured properties with the results
of surface geophysical surveys and allow the calibration of these methods.

Well logging is used predominantly to determine: (1) the stratigraphy of the underground,
(2) the permeability of rocks and individual principal fractures, (3) the fluid characteristics, and
(4) the subsurface temperature distribution. For the application in geothermal reservoirs, vari-
ous special methods were developed (see e.g., Manzella 2000), which are predominantly based
on resistivity, y-ray, seismic wave velocity (acoustic and sonic), and density logs. In recent
years multi-frequency electromagnetic logging and tomography methods have found increasing
application (Manzella 2000).

6.7.3.4 Tests performed in drillings
The hydraulic permeability of geothermal reservoirs is generally attributed to (1) fractured rocks
or to (2) large scale fracture systems within otherwise low permeability bedrock. Spontaneous
flow occurs within these fractures when wells, slim holes or large diameter production wells,
are exploited. To characterize the hydraulic properties of the reservoir, two parameters are used,
the injectivity index (isothermal and non-isothermal injectivity index) derived from a steady
state injection test, and the hydraulic transmissivity obtained from pressure transient injection
tests. Numerous modifications and adaptions of these tests to special situations have been devel-
oped. Geothermal tracer tests are another important tool for parameter estimation in geothermal
reservoirs.

Injection tests: During a steady state injection test, cold water is injected into a borehole,
while pressure and temperature downhole are recorded simultaneously. The injectivity index
corresponds to the mass injection rate multiplied by the pressure difference between the flowing
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well at the gauge depth during the cold water injection, and the shut-in pressure at the gauge depth,
or the pressure difference between the well and the reservoir. For the pressure transient injection
test, the injection rate is a function of time and allows for the calculation of the transmissivity
values. However, conventional geothermal pressure transient testing methods for characterizing
fractured bedrocks were adapted from the oil industry, provide only general indicators of perme-
ability, and are unable to estimate fracture distribution, orientation, and reservoir permeability.
Therefore, special modifications of pressure transient testing methods have been developed.

Geothermal tracer tests can be used following the same procedures as described for low-
temperature groundwater systems, and additionally allow the consideration of the effects caused
by the high temperatures, which influence certain variables. They can be used to determine the
mean residence time, the swept pore volume, and the flow-storage geometry. However, most of the
tracer tests, which were performed world-wide in over 100 geothermal sites, were interpreted only
qualitatively without considering the tracer breakthrough curve quantitatively, resulting in gross
test interpretations (Shook and Forsman 2005). Few investigators applied tracer tests to estimate
heat transfer parameters (e.g., Robinson and Tester 1984, Axelsson et al. 2001), to constrain
reservoir-scale numerical models (e.g., Gunderson et al. 2002, Bloomfield and Moore 2003),
or to estimate the flow geometry. Shook and Forsmann (2005) present a series of Excel macros
written in Visual Basic for quantitative interpretation of the tracer results.

6.7.4 Laboratory tests and experiments

Different methods are available to determine hydraulic conductivity, storage coefficient, effective
porosity, and longitudinal and transversal dispersivities in the laboratory. However, when using
these values on a field scale for numerical modeling, it must be taken into consideration that
these values were determined on a laboratory small-scale, and probably do not fit the corre-
sponding field-scale values. Other values obtained normally in the laboratory comprise material
and fluid properties, such as thermal properties, compressibility, viscosity and density as func-
tion of temperature, and solute concentration. Additionally, rock/fluid interactions are determined
predominantly on a laboratory scale by using batch and column experiments to identify and quan-
tify processes, such as sorption (adsorption, absorption), ion exchange, and reaction kinetics of
chemical compounds which determine solute concentrations in the water. Sequential extraction
experiments are used to determine on which mineral phase or organic fraction of the solid matrix
the chemical compounds or contaminant are sorbed or precipitated. This information is important
in identifying the hydrogeochemical processes occurring between the solid and fluid phase and
further, to quantify these processes during the numerical modeling. Applications in geothermal
reservoirs, steam quality measurements, and fluid compositions are additionally important.

6.8 SELECTION OF MODEL TYPE AND CODE

After the acquisition of information and field data on the aquifer system or geothermal reservoir
of interest, a conceptual model is established in which all relevant transport processes occurring
in the subsurface have been identified and expressed by their governing equations. Next, the
potentially choices for modeling codes must be evaluated. An evaluation of the suitability of each
individual program according to the available field data and the objectives of the modeling effort
is needed before the selection of the final code.

It is impossible to provide a full description of all existing public domain and commercial mod-
eling programs. The large number of programs already available and numerous new programs that
are under development prevent the compilation of a completely comprehensive list here. Good,
periodically updated references can be found in the USGS (United States Geological Survey;
http://water.usgs.gov/software/ground_water.html) and IGWMC (International Groundwater
Modeling Center; http://typhoon.mines.edu/software/igwmcsoft/) catalogues. The latter gives
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an excellent continuously updated overview of most public-domain and commercial modeling
software. A compendium of fracture flow models is given by Diodato (1994).

In this chapter, we provide only a brief summary of the different types of models and their
application possibilities (Table 6.5). In addition, some of the programs that are used in this book
in the modeling examples are presented.

6.8.1 Model types

Based on the objectives, the questions to be solved and the nature and quantity of field data,
a numerical model can be selected. Models can be classified according to (1) their physical-
chemical options, (2) their dimensionality, and (3) the numerical algorithms (see chapter 5) used
for discretizing the mathematical equations.

Table 6.5. Overview on principal public domain and commercial software for numerical modeling
groundwater flow, solute and heat transport with specific properties, and possible
applications. FE: finite element method; FD: finite differences method; RW: random
walk. Compiled from USGS (http://water.usgs.gov/software/ground_water.html) and IGWMC
(http://typhoon.mines.edu/software/igwmecsoft/) catalogues.

Application

Groundwater flow (single phase)
Porous granular aquifers

3-dimensional
MicroFEM (transient hybrid FE/FD flow)
MODFLOW96, 98, 2000, 2005 (transient FD flow)
PMWIN platform (integrates MODFLOW, PMPATH, MT3D/MT3DMS, MOC3D, PEST2000 and
UCODE)

2-dimensional
FLOWPATH II (steady-state FD flow)
JDB2D/3D (transient FD flow)
MODEFE (transient FE flow)
PLASM (transient FD flow; IGWMC version)
RADFLOW (radial transient FD flow)

Fractured aquifers
FRACFLOW (2-dimensional transient flow, dual continuum approach)
Groundwater flow, solute and heat transport (1 fluid, and solute and/or heat transport)

3-dimensional
COMSOL Multiphysics (transient FE flow and solute and heat transport)
FTWORK (transient FD flow and transport)
HOTWTR (3-dimensional steady-state FD flow and heat transport)
HST3D (transient FD flow and solute and heat transport)
MOC3D (flow and transport; integrated with Modflow and considers advection, dispersion, mixing
from other fluid sources, linear sorption, and radioactive decay)
MODFLOWT (FD solute transport module for MODFLOW)
MT3DMS (FD solute transport module for MODFLOW)
MULAT (steady-state FE flow and transport)
PMWIN platform (integrates MODFLOW, PMPATH, MT3D/MT3DMS, MOC3D, PEST2000 and
UCODE) allows multispecies solute transport modeling through MT3D module
RAND3D (RW solute transport module for MODFLOW)
SUTRA3D (transient hybrid FE/FD variable density fluid flow and solute and heat transport)
SWICHA (FE variable density fluid flow and solute transport)
SWIFT-98 (coupled transient FD flow and solute and heat transport)
TARGET (series of 2- and 3-dimensional integral FD flow and transport models)

(Continued)
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Table 6.5. (Continued)

2-dimensional
ABCFEM (transient FE flow and RW transport)
ASM (transient FD flow and FD/RW solute transport)
BEAVERSOFT (set of educational programs: transient FD/FE flow and RW transport)
FLONET/TRANS (steady-state FE flow and transport)
HYDRUS-1D/-2D (1/2-dimensional FE flow and solute and heat transport)
MOC (FD model for the simulation of non-conservative solute transport in aquifers)
PHREEQM-2D (multi-component mass transport model consisting of two coupled simulation
programs: HST2D and PHREEQE)
SUTRA (transient hybrid FE/FD variable density fluid flow and solute and heat transport)

Porous granular and fractured aquifers
Comsol Multiphysics (transient FE flow and solute and heat transport)
FEFLOW (3-dimensional transient density dependent FE flow and solute and heat transport in
porous aquifers with additional discrete fractures)
SWIFT-98 (coupled transient FD flow and solute and heat transport; explicit discrete fracture and
dual continuum approaches)
Fractured aquifers

3-dimensional
FRAC3DVS (transient fluid flow, solute, and radionuclides transport, explicit discrete fracture
approach)
FracMan (transient fluid flow, solute, heat and radionuclides transport, dual continuum approach for
discrete fracture network)
MOTIF (transient fluid flow, solute, heat and radionuclides transport, dual continuum and explicit
discrete fracture approaches)
NETFLO/NETRANS (steady-state flow in fracture networks and solute transport, discrete fracture
network approach)
STAFF3D (transient fluid flow, solute, and radionuclides transport, dual continuum and explicit
discrete fracture approaches)
TRAFRAP-WT (transient FE flow and solute and radionucleids transport, explicit discrete fracture
and dual continuum approaches)

2-dimensional
FRACTRAN (steady state fluid flow, solute, and radionuclides transport, explicit discrete fracture
approach)
SEFTRAN (transient fluid flow, solute, and radionuclides transport, explicit discrete fracture
approach)
STAFF2D (transient fluid flow, solute, and radionuclides transport, dual continuum and explicit
discrete fracture approaches)
TRAFRAP-WT (transient FE flow and solute and radionucleids transport, explicit discrete fracture
and dual continuum approaches)

Multiphase flow

Comsol Multiphysics (transient FE flow and solute and heat transport)
FEHM (transient multiphase fluid flow, solute, heat and radionuclides transport, dual continuum and
explicit discrete fracture approaches)
MOTRANS (FE model to simulate flow of water, dense or light nonaqueous phase liquid [NAPL]
and air, and transport of up to five partitionable species in two-dimensional vertical sections)
PMWIN platform (integrates MODFLOW, PMPATH, MT3D/MT3DMS, MOC3D, PEST2000 and
UCODE) allows multispecies solute transport modeling through MT3D module
PORFLOW (2-3 D transient multiphase fluid flow, solute, heat and radionuclides transport, explicit
discrete fracture and equivalent porous medium approaches)
STAR (3-dimensional multiphase flow; energy transport in 2-phase, liquid-steam geothermal
systems)
SWANFLOW (3-dimensional FD flow of water and an immiscible nonaqueous phase)
TOUGH?2 (transient multiphase fluid flow, solute, and heat transport, dual continuum approach; with
module TOUGHREACT additionally modeling of chemical reactive flows)
TRACR3D (transient multiphase fluid flow, solute, heat and radionuclides transport, biokinetics,
dual continuum and explicit discrete fracture approaches)

(Continued)
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Table 6.5. (Continued)

Salt water intrusions
Comsol Multiphysics (transient FE flow and solute and heat transport)
FEFLOW (3-dimensional, transient FE variable density fluid flow and solute and heat transport in
porous aquifers with additional distinct fractures)
HST3D (3-dimensional transient FD variable density fluid flow and solute and heat transport)
MOCDENSE (2-dimensional 2-constituent FD solute transport for groundwater of variable density)
SHARP (quasi-three dimensional FD model for simulating freshwater and saltwater flow)
SUTRA3D (transient hybrid FE/FD variable density fluid flow and solute and heat transport)
SWICHA (3-dimensional FE variable density fluid flow and solute transport)

Virus transport
CANVAS (2-dimensional, composite analytical/numerical (FE) model for virus transport and fate in
groundwater)
VIRALT (modular semi-analytical/numerical model for virus transport and fate in groundwater,
transient)

Bioremediation
BIO1D (1-dimensional FD model for simulation of biodegradation and sorption of a degradable
hydrocarbon assuming an uniform flow field in the aquifer)
BIOF&T (2-D/3-D) (3/2-dimensional FE model for flow of water and multi-component aqueous
phase transport in variably-saturated porous and in fractured media)
BIOPLUME 1II (2-dimensional FD model for simulating the natural attenuation of organic
contaminants in groundwater)

The physical-chemical options classification indicates the aquifer properties that can be simu-
lated with the model that is under consideration. This classification indicates (1) whether a system
can be modeled as a porous grain or fractured aquifer, or a combination of both, (2) whether fluid
density and viscosity must be considered as variable (e.g. variable temperature and/or salinity
within the domain) or if they can be approximated by constant values, (3) whether the com-
pressibility of the fluid and the granular structure must be considered or not, (4) whether only
groundwater flow or additionally the propagation of dissolved solutes and heat will be considered,
(5) whether flow and transport is in one or several phases of fluid (water, steam) and whether
solutes (miscible fluids or immiscible solutes) occur, and (6) in case of solute transport, whether
physical, chemical and/or biogeochemical reactions and interactions occur between the solutes
or between solutes and solid phase.

Regarding the dimensionality of models, we can select 1, 2, or 3 dimensions. One-dimensional
models can often be used for small-scale cases, e.g., column experiments in the laboratory, or when
special chemical or biogeochemical processes along a groundwater flow line are studied. Many
tracer tests are often evaluated using one-dimensional approaches. In addition, one-dimensional
flow and transport models are suitable for initial assessments (when no details on aquifer geometry
and properties are available) and the results of these assessments can be used for defining a field
data collection campaign.

Two-dimensional models are much easier to construct and require much less data compared
to three-dimensional models, and often approach the real problem with sufficient accuracy. Two-
dimensional horizontal models are most useful for describing the regional groundwater flow (also
including transport processes in a limited way) if the vertical extension of the aquifer is much
smaller compared to the horizontal extension of the model domain, and if only one principal
aquifer is present. However, water influxes from over- or underlying the principal semiconfined
aquifers can be considered using leakage terms. In these models, fluid density must be considered
as constant. This allows neglecting the vertical flow components on a regional scale. Small-scale
vertical flows (e.g., at partially penetrating wells, or at sites where water exchange between
groundwater and surface water bodies occurs) can be neglected if regional modeling results are
considered. A two-dimensional vertical model is suitable if vertical flow components cannot be
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neglected, e.g. if various aquifers are present and if changes (hydraulic heads, aquifer properties)
in the horizontal direction are low, so that the model plain is parallel to groundwater flow lines.
The combination of a horizontal model with vertical models as orthogonal cross-sections of
the domain is another option to 3-dimensional models. So, e.g., a regional flow model can be
elaborated and in selected areas (e.g., around well fields) a vertical model can be constructed to
consider vertical flow components. Two-dimensional models can also be used to describe special
3-dimensional problems if cylinder coordinates can be used to describe these as in the case of
radial flow problems, such as when the groundwater flows towards a well.

If the foregoing simplifications are not practical or meaningful, then a fully three-dimensional
model must be developed, especially if regional groundwater models with multiple aquifers need
be constructed and in situations in which the vertical groundwater flow component is significant
or variable density flow is considered. However, this choice requires that the hydrogeological
conditions are well known in three dimensions.

6.8.2  Public domain and commercial software for numerical modeling

An overview of the principal computer codes used for modeling aquifer systems and their
specific application features is given in Table 6.4. The most well known numerical software
for modeling groundwater systems with a broad application range comprise MODFLOW for
groundwater flow modeling with its different modules developed for solute transport model-
ing. Most of the codes for groundwater flow, solute and/or heat transport modeling can model
1, 2 or 3-dimensional models, as, e.g., COMSOL Multiphysics, FEFLOW, MOC, SUTRA3D,
SWIFT and HST3D for modeling of porous grain aquifers. Some of them (e.g., FEFLOW,
COMSOL Multiphysics, and SWIFT) additionally include dual continuum or other approaches,
which make them suitable for modeling fractured systems, where the one-continuum approach
used by most other programs is not accurate. However, special programs were developed for
modeling complex fractured aquifers (including geothermal reservoirs) such as FRACMAN,
FRAC3DVS, FRACTRAN for single phase and PORFLOW, TOUGH2, and TRACR3D for mul-
tiphase modeling (see Table 6.4), which apply different model approaches described in section
6.4. Then there exist programs for special applications, such as the modeling of multi-phase
flow, bioremediation in aquifers, vapor transport, virus transport, etc. (Table 6.4). In addi-
tion, there are platforms such as GMS, a groundwater modeling system with interfaces to
many programs: MODFLOW, MODPATH, MT3D, SEAM3D, FEMWATER, SEEP2D, and to
different parameter estimation modules, such as PEST and UCODE and to stochastic and geo-
statistic modules. GMS is a GIS (Geographic Information System)-based platform for data in-
and output making it a very powerful comprehensive modeling tool. The multi-task GIS-based
Windows interface ARGUS ONE works using models such as MODFLOW, MT3D, MT3DMS,
MF2K-GWT, MODPATH, HST3D, MOC3D, SUTRA3D, NAPL, PTC, and FEMWATER. Plug-
In extensions (PIEs) for this interface are constantly improving by the USGS. ARGUS ONE
probably provides the widest possibilities for performing both logical and mathematical oper-
ations with GIS layers. Other powerful and well-known platforms are PMWIN and VISUAL
MODFLOW software, graphic interfaces for MODFLOW/MT3D/MODPATH. In the follow-
ing, only those programs used in this book and some few of the frequently used modeling
codes will be presented shortly. These comprise ASM, SUTRA, MODFLOW, PMWIN, TOUGH,
STAR and COMSOL-Multiphysics. For more details refer to the vendor websites or the program
manuals.

6.8.3  ASM (Aquifer Simulation Model)

The DOS-version of ASM with its highly didactic structure was published by Kinzelbach and
Rausch in 1989 (Kinzelbach and Rausch 1989, 1995). However, the MS-Windows'™-version
(Chiang et al. 1997, 1998), is much improved and nowadays ASM can be used not only for aca-
demic purposes, for which it was originally developed, but is also suitable for many professional
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applications in hydrogeology, civil and environmental engineering. This program, compared to
many other modeling software, is easy to use for a beginner, which makes it an ideal program to
get familiar with the construction and the use of numerical groundwater and transport models. In
addition, it can be used free of charge for academic purposes.

ASM is a finite differences model with a friendly graphical user-interface for data input and
output, the last allowing direct output in maps or diagrams or alternatively in data files. These data
files can be used in other software programs for further processing. ASM allows the simulation
of stationary or transient groundwater flow in two dimensions with advective and dispersive
solute transport. Aquifers can be confined (vertical and horizontal plane models) or unconfined
(horizontal plane models only). ASM allows the construction of a model of up to 150 x 150 cells
and 1000 time periods with different pumping rates for wells. A time-dependent groundwater
recharge can be implemented. Additionally, a leakage option allows the modeling of leaky aquifers
as well as the interaction between surface waters and aquifers, whose contact is limited, e.g., by
a colmation layer.

ASM comprises a finite-difference flow model including a tool for its automatic calibration
(steady state model), a random walk particle tracking model (based on Ito-Fokker-Planck the-
ory), and a finite differences transport model, which can be used alternatively for transport
modeling. The finite differences flow equations are solved by the PCG (preconditioned conjugate
gradient) method using alternatively diagonal or Cholesky preconditioning. Particle tracking (for-
ward and backward particle tracking) uses different velocity interpolation methods and applies
Euler-integration to calculate flow paths and travel times.

Additional tools include (1) a result extractor to extract simulation results (e.g., hydraulic heads,
drawdowns, Darcy velocities, leakage terms and concentrations) from any period to a spread
sheet, (2) a field interpolator to create contour maps or solid fill plots of input data and simula-
tion results, (3) a field generator using Mejia’s algorithm, can be used to generate fields of hetero-
geneously distributed hydraulic conductivity or tansmissivity values in order to statistically sim-
ulate the influence of unknown small-scale heterogeneities, (4) a water budget calculator, which
can be used to calculate the water budget of user-defined zones and the corresponding exchanged
water volumes between these zones, and (5) a graph viewer for output of temporal changes of
hydraulic heads, drawdowns, and concentrations in previously defined observation points.

Several of the examples presented in this book were solved by using ASM. However, they can
be easily solved using the same data and other modeling software.

6.8.4 SUTRA

The classical public domain modeling program SUTRA (Saturated Unsaturated TRAnsport),
is applied using its 2-dimensional modeling code in several examples of the book, which are
complex and require the simulation of groundwater flow coupled with solute and heat transport
considering varying fluid density and viscosity. SUTRA, which can also be used in a 3-dimensional
mode (SUTRA3D; Voss and Provost 2002), has been used because of its clear structure and its
worldwide use in many applications since its publication in 1984. It exhibits high efficiency, and
the clear structure of the program code makes modifications easy.

SUTRA was developed by Voss (1984) from the US Air Force Engineering and Services Center
and the US Geological Survey. It can be used to simulate water movement in the saturated and
the unsaturated porous matrix with a coupled transport of solutes or heat.

The independent flow and transport equations are solved by a combination of a two-dimensional
hybrid finite-element and integrated-finite-difference method. In the flow equation, it is con-
sidered that fluid density and viscosity are functions of temperature, pressure, and solute
concentration. The parameter functions of these dependencies can be programmed by the user.
Boundary conditions, sources, and sinks may be time-dependent.

Solute transport is limited to a single reacting species and accounts for solute sorption (lin-
ear, Freundlich or Langmuir equilibrium isotherm), zero- and first-order decay, and zero-order
production, dispersion, and molecular diffusion.
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The heat transport comprises: (1) conductive heat transport in both the solid and fluid, and
(2) advective heat transport in the fluid, which can be divided in free convection (due to
temperature dependent fluid-density differences) and forced convection (due to water flow).
Heat fluxes through the model boundaries can be advective by groundwater flow or by pure
conduction.

SUTRA uses quadrilateral finite elements, in cartesian or cylinder coordinates, which allows
great flexibility in covering highly irregular model areas. Pinch nodes can be inserted for local
refinement of the mesh. Anisotropy of permeability and heterogeneity with respect to most flow
and transport parameters is considered. Areal and cross-sectional models of both confined and
phreatic aquifers can be constructed.

Storage coefficient, effective porosity, extension of the elements in the third dimension (per-
pendicular to the model area), and hydraulic permeability can vary in each element or node.
If needed, the time-dependent parameters such as pressure, temperature, solute concentration,
in- and outflux of fluid, sources and sinks of heat and solutes may be programmed by the user as
a function of time.

A graphical post-processor, SUTRA-PLOT, is distributed by IGWMC with SUTRA. SUTRA-
PLOT uses SUTRA input and output files and can be used to draw the finite element mesh with the
model boundary, fluid velocity vectors, and contours of pressure, saturation, concentration, and
temperature. Other commercial contouring programs are also available to display the simulation
results.

6.8.5 Visual MODFLOW

Visual MODFLOW is a professional computer program that numerically solves the three-
dimensional groundwater flow equation for a porous medium and solute transport modeling.
MODFLOW is the most complete and easy-to-use modeling environment for practical applica-
tions in three-dimensional groundwater flow and contaminant transport simulations. MODFLOW
was originally developed by the U.S. Geological Survey and released to the public domain in 1983.
This code was eventually updated to conform to the Fortran 77 programming language. As with
most computer programs that are used over a long time period, MODFLOW underwent several
overall updates. The first commercial version of MODFLOW was originally documented and
released in 1984. The second revised version of MODFLOW was referred to as MODFLOW-
88 and released to the public domain in 1988. The third version was called MODFLOW-96.
MODFLOW-2000, 2001 and 2002 were developed to facilitate the addition of multiple types
of equations. When writing this book, the newest version is Visual MODFLOW 2009.1 and is a
product of Schlumberger Water Services (Schlumberger 2009a). Ease of understanding continues
to be included as an objective of the design of the code.

The partial-differential equation of groundwater flow described in chapter 4 is solved in MOD-
FLOW by using the finite-difference method (chapter 5). This equation, when combined with
boundary and initial conditions, describes transient three-dimensional groundwater flow in het-
erogeneous and anisotropic aquifers, provided that the principal axes of hydraulic conductivity
are aligned with the coordinate directions. The groundwater flow system is divided into a grid
of cells. For each cell, there is a single point, called a node, at which head is calculated. The
finite-difference equation for a cell is solved using the concept of hydraulic conductance.

Visual MODFLOW 2009.1 is a suite of environmental software applications engineered for
aquifer data management and analysis, modeling and simulation, visualization, and reporting,
maximizing productivity and minimizing the complexities associated with groundwater and envi-
ronmental projects. Applications include well head capture zone delineation, pumping well
optimization, aquifer storage and recovery, groundwater remediation design, simulating natu-
ral attenuation, and saltwater intrusion. Visual MODFLOW is a complete, and user-friendly,
modeling environment for practical applications in three-dimensional groundwater flow and con-
taminant transport simulation. This fully integrated package combines powerful analytical tools
with a logical menu structure and easy-to-use graphical tools making possible to:
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Quickly dimension the model domain and select units.

Conveniently assign model properties and boundary conditions.

Run model simulations for flow and contaminant transport.

Calibrate the model using manual or automated techniques.

Optimize pumping and remediation well rates and locations, and visualize the results using

2D or 3D graphics.

o Simulate the effect of fluid viscosity variations and simulate fluid density as a function of
temperature.

e Specify non-linear equations to represent the dependence of viscosity on temperature.

The model input parameters and results can be visualized in 2D (cross-section and plan
view) or 3D at any time during the development of the model or the displaying of the results.
A temperature species can now be added when defining a new transport variant, allowing sim-
ulating heat and solute transport simultaneously. In previous versions of Visual MODFLOW,
simulation of pumpage by wells was limited to withdrawal at specified rates from individual
cells. With the new version it is possible to simulate intraborehole flow in wells with screens that
span multiple layers. The following features have been implemented for this version:

e Head loss is defined with skin parameters for the well screen.

e Linear and nonlinear head loss.

e Different options for each well, including partially penetrating wells, pumping and observation
wells.

e Import concentrations from a text file.

e Pumping well optimization.

e Minimizing the mass removal and the pumping/treatment cost of a pump-and-treat groundwater
remediation system while maintaining capture of a contaminant plume.

e Minimizing pumping costs of a dewatering system while maintaining head levels below
excavated areas.

e Maximizing mass removal rates; maximizing the pumping rate at one or more water supply
wells while maintaining a minimum drawdown level in the aquifer or the concentration of an
identified pollutant below a specified level.

For numerical solution of the advection-dispersion transport equation, the transport engines
provide the following solution methods:

e The particle-tracking based Eulerian-Lagrangian methods: method of characteristics (MOC),
modified method of characteristics (MMOC) and hybrid MOC/MMOC (HMOC).

e Standard finite-difference methods: upstream finite difference (UFD), central finite difference
(CFD).

e The higher-order finite-volume TVD method.

No single solution method has been shown to be effective for all transport conditions. The
combination of these solution methods, each having its own strengths and limitations, is believed
to offer the best approach for solving the most wide-ranging transport problems with desired
efficiency and accuracy. A brief description of all the above solution methods, and their advan-
tages and disadvantages is found in the user’s manual of this software (Schlumberger 2009a).
It provides an introduction to all these solution methods, and a discussion and comparison of
their relative strengths and limitations with emphasis on their implications in solving practical
problems.

6.8.6 Processing MODFLOW for Windows (PMWIN)

PMWIN (Processing Modflow for Windows) is a very powerfull freely available platform for
modeling groundwater flow and solute transport which integrates the public domain programs
MODFLOW, PMPATH, MT3D and MT3DMS, MOC3D, PEST2000 and UCODE (Chiang
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and Kinzelbach 1998a, Chiang 2005, Chiang and Kinzelbach 2006, http://www.pmwin.net).
It was developed by Kinzelbach and Chiang and can be downloaded for free from
http://www.ifu.ethz.ch/publications/software/pmwin. It includes a detailed manual (Chiang and
Kinzelbach 1998a) and there are about 3000 pages of reference material available.

The PMWIN software package combines PMWIN code and all the supported models (i.e.,
MODFLOW, MT3D, MT3DMS, MOC3D, PMPATH for Windows, PEST2000, and UCODE).

PMWIN integrates the 3D finite differences groundwater-flow model MODFLOW (see
section 6.8.5) with its alone-standing modules whose principal capacities are resumed in the
following (for details see Chiang and Kinzelbach 1998a, Chiang 2005, Chiang and Kinzelbach
2006):

e PMPATH (Chiang and Kinzelbach, 1994, 1998b) can be used to model the advective transport
by using a semi-analytical particle tracking scheme (Pollock 1988) which allows forward and
backward particle tracking. Pathlines or flowlines are calculated and can be displayed together
with travel time markers, optional hydraulic head contours and groundwater flow velocity
vectors.

e MT3D (Zheng 1990) and MT3DMS (Zheng and Wang 1998) allow the modeling of solute
transport for the case that the solute does not significantly affect the groundwater flow field,
so that the groundwater flow model can be established independently (using the MODFLOW
code) from transport and used after its calibration for transport modeling which uses the results
of the flow model calculated with MODFLOW. MT3D can simulate the transport of single
species solutes in groundwater considering advection, dispersion and chemical reactions, which
are limited to equilibrium-controlled linear or non-linear sorption, and first-order irreversible
decay or biodegradation. MT3DMS, which is a further development of MT3D allows multi-
species solute transport modeling.

e The MOC3D (Konikow et al. 1996) simulates the solute transport for a single species con-
sidering advective transport, hydrodynamic dispersion and simple chemical reactions, such
as decay and linear sorption. MOC3D uses the characteristics method, which applies particle
tracking, to solve the transport equation using the hydraulic gradients computed by MOD-
FLOW. By applying MODFLOW as a built-in function, MOC3D can be modified to simulate
density-dependent flow and solute transport.

e PEST (Doherty ef al. 1994) and UCODE (Poeter and Hill 1998) are used for parameter esti-
mation and model calibration. The codes allow to adjust model parameters and/or aquifer
excitation data in order to minimize the differences between the model-generated numbers and
the data observed in the field.

PMWIN comprises a state-of-the-art graphical user-interface, which allows a very user-friendly
model construction with up to 80 layers and 250,000 cells in each model layer, and enables a
professional output of the modeling results. Import and output of DXF-files permit the coupling
to GIS Systems and other mapping software such as Autocad-Map.

6.8.7 FEFLOW (Finite Element Subsurface Flow and Transport Simulation System)

FEFLOW is an advanced Finite-Element subsurface FLOW and transport modeling system with
an extensive list of functionalities, including variably saturated flow, variable fluid density mass
and heat transport, and multi-species reactive transport. It has been established worldwide as a
leading commercial software for modeling porous and fractured media. FEFLOW supports an
impressive array of features of interest in subsurface flow and transport and is well documented, in
terms of both peer-reviewed papers in the scientific literature and a comprehensive set of manuals
and white papers. The program has been under development since 1979 by the Institute for Water
Resources Planning and Systems Research Inc. (WASY GmbH) of Berlin, Germany, which has
recently become a part of DHI Group.

FEFLOW contains pre- and post-processing functionality and an efficient simulation engine.
A user-friendly graphical interface provides easy access to the extensive modeling options.
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FEFLOW—in contrast to some of the competing products—is not a graphical front end for a
separately developed simulation kernel. It is a completely integrated system from simulation
engine to graphical user interface. It also includes a public programming interface for user code.
For more information, see http://www.feflow.info. Key features of the software system are listed
there in detail.

The following properties are emphasized:
Basics:

Finite element method (FEM) for 3D and 2D (horizontal, vertical and axisymmetric plane),
transient and steady-state problems.

Modern GUI: interactive graphics, 3D and 2D visualization (openGL accelerated) with multiple
simultaneous views and mouse/panel navigation.

Data interfacing to GIS and CAD.

Programming interface (C, C++).

Multiple platforms: Windows and LINUX/UNIX.

Parallel computing and 64-bit technology.

Flow:

Darcy flow in porous media.

e Variably saturated flow with analytical formulae (such as van Genuchten/Mualem, Brooks-

Corey, exponential and others) or full spline approximation (including a sophisticated spline
formula editor to fit measured data) for retention and relative conductivity curves with and
without hysteresis.

Anisotropic hydraulic conductivity can be specified via axis-parallel, layer-oriented or full 3D
anisotropy.

e Free surface flow modeled with fixed and moving mesh strategies.
e Variable-density flow: Boussinesq and extended Boussinesq approximations are selectable.
e Fracture flow with different laws of fluid motion: Darcy, Hagen-Poiseuille or Manning-

Strickler.
Mass transport:

Advection-dispersion solute transport with (Henry-, Freundlich- and Lagmuir-type) sorption
and chemical reaction.
Single-species solute transport.

e Multi-species solute transport for mobile and immobile species.
e Reaction kinetics formula editor to specify rate expressions in a comprehensive manner coupled

with a fast formula code interpreter.

e Density-dependent transport (e.g., saltwater intrusion), free and mixed convection.
e Double or multi-diffusive convection phenomena.
e Dispersion can be modeled either by a linear Fickian law or by a nonlinear non-Fickian law,

useful for brine transport under high-concentration gradients.
Fracture mass transport.

Heat transport:

Advection-conduction heat transport.

e Free, forced, and mixed convection processes: Variable fluid density expansion for temperature

effects is capable of solving large temperature ranges (including 4°C anomaly of water).
Temperature- and mass-dependent fluid viscosity with a comprehensive viscosity formula
editor.

Thermohaline (coupled flow-mass-heat) convection.

Borehole heat exchanger (BHE) modeling based on analytical and numerical solution strategies
suited for single boreholes and arrays of BHE.

Fracture heat transport.
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Mathematical/numerical qualities:

e Flexible meshing: For 3D hexahedral and pentahedral elements of a trilinear and triparabolic
approximation, for 2D quadrilateral and triangular elements of a bilinear and biparabolic
accuracy are available.

e A fully adaptive meshing is provided for 2D based on mesh refinement and derefinement
(AMR) techniques to enhance the reliability of the numerical simulation.

e Different time marching schemes can be chosen: Automatic time stepping schemes based on
a predictor-corrector time integrator for second order (Adams-Bashforth/trapezoid rule) and
first order (forward Euler/backward Euler) accuracy as well as Crank-Nicolson or fully implicit
schemes at fixed (user-defined) time increments.

e Fast and stable equation solvers for large problems (among others: preconditioned conjugate
gradient and algebraic multigrid solvers).

e Various upwind techniques are available to stabilize convection-dominated transport equations
(e.g., streamline upwind, shock capturing, and PGLS).

e Parallel assembly of finite element matrices based on domain decomposition.

e Various types of boundary conditions can be specified. They can be time-constant or time-
dependent. Specific boundary conditions refer to multi-layer well, BHE, integral flux, seepage,
surface ponding and gradient-type conditions.

e Each boundary condition can be combined with constraints to formulate interrelated conditions
(e.g., seepage faces, surface ponding or outflowing boundary conditions). Constraints can be
time-constant or time-dependent (e.g., used for boundary conditions moving in space and time).

e Optionally, all material properties can also be time-dependent.

e Formula editor can be used to specify relationships for sink/source terms (e.g., implementing
user-defined groundwater recharge formulae).

e Nonlinearities occurring in density and viscosity coupling phenomena, for unsaturated prob-
lems, free surface conditions, boundary constrained conditions and/or nonlinear adsorption or
reaction kinetics are treated via Newton or Picard iterative techniques.

e Particle tracking methods for transient and steady-state flow fields in 3D and 2D.

The advanced interactive graphical working environment, the integration of powerful and
modern numerical techniques together with tools highly useful in ‘daily’ handling of data
and computational results, the network-based implementation, the power in parallel computing
and the open data interface concept make FEFLOW very attractive in practice and research. The
features of the package allow the solution of very complex and large problems. FEFLOW is
continuously further developed and improved. Service and support of the package are worldwide.

6.8.8 TOUGH, TOUGHREACT and related codes and modules

The codes of the TOUGH family allow numerical simulations in a wide field of non-isothermal
flows of multiphase, multi-component fluids in porous or fractured media with principal applica-
tions in geothermics, environmental remediation and nuclear waste disposal. The actual TOUGH
(“Transport Of Unsaturated Groundwater and Heat”) codes were developed by Karsten Pruess at
the Earth Sciences Division of the Lawrence Berkeley National Laboratory (LBNL) in Berkeley,
California, at the beginning of the 1980s. The original MULKOM code implemented the fact that
the governing equations for non-isothermal flows of multi-component and multiphase fluids are
of the same mathematical form. This code served for multiple tests and allowed the development
of TOUGH and TOUGH?2 codes which are based on the integrated finite differences method (or
finite volume method, section 5.3). The TOUGH code, which was released in 1987, is a reduced
version of MULKOM for two-phase flow of water-air mixtures (Pruess 1987), whereas TOUGH2
code which was released in 1991 is a more comprehensive subset of MULKOM modules (Pruess
1991).

TOUGH2 allows the simulation of non-isothermal flows of multi-component, multiphase
fluids in porous and fractured media in one, two, and three-dimensions. Main application
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fields are in geothermal reservoir engineering, nuclear waste disposal, environmental assess-
ment and remediation, geologic storage of greenhouse gases, and unsaturated and saturated
zone hydrology. Later, TOUGH2 was updated to TOUGH2 version 2.0 (Pruess et al. 1999).
Detailed information and updates of this code can be found at the homepage of the program:
http://www-esd.Ibl.gov/TOUGH2/. Written in Fortran 77, version 2.0 features several new fluid
property modules and offers capabilities, such as coupled reservoir-wellbore flow, precipitation
and dissolution effects, and multiphase diffusion. There are several modules or extensions of
TOUGH?2, which focus on environmental contamination problems with non-aqueous phase lig-
uids (NAPLs) such as T2VOC module for three-phase flows of water, air and a volatile organic
chemical (VOC) (Falta et al. 1995), the T2DM module for hydrodynamic dispersion in 2-D flow
systems and TMVOC (Pruess and Battistelli 2002). These modules are included in the Version 2.0
package. The code iTOUGH2 allows inverse modeling, optimization, and sensitivity and uncer-
tainty analysis (Finsterle 1999) whereas TOUGH-FLAC couples TOUGH2 with the commercial
rock mechanics code FLAC3D (Rutqvist and Tsang 2002).

The code TOUGHREACT couples TOUGH2 Version 2 with a general chemical speciation
and reaction progress package (Xu and Pruess 2001, Xu ef al. 2006). Detailed information about
this code can be found at the homepage http://www-esd.Ibl.gov/TOUGHREACT/. Written in
Fortran 77, TOUGHREACT allows simulations of chemically reactive non-isothermal flows of
multiphase fluids in porous and fractured media. It allows modeling of numerous subsurface
thermophysical-chemical processes under a wide range of pressure, temperature, water satura-
tion, ionic strength, pH and Eh. Mineral-fluid interactions can occur under local equilibrium or
kinetic rates and the gas phase can be chemically active. Rock porosity and permeability can be
variable as function of precipitation and dissolution reactions. Based on these facilities, the code
can be used for solving manifold geological and environmental tasks, including geothermal sys-
tems, groundwater quality, contamination and remediation, diagenetic and weathering processes,
subsurface waste disposal and acid mine drainage and sequestration of carbon dioxide in deep
aquifers.

6.8.9 STAR—General Purpose Reservoir Simulation System

The STAR reservoir simulation system (Pritchett 1995, 2002) has been in a state of continuous
development and elaboration since the mid-1970s. At present (2010) is the newest version. The
STAR codes were developed by John W. Pritchett at SAIC (Science Applications International
Corporation, http://www.saic.com). STAR solves the set of nonlinear partial differential equations
that describe the unsteady flow of fluid mass and of heat in heterogeneous rock formations. Most
of the code is written in the FORTRAN 77 computer language, compatible with FORTRAN 90,
with a few special-purpose components written in “C”. The code uses a fully implicit iterative
line-successive-relaxation technique to simultaneously solve the highly nonlinear equations
expressing the overall heat balance and multi-component, multiphase mass conservation rela-
tionships. Rock models available include the conventional “porous-medium” representation and
the “MINC” model for flow in fractured rock systems. The principal applications for which
STAR is intended are (1) geothermal reservoir simulation, (2) simulation of enhanced oil recov-
ery (EOR) by steam- or hot-water-flooding, and (3) sequestration of carbon-dioxide in saline
aquifers. The STAR simulator can operate in one-dimensional slab, cylindrical or spherical
geometry, two-dimensional cartesian or axisymmetric geometry, or three-dimensional cartesian
geometry. Considerable flexibility is provided for imposing various grid shapes, different types
of boundary conditions, and realistic earth structure upon the finite-difference grid used. Advec-
tion of mass and energy are treated using a technique which is second-order accurate in space to
minimize numerical dispersion effects. The term “phase” denotes one of the immiscible phases
occupying the void spaces within the rock matrix (solid precipitates, oil, water, or gas) and the
term “component” denotes a particular chemical species or mixture, such as H,O, CO;, air,
NaCl, etc. The number of components that may be treated is in principle unbounded.
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Choice of the equation-of-state package for use in the STAR calculations is determined by
the specific application of interest (geothermal, carbon-dioxide sequestration, heavy oil). Fluid
constitutive packages for geothermal applications include (1) single-phase, single-component,
liquid water, (2) two-phase, single-component H, O (water/steam), (3) two-phase, two-component
liquid water/dissolved ideal gas/free ideal gas mixtures, (4) two-phase, two-component H, O/CO,
mixtures with steam mixed with free CO; as the gas phase and water with dissolved CO, as the
liquid phase, (5) two-phase, two-component liquid brine/CHy4 mixtures with free CHy as the
gas phase and water with dissolved NaCl and CHy4 as the liquid phase, and (6) three-phase,
three component H,O/CO,/NaCl mixtures with steam mixed with free CO, as the gas phase and
including the possibility of a solid precipitate (third phase). For hot water and steam-flooding
EOR applications, available fluid constitutive packages are (1) three components (H,O, heavy
hydrocarbon, light hydrocarbon) and three phases (oil, water, gas), and (2) two components (H,O
and heavy hydrocarbon) and three phase (oil, water, gas).

An optional capability exists in STAR to treat tracers. The simulator permits the rock matrix to
deform due to pore pressure and temperature, prior pressure history, and the sign of pore pressure
change. Two different representations for production/injection wells are available in STAR. Both
techniques use approximate methods to simulate the subgrid multiphase flow in the immediate
neighborhood of the well. In the first representation, individual wells are treated, allowing flow
between any given well and multiple computational grid blocks (or “layers”). The allocation of
the flow among the various blocks is computed automatically. The STAR simulator system is also
equipped with several special-purpose mathematical postprocessors.

6.8.9.1 RIGHTS: Single-phase geothermal reservoir simulator

There are many situations in which the fluid flow is single phase and the required calculations may
be accurately treated and the computational costs significantly reduced by using SAIC’s RIGHTS
simulator which invokes the Boussinesq approximation. This approximation neglects fluid com-
pressibility effects; the density of the fluid is assumed independent of pressure and depends
only upon temperature and salinity. RIGHTS is a third generation simulation system for natural
state modeling of liquid-dominated hydrothermal systems, reservoir response to geothermal fluid
production/injection and energy storage applications.

6.8.9.2 DIAGNS: Well test data diagnostics and interpretation

DIAGNS is SAIC’s PC-based tool for interactive analysis of pressure transient data from geother-
mal wells. The code has four major modules: PREPROC for preprocessing and conditioning flow
and pressure data, DECON for calculating pressure response for unit flow rate using measured
flow rate and pressure histories, TYPE for computing formation properties using traditional type
curves, and INVERT for computing formation properties using field data and a variety of math-
ematical models. Each module is a freestanding interactive program that reads (and stores) data
from a common database.

6.8.9.3 GEOSYS: Data management and visualization system

GEOSYS is a PC-based interactive, graphical, map-oriented computer system used to store,
display and analyze large volumes of geothermal reservoir engineering data. The program provides
access to all of the data that are collected related to a particular geothermal reservoir, and allows
interactive extraction and display of these data in a wide variety of formats. More specifically, it
allows storage, retrieval, and analysis of geographical data, well drilling data, well log data, well
test data, production (chemical and flow) data, and multi-survey microgravity and self-potential
data. GEOSYS also allows the user to display overlays of well locations, faults, and surface
features on maps or topographic images.
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6.8.10 COMSOL Multiphysics

COMSOL Multiphysics® (COMSOL 2008a) is a powerful interactive environment for modeling
and solving many kinds of scientific and engineering problems based on partial differential
equations (PDEs), by using the finite element method. With this software, it is easy to extend
conventional models for one type of physics into multiphysics models that solve coupled physics
phenomena simultaneously. With the built-in physics modes it is possible to build mathematical
models by defining the equations and the relevant physical quantities, such as material properties,
loads, constraints, sources, fluxes and boundary and initial conditions. COMSOL Multiphysics
then internally compiles a set of PDEs representing the entire model. The user can access the power
of COMSOL Multiphysics as a standalone product through a flexible graphical user interface, or
by script programming in the COMSOL Script language. The software runs the finite element
analysis together with adaptive meshing and error control using a variety of numerical solvers.
COMSOL Multiphysics offers modeling and analysis power for many application areas. For
several of the key application areas this software also provides optional modules.

The Earth Science Module (COMSOL 2008b) is an optional package that extends the
COMSOL-Multiphysics modeling environment to quantitative investigation of geophysical and
environmental phenomena. This module contains a set of application modes adopted for a broad
category of simulations important in investigating the earth, which makes up a giant laboratory
filled with an unlimited array of basic physics and multiphysics interactions. It is designed for
researchers, engineers, developers, teachers, and students and suits single physics and interdisci-
plinary study. The contents of the Earth Science Module are a set of fundamental building blocks
with which to pose and answer a wide array of physics questions. It is possible writing the own
user’s code, using the Earth Science Module as a springboard to learn and to explore a rich variety
of physics modeling.

The Earth Science Module Model Library contains write-ups and documentation for a number
of geophysical and environmental scenarios. In this library, the example models fall into five
groups: fluid flow, solute transport, flow and deformation, heat transfer, and multiphysics. The
models typically involve one or more application modes from the Earth Science Module. Others,
such as the poroelasticity and electrokinetic volcano flow examples, utilize other application
modes from elsewhere in COMSOL. The models serve as a reference and also provide a head
start for particular analyses. The ready-to-run models come with theoretical background as well
as instructions that illustrate how to set it up. The model files can be freely modified, for example
changing the geometries and material properties, altering the equations, and adding new physics
to the file.

The model descriptions range in detail. The Earth Science Module User'’s Guide covers the
equation set up, offers some insights on the underlying physics, and includes some fundamental
modeling techniques for each application mode. The interfaces, options, and functionalities in this
module have been tailored especially to account for geologic processes terms. The heat transfer
application modes also include options to automate the calculation of effective thermal properties
for multicomponent systems. The fluid flow equations represent a wide range of possibilities.
Included are Richard’s equation which describes nonlinear flow in variably saturated porous media.
The options for saturated porous media include Darcy’s law for slow flow and the Brinkman
equations where shear is non-negligible. The Navier-Stokes equations cover the free flows. The
transport of chemicals and their reactions is also treated in the module. The solute transport
application modes account for chemical transfer in solid, liquid, and gas phases for the free,
saturated, and variably saturated fluid flows. A number of the examples in the model library link
these application modes together.

6.9 CALIBRATION, VALIDATION AND SENSITIVITY ANALYSIS

Once the conceptual model has been converted to a grid-based numerical model, simulations
can be carried out. However, before these can be used to simulate the future behavior of the
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real aquifer system, the numerical model must be calibrated and validated. To that end, the
model can be run to compare its simulation results against benchmarks numerical simulations or
known field data on past water levels, and distributions of solute concentrations or temperatures.
For practical reasons, the historical record used for calibration and validation is divided in two
portions. For the first sub-period, calibration is performed with refinement of model parameters,
whereas for the second the relevance of the calibrated model is checked through sensitivity
analysis. Only a good calibration and validation gives confidence that the model is producing
simulation results that are faithful to real-world conditions and that predictions of future water
levels and/or distributions of solute concentrations or temperatures in groundwater will be reliable.
Particular care must be taken with this step of elaborating numerical models. Calibration and
validation of groundwater models is examined in detail, e.g., in the book of Hill and Tiedemann
(2007).

6.9.1 Model calibration

The previously elaborated conceptual model is based on many assumptions and the spatial distri-
bution and/or temporal variations of parameter values are based on discrete measurements. So,
the exact values of the different parameters in the model domain may be quantified with varying
degrees of confidence. Leakage coefficients, groundwater recharge by rainfall and irrigation,
effective porosity, dispersion coefficients, and retardation factors are generally more difficult to
know with precision as compared to the values of hydraulic conductivity (or transmissivity) and
storage coefficients.

The calibration of a numerical groundwater flow and transport model is performed by vary-
ing the values of one or more of the model parameters and optimizing them, until agreement
between simulation results and values measured in the field is obtained with acceptable preci-
sion. Hence, parameter value estimation can be used synonymously with calibration (see also
chapter 7).

Since different combinations of parameter values can be used to obtain a calibrated model, there
is no unique solution of the parameter-estimation problem. The existence of multiple solutions
demands that great emphasis be placed on obtaining the most accurate field data possible. It is
helpful if the value ranges of different parameters are known, and if their impact is known, the
most important ones can be selected to be considered for calibration and delimit solutions to those
fitting best for the field example.

Depending on model type, the calibration involves estimation of different parameters. For
the calibration of stationary groundwater models, hydraulic conductivity (or transmissivity),
groundwater recharge, and boundary fluxes are principal parameters for estimation. Thereby,
the total water balance of the calibrated model domain must become zero (the total volume of
inflowing water should be equal to the total volume of outflowing water). In the case of transient
groundwater flow models, additionally the storage coefficient can be used as calibration parame-
ters. Here, responses of hydraulic head to pumping tests or other aquifer stimulations can be used
for calibration purposes.

In the case of transport models, at the first stage, a calibrated groundwater flow model should
be established, which is then used for calibration using transport parameters as effective porosity,
solute and heat sources, etc. The groundwater flow model can be re-calibrated accordingly to
the transport model if it is needed, until the required accuracy is achieved. Calibration can be
performed manually by parameter variation (trial-and-error method) or using automatic calibra-
tion tools provided by some of the existing modeling programs e.g., UCODE of the USGS and
PEST.

In automatic methods, the optimization process is an intrinsic procedure, whereas in the trial-
and-error method, the fitting is performed post factum. In inverse models, an inverse modeling
routine will adjust input parameters and run the simulation repeatedly until agreement between
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simulated and observed field data is obtained within a specified precision. Parameter estimation
or solving the inverse problem through automatic model calibration is discussed separately in
chapter 7.

The quality of the calibration, and therefore the accuracy of the model, can be expressed by
comparing observed and simulated results in a diagram where observed values are plotted on
one, and simulated values on the other axis (e.g., for hydraulic head, example see Figure 6.8). In
these so-called scatter plots, the closer the heads fall on the straight line, the better the model is.
Different statistical methods can be used for quantifying the deviation between observed and field-
measured data such as the sum of squared residuals, residual mean, residual standard derivation,
absolute mean error, and root mean squared error (see e.g., Thangarajan 2004).

In the example, a calibration shall be performed manually (trial-and-error method). From
the regional water balance it is known that groundwater recharge through rainfall is of minor
importance, and that hydraulic permeability and aquifer base height are well known parameters
in comparison to boundary flow. For this reason, the model should be calibrated using boundary
flow as the main calibration parameter. By varying boundary flow (for cells with boundary flux
see Figure 6.7a), the optimal boundary flow has to be determined so that simulated and measured
hydraulic heads of the model area are as similar as possible. In Figure 6.8 for all piezometer
sites, the simulated hydraulic heads are compared with the hydraulic heads observed in the
field (scatter plot) for the principal calibration steps indicated below (intermediate calibration
steps were performed, but are not shown) and the deviation of the obtained points from the line
Nobserved = Hsimulated €Xpressed as MSD (mean square deviation) is quantified. In Figure 6.9,
the simulated hydraulic heads are plotted on the map of the model area and additionally, the
differences between simulated and real hydraulic heads (interpolated from values measured in
the piezometers) are shown.

Using initial Kz values with zone values corresponding to mean values of the respective
Kpy-ranges, a first numerical simulation is performed with a boundary flux of Oy = 0 m3/s
per boundary cell (1st calibration step, Figs. 6.8a and 6.9a). The results show relatively good
agreement between simulated and measured hydraulic heads for the topographically low areas,
whereas in the higher-located areas (close to the mountain range), the simulated / values are
several meters lower than the measured values.

These results from calibration step 1 call for introduction of a boundary flux coming from the
mountain range and entering the model area in the NW. In a second calibration step, Oy was
therefore set equal 0.01 m3/s per boundary cell (Figs. 6.8b and 6.9b). The simulation results are
approaching the measured / values, but are still too low in the area near to the mountain range.
A further approximation with Qy = 0.05 m3/s (step 3; Figs. 6.8c and 6.9¢) was too high, and
some intermediate steps resulted in a best approach for Oy = 0.035 m>/s (step 4; Figs. 6.8d
and 6.9d).

Until now, the Kz values were held constant. Now Ky values (within the given Ky ranges) will
be modified to further improve the calibration. After intermediate steps the best approximation for
K values shown for step 5 is obtained (Figs. 6.8e and 6.9¢). Now again, Oy is readjusted and the
best results for Oy = 0.035 m?/s per boundary cell is obtained (step 6; Figs. 6.8f and 6.9f). This
procedure can be continued until the desired maximum permitted error is obtained. In this case
the differences between simulated and measured hydraulic heads are less than 20 cm in the entire
model area (with exception of one measurement point near the river). So, the steady-state model
can be considered as calibrated and accurate enough for prognosis according to the desired tasks.

6.9.2 Model validation (history matching)

As already mentioned in section 6.9.1, the selection of the parameter values and boundary con-
ditions, which have been used for calibrating does not result in a unique solution, since other
combinations of parameter values and boundary conditions may result in the same solution.
Therefore, the calibrated model needs to be validated by history matching, in which the model
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Figure 6.8. Regional groundwater flow modeling example: Comparison between measured and computed
hydraulic heads for different calibration steps (Scatter plots); MSD (mean square derivation)
quantifies the difference between modeled hydraulic heads and observed hydraulic head data;
Ky is the hydraulic conductivity of the zones Z1 to Z9 and Qy the boundary flux per each of
the 31 boundary flux cells.
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Figure 6.9. Simulation results of calibration steps: (a) Step 1: Qy = 0 m3/s; (b) Step 2: Oy = 0.01 m3/s;
(c)Step 3: Qy = 0.05m>/s; (d) Step4: Oy = 0.035m>/s; () Step 5: Oy = 0.35m>/s; (f) Step 6:
Oy = 0.034 m3/s (values per boundary flux cell); Hydraulic conductivity K is constant for
steps (a—d) and for (e—f), respectively.

is tested for some period in the past to prove whether the simulation results reproduce the known
historic changes well enough: aquifer responses to pumping tests, changes of flow conditions,
hydraulic heads, solute concentrations, or temperatures. For this purpose a time interval is used,
which was not considered for the calibration process itself. If the model can be successfully
validated, it is ready for predictive simulations. If it cannot be validated, then another concep-
tual model needs to be selected, or further calibration refinement with improved field data is

required.
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Figure 6.9. (Continued)

6.9.3  Sensitivity analysis

A sensitivity analyses is a systematic test to evaluate how changes in the parameters of a model
affect the modeling results. Different parameters of the model are changing over a characteristic
range, which is set by prior knowledge of the behavior of the parameter in the real world. The
possible variations in the parameters are given by the uncertainty of the parameter observed in
the field (see also section 6.12.1). The observed relative change in the model response in terms
of the dependent variables (e.g., the hydraulic head, fluid flow rate, solute or heat flux), defines
the most influencing parameters. Parameters for which the model is more sensitive require more
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Figure 6.9. (Continued)

exact determination compared to others. It may be helpful to perform a preliminary sensitivity
analysis before model calibration.

6.10 PERFORMING NUMERICAL SIMULATIONS

After all of the previous steps are complete, the numerical model can be used for making predic-
tions and to answer the questions of our model. It can simulate and predict problems such as how
groundwater extraction from wells or reduced groundwater recharge by reduced rainfall during
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Figure 6.10. Capture zone for a drinking water well for different exploitation rates from a well field delimited

by the outermost pathlines; time makers every 5 years: (a) Qpwen = —0.4; (b) —1.0; (c)
—0.7 m3/s. Additionally, the plot of the drawdown of the water table caused by exploitation in
the wellfield versus the natural initial groundwater table levels.

drought periods will influence local and regional water levels. It can predict propagation of con-
taminant plumes in aquifers, and heat transport in geothermal reservoirs. In this way, optimizing
groundwater exploitation, remediation of contaminated aquifers, and optimizing exploitation of
geothermal fields will be possible.

In the example, it shall be investigated whether a well field can be established at the site
indicated in Figure 6.10. The question is whether contaminated water originating in the landfill
can reach the well field and what would the maximum allowable exploitation rate be in order to



Procedure of a numerical model elaboration 271

c — Simulated hydraulic head (m a.s.l.)
“=— Groundwater flow path to well

Mountain range

5o
)
/'\55 \
’3;
o,e
N\
Water table drawdown Kz
caused by pumping (m)
[Jo-o05[J2-25 (
o551 []253
[0 1-1.5 []3-35 [] 445 [ 555 N
11521354 455 [0>55 ® Wel ¥ Landiilsite |

Figure 6.10. (Continued)

avoid that. Additionally, to obtain permission to exploit the field, the depression of the natural
groundwater level caused by the withdrawal may not exceed 3.5 m outside an area delimited by
a circle with a radius of 3 km around the well field.

This task can be solved using the previously calibrated numerical model and performing a series
of numerical simulations using different exploitation rates Qy e for the well field. Figure 6.10
shows the capture zone for the well field for different exploitation rates. Simulations are performed
for an effective aquifer porosity of g = 0.08 and a retardation factor of R; = 1 (conserva-
tive tracer). Transversal dispersion of the contaminants is not to be considered. Additionally,
plotted on the groundwater flow paths are time markers (every 5 years) indicating travel times.
From the results generated varying Qpwell, @ maximum value of Qy ey = —0.7 m?3/s is estimated
as the maximum allowable withdrawal in the well field so that the landfill leachate does not come
into its catchment area. In addition, the second condition of avoiding a depression of more than
3.5 m outside of a radius of 3 km is also fulfilled for that withdrawal rate.

6.11 HOW GOOD IS THE MODEL? ASSESSING UNCERTAINTIES

Numerical modeling of groundwater systems is associated with many uncertainties. There are two
types of numerical model uncertainties, the uncertainty inherent to the selected conceptual model
and the uncertainty of the model parameter values. The conceptual model, on which the numerical
model is based, is a simplified description of the real field scale situation, which includes numerous
simplifying approximations and assumptions, especially those regarding aquifer geometry and
the estimated values of model parameters, sensitivity of variables, and the boundary locations
and initial conditions and their variations in space and time.

The model domain boundaries are a source of uncertainties: the location of boundaries may
shift through time or the boundary conditions (types) may change through time at the same
location. The conditions of the boundaries (e.g., specific hydraulic heads or solute concentrations,
boundary fluxes, etc.) may be functions of time. Boundary fluxes are difficult to measure and in
consequence often highly uncertain. The spatial distributions of the values of parameters may vary
over several orders of magnitude in a short distance. This behavior is caused by heterogeneities
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on hydraulic conductivity, Kz, storage coefficient, S, effective porosity, ¢esr, and dispersivity,
o, which all are approximated using discrete values from a few locations, where measurements
were performed in the field. If two-dimensional horizontal models are used, the values at each
point (in the horizontal plain) correspond additionally to an averaged value over the aquifer
depth. Other values of parameters depend not only on space but also on time (e.g., hydraulic
heads, groundwater recharge, solute concentrations, temperatures) and their uncertainty is due
to missing temporal data measurements, or if the time dependence of these parameters is not
recognized and considered, only the time-averaged values are used. Uncertainty is also related to
sinks and sources of fluids and solids, which may be functions of time, and the ascribed transport
mechanisms and transport parameters, including those describing processes of chemical reactions,
sorption processes and decay, which depend additionally on solid phase composition, geochemical
milieu, temperature, etc.

Different approaches have been developed to introduce uncertainty into the numerical mod-
eling to account for the uncertainty of input parameters and conceptual model uncertainty. The
evaluation of the conceptual model uncertainty in its predictive results is generally done by
performing simulations with the different models available and evaluating the range of predictions
obtained for the distinct models (e.g., Medina and Carrera 1996). The evaluation of the effect
of parameter uncertainty on the modeling results can be established by various methods, which
can be used to quantify the modeling result (prediction) uncertainty: Linear approximation, non-
linear approximation, and Monte Carlo methods (see e.g., Carrera et al. 2005). In the latter, the
various possibilities are represented in a large number of simulated realizations, and the statistical
parameters of the parameter distribution of results is obtained (e.g., Carrera et al. 2005). Other
approaches use stochastic models in which the various coefficients are represented as probability
distributions.

6.12 MODEL MISUSE AND MISTAKES

During the different steps of numerical modeling, different types of mistakes and misuses may
occur (see e.g. Mercer and Faust 1981, Mercer 1991). They can be divided into four groups:
(1) Improper conceptualization of the problem to be considered, (2) selection of an inappropriate
modeling code, (3) improper model application, and (4) misinterpretation of model results.

As already outlined, the first group, related to the elaboration of an accurate conceptual model
properly reflecting the groundwater flow and solute and heat transport processes is a prerequisite
for the elaboration of a suitable numerical model. If the conceptual model is wrong or not accurate
enough, then the obtained simulation results do not reflect the behavior of the natural system.
Principal mistakes during the elaboration of the conceptual model are predominantly related to
an improper delimitation of the model domain area (aquifer geometry, location of boundaries,
boundary types, and boundary values), wrong assumptions regarding homogeneity, isotropy
and hydraulic parameters of the aquifer (and their respective spatial distribution and variation
through time), wrong assumptions regarding the occurring transport processes, and an unsuitable
selection of dimensionality (e.g., using a two-dimensional model, where a three-dimensional
model is required).

With respect to the second group, it often can be observed that the modeler is using a highly
sophisticated model program in situations, in which such a model is not required because there
are not enough field data to support it or because the objectives do not require it.

Improper model applications occur if improper input data are used, and if the mesh or grid
size and the intervals of the time steps are not properly selected. Also, sometimes the chosen
model codes are not compatible with the chosen conceptual model. During model calibration the
selection of unsuitable calibration parameters, calibration periods, and the use of a model that was
calibrated under different conditions from those of the modeling time interval generate additional
mistakes. These mistakes can lead to wrong results and incorrect interpretation of the modeling
results.
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6.13 EXAMPLE OF MODEL CONSTRUCTION—ASSESSMENT
OF THE CONTAMINATION OF AN AQUIFER

In the following we present an idealized example, where we show the stepwise procedure of a
modeling approach. It must be considered that several simplifications were made in order not to
distract from the primary modeling objectives.

6.13.1 Situation and tasks

In the vicinity of the city of Las Palmas (15,000 inhabitants), groundwater is extracted from wells
located at different properties. This water is primarily used as drinking water and secondarily
used for irrigation (Fig. 6.11). Two years ago, a plastic materials factory whose production began
in 1989 was built on the western border of the town (as a chronological reference, “today” cor-
responds to June 1991). The town itself receives its water supply from a water works located 3
km to the southeast (Fig. 6.11). This water works extracts water from a well at a constant rate
of Oy = —0.05 m3/s. Based on complaints presented by some farmers, who noted a decrease
in the quality of the water compared to previous years, sampling and chemical analysis activ-
ities, commissioned by the town administration, were carried out in several wells on June 16,
1991.

Results showed a considerable increase, with regard to the values from neighboring areas, in
the concentrations of sodium Na™ (maximum 750 mg/l), chloride CI~ (maximum 1030 mg/l),
sulfates SOff (1348 mg/1) and hydroxyborate ions B(OH), (maximum 17.5 mg B/l) (Table 6.6,
Figure 6.11a). The decrease in water quality is due, on the one hand, to the salty taste it has, and
on the other hand, to the high mineralization and the concentrations of hydroxyborate ions, which
prevent the use of groundwater for human consumption and irrigation as it has been used so far,
or allows use of it to a much lesser extent.
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Figure 6.11. Field example from Las Palmas: (a) Location of the study area with the drilled wells W1 to
W26, the piezometers, P1 to P7, the pumping well, PW, and the plastic materials industrial
plant, P. Additionally shown are the areas with more than 100 mg/1 of chloride, and more than
1 mg/1 of boron (present as hydroxyborate anions found in groundwater); (b) Contour map
showing mean values of the observed groundwater levels for the period between June 1990
and June 1991, measured at wells W1 to W36, piezometers P1 to P7, and pumping well PW
of the water works (for data see Table 6.6).
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Table 6.6. Field example from Las Palmas: chloride, sulfate, and hydroxyborate ion concentrations in
groundwater. Samples were collected on June 16, 1991, and average piezometric measurements
are for the period between June 1990 and June 1991 (measurements on June 11, 1990, September
15, 1990, December 1, 1990 and June 16, 1991).

Sampling Piezometric Cl- SOi_ B(OH),

point level (m a.s.l.) (mg/l) (mg/l) (mg B/1)

W1 164.6 1.3 21.5 <0.1

W2 166.8 1.8 25.0 <0.1

W3 167.6 0.7 19.7 <0.1

W4 165.7 1.4 13.7 <0.1

W5 164.0 1.5 17.3 <0.1

W6 161.8 1.1 22.5 <0.1

w7 166.0 0.9 21.7 <0.1

W8 162.7 1.6 19.6 <0.1

W9 159.2 1.8 24.8 <0.1

W10 161.9 1.2 21.9 <0.1

Wil 164.3 0.8 19.1 <0.1

W12 162.2 2.8 56.5 <0.1

W13 163.4 1.0 25.2 <0.1

W14 159.0 1.7 23.6 <0.1

W15 157.7 0.5 21.7 <0.1

W16 156.1 1.3 20.5 <0.1

W17 161.8 1.5 21.9 <0.1

W18 160.4 105.0 267 0.1

w19 157.6 1.5 234 <0.1

W20 162.9 1.4 26.0 <0.1

w21 158.6 1030.0 1348.0 <0.1

w22 162.0 780.0 1037.0 17.5

w23 162.0 0.9 23.7 <0.1

w24 153.5 1.8 19.5 <0.1

W25 154.4 1.3 17.8 <0.1

W26 156.8 1.3 14.9 <0.1

W27 158.8 1.8 21.1 <0.1

W28 160.5 1.7 23.7 <0.1

W29 159.2 1.6 25.0 <0.1

W30 153.7 1.1 24.8 <0.1

W31 132.6 1.5 12.9 <0.1

W32 156.6 1.3 21.8 <0.1

W33 154.5 1.3 25.7 <0.1

W34 151.8 1.6 21.6 <0.1

W35 157.4 0.9 15.8 <0.1

W36 154.2 1.6 23.7 <0.1

Pl — 1.0 19.8 <0.1

P2 — 1.5 17.7 <0.1

P3 - 10.5 56.8 0.4

P4 — 1.4 23.8 <0.1

P5 — 1.6 23.9 <0.1

P6 — 0.9 21.3 <0.1

P7 — 1.7 19.7 <0.1

PW 150.9 194 245.7 <0.1

In this case, there are numerous questions:

e Who causes contamination? Is the recently built industrial facility, presumably a polluting
source, responsible for the situation? Can such responsibility be demonstrated? If the factory

is not responsible, how do contaminants enter the system?
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e [s there a severe or potential risk for the water works? If there is, how will contamination
evolve in the future? When will the contamination plume reach the pumping well and when,
if ever, will it disappear? These questions must be answered from two perspectives: on the one
hand, considering the best-case scenario, that is, the contamination source is immediately
closed; on the other, the worst-case scenario where the contamination process continues
unchanged. For both cases, the concentrations that will reach the pumping well should be deter-
mined, both regarding the magnitude of its maximum values as well as regarding their distribu-
tion in time. The areas where contamination is apparent must be studied, as well as those where
contamination is expected to occur. The same procedure must be carried out for farm wells.

e If necessary, is it possible or reasonable to take protective or sanitation measures to maintain
the water supply to Las Palmas by the present water works? Which solutions are available to
supply water to farms?

6.13.1.1 Existing field data and information

The only information available about the extent and lithologic characteristics of the unconfined
aquifer results from 7 piezometers (P1 to P7) and a pumping well (PW) for which there are
geological drilling profiles. They all reach the base of the Quaternary aquifer, composed of non-
permeable massive limestone. The aquifer is composed of medium-grained sand with gravel and
a percentage of silt below 5%. In 36 drilled wells, W1 to W36, the piezometric level can be
measured, and systematic measurements have been carried out for one year, between June 1990
and June 1991. Mean values are presented in Table 6.6. On June 16, 1991, samples were taken and
the corresponding analyses were performed. The concentration values obtained for CI—, SOi_,
and B(OH), (as B) are listed in Table 6.6.

6.13.2  Design of the investigation program

If models are used for the treatment of contamination accidents, it is recommended that a certain
order should be followed, such as the one compiled by DVWK (1989):

e Preliminary research—contamination risk assessment

e Assessment methods—hydraulic head measurements and contaminant concentration determi-
nations

e Simple models—ideal systems

Flow time calculation—purely advective transport modeling as first approach

Transport modeling considering dispersion, sorption, and other processes

6.13.3  Preliminary investigations—Contamination assessment

Chloride concentrations observed between Las Palmas and the water works are as high as
1030 mg/1, whereas those at the pumping well reach 194 mg/1 (the threshold value is 250 mg/1), so
contamination risk can be classified as acute. For this reason, research activities must be carried
out in order to determine the real distribution of contaminants and their future propagation.

6.13.4  Acquisition of groundwater level and contaminant concentration
A preliminary rough assessment of contaminant propagation can be done by:

e Assessing the velocity and direction of the groundwater flow
e Using contaminants that are already present

In the first case, phreatic or piezometric groundwater level measurements are taken, whereas
in the second, substance concentration values obtained in chemical analyses are used. For our
example, the existing piezometric measurements can be used, as well as the analytical results
for each ion to study. Based on piezometric data, a contour map can be drawn (Fig. 6.11b);



276 Introduction to the numerical modeling

this map indicates a groundwater flow from approximately WNW to ESE. By observing the
distributions of solute concentrations it can be shown that the contamination plumes correspond-
ing to the different substances have a similar shape, with their source at the industrial plant
(Fig. 6.11a). On the other hand, between the town, which may act as another potential con-
taminating source, and the suspected industrial plant, concentrations are low corresponding to
the natural background values. Therefore, the industrial plant appears to be the sole source for
contamination. Thus, the contamination source is localized and its starting time is known, June
1989. The water works is then directly downstream from the point source. The chloride con-
tamination plume, whose mobility (retardation factor R; & 1) is greater than that of the other
solutes, has already reached it (Fig. 6.11a). Its C1~ concentration, 194 mg/l, is still below the
threshold value of 250 mg/1 and the tasting threshold of approximately 350 mg/l. Groundwater
flow average linear velocity (average pore velocity), v4, between the source point of contam-
ination and the water works can be approximately estimated based on the hydraulic gradient
in ~ 0.0072, the approximate hydraulic conductivity of the aquifer media (medium sand with
fine gravel), Ky, (1 x 1073 < Ky < 1 x 10~* m/s) and effective porosity, gerr (0.05 <
@etr < 0.2). Using vy = Kprin/@esr, values between 3.6 x 1076 and 1.4 x 1073 m/s are obtained
for vy.
From this information the following conclusions can be drawn:

e Itispossible toidentify the responsible party causing the groundwater contamination, and this in
turn allows determination of the contamination point source. The suspicions that contamination
was caused by a recently settled plastic material industrial plant are confirmed.

e From its origin, the contamination plume advances in a WNW-ESE direction, and the prop-
agation velocity of chloride can be assigned to that of groundwater at 3.6 x 107¢ < v, <
1.4 x 107° m/s.

e The affected or potentially affected area is delimited.

6.13.5 Groundwater flow and advective transport as a first approach

Research activities carried out so far are only general approximations; to obtain a greater precision
in the description of transport processes in the aquifer, the hydraulic situation needs to be studied
and quantitatively described. This is essential to describe advective transport, which frequently
plays a prevailing role in substance propagation in an aquifer, by using an analytical, or in our
case, a numerical model. The determination of groundwater velocity pattern, together with other
hydrogeological parameters, is of particular interest. With a simple numerical model, such as
ASM modeling code (see section 6.8.3), groundwater flow can be simulated and flow times can
be calculated for water particles based on the contamination source point and groundwater flow
paths starting from this point.

6.13.5.1 Delimitation of the area to model and aquifer geometry

For a simple description of the model boundaries, the contaminated area to be modeled is placed
so that two of its borders are parallel to the lines in the groundwater level contour map (NW and
SE boundaries), with the other two borders in about perpendicular direction, which means that
no groundwater flow occurs through these boundaries (impermeable NE and SW boundaries)
(Fig. 6.12a). Then, the boundary conditions of the hydraulic head at the NW and SE boundaries
correspond to those of the adjacent contour lines (Fig. 6.12a). Based on the data taken at the
boreholes, an isodepth map of the aquifer base is drawn to be used as the vertical lower limit of
the model (Fig. 6.12b).

6.13.5.2  Hydrogeological parameters

Hydraulic head (piezometric level) measurements performed in different seasons between June
1990 and June 1991 (measurements on June 11, 1990, September 15, 1990, December 1, 1990
and June 16, 1991) show that seasonal variations of the levels are below 0.5 m and they do not
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Figure 6.12. Field example from Las Palmas: (a) Position of the base of the aquifer, constructed with
basement depth data from piezometers P1 to P7 and from well PW; (b) Position of the study
and modeling area, with finite difference model cells; (¢) Groundwater level contour map
numerically modeled in the modeled area; (d) Simulated groundwater flow paths in the modeled
area, with chronological demarcation every 100 days and catchment area of the well (darker
gray). Figures (b) through (d) additionally show the groundwater contour maps located outside
the modeled area, based on field data.

have a significant impact on groundwater flow velocity pattern. Hence, the numerical simulation
is done assuming a stationary groundwater flow, using the average values from the piezometric
levels (Table 6.7). To determine hydraulic properties, pumping tests were performed at piezome-
ters P1 to P7, from which hydraulic conductivity, Kz, and storage coefficients, S, were obtained
(Table 6.8). The Ky values range from 3.5 x 10™* to 6 x 10~* m/s, the S values, which cor-
respond in the present phreatic aquifer to the effective porosity, vary from 0.08 to 0.14, and do
not show a significant spatial pattern. However, recall that these values are based on few field
measurements at discrete points. In practice, more measurements both within and outside of the
modeling area need to be obtained. This will allow the modeler to delimit the range of values,
in which discrete values can be expected. This, together with a sensitivity analysis, which eval-
uates the extent to which changes of the specific parameter value affect the simulation results,



278 Introduction to the numerical modeling

Table 6.7. Field example from Las Palmas: Heights above sea level of the aquifer base for piezometers
P1 to P7 and for pumping well PW.

Borehole/
piezometer P1 P2 P3 P4 P5 P6 P7 PW

Aquifer base 147.7 143.7 142.3 145.0 148.1 145.1 143.2 144.2
(mas.l.)

Table 6.8. Field example from Las Palmas: Hydraulic conductivity, Kz, and storage coefficient, S, obtained
with pumping tests at piezometers P1 to P7; Aquifer thicknesses, b,, obtained from the difference
between piezometric levels and the base of the aquifer.

Well, piezometer P1 P2 P3 P4 P5 P6 P7
Aquifer base (m below surface) 147.7 143.7 142.3 145.0 148.1 145.1 143.2
Piezometric level 4 (m a.s.l.) 161.8 165.0 164.0 164.4 155.4 160.1 156.1
Aquifer thickness b, (m) 14.1 21.3 21.7 19.4 7.3 15.0 12.9
Hydr. conductivity Kz (10~% m/s) 52 6.0 5.0 3.5 4.5 6.0 4.9
Storage coefficient S (ad) 0.10 0.14 0.11 0.08 0.10 0.11 0.08

can be used to obtain a range of possible solutions. Groundwater recharge from rainfall was
neglected.

6.13.5.3 Simulation of groundwater flow lines and flow times

Using the data and information mentioned above, the numerical flow model can be constructed.
After calibration, using Kz as the calibration parameter for matching simulated piezometric levels
to those observed in the field, simulations can be carried out.

6.13.5.4 Results
The results obtained with groundwater flow velocity simulations are limited in their application to
solute transport and interpretation of contaminant transport, but give an important first result. The
reason is that solute dispersion effects and adsorption, desorption, and decomposition processes
have not been considered. However, in the case of chloride as a contaminant, it may be assumed that
it is not affected by sorption processes and behaves as an ideal tracer. In contrast, hydroxyborate
ions undergo adsorption processes, which explains why the chloride plume has already reached
the drinking water well, PW, whereas the boron concentration still corresponds to the background
value (Table 6.6).

Based on our dispersion-free purely advective contaminant transport approach as a first
approximation to our problem, we obtain the following results from our numerical modeling:

e According to flow lines and the time markers on them, water particles leaving from the con-
tamination point source (100 m wide) take Atsp 500 to 600 days to reach the pumping well of
the water works. The same happens with substances that behave as ideal tracers, like C1~.

e The width of the capture zone of the pumping well can be determined from Figure 6.12d
as W = 700 m. This means that the well receives water from a 700 m wide band that
includes the contamination source and the entire plume (Fig. 6.12d). Based on the esti-
mated values of chloride inflow, Cc; = 1000 kg/day (11,574 mg/s), and hydroxyborate anions
inflow, Cp = 50 kg B/day (579 mg B/s), and using the pumping rate of the production well
Oy = —0.05m3/s (50 m3/s), the maximum expected concentrations at the pumping well can be
estimated. From this calculation, maximum expected concentrations for chloride of Ccimax =
Cc1/Qv = 231 mg/l and for hydroxyborate anions of Cgmax = Cp/Qp = 12 mg B/l are
obtained.
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e Whereas maximum chloride concentrations Ccjmax are slightly below the threshold values
admitted by the WHO and the EU (200 and 250 mg/1, respectively), maximum boron concen-
trations Cpmax are well above the thresholds established by the EPA, not more than 1 mg/1 of
boron (WHO: 0.1 mg B/l in the year considered).

e The area affected by current and future contamination has been delimited; it spreads from the
contamination point source to the drinking water well, where numerous contaminating particles
are extracted from the aquifer through the pumping well, thus preventing contamination from
going beyond this location.

e If the contamination point source is not eliminated, a quasi-stationary distribution of chloride
and hydroxyborate anion concentrations will occur.

o If contamination is immediately interrupted, it will end in Atgp = 500 to 600 days in case of
chloride (ideal tracer).

6.13.6  Transport model with dispersion, sorption, and resulting solutions

6.13.6.1 Introduction

The elaboration of a transport model, which considers dispersion as well as sorption and other
processes, requires much more information (see sections 6.5 and 6.7 on data need and data collec-
tion) as well as a denser sampling net and more frequent sampling. Therefore, when compared to
the previous studies, it is considerably more difficult and more costly in terms of time and money.
Each particular case must be carefully evaluated to determine whether the results obtained from
the purely advective flow model constructed in section 6.13.5 are already enough to give all the
answers for the problem or not. If, e.g. sorption needs to be considered, we need to know whether
solute-specific sorption data can be taken from literature, or whether sorption experiments in the
laboratory must be performed. The same applies for obtaining the longitudinal and the horizontal
dispersivity values.

In the example of Las Palmas, the groundwater flow field is quite well known from the
previous investigations (see 6.13.5), so one of the basic conditions for the elaboration of a
solute transport model is fulfilled. On the contrary, information on solute concentrations is
very limited (too limited for constructing a transport model), since sampling and analysis are
available only for one time and since there are barely 6 sampling points in the area covered
by the contamination plume. There are no data corresponding to the dispersion parameter of
the aquifer. In regard to exchange processes between contaminants and aquifer materials and
other substances dissolved in groundwater, only bibliographic references are available. Accord-
ing to these, chloride can be used as an ideal tracer, whereas boron, which at the present pH
value is present as hydroxyborate anions, undergoes adsorption and desorption processes, being
predominantly sorbed to clay minerals, iron, manganese hydroxides and oxides, and organic
substances.

Based on this limited data scenario, there are two basic possibilities for the continuation of our
study:

e A detailed survey can be carried out in accordance to what is described in section 6.5 and 6.6 on
data need and data collection, to obtain the missing data, if possible within a given time frame.
Usually, except for special cases, propagation models can only be elaborated on in areas that
have been extensively studied during a prolonged period of time and therefore, have abundant
data available to calibrate the model.

e For this reason, in practice, a compromise solution is usually applied and the lack of data
is covered by estimations or assumptions (e.g., regarding sorption parameters and aquifer
dispersivities). In these cases, a sensitivity analysis of the aquifer to be described can be done,
varying different parameters so as to determine the influence of these parameters on the behavior
of the system. Naturally, this methodology reduces the credibility of the obtained results. To
produce a reliable quantitative prognoses, it should be possible to validate field measurements
with the model, regarding flow pattern, concentration distributions, and their changes with time.
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For the example, the stationary groundwater flow model from section 6.13.5 is used. Addi-
tionally two tracer tests are performed in order to obtain values for longitudinal and transversal
dispersivity (for tracer tests see section 6.7.2.5). Again, we need to remember that these aquifer
parameters were determined on the basis of field measurements from only two discrete points,
and hence, even if the results are correct, they likely only apply to the small local area that was
tested. In practice, more determinations are needed in order to determine the range of the values,
which will allow the modeler to obtain a range of modeling results. For each tracer test, two
wells/piezometers are used, one as an injection well and another as a sampling point. Without
drilling new piezometers, tests are limited to a few potential locations, since most wells are sepa-
rated by a distance that is greater than 100 days of groundwater particles’ travel time. One of the
tests is carried out between wells W5 and W10, whereas the second test is performed between
wells W17 and W28 (Fig. 6.11). In both cases, the respective first well acts as the injection well
and the second well acts as the sampling point. The evaluation of these tracer test yields values of
effective porosity, gefr, and the longitudinal and transversal dispersivity, oz and o7, respectively
(Table 6.9). The data obtained by means of tracer tests are valid for two discrete points in the
modeling area, which must be taken into account when interpreting the modeling results. Since
there is no information available on sorption materials in the aquifer matrix and on the geochem-
ical conditions, and since time and resources do not allow the collection of this information, the
sorption behavior of hydroxyborate anions shall be evaluated as a very rough approximation.
This approximation will be obtained by comparing the boron plume with the chloride plume,
which can be considered as an ideal tracer and undergoes no sorption and retardation. With this
limited data we perform simulations for the contaminant transport for two possible scenarios,
which correspond to the best- and worst-case situation:

e The contamination source keeps contaminating the aquifer unaltered.
e The contamination source is immediately shut down.

6.13.6.2  Simulation of solute propagation with a permanent inflow of contaminants
The calibrated numerical groundwater flow model elaborated in section 6.13.5 is now being
extended to a transport model which considers dispersion and adsorption processes. However,
this model has limited accuracy which needs to be considered when interpreting the simulation
results. Calibration to fit the modeled solute distribution to the observed one is not accurate
and a series of concentration measurements are necessary to achieve effectiveness. Using the
average of the dispersivities obtained from the tracer tests, a simulation of the Cl1~ propagation
yields for the contamination plume at time ¢ = 730 days a CI~ concentration distribution that
matches the distribution observed in the field (Fig. 6.13a). On the other hand, the propagation
of boron is delayed compared to the CI~ propagation. This indicates that hydroxyborate anions
are being adsorbed by the aquifer media. Calibrating the model using the retardation factor Ry
for hydoxyborate anions, and assuming linear adsorption, for a value of R; = 2.5 the simulated
contamination plume matches best with the observed (Fig. 6.13b).

Considering the assumptions mentioned above, the concentrations are simulated for some
of the contaminated wells as a function of time. Curves for chloride concentrations show that
contaminated wells W22, W21, W18, PW, and P3, located on the edge of the contamination plume,

Table 6.9. Field example from Las Palmas: Effective porosity and dispersivity values obtained by tracer

tests.
Injection well for tracer | W5 w17
Sampling and observation well U W10 W28
Effective porosity .4 (ad) 0.12 0.095
Longitudinal dispersivity c; (m) 12 9

Transversal dispersivity a7 (m) 1.0 0.7
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Figure6.13. Field example from Las Palmas: Distribution of contaminants modeled for June 16, 1991
(=730 days) and 2000 days after the beginning of contaminant input: (a) for chloride, and
(b) for hydroxyborate ions. The CI~ distributions at 730 and 2000 days are identical.
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Figure 6.14. Evolution of solute concentrations, modeled for the affected sector: (a) chloride, (b) hydroxy-
borate anions (values as B) (t = 0 years corresponds to the beginning of contaminant inflow
in June 1989; t = 2 years corresponds to the present time, June 1991).
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are currently (r = 2 years) in a stationary stage, which means that chloride concentration will not
vary in the future any more (Fig. 6.14). On the other hand, the concentration curves corresponding
to boron show that these wells have not yet reached a stationary regime and concentrations will
increase in the future (Fig. 6.14).

The following conclusions can therefore be drawn:

e Only wells W22, W21, W18, and PW show chloride concentrations of 860, 980, 135, and 180
mg/] that will not change in the future. Wells W22 and W21 are unusable and the remaining
wells, including the pumping well, are below the threshold.

e The concentrations of hydroxyborate ions at wells W22, W21, W18, and PW, located within
the affected area, reach (for time t = 2 years) values of 20, 0, 0.5, and 0.00 mg /1, respec-
tively. These values will increase in the future until reaching 49, 41, 10, and 9.3 mg B/1, and
numerous wells will be rendered useless. The pumping well at the water work will exceed
the threshold value of 1 mg B/l at t+ = 3.5 years, that is, 1.5 years from now. Well W22,
which is unusable due to its high concentration of chloride, already exceeds the maximum
value for boron. Wells W21 and W18 will reach this threshold in approximately 7 months, at
t = 2.6 years.

6.13.6.3 Simulation of solute propagation with an immediate suspension

of inflow of contaminants
If the contamination source is immediately shut down (at # = 730 days), the following results are
obtained:

e Chloride concentrations at wells W22, W21, W18, and PW, with 860, 980, 135, and 180 mg/l,
are approximately constant for 0.5, 0.9, 1.0, and 1.5 years. After 1.1, 1.4, 1.2, and 1.7 years,
the C1~ background value will be reached. For wells W22 and W21, it will take 0.8 and 1.2
years, respectively, for the chloride concentration to go below the acceptable threshold level;
after this both wells will be usable again.

e Due to the retardation effect of hydroxyborate ions, the high concentrations of wells W22,
W21, W18, and PW with 2.8, 4.0, 3.7, and 4.5 mg B/1, respectively, will take considerably
longer than the chloride to go below the admissible threshold value of 1 mg B/1.

When assessing these results, the contaminant concentrations and their variations in time,
it must be taken into account that no accurate calibration of the transport model is possible
because concentration measurements exist only for one discrete time. Hence, in the future, it
will be necessary to collect new concentration data for comparison with the results obtained by
modeling. In the case of a divergence, the model will have to be adapted to the new measured
data and the results and prognosis will have to be adjusted accordingly.

6.13.6.4 Water works: Diagnosis and recommended solutions

The pumping well is only threatened by boron contamination and can be used for 1.5 more
years before concentrations exceed the threshold level. If the industrial plant immediately stops
contamination, the well would be unusable for 3 more years with concentrations of 9 mg/l.
Different measures can be taken to present to ruling organizations. After a cost assessment study
the most suitable option, or a combination of several options, will be chosen by them:

e The contamination source must be immediately shut down. It is recommended that the produc-
tion liquid effluents (10 m3/day), with high concentrations of harmful substances, be diverted
to evaporation pools with their bottoms sealed. Once the liquid is evaporated, the remaining
solids should be deposited in suitable repositories. While these pools are built, effluents can
be stored in tanks or suitable deposits.

o The water at the water work must be treated to reduce the boron concentrations, which are
expected to remain for 3 years over the maximum threshold, in order to make the water potable.
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e Additionally, a sanitation well may be drilled inside the contamination plume to extract and
treat contaminated water.

e The water works can drill a new pumping well outside the contamination plume but in the
vicinity of the one currently used. If this option is used, the new location will be determined
by the elaborated simulation model. This possibility offers the following advantages: (1) Costs
shall be paid by the contaminating industry; (2) After 4.5 years (when the old well is again
suitable), the town of Las Palmas will have 2 additional wells for drinking water supply,
which is important given the growing demand from the inhabitants. However, it needs to be
considered that if the well that is currently being used is closed, then the contamination plume
will extend further downstream. Therefore, studies must be carried out to determine if there is a
contamination risk for other wells located downstream from this well. If so, it is recommended
that the well remains in operation so that the contaminated aquifer is cleaned by removing all
the contaminants.

6.13.6.5 Farm wells: Diagnosis and recommended solutions

Only wells W1, W22, W11, and W18 from all farm wells are or will be unusable. Since these
farms require little water, it can be supplied by means of tank trucks while contamination lasts.
The water needed for irrigation can be provided by wells located at neighboring farms (with the
corresponding monetary compensation) and transported through temporary irrigation channels.
A second alternative would be to suspend irrigation and file a claim against the party responsible
for the contamination of indemnification to cover the reduced, or lack of agricultural production.






CHAPTER 7

Parameter identification and inverse problems

Longina Castellanos and Angel Pérez

“Inverse problems play a crucial role in geophysics because one of the main tasks
in this field is to probe the Earth s interior both _for economic reasons, such as oil
prospecting, and for the pursuit of academic knowledge about our planet.”

Roel Sniedery ef al. (1998)*

7.1 INTRODUCTION

The scientific procedure to study an aquifer system, or any physical system in general, can be
divided into three parts:

e Parameterization of the system: discovery of a minimal set of model parameters whose values
completely characterize the system.

e Direct problem or direct modeling: discovery of the physical laws (e.g., groundwater flow equa-
tion, see chapter 4) allowing, for given values of the parameters (e.g., hydraulic conductivity
of an aquifer, see section 4.3), predictions of some data parameters (e.g., hydraulic head) to be
made.

e [nverse modeling: use of actual measurements of the observed parameters to infer the values
of the model parameters (e.g., hydraulic conductivity). This inference problem is termed the
inverse problem.

In chapter 5 we studied methods to obtain numerical solutions to the direct problem. These are,
for instance, the finite element method, the line method and the finite difference method. In this
chapter we study the inverse problem for parameter identification or reconstruction of unknown
coefficients in a differential equation, from measurements of its solution.

In practice, conceptual models representing general behaviors of different states of the phe-
nomenon in question are usually available (see chapters 6.3 and 6.4). Let us consider the simple
differential model:

d¢

o= e 4+ x; Cos(t) (7.1)

Suppose the values for the parameters x| and x; are known. Then an approximate solution of
equation (7.1) can be obtained using some adequate numerical method and thus a direct problem
(DP) is solved: we know the causes (parameters x; and x,) and evaluate the effects (the numerical
values of ¢()) that allows us to know the state behavior as a function of time.

Suppose that we do not know the values of the parameters but that it is possible to obtain
experimental measurements (data) of the values of ¢(¢) at m different times. The goal is to use
these data to estimate the values of the parameters x; and x; from the most appropriate model.
This is an inverse problem (IP): we know the effects (¢(#;),i = 1, ..., m) and we seek the causes
(x1 and x).

* Source: Roel Sniedery, Malcolm Sambridgez and Fernando Sansd: Inverse problems in geophysics:
closing the gap between theory and practice. Guest editors’ introduction, /nverse Problems 14 (1998).
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vl
P = Parameter space
P fo) O = Observation space
U = Direct problem
™" = Inverse problem
UJ

Causes Effects

Figure7.1. A graphic representation of the inverse-direct problems: causes are, e.g. hydraulic conductivity;
effects are, e.g. hydraulic head.

We begin by simply defining the solution to an inverse problem as using the measurements
of the effect to determine the cause. This view contrasts with the corresponding direct problem,
whose solution involves finding effects based on a complete description of their causes. A graphic
approach of the relationship between the inverse problem and the direct problem is presented in
Figure 7.1.

These problems are usually divided into the terms:

e Identification or reconstruction, where one looks for the cause of an observed effect.
e Control or design, where one looks for ‘a’ possible cause of a desired effect.

Both problems are related, but there are also several mathematical consequences due to the
different aims. In an identification problem a desirable property is uniqueness of a solution
(identifiability), ideally there is a specific cause for the observed effect, which one would like
to obtain. In a control or design problem, uniqueness is not really of importance, since non-
uniqueness only means that the design goal can be reached by different strategies and hence, one
has additional freedom (e.g., to incorporate further design goals).

Inverse problems may be classified as:

e Continuous: Most inverse problems are of this type. The parameter set to be estimated is a
continuous function in several variables. For instance, the transmissivities in an aquifer are
continuous functions of the space variables.

e Discrete: There are a finite number of model parameters to be estimated, for instance, the
parameters x| and x, in the above example.

Sometimes the problem itself is continuous in nature (real world), but is discretized for compu-
tational reasons. For example, the partial differential equation (PDE) to find the hydraulic heads
in an aquifer is discretized using a grid designed on the aquifer region, yielding a discrete system
of equations.

The model function of an inverse problem, that might be the solution to a differential system of
equations, as in example (7.1), may depend linearly or nonlinearly on the parameters. In equation
(7.1), the analytic solution of the differential model is:

@(x1, x2; 1) = x1 ¢~ +x; Sin(?) (7.2)

Suppose we have m data points y,‘-’bS of the behavior of ¢ at different times and we need to find
x1 and x; such that the distance from each of the y;’bs to the corresponding model function ¢(#;)
foreach #;,i =1, ..., m, is minimized (see Fig. 7.2). In this example, the solution to the direct
problem [the model function (7.2)] depends linearly on the parameters x; and x,, thus we need

to solve a linear inverse problem.
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]
!
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Figure7.2. Model ¢(¢) and observed data y?bs.
On the other hand, if the differential model is:
d
d—(f = —x; e 4 x5 Cos(xz 1) (7.3)
the model function is then:
@(x1, x2; 1) = eV + Sin(xy 1) 74

Thus, the solution to the direct problem [the model function (7.4)] depends nonlinearly on the
parameters x; and x,, and we need to solve a nonlinear inverse problem. The goal in both, the
linear and nonlinear cases, is to make the calculated solutions at each #;, i.e., ¢ (x1, x2; t;) = yiCal
as close as possible to the observed data yl?’bs, foralli=1,...,m.

In practice, the most common situation is that the analytic solution of a differential model is
not available and the DP is solved numerically, thus it is difficult to establish whether the IP is
linear or nonlinear. A parameter that appears linearly on a differential equation does not imply
that it is also linear in the solution. For example, the equation:

do
@ _
e 19

is a linear function of x. However, its solution ¢(f) = e *!" is a nonlinear function of the
parameter x.

One way to measure the nearest solution is through the definition of some kind of distance.
The most common, for several reasons, is the squared distance between the data points and the
computed values. In this particular case, one would like to obtain the pair of values x| and x; such
that the sum:

m m
D (olrr, x2 1) — 39 =Y (5 — y)? (7.5)
i=1

i=1

is minimized, and the parameters x| and x; would be the ones for which the least value of the sum
is reached.

The general mathematical formulation is the so-called least-squares problem (LSP) and it is
as follows (the particular form in which the parameters appear in the model function makes the
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term linear or nonlinear, accordingly):

Minimize F(X) £ Z(w(x t) _->obs _ H(b(x H— *obs —
2

subject to // <1\' j<uj
j=

with ®(F; 1) = (95 1), .., (s t))5 7% = (5, ., ¥o5),
FE® =A@ fu@®)s i@ =G 1) =y, i=1,...m

=5
(7.6)

where ¢ (¥; ) represents the desired model function, with 7 an independent variable and where
the data { y?bs} are measured and may be subject to experimental error. The independent variables
{xj},j =1, ..., n, are the parameters of the problem to be manipulated in order to adjust the
model to the observed data. The components of the vector function ® are the values of the model
function ¢(X; t) ateach t;, fori =1, ..., m.

If the model is to have any validity, we can expect that the function value at the solution of
(7.6) willﬁbe small and that m, the number of data points, will be much greater than n. The vector
function f is called the residual vector. The variables /; and u; are the lower and upper bounds on
the unknown parameters, respectively, which might not be present in the problem formulation,
although they usually are in real problems, e.g. if we know the range of hydraulic conductivity
values which can occur in a specific case.

The next sections will be devoted to the ill-posed inverse problem (section 7.2) and the methods
used to solve the least-squares problem separately for the linear (section 7.3) and nonlinear case
(section 7.4). We shall see their differences and similarities, the benefits of considering different
methods for each type and also, the need for regularization in both cases. In what follows, we
will use the two-norm and we omit the subscript.

7.2 ILL-POSEDNESS OF THE INVERSE PROBLEM

An obvious question when computing the minimizer of equation (7.6) is if this is a guarantee
that the parameters are correct when identifiability is crucial (e.g., in parameter identification
problems). Some authors call model calibration the process of estimating or identifying the proper
parameters (see section 6.9). It is important to increase confidence in the solution making sure
that the calculated parameters are correct within a certain range of measurement error. In any
type of inverse problem one or more of the following Hadamard conditions may fail:

e 1st Hadamard condition: Existence: For all (suitable) data, there exists an appropriate solution
to the problem.

e 2nd Hadamard condition: Uniqueness: For all (suitable) data, the solution is unique.

e 3rd Hadamard condition: Stability: The solution depends continuously on the data.

Is it then possible to obtain a good approximation to the correct values of the parameters if one
of these conditions fails? We shall answer the question in this section and also in sections 7.3.3
and 7.4.3.

Inverse problems belong to the class of the so-called ill-posed problems. According to Jacques
Hadamard (1865—1963), a mathematical problem is well-posed if the solution is unique and the
data error is not amplified in the solution error. Thus, an ill-posed problem does not satisfy one
of the Hadamard conditions. Neither existence nor uniqueness of a solution to an inverse problem
is always guaranteed. Thus computing the least-squares solution of an inverse problem is a way
to guarantee that there is always a solution.

As mentioned in section 7.1, non-uniqueness is sometimes advantageous, allowing the choice
among several strategies for obtaining a desired effect (control or design case). Consequently the
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third Hadamard’s condition is not either important, since we are satisfied having small residuals
for the solution parameters in order to reproduce the observed data.

If the level of the error in the data is large, the third condition of Hadamard does not matter
either, even when the uniqueness of the solution is needed, because the exact problem and the
problem with error are so distant from each other that they are simply different problems. In
parameter identification or in any identifiability inverse problem, the third Hadamard condition
must be addressed carefully.

In practical applications, the observed data are not exact, but instead contain noise owing to
measurement errors and inaccuracies of the model itself. Even if the data noise is small, algorithms
developed for well-posed problems could fail in case of a violation of the third Hadamard condition
ifthey do not address the instability, since the data as well as the round-off errors may be amplified
by an arbitrarily large factor in the solution error. Regularization methods, in which general terms
of an ill-posed problem are replaced by a family of neighboring well-posed problems, are used in
order to overcome this failure.

In the following sections we will study further failures of the fulfillment of Hadamard conditions
in inverse problems.

7.2.1 Existence of a solution

Ifthere is no solution one may ask: Does the model ¢ (X; ¢) really reflect the phenomenon measured
by the data {ylf’bs}? Is there a set of parameters with ¢(X; #), i = 1, ..., m sufficiently close to
the observed data? This is because we are trying to fix a model function to some data that are not
reproduced by the model. This may occur because the governing law for the phenomenon is not
complete or simplifications or assumptions have been made that are not correct (e.g., developing
a wrong or over-simplified conceptual model; see section 6.3). In this case the conceptual model
should be reviewed for accuracy. For instance, if we suppose that the model function is:

oy t) = tx% +1
and the data is just the point (1, 0), then x; is the solution to the equation:
p(x; 1) = le—i- 1=0
which does not have a real solution. Nonetheless, if one looks for:

Minimize F(x1) = |2 + 1) = 0> = | 1) — 0]
x1eR

the solution is x; = 0 with F(x;) = 1.

When a least-squares procedure is used to solve the inverse problem, as was shown in the
above example, there is always a solution for any given model. However, if the available data
are not enough, this method could produce large residuals and the solution parameters might
give an inadequate model with incorrect estimated parameters even when non-uniqueness is not
important, since the goal is to make the model function as close as possible to the observed data
(Fig. 7.3). A rule of thumb is to obtain as much data as possible; although this is not always
possible, may be because of financial restrictions or others, which hinder further data collection
in the field (see chapter 6).

7.2.2 Uniqueness of the solution (identifiability)

If there is more than one solution, many non-desired solutions may be avoided by providing
additional information. For example, finding the correct values of x; and x; in the model function
o(x1, x3; t) = x1 t + x3 to reproduce the data point (2, 0), does not have a unique solution, but if
in addition we have the condition x, = 1, the solution is uniquely identified.
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Figure7.3. Effect of the number of data in the solution of an inverse problem: (a) few data, (b) many data.

In many cases, we can give a range for the values of the parameters based on experience
or because of physical or chemical knowledge. Limits for the estimates contribute to a more
restricted search space, coming closer to the uniqueness (see also chapter 6.9).

Constraints on the type of bounds of the parameters can be deduced a priori. Furthermore,
a review of the model is advisable since the non-uniqueness of the solution might be due to an
over-parameterization, e.g., some parameters might not be needed (e.g., we can neglect
compressibility of the fluid if we consider shallow aquifers) (see also chapter 6).

In the following model:

o(x1, x2, X35 ) = x1 ¢ + 2xp te™3!

if we have x3 = 0, then the model becomes:
o(x1, x2; ) =x1t+2xt = (x1 + 2x2)¢

Thus, it is not necessary to compute two parameters; instead one sets a new parameter ¢ =
X1 + 2x; and seeks only for this single parameter.

A remedy for the non-uniqueness is choosing among the multiple solutions, for example, the
least size solution, measured with some norm. But, is it a problem if we have a non-unique
solution? In the introduction of this chapter we said that it depends on the circumstances:

e Ifitis ‘a’ cause that is needed to reproduce the desired effect then, rather than being a problem,
having many solutions gives different scenarios from which to choose the most convenient
solution under certain practical criteria (case of control or design).

e Ifon the other hand, ‘the’ cause of a given effect is needed, then uniqueness is of major interest
(case of identification or reconstruction), e.g., computing the hydraulic conductivity in the
flow equation of an aquifer.

7.2.3  Continuous dependency on the data

This condition might fail because most inverse problems arise from the discretization of a con-
tinuous setting producing ill-conditioned matrices if an accurate scheme is not used with care
(see section 7.3.1). The error between the computed (approximate) solution and the solution
with no error (exact but unknown) might be larger than the error in the data. Regularization
strategies are needed to obtain a solution closer to the exact solution. We emphasize that this
regularization is important in the case of identifiability and when the error in the observed data
is small.
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7.3 LINEAR LEAST-SQUARES (LLS)

As was pointed out in section 7.1, the definition of a least-squares problem as linear or nonlinear,
depends on the way in which the parameters or functions to be estimated appear in the model
function. If they appear in linear form, then the vector function ®(X; t), whose i-th component is
the model function ¢ (X; t;), can be written as:

O 1) = A¥

where A is an m x n matrix, and we have a linear least-squares (LLS) problem. Therefore the
linear least-squares problem has the following mathematical statement:

L - Al > _ —obs||2
Ml}I{lelg}llzeF(x) =3 |Ax — 30 (7.7)

A :m x nmatrix, y°P : m-data vector

where 7 = AX — °PS is known as the residual vector [called a residual function in the general
setting of equation (7.6)].

In order to determine the parameters x; and x; in the model function (7.2), having m data points
(t, y;’bs), we may set the vector function ®(x; ¢) in the following matrix form:

@(x; 1) x1 €+ x; Sin(7y)
- &; 1) x1 e 4+ x; Sin(tp) .
dEn=|"" - . :A[xl]zAx,

: : X2

o(X; tm) x1 e 4 x3 Sin(t,)

el Sin(ty)

e Sin(¢
with: A = . (2)

e Sin(t,,)

A solution (minimizer) of problem (7.7) necessarily satisfies VF*) = 0, that is:

-

VFE) =V (%“Aié* —}0b5||2> =0
& AYARF — o) = 0 (7.8)

o AtA}* :Atj'}obs

and the relations in the last row are the so-called normal equations.

A well-known result from linear algebra for a square system of linear equations is that if the
matrix of the system is invertible (nonsingular), then the solution is unique; otherwise there are
infinitely many solutions. We rewrite the well-known result for the LLS case (for details, see
Golub and Van Loan 1989).

Result: If the matrix A has linearly independent columns (thus A* A is nonsingular), the solution
to the LLS problem is unique, otherwise A' A is singular and there are an infinite number of
solutions.

Thus, in a linear parameter identification problem solved using LLS, the uniqueness of the
solution is guaranteed if the system matrix has linearly independent columns but, is this sufficient
for identifying the proper parameters? What about the third Hadamard condition? To answer these
questions we need the definitions of the following section.
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7.3.1 Condition number of an invertible square matrix

A definition that is closely related to errors is the condition number of an invertible square matrix,
with respect to the solution of a system of equations A X = y. This number is defined as:

K(A) = [AlIAT" ] =1

and measures the largest possible effect that errors on the data or in the matrix of a linear equations
system, can cause on the solution. The number «(A) is also a measure of how close a nonsingular
(invertible) square matrix is to being singular. A ‘large’ condition number indicates that the
solution is very far from the exact solution, even with small errors in the observed data.

In practice the linear system we really have is Agrror X = f/"bs, with error in both, the matrix

and the vector in the right hand side; the following inequalities hold:
exact” = k(A) ”ﬁObS - -»”

”5‘;* - xexact” <k(A) HAerror - A”

¥ -

where:

exact is the exact solution for the exact data y
X* is the approximated solution for the data with error y
Aerror 18 the matrix (linear model) with errors

Sobs

In other words, the condition number of A indicates the maximum effect of errors in the data
¥ or in the matrix A, on the exact solution X* of the linear system. In this chapter we will refer
only to errors in the observed data. More details on system matrix errors can be found in Golub
et al. (1998); this technique is known as total least-squares.

When we solve inverse problems, the discrete formulation reflects the ill-posedness of the
continuous underlying problem in the ill-conditioning of the associated matrix or matrices (in the
nonlinear case), associated to their discretization, which corresponds to a large condition number.

The normal equations (7.8) solving the LLS problem have as matrix system A A. This matrix
A' A has a condition number that is the square of K (A) (it is possible to define the condition
number of a rectangular matrix in a similar manner using the definition of pseudo-inverse, see
Golub and Van Loan 1989 for more details). It is advisable not to form this matrix product in
order to avoid increasing the condition number of the system matrix and, consequently, making
the error larger in the approximate solution of the LLS. Obviously, the ill-conditioning of A is the
cause of the failure of the third Hadamard condition in LLS problems and thus, in this case, the
parameters of the model might not be correctly identified.

It is worthwhile to repeat that the condition number is defined for nonsingular matrices, and
that we have uniqueness but not continuous dependency on the data whenever the condition
number is large, which is the challenging case. In the next section we will see a method that
avoids the construction of A'A

7.3.2 Linear least-squares solution: Direct method

The solution of LLS problems is usually obtained using some factorization of the matrix A which
is called a direct method. This avoids the formation of the product A' A and the increment of
the condition number of the system matrix (section 7.3.1). The most popular method is the QR
factorization (Golub and Van Loan 1989), where Q is an orthogonal m x m matrix (Q'Q =I,,)
and R is an upper triangular m x »n matrix; the algorithm proceeds as follows:

1. Pre-multiplying the matrix A by orthogonal matrices that nullify the entries under its
diagonal, i.e:

Rll
H,,.H,,,l...-HlAzQ‘A=< nxn )

(m—n)xn
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2. Applying this factorization to the LLS problem and using the property of orthogonal matrices:

QX = IIX|], to obtain:
I :H(:&n )i__Cwaﬁwl )
0n—n)xn (Qt yObS)(min)><1

= Q@i -5

— HR-;C' _ Qlj)'ObS

3. The minimum value of the LLS function is given by:
B = (Ry) T Q™)

Different commercial software is available for the LLS solution using the Q R factorization
technique, e.g. routine LSQRR of the IMSL package (inline library of the Microsoft Visual
FORTRAN, http://www.vni.com/products/imsl).

7.3.3  Tikhonov's regularization method

If a matrix is invertible and thus has a unique solution to the system of linear equations, but if
the condition number «(A) is large (A is ill-conditioned), then the presence of small errors in the
data might produce large errors in the solution, i.e. the problem does not depend continuously on
the data and does not fulfill the third Hadamard condition. This implies that:

||)'}0b5 _J_}H <3 but "}* - )?:xact“ >4

We make the clarification at this point that this consideration is important when the level of
error in the data is small and thus one expects to have a solution error of approximately §. If the
perturbation level in the observed data is large, then the problem being solved (A X = y°P%) varies
greatly from the exact problem (A ¥ = ) and it is not sensible to compare x* with X%, , because
they represent the same model (the system matrix is the same), but with different goals (the data
to which the model must be fixed).

The first step of regularization is to transform an ill-posed problem, by means of relevant
information given by the knowledge of the user, into a well-posed one. Nonetheless, there are
some mathematical methods that may regularize a problem even though there is no physical or
practical information or if this information is insufficient. We emphasize the fact that the larger
information is for a given problem, the better the solution is for the inverse problem.

When ill-conditioning is present, which usually happens in inverse problems, it might pro-
duce solutions quite far from the correct one, in the presence of small errors in the data. This
effect is independent of the numerical stability of the algorithm (Golub and Van Loan 1989).
Tikhonov (1963) proposed to substitute the solution of the ill-posed problem by a sequence
of solutions to well-posed problems that depends on a parameter. When the parameter is
close to zero, the solutions of this sequence tend toward the solution of the problem without
error.

An application of Tikhonov’s regularization method (Tikhonov 1963, Tikhonov et al. 1995),
applied to the discrete LLS, solves this problem by adding a penalization term to the size of the
solution vector to get a balance between the size of the residual vector and the size of the solution
vector, solving the enhanced function:

N
A% =50+ 2 11 (7.9)

1
Minimize — ‘
xeR" 2
The problem is to select the scalar A which is a problem-dependent parameter. If the correct A is
found, then the solution obtained (the so-called regularized solution) is the best possible solution
for the corresponding data error.
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One usual way to accomplish this goal is to solve equation (7.9) for a decreasing sequence
of A, substituting the ill-posed problem by a sequence of well-posed problems; then plotting the
A-parametric curve of:

Jaz =5 s |5

and selecting the point where both quantities are balanced since, as . — 0, the first quantity
decreases and the second increases (Tikhonov ef al. 1995). The basic iteration is as follows:

Tikhonov’s regularization method for LLS:

Given 20 > Al > ..., seti=0
. N T T S
Solve X}, = argmin <§ HAx —pobs| 4 > ||x||2)
xeR"
Seti=i+1
Graph ||Afc;fi — yobs | vs ch;tl | fori =0,1,..., and select the corner point Xj_as the best one.

The solution will be the one corresponding to the corner point of the parametric curve for A
(Fig. 7.4).

As a summary of the importance of regularization for the identification problem, we state the
following two conclusions (Burger 2005):

e Without regularization and without further information, the error between the exact and the
approximated solution can be arbitrarily large, even if the error in the data is arbitrarily small.

e Even with regularization, we can never achieve an error in the reconstruction or identification
of parameters which is as low as the error in the observed data.

7.3.4 An iterative method for solving LLS: Linear conjugate gradients

The conjugate gradient method (Nemirovskii 1986) was originally designed to solve linear systems
of'equations with a symmetric positive definite coefficient matrix. This method was later extended
to nonlinear problems. We refer to it here as the linear conjugate gradient (LCG) method, to
emphasize that the method is used for the case of a linear system of equations. In the LLS
problem we need to solve the system of normal equations:

At A 5C'= At )-*}obs
and whenever the matrix A has linearly independent columns, satisfies the requirement of the

LCG method pointed above. However, the application of this method is not direct and the pro-
cedure for solving the normal equations has many variations. Here, we consider the algorithm

o
o
«><.< o] C -
B rner poin
o orner point
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o o o [e] o
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[lax; = yom|

Figure 7.4. Corner point: solution for Tikhonov’s regularization method.
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CGNE (conjugate gradient on the normal equations) given in Golub and Van Loan (1989), which
experimentally is a good choice. The iterations will be Xy, corresponding to the previous system
of equations:

Linear coiljugate gradient methlod for LLS: Algorithm CGNE:
SetXg =0, 7 = ;Obs — AXo, do= A%y

Fork =1, 2, ..., until n or convergence, do

o = [ AT [P/ A G|
Xk =Xp—1 +og Z1’k—1

Py =Tt —ax Ady_

B = AT /A Fe |
dy = AFg + Br dj—1

Some interesting properties of this method are:

e Property 1: It is not necessary to store any matrix, only matrix-vector products are required.

e Property 2: In exact arithmetic, the convergence (i.e. |7 || ~ 0) is obtained in a number of
iterations that is equal to the number of different eigenvalues of the matrix A' A. This last fact
permits using the method as a direct one. However, in practice, rounding errors produce the
loss of this property and the method then behaves as an iterative one.

e Property 3: From the algorithm above, it can be seen that it is not necessary to form the matrix
product At A. _

e Property 4: For Xy = 0 the following properties hold:

||35k—1 ” < H}k ” and ”A}k—l — yobs H>HA;Ck _;obs“

Property 5: On ill-conditioned problems, the first iterations approximate the exact solution.

The key to using the LCG method on ill-conditioned problems, as is usually the case for
inverse problems, is the last property mentioned above: that the first iterations X; approximate the
exact solution (Hansen 1998, Nemirovskii 1986). Thus, the importance of finding the iteration
number k* that gives the best possible approximation X+ to the exact solution is clear. This is an
alternative regularization way to the Tikhonov regularization method, in the sense that instead of
solving problem (7.9) for a decreasing sequence of A values, the regularization parameter is now
given by the iteration number.

Algorithm CGNE is a very powerful tool for solving linear systems of equations, also because
of its low memory requirement (property 1), thus it is quite useful in large-scale problems.
A commercial code of the algorithm CGNE is available in the routine CGLS of the numerical
toolbox of MATLAB (a high-performance language for technical computing, see the web site
http://www.mathworks.com). The goal is now to correctly select the iteration number k*. The
next section is devoted to present a heuristic process to accomplish this objective.

7.3.4.1 L-curve regularization algorithm

The L-curve algorithm (Hansen 1998) was originally designed to compute the regularization
parameter in Tikhonov’s method (7.9); it can also be used to compute the iteration number £* in
the case of the LCG method. We describe the implementation for the latter case. Using property 4
from the introduction of section 7.3.4, we have that the norm of the LCG iterations ||X ||, increases
monotonically with &, and the residual norm ||A ¥, — $°%%||, decreases monotonically with . This
behavior is important when using the L-curve which is described below (Hansen 1998).
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Figure7.5. L-curve for the Foxgood example.

The main idea is to construct a parametric curve of the norm of the iterations
% llvs||A X% — $°P5||, where the parameter of this curve is the iteration index k. This curve is
formed by discrete points and has a special shape, because these quantities increase and decrease
respectively. The curve very often has an ‘L’ shape which gives the name to the algorithm. In
Figure 7.5 the points of the L-curve are represented in a log-log scale, for a test example called
Foxgood (Hansen 1998), with dimension #n = 64 and considering a perturbation of order 107° in
obs ie. yobs = pexact 4 10=0£(1, ..., 1)!; where £ € (0, 1) is a random number generated for
each component value.

The corner of the L-curve balances the minimization of the residual norm and the norm of the
LCQG iterations (shown in Fig. 7.5). The placement of the points suggests that it is intuitively easy
to determine the index £* of the corner; however, its automatic detection requires a numerical
algorithm that takes into consideration the different shapes that this curve may have when using
a log-log scale. For a review of some ideas and algorithms to find the corner of an L-curve see
Castellanos et al. (2002).

7.3.4.2 Linear preconditioned conjugate gradient method

In order to improve the conditioning of the matrix of a system of linear equations to accelerate the
convergence of the conjugate gradient method, i.e., to equalize the largest number of eigenvalues
as possible (see property 2 in the introduction to 7.3.4), it is convenient to use what is known as
a pre-conditioner. We have the following equivalent system for the normal equations:

MA'AY = MA' b (7.10)

where M is the pre-conditioner. In this case it is said that a left preconditioning has been applied.
The technique of preconditioning consists of doing a linear change of variables ¥ = M*y and
then minimizing the function:

- - Lo open2 1 = —obs2
hG) =1 = 5 [AF =" = 2 [aAM'5 — 5|
Vh() = (AMH(AM'y — j°)
Using the necessary conditions for a minimizer, i.e., VA(y) = 0 we obtain (7.10):

(AMt)tAMtj}:(AMt)tJ‘;ObS & MAtAMt*:MAt;}ObS & MAtAX:MAtj;ObS
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The simplest pre-conditioner is a diagonal matrix, e.g. to give the same order of magnitude
to each parameter that can be measured in different units system. For instance, if X = (x1, x2)’
and x; is measured in kilometers and x, in meters, it is advisable to set both numbers to the
same system of units, which is equivalent to put ¥ = Dy with D = diag(1072, 1) setting both to
meters.

The ideal pre-conditioner would be the inverse of the system matrix because the solution is
just the matrix-vector product: ¥* = (At A)~! At3°P which is obtained in one single step in
this method. Thus, the closer to the inverse system matrix the pre-conditioner is, the faster the
execution of the method, at least in terms of the speed of convergence. However, for ill-conditioned
matrices the inverse will be also ill-conditioned and it is not a good choice to select a matrix too
close to it.

Appropriate preconditioning techniques are often very problem-specific and are still subject
to intense research; examples can be found in Hanke (1999).

When the LCG method is applied to the preconditioned system of equations (7.10), it becomes
the ‘linear preconditioned conjugate gradient’ (LPCG) method (see Nocedal et al. 1999 for
details).

A FORTRAN implementation of a LPCG algorithm can be found in the IMSL package,
in routines PCGRC and DPCGRC (inline library of the Microsoft Visual FORTRAN, or in
http://www.vni.com/products/imsl/). However, for the LLS problem, these routines need the
formation of the matrix product A® A which, as mentioned in section 7.3.1, is not recommended.

74 NONLINEAR LEAST-SQUARES (NLS)

Although the problem (7.6) for a function F that does not depend linearly on the vector of
parameters X, can be minimized using a general optimization method, in most circumstances,
the properties of the function ' make it worthwhile to use methods designed specifically for the
nonlinear least-squares problem. Using again the model function in example (7.4), for determining
the parameters x| and x;:

o(x1, x2; 1) = e 1T 4 Sin(xy £)

Thus:
el 4+ Sin(xs 1) Y?bs
L €2 + Sin(x2 1) I Fl
O(X; 1) = D(x1, x2; 1) = . and Yo = "
et + Sin(x; t,) yobs

FG =G 0 -3 = (i@, LA, ..., @) FE = |f®]
[ = oG 1) — y0

The Jacobian matrix of the vector function f (X)is:

2l !
37x1 S
o O

0x1 00/ pxcn
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The gradient vector and Hessian matrix of the scalar function F (¥) = || f ) ||2 are:

VFE) =3 @[
V2FG) =I@'IE + Y fi@V2 @)

i=1

If the vector of residuals f (X) of the solution is supposed to be ‘small’ at the solu-
tion, ie. f(x*) ~ 6, the second term of the Hessian matrix at the solution could then be
approximated by: VZF(¥*) ~ J(¥*)! J(¥*). If this approximation uses a Newton’s method, it
becomes the well-known Gauss-Newton method (Nocedal et al. 1999) and the basic iteration is
the following:

Newton’s method for NLS (Gauss-Newton):
Given Xy
For k£ =0, ..., until convergence, do

Solve the linear system of Gauss-Newton equations
V2FX) Sk = —VF®E) & J@E) IGOSk = —IG0)"f Gr) (7.11)
Set )?k+1 =Xp + Sk

Notice that the Gauss-Newton equations (7.11) are the normal equations of the linear least-
squares problem:

| T N |
Minimize ~ HJ(xk)sk + f(xk)” (7.12)
srER™ 2

Thus, the application of the Newton method to solve a NLS problem, under the assumption of
small residuals, can be viewed as an iterative solution to the LLS problem, whose solution gives
the vector of movement to a better approximation of the NLS solution.

_In general, thle methods linearize the nonlinear problem at each iteration, i.e., they approximate

[ G +5k) ~ f(Xr) + J(Xr)sy to obtain the LLS sub-problem (7.12) and solve the problem to
get a better approximation than the previous iteration in the sense of descent of the nonlinear
function, in order to obtain, within some permissible number of iterations, the desired solution
with minimal function value. . R

In what follows we will use the following notation: f; for £ (X;); g for g(X;) and J; for J(x;),
to make easier the presentation of the methods to solve NLS problems.

7.4.1 The Levenberg-Marquardt method

The Levenberg-Marquardt (L-M) method (Moré 1977) has been used with great success to solve
the NLS problem, since it takes advantage of the specific form of the function to be minimized.
In other words, it exploits the particular form of the gradient and the possibility of approximat-
ing the true Hessian matrix at each iteration by J Jz, under the assumption of small residuals.
This method also overcomes the drawback of the Gauss-Newton method, concerning the pos-
sible singularity of the matrix J} J;. The advantage of the L-M method is that it includes a
globalization strategy to enforce convergence from most initial points. No iterative method can
guarantee the convergence to a solution from any initial point but, it is possible to make it more
probable.

The linearization of the function fk around the current point Xy, is a first order Taylor expansion
and thus, it is correct for an unknown Ay neighborhood of it. Then the appropriate formulation
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would be:

Minimize % (RAEA (7.13)

ISkl <Ak

Hence the solution to (7.13) would be correct for the NLS problem in the sense that the nonlinear
function value would also be decreased at each iteration.

The L-M method belongs to those known as ‘trust region’ type methods; the search direction
is the solution of (7.13) and has the following properties:

(3 e+ 2 1) 5k = —JL fi
Akl — Ap) =0
J; Ik 4+ A I > 0 (positive semi-definite)

where A; is a non-negative scalar and I is the identity matrix of order n. The second equation
means that for A # 0 the solution satisfies ||s;|| = Ap, i.e., it is located at the boundary. A unit
step is always taken along 5, giving the next iteration as:

Xkt1 = Xk + 5k

The following two cases arise in the computation of the correct value of A4, once the adequate
value of Ay has been chosen:

Case 1: A = 0 and J} J; nonsingular: Compute Gauss-Newton direction
SN = @ I
If |59V || < Ay then5; = 59V (the solution is inside the trust region)

Case 2: IfJ;\,/ J; is singular or |59V || > Aj: Compute A > 0, the root of ||S(1)|| — Ax = 0, then
Sk =50 = - Jp + 1 I)’IJ,i fx (solution is at the boundary of the trust region)

The difficulty in this approach is to perform an appropriate strategy for choosing Ay, which
must rely on heuristic considerations. Most standard strategies (Dennis et al. 1996, Moré 1977)
have originally been developed to ‘globalize’ the convergence of the Gauss-Newton iteration
for well-posed minimization problems and basically rely on some criteria about the agreement
between the nonlinear model (7.6) and the linear one (7.12).

The constrain on the size of the solution of problem (7.13), when the matrix J/ J; is nonsingular,
causes that the solution would be at the boundary and thus, the problem turns out into:

L. . =2
Minimize - HJk Sk ” (7.14)
Isell=ax 2

which is equivalent to the solution of the unconstrained problem:

1 - =2 A .0 P
Minimize — HJk Sk + fr H + =lIskll” — ApD (7.15)
syeR” 2 2

This is the same problem solved in the Tikhonov regularization method (7.9), except that in the
L-M method, a bound on the size of the solution is imposed. Although this bound is usually due
to optimization considerations, it controls the iteration size from growing too much. This seems
to be the reason for the good behavior of the L-M method on noisy problems (i.e., with errors in
the observed data), since the method will compute the regularized linear solution many times.
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A very efficient and robust FORTRAN implementation of the unconstrained Levenberg-
Marquardt method can be found in the MINPACK-2, available at http://www-fp.mcs.anl.gov/
otc/minpack/summary.html.

7.4.2 Using an optimization routine (TRON) to solve NLS problems

In practice the NLS problems are usually subject to bound constraints, i.e., the parameters can
only be sought within certain lower and upper values. This makes sense since most of the times
the unknown parameters are physical, chemical or biological quantities. Thus it is necessary to
use a method that can deal with such restrictions, which are mathematically posed as:
Minimize F(X)
subjecttoljngguj
Jj=l...n

where F' is a nonlinear smooth scalar function depending on a vector in R”, and /; and u; are
the lower and upper bounds of the parameters, respectively. This is known as a bound constraint
nonlinear optimization problem. Of course, the function F' could be of the least-squares type, as in
equation (7.6), but the optimization methods do not have the same performance on any nonlinear
function as we shall see immediately.

The IMSL software package of routines (inline library of the Microsoft Visual FORTRAN,
http://www.vni.com/products/imsl/) has an implementation of the Levenberg-Marquardt method
with bound constraints, although the technique used to deal with the constraints may result
inefficient in large-scale problems, when too many parameters are involved.

On the other hand, using general routines for optimization in the solution of NLS, can have
the inconvenience that they do not take advantage of the particular structure of the function of the
NLS problem, which happens in quasi-Newton’s methods. These methods usually approach the
Hessian matrix or its inverse at each iteration, which can be useful when the function is ‘very’
nonlinear or when the residual vector norm in the solution is very large. However, the most typical
case is that of small residuals, when these general methods are inefficient.

A trust region version of Newton’s method for general nonlinear minimization of bound
constrained problems is called TRON (Moré¢ 1999). This technique is equivalent to the Levenberg-
Marquardt method but it can deal with the bound constraints. This is the method we are going
to present and use in one of the application examples of section 7.5.1. The basic iteration of the
trust region Newton (TRON) method is:

Trust region Newton’s method:
Given X
For k =0, ..., until convergence, do

Solve
. 1. o oo
Minimize =5} V2 Fy 5 + 5} 8k
subject to ||5g|<Ax 2

SetXk41 = Xi + Sk

When this algorithm is applied to the NLS problem (7.6) using the true Hessian matrix only
approximated with the first order information (V2Fj ~ J,’( Ji), itbecomes a Levenberg-Marquardt
method, since at each iteration the nonlinear least-squares problem is approximated by the solution
of the associated linear least-squares problem. The basic iteration of the TRON method for NLS
is then:

Trust Region Newton’s Method for NLS:
Given Xy
For £k =0, ..., until convergence, do
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Solve
. 1, o= 1,. . -
Minimize 3 SISk +5' @) = 3 [di s —i—ka2

subject to [|sg || <Ag

(7.16)

SetXpi1 = Xk + Sk

The treatment of the bound constraints is not shown here, since it requires a more mathematical
background on this subject, the reader is referred to Moré and Lin (1999) for details. To solve
the constrained LLS sub-problem (7.16), the vector s, is obtained using a linear preconditioned
conjugate gradient method (LPCG, see section 7.3.4.2).

Since the TRON method solves the same sub-problem (7.16) as the L-M method, when applied
to a NLS problem using the approximate Hessian matrix J} Jx, the equivalence to the Tikhonov
regularization method is also valid for this technique. Therefore its performance is similar to
the L-M method, besides the advantage of dealing with bound constraints, which makes it an
attractive option for most real problems. The projected search strategy used for the treatment of
the bound constraints makes the difference on performance in comparison to the IMSL routines
mentioned in the second paragraph of this section.

The main drawback of this method for the NLS problem is the formation of the product J} Jx
which increases the ill-conditioning. This may be avoided by redesigning the code for the specific
NLS problem and is a work in progress by the authors of this chapter.

The routine DTRON that implements this method is freely available from the home page of
the Argonne National Laboratories (http://www-unix.mcs.anl.gov/~more/tron/).

7.4.3 Regularization techniques in NLS

As we have pointed out, the selection of the trust region radii Ay, which is related to the parameter
Ak, 18 based on optimization considerations. Thus, it does not take into account, neither for the
L-M method nor for the TRON method, the possible ill-posedness of the inverse problem. We
emphasize again the fact that the more information about a problem is available, the best is the
solution obtained. This is the first kind of regularization. Since the TRON method is able to deal
with bound constraints, the knowledge of effective ranges of the parameters can be used and thus,
the solution could be better approximated.
One practical way to regularize a NLS problem is to use the Tikhonov regularization method:

Tikhonov’s regularization method for NLS:

Given A% > Al > ... |seti=0
. AT A
Solve x;i = arg min (E Hf(x) 2 + 5 ||x”2)
xeR”
Seti=i+1
Graph |[/;(5c';fi) | vs [IX5, || fori = 0,1, ..., and select the corner point X} as the best one

It is possible to use, for instance, the L-curve algorithm to determine the corner point. This
schema might be prohibitive for some practical problems with too many parameters, or too expen-
sive evaluations of the model function, because it would be necessary to execute the optimization
algorithm as many times as there are tested values of A. At each execution at least one evaluation
of the function and one of the gradient are needed by iteration.

Another option might be to introduce the regularization into the linear part of the TRON method
that uses a LPCG to solve the linear least-squares sub-problem (7.16). This heuristic approach is
still under research, but initial results for practical applications are promising.
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Another way of possible regularization is to consider a multiscale scheme which will be
explained in one of the application examples in section 7.5. To get more insight into regularization
techniques the reader may see Engl et al. (1996).

7.5 APPLICATION EXAMPLES

7.5.1 Groundwater modeling

A fundamental problem in the modeling of groundwater systems is to obtain reliable estimates
of flow parameters for the functions appearing in various differential equations (see chapter 4).
Those parameters (e.g., hydraulic conductivity) are difficult to determine and more information on
their effects is needed (e.g., hydraulic head). The computational difficulties associated with their
estimation appear because this inverse problem is ill-posed, and are aggravated by the sparseness
of well sites and the inherent measurement errors.

To simplify the exposition we consider the flow equation in a non-homogeneous isotropic
confined horizontal plane aquifer with the dimensions (x, f)):

dh(x, v, ) 9 dh(x, v, 1) 3 dh(x, v, 1)
v,y )+ 8, y, o = L, ) L (1, Y
at 0x ax ay ay

(7.17)

The direct problem is to compute the state variable hydraulic head Ai(x, y, ¢), with known
parameter functions S(x, y, ¢) (storage coefficient), 7,(x, y) (transmissivity) and Qp(x, y, t)
(a groundwater source term), i.e., to solve the differential equation with the corresponding initial
and boundary conditions.

The inverse problem related to this differential model is to estimate one or several of the
parameter functions, using measurements of the function 4(x, y, ) and/or some additional data.
These data could be, for example, some real range of the values of 7', (x, y) and S(x, y, t) in some
zones of the aquifer. We might want to find Oy (x, y, 1), T, (x, y) and/or S(x, y, ¢) which would
be the parameters to be identified in the whole region occupied by the aquifer.

This inverse problem is ill-posed since its solution is highly sensitive, because it could change
a lot with small perturbations of the observed hydraulic heads, which is a common practical
situation. Therefore some regularization technique is required (section 7.4.3).

Groundwater modeling has its own peculiarities:

e These models are expensive since the solution of the direct problem requires solving large
systems of equations for each model run.

e State variables are time dependent, for example, the hydraulic head #i(x,y, ) in
equation (7.17) .

e Heterogeneity: Values of hydraulic conductivity (transmissivity 7, (x, y) in the case of a
2-dimensional confined aquifer) which is often the dominant hydraulic property may vary
several orders of magnitude within the model domain.

e There are different types of parameters.

e The data measured in the field (the hydraulic head) are discrete values and hence they represent
often only small sections of the whole aquifer.

e Model uncertainty: Geometry of the aquifer and heterogeneity patterns are controlled by the
geology, which is never known accurately. This fact increases the uncertainty in the conceptual
model (see section 6.11).

e Low sensitivity: Depending on the problem, state variables may display low sensitivity. Observ-
ing different sets of transmissivity values, the hydraulic heads do not differ significantly. This
is the symptom of the great ill-posedness of this problem.



Parameter identification and inverse problems 303

Because of the above features, the aquifer model prediction is highly uncertain for both, the
conceptual model and the model parameters. The purpose of this application example is to solve
the latter practical problem.

The earliest methods in inverse groundwater modeling (Sun 1994) substituted the hydraulic
heads, A (x, y, t), which were assumed to be known, into the flow equation (7.17). This substitution
leads to a first order partial differential equation for the transmissivity 7, (x, y). Then, using a
numerical solver, its values were obtained.

This approach has several drawbacks. Firstly, it requires the accurate knowledge of hydraulic
heads, groundwater recharge, Qy (x, y, t), storage coefficient S(x, y, t) and boundary conditions
over the whole domain in space and time. This can only be achieved through interpolation of the
discrete values obtained from field measurements, which introduces errors. Secondly, it is unstable
since each component of the system matrix generated in the discretization of the flow equation,
depends on the hydraulic heads that are contaminated by measurements and interpolation errors.
That is why although this method is a direct approach to compute the transmissivity, it is not
recommended.

To overcome the interpolation error on the hydraulic heads, most recent methods use the indirect
approach, in which the parameters are found by minimizing an objective function, such as the
least-squares function. For example the indirect approach formulation for the estimation of the
parameter function 7, (x, ) is:

Minimize F(T) = Hﬁcal_iz"bs ”2 (7.18)

This equation represents a huge computational task, because at each iteration of the minimiza-
tion procedure, the partial differential equation (7.17) must be solved for the current values of
the transmissivities as shown in the flow chart in Figure 7.6. Thus, the cost of a single evaluation
of the least-squares function is very high, and its dimension will be equal to the size of the grid
used to compute the hydraulic heads, let’s say nx x ny.

In order to regularize the solution of the inverse problem identifying the parameter func-
tion 7, (x, ), a number of approaches may be used, such as: (1) the Tikhonov regularization,
(2) providing additional types of data, and (3) reducing the number of parameters to be estimated
(which also reduces the dimension of the least-squares procedure).

7.5.1.1 Multiscale optimization

If the optimization represented by equation (7.18) is carried out directly over the entire
grid of the physical region of the aquifer used to solve the direct problem, there would be
nx x ny unknowns (the grid size). The ill-conditioning of the problem in the presence of
noise could produce oscillatory solutions, corresponding to a transmissivity function with great
variations.

In order to regularize the solution, multiscale optimization solves a sequence of better con-
ditioned sub-problems, generated by refining the discretization: beginning with a grid of lower
dimension the transmissivities are computed on this coarse grid in the optimization procedure.
After refining the grid, the initial values of the transmissivities are obtained from the interpolation
of those acquired to the new nodes, until the last grid is obtained (the one with the same dimension
as for the PDE solver).

Each grid is obtained by applying successive subdivisions: starting from a coarse grid m = 0
whose size is nxg X nyo until the final grid m = mscale is achieved (Fig. 7.7). The number of
intervals and their size depend on the number of refinements mscale. For 0 < m < mscale the
finite dimensional parameter space E™ is the vector space of parameter distributions [for example
transmissivity 7, (x, y)], which are continuous piecewise bi-linear segments over the elements of
the grid. Then, from dichotomy we have that E”~! < E™. For a description of multiscale grids,
the reader is referred to Gomez et al. (1998).
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Conceptual
model

INPUT: Initial estimation for the
parameters (transmisivity) T’

v
k<0
v <
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Solve 7.17 using T, and obtain h*™
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Figure7.6. Procedure to estimate the transmissivity in the flow equation.

Thus, the parameterization of 7, (x, y) is made in the following way. Given a profile i"v’"*l S
E™=1 can be represented in £ by its coordinates otf”j on a basis E;"j of E™ (multiscale basis):

mscale nx n

y
Leay) = 3 D) aljele.y)
m=0 i
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Ag Ay Ay

Figure7.7. Multiscale grids: Basic sequence.

where m = 0 or i is odd or j is odd. We then have to solve, for each m, the finite dimensional
problem which implies finding the coefficient matrices A™ = (o} -

Multiscale optimization consists of growing gradually the initial iterate and approaching the
solution by finding first a good approximation to the coefficient «;, which is associated to the
high sensitivity over coarse grids. Using this approximation (the optimal coefficients) as starting
points, it is possible to find the coefficients associated to the non-linearity (Gomez et al. 1998).
This process can be described as follows: -

Given an initial guess Ty, solve problem (7.18) in the coarser grid m = 0 to find 7. Then, for
every grid generated by refinement, do:

For m = 1 until mscale do

e Take as the initial approximation 7 = T m-l g fv’” 7’;” ewn
where W™ is a supplementary space of E™ such that E” = E™~! @ W™ and T " is obtained
from 7 v’:ﬂ_l by interpolation.

e Use a local bounded optimization method to find 7' L™,

7.5.1.2 An elementary example

Let us consider the aquifer shown in Figure 7.8a and the transmissivity estimations 7, (x, y) in
equation (7.17). The investigations and experiments performed in this aquifer with an area of
78.2 km?, using a trial and error method (the values of transmissivities are fixed, the PDE is
solved to obtain values of the hydraulic heads, they are compared with those observed and, based
on a wide knowledge of the aquifer, new transmissivities are fixed, repeating the process a finite
number of times until the calculated hydraulic heads ‘approach’ to those observed), resulted in
the delimitation of three zones with individual constant transmissivity values (Fig. 7.8a). The
objective of the experiment presented next is to see which method best reproduces these values
of transmissivities.

For the simulation of the direct problem we use an irregular grid inscribed into a squared region
and for the multiscale schema, mscale = 3. The storage coefficient is 0.0015. The initial and
boundary conditions are shown in Figure 7.8a. In this implementation we used a complete final
grid of 16 x 16 cells to solve the direct problem. Throughout the procedure, including the first
two grids of 4 x 4 and 8 x 8 cells, respectively, we used the source codes of MODFLOW 2000
(USGS 2000).

7.5.1.2.1 Experimental results
Data with error: Using the transmissivity values obtained by trial and error, the PDE solver was
run for a grid consisting of 16 x 16 cells. The hydraulic heads were obtained for each cell. Then
they were taken as the experimental measurements and thus, the exact solution is known.
In order to test the performance of the multiscale method, a random error of order 10~* was
added to the hydraulic heads, to see if the known transmissivity values could be reproduced.
Figure 7.8b—d shows that the multiscale method achieved a better approximation to the optimal
parameters compared to the method not using multiscaling. The graphic of the optimal trans-
missivity obtained in each case (Fig. 7.8c,d) compared with the exact solution (Fig. 7.8b) and
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Figure7.8. (a) Aquifer example composed of three zones with constant values of transmissivity 7'(x, y)
obtained from ‘trial and error’; (b—d) Transmissivity maps obtained with: (b) Exact solution;
(c) No multiscale, TRON method in the grid scale of 16 x 16; (d) Multiscale using TRON
method in the optimization at each scale of the procedure, NR2 = || T exact _ 7, VAl T exact |

the value of the error between the exact and the approximated solution (|| T exact _ T* /1 T exact
demonstrate this result. Additionally, the residual obtained with both runs is small, which is
typical in the problem of identification. The practical regularization effect of multiscale grids is
presented in this example and also studied further in Gémez et al. (1998).

7.5.2  Inverse problems in geophysics

A geophysical field u (seismic, electromagnetic, gravitational, etc.) is defined by the distribution
of the earth’s physical parameters x (density, electrical conductivity, elasticity, etc.). The field
and the parameter of the medium are usually related via a nonlinear operator 4 that is defined by
the mathematical model of the medium, i.c.:

Ax=u uelU, xeX (7.19)

The inverse problem of geophysical prospecting is to determine the distribution of the physical
parameters y inside the earth (and, hence, the crust’s structure and composition) from the measured
geophysical field «. In order to solve this problem we need special physical observations. The
development of automated systems for processing geophysical data put the interpretation of the
prospecting result on an industrial basis. The efficiency of this prospecting has also thus being
significantly improved. Naturally, an automated system must be based on methods for solving
the inverse problem in geophysics.

The feature of the geophysical inverse problem is that the observed fields are the integral
effect of 