

Macmillan Computer Science Series
Consulting Editor:
Professor F. H. Sumner, University of Manchester

A. Abdellatif, J. Le Bihan, M. Limame, Oracle - A User's Guide
S. T. Allworth and R.N. Zobel, Introduction to Real·time Software Design, second edition
Ian O. Angell, High·resolution Computer Graphics Using C
Ian O. Angell and Gareth Griffith, High·resolution Computer Graphics Using FORTRAN 77
Ian O. Angell and Gareth Griffith, High-resolution Computer Graphics Using Pascal
M. Azmoodeh, Abstract Data Types and Algorithms, second edition
C. Bamford and P. Curran, Data Structures, Files and Databases, second edition
Philip Barker, Author Languages for CAL
P. Beynon-Davies, Information System~ Development, second edition
G. M. BinwistIe, Discrete Event Modelling on Simula
B. G. Blundell, C. N. Daskalakis, N. A. E. Heyes and T. P. Hopkins, An Introductory Guide to
Silvar Lisco and HILO Simulators
Richard Bomat, Understanding and Writing Compilers
Linda E. M. Brackenbury, Design of VLSI Systems - A Practical Introduction
Alan Bradley, Peripherals for Computer Systems
G. R. Brookes and A. J. Stewart, IlItroduction to occam 2 on the Transputer
P. C. Capon and P. J. Jinks, Compiler Engineering Using Pascal
J. C. Cluley, Introduction to Law Level Programming for Microprocessors
Roben Cole, Computer Communications, second edition
Eric Davalo and Patrick NaIrn, Neural Networks
S. M. Deen, Principles and Practice of Database Systems
C. Delannoy, Turbo Pascal Programming
Tim Denvir, IlItroduction to Discrete Mathematics for Software Engineering
D. England et a\., A Sun User's Guide, second edition
J. S. F1orentin, Microprogrammed System5 Design
A. B. Fontaine and F.Barrand, 80286 and 80386 Microprocessors
Michel Gauthier, Ada - A Top-down Course
J. B. Gosling, Design of Arithmetic Units for Digital Computers
M. G. Hartley, M. Healey and P. G. Depledge, Mini and Microcomputer System~
J. A. Hewitt and R. J. Frank, Software Engineering in Modula-2 - An Object-oriellled Approach
Roger Hutty, COBOL 85 Programming
Roland N. Ibbett and Nigel P. Topham, Architecture of High Peiformance Computers, Volume I
Roland N. Ibbett and Nigel P. Topham, Architecture of High Peiformance Computers, Volume /I
Patrick Jaulent, The 68000 - Hardware and Software
P. Jaulent, L. Batic\e and P. Pillot, 68020-30 Microprocessors and their Coprocessors
M. J. King and J. P. Pardoe, Program Design Using JSP -A Practicalllllroduction, second edition
V. P. Lane, Security of Computer Based Information Systems
Bernard Leguy, Ada - A Programmer's IlItroduction
M. Leonard, Database Design Theory
David Lightfoot, Formal Specification Using Z
A. M. Lister and R. D. Eager, Fundamelltals of Operating Systems,fifth edition
Elizabeth Lynch, Understanding SQL
Tom Manns and Michael Coleman, Software Quality Assurance, second edition
B. A.E. Meekings, T. P. Kudrycki and M. D. Soren, A Book on C, third edition
R. J. MitChell, Microcomputer System5 Using the STE Bus
R. J. Mitchell, Modula-2 Applied
Y. Nishinuma and R. Espesser, UNIX - First contact
Pham Thu Quang and C. Chartier-Kastler, MERISE in Practice
A. J. Pilavakis, UNIX Workshop

continued overleaf

E. J. Redfern, Introduction to Pascal for Computational Mathematics
Gordon Reece, Microcomputer Modelling by Finite Differences
F. D. Rolland, Programming with VDM
W. P. Salman, O. Tisserand and B. Toulout, FORTH
L. E. Scales, Introduction to Non-Linear Optimization
A. G. Sutcliffe, Human-Computer Interface Design, second edition
C. J. Theaker and G. R. Brookes, Concepts of Operating Systems
M. Thorin, Real-time Transaction Processing
M. R. Tolhurst el aI., Open Systems Interconnection
A. J. Tyrrell, COBOL from Pascal
M. J. Usher, Information Theory for Information Technologists
I. R. Wilson and A. M. Addyman, A Practical Introduction to Pascal with BS6192, second edition

Other titles
Roy Anderson, Management, Information Systems and Computers
I. O. Angell, Advanced Graphics on VGA and XGA Cards Using Borland C++
B. V. Cordingley and D. Chamund, Advanced BASIC Scientific Subroutines
N. Frude, A Guide to SPSS/PC+, second edition
Percy Melt. Introduction to Compllling
Tony Royce, COBOL - An Introduction
Tony Royce, Structured COBOL - An Introduction
Barry Thomas, A PostScript Cookbook

A
Book on
C

Third Edition

B. A. E. Meekings
T. P. Kudrycki

and

M. D. Soren

M
MACMILLAN

© R. E. Berry and B. A. E. Meekings 1984
© R. E. Berry, B. A. E. Meekings and M. D. Soren 1988
© B. A. E. Meekings, T. P. Kudrycki and M. D. Soren 1993

All rights reserved. No reproduction, copy or transmission of
this publication may be made without written permission.

No paragraph of this publication may be reproduced, copied or
transmitted save with written permission or in accordance with
the provisions of the Copyright, Designs and Patents Act 1988,
or under the terms of any licence permitting limited copying
issued by the Copyright Licensing Agency, 90 Tottenham Court
Road, London WIP 9HE.

Any person who does any unauthorised act in relation to this
publication may be liable to criminal prosecution and civil
claims for damages.

First edition 1984
Reprinted 1985, 1986
Second edition 1988
Reprinted 1990
Third edition 1993

Published by
THE MACMILLAN PRESS LTD
Houndmills, Basingstoke, Hampshire RG21 2XS
and London
Companies and representatives
throughout the world

ISBN 978-0-333-56919-1 ISBN 978-1-349-12804-4 (eBook)
DOI 10.1007/978-1-349-12804-4

A catalogue record for this book is available
from the British Library.

For
Marion, Judy and Paul,

Toby, Tim, Lucy, and Ben,
Denver,

Kasia

Contents

Preface viii

Introduction 1

1 Program Structure 6
2 Functions 16
3 Output and Input 30
4 Decisions 44
5 Loops 50
6 Operators 59
7 Arrays 72
8 More Data Types 83
9 Pointers Revisited 91
10 The C Preprocessor 106
11 Progrannning Style 118
12 The Standard C Libraries 131

Appendix 1: C Style Analysis 154
Appendix 2: Tabulated and Listed Information 169

Alphabetic List of C Keywords 169
C Operator Precedence 170
C Basic Data Types 172
Escape Characters 173
Conversion Characters in Fonnat Strings 173
ASCII Character Set 175

References 177

Glossary 178

Index 183

vii

Preface

When we wrote the first edition of this book, it was with the intention of
providing an introduction to a powerful and complex programming language.
As C gained in popularity, it became apparent that a simple introduction was
not enough, and the second edition included a nwnber of topics which we had
originally regarded as "advanced". The third edition is expanded yet again, and
now covers the new ANSI standard C.

Although the C standard was the principal reason for the third edition, we
have made other changes - for example, the style analysis suite has been
rewritten entirely in C, rather than using a variety of UNIX system tools; and
we are now able to offer the text of all the examples, plus the style program
and a mini-compiler, in machine-readable form on a floppy diskette.

We believe that we have a unique approach to the teaching of a
programming language, with emphasis on programming style and a structured
methodology, as well as on details of the language itself.

C appears set to be the "language of choice" for many professional and
recreational programmers for at least the rest of the decade. We hope that
learning it gives the same lift to your programming experience as it has done to
ours.

September 1992

Tom Kudrycki

Brian Meekings

Michael Soren

viii

Introduction

Programming is communication. In attempting to teach a programming lang­
uage we are trying to provide the learner with a means of communication, a
means of expressing himself or herself. At first sight it will appear that the
communication will be one way, between the program writer and the machine
on which his or her program is processed. This view is too simplistic, for the
communication occurs on a number of different levels.

Certainly it is important that the programmer is sufficiently familiar with the
language selected to write the program to produce concise and efficient code,
but it should not be forgotten that, after successful development, a program
will need to communicate with its user while executing. This aspect of
communication is now, justifiably, receiving considerable attention. It is no
longer satisfactory that the program produces the correct result - it should also
be easy to use and should be 'bulletproof', which is to say that, no matter how
inaccurate the user's input, the program should always provide a sensible and
intelligible response. In the jargon, the program should be 'user friendly'. An
argument can be made that a big share of the ever-increasing software
development cost can be attributed to the market's need for better and more
eloquent user interfaces. Elaborate and intuitive graphical interfaces are be­
coming more and more common in even simple software products.

A further level of communication, all too frequently neglected, is that
between program writer and program reader. Program writers frequently
assume that the only readers of the program will be themselves and a
computer. The consequence of this assumption is that the program may be
tedious and difficult to assimilate by anyone given the task of modifying, or
simply reading, the original. Like everything else of man's creation, software
will not be perfect, and should be written with the knowledge that it will need
to be maintained. This means taking all reasonable steps to ensure that the
program logic is lucidly expressed by the text, and the layout and presentation
of a program help considerably in this. Unfortunately, there are constraints
imposed by some language implementations that inhibit good presentation.
Thus when using a BASIC interpreter with access to a limited amount of
memory, there will be pressure on a programmer to omit comments and to
discard unnecessary spaces. We recognise the pressures, but regret their effect
on the intelligibility of programs.

The concept of program style encompasses the presentation, layout and
readability of computer programs. These principles apply to any programming

1

2 A Book on C

language. whether high level or low level. The factors that contribute to
program style are undoubtedly highly subjective. and thus contentious. Our
contribution to the debate is to enumerate what we consider to constitute a
reasonable set of metrics. whose application can be automated. and to associate
with each of the program examples within the text a 'style score'. At the foot
of every nontrivial program you will see this style score enclosed in square
brackets. For small examples the style score can be sensitive to small changes
in presentation. for example. the addition of a blank line. Nonetheless. we give
it so that the reader can judge its usefulness. A small C program is illustrated
in example I.l to give a hint of what is to follow. The derivation of the style
score is detailed in Appendix 1. Suffice it to say here that the score is a
percentage. and that the higher the score. the more 'elegant' the program.

The programming language C is a powerful language. and deserves its high
and still increasing popularity as one of the most important programming
languages currently available. Without wishing to over-stress program style
and the importance of good program design. we feel that it is necessary to
point out that no programming language is. as yet. so powerful as to conceal
flaws in program logic or to make its clear exposition unnecessary. Sound
program logic is achieved by design. and in recent years considerable attention
has been given to program design methods. Whether a structured program is
achieved after the design stage will depend on the person or persons who
translate the design into a program in an appropriate programming language - a
not inconsiderable task. The book by Dahl et aL (1972) is worthy of the
reader's attention (see References).

Programs can become such complex artefacts that a new art and science of
software engineering came into existence in recent years. We can truly speak
of software being engineered. an activity which may involve many tens or
hundreds of people and which requires coordination and control over many of
its aspects. With this in mind. it is not surprising to find software tools
produced to assist in this engineering. The software tools philosophy espoused
by Kernighan and Plauger (1976) and realised in UNIX is an impressive
demonstration of the importance of this approach. We believe that UNIX and
C have significantly expanded our own computing horizons. and thoroughly
recommend the experience to others.

&/ell

#include <stdio.h>
#include <string.h>

/* to resort the letters of a word into alphabetical
order - e.g. the basis of an anagram dictionary */

int
main ()
{

Introduction

char word[21), min;
int i, j, pos, len;

printf ("Gimme a word ... ");
scanf ("'Is", word);

len = strlen(word);
for (i=O; i<len; i++) {

}

min = '-'; 1* the last character *1
pos = 0;
for (j = 0; j < len; j++)

if (word[j] < min) {
min - word[j);
pos = j;

} 1* found a smaller letter *1

printf ("lise", min);
word [pos] = '-';

printf ("\n");

return 0;
} 1* main *1

style 67.7]

3

There are a nwnber of texts that describe the UNIX system and C. That by
Bourne (1982) we found particularly useful. Kernighan and Ritchie's (1978)
book remains the definitive reference for the original version of C, while the
experienced user might better himself by reading Feuer (1982).

Different flavours of C have evolved over the years. Many of the features of
the language are common to all its implementations. There are, however, many
implementations which lack capabilities found in others. On the other hand,
many C implementations provide language extensions specific to a particular
computer manufacturer or operating system. In an effort to standardise the C
language implementation, the American National Standards Institute (ANSI)
has formed a committee to define a version of the language attempting to fulfil
a very difficult task of being standard across a wide variety of machines and
operating systems. A docwnent describing the standard was completed in
December 1989 and published in 1990. The second edition of Kernighan and
Ritchie's book (1988) has been expanded to include the ANSI standard.

In this book, the language C as defined by ANSI standard X3.159-1989 is
described. All C implementations conforming to the standard are referred to as
conform ant and the programs written strictly in accordance with the rules
defined in the standard as portable, on the understanding that more and more C
compilers are conforming to the standard, and therefore the programs written
in standard C are becoming more widely portable. Whenever feasible, we
attempt to point out differences between the standard and the earlier C
implementations, with emphasis on points to which a prudent C developer

4 A Book on C

should pay particular attention. We also offer some advice on making your
nonstandard programs as widely portable as possible and prepare for
availability of an ANSI C compiler on your installation.

The first chapter of this book describes the structure of C programs.
Chapter 2 introduces functions. contrasting them with macros. Chapter 3 deals
with input and output. emphasising the importance of the interface between the
program and its environment.

Chapters 4 and 5 explain the two features of any programming language that
give it its power - the control constructs of conditional branching and looping.
Operators are introduced in chapter 6. while chapter 7 illustrates the use of
arrays and strings.

This is the point at which all the 'basic' features of C have been covered.
The remaining chapters describe what we consider to be 'advanced' features -
derived data types in chapter 8. data structures in chapter 9 and the C pre­
processor in chapter 10. Chapter 11 presents some guidance on program style.
which we could define loosely as that enigmatic quality that distinguishes
adequate programs from superlative ones. Finally. chapter 12 lists the
functions and features provided by confonnant C implementations. stressing
the portability issues and offering guidance in providing some of the standard
C functionality on your local implementation.

In learning any programming language we have found that examples which.
as well as illustrating language features. stimulate the reader's interest. are of
particular importance. We have tried to present an interesting variety of
examples.

In order to make the learning process easier and more enjoyable. and to save
you a lot of typing should you find our programs interesting, we can provide
on MS-DOS 360K diskettes all the substantial examples reproduced in this
book. and the style analysis program used for our style scoring throughout the
book. In addition. we include the source code for a rather larger programming
example - a C program, which we call RatC, that accepts as input a program
written in a subset of C and produces as output an intermediate code version of
the program. This intermediate version can then be given to RatC to preprocess
and produce an assembly code for a variety of machines. RatC can in this way
even reproduce itself. We provide the user with sufficient information to
implement his own small C compiler. To order the diskettes, write to:

Soren Associates
PO Box 7403
Somerset
NY 08875-7403
USA

and enclose a cheque for $25. drawn on a US bank.

Introduction 5

Above all, C is a language to enjoy. The kind of thing you always wanted to
be able to do in other programming languages becomes possible in C - but be
warned that its power, as well as getting you out of trouble quickly, can get
you into trouble just as quickly.

1 Program Structure

In the introduction we attempted to show that programming must be under­
taken in a disciplined and organised marmer. If the resulting program is to
display the benefit of this approach then the programmer must be thoroughly
familiar with the program structure dictated by the programming language that
he, or she, is to use.

FUNCTIONS

A C program consists of one or more functions. One of these functions must
have the name main. A program is executed when the underlying operating
system causes control to be passed to the function main of the user's program.
The function main differs from the other functions in a program in that it must
be defined, in order to provide a starting point for execution, and its para­
meters, if they exist, are provided by the operating system. It is usual, but not
essential, for main to be the first function of the program text.

Viewed simply, a function name is nothing more than a collective name for
a group of declarations and statements enclosed in curly brackets or braces {}.
The function useless below is of little value since it contains no executable
statements. Its only purpose is to illustrate the appearance of a minimal
function.

useless ()
{
}

The parentheses following the function name are essential, and will later be
shown to be more useful than the present example suggests.

If we assume that main is the first function defined in a C program text then,
because no function may contain the definition of another function, the
definitions of the subsidiary functions of the program text will follow. There
may be only two or three such functions, in which case their purposes will be
easy to determine, or there may be many. There is no special ordering of the
functions dictated by the programming language C (in contrast to Pascal
which, despite advocating the structured approach to problem solving, pre­
cludes its effective use by insisting that all functions be defined before they are
used). However, after emphasising the value of a program as a means of

6

Program Structure 7

communication, it would be foolish to suggest that an arbitrary order for the
functions would be as good as an order with some rationale. The function
definitions could be arranged in alphabetical order, or they could be grouped
according to their purpose. This latter ordering is not so easy to achieve but
can frequently be more helpful.

IDENTIFIERS

An identifier in C, whether it represents a function name or a variable, consists
of any sequence of the characters [a-z, A-Z, 0-9,-"1. The first character of an
identifier must not be a digit. Upper and lower case letters are distinct, so that,
for example, the identifiers count, Count and COUNT represent three different
quantities. Internal identifiers in strictly portable programs should not be
longer than 31 characters. In some older, non-conformant compilers, only the
first eight characters are significant.

Identifiers are characterised by the two attributes 'type' and 'storage class'. It
is also possible to modify the behaviour of identifiers by specifying the 'type
qualifier'. The type of an identifier determines the type of object that it will be
used to represent; so, for example, int,jloat and char qualify an identifier as
representing an integer, a real (or floating point) number and a single character
respectively. The full list of available types is given in appendix 2. An
identifier's storage class determines its 'scope' - the way in which it can be
accessed from other parts of the program.

FILES AND THE STORAGE CLASS external

For programmer convenience, a large program may have its text spread over
several files. To illustrate the effect of file structure on C programs and the
symbols or names used within them, consider the examples given below, in
which items within the same file are enclosed by a box.

Example 1.1

file1.c

main ()
{
}

function 1 ()
{

}

file2.c

function2 ()
{
}

function3 ()
{

}

8 A Book on C

In example 1.1, if we ignore main, any of the three functions could legit­
imately contain references to each of the remaining two. main may call any of
the other three functions. This is possible because all function names belong to
the storage class external. Any symbol name from this storage class may be
referenced across files.

A function may also contain a call of itself. This is known as a recursive
call, and an example of such a call will be found in the function drawtree
given as part of an example in chapter 9.

STORAGE CLASS automatic

In order that the functions we define can perform some useful role they will
need to manipulate data. As in most programming languages the name and
type of every data item must be declared. A declaration does not necessarily
reserve storage to be associated with the identifier, but rather establishes the
type and storage class of the declared identifier. In the example below size is
declared to be an integer and its storage class is automatic.

main ()
{

int size;
}

The identifier size is local to the function main and may only be used within
main. If the name size is used in any other function in the program it is not
then connected in any way with the data item of the same name in the function
main. The storage class is known as automatic because, for any identifier in the
class, storage space is allocated when the function is entered and given up
when exit is made from the function. In standard C, the automatic storage class
can be explicitly specified in a declaration by using keyword auto. Such speci­
fication is, however, redundant since automatic is the default storage class for
any identifier declared within a function.

main ()
{

auto int size;
}

While this form of storage is economical, in that it is needed only when a
function is being executed, it does not meet all our requirements.

STORAGE CLASS static

Imagine that, as part of a check upon the operation of a program, it is
necessary to count the number of times that a function was executed. The

Program Structure 9

count should be local or private to the function but the associated storage
should be preserved from one call of the function to the next in order that the
count may be accumulated. An identifier with storage class automatic is
clearly inappropriate, since its value would be lost between successive calls of
the function. Consider example 1.2: the identifier count has been defined as
type integer with storage class static. It could be used to accumulate the
number of calls of junctioni, because the value of static variables is retained
across invocations.

Example 1.2

main ()
{

}

file1.c

function 1 ()
{

static int count;
}

file2.c

function2 ()
{

}

function3 ()

As another example, suppose that two or more functions are used to mani­
pulate the contents of a table. Each function will require access to the table and
its associated pointers. It might also be desirable to protect the table from
corruption by ensuring that no other function of the program gains access to
the table. Both requirements can be met by using data items belonging to the
static storage class within the same file.

Example 1.3

filel.c

main ()

{
int size;

function1 ()
{

int i:
}

file2.c

static int ptr;
function2 ()
{

function3 ()
{

int i:

10 A Book on C

In example 1.3, the identifier size can only be used in main. The identifier i of
junction1 has no logical connection with the identifier i of junction). The
second file contains the definition of ptr. Both junction2 and junction) may
use the identifier ptr, as may any other function defined in that file. The
storage class of ptr is not automatic but static. Identifier ptr is not accessible to
a function in any other file. Note that it is not only function names that belong
to the storage class external. We can declare the names of other data items so
that they belong to this class. These names too may be referenced across files.
If we change filel of our example by adding the line

extern int ptr;

and remove the word static from file2, as shown in example 1.4, then the
function main can now reference the item ptr defined in file2.

Example 1.4

main ()
{

file1.c

extern int ptr;
int size;

function 1 ()

int i;

file2.c

int ptr;

function2 ()
{

function3 ()

int i;

If, however, the extern statement were to appear as the first line in filel then
all functions in that file could refer to ptr, and this would be the same object
declared in file2. In distributing a program text across files in this fashion we
would need to ensure that for each identifier name in the external storage class,
other than function names, there was one declaration of this name that did not
include the word extern. This is called the definition of the identifier. The pre­
fix static must be omitted in this definition.

STORAGE CLASS register

This new storage class introduced by the ANSI standard implies that it is
desirable to have the fastest possible access to the object thus defined. It may
be possible to assign the object to one of the CPU registers and never allocate

Program Structure 11

storage for it in the computer's main memory. Effectiveness of such requests is,
however, implementation-defined and is not guaranteed by the standard. In the
example below, it is suggested that function main makes frequent references to

object size and desires the fastest possible access to it.

main ()
{

register int size;
}

TYPE MODIFIERS

As the name implies, type modifiers alter some aspects of the object's be­
haviour. The canst type modifier specifies that the object cannot be changed
during program execution. The system can place such objects in a read-only­
memory (ROM) or a protected memory segment. Objects so defined can be
used to store values which are not modified by the program, such as physical
or mathematical constants. The volatile type modifier is almost an opposite of
canst. It specifies that the object can be modified at any time by factors outside
of the program, or that its modification can have other unknown side effects.
Such objects are typically modified by hardware without any indication to the
program. The system takes extra care in using the values of such objects. The
two type modifiers are not mutually exclusive. Object size in the example
below cannot be modified by the program, but it should be assumed that it is
modifiable by the computer hardware.

main ()
{

const volatile int size;

THE C PREPROCESSOR

The preceding discussion on files assumes that it is sensible and convenient to
divide a program text into multiple files and also that the names of the two or
more files are passed to the C compiler for processing. There are circum­
stances, however, in which it might be convenient to divide our program
physically between files but to treat it logically as a large program text in one
file. This facility is made available by the C preprocessor.

Preprocessing is, as its name suggests, undertaken prior to compilation and
provides two important facilities; the ability to 'include' files and the ability to
'define' text for macro replacement. These are extremely convenient facilities
and, since frequent use is made of them, they are introduced at this early stage.

12 A Book on C

#include

Example 1.5 differs from example 1.1 in the addition of one line at the end of
filel. This is sufficient to change the organisation of the program in a small but
significant way. The 'include file' request must appear on a separate line and is
treated as a request to replace the line itself by the contents of the file given, in
this case file2.c. In some older compilers, all preprocessor requests must start
at the left margin. Under the UNIX operating system, if the file name appears
in double quote marks it is assumed to be in the current directory; if the file
name is included instead in angle brackets, a special directory is assumed to be
the location of the file. In either case the contents of the file replace the
include directive and the combined text is passed on to the C compiler which
treats it logically as one file of program text. Several files may be coalesced by
use of suitable include directives. Included files may themselves contain
include directives, but such nesting cannot exceed 8 levels in a strictly portable
program. While this is a legitimate use of the included file facility, an included
file more usually contains define directives. A file containing define directives
is known as a header file and, by convention, has a filename ending in '.h'. Any
file containing C program text has a name which ends with '.c'.

Example 1.5

main ()
{

}

file1.c

function 1 ()

{

}

#include Ifile2.c"

#deftne

file2.c

function2 ()

{

}

function3 ()

{

}

The define directive provides the user with a macro replacement facility. The
C preprocessor in this context is a macro processor, although this is not always
appreciated by newcomers to this facility. The most common use of the define
directive is of the form

#define DAYSINWEEK 7

The preprocessor will thereafter replace the text string 'DA YSINWEEK'

Program Structure 13

throughout the entire text by the string '7'. In one sense this facility can be
likened to the const type modifier or const section of a Pascal program in that
it provides a means of removing all explicit constants from a program text and
enables the user to use symbolic names instead. We think that it is good
practice to gather all such definitions at the head of the program text file. It is
even more desirable to use const type modifiers for that purpose, since objects
defined through the normal type declarations will be checked for proper types
during program compilation, whereas constants defined in #define directives
are just character strings taken verbatim without any type checking. Before
using const type modifiers instead of #define directives, one may consider,
however, that many C compilers are still not strictly conformant and do not
recognize type modifiers. In chapter 10, we will provide some suggestions for
writing programs which can be compiled by both strictly conformant and older
types of compilers.

The define directive is not restricted to use in the manner described above
for program constants. It is, in general, much more powerful and useful, since
it replaces one text string by another and will, as we shall see later, also deal
with parameters.

SIMPLE C CONSTRUCTS

In order that we may use examples to illustrate the points made in the text, we
need, as has already become obvious, some programming language constructs.
Even the simple examples need to demonstrate that they work by printing
something. We therefore introduce the priniffunction.

printf (liThe answer is 42");

printf, print formatted, is perhaps the most commonly used output function.
Whatever text appears within the double quote marks is, with a few important
exceptions, printed on the user's output device. Input and output statements
became an integral part of the standard C language. Older versions of C did not
define input and output statements but rather provided them within an
implementation-defined commonly accessible library of such routines, which
would be made available to the program via an include file. ANSI C
sanctioned the use of such libraries and made them a part of the language
definition, thus in principle making the standard library function names
reserved. For example, use of

#include <stdio.h>

at the head of a program is a convenient way of obtaining access to some
commonly used definitions. These definitions include several of the simpler
input/output functions. We shall assume for convenience that the user is using

14 A Book on C

a visual display unit (YOU) to a multi-user or microcomputer system on which
C is available.

printf ("\nThe answer is 42\n");

This variant of the first print/ statement prints a newline character, represented
by the character pair \n, before and after printing the string itself. All
statements in C are terminated by a semi-colon. There may be more than one
statement per line. An assignment statement is exemplified by

answer-42; /* 42 is a decimal constant */
answer-052; /* leading 0 means an octal constant */
answer-Ox2a; /* leading Ox or OX means a hex constant */

where we assume that answer has been declared to be an integer. Lastly, let us
note at this point that the braces U may be used to enclose one or more C
statements

question=99; answer=42; }

The collective name for statements enclosed in this way is a compound
statement. It will become obvious from the examples that in C a comment is
any text string enclosed by 1* and */'

Further examples of the use of the define directive can now be given by
using the print/function. The definition

#define STARS printf("**********")

will cause the symbol STARS to be replaced by the call of the function print/.
When viewed in the context of the example given below it will be appreciated
that the define facility could save us some tedious typing.

#define STARS printf("**********")

main ()
{

STARS;
printf("\nThe answer is 42\n");
STARS;

derming VDU CHARACTERISTICS

We can use the define directive in another more useful way to improve the
quality, and thus the user friendliness, of the output produced by any program.
Most YOUs in common use have facilities to home the cursor, clear the screen,
and so on. Invariably to use these features means sending a special character
sequence to the terminal. The character sequence is not easy to remember

Program Structure 15

unless one uses it constantly; it varies from one manufacturer's product to
another and frequently between different models from the same manufacturer.
What we suggest is that these codes are set up once and for all using define
directives. For a Lear Siegler AOM5 we would have

#define CLEAR
#define HOME

printf ("\033Y")
printf ("\036")

Recall that the backslash followed by n was used to denote a newline
character. Backslash followed by a number can be used in printj and elsewhere
in a C program, to denote the character defined by the ASCII code in octal
which follows the backslash. A table of the ASCII characters with their octal
representations is given in appendix 2. To clear the screen of this particular
terminal we can send the escape character (ESC) followed by the letter Y.
Since this clears from the cursor to the end of the screen, the HOME command
should precede the CLEAR. This form of CLEAR command is given because
ESC followed by a character sequence is a common way of expressing VDU
directives.

The number of special features available on a VOU varies considerably. A
VT100 terminal, for example, will offer cursor addressing, blinking, high­
lighting, reverse video and other features all of which are selected by a special
character sequence beginning with ESC. For any VDU these special features
should be noted and appropriate define directives set up as illustrated in the
examples. Thereafter all the define directives for one terminal should be
collected together in a suitably named file. Any C program wishing to use
these facilities need then only include this file at the head of the program and
all the commands defined for that VOU become available.

SUMMARY

In this chapter we have described the structure of C programs. We have
illustrated the convenient and versatile mechanisms that are easily available to
the programmer to help produce a well-organised and a well-structured pro­
gram. We shall endeavour to reinforce these ideas through the examples that
we present. Our presentation may not be perfect and may seem for the smaller
examples to dominate the examples themselves. Effort spent on organisation,
structure and layout of a program is worthwhile, and particularly useful for
larger programs. If you find our examples easy to assimilate and find your way
round, then use some of the same strategy on your programs. If on the other
hand you feel the presentation or organisation could be improved, then learn
from our failings and produce well-structured programs as a result.

2 Functions

As we have seen in the previous chapter, functions offer an easy way to
construct a modular program. Since they are such an essential part of good C
programming we shall introduce their facilities at an early stage to encourage
familiarity with their use.

SIMPLE FUNCTIONS

In order that our examples may achieve something, even if it is not especially
useful, we will make use of the printf statement introduced earlier.

Example 2.1

#include "adm5.h"
#define GAP printf("\n\n\n\n")

1* a program to print large letters *1

main ()
{

}

HOME; CLEAR;
bigH ();
bigI ();

GAP;
GAP;
GAP;

1* clear the screen *1

1* bigH prints H as a 7*5 matrix of asterisks *1

bigH ()
{

printf ("* *\n");
printf ("* *\n") ;
printf ("* *\n") ;
printf ("*****\n");
printf ("* *\n") ;
printf ("* *\n");
printf ("* *\n");

16

Functions

/* bigI prints I as a 7*5 matrix of asterisks */

bigI ()
{

}

printf ("*****\n");
printf (" * \n");
printf (" * \n");
printf (" * \n");
printf (" * \n");
printf (" * \n");
printf ("*****\n");

style 62.3 1

17

Because the program does not do much, its structure, and the preprocessor
facilities that it uses, are easily seen. The include file 'admS.h' contains screen
control instructions for a Lear Siegler ADMS.

In the body of the program, after clearing the screen, a call to the function
higH is made. When executed this function causes asterisks to be printed
representing the character H in a 7 * 5 matrix of characters. Similarly hig!
causes the character I to be printed. The symbol GAP ensures an appropriate
separation between the characters and whatever follows them on the screen.

Anyone choosing to type example 2.1 into their own machine will quickly
realise that they are typing identical printj statements several times over.
Example 2.2 illustrates that by using the define facility of the preprocessor we
can save writing and typing of text. Remember that the preprocessor will
simply replace the defined symbol by its definition throughout the program
text, and so the version of program 2.2 that reaches the compiler will be
logically equivalent to program 2.1.

Examp/e2.2

#include "adm5.h"
#define GAP printf("\n\n\n\n")

/* allstars prints all stars */
#define allstars printf ("*****\n")

/* endstars prints end stars */
#define endstars printf ("* *\n")

/* midstar prints mid stars */
#define midstar printf (" * \n")

main ()
{

HOME; CLEAR; GAP; /* clear the screen */
bigH (); GAP;
bigI (); GAP;

18 A Book on C

bigH ()
{

}

endstars; endstars; endstars;
allstars;
endstars; endstars; endstars;

bigI ()
{

allstars;
midstar; midstar; midstar; midstar; midstar;
allstars;

style 55.4 1

Alternatively, the program can be rewritten using function calls instead of
defines by declaring allstars, endstars and midstar as functions, as shown in
example 2.3. The programs 2.2 and 2.3 are functionally, but not logically,
equivalent, in the sense that, although the output from both is the same, in one
case it is produced by a program with three functions, and in the other, by a
program with six.

Example 2.3

#include "adm5.h"
#define GAP printf("\n\n\n\n")

main ()
{

HOME; CLEAR; GAP; /* clear the screen */
bigH (); GAP;
bigI (); GAP;

bigH ()
{

endstars
aIls tars
ends tars

bigI ()
{

();
();
();

allstars ();

ends tars

endstars

(); endstars

(); ends tars

midstar (); midstar (); midstar ();
midstar (); midstar ();
allstars ();

/* aIls tars (), endstars (), midstar () * /
/* are now defined as functions */

();

();

Functions 19

aIls tars ()
{ printf ("*****\n");

ends tars ()
{ printf ("* *\n") ;

midstar ()
{ printf (" * \n");}

[style 42.4

MACROS OR FUNCTIONS?

When executing, the program 2.3 produces the same results as the two
previous versions of this program. Which is best depends on what criteria are
used for the comparison. In example 2.2 the preprocessor replaces all symbols
defined in a define. The transformed program is passed to the C compiler.
When executed, the body of the function higH causes seven printf statements
to be obeyed. When executing the function higH of 2.3, seven function calls
are executed and each call causes a printj statement to be obeyed. For
examples of this size we are unlikely to notice the difference in compile time
or execute time between 2.2 and 2.3. If we were able to measure such times
accurately then we would find that 2.2 compiled more slowly than 2.3, but
executed more quickly. Our guideline, while approximate, will be that where
symbols are replaced by small amounts of text then the symbol will be defined
in a define statement, otherwise the symbol will be defined as a function. In
contrast, if we knew that a function with a small body was called in a part of
the program that was heavily used, then we would consider replacing the
function definition by a define statement for the symbol name. This would save
the overhead of the function call at execution time.

The ANSI standard allows functions defined in the standard libraries to have
#define macro equivalents, provided that the libraries also contain the
appropriate functions. This arrangement gives the programmer flexibility in
deciding whether to use functions or macros even in the case of standard
library constructs. By undefining the name of a macro using #Undef directive,
the programmer makes sure that a "real" function is used. Without the un­
define, the program may be using a function or a macro depending on a
particular C implementation.

USING ARGUMENTS AND PARAMETERS

Functions are much more useful if we are able to pass information to them.
Infonnation can be passed implicitly, by using within the function symbol
names that are defined elsewhere, or explicitly, by using parameters. The word

20 A Book on C

"parameters" refers to the symbol names that are specified in the function
definition; "arguments" are the actual values supplied when the function is
called. The examples of printJ used to date have been limited in that they
simply print a given string. However, printJ is a much more versatile function
than these early examples suggest. In particular it can be made to print the
value of data items that are passed as arguments, thus:

printf ("%c %c\n" , '*', '*');

The first argument must always be the string (in double quotes) that contains
characters to be printed, formatting information, and conversion characters.
The percent sign % precedes conversion characters in the string. More details
of the conversion characters will be given in chapter 3. For the moment it will
be enough to know that the letter c after % indicates a character conversion.
For each conversion character in the control string a suitable argument must be
provided within printJ following the control string. Each parameter following
the control string must have a corresponding conversion character within the
control string. The printJ statement given above has exactly the same effect as
the printJ statement given in function endstars of 2.3. We are now in a position
to add a useful parameter to those functions that we have defined.

DEFINING PARAMETERS

Consider the following version of el1dstars:

endstars (anychar)
char anychar;
{

printf ("%c
}

%c\n", anychar, anychar);

Here the function, endstars, is defined as having a parameter. The type of the
parameters, if there is one or more, can be defined before the brace which
marks the start of the ftmction body, or inside the parentheses containing the
list of parameters. The latter style has been introduced by the C standard and
will be described in detail in the section describing function prototypes in·this
chapter.

The parameters may then be used in a manner consistent with their
definition anywhere within the function body. The function endstars simply
uses anychar as an argtunent to printJ. Hence whatever character is passed to
endstars through the argtunent list in a function call is printed in the manner
that should now be familiar.

Functions

Example 2.4

#include "adm5.h"
#define GAP printf("\n\n\n\n")

main ()
{

HOME; CLEAR; GAP; /* clear screen */
bigH ('H'); GAP; /* use H to construct letter H */
bigI ('I'); GAP; /* use I to construct letter I */

}

bigH (ch)
char chi
{

ends tars (ch); ends tars (ch) i ends tars (ch) i
aIls tars (ch);
endstars (ch); endstars (ch); endstars (ch);

}
bigI (ch)
char Chi
{

aIls tars (ch);
midstar (ch) i midstar (ch);
midstar (ch); midstar (ch); midstar (ch);
aIls tars (ch);

/* allstars(), endstars(), midstar() */
/* are now defined as functions, */
/* each has one parameter of type char */

aIls tars (ch)
char chi
{ printf ("%c%c%c%c%c\n", ch, ch, ch, ch, ch); }

ends tars (ch)
char chi
{ printf ("%C

midstar (ch)
char chi

%c\n", ch, ch); }

{ printf (" %c \n", ch); }

[style 51.9

21

If all the functions of the example 2.3 are parameterised in this fashion, and the
corresponding calls are suitably amended, then we obtain a program such as
2.4. This program is more versatile than the others in the series in that by
changing the character that is the actual argument to higH, or to hig/, we can
change the output produced. Using parameters in this way will usually help to
make quite clear what must be passed from the caller to the function. If
communication between a caller and a function is done implicitly by use of
symbols to which both have access, the communication is not so obvious to the

22 A Book on C

reader. For this reason early examples within the book will use the parameter
list. Later examples will not be restricted in this way.

A further example of a function with parameters is one that enables us to
move the cursor on the VDU screen to any position. For the ADM5 this
function definition might appear as

1* to move the cursor to 'row', 'pos' *1
cursor (row, pos)
int row, pos ;
{

const int us = 31; 1* initialise for ADM5 *1
printf ("\033=%c%c"·, us+row, us+pos);

}

The call

cursor (1, 1);

would move the cursor to the 'home' position, while the call

cursor (12, 40);

would move the cursor to the middle of the screen. However, all of our other
screen control directives are gathered together in an include file. The logical
place for cursor is within that file too. But cursor needs parameters and so far
none of the symbols in a define directive has used parameters. Recall that
replacement of defined symbols is undertaken by a macroprocessor and,
fortunately, this offers us parameter replacement. Hence the addition to our file
of the following definition

#define CURSOR(r, p) printf("\033=%c%c", 31+r, 31+p)

will perform exactly the same role as the function of the same name.

USIN G return

As well as passing information to a function, we must be able to pass
information back to the caller from the function. This may be done in one of
three ways: by using a return statement to pass a value via the function name,
by passing one or more values back through the parameter list, or by changing
the values of symbols to which both the function and the caller have access.
For the reason given earlier this last form of communication will not yet be
used.

The function sUrface in example 2.5 computes the surface area of a
rectangular box having dimensions that can be expressed as integers. The value
computed is communicated to the caller by the return statement and can be
thought of as being associated with the function name. The function call can,
in consequence, be used in expressions. In particular the call may appear in a
printf statement, as indicated in example 2.5.

Example 2.5

main ()
{

Functions

int length, width, depth;

length = 10 ; width = 16 ; depth = 4;
printf ("surface area = ");
printf ("%d\n", surface (length, width, depth»;

return (0);

/************************************/
/* to compute the surface area */
/* of a rectangular box */
/************************************/

surface (len, wid, dep)
int len, wid, dep;
{

return (2* (len*wid + wid*dep + dep*len»;

style 53.3 1

23

Even such an apparently simple example raises several new points. The
conversion character following the percent sign is d to indicate a decimal
integer. In other respects the printj statement is little different from those
already seen. The function definition has three parameters of integer type (int).
The function call has three arglUnents of integer type. The parameters and
arguments correspond in order, nlUTIber and type The function body consists
simply of a return statement which computes the surface area. So that no
confusion arises in these early examples, the parameters have been given
names that are different from the names of the arglllTIents. The names leave no
doubt as to which parameter corresponds to which argument.

The return statement passes a single value from the function to the caller.
The type of this value is determined by the form of the expression in the return
statement and the type of the operands. If the returned value is of type integer
or character (char) then the function definition is as given in example 2.5.
However if the parameters to the function were of type float then the program
should appear as in example 2.6.

The main function of any program is called by the underlying operating
system and is always defined as returning a value of type into Some operating
systems interpret the value returned by the program at the completion of the
main function and may act upon it. By convention, the return value of 0
signifies a normal successful program termination. Hence, we include the
statement return (0); at the end of main.

24 A Book on C

Example 2.6

main ()
{

}

float length, width, depth;

float surface(); 1* this is needed *1

length: 20.0; width: 26.0; depth - 4.0;
printf ("surface area = ");
printf ("%f\n", surface (length,width,depth»;

return (0);

1* this version of surface returns *1
1* a result of type float *1

float
surface (len, wid, dep)
float len, wid, dep;
{ return (2*(len*wid + wid*dep + dep*len»; }

[style 51.8]

The type of the arguments and the parameters has been changed to float. The
function must now return a value that is also of typefloat. The type of result
returned by the function is signalled by preceding the function name in the
function definition by the type of value to be returned. A function is assumed
by default to have the type into If it is our intention to qse a function that
violates this assumption then we must signal this intention. This is done by
including. in the functions or files that call this function, a declaration of the
function. It is for this reason that an additional line appears

float surface();

In addition to function declarations, ANSI C allows function prototypes which
explicitly specify the number and type of parameters as explained in the next
section.

FUNCfION PROTOTYPES

Any function not explicitly declared in a program is assumed to return a value
of type into Obviously even the functions returning integer values can be
declared to make this fact explicit. Before ANSI C, function declarations did
not, however, specify the types and order of parameters and as a consequence
it is very common in C programs to confuse the order or type of arguments in
function calls and introduce errors which are often quite disastrous and
difficult to diagnose. ANSI C solves· this problem by introducing function

Functions 25

prototyping which is possibly the single most important feature of the C
standard.

Function prototypes may be viewed as business cards which introduce the
function and its intended use. The function itself may be defined in another file
as seen in several examples in the previous chapter, but the function prototype
given in the program segment in which calls to the function are made ensures
that the source program translator is aware of the order and type of function
arguments and can diagnose any misuse of them. Function prototypes are given
by specifying the type of the returned value, the function name and a list of
types of formal parameters the function takes.

float volume (float, float, float);
static float surface (float radius);
void provide answer (void);
int my_print-(int number, float value, .•.);

The above examples illustrate several important characteristics of function
prototypes. Function volume is defined as returning a floating point value and
taking three floating point parameters. An attempt to call the function with
integer arguments will cause the corresponding arguments to be automatically
converted to floating point values before the call is made. Function sUrface is
defined as returning a floating point value and by the virtue of being static,
will not be visible to functions in files other than the one containing its
definition. The parameter name radius following the type definition is not
necessary but is allowed for docwnentation purposes and in this case is useful
in deciding that the function returns a value for a surface of a spherical object.
Function provide_answer is of type void to indicate that the function does not
return any value. The function is thus equivalent to procedures in some other
programming languages. This flmction does not take any arguments either, as
indicated by void parameter type. Please note that the prototype for
provide_answer is not equivalent to a declaration such as

void provide_answer();

The former one explicitly specifies that the function does not take any
arguments, whereas the latter is just a function declaration without any
parameters specified and the function thus declared may or may not take
arguments.

Finally, function nry "print is specified to return an integer value and to take
at least two arguments of type int andfloat respectively, possibly followed by
other arguments. Any type checking performed by the compiler will be limited
to the first two arguments of the function, in effect providing functions with
variable nwnber of argwnents. The ellipsis indicating an unspecified nwnber
of arguments must always be the last parameter in the function definition.
Ellipses in function prototypes combine the safety of specifying the parameter
types with the flexibility afforded by providing only function definitions.

26 A Book on C

To take a full advantage of function prototypes and type checking
perfonned by an ANSI C compiler, it is recommended that all functions of a
program be prototyped, possibly in a separate header file or files and included
as necessary in all the modules calling the corresponding functions. The task of
providing such prototypes is made easier by a new format of function
parameter definitions allowed by standard C.

Example 2.7

static float surface (float r); /* prototype of surface */

int
main ()
{

float r;

/* call to surface - %g indicates
a floating point conversion */

printf ("Surface for radius %g is %g\n", r, surface (r»;

return (0);

/*****************************
* Function to calculate *
* surface area of a sphere *
*****************************/

static float
surface (float r) /* definition of surface - no ";" */
{

const float pi - 3.1415927;

return (4*pi*r*r); /* it's a sphere */

style 32.9 1

In the above example, the parameter definition for sUrface is given inside the
parentheses in both the function prototype and the function definition. The
difference between fonnats of function prototypes and definitions lies only in
the absence of the delimiting semicolon in the function definition and the
opening brace indicating the beginning of the body of the definition. The old
style of defining the types of fonnal parameters outside of the parentheses and
before the opening brace is still allowed but discouraged. As with other new
features introduced by the C standard, one may decide not to use them given
that there are still many compilers which are not strictly confonnant. In
chapter lOwe will present some techniques which may be used to write strictly
portable programs and yet allow the programs to be successfully compiled by
the older, non standard compilers.

Functions 27

RETURNING VALUES VIA THE PARAMETER LIST

As well as receiving data values through the parameter list it is also reasonable
to expect that we can communicate data values back to the caller through one
or more parameters. In order to understand the mechanism by which this is
achieved, let us observe that in C all parameters are value parameters. That is,
the values of the actual parameters are copied into temporary storage in the
function work space upon entering the function. Thereafter, the function only
makes reference to these local values. If assignment is made within the
function body to one of the parameters, it will be the local copy that is
changed, not the original. At first sight this seems to inhibit communication
from the function to the caller via the parameter list. For C the way out is to
use the address of the relevant data item.

ADDRESSES AND POINTERS

Address Contents
&i
ptr *ptr

In a high-level language it is not usually necessary to know or care about the
address in memory of the data values that we wish to manipulate. As a
consequence, in some languages we have to resort to subterfuge in order to
access specific memory locations. Pascal is one such language. At the other
extreme, if it is too easy to access and modify memory locations then a
program exploiting this facility can become unreadable. Thus a BASIC
program which makes too much use of 'peek' and 'poke' instructions is not
easily intelligible. In C an easy and convenient way of obtaining the address of
a data item is provided. Correspondingly, given the address of a data item, we
can easily obtain its value. As might be expected, in C the mechanism is short
and simple. We obtain the address of an item by prefixing it with ampersand:
thus &x is the address of x. In order that we can manipulate addresses we need
to be able to define items that have pointers or addresses as their values. This
is done as follows

int i j /* i represents a value of type integer */
int *ptrj /* ptr holds the address of a data item */

/* of type integer.

/* an alternative declaration with the */
/* same effect follows */

int i, *ptrj

This notation can now be used to enable a function to communicate with its
caller. For if the caller passes to the function the address of a data item, it is
the address that is stored in the local storage area of the function. The function

28 A Book on C

cannot change the address of the item, but it can change the contents of the
address which is, after all, what we wish to happen. Example 2.5 may now be
rewritten as example 2.8.

Example 2.8

void
surface (int len, int wid, int dep, int *addr);

main ()
{

int length, width, depth, area;

length = 10; width = 16; depth 4;
surface (length, width, depth, &area);
printf ("surface area = %d\n", area);

return (0) i

/* the fourth parameter is an address */
/* we refer to its contents as *addr */

void
surface (int len, int wid, int dep, int *addr)
{ *addr = 2 * (len*wid + wid*dep + dep*len); return; }

[style 39.7 1

The differences between this example and the two previous examples need to
be highlighted. In the function surface the formal parameter addr is used to
communicate the computed surface area back to the caller. In order that this
may happen the contents of addr, *addr, is typed as an integer which means
that addr is an address. The caller must therefore provide the address of an
integer type variable as the fourth argument. In the example it is the address of
area, &area, that is provided. Since the function is defined as void no value is
associated with the function name. Accordingly the function call is a statement
in the main segment of the example.

When a function has only one value to communicate to the caller it will
usually be convenient to use a return statement to pass the value via the
function name. If more than one value is to be communicated to the caller,
then we can use both the return mechanism and the parameter list, or we can
use the parameter list alone. Flmctions exhibiting these features will be used
later in the book when further language constructs have been introduced.

Functions 29

SUMMARY

In this chapter, we have introduced two methods of abbreviating the number of
statements that a programmer must write to produce a program: defines and
functions. Choosing between the two is largely a matter of personal taste,
subject to the guidelines that we have laid down.

Functions represent a major aid both to the modular development of a
program and to its subsequent readability. The length of a function is again a
matter of taste; ideally, a function should perform a single task, and should
rarely, if ever, exceed a printed page in size.

We have discussed the various methods by which the functions of a program
can communicate with each other. Suitable use of parameters not only
generalises the use of a function, but also assists in an understanding of its
purpose and the extent to which different parts of a program fit together.

3 Output and Input

OUTPUT

Our use of the output function printj has so far been straightforward. We have
seen that, as well as printing text strings, it can easily be made to convert the
internal fonn of our data items into a suitable foon for printing. The general
fonn of the printj function call can be expressed as

printf (control_string [, argument_list])

(The square brackets enclose an item that is optional.) The control string may
contain characters to be printed, special control characters preceded by
backslash, and conversion specifiers.

printf CONVERSION SPECIFIERS

For each conversion specifier there must be a corresponding argument in the
argument list. The minimal fonn of a conversion specifier is a percent sign
followed by one of a limited set of characters. Examples of conversion speci­
fiers are given in table 3.1.

The general fonn of the conversion specifier can be written

%[ff] [fw] [.pp] [mm]C

where ff is a set of optional flags which modify the meaning of the
conversion specification as follows:

the result of the conversion will be left justified within the
field. If "_" is not present, the result will be right justified.

+ the result of a signed conversion will always begin with a
"+" or "_" sign. If "+" is not present, the result will be
preceded by a sign only if a negative value is converted.

30

Output and Input 31

the result is converted to an alternate fonn. For 0

conversion, nonzero result will have a 0 prefixed to it. For
x and X conversions Ox or OX will be prefixed to the
result respectively.

o the result of a numeric conversion will be prefixed with
zeros to the specified field width.

fw is a digit string giving the minimum field width - the total
number of print positions occupied. Excess places in the
field are by default filled with blanks, unless 0 flag is
specified for numeric conversions. A data value that is
too large for the field specified is printed in its entirety.
An asterisk used instead of the digit string signifies that
the field width is given by an integer (constant or
variable) in the appropriate position in the argument list.

separates fw from pp.

pp is a digit string which for a data item of type float or
double specifies the number of digits to be printed after
the decimal point. For a string it specifies the maximum
number of characters from the string to be printed. For
integer conversions, it specifies the minimum number of
digits to be printed. As in the case of fw above, an
asterisk can be used instead of the digit string.

mm is one of h, I or L modifiers. h modifier specifies that the
following integer conversion takes a short argument. I
specifies that the following integer conversion takes a
long argument. L specifies that the following floating
point conversion takes a long double argument.

C is the conversion character as specified in Table 3.1.

32

Table 3.1

Conversion
characters

c
dori

u
o

xorX

f
eorE

gorG
s
p
n

%

A Book on C

Argwnent Comment
type

char Single character
int Signed (if negative) decimal
int Unsigned decimal
int Unsigned octal. leading zeros suppressed
int Unsigned hexadecimal. abcdej are used

for x conversion. ABCDEF for X
float or double Decimal notation
float or double Scientific notation. Exponent is

introduced by e or E respectively.
float or double Shortest of %e. %f

string

void*
int*

none

Memory address is printed
Number of characters written so far will
be stored in the variable specified in the
argument list.
% is written; that is. %% causes a single
% to be printed.

Any invalid conversion character is printed!

The examples in the text so far have used few of the option facilities
listed above. If our programs are to produce acceptable output then we must be
able to take full advantage of the facilities offered by pn·ntf. Much the best
way to obtain the necessary familiarity is to use. and experiment with. different
conversion specifiers. To help in this a list of examples is given in table 3.2.

BACKSLASH

Within the control string we have used the backslash character preceding n to
force the printing of a newline. There are other characters which have special
significance when preceded by the backslash. The full list is given in table 3.3.

Output and Input 33

Table 3.2

Value Control String Output

360 %10d 360:
-1 %lOld -1 :

360 %-10d :360
-1 %10hu 65535:
-1 %I01u :4294967295:

360 %100 550:
-1 %1010 : 37777777777:

360 %0100 :0000000550:
360 %-lOx : 168
360 %-#10x :Ox168
360 %-#10X :OX168

-1 %-IOlx :ffffffff

-1 %-10lX :FFFFFFFF
360 %-010x :1680000000:

3.14159265 %10f 3.141593:
3.14159265 %10.3f 3.142:
3.14159265 %-10.3f : 3.142
3.14159265 %10.Of 3:
3.14159265 %10g 3.14159:
3.14159265 %10e :3.141593e+OO:
3.14159265 %10.2e 3.14e+00:
programmer %10s :programmer:
programmers %lOs :programmers:
programmer %10.7s program:
programmer %-10.7s : program
programmer %lOAs prog:
programmer %10.0s :programmer:
programmer %.3s :pro:

34 A Book on C

Table 3.3

\a alert (bell)
\b backspace
\f fonn feed
\n newline (line feed)
'c carriage return
\t tab
\v vertical tab
'ddd ascii character code in octal
\xddd ascii character code in hexadecimal
'\
\"
\1 1
\\ \

The features of the printj statement that have been itemised are sufficient to
provide the user with good control over the output generated. Remembering
also that through the control string itself we can separate one field from
another, we appear to have everything we need. It is now easy to modify
example 2.1 so that it will print its large letters in the middle of the screen
instead of on the lefthand side. All that is necessary is to ensure that, say,
thirty-six leading spaces are printed before every string that is printed. This
could be done by changing the first o/oc of each control string to %37c. If this
proved unsatisfactory for some reason we would need to change each
occurrence of 37 to something new. It will be much more convenient to use a
define directive of the fonn

#define indent printf ("%36c", I ')

which will give us 36 leading spaces, and place the statement

indent;

before each of the relevant printj calls. A change in the number of leading
spaces is now conveniently obtained by changing the value of one numeric
constant.

INPUT

So far our primary concern has been the organisation of our output. We must
also be able to supply our program with data when it is executing. Corres­
ponding to the output function printj is the input function scant which has a
similar philosophy. If we continue with the assumption that input and output

Output and Input

are done through a VDU then a call to scanf of the form

scanf ("%d %d %d", &length, &width, &depth);

35

could have been used in example 2.5 to give values to the identifiers. The user
would then need to type three integers as input when the program started to
execute. Notice that because scanf must be able to communicate the input
values to the caller, the caller must provide the address of the symbols to
which the values are to be assigned. The general fonn of scan/is

scanf (control_string [, argument_list1)

Within the control string blanks, tabs or newlines (collectively known as 'white
space') cause the input to be read up to the first non-white-space characer. If
any characters, apart from those needed in the conversion specifiers, appear in
the control string, it is assumed that they are to match the next non-white-space
character of the input stream. In particular, if any such characters appear as the
first items in the control string then scan/. whenever it is called, will expect to
find just these characters as the next to be read from the input stream. If the
characters are not fOlmd, scanf fails, and the subsequent characters are not
read.

scanf CONVERSION SPECIFIERS

For scanfthe conversion specifier has the following general fonn

% [* 1 [dd1 [mm1 C

where C is the conversion character, * is an optional assignment suppression
character, dd represents a digit string giving the maximum field width, and mm
is a modifier as in the case of printf. The characters admissible as conversion
characters are given in table 3.4.

36 A Book on C

Table 3.4

Conversion Argument type
characters

c Pointer to char

dori Pointer to int
0 Pointer to int
x Pointer to int

f Pointer to float or double
e Pointer to float or double
g Pointer to float or double

s Pointer to array of char
[.....] Pointer to array of char

p Pointer to void
n Pointer to int

Consider the following simple example

scanf ("%d", &fw); 1* read an integer 'fw' *1
printf ("%*c\n", fw, '+'); 1* print a plus sign in *1

1* a field width of 'fw' *1

An input field is normally delimited by white space characters, and hence for
our first example of the use of scant the three integers required for input could
have been typed on a line separated by one or more spaces, or they could have
been typed one per line. Either form, or a mixture of the two, would be accept­
able. Be warned that this meatls that scant will read across input lines to find
the next item of data. If the conversion specifier includes the assignment
suppression character, no assignment is made; in other words the corres­
ponding input field is matched and skipped. Should the length of the input field
exceed the fieldwidth specified, then the data item is assumed to consist of the
first 'fieldwidth' characters. Example 3.1 will perhaps help to clarify some of
these points.

Example3.}

char ch;
char string[20];
int i, j, extension;
long number;
float x;

Output and Input

/* assume the input string PHONE65201X4133 */

scanf ("PHONE %ld %c 'lid", &number, &ch, &extension);
/* yields number - 65201, ch - 'X', extension - 4133 */

scanf ("PHON %c %f %*c 'lid", &ch, &x, &ch, &extension);
/* yields ch - 'E', x - 65201.0, extension - 4133 *1

scanf ("PHONE %2d %3d %c %2f", &i, &j, &ch, &x);
1* yields i - 65, j - 201, eh - 'X', x - 41.0 *1

scanf ("%[AX] %c 'lid", string, &ch, &extension);
1* yields string - "PHONE65201", ch - 'X',

extension - 4133 *1

scanf ("PHONE %[0123456789] 'lie 'lid", string, &eh, &extension);
1* yields string - "65201", eh - 'X',

extension - 4133 *1

37

Note that in the third example scmifhas not read the last two characters (33) of
the input stream. The next call to scan! would scan from the first of these
characters. If the input stream contains nothing to match the current item of the
control string, scan! tenninates. Tennination also occurs when all elements of
the control string have been satisfied.

A variation on the string conversion specification is introduced in the last
two examples, where the string is not delimited by white space characters. The
specifier %[...] indicates a string containing any of the characters within the
square brackets (and delimited by any that is nod, while the specifier %[A ...]
indicates a string delimited by the character set within brackets.

scan! returns to the caller the number of data items that were matched and
assigned. A value of zero is returned when the next character of the input
stream does not match the first item in the control string, and the value EOF
(defined in stdio.h) is returned when end of file is encountered. Thus if the call
to scan! in the third example appeared instead as

items'" scanf ("PHONE %2d %3d %c %2f", &i, &j, &ch, &x);

then items would be assigned the value 4.
The input stream searched by scan! is the standard input stream stdin. The

output produced by printf is directed to the standard output stdout. It will
frequently be necessary to scan other data sources and to direct output to other
destinations. This can easily be achieved by using variants of scan! and print/.
One of these variants allows us to deal with strings.

38

STRINGS

A Book on C

In C a string constant is a sequence of characters enclosed in double quotes.
Like other data items strings may be read in, stored, manipulated and printed.
Strings are stored in arrays of characters (this topic is covered in detail in
chapter 7) and are referenced by the address of the first character, a pointer to
array of char. The general form of the version of sctuifthat processes strings is

sscanf (data_string, control_string [, argument_list])

sscanf scans the string data _string attempting to match the data items specified
in the control string. Successful matches are, when appropriate, assigned to the
arguments in the argument list. Correspondingly

sprintf (data_string, control_string [, argument_list])

writes the argwnents specified in the argument list into the data string in the
manner detennined by the control string. Since we can refer to strings only by
means of a pointer to an array of char, it is obvious that the first argument to
sprint! is the address of the data item that is to be changed.

110 FUNCTION LIBRARY

The C language standard requires that there will exist a library of functions to
perform various input/output tasks. All such functions are defined in the
standard, in effect introducing into the language a set of reserved names. Both
pn'ntj and scant are defined in this library.

The functions getchar and putchar should be part of any non-standard C
library and, as their names imply, they communicate single characters from
and to the VDU which we are assuming to be our input/output device. For
example

ch = getchar (); 1* get next character *1
put char (ch); 1* print it *1

or, equivalently

putchar (ch = getchar ());

since, in C, an assignment is an expression that yields the value assigned as its
result.

The input/output functions that will usually form part of any non-standard
runtime library are listed in table 3.5. Chapter 12 lists all the functions which
must be defined in any strictly conformant C implementation. Any function not
defined in a particular version of a C library and thought to be important or
useful can be added to such a library by the user. If any such additions are

Output and Input 39

made, it is obviously desirable that the functions providing functionality
defined in the standard be constructed in a strictly confonnant way. This would
include the names of functions and libraries, the names of header files, purpose
of the functions and order and type of parameters taken. Any functions not
defined in the standard but useful or necessary for a particular implementation
should draw on the standard and be implemented in a way consistent with it.
Examples of such libraries include machine dependant functions such as port
operations or graphics for the PC family, or site specific functions such as
special mathematical or statistical functions. There is no suggestion that even
in the case of non-conformant implementations, the list in table 3.5 gives all,
and only, those functions that should appear in the library.

When viewed collectively the functions listed in table 3.5 leave one
wondering why

(1) the names pute, gete are notfpute, fgete to indicate that they
communicate with files, and

(2) the file yointer argument of pute, fputs, fgets does not appear
as the first argument as it does infprintf,fseanj.

The following definitions might help the user whose sense of order is offended.

#define fputc(f, a)
#define fgetc(f)
#define fputstring(f, a)
#define fgetstring(f, a1, a2)

FILE I/O

putc (a, f)
getc(f)
fputs(a, f)
fgets(a1, a2, f)

We have explicitly assumed so far that our input or output takes place from or
to the user's terminal. While this will suffice for much initial work, we will
wish, ultimately, to be able to read from and write to files. There are three files
that are always available to any program. These are sttiin, stdout and sttierr, the
files for standard input, standard output and standard error messages. In
practice these three files are always linked to the users terminal. These files
are opened at program entry and closed at program exit.

40 A Book on C

Table 3.5

printf (control string [, argument list])
scanf (control_string [, argument_list])

put char (argument)
getchar ()

sprintf (data string, control string [, argument list])
sscanf (data_string, control_string [, argument_list])

fprintf (file pointer, control string [, argument list])
fscanf (file_pointer, control_string [, argument_list])

putc (argument, file pointer)
getc (file_pointer) -

fputs (argument, file pointer)
fgets (argument 1 , argument2, file_pointer)

Users wishing to use other files must perform the opening and closing
themselves. Functions are provided to simplify this work. Opening a file
involves passing a file name together with other information to the function
/open which returns a pointer to a file. Input/output functions using this pointer
may write to a file or read from a file. The functions fpn"nl/ and /scanj are,
apart from the fact that they communicate with a file, identical in action to
their counterparts pn'ntf and scanf. The general form of their calls is given in
table 3.5.

CLOSING A FILE

As part of the housekeeping associated with our program, a file should be
closed when it is no longer needed. This is done by a call to the function/close
which has a general form

fclose (file_pointer)

When a program terminates normally, all open files are closed automatically.

OPENING A FILE

The operating system under which a C program executes may impose a limit
on the number of files that the program may have open at one time. You
should establish whether such a limit exists for your system and ascertain its
value. If this limit is inadvertently exceeded, a warning should be given when
opening the file that causes the limit to be passed. Since other problems also
could arise in opening a file, such as 'file does not exist', 'file is write
protected', and so on, it is worth having a closer look at the details of opening a
file.

Output and Input 41

A file pointer points to a data item that we have not so far encountered, an
object of type FILE. This is not a simple da~ item such as one with type char
or int that we have used previously, but is more complex. We need not know
what data items the type FILE embraces. A file of standard definitions of items
essential to the input/output functions is kept in the include file 'stdio.h'. By
including this file in our program, we define such symbols as FILE, EOF and
NULL. For local use within the program we need a file pointer, which we will
calljptr, and we need to usejopen to open the required file. The general form
of a call to jopen is

fopen (file_name, file_mode)

This function returns a file pointer to the file that has been opened. Since the
function is therefore not returning a value of the default type (int or char), it
must be declared within the function, or file, that is to use it. This is done by
including stdio.h header file which in standard C provides prototypes for all
input/output functions. The prototype for jopen is of the form

FILE *fopen (const char *filename, const char *mode);

where const means that the parameters will in no way be modified by the call
to the function. Our modified program of example 2.1 looks now like this:

Example 3.2

#include "admS.h"
#include <stdio.h>

#define GAP fprintf(fptr, "\n\n\n\n")

#define allstars fprintf(fptr, "*****\n")
#define endstars fprintf(fptr,"* *\n")
#define midstar fprintf(fptr, " * \n")

FILE *fptr;

main ()
{

}

fptr = fopen ("results.text", "w");
if (fptr == NULL) {

printf (" error in opening file\n");
} else {

HOME; CLEAR; GAP;
bigH (); GAP;
bigI (); GAP;
fclose (fptr);

}

return (0);

42 A Book on C

bigH ()
{

}

endstarSi endstarsi endstarsi
allstarsi
endstarsi endstarsi endstarsi

bigI ()
{

}

allstarsi
midstari midstari midstari midstari midstari
allstarsi

style 67.9 1

The filename argument to fopen must be a string giving the name of the file to
be opened. The mode argument must also be a string which specifies the type
of access required. Some possible file modes are

r read access
w write access
a append access

An attempt to open a file that does not exist for writing or appending will
result in the file being created. If a non-existent file is opened for reading, then
fopen will return the value NULL. Other errors will also result in the NULL
value being returned by fopen. As a result, if the file is opened by a statement
such as:

fptr = fopen ("results.text", "w");

we must immediately check that the file pointer fptr in not NULL. This is done
using a conditional statement, and while this has not yet formally been intro­
duced. it should be clear from the example that a NULL return fromfopen will
cause our program to print an error message; a non-NULL return will cause it
to continue execution normally.

There are some specific comments worth making about example 3.2.
HOME and CLEAR have not been modified and so send their character
sequences to the VDU and not to the results file. The FILE declaration must
not be within a function since main, bigH and big/ all need to refer to fptr.
printj has been changed to fprintj in the define directives and fptr has been
added as the first parameter. The standard input/output definitions in 'stdio.h'
have been included.

Output and Input 43

SUMMARY

Output and input provide the interface between the program and its
environment. Standard C specifies a rich variety of input/output functions
implemented as a library which must be defined in any conformant C
implementation. The program interface provided by this library, that is to say
the form of the function calls and the effects of each function, is standardised
and well defined. However, the individual implementation of these functions is
by necessity different in various computing environments.

Even though some older, non-conformant C implementations may not
provide all these functions, the input/output facilities that we have discussed in
this chapter are generally accepted as a de/acto standard. However, your local
implementation should be checked before assuming that you can use the
functions we have specified: your implementation may have either more or
less than ours.

Since the principal function of all programs is to communicate, whether it
be with other programs, devices, or the human user, as much thought should be
given to the design of this interface as to the problem solution. It is not
sufficient that a program produces the correct results, if those results, by virtue
of poor presentation, are difficult to interpret; nor is it sufficient that a program
assumes the integrity of its input, for this is usually the one factor over which
the programmer has no control.

4 Decisions

A programming language that only offered the possibility of moving from one
instruction to the next instruction in sequence would be extremely limiting. To
be useful, we must be provided with the facility to choose different courses of
action under different circumstances. There are two distinct ways that this may
be done in C. We can use either the conditional statement or the switch
statement.

CONDITIONAL STATEMENT

Two forms of the conditional statement are available in C:

if (expression) statement1
if (expression) statement1 else statement2

An example of the latter form appears in example 3.2 to test that a file has
been opened satisfactorily.

If the conditional statement currently under discussion is included, the kind
of statements used so far in the text include

• an assignment expression,
• a function call,
• a conditional statement,
• a return statement, and
• a compound statement.

(Recall that a compound statement is a group of statements enclosed by braces
{}). Any of the statement types listed can be used as indicated by the general
form of the conditional statement. Other forms of statement, defined later, can
also be used. With the exception of the compound statement in the list above,
all statements are terminated by a semi-colon. Anyone familiar with Pascal
will find that the form of the conditional statement which uses else can, in
certain circumstances, look strange. Different forms of the conditional state­
ment are shown in example 4.1.

44

Decisions

Example 4.1

if (n < 0) printf (lin is negative\n");
if (n == 0) printf (lin is zero\n");
if (n > 0) printf (lin is positive\n");

1* since the three statements above are *1
1* distinct conditional statements, all *1
1* tests are always performed. In contrast *1
1* consider the following alternative; *1

if (n < 0) printf (lin is negative\n");
else if (n == 0) printf (lin is zero\n");
else printf (lin is positive\n");

45

What follows the comments in example 4.1 is a single conditional statement.
The first ifhas a corresponding else, and what follows the else is a conditional
statement. This way of expressing a condition may at first seem strange, but it
will usually pennit an elegant expression of our logic. In addition it is econ­
omical, in that, when one of the tests within the statement is satisfied and the
corresponding action undertaken, execution of the conditional statement
tenninates.

The use of braces to signify a compound statement adds considerably to the
expressive power of the conditional statement, in that the execution of groups
of statements can be made dependent on a specific condition. This can
perhaps be appreciated in example 3.2 where the main part of the program is
executed only if the output file is opened satisfactorily.

Perhaps the part of the conditional statement that it is most important to
understand is the condition itself. The general fonn of the statement showed
this to be an expression enclosed by parentheses. Expressions will be
considered in greater detail in chapter 6. For the present we can use the
comparison of simple data items as an example of the fonn of expression
required. An expression such as

n > 7

can be evaluated as soon as n is known. We expect the result true if n is greater
than 7 and false otherwise. Convention dictates that we regard the value zero
asfalse and non-zero as true. Thus, if the parenthesised expression following
if yields a non-zero or true value the statement that immediately follows is
executed, and the else part, if it exists, is ignored. However, if the parenthes­
ised expression yields a zero or false value, the statement that follows else is
executed. This property is exploited in the following function:

1* to determine whether 'ch' is *1
1* the letter 'y', or 'y' *1

46 A Book on C

int
affirmative (char ch)
{

}

if (ch == 'y') return (1);
else if (ch == 'y') return (1);
else return (0);

If the character passed to affirmative is an upper case or lower case 'y' the
value I is returned, otherwise 0 is returned. Such a function can significantly
help the readability of our program. For, after prompting the user for a single
character reply reply to a question, we could then write:

if (affirmative (reply» printf ("reply is yes\n");

Note that it is not necessary to compare the value returned by affirmative with
zero or anything else. Indeed to do so would detract from the readability of the
resulting statement. We could of course exploit the same principle by writing:

if (n) printf ("n is non-zero\n");

but we would argue that this is not good practice as n represents numeric
values rather than the true or false values that affinnative represents. (For
illustrative purposes, the body of ajfl17fl(ltive is more verbose than it need be.
This function would normally be written in C as:

int
affirmative (char ch)
{ return (ch == 'y' I I ch == 'y') }

where II is the 'or' operator.)

TRAPS FOR THE UNWARY

Consider the two statements
if (ch - 'y') return (1);

if (ch -= 'y') return (1);

and ask whether you can clearly state what each does. They differ only in that
the first has one less 'equals' sign than the second. There is, nonetheless, a
significant difference in their actions. The second statement tests whether ch
has the value 'Y', returns 1 if it does and continues with the next statement in
sequence if it does not. In contrast the first statement assigns the value 'Y' to ch
then, because an assignment is an expression that yields as its result the value
assigned, the return statement is executed, since the parenthesised expression
yields a non-zero value. This difference in action can be extremely important.
Its advantage is that an assignment and a test of the assigned value are neatly
combined. Its disadvantage is that if you intended comparison (==) rather than
assignment (=) your program is logically incorrect but syntactically correct.

Decisions 47

Those people moving to C from a language in which the single 'equals' sign is
used for comparison are advised to check their conditional statements
carefully.

MULTIPLE CONDITIONS

Let us assume that we are given an integer, which is an examination mark, and
that we are to translate this mark into a grade. An A grade is obtained for a
mark in the range 80 to 99, B for a mark in the range 60 to 79, and so on. The
null character is returned for a mark outside the range 0 to 99. 'There is, as
usual, more than one way to achieve this end, but a look at several methods
will help to contrast the use of different facilities in C.

Example 4.2

int
grade (int mark)
{

}

char q;

if (mark < 0) q = '\0';
else if (mark < 20) q = 'E';
else if (mark < 40) q = '0';
else if (mark < 60) q = 'e';
else if (mark < 80) 9 = 'B';
else if (mark < 100) q a 'A'i
else q ~ '\O'i

return (q)i

style 47.9 1

While the logic of the statement is simple and economical, it is lengthy. What
is needed to deal with the problem of example 4.2 is a construct that offers a
multiple choice of actions in contrast to the binary choice offered by the
conditional statement. The switch statement is just such a construct.

THE switch STATEMENT

The general form of the switch statement is

switch (expression) statement

The value yielded by the expression must be of integral type and will be used
to select which of several statements to execute. The statement that follows the
selecting expression will, if the switch is to serve any useful purpose, contain
one or more statements preceded by

case constant_expression:

48 A Book on C

The constant expression can be thought of as labelling the statement that it
prefixes. This statement is executed if the selecting expression yields a value
that matches the constant expression. Within any switch statement the constant
expression that labels a statement must be unique. A rewritten version of the
mark grading example should make clear the form and logic of the switch
statement.

Example 4.3

int
grade (int mark)
{

char g;

switch (mark
case 0:
case 1 :
case 2:
case 3:
case 4:

return (g);

style 49.5 1

/ 20) {
9 'E' ; break;
9 = '0' ; break;
9 'e' ; break;
9 'B' ; break;
9 'A' ; break;

The unexpected feature of this example is, perhaps, the break statement. When
it is encountered it causes exit from the switch. If in the example 4.3 the first
break were omitted, then having assigned 'E' to g the next statement, which
assigns 'D' tog, is executed. In other circumstances, as we shall see, we might
wish to exploit this course of action. It is not appropriate to do so in this
example - all the break statements, with the exception of the last, are essential.

Example 4.3 is logically similar to example 4.2. It is not identical in its
action, as the null character is not returned if mark is outside the expected
range. A statement prefixed by default is executed if the value produced by
the switching expression does not match any of the constants following case
within the switch statement. In example 4.3 when none of the case constants is
matched exit is made from the switch statement. We can ensure that marks
which are out of range are satisfactorily processed by including the statement:

default: 9 = NULL; break;

anywhere within the switch statement of example 4.3. Finally we note that no
ordering of the case or default prefixes is necessary or implied. The example
4.4 should make these points clear.

Decisions

Example 4.4

1* to determine whether a given character *1
1* is a vowel. Zero is returned for non- *1
1* vowels. An integer in the range 1 to 5 *1
1* is returned for a vowel. *1

int
vowel (char ch)
{

switch (ch) {
default:
case 'u' :
case 'a' :
case 'e' :
case t i ' :
case • o· :

}
}

style 54.0]

return (0) ;
case 'u' : return (5) ;
case 'A' : return (1) ;
case 'E' : return (2) ;
case ' I' : return (3) ;
case '0' : return (4) ;

49

This example exploits the fact that a case which is not followed by a break
causes the following statement to be executed. In this way we can easily deal
with both upper and lower case versions of the characters. The statement
prefixed by default could as easily be the last statement of the switch as the
first. Another feature exploited is the use of return rather than a break
statement. return causes exit from the switch statement and from the function.

SUMMARY

In this chapter we have discussed two of the constructs that give programming
its flexibility - the two-way and multi-way branch. Strictly, from the point of
view of the logic of a program, one of the constructs is unnecessary, since
either can be expressed in terms of the other. Careful use of the appropriate
construct can, however, considerably enhance the intelligibility of a program.

A two-way branch will almost always be implemented with a conditional
statement; a multi-way branch can be implemented either by nested
conditionals or by a switch statement. As a general rule, we can say that nested
conditional statements should be used whenever we are testing a series of
conditions in decreasing order of expected frequency; when all the conditions
are equally likely to occur, a switch statement should be used.

5 Loops

The conditional statements of the previous chapter freed our programs from the
straitjacket of the sequential execution of instructions without branching, but it
is the ability to loop, or repeat the execution of one or more instructions, that
brings power to programming. It brings economy too, for a modest number of
programming language statements can be responsible for a significant amount
of computing time.

C offers at least three ways in which we can construct loops. We can use a
while statement, a do statement, or a for statement. Of these, the while state­
ment is the most important, because it can be used to do anything that the other
two loop constructs can do. The other two forms of loop construct are available
because, in certain circumstances, they offer a more appropriate means of
expressing our logic.

THE while STATEMENT

The while statement has the general form:

while (expression) statement

The list of statements given at the start of chapter 4 must now be extended to
include the while statement. Anyone of this extended list of statements is
admissible as the statement part of the general form of the while statement
given above. The expression in parentheses has the same role as the
parenthesised expression of the conditional statement - that is, it is evaluated
and tested. If it produces a non-zero or true result, the statement that follows is
executed. The expression is then tested again and, if true, the statement
following is executed once more. This sequence is repeated until the
evaluation of the expression yields a false result, and then the statement that
follows the while statement is executed.

There is, of course, an implicit assumption that something occurs within the
while loop which causes the value produced by the controlling expression to
change at some time. The statement:

while (1) i = 0;

causes an infinite loop, setting i to zero interminably. Care must be taken to
ensure that loops do terminate!

50

Loops 51

In example 5.1 we introduce two new operators, !=, and ++. The first tests
for inequality; the second is the increment operator, which when used as in:

count++i

causes count to be incremented by one. Suppose our task is to count the
number of characters on a line. Assuming that the input stream is positioned at
the start of a line, the following statements perform the count:

count = 0;
ch = getchar ()i

while (ch != '\n') {
count++i
ch = getchar ();

But these statements do not exploit some of the features that we have already
seen. In particular, the test that controls the while statement could easily be
modified to include the assignment to ch. The modified version uses this
feature and is presented as a function.

Example 5.1

#include <stdio.h>

int
counter (void)
{

}

char chi
int count = Oi

while «ch = getchar (» != '\n')
count++i

return (count);

style 54.1]

Example 5.1 also capitalises upon the ability, in C, to initialise variables as
part of their definition. A closer look at the function counter should prompt the
realisation that ch is used only in the expression that controls the while loop. If
this is so, then we should dispense with ch altogether and rewrite the function
as in example 5.2.

52 A Book on C

Emmple5.2

#include <stdio.h>

int
counter (void)
{

}

int count: 0;

while (getchar () !~ '\n')
count++;

return (count);

style 52.6]

In this, and other ways, C offers many aids to writing 'economical' (some
would say terse) programs. The reader is encouraged to exploit these features
but to bear in mind that simplicity and clarity of expression should not be
sacrificed in order to produce 'smart', but not easily readable, programs.

ESCAPING FROM LOOPS

The break statement, which was used to escape from the switch statement, will
also force exit from a while statement. Following the execution of break, the
statement that follows the while statement is executed. A return statement also
may be used to escape from the while loop. However, as might be expected,
this not only causes immediate exit from the while statement, but also forces
exit from the function that contains the while statement.

The while statement can also be exploited when attempting to make the user
interface of a program more robust. If a program directs a query to its user
which requires a simple 'yes' or 'no' answer, for example:

Do you wish to continue (Y or N)?

then only the response indicated should be accepted. Consider example 5.3.

Example 5.3

#include <stdio.h>

#define BELL '\7'

lnt
replyisyes (void)
{

char chi

while (1) {
ch = getchar ();
switch (ch) {

Loops

default: putchar (BELL); break;
case 'y': case 'y': return (1);
case 'n': case 'N': return (0);

}
}

style 75.9)

53

Exit is only made from the function when 'Y' or 'N' of either upper or lower
case is received. Receipt of any other character causes the VDU to 'beep' and,
although exit is made from the switch statement, the while statement remains
active.

This last example provides the opportunity to state again that a program's
interface with its user is extremely important. If a question is directed to the
user, ensure that the acceptable responses are made known, and write the
program logic in such a way that only valid responses are accepted.

Further details of the input/output philosophy of the underlying operating
system will need to be clarified before example 5.3 can be used conveniently.
Usually, for example, a user is required to provide 'line at a time' input. That
is, the underlying operating system buffers, or stores the characters typed until
a 'newline' character is encountered. Only then the system sends the entire
buffer, including the 'newline' character to the application. Example 5.3 would
'beep' at any character other than 'N', 'n', 'V' or 'y', including any 'newline'
characters that it encountered. It is usually possible to arrange 'character at a
time'input.

The while loop is important because, as is evident from its structure, the
controlling condition is tested before entering the loop. In contrast, the
expression that controls the do loop is tested only at the end of the loop, and
therefore the statement controlled by the loop is always executed at least once.

54 A Book on C

THE do STATEMENT

The general fonn of the do loop is:

do statement while (expression)

Our list of statements must now be extended to include the do statement. Any
one of the resulting list of statements is suitable as the statement used in the
general fonn given above.

As an illustrative example, let us assume that we have access to a file
containing one word per line. Our task is to sum, for each such word, the
number of times that we find a vowel preceded by a consonant. The sum
produced is a good approximation to the number of syllables in the word. We
assume a file pointer fptr, and a function consonant which returns a non-zero
(true) value if the character passed as a parameter is a consonant. The function
vowel was given as example 4.4.

Example 5.4

Hinclude <stdio.h>

int
syllables (void)
{

}

char ch;
int qhanges = 0, previousvowel 0;

do {
ch = getc (fptr);
if (vowel (ch» {

if (!previousvowel)
changes++;

previousvowel = 1;
else if (consonant (ch»

previousvowel = 0;
while (ch != '\n');

return (changes);

style 69.8 1

(As a syllable counter, the function of example 5.4 is limited in that there are
special cases that it does not handle. Thus 'by' would be credited with having
no syllables, and 'ale' with two. For most words, however, it is a good first
approximation.)

Loops 55

THE for STATEMENT

The for statement proves convenient to use when it is necessary to execute a
loop a given number of times. While this could also be done by either of the
other two loop constructs, we should select the statement that is most
appropriate for the task. Counting through a loop requires three 'housekeeping'
activities: initialising the counter, incrementing the counter, and testing
whether the terminating value has been reached. It is helpful to both the reader
and the writer of a program if these three housekeeping activities are collected
together. This is economically achieved in the for statement which has the
general form:

for (expression1; expression2; expression3) statement

where:

expression!
expression2
expression3

initialises the counter
gives the continuing condition, and
increments the counter.

Thus to compute the sum of the first N natural numbers we could write:

sum = 0;
for (i = 1; i <= N; i++) sum = sum + i;

or, if it is more suitable to count down:

sum = 0;
for (i = N; i >= 1; i--) sum = sum + i;

In C, the statement controlled by the for statement in these examples can be
more concisely written as:

sum += i;

THE cOlllilllle STATEMENT

We have seen that break will cause immediate exit from a switch or while
statement. It will also cause immediate exit from a do statement or for
statement. The loop statements (while, do, and for) can also use a continue
statement. The continue statement is less drastic than the break statement
because it only causes termination of the present iteration. If continue is en­
countered in the execution of while or do loops, it causes a branch to the loop
control test to be made. In a for statement a continue causes execution of the
'increment' expression prior to testing whether another iteration of the loop is
appropriate.

56 A Book on C

Imagine that a file contains a collection of marks, except that the very first
nwnber in the file gives the nwnber of marks that follow. Using the function
grade of example 4.2, we are to compute the number of pass grades in the
mark list (example 5.5).

Example 5.5

#include <stdio.h>

/* fscanf may return EOF or zero; */
/* grade returns null if the */
/* mark is out of range; */
/* only an E grade does not pass. */

int
passes (void)
{

}

char g;
int listsize, mark, m, psum=O;

if (fscanf (fptr, "%d", &listsize) < 1) return (-1);

for (m = 1; m <= listsize; m++) {
if (fscanf (fptr, "%d", &mark) > 0) {

if ((g = grade (mark» == '\0') continue;
if (g == 'E') continue;
psum++;

else return (-1);

return (psum);

style 73.0)

DYNAMIC CHANGE OF INCREMENT

The for statement in C is implemented in a manner that enables it to be used in
some rather swprising ways. For example:

for (; ;) k = 0;

represents an infinite loop. The asswnption is made that, if the second
expression, which is the controlling condition, is omitted, the value true is to
be used. The most significant way that the for statement differs from the for
statement as defined in, say Pascal, is that both the terminating condition and
the increment expressions are re-evaluated for every iteration. This means that
if the identifiers used in computing these values are changed within the for
loop, then either the terminating condition, or the step size, or both, can be
constantly changed from within the loop. Consider, for example:

Loops 57

for (p = 1; P <= 4096; P = 2*p) printf ("%4d\n", p);

which prints a small list of powers of two. It achieves this by multiplying the
'increment' by two each time through the loop.

The loop terminating condition need not involve the 'counter', although it
usually will. The loop of example 52 could be rewritten, using afar statement,
in the following form:

for (count = 0; getchar () != '\n'; count++);

Here the for statement has an empty statement part, because all the necessary
work is done within the controlling expressions. Note that the terminating
condition is independent of count. Changing the loop terminating condition
from within the loop should be done carefully, if at all. There is a danger that it
may be changed in such a way as to ensure that the loop never terminates at
all.

A final example on for statements is used to show that they, or any of the
other looping constructs, may be nested to create a loop within a loop.
Example 5.6 computes 'perfect' numbers. If we exclude the number itself from
a list of its factors, then a perfect number is the same as the sum of its factors,
so that the first perfect number is 6, because the factors of 6 are 1, 2 and 3, and
1 +2+3 = 6. It is only necessary to examine even numbers for perfection,
because, although it remains to be formally proved, it is surmised that odd
numbers cannot be perfect.

Example 5.6

#include <stdio.h>

#define LO
#define HI

6
1000

/* first perfect number */
/* limit of search */

int
main (void)
{

}

int num, sum, factor;

printf ("Perfect numbers\n");
for (num = LO; num <= HI; num += 2) {

sum = 1;

}

for (factor = 2; factor < num; factor++)
if (num % factor == 0)

sum += factor;
if (sum == num)

printf ("%4d\n", num);

style 67.4)

The modulus operator, %, is described in more detail in chapter 6. It gives, in
this case, the remainder when num is divided by factor.

58 A Book on C

THE golo STATEMENT

The loop structures introduced so far, if used properly, should mean that the
user rarely, if ever, needs to use a goto statement. In particular, a goto need
never be used to construct loops. However, in certain error situations, a goto
may enable a cleaner program termination to take place. A statement may be
labelled by prefixing it by an identifier followed by a colon. The goto state­
ment may then use this label as its destination, thus:

goto abort;

abort: printf (" abnormal termination\n");

SUMMARY

C's looping constructs correspond to those found in many other high-level
languages. Usually, a determinate loop, where the number of iterations is
known in advance, is most appropriately implemented by a for statement,
while an indeterminate loop, where termination depends on some condition
being satisfied, is better implemented as a while or a do statement. These are
general rules, however, and, as has already been demonstrated, C'sfor state­
ment is powerful enough to enable it to be effectively used to control an
indeterminate loop under certain circumstances. This being so, it is wise to
consider carefully which particular statement is likely to yield the most natural
expression of the loop's intent.

6 Operators

In preceding chapters we have used identifiers with type char, int, andfloat. In
addition, data types void, short, long, double, signed, unsigned and long double
are provided in standard C. Most of these data types are also provided in most
non-standard compilers. We suggest that you look at the implementation notes
for C on your system to discover what is on offer.

TYPE CONVERSION

The type names introduced above can conveniently be listed in order as
follows:

void, char, short, int, long, float, double, long double

signed and unsigned can be used as types in themselves, in which case the
object thus declared is considered to be either signed or unsigned int
respectively. They can also be prefixed to any "integer" type, that is any of
char, short, int and long, in which case the object is treated as either a signed
or unsigned entity of a given type. Both signed and unsigned types are omitted
from the above list. They can be treated simply as type modifiers to indicate
whether the integers can be assigned positive and negative or positive only
values. Type int is typically implemented to correspond in size to the word
size of the underlying hardware and is equivalent to either short or long
depending on the particular implementation. void type has been introduced in
the ANSI standard and has meaning only in conjunction with function
definitions and pointers. You will recall that in function definitions it specifies
that the function does not return a value or does not take any parameters. You
will also recall that pointers are addresses of other objects. A void pointer
specifies that an address of an unknown object type is represented. As a result,
a void pointer can contain an address of an object of any valid type. Apart from
the long/float boundary and the void pointer, this list is in order of increasing
storage size. By storage size we mean the amount of storage needed for a data
item of the given type. With this list in mind the implicit type conversion rules
given below can readily be understood.

59

60 A Book on C

For an expression involving one of the binary operators (one with two
operands), such as:

a + b

the type of the result is detennined by the type of the operands according to the
following rules:

• if either operand is of type long double. the other operand is converted
to long double;

• otherwise, if either operand is of type double, the other operand is
converted to double;

• otherwise, if either operand is of type float. the other operand is
converted to float;

• otherwise, integral promotions are performed as follows:
signed and unsigned objects are initially converted to int, unless the
conversion changes the value. in which case the object is converted to
unsigned int (this is known as a value preserving conversion and has
been adopted by the ANSI standard - non-confonnant compilers may
not perfonn this conversion); char and short are converted to into
provided that int can represent all values of the original type; otherwise
the values are converted to unsigned into

Following the integral promotions. all operands are in the 'int' family and the
following rules are now applied:

• if either operand is of type unsigned long into the other operand is
converted to unsigned long int;

• otherwise. if either operand is of type long int, the other operand is
converted to long int;

• otherwise. if either operand is of type unsigned into the other operand is
converted to unsigned int;

• otherwise, both operands are of type into

After applying the above rules, both operands are of the same type and the
result of the operation is also of that type. The implicit conversion is therefore
always from the 'smaller' object to the 'larger'. The results of type conversion
are summarised in table 6.1. An explicit type conversion can be obtained by
using a 'cast'.

Table 6.1

a

char
short
int

char
short
int
long

char
short
int
long
unsigned long

char
short
int
long
float

char
short
int
long
float
double

char
short
int
long
float
double
long double

b

char
short
int

long

Operators

unsigned long

float

double

long double

61

Result

int

long

unsigned long

float

double

long double

The above rules have been defined by the C standard. Older, non-standard
compilers will typically apply a different set of conversion rules. Most notably,
many C compilers convert all floating point numbers to double before eval­
uating any floating point expressions.

62

CAST

A Book on C

By prefixing an expression with one of the type names used earlier enclosed in
parentheses, we force the expression to yield a result of the type indicated so
that:

(long) 2 + 3

produces the result 5 which has type long. A cast can also be useful in forcing
an argwnent to have the type of the corresponding parameter. The functions
exp, log, and sqrt, which are to be found in the library of mathematical
functions, expect a parameter of type double, and produce a result of type
double. If we wish to obtain the natural logarithm of x, which has typefloat,
then we can write:

log ((double) x)

If a function prototype is known before the call to it is encountered, the cast
will be automatically perfonned. In this case, if the standard math.h header is
included, the compiler will know to cast x to a value of type double. The
assignment operator is treated in a different way to most of the other operators.
The type of the expression of the right-hand side (rhs) is changed to the type of
the identifier on the left-hand side. In appropriate circumstances, therefore, a
rhs of type double is rounded to float, a rhs with typefloat is truncated to int,
and an int is converted to char by ignoring excess high order bits. ANSI C
standard guarantees that the rounding is perfonned accurately and truncation is
always towards O.

In the case of arithmetic constants, a result somewhat similar to casting can
be achieved by specifying a type suffix. Type suffix is either an unsigned
suffix, one of U or u, or a long suffix, one of L or I. The suffixes convert the
constants to either unsigned, long or unsigned long values.

a 123Li
b 123Ui
c = 123uli
d 123Lui

/* a value of (long)123 */
/* a value of (unsigned)123 */
/* a value of (unsigned long) 123 */
1* neither order nor case of

the suffixes matters */

Operators 63

ASSIGNMENT OPERATORS

We have introduced a limited nwnber of these operators at suitable places in
the text. For example, the operator += was used to enable us to write:

sum += i;

rather than:

sum = sum + i;

An assignment in C is treated like any other operator in that, having made the
assignment the value assigned is available for other use. Thus:

(sum += i) > max

adds i to sum and compares the assigned value with max. The validity of a
'multiple assignment' should therefore be apparent.

sum = total = start = 0;

The full list of assignment operators is:

+=
*=
%=
«=

/=
»=
&=
1=

The meanings of the various assignments will become obvious as we consider
the different groups of operators.

ARITHMETIC OPERATORS

We will introduce operators in the various groups by using them in simple
expressions. While this may not be strictly necessary for the more familiar
operators, it should help to clarify the action of the less familiar ones.

+ 5 5 unary plus
5 -5 unary minus

7 + 5 12 add
7 - 5 2 subtract
7 * 5 35 multiply
7 / 5 1 divide
7 % 5 2 modulus

The type of the result of such expressions will be determined by the conversion
rules given earlier. In the examples above, all results are of type into When two
items of type int are divided, the fractional part of the result is truncated to

64 A Book on C

produce a result of type into The modulus operator produces the remainder'
after division of one integral type by another. The result is of type into
Operands of type double or float may not be used with this operator.

A small example which uses most of the operators above is a function to
evaluate Zeller's Congruence (Uspensky and Heaslet, 1939), shown in example
6.1. This function, when given a day, month and year (full form), produces a
result in the range 0 to 6. With Sunday as day 0, this number represents the day
of the week on which the given date fell. It can be used, for example, for
calculating the day on which you were born.

Example 6.1

1* zeller returns a number in the range *1
1* 0 .. 6 representing the day of the week *1
1* on which the given date falls *1
1* Sunday is day 0 *1

int
zeller (int day, int month, int year)
{

int temp, yr1, yr2;

if (month < 3) { month += 10; year -= 1; }
else month -= 2;

yr1 = year I 100; yr2 = year % 100;
temp = (26 * month - 1) I 10;

return «day + temp + yr2 + yr2/4 + yr1/4
- 2*yr1 + 49) % 7);

style 65.6 1

BITWISE OPERATORS

C enjoys well·deserved popularity as an 'implementation' language. This is in
large measure due to the ease with which the user can access and manipulate
bit patterns in memory. The following operators are available:

7 « 5 224 (OxEO) left shift
7 » 5 0 right shift (beware sign propagation)
7 1 5 7 inclusive or
7 5 2 exclusive or
7 & 5 5 and

- 05 0177772 one's complement

Note the use of hexadecimal and octal constants above - hexadecimal constants

Operators 65

are written with a leading Ox or OX, and may use digits 0 through 9 and letters
A through F (or a through!>; octal constants are written with a leading 0, and
may use digits 0 through 7. The last example, of the one's complement
operator, asswnes that the length of an int is 16 bits.

Bit manipulation, usually the preserve of assembly language programmers,
is necessary, for example, when checking the bits of a status register and in
masking data to be received or transmitted. An example to illustrate use of the
operators need not be drawn from such a machine specific area. The 'feedback
shift register' technique for generating pseudo-random numbers is easily
expressed using the bitwise operators as example 6.2 shows.

Example 6.2

#include <limits.h>
#define PSHIFT 4
#define QSHIFT 11

int
random (int range)
{

}

static int n = 1i

n = nAn » PSHIFTi
n = (n A n « QSHIFT) & INT_MAXi
return (n % (range+1))i

1* the function is dependent upon *1
1* the word length of the host *1
1* machine. The seed 'n' should *1
1* be capable of easier change *1
1* than is possible here. *1

[style 75.5 1

The standard header file limits.h defines the value for [NT_MAX which is the
maximum allowable value for an object of type into If your compiler does not
conform to the standard, and integers are two bytes long, you may have to
define [NT_MAX in the following way

#define INT_MAX 32767

The rationale behind this algorithm, which is a good source of random
numbers, is given in Lewis (1975). A Pascal version, which makes an
interesting comparison, is given in Meekings (1978). Remember too that since
C makes it easy to print the value of a variable in either octal or hexadecimal,
the results of bitwise operations can usually be displayed in an easily
assimilated form.

66 A Book on C

LOGICAL OPERATORS

These operators are usually used to combine one or more comparisons in the
controlling expressions of conditional statements, while statements, and the
other loop constructs.

Example

7 &&
7 II

!

5
o
o

Result Operation

logical and
logical or
logical not

The important point that distinguishes these operators from the bitwise
operators is that any non-zero operand is treated as 1 (true). A zero operand is
treated as false. The result of the operation is 0 or 1 according to the normal
rules for logical connectives. Expressions using && and II are evaluated left to
right and evaluation should terminate once the truth or falsity of the expression
is detennined. For illustrative purposes, imagine that we wish to compute the
mean rainfall given the total rainfall train over a number of days days. We
might write:

if (days> 0)
if ((mean = train / days) > 5.0) print ("%d\n", mean);

assuming that we wished to avoid division by zero. But consider:

if ((days> 0 && ((mean a train / days) > 5.0))

as an alternative test. It is only a useful alternative if, when days is zero, the
expression in which days is a divisor is not evaluated. C guarantees that when
the truth or falsity of an expression is known, as it is above when (days > 0)
evaluates to zero Valse), evaluation of the expression immediately terminates.

RELATIONAL OPERATORS

Examples of some of these operators have appeared at several places in the
text so far. The operators are:

> greater than
>= greater than or equal to

equal
!= not equal
<= less than or equal
< less than

Operators 67

The test for a digit is a simple example of the use of two relational operators
and a logical operator:

digit = (ch >= '0') && (ch <= '9');

INCREMENT AND DECREMENT

The usefulness of the increment operator should by now have become
apparent. The decrement operator is used in an entirely similar fashion, so that:

countdown--;

decrements countdown by one. What has not been emphasised so far is that
both the increment operator and the decrement operator may be used either as
a prefix or postfix to an operand. We may therefore write:

++count; --countdown;

Such simple usage as this does not make clear what difference there might be
between the prefixed or postfixed operator. The difference can be illustrated by
the following example

up .. 0;
printf ("%2d\n", up++); /* prints 0 */
printf ("%2d\n", ++up); /* prints 2 */

The first statement after the initialisation will print zero and then increment up.
In the second print statement the value of up will be incremented (to two) and
then printed. The prefixed form means increment (or decrement) and use,
while the postfixed form means use and then increment (or decrement). 'The
difference is important, as we will see, when dealing with array subscripts.

CONDITIONAL OPERATOR

The conditional operator affords an easy and compact way to express a value
which depends on a test. In the following example, the absolute value of x is
computed.

if (x < 0)
xabs - -x;

else
xabs - x;

C gives us a more concise way to write such things, so their meaning becomes
more apparent. The conditional operator takes three expressions and is used in
the following format:

expression-1 ? expression-2 : expression-3

68 ABookonC

Expression-l is evaluated and then tested. Based upon the results of this test,
either one (but not both) of expression-2 and expression-3 will then be
evaluated and that value will become the result of the whole conditional
expression. If the value of expression-l is true (non-zero), expression-2 is
evaluated; otherwise, expression-3 is evaluated. Thus, we can write the
absolute value computation as

xabs = (x < 0) ? -x : x;

Printing a heading only after a certain nwnher' of lines suddenly becomes easy
to write

#define HEADING "\n\n\n - Treasure Island -\n\n\n"

printf ("'lis", (no_lines % 60 0) ? HEADING: "");

Standard conversion rules will be used to bring the constituent values of the
conditional expression to a common type to produce the result. So, in the
following example, if x is of type float when it is substituted by the pre­
processor, the resulting type of the whole conditional expression is a float.

#define min_1 (x) (x < 1 ? x : 1)

COMMA OPERATOR

The comma operator is syntactic sugar: it need not be provided since there are
other facilities in the C language which can accomplish the same function; its
use is more a question of style than of functionality. Expressions connected by
a comma operator are executed in sequence. One use might be to initialise
several quantities in a for statement. The following code might be used to
scramble the letters in a word five successive times:

for (count = 0, j = word; count++ < 5; j = scramble (j))

First the expression on the left of the comma is evaluated and the result
discarded; then the expression on the right of the comma is evaluated and used
as the resulting value. The type of the result is the type of the operand on the
right of the comma.

Ambiguity can arise in the cases where the comma can also be interpreted as
a character separating items in a list (that is, argwnents and initialisers). In
those circwnstances, the comma operator can only be used inside parentheses:

my_func (arg1, (c = C_INIT, (c + 1) *10), arg3);

Operators 69

PRECEDENCE OF OPERATORS

Whatever programming language you use it is important to write expressions
in a way that makes sense to you, the writer. (Bear in mind too that others will
wish to read and understand your program.) In order to do this, and still
produce programs that are syntactically and logically correct, it is necessary to
understand how expressions are written and how they are interpreted.
Operands must be separated by operators, and evaluation usually proceeds
from left to right. Thus, in an expression such as:

a + b * c

it can be seen that the operators separate the operands, but we are accustomed
to the multiplication of b and c being carried out before the addition of a.
Formally we say that multiplication has a higher priority or precedence than
addition. Parentheses can always be used to enforce the required priority. In
C, however, there are occasions on which even this rule may not be as easy to
apply as we would wish. Another possible source of confusion is that some
operators, for example * and &, have more than one role. Consider for
example:

*pint++

which is not part of a multiplication. It might mean increment the pointer
(address) pint by one and retrieve the contents, or it might mean that the value
*pint is to be increased by one. In fact unary operators are evaluated from right
to left and so the expression increments the pointer pint and not what it points
to. The latter effect is achieved by:

(*pint)++

It is therefore important to know the order of precedence of operators and the
direction of association. A table of this information is given in table 6.2.
Operators are listed in decreasing priority, with operators in the same section
having equal priority.
In the case of multiple operators of the same precedence and order of
evaluation, for example in:

a + (b + c)

the compiler is free to rearrange the order of evaluation even in the presence of
parenthesis. The above expression, while being evaluated, may thus become:

(a + b) + c

or even:

(a + c) + b

70 A Book on C

The order of evaluation of such expressions is immaterial under most normal
circlUDstances. There are cases, however, in which it is important to group
such expressions in order to avoid subtle rounding erTOl"S introduced by
conversions. ANSI C provides a unary '+' operator for that purpose. The
expression

a + + (b + c)

guarantees that (b + c) is evaluated first and the result is added to Q.

Table 6.2

Operator

()
[]
-7

++

Name

parentheses
brackets
pointer
dot

increment
decrement

(type) cast
* contents of
& address of

unary minus
one's complement

I logical NOT
sizeof size of

*
/
%

+

»
«

>
>=
<=
<

multiply
divide
modulus

plus
minus

shift right
shift left

greater than
greater than or equal
less than or equal
less than

Associativity

left to right

right to left

left to right

left to right

left to right

left to right

Operators 71

-- equal left to right
1-.- not equal

& bitwise AND left to right

bitwise exclusive OR left to right

bitwise inclusive OR left to right

&& logical AND left to right

logical OR left to right

1: conditional right to left

= equals right to left
+= plus equals

-= minus equals
*= multiply equals
/= divide equals
0/0= modulus equals
»= shift right equals
«= shift left equals
&= and equals .. = exclusive or equals
1= inclusive or equals

SUMMARY

C has a well-deserved popularity among high-level and low-level programmers
alike. Such popularity is, in large part, attributable to the richness of its set of
operators, which allows a clear and natural expression of the program logic,
with the additional bonus of an efficient translation into the underlying
machine instructions. It is the large variety of operators that characterise the
language, and possibly pose the greatest hurdle for the novice C programmer.

Time spent initially in learning how to use the full set of operators will be
amply rewarded by clear, concise and efficient programs.

7 Arrays

In the examples used so far each data item that we wished to manipulate has
been given a name, or identifier. Each identifier has associated with it a type,
and a storage class. This association is made explicit through the declaration.
But so far any identifier has represented a numeric value of one type or
another, or a character. Consider again example 4.3 in which we produced a
grade for a given mark. If we now change the specification of the problem, to
ask that we produce the number of times that each grade was achieved, the
statements in example 7.1 could appear in a suitable loop.

Example 7.1

/* assume a=b=c=d=e=f=O; prior to loop entry */

switch (mark / 20) {
case 0: e++; break;
case 1: d++; break;
case 2: c++; break;
case 3: b++; break;
case 4: a++; break;
default: f++;

While we can contemplate writing this when only five grades are involved, we
would, if twenty-five grades were involved, look for a 'better way'.

ARRAY DECLARATIONS

Instead of having individual identifiers foe each grade total, which causes
difficulty when dealing with them collectively, what would be much more
useful would be a collective name foe the grade totals together with a method
of accessing each grade total. A street name is a collective name foe several
houses. The house number uniquely identifies each house of the street. An
array name is a collective name foe several data items of the same type. Each
item has a unique reference number known as an index oe subscript. If grades
is the collective name for the five grade totals it could be declared as:

int grades [5) ;

72

Arrays 73

In C array subscripts start at zero. The five grades can therefore be referred to
as:

grades [0] , grades[1], grades[2], grades[3], grades [4]

POINTERS AND ARRAYS

Another method of referring to the individual elements of an array is available
to us in C. The array name, grades in this case, is always treated as a pointer,
or address. It points to the first element of the array. If, for example, we make
a copy of the pointer, then we can increment and decrement the pointer value
in order to refer to different elements of the array. Consider example 7.2.

Example 7.2

int grades[5], *gptr;

gptr = grades;
gptr++;
gptr++;

/* gptr points to grades [0] */
/* gptr points to grades [1] */
/* gptr pOints to grades [2] */

A subscript within square brackets is the more usual way to refer to elements
within an array. Use of a pointer, while initially not so familiar, can become
more convenient and is usually more economical in implementations of C. We
shall move towards use of pointers for array access.

With an array to help us, we can now write example 7.1 in the following
way:

int grades[5], *gptr, s, mark;

/* initialise array elements */

gptr = grades;
for (s = 0; s < 5; s++) *gptr++ = 0;

/* assume a function 'getmark' which */
/* returns either the next mark or */
/* -1 to indicate the end */

while «mark = getmark ()) != -1) {
s = mark / 20;
if «s >= 0) && (s < 5)) grades [s]++;

There are several points of interest in this example. First note that the explicit
constant 5, the number of elements in the array, appears three times in the
program text. A symbolic name should be 'defined' to have this value, thus
making a change in array size easy to accommodate. Secondly, note that the

74 A Book on C

array elements are zeroised using the pointer gptr, and finally note that the
increment operator can be used on an array element just as on any other
variable.

ARRAYS OF MORE THAN ONE DIMENSION

C allows us to use arrays of more than one dimension. Imagine that instead of
simply printing letters in a 7*5 grid, as we did in the early examples of chapter
2, we wish to store these representations of characters in a 7*5 array, that is, an
array with 7 rows and 5 columns. If we wish to access these elements using a
pointer, then it is essential to appreciate that in C arrays are stored by row.

first three rows of big I

row I row 2 row 3

This means that the rightmost of the two subsaipts changes more quickly
because elements are accessed in the order that they are stored. A two­
dimensional array can easily be visualised as a table, and therefore we shall
initially use subscripts, rather than a pointer, to access the elements (example
7.3). We shall later rethink this approach.

Example 7.3

#define ROWMAX 7
#define COLMAX 5

char letter [ROWMAX] [COLMAX] j

int col;

/* fill array with spaces */

for (row = OJ row < ROWMAXj row++)
for (col = OJ col < COLMAXj col++)

letter [row] [col] = ' ';

/* alternatively we could write .• */

for (row = OJ row < ROWMAX; row++)
for (col = OJ col < COLMAXj letter [row] [col++] = ' ')

Observe that each subscript is enclosed by square brackets and that the final/or
statement does not have a statement to control. This is because each element of
letter can be set to a space in such a way that the column subscript is incre-

Arrays 75

mented after it has been used to access the array element. This is an occasion
where use of

++col

rather than

col++

would not have the required effect..

ARRAYS AS PARAMETERS

Pursuing our example a little further, for those upper case letters of the
alphabet that can be constructed from horizontal and vertical lines only, it
would be convenient to have functions that fill a row, or a column, with a
given character. The functions of example 7.4 fulfil this task.

Example 7.4

#define ROWMAX 7
#define COLMAX 5

void
fillrow (int row, char matrix[ROWMAX] [COLMAX])
{

int Ci

for (c ~ Oi c < COLMAXi matrix [row] [c++] '*')

void
fillcol (int col, char matrix[] [COLMAX])
{

int ri

for (r

style 54.6

Oi r < ROWMAXi matrix[r++] [col] '*')

Each of the functions must change the contents of the array and, as we saw in
chapter 2, must therefore have access to the address of the data item to be
changed. But since the array name is the address of the first element, it can be
used without modification as a parameter to a function. The functions of
example 7.4 will access the contents of the array that is the argument, and it
should therefore be obvious that the purpose of the code

char matrix [ROWMAX] [COLMAX]i

in each function is simply to establish the type of the parameter 'matrix'. No

76 A Book on C

storage allocation is performed. It may not be necessary, but it is not wrong, to
give the size of each dimension. Given that arrays are stored in row-major
order, the size in the first dimension may be omitted, as it has been in the
functionfillcolof example 7.4.

It should be apparent that the functions of 7.4 also make use of what we
called implicit parameters in chapter 2. fillrow uses COIMAX which, although
its definition is a define statement, could as easily have been, say, a static const
variable of the file containing the functions. The functions are not 'self­
contained' in the sense that the identifiers that they use do not all derive from
either the parameter list or the local variable declarations. This is a common
occurrence but worth emphasising. Assuming the definitions of 7.3 and 7.4 we
can write:

void
makeH (char mat [ROWMAX] [COLMAX])
{

fillcol (0, mat);
fillcol (COLMAX, mat);
fillrow (3, mat);

and thereafter write:

makeH (letter_matrix);

STRINGS

In the preceding section we used an array of characters and, because of the
particular example chosen, all elements of the array were always used. But
when we wish to deal with strings, which are stored as an array of characters, it
is inefficient to assume that the string will occupy all elements of the array in
which it is stored. We must expect that either the length of the string is stored
along with it, or that the end of a string is denoted by a special character. C
adopts the convention that the end of a string is denoted by the NULL
character '\0'.

Example 7.5

#define WIDTH 80

char mess [WIDTH] , *m;

mess [0] 'h';
mess [1] 'e' ;
mess[2] '1';
mess[3] '1';
mess [4] '0' ;
messeS] '\0';

Arrays 77

The rather laboured statements of example 7.5 cause six characters to be stored
in mess. Since the last character is NULL we can say that the array mess holds
a string. The string may be printed by any of the following statements:

m - mess; while (*m !- NULL) putchar (*m++);

while «(m - mess) < WIDTH) && (*m 1- NULL» putchar (*m++);

printf ("'s", m);

The tedious parts of the above examples are those that deal with individual
characters. While this may sometimes be necessary, we more usually wish to
process the string as a whole. We have been accustomed to writing a string as
a sequence of characters between double quotes thus

"C-ing is believing"

It is therefore not unreasonable to expect that we may assign a string to an
identifier without the necessity of doing it character by character. We achieve
this as follows

char *sptr;
sptr '" "C-ing is believing";

From its declaration sptr is a pointer to a character. In particular, after assign­
ment, sptr points to the first character of the string. It is important to note that
the assignment does not copy the character string. The declaration of sptr
offers no storage space for characters. The string is stored somewhere, we
know not where, except that we have in sptr a pointer to the first character.
This is usually sufficient. If, for some reason, it is necessary to copy the string
into local storage, then this must be done with a function such as strcpy which
copies a string from one storage place to another. In example 7.5 when storing
one character at a time in mess we were responsible for ensuring that a NULL
character followed the last useful character. When, as above, a string is
assigned to a pointer, a NULL is automatically appended to the character
sequence. Use of pointers to refer to a string is much the most common and
convenient way of dealing with strings in C. Any functions provided by a C
implementation to help process strings, compare strings, find the length of a
string, find a character within a string, will require the user to pass pointers as
parameters.

We have said so far that one dimensional arrays, such as character arrays in
the previous examples, are often treated in a way similar to pointers. Whereas
it is true in certain situations, such as parameter passing, we have to fully
appreciate differences between pointers and one dimensional arrays. The array
names, such as mess in Example 7.5, contain an address of the first element of
the array. In that sense they are just as pointers and can be used as such in
parameters to functions. However, declaration of an array reserves storage for
all elements of the array and then places the address of the beginning of this

78 ABookonC

storage in the symbol representing the alTay. References to particular elements
of the alTay through the use of square brackets will calculate appropriate
offsets from the beginning of the array's storage area. Declaration of pointers,
on the other hand, does not reserve storage for any objects that the pointer may
be pointing to. A pointer is simply a place to store an address of an object and
does not represent any objects unless assigned a particular address during
execution of a program. The following example may clarify some of these
points.

Example 7.6

#define WIDTH 80
void
example (void)
{

}

char *m, mess[WIDTH), chi
char str[WIDTH) = "forty two";

1* initialisation is allowed *1

1* Note that the initialisation above is treated
by the C compiler as a copy operation.
Thus, the string "forty two" is copied into
storage allocated for str. Compare with the
first statement below. *1

mess" "Zx";

mess [0] 'Z' ;

mess [1] .. 'X' ;

*m .. chi

ch .. *m;

m .. "Message";

ch *m;

ch *(m+2) ;

m .. mess;

ch .. *m;

return;

1* WRONG: mess has storage already
allocated to it, namely

1*

1*

1*

1*

1*

1*

1*

1*

the mess array. You cannot
change it; mess is really a
constant pointing to the array
storage. Only the content of
the storage can be changed,
not its address *1

OK: first element of the array
is now 'z' *1

OK: second element of the array
is now 'X' *1

WRONG: m does not point to
anything yet *1

WRONG: m does not point to
anything yet *1

OK: m is aSSigned the address
of the string *1

OK; ch now contains the first
character of the string, 'M' *1

OK: ch now contains the third
character of the string, 's' *1

OK: m is aSSigned the address
stored in mess, that is, the
address of the first element
of the mess array *1

1* OK: ch now contains the first
character of mess, 'z' *1

Array.s 79

ARRAYS OF POINTERS

A program that was designed to report a variety of error messages to its user
might use the approach given in example 7.7.

Example 7.7

char *error[30];

/* error is an array of 30 pOinters to char */

error [0] .. "not enough arguments";
error[1] .. "too many arguments";
error [2] .. "invalid arguments";

/ * etc., etc. * /

/* to report error number 'i' */

printf ("*** 'lis ***\n", error[i]);

The patterns of asterisks held in 7*5 arrays of characters, while not especially
useful, are easily visualised. Imagine therefore, that we wish to construct. and
store in this form, representations of all upper case letters of the alphabet. If
/ptr/i-1J is to point to the representation of the ith letter, then we need the
declaration:

char (*lptr [26]) [7] [5] ;

This declaration says that /ptr is a 26 element array of pointers. The pointers
point to 7*5 arrays of characters. If we wish to associate the eighth pointer
with the eighth letter of the alphabet. H. we could do this easily by the
statement:

makeH (lptr[7]);

The preceding examples should have helped to clarify the way in which two­
dimensional arrays can be used in C. But a moment's reflection will reveal that
in order to store our upper case characters in this manner we would need
storage space for 26*7*5 characters. Furthermore. each character needs to be
placed in the correct element. This is certainly not making the best use of the
facilities available in C. Even in our earliest examples we recognised that it
was worth having functions or define statements to deal with five stars. a
middle star, and two end stars (example 2.3). Following this course we could
set up strings as follows:

char *allstars, *endstars, *midstars;

allstars 0= "*****";
endstars "" "* *";
midstars " * ";

An array of seven elements, where each element is a pointer such as allstars,

80 A Book on C

can now be used to represent a character composed of asterisks. Thus the
character H can now be represented by seven pointers, six of which point to the
same object.

void
makeH (char *sptr[ROWMAX])
{

sptr++
sptr++
sptr++

sptr++ = sptr++ = endstars;
allstars;
sptr++ = sptr = endstars;

We now need an array of 26 pointers in which each pointer points to an array
of seven pointers which point to strings. This is obtained with the declaration:

char (*lptr[ROWMAX]) [26];

The call to our new version of makeH defined above would be:

makeH (lptr[7]);

The advantage of rethinking our example, or rather the way to express it in C,
has been that we have eliminated the need to assign characters to individual
array elements. We now assign strings to pointers. Further, our storage require­
ment is considerably reduced as we store only one copy of each string (row) of
characters. Each 'big' character can be represented by seven pointers and we
need twenty-six such characters. We therefore save ourselves writing effort,
storage space, and run time, by thinking about our task in a way which enables
us to take full advantage of the facilities offered by C.

It is important, and useful, to be thoroughly familiar with the handling of
strings and pointers in C. The next example, which is complete, should help to
consolidate the work on strings.

Example 7.8

1* Soundex code generator: to transform a string *1
1* into a code that tends to bring together all */
/* variants of the same name (usually surname) */
/* (Knuth, 1973) */

#include <stdio.h>

void encode (char *s);
void dumpdups (const char *s);
void dumpzeros (const char *s);
void fixup (char *s);

int
main (void)
{

Arrays 81

char str[20];

printf ("\nCharacter string 7"); 1* ask user.. *1
scanf ("%s", str); 1* for a string *1

encode (s tr) ;

dumpdups (str) ;

dumpzeros (str) ;

fixup (str) ;

printf ("\nSoundex

return (0) ;
}

void
encode (char *s)
{

code

1* encode all but *1
1* the first char *1
1* erase adjacent *1
1* duplicate codes *1

1* erase zero codes*1

1* pad or truncate *1
1* to four digits *1

is %s\n", str) ;
1* tell user*1

static char coder] = "01230120022455012623010202";

while (*++s)

}
void

*s = code[*s - 'a'];

dumpdups (const char *s)
{

}

void

char *t;

while (*s)
if (* s == * (s + 1)) {

t=s+l;
while (*t = *(t+l))

t++;
else s++;

dumpzeros (const char *s)
{

char *t;

while (*s)
if (*s == '0') {

t = s;
while (*t = *(t+l))

t++;
else s++;

82

void
fixup (char *s)
{

int i;

A Book on C

for (i = 1; *++s && i < 4; i++)
,

for (; i < 4; i++)
*5++ = '0';

*s = (char)O;

style 73.9 1

In example 7.8 only one copy of the string exists. The functions are given a
pointer to this copy and may modify the string. The string is obtained from a
call to scanf which we have not so far used in the examples on strings. Note
that encode initialises the array code at its declaration with one digit for each
letter of the alphabet. Both dumpdups and dumpzeros use the expression *t =
*(t+ 1) in a while statement to eliminate adjacent identical characters, while
ju:up capitalises upon the flexibility of the for statement.

SUMMARY

The availability of arrays has clearly made a significant difference to the ease
with which we can express our tasks in C. Pointers, together with arrays,
provide us with easy-to-use and economical programming aids. C does not
limit us to arrays as a way of storing data items with a collective name. We are
also able to use structures, which enable us to group together data items of
differing types - this is the subject of the next chapter. Pointers too have a
wider role to play than we have thus far indicated, and we will return to them
in a later chapter.

The elements of C that we have covered so far constitute a 'basic set'. It is
perfectly possible to write meaningful C programs armed with only that
knowledge. The remaining chapters deal with more advanced topics, without
which your C armoury would be incomplete.

8 More Data Types

In our discussion so far, all data types of identifiers have been simple: they
consist of one elementary type. The elementary types are:

(char)
(int)
(float)

characters
integers
floating point

Chars and ints can be either signed or unsigned, and ints and floats can have
modifiers short or long. A "long float" is referred to as a "double." Unless
otherwise explicitly stated in a declaration, the default type is into

If these were the only data types the C language could represent, many
problemswould be much more difficult to express than they should be. Part of
the great flexibility of C is that the language provides a way to combine
elementary types into new derived types called structures and unions.

STRUCTURES AND UNIONS

When we combine types, we can do it in one of two ways: we can either lay
them end to end so that none of them overlap and each of them contains
independent values, or we can overlay them on top of each other, so that they
all start at the same machine storage location and overlap.

If we lay the types next to each other so that none of them overlap, we
create a structure, a type which is the concatenation of the individual member
elementary types. Each of the variables starts at a different storage location,
one after the other in a series. Therefore, the length of a structure is at least as
much as the sum of the lengths of its members. Some compilers insert space in
between members of a structure in order to enforce data type address align­
ment restrictions of the hardware. As a result, the length of a structure may be
more than the sum of the lengths of its members because of "holes" in the
structure form.

If we overlay types on top of each other, we create a union, a type which is
the union of the individual member elementary types. The same memory
storage area is accessed by all of the variables within the union, and it is up to
the application to know which particular data type occupies the space at any
given time. Since each of the variables starts at the same location, the length of
the union is the length of the longest member.

83

84 A Book on C

Pictorially, we can represent the distinction between structw'es and unions
as:

double J union

int I
char I

1 increasing machine address

I double int I char I structure

If we assume that the size of a char is 1 byte, of an int is 2 bytes, and of a
double, 4 bytes, then the size of the union is 4 bytes, while the size of the
structure is 7 bytes.

Structures are used to group together related data so that they become more
manageable. Consider, as an example, a date. We can represent the date by
three numbers: the month of the year, the day of the month, and the year. By
grouping these together, we can create a new type:

struct date type {
short int month;
short int day;
short int year;

} ;

/* Month of year - 1 --> 12 */
/* Day of month - 1 --> 31 */
/* Year */

The above statement declares a derived type (struct date_type) and its form,
i.e., what its members are. The identifier date_type is called the structure tag
or template name; the compiler will know what a struct date _type is at any
point after this declaration.

No storage is allocated by the above statement, however. The template
name before the left curly bracket is used only to identify the form of the
structure so that it can be referenced more easily afterward. The name of the
template is called a tag. To create an instance of this new type at the time of
creation of the tag, an identifier is placed after the right curly bracket:

struct date type {
short int month;
short int day;
short int year;

} birth; /* Date of birth */

If the tag has been previously defined, it is sufficient to just specify its name
without repeating the definition of its type:

struct date_type birth; /* Date of birth */

More Data Types 85

Structures and unions nest; that is, they can be embedded within other
structures and unions. Arrays can be put inside structures or unions, also. So, if
we were interested in storing information about a person, we might create a
structure:

struct person type {
char nameTNAMESIZE];
struct date type birth;
struct date=type death;

} ;

1* Name of person *1
1* Date of birth *1
1* Date of death *1

We can even create arrays of structures, so that this information about every­
one in a group could be stored by declaring:

struct person_type brits[UK_POPULATION];

Unions of all types can be created in a similar fashion. This facility to group
data into a new type makes it easier to manage, and thus reduces the complex­
ity of the programming task.

As an example of a union, consider a piece of storage which will some­
times hold an int, and at other times a double. The declaration for such a union
would be written:

union int double {
int i;
double di

} ;

ACCESSING STRUCTURES AND UNIONS

Only a limited number of operations can be performed on structures and
unions. It obviously does not make sense to, for example, add or multiply
structures, but it is essential to be able to access their members. Several
structure and union operations are available: a member can be accessed, the
address can be taken with the & operator, structures can be assigned values en
masse by copying elements from one structure to another of the same type, and
they can be used as parameters to, and return values from functions. For the
previously declared structure birth,

birth.day

represents the member identified by day, and

&birth

represents the address of that structure. If pbirth is declared as a pointer to a
date _type structure and then initialised:

struct date_type *pbirth = &birthi

86 A Book on C

then the day member from such a pointer is accessed with the pointer
operator:

pbirth->day

When accessing a member of a structure directly, the dot operator is used; for
indirect access from a pointer to a structure, the pointer operator is used.
The name of the person in the first element of the array of structures brits
declared above is accessed:

brits [0) .name

which is an array of characters holding the person's name. Note that this is
distinct from the first character of the name, which would be accessed as:

brits[O).name[O)

The assignment operator can be used to initialise all elements of one structure
with the corresponding values from another structure. Both source and target
structures must be of exactly the same type as in

struct date_type birth, death;

birth = death;

To give a structure initial values at compile time, an initialiser similar to the
one used for character arrays can be specified in a declaration like this:

struct person type henry viii = {
"Henry ViII", - 1* Name * I
{ 6, 28,1491 }, 1* Born June 28, 1491 *1
{ 1, 28, 1547 } 1* Died January 28, 1547 *1

} ;

Using the dot and pointer operators to access members works with nested
structures, so that

henry_viii.birth.year

would have the value 1491.
It should be noted that only conforming C implementations must support

structure assignment by copying contents of each structure member, and allow
structures to be passed to and returned from functions. Some of the old
compilers may not fully implement structure and union operations as defined
by the C standard. In particular, it may not be possible to pass structures as
arguments to functions or copy the content of one structure into another
structure of the same type simply by specifying the assignment operator. This
limitation is more of an inconvenience than a real problem. One can always
specify a set of assignment statements for each member of a structure, or pass
an address of a structure to a function.

More Data Types 87

ENUMERATIONS

Still another method for creating new types is available in the C language. In
an enumerated type, a variable can assume one of a finite set of values which
are listed at the place the type is declared. If we create a type to model the five
flavours of ice cream available at a certain store, we cOuld say:

enum flavour type {
CHOCOLATE,
VANILLA,
STRAWBERRY,
COFFEE,
RASPBERRY

} ;

Thereafter, a variable of type flavour _type can take on any of the values
enumerated. The values are treated like constants and can be used anywhere
constants can be used.

enum flavour_type flavour = CHOCOLATE;

would create a variable named flavour, and give it an initial value of
CHOCOLATE. Please note, however, that no type checking in function calls or
assignment statements is performed for enum variables. It is quite possible to
assign a value of, say, 15 to a variable declared as enum flavour _type. All
enum variables are really treated as integers.

In our previous example, we could modify the person _type structure to
include information about the sex of a person. Since the sex of most people is
only one of two possible values, we can define an enumerated type to represent
it:

struct person type {
char name[NAMESIZE];
enum sex type {

MALE-;-

} ;

FEMALE
} sex;
struct date type birth;
struct date=type death;

/* Name of person */

/* Sex */
/* Date of birth */
1* Date of death */

To demonstrate the use of enum types, we could write a routine which would
recognise an argument of a string of characters as being either "MALE" or
"FEMALE," and then return the appropriate enum value:

enum sex type
get sex (char *str)
{ -

return (strcmp (str, "MALE") ? FEMALE MALE);
}

88 A Book on C

The above routine uses the standard C library function strcmp, which compares
two character arrays, and returns an integer which is less than, equal to, or
greater than 0 depending on whether the first argument is lexicographically
less than, equal to, or greater than the second.

BIT FIELDS

There are times when it becomes necessary to pack several pieces of
information into the storage that would normally be occupied by a single
variable. Such circumstances can occur when manipulating huge amounts of
data, or when dealing with boolean values or flags. For these occasions, C
provides us with a way to indicate how many bits should be assigned for each
variable. When we access one of these fields, the compiler will isolate the
correct bits and allow us to manipulate the field as though it was stored as a
separate variable. For example, if we wanted to save space and squeeze the
date structure so it occupied as little machine storage as possible, we could
define it as:

struct {
unsigned month: 4;
unsigned day : 5;
unsigned year: 11;

} short_date;

Since the month of the year can only be a number between 1 and 12, we need
only 4 bits to represent it; the day can only be between 1 and 31 (5 bits
required), and we can let the year be represented by 11 bits (allows us up to the
year 2047). Thus, short_date occupies only 20 bits, instead of the 48 bits it
would take if the month, day, and year were each 16 bits (int).

There are some restrictions on the use of bit fields - there are no arrays of
fields; and, because they might not begin on a byte or word boundary, they
have no address, so the & operator cannot be applied to them.

As the cost of memory continues to decline, it seems that bit fields will be
most useful in those cases when compact representation of data is paramount.

VOID

An additional type, void is available to describe those objects which have no
value. This is useful for declaring functions that return no value, or casting
expressions which generate values that are to be discarded. As an example, the
function exit, which does not return to the calling routine after it is invoked,
could be declared:

void exit (int);

More Data Types 89

A void expression denotes a nonexistent value. and as such. can only be used
as an expression statement. or as the left operand of a comma expression.

A pointer to void denotes a "generic" pointer. Such a pointer is an address of
an object of an unspecified data type. It can be used in most expressions other
pointers can be used in. but cannot be incremented or decremented. You will
recall that the following expression:

long *ptrj

ptr++j

increments ptr such that it points to a next element of type long. Since void *
may point to any data type. the increment size is unknown and thus the result
of the increment operator is undefined. One of the conveniences of C used to
be interchangeability of pointers and integer types. It afforded very easy
pointer arithmetic and was useful in many low level applications. The C
standard no longer guarantees that pointers will fit into storage allocated for
integers. That is. on some hardware pointers may be larger than any integer
type; hence. the pointer to void type which always guarantees to be large
enough to accept an address of any object.

TYPEDEF

In C, it is possible to use a shorthand notation to describe fundamental or
derived types. A declaration using typede/ defines synonyms for the indicated
type. For example. we could define the date _type structure previously
mentioned in this chapter as a typede/ called DATE in the following manner:

typedef struct {
short int monthj
short int daYj
short int yearj

} DATEj

1* Month of year - 1 -> 12 *1
1* Day of month - 1 -> 31 *1
1* Year *1

After this declaration. the compiler will understand the use of DATE as a
reference to the above structure template. It is important to note that no new
types are generated; the use of typede/ is just a shorthand for an existing type.
The semantics are exactly the same for typedef variables as for variables
whose definitions are written out the long way. Typedefs can be used to
declare synonyms for unions, enums, and fundamental data types in exactly the
same way.
Arrays. functions. and pointers can be used in typedef declarations as well. The
declaration

typedef int ARRAY_DATE[3)j

allows the definition of a variable

90 A Book on C

ARRAY_DATE date;

which is an array of three ints. If we wanted to have a synonym for a pointer to
a DATE structure, we could write:

typedef DATE *PDATE;

Thus, PDATE would be a pointer to a DATE structure.
typedeJ is especially useful for long and convoluted declarations. Such

declarations may be expected in applications defining complicated data
structures and providing functions operating on such data. The following few
lines of a hypothetical program listing provide increasingly complex typedeJ
specifications.

typedef int *int ptr t;
typedef int (*int func t) (int ptr t, int ptr t);
typedef int func t func_list_t[6]; --

int ptr t ptr;
int=func_t func;

func list t list;

1* ptr is a pointer to integer *1
1* func is a pointer to function

returning int and accepting
two pointers to int *1

1* list is an array of six
pointers to functions returning
int and accepting two pointers
to int *1

(func list t);

SUMMARY

- 1* knot (Gordian?) is a function
accepting an array of six
pointers to functions returning
int and accepting two pointers
to int each; the function
returns one pointer to int *1

The object of the game in programming is to reduce the complexity of
problems to a form where the solution is readily understandable to both the
writer and the reader. Derived data types afford us the luxury of defining
arbitrarily complex aggregates so that we can group variables together in some
logical fashion, where it is sensible to do so. This principle of data abstraction
allows us to concentrate more on the fundamental ideas of the problem, rather
than on the details of its implementation. Without derived data types, it would
be impossible to implement the data structures that are required to solve
complicated problems. The next chapter deals with the development of these
data structures.

9 Pointers Revisited

Our use of pointers so far has been largely restricted to the processing of
character strings. In this chapter we will explore much more imaginative uses
of this very powerful feature of C. In particular, we will need pointers to
simplify the handling of the data structures that are typical of more complex
programs.

Choosing the right data structure to contain the data manipulated by a
program is at least as important as choosing the right algorithm, and in many
cases, a poor choice of data structure will lead to a clumsy program. Data
structures and algorithms are intricately intertwined and a choice of one pro­
foundly influences the other.

POINTERS TO STRUCTURES

Given an array of structures of the kind

typedef struct {
int ai
char bi
float Ci

STRUCTi

STRUCT array[10]i

we have two methods of stepping through the array, examining the individual
elements. One way we are already familiar with - using subscripts, so that
a"ay[i] refers to the (i+l)th element (because the first element is subscript 0).
The other way is to use a pointer:

STRUCT *Pi

for (i = 0, P = arraYi i < 10i i++, p++)
printf ("array[%d] %d %c %f\n", i, p->a, p->b, P->C)i

Note that when we say i++ we mean "add 1 to in, but when we say p++ we
mean "add enough to p to make it point to the next element," and this is
precisely what C does. Pointer arithmetic takes account of the underlying type,
so that p++ means something different if p is a pointer to STRUcr or char - in
the latter case, since the underlying type is one byte, p is actually incremented
by 1.

It is for this reason that the expressions A[i] and *(A +i) are functionally
equivalent, regardless of the type of A.

91

92 A Book on C

ALLOCATION OF STORAGE

If we wanted to read lines of text from a file and store them internally for
subsequent processing, one way that we could do it is to declare an array of
fifty 132-character lines, and read the data into it. The problem with this is that
we don't know how many lines there will be, or how long they are. As long as
the lines are less than 132 characters, and as long as there are less than 50
lines, then the program will work, even though we may have reserved much
more space than we actually need (suppose we only have two 10-character
lines!). A closer look at memory allocation is definitely warranted.

Storage for identifiers can be allocated in several ways. When an identifier
is defined with the storage class static or extern, the compiler allocates
memory for this identifier once, and it exists for the life of the program.
Identifiers defined with the storage class automatic have memory allocated for
them when control enters the function that defines them, and deallocated or
'freed' when control exits that function. Thus, an automatic variable exists only
when the function which defines it is executing. There are times when a
programmer would like to allocate storage for a variable in one function, and
have that variable exist until all processing related to it is complete, which may
be long after the function which defined it has exited. In addition, the
programmer may not even know how much storage will be required, as in our
case. To provide the programmer with complete flexibility, the malloc andfree
functions can be used to perform dynamic memory allocation.

The malloc library routine is a general purpose memory allocator; its
argument is the size (in bytes) of the memory desired. If successful, the return
value is a pointer to a block of memory of the requested size. When the block
is no longer needed, the free routine can be called with the pointer to the block
to be freed as its argument.

Using these facilities, we can now manage memory more efficiently, and
eliminate the restriction on the number of lines that can be read in, as shown in
example 9.1.

Example 9.1

#include <stdlib.h>
#include <stdio.h>

/* Maximum length of input line */

#define LINESIZE 132

/* Error handling macro */
#define ERROR (msg) {fprintf (stderr, "%s\n", msg); exit(1);}

/* Linked list structure */

Pointers Revisited 93

typedef struct list {
char text[LINESIZE];
struct list *next;

} LIST;

LIST *lines ; NULL, /* Pointer to head of the list */
this line; NULL, / Pointer to current element */
new_Tine; / Pointer to a new element */

int eof ; 0; /* End of file flag */

while (!eof) {

}

/* Allocate space for a new line */

if (! (new line; (LIST *) malloc (sizeof(LIST))))
ERROR("Memoryexhausted");

/* Initialise next pointer */

new line->next ; (LIST *) NULL;

/* Read in the next line */

if (!gets (new_Iine->text))
eof; 1;

else
/* If this is the first line, set head

and current pointer to it */

if (! lines)
lines ; this_line = new_line;

/* Otherwise, link current line to new
one and advance current line */

else
this line this line->next new_line;

style 53.0]

Here we have generated a "linked list" data structure, where each element in
the structure, as well as containing the data, has a pointer to the next element
in the list. Thus, we finish up with exactly as many elements as there are lines
in the input - no more, no less. We could print out the text afterwards by

for (this line; lines; this line;
- this-line = this line->next)

printf ("%s\n", this_Iine->text); -

When allocating space dynamically in this way, it is important to remember
that we need to de-allocate, or free, the space at some time. This will be done
automatically when the program exits, but if space limitations require that you
free the space before then (if, for example, you wish to re-use the space for
other purposes), it can be freed by

94

#include <stdlib.h>

LIST *next_line;

while (lines) {

ABookonC

next line = lines->next;
free - (lines) ;
lines = next_line;

}

and this will leave the variable lines set to a NUll. value, so that, if used
inadvertently, it will not pick up garbage data.

Of course, we have still potentially allocated more space than we need,
since each line reserves 132 characters, regardless of its actual length. A better
structure would be one that looked like

line 1

line 2

line 3

which would be declared as

typedef struct list
char *text;
struct list *next;

} LIST;

and we would have to allocate storage for both the list element and for the
data, as shown in example 9.2.

Example 9.2

#include <stdlib.h>
#include <stdio.h>

/* Maximum line size */

#define BUFSIZE 2048

char data[BUFSIZE];

while (! eof) {
if (!(new line = (LIST *) malloc (sizeof(LIST»»

ERROR(IMemoryexhausted");

new line->next = (LIST *) NULL;

}

Pointers Revisited

if (!gets (data))
eof = 1:

else {
/* Allocate enough space for this line */

if (! (new line->text =
- (char *) malloc (strlen(data)+1)))

ERROR ("Memory exhaus ted") :

/* Copy the line read in */

strcpy (new_Iine->text, data):

1£ (! lines)
lines = this line = new_line;

else -
this line this line->next new_line;

style 55.5 1

95

Now we are allocating exactly the amount of storage required. Note also that
the limit on line length is only that it be less than 2048 characters!

COMPLEX DATA SfRUCTURES

As an example of a more complex data structure, consider the program of
example 9.3, together with its header file in example 9.4. This program
constructs a family tree from input data, and prints out the pedigree chart of a
named individual.

The principal data structure is an array of elements of type PERSON,which
looks like

death-date mother father

other PERSONs in array

The dates of birth and death are themselves structures, nested within the
PERSON structure.

96 A Book on C

Example 9.3

Ninclude "family.h"
Ninclude <ctype.h>

/* Maximum number of people in input data */

Ndefine MAXPEOPLE 64

/* Array for data structure */

static PERSON people[MAXPEOPLE+1];

/* Pointer to output image area */
static char *space;

/* Months of year */

static char *month[MONTHS] -
{ "JAN", "FEB", "MAR",

"MAY", "JUN", II JUL" ,
"SEP", "OCT", "NOV",

"APR",
"AUG",
"DEC" };

/* Global variables */

static int curr level - 0;
static int max level - 0;
static int totrows, totcols;

int
main (int argc, char *argv[])
{

char line[LINESIZE];
register int i;
register PERSON *p;

/* Input line */
/* General purpose counter */
/* Pointer to data structure */

/* Arguments can be passed in on the command line as
command arg1 arg2 .••

where argc is the argument count (including the
command name), and argv[i] are the arguments
(argv[O] is the command itself, argv[1] is the
first argument, etc.) */

if (argc 1- 2)
ERROR ("Usage: ftree <name>", "");

/* Initialise the data structure */

for (i - 0; i <- MAXPEOPLE; people[i++].name - NULL)

/* Input lines consist of fields separated by "tokens"
from SEPSTRING. Read in each line, extracting the
fields and entering them into the data structure.
Ignore lines beginning with "*" (comments). */

while (gets (line) && strlen(line» {
if (line[O] -- '*')

continue;
p - get name (strtok (line, SEPSTRING»;
p->sex ~ get sex (strtok (NULL, SEPSTRING»;
p->birth - get date (strtok (NULL, SEPSTRING»;
p->death - get-date (strtok (NULL, SEPSTRING»;
p->father - get name (strtok (NULL, SEPSTRING»;
p->mother - get=name (strtok (NULL, SEPSTRING»;

f**
*
*
*
*
*

**f

Pointers Revisited 97

f* Find out how biq the tree will be *f

qet level (p - qet name (arqv[1]»;
totrows - (5 * power (2, max level) - 1);
totcols - (max_level + 1) * COLPLEV;

f* ..• and allocate space for the output *f

if (!(space - malloc «unsiqned) (totrows * totcols»»
ERROR("Memory exhausted",);

f* Initialise the output area with spaces usinq
the library function memset *f

memset (space, (int) , " totrows * totcols);

f* Generate the output imaqe •.• *f

drawtree (p, 0, 1);
vlines ();

f* •.• print it •.• *f

printtree 0;

f* ... and exit *f

return (0);

Find the person indicated by the supplied name
in the 'people' array. If the person is currently
non-existent, insert them into the array. Return
a pointer to the person if successful, otherwise
terminate with an error messaqe.

PERSON *
qet name (const char *str)
{ -

reqister PERSON *p;
static DATE zero date -
f* '-' means unknown *f

if (tstrcmp (str, "-"»
return (PERSON *) 0;

f* Data strucure pointer *f
0, 0, 0 }; f* Date *f

f* Search the array for a matchinq name *f

for (p - people; p->name && strcmp (p->narne, str); p++)

f* If found, return the pointer ••• *f

if (p->name)
return p;

f* •.. otherwise make sure there's enouqh room .•. *f

if (p >- &people[MAXPEOPLE])
ERROR("Too many people",);

f* ... add them to the end ••. *f

if (! (p->name - malloc «unsiqned) strlen (str) + 1»)
ERROR("Memory exhausted",);

98

1**

A Book on C

strcpy (p->name, str);
p->birth - p->death - zero date;
p->father - p->mother - (PERSON *) 0;

1* ... and return the pointer *1

return p;

* Determine sex.
**1

sex type
qet-sex (char *str)
{ -

1**
*
*
*

**1

void

1* Convert to upper case *1

strupcase (str, str);

1* Should be either MALE or FEMALE *1

return (strcmp (str, "MALE") ? FEMALE MALE) ;

Convert src to upper case in dest (toupper is a
library function that converts [a-z] to [A-Z] , and
leaves all other characters untouched).

strupcase (char *dest, const char *src)
{

}
1**
*
*

**1

DATE

while (*dest++ - toupper (*src++»

Convert str to a date. Terminate with a messaqe
on error.

qet date (char *str)
{ -

char *ptr;
reqister int i;
DATE date;

1* Strinq pointer *1
1* Month counter *1
1* Converted date *1

1* '-' means unknown *1

if (Istrcmp (str, "-"»
date.month - date.day - date. year - 0;

1* Convert str to DATE format *1

else {
strupcase (str, str);
for (i - 0; i < MONTHS; i++)

if (Istrncmp (str, month[i], strlen (month[i))
break;

if (i >- MONTHS)
ERROR("Invalid date ", str);

date.month - i + 1;

/**
*
*
*
*
*

**/

}

Pointers Revisited

/* strtol is a library function that returns the
long integer corresponding to the string in the
first argument according to the number base in
the third argument. Leading white space is
ignored. If the second argument is not NULL,
it will contain the address of the first
non-digit character which terminates the
conversion. */

date.day - (short int)
strtol (str + strlen (month[i]), &ptr, 10);

date.year - (short int)
strtol (ptr + 1, (char **) 0, 10);

return date;

Find out how many generations have to be printed. This
function operates recursively by determining the
number of generations above this one on both the
mother's and father's side - the number of generations
to be printed is the maximum of these numbers.

void
get level (const PERSON *p)
{ -

/**
*
*
*
*
*
*

**/

PERSON * dad, *mom;

/* Find father */

/* Pointer to mother & father */

for (dad - people; dad->name && dad 1- p->father; dad++)

/* Find out how many generations above him */

if (dad->name) {
curr_level++;

max level - max(max_level, curr_level);
get-level (dad);
curr_level--

/* Find mother */

for (mom - people; mom->name && mom 1- p->mother; mom++)

/* Find out how many generations above her */

if (mom->name) {
curr level++;
max Tevel - max(max level, curr_level);
get-level (morn); -
curr_level--;

C does not have an exponentiation operator - this
function simulates it. Standard C has double
pow(double x, double y) function. Since we want
to perform only integer arithmetic, it is not
necessary to involve complicated double precision
operations.

99

100 A Book on C

power (int base, int exp)
{

/**
*
*

**/

register int i, result;

result - 1;
for (i - 0; i < exp; i++)

result *- base;
return result;

Find the row position in the output image for
this generation.

rowloc (int level, int offset)
{

/**
*
*
*
*

**/

if (level -- max level)
return (offset * 5 - 4);

if (level -- max level - 1)
return (offset * 10 - 6);

return (rowloc (level + 1, offset * 2) +
rowloc (level + 1, offset * 2 - 1» / 2;

Generate the family tree
drawing this person, and
their mother and father.
run out of parents.

in the output image by
then the family trees of
The recursion stops when we

void
drawtree (const PERSON *p, int level, int offset)
{

PERSON *mom, *dad;

/* Draw this person */

drawperson (p, rowloc (level, offset),
level * COLPLEV + 1);

/* Draw father's family tree */

for (dad - people; dad->name && dad !- p->father; dad++)
,

if (dad->name)
drawtree (dad, level + 1, offset * 2 - 1);

/* Draw mother's family tree */

for (mom - people; mom->name && mom !- p->mother; mom++)
,

if (mom->name)
drawtree (mom, level + 1, offset * 2);

/**
* Print date.

**/

char *
put date (const DATE *date)
{ -

static char words(25); /* Buffer for date in words */
sprintf (words, "%s %d, %d", month[date->month - 1),
date->day, date->year);

Pointers Revisited

return words;

/**
* Draw a person in the output image, complete with
* name and dates of birth and death.

**/

void
drawperson (const PERSON *p, int row, int col)
{

/**
*

**/

char *d; /* Date buffer */

/* Copy in name (memcpy is a library function which
copies data from its second parameter to its first
for a length in bytes of its third parameter) ••• */

memcpy (pixel (row, col + 1), p->name, strlen (p->name»;
memcpy (pixel(row + 1, col), NAMELlNE,

sizeof(NAMELINE) - 1);

/* ... and birth date, if it exists •.. */

if (p->birth.year) {
memcpy (pixel(row + 2, col), " b.", 3);
d - put date (&(p->birth»;
memcpy (pixel (row + 2, col + 4), d, strlen (d»;

/* ..• and date of death */

if (p->death.year) {
memcpy (pixel(row + 3, col), " d.", 3);
d - put date (&(p->death»;
memcpy (pixel (row + 3, col + 4), d, strlen (d»;

Print the output image.

void
printtree (void)
{

int i;

for (i - 0; i < totrows; i++)
printf ("%.*s\n", totcols, pixel(i + 1,1»;

/**
* Put vertical lines into output image.

**/

void
vlines (void)
{

register int i, j, k;

for (i - 1; i <- max level; i++)
for (j - 1; j < Power (2, i); j +- 2)

for (k - rowloc (i, j) + 1;
k <- rowloc (i, j + 1) + 1; k++)
* (pixel (k, i * COLPLEV + 1» - • I ';

style 66.6 1

101

102

Example 9.4

Nifndef FAMILY H
Ndefine FAMILY-H

A Book on C

/* -----------=---
* FAMILY.H - header file for FAMILY.C, family tree printer
* ---*/

/* To make the application portable, we will provide a set
of macros. The macros behave in different ways
dependinq on whether the compiler is standard ANSI C or
not. All conformant implementations are required to
define the STDC constant. This constant can be used
in makinq proqramS-portable across ANSI and non-ANSI
compilers. */

Ninclude <stdio.h> /* provided on most C compilers */

Ufdef STDC
/* ANSI standard C compiler */
#include <stdlib.h> /* defined by the standard */
Ninclude <strinq.h> /* defined by the standard */
Nlnclude <ctype.h> /* defined by the standard */

/* The followinq preprocessor macro will be used in
function prototypes */

Ndefine PROT(x) x
#else

1* Older, non-standard compiler - it is necessary to
define only those functions which do not return
inteqer values */

void exit ();
char *strtok (), *malloc (), *strcpy (),

*memset (), *memcpy ();
lonq strtol ();

/* The followinq preprocessor macro will be used in
function prototypes. Please note that 'N'
character must be in the first column for non-ANSI
compilers. * /

Ndefine ASTR *
#define PROT(x) (/ASTR x ASTR/)

/* Define NULL if it isn't defined already */
Nifndef NULL
#define NULL «char *) 0)
Nendif

#endif /* end of environment specific considerations */

typedef struct {
short int month;
short int day;
short int year;

DATE;

/* Month of year: 1 -> 12
/* Day of month: 1 -> 31
/* Year: 1 -> 1987

typedef enum {MALE, FEMALE} sex_type;

typedef struct person
char *name; /* Name of person
sex_type sex; /* Sex
DATE birth; /* Date of birth
DATE death; /* Date of death

(0 year --> still
struct person *mother /* Pointer to mother
struct person *father; /* Pointer to father

*/
*/
*/

alive)

*/
*/
*/

*/
*/
*/

Pointers Revisited

} PERSON;

1* Maximum length of an input line *1
#define LINESIZE 128

1* Valid separators between fields in input line *1
#define SEPSTRING ":\n"

1* Width of one output column *1
#define COLPLEV 18
1* Months in a year *1
#define MONTHS 12

1* Maximum width of a name *1
#define NAMELINE ,,------------------

1* Maximum value of x and y *1
#define max (x, y) «x) > (y) ? (x) : (y»

1* Position in output array of row r column c */
#define pixel(r,c) (space + «r) - 1) * totcols + (c) - 1)

1* Error handling macro *1
#define ERROR(msg,data) \

{ fprintf (stderr,"%s%s\n",msg, data); exit (1); }

1* Function prototypes *1
PERSON *get name PROT«const char *name»;
DATE get date PROT«char *date str»;
sex type-get sex PROT«char *sex str»;
void strupcase PROT«char *dest,-const char *src»;
void get level PROT«const PERSON *person»;
int power PROT«int base, int exp»;
int rowloc PROT«int base, int exp»;

103

void drawtree PROT«const PERSON *person, int level, int offset»;
char *put date PROT«const DATE *date»;
void drawperson PROT«const PERSON *person, int row, int col»;
void printtree PROT«void»;
void vlines PROT«void»;

#endif

1* ------------ family.h - ENDS --------------- *1

Input to the program might look like

* Input for ftree.c program

* Family tree of Michael Soren

Michael Soren:male:Aug 18,1958:-:Howard Soren:Toni Grossman

Toni Grossman:female:Sep 10, 1932:-:Abraham Grossman:
Erna Salzberg

Howard Soren:male:May 11,1930:-:Charles Sorkowitz:
Minnie Sorkowitz

Abraham Grossman:male:Feb 24,1894:Apr 14,1966:
Aria Grossman:Mindel Wurzel

Erna Salzberg:female:Sep 13,1896:Feb 12,1970:
Jonah Salzberg:Chaya Weiser

Charles Sorkowitz:male:May 1,1895:Apr 14,1980:
Harris Sorkowitz:Goldie Eglewitz

Minnie Sorkowitz:female:Dec 1,1898:Sep 24,1966:
Nathan Sorkowitz:Etka Cohen

104 A Book on C

in which case the output for the pedigree chart of Michael Soren would look
like

Michael
Soren
b. Aug 18

1958

Howard Soren

b. May 11
1930

Tony
Grossman

b. Sep 10

1932

Charles Sorkowitz

b. May 1 1895
d. Apr 14 1980

Minnie Sorkowitz

b. Dec 1 1898
d. Sep 24 1966

Harris
Sorkowitz

Goldie
Eglewitz

Nathan
Sorkowitz

Etka Cohen

Aria
Grossman

~Ab __ r_a_h_a_m __ G_r_o_ss_ma __ n~ Mindel

b. Feb 24 1894
d. Apr 14 1966

Erna Salzberg

b. Sep 13 1896
d. Feb 12 1970

Wurzel

Jonah
Salzberg

Chaya
Weiser

The program is commented well enough to be self-explanatory, but there are a
number of features which are worthy of further explanation. Firstly, there are
some standard functions used, such as memset and strtok, which are part of a
run-time library defined by the ANSI standard. The library and the corres­
ponding header files mayor may not be present on your particular installation.
The ones we have used are standard on the UNIX system, but may be different
in other implementations. In any case, the functions are mostly straightforward
to duplicate and, if missing, may be built by you in an effort to come closer to
the standard C implementation.

Pointers Revisited 105

Secondly, the mechanism for passing argwnents into the program from the
command line is demonstrated. In order that a program be as flexible as
possible, it is important to parameterise it in the same way that you would
parameterise any other function. In this case, the parameter is the name of the
person whose pedigree chart is to be printed. The standard C specifies that
implementations in "hosted" environments may specify argwnents to the top
level main function. "Hosted" means environments in which the applications
are run under control of the host operating system. If provided, there must be
two such argwnents: the first one is an integer specifying the number of
character strings passed to the pplication, and the second one is an array of
character pointers containing addresses of the strings. All commonly found
environments implement this ANSI C recommendation and pass to the applic­
ation a set of character strings containing argwnents supplied to the program
on the command line starting its execution.

Thirdly, notice that the functions get _level and drawtree are recursive,
which is a common feature of programs which manipulate data structures. Any
one person's family tree consists of two sub-trees - the family trees of both
their mother and their father. drawtree utilises this fact to draw the person's
family tree by drawing first the person, and then the family trees of their
mother and father; get_level detennines the number of generations to be
printed, which is simply one more than the maximum of the number of
generations in either the mother's or father's tree.

And finally, note how provision is made for the input data to contain
comment lines - this simple feature allows commentary to be included within
data files to explain, for example, what the data are, or how they are to be
used.

SUMMARY

The theory and practice of data structures is a complicated topic, and one
which is largely beyond the scope of this book. What we have presented is the
basic tools - pointers, structures and dynamically allocated storage - which will
allow you to generate arbitrarily complex data structures.

The thing to remember is that pointers are the equivalent in data structures
of goto's in control structures. It is as easy to finish up with unruly data
structures as it is to generate "spaghetti code", and both are usually indicative
of lack of forethought The representation of data requires as much thought as
the algorithm which manipulates it, and often the two are inextricably linked,
in the sense that a poor design of either may cause the other to be
unnecessarily complex and clumsy. The book Algorithms + Data Structures =
Programs by Wirth (1976) is an excellent illustration of the way in which
algoritluns and data structures interact.

10 The C Preprocessor

We have already introduced the C preprocessor directives #include and #define
for file inclusion and symbol definition capabilities. In this chapter, we expand
the discussion to include all other capabilities of the preprocessor such as the
#Unde! directive, the use of the conditional compilation directives #if, #ifdef,
#ifndef, #else, #elif and #endif, string concatenation and token pasting. In
addition, parameters for the #define directive are introduced to yield a more
powerful macro facility. Some of these facilities have been defined recently in
the ANSI standard and may not be available on your implementation.

Note that the C preprocessor is not part of the compiler; it is a macro
processor which is used prior to compilation to perform textual substitutions
and file inclusion. It has no knowledge of C syntax, and could equally well be
used to process text in any language, including natural language. The results of
the processed text are passed to the C compiler for subsequent translation.

#define

In its simplest form, #define is used to associate a symbol with a value:

#define ENTRIES 100

If the value changes, we need only change it in the place where it is declared.
A definition may refer to previously defined symbols, as in:

#define ARRAYSIZE (ENTRIES+ 1)

The parentheses surrounding the substitution string are not mere formality; if
ARRA YSIZE is used in the following context,

char array[ARRAYSIZE*4)i

then omitting the parentheses would allocate an array of 104 bytes
(100 + 1 * 4) instead of the intended 404 «(100 + 1) * 4).

During expansion of the symbol defined by the #defme directive, the name
of the symbol is not expanded again to avoid infinite loops.

106

The C Preprocessor 107

For example

#define DONT_DO_IT_AGAIN

will not attempt to expand the second occurrence of DONT _DO_IT _AGAIN
and will pass (DONT_DO JT_AGAIN+l) to the compiler.

In Chapters 1 and 2, when we discussed the use of the #define directive to
define constant text, we gave the example,

#define CLEAR printf ("\033Y")

to define the sequence necessary to clear the screen on a Lear Siegler ADM5.

MACRO PARAMETERS

The #define directive is useful in its ability to substitute arbitrary text for a
symbol. Here, we see how that capability can be expanded by providing
argwnents with a macro definition. As an example, consider a maao useful for
debugging which prints out a trace message when a function is entered:

#define DB_ENTER printf("Entering a function\n")

We could place this statement at the beginning of each function:

my function ()
{ -

DB_ENTER;

This macro, in itself is not very useful, since it does not say which function is
being entered, and the flow of logic may not be easy to understand.
Fortunately, we can provide an argument (the function name) with the macro
invocation if we define the macro as:

#define DB_ENTER(x) printf ("Entering %s\n", x)

Then, the statement at the beginning of each function could look like:

my function ()
{ -

DB_ENTER ("my _ funct ion") ;

After the DB_ENTER maa-o is substituted, the printf will arrange to print out
"Entering my_function", which can be useful in examining the flow of control.

Similarly, we could define a macro to tell us when control is leaving a
function, and the returning value. We could define:

108 A Book on C

#define DB_RETURN(x) {printf("Returning %d\n", x); return(x);}

so that if the above function were written as

my function ()
{ -

DB ENTER ("my_function") ;

DB_RETURN (69) ;
}

and the output would look like:

Entering my function
Returning 69

This type of information can be very useful when trying to trace what's
happening inside a program.

We could combine this with conditional compilation directives so that
output would only be printed if a certain symbol, such as DEBUG were de­
fined:

#ifdef DEBUG
#define DB ENTER(x) printf("Entering %s\n", x)
#define DB RETURN(x) {printf("Returning %d\n", x); return(x);}
#else -
#define DB ENTER(x)
#define DB-RETURN(X) return (x)
#endif -

The second definition of DB_ENTER specifies that the DB_ENTER(x) text
should be substituted by nothing. Then, the program could be coded as before,
but would only produce trace output if it was compiled with the symbol
DEBUG defined. If the symbol DEBUG were not defined, no extra code would
be generated into the program.

Macro parameters can also be used to simplify complex expressions or
structure references. In the example 9.4 where a PERSON structure was
declared, we could define a macro to easily access the name of a person's
paternal grandfather:

#define GRANDPA(p) (p->father->father.name)

Despite a lot of similarities between parameterised #define macros- and regular
function calls we have to realise that functions and macros are really quite
different. Macros are expanded by the preprocessor and produce inline code
without any function calls being made. There are two direct results of this
behaviour. Firstly, there is no type checking of the macro arguments. This may
result in subtle and difficult to trace problems if sufficient care is not taken.
Secondly, preprocessor macros may produce side effects. Consider the follow­
ing definitions

int
square (int a)
{

return (a * a)i
}

#define SQUARE (a)

The C Preprocessor

(a) * (a)

and let us assume that square and SQUARE are called as in:

int in=5i
int out;

/* first call */
out = square(in++)i

/* second version */
out = SQUARE(in++)i

109

The effect of the call to square(in++) is in=6 and out=25 because only the
value of in is passed to the function and in is subsequently incremented. The
effect of executing SQUARE(in++) is in=7 and out=30. This is easy to
appreciate once the macro expansion is written out:

/* the second version expands to: */
out = (in++) * (in++)i
/* in is incremented twice */

One must be very careful while using macros which can potentially be called
with expressions as arguments. Conforming standard C implementations are
allowed to provide macro versions of functions, provided that the macros are
"safe", that is, evaluate their arguments only once, and provided that un­
defining the macro will result in using a true library function. This last
condition is very useful during the debugging phase. It may be useful to
generate true function calls in order to use some debugging facilities which can
stop program execution upon entry into a function. Such function calls can
later be replaced by preprocessor macros to speed up program execution, since
macros are expanded in place to a string of C statements and do not suffer
from the overhead of function calls.

#undef

To make the preprocessor forget its definition of SQUARE, we can write:

#undef SQUARE

and thereafter the preprocessor will leave all occurrences of SQUARE alone,
passing it unsubstituted to the compiler. Should we have both a macro and a
true function versions of SQUARE, undefining it would make sure that the
function is used. Undefining of a symbol not previously defined is allowed and
is simply ignored by the preprocessor.

110 A Book on C

CONDITIONAL COMPILATION

When we write programs, it is advantageous to try to write them in such a way
so they are portable; that is, they can be moved to another machine of differing
architecture or operating system without changing the source code. They
should perform the same function on the new machine as they did on the old
one, even though the underlying code and implementation may be different.
This increases programmer efficiency so that it is no longer necessary to re­
code existing functions for a new machine. The preprocessor makes this task
easier with the availability of conditional compilation.

Consider the example of clearing a terminal screen. If all terminals in the
world were Lear Siegler ADM5's, the definition of CLEAR would be the same
in all cases. However, because different terminals use different sequences to
accomplish the same function, this definition must be modified. On a DEC
VT100, the statement would have to be:

Ndefine CLEAR printf("\033[2J")

The conditional compilation statements allow us to include certain sections of
code based upon specified conditions. Thus, we can combine the two CLEAR
definitions so that the desired one is defined for either situation. We can write:

Nifdef VT100
Ndefine CLEAR printf("\033[2J")
Nelse
Ndefine CLEAR printf("\033Y")
Nendif

The above construction says that if the symbol VT100 is defined to the
preprocessor, use the first definition of CLEAR; otherwise, use the second.
Conditional compilation proceeds until the #endif directive is encountered.
Now, all that is needed in order to use this program for a VT100 is to include a
line at the top of the program which defines the symbol VT100:

Ndefine VT100

If we wanted to, we could define the sequence for all other available terminals
so that the same source code would run unchanged. Please note that it is
sufficient to just #define the symbol without actually assigning any particular
value to it.

We can make similar constructions to define symbols only if they are not
already defined, as in the following:

Nifndef NULL
Ndefine NULL
Nendif

«char *) 0)

This construction defines the symbol NUll only if it was not previously
defined.

The C Preprocessor 111

We can make the condition for compilation more complex by using the #if
directive. With the #if directive, the condition must be a non-zero constant at
compile time in order for the lines through #endif to be passed to the compiler.
Making programs machine independent then becomes a matter of defining a
symbol and testing for it to indicate the target processor. Then, definitions are
made on the basis of which type machine the program is compiled for:

1* assuming that the code contains one or more
directives of the form: *1

#define mc68k 1

1* we can write: *1
#if mc68k I I i286 I I i386

· 1* Set definitions for the Motorola 68000 based
or Intel 80286 or 80386 processor *1

· #endif
#if u3b2 I I u3b5 I I u3b15 I I u3b20

· /* Set definitions for the AT&T 3b processors */

· # end if
#1£ uts II u370

-
/* Set definitions for the Amdahl

and IBM processors */

· #endif

Please note that in order for symbols to be used in checks such as above, a
particular value should be assigned to the symbol defined. Logical operators
recognised by the C preprocessor behave in the same way as the corresponding
language operators. Non-zero values are assumed to be true, while zero is
assumed to be false. Just defining a symbol without providing a value for it is
equivalent to defining it with the value of 0 for the purpose of evaluation in
logical expressions. Also please note that the preprocessor does not report
errors if a symbol is not defined. The symbol is simply assumed to have a
value of 0 in logical expressions.

Directive #elif is equivalent to the directive #else followed by #if and can be
used as shorthand in specifying multiple nested conditions.

Very similar to #ifdef and #ifndef directives but much more flexible is the
defined operator. Using this operator, several checks may be combined in a
single #if directive as in

#if defined(BLACK GUARDIAN) && ldefined(WHITE_GUARDIAN)
#define IN TROUBLE 1
#endif -

The defined operator has been introduced by the C standard and may not be
available on your system.

Although the examples presented above show only preprocessor directives

112 A Book on C

C#define, #Undej) used within the conditional compilation directives, C source
code can be placed there as well to perform different functions under different
circumstances. Some examples of this may be found in the section on
preprocessor techniques later in this chapter.

TOKEN PASTING AND Sl'RING CONVERSIONS

Any two strings separated only by white space, that is blanks, tabs, newline or
page eject characters, are concatenated by a conformant preprocessor. This
may be useful in cases of long character strings such as in

printf ("The first part of a very long II

"character string\n");

which becomes

printf (liThe first part of a very lonq character strinq\n");

before being passed to the compiler. This behaviour may be useful in some
cases; it is however essential for COITect behaviour of a new # operator.

The C standard introduced two new preprocessor operators dealing directly
with tokens in the replacement list of a macro. The # operator converts its
argument to a string as in the following example:

fldefine PRT_VALUE(X) printf (liThe value of .. fiX II is;\d\n", X)

int answer - 42;

We may want to print the value in order to trace the execution of our program
as follows:

PRT_VALUE(answer) ;

The above fragment of code is transformed by the preprocessor into:

printf ("The value of " "answer" II is %d\n", answer);

which in tum becomes:

printf (liThe value of answer is %d\n", answer);

given that the adjacent strings are concatenated.
A somewhat complementary capability dealing with non-string arguments

is provided by a new token pasting operator. The new operator denoted by ##
takes the left and right operands and concatenates them before passing the
resulting string to the compiler. For example:

#define MAKE_VAR(a, b) (a##b)

when called as in

int MAKE_VAR(value, _one);

becomes

int value_one;

The C Preprocessor 113

ADDITIONAL DIRECI'IVFS

Three additional directives are defined in the C standard and may not be
available in your C implementation.

The preprocessor counts the source lines as it proceeds through the code.
#line followed by a token or a maa-o resolving itself to a decimal number and
an optional character string, can be inserted anywhere in the source code, and
indicates that the following line has the given number and came from the file
indicated. This facility is used mainly by utilities which themselves produce a
C code output, such as third party preprocessors, to maintain linkage between
the line numbers of the original source and the produced C source. The #line
directive directly sets the values of _ UNE _ and _FILE_symbols des­
cribed in the next section.

The #error directive followed by any set of macros or other preprocessing
tokens causes a diagnostic message containing these tokens to be displayed at
compile time. This directive is typically used in conjunction with #if directives
to diagnose some undesirable compile time conditions. For example:

#1f !def1ned(WHITE GUARDIAN) && Idef1ned(BLACK GUARDIAN)
#error "At least one of the two quard1ans must-be present"
#endif

The #pragma directive allows for implementation specific behaviour. The
standard specifies only that any #pragma not recognised by the particular
implementation should be ignored. This allows for some limited expansion of
the preprocessor capabilities in an implementation defined manner. For
example, an implementation may allow different compiler behaviour based on
various switches, or arguments passed to the compiler. Some or all of these
switches may have their #pragma equivalents, thus allowing the programs to
influence the way in which they are compiled. It should be stressed that any
such behaviour is implementation specific and depending on it for correct
compilation or execution of programs may lead to unpleasant surprises if wide
portability is intended.

PREDEFINED MACRO NAMES

Several predefined macro names have been specified by the standard. Some if
not all of them are probably defined in your implementation. The names are
defined by the preprocessor itself and can be used throughout the code as if
specified by #define statements.

_UNE _ contains the line number of the source statement currently
processed by the preprocessor. The value is reset to 1 at the begining of each
source file.

FILE contains the name of the file currently processed by the
preprocessor.

114 A Book on C

DATE contains the date when preprocessing began and remains
constant throughout the execution of the preprocessor.

_TIME_contains the time when preprocessing began and remains
constant throughout the execution of the preprocessor.

_ STDC _ is defined to be 1 by all confonnant implementations and can be
used in writing portable code.

The use of these constants and examples of other useful preprocessor
applications are illustrated in the next section.

PREPROCFSSQR TECHNIQUES

We will now attempt to illustrate some of the preprocessor features described
in the previous sections to produce a few useful tricks and techniques which
can be used to advantage in everyday software development. The ideas
presented in this section aspire to being helpful in producing more reliable and
portable code.

In large, complicated programs, it is very common to have many header
files which depend for some of their content on other header files. It is there­
fore unavoidable that many header files include many other header files, and
that the program source files comprising the software product include various
subsets of the header files. This situation often leads to multiple copies of the
same header file being included in the same source module. While not always
disastrous, multiple inclusions of the same header file in one source module
lead to a longer compilation time and wasted machine resources. A very
common way of avoiding such a situation is to define a constant uniquely
identifying a header file and enclose the content of the entire file in an #iftuJej
directive like in the following:

/* let's assume this header file to be named local.h */
#ifndef LOCAL H /* if LOCAL H constant not defined - */
#define LOCAL=H /* define it and */

#endif

/* enter here all the statements */
/* comprising the header file */

/* end with #endif corresponding to the */
/* top level #ifndef */

Remembering that all #define constants are global throughout all header files
comprising a software module, it is easy to see that the first copy of locaLh
will be processed and, among other things, will define _ LOCAL _H. On sub­
sequent inclusions of the same header file the constant is already defined and
the content of the file is not processed again due to the #iftuJej directive.

All but the smallest software projects require some control over which
versions of what files are included in the particular version of the product.

The C Preprocessor 115

Many sophisticated version control systems have been devised for that
purpose. We may decide that for our small projects it is sufficient to just have
a date and time stamp embedded in every module. This can be accomplished
by defining a macro containing the stamp

#deflne ID_STRING _FILE_" as of " _DATE_ " at" TIME

and then including the following line in every module which we want to stamp

static char FileID[];ID_STRINGi

FileID of every file containing the above declaration will be embedded into the
executable file. A simple tool may be written to scan the content of the
executable file and search for all time stamps thus revealing which versions
have been used to build it.

Given that function prototyping provides us with a benefit of automatic type
checking and thus eliminates the errors stemming from argwnent and
parameter mismatch, we should attempt to use this feature whenever possible.
The trouble is that many compilers still do not support the full ANSI standard.
In preparation for a wider availability of the standard compilers we should
attempt to write programs which could be easily modified to take advantage of
function prototyping once it becomes available on our installation. To that end,
it may be prudent to incorporate the following set of macros as a standard for
building function prototypes.

#ifdef STDC

1* the following preprocessor macro will be used
in function prototypes *1

#define PROT(x) x

#else
1* The following preprocessor macro will be used in

function prototypes. Please ngte that the 'N'
character must be in the first column for some
non-ANSI compilers. *1

#define ASTR *
#define PROT(x) (/ASTR x ASTR/)

#endif 1* end of environment specific considerations *1

For the confonning compilers, as indicated by the predefined macro
_ STDC _, we define macro PROT to just resolve to its argwnent. For non­
confonnant compilers, the macro will resolve to its argwnent enclosed in
parenthesis and comment delimiters. PROT macro allows us to provide
function prototypes of the following form

char *function PROT((int arg1, char *arg2)) i

and have it resolved to

char *function (/*(int arg1, char *arg2)*/)i

116 A Book on C

and

char *function (int arg1, char *arg2);

for non-standard and standard compilers respectively. To be as widely portable
as possible, we have defined an intennediate maao ASTR. In some older
installations the symbol 1 •• 1 is used as a concatenation operator, equivalent to
in ANSI C. You may want to experiment with the above on your system
and directly substitute • for the ASTR macro. Also please note that the double
parentheses while passing arguments to PROT are needed. The outer set is
required to signal that PROT is a macro, and the inner set encloses a single
argument, consisting in this case of a rather lengthy character string contain­
ing, among other things, commas.

It is often necessary to trace execution of a program during its development
so that errors in algorithms or their implementations can be easily spotted.
TRACE macros can be created for that purpose. Two separate macros for
decimal and string values are needed. Alternatively one macro taking as
arguments the variable name and its type can be provided.

#include <stdio.h>

#define TRACED(v) fprintf(stderr, "Value of " #v " in file" \
FILE "at line %d is: %d\n", LINE ,v)

#define TRACES (v) Tprintf(stderr, "Value of " Nv " in fiie-" \
_FILE "at line %d is: %s\n", _LINE_, v)

The preprocessor in combination with typedej class allows for definition of
application specific data types which may be tuned to the maximum allowable
value for the type. For example, let us assume that the application processes
types of sails and rigs found on contemporary sailing boats. The number of
various sail types is not originally known, but is to be established later, after
the software is written. We may decide in this situation to define a separate
data type for the sail types as follows:

#if MAX SAIL TYPES <: 256
typedef-SailType unsigned chari
#else
typedef SailType unsigned inti
#endif

SailType WinningSaili

Depending on the maximum allowable number of sail types, assuming that
each sail type is represented by a unique number, the storage for the sail types
is defined to be either unsigned char or unsigned into

It is often useful to operate on variables declared as a generic address or
pointer type. Standard C defines void. as a pointer to any data type, but it may
not be available on many older implementations. To avoid this problem, a

The C Preprocessor

generic address type may be defined as follows:

#ifdef STDC
typedef-caddr~ void*i
#eIse
typedef caddr t char*i
#endif

caddr t pointer_to_anythingi

1* if standard C *1

117

pointer _to _anything is defined in a portable fashion. On standard imple­
mentations, the new void. will be used. On compilers which do not support it,
char. will be used instead. In both cases our intention to use caddr t variables
as generic pointers is clearly visible.

SUMMARY

There are many reasons for utilising the C preprocessor's capabilities to
perform text substitution within a program. Among them are:

• #define'd constants and macros can bedeclared in one place and
used throughout the code; subsequent changes can be made once at
the declaration, without having to search for every instance.

• Complexity can be hidden from the programmer without sacrificing
efficiency or functionality so that program logic is not obscured by
detail.

• Conditional compilation can be used to eliminate machine and other
dependencies.

• Using names for constants improves the intelligibility of the code.

• Useful macros improving portability of the code can be defined.

11 Programming Style

Programming in any language is a skill acquired largely by experience and by
observing the example of others. The way in which your programs are
presented is a matter for personal taste. It is often a tradeoff between brevity
and intelligibility. Although programming 'style' is often considered to be
unquantifiable and assessable only in subjective terms, we have made an
attempt, in an appendix, to identify those features of program layout and
organisation that tend to make it more visually appealing and more easily
comprehensible.

It is now realised that the lifetime of a program, and the cost of program
maintenance, frequently done by someone other than the author, make
considerations of clarity of expression often of equal importance with those of
efficiency. This is especially true in the recent times when the cost of
computing machines has been steadily declining and the costs associated with
writing and maintaining the software have significantly increased. It is to the
usually conflicting aims of clarity, conciseness and efficiency that we address
our attention in this chapter.

CLARITY

The clarity of a program is influenced by two principal factors: the way in
which the program is presented visually, and the way in which the
programming language constructs are used. The 'style score' that we have
associated with all the programming examples throughout the book is a
measure of the former. Appendix 1 gives a program to perform a style analysis
on a C program according to certain criteria which we believe contribute
directly to a program's readability. You may not agree entirely with the criteria
that we have chosen, or with the importance that we attach to each criterion,
but you will almost certainly agree that the second of the two versions of the
program detab (which replaces all the tab characters in a file by the
appropriate number of spaces), presented in example 11.1, is very much more
intelligible than the first.

118

Programming Style

Example 11.1

#include <stdio.h>

int
main (void)
{

}

int c,i,tabs[132],col=1;
settabs(tabs);
while «c=getchar(» !=EOF)

if (c=='\t')
do {putchar(' ');col++;

} while (!tabpos(col,tabs»;
else if (c=='\n') {putchar('\n'); col=1;}

else {putchar(c); col++;}

settabs(int tabs[132])
{

int i;
for (i=1;i<=132;i++)

if «Hs8)==1) tabs[i]=1;else tabs[i]=O;
}
tabpos(int col,int tabs[132])
{

if (col>132) return(1);else return(tabs[col]);
}

style 39.1]

1**1
1* Detab - convert tabs to appropriate number of *1
1* spaces (transcribed from Kernighan & Plauger's *1
1* "Software Tools") *1
1**1

#include
#define
#define

<stdio.h>
MAXLINE 132
TAB POS 8

main (void)
{

int c, i, tabs[MAXLINE], col=1;

set_tabs (tabs);

while «c = getchar(» != EOF)
1* Put spaces instead of tabs *1
if (c == '\ t ')

do {putchar (, ,); col++; }
while (!tab_pos (col, tabs»;

1* Newlines reset column counter *1
else if (c == '\n')

{ put char ('\n'); col = 1; }

1* Anything else is unchanged *1
else

{ put char (c); col++; }

119

120 A Book on C

/* set up tab positions every TAB POS characters */

set tabs (int tabs[MAXLINE))
{

int ii

for (i ; 1i i <; MAXLINEi i++)
tabs [i) ((i % TAB_POS) ;;

}

/* See if we're at a tab position */

tab pos (int col, int tabs[MAXLINE))
{ -

? 0) i

return ((col> MAXLINE) ? 1 : tabs[col));
}

style 80.2)

The programs are equivalent, in the sense that they contain identical
executable statements differently laid out. The 'bad' program could, of course,
be very much worse, but then it would not be so typical of the kind of program
that it is very tempting to write in a language that encourages brevity. In the
authors' experience, programs written like this, with the intention of
subsequent cosmetic improvement, tend to remain in their original fonnat -
there is little incentive to modify (even superficially) a working program.
Automatic aids to 'beautifying' a program by introducing indentation, blank
lines, etc. to reflect the program's structure are no substitute for a program
thoughtfully written.

The criteria that we have chosen to use in the style analysis of our own
programs are shown, in decreasing order of importance, in table 11.1.

Table 11.1

Criterion Weighting Ideal range

Module length 15% 10-25 non-blank lines
Identifier length 14% 5-10 characters
% comment lines 12% 15-25%
% indentation 12% 24-48%
% blank lines 11% 15-30%
Characters per line 9% 12-25 non-blank characters
Spaces per line 8% 4-10 spaces
%#defines 8% 15-25% of all identifiers
Reserved word usage 6% 16-30 of available words
Include files 5% 3 included files

Programming Style 121

The relative weights and ideal ranges are not arbitrarily chosen, but rather are
the result of careful tuning after analysis of programs that we recognised
intuitively as 'good' or 'bad'. They may need modification to cater for
individual preferences, or to reflect a particular 'house style'. Up to this point,
all examples for which a style score is given are relatively small in size. Style
scores for a nwnber of large programs from the UNIX system are given in
Berry and Meekings (1985).

The style analysis program does not pretend to measure, in anything more
than the most rudimentary sense, the second factor contributing to clarity: the
use of the language itself. As in so many things, in programming there is no
'right' answer - just a nwnber of alternative ways of achieving the same ends.
Invariably, some of those ways will be clumsy or obscure. This will most often
be the result of either inexperience or poor design - experience of using a
language brings with it a nwnber of benefits: for example, being able to 'think
in the language' avoids the clumsy type of construct that arises from the direct
transliteration of an algorithm derived by a programmer more familiar with
another language, and also being able to use effectively the programming
'tricks' that exist within any language (for example, in C, using

while (*str1++ = *str2++)i

to copy a string); and poor initial design, failure to derive a complete solution
before coding, is bound to yield a program that is a functional mess, badly
structured and with poor lines of communication.

CONCISENESS

There is a point, not always easy to identify, at which 'concise' becon'1es
'obscure'. Compare, for example, the random nwnber generator program of
example 6.2 with the functionally equivalent program of example 11.2. The
gain in execution speed would have to be considerable to justify the inclusion
of such a complex (but perfectly legal) statement in any program.

Example 11.2

#define maxint 32767
#define pshift 4
#define qshift 11

random(int range)
{

static int n=1;

return((n=((n=n An»pshift)An«qshift)&maxint)%(range+1»;

style 45.2 1

As a further example of a program that is concise to the point of obscurity,
study the program of example 11.3, and try to determine its effect.

122

Example 11.3

#define LO 2
#define HI 1000

int
main (void)
{

int i,j;

A Book on C

for (i=LO; i<-HI; i++) {
j"'sum(i) ;
if (j--i) printf(n'd\nn,i);
else if (sum(j)--i) printf(n'd 'd\nn,i,j);

}
}

int
sum(int n)
{

}

int s, f;

s=1;
for (f-2; f<n; f++)

if (n'f==O) s+=f;
return(s);

style 51.4 1

Even with explanation, the program is very much more difficult to understand
than is the equivalent program of example 11.4 which differs only by using
more meaningful identifier names and having a helpful user interface. The
program is in fact a generalisation of the perfect nwnber program of example
5.6. Perfect nwnbers are a special case of 'amicable' nwnbers, which are pairs
of nwnbers, each of whose swn of factors yields the other nwnber; so that, for
example, the swn of the factors of 220 is 284, while the sum of the factors of
284 is 220: 220 and 284 are amicable nwnbers.

Example 11.4

#define LO 2
#define HI 1000

int
main (void)
{

int number, sum;

for (number = LO; number <= HI; number++) {
sum = factorsum (number);
if (sum == number)

printf (n'd is perfect\nn, number);

Programming Style 123

else if (factorsum (sum) aa number)
printf ("%d,%d are amicable\n", number, sum);

}
}

int
factorsum (int num)
{

}

int fsum, factor;

fsum = 1;
for (factor = 2; factor < num; factor++)

if (num % factor == 0)
fsum += factor;

return (fsum);

style 66.5 1

C is undoubtedly a concise language, and encourages the terse representation
of complex ideas. Such power should be judiciously used.

EFFICIENCY

The price that is paid for writing programs in any high-level language is in
program size and execution time. Unless either of these is particularly critical,
the advantages, in terms of productivity and maintenance costs, far outweigh
the disadvantages.

C has a number of features that are more usually found in a lower-level
language, to the extent that the correspondence between a C program and the
machine code to which it compiles is often very close. The effect of this is to
reduce the overheads resulting from the translation process very much more
than for other contemporary languages. Some C compilers will offer the user
an optional optimisation phase, but an alert and informed user is usually the
best optimiser of a program. C provides some help in this: for example, the
type specifiers in! or char may be preceded by the storage class specifier
register thus:

register int n;

register char *sptr;

This is interpreted by the compiler as an indication that these identifiers will be
heavily used and should, if possible, have storage space in registers. If the
compiler is able to do this, then shorter, faster programs should result.

Nevertheless, the program has not yet been written that could not be written
better or executed faster. A software tool, prof, available on the UNIX
operating system, can be used to produce an 'execution profile' of a program,
in terms of, for each function, the number of times that it was called, and the

124 A Book on C

percentage of total execution time that it accounted for. This is of obvious
benefit, since there is relatively little return from devoting time to improving
the efficiency either of functions that are infrequendy called, or of those that
occupy only a small percentage of the execution time. Thus, we can
concentrate on those areas where our efficiency tuning efforts would be most
rewarded.

As an illustration of the kind of improvements that can be made, the
following results were obtained by profiling an early version of RatC
(mentioned in the Introduction), a program that compiles a subset of the C
programming language:

Function
alpha
findmac
asreq
numeric
an

Number of calls
382,521

!if' of execution time
10.1

3,594
334,421
381,794
379,550

10.0
8.6
6.4
5.6

In other words, the three functions alpha, numeric, and an (which simply
check a character parameter to see whether it is alphabetic, numeric, and
alphanumeric, respectively) accounted for a quarter of the execution time, and
findmac (which is essentially a table look-up to determine whether a symbol
has been previously defined as a maao) also made significant contribution.
When it is known that RatC was compiling a program that consisted of only
about 50,000 characters, the number of calls of alpha, numeric and an should
cause concern.

Example 11.5

/* test if a given character is alphabetic */
alpha (char c)
{

}

c = c & 127; /* strip off the hirh order bit */
return «(c >= 'a') & (c <= 'z'))

((c >= 'A') & (c <= 'Z'))
(c == ' '));

/* test if a given character is numeric */
numeric (char c)
{

c = c & 127;
return «c >= '0') & (c <= '9'));

}
/* test if a given character is alphanumeric */
an (char c)
{

return «alpha (c)) I (numeric (c)));

style 40.7 1

Programming Style 125

The character checking functions were originally defined as shown in example
11.5. Two significant changes were made: firstly, the high order bit was
stripped off once and for all on input, to avoid unnecessary repetition; and
secondly, the function an was made to check explicitly for the requisite
characters, avoiding the overheads incurred by the two function calls. In the
latest version of RatC, these three functions accoWlt for less than 5 per cent of
the execution time. As is typically the case in most programs, time can be
traded for space and vice versa. The three functions could be implemented by
table lookups, the way C library character classification functions described in
Chapter 12 are normally implemented. Correct choice of various tradeoffs is a
part of the design process of any software system, as indeed it is a part of any
engineering activity.

The way in which the macro definitions were stored was changed from a
simple table of the form

definition definition definition

to a more complex one of the form

in order to speed up the time taken to perform a linear search for a particular
name. This is very important in view of the fact that the majority of searches
will be unsuccessful, requiring a search through the entire table. The execution
time for this fWlction was thus reduced to a quarter of its original value, at the
expense of a little extra memory. Although the function could still be
improved, perhaps by introducing a more complicated searching algorithm, we
believe the simplicity/efficiency trade-off to be about right.

Improving the efficiency of a program is not always an easy, or even
desirable task. For a small program, the effects may not be noticeable; for a
large program, run infrequently, the time invested may not be worth while. For
a heavily utilised program, such as a compiler, however, attention to the time­
critical, bottleneck areas can give a significant improvement in performance.

126 A Book on C

DEFENSIVE PROGRAMMING

Throughout the book we have attempted to emphasise the importance of the
interface between the program and its environment. Any program should take
every possible precaution to ensure that it does not fail, and that, if it does, the
failure is 'graceful', which is to say that it should provide the naive user with
sufficient information to correct, or work around, the problem.

This section is concerned with 'bulletproofing' a program, and consists for
the most part of a series of suggestions which you should bear in mind
whenever writing programs - they are often the result of painfully acquired
experience! If you follow our advice, you are certain to avoid at least some of
the common pitfalls of porting programs from one machine to another, which,
contrary to popular opinion, is not nearly as simple as it is supposed to be.

(a) Use lint. 'Lint' is a UNIX system utility which is commonly available
on a variety of other systems. It performs a much more rigorous
check than does the compiler on such things as type consistency, use
of uninitialised variables, and correspondence between function
arguments and parameters. If we had only one piece of advice to
give you, it would be this.

(b) Use function prototypes and provide them for all functions. All ANSI
C standard compilers do type checking of all arguments passed to
functions with prototypes. Some of them will even produce warnings
if a call is made to a function without a prototype. Gathering all
function prototypes in one or more header files and then including
the headers in all appropriate modules makes the task easy. The
prototypes should contain a descriptive name of each argument and
comments, such as this:

/* returns a degree to which the universe is real
measured in DIBs (disbelief and bewilderment) */

int test reality (char *question, /* question to be asked */
- char **answers, /* array of reasonable

answers */
enum GODS entity); /* whom to ask or 0 if

cannot make up mind */

(c) Check input data. At the end of chapter 3, we mentioned that input
data is nearly always beyond the control of the programmer. You
should check the integrity of all data which are derived from outside
the program to make sure that they are within prescribed values. If
you don't know what the prescribed values are, at least check that the
value won't cause a runtime error - zero values used for division are
an obvious example.

Programming Style

(d) Check function arguments. By a similar reasoning to the previous
point, if you assume that function arguments are always sane, you'll
be caught unawares when, at some time in the future, you 'steal' the
code to put in some other program where you haven't been quite so
careful.

(e) Check retwn values from functions. If a function (either yours or a
system-provided one) retwns a value, check it before continuing.
Nearly all system-provided functions return values, and it's good
practice to make yours do so too. Never assume that a function will
always be successful - it always will be, except when you don't check
it!

(f) Don't rely on uninitialised variables. Variables of storage class static
can be safely assumed to start with zero value; variables of storage
class automatic start with garbage values. While this may be true, if
you don't explicitly initialise them, the time will come when you
change the storage class of one of your variables without changing
the program logic, and wonder why it doesn't work anymore.

(g) Don't exploit implementation dependent features. On some systems,
a pointer occupies the same storage space as an integer. If you use
that fact, your program probably won't work on another, dissimilar,
machine. A slightly more insidious example arises from something
we said at the end of chapter 6 - 'no ordering is implied among
operators with the same priority'. Parentheses in an expression
control precedence and associativity, but not order of evaluation,
which is to say that the expression a + b + c could be evaluated by
adding a to b, and adding the result to c, or by adding b to c, and the
result to a. Normally this causes no problem, but consider the
expression

y = x++ + Xi

If x initially has the value 1, what value does y have after the
assignment? 2? 4? The answer is that it's impossible to say - of
course, on any particular implementation, it will always be evaluated
the same way, but this is not true of the same program running on a
different machine. The assignment should have been written as

X++i Y = X + Xi

or

y = X + Xi X++i

depending on what you intend.

127

128 ABookonC

(h) Don't use side effects in macro calls. The seemingly innocuous macro

#define MAX(a,b) (a < b ? b : a)

when invoked by

z = MAX (x++, Y)i

leaves x with a different result depending on whether it is greater or
less than y, because the preprocessor only performs textual sub­
stitution so that, in practice, the macro expands to

z = (x++ < Y? Y : X++)i

(i) Use parentheses in expressions. If you are unsure of operator
precedence, or if the expression that you are formulating is complex
don't be afraid to use parentheses to make it clearer. It adds nothing
to the execution time, but a great deal to the comprehensibility.

G) Don't corrupt C with the preprocessor. It's very easy, using the pre­
processor, to make C look like some other language. If you are fond
of Pascal, you might be tempted to write

#define BEGIN {
#define END }

but the result will be a confusion of neither one language, nor the
other.

(k) Use the right type of variable. Don't use an in! when a char will do -
for example with a truth value; or an int where you mean a pointer.
You not only save space, you give a program like 'lint' a much better
chance of detecting potential problems.

(1) Exit gracefully. A program should never fail inexplicably - provide
the user with sufficient information as to the cause of the failure that
he understands what has gone wrong and what he can do to correct it.
Catch and process signals and provide enough additional information
for the user to correct the cause for abnormal termination.

(m) Don't rely on defaults. Often a system provided function will offer
default values for some of its arguments. If you take advantage of
that you run the risk of your program no longer working should those
defaults ever change.

Programming Style

(n) Be very careful and thoughtful while using dynamic memory
management. Bad pointers, referring to an area of memory not
allocated for use by the program and freeing too early or not freeing
at all the storage space which is allocated to the process, are
probably the most common problems in a C program. Each variable
in a C program has a scope, that is a period of time and an area of
code in which the variable is accessible and contains valid data. For
example, automatic variables are accessible from within functions
which defined them and cease to exist when the function returns. In
the case of dynamic memory allocated via calls to malloc, it is up to
the programmer to free the memory allocated and be sure that
referencing it is allowed at any given time. By analogy, it is very
helpful to think about scoping the dynamic storage during program
design and always make sure that the dynamically allocated
variables remain in the scope of the program for as long as they are
needed and no longer.

(0) Do it right the first time. It is the authors' experience that there is
never time to go back to an already written piece of software and
improve its behaviour in some odd cases or restructure it for the sake
of readability or ease of maintenance.

129

If you are familiar with other programming languages such as Pascal or PL/1,
there are several additional pitfalls of which you should be aware.

(p) Beware of the difference between = and ==. If you are used to a
language which uses the same operator for assignment and
equivalence, sometime you will fall into the trap. It sounds easy to
remember, but we have all forgotten it at some time! Some
compilers produce warning messages if a conditional statement
contains an assignment as a top level operator.

(q) You will recall that C passes all its function arguments by value. In
order to make the argument modifiable by a function, its address
must be passed. Passing a value and not an address of an argument to
a function, especially functions such as scan/. is another one of the
very common mistakes.

(r) Many Pascal programmers have a difficult time remembering the
difference between character arrays and character pointers. With
declarations like this:

char *str_ptr, str[81];

it is possible to assign an address of a constant string to str ytr like in:

strytr '" "Hello galaxy";

130 A Book on C

We have to remember that str ytr is not capable of holding the entire
string, but is just a pointer which is assigned an address of the string.
In the case of str, however, we cannot say

str ~ "Hello galaxy"; /* WRONG */

str and the literal string occupy two different areas of storage. str is a
character array and we have to copy each character of the "Hello
galaxy" string into the array thus:

strcpy (str, "Hello galaxy");

(s) Many languages use a comma to delimit indices in multidimensional
arrays, such as a = b[iJJ;. This statement will compile in C but is
probably not what you intended.

(t) Each case statement in C is executed in turn until a break statement
is encountered. This is different in many other languages in which
only one case statement is executed at any given time.

SUMMARY

Programming style and program efficiency are contentious issues: some will
maintain that 'style' is so personal that it is impossible to lay down more than
vague guidelines, others that it is the business of compilers and optirnisers to
worry about efficiency. What should never be forgotten is that, as we said in
the introduction, programming is communication, and the communication
operates at different levels: between the program and the computer, between
the program and the user, and between the program and its maintainer.

It is all too tempting in a language like C to sacrifice clarity for conciseness
and efficiency. There are relatively few occasions on which careful
consideration of the method by which a program achieves its results (as in the
macro table organisation, above) would not yield the desired effect, without
the need to resort to tricky obscure code.

The power of C, used properly, can be exploited to produce programs that
are elegant, concise and, above all, intelligible.

12 The Standard C Libraries

The definition of standard C specifies a library which must be present in any
conforming implementation. The functions supplied in the library are declared
in several header files, divided according to the type of services provided by
the functions. Many of the functions defined by the standard are supplied even
in older implementations and most of them are probably present on your
system, even though the original C definition did not specify any of them. The
header files declaring the library functions also specify macros and variables
which may be used by the applications to accomplish various tasks as des­
cribed below. Additionally, the headers may define macros with the same
names as the corresponding library functions, provided that the macros can
safely be used in any place and with any set of arguments with which the
corresponding function can be called. In particular, it must be guaranteed that
macro arguments are evaluated only once. The applications can always ensure
that a true library function rather than a macro is called by using the #Unde!
preprocessor directive. It can also be done locally by enclosing the function
name in parentheses. For syntactic reasons, the closing parenthesis will prevent
the interpretation of the identifier as a macro.

Since not all of the header files and corresponding library functions may be
defined on your system, it may be useful to compare the list of standard
functions, macros and type definitions to what is available on your system.
Anticipating the arrival of a standard compiler, you may want to choose to
build some or most of the standard types and functions on your current
installation. Combined with the portability practices outlined in Chapter 10,
this approach will save a lot of time and will ease the stress of converting to
standard C. In the following description of header files we attempt to point out
how some of the standard features can be provided. The suggestions we make
are not part of the standard and may therefore not be portable. Nevertheless,
building even only some of the standard functions is in our opinion worth
investigating. The investment will payoff in increased program portability and
reduced conversion effort once the standard compiler is available for the
particular installation.

Finally, we are not giving a full and formal definition of all the functions,
macros and types defined by the standard. For such a definition, consult your
language manual. The description given is less formal, possibly more intuitive
and does not specify all the details of the functions' behaviour, possible error
conditions and return values. We have not provided descriptions of the
following, less frequently used headers: assert.h, setjmp.h and stdarg.h.

131

132 A Book on C

<errno.h>

The header <ermo.h> defines macros and variables facilitating error process­
ing. All the macros are required to start with upper case E, be followed by an
upper case letter or a digit, and expand to distinct integral constants suitable
for use in #if preprocessing directives. According to the 1989 version of the
standard there were only two macros defined by the standard: EooM and
ERANGE. You should expect, however, that your installation defines many
more of them, if indeed it has the <errno.h> header file defined at all. Most
UNIX and MS-DOS compilers define a rich set of error constants describing
many possible failures of the library functions.

In addition to the error macros, the header defines a variable errno. The
variable is of type int and is set to a positive error number by many library
functions upon encountering an error condition. Although not explicitly
required by the standard, it should be expected that the value of this variable
will be equal to one of the error constants defined in the header.

A mechanism for retrieving a character string which describes the error is
mentioned in a subsequent section.

If the errno.h header is not defined on your system and if you decide to
provide one, it can easily be done by making sure that all your library
functions set errno. All possible error code values should then be defined in
the header.

<stddef.h>

The header <stddef.h> defines several types and macros considered to be
useful in most applications.

ptrdiff_t
signed integral result of subtracting two pointers. It is typically
defined to be a long and can be included in your own version of
<stddef.h> on older compilers.

size_t
unsigned integral result of the sizeo! operator. It is typically defined
to be unsigned.

wchar_t
integral type which can represent codes for the entire, possibly
extended character set. It is typically defined to be clulr.

NULL
implementation defined null pointer constant. It is typically defined
to be 0 orOL.

The Standard C Libraries 133

offsetof(type, member)
integral constant of type size _t representing an offset in bytes to the
structure member member from the beginning of the structure type.
It can be implemented by the following definition:

(size_t)&(((type*)O)->member)

<ctype.h>

The header <ctype.h> declares functions used for testing and converting
characters. All the testing functions can easily be implemented with a table
driven approach, in which a static array containing bit masks for various
character types is built. The array is indexed by the actual integer value of the
character code, and the mask thus found indicates what is the type of the
character. All classification functions in <ctype.h> return non-zero (true) if the
character is of the type inquired about, zero (false) otherwise.

Classification Functions

int isalnum(int c);

int isalpha(int c);

int iscntrI{int c);

int isdigit(int c);

int isgraph(int c);

int islower(int c);

int isprint(int c);

int ispunct(int c);

int isspace(int c);

int isupper(int c);

int isxdigit(int c);

true if the argument is either a letter or a digit.

true if the argument is a letter.

true if the argument is a control character.

true if the argument is a digit.

true if the argument is any printing character
except space.

true if the argument is a lowercase letter.

true if the argument is any printing character
including space.

true if the argument is any printing character
other than space, letter or digit.

true if the argument is any white space
character.

true if the argument is an uppercase letter.

true if the argument is a hexadecimal digit.

134

Translation Functions

lnt tolower(int c);

int toupper(int c);

<locale.h>

A Book on C

converts an uppercase letter" to a corresponding
lowercase letter.

converts a lowercase letter" to a corresponding
uppercase letter.

The header <locale.h> contains several macros and a type describing
formatting rules for numeric values. It is intended to enable implementations to
provide "intemationalisation", that is, output formatting capabilities depending
on the location of a particular e implementation. The structure defIned in the
header file defines, among others, characters to be used as a decimal point,
thousands separator and currency symbols. The two corresponding library
functions provide a means of setting the locale and extracting the symbols in
the form of a pointer to a structure. The functions and the type can be easily
provided in nonstandard environments by simply defining the structure
according to the implementation's locale and defining the functions. In the
simplest implementation, only one native "e" locale can be provided.

<math.h>

The header <math.h> defines mathematical, floating point functions. All
functions defined in this header take double values as their arguments and
return double results. Most functions defined in this header can probably be
found on your system. All of them are very difficult to implement and the
implementation is typically very strongly machine dependent. In some
environments, most notably in the MS-DOS environment, several versions of
the functions may be defined depending on a system configuration. One
version may use a floating point processor, another may emulate it, yet another
may provide a simplified and faster version of the routines in which results
may be guaranteed to be accurate only to a specified number of decimal
places, or some nonstandard rounding may occur. If any of the functions given
below is not available on your system and you are not intimately familiar with
numerical analysis, nor have access to somebody who is, floating point
libraries for your machine can probably be purchased from third party vendors.
All trigonometric functions in the following list take or return angles in
radians.

The Standard C Libraries 135

Trigonometric Functions

double acos (double x);
returns a principal value of the arc cosine of x.

double asin (double x);
returns a principal value of the arc sine of x.

double atan (double x);
returns a principal value of the arc tangent of x.

double atan2 (double x, double y);
returns a principal value of the arc tangent of xly, using the signs of
the two arguments to detennine the quadrant of the result.

double cos (double x);
double sin (double x);
double tan (double x);

Hyperbolic Function

double cosh (double x);
double sinh (double x);
double tanh (double x);

Logarithmic Functions

double exp (double x);

returns the cosine of x.
returns the sine of x.
returns the tangent of x.

returns the hyperbolic cosine of x.
returns the hyperbolic sine of x.
returns the hyperbolic tangent of x.

returns the exponential function of x.

double frexp (double x, int *exp);
returns the normalised fraction of x, and sets exp to an integer such
that x is equal to the result multiplied by 2 raised to the power *expo
In other words, the function breaks a nwnber into a normalised
fraction, that is a fraction from an interval [0.5, 1), and an integral
power of 2. This directly corresponds to a standard IEEE internal
representation of floating point numbers.

double ldexp (double x, int exp);
returns the value of x times 2 raised to the power expo It is the
opposite of jrexp.

136 ABookonC

double log (double x);
returns the natural logarithm of x.

double log10 (double x):
returns the base 10 logarithm of x.

double modf (double x, double *0:
returns the signed fractional part of x and sets *i to a signed integral
part of x.

Power Functions

double pow (double x, double y):
returns the value of x raised to the powery.

double sqrt (double x):
returns the square root of x.

Other Mathematical Functions

double ceil (double x):
returns the smallest integer not less than x.

double fabs (double x):
returns the absolute value of x.

double floor (double x):
returns the largest integer not greater than x.

double fmod (double x, double y):
returns the remainder of xly.

<signal.h>

The header <signal.h> defines types, macros and functions dealing with
processing of various signals and conditions which may be reported asyn­
chronously during program execution. Such conditions may be the results of
errors or actions performed by the underlying operating system outside of the
domain of the program. Most C implementations define the header and the
corresponding functions. If it is not available on your implementation, you
must be intimately familiar with the operating system running on your
machine. In most cases, you must also be familiar with the hardware. Once
that knowledge is gained, the implementation itself is a relatively straight­
forward process consisting of recognizing hardware and software interrupts and

The Standard C Libraries 137

hooking them up to appropriate functions. For example, Intel processors
starting with i286 support the BOUND instruction which can be used to check
if an index used to access an array is within the array's bounds. If the check
fails, the processor generates interrupt 5 which can be intercepted and used to
generate a signal, which in turn can be captured by the application. Similarly,
the Ctrl-C key combination is typically used to interrupt a program's
execution. A software interrupt is generated (interrupt Oxlb under MS-DOS)
which can be intercepted by the application.

The header file defines one type siL atomic _ t, an integral object which can
be accessed as an atomic entity even in the presence of asynchronous events. It
also defines the following macros each of which expands to an integral
constant:

SIGABRT
SIGFPE
SIGILL
SIGINT
SIGSEGV
SIGTERM

abnormal tennination
erroneous arithmetic operation
illegal instruction
interactive attention signal such as Ctrl-C
invalid access to storage
termination request sent to the program

The function defined in the header file allows the application to specify a
signal handler. The handler will receive control whenever the specified
condition occurs:

void (*signal (int sig, void (*func) (int») (int);

The handler specified by June can be an application provided function, or can
be SIG_DFL to instruct the system that an implementation defined default
action is to be perfonned, or SIG_IGN to instruct the system that the signal
should be ignored. If the call to signal succeeds it returns the most recent value
of June for the signal, otherwise it returns SIG_ERR.

<stdio.h>

The header <stdio.h> defines types, macros and functions for performing input
and output. All C implementations have some form of this header file defined.
Since input and output operations are very tightly coupled to the underlying
operating system and hardware, good knowledge of the platform on which the
implementation is supposed to run is required in order to be able to provide
additional input/output functions. For example, a good knowledge of MS-DOS
and BIOS is required to write any of the <stdio.h> functions on the PC family
of computers. Similarly, knowledge of input/output related system calls and
some knowledge of the kernel is needed to provide <stdio.h> library functions
under the UNIX system.

138 A Book on C

The most often used constant defined in the <stdio.h> header is EOF which
expands to a negative integer indicating end of file. It is returned by several
functions to signal that no more input is available. The most important type
defined in the header is FILE which defines an object which can contain all
information pertaining to a file and allowing the application to control it, such
as position infonnation, buffer information and error indicators. The header
also contains definitions of stdin, stdout and stderr, which are of type pointer
to FILE and point to standard input, output and error files respectively. The
three files are automatically opened at the beginning of any application.

Operations on Files

The functions in this section operate on entire files and perform functions such
as renaming or deletion of files.

int remove (const char *name);
causes the file given by name to be no longer accessible by that
name. Please note that the standard does not require that file be
physically removed.

int rename (const char *oldname, const char *newname);
changes the name of a file from o/dname to newname.

FILE *tmpfile (void);
creates and opens for update a temporary file which will auto­
matically be closed and removed at program tennination.

char *tmpnam (char *s);
generates a temporary file name, that is a valid file name different
from any other existing file.

File Access Functions

The functions in this section provide means for applications to access the files.
This is done by establishing a logical connection between an external stream
and the file pointer internal to the application.

int fclose (FILE *stream);
the file is flushed and closed. The connection between the file
pointer and an external stream is broken.

The Standard C Libran'es 139

int fflush (FILE .stream);
if stream points to a file on which the last operation was not input.
the function will cause all buffered data to be written. For efficiency.
most file operations are buffered. This function flushes the buffers.

FILE .fopen (const char .name, cons char .mode);
opens a file given by name in a mode given by mode. The mode
specifies if the file is read only. read and write. and what should be
the initial value of the file position indicator.

FILE *freopen (const char .name, const char -mode, FILE
·stream);

closes the file given by stream and then opens a file given by name
and associates it with stream.

void setvbuf (FILE .stream, char .buf, int mode, size_t size);
the function can only be used right after opening a file before
perfonning any other operation on it. mode indicates the type of
buffering to be performed. but points to a buffer which may be used
for buffering, and size specifies the size of the buffer.

Formatted Input and Output

The functions in this section perfonn fonnatted input and output. As described
in Chapter 3, fonnatted input and output functions in C provide a very rich
repertoire of conversions and fonnatting options. The format strings are
interpreted at runtime. thus providing the flexibility of dynamically building
the fonnat strings.

int fprintf (FILE .stream, const char *format, ..•);
perfonns fonnatted write to a file. This function has been discussed
in detail in Chapter 3.

int fscanf (FILE .stream, const char *format, ...);
perfonns fonnatted read from a file. This function has been
discussed in detail in Chapter 3.

int printf (const char *format, ...);
is equivalent to/print/with stdout specified for stream.

int scanf (const char *format, ...);
is equivalent to /scanf with stdin specified for stream.

140 ABookonC

int sprintf (char *buf, const char *format, •••);
is equivalent to fprintf except that the output is written to character
array buf, not to a file.

int sscanf (const char *buf, const char *format, ••.);
is equivalent to fscanf except that the input is read from character
array buj, not from a file.

Character Input and Output

The functions in this section provide a string or a single character input and
output capabilities.

int fgetc (FILE *stream);
gets the next character from a file, or EOF if the file is at an end.

char *fgets (char *s, int n, FILE *stream);
reads at most n-l characters from the file stream and puts them into
character array s. The function will not read past a new-line
character or an end of file. The string read is terminated by a null
character. The function returns the address of string s, or EOF on
failure.

int fputc (int c, FILE *stream);
places character c in the file stream and advances the file position
indicator so that the next call to putc places the character at the next
position.

char *fputs (const char *s, FILE *stream);
writes characters from the string s to the file stream at the current
file position and advances the file position indicator accordingly.
The terminating null character is not written.

int getc (FILE *stream);
is equivalent to fgetc but is implemented as a macro. The argument
may be evaluated more than once.

int getchar (void);
is equivalent to getc with the argument stream equal to stdin.

The Standard C Libraries 141

char .gets (char .s);
behaves like jgets with the argument stream equal to stdin. Please
note, however, that the maximum number of characters to be read
cannot be specified. The function always reads until a new line
character or an end of file is encountered and can thus be used only
if the maximum record size can be guaranteed.

int putc (int c, FILE .stream);
is equivalent to jputc but is implemented as a macro. The stream
argument can be evaluated more than once and therefore cannot be
an expression with side effects.

int putchar (int c);
is equivalent to putc with the argument stream equal to stdout.

int puts (const char .s);
behaves like jputs with the argument stream equal to stdout. In
addition, a new line character is appended to the output for each
string written.

int ungetc (int c, FILE .stream);
pushes the character c back onto the file stream. The character will
be returned by subsequent reads on the file, but the external,
physical image of the file is not changed, so this function is not
equivalent to writing to the file. Repositioning of the file discards
any characters pushed onto it using this call. The standard
guarantees at least Qne level of 'push. Subsequent calls to this
function may fail, in which case EOF is returned.

Direct Input and Output

The functions in this section provide unfonnatted, direct input and output.
They read and write objects of arbitrary size and structure.

size _ t fread (void .buf, size _ t size, size _ t num, FILE .stream);
reads num elements each of size size from the file stream and places
them in the area of storage pointed to by buf The function returns
the number of elements read, which may be less than num if an
error or an end of file is encountered.

142 A Book on C

size _ t fwrite (cons! void *buf, size _ t size, size _ t nwn, FILE
*stream);

writes num elements each of size size to the file stream. The objects
are taken from the area of storage pointed to by buj. The function
returns the number of elements written, which may be less than num
if an error is encountered.

File Positioning

The functions in this section provide means to inquire about and change the
file position indicators.

int fgetpos (FILE *stream, fpos_t *pos);
stores the current value of the file position indicator for file stream
in the variable pointed to by pos. The type and format of the
information stored in pos is not specified by the standard.

int fsetpos (FILE *stream, const fpos_t *pos);
sets the current value of the file position indicator for file stream to
the position specified in the variable pointed to by pos. The value of
pos is obtained from a previous call to jgetpos. Please note that the
jgetpos and fsetpos pair provide means to store the current file
position and then go back to that position after intervening read and
write calls.

int fseek (FILE *stream, long offset, int whence);
sets the file position indicator to offset characters from the position
specified by whence. whence can be SEEK_SET to indicate the
beginning of the file, SEEK_CUR to indicate the current position,
or SEEK_END to indicate an end of file. The standard does not
require that SEEK_END be supported.

long ftell (FILE *stream);
returns the current value of the file position indicator for file
stream.

void rewind (FILE *stream);
is equivalent to (void)jseek (stream, OL, SEEK _SEl'); and clears any
errors on the file.

The Standard C Libraries 143

Error Handling

All input and output functions can generate errors. The functions in this section
operate on the error indicators set by other input and output functions.

void clearerr (FILE .stream);
clears end of file and error conditions for stream.

int feof (FILE .stream);
tests if stream is at the end of file. Returns true (non-zero) if such is
the case, zero otherwise.

int ferror (FILE .stream);
returns true (non-zero) if the error indicator is set for stream.

void perror (const char .s);

<stdlib.h>

writes an error message to sttie". The error message consists of a
string pointed to by s, followed by an implementation defined error
message corresponding to the value of the global variable erma.

The header <stdlib.h> defines types, macros and functions considered to be of
general utility. The contents of this header file have evolved over a period of
several years and were standardized by the ANSI standard. Some or most of
the functions may be present on your implementation. Many of the functions in
this header file, such as string conversion functions, can be implemented with
relative ease. Memory allocation functions may be more challenging and will
require understanding of memory management techniques employed by the
target operating system. Sorting, searching and random number generating
functions are almost classical examples of basic computer science exercises
and can be found in every book on computing. Finally, functions dealing with
process termination are intricately woven into the basic fabric of the operating
system.

String Conversions

The functions in this section convert strings to numbers. The standard provides
a detailed discussion of the behaviour of these functions. The most important
characteristic of this behaviour is the fact that the functions are highly error
tolerant. The strings passed to the conversion functions can contain leading
blank space, and the number sequence can be followed by other, non-numeric
and unrecognised characters. The sequence of digits embedded in the string is
referred to as a subject sequence, and is defined as a longest initial sub-

144 A Book on C

sequence of the input string that is of a form expected foe the given type of
conversion. The part of the string that remains is referred to below as the "final
string".

double strtod (const char *inptr, char **outptr);
converts the subject sequence in inptr to double representation. A
pointer to the final string is stored in outptr, provided that outptr is
not NULL.

long strtol (const char *inptr, char **outptr, int base);
converts the subject sequence in inptr to long representation. A
pointer to the final string is stored in outptr, provided that outptr is
not NULL. base specifies the base of conversion. Letters from "a"
(or "A") to "z" (or "Z") are assigned values from 10 to 35. Only
letters with assigned values of less than base are permitted in the
subject sequence. If base is 16, a sequence "Ox" oe "OX" may
optionally precede the subject sequence.

unsigned long strtoul (const char *inptr, char **outptr, int base);
converts the subject sequence in inptr to unsigned long
representation. A pointer to the final string is stored in outptr,
provided that outptr is not NUll. base specifies the base of
conversion. Letters from "a" (or "A") to "z" (oe "Z") are assigned
values from 10 to 35. Only letters with assigned values of less than
base are permitted in the subject sequence. If base is 16, a
sequence "Ox" or "OX" may optionally precede the subject
sequence.

int atoi (const char *inptr);
behaves like (int)strtol (inptr, (char **)NULL, 10);.

long atol (const char *inptr);
behaves like strtol (inptr, (char **)NULL, 10);.

Pseudo Random Number Generation

int rand (void);
returns a pseudo random integer in the range 0 to RAND_MAX.
RAND MAX has to be at least 32767.

void srand (unsigned seed);
uses seed as a beginning of a new pseudo random sequence.

The Standard C Libraries 145

The ANSI standard provides a portable implementation for these two functions
as follows:

static unsigned .long int next = 1;

int rand (void)
{

1* RAND MAX is assumed to be 32767 *1
next = next * 1103515245 + 12345;
return ((un~igned int) (next I 65536) % 32768);

} 1* rand *1

void srand (unsigned int seed)
{

next = seed;

return;

1* srand *1

Memory MalUlgement

Memory management functions are at the heart of complex data structures in
all but the most trivial applications. We have seen how the memory manage­
ment functions are used in example 9.3. Large and complex applications will
typically rely heavily on the memory management functions, and mishandling
of memory management is the source of some of the most common and most
difficult to find C programming errors.

Memory is said to be allocated from a memory pool called a heap. The
operating system manages all system resources and allocates memory to
individual processes (programs) as requested and as available. The standard C
library maintains the individual heap allocated to the process by the operating
system. Individual pieces of the heap are given to the application as a result of
malloc calls, and are returned to the heap by free. It is up to the application to
free all the pieces of storage requested via maUoc, or else all space in the heap
may be exhausted. Should that happen, the reaction to subsequent memory
allocation requests varies from system to system. Simple operating systems
with limited resources, such as MS~DOS with its memory limitations, may
allocate the entire system memory to be used by a single process. Running out
of heap space is in those cases equivalent to running out of the entire system
memory, in which case the maUoc call returns an error and there is very little
else that the application can do, unless of course it can return some memory to
the free pool by calling free. In sophisticated operating systems, such as the
UNIX system, the memory management library functions may request that the
heap space available to the process be increased. The system, having virtual
memory capabilities, often honours such requests practically indefinitely. The
address space of the process grows and places huge demands on the system,
bringing it slowly to a grinding halt.

146 A Book on C

The most fundamental rule for using dynamic memory management in C is
to free all the space allocated. Many development environments provide
various functions and utilities to check the heap and make sure that the space
which has not been allocated is not used by the application. It is, however,
entirely up to the programmer to make sure that whatever has been allocated is
freed when no longer needed.

void *malloc (size_t size);
allocates space for an object of size size and returns a pointer to the
space allocated or NUll if the request fails. The content of the
allocated space is indeterminate.

void free (void *ptr);
deallocates space pointed to by ptr. If ptr is NUll, no action
occurs. If ptr points to an object that has not been previously
allocated, or has been deallocated since, the behaviour is undefined.

void *calloc (size_t num, size_t size);
allocates space for num objects of size size each, sets the space
allocated to all zeros and returns a pointer to the space allocated or
NULL if the request fails.

void *realloc (void *ptr, size_t size);
changes size of the object pointed to by ptr to size. The content of
the object is unchanged up to the lesser of the old and new size.
The function essentially behaves like a series of mal/oc, followed
by memcpy, followed by free of the old space. The function returns
a pointer to the new memory area.

Communication with the Environment

The functions in this section provide means to examine the environment and
return results of the program operation to the underlying operating system.

void abort (void);
causes abnormal program termination by raising signal SIGABRT
and exiting the application (unless the signal is caught).

int atexit (void (*func)(void));
specifies that the function func is to be called at normal program
termination. Multiple functions can be specified by multiple calls to
atexit. The standard guarantees support of at least 32 such
functions.

The Standard C Libraries 147

void exit (int status);
normally tenninates the program, calls all functions specified by
atexit (in the reverse order), flushes and closes all files and returns
status to the host environment.

char -getenv (coost char -name);
searches the environment for a string specified by name and returns
a pointer to a string associated with the name or NUll if the name
cannot be found.

int system (coost char -command);
passes the com11Ulnd to the command processor of the host
environment and returns an implementation defined value.

Searching and Sorting

void qsort (void -base, size _ t num, size _ t size, int
(-compar)(const void -, const void*»;

sorts an array of num objects each of size size. The first object in
the array is pointed to by base and the comparison function is
provided by the application and given in com par. The comparison
function will be passed two pointers to the elements to be compared
and must return an integer less than, equal to or greater than 0,
depending on whether the first argument is less than, equal to or
greater than the second.

void *bsearch (const void *key, const void *base, size_t num
size _ t size, int (*compar)(const void *, const void*»;

performs a binary search on an array of num objects each of size
size. The first object in the array is pointed to by base and the
comparison function is provided by the application and given in
com par. The comparison function will be passed a pointer to the
key object and an array element and must return an integer less
than, equal to or greater than 0, depending on whether the key is
less than, equal to or greater than the array element. The function
returns a pointer to the matching array element or NULL.

<string.h>

The header <string.h> defines types, macros and functions dealing with
operations on arrays of characters. The functions fall into two main categories.
Functions whose names start with mem are not sensitive to the content of the
character strings operated on and can thus be used to operate on arbitrary

148 A Book on C

objects. Functions whose names start with str assume that the objects are null
tenninated character strings and may tenninate their operation upon
encountering the null character. All functions defined in this header can be
easily written in C even if not available on your installation. Many of them
have been specified in the original K&R language definition.

Copying

void *memcpy (void *dest. const void *src. size_t n);
copies n characters from src to dest. If the areas pointed to by src
and dest overlap. the behaviour is undefined. The function returns
the pointer to the destination object.

void *memmove (void *dest. const void *src. size_t n);
copies n characters from src to dest. The function works correctly
for overlapping areas of storage and returns the pointer to the
destination object.

char *strcpy (void *dest. const void *src);
copies characters from src to dest strings including the terminating
NULL character. If the areas pointed to by src and dest overlap. the
behaviour is undefined. The function returns the pointer to the
destination string.

char *strncpy (void *dest. const void *src. size_t n);
copies at most n characters from src to dest strings including the
tenninating NUll character. If the areas pointed to by src and dest
overlap. the behaviour is undefined. The function returns the pointer
to the destination string.

Concatenation

char *strcat (void *dest. const void *src);
appends characters from src to dest strings including the
tenninating NULL character. If the areas pointed to by src and dest
overlap. the behaviour is undefined. The function returns the
pointer to the destination string.

char *strncat (void *dest. const void *src. size_t n);
appends at most n characters from src to dest strings including the
tenninating NULL character. If the areas pointed to by src and dest
overlap. the behaviour is undefined. The function returns the
pointer to the destination string.

The Standard C Libraries 149

Comparison

int strcmp (const char *sl, const char *s2);
compares characters from s1 to characters from s2. Returns an
integer less than, equal to, or greater than zero if the object pointed
to by s1 is less than, equal to or greater than object pointed to by s2.

int strncmp (const char *sl, const char *s2, siu_t n);
compares at most n characters from s1 to characters from s2.
Returns an integer less than, equal to, or greater than zero if the
string pointed to by s1 is less than, equal to or greater than string
pointed to by s2.

int memcmp (const void *sl, const void *s2, siu_t n);

Searching

compares n characters from s1 to characters from s2. Returns an
integer less than, equal to, or greater than zero if the object pointed
to by s1 is less than, equal to or greater than objectpointed to by s2.

void *memchr (const void *s, int c. size_t n);
returns a pointer to the first occurrence of a character given by c in
the first n characters of an object pointed to by s, or returns NULL if
the character does not occur in the object.

char *strchr (const char *s. int c);
returns a pointer to the first occurrence of a character given by c in
the string pointed to by s, or returns NUll if the character does not
occur in the string.

char *strrchr (const char *s. int c);
returns a pointer to the last occurrence of a character given by c in
the string pointed to by s, or returns NUll if the character does not
occur in the string.

size_t strspn (const char *sl. const char *s2);
returns the length of the maximum initial segment of the string s1
which consists entirely of characters from s2.

size_t strcspn (const char *sl, const char *s2);
returns the length of the maximum initial segment of the string s1
which consists entirely of characters not from s2.

char *strpbrk (const char *sl, const char *s2);
returns a pointer to the first occurrence in s1 of any character from
s2.

150 A Book on C

char *strstr (const char *sl, const char *s2);
returns a pointer to the first occurrence in s1 of a sequence of
characters in s2.

char *strtok (ronst char *sl, const char *s2);
breaks the string s1 into tokens delimited by any of the characters
specified in s2. Returns a pointer to the first character of a token or
NULL if there are no tokens left. The function is intended to be
used in a series of calls. The first call passes the address of the first
character string s1. Subsequent calls are made with the first
argument set to NUU to indicate that the same initial string is to be
parsed. It is expected that a series of tokens is returned and a null
pointer is returned on the last call when all the tokens are parsed.

Miscellaneous

size _ t strlen (const char *s);
returns the length of the string pointed to by s.

void *memset (void *50 int c, size_t n);
places the value c into the first n characters of the object pointed to
by s and returns s.

char *strerror (int errnum);
converts an error code in errnum to an implementation defined error
message.

<time.h>

The header <time.h> defines types, macros and functions dealing with
operations on time values. The types are: clock_t and time_t typically defined
to be long, and a structure holding the components of a calendar time. The
structure is defined as follows:

struct tm {

} ;

int tm_sec;

int tm min;
int tm-hour;
int tm-mday;
int tm-mon;
int tm-year;
int tm-wday;
int tm-yday;
int tm::)sdst;

1* seconds after the minute [0,61]
(leap seconds) *1

1* minutes after the hour [0,59] *1
1* hours since midnight [0,23] *1
1* day of the month [1,31] *1
1* months since January [0,11] *1
1* years since 1900 *1
1* days since Sunday [0,6] *1
1* days since January 1st [0,365] *1
1* daylight saving time flag *1

The Standard C Libraries 151

In addition, the CLOCKS _ PER_SEC maao is defined and specifies the
nwnber of system clock ticks per second. For example, the value of this macro
on MS-DOS machines is 18.2.

Time Manipulation

clock_t clock (void);
returns the nwnber of system clock ticks since the beginning of the
application. The standard only talks about "best approx-imation",
therefore, in order to obtain the amount of time spent in an
application, the current value of clock should be decreased by the
value obtained at the beginning of a program.

time_t time (time_t *timer);
retrieve the system's current calendar time. The encoding of the
value returned is not specified but it must be suitable for use by
other functions in the "time" family.

double difftime (time_t tI. time_t to);
returns a difference in seconds between t1 and to.

Time Conversions

time_t mktime (struct tm *timeptr);
converts the broken down time in structure timeptr to a calendar
time value in the same form as the one returned from the time
function. The values in various element of the time structure are
not limited to the ranges given above, but rather are recalculated
and adjusted accordingly so that they fall into the ranges upon the
function return.

struct tm *localtime (const time_t *timer);
converts the calendar time given in timer to a broken down time
format and returns values expressed in the local time zone.

struct tm *gmtime (const time_t *timer);
converts the calendar time given in timer to a broken down time
format and returns values expressed as Coordinated Universal Time
(GMT).

char *asctime (const struct tm *timeptr);
returns a pointer to a string containing a printable representation of
the time contained in structure time. The string is of the form:
"FriAug 2114:03:521981\n\O".

152 A Book on C

char .ctime (const time _ t .timer);
equivalent to asctime(localtime(timer))

size _ t strftime (char .50 size _ t maxsize, const char *format, const
struct tm .timeptr);

places a character representation of the time given in timeptr into a
character string pointed to by s. No more than maxsize characters
are placed in the string and the conversion is governed by the
format string. The function behaves like sprint! but operates on the
time structure rather than arbitrary data values. The format string
contains character strings conversion specifiers. The character
strings are placed in s verbatim and the conversion specifiers are
replaced by the corresponding values as follows:

%a abbreviated weekday name (locale specific)
%A full weekday name (locale specific)
%b abbreviated month name (locale specific)
%B full month name (locale specific)
o/oc date and time representation (locale specific)
%d day of the month [1-31]
%H hour of the day [00-23]
%1 hour of the day [01-12]
%j day of the year [001-366]
%m month of the year [01-12]
%M minute of the hour [00-59]
%p AM/PM designation (locale specific)
%S seconds [00-61] (up to two leap seconds)
%U week of the year [00-53] (first Sunday as the first day of week 1)
%w weekday [0-6] - Sunday=O
%W week of the year [00-53] (first Monday as the first day of week 1)
%x date representation (locale specific)
%X time representation (locale specific)
%y year without century [00-99]
%Y year with century
%z time zone name
%% %

Summary

In contrast with many other modem programming languages, the original C
definition did not specify any built-in functions. The emphasis has been on the
language simplicity and power typically associated with lower level languages
Stich as assembler. However, over the years of usage and popularity of C, a set

The Standard C Libraries 153

of de facto standard functions provided in a form of a library on most C
installations has evolved. The definitions of most of these functions have been
fonnalised, additional functions have been provided and the set is now part of
the ANSI standard, in the sense that any implementation claiming to be
standard must provide them. Even if your installation is not yet standard, you
should probably expect it to convert soon. It is advisable to ease the stress of
converting to a different flavour of C by careful planning. Providing some of
the standard functions ahead of time, together with applying portability
techniques outlined in Chapter 10, will prove to be a good investment.

Appendix 1: C Style Analysis

The features of a program that contribute to its 'elegance' are very much
subjective, and often instinctive. A superficial analysis of a program's 'style'
(that is, its visual presentation), while not being the only factor, is certainly an
indicative, and easily automated, component.

Presented here is a program that performs a textual analysis of a C program,
yielding a percentage 'style score'. The code is also available on a floppy
diskette - see the Introduction for details.

STYLE ANALYSIS

The features that contribute to the style score are based on proposals made by
Rees (1982), adapted for C rather than Pascal:

Module length

Identifier length

Comments

Indentation

Blank lines

The average length, in non-blank lines, of function
definitions; functions that are prolific and too short
tend to obscure the program logic, while those that are
too long are difficult to dismember.

The average length, in characters, of user identifiers;
brief identifier names (such as i or c) are often
meaningless, while overlong names make the program
verbose (most programmers will know that selection
of pithy, meaningful identifier names is often one of
the most time consuming elements of writing code).

The percentage of all lines that contain comments;
over-commenting is as much a sin as under­
commenting; some comments, however, are always
necessary, even in the shortest of programs.

The ratio of initial spaces to total number of
characters; indentation can be used to good effect to
indicate the program structure.
The percentage of all lines that are blank; blank lines

154

Appendix 1: C Style Anarysis 155

separate functional units of a program.

Line length The average number of non-blank characters per line;
sensible use of multiple-statement lines can make a
program visually concise, but not obscure.

Embedded spaces The average number of embedded spaces per line;
embedded spaces do for a line what blank lines do for
a function.

Constant definitions The percentage of all user identifiers that are defined
constants; use of manifest constants not only makes a
program easier to modify, it also associates meaning
with a constant.

Reserved words The number of different reserved words and standard
functions used; the variety of reserved words used is
indicative of command of the language.

Included files The extent to which a program is segmented by using
#include files; breaking constant definitions, macros
and type definitions out into shared header files
reduces program complexity.

Goto statements The number of occurrences of a goto statement;
advocates of structured programming will usually
allow the use of a single goto in a program to handle a
special exit condition - more than that is a cardinal sin!

A score is associated with each of the above metrics, each contributing a
different maximum percentage to the final score, in recognition of the fact that
some factors are more important than others. All scores are additive, with the
exception of the last, which is subtractive. Too high or too low a figure for
each metric is detrimental to the final score.

The individual score is determined by reference to a table which specifies,
for each metric (shown graphically in table ALl):

156

TableAU

Contribution
(%)

L

A Book on C

s F

Metric value

• the point L, below which no score is obtained;
• the point S, the start of the 'ideal range' for the metric;
• the point F, the finish of the ideal range; and
• the point H, above which no score is obtained.

H

Values between S and F score maximwn marks; those between L and S, and F
and H, score marks depending on their exact position within the range.

THE STYLE PROGRAM

#include <stdio.h>
#include <ctype.h>

1* When dividing, use this to prevent division by zero *1
#define RDIV(d,v) «v)? (double) (d) 1 (double) (v) : 0.0)

1* This macro is useful to find the number of elements
in a statiC structure array *1

#define ELEMENTS_IN(x) (sizeof(x) 1 sizeof(x[O]»

1* This structure holds the title and value of
the measured quantities *1

#define MQ(x) {x, 0 }
static struct {

char *t,itle;
int value;

stats[] - {
MQ ("Blank lines ") ,
MQ ("Total lines ") ,
MQ("Total characters "),
MQ("Indented spaces "),
MQ("Embedded spaces "),
MQ("Nonblank characters "),
MQ("Comment lines "),
MQ("Include lines "),
MQ("Define lines "),
MQ ("Modules ") ,
MQ("Goto's "),
MQ ("Reserved word variety"),
MQ ("Non-reserved words ")

} ;

Appendix 1: C Styk Anarysis

1* These serve as indexes into the measured
quantities array (stats) *1

#define BLANK LINES 0
#define TOTAL-LINES 1
#define TOTAL-CHARS 2
#define INDENT SPACES 3
#define EMBEDDED SPACES 4
#define NONBLANK-CHARS 5
#define COMMENT LINES 6
#define INCLUDE-LINES 7
#define DEFINE LINES 8
#define MODULES 9
#define GOTOS 10
#define RESWORD VARIETY 11
#define NONRESWORDS 12

1* This structure will hold state information across
lines of input. Thus, we can keep track of whether
we are in the middle of a multi-line comment,
preprocessor directive, identifier, constant,
or structure declaration *1

struct state {

} ;

char in comment, in define, in include,
in-strinq const, in char const,
in-identirier, in num const,
in=struct_dec; - -

1* This structure (with the add char routine) allows
identifiers and lines to have unrestricted lenqths *1

static struct buf {
int index;
char *chars;
unsiqned size;

line, identifier;

1* Pointer to the character in the line which
is beinq examined *1

statiC char *lineptr;

1* This structure implements a forward sinqly
linked list of user identifiers *1

statiC struct user ident {
struct user ident *next;
char name [1];

*first_user_ident;

1* Current level, incremented at every "{",
decremented at every"}" *1

static int level - 0;

1* The list of reserved words is kept here *1
#define RW(x) {x, 0 }
static struct {

char *identifier;
int used;

} reserved words[] - {
RW("auto")-;- RW("break") ,
RW("const"), RW("continue") ,
RW("double"), RW("else") ,
RW("float"), RW("for"),
RW("int"), RW("lonq"),
RW("short"), RW("siqned"),
RW("struct"), RW("switch"),
RW("unsiqned"), RW("void"),
} ;

RW("case") ,
RW("default") ,
RW("enum") ,
RW("qoto") ,
RW("reqister") ,
RW("sizeof") ,
RW("typedef") ,
RW("volatile") ,

RW("char") ,
RW("do") ,
RW("extern") ,
RW("if"),
RW("return") ,
RW("static") ,
RW("union") ,
RW("while")

157

158 A Book on C

1* Prototypes for ANSI conforminq compilers *1
IHfdef STDC
Ndefine-P(x) x

1* List all external functions that do not return an int *1
extern void exit (int), free (char *), perror (char *);
extern char *malloc (unsigned), *realloc (char *, unsiqned),

*strcpy (char *, char *);

Nelse
Ndefine ASTR *
Ndefine P(x) (/ASTR x ASTR/)

1* List all external functions that do not return an int *1
extern void exit (), free (), perror ();
extern char *malloc (), *realloc (), *strcpy ();
Nendif

1* Function prototypes *1
static char add char P«struct buf *, char»;
static void add-identifier P«cliar *»;
static void expand tab P«void»;
static void free identifiers P«void»;
static int is-preprocess P«char *»;
static int is reserved P«char *»;
int main P«int, char *[]»;
static int parse const P«char»;
static int parse-ident P«void»;
static void parse line P«struct state *»;
static int parse num const P«void»;
static void process Iile P«FILE *»;
static void process-line P«struct state *»;
static void process=stats P«void»;

1* Add a character to a _buf structure. Get more space
if necessary *1

static char
add char (buf, c)
struct buf *buf;
char c;-
{

int offset - lineptr - buf->chars;

1* ChecK if more space is needed: if so, allocate it *1
if (buf index >- buf->size) {

if «buf->chars - realloc (buf->chars, buf->size *- 2»
-- NULL) {

}

fprintf (stderr, "Error allocating %d by tes\n" ,
buf->size);

exit (1);

lineptr - buf->chars + offset;

1* Copy the character and return its value *1
return (buf->chars[buf->index++] - c);

Appendix 1,' C Style Analysiv

/* Free the list of user identifiers */
static void
free identifiers ()
{ -

struct user_ident *i - first_user_ident;

/* Go through the list and free each identifier */
while (i) {

i - i->next;
free (first user ident);
first_user_Tdent-- i;

/* Reset the first pointer to zero */
first_user_ident - (struct user ident *) 0;

/* Add a user identifier to the forward singly linked list */
static void
add identifier (ident)
char *ident;
{

int j;
struct _user_ident *i;

/* If this identifier has already been entered,
just return */

for (i - first user ident; i; i - i->next)
if (!strcmp (i->name, ident»

return;

/* Allocate space for the new user ident structure */
if «i - (struct user ident *T -

malloc (sizeor(i) + strlen (ident) + 1» -- NULL)
fprintf (stderr, "Error allocating 'lid bytes.\n",

sizeof(i) + strlen (ident) + 1);
exit (1);

/* Copy the identifier in, link in the new user ident
structure at the front of the list, update the
non-reserved words count. */

strcpy (i->name, ident);
i->next - first user ident;
first user ident - i;
stats[NONRESWORDS).value++;

/* Check to see if this is a preprocessor directive */
static
is preprocess (directive)
char *directive;
{

int i;
char c;

/* Check for optional leading white space, then
the character "t/", then optional white space,
and then the indicated directive. */

for (i - 0; line.chars[i) && isspace(line.chars[i); i++)
,

if (line.chars[i++) 1- 't/')
return 0;

159

160 ABookonC

while (line.chars[i) && isspace(line.chars[i))
i++;

if (strncmp (directive, &line.chars[i),
strlen (directive»)

return 0;

1* Make sure the next character is not
alphanumeric or " " *1

c - line.chars[i + strlen (directive»);
if (isalnum(c) II c -- ' ')

return 0;
return 1;

1* Expand a tab to spaces *1
static void
expand tab ()
{ -

int i;
int offset = lineptr - line.chars;l* Location of tab *1
int add_spaces - 7 - offset % 8; 1* Number of spaces

to add *1

/* Get more space if necessary *1
if (strlen (line.chars) + add spaces + 1 > line.size) {

if «line.chars = realloc-(line.chars,
line.size *- 2» -- NULL) {

fprintf (stderr, "Error allocatinq %d by tes\n" ,
line.size);

exit (1);
}
lineptr = line.chars + offset;

1* Shift characters to make room for spaces *1
for (i = strlen (line.chars); i > offset; i--)
line.chars[i + add_spaces) - line.chars[i);

1* Fill in spaces *1
while (add spaces >- 0)

line.chars[offset + add_spaces--) - , '. ,

1* Parse the input line, strippinq out comments, fiqurinq
out where st·rinq constants, character constants,
identifiers, and numeric constants are. Also, expand
tabs to spaces when not in constants. *1

static void
parse line (state)
struct state *state;
{

char *comment start; 1* Pointer to start of comment *1
int comment counted = 0, line_lenqth;

1* Loop throuqh each character in the line *1
for (comment_start = lineptr - line.chars;

*lineptr; lineptr++)

1* A comment was detected. *1
if (state->in comment) {

char *p, *q;

/* Update statistics, if necessary */

Appendix 1: C Style Ana{ysis

if (Icomment counted) {
comment counted - 1;
stats[COMMENT_LINES1.value++;

1* Look for terminating comment symbol *1
for (; *lineptr; lineptr++)

if (*lineptr -- '*' && *(lineptr+l) '1') {
state->in comment - 0;
lineptr +~ 2;
break;

1* Strip out comment by moving characters after
the comment on top of where comment began *1

for (p - lineptr, q - comment_start; *q++ - *p++;)

1* Reposition the pointer to the
current character *1

lineptr - comment_start - 1;

1* A string constant (e.g., "foo") was detected. *1
} else if (state->in string const) {

state->in_string=const ~ parse_const (....);

1* A character constant (e.g., 'f') was detected. *1
} else if (state->in char const) {

state->in char const ~ parse const ('\");
1* An identifier was detected *1-
} else if (state->in identifier) {

state->in_identiIier ~ parse_ident (state);

1* A numeric constant was detected *1
} else if (state->in num const) {

state->in_num_const ~ parse_num_const ();

1* If this is a tab, expand it to spaces *1
} else if (*lineptr -- '\t') {

expand_tab ();

1* Check if this is the start of an identifier *1
else if (isalpha(*lineptr) I I *lineptr -- ._.) {

state->in identifier - 1;
(void) add_char (&identifier, *lineptr);

1* Check if this is the start of a number *1
else if (isdigit(*lineptr» {

state->in_num_const - parse_num_const ();

1* Check for preprocessor include's or define's *1
else if (*lineptr -- 'N') {

if (is preprocess ("include"»
state->in include - 1;

else if (is preprocess ("define"»
state->in_define - 1;

1* Check if this is the start of a comment *1
} else if (*lineptr -- '1' && *(lineptr+l) '*') {

state->in comment - 1;
comment_start - lineptr++;

161

162 A Book on C

1* Check if this is the start of a
character constant *1

else if (*lineptr -- ',") {
state->in_char_const - 1;

1* Check if this is the start of a
string constant *1

else if (*lineptr -- '"') {
state->in_string_const - 1;

1* Check for function declaration - every time we
encounter a "{", we bump the level, every time
we encounter oJ", we reduce it. If a "}" takes
us to level 0, we've just reached the end of a
structure or union declaration *1

else if (*lineptr -- '{') {
if (!state->in comment &&

!state->in-string const &&
!state->in-char canst)
level++; - -

else if (*lineptr -- ';') {
if (state->in struct dec && level -= 0)

state->in-struct-dec - 0;
else if (*lineptr -- 'T') {

if (!state->in comment &&
!state->in-string const &&
!state->in-char canst)
if (--level -- 0 &&

!state->in struct dec &&
!state->in-define)
stats[MODULES).value++;

1* Update number of include line statistics *1
if (state->in include) {

stats[INCLUDE LINES).value++;
line length ·-strlen (line.chars);
if (line_length -= 0 I I

line. chars [line length - 1) ! - "")
state->in char const - state->in string const =

state=>in include - state->in comment =
state->in=struct_dec - 0; -

1* Update number of define line statistics *1
} else if (state->in define) {

stats[DEFINE LINES).value++;
line length ~ strlen (line.chars);
if (line_length -- 0 I I

line.chars[line length - 1) !- ',,')
state->in char const - state->in string const

state=>in define - state->in-comment
state->in=struct_dec - 0; -

Appendix 1: C Style Analysis

/* This routine is called once for each input line */
static void
process line (state)
struct -state *state;
{ -

int i;

stats[TOTAL_LINES].value++;

/* Trim trailing spaces */
for (i - strlen (line.chars) - 1; i >- 0;

line.chars[i--] - '\0')
if (Iisspace(line.chars[i]»

break;

/* Check if this line is a blank line */
if (Istrlen (line.chars»

stats[BLANK_LINES].value++;

/* Do semantic checking of comments, constants,
identifiers, and preprocessor directives. */

parse_line (state);

/* Trim trailing spaces again, since line is changed
if comments have been deleted */

for (i - strlen (line.chars) - 1; i >- 0;
line.chars[i--] - '\0')

if (!isspace(line.chars[i]»
break;

/* Collect some statistics */
stats[TOTAL CHARS].value +- strlen (line.chars) + 1;
for (i - O;-line.chars[i] -- ' '; i++)

stats[INDENT SPACES].value++;
while (line.chars[i])

if (line.chars[i++] --' ')
stats[EMBEDDED SPACES].value++;

else -
stats[NONBLANK_CHARS].value++;

/* This routine is called once for each file
listed on the command line */

static void
process file (fp)
FILE *fp;
{

int c;
struct _state state;

/* Initialise global variables */
state.in num const - state.in string const -

state. in-identifier - state.in char const -
state.in-comment - state.in include-­
state. in-define - state.in struct dec -
line. index - identifier.index - 0;

for (c - 0; c < ELEMENTS_IN(stats); stats[c++].value - 0)
,

free_identifiers ();

163

164 A Book on C

/* Break file into lines, and process each line */
while «c· qetc (fp» I· EOF) {

if (add char (&line, c) •• '\n') {
line. chars [--line.index] - '\0';
process line (&state);
line. index - 0;

1* Calculate and display statistics */
static void
process stats (file name)
char *f1le name; -
{ -
#define SC(m.l,s,f,t,x) { m., 1., s., f., t., x, 0.0 }

static struct {
double max, 10, lotol, hitol, hi;
char *name;
double value;

scores!] - {

1* max 10 lotol hitol hi name
SC(9, 8, 12, 25, 30, " characters per
SC(12, 8, 15, 25, 35, "\ comment lines
SC(12, 6, 22, 46, 58, "\ indentation
SC(11 , 8, 15, 30, 35, "\ blank lines

line

SC(8, 1 , 4, 10, 12, " spaces per line
SC(15. 4. 10, 25, 35, " module lenqth
SC(6. 2, 9, 17, 23, " reserved words
SC(14, 4, 5, 10, 14, .. identifier lenqth
SC(-20, 1 , 3, 199, 200, " qotos
SC(5, 0, 3, 3, 4, " include files
SC(8, 8, 12, 20, 24, "\ defines

} ;
int i, sl;
double nc l1nes; /* Number of non-comment lines
double nc:nb_lines; 1* Number of non-comment

non-blank lines
double score, total score;
struct _user_ident *ui - first_user_ident;

nc lines· stats[TOTAL LlNES].value
- --stats[COMMENT LlNES].value;

nc_nb_lines • nC_lines - stats[BLANK:LlNES).value;

1* Calculate the reserved words variety statistic */
for (i - 0; i < ELEMENTS IN(reserved words); i++)

if (reserved words[i).used) -
stats[RESWORD_VARIETY].value++;

1* Print out statistics qathered *1
printf ("'s:\n\n", file_name);

*/
n) ,
") ,
") , ..) ,
n) , ..) ,
n) ,
") , ..) ,
") ,
")

*/

*/

for (1 - 0; i < ELEMENTS IN(stats); 1++)
printf ("\S \10d\n",-stats[i).title, stats[i].value);

printf ("\n\n");

1* Calculate derived statistics */
scores[O).value RDIV(stats[NONBLANK CHARS).value,

nc nb lines); -
scores(1).value - 100 * RDIV(stats[COMMENT LlNES).value,

stats[TOTAL LlNES).value);
scores[2l.value· 100 * RDIV(stats1INDENT SPACES).value,

stats[TOTAL CHARS]~value);
scores(3).value - 100 * RDIV(statsTBLANK_LlNES).value,

Appendix 1: C Style AnarysiY

nc lines);
scores[4].value - RDIV(stats[EMBEDDED SPACES].value,

nc nb lines); -
scores[5].value - RDIV(nc-nb-lines.

statsTMODULES].value);
scores[6].value - stats[RESWORD_VARIETY].value;

1* Calculate the average user identifier length *1
for (sl - i - 0; ui; i++. ui - ui->next)

sl +- strlen (ui->name);
scores[7].value - RDIV(sl. i);

scores[8].value - stats[GOTOS].value;
scores[9].value - stats[INCLUDE LlNES].value;
scores[10].value - 100 * -

RDIV(stats[DEFlNE_LlNES].value, i);

1* Calculate and print individual scores
and add 'em up. *1

total score - 0.0;
for (1 - 0; i < 11; i++)

score - 0.0;

}

1* Use maximum score if value in ideal range *1
if (scores[i].value >- scores[i].lotol &&

scores[i].value <- scores[i].hitol)
score - scores[i].max;

1* Otherwise interpolate to get score *1
else if (scores[i].value >- scores[i].lo &&

scores[i] .value < scores[i].lotol)
score - scores[i].max * RDIV(scores[i].value­

scores[i] .10. scores[i].lotol -
scores[i].lo);

else if (scores[i].value > scores[i].hitol &&
scores[i].value <- scores[i] .hi)

score - scores[i].max * RDIV(scores[i].hi -
scores[i].value, scores[i].hi -
scores[i].hitol);

printf ("%5.1f%s : '5.1f (max %3.0f)\n".
scores[i].value, scores[i].name,
score, scores[i].max);

total_score +- score;

printf ("\nScore ('s): %5.1f\n\n\n".
file_name. total_score);

1* Perform style analysis on each file on the command line *1
main (argc. argv)
int argc;
char *argv[];
{

int argv index;
FILE *fp;

/* First. initialise space for identifiers
and input line *1

if «identifier.chars -
malloc (identifier.size - 128» -- NULL I I
(line.chars - malloc (line.size - 128» -- NULL)

fprintf (stderr. "Error allocating 256 bytes.\n");
exit (1);

165

166 A Book on C

1* Process each file, and print its statistics *1
for (arQv index· 1; argv index < arQc; argv index++)

if «rp • fopen (argv[argv index], "r"))-•• NULL)
perror (argv[arQv index]);
continue; -

}

}
process file (fp);
fclose Tfp);
process_stats (argv[argv_index]);

return 0;

1* Check if str is a reserved word *1
static
is reserved (str, state)
char *stJ:";
struct state *state;
{ -

int i;

1* Look through the reserved words table for a match *1
for (i - 0; i < ELEMENTS IN(reserved words); i++)

if (!strcmp (str, reserved_words[i].identifier»
break;

1* Return zero if not found in table *1
if (i >- ELEMENTS IN(reserved words»

return 0; - -

1* Mark reserved word as used and check for goto's
and global structure declarations *1

reserved words[i].used • 1;
if (!strcmp (str, "goto"»

stats[GOTOS].value++;
if (level·· 0 && (!strcmp (str, "union") II

Istrcmp (str, "struct"»)
state->in_struct_dec - 1;

return 1;

1* Scan through a string or character constant *1
static
parse const (delimiter)
char delimiter; 1* Constant type: (") for string,

(') for character *1

for (; *lineptr; lineptr++)

1* Be certain to skip characters quoted
with a backslash *1

if (*lineptr -- '\\' && *(lineptr + 1»
*++lineptr - '.';

else if (*lineptr -- delimiter)

1* Found end of constant *1
return 0;

else if (*lineptr -= ' ')
/* Make sure quoted spaces are not

counted as embedded *1
*lineptr. '.';

return 1;

Appendix 1,' C Style Analysis

1* Parse a reserved word or user identifer *1
static
parse ident (state)
struct state *state;
{ -

1* Collect characters into identifier buffer *1
while (*lineptr && (isalnum(*lineptr) I I

*lineptr -- ' '»
(void) add_char (&identifier, *lineptr++);

1* Check if identifier is continued on next line *1
if (*lineptr -- '\\' && *(lineptr + 1) -- '\0')

return 1;

1* Add trailing null *1
(void) add_char (&identifier, '\0');

1* Backup so terminating character is
next to be scanned *1

lineptr--;

1* Check if reserved or a user identifier *1
if (!is reserved (identifier.chars, state»

add=identifier (identifier.chars);

identifier.index - 0;
return 0;

1* Parse numeric constant *1
static
parse num const ()
{ - -

1* Skip through leading numbers, letters, and dots. *1
while (*++lineptr && (isalnum(*lineptr) I I

*lineptr -- '.'»

1* Check for exponent *1
if (*lineptr && (*lineptr -- '+' I I

*lineptr -- '-') &&
*++lineptr && isdigit(*lineptr»

while (*++lineptr && isalnum(*lineptr»

1* Check if continued on next line *1
if (*lineptr -- '\\' && *(lineptr + 1) -- '\0')

return 1;

1* Backup so terminating character
is next to be scanned *1

lineptr--;
return 0;

style 79.8 1

167

168 A Book on C

THE OUTPUT

style.c:

Blank lines
Total lines
Total characters
Indented spaces
Embedded spaces
Nonblank characters
Comment lines
Include lines
Define lines
Modules
Goto's
Reserved word variety
Non-reserved words

22.6
19.4%
19.9%
18.9%
2.7

34.0
16.0
6.9
0.0
2.0

16.0%

characters per line
comment lines
indentation
blank lines
spaces per line
module length
reserved words
identifier length
gotos
include files
defines

Score (style.c): 79.8

111
728

15932
3166
1283

10755
141

2
21
14
o

16
131

9.0
12.0
10.4
11.0
4.5
1.5
6.0

14.0
0.0
3.3
8.0

(max
(max
(max
(max
(max
(max
(max
(max
(max
(max
(max

9)
12)
12)
11)

8)
15)

6)
14)

-20)
5)
8)

Appendix 2: Tabulated and
Listed Information

Alphabetic List of Keywords

auto
break
case
char
const
continue
default
do
double
else
enum
extern
float
for
goto
if
int
long
register
return
short
signed
sizeof
static
struct
switch
typedef
union
unsigned
void
volatile
while

storage class specifier
statement
statement prefix within a switch statement
type specifier
storage class specifier
statement
statement prefix within a switch statement
statement
type specifier
statement
type specifier
storage class specifier
type specifier
statement
statement
statement
type specifier
type specifier
storage class specifier
statement
storage class specifier
type specifier
unary operator
storage class specifier
type specifier
statement
storage class specifier
type specifier
type specifier
type specifier
storage class specifier
statement

169

170 A Book on C

Use of any of the keywords as identifiers will cause syntax errors. The ease
with which such errors can be related to the source of the problem will depend
on the particular implementation of C.

In addition to the above keywords, the C standard defines reserved
identifiers. If any of the reserved names are redefined by the program, the
behaviour is undefined and the program is thus not portable. The standard
defines the following reserved identifiers:

• any macro name defined in the header files described in Chapter 12, if the
corresponding header file is included;

• any identifier described in Chapter 12 and having an extemallinkage;

• any identifier described in Chapter 12, with file scope, if the
corresponding header file is included;

• any identifier which begins with an underscore and an upper case letter or
another underscore;

• any identifier which begins with an underscore (reserved for use as an
identifier with file scope).

C Operator Precedence

In the following table, C operators are grouped by precedence in the evaluation
order. Operators within the same group have equal precedence. The
associativity rule governs the grouping of expression with operators of equal
precedence.

Group Operator Description Associativity

Postfix () Function call Left to Right
[] Array subscript
~ Indirect component selector

Direct component selector

Unary Logical negation (NOT) Right to Left
Bitwise (l's) complement

+ Unary plus
Unary minus

++ Preincrement or postincrement
Predecrement or postdecrement

& Address

* Indirection

Appendix 2: Tabulilted and Listed Information 171

sizeof Size of operand in bytes
(type) Cast

Multiplicative * Multiply Left to Right
/ Divide
% Remainder (modulus)

Additive + Binary plus Left to Right
Binary minus

Shift « Shift left Left to Right
« Shift right

Relational < Less than Left to Right
<= Less than or equal to
> Greater than
>= Greater than or equal to

Equality -- Equal to Left to Right
1-.- Not equal to

And & Bitwise AND Left to Right

Xor BitwiseXOR Left to Right

Or Bitwise OR Left to Right

Logical and && Logical AND Left to Right

Logical or II Logical OR Left to Right

Conditional 1: if a then x, else y Right to Left

Assignment = Simple assignment Right to Left
*= Assign product
/= Assign quotient
%= Assign modulus
+= Assign sum
-- Assign difference
&= Assign bitwise AND
= Assign bitwise XOR

1= Assign bitwise OR
«= Assign left shifted
»= Assign right shifted

Comma Evaluate Left to Right

172 A Book on C

C Basic Data Types

char

signed

unsigned

float

double

long double

enum

void

A character variable can hold any character from the basic
character set represented as an appropriate integer character
code.

There are four signed integer types: signed char, short int.
intand long into The list describes integer types of increasing
range of values. signed char occupies the same amount of
storage as a normal char. int has a size suggested by the
architecture of the underlying hardware and can contain any
value between INT MIN and INT MAX as defined in - -
<limits.h>

For each of the signed types there is a corresponding
unsigned type which uses the same amount of storage. The
range of non-negative values of a signed type is a subrange of
the values of the corresponding unsigned type and the
standard guarantees that the representation of the same value
in each corresponding type is the same. <limits.h> defines
the ranges of possible values.

A subset of floating point values representable by double can
be represented by this type.

A subset of floating point values representable by long
double can be represented by this type.

A maximum possible range of floating point values
(implementation dependent) can be represented by variables
of this type.

A variable of this type consists of a set of named integer
constant values and can be represented by the integer types.

An empty set of values. This type is incomplete and can
never be completed.

More complex data types can be constructed from the above set by recursively
applying the following methods:

array
structure
union
function

A contiguous, nonempty set of values of a specific type.
A sequential, nonempty set of member objects.
An overlapping, nonempty set of member objects.
A function characterised by its return type and the number and
types of its arguments.

Appendix 2: Tabulated and Listed Information 173

pointer An object whose value provides a reference to an object of a
specified type.

Escape Characters

The backslash character is used to construct escape sequences, that is, it is used
to represent certain non-printing characters by a pair of characters, the first of
which is the backslash. The following characters can be represented in this
way:

Sequence Value Description

\a Ox07 alarm (bell)
\b Ox08 backspace
\f OxOc fonnfeed
\n OxOa newline
'c OxOd carriage return
\t Ox09 horlzontaltab
\v OxOb vertical tab
\\ OxSc backs lash
~ 0x27 apostrophe
\" 0x22 quote (inside strings)
\? Ox3f question mark

In addition, any character can be represented by the corresponding integer code
in its octal or hexadecimal representation as follows: '<xx> where 000 is a string
of up to three octal digits, or \xhh where hh is a string of up to two
hexadecimal digits. For example: \10 is equivalent to \b, the backspace
character, and \X20 is the space character.

Escape sequences such as those illustrated above may be used in strings,
particularly format control strings:

printf ("\t result = \n");
and as character constants:

bell = I \a I;

Conversion Characters in Format Strings

The following conversion characters can be used in format strings controlling
input and output. Full description of the input and output functions is given in
chapter 3. Examples of the use of the control strings may be found in tables
3.1 and 3.2.

174 A Book on C

Modifiers:

printf scanf Description

h h short for d. o. u. x. X
I I long for d. o. u, x. X

double for e. E. f. g. G
L L long for d. o. u. x. X

long double for e. E. f. g. G

Type:

printf seanf Description

c c single character
d d signed decimal int

D signed long decimal int
0 0 unsigned octal int

0 unsigned long octal int
u u unsigned decimal int

U unsigned long decimal int
x x unsigned hexadecimal int

X unsigned long hexadecimal int
f f floating point [-]dddd.ddd
e e floating point [-]d.ddd e [+/ -]ddd
g g fonnat e or f based on precision
s s character string
% % the % character
n n count of characters processed so far

Any invalid conversion character is printed.

Appendix 2: Tabulated and Listed Information 175

ASCII Character Set

ASCII Character Codes

DEC OCT HEX CHAR DEC OCT HEX CHAR
0 000 00 "@ 32 040 20
1 001 01 "A 33 041 21
2 002 02 "B 34 042 22
3 003 03 "C 35 043 23 #
4 004 04 "D 36 044 24 $
5 005 05 "E 37 045 25 %
6 006 06 "F 38 046 26 &
7 007 07 "G 39 047 27
8 010 08 "H 40 050 28 (
9 011 09 "I 41 051 29)
10 012 Oa "J 42 052 2a *
11 013 Ob "K 43 053 2b +
12 014 Oe "L 44 054 2e
13 015 Od "M 45 055 2d
14 016 Oe "N 46 056 2e
15 017 Of "0 47 057 2f /
16 020 1 "P 48 060 30 0
17 021 11 "Q 49 061 31 1
18 022 12 "R 50 062 32 2
19 023 13 "S 51 063 33 3
20 024 14 "T 52 064 34 4
21 025 15 "U 53 065 35 5
22 026 16 "V 54 066 36 6
23 027 17 "W 55 067 37 7
24 030 18 "X 56 070 38 8
25 031 19 "Y 57 071 39 9
26 032 la "Z 58 072 3a
27 033 Ib "[59 073 3b
28 034 Ie "\ 60 074 3c <
29 035 Id "] 61 075 3d =
30 036 Ie 62 076 3e >
31 037 If 63 077 3f ?

176 ABookonC

ASCII Character Codes

DEC OCT HEX CHAR DEC OCT HEX CHAR
64 100 40 @ 96 140 60
65 101 41 A 97 141 61 a
66 102 42 B 98 142 62 b
67 103 43 C 99 143 63 c
68 104 44 D 100 144 64 d
69 105 45 E 101 145 65 e
70 106 46 F 102 146 66 f
71 107 47 G 103 147 67 g
72 110 48 H 104 150 68 h
73 111 49 I 105 151 69
74 112 4a J 106 152 6a j
75 113 4b K 107 153 6b k
76 114 4c L 108 154 6c 1
77 115 4d M 109 155 6d m
78 116 4e N 110 156 6e n
79 117 4f 0 111 157 6f 0

80 120 50 P 112 160 70 P
81 121 51 Q 113 161 71 q
82 122 52 R 114 162 72 r
83 123 53 S 115 163 73 s
84 124 54 T 116 164 74 t
85 125 55 U 117 165 75 u
86 126 56 V 118 166 76 v
87 127 57 W 119 167 77 w
88 130 58 X 120 170 78 x
89 131 59 Y 121 171 79 Y
90 132 5a Z 122 172 7a z
91 133 5b [123 173 7b {
92 134 5c \ 124 174 7c I
93 135 5d] 125 175 7d }
94 136 5e 126 176 7e
95 137 5f 127 177 7f "?

References
Berry. R.E. and Meekings. B.A.E. (1985). 'Style analysis of C programs'.
Comm. ACM. 28. No.1 (January).

Bourne. S.R. (1982). The UNIX System. Addison-Wesley. London.

Dahl. O-J .• Dijkstra. E.W. and Hoare. C.A.R. (1972).
Structured Programming. Academic Press. London.

Feuer. A.F. (1982). The C Puzzle Book. Prentice-Hall. Englewood Cliffs.
New Jersey.

Hall. J. (1982). 'A microprogrammed P-CODE interpreter for the Data General
Eclipse sl130 minicomputer'. Software Practice and Experience. 12.

Kernighan. B.W. and PI auger. P J. (1976). Software Tools. Addison-Wesley.
Reading. Massachusetts.

Kernighan. B.W. and Ritchie. D.M. (1978). The C Programming lAnguage.
Prentice-Hall. Englewood Cliffs. New Jersey.

Kernighan. B.W. and Ritchie. D.M. (1988). The C Programming lAnguage
2nd edition. Prentice-Hall. Englewood Cliffs. New Jersey.

Knuth. D.E. (1973). The Art o/Computer Programming. Volume 3: Sorting
and Searching. Addison-Wesley. Reading. Massachusetts.

Lewis. T.O. (1975). Distribution Sampling/or Computer Simulation.
D.C. Heath and Co .• Lexington. Massachusetts.

Meekings. B.A.E. (1978). 'Random Nwnber Generator - Algorithm A-I'.
Pascal News. No. 12 (June).

Rees. MJ. (1982). 'Automatic assessment aids for Pascal programs'
ACM Sigplan Notices. 17. No. 10 (October).

Uspensky. J.V. and Heaslet. M.A. (1939). Elementary Number Theory.
McGraw. New York.

Wirth. N. (1976). Algorithms + Data Structures = Programs.
Prentice Hall. Englewood Cliffs. New Jersey.

177

Glossary
ANSI standard
As used in this book, a specification of the syntax and semantics of computer
programs written in the C programming language as described in American
National Standards Institute, Inc., American National Standard X3.159-1989.

ASCII
American Standard Code for Infonnation Interchange, specifying a mapping
between a binary code and a corresponding printable or control character. For
example, a binary code 1000001 (or decimal 65) corresponds to the letter 'A'.
The original ASCII character set has been expanded by various vendors to
include certain graphics symbols and special characters.

UNIX
An operating system designed and developed by Dennis Ritchie and Ken
Thompson at the AT&T Bell Laboratories between 1969 an 1971. The use of
the system was originally limited to academic and research computer systems.
Due to its elegance and power it is now in widespread use on a multitude of
hardware platforms and supports a vast array of widely different applications.

aggregate
A collection of data of different types. Aggregate data types can be created in
C by defining structures or unions.

algorithm
A problem solving method suitable for computer implementation. It is a set of
transformations of inputs into outputs accomplishing a solution to the problem
in a finite nwnber of steps.

application
A piece of software implementing functionality required directly by the end
users of a computing installation. The term is often contrasted with the
operating system software.

argument
The actual value passed to a function at runtime when the function call is
executed. All arguments in C are passed "by value", that is, a copy of the
argument is made before passing it to a function. In order to access the original
entity, not its copy, a pointer to that entity must be given as an argwnent.

178

Glossary 179

array
A collection of data elements of the same type. Each element of the collection
can be addressed by specifying one or more integer values called indices. An
index is an offset from the beginning of the array in a particular dimension and
in C always starts from O.

compiler
A language translator typically accepting as input a higher level computer
language such as C or Pascal, and producing a lower level output, usually in a
language specific to the machine for which it was designed.

constant
A value which never changes during the lifetime of a program. In C, constants
can be either literal, such as 42, Ox2a or "forty two", or specified by using the
keyword const.

declaration
A specification of the type of a named object in a computer program. In C it is
required that all data and functions be declared prior to their use.

definition
The actual specification of a function code. The code defines all aspects of a
function, its parameters and behaviour, whereas a declaration (prototype)
specifies only the type of parameters and the type of a return value.

expression
A series of operators and operands specified in accordance with the syntax
rules of the language and producing a single value as its result.

file
From the perspective of a C program, a source for, or a destination of, data
required or produced by the program. In that sense, a file may be the keyboard
at which users type responses, or another program to which data are sent. One
can also talk of physical files which are persistent representations of data
stored on media such as magnetic or optical disks.

function
A sequence of statements which perfonn some computation. A well-designed
function will have clearly defined inputs and outputs, usually passed via
parameters, and should be free of side-effects - that is, no variables other than
those represented by parameters will have their values changed as a result of
invoking the function. A function in C is similar to a subroutine or function in
Fortran, or a procedure or function in Pascal.

header file
If a program consists of more than one source file, it is usual to collect shared
definitions in a separate file, included in all the source files. In that way,
changes to those definitions are confined to a single file.

180 A Book on C

Definitions most often put in header files are:
#include's
#define's
extern declarations of variables and functions
typedef's of shared structures

Several standard headers are provided for C, which must be included in order
to use functions from the standard library.

identifier
The name used to refer to variables, constants, functions and derived data types
or aggregates. In C, an identifier consists of a sequence of upper or lower case
letters, digits. and underscores, and must begin with a letter. Although
identifiers may be of any length, it is recommended that all identifiers are
unique over the first 31 characters.

interpreter
An interpreter accepts source code for a particular language and executes it
directly. The difference between a compiler and an interpreter is that the
compiler produces an object program, which is then executed; the interpreter
executes the source program itself.

library
A collection of common functions which may be used by a program if the
library is linked with the program when the executable is built. It is usually
provided in binary (and not source) format. In C, standard libraries exist to
perform. for example, input and output, mathematical functions, and error and
string handling.

macro definition
Specifies a simple textual substitution of one character string in the program
text by another. In C, macro definitions (or, simply, macros) may have
arguments - although this may look like a function call, the macro expansion is
done by the preprocessor prior to the compilation phase.

macro processor
See preprocessor.

operand
The object, typically a variable or constant, that is manipulated, or operated
on, as part of an expression.

operating system
Manages the resources of the computing environment, typically by providing
file system maintenance, process management and other housekeeping
functions. This represents the core, or kernel, of the operating system. A suite
of other utilities are often provided for other functions, such as text editing and
formatting, compilers and assemblers, and a command interpreter.

Glossary 181

operator
Specifies the action to be performed on its operands. Operators in C are either
unary, operating on a single operand (like the not operator), binary, taking two
operands (like plus), or tertiary, with three operands (like the conditional
operator).

optimiser
Code optimisation is usually performed as one stage of the compilation
process. It involves, for example, moving operations whose operands do not
change within a for-loop out of the loop, and eliminating redundant operations.
Most C compilers offer this as a user-selectable feature at compile time.

parameter
A variable mentioned in the parenthesised list of a function definition or
prototype. Contrast this with an argument, which is the value supplied when a
function is called.

pointer
In C, a variable that contains the address of another variable. The value of the
variable is obtained by dereferencing, using the * operator.

preprocessor
A program which performs macro expansion. For C, preprocessing occurs as
the first stage of the compilation process. It is important to realize that most
preprocessors are language independent - that is, C's preprocessor could
equally well be used for some other language, since it is unaware of the
specific syntax for C, and merely performs textual substitutions.

processor
The word 'processor' specifically refers to the CPU (central processing unit) of
a computer, but in common parlance is used for the whole computer.

program
A set of statements that can be submitted as a unit to some computer system
and used to direct the behaviour of that system.

programming language
A notation for the precise description of computer programs or algorithms in
which the syntax and semantics are strictly defined.

prototype
An early version or example that serves as a model on which later stages can
be based. Typically, a prototype does not implement all the features of a fully
developed version. In C, a function prototype declares the arguments to a
function, and their types, prior to its full definition.

182 A Book on C

recursion
The process of defining or expressing a function, procedure, or solution to a
problem in tenns of itself. Thus, a recursive subroutine calls itself.

scope
The time or region of a program in which the characteristics (e.g., type, value,
etc.) of an identifier have meaning.

signal
An asynchronous event that arises in a program, such as a hardware or timer
interrupt, or an error in program execution. If the underlying operating system
supports it, signals can be generated under program control, blocked, ignored,
or delivered to a function programmed to handle them.

statement
The unit from which a program is constructed; a program consists of a
sequence of statements.

storage (memory and disk)
A device or medium that can retain data for subsequent retrieval.

storage class
The characteristic of a variable or identifier that determines the location and
lifetime of the storage that represents it.

string
A one dimensional array of characters.

structure
A data type aggregate that is composed of smaller parts, which can themselves
be aggregates. Each of the parts are individually represented by non­
overlapping storage. At the lowest level, the parts consist of atomic data types,
i.e., char, int, etc.

union
A data type aggregate that is composed of smaller parts, which can themselves
be aggregates. Each of the parts are represented by overlapping storage. At
the lowest level, the parts consist of atomic data types, i.e., char, int, etc. Thus,
the same piece of storage can be interpreted differently according to differing
data types in the union.

variable
An identifier used to denote a changeable value inside a computer or program.

word size
The length of a set of bits treated as a unit by the computer hardware. The
number of bits in a word is typically a multiple of 8 bits or 1 byte. A word is
usually long enough to contain an integer.

Index

operator 112 automatic 92
define 12, 106 storage class 8
#elif 111
else 110 backslash 15,32
#endif 110 BASIC 1,27
error 113 binary operator 60

#if 111 bit fields 87
ifdef 110 bitwise operator 64

ifndef 110 Bourne 3
include 12 break 48,52

line 113
#pragma 113 case 47

#undef 19, 109 cast 60,62

DATE 114 char 59
FILE 113 closing a file 40
LINE 113 comma operator 68
STDC 102,114 comment 14
TIME 114 compound statement 14

condition 45

address 27 conditional operator 67

amicable numbers 121 conditional statement 44

ANSIC 3 const 11,13,41

argwnents 19,23 continue 55
to main 105 control string 30

arithmetic operator 63 conversion specifier

array 72 20,23,30,35,173
multi -dimensional 74 ctype.h 133
of pointers 79

ASCII character set 175 data types 172
assignment 38,63 decimal constant 14

structure 86 decisions 44

assignment operator 63,86 declaration 8
assignment statement 14 decremeut operator 67
assignment suppression 35 default 48
auto 8 defensive programming 126

183

184 A Book on C

define directive 12 header file 12
defined 111 heap 145
derived type 83 hexadecimal constant 14,64
do 50,54 hosted environments 105
dot operator 86 hyperbolic functions 135
double 59
dynamic memory management 129 identifiers 7

reserved 170

ellipsis 25 if 44

enum 87 include directive 12
enumerated type 87 include file 12
enumeration 87 increment operator 67
EOF 138 infinite loop, see loop
ermo.h 132 initialisation

escape characters 173 variable 51

escape sequence 15,32 structure 85
expression 45,60 input 34
external 7 input/output 138

int 59
false 45
family tree 95 Kernighan 2
fclose 40 keywords 169
FILE 41,138
file I/O 39 limits.h 65
file operations 138 linked list 93
file pointer 41 lint 126
float 59 list, linked 93
fopen 41 locale.h 134

for 50, 55, 56, 68 logarithmic functions 135

formatted I/O 139 logical operator 66,111

fprintj 40 long 59

free 93,145 long double 59

fscanj 40 loop 50

function prototype 24,115,126
functions 6, 16, 19,22 macro 19

hyperbolic 135 macro parameters 107

logarithmic 135 macro side effects 108

power 136 macroprocessor 12

trigonometric 135 main 6,23
arguments 105

getchar 38 maUoc 92, 145

goto 58 math.h 134
memory allocation 92, 129

Index 185

memory management 145 precedence, operator 69,170
memset 104 prefix 67
mode 42 preprocessor 11,106
modular program 16 pn'ntj' 13,23,30
modulus operator 57 procedure 25
multi-dimensional array 74 program structure 6
multiple assignment 63 programming style 118

programming. defensive 126
null 76 promotion rules 60

prototypes 24,126
octal constant 14,64 pseudo-random number's 65, 144
opening a file 40 putchar 38
operator precedence 69,170
operators 59 Rate 4

112 recursion 8,105
112 register 123
arithmetic 63 storage class 10
assignment 63 relational operator 66
bitwise 64 reserved identifiers 170
comma 68 reserved words 169
conditional 67 return 22,23,49,52
decrement 67 Ritchie 3
dot 86
increment 67 scanf 34
logical 66,111 scope 7, 129
pointer 86 searching 147
relational 66 short 59

or operator 46 signal 137
output 30 signaLh 136

signed 59
parameter 19,23,27 software engineering 2
Pascal sorting 147

6,13,27,44,56,65,128,129 Soundex code 80
pedigree chart 95 sprint! 38
perfect number 57 sscanf 38
PI auger 2 standard libraries 131
PL/I 129 static 92
pointer 27,73,78,91 storage class 8

void 89,116 stddef.h 132
pointer array 79

stde" 39,138
pointer operator 86 stdin 37,39,138
portable programs 110

stdio.h 13,41,137
postfix 67

stdlib.h 143
power functions 136

186 A Book on C

stdout 37,39,138 union 83
step size 57 access 85
storage allocation 92,129 UNIX 2
storage class 7 unsigned 59

automatic 8 variable initialisation 51
register 10 VDU 14
static 8 void 25,59,88
external 7 void pointer 89,116

strcmp 87 volatile 11
strcopy 77
string 38, 76 while 50
string constant 38 white space 35
string conversion 112,143 word size 59
string operations 147
string.h 147 Zeller's Congruence 64
strtok 104
structure 83

access 85
structure assignment 86
structure initialisation 86
structure tag 84
style analysis 120, 154
style

program 2
programming 118

subscript 73
switch 44,47
syllable counter 54

tag, structure 84
terminating condition 56
time operations 150
time.h 150
token pasting 112
trigonometric functions 135
true 45
type 7

derived 84
enumerated 87

type conversion rules 59
type modifiers 11
type qualifier 7
type suffix 62
typedeJ 89, 116

