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Preface 

When we wrote the first edition of this book, it was with the intention of 
providing an introduction to a powerful and complex programming language. 
As C gained in popularity, it became apparent that a simple introduction was 
not enough, and the second edition included a nwnber of topics which we had 
originally regarded as "advanced". The third edition is expanded yet again, and 
now covers the new ANSI standard C. 

Although the C standard was the principal reason for the third edition, we 
have made other changes - for example, the style analysis suite has been 
rewritten entirely in C, rather than using a variety of UNIX system tools; and 
we are now able to offer the text of all the examples, plus the style program 
and a mini-compiler, in machine-readable form on a floppy diskette. 

We believe that we have a unique approach to the teaching of a 
programming language, with emphasis on programming style and a structured 
methodology, as well as on details of the language itself. 

C appears set to be the "language of choice" for many professional and 
recreational programmers for at least the rest of the decade. We hope that 
learning it gives the same lift to your programming experience as it has done to 
ours. 

September 1992 

Tom Kudrycki 

Brian Meekings 

Michael Soren 

viii 



Introduction 

Programming is communication. In attempting to teach a programming lang­
uage we are trying to provide the learner with a means of communication, a 
means of expressing himself or herself. At first sight it will appear that the 
communication will be one way, between the program writer and the machine 
on which his or her program is processed. This view is too simplistic, for the 
communication occurs on a number of different levels. 

Certainly it is important that the programmer is sufficiently familiar with the 
language selected to write the program to produce concise and efficient code, 
but it should not be forgotten that, after successful development, a program 
will need to communicate with its user while executing. This aspect of 
communication is now, justifiably, receiving considerable attention. It is no 
longer satisfactory that the program produces the correct result - it should also 
be easy to use and should be 'bulletproof', which is to say that, no matter how 
inaccurate the user's input, the program should always provide a sensible and 
intelligible response. In the jargon, the program should be 'user friendly'. An 
argument can be made that a big share of the ever-increasing software 
development cost can be attributed to the market's need for better and more 
eloquent user interfaces. Elaborate and intuitive graphical interfaces are be­
coming more and more common in even simple software products. 

A further level of communication, all too frequently neglected, is that 
between program writer and program reader. Program writers frequently 
assume that the only readers of the program will be themselves and a 
computer. The consequence of this assumption is that the program may be 
tedious and difficult to assimilate by anyone given the task of modifying, or 
simply reading, the original. Like everything else of man's creation, software 
will not be perfect, and should be written with the knowledge that it will need 
to be maintained. This means taking all reasonable steps to ensure that the 
program logic is lucidly expressed by the text, and the layout and presentation 
of a program help considerably in this. Unfortunately, there are constraints 
imposed by some language implementations that inhibit good presentation. 
Thus when using a BASIC interpreter with access to a limited amount of 
memory, there will be pressure on a programmer to omit comments and to 
discard unnecessary spaces. We recognise the pressures, but regret their effect 
on the intelligibility of programs. 

The concept of program style encompasses the presentation, layout and 
readability of computer programs. These principles apply to any programming 
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language. whether high level or low level. The factors that contribute to 
program style are undoubtedly highly subjective. and thus contentious. Our 
contribution to the debate is to enumerate what we consider to constitute a 
reasonable set of metrics. whose application can be automated. and to associate 
with each of the program examples within the text a 'style score'. At the foot 
of every nontrivial program you will see this style score enclosed in square 
brackets. For small examples the style score can be sensitive to small changes 
in presentation. for example. the addition of a blank line. Nonetheless. we give 
it so that the reader can judge its usefulness. A small C program is illustrated 
in example I.l to give a hint of what is to follow. The derivation of the style 
score is detailed in Appendix 1. Suffice it to say here that the score is a 
percentage. and that the higher the score. the more 'elegant' the program. 

The programming language C is a powerful language. and deserves its high 
and still increasing popularity as one of the most important programming 
languages currently available. Without wishing to over-stress program style 
and the importance of good program design. we feel that it is necessary to 
point out that no programming language is. as yet. so powerful as to conceal 
flaws in program logic or to make its clear exposition unnecessary. Sound 
program logic is achieved by design. and in recent years considerable attention 
has been given to program design methods. Whether a structured program is 
achieved after the design stage will depend on the person or persons who 
translate the design into a program in an appropriate programming language - a 
not inconsiderable task. The book by Dahl et aL (1972) is worthy of the 
reader's attention (see References). 

Programs can become such complex artefacts that a new art and science of 
software engineering came into existence in recent years. We can truly speak 
of software being engineered. an activity which may involve many tens or 
hundreds of people and which requires coordination and control over many of 
its aspects. With this in mind. it is not surprising to find software tools 
produced to assist in this engineering. The software tools philosophy espoused 
by Kernighan and Plauger (1976) and realised in UNIX is an impressive 
demonstration of the importance of this approach. We believe that UNIX and 
C have significantly expanded our own computing horizons. and thoroughly 
recommend the experience to others. 

&amp/ell 

#include <stdio.h> 
#include <string.h> 

/* to resort the letters of a word into alphabetical 
order - e.g. the basis of an anagram dictionary */ 

int 
main () 
{ 
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char word[21), min; 
int i, j, pos, len; 

printf ("Gimme a word ... "); 
scanf ("'Is", word); 

len = strlen(word); 
for (i=O; i<len; i++) { 

} 

min = '-'; 1* the last character *1 
pos = 0; 
for (j = 0; j < len; j++) 

if (word[j] < min) { 
min - word[j); 
pos = j; 

} 1* found a smaller letter *1 

printf ("lise", min); 
word [pos] = '-'; 

printf ("\n"); 

return 0; 
} 1* main *1 

style 67.7 ] 
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There are a nwnber of texts that describe the UNIX system and C. That by 
Bourne (1982) we found particularly useful. Kernighan and Ritchie's (1978) 
book remains the definitive reference for the original version of C, while the 
experienced user might better himself by reading Feuer (1982). 

Different flavours of C have evolved over the years. Many of the features of 
the language are common to all its implementations. There are, however, many 
implementations which lack capabilities found in others. On the other hand, 
many C implementations provide language extensions specific to a particular 
computer manufacturer or operating system. In an effort to standardise the C 
language implementation, the American National Standards Institute (ANSI) 
has formed a committee to define a version of the language attempting to fulfil 
a very difficult task of being standard across a wide variety of machines and 
operating systems. A docwnent describing the standard was completed in 
December 1989 and published in 1990. The second edition of Kernighan and 
Ritchie's book (1988) has been expanded to include the ANSI standard. 

In this book, the language C as defined by ANSI standard X3.159-1989 is 
described. All C implementations conforming to the standard are referred to as 
conform ant and the programs written strictly in accordance with the rules 
defined in the standard as portable, on the understanding that more and more C 
compilers are conforming to the standard, and therefore the programs written 
in standard C are becoming more widely portable. Whenever feasible, we 
attempt to point out differences between the standard and the earlier C 
implementations, with emphasis on points to which a prudent C developer 
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should pay particular attention. We also offer some advice on making your 
nonstandard programs as widely portable as possible and prepare for 
availability of an ANSI C compiler on your installation. 

The first chapter of this book describes the structure of C programs. 
Chapter 2 introduces functions. contrasting them with macros. Chapter 3 deals 
with input and output. emphasising the importance of the interface between the 
program and its environment. 

Chapters 4 and 5 explain the two features of any programming language that 
give it its power - the control constructs of conditional branching and looping. 
Operators are introduced in chapter 6. while chapter 7 illustrates the use of 
arrays and strings. 

This is the point at which all the 'basic' features of C have been covered. 
The remaining chapters describe what we consider to be 'advanced' features -
derived data types in chapter 8. data structures in chapter 9 and the C pre­
processor in chapter 10. Chapter 11 presents some guidance on program style. 
which we could define loosely as that enigmatic quality that distinguishes 
adequate programs from superlative ones. Finally. chapter 12 lists the 
functions and features provided by confonnant C implementations. stressing 
the portability issues and offering guidance in providing some of the standard 
C functionality on your local implementation. 

In learning any programming language we have found that examples which. 
as well as illustrating language features. stimulate the reader's interest. are of 
particular importance. We have tried to present an interesting variety of 
examples. 

In order to make the learning process easier and more enjoyable. and to save 
you a lot of typing should you find our programs interesting, we can provide 
on MS-DOS 360K diskettes all the substantial examples reproduced in this 
book. and the style analysis program used for our style scoring throughout the 
book. In addition. we include the source code for a rather larger programming 
example - a C program, which we call RatC, that accepts as input a program 
written in a subset of C and produces as output an intermediate code version of 
the program. This intermediate version can then be given to RatC to preprocess 
and produce an assembly code for a variety of machines. RatC can in this way 
even reproduce itself. We provide the user with sufficient information to 
implement his own small C compiler. To order the diskettes, write to: 

Soren Associates 
PO Box 7403 
Somerset 
NY 08875-7403 
USA 

and enclose a cheque for $25. drawn on a US bank. 
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Above all, C is a language to enjoy. The kind of thing you always wanted to 
be able to do in other programming languages becomes possible in C - but be 
warned that its power, as well as getting you out of trouble quickly, can get 
you into trouble just as quickly. 



1 Program Structure 

In the introduction we attempted to show that programming must be under­
taken in a disciplined and organised marmer. If the resulting program is to 
display the benefit of this approach then the programmer must be thoroughly 
familiar with the program structure dictated by the programming language that 
he, or she, is to use. 

FUNCTIONS 

A C program consists of one or more functions. One of these functions must 
have the name main. A program is executed when the underlying operating 
system causes control to be passed to the function main of the user's program. 
The function main differs from the other functions in a program in that it must 
be defined, in order to provide a starting point for execution, and its para­
meters, if they exist, are provided by the operating system. It is usual, but not 
essential, for main to be the first function of the program text. 

Viewed simply, a function name is nothing more than a collective name for 
a group of declarations and statements enclosed in curly brackets or braces {}. 
The function useless below is of little value since it contains no executable 
statements. Its only purpose is to illustrate the appearance of a minimal 
function. 

useless () 
{ 
} 

The parentheses following the function name are essential, and will later be 
shown to be more useful than the present example suggests. 

If we assume that main is the first function defined in a C program text then, 
because no function may contain the definition of another function, the 
definitions of the subsidiary functions of the program text will follow. There 
may be only two or three such functions, in which case their purposes will be 
easy to determine, or there may be many. There is no special ordering of the 
functions dictated by the programming language C (in contrast to Pascal 
which, despite advocating the structured approach to problem solving, pre­
cludes its effective use by insisting that all functions be defined before they are 
used). However, after emphasising the value of a program as a means of 
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communication, it would be foolish to suggest that an arbitrary order for the 
functions would be as good as an order with some rationale. The function 
definitions could be arranged in alphabetical order, or they could be grouped 
according to their purpose. This latter ordering is not so easy to achieve but 
can frequently be more helpful. 

IDENTIFIERS 

An identifier in C, whether it represents a function name or a variable, consists 
of any sequence of the characters [a-z, A-Z, 0-9,-"1. The first character of an 
identifier must not be a digit. Upper and lower case letters are distinct, so that, 
for example, the identifiers count, Count and COUNT represent three different 
quantities. Internal identifiers in strictly portable programs should not be 
longer than 31 characters. In some older, non-conformant compilers, only the 
first eight characters are significant. 

Identifiers are characterised by the two attributes 'type' and 'storage class'. It 
is also possible to modify the behaviour of identifiers by specifying the 'type 
qualifier'. The type of an identifier determines the type of object that it will be 
used to represent; so, for example, int,jloat and char qualify an identifier as 
representing an integer, a real (or floating point) number and a single character 
respectively. The full list of available types is given in appendix 2. An 
identifier's storage class determines its 'scope' - the way in which it can be 
accessed from other parts of the program. 

FILES AND THE STORAGE CLASS external 

For programmer convenience, a large program may have its text spread over 
several files. To illustrate the effect of file structure on C programs and the 
symbols or names used within them, consider the examples given below, in 
which items within the same file are enclosed by a box. 

Example 1.1 

file1.c 

main () 
{ 
} 

function 1 () 
{ 

} 

file2.c 

function2 ( ) 
{ 
} 

function3 () 
{ 

} 
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In example 1.1, if we ignore main, any of the three functions could legit­
imately contain references to each of the remaining two. main may call any of 
the other three functions. This is possible because all function names belong to 
the storage class external. Any symbol name from this storage class may be 
referenced across files. 

A function may also contain a call of itself. This is known as a recursive 
call, and an example of such a call will be found in the function drawtree 
given as part of an example in chapter 9. 

STORAGE CLASS automatic 

In order that the functions we define can perform some useful role they will 
need to manipulate data. As in most programming languages the name and 
type of every data item must be declared. A declaration does not necessarily 
reserve storage to be associated with the identifier, but rather establishes the 
type and storage class of the declared identifier. In the example below size is 
declared to be an integer and its storage class is automatic. 

main ( ) 
{ 

int size; 
} 

The identifier size is local to the function main and may only be used within 
main. If the name size is used in any other function in the program it is not 
then connected in any way with the data item of the same name in the function 
main. The storage class is known as automatic because, for any identifier in the 
class, storage space is allocated when the function is entered and given up 
when exit is made from the function. In standard C, the automatic storage class 
can be explicitly specified in a declaration by using keyword auto. Such speci­
fication is, however, redundant since automatic is the default storage class for 
any identifier declared within a function. 

main ( ) 
{ 

auto int size; 
} 

While this form of storage is economical, in that it is needed only when a 
function is being executed, it does not meet all our requirements. 

STORAGE CLASS static 

Imagine that, as part of a check upon the operation of a program, it is 
necessary to count the number of times that a function was executed. The 
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count should be local or private to the function but the associated storage 
should be preserved from one call of the function to the next in order that the 
count may be accumulated. An identifier with storage class automatic is 
clearly inappropriate, since its value would be lost between successive calls of 
the function. Consider example 1.2: the identifier count has been defined as 
type integer with storage class static. It could be used to accumulate the 
number of calls of junctioni, because the value of static variables is retained 
across invocations. 

Example 1.2 

main () 
{ 

} 

file1.c 

function 1 () 
{ 

static int count; 
} 

file2.c 

function2 ( ) 
{ 

} 

function3 ( ) 

As another example, suppose that two or more functions are used to mani­
pulate the contents of a table. Each function will require access to the table and 
its associated pointers. It might also be desirable to protect the table from 
corruption by ensuring that no other function of the program gains access to 
the table. Both requirements can be met by using data items belonging to the 
static storage class within the same file. 

Example 1.3 

filel.c 

main () 

{ 
int size; 

function1 () 
{ 

int i: 
} 

file2.c 

static int ptr; 
function2 ( ) 
{ 

function3 ( ) 
{ 

int i: 
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In example 1.3, the identifier size can only be used in main. The identifier i of 
junction1 has no logical connection with the identifier i of junction). The 
second file contains the definition of ptr. Both junction2 and junction) may 
use the identifier ptr, as may any other function defined in that file. The 
storage class of ptr is not automatic but static. Identifier ptr is not accessible to 
a function in any other file. Note that it is not only function names that belong 
to the storage class external. We can declare the names of other data items so 
that they belong to this class. These names too may be referenced across files. 
If we change filel of our example by adding the line 

extern int ptr; 

and remove the word static from file2, as shown in example 1.4, then the 
function main can now reference the item ptr defined in file2. 

Example 1.4 

main () 
{ 

file1.c 

extern int ptr; 
int size; 

function 1 () 

int i; 

file2.c 

int ptr; 

function2 () 
{ 

function3 ( ) 

int i; 

If, however, the extern statement were to appear as the first line in filel then 
all functions in that file could refer to ptr, and this would be the same object 
declared in file2. In distributing a program text across files in this fashion we 
would need to ensure that for each identifier name in the external storage class, 
other than function names, there was one declaration of this name that did not 
include the word extern. This is called the definition of the identifier. The pre­
fix static must be omitted in this definition. 

STORAGE CLASS register 

This new storage class introduced by the ANSI standard implies that it is 
desirable to have the fastest possible access to the object thus defined. It may 
be possible to assign the object to one of the CPU registers and never allocate 
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storage for it in the computer's main memory. Effectiveness of such requests is, 
however, implementation-defined and is not guaranteed by the standard. In the 
example below, it is suggested that function main makes frequent references to 

object size and desires the fastest possible access to it. 

main () 
{ 

register int size; 
} 

TYPE MODIFIERS 

As the name implies, type modifiers alter some aspects of the object's be­
haviour. The canst type modifier specifies that the object cannot be changed 
during program execution. The system can place such objects in a read-only­
memory (ROM) or a protected memory segment. Objects so defined can be 
used to store values which are not modified by the program, such as physical 
or mathematical constants. The volatile type modifier is almost an opposite of 
canst. It specifies that the object can be modified at any time by factors outside 
of the program, or that its modification can have other unknown side effects. 
Such objects are typically modified by hardware without any indication to the 
program. The system takes extra care in using the values of such objects. The 
two type modifiers are not mutually exclusive. Object size in the example 
below cannot be modified by the program, but it should be assumed that it is 
modifiable by the computer hardware. 

main ( ) 
{ 

const volatile int size; 

THE C PREPROCESSOR 

The preceding discussion on files assumes that it is sensible and convenient to 
divide a program text into multiple files and also that the names of the two or 
more files are passed to the C compiler for processing. There are circum­
stances, however, in which it might be convenient to divide our program 
physically between files but to treat it logically as a large program text in one 
file. This facility is made available by the C preprocessor. 

Preprocessing is, as its name suggests, undertaken prior to compilation and 
provides two important facilities; the ability to 'include' files and the ability to 
'define' text for macro replacement. These are extremely convenient facilities 
and, since frequent use is made of them, they are introduced at this early stage. 
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#include 

Example 1.5 differs from example 1.1 in the addition of one line at the end of 
filel. This is sufficient to change the organisation of the program in a small but 
significant way. The 'include file' request must appear on a separate line and is 
treated as a request to replace the line itself by the contents of the file given, in 
this case file2.c. In some older compilers, all preprocessor requests must start 
at the left margin. Under the UNIX operating system, if the file name appears 
in double quote marks it is assumed to be in the current directory; if the file 
name is included instead in angle brackets, a special directory is assumed to be 
the location of the file. In either case the contents of the file replace the 
include directive and the combined text is passed on to the C compiler which 
treats it logically as one file of program text. Several files may be coalesced by 
use of suitable include directives. Included files may themselves contain 
include directives, but such nesting cannot exceed 8 levels in a strictly portable 
program. While this is a legitimate use of the included file facility, an included 
file more usually contains define directives. A file containing define directives 
is known as a header file and, by convention, has a filename ending in '.h'. Any 
file containing C program text has a name which ends with '.c'. 

Example 1.5 

main () 
{ 

} 

file1.c 

function 1 () 

{ 

} 

#include Ifile2.c" 

#deftne 

file2.c 

function2 () 

{ 

} 

function3 () 

{ 

} 

The define directive provides the user with a macro replacement facility. The 
C preprocessor in this context is a macro processor, although this is not always 
appreciated by newcomers to this facility. The most common use of the define 
directive is of the form 

#define DAYSINWEEK 7 

The preprocessor will thereafter replace the text string 'DA YSINWEEK' 
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throughout the entire text by the string '7'. In one sense this facility can be 
likened to the const type modifier or const section of a Pascal program in that 
it provides a means of removing all explicit constants from a program text and 
enables the user to use symbolic names instead. We think that it is good 
practice to gather all such definitions at the head of the program text file. It is 
even more desirable to use const type modifiers for that purpose, since objects 
defined through the normal type declarations will be checked for proper types 
during program compilation, whereas constants defined in #define directives 
are just character strings taken verbatim without any type checking. Before 
using const type modifiers instead of #define directives, one may consider, 
however, that many C compilers are still not strictly conformant and do not 
recognize type modifiers. In chapter 10, we will provide some suggestions for 
writing programs which can be compiled by both strictly conformant and older 
types of compilers. 

The define directive is not restricted to use in the manner described above 
for program constants. It is, in general, much more powerful and useful, since 
it replaces one text string by another and will, as we shall see later, also deal 
with parameters. 

SIMPLE C CONSTRUCTS 

In order that we may use examples to illustrate the points made in the text, we 
need, as has already become obvious, some programming language constructs. 
Even the simple examples need to demonstrate that they work by printing 
something. We therefore introduce the priniffunction. 

printf (liThe answer is 42"); 

printf, print formatted, is perhaps the most commonly used output function. 
Whatever text appears within the double quote marks is, with a few important 
exceptions, printed on the user's output device. Input and output statements 
became an integral part of the standard C language. Older versions of C did not 
define input and output statements but rather provided them within an 
implementation-defined commonly accessible library of such routines, which 
would be made available to the program via an include file. ANSI C 
sanctioned the use of such libraries and made them a part of the language 
definition, thus in principle making the standard library function names 
reserved. For example, use of 

#include <stdio.h> 

at the head of a program is a convenient way of obtaining access to some 
commonly used definitions. These definitions include several of the simpler 
input/output functions. We shall assume for convenience that the user is using 
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a visual display unit (YOU) to a multi-user or microcomputer system on which 
C is available. 

printf ("\nThe answer is 42\n"); 

This variant of the first print/ statement prints a newline character, represented 
by the character pair \n, before and after printing the string itself. All 
statements in C are terminated by a semi-colon. There may be more than one 
statement per line. An assignment statement is exemplified by 

answer-42; /* 42 is a decimal constant */ 
answer-052; /* leading 0 means an octal constant */ 
answer-Ox2a; /* leading Ox or OX means a hex constant */ 

where we assume that answer has been declared to be an integer. Lastly, let us 
note at this point that the braces U may be used to enclose one or more C 
statements 

question=99; answer=42; } 

The collective name for statements enclosed in this way is a compound 
statement. It will become obvious from the examples that in C a comment is 
any text string enclosed by 1* and */' 

Further examples of the use of the define directive can now be given by 
using the print/function. The definition 

#define STARS printf("**********") 

will cause the symbol STARS to be replaced by the call of the function print/. 
When viewed in the context of the example given below it will be appreciated 
that the define facility could save us some tedious typing. 

#define STARS printf("**********") 

main ( ) 
{ 

STARS; 
printf("\nThe answer is 42\n"); 
STARS; 

derming VDU CHARACTERISTICS 

We can use the define directive in another more useful way to improve the 
quality, and thus the user friendliness, of the output produced by any program. 
Most YOUs in common use have facilities to home the cursor, clear the screen, 
and so on. Invariably to use these features means sending a special character 
sequence to the terminal. The character sequence is not easy to remember 
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unless one uses it constantly; it varies from one manufacturer's product to 
another and frequently between different models from the same manufacturer. 
What we suggest is that these codes are set up once and for all using define 
directives. For a Lear Siegler AOM5 we would have 

#define CLEAR 
#define HOME 

printf ("\033Y") 
printf ("\036") 

Recall that the backslash followed by n was used to denote a newline 
character. Backslash followed by a number can be used in printj and elsewhere 
in a C program, to denote the character defined by the ASCII code in octal 
which follows the backslash. A table of the ASCII characters with their octal 
representations is given in appendix 2. To clear the screen of this particular 
terminal we can send the escape character (ESC) followed by the letter Y. 
Since this clears from the cursor to the end of the screen, the HOME command 
should precede the CLEAR. This form of CLEAR command is given because 
ESC followed by a character sequence is a common way of expressing VDU 
directives. 

The number of special features available on a VOU varies considerably. A 
VT100 terminal, for example, will offer cursor addressing, blinking, high­
lighting, reverse video and other features all of which are selected by a special 
character sequence beginning with ESC. For any VDU these special features 
should be noted and appropriate define directives set up as illustrated in the 
examples. Thereafter all the define directives for one terminal should be 
collected together in a suitably named file. Any C program wishing to use 
these facilities need then only include this file at the head of the program and 
all the commands defined for that VOU become available. 

SUMMARY 

In this chapter we have described the structure of C programs. We have 
illustrated the convenient and versatile mechanisms that are easily available to 
the programmer to help produce a well-organised and a well-structured pro­
gram. We shall endeavour to reinforce these ideas through the examples that 
we present. Our presentation may not be perfect and may seem for the smaller 
examples to dominate the examples themselves. Effort spent on organisation, 
structure and layout of a program is worthwhile, and particularly useful for 
larger programs. If you find our examples easy to assimilate and find your way 
round, then use some of the same strategy on your programs. If on the other 
hand you feel the presentation or organisation could be improved, then learn 
from our failings and produce well-structured programs as a result. 
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As we have seen in the previous chapter, functions offer an easy way to 
construct a modular program. Since they are such an essential part of good C 
programming we shall introduce their facilities at an early stage to encourage 
familiarity with their use. 

SIMPLE FUNCTIONS 

In order that our examples may achieve something, even if it is not especially 
useful, we will make use of the printf statement introduced earlier. 

Example 2.1 

#include "adm5.h" 
#define GAP printf("\n\n\n\n") 

1* a program to print large letters *1 

main () 
{ 

} 

HOME; CLEAR; 
bigH (); 
bigI (); 

GAP; 
GAP; 
GAP; 

1* clear the screen *1 

1* bigH prints H as a 7*5 matrix of asterisks *1 

bigH () 
{ 

printf ("* *\n"); 
printf ("* *\n") ; 
printf ("* *\n") ; 
printf ("*****\n"); 
printf ("* *\n") ; 
printf ("* *\n"); 
printf ("* *\n"); 

16 
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/* bigI prints I as a 7*5 matrix of asterisks */ 

bigI () 
{ 

} 

printf ("*****\n"); 
printf (" * \n"); 
printf (" * \n"); 
printf (" * \n"); 
printf (" * \n"); 
printf (" * \n"); 
printf ("*****\n"); 

style 62.3 1 
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Because the program does not do much, its structure, and the preprocessor 
facilities that it uses, are easily seen. The include file 'admS.h' contains screen 
control instructions for a Lear Siegler ADMS. 

In the body of the program, after clearing the screen, a call to the function 
higH is made. When executed this function causes asterisks to be printed 
representing the character H in a 7 * 5 matrix of characters. Similarly hig! 
causes the character I to be printed. The symbol GAP ensures an appropriate 
separation between the characters and whatever follows them on the screen. 

Anyone choosing to type example 2.1 into their own machine will quickly 
realise that they are typing identical printj statements several times over. 
Example 2.2 illustrates that by using the define facility of the preprocessor we 
can save writing and typing of text. Remember that the preprocessor will 
simply replace the defined symbol by its definition throughout the program 
text, and so the version of program 2.2 that reaches the compiler will be 
logically equivalent to program 2.1. 

Examp/e2.2 

#include "adm5.h" 
#define GAP printf("\n\n\n\n") 

/* allstars prints all stars */ 
#define allstars printf ("*****\n") 

/* endstars prints end stars */ 
#define endstars printf ("* *\n") 

/* midstar prints mid stars */ 
#define midstar printf (" * \n") 

main () 
{ 

HOME; CLEAR; GAP; /* clear the screen */ 
bigH (); GAP; 
bigI (); GAP; 
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bigH () 
{ 

} 

endstars; endstars; endstars; 
allstars; 
endstars; endstars; endstars; 

bigI () 
{ 

allstars; 
midstar; midstar; midstar; midstar; midstar; 
allstars; 

style 55.4 1 

Alternatively, the program can be rewritten using function calls instead of 
defines by declaring allstars, endstars and midstar as functions, as shown in 
example 2.3. The programs 2.2 and 2.3 are functionally, but not logically, 
equivalent, in the sense that, although the output from both is the same, in one 
case it is produced by a program with three functions, and in the other, by a 
program with six. 

Example 2.3 

#include "adm5.h" 
#define GAP printf("\n\n\n\n") 

main () 
{ 

HOME; CLEAR; GAP; /* clear the screen */ 
bigH (); GAP; 
bigI (); GAP; 

bigH () 
{ 

endstars 
aIls tars 
ends tars 

bigI () 
{ 

(); 
(); 
(); 

allstars (); 

ends tars 

endstars 

(); endstars 

(); ends tars 

midstar (); midstar (); midstar (); 
midstar (); midstar (); 
allstars (); 

/* aIls tars (), endstars (), midstar () * / 
/* are now defined as functions */ 

(); 

(); 
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aIls tars () 
{ printf ("*****\n"); 

ends tars () 
{ printf ("* *\n") ; 

midstar () 
{ printf (" * \n");} 

[ style 42.4 

MACROS OR FUNCTIONS? 

When executing, the program 2.3 produces the same results as the two 
previous versions of this program. Which is best depends on what criteria are 
used for the comparison. In example 2.2 the preprocessor replaces all symbols 
defined in a define. The transformed program is passed to the C compiler. 
When executed, the body of the function higH causes seven printf statements 
to be obeyed. When executing the function higH of 2.3, seven function calls 
are executed and each call causes a printj statement to be obeyed. For 
examples of this size we are unlikely to notice the difference in compile time 
or execute time between 2.2 and 2.3. If we were able to measure such times 
accurately then we would find that 2.2 compiled more slowly than 2.3, but 
executed more quickly. Our guideline, while approximate, will be that where 
symbols are replaced by small amounts of text then the symbol will be defined 
in a define statement, otherwise the symbol will be defined as a function. In 
contrast, if we knew that a function with a small body was called in a part of 
the program that was heavily used, then we would consider replacing the 
function definition by a define statement for the symbol name. This would save 
the overhead of the function call at execution time. 

The ANSI standard allows functions defined in the standard libraries to have 
#define macro equivalents, provided that the libraries also contain the 
appropriate functions. This arrangement gives the programmer flexibility in 
deciding whether to use functions or macros even in the case of standard 
library constructs. By undefining the name of a macro using #Undef directive, 
the programmer makes sure that a "real" function is used. Without the un­
define, the program may be using a function or a macro depending on a 
particular C implementation. 

USING ARGUMENTS AND PARAMETERS 

Functions are much more useful if we are able to pass information to them. 
Infonnation can be passed implicitly, by using within the function symbol 
names that are defined elsewhere, or explicitly, by using parameters. The word 
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"parameters" refers to the symbol names that are specified in the function 
definition; "arguments" are the actual values supplied when the function is 
called. The examples of printJ used to date have been limited in that they 
simply print a given string. However, printJ is a much more versatile function 
than these early examples suggest. In particular it can be made to print the 
value of data items that are passed as arguments, thus: 

printf ("%c %c\n" , '*', '*'); 

The first argument must always be the string (in double quotes) that contains 
characters to be printed, formatting information, and conversion characters. 
The percent sign % precedes conversion characters in the string. More details 
of the conversion characters will be given in chapter 3. For the moment it will 
be enough to know that the letter c after % indicates a character conversion. 
For each conversion character in the control string a suitable argument must be 
provided within printJ following the control string. Each parameter following 
the control string must have a corresponding conversion character within the 
control string. The printJ statement given above has exactly the same effect as 
the printJ statement given in function endstars of 2.3. We are now in a position 
to add a useful parameter to those functions that we have defined. 

DEFINING PARAMETERS 

Consider the following version of el1dstars: 

endstars (anychar) 
char anychar; 
{ 

printf ("%c 
} 

%c\n", anychar, anychar); 

Here the function, endstars, is defined as having a parameter. The type of the 
parameters, if there is one or more, can be defined before the brace which 
marks the start of the ftmction body, or inside the parentheses containing the 
list of parameters. The latter style has been introduced by the C standard and 
will be described in detail in the section describing function prototypes in·this 
chapter. 

The parameters may then be used in a manner consistent with their 
definition anywhere within the function body. The function endstars simply 
uses anychar as an argtunent to printJ. Hence whatever character is passed to 
endstars through the argtunent list in a function call is printed in the manner 
that should now be familiar. 
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Example 2.4 

#include "adm5.h" 
#define GAP printf("\n\n\n\n") 

main () 
{ 

HOME; CLEAR; GAP; /* clear screen */ 
bigH ('H'); GAP; /* use H to construct letter H */ 
bigI ('I'); GAP; /* use I to construct letter I */ 

} 

bigH (ch) 
char chi 
{ 

ends tars (ch); ends tars (ch) i ends tars (ch) i 
aIls tars (ch); 
endstars (ch); endstars (ch); endstars (ch); 

} 
bigI (ch) 
char Chi 
{ 

aIls tars (ch); 
midstar (ch) i midstar (ch); 
midstar (ch); midstar (ch); midstar (ch); 
aIls tars (ch); 

/* allstars(), endstars(), midstar() */ 
/* are now defined as functions, */ 
/* each has one parameter of type char */ 

aIls tars (ch) 
char chi 
{ printf ("%c%c%c%c%c\n", ch, ch, ch, ch, ch); } 

ends tars (ch) 
char chi 
{ printf ("%C 

midstar (ch) 
char chi 

%c\n", ch, ch); } 

{ printf (" %c \n", ch); } 

[ style 51.9 
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If all the functions of the example 2.3 are parameterised in this fashion, and the 
corresponding calls are suitably amended, then we obtain a program such as 
2.4. This program is more versatile than the others in the series in that by 
changing the character that is the actual argument to higH, or to hig/, we can 
change the output produced. Using parameters in this way will usually help to 
make quite clear what must be passed from the caller to the function. If 
communication between a caller and a function is done implicitly by use of 
symbols to which both have access, the communication is not so obvious to the 
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reader. For this reason early examples within the book will use the parameter 
list. Later examples will not be restricted in this way. 

A further example of a function with parameters is one that enables us to 
move the cursor on the VDU screen to any position. For the ADM5 this 
function definition might appear as 

1* to move the cursor to 'row', 'pos' *1 
cursor (row, pos) 
int row, pos ; 
{ 

const int us = 31; 1* initialise for ADM5 *1 
printf ("\033=%c%c"·, us+row, us+pos); 

} 

The call 

cursor (1, 1); 

would move the cursor to the 'home' position, while the call 

cursor (12, 40); 

would move the cursor to the middle of the screen. However, all of our other 
screen control directives are gathered together in an include file. The logical 
place for cursor is within that file too. But cursor needs parameters and so far 
none of the symbols in a define directive has used parameters. Recall that 
replacement of defined symbols is undertaken by a macroprocessor and, 
fortunately, this offers us parameter replacement. Hence the addition to our file 
of the following definition 

#define CURSOR(r, p) printf("\033=%c%c", 31+r, 31+p) 

will perform exactly the same role as the function of the same name. 

USIN G return 

As well as passing information to a function, we must be able to pass 
information back to the caller from the function. This may be done in one of 
three ways: by using a return statement to pass a value via the function name, 
by passing one or more values back through the parameter list, or by changing 
the values of symbols to which both the function and the caller have access. 
For the reason given earlier this last form of communication will not yet be 
used. 

The function sUrface in example 2.5 computes the surface area of a 
rectangular box having dimensions that can be expressed as integers. The value 
computed is communicated to the caller by the return statement and can be 
thought of as being associated with the function name. The function call can, 
in consequence, be used in expressions. In particular the call may appear in a 
printf statement, as indicated in example 2.5. 



Example 2.5 

main () 
{ 

Functions 

int length, width, depth; 

length = 10 ; width = 16 ; depth = 4; 
printf ("surface area = "); 
printf ("%d\n", surface (length, width, depth»; 

return (0); 

/************************************/ 
/* to compute the surface area */ 
/* of a rectangular box */ 
/************************************/ 

surface (len, wid, dep) 
int len, wid, dep; 
{ 

return (2* (len*wid + wid*dep + dep*len»; 

style 53.3 1 
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Even such an apparently simple example raises several new points. The 
conversion character following the percent sign is d to indicate a decimal 
integer. In other respects the printj statement is little different from those 
already seen. The function definition has three parameters of integer type (int). 
The function call has three arglUnents of integer type. The parameters and 
arguments correspond in order, nlUTIber and type The function body consists 
simply of a return statement which computes the surface area. So that no 
confusion arises in these early examples, the parameters have been given 
names that are different from the names of the arglllTIents. The names leave no 
doubt as to which parameter corresponds to which argument. 

The return statement passes a single value from the function to the caller. 
The type of this value is determined by the form of the expression in the return 
statement and the type of the operands. If the returned value is of type integer 
or character (char) then the function definition is as given in example 2.5. 
However if the parameters to the function were of type float then the program 
should appear as in example 2.6. 

The main function of any program is called by the underlying operating 
system and is always defined as returning a value of type into Some operating 
systems interpret the value returned by the program at the completion of the 
main function and may act upon it. By convention, the return value of 0 
signifies a normal successful program termination. Hence, we include the 
statement return (0); at the end of main. 
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Example 2.6 

main () 
{ 

} 

float length, width, depth; 

float surface(); 1* this is needed *1 

length: 20.0; width: 26.0; depth - 4.0; 
printf ("surface area = "); 
printf ("%f\n", surface (length,width,depth»; 

return (0); 

1* this version of surface returns *1 
1* a result of type float *1 

float 
surface (len, wid, dep) 
float len, wid, dep; 
{ return (2*(len*wid + wid*dep + dep*len»; } 

[ style 51.8 ] 

The type of the arguments and the parameters has been changed to float. The 
function must now return a value that is also of typefloat. The type of result 
returned by the function is signalled by preceding the function name in the 
function definition by the type of value to be returned. A function is assumed 
by default to have the type into If it is our intention to qse a function that 
violates this assumption then we must signal this intention. This is done by 
including. in the functions or files that call this function, a declaration of the 
function. It is for this reason that an additional line appears 

float surface(); 

In addition to function declarations, ANSI C allows function prototypes which 
explicitly specify the number and type of parameters as explained in the next 
section. 

FUNCfION PROTOTYPES 

Any function not explicitly declared in a program is assumed to return a value 
of type into Obviously even the functions returning integer values can be 
declared to make this fact explicit. Before ANSI C, function declarations did 
not, however, specify the types and order of parameters and as a consequence 
it is very common in C programs to confuse the order or type of arguments in 
function calls and introduce errors which are often quite disastrous and 
difficult to diagnose. ANSI C solves· this problem by introducing function 



Functions 25 

prototyping which is possibly the single most important feature of the C 
standard. 

Function prototypes may be viewed as business cards which introduce the 
function and its intended use. The function itself may be defined in another file 
as seen in several examples in the previous chapter, but the function prototype 
given in the program segment in which calls to the function are made ensures 
that the source program translator is aware of the order and type of function 
arguments and can diagnose any misuse of them. Function prototypes are given 
by specifying the type of the returned value, the function name and a list of 
types of formal parameters the function takes. 

float volume (float, float, float); 
static float surface (float radius); 
void provide answer (void); 
int my_print-(int number, float value, .•. ); 

The above examples illustrate several important characteristics of function 
prototypes. Function volume is defined as returning a floating point value and 
taking three floating point parameters. An attempt to call the function with 
integer arguments will cause the corresponding arguments to be automatically 
converted to floating point values before the call is made. Function sUrface is 
defined as returning a floating point value and by the virtue of being static, 
will not be visible to functions in files other than the one containing its 
definition. The parameter name radius following the type definition is not 
necessary but is allowed for docwnentation purposes and in this case is useful 
in deciding that the function returns a value for a surface of a spherical object. 
Function provide_answer is of type void to indicate that the function does not 
return any value. The function is thus equivalent to procedures in some other 
programming languages. This flmction does not take any arguments either, as 
indicated by void parameter type. Please note that the prototype for 
provide_answer is not equivalent to a declaration such as 

void provide_answer(); 

The former one explicitly specifies that the function does not take any 
arguments, whereas the latter is just a function declaration without any 
parameters specified and the function thus declared may or may not take 
arguments. 

Finally, function nry "print is specified to return an integer value and to take 
at least two arguments of type int andfloat respectively, possibly followed by 
other arguments. Any type checking performed by the compiler will be limited 
to the first two arguments of the function, in effect providing functions with 
variable nwnber of argwnents. The ellipsis indicating an unspecified nwnber 
of arguments must always be the last parameter in the function definition. 
Ellipses in function prototypes combine the safety of specifying the parameter 
types with the flexibility afforded by providing only function definitions. 
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To take a full advantage of function prototypes and type checking 
perfonned by an ANSI C compiler, it is recommended that all functions of a 
program be prototyped, possibly in a separate header file or files and included 
as necessary in all the modules calling the corresponding functions. The task of 
providing such prototypes is made easier by a new format of function 
parameter definitions allowed by standard C. 

Example 2.7 

static float surface (float r); /* prototype of surface */ 

int 
main () 
{ 

float r; 

/* call to surface - %g indicates 
a floating point conversion */ 

printf ("Surface for radius %g is %g\n", r, surface (r»; 

return (0); 

/***************************** 
* Function to calculate * 
* surface area of a sphere * 
*****************************/ 

static float 
surface (float r) /* definition of surface - no ";" */ 
{ 

const float pi - 3.1415927; 

return (4*pi*r*r); /* it's a sphere */ 

style 32.9 1 

In the above example, the parameter definition for sUrface is given inside the 
parentheses in both the function prototype and the function definition. The 
difference between fonnats of function prototypes and definitions lies only in 
the absence of the delimiting semicolon in the function definition and the 
opening brace indicating the beginning of the body of the definition. The old 
style of defining the types of fonnal parameters outside of the parentheses and 
before the opening brace is still allowed but discouraged. As with other new 
features introduced by the C standard, one may decide not to use them given 
that there are still many compilers which are not strictly confonnant. In 
chapter lOwe will present some techniques which may be used to write strictly 
portable programs and yet allow the programs to be successfully compiled by 
the older, non standard compilers. 
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RETURNING VALUES VIA THE PARAMETER LIST 

As well as receiving data values through the parameter list it is also reasonable 
to expect that we can communicate data values back to the caller through one 
or more parameters. In order to understand the mechanism by which this is 
achieved, let us observe that in C all parameters are value parameters. That is, 
the values of the actual parameters are copied into temporary storage in the 
function work space upon entering the function. Thereafter, the function only 
makes reference to these local values. If assignment is made within the 
function body to one of the parameters, it will be the local copy that is 
changed, not the original. At first sight this seems to inhibit communication 
from the function to the caller via the parameter list. For C the way out is to 
use the address of the relevant data item. 

ADDRESSES AND POINTERS 

Address Contents 
&i 
ptr *ptr 

In a high-level language it is not usually necessary to know or care about the 
address in memory of the data values that we wish to manipulate. As a 
consequence, in some languages we have to resort to subterfuge in order to 
access specific memory locations. Pascal is one such language. At the other 
extreme, if it is too easy to access and modify memory locations then a 
program exploiting this facility can become unreadable. Thus a BASIC 
program which makes too much use of 'peek' and 'poke' instructions is not 
easily intelligible. In C an easy and convenient way of obtaining the address of 
a data item is provided. Correspondingly, given the address of a data item, we 
can easily obtain its value. As might be expected, in C the mechanism is short 
and simple. We obtain the address of an item by prefixing it with ampersand: 
thus &x is the address of x. In order that we can manipulate addresses we need 
to be able to define items that have pointers or addresses as their values. This 
is done as follows 

int i j /* i represents a value of type integer */ 
int *ptrj /* ptr holds the address of a data item */ 

/* of type integer. 

/* an alternative declaration with the */ 
/* same effect follows */ 

int i, *ptrj 

This notation can now be used to enable a function to communicate with its 
caller. For if the caller passes to the function the address of a data item, it is 
the address that is stored in the local storage area of the function. The function 
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cannot change the address of the item, but it can change the contents of the 
address which is, after all, what we wish to happen. Example 2.5 may now be 
rewritten as example 2.8. 

Example 2.8 

void 
surface (int len, int wid, int dep, int *addr); 

main () 
{ 

int length, width, depth, area; 

length = 10; width = 16; depth 4; 
surface (length, width, depth, &area); 
printf ("surface area = %d\n", area); 

return (0) i 

/* the fourth parameter is an address */ 
/* we refer to its contents as *addr */ 

void 
surface (int len, int wid, int dep, int *addr) 
{ *addr = 2 * (len*wid + wid*dep + dep*len); return; } 

[ style 39.7 1 

The differences between this example and the two previous examples need to 
be highlighted. In the function surface the formal parameter addr is used to 
communicate the computed surface area back to the caller. In order that this 
may happen the contents of addr, *addr, is typed as an integer which means 
that addr is an address. The caller must therefore provide the address of an 
integer type variable as the fourth argument. In the example it is the address of 
area, &area, that is provided. Since the function is defined as void no value is 
associated with the function name. Accordingly the function call is a statement 
in the main segment of the example. 

When a function has only one value to communicate to the caller it will 
usually be convenient to use a return statement to pass the value via the 
function name. If more than one value is to be communicated to the caller, 
then we can use both the return mechanism and the parameter list, or we can 
use the parameter list alone. Flmctions exhibiting these features will be used 
later in the book when further language constructs have been introduced. 
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SUMMARY 

In this chapter, we have introduced two methods of abbreviating the number of 
statements that a programmer must write to produce a program: defines and 
functions. Choosing between the two is largely a matter of personal taste, 
subject to the guidelines that we have laid down. 

Functions represent a major aid both to the modular development of a 
program and to its subsequent readability. The length of a function is again a 
matter of taste; ideally, a function should perform a single task, and should 
rarely, if ever, exceed a printed page in size. 

We have discussed the various methods by which the functions of a program 
can communicate with each other. Suitable use of parameters not only 
generalises the use of a function, but also assists in an understanding of its 
purpose and the extent to which different parts of a program fit together. 



3 Output and Input 

OUTPUT 

Our use of the output function printj has so far been straightforward. We have 
seen that, as well as printing text strings, it can easily be made to convert the 
internal fonn of our data items into a suitable foon for printing. The general 
fonn of the printj function call can be expressed as 

printf (control_string [, argument_list]) 

(The square brackets enclose an item that is optional.) The control string may 
contain characters to be printed, special control characters preceded by 
backslash, and conversion specifiers. 

printf CONVERSION SPECIFIERS 

For each conversion specifier there must be a corresponding argument in the 
argument list. The minimal fonn of a conversion specifier is a percent sign 
followed by one of a limited set of characters. Examples of conversion speci­
fiers are given in table 3.1. 

The general fonn of the conversion specifier can be written 

%[ff] [fw] [.pp] [mm]C 

where ff is a set of optional flags which modify the meaning of the 
conversion specification as follows: 

the result of the conversion will be left justified within the 
field. If "_" is not present, the result will be right justified. 

+ the result of a signed conversion will always begin with a 
"+" or "_" sign. If "+" is not present, the result will be 
preceded by a sign only if a negative value is converted. 

30 



Output and Input 31 

# the result is converted to an alternate fonn. For 0 

conversion, nonzero result will have a 0 prefixed to it. For 
x and X conversions Ox or OX will be prefixed to the 
result respectively. 

o the result of a numeric conversion will be prefixed with 
zeros to the specified field width. 

fw is a digit string giving the minimum field width - the total 
number of print positions occupied. Excess places in the 
field are by default filled with blanks, unless 0 flag is 
specified for numeric conversions. A data value that is 
too large for the field specified is printed in its entirety. 
An asterisk used instead of the digit string signifies that 
the field width is given by an integer (constant or 
variable) in the appropriate position in the argument list. 

separates fw from pp. 

pp is a digit string which for a data item of type float or 
double specifies the number of digits to be printed after 
the decimal point. For a string it specifies the maximum 
number of characters from the string to be printed. For 
integer conversions, it specifies the minimum number of 
digits to be printed. As in the case of fw above, an 
asterisk can be used instead of the digit string. 

mm is one of h, I or L modifiers. h modifier specifies that the 
following integer conversion takes a short argument. I 
specifies that the following integer conversion takes a 
long argument. L specifies that the following floating 
point conversion takes a long double argument. 

C is the conversion character as specified in Table 3.1. 
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Table 3.1 

Conversion 
characters 

c 
dori 

u 
o 

xorX 

f 
eorE 

gorG 
s 
p 
n 

% 

A Book on C 

Argwnent Comment 
type 

char Single character 
int Signed (if negative) decimal 
int Unsigned decimal 
int Unsigned octal. leading zeros suppressed 
int Unsigned hexadecimal. abcdej are used 

for x conversion. ABCDEF for X 
float or double Decimal notation 
float or double Scientific notation. Exponent is 

introduced by e or E respectively. 
float or double Shortest of %e. %f 

string 

void* 
int* 

none 

Memory address is printed 
Number of characters written so far will 
be stored in the variable specified in the 
argument list. 
% is written; that is. %% causes a single 
% to be printed. 

Any invalid conversion character is printed! 

The examples in the text so far have used few of the option facilities 
listed above. If our programs are to produce acceptable output then we must be 
able to take full advantage of the facilities offered by pn·ntf. Much the best 
way to obtain the necessary familiarity is to use. and experiment with. different 
conversion specifiers. To help in this a list of examples is given in table 3.2. 

BACKSLASH 

Within the control string we have used the backslash character preceding n to 
force the printing of a newline. There are other characters which have special 
significance when preceded by the backslash. The full list is given in table 3.3. 
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Table 3.2 

Value Control String Output 

360 %10d 360: 
-1 %lOld -1 : 

360 %-10d :360 
-1 %10hu 65535: 
-1 %I01u :4294967295: 

360 %100 550: 
-1 %1010 : 37777777777: 

360 %0100 :0000000550: 
360 %-lOx : 168 
360 %-#10x :Ox168 
360 %-#10X :OX168 

-1 %-IOlx :ffffffff 

-1 %-10lX :FFFFFFFF 
360 %-010x :1680000000: 

3.14159265 %10f 3.141593: 
3.14159265 %10.3f 3.142: 
3.14159265 %-10.3f : 3.142 
3.14159265 %10.Of 3: 
3.14159265 %10g 3.14159: 
3.14159265 %10e :3.141593e+OO: 
3.14159265 %10.2e 3.14e+00: 
programmer %10s :programmer: 
programmers %lOs :programmers: 
programmer %10.7s program: 
programmer %-10.7s : program 
programmer %lOAs prog: 
programmer %10.0s :programmer: 
programmer %.3s :pro: 
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Table 3.3 

\a alert (bell) 
\b backspace 
\f fonn feed 
\n newline (line feed) 
'c carriage return 
\t tab 
\v vertical tab 
'ddd ascii character code in octal 
\xddd ascii character code in hexadecimal 
'\ 
\" 
\1 1 
\\ \ 

The features of the printj statement that have been itemised are sufficient to 
provide the user with good control over the output generated. Remembering 
also that through the control string itself we can separate one field from 
another, we appear to have everything we need. It is now easy to modify 
example 2.1 so that it will print its large letters in the middle of the screen 
instead of on the lefthand side. All that is necessary is to ensure that, say, 
thirty-six leading spaces are printed before every string that is printed. This 
could be done by changing the first o/oc of each control string to %37c. If this 
proved unsatisfactory for some reason we would need to change each 
occurrence of 37 to something new. It will be much more convenient to use a 
define directive of the fonn 

#define indent printf ("%36c", I ') 

which will give us 36 leading spaces, and place the statement 

indent; 

before each of the relevant printj calls. A change in the number of leading 
spaces is now conveniently obtained by changing the value of one numeric 
constant. 

INPUT 

So far our primary concern has been the organisation of our output. We must 
also be able to supply our program with data when it is executing. Corres­
ponding to the output function printj is the input function scant which has a 
similar philosophy. If we continue with the assumption that input and output 
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are done through a VDU then a call to scanf of the form 

scanf ("%d %d %d", &length, &width, &depth); 
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could have been used in example 2.5 to give values to the identifiers. The user 
would then need to type three integers as input when the program started to 
execute. Notice that because scanf must be able to communicate the input 
values to the caller, the caller must provide the address of the symbols to 
which the values are to be assigned. The general fonn of scan/is 

scanf (control_string [, argument_list1) 

Within the control string blanks, tabs or newlines (collectively known as 'white 
space') cause the input to be read up to the first non-white-space characer. If 
any characters, apart from those needed in the conversion specifiers, appear in 
the control string, it is assumed that they are to match the next non-white-space 
character of the input stream. In particular, if any such characters appear as the 
first items in the control string then scan/. whenever it is called, will expect to 
find just these characters as the next to be read from the input stream. If the 
characters are not fOlmd, scanf fails, and the subsequent characters are not 
read. 

scanf CONVERSION SPECIFIERS 

For scanfthe conversion specifier has the following general fonn 

% [* 1 [dd1 [mm1 C 

where C is the conversion character, * is an optional assignment suppression 
character, dd represents a digit string giving the maximum field width, and mm 
is a modifier as in the case of printf. The characters admissible as conversion 
characters are given in table 3.4. 
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Table 3.4 

Conversion Argument type 
characters 

c Pointer to char 

dori Pointer to int 
0 Pointer to int 
x Pointer to int 

f Pointer to float or double 
e Pointer to float or double 
g Pointer to float or double 

s Pointer to array of char 
[ ..... ] Pointer to array of char 

p Pointer to void 
n Pointer to int 

Consider the following simple example 

scanf ("%d", &fw); 1* read an integer 'fw' *1 
printf ("%*c\n", fw, '+'); 1* print a plus sign in *1 

1* a field width of 'fw' *1 

An input field is normally delimited by white space characters, and hence for 
our first example of the use of scant the three integers required for input could 
have been typed on a line separated by one or more spaces, or they could have 
been typed one per line. Either form, or a mixture of the two, would be accept­
able. Be warned that this meatls that scant will read across input lines to find 
the next item of data. If the conversion specifier includes the assignment 
suppression character, no assignment is made; in other words the corres­
ponding input field is matched and skipped. Should the length of the input field 
exceed the fieldwidth specified, then the data item is assumed to consist of the 
first 'fieldwidth' characters. Example 3.1 will perhaps help to clarify some of 
these points. 
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char ch; 
char string[20]; 
int i, j, extension; 
long number; 
float x; 

Output and Input 

/* assume the input string PHONE65201X4133 */ 

scanf ("PHONE %ld %c 'lid", &number, &ch, &extension); 
/* yields number - 65201, ch - 'X', extension - 4133 */ 

scanf ("PHON %c %f %*c 'lid", &ch, &x, &ch, &extension); 
/* yields ch - 'E', x - 65201.0, extension - 4133 *1 

scanf ("PHONE %2d %3d %c %2f", &i, &j, &ch, &x); 
1* yields i - 65, j - 201, eh - 'X', x - 41.0 *1 

scanf ("%[AX] %c 'lid", string, &ch, &extension); 
1* yields string - "PHONE65201", ch - 'X', 

extension - 4133 *1 

scanf ("PHONE %[0123456789] 'lie 'lid", string, &eh, &extension); 
1* yields string - "65201", eh - 'X', 

extension - 4133 *1 
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Note that in the third example scmifhas not read the last two characters (33) of 
the input stream. The next call to scan! would scan from the first of these 
characters. If the input stream contains nothing to match the current item of the 
control string, scan! tenninates. Tennination also occurs when all elements of 
the control string have been satisfied. 

A variation on the string conversion specification is introduced in the last 
two examples, where the string is not delimited by white space characters. The 
specifier %[ ... ] indicates a string containing any of the characters within the 
square brackets (and delimited by any that is nod, while the specifier %[A ... ] 
indicates a string delimited by the character set within brackets. 

scan! returns to the caller the number of data items that were matched and 
assigned. A value of zero is returned when the next character of the input 
stream does not match the first item in the control string, and the value EOF 
(defined in stdio.h) is returned when end of file is encountered. Thus if the call 
to scan! in the third example appeared instead as 

items'" scanf ("PHONE %2d %3d %c %2f", &i, &j, &ch, &x); 

then items would be assigned the value 4. 
The input stream searched by scan! is the standard input stream stdin. The 

output produced by printf is directed to the standard output stdout. It will 
frequently be necessary to scan other data sources and to direct output to other 
destinations. This can easily be achieved by using variants of scan! and print/. 
One of these variants allows us to deal with strings. 
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STRINGS 
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In C a string constant is a sequence of characters enclosed in double quotes. 
Like other data items strings may be read in, stored, manipulated and printed. 
Strings are stored in arrays of characters (this topic is covered in detail in 
chapter 7) and are referenced by the address of the first character, a pointer to 
array of char. The general form of the version of sctuifthat processes strings is 

sscanf (data_string, control_string [, argument_list]) 

sscanf scans the string data _string attempting to match the data items specified 
in the control string. Successful matches are, when appropriate, assigned to the 
arguments in the argument list. Correspondingly 

sprintf (data_string, control_string [, argument_list]) 

writes the argwnents specified in the argument list into the data string in the 
manner detennined by the control string. Since we can refer to strings only by 
means of a pointer to an array of char, it is obvious that the first argument to 
sprint! is the address of the data item that is to be changed. 

110 FUNCTION LIBRARY 

The C language standard requires that there will exist a library of functions to 
perform various input/output tasks. All such functions are defined in the 
standard, in effect introducing into the language a set of reserved names. Both 
pn'ntj and scant are defined in this library. 

The functions getchar and putchar should be part of any non-standard C 
library and, as their names imply, they communicate single characters from 
and to the VDU which we are assuming to be our input/output device. For 
example 

ch = getchar (); 1* get next character *1 
put char (ch); 1* print it *1 

or, equivalently 

putchar (ch = getchar ()); 

since, in C, an assignment is an expression that yields the value assigned as its 
result. 

The input/output functions that will usually form part of any non-standard 
runtime library are listed in table 3.5. Chapter 12 lists all the functions which 
must be defined in any strictly conformant C implementation. Any function not 
defined in a particular version of a C library and thought to be important or 
useful can be added to such a library by the user. If any such additions are 
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made, it is obviously desirable that the functions providing functionality 
defined in the standard be constructed in a strictly confonnant way. This would 
include the names of functions and libraries, the names of header files, purpose 
of the functions and order and type of parameters taken. Any functions not 
defined in the standard but useful or necessary for a particular implementation 
should draw on the standard and be implemented in a way consistent with it. 
Examples of such libraries include machine dependant functions such as port 
operations or graphics for the PC family, or site specific functions such as 
special mathematical or statistical functions. There is no suggestion that even 
in the case of non-conformant implementations, the list in table 3.5 gives all, 
and only, those functions that should appear in the library. 

When viewed collectively the functions listed in table 3.5 leave one 
wondering why 

(1) the names pute, gete are notfpute, fgete to indicate that they 
communicate with files, and 

(2) the file yointer argument of pute, fputs, fgets does not appear 
as the first argument as it does infprintf,fseanj. 

The following definitions might help the user whose sense of order is offended. 

#define fputc(f, a) 
#define fgetc(f) 
#define fputstring(f, a) 
#define fgetstring(f, a1, a2) 

FILE I/O 

putc (a, f) 
getc(f) 
fputs(a, f) 
fgets(a1, a2, f) 

We have explicitly assumed so far that our input or output takes place from or 
to the user's terminal. While this will suffice for much initial work, we will 
wish, ultimately, to be able to read from and write to files. There are three files 
that are always available to any program. These are sttiin, stdout and sttierr, the 
files for standard input, standard output and standard error messages. In 
practice these three files are always linked to the users terminal. These files 
are opened at program entry and closed at program exit. 
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Table 3.5 

printf (control string [, argument list]) 
scanf (control_string [, argument_list]) 

put char (argument) 
getchar () 

sprintf (data string, control string [, argument list]) 
sscanf (data_string, control_string [, argument_list]) 

fprintf (file pointer, control string [, argument list]) 
fscanf (file_pointer, control_string [, argument_list]) 

putc (argument, file pointer) 
getc (file_pointer) -

fputs (argument, file pointer) 
fgets (argument 1 , argument2, file_pointer) 

Users wishing to use other files must perform the opening and closing 
themselves. Functions are provided to simplify this work. Opening a file 
involves passing a file name together with other information to the function 
/open which returns a pointer to a file. Input/output functions using this pointer 
may write to a file or read from a file. The functions fpn"nl/ and /scanj are, 
apart from the fact that they communicate with a file, identical in action to 
their counterparts pn'ntf and scanf. The general form of their calls is given in 
table 3.5. 

CLOSING A FILE 

As part of the housekeeping associated with our program, a file should be 
closed when it is no longer needed. This is done by a call to the function/close 
which has a general form 

fclose (file_pointer) 

When a program terminates normally, all open files are closed automatically. 

OPENING A FILE 

The operating system under which a C program executes may impose a limit 
on the number of files that the program may have open at one time. You 
should establish whether such a limit exists for your system and ascertain its 
value. If this limit is inadvertently exceeded, a warning should be given when 
opening the file that causes the limit to be passed. Since other problems also 
could arise in opening a file, such as 'file does not exist', 'file is write 
protected', and so on, it is worth having a closer look at the details of opening a 
file. 
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A file pointer points to a data item that we have not so far encountered, an 
object of type FILE. This is not a simple da~ item such as one with type char 
or int that we have used previously, but is more complex. We need not know 
what data items the type FILE embraces. A file of standard definitions of items 
essential to the input/output functions is kept in the include file 'stdio.h'. By 
including this file in our program, we define such symbols as FILE, EOF and 
NULL. For local use within the program we need a file pointer, which we will 
calljptr, and we need to usejopen to open the required file. The general form 
of a call to jopen is 

fopen (file_name, file_mode) 

This function returns a file pointer to the file that has been opened. Since the 
function is therefore not returning a value of the default type (int or char), it 
must be declared within the function, or file, that is to use it. This is done by 
including stdio.h header file which in standard C provides prototypes for all 
input/output functions. The prototype for jopen is of the form 

FILE *fopen (const char *filename, const char *mode); 

where const means that the parameters will in no way be modified by the call 
to the function. Our modified program of example 2.1 looks now like this: 

Example 3.2 

#include "admS.h" 
#include <stdio.h> 

#define GAP fprintf(fptr, "\n\n\n\n") 

#define allstars fprintf(fptr, "*****\n") 
#define endstars fprintf(fptr,"* *\n") 
#define midstar fprintf(fptr, " * \n") 

FILE *fptr; 

main ( ) 
{ 

} 

fptr = fopen ("results.text", "w"); 
if (fptr == NULL) { 

printf (" error in opening file\n"); 
} else { 

HOME; CLEAR; GAP; 
bigH (); GAP; 
bigI (); GAP; 
fclose (fptr); 

} 

return (0); 
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bigH () 
{ 

} 

endstarSi endstarsi endstarsi 
allstarsi 
endstarsi endstarsi endstarsi 

bigI () 
{ 

} 

allstarsi 
midstari midstari midstari midstari midstari 
allstarsi 

style 67.9 1 

The filename argument to fopen must be a string giving the name of the file to 
be opened. The mode argument must also be a string which specifies the type 
of access required. Some possible file modes are 

r read access 
w write access 
a append access 

An attempt to open a file that does not exist for writing or appending will 
result in the file being created. If a non-existent file is opened for reading, then 
fopen will return the value NULL. Other errors will also result in the NULL 
value being returned by fopen. As a result, if the file is opened by a statement 
such as: 

fptr = fopen ("results.text", "w"); 

we must immediately check that the file pointer fptr in not NULL. This is done 
using a conditional statement, and while this has not yet formally been intro­
duced. it should be clear from the example that a NULL return fromfopen will 
cause our program to print an error message; a non-NULL return will cause it 
to continue execution normally. 

There are some specific comments worth making about example 3.2. 
HOME and CLEAR have not been modified and so send their character 
sequences to the VDU and not to the results file. The FILE declaration must 
not be within a function since main, bigH and big/ all need to refer to fptr. 
printj has been changed to fprintj in the define directives and fptr has been 
added as the first parameter. The standard input/output definitions in 'stdio.h' 
have been included. 
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SUMMARY 

Output and input provide the interface between the program and its 
environment. Standard C specifies a rich variety of input/output functions 
implemented as a library which must be defined in any conformant C 
implementation. The program interface provided by this library, that is to say 
the form of the function calls and the effects of each function, is standardised 
and well defined. However, the individual implementation of these functions is 
by necessity different in various computing environments. 

Even though some older, non-conformant C implementations may not 
provide all these functions, the input/output facilities that we have discussed in 
this chapter are generally accepted as a de/acto standard. However, your local 
implementation should be checked before assuming that you can use the 
functions we have specified: your implementation may have either more or 
less than ours. 

Since the principal function of all programs is to communicate, whether it 
be with other programs, devices, or the human user, as much thought should be 
given to the design of this interface as to the problem solution. It is not 
sufficient that a program produces the correct results, if those results, by virtue 
of poor presentation, are difficult to interpret; nor is it sufficient that a program 
assumes the integrity of its input, for this is usually the one factor over which 
the programmer has no control. 
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A programming language that only offered the possibility of moving from one 
instruction to the next instruction in sequence would be extremely limiting. To 
be useful, we must be provided with the facility to choose different courses of 
action under different circumstances. There are two distinct ways that this may 
be done in C. We can use either the conditional statement or the switch 
statement. 

CONDITIONAL STATEMENT 

Two forms of the conditional statement are available in C: 

if (expression) statement1 
if (expression) statement1 else statement2 

An example of the latter form appears in example 3.2 to test that a file has 
been opened satisfactorily. 

If the conditional statement currently under discussion is included, the kind 
of statements used so far in the text include 

• an assignment expression, 
• a function call, 
• a conditional statement, 
• a return statement, and 
• a compound statement. 

(Recall that a compound statement is a group of statements enclosed by braces 
{} ). Any of the statement types listed can be used as indicated by the general 
form of the conditional statement. Other forms of statement, defined later, can 
also be used. With the exception of the compound statement in the list above, 
all statements are terminated by a semi-colon. Anyone familiar with Pascal 
will find that the form of the conditional statement which uses else can, in 
certain circumstances, look strange. Different forms of the conditional state­
ment are shown in example 4.1. 

44 



Decisions 

Example 4.1 

if (n < 0) printf (lin is negative\n"); 
if (n == 0) printf (lin is zero\n"); 
if (n > 0) printf (lin is positive\n"); 

1* since the three statements above are *1 
1* distinct conditional statements, all *1 
1* tests are always performed. In contrast *1 
1* consider the following alternative; *1 

if (n < 0) printf (lin is negative\n"); 
else if (n == 0) printf (lin is zero\n"); 
else printf (lin is positive\n"); 
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What follows the comments in example 4.1 is a single conditional statement. 
The first ifhas a corresponding else, and what follows the else is a conditional 
statement. This way of expressing a condition may at first seem strange, but it 
will usually pennit an elegant expression of our logic. In addition it is econ­
omical, in that, when one of the tests within the statement is satisfied and the 
corresponding action undertaken, execution of the conditional statement 
tenninates. 

The use of braces to signify a compound statement adds considerably to the 
expressive power of the conditional statement, in that the execution of groups 
of statements can be made dependent on a specific condition. This can 
perhaps be appreciated in example 3.2 where the main part of the program is 
executed only if the output file is opened satisfactorily. 

Perhaps the part of the conditional statement that it is most important to 
understand is the condition itself. The general fonn of the statement showed 
this to be an expression enclosed by parentheses. Expressions will be 
considered in greater detail in chapter 6. For the present we can use the 
comparison of simple data items as an example of the fonn of expression 
required. An expression such as 

n > 7 

can be evaluated as soon as n is known. We expect the result true if n is greater 
than 7 and false otherwise. Convention dictates that we regard the value zero 
asfalse and non-zero as true. Thus, if the parenthesised expression following 
if yields a non-zero or true value the statement that immediately follows is 
executed, and the else part, if it exists, is ignored. However, if the parenthes­
ised expression yields a zero or false value, the statement that follows else is 
executed. This property is exploited in the following function: 

1* to determine whether 'ch' is *1 
1* the letter 'y', or 'y' *1 
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int 
affirmative (char ch) 
{ 

} 

if (ch == 'y') return (1); 
else if (ch == 'y') return (1); 
else return (0); 

If the character passed to affirmative is an upper case or lower case 'y' the 
value I is returned, otherwise 0 is returned. Such a function can significantly 
help the readability of our program. For, after prompting the user for a single 
character reply reply to a question, we could then write: 

if (affirmative (reply» printf ("reply is yes\n"); 

Note that it is not necessary to compare the value returned by affirmative with 
zero or anything else. Indeed to do so would detract from the readability of the 
resulting statement. We could of course exploit the same principle by writing: 

if (n) printf ("n is non-zero\n"); 

but we would argue that this is not good practice as n represents numeric 
values rather than the true or false values that affinnative represents. (For 
illustrative purposes, the body of ajfl17fl(ltive is more verbose than it need be. 
This function would normally be written in C as: 

int 
affirmative (char ch) 
{ return (ch == 'y' I I ch == 'y') } 

where II is the 'or' operator.) 

TRAPS FOR THE UNWARY 

Consider the two statements 
if (ch - 'y') return (1); 

if (ch -= 'y') return (1); 

and ask whether you can clearly state what each does. They differ only in that 
the first has one less 'equals' sign than the second. There is, nonetheless, a 
significant difference in their actions. The second statement tests whether ch 
has the value 'Y', returns 1 if it does and continues with the next statement in 
sequence if it does not. In contrast the first statement assigns the value 'Y' to ch 
then, because an assignment is an expression that yields as its result the value 
assigned, the return statement is executed, since the parenthesised expression 
yields a non-zero value. This difference in action can be extremely important. 
Its advantage is that an assignment and a test of the assigned value are neatly 
combined. Its disadvantage is that if you intended comparison (==) rather than 
assignment (=) your program is logically incorrect but syntactically correct. 
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Those people moving to C from a language in which the single 'equals' sign is 
used for comparison are advised to check their conditional statements 
carefully. 

MULTIPLE CONDITIONS 

Let us assume that we are given an integer, which is an examination mark, and 
that we are to translate this mark into a grade. An A grade is obtained for a 
mark in the range 80 to 99, B for a mark in the range 60 to 79, and so on. The 
null character is returned for a mark outside the range 0 to 99. 'There is, as 
usual, more than one way to achieve this end, but a look at several methods 
will help to contrast the use of different facilities in C. 

Example 4.2 

int 
grade (int mark) 
{ 

} 

char q; 

if (mark < 0 ) q = '\0'; 
else if (mark < 20) q = 'E'; 
else if (mark < 40) q = '0'; 
else if (mark < 60) q = 'e'; 
else if (mark < 80) 9 = 'B'; 
else if (mark < 100) q a 'A'i 
else q ~ '\O'i 

return (q)i 

style 47.9 1 

While the logic of the statement is simple and economical, it is lengthy. What 
is needed to deal with the problem of example 4.2 is a construct that offers a 
multiple choice of actions in contrast to the binary choice offered by the 
conditional statement. The switch statement is just such a construct. 

THE switch STATEMENT 

The general form of the switch statement is 

switch (expression) statement 

The value yielded by the expression must be of integral type and will be used 
to select which of several statements to execute. The statement that follows the 
selecting expression will, if the switch is to serve any useful purpose, contain 
one or more statements preceded by 

case constant_expression: 
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The constant expression can be thought of as labelling the statement that it 
prefixes. This statement is executed if the selecting expression yields a value 
that matches the constant expression. Within any switch statement the constant 
expression that labels a statement must be unique. A rewritten version of the 
mark grading example should make clear the form and logic of the switch 
statement. 

Example 4.3 

int 
grade (int mark) 
{ 

char g; 

switch (mark 
case 0: 
case 1 : 
case 2: 
case 3: 
case 4: 

return (g); 

style 49.5 1 

/ 20) { 
9 'E' ; break; 
9 = '0' ; break; 
9 'e' ; break; 
9 'B' ; break; 
9 'A' ; break; 

The unexpected feature of this example is, perhaps, the break statement. When 
it is encountered it causes exit from the switch. If in the example 4.3 the first 
break were omitted, then having assigned 'E' to g the next statement, which 
assigns 'D' tog, is executed. In other circumstances, as we shall see, we might 
wish to exploit this course of action. It is not appropriate to do so in this 
example - all the break statements, with the exception of the last, are essential. 

Example 4.3 is logically similar to example 4.2. It is not identical in its 
action, as the null character is not returned if mark is outside the expected 
range. A statement prefixed by default is executed if the value produced by 
the switching expression does not match any of the constants following case 
within the switch statement. In example 4.3 when none of the case constants is 
matched exit is made from the switch statement. We can ensure that marks 
which are out of range are satisfactorily processed by including the statement: 

default: 9 = NULL; break; 

anywhere within the switch statement of example 4.3. Finally we note that no 
ordering of the case or default prefixes is necessary or implied. The example 
4.4 should make these points clear. 
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Example 4.4 

1* to determine whether a given character *1 
1* is a vowel. Zero is returned for non- *1 
1* vowels. An integer in the range 1 to 5 *1 
1* is returned for a vowel. *1 

int 
vowel (char ch) 
{ 

switch (ch) { 
default: 
case 'u' : 
case 'a' : 
case 'e' : 
case t i ' : 
case • o· : 

} 
} 

style 54.0 ] 

return (0) ; 
case 'u' : return (5) ; 
case 'A' : return (1) ; 
case 'E' : return (2) ; 
case ' I' : return (3) ; 
case '0' : return (4) ; 
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This example exploits the fact that a case which is not followed by a break 
causes the following statement to be executed. In this way we can easily deal 
with both upper and lower case versions of the characters. The statement 
prefixed by default could as easily be the last statement of the switch as the 
first. Another feature exploited is the use of return rather than a break 
statement. return causes exit from the switch statement and from the function. 

SUMMARY 

In this chapter we have discussed two of the constructs that give programming 
its flexibility - the two-way and multi-way branch. Strictly, from the point of 
view of the logic of a program, one of the constructs is unnecessary, since 
either can be expressed in terms of the other. Careful use of the appropriate 
construct can, however, considerably enhance the intelligibility of a program. 

A two-way branch will almost always be implemented with a conditional 
statement; a multi-way branch can be implemented either by nested 
conditionals or by a switch statement. As a general rule, we can say that nested 
conditional statements should be used whenever we are testing a series of 
conditions in decreasing order of expected frequency; when all the conditions 
are equally likely to occur, a switch statement should be used. 
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The conditional statements of the previous chapter freed our programs from the 
straitjacket of the sequential execution of instructions without branching, but it 
is the ability to loop, or repeat the execution of one or more instructions, that 
brings power to programming. It brings economy too, for a modest number of 
programming language statements can be responsible for a significant amount 
of computing time. 

C offers at least three ways in which we can construct loops. We can use a 
while statement, a do statement, or a for statement. Of these, the while state­
ment is the most important, because it can be used to do anything that the other 
two loop constructs can do. The other two forms of loop construct are available 
because, in certain circumstances, they offer a more appropriate means of 
expressing our logic. 

THE while STATEMENT 

The while statement has the general form: 

while (expression) statement 

The list of statements given at the start of chapter 4 must now be extended to 
include the while statement. Anyone of this extended list of statements is 
admissible as the statement part of the general form of the while statement 
given above. The expression in parentheses has the same role as the 
parenthesised expression of the conditional statement - that is, it is evaluated 
and tested. If it produces a non-zero or true result, the statement that follows is 
executed. The expression is then tested again and, if true, the statement 
following is executed once more. This sequence is repeated until the 
evaluation of the expression yields a false result, and then the statement that 
follows the while statement is executed. 

There is, of course, an implicit assumption that something occurs within the 
while loop which causes the value produced by the controlling expression to 
change at some time. The statement: 

while (1) i = 0; 

causes an infinite loop, setting i to zero interminably. Care must be taken to 
ensure that loops do terminate! 
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In example 5.1 we introduce two new operators, !=, and ++. The first tests 
for inequality; the second is the increment operator, which when used as in: 

count++i 

causes count to be incremented by one. Suppose our task is to count the 
number of characters on a line. Assuming that the input stream is positioned at 
the start of a line, the following statements perform the count: 

count = 0; 
ch = getchar ()i 

while (ch != '\n') { 
count++i 
ch = getchar (); 

But these statements do not exploit some of the features that we have already 
seen. In particular, the test that controls the while statement could easily be 
modified to include the assignment to ch. The modified version uses this 
feature and is presented as a function. 

Example 5.1 

#include <stdio.h> 

int 
counter (void) 
{ 

} 

char chi 
int count = Oi 

while «ch = getchar (» != '\n') 
count++i 

return (count); 

style 54.1 ] 

Example 5.1 also capitalises upon the ability, in C, to initialise variables as 
part of their definition. A closer look at the function counter should prompt the 
realisation that ch is used only in the expression that controls the while loop. If 
this is so, then we should dispense with ch altogether and rewrite the function 
as in example 5.2. 
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Emmple5.2 

#include <stdio.h> 

int 
counter (void) 
{ 

} 

int count: 0; 

while (getchar () !~ '\n') 
count++; 

return (count); 

style 52.6 ] 

In this, and other ways, C offers many aids to writing 'economical' (some 
would say terse) programs. The reader is encouraged to exploit these features 
but to bear in mind that simplicity and clarity of expression should not be 
sacrificed in order to produce 'smart', but not easily readable, programs. 

ESCAPING FROM LOOPS 

The break statement, which was used to escape from the switch statement, will 
also force exit from a while statement. Following the execution of break, the 
statement that follows the while statement is executed. A return statement also 
may be used to escape from the while loop. However, as might be expected, 
this not only causes immediate exit from the while statement, but also forces 
exit from the function that contains the while statement. 

The while statement can also be exploited when attempting to make the user 
interface of a program more robust. If a program directs a query to its user 
which requires a simple 'yes' or 'no' answer, for example: 

Do you wish to continue (Y or N)? 

then only the response indicated should be accepted. Consider example 5.3. 



Example 5.3 

#include <stdio.h> 

#define BELL '\7' 

lnt 
replyisyes (void) 
{ 

char chi 

while (1) { 
ch = getchar (); 
switch (ch) { 

Loops 

default: putchar (BELL); break; 
case 'y': case 'y': return (1); 
case 'n': case 'N': return (0); 

} 
} 

style 75.9 ) 
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Exit is only made from the function when 'Y' or 'N' of either upper or lower 
case is received. Receipt of any other character causes the VDU to 'beep' and, 
although exit is made from the switch statement, the while statement remains 
active. 

This last example provides the opportunity to state again that a program's 
interface with its user is extremely important. If a question is directed to the 
user, ensure that the acceptable responses are made known, and write the 
program logic in such a way that only valid responses are accepted. 

Further details of the input/output philosophy of the underlying operating 
system will need to be clarified before example 5.3 can be used conveniently. 
Usually, for example, a user is required to provide 'line at a time' input. That 
is, the underlying operating system buffers, or stores the characters typed until 
a 'newline' character is encountered. Only then the system sends the entire 
buffer, including the 'newline' character to the application. Example 5.3 would 
'beep' at any character other than 'N', 'n', 'V' or 'y', including any 'newline' 
characters that it encountered. It is usually possible to arrange 'character at a 
time'input. 

The while loop is important because, as is evident from its structure, the 
controlling condition is tested before entering the loop. In contrast, the 
expression that controls the do loop is tested only at the end of the loop, and 
therefore the statement controlled by the loop is always executed at least once. 
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THE do STATEMENT 

The general fonn of the do loop is: 

do statement while (expression) 

Our list of statements must now be extended to include the do statement. Any 
one of the resulting list of statements is suitable as the statement used in the 
general fonn given above. 

As an illustrative example, let us assume that we have access to a file 
containing one word per line. Our task is to sum, for each such word, the 
number of times that we find a vowel preceded by a consonant. The sum 
produced is a good approximation to the number of syllables in the word. We 
assume a file pointer fptr, and a function consonant which returns a non-zero 
(true) value if the character passed as a parameter is a consonant. The function 
vowel was given as example 4.4. 

Example 5.4 

Hinclude <stdio.h> 

int 
syllables (void) 
{ 

} 

char ch; 
int qhanges = 0, previousvowel 0; 

do { 
ch = getc (fptr); 
if (vowel (ch» { 

if (!previousvowel) 
changes++; 

previousvowel = 1; 
else if (consonant (ch» 

previousvowel = 0; 
while (ch != '\n'); 

return (changes); 
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(As a syllable counter, the function of example 5.4 is limited in that there are 
special cases that it does not handle. Thus 'by' would be credited with having 
no syllables, and 'ale' with two. For most words, however, it is a good first 
approximation.) 
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THE for STATEMENT 

The for statement proves convenient to use when it is necessary to execute a 
loop a given number of times. While this could also be done by either of the 
other two loop constructs, we should select the statement that is most 
appropriate for the task. Counting through a loop requires three 'housekeeping' 
activities: initialising the counter, incrementing the counter, and testing 
whether the terminating value has been reached. It is helpful to both the reader 
and the writer of a program if these three housekeeping activities are collected 
together. This is economically achieved in the for statement which has the 
general form: 

for (expression1; expression2; expression3) statement 

where: 

expression! 
expression2 
expression3 

initialises the counter 
gives the continuing condition, and 
increments the counter. 

Thus to compute the sum of the first N natural numbers we could write: 

sum = 0; 
for (i = 1; i <= N; i++) sum = sum + i; 

or, if it is more suitable to count down: 

sum = 0; 
for (i = N; i >= 1; i--) sum = sum + i; 

In C, the statement controlled by the for statement in these examples can be 
more concisely written as: 

sum += i; 

THE cOlllilllle STATEMENT 

We have seen that break will cause immediate exit from a switch or while 
statement. It will also cause immediate exit from a do statement or for 
statement. The loop statements (while, do, and for) can also use a continue 
statement. The continue statement is less drastic than the break statement 
because it only causes termination of the present iteration. If continue is en­
countered in the execution of while or do loops, it causes a branch to the loop 
control test to be made. In a for statement a continue causes execution of the 
'increment' expression prior to testing whether another iteration of the loop is 
appropriate. 
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Imagine that a file contains a collection of marks, except that the very first 
nwnber in the file gives the nwnber of marks that follow. Using the function 
grade of example 4.2, we are to compute the number of pass grades in the 
mark list (example 5.5). 

Example 5.5 

#include <stdio.h> 

/* fscanf may return EOF or zero; */ 
/* grade returns null if the */ 
/* mark is out of range; */ 
/* only an E grade does not pass. */ 

int 
passes (void) 
{ 

} 

char g; 
int listsize, mark, m, psum=O; 

if (fscanf (fptr, "%d", &listsize) < 1) return (-1); 

for (m = 1; m <= listsize; m++) { 
if (fscanf (fptr, "%d", &mark) > 0) { 

if ((g = grade (mark» == '\0') continue; 
if (g == 'E') continue; 
psum++; 

else return (-1); 

return (psum); 

style 73.0 ) 

DYNAMIC CHANGE OF INCREMENT 

The for statement in C is implemented in a manner that enables it to be used in 
some rather swprising ways. For example: 

for ( ; ; ) k = 0; 

represents an infinite loop. The asswnption is made that, if the second 
expression, which is the controlling condition, is omitted, the value true is to 
be used. The most significant way that the for statement differs from the for 
statement as defined in, say Pascal, is that both the terminating condition and 
the increment expressions are re-evaluated for every iteration. This means that 
if the identifiers used in computing these values are changed within the for 
loop, then either the terminating condition, or the step size, or both, can be 
constantly changed from within the loop. Consider, for example: 
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for (p = 1; P <= 4096; P = 2*p) printf ("%4d\n", p); 

which prints a small list of powers of two. It achieves this by multiplying the 
'increment' by two each time through the loop. 

The loop terminating condition need not involve the 'counter', although it 
usually will. The loop of example 52 could be rewritten, using afar statement, 
in the following form: 

for (count = 0; getchar () != '\n'; count++); 

Here the for statement has an empty statement part, because all the necessary 
work is done within the controlling expressions. Note that the terminating 
condition is independent of count. Changing the loop terminating condition 
from within the loop should be done carefully, if at all. There is a danger that it 
may be changed in such a way as to ensure that the loop never terminates at 
all. 

A final example on for statements is used to show that they, or any of the 
other looping constructs, may be nested to create a loop within a loop. 
Example 5.6 computes 'perfect' numbers. If we exclude the number itself from 
a list of its factors, then a perfect number is the same as the sum of its factors, 
so that the first perfect number is 6, because the factors of 6 are 1, 2 and 3, and 
1 +2+3 = 6. It is only necessary to examine even numbers for perfection, 
because, although it remains to be formally proved, it is surmised that odd 
numbers cannot be perfect. 

Example 5.6 

#include <stdio.h> 

#define LO 
#define HI 

6 
1000 

/* first perfect number */ 
/* limit of search */ 

int 
main (void) 
{ 

} 

int num, sum, factor; 

printf ("Perfect numbers\n"); 
for (num = LO; num <= HI; num += 2) { 

sum = 1; 

} 

for (factor = 2; factor < num; factor++) 
if (num % factor == 0) 

sum += factor; 
if (sum == num) 

printf ("%4d\n", num); 

style 67.4 ) 

The modulus operator, %, is described in more detail in chapter 6. It gives, in 
this case, the remainder when num is divided by factor. 
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THE golo STATEMENT 

The loop structures introduced so far, if used properly, should mean that the 
user rarely, if ever, needs to use a goto statement. In particular, a goto need 
never be used to construct loops. However, in certain error situations, a goto 
may enable a cleaner program termination to take place. A statement may be 
labelled by prefixing it by an identifier followed by a colon. The goto state­
ment may then use this label as its destination, thus: 

goto abort; 

abort: printf (" abnormal termination\n"); 

SUMMARY 

C's looping constructs correspond to those found in many other high-level 
languages. Usually, a determinate loop, where the number of iterations is 
known in advance, is most appropriately implemented by a for statement, 
while an indeterminate loop, where termination depends on some condition 
being satisfied, is better implemented as a while or a do statement. These are 
general rules, however, and, as has already been demonstrated, C'sfor state­
ment is powerful enough to enable it to be effectively used to control an 
indeterminate loop under certain circumstances. This being so, it is wise to 
consider carefully which particular statement is likely to yield the most natural 
expression of the loop's intent. 



6 Operators 

In preceding chapters we have used identifiers with type char, int, andfloat. In 
addition, data types void, short, long, double, signed, unsigned and long double 
are provided in standard C. Most of these data types are also provided in most 
non-standard compilers. We suggest that you look at the implementation notes 
for C on your system to discover what is on offer. 

TYPE CONVERSION 

The type names introduced above can conveniently be listed in order as 
follows: 

void, char, short, int, long, float, double, long double 

signed and unsigned can be used as types in themselves, in which case the 
object thus declared is considered to be either signed or unsigned int 
respectively. They can also be prefixed to any "integer" type, that is any of 
char, short, int and long, in which case the object is treated as either a signed 
or unsigned entity of a given type. Both signed and unsigned types are omitted 
from the above list. They can be treated simply as type modifiers to indicate 
whether the integers can be assigned positive and negative or positive only 
values. Type int is typically implemented to correspond in size to the word 
size of the underlying hardware and is equivalent to either short or long 
depending on the particular implementation. void type has been introduced in 
the ANSI standard and has meaning only in conjunction with function 
definitions and pointers. You will recall that in function definitions it specifies 
that the function does not return a value or does not take any parameters. You 
will also recall that pointers are addresses of other objects. A void pointer 
specifies that an address of an unknown object type is represented. As a result, 
a void pointer can contain an address of an object of any valid type. Apart from 
the long/float boundary and the void pointer, this list is in order of increasing 
storage size. By storage size we mean the amount of storage needed for a data 
item of the given type. With this list in mind the implicit type conversion rules 
given below can readily be understood. 
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For an expression involving one of the binary operators (one with two 
operands), such as: 

a + b 

the type of the result is detennined by the type of the operands according to the 
following rules: 

• if either operand is of type long double. the other operand is converted 
to long double; 

• otherwise, if either operand is of type double, the other operand is 
converted to double; 

• otherwise, if either operand is of type float. the other operand is 
converted to float; 

• otherwise, integral promotions are performed as follows: 
signed and unsigned objects are initially converted to int, unless the 
conversion changes the value. in which case the object is converted to 
unsigned int (this is known as a value preserving conversion and has 
been adopted by the ANSI standard - non-confonnant compilers may 
not perfonn this conversion); char and short are converted to into 
provided that int can represent all values of the original type; otherwise 
the values are converted to unsigned into 

Following the integral promotions. all operands are in the 'int' family and the 
following rules are now applied: 

• if either operand is of type unsigned long into the other operand is 
converted to unsigned long int; 

• otherwise. if either operand is of type long int, the other operand is 
converted to long int; 

• otherwise. if either operand is of type unsigned into the other operand is 
converted to unsigned int; 

• otherwise, both operands are of type into 

After applying the above rules, both operands are of the same type and the 
result of the operation is also of that type. The implicit conversion is therefore 
always from the 'smaller' object to the 'larger'. The results of type conversion 
are summarised in table 6.1. An explicit type conversion can be obtained by 
using a 'cast'. 



Table 6.1 

a 

char 
short 
int 

char 
short 
int 
long 

char 
short 
int 
long 
unsigned long 

char 
short 
int 
long 
float 

char 
short 
int 
long 
float 
double 

char 
short 
int 
long 
float 
double 
long double 

b 

char 
short 
int 

long 

Operators 

unsigned long 

float 

double 

long double 
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Result 

int 

long 

unsigned long 

float 

double 

long double 

The above rules have been defined by the C standard. Older, non-standard 
compilers will typically apply a different set of conversion rules. Most notably, 
many C compilers convert all floating point numbers to double before eval­
uating any floating point expressions. 
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CAST 

A Book on C 

By prefixing an expression with one of the type names used earlier enclosed in 
parentheses, we force the expression to yield a result of the type indicated so 
that: 

(long) 2 + 3 

produces the result 5 which has type long. A cast can also be useful in forcing 
an argwnent to have the type of the corresponding parameter. The functions 
exp, log, and sqrt, which are to be found in the library of mathematical 
functions, expect a parameter of type double, and produce a result of type 
double. If we wish to obtain the natural logarithm of x, which has typefloat, 
then we can write: 

log ((double) x) 

If a function prototype is known before the call to it is encountered, the cast 
will be automatically perfonned. In this case, if the standard math.h header is 
included, the compiler will know to cast x to a value of type double. The 
assignment operator is treated in a different way to most of the other operators. 
The type of the expression of the right-hand side (rhs) is changed to the type of 
the identifier on the left-hand side. In appropriate circumstances, therefore, a 
rhs of type double is rounded to float, a rhs with typefloat is truncated to int, 
and an int is converted to char by ignoring excess high order bits. ANSI C 
standard guarantees that the rounding is perfonned accurately and truncation is 
always towards O. 

In the case of arithmetic constants, a result somewhat similar to casting can 
be achieved by specifying a type suffix. Type suffix is either an unsigned 
suffix, one of U or u, or a long suffix, one of L or I. The suffixes convert the 
constants to either unsigned, long or unsigned long values. 

a 123Li 
b 123Ui 
c = 123uli 
d 123Lui 

/* a value of (long)123 */ 
/* a value of (unsigned)123 */ 
/* a value of (unsigned long) 123 */ 
1* neither order nor case of 

the suffixes matters */ 
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ASSIGNMENT OPERATORS 

We have introduced a limited nwnber of these operators at suitable places in 
the text. For example, the operator += was used to enable us to write: 

sum += i; 

rather than: 

sum = sum + i; 

An assignment in C is treated like any other operator in that, having made the 
assignment the value assigned is available for other use. Thus: 

(sum += i) > max 

adds i to sum and compares the assigned value with max. The validity of a 
'multiple assignment' should therefore be apparent. 

sum = total = start = 0; 

The full list of assignment operators is: 

+= 
*= 
%= 
«= 

/= 
»= 
&= 
1= 

The meanings of the various assignments will become obvious as we consider 
the different groups of operators. 

ARITHMETIC OPERATORS 

We will introduce operators in the various groups by using them in simple 
expressions. While this may not be strictly necessary for the more familiar 
operators, it should help to clarify the action of the less familiar ones. 

+ 5 5 unary plus 
5 -5 unary minus 

7 + 5 12 add 
7 - 5 2 subtract 
7 * 5 35 multiply 
7 / 5 1 divide 
7 % 5 2 modulus 

The type of the result of such expressions will be determined by the conversion 
rules given earlier. In the examples above, all results are of type into When two 
items of type int are divided, the fractional part of the result is truncated to 
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produce a result of type into The modulus operator produces the remainder' 
after division of one integral type by another. The result is of type into 
Operands of type double or float may not be used with this operator. 

A small example which uses most of the operators above is a function to 
evaluate Zeller's Congruence (Uspensky and Heaslet, 1939), shown in example 
6.1. This function, when given a day, month and year (full form), produces a 
result in the range 0 to 6. With Sunday as day 0, this number represents the day 
of the week on which the given date fell. It can be used, for example, for 
calculating the day on which you were born. 

Example 6.1 

1* zeller returns a number in the range *1 
1* 0 .. 6 representing the day of the week *1 
1* on which the given date falls *1 
1* Sunday is day 0 *1 

int 
zeller (int day, int month, int year) 
{ 

int temp, yr1, yr2; 

if (month < 3) { month += 10; year -= 1; } 
else month -= 2; 

yr1 = year I 100; yr2 = year % 100; 
temp = (26 * month - 1) I 10; 

return «day + temp + yr2 + yr2/4 + yr1/4 
- 2*yr1 + 49) % 7); 

style 65.6 1 

BITWISE OPERATORS 

C enjoys well·deserved popularity as an 'implementation' language. This is in 
large measure due to the ease with which the user can access and manipulate 
bit patterns in memory. The following operators are available: 

7 « 5 224 (OxEO) left shift 
7 » 5 0 right shift (beware sign propagation) 
7 1 5 7 inclusive or 
7 5 2 exclusive or 
7 & 5 5 and 

- 05 0177772 one's complement 

Note the use of hexadecimal and octal constants above - hexadecimal constants 
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are written with a leading Ox or OX, and may use digits 0 through 9 and letters 
A through F (or a through!>; octal constants are written with a leading 0, and 
may use digits 0 through 7. The last example, of the one's complement 
operator, asswnes that the length of an int is 16 bits. 

Bit manipulation, usually the preserve of assembly language programmers, 
is necessary, for example, when checking the bits of a status register and in 
masking data to be received or transmitted. An example to illustrate use of the 
operators need not be drawn from such a machine specific area. The 'feedback 
shift register' technique for generating pseudo-random numbers is easily 
expressed using the bitwise operators as example 6.2 shows. 

Example 6.2 

#include <limits.h> 
#define PSHIFT 4 
#define QSHIFT 11 

int 
random (int range) 
{ 

} 

static int n = 1i 

n = nAn » PSHIFTi 
n = (n A n « QSHIFT) & INT_MAXi 
return (n % (range+1))i 

1* the function is dependent upon *1 
1* the word length of the host *1 
1* machine. The seed 'n' should *1 
1* be capable of easier change *1 
1* than is possible here. *1 

[ style 75.5 1 

The standard header file limits.h defines the value for [NT_MAX which is the 
maximum allowable value for an object of type into If your compiler does not 
conform to the standard, and integers are two bytes long, you may have to 
define [NT_MAX in the following way 

#define INT_MAX 32767 

The rationale behind this algorithm, which is a good source of random 
numbers, is given in Lewis (1975). A Pascal version, which makes an 
interesting comparison, is given in Meekings (1978). Remember too that since 
C makes it easy to print the value of a variable in either octal or hexadecimal, 
the results of bitwise operations can usually be displayed in an easily 
assimilated form. 
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LOGICAL OPERATORS 

These operators are usually used to combine one or more comparisons in the 
controlling expressions of conditional statements, while statements, and the 
other loop constructs. 

Example 

7 && 
7 II 

! 

5 
o 
o 

Result Operation 

logical and 
logical or 
logical not 

The important point that distinguishes these operators from the bitwise 
operators is that any non-zero operand is treated as 1 (true). A zero operand is 
treated as false. The result of the operation is 0 or 1 according to the normal 
rules for logical connectives. Expressions using && and II are evaluated left to 
right and evaluation should terminate once the truth or falsity of the expression 
is detennined. For illustrative purposes, imagine that we wish to compute the 
mean rainfall given the total rainfall train over a number of days days. We 
might write: 

if (days> 0) 
if ((mean = train / days) > 5.0) print ("%d\n", mean); 

assuming that we wished to avoid division by zero. But consider: 

if ((days> 0 && ((mean a train / days) > 5.0)) 

as an alternative test. It is only a useful alternative if, when days is zero, the 
expression in which days is a divisor is not evaluated. C guarantees that when 
the truth or falsity of an expression is known, as it is above when (days > 0) 
evaluates to zero Valse), evaluation of the expression immediately terminates. 

RELATIONAL OPERATORS 

Examples of some of these operators have appeared at several places in the 
text so far. The operators are: 

> greater than 
>= greater than or equal to 

equal 
!= not equal 
<= less than or equal 
< less than 
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The test for a digit is a simple example of the use of two relational operators 
and a logical operator: 

digit = (ch >= '0') && (ch <= '9'); 

INCREMENT AND DECREMENT 

The usefulness of the increment operator should by now have become 
apparent. The decrement operator is used in an entirely similar fashion, so that: 

countdown--; 

decrements countdown by one. What has not been emphasised so far is that 
both the increment operator and the decrement operator may be used either as 
a prefix or postfix to an operand. We may therefore write: 

++count; --countdown; 

Such simple usage as this does not make clear what difference there might be 
between the prefixed or postfixed operator. The difference can be illustrated by 
the following example 

up .. 0; 
printf ("%2d\n", up++); /* prints 0 */ 
printf ("%2d\n", ++up); /* prints 2 */ 

The first statement after the initialisation will print zero and then increment up. 
In the second print statement the value of up will be incremented (to two) and 
then printed. The prefixed form means increment (or decrement) and use, 
while the postfixed form means use and then increment (or decrement). 'The 
difference is important, as we will see, when dealing with array subscripts. 

CONDITIONAL OPERATOR 

The conditional operator affords an easy and compact way to express a value 
which depends on a test. In the following example, the absolute value of x is 
computed. 

if (x < 0) 
xabs - -x; 

else 
xabs - x; 

C gives us a more concise way to write such things, so their meaning becomes 
more apparent. The conditional operator takes three expressions and is used in 
the following format: 

expression-1 ? expression-2 : expression-3 
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Expression-l is evaluated and then tested. Based upon the results of this test, 
either one (but not both) of expression-2 and expression-3 will then be 
evaluated and that value will become the result of the whole conditional 
expression. If the value of expression-l is true (non-zero), expression-2 is 
evaluated; otherwise, expression-3 is evaluated. Thus, we can write the 
absolute value computation as 

xabs = (x < 0) ? -x : x; 

Printing a heading only after a certain nwnher' of lines suddenly becomes easy 
to write 

#define HEADING "\n\n\n - Treasure Island -\n\n\n" 

printf ("'lis", (no_lines % 60 0) ? HEADING: ""); 

Standard conversion rules will be used to bring the constituent values of the 
conditional expression to a common type to produce the result. So, in the 
following example, if x is of type float when it is substituted by the pre­
processor, the resulting type of the whole conditional expression is a float. 

#define min_1 (x) (x < 1 ? x : 1) 

COMMA OPERATOR 

The comma operator is syntactic sugar: it need not be provided since there are 
other facilities in the C language which can accomplish the same function; its 
use is more a question of style than of functionality. Expressions connected by 
a comma operator are executed in sequence. One use might be to initialise 
several quantities in a for statement. The following code might be used to 
scramble the letters in a word five successive times: 

for (count = 0, j = word; count++ < 5; j = scramble (j)) 

First the expression on the left of the comma is evaluated and the result 
discarded; then the expression on the right of the comma is evaluated and used 
as the resulting value. The type of the result is the type of the operand on the 
right of the comma. 

Ambiguity can arise in the cases where the comma can also be interpreted as 
a character separating items in a list (that is, argwnents and initialisers). In 
those circwnstances, the comma operator can only be used inside parentheses: 

my_func (arg1, (c = C_INIT, (c + 1) *10), arg3); 
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PRECEDENCE OF OPERATORS 

Whatever programming language you use it is important to write expressions 
in a way that makes sense to you, the writer. (Bear in mind too that others will 
wish to read and understand your program.) In order to do this, and still 
produce programs that are syntactically and logically correct, it is necessary to 
understand how expressions are written and how they are interpreted. 
Operands must be separated by operators, and evaluation usually proceeds 
from left to right. Thus, in an expression such as: 

a + b * c 

it can be seen that the operators separate the operands, but we are accustomed 
to the multiplication of b and c being carried out before the addition of a. 
Formally we say that multiplication has a higher priority or precedence than 
addition. Parentheses can always be used to enforce the required priority. In 
C, however, there are occasions on which even this rule may not be as easy to 
apply as we would wish. Another possible source of confusion is that some 
operators, for example * and &, have more than one role. Consider for 
example: 

*pint++ 

which is not part of a multiplication. It might mean increment the pointer 
(address) pint by one and retrieve the contents, or it might mean that the value 
*pint is to be increased by one. In fact unary operators are evaluated from right 
to left and so the expression increments the pointer pint and not what it points 
to. The latter effect is achieved by: 

(*pint)++ 

It is therefore important to know the order of precedence of operators and the 
direction of association. A table of this information is given in table 6.2. 
Operators are listed in decreasing priority, with operators in the same section 
having equal priority. 
In the case of multiple operators of the same precedence and order of 
evaluation, for example in: 

a + (b + c) 

the compiler is free to rearrange the order of evaluation even in the presence of 
parenthesis. The above expression, while being evaluated, may thus become: 

(a + b) + c 

or even: 

(a + c) + b 
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The order of evaluation of such expressions is immaterial under most normal 
circlUDstances. There are cases, however, in which it is important to group 
such expressions in order to avoid subtle rounding erTOl"S introduced by 
conversions. ANSI C provides a unary '+' operator for that purpose. The 
expression 

a + + (b + c) 

guarantees that (b + c) is evaluated first and the result is added to Q. 

Table 6.2 

Operator 

() 
[ ] 
-7 

++ 

Name 

parentheses 
brackets 
pointer 
dot 

increment 
decrement 

(type) cast 
* contents of 
& address of 

unary minus 
one's complement 

I logical NOT 
sizeof size of 

* 
/ 
% 

+ 

» 
« 

> 
>= 
<= 
< 

multiply 
divide 
modulus 

plus 
minus 

shift right 
shift left 

greater than 
greater than or equal 
less than or equal 
less than 

Associativity 

left to right 

right to left 

left to right 

left to right 

left to right 

left to right 
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-- equal left to right 
1-.- not equal 

& bitwise AND left to right 

bitwise exclusive OR left to right 

bitwise inclusive OR left to right 

&& logical AND left to right 

logical OR left to right 

1: conditional right to left 

= equals right to left 
+= plus equals 

-= minus equals 
*= multiply equals 
/= divide equals 
0/0= modulus equals 
»= shift right equals 
«= shift left equals 
&= and equals .. = exclusive or equals 
1= inclusive or equals 

SUMMARY 

C has a well-deserved popularity among high-level and low-level programmers 
alike. Such popularity is, in large part, attributable to the richness of its set of 
operators, which allows a clear and natural expression of the program logic, 
with the additional bonus of an efficient translation into the underlying 
machine instructions. It is the large variety of operators that characterise the 
language, and possibly pose the greatest hurdle for the novice C programmer. 

Time spent initially in learning how to use the full set of operators will be 
amply rewarded by clear, concise and efficient programs. 



7 Arrays 

In the examples used so far each data item that we wished to manipulate has 
been given a name, or identifier. Each identifier has associated with it a type, 
and a storage class. This association is made explicit through the declaration. 
But so far any identifier has represented a numeric value of one type or 
another, or a character. Consider again example 4.3 in which we produced a 
grade for a given mark. If we now change the specification of the problem, to 
ask that we produce the number of times that each grade was achieved, the 
statements in example 7.1 could appear in a suitable loop. 

Example 7.1 

/* assume a=b=c=d=e=f=O; prior to loop entry */ 

switch (mark / 20) { 
case 0: e++; break; 
case 1: d++; break; 
case 2: c++; break; 
case 3: b++; break; 
case 4: a++; break; 
default: f++; 

While we can contemplate writing this when only five grades are involved, we 
would, if twenty-five grades were involved, look for a 'better way'. 

ARRAY DECLARATIONS 

Instead of having individual identifiers foe each grade total, which causes 
difficulty when dealing with them collectively, what would be much more 
useful would be a collective name foe the grade totals together with a method 
of accessing each grade total. A street name is a collective name foe several 
houses. The house number uniquely identifies each house of the street. An 
array name is a collective name foe several data items of the same type. Each 
item has a unique reference number known as an index oe subscript. If grades 
is the collective name for the five grade totals it could be declared as: 

int grades [5) ; 

72 
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In C array subscripts start at zero. The five grades can therefore be referred to 
as: 

grades [0] , grades[1], grades[2], grades[3], grades [4] 

POINTERS AND ARRAYS 

Another method of referring to the individual elements of an array is available 
to us in C. The array name, grades in this case, is always treated as a pointer, 
or address. It points to the first element of the array. If, for example, we make 
a copy of the pointer, then we can increment and decrement the pointer value 
in order to refer to different elements of the array. Consider example 7.2. 

Example 7.2 

int grades[5], *gptr; 

gptr = grades; 
gptr++; 
gptr++; 

/* gptr points to grades [0] */ 
/* gptr points to grades [1] */ 
/* gptr pOints to grades [2] */ 

A subscript within square brackets is the more usual way to refer to elements 
within an array. Use of a pointer, while initially not so familiar, can become 
more convenient and is usually more economical in implementations of C. We 
shall move towards use of pointers for array access. 

With an array to help us, we can now write example 7.1 in the following 
way: 

int grades[5], *gptr, s, mark; 

/* initialise array elements */ 

gptr = grades; 
for (s = 0; s < 5; s++) *gptr++ = 0; 

/* assume a function 'getmark' which */ 
/* returns either the next mark or */ 
/* -1 to indicate the end */ 

while «mark = getmark ()) != -1) { 
s = mark / 20; 
if «s >= 0) && (s < 5) ) grades [s]++; 

There are several points of interest in this example. First note that the explicit 
constant 5, the number of elements in the array, appears three times in the 
program text. A symbolic name should be 'defined' to have this value, thus 
making a change in array size easy to accommodate. Secondly, note that the 
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array elements are zeroised using the pointer gptr, and finally note that the 
increment operator can be used on an array element just as on any other 
variable. 

ARRAYS OF MORE THAN ONE DIMENSION 

C allows us to use arrays of more than one dimension. Imagine that instead of 
simply printing letters in a 7*5 grid, as we did in the early examples of chapter 
2, we wish to store these representations of characters in a 7*5 array, that is, an 
array with 7 rows and 5 columns. If we wish to access these elements using a 
pointer, then it is essential to appreciate that in C arrays are stored by row. 

first three rows of big I 

row I row 2 row 3 

This means that the rightmost of the two subsaipts changes more quickly 
because elements are accessed in the order that they are stored. A two­
dimensional array can easily be visualised as a table, and therefore we shall 
initially use subscripts, rather than a pointer, to access the elements (example 
7.3). We shall later rethink this approach. 

Example 7.3 

#define ROWMAX 7 
#define COLMAX 5 

char letter [ROWMAX] [COLMAX] j 

int col; 

/* fill array with spaces */ 

for (row = OJ row < ROWMAXj row++) 
for (col = OJ col < COLMAXj col++) 

letter [row] [col] = ' '; 

/* alternatively we could write .• */ 

for (row = OJ row < ROWMAX; row++) 
for (col = OJ col < COLMAXj letter [row] [col++] = ' ') 

Observe that each subscript is enclosed by square brackets and that the final/or 
statement does not have a statement to control. This is because each element of 
letter can be set to a space in such a way that the column subscript is incre-
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mented after it has been used to access the array element. This is an occasion 
where use of 

++col 

rather than 

col++ 

would not have the required effect.. 

ARRAYS AS PARAMETERS 

Pursuing our example a little further, for those upper case letters of the 
alphabet that can be constructed from horizontal and vertical lines only, it 
would be convenient to have functions that fill a row, or a column, with a 
given character. The functions of example 7.4 fulfil this task. 

Example 7.4 

#define ROWMAX 7 
#define COLMAX 5 

void 
fillrow (int row, char matrix[ROWMAX] [COLMAX]) 
{ 

int Ci 

for (c ~ Oi c < COLMAXi matrix [row] [c++] '*') 

void 
fillcol (int col, char matrix[] [COLMAX]) 
{ 

int ri 

for (r 

style 54.6 

Oi r < ROWMAXi matrix[r++] [col] '*' ) 

Each of the functions must change the contents of the array and, as we saw in 
chapter 2, must therefore have access to the address of the data item to be 
changed. But since the array name is the address of the first element, it can be 
used without modification as a parameter to a function. The functions of 
example 7.4 will access the contents of the array that is the argument, and it 
should therefore be obvious that the purpose of the code 

char matrix [ROWMAX] [COLMAX]i 

in each function is simply to establish the type of the parameter 'matrix'. No 
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storage allocation is performed. It may not be necessary, but it is not wrong, to 
give the size of each dimension. Given that arrays are stored in row-major 
order, the size in the first dimension may be omitted, as it has been in the 
functionfillcolof example 7.4. 

It should be apparent that the functions of 7.4 also make use of what we 
called implicit parameters in chapter 2. fillrow uses COIMAX which, although 
its definition is a define statement, could as easily have been, say, a static const 
variable of the file containing the functions. The functions are not 'self­
contained' in the sense that the identifiers that they use do not all derive from 
either the parameter list or the local variable declarations. This is a common 
occurrence but worth emphasising. Assuming the definitions of 7.3 and 7.4 we 
can write: 

void 
makeH (char mat [ROWMAX] [COLMAX]) 
{ 

fillcol (0, mat); 
fillcol (COLMAX, mat); 
fillrow (3, mat); 

and thereafter write: 

makeH (letter_matrix); 

STRINGS 

In the preceding section we used an array of characters and, because of the 
particular example chosen, all elements of the array were always used. But 
when we wish to deal with strings, which are stored as an array of characters, it 
is inefficient to assume that the string will occupy all elements of the array in 
which it is stored. We must expect that either the length of the string is stored 
along with it, or that the end of a string is denoted by a special character. C 
adopts the convention that the end of a string is denoted by the NULL 
character '\0'. 

Example 7.5 

#define WIDTH 80 

char mess [WIDTH] , *m; 

mess [0] 'h'; 
mess [1] 'e' ; 
mess[2] '1'; 
mess[3] '1'; 
mess [4] '0' ; 
messeS] '\0'; 
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The rather laboured statements of example 7.5 cause six characters to be stored 
in mess. Since the last character is NULL we can say that the array mess holds 
a string. The string may be printed by any of the following statements: 

m - mess; while (*m !- NULL) putchar (*m++); 

while «(m - mess) < WIDTH) && (*m 1- NULL» putchar (*m++); 

printf ("'s", m); 

The tedious parts of the above examples are those that deal with individual 
characters. While this may sometimes be necessary, we more usually wish to 
process the string as a whole. We have been accustomed to writing a string as 
a sequence of characters between double quotes thus 

"C-ing is believing" 

It is therefore not unreasonable to expect that we may assign a string to an 
identifier without the necessity of doing it character by character. We achieve 
this as follows 

char *sptr; 
sptr '" "C-ing is believing"; 

From its declaration sptr is a pointer to a character. In particular, after assign­
ment, sptr points to the first character of the string. It is important to note that 
the assignment does not copy the character string. The declaration of sptr 
offers no storage space for characters. The string is stored somewhere, we 
know not where, except that we have in sptr a pointer to the first character. 
This is usually sufficient. If, for some reason, it is necessary to copy the string 
into local storage, then this must be done with a function such as strcpy which 
copies a string from one storage place to another. In example 7.5 when storing 
one character at a time in mess we were responsible for ensuring that a NULL 
character followed the last useful character. When, as above, a string is 
assigned to a pointer, a NULL is automatically appended to the character 
sequence. Use of pointers to refer to a string is much the most common and 
convenient way of dealing with strings in C. Any functions provided by a C 
implementation to help process strings, compare strings, find the length of a 
string, find a character within a string, will require the user to pass pointers as 
parameters. 

We have said so far that one dimensional arrays, such as character arrays in 
the previous examples, are often treated in a way similar to pointers. Whereas 
it is true in certain situations, such as parameter passing, we have to fully 
appreciate differences between pointers and one dimensional arrays. The array 
names, such as mess in Example 7.5, contain an address of the first element of 
the array. In that sense they are just as pointers and can be used as such in 
parameters to functions. However, declaration of an array reserves storage for 
all elements of the array and then places the address of the beginning of this 
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storage in the symbol representing the alTay. References to particular elements 
of the alTay through the use of square brackets will calculate appropriate 
offsets from the beginning of the array's storage area. Declaration of pointers, 
on the other hand, does not reserve storage for any objects that the pointer may 
be pointing to. A pointer is simply a place to store an address of an object and 
does not represent any objects unless assigned a particular address during 
execution of a program. The following example may clarify some of these 
points. 

Example 7.6 

#define WIDTH 80 
void 
example (void) 
{ 

} 

char *m, mess[WIDTH), chi 
char str[WIDTH) = "forty two"; 

1* initialisation is allowed *1 

1* Note that the initialisation above is treated 
by the C compiler as a copy operation. 
Thus, the string "forty two" is copied into 
storage allocated for str. Compare with the 
first statement below. *1 

mess" "Zx"; 

mess [0] 'Z' ; 

mess [1] .. 'X' ; 

*m .. chi 

ch .. *m; 

m .. "Message"; 

ch *m; 

ch *(m+2) ; 

m .. mess; 

ch .. *m; 

return; 

1* WRONG: mess has storage already 
allocated to it, namely 

1* 

1* 

1* 

1* 

1* 

1* 

1* 

1* 

the mess array. You cannot 
change it; mess is really a 
constant pointing to the array 
storage. Only the content of 
the storage can be changed, 
not its address *1 

OK: first element of the array 
is now 'z' *1 

OK: second element of the array 
is now 'X' *1 

WRONG: m does not point to 
anything yet *1 

WRONG: m does not point to 
anything yet *1 

OK: m is aSSigned the address 
of the string *1 

OK; ch now contains the first 
character of the string, 'M' *1 

OK: ch now contains the third 
character of the string, 's' *1 

OK: m is aSSigned the address 
stored in mess, that is, the 
address of the first element 
of the mess array *1 

1* OK: ch now contains the first 
character of mess, 'z' *1 
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ARRAYS OF POINTERS 

A program that was designed to report a variety of error messages to its user 
might use the approach given in example 7.7. 

Example 7.7 

char *error[30]; 

/* error is an array of 30 pOinters to char */ 

error [0] .. "not enough arguments"; 
error[1] .. "too many arguments"; 
error [2] .. "invalid arguments"; 

/ * etc., etc. * / 

/* to report error number 'i' */ 

printf ("*** 'lis ***\n", error[i]); 

The patterns of asterisks held in 7*5 arrays of characters, while not especially 
useful, are easily visualised. Imagine therefore, that we wish to construct. and 
store in this form, representations of all upper case letters of the alphabet. If 
/ptr/i-1J is to point to the representation of the ith letter, then we need the 
declaration: 

char (*lptr [26]) [7] [5] ; 

This declaration says that /ptr is a 26 element array of pointers. The pointers 
point to 7*5 arrays of characters. If we wish to associate the eighth pointer 
with the eighth letter of the alphabet. H. we could do this easily by the 
statement: 

makeH (lptr[7]); 

The preceding examples should have helped to clarify the way in which two­
dimensional arrays can be used in C. But a moment's reflection will reveal that 
in order to store our upper case characters in this manner we would need 
storage space for 26*7*5 characters. Furthermore. each character needs to be 
placed in the correct element. This is certainly not making the best use of the 
facilities available in C. Even in our earliest examples we recognised that it 
was worth having functions or define statements to deal with five stars. a 
middle star, and two end stars (example 2.3). Following this course we could 
set up strings as follows: 

char *allstars, *endstars, *midstars; 

allstars 0= "*****"; 
endstars "" "* *"; 
midstars " * "; 

An array of seven elements, where each element is a pointer such as allstars, 
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can now be used to represent a character composed of asterisks. Thus the 
character H can now be represented by seven pointers, six of which point to the 
same object. 

void 
makeH (char *sptr[ROWMAX]) 
{ 

sptr++ 
sptr++ 
sptr++ 

sptr++ = sptr++ = endstars; 
allstars; 
sptr++ = sptr = endstars; 

We now need an array of 26 pointers in which each pointer points to an array 
of seven pointers which point to strings. This is obtained with the declaration: 

char (*lptr[ROWMAX]) [26]; 

The call to our new version of makeH defined above would be: 

makeH (lptr[7]); 

The advantage of rethinking our example, or rather the way to express it in C, 
has been that we have eliminated the need to assign characters to individual 
array elements. We now assign strings to pointers. Further, our storage require­
ment is considerably reduced as we store only one copy of each string (row) of 
characters. Each 'big' character can be represented by seven pointers and we 
need twenty-six such characters. We therefore save ourselves writing effort, 
storage space, and run time, by thinking about our task in a way which enables 
us to take full advantage of the facilities offered by C. 

It is important, and useful, to be thoroughly familiar with the handling of 
strings and pointers in C. The next example, which is complete, should help to 
consolidate the work on strings. 

Example 7.8 

1* Soundex code generator: to transform a string *1 
1* into a code that tends to bring together all */ 
/* variants of the same name (usually surname) */ 
/* (Knuth, 1973) */ 

#include <stdio.h> 

void encode (char *s); 
void dumpdups (const char *s); 
void dumpzeros (const char *s); 
void fixup (char *s); 

int 
main (void) 
{ 
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char str[20]; 

printf ("\nCharacter string 7"); 1* ask user.. *1 
scanf ("%s", str); 1* for a string *1 

encode (s tr) ; 

dumpdups (str) ; 

dumpzeros (str) ; 

fixup (str) ; 

printf ("\nSoundex 

return (0) ; 
} 

void 
encode (char *s) 
{ 

code 

1* encode all but *1 
1* the first char *1 
1* erase adjacent *1 
1* duplicate codes *1 

1* erase zero codes*1 

1* pad or truncate *1 
1* to four digits *1 

is %s\n", str) ; 
1* tell user*1 

static char coder] = "01230120022455012623010202"; 

while (*++s) 

} 
void 

*s = code[*s - 'a']; 

dumpdups (const char *s) 
{ 

} 

void 

char *t; 

while (*s) 
if ( * s == * (s + 1 )) { 

t=s+l; 
while (*t = *(t+l)) 

t++; 
else s++; 

dumpzeros (const char *s) 
{ 

char *t; 

while (*s) 
if (*s == '0') { 

t = s; 
while (*t = *(t+l)) 

t++; 
else s++; 
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void 
fixup (char *s) 
{ 

int i; 

A Book on C 

for (i = 1; *++s && i < 4; i++) 
, 

for ( ; i < 4; i++) 
*5++ = '0'; 

*s = (char)O; 

style 73.9 1 

In example 7.8 only one copy of the string exists. The functions are given a 
pointer to this copy and may modify the string. The string is obtained from a 
call to scanf which we have not so far used in the examples on strings. Note 
that encode initialises the array code at its declaration with one digit for each 
letter of the alphabet. Both dumpdups and dumpzeros use the expression *t = 
*(t+ 1) in a while statement to eliminate adjacent identical characters, while 
ju:up capitalises upon the flexibility of the for statement. 

SUMMARY 

The availability of arrays has clearly made a significant difference to the ease 
with which we can express our tasks in C. Pointers, together with arrays, 
provide us with easy-to-use and economical programming aids. C does not 
limit us to arrays as a way of storing data items with a collective name. We are 
also able to use structures, which enable us to group together data items of 
differing types - this is the subject of the next chapter. Pointers too have a 
wider role to play than we have thus far indicated, and we will return to them 
in a later chapter. 

The elements of C that we have covered so far constitute a 'basic set'. It is 
perfectly possible to write meaningful C programs armed with only that 
knowledge. The remaining chapters deal with more advanced topics, without 
which your C armoury would be incomplete. 



8 More Data Types 

In our discussion so far, all data types of identifiers have been simple: they 
consist of one elementary type. The elementary types are: 

(char) 
(int) 
(float) 

characters 
integers 
floating point 

Chars and ints can be either signed or unsigned, and ints and floats can have 
modifiers short or long. A "long float" is referred to as a "double." Unless 
otherwise explicitly stated in a declaration, the default type is into 

If these were the only data types the C language could represent, many 
problemswould be much more difficult to express than they should be. Part of 
the great flexibility of C is that the language provides a way to combine 
elementary types into new derived types called structures and unions. 

STRUCTURES AND UNIONS 

When we combine types, we can do it in one of two ways: we can either lay 
them end to end so that none of them overlap and each of them contains 
independent values, or we can overlay them on top of each other, so that they 
all start at the same machine storage location and overlap. 

If we lay the types next to each other so that none of them overlap, we 
create a structure, a type which is the concatenation of the individual member 
elementary types. Each of the variables starts at a different storage location, 
one after the other in a series. Therefore, the length of a structure is at least as 
much as the sum of the lengths of its members. Some compilers insert space in 
between members of a structure in order to enforce data type address align­
ment restrictions of the hardware. As a result, the length of a structure may be 
more than the sum of the lengths of its members because of "holes" in the 
structure form. 

If we overlay types on top of each other, we create a union, a type which is 
the union of the individual member elementary types. The same memory 
storage area is accessed by all of the variables within the union, and it is up to 
the application to know which particular data type occupies the space at any 
given time. Since each of the variables starts at the same location, the length of 
the union is the length of the longest member. 
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Pictorially, we can represent the distinction between structw'es and unions 
as: 

double J union 

int I 
char I 

1 increasing machine address 

I double int I char I structure 

If we assume that the size of a char is 1 byte, of an int is 2 bytes, and of a 
double, 4 bytes, then the size of the union is 4 bytes, while the size of the 
structure is 7 bytes. 

Structures are used to group together related data so that they become more 
manageable. Consider, as an example, a date. We can represent the date by 
three numbers: the month of the year, the day of the month, and the year. By 
grouping these together, we can create a new type: 

struct date type { 
short int month; 
short int day; 
short int year; 

} ; 

/* Month of year - 1 --> 12 */ 
/* Day of month - 1 --> 31 */ 
/* Year */ 

The above statement declares a derived type (struct date_type) and its form, 
i.e., what its members are. The identifier date_type is called the structure tag 
or template name; the compiler will know what a struct date _type is at any 
point after this declaration. 

No storage is allocated by the above statement, however. The template 
name before the left curly bracket is used only to identify the form of the 
structure so that it can be referenced more easily afterward. The name of the 
template is called a tag. To create an instance of this new type at the time of 
creation of the tag, an identifier is placed after the right curly bracket: 

struct date type { 
short int month; 
short int day; 
short int year; 

} birth; /* Date of birth */ 

If the tag has been previously defined, it is sufficient to just specify its name 
without repeating the definition of its type: 

struct date_type birth; /* Date of birth */ 
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Structures and unions nest; that is, they can be embedded within other 
structures and unions. Arrays can be put inside structures or unions, also. So, if 
we were interested in storing information about a person, we might create a 
structure: 

struct person type { 
char nameTNAMESIZE]; 
struct date type birth; 
struct date=type death; 

} ; 

1* Name of person *1 
1* Date of birth *1 
1* Date of death *1 

We can even create arrays of structures, so that this information about every­
one in a group could be stored by declaring: 

struct person_type brits[UK_POPULATION]; 

Unions of all types can be created in a similar fashion. This facility to group 
data into a new type makes it easier to manage, and thus reduces the complex­
ity of the programming task. 

As an example of a union, consider a piece of storage which will some­
times hold an int, and at other times a double. The declaration for such a union 
would be written: 

union int double { 
int i; 
double di 

} ; 

ACCESSING STRUCTURES AND UNIONS 

Only a limited number of operations can be performed on structures and 
unions. It obviously does not make sense to, for example, add or multiply 
structures, but it is essential to be able to access their members. Several 
structure and union operations are available: a member can be accessed, the 
address can be taken with the & operator, structures can be assigned values en 
masse by copying elements from one structure to another of the same type, and 
they can be used as parameters to, and return values from functions. For the 
previously declared structure birth, 

birth.day 

represents the member identified by day, and 

&birth 

represents the address of that structure. If pbirth is declared as a pointer to a 
date _type structure and then initialised: 

struct date_type *pbirth = &birthi 
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then the day member from such a pointer is accessed with the pointer 
operator: 

pbirth->day 

When accessing a member of a structure directly, the dot operator is used; for 
indirect access from a pointer to a structure, the pointer operator is used. 
The name of the person in the first element of the array of structures brits 
declared above is accessed: 

brits [0) .name 

which is an array of characters holding the person's name. Note that this is 
distinct from the first character of the name, which would be accessed as: 

brits[O).name[O) 

The assignment operator can be used to initialise all elements of one structure 
with the corresponding values from another structure. Both source and target 
structures must be of exactly the same type as in 

struct date_type birth, death; 

birth = death; 

To give a structure initial values at compile time, an initialiser similar to the 
one used for character arrays can be specified in a declaration like this: 

struct person type henry viii = { 
"Henry ViII", - 1* Name * I 
{ 6, 28,1491 }, 1* Born June 28, 1491 *1 
{ 1, 28, 1547 } 1* Died January 28, 1547 *1 

} ; 

Using the dot and pointer operators to access members works with nested 
structures, so that 

henry_viii.birth.year 

would have the value 1491. 
It should be noted that only conforming C implementations must support 

structure assignment by copying contents of each structure member, and allow 
structures to be passed to and returned from functions. Some of the old 
compilers may not fully implement structure and union operations as defined 
by the C standard. In particular, it may not be possible to pass structures as 
arguments to functions or copy the content of one structure into another 
structure of the same type simply by specifying the assignment operator. This 
limitation is more of an inconvenience than a real problem. One can always 
specify a set of assignment statements for each member of a structure, or pass 
an address of a structure to a function. 
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ENUMERATIONS 

Still another method for creating new types is available in the C language. In 
an enumerated type, a variable can assume one of a finite set of values which 
are listed at the place the type is declared. If we create a type to model the five 
flavours of ice cream available at a certain store, we cOuld say: 

enum flavour type { 
CHOCOLATE, 
VANILLA, 
STRAWBERRY, 
COFFEE, 
RASPBERRY 

} ; 

Thereafter, a variable of type flavour _type can take on any of the values 
enumerated. The values are treated like constants and can be used anywhere 
constants can be used. 

enum flavour_type flavour = CHOCOLATE; 

would create a variable named flavour, and give it an initial value of 
CHOCOLATE. Please note, however, that no type checking in function calls or 
assignment statements is performed for enum variables. It is quite possible to 
assign a value of, say, 15 to a variable declared as enum flavour _type. All 
enum variables are really treated as integers. 

In our previous example, we could modify the person _type structure to 
include information about the sex of a person. Since the sex of most people is 
only one of two possible values, we can define an enumerated type to represent 
it: 

struct person type { 
char name[NAMESIZE]; 
enum sex type { 

MALE-;-

} ; 

FEMALE 
} sex; 
struct date type birth; 
struct date=type death; 

/* Name of person */ 

/* Sex */ 
/* Date of birth */ 
1* Date of death */ 

To demonstrate the use of enum types, we could write a routine which would 
recognise an argument of a string of characters as being either "MALE" or 
"FEMALE," and then return the appropriate enum value: 

enum sex type 
get sex (char *str) 
{ -

return (strcmp (str, "MALE") ? FEMALE MALE); 
} 
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The above routine uses the standard C library function strcmp, which compares 
two character arrays, and returns an integer which is less than, equal to, or 
greater than 0 depending on whether the first argument is lexicographically 
less than, equal to, or greater than the second. 

BIT FIELDS 

There are times when it becomes necessary to pack several pieces of 
information into the storage that would normally be occupied by a single 
variable. Such circumstances can occur when manipulating huge amounts of 
data, or when dealing with boolean values or flags. For these occasions, C 
provides us with a way to indicate how many bits should be assigned for each 
variable. When we access one of these fields, the compiler will isolate the 
correct bits and allow us to manipulate the field as though it was stored as a 
separate variable. For example, if we wanted to save space and squeeze the 
date structure so it occupied as little machine storage as possible, we could 
define it as: 

struct { 
unsigned month: 4; 
unsigned day : 5; 
unsigned year: 11; 

} short_date; 

Since the month of the year can only be a number between 1 and 12, we need 
only 4 bits to represent it; the day can only be between 1 and 31 (5 bits 
required), and we can let the year be represented by 11 bits (allows us up to the 
year 2047). Thus, short_date occupies only 20 bits, instead of the 48 bits it 
would take if the month, day, and year were each 16 bits (int). 

There are some restrictions on the use of bit fields - there are no arrays of 
fields; and, because they might not begin on a byte or word boundary, they 
have no address, so the & operator cannot be applied to them. 

As the cost of memory continues to decline, it seems that bit fields will be 
most useful in those cases when compact representation of data is paramount. 

VOID 

An additional type, void is available to describe those objects which have no 
value. This is useful for declaring functions that return no value, or casting 
expressions which generate values that are to be discarded. As an example, the 
function exit, which does not return to the calling routine after it is invoked, 
could be declared: 

void exit (int); 
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A void expression denotes a nonexistent value. and as such. can only be used 
as an expression statement. or as the left operand of a comma expression. 

A pointer to void denotes a "generic" pointer. Such a pointer is an address of 
an object of an unspecified data type. It can be used in most expressions other 
pointers can be used in. but cannot be incremented or decremented. You will 
recall that the following expression: 

long *ptrj 

ptr++j 

increments ptr such that it points to a next element of type long. Since void * 
may point to any data type. the increment size is unknown and thus the result 
of the increment operator is undefined. One of the conveniences of C used to 
be interchangeability of pointers and integer types. It afforded very easy 
pointer arithmetic and was useful in many low level applications. The C 
standard no longer guarantees that pointers will fit into storage allocated for 
integers. That is. on some hardware pointers may be larger than any integer 
type; hence. the pointer to void type which always guarantees to be large 
enough to accept an address of any object. 

TYPEDEF 

In C, it is possible to use a shorthand notation to describe fundamental or 
derived types. A declaration using typede/ defines synonyms for the indicated 
type. For example. we could define the date _type structure previously 
mentioned in this chapter as a typede/ called DATE in the following manner: 

typedef struct { 
short int monthj 
short int daYj 
short int yearj 

} DATEj 

1* Month of year - 1 -> 12 *1 
1* Day of month - 1 -> 31 *1 
1* Year *1 

After this declaration. the compiler will understand the use of DATE as a 
reference to the above structure template. It is important to note that no new 
types are generated; the use of typede/ is just a shorthand for an existing type. 
The semantics are exactly the same for typedef variables as for variables 
whose definitions are written out the long way. Typedefs can be used to 
declare synonyms for unions, enums, and fundamental data types in exactly the 
same way. 
Arrays. functions. and pointers can be used in typedef declarations as well. The 
declaration 

typedef int ARRAY_DATE[3)j 

allows the definition of a variable 
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ARRAY_DATE date; 

which is an array of three ints. If we wanted to have a synonym for a pointer to 
a DATE structure, we could write: 

typedef DATE *PDATE; 

Thus, PDATE would be a pointer to a DATE structure. 
typedeJ is especially useful for long and convoluted declarations. Such 

declarations may be expected in applications defining complicated data 
structures and providing functions operating on such data. The following few 
lines of a hypothetical program listing provide increasingly complex typedeJ 
specifications. 

typedef int *int ptr t; 
typedef int (*int func t) (int ptr t, int ptr t); 
typedef int func t func_list_t[6]; --

int ptr t ptr; 
int=func_t func; 

func list t list; 

1* ptr is a pointer to integer *1 
1* func is a pointer to function 

returning int and accepting 
two pointers to int *1 

1* list is an array of six 
pointers to functions returning 
int and accepting two pointers 
to int *1 

(func list t); 

SUMMARY 

- 1* knot (Gordian?) is a function 
accepting an array of six 
pointers to functions returning 
int and accepting two pointers 
to int each; the function 
returns one pointer to int *1 

The object of the game in programming is to reduce the complexity of 
problems to a form where the solution is readily understandable to both the 
writer and the reader. Derived data types afford us the luxury of defining 
arbitrarily complex aggregates so that we can group variables together in some 
logical fashion, where it is sensible to do so. This principle of data abstraction 
allows us to concentrate more on the fundamental ideas of the problem, rather 
than on the details of its implementation. Without derived data types, it would 
be impossible to implement the data structures that are required to solve 
complicated problems. The next chapter deals with the development of these 
data structures. 



9 Pointers Revisited 

Our use of pointers so far has been largely restricted to the processing of 
character strings. In this chapter we will explore much more imaginative uses 
of this very powerful feature of C. In particular, we will need pointers to 
simplify the handling of the data structures that are typical of more complex 
programs. 

Choosing the right data structure to contain the data manipulated by a 
program is at least as important as choosing the right algorithm, and in many 
cases, a poor choice of data structure will lead to a clumsy program. Data 
structures and algorithms are intricately intertwined and a choice of one pro­
foundly influences the other. 

POINTERS TO STRUCTURES 

Given an array of structures of the kind 

typedef struct { 
int ai 
char bi 
float Ci 

STRUCTi 

STRUCT array[10]i 

we have two methods of stepping through the array, examining the individual 
elements. One way we are already familiar with - using subscripts, so that 
a"ay[i] refers to the (i+l)th element (because the first element is subscript 0). 
The other way is to use a pointer: 

STRUCT *Pi 

for (i = 0, P = arraYi i < 10i i++, p++) 
printf ("array[%d] %d %c %f\n", i, p->a, p->b, P->C)i 

Note that when we say i++ we mean "add 1 to in, but when we say p++ we 
mean "add enough to p to make it point to the next element," and this is 
precisely what C does. Pointer arithmetic takes account of the underlying type, 
so that p++ means something different if p is a pointer to STRUcr or char - in 
the latter case, since the underlying type is one byte, p is actually incremented 
by 1. 

It is for this reason that the expressions A[i] and *(A +i) are functionally 
equivalent, regardless of the type of A. 
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ALLOCATION OF STORAGE 

If we wanted to read lines of text from a file and store them internally for 
subsequent processing, one way that we could do it is to declare an array of 
fifty 132-character lines, and read the data into it. The problem with this is that 
we don't know how many lines there will be, or how long they are. As long as 
the lines are less than 132 characters, and as long as there are less than 50 
lines, then the program will work, even though we may have reserved much 
more space than we actually need (suppose we only have two 10-character 
lines!). A closer look at memory allocation is definitely warranted. 

Storage for identifiers can be allocated in several ways. When an identifier 
is defined with the storage class static or extern, the compiler allocates 
memory for this identifier once, and it exists for the life of the program. 
Identifiers defined with the storage class automatic have memory allocated for 
them when control enters the function that defines them, and deallocated or 
'freed' when control exits that function. Thus, an automatic variable exists only 
when the function which defines it is executing. There are times when a 
programmer would like to allocate storage for a variable in one function, and 
have that variable exist until all processing related to it is complete, which may 
be long after the function which defined it has exited. In addition, the 
programmer may not even know how much storage will be required, as in our 
case. To provide the programmer with complete flexibility, the malloc andfree 
functions can be used to perform dynamic memory allocation. 

The malloc library routine is a general purpose memory allocator; its 
argument is the size (in bytes) of the memory desired. If successful, the return 
value is a pointer to a block of memory of the requested size. When the block 
is no longer needed, the free routine can be called with the pointer to the block 
to be freed as its argument. 

Using these facilities, we can now manage memory more efficiently, and 
eliminate the restriction on the number of lines that can be read in, as shown in 
example 9.1. 

Example 9.1 

#include <stdlib.h> 
#include <stdio.h> 

/* Maximum length of input line */ 

#define LINESIZE 132 

/* Error handling macro */ 
#define ERROR (msg) {fprintf (stderr, "%s\n", msg); exit(1);} 

/* Linked list structure */ 
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typedef struct list { 
char text[LINESIZE]; 
struct list *next; 

} LIST; 

LIST *lines ; NULL, /* Pointer to head of the list */ 
*this line; NULL, /* Pointer to current element */ 
*new_Tine; /* Pointer to a new element */ 

int eof ; 0; /* End of file flag */ 

while (!eof) { 

} 

/* Allocate space for a new line */ 

if (! (new line; (LIST *) malloc (sizeof(LIST)))) 
ERROR("Memoryexhausted"); 

/* Initialise next pointer */ 

new line->next ; (LIST *) NULL; 

/* Read in the next line */ 

if (!gets (new_Iine->text)) 
eof; 1; 

else 
/* If this is the first line, set head 

and current pointer to it */ 

if (! lines) 
lines ; this_line = new_line; 

/* Otherwise, link current line to new 
one and advance current line */ 

else 
this line this line->next new_line; 

style 53.0 ] 

Here we have generated a "linked list" data structure, where each element in 
the structure, as well as containing the data, has a pointer to the next element 
in the list. Thus, we finish up with exactly as many elements as there are lines 
in the input - no more, no less. We could print out the text afterwards by 

for (this line; lines; this line; 
- this-line = this line->next) 

printf ("%s\n", this_Iine->text); -

When allocating space dynamically in this way, it is important to remember 
that we need to de-allocate, or free, the space at some time. This will be done 
automatically when the program exits, but if space limitations require that you 
free the space before then (if, for example, you wish to re-use the space for 
other purposes), it can be freed by 
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#include <stdlib.h> 

LIST *next_line; 

while (lines) { 

ABookonC 

next line = lines->next; 
free - (lines) ; 
lines = next_line; 

} 

and this will leave the variable lines set to a NUll. value, so that, if used 
inadvertently, it will not pick up garbage data. 

Of course, we have still potentially allocated more space than we need, 
since each line reserves 132 characters, regardless of its actual length. A better 
structure would be one that looked like 

line 1 

line 2 

line 3 

which would be declared as 

typedef struct list 
char *text; 
struct list *next; 

} LIST; 

and we would have to allocate storage for both the list element and for the 
data, as shown in example 9.2. 

Example 9.2 

#include <stdlib.h> 
#include <stdio.h> 

/* Maximum line size */ 

#define BUFSIZE 2048 

char data[BUFSIZE]; 

while (! eof) { 
if (!(new line = (LIST *) malloc (sizeof(LIST»» 

ERROR(IMemoryexhausted"); 

new line->next = (LIST *) NULL; 



} 
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if (!gets (data)) 
eof = 1: 

else { 
/* Allocate enough space for this line */ 

if (! (new line->text = 
- (char *) malloc (strlen(data)+1))) 

ERROR ("Memory exhaus ted") : 

/* Copy the line read in */ 

strcpy (new_Iine->text, data): 

1£ (! lines) 
lines = this line = new_line; 

else -
this line this line->next new_line; 

style 55.5 1 
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Now we are allocating exactly the amount of storage required. Note also that 
the limit on line length is only that it be less than 2048 characters! 

COMPLEX DATA SfRUCTURES 

As an example of a more complex data structure, consider the program of 
example 9.3, together with its header file in example 9.4. This program 
constructs a family tree from input data, and prints out the pedigree chart of a 
named individual. 

The principal data structure is an array of elements of type PERSON,which 
looks like 

death-date mother father 

other PERSONs in array 

The dates of birth and death are themselves structures, nested within the 
PERSON structure. 
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Example 9.3 

Ninclude "family.h" 
Ninclude <ctype.h> 

/* Maximum number of people in input data */ 

Ndefine MAXPEOPLE 64 

/* Array for data structure */ 

static PERSON people[MAXPEOPLE+1]; 

/* Pointer to output image area */ 
static char *space; 

/* Months of year */ 

static char *month[MONTHS] -
{ "JAN", "FEB", "MAR", 

"MAY", "JUN", II JUL" , 
"SEP", "OCT", "NOV", 

"APR", 
"AUG", 
"DEC" }; 

/* Global variables */ 

static int curr level - 0; 
static int max level - 0; 
static int totrows, totcols; 

int 
main (int argc, char *argv[]) 
{ 

char line[LINESIZE]; 
register int i; 
register PERSON *p; 

/* Input line */ 
/* General purpose counter */ 
/* Pointer to data structure */ 

/* Arguments can be passed in on the command line as 
command arg1 arg2 .•• 

where argc is the argument count (including the 
command name), and argv[i] are the arguments 
(argv[O] is the command itself, argv[1] is the 
first argument, etc.) */ 

if (argc 1- 2) 
ERROR ("Usage: ftree <name>", ""); 

/* Initialise the data structure */ 

for (i - 0; i <- MAXPEOPLE; people[i++].name - NULL) 

/* Input lines consist of fields separated by "tokens" 
from SEPSTRING. Read in each line, extracting the 
fields and entering them into the data structure. 
Ignore lines beginning with "*" (comments). */ 

while (gets (line) && strlen(line» { 
if (line[O] -- '*') 

continue; 
p - get name (strtok (line, SEPSTRING»; 
p->sex ~ get sex (strtok (NULL, SEPSTRING»; 
p->birth - get date (strtok (NULL, SEPSTRING»; 
p->death - get-date (strtok (NULL, SEPSTRING»; 
p->father - get name (strtok (NULL, SEPSTRING»; 
p->mother - get=name (strtok (NULL, SEPSTRING»; 
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* 
* 
* 
* 
* 

**f 
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f* Find out how biq the tree will be *f 

qet level (p - qet name (arqv[1]»; 
totrows - (5 * power (2, max level) - 1); 
totcols - (max_level + 1) * COLPLEV; 

f* ..• and allocate space for the output *f 

if (!(space - malloc «unsiqned) (totrows * totcols»» 
ERROR("Memory exhausted", .... ); 

f* Initialise the output area with spaces usinq 
the library function memset *f 

memset (space, (int) , " totrows * totcols); 

f* Generate the output imaqe •.• *f 

drawtree (p, 0, 1); 
vlines (); 

f* •.• print it •.• *f 

printtree 0; 

f* ... and exit *f 

return (0); 

Find the person indicated by the supplied name 
in the 'people' array. If the person is currently 
non-existent, insert them into the array. Return 
a pointer to the person if successful, otherwise 
terminate with an error messaqe. 

PERSON * 
qet name (const char *str) 
{ -

reqister PERSON *p; 
static DATE zero date -
f* '-' means unknown *f 

if (tstrcmp (str, "-"» 
return (PERSON *) 0; 

f* Data strucure pointer *f 
0, 0, 0 }; f* Date *f 

f* Search the array for a matchinq name *f 

for (p - people; p->name && strcmp (p->narne, str); p++) 

f* If found, return the pointer ••• *f 

if (p->name) 
return p; 

f* •.. otherwise make sure there's enouqh room .•. *f 

if (p >- &people[MAXPEOPLE]) 
ERROR("Too many people", .... ); 

f* ... add them to the end ••. *f 

if (! (p->name - malloc «unsiqned) strlen (str) + 1») 
ERROR("Memory exhausted", .... ); 
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strcpy (p->name, str); 
p->birth - p->death - zero date; 
p->father - p->mother - (PERSON *) 0; 

1* ... and return the pointer *1 

return p; 

* Determine sex. 
**1 

sex type 
qet-sex (char *str) 
{ -

1** 
* 
* 
* 

**1 

void 

1* Convert to upper case *1 

strupcase (str, str); 

1* Should be either MALE or FEMALE *1 

return (strcmp (str, "MALE") ? FEMALE MALE) ; 

Convert src to upper case in dest (toupper is a 
library function that converts [a-z] to [A-Z] , and 
leaves all other characters untouched). 

strupcase (char *dest, const char *src) 
{ 

} 
1** 
* 
* 

**1 

DATE 

while (*dest++ - toupper (*src++» 

Convert str to a date. Terminate with a messaqe 
on error. 

qet date (char *str) 
{ -

char *ptr; 
reqister int i; 
DATE date; 

1* Strinq pointer *1 
1* Month counter *1 
1* Converted date *1 

1* '-' means unknown *1 

if (Istrcmp (str, "-"» 
date.month - date.day - date. year - 0; 

1* Convert str to DATE format *1 

else { 
strupcase (str, str); 
for (i - 0; i < MONTHS; i++) 

if (Istrncmp (str, month[i], strlen (month[i)) 
break; 

if (i >- MONTHS) 
ERROR("Invalid date ", str); 

date.month - i + 1; 



/** 
* 
* 
* 
* 
* 

**/ 

} 
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/* strtol is a library function that returns the 
long integer corresponding to the string in the 
first argument according to the number base in 
the third argument. Leading white space is 
ignored. If the second argument is not NULL, 
it will contain the address of the first 
non-digit character which terminates the 
conversion. */ 

date.day - (short int) 
strtol (str + strlen (month[i]), &ptr, 10); 

date.year - (short int) 
strtol (ptr + 1, (char **) 0, 10); 

return date; 

Find out how many generations have to be printed. This 
function operates recursively by determining the 
number of generations above this one on both the 
mother's and father's side - the number of generations 
to be printed is the maximum of these numbers. 

void 
get level (const PERSON *p) 
{ -

/** 
* 
* 
* 
* 
* 
* 

**/ 

PERSON * dad, *mom; 

/* Find father */ 

/* Pointer to mother & father */ 

for (dad - people; dad->name && dad 1- p->father; dad++) 

/* Find out how many generations above him */ 

if (dad->name) { 
curr_level++; 

max level - max(max_level, curr_level); 
get-level (dad); 
curr_level--

/* Find mother */ 

for (mom - people; mom->name && mom 1- p->mother; mom++) 

/* Find out how many generations above her */ 

if (mom->name) { 
curr level++; 
max Tevel - max(max level, curr_level); 
get-level (morn); -
curr_level--; 

C does not have an exponentiation operator - this 
function simulates it. Standard C has double 
pow(double x, double y) function. Since we want 
to perform only integer arithmetic, it is not 
necessary to involve complicated double precision 
operations. 
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power (int base, int exp) 
{ 

/** 
* 
* 

**/ 

register int i, result; 

result - 1; 
for (i - 0; i < exp; i++) 

result *- base; 
return result; 

Find the row position in the output image for 
this generation. 

rowloc (int level, int offset) 
{ 

/** 
* 
* 
* 
* 

**/ 

if (level -- max level) 
return (offset * 5 - 4); 

if (level -- max level - 1) 
return (offset * 10 - 6); 

return (rowloc (level + 1, offset * 2) + 
rowloc (level + 1, offset * 2 - 1» / 2; 

Generate the family tree 
drawing this person, and 
their mother and father. 
run out of parents. 

in the output image by 
then the family trees of 
The recursion stops when we 

void 
drawtree (const PERSON *p, int level, int offset) 
{ 

PERSON *mom, *dad; 

/* Draw this person */ 

drawperson (p, rowloc (level, offset), 
level * COLPLEV + 1); 

/* Draw father's family tree */ 

for (dad - people; dad->name && dad !- p->father; dad++) 
, 

if (dad->name) 
drawtree (dad, level + 1, offset * 2 - 1); 

/* Draw mother's family tree */ 

for (mom - people; mom->name && mom !- p->mother; mom++) 
, 

if (mom->name) 
drawtree (mom, level + 1, offset * 2); 

/** 
* Print date. 

**/ 

char * 
put date (const DATE *date) 
{ -

static char words(25); /* Buffer for date in words */ 
sprintf (words, "%s %d, %d", month[date->month - 1), 
date->day, date->year); 
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return words; 

/** 
* Draw a person in the output image, complete with 
* name and dates of birth and death. 

**/ 

void 
drawperson (const PERSON *p, int row, int col) 
{ 

/** 
* 

**/ 

char *d; /* Date buffer */ 

/* Copy in name (memcpy is a library function which 
copies data from its second parameter to its first 
for a length in bytes of its third parameter) ••• */ 

memcpy (pixel (row, col + 1), p->name, strlen (p->name»; 
memcpy (pixel(row + 1, col), NAMELlNE, 

sizeof(NAMELINE) - 1); 

/* ... and birth date, if it exists •.. */ 

if (p->birth.year) { 
memcpy (pixel(row + 2, col), " b.", 3); 
d - put date (&(p->birth»; 
memcpy (pixel (row + 2, col + 4), d, strlen (d»; 

/* ..• and date of death */ 

if (p->death.year) { 
memcpy (pixel(row + 3, col), " d.", 3); 
d - put date (&(p->death»; 
memcpy (pixel (row + 3, col + 4), d, strlen (d»; 

Print the output image. 

void 
printtree (void) 
{ 

int i; 

for (i - 0; i < totrows; i++) 
printf ("%.*s\n", totcols, pixel(i + 1,1»; 

/** 
* Put vertical lines into output image. 

**/ 

void 
vlines (void) 
{ 

register int i, j, k; 

for (i - 1; i <- max level; i++) 
for (j - 1; j < Power (2, i); j +- 2) 

for (k - rowloc (i, j) + 1; 
k <- rowloc (i, j + 1) + 1; k++) 
* (pixel (k, i * COLPLEV + 1» - • I '; 

style 66.6 1 
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Example 9.4 

Nifndef FAMILY H 
Ndefine FAMILY-H 

A Book on C 

/* -----------=-----------------------------------------
* FAMILY.H - header file for FAMILY.C, family tree printer 
* -----------------------------------------------------*/ 

/* To make the application portable, we will provide a set 
of macros. The macros behave in different ways 
dependinq on whether the compiler is standard ANSI C or 
not. All conformant implementations are required to 
define the STDC constant. This constant can be used 
in makinq proqramS-portable across ANSI and non-ANSI 
compilers. */ 

Ninclude <stdio.h> /* provided on most C compilers */ 

Ufdef STDC 
/* ANSI standard C compiler */ 
#include <stdlib.h> /* defined by the standard */ 
Ninclude <strinq.h> /* defined by the standard */ 
Nlnclude <ctype.h> /* defined by the standard */ 

/* The followinq preprocessor macro will be used in 
function prototypes */ 

Ndefine PROT(x) x 
#else 

1* Older, non-standard compiler - it is necessary to 
define only those functions which do not return 
inteqer values */ 

void exit (); 
char *strtok (), *malloc (), *strcpy (), 

*memset (), *memcpy (); 
lonq strtol (); 

/* The followinq preprocessor macro will be used in 
function prototypes. Please note that 'N' 
character must be in the first column for non-ANSI 
compilers. * / 

Ndefine ASTR * 
#define PROT(x) (/ASTR x ASTR/) 

/* Define NULL if it isn't defined already */ 
Nifndef NULL 
#define NULL «char *) 0) 
Nendif 

#endif /* end of environment specific considerations */ 

typedef struct { 
short int month; 
short int day; 
short int year; 

DATE; 

/* Month of year: 1 -> 12 
/* Day of month: 1 -> 31 
/* Year: 1 -> 1987 

typedef enum {MALE, FEMALE} sex_type; 

typedef struct person 
char *name; /* Name of person 
sex_type sex; /* Sex 
DATE birth; /* Date of birth 
DATE death; /* Date of death 

(0 year --> still 
struct person *mother /* Pointer to mother 
struct person *father; /* Pointer to father 

*/ 
*/ 
*/ 

alive) 

*/ 
*/ 
*/ 

*/ 
*/ 
*/ 
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} PERSON; 

1* Maximum length of an input line *1 
#define LINESIZE 128 

1* Valid separators between fields in input line *1 
#define SEPSTRING ":\n" 

1* Width of one output column *1 
#define COLPLEV 18 
1* Months in a year *1 
#define MONTHS 12 

1* Maximum width of a name *1 
#define NAMELINE ,,------------------

1* Maximum value of x and y *1 
#define max (x, y) «x) > (y) ? (x) : (y» 

1* Position in output array of row r column c */ 
#define pixel(r,c) (space + «r) - 1) * totcols + (c) - 1) 

1* Error handling macro *1 
#define ERROR(msg,data) \ 

{ fprintf (stderr,"%s%s\n",msg, data); exit (1); } 

1* Function prototypes *1 
PERSON *get name PROT«const char *name»; 
DATE get date PROT«char *date str»; 
sex type-get sex PROT«char *sex str»; 
void strupcase PROT«char *dest,-const char *src»; 
void get level PROT«const PERSON *person»; 
int power PROT«int base, int exp»; 
int rowloc PROT«int base, int exp»; 
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void drawtree PROT«const PERSON *person, int level, int offset»; 
char *put date PROT«const DATE *date»; 
void drawperson PROT«const PERSON *person, int row, int col»; 
void printtree PROT«void»; 
void vlines PROT«void»; 

#endif 

1* ------------ family.h - ENDS --------------- *1 

Input to the program might look like 

* Input for ftree.c program 

* Family tree of Michael Soren 

Michael Soren:male:Aug 18,1958:-:Howard Soren:Toni Grossman 

Toni Grossman:female:Sep 10, 1932:-:Abraham Grossman: 
Erna Salzberg 

Howard Soren:male:May 11,1930:-:Charles Sorkowitz: 
Minnie Sorkowitz 

Abraham Grossman:male:Feb 24,1894:Apr 14,1966: 
Aria Grossman:Mindel Wurzel 

Erna Salzberg:female:Sep 13,1896:Feb 12,1970: 
Jonah Salzberg:Chaya Weiser 

Charles Sorkowitz:male:May 1,1895:Apr 14,1980: 
Harris Sorkowitz:Goldie Eglewitz 

Minnie Sorkowitz:female:Dec 1,1898:Sep 24,1966: 
Nathan Sorkowitz:Etka Cohen 
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in which case the output for the pedigree chart of Michael Soren would look 
like 

Michael 
Soren 
b. Aug 18 

1958 

Howard Soren 

b. May 11 
1930 

Tony 
Grossman 

b. Sep 10 

1932 

Charles Sorkowitz 

b. May 1 1895 
d. Apr 14 1980 

Minnie Sorkowitz 

b. Dec 1 1898 
d. Sep 24 1966 

Harris 
Sorkowitz 

Goldie 
Eglewitz 

Nathan 
Sorkowitz 

Etka Cohen 

Aria 
Grossman 

~Ab __ r_a_h_a_m __ G_r_o_ss_ma __ n~ Mindel 

b. Feb 24 1894 
d. Apr 14 1966 

Erna Salzberg 

b. Sep 13 1896 
d. Feb 12 1970 

Wurzel 

Jonah 
Salzberg 

Chaya 
Weiser 

The program is commented well enough to be self-explanatory, but there are a 
number of features which are worthy of further explanation. Firstly, there are 
some standard functions used, such as memset and strtok, which are part of a 
run-time library defined by the ANSI standard. The library and the corres­
ponding header files mayor may not be present on your particular installation. 
The ones we have used are standard on the UNIX system, but may be different 
in other implementations. In any case, the functions are mostly straightforward 
to duplicate and, if missing, may be built by you in an effort to come closer to 
the standard C implementation. 
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Secondly, the mechanism for passing argwnents into the program from the 
command line is demonstrated. In order that a program be as flexible as 
possible, it is important to parameterise it in the same way that you would 
parameterise any other function. In this case, the parameter is the name of the 
person whose pedigree chart is to be printed. The standard C specifies that 
implementations in "hosted" environments may specify argwnents to the top 
level main function. "Hosted" means environments in which the applications 
are run under control of the host operating system. If provided, there must be 
two such argwnents: the first one is an integer specifying the number of 
character strings passed to the pplication, and the second one is an array of 
character pointers containing addresses of the strings. All commonly found 
environments implement this ANSI C recommendation and pass to the applic­
ation a set of character strings containing argwnents supplied to the program 
on the command line starting its execution. 

Thirdly, notice that the functions get _level and drawtree are recursive, 
which is a common feature of programs which manipulate data structures. Any 
one person's family tree consists of two sub-trees - the family trees of both 
their mother and their father. drawtree utilises this fact to draw the person's 
family tree by drawing first the person, and then the family trees of their 
mother and father; get_level detennines the number of generations to be 
printed, which is simply one more than the maximum of the number of 
generations in either the mother's or father's tree. 

And finally, note how provision is made for the input data to contain 
comment lines - this simple feature allows commentary to be included within 
data files to explain, for example, what the data are, or how they are to be 
used. 

SUMMARY 

The theory and practice of data structures is a complicated topic, and one 
which is largely beyond the scope of this book. What we have presented is the 
basic tools - pointers, structures and dynamically allocated storage - which will 
allow you to generate arbitrarily complex data structures. 

The thing to remember is that pointers are the equivalent in data structures 
of goto's in control structures. It is as easy to finish up with unruly data 
structures as it is to generate "spaghetti code", and both are usually indicative 
of lack of forethought The representation of data requires as much thought as 
the algorithm which manipulates it, and often the two are inextricably linked, 
in the sense that a poor design of either may cause the other to be 
unnecessarily complex and clumsy. The book Algorithms + Data Structures = 
Programs by Wirth (1976) is an excellent illustration of the way in which 
algoritluns and data structures interact. 
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We have already introduced the C preprocessor directives #include and #define 
for file inclusion and symbol definition capabilities. In this chapter, we expand 
the discussion to include all other capabilities of the preprocessor such as the 
#Unde! directive, the use of the conditional compilation directives #if, #ifdef, 
#ifndef, #else, #elif and #endif, string concatenation and token pasting. In 
addition, parameters for the #define directive are introduced to yield a more 
powerful macro facility. Some of these facilities have been defined recently in 
the ANSI standard and may not be available on your implementation. 

Note that the C preprocessor is not part of the compiler; it is a macro 
processor which is used prior to compilation to perform textual substitutions 
and file inclusion. It has no knowledge of C syntax, and could equally well be 
used to process text in any language, including natural language. The results of 
the processed text are passed to the C compiler for subsequent translation. 

#define 

In its simplest form, #define is used to associate a symbol with a value: 

#define ENTRIES 100 

If the value changes, we need only change it in the place where it is declared. 
A definition may refer to previously defined symbols, as in: 

#define ARRAYSIZE (ENTRIES+ 1 ) 

The parentheses surrounding the substitution string are not mere formality; if 
ARRA YSIZE is used in the following context, 

char array[ARRAYSIZE*4)i 

then omitting the parentheses would allocate an array of 104 bytes 
(100 + 1 * 4) instead of the intended 404 «(100 + 1) * 4). 

During expansion of the symbol defined by the #defme directive, the name 
of the symbol is not expanded again to avoid infinite loops. 
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For example 

#define DONT_DO_IT_AGAIN 

will not attempt to expand the second occurrence of DONT _DO_IT _AGAIN 
and will pass (DONT_DO JT_AGAIN+l) to the compiler. 

In Chapters 1 and 2, when we discussed the use of the #define directive to 
define constant text, we gave the example, 

#define CLEAR printf ("\033Y") 

to define the sequence necessary to clear the screen on a Lear Siegler ADM5. 

MACRO PARAMETERS 

The #define directive is useful in its ability to substitute arbitrary text for a 
symbol. Here, we see how that capability can be expanded by providing 
argwnents with a macro definition. As an example, consider a maao useful for 
debugging which prints out a trace message when a function is entered: 

#define DB_ENTER printf("Entering a function\n") 

We could place this statement at the beginning of each function: 

my function () 
{ -

DB_ENTER; 

This macro, in itself is not very useful, since it does not say which function is 
being entered, and the flow of logic may not be easy to understand. 
Fortunately, we can provide an argument (the function name) with the macro 
invocation if we define the macro as: 

#define DB_ENTER(x) printf ("Entering %s\n", x) 

Then, the statement at the beginning of each function could look like: 

my function () 
{ -

DB_ENTER ( "my _ funct ion") ; 

After the DB_ENTER maa-o is substituted, the printf will arrange to print out 
"Entering my_function", which can be useful in examining the flow of control. 

Similarly, we could define a macro to tell us when control is leaving a 
function, and the returning value. We could define: 
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#define DB_RETURN(x) {printf("Returning %d\n", x); return(x);} 

so that if the above function were written as 

my function () 
{ -

DB ENTER ("my_function") ; 

DB_RETURN (69) ; 
} 

and the output would look like: 

Entering my function 
Returning 69 

This type of information can be very useful when trying to trace what's 
happening inside a program. 

We could combine this with conditional compilation directives so that 
output would only be printed if a certain symbol, such as DEBUG were de­
fined: 

#ifdef DEBUG 
#define DB ENTER(x) printf("Entering %s\n", x) 
#define DB RETURN(x) {printf("Returning %d\n", x); return(x);} 
#else -
#define DB ENTER(x) 
#define DB-RETURN(X) return (x) 
#endif -

The second definition of DB_ENTER specifies that the DB_ENTER(x) text 
should be substituted by nothing. Then, the program could be coded as before, 
but would only produce trace output if it was compiled with the symbol 
DEBUG defined. If the symbol DEBUG were not defined, no extra code would 
be generated into the program. 

Macro parameters can also be used to simplify complex expressions or 
structure references. In the example 9.4 where a PERSON structure was 
declared, we could define a macro to easily access the name of a person's 
paternal grandfather: 

#define GRANDPA(p) (p->father->father.name) 

Despite a lot of similarities between parameterised #define macros- and regular 
function calls we have to realise that functions and macros are really quite 
different. Macros are expanded by the preprocessor and produce inline code 
without any function calls being made. There are two direct results of this 
behaviour. Firstly, there is no type checking of the macro arguments. This may 
result in subtle and difficult to trace problems if sufficient care is not taken. 
Secondly, preprocessor macros may produce side effects. Consider the follow­
ing definitions 



int 
square (int a) 
{ 

return (a * a)i 
} 

#define SQUARE (a) 

The C Preprocessor 

(a) * (a) 

and let us assume that square and SQUARE are called as in: 

int in=5i 
int out; 

/* first call */ 
out = square(in++)i 

/* second version */ 
out = SQUARE(in++)i 
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The effect of the call to square(in++) is in=6 and out=25 because only the 
value of in is passed to the function and in is subsequently incremented. The 
effect of executing SQUARE(in++) is in=7 and out=30. This is easy to 
appreciate once the macro expansion is written out: 

/* the second version expands to: */ 
out = (in++) * (in++)i 
/* in is incremented twice */ 

One must be very careful while using macros which can potentially be called 
with expressions as arguments. Conforming standard C implementations are 
allowed to provide macro versions of functions, provided that the macros are 
"safe", that is, evaluate their arguments only once, and provided that un­
defining the macro will result in using a true library function. This last 
condition is very useful during the debugging phase. It may be useful to 
generate true function calls in order to use some debugging facilities which can 
stop program execution upon entry into a function. Such function calls can 
later be replaced by preprocessor macros to speed up program execution, since 
macros are expanded in place to a string of C statements and do not suffer 
from the overhead of function calls. 

#undef 

To make the preprocessor forget its definition of SQUARE, we can write: 

#undef SQUARE 

and thereafter the preprocessor will leave all occurrences of SQUARE alone, 
passing it unsubstituted to the compiler. Should we have both a macro and a 
true function versions of SQUARE, undefining it would make sure that the 
function is used. Undefining of a symbol not previously defined is allowed and 
is simply ignored by the preprocessor. 
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CONDITIONAL COMPILATION 

When we write programs, it is advantageous to try to write them in such a way 
so they are portable; that is, they can be moved to another machine of differing 
architecture or operating system without changing the source code. They 
should perform the same function on the new machine as they did on the old 
one, even though the underlying code and implementation may be different. 
This increases programmer efficiency so that it is no longer necessary to re­
code existing functions for a new machine. The preprocessor makes this task 
easier with the availability of conditional compilation. 

Consider the example of clearing a terminal screen. If all terminals in the 
world were Lear Siegler ADM5's, the definition of CLEAR would be the same 
in all cases. However, because different terminals use different sequences to 
accomplish the same function, this definition must be modified. On a DEC 
VT100, the statement would have to be: 

Ndefine CLEAR printf("\033[2J") 

The conditional compilation statements allow us to include certain sections of 
code based upon specified conditions. Thus, we can combine the two CLEAR 
definitions so that the desired one is defined for either situation. We can write: 

Nifdef VT100 
Ndefine CLEAR printf("\033[2J") 
Nelse 
Ndefine CLEAR printf("\033Y") 
Nendif 

The above construction says that if the symbol VT100 is defined to the 
preprocessor, use the first definition of CLEAR; otherwise, use the second. 
Conditional compilation proceeds until the #endif directive is encountered. 
Now, all that is needed in order to use this program for a VT100 is to include a 
line at the top of the program which defines the symbol VT100: 

Ndefine VT100 

If we wanted to, we could define the sequence for all other available terminals 
so that the same source code would run unchanged. Please note that it is 
sufficient to just #define the symbol without actually assigning any particular 
value to it. 

We can make similar constructions to define symbols only if they are not 
already defined, as in the following: 

Nifndef NULL 
Ndefine NULL 
Nendif 

«char *) 0) 

This construction defines the symbol NUll only if it was not previously 
defined. 
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We can make the condition for compilation more complex by using the #if 
directive. With the #if directive, the condition must be a non-zero constant at 
compile time in order for the lines through #endif to be passed to the compiler. 
Making programs machine independent then becomes a matter of defining a 
symbol and testing for it to indicate the target processor. Then, definitions are 
made on the basis of which type machine the program is compiled for: 

1* assuming that the code contains one or more 
directives of the form: *1 

#define mc68k 1 

1* we can write: *1 
#if mc68k I I i286 I I i386 

· 1* Set definitions for the Motorola 68000 based 
or Intel 80286 or 80386 processor *1 

· #endif 
#if u3b2 I I u3b5 I I u3b15 I I u3b20 

· /* Set definitions for the AT&T 3b processors */ 

· # end if 
#1£ uts II u370 

-
/* Set definitions for the Amdahl 

and IBM processors */ 

· #endif 

Please note that in order for symbols to be used in checks such as above, a 
particular value should be assigned to the symbol defined. Logical operators 
recognised by the C preprocessor behave in the same way as the corresponding 
language operators. Non-zero values are assumed to be true, while zero is 
assumed to be false. Just defining a symbol without providing a value for it is 
equivalent to defining it with the value of 0 for the purpose of evaluation in 
logical expressions. Also please note that the preprocessor does not report 
errors if a symbol is not defined. The symbol is simply assumed to have a 
value of 0 in logical expressions. 

Directive #elif is equivalent to the directive #else followed by #if and can be 
used as shorthand in specifying multiple nested conditions. 

Very similar to #ifdef and #ifndef directives but much more flexible is the 
defined operator. Using this operator, several checks may be combined in a 
single #if directive as in 

#if defined(BLACK GUARDIAN) && ldefined(WHITE_GUARDIAN) 
#define IN TROUBLE 1 
#endif -

The defined operator has been introduced by the C standard and may not be 
available on your system. 

Although the examples presented above show only preprocessor directives 
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C#define, #Undej) used within the conditional compilation directives, C source 
code can be placed there as well to perform different functions under different 
circumstances. Some examples of this may be found in the section on 
preprocessor techniques later in this chapter. 

TOKEN PASTING AND Sl'RING CONVERSIONS 

Any two strings separated only by white space, that is blanks, tabs, newline or 
page eject characters, are concatenated by a conformant preprocessor. This 
may be useful in cases of long character strings such as in 

printf ("The first part of a very long II 

"character string\n"); 

which becomes 

printf (liThe first part of a very lonq character strinq\n"); 

before being passed to the compiler. This behaviour may be useful in some 
cases; it is however essential for COITect behaviour of a new # operator. 

The C standard introduced two new preprocessor operators dealing directly 
with tokens in the replacement list of a macro. The # operator converts its 
argument to a string as in the following example: 

fldefine PRT_VALUE(X) printf (liThe value of .. fiX II is;\d\n", X) 

int answer - 42; 

We may want to print the value in order to trace the execution of our program 
as follows: 

PRT_VALUE(answer) ; 

The above fragment of code is transformed by the preprocessor into: 

printf ("The value of " "answer" II is %d\n", answer); 

which in tum becomes: 

printf (liThe value of answer is %d\n", answer); 

given that the adjacent strings are concatenated. 
A somewhat complementary capability dealing with non-string arguments 

is provided by a new token pasting operator. The new operator denoted by ## 
takes the left and right operands and concatenates them before passing the 
resulting string to the compiler. For example: 

#define MAKE_VAR(a, b) (a##b) 

when called as in 

int MAKE_VAR(value, _one); 

becomes 

int value_one; 
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ADDITIONAL DIRECI'IVFS 

Three additional directives are defined in the C standard and may not be 
available in your C implementation. 

The preprocessor counts the source lines as it proceeds through the code. 
#line followed by a token or a maa-o resolving itself to a decimal number and 
an optional character string, can be inserted anywhere in the source code, and 
indicates that the following line has the given number and came from the file 
indicated. This facility is used mainly by utilities which themselves produce a 
C code output, such as third party preprocessors, to maintain linkage between 
the line numbers of the original source and the produced C source. The #line 
directive directly sets the values of _ UNE _ and _FILE_symbols des­
cribed in the next section. 

The #error directive followed by any set of macros or other preprocessing 
tokens causes a diagnostic message containing these tokens to be displayed at 
compile time. This directive is typically used in conjunction with #if directives 
to diagnose some undesirable compile time conditions. For example: 

#1f !def1ned(WHITE GUARDIAN) && Idef1ned(BLACK GUARDIAN) 
#error "At least one of the two quard1ans must-be present" 
#endif 

The #pragma directive allows for implementation specific behaviour. The 
standard specifies only that any #pragma not recognised by the particular 
implementation should be ignored. This allows for some limited expansion of 
the preprocessor capabilities in an implementation defined manner. For 
example, an implementation may allow different compiler behaviour based on 
various switches, or arguments passed to the compiler. Some or all of these 
switches may have their #pragma equivalents, thus allowing the programs to 
influence the way in which they are compiled. It should be stressed that any 
such behaviour is implementation specific and depending on it for correct 
compilation or execution of programs may lead to unpleasant surprises if wide 
portability is intended. 

PREDEFINED MACRO NAMES 

Several predefined macro names have been specified by the standard. Some if 
not all of them are probably defined in your implementation. The names are 
defined by the preprocessor itself and can be used throughout the code as if 
specified by #define statements. 

_UNE _ contains the line number of the source statement currently 
processed by the preprocessor. The value is reset to 1 at the begining of each 
source file. 

FILE contains the name of the file currently processed by the 
preprocessor. 
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DATE contains the date when preprocessing began and remains 
constant throughout the execution of the preprocessor. 

_TIME_contains the time when preprocessing began and remains 
constant throughout the execution of the preprocessor. 

_ STDC _ is defined to be 1 by all confonnant implementations and can be 
used in writing portable code. 

The use of these constants and examples of other useful preprocessor 
applications are illustrated in the next section. 

PREPROCFSSQR TECHNIQUES 

We will now attempt to illustrate some of the preprocessor features described 
in the previous sections to produce a few useful tricks and techniques which 
can be used to advantage in everyday software development. The ideas 
presented in this section aspire to being helpful in producing more reliable and 
portable code. 

In large, complicated programs, it is very common to have many header 
files which depend for some of their content on other header files. It is there­
fore unavoidable that many header files include many other header files, and 
that the program source files comprising the software product include various 
subsets of the header files. This situation often leads to multiple copies of the 
same header file being included in the same source module. While not always 
disastrous, multiple inclusions of the same header file in one source module 
lead to a longer compilation time and wasted machine resources. A very 
common way of avoiding such a situation is to define a constant uniquely 
identifying a header file and enclose the content of the entire file in an #iftuJej 
directive like in the following: 

/* let's assume this header file to be named local.h */ 
#ifndef LOCAL H /* if LOCAL H constant not defined - */ 
#define LOCAL=H /* define it and */ 

#endif 

/* enter here all the statements */ 
/* comprising the header file */ 

/* end with #endif corresponding to the */ 
/* top level #ifndef */ 

Remembering that all #define constants are global throughout all header files 
comprising a software module, it is easy to see that the first copy of locaLh 
will be processed and, among other things, will define _ LOCAL _H. On sub­
sequent inclusions of the same header file the constant is already defined and 
the content of the file is not processed again due to the #iftuJej directive. 

All but the smallest software projects require some control over which 
versions of what files are included in the particular version of the product. 
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Many sophisticated version control systems have been devised for that 
purpose. We may decide that for our small projects it is sufficient to just have 
a date and time stamp embedded in every module. This can be accomplished 
by defining a macro containing the stamp 

#deflne ID_STRING _FILE_" as of " _DATE_ " at" TIME 

and then including the following line in every module which we want to stamp 

static char FileID[];ID_STRINGi 

FileID of every file containing the above declaration will be embedded into the 
executable file. A simple tool may be written to scan the content of the 
executable file and search for all time stamps thus revealing which versions 
have been used to build it. 

Given that function prototyping provides us with a benefit of automatic type 
checking and thus eliminates the errors stemming from argwnent and 
parameter mismatch, we should attempt to use this feature whenever possible. 
The trouble is that many compilers still do not support the full ANSI standard. 
In preparation for a wider availability of the standard compilers we should 
attempt to write programs which could be easily modified to take advantage of 
function prototyping once it becomes available on our installation. To that end, 
it may be prudent to incorporate the following set of macros as a standard for 
building function prototypes. 

#ifdef STDC 

1* the following preprocessor macro will be used 
in function prototypes *1 

#define PROT(x) x 

#else 
1* The following preprocessor macro will be used in 

function prototypes. Please ngte that the 'N' 
character must be in the first column for some 
non-ANSI compilers. *1 

#define ASTR * 
#define PROT(x) (/ASTR x ASTR/) 

#endif 1* end of environment specific considerations *1 

For the confonning compilers, as indicated by the predefined macro 
_ STDC _, we define macro PROT to just resolve to its argwnent. For non­
confonnant compilers, the macro will resolve to its argwnent enclosed in 
parenthesis and comment delimiters. PROT macro allows us to provide 
function prototypes of the following form 

char *function PROT((int arg1, char *arg2)) i 

and have it resolved to 

char *function (/*(int arg1, char *arg2)*/)i 
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and 

char *function (int arg1, char *arg2); 

for non-standard and standard compilers respectively. To be as widely portable 
as possible, we have defined an intennediate maao ASTR. In some older 
installations the symbol 1 •• 1 is used as a concatenation operator, equivalent to 
## in ANSI C. You may want to experiment with the above on your system 
and directly substitute • for the ASTR macro. Also please note that the double 
parentheses while passing arguments to PROT are needed. The outer set is 
required to signal that PROT is a macro, and the inner set encloses a single 
argument, consisting in this case of a rather lengthy character string contain­
ing, among other things, commas. 

It is often necessary to trace execution of a program during its development 
so that errors in algorithms or their implementations can be easily spotted. 
TRACE macros can be created for that purpose. Two separate macros for 
decimal and string values are needed. Alternatively one macro taking as 
arguments the variable name and its type can be provided. 

#include <stdio.h> 

#define TRACED(v) fprintf(stderr, "Value of " #v " in file" \ 
FILE "at line %d is: %d\n", LINE ,v) 

#define TRACES (v) Tprintf(stderr, "Value of " Nv " in fiie-" \ 
_FILE "at line %d is: %s\n", _LINE_, v) 

The preprocessor in combination with typedej class allows for definition of 
application specific data types which may be tuned to the maximum allowable 
value for the type. For example, let us assume that the application processes 
types of sails and rigs found on contemporary sailing boats. The number of 
various sail types is not originally known, but is to be established later, after 
the software is written. We may decide in this situation to define a separate 
data type for the sail types as follows: 

#if MAX SAIL TYPES <: 256 
typedef-SailType unsigned chari 
#else 
typedef SailType unsigned inti 
#endif 

SailType WinningSaili 

Depending on the maximum allowable number of sail types, assuming that 
each sail type is represented by a unique number, the storage for the sail types 
is defined to be either unsigned char or unsigned into 

It is often useful to operate on variables declared as a generic address or 
pointer type. Standard C defines void. as a pointer to any data type, but it may 
not be available on many older implementations. To avoid this problem, a 
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generic address type may be defined as follows: 

#ifdef STDC 
typedef-caddr~ void*i 
#eIse 
typedef caddr t char*i 
#endif 

caddr t pointer_to_anythingi 

1* if standard C *1 
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pointer _to _anything is defined in a portable fashion. On standard imple­
mentations, the new void. will be used. On compilers which do not support it, 
char. will be used instead. In both cases our intention to use caddr t variables 
as generic pointers is clearly visible. 

SUMMARY 

There are many reasons for utilising the C preprocessor's capabilities to 
perform text substitution within a program. Among them are: 

• #define'd constants and macros can bedeclared in one place and 
used throughout the code; subsequent changes can be made once at 
the declaration, without having to search for every instance. 

• Complexity can be hidden from the programmer without sacrificing 
efficiency or functionality so that program logic is not obscured by 
detail. 

• Conditional compilation can be used to eliminate machine and other 
dependencies. 

• Using names for constants improves the intelligibility of the code. 

• Useful macros improving portability of the code can be defined. 
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Programming in any language is a skill acquired largely by experience and by 
observing the example of others. The way in which your programs are 
presented is a matter for personal taste. It is often a tradeoff between brevity 
and intelligibility. Although programming 'style' is often considered to be 
unquantifiable and assessable only in subjective terms, we have made an 
attempt, in an appendix, to identify those features of program layout and 
organisation that tend to make it more visually appealing and more easily 
comprehensible. 

It is now realised that the lifetime of a program, and the cost of program 
maintenance, frequently done by someone other than the author, make 
considerations of clarity of expression often of equal importance with those of 
efficiency. This is especially true in the recent times when the cost of 
computing machines has been steadily declining and the costs associated with 
writing and maintaining the software have significantly increased. It is to the 
usually conflicting aims of clarity, conciseness and efficiency that we address 
our attention in this chapter. 

CLARITY 

The clarity of a program is influenced by two principal factors: the way in 
which the program is presented visually, and the way in which the 
programming language constructs are used. The 'style score' that we have 
associated with all the programming examples throughout the book is a 
measure of the former. Appendix 1 gives a program to perform a style analysis 
on a C program according to certain criteria which we believe contribute 
directly to a program's readability. You may not agree entirely with the criteria 
that we have chosen, or with the importance that we attach to each criterion, 
but you will almost certainly agree that the second of the two versions of the 
program detab (which replaces all the tab characters in a file by the 
appropriate number of spaces), presented in example 11.1, is very much more 
intelligible than the first. 
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Example 11.1 

#include <stdio.h> 

int 
main (void) 
{ 

} 

int c,i,tabs[132],col=1; 
settabs(tabs); 
while «c=getchar(» !=EOF) 

if (c=='\t') 
do {putchar(' ');col++; 

} while (!tabpos(col,tabs»; 
else if (c=='\n') {putchar('\n'); col=1;} 

else {putchar(c); col++;} 

settabs(int tabs[132]) 
{ 

int i; 
for (i=1;i<=132;i++) 

if «Hs8)==1) tabs[i]=1;else tabs[i]=O; 
} 
tabpos(int col,int tabs[132]) 
{ 

if (col>132) return(1);else return(tabs[col]); 
} 

style 39.1 ] 

1**************************************************1 
1* Detab - convert tabs to appropriate number of *1 
1* spaces (transcribed from Kernighan & Plauger's *1 
1* "Software Tools") *1 
1**************************************************1 

#include 
#define 
#define 

<stdio.h> 
MAXLINE 132 
TAB POS 8 

main (void) 
{ 

int c, i, tabs[MAXLINE], col=1; 

set_tabs (tabs); 

while «c = getchar(» != EOF) 
1* Put spaces instead of tabs *1 
if (c == '\ t ' ) 

do {putchar ( , , ); col++; } 
while (!tab_pos (col, tabs»; 

1* Newlines reset column counter *1 
else if (c == '\n') 

{ put char ('\n'); col = 1; } 

1* Anything else is unchanged *1 
else 

{ put char (c); col++; } 
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/* set up tab positions every TAB POS characters */ 

set tabs (int tabs[MAXLINE)) 
{ 

int ii 

for (i ; 1i i <; MAXLINEi i++) 
tabs [i) ((i % TAB_POS) ;; 

} 

/* See if we're at a tab position */ 

tab pos (int col, int tabs[MAXLINE)) 
{ -

? 0) i 

return ((col> MAXLINE) ? 1 : tabs[col)); 
} 

style 80.2 ) 

The programs are equivalent, in the sense that they contain identical 
executable statements differently laid out. The 'bad' program could, of course, 
be very much worse, but then it would not be so typical of the kind of program 
that it is very tempting to write in a language that encourages brevity. In the 
authors' experience, programs written like this, with the intention of 
subsequent cosmetic improvement, tend to remain in their original fonnat -
there is little incentive to modify (even superficially) a working program. 
Automatic aids to 'beautifying' a program by introducing indentation, blank 
lines, etc. to reflect the program's structure are no substitute for a program 
thoughtfully written. 

The criteria that we have chosen to use in the style analysis of our own 
programs are shown, in decreasing order of importance, in table 11.1. 

Table 11.1 

Criterion Weighting Ideal range 

Module length 15% 10-25 non-blank lines 
Identifier length 14% 5-10 characters 
% comment lines 12% 15-25% 
% indentation 12% 24-48% 
% blank lines 11% 15-30% 
Characters per line 9% 12-25 non-blank characters 
Spaces per line 8% 4-10 spaces 
%#defines 8% 15-25% of all identifiers 
Reserved word usage 6% 16-30 of available words 
Include files 5% 3 included files 
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The relative weights and ideal ranges are not arbitrarily chosen, but rather are 
the result of careful tuning after analysis of programs that we recognised 
intuitively as 'good' or 'bad'. They may need modification to cater for 
individual preferences, or to reflect a particular 'house style'. Up to this point, 
all examples for which a style score is given are relatively small in size. Style 
scores for a nwnber of large programs from the UNIX system are given in 
Berry and Meekings (1985). 

The style analysis program does not pretend to measure, in anything more 
than the most rudimentary sense, the second factor contributing to clarity: the 
use of the language itself. As in so many things, in programming there is no 
'right' answer - just a nwnber of alternative ways of achieving the same ends. 
Invariably, some of those ways will be clumsy or obscure. This will most often 
be the result of either inexperience or poor design - experience of using a 
language brings with it a nwnber of benefits: for example, being able to 'think 
in the language' avoids the clumsy type of construct that arises from the direct 
transliteration of an algorithm derived by a programmer more familiar with 
another language, and also being able to use effectively the programming 
'tricks' that exist within any language (for example, in C, using 

while (*str1++ = *str2++)i 

to copy a string); and poor initial design, failure to derive a complete solution 
before coding, is bound to yield a program that is a functional mess, badly 
structured and with poor lines of communication. 

CONCISENESS 

There is a point, not always easy to identify, at which 'concise' becon'1es 
'obscure'. Compare, for example, the random nwnber generator program of 
example 6.2 with the functionally equivalent program of example 11.2. The 
gain in execution speed would have to be considerable to justify the inclusion 
of such a complex (but perfectly legal) statement in any program. 

Example 11.2 

#define maxint 32767 
#define pshift 4 
#define qshift 11 

random(int range) 
{ 

static int n=1; 

return((n=((n=n An»pshift)An«qshift)&maxint)%(range+1»; 

style 45.2 1 

As a further example of a program that is concise to the point of obscurity, 
study the program of example 11.3, and try to determine its effect. 
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Example 11.3 

#define LO 2 
#define HI 1000 

int 
main (void) 
{ 

int i,j; 

A Book on C 

for (i=LO; i<-HI; i++) { 
j"'sum(i) ; 
if (j--i) printf(n'd\nn,i); 
else if (sum(j)--i) printf(n'd 'd\nn,i,j); 

} 
} 

int 
sum(int n) 
{ 

} 

int s, f; 

s=1; 
for (f-2; f<n; f++) 

if (n'f==O) s+=f; 
return(s); 

style 51.4 1 

Even with explanation, the program is very much more difficult to understand 
than is the equivalent program of example 11.4 which differs only by using 
more meaningful identifier names and having a helpful user interface. The 
program is in fact a generalisation of the perfect nwnber program of example 
5.6. Perfect nwnbers are a special case of 'amicable' nwnbers, which are pairs 
of nwnbers, each of whose swn of factors yields the other nwnber; so that, for 
example, the swn of the factors of 220 is 284, while the sum of the factors of 
284 is 220: 220 and 284 are amicable nwnbers. 

Example 11.4 

#define LO 2 
#define HI 1000 

int 
main (void) 
{ 

int number, sum; 

for (number = LO; number <= HI; number++) { 
sum = factorsum (number); 
if (sum == number) 

printf (n'd is perfect\nn, number); 
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else if (factorsum (sum) aa number) 
printf ("%d,%d are amicable\n", number, sum); 

} 
} 

int 
factorsum (int num) 
{ 

} 

int fsum, factor; 

fsum = 1; 
for (factor = 2; factor < num; factor++) 

if (num % factor == 0) 
fsum += factor; 

return (fsum); 

style 66.5 1 

C is undoubtedly a concise language, and encourages the terse representation 
of complex ideas. Such power should be judiciously used. 

EFFICIENCY 

The price that is paid for writing programs in any high-level language is in 
program size and execution time. Unless either of these is particularly critical, 
the advantages, in terms of productivity and maintenance costs, far outweigh 
the disadvantages. 

C has a number of features that are more usually found in a lower-level 
language, to the extent that the correspondence between a C program and the 
machine code to which it compiles is often very close. The effect of this is to 
reduce the overheads resulting from the translation process very much more 
than for other contemporary languages. Some C compilers will offer the user 
an optional optimisation phase, but an alert and informed user is usually the 
best optimiser of a program. C provides some help in this: for example, the 
type specifiers in! or char may be preceded by the storage class specifier 
register thus: 

register int n; 

register char *sptr; 

This is interpreted by the compiler as an indication that these identifiers will be 
heavily used and should, if possible, have storage space in registers. If the 
compiler is able to do this, then shorter, faster programs should result. 

Nevertheless, the program has not yet been written that could not be written 
better or executed faster. A software tool, prof, available on the UNIX 
operating system, can be used to produce an 'execution profile' of a program, 
in terms of, for each function, the number of times that it was called, and the 
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percentage of total execution time that it accounted for. This is of obvious 
benefit, since there is relatively little return from devoting time to improving 
the efficiency either of functions that are infrequendy called, or of those that 
occupy only a small percentage of the execution time. Thus, we can 
concentrate on those areas where our efficiency tuning efforts would be most 
rewarded. 

As an illustration of the kind of improvements that can be made, the 
following results were obtained by profiling an early version of RatC 
(mentioned in the Introduction), a program that compiles a subset of the C 
programming language: 

Function 
alpha 
findmac 
asreq 
numeric 
an 

Number of calls 
382,521 

!if' of execution time 
10.1 

3,594 
334,421 
381,794 
379,550 

10.0 
8.6 
6.4 
5.6 

In other words, the three functions alpha, numeric, and an (which simply 
check a character parameter to see whether it is alphabetic, numeric, and 
alphanumeric, respectively) accounted for a quarter of the execution time, and 
findmac (which is essentially a table look-up to determine whether a symbol 
has been previously defined as a maao) also made significant contribution. 
When it is known that RatC was compiling a program that consisted of only 
about 50,000 characters, the number of calls of alpha, numeric and an should 
cause concern. 

Example 11.5 

/* test if a given character is alphabetic */ 
alpha (char c) 
{ 

} 

c = c & 127; /* strip off the hirh order bit */ 
return «(c >= 'a') & (c <= 'z')) 

( (c >= 'A') & (c <= 'Z')) 
(c == ' ')); 

/* test if a given character is numeric */ 
numeric (char c) 
{ 

c = c & 127; 
return «c >= '0') & (c <= '9')); 

} 
/* test if a given character is alphanumeric */ 
an (char c) 
{ 

return «alpha (c)) I (numeric (c))); 

style 40.7 1 
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The character checking functions were originally defined as shown in example 
11.5. Two significant changes were made: firstly, the high order bit was 
stripped off once and for all on input, to avoid unnecessary repetition; and 
secondly, the function an was made to check explicitly for the requisite 
characters, avoiding the overheads incurred by the two function calls. In the 
latest version of RatC, these three functions accoWlt for less than 5 per cent of 
the execution time. As is typically the case in most programs, time can be 
traded for space and vice versa. The three functions could be implemented by 
table lookups, the way C library character classification functions described in 
Chapter 12 are normally implemented. Correct choice of various tradeoffs is a 
part of the design process of any software system, as indeed it is a part of any 
engineering activity. 

The way in which the macro definitions were stored was changed from a 
simple table of the form 

definition definition definition 

to a more complex one of the form 

in order to speed up the time taken to perform a linear search for a particular 
name. This is very important in view of the fact that the majority of searches 
will be unsuccessful, requiring a search through the entire table. The execution 
time for this fWlction was thus reduced to a quarter of its original value, at the 
expense of a little extra memory. Although the function could still be 
improved, perhaps by introducing a more complicated searching algorithm, we 
believe the simplicity/efficiency trade-off to be about right. 

Improving the efficiency of a program is not always an easy, or even 
desirable task. For a small program, the effects may not be noticeable; for a 
large program, run infrequently, the time invested may not be worth while. For 
a heavily utilised program, such as a compiler, however, attention to the time­
critical, bottleneck areas can give a significant improvement in performance. 
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DEFENSIVE PROGRAMMING 

Throughout the book we have attempted to emphasise the importance of the 
interface between the program and its environment. Any program should take 
every possible precaution to ensure that it does not fail, and that, if it does, the 
failure is 'graceful', which is to say that it should provide the naive user with 
sufficient information to correct, or work around, the problem. 

This section is concerned with 'bulletproofing' a program, and consists for 
the most part of a series of suggestions which you should bear in mind 
whenever writing programs - they are often the result of painfully acquired 
experience! If you follow our advice, you are certain to avoid at least some of 
the common pitfalls of porting programs from one machine to another, which, 
contrary to popular opinion, is not nearly as simple as it is supposed to be. 

(a) Use lint. 'Lint' is a UNIX system utility which is commonly available 
on a variety of other systems. It performs a much more rigorous 
check than does the compiler on such things as type consistency, use 
of uninitialised variables, and correspondence between function 
arguments and parameters. If we had only one piece of advice to 
give you, it would be this. 

(b) Use function prototypes and provide them for all functions. All ANSI 
C standard compilers do type checking of all arguments passed to 
functions with prototypes. Some of them will even produce warnings 
if a call is made to a function without a prototype. Gathering all 
function prototypes in one or more header files and then including 
the headers in all appropriate modules makes the task easy. The 
prototypes should contain a descriptive name of each argument and 
comments, such as this: 

/* returns a degree to which the universe is real 
measured in DIBs (disbelief and bewilderment) */ 

int test reality (char *question, /* question to be asked */ 
- char **answers, /* array of reasonable 

answers */ 
enum GODS entity); /* whom to ask or 0 if 

cannot make up mind */ 

(c) Check input data. At the end of chapter 3, we mentioned that input 
data is nearly always beyond the control of the programmer. You 
should check the integrity of all data which are derived from outside 
the program to make sure that they are within prescribed values. If 
you don't know what the prescribed values are, at least check that the 
value won't cause a runtime error - zero values used for division are 
an obvious example. 
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(d) Check function arguments. By a similar reasoning to the previous 
point, if you assume that function arguments are always sane, you'll 
be caught unawares when, at some time in the future, you 'steal' the 
code to put in some other program where you haven't been quite so 
careful. 

(e) Check retwn values from functions. If a function (either yours or a 
system-provided one) retwns a value, check it before continuing. 
Nearly all system-provided functions return values, and it's good 
practice to make yours do so too. Never assume that a function will 
always be successful - it always will be, except when you don't check 
it! 

(f) Don't rely on uninitialised variables. Variables of storage class static 
can be safely assumed to start with zero value; variables of storage 
class automatic start with garbage values. While this may be true, if 
you don't explicitly initialise them, the time will come when you 
change the storage class of one of your variables without changing 
the program logic, and wonder why it doesn't work anymore. 

(g) Don't exploit implementation dependent features. On some systems, 
a pointer occupies the same storage space as an integer. If you use 
that fact, your program probably won't work on another, dissimilar, 
machine. A slightly more insidious example arises from something 
we said at the end of chapter 6 - 'no ordering is implied among 
operators with the same priority'. Parentheses in an expression 
control precedence and associativity, but not order of evaluation, 
which is to say that the expression a + b + c could be evaluated by 
adding a to b, and adding the result to c, or by adding b to c, and the 
result to a. Normally this causes no problem, but consider the 
expression 

y = x++ + Xi 

If x initially has the value 1, what value does y have after the 
assignment? 2? 4? The answer is that it's impossible to say - of 
course, on any particular implementation, it will always be evaluated 
the same way, but this is not true of the same program running on a 
different machine. The assignment should have been written as 

X++i Y = X + Xi 

or 

y = X + Xi X++i 

depending on what you intend. 
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(h) Don't use side effects in macro calls. The seemingly innocuous macro 

#define MAX(a,b) (a < b ? b : a) 

when invoked by 

z = MAX (x++, Y)i 

leaves x with a different result depending on whether it is greater or 
less than y, because the preprocessor only performs textual sub­
stitution so that, in practice, the macro expands to 

z = (x++ < Y? Y : X++)i 

(i) Use parentheses in expressions. If you are unsure of operator 
precedence, or if the expression that you are formulating is complex 
don't be afraid to use parentheses to make it clearer. It adds nothing 
to the execution time, but a great deal to the comprehensibility. 

G) Don't corrupt C with the preprocessor. It's very easy, using the pre­
processor, to make C look like some other language. If you are fond 
of Pascal, you might be tempted to write 

#define BEGIN { 
#define END } 

but the result will be a confusion of neither one language, nor the 
other. 

(k) Use the right type of variable. Don't use an in! when a char will do -
for example with a truth value; or an int where you mean a pointer. 
You not only save space, you give a program like 'lint' a much better 
chance of detecting potential problems. 

(1) Exit gracefully. A program should never fail inexplicably - provide 
the user with sufficient information as to the cause of the failure that 
he understands what has gone wrong and what he can do to correct it. 
Catch and process signals and provide enough additional information 
for the user to correct the cause for abnormal termination. 

(m) Don't rely on defaults. Often a system provided function will offer 
default values for some of its arguments. If you take advantage of 
that you run the risk of your program no longer working should those 
defaults ever change. 
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(n) Be very careful and thoughtful while using dynamic memory 
management. Bad pointers, referring to an area of memory not 
allocated for use by the program and freeing too early or not freeing 
at all the storage space which is allocated to the process, are 
probably the most common problems in a C program. Each variable 
in a C program has a scope, that is a period of time and an area of 
code in which the variable is accessible and contains valid data. For 
example, automatic variables are accessible from within functions 
which defined them and cease to exist when the function returns. In 
the case of dynamic memory allocated via calls to malloc, it is up to 
the programmer to free the memory allocated and be sure that 
referencing it is allowed at any given time. By analogy, it is very 
helpful to think about scoping the dynamic storage during program 
design and always make sure that the dynamically allocated 
variables remain in the scope of the program for as long as they are 
needed and no longer. 

(0) Do it right the first time. It is the authors' experience that there is 
never time to go back to an already written piece of software and 
improve its behaviour in some odd cases or restructure it for the sake 
of readability or ease of maintenance. 
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If you are familiar with other programming languages such as Pascal or PL/1, 
there are several additional pitfalls of which you should be aware. 

(p) Beware of the difference between = and ==. If you are used to a 
language which uses the same operator for assignment and 
equivalence, sometime you will fall into the trap. It sounds easy to 
remember, but we have all forgotten it at some time! Some 
compilers produce warning messages if a conditional statement 
contains an assignment as a top level operator. 

(q) You will recall that C passes all its function arguments by value. In 
order to make the argument modifiable by a function, its address 
must be passed. Passing a value and not an address of an argument to 
a function, especially functions such as scan/. is another one of the 
very common mistakes. 

(r) Many Pascal programmers have a difficult time remembering the 
difference between character arrays and character pointers. With 
declarations like this: 

char *str_ptr, str[81]; 

it is possible to assign an address of a constant string to str ytr like in: 

strytr '" "Hello galaxy"; 
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We have to remember that str ytr is not capable of holding the entire 
string, but is just a pointer which is assigned an address of the string. 
In the case of str, however, we cannot say 

str ~ "Hello galaxy"; /* WRONG */ 

str and the literal string occupy two different areas of storage. str is a 
character array and we have to copy each character of the "Hello 
galaxy" string into the array thus: 

strcpy (str, "Hello galaxy"); 

(s) Many languages use a comma to delimit indices in multidimensional 
arrays, such as a = b[iJJ;. This statement will compile in C but is 
probably not what you intended. 

(t) Each case statement in C is executed in turn until a break statement 
is encountered. This is different in many other languages in which 
only one case statement is executed at any given time. 

SUMMARY 

Programming style and program efficiency are contentious issues: some will 
maintain that 'style' is so personal that it is impossible to lay down more than 
vague guidelines, others that it is the business of compilers and optirnisers to 
worry about efficiency. What should never be forgotten is that, as we said in 
the introduction, programming is communication, and the communication 
operates at different levels: between the program and the computer, between 
the program and the user, and between the program and its maintainer. 

It is all too tempting in a language like C to sacrifice clarity for conciseness 
and efficiency. There are relatively few occasions on which careful 
consideration of the method by which a program achieves its results (as in the 
macro table organisation, above) would not yield the desired effect, without 
the need to resort to tricky obscure code. 

The power of C, used properly, can be exploited to produce programs that 
are elegant, concise and, above all, intelligible. 



12 The Standard C Libraries 

The definition of standard C specifies a library which must be present in any 
conforming implementation. The functions supplied in the library are declared 
in several header files, divided according to the type of services provided by 
the functions. Many of the functions defined by the standard are supplied even 
in older implementations and most of them are probably present on your 
system, even though the original C definition did not specify any of them. The 
header files declaring the library functions also specify macros and variables 
which may be used by the applications to accomplish various tasks as des­
cribed below. Additionally, the headers may define macros with the same 
names as the corresponding library functions, provided that the macros can 
safely be used in any place and with any set of arguments with which the 
corresponding function can be called. In particular, it must be guaranteed that 
macro arguments are evaluated only once. The applications can always ensure 
that a true library function rather than a macro is called by using the #Unde! 
preprocessor directive. It can also be done locally by enclosing the function 
name in parentheses. For syntactic reasons, the closing parenthesis will prevent 
the interpretation of the identifier as a macro. 

Since not all of the header files and corresponding library functions may be 
defined on your system, it may be useful to compare the list of standard 
functions, macros and type definitions to what is available on your system. 
Anticipating the arrival of a standard compiler, you may want to choose to 
build some or most of the standard types and functions on your current 
installation. Combined with the portability practices outlined in Chapter 10, 
this approach will save a lot of time and will ease the stress of converting to 
standard C. In the following description of header files we attempt to point out 
how some of the standard features can be provided. The suggestions we make 
are not part of the standard and may therefore not be portable. Nevertheless, 
building even only some of the standard functions is in our opinion worth 
investigating. The investment will payoff in increased program portability and 
reduced conversion effort once the standard compiler is available for the 
particular installation. 

Finally, we are not giving a full and formal definition of all the functions, 
macros and types defined by the standard. For such a definition, consult your 
language manual. The description given is less formal, possibly more intuitive 
and does not specify all the details of the functions' behaviour, possible error 
conditions and return values. We have not provided descriptions of the 
following, less frequently used headers: assert.h, setjmp.h and stdarg.h. 
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<errno.h> 

The header <ermo.h> defines macros and variables facilitating error process­
ing. All the macros are required to start with upper case E, be followed by an 
upper case letter or a digit, and expand to distinct integral constants suitable 
for use in #if preprocessing directives. According to the 1989 version of the 
standard there were only two macros defined by the standard: EooM and 
ERANGE. You should expect, however, that your installation defines many 
more of them, if indeed it has the <errno.h> header file defined at all. Most 
UNIX and MS-DOS compilers define a rich set of error constants describing 
many possible failures of the library functions. 

In addition to the error macros, the header defines a variable errno. The 
variable is of type int and is set to a positive error number by many library 
functions upon encountering an error condition. Although not explicitly 
required by the standard, it should be expected that the value of this variable 
will be equal to one of the error constants defined in the header. 

A mechanism for retrieving a character string which describes the error is 
mentioned in a subsequent section. 

If the errno.h header is not defined on your system and if you decide to 
provide one, it can easily be done by making sure that all your library 
functions set errno. All possible error code values should then be defined in 
the header. 

<stddef.h> 

The header <stddef.h> defines several types and macros considered to be 
useful in most applications. 

ptrdiff_t 
signed integral result of subtracting two pointers. It is typically 
defined to be a long and can be included in your own version of 
<stddef.h> on older compilers. 

size_t 
unsigned integral result of the sizeo! operator. It is typically defined 
to be unsigned. 

wchar_t 
integral type which can represent codes for the entire, possibly 
extended character set. It is typically defined to be clulr. 

NULL 
implementation defined null pointer constant. It is typically defined 
to be 0 orOL. 
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offsetof(type, member) 
integral constant of type size _t representing an offset in bytes to the 
structure member member from the beginning of the structure type. 
It can be implemented by the following definition: 

(size_t)&(((type*)O)->member) 

<ctype.h> 

The header <ctype.h> declares functions used for testing and converting 
characters. All the testing functions can easily be implemented with a table 
driven approach, in which a static array containing bit masks for various 
character types is built. The array is indexed by the actual integer value of the 
character code, and the mask thus found indicates what is the type of the 
character. All classification functions in <ctype.h> return non-zero (true) if the 
character is of the type inquired about, zero (false) otherwise. 

Classification Functions 

int isalnum(int c); 

int isalpha(int c); 

int iscntrI{int c); 

int isdigit(int c); 

int isgraph(int c); 

int islower(int c); 

int isprint(int c); 

int ispunct(int c); 

int isspace(int c); 

int isupper(int c); 

int isxdigit(int c); 

true if the argument is either a letter or a digit. 

true if the argument is a letter. 

true if the argument is a control character. 

true if the argument is a digit. 

true if the argument is any printing character 
except space. 

true if the argument is a lowercase letter. 

true if the argument is any printing character 
including space. 

true if the argument is any printing character 
other than space, letter or digit. 

true if the argument is any white space 
character. 

true if the argument is an uppercase letter. 

true if the argument is a hexadecimal digit. 
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Translation Functions 

lnt tolower(int c); 

int toupper(int c); 

<locale.h> 
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converts an uppercase letter" to a corresponding 
lowercase letter. 

converts a lowercase letter" to a corresponding 
uppercase letter. 

The header <locale.h> contains several macros and a type describing 
formatting rules for numeric values. It is intended to enable implementations to 
provide "intemationalisation", that is, output formatting capabilities depending 
on the location of a particular e implementation. The structure defIned in the 
header file defines, among others, characters to be used as a decimal point, 
thousands separator and currency symbols. The two corresponding library 
functions provide a means of setting the locale and extracting the symbols in 
the form of a pointer to a structure. The functions and the type can be easily 
provided in nonstandard environments by simply defining the structure 
according to the implementation's locale and defining the functions. In the 
simplest implementation, only one native "e" locale can be provided. 

<math.h> 

The header <math.h> defines mathematical, floating point functions. All 
functions defined in this header take double values as their arguments and 
return double results. Most functions defined in this header can probably be 
found on your system. All of them are very difficult to implement and the 
implementation is typically very strongly machine dependent. In some 
environments, most notably in the MS-DOS environment, several versions of 
the functions may be defined depending on a system configuration. One 
version may use a floating point processor, another may emulate it, yet another 
may provide a simplified and faster version of the routines in which results 
may be guaranteed to be accurate only to a specified number of decimal 
places, or some nonstandard rounding may occur. If any of the functions given 
below is not available on your system and you are not intimately familiar with 
numerical analysis, nor have access to somebody who is, floating point 
libraries for your machine can probably be purchased from third party vendors. 
All trigonometric functions in the following list take or return angles in 
radians. 
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Trigonometric Functions 

double acos (double x); 
returns a principal value of the arc cosine of x. 

double asin (double x); 
returns a principal value of the arc sine of x. 

double atan (double x); 
returns a principal value of the arc tangent of x. 

double atan2 (double x, double y); 
returns a principal value of the arc tangent of xly, using the signs of 
the two arguments to detennine the quadrant of the result. 

double cos (double x); 
double sin (double x); 
double tan (double x); 

Hyperbolic Function 

double cosh (double x); 
double sinh (double x); 
double tanh (double x); 

Logarithmic Functions 

double exp (double x); 

returns the cosine of x. 
returns the sine of x. 
returns the tangent of x. 

returns the hyperbolic cosine of x. 
returns the hyperbolic sine of x. 
returns the hyperbolic tangent of x. 

returns the exponential function of x. 

double frexp (double x, int *exp); 
returns the normalised fraction of x, and sets exp to an integer such 
that x is equal to the result multiplied by 2 raised to the power *expo 
In other words, the function breaks a nwnber into a normalised 
fraction, that is a fraction from an interval [0.5, 1), and an integral 
power of 2. This directly corresponds to a standard IEEE internal 
representation of floating point numbers. 

double ldexp (double x, int exp); 
returns the value of x times 2 raised to the power expo It is the 
opposite of jrexp. 
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double log (double x); 
returns the natural logarithm of x. 

double log10 (double x): 
returns the base 10 logarithm of x. 

double modf (double x, double *0: 
returns the signed fractional part of x and sets *i to a signed integral 
part of x. 

Power Functions 

double pow (double x, double y): 
returns the value of x raised to the powery. 

double sqrt (double x): 
returns the square root of x. 

Other Mathematical Functions 

double ceil (double x): 
returns the smallest integer not less than x. 

double fabs (double x): 
returns the absolute value of x. 

double floor (double x): 
returns the largest integer not greater than x. 

double fmod (double x, double y): 
returns the remainder of xly. 

<signal.h> 

The header <signal.h> defines types, macros and functions dealing with 
processing of various signals and conditions which may be reported asyn­
chronously during program execution. Such conditions may be the results of 
errors or actions performed by the underlying operating system outside of the 
domain of the program. Most C implementations define the header and the 
corresponding functions. If it is not available on your implementation, you 
must be intimately familiar with the operating system running on your 
machine. In most cases, you must also be familiar with the hardware. Once 
that knowledge is gained, the implementation itself is a relatively straight­
forward process consisting of recognizing hardware and software interrupts and 
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hooking them up to appropriate functions. For example, Intel processors 
starting with i286 support the BOUND instruction which can be used to check 
if an index used to access an array is within the array's bounds. If the check 
fails, the processor generates interrupt 5 which can be intercepted and used to 
generate a signal, which in turn can be captured by the application. Similarly, 
the Ctrl-C key combination is typically used to interrupt a program's 
execution. A software interrupt is generated (interrupt Oxlb under MS-DOS) 
which can be intercepted by the application. 

The header file defines one type siL atomic _ t, an integral object which can 
be accessed as an atomic entity even in the presence of asynchronous events. It 
also defines the following macros each of which expands to an integral 
constant: 

SIGABRT 
SIGFPE 
SIGILL 
SIGINT 
SIGSEGV 
SIGTERM 

abnormal tennination 
erroneous arithmetic operation 
illegal instruction 
interactive attention signal such as Ctrl-C 
invalid access to storage 
termination request sent to the program 

The function defined in the header file allows the application to specify a 
signal handler. The handler will receive control whenever the specified 
condition occurs: 

void (*signal (int sig, void (*func) (int») (int); 

The handler specified by June can be an application provided function, or can 
be SIG_DFL to instruct the system that an implementation defined default 
action is to be perfonned, or SIG_IGN to instruct the system that the signal 
should be ignored. If the call to signal succeeds it returns the most recent value 
of June for the signal, otherwise it returns SIG_ERR. 

<stdio.h> 

The header <stdio.h> defines types, macros and functions for performing input 
and output. All C implementations have some form of this header file defined. 
Since input and output operations are very tightly coupled to the underlying 
operating system and hardware, good knowledge of the platform on which the 
implementation is supposed to run is required in order to be able to provide 
additional input/output functions. For example, a good knowledge of MS-DOS 
and BIOS is required to write any of the <stdio.h> functions on the PC family 
of computers. Similarly, knowledge of input/output related system calls and 
some knowledge of the kernel is needed to provide <stdio.h> library functions 
under the UNIX system. 
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The most often used constant defined in the <stdio.h> header is EOF which 
expands to a negative integer indicating end of file. It is returned by several 
functions to signal that no more input is available. The most important type 
defined in the header is FILE which defines an object which can contain all 
information pertaining to a file and allowing the application to control it, such 
as position infonnation, buffer information and error indicators. The header 
also contains definitions of stdin, stdout and stderr, which are of type pointer 
to FILE and point to standard input, output and error files respectively. The 
three files are automatically opened at the beginning of any application. 

Operations on Files 

The functions in this section operate on entire files and perform functions such 
as renaming or deletion of files. 

int remove (const char *name); 
causes the file given by name to be no longer accessible by that 
name. Please note that the standard does not require that file be 
physically removed. 

int rename (const char *oldname, const char *newname); 
changes the name of a file from o/dname to newname. 

FILE *tmpfile (void); 
creates and opens for update a temporary file which will auto­
matically be closed and removed at program tennination. 

char *tmpnam (char *s); 
generates a temporary file name, that is a valid file name different 
from any other existing file. 

File Access Functions 

The functions in this section provide means for applications to access the files. 
This is done by establishing a logical connection between an external stream 
and the file pointer internal to the application. 

int fclose (FILE *stream); 
the file is flushed and closed. The connection between the file 
pointer and an external stream is broken. 
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int fflush (FILE .stream); 
if stream points to a file on which the last operation was not input. 
the function will cause all buffered data to be written. For efficiency. 
most file operations are buffered. This function flushes the buffers. 

FILE .fopen (const char .name, cons char .mode); 
opens a file given by name in a mode given by mode. The mode 
specifies if the file is read only. read and write. and what should be 
the initial value of the file position indicator. 

FILE *freopen (const char .name, const char -mode, FILE 
·stream); 

closes the file given by stream and then opens a file given by name 
and associates it with stream. 

void setvbuf (FILE .stream, char .buf, int mode, size_t size); 
the function can only be used right after opening a file before 
perfonning any other operation on it. mode indicates the type of 
buffering to be performed. but points to a buffer which may be used 
for buffering, and size specifies the size of the buffer. 

Formatted Input and Output 

The functions in this section perfonn fonnatted input and output. As described 
in Chapter 3, fonnatted input and output functions in C provide a very rich 
repertoire of conversions and fonnatting options. The format strings are 
interpreted at runtime. thus providing the flexibility of dynamically building 
the fonnat strings. 

int fprintf (FILE .stream, const char *format, ..• ); 
perfonns fonnatted write to a file. This function has been discussed 
in detail in Chapter 3. 

int fscanf (FILE .stream, const char *format, ... ); 
perfonns fonnatted read from a file. This function has been 
discussed in detail in Chapter 3. 

int printf (const char *format, ... ); 
is equivalent to/print/with stdout specified for stream. 

int scanf (const char *format, ... ); 
is equivalent to /scanf with stdin specified for stream. 
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int sprintf (char *buf, const char *format, ••• ); 
is equivalent to fprintf except that the output is written to character 
array buf, not to a file. 

int sscanf (const char *buf, const char *format, ••. ); 
is equivalent to fscanf except that the input is read from character 
array buj, not from a file. 

Character Input and Output 

The functions in this section provide a string or a single character input and 
output capabilities. 

int fgetc (FILE *stream); 
gets the next character from a file, or EOF if the file is at an end. 

char *fgets (char *s, int n, FILE *stream); 
reads at most n-l characters from the file stream and puts them into 
character array s. The function will not read past a new-line 
character or an end of file. The string read is terminated by a null 
character. The function returns the address of string s, or EOF on 
failure. 

int fputc (int c, FILE *stream); 
places character c in the file stream and advances the file position 
indicator so that the next call to putc places the character at the next 
position. 

char *fputs (const char *s, FILE *stream); 
writes characters from the string s to the file stream at the current 
file position and advances the file position indicator accordingly. 
The terminating null character is not written. 

int getc (FILE *stream); 
is equivalent to fgetc but is implemented as a macro. The argument 
may be evaluated more than once. 

int getchar (void); 
is equivalent to getc with the argument stream equal to stdin. 
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char .gets (char .s); 
behaves like jgets with the argument stream equal to stdin. Please 
note, however, that the maximum number of characters to be read 
cannot be specified. The function always reads until a new line 
character or an end of file is encountered and can thus be used only 
if the maximum record size can be guaranteed. 

int putc (int c, FILE .stream); 
is equivalent to jputc but is implemented as a macro. The stream 
argument can be evaluated more than once and therefore cannot be 
an expression with side effects. 

int putchar (int c); 
is equivalent to putc with the argument stream equal to stdout. 

int puts (const char .s); 
behaves like jputs with the argument stream equal to stdout. In 
addition, a new line character is appended to the output for each 
string written. 

int ungetc (int c, FILE .stream); 
pushes the character c back onto the file stream. The character will 
be returned by subsequent reads on the file, but the external, 
physical image of the file is not changed, so this function is not 
equivalent to writing to the file. Repositioning of the file discards 
any characters pushed onto it using this call. The standard 
guarantees at least Qne level of 'push. Subsequent calls to this 
function may fail, in which case EOF is returned. 

Direct Input and Output 

The functions in this section provide unfonnatted, direct input and output. 
They read and write objects of arbitrary size and structure. 

size _ t fread (void .buf, size _ t size, size _ t num, FILE .stream); 
reads num elements each of size size from the file stream and places 
them in the area of storage pointed to by buf The function returns 
the number of elements read, which may be less than num if an 
error or an end of file is encountered. 
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size _ t fwrite (cons! void *buf, size _ t size, size _ t nwn, FILE 
*stream); 

writes num elements each of size size to the file stream. The objects 
are taken from the area of storage pointed to by buj. The function 
returns the number of elements written, which may be less than num 
if an error is encountered. 

File Positioning 

The functions in this section provide means to inquire about and change the 
file position indicators. 

int fgetpos (FILE *stream, fpos_t *pos); 
stores the current value of the file position indicator for file stream 
in the variable pointed to by pos. The type and format of the 
information stored in pos is not specified by the standard. 

int fsetpos (FILE *stream, const fpos_t *pos); 
sets the current value of the file position indicator for file stream to 
the position specified in the variable pointed to by pos. The value of 
pos is obtained from a previous call to jgetpos. Please note that the 
jgetpos and fsetpos pair provide means to store the current file 
position and then go back to that position after intervening read and 
write calls. 

int fseek (FILE *stream, long offset, int whence); 
sets the file position indicator to offset characters from the position 
specified by whence. whence can be SEEK_SET to indicate the 
beginning of the file, SEEK_CUR to indicate the current position, 
or SEEK_END to indicate an end of file. The standard does not 
require that SEEK_END be supported. 

long ftell (FILE *stream); 
returns the current value of the file position indicator for file 
stream. 

void rewind (FILE *stream); 
is equivalent to (void)jseek (stream, OL, SEEK _SEl'); and clears any 
errors on the file. 
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Error Handling 

All input and output functions can generate errors. The functions in this section 
operate on the error indicators set by other input and output functions. 

void clearerr (FILE .stream); 
clears end of file and error conditions for stream. 

int feof (FILE .stream); 
tests if stream is at the end of file. Returns true (non-zero) if such is 
the case, zero otherwise. 

int ferror (FILE .stream); 
returns true (non-zero) if the error indicator is set for stream. 

void perror (const char .s); 

<stdlib.h> 

writes an error message to sttie". The error message consists of a 
string pointed to by s, followed by an implementation defined error 
message corresponding to the value of the global variable erma. 

The header <stdlib.h> defines types, macros and functions considered to be of 
general utility. The contents of this header file have evolved over a period of 
several years and were standardized by the ANSI standard. Some or most of 
the functions may be present on your implementation. Many of the functions in 
this header file, such as string conversion functions, can be implemented with 
relative ease. Memory allocation functions may be more challenging and will 
require understanding of memory management techniques employed by the 
target operating system. Sorting, searching and random number generating 
functions are almost classical examples of basic computer science exercises 
and can be found in every book on computing. Finally, functions dealing with 
process termination are intricately woven into the basic fabric of the operating 
system. 

String Conversions 

The functions in this section convert strings to numbers. The standard provides 
a detailed discussion of the behaviour of these functions. The most important 
characteristic of this behaviour is the fact that the functions are highly error 
tolerant. The strings passed to the conversion functions can contain leading 
blank space, and the number sequence can be followed by other, non-numeric 
and unrecognised characters. The sequence of digits embedded in the string is 
referred to as a subject sequence, and is defined as a longest initial sub-
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sequence of the input string that is of a form expected foe the given type of 
conversion. The part of the string that remains is referred to below as the "final 
string". 

double strtod (const char *inptr, char **outptr); 
converts the subject sequence in inptr to double representation. A 
pointer to the final string is stored in outptr, provided that outptr is 
not NULL. 

long strtol (const char *inptr, char **outptr, int base); 
converts the subject sequence in inptr to long representation. A 
pointer to the final string is stored in outptr, provided that outptr is 
not NULL. base specifies the base of conversion. Letters from "a" 
(or "A") to "z" (or "Z") are assigned values from 10 to 35. Only 
letters with assigned values of less than base are permitted in the 
subject sequence. If base is 16, a sequence "Ox" oe "OX" may 
optionally precede the subject sequence. 

unsigned long strtoul (const char *inptr, char **outptr, int base); 
converts the subject sequence in inptr to unsigned long 
representation. A pointer to the final string is stored in outptr, 
provided that outptr is not NUll. base specifies the base of 
conversion. Letters from "a" (or "A") to "z" (oe "Z") are assigned 
values from 10 to 35. Only letters with assigned values of less than 
base are permitted in the subject sequence. If base is 16, a 
sequence "Ox" or "OX" may optionally precede the subject 
sequence. 

int atoi (const char *inptr); 
behaves like (int)strtol (inptr, (char **)NULL, 10);. 

long atol (const char *inptr); 
behaves like strtol (inptr, (char **)NULL, 10);. 

Pseudo Random Number Generation 

int rand (void); 
returns a pseudo random integer in the range 0 to RAND_MAX. 
RAND MAX has to be at least 32767. 

void srand (unsigned seed); 
uses seed as a beginning of a new pseudo random sequence. 
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The ANSI standard provides a portable implementation for these two functions 
as follows: 

static unsigned .long int next = 1; 

int rand (void) 
{ 

1* RAND MAX is assumed to be 32767 *1 
next = next * 1103515245 + 12345; 
return ((un~igned int) (next I 65536) % 32768); 

} 1* rand *1 

void srand (unsigned int seed) 
{ 

next = seed; 

return; 

1* srand *1 

Memory MalUlgement 

Memory management functions are at the heart of complex data structures in 
all but the most trivial applications. We have seen how the memory manage­
ment functions are used in example 9.3. Large and complex applications will 
typically rely heavily on the memory management functions, and mishandling 
of memory management is the source of some of the most common and most 
difficult to find C programming errors. 

Memory is said to be allocated from a memory pool called a heap. The 
operating system manages all system resources and allocates memory to 
individual processes (programs) as requested and as available. The standard C 
library maintains the individual heap allocated to the process by the operating 
system. Individual pieces of the heap are given to the application as a result of 
malloc calls, and are returned to the heap by free. It is up to the application to 
free all the pieces of storage requested via maUoc, or else all space in the heap 
may be exhausted. Should that happen, the reaction to subsequent memory 
allocation requests varies from system to system. Simple operating systems 
with limited resources, such as MS~DOS with its memory limitations, may 
allocate the entire system memory to be used by a single process. Running out 
of heap space is in those cases equivalent to running out of the entire system 
memory, in which case the maUoc call returns an error and there is very little 
else that the application can do, unless of course it can return some memory to 
the free pool by calling free. In sophisticated operating systems, such as the 
UNIX system, the memory management library functions may request that the 
heap space available to the process be increased. The system, having virtual 
memory capabilities, often honours such requests practically indefinitely. The 
address space of the process grows and places huge demands on the system, 
bringing it slowly to a grinding halt. 
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The most fundamental rule for using dynamic memory management in C is 
to free all the space allocated. Many development environments provide 
various functions and utilities to check the heap and make sure that the space 
which has not been allocated is not used by the application. It is, however, 
entirely up to the programmer to make sure that whatever has been allocated is 
freed when no longer needed. 

void *malloc (size_t size); 
allocates space for an object of size size and returns a pointer to the 
space allocated or NUll if the request fails. The content of the 
allocated space is indeterminate. 

void free (void *ptr); 
deallocates space pointed to by ptr. If ptr is NUll, no action 
occurs. If ptr points to an object that has not been previously 
allocated, or has been deallocated since, the behaviour is undefined. 

void *calloc (size_t num, size_t size); 
allocates space for num objects of size size each, sets the space 
allocated to all zeros and returns a pointer to the space allocated or 
NULL if the request fails. 

void *realloc (void *ptr, size_t size); 
changes size of the object pointed to by ptr to size. The content of 
the object is unchanged up to the lesser of the old and new size. 
The function essentially behaves like a series of mal/oc, followed 
by memcpy, followed by free of the old space. The function returns 
a pointer to the new memory area. 

Communication with the Environment 

The functions in this section provide means to examine the environment and 
return results of the program operation to the underlying operating system. 

void abort (void); 
causes abnormal program termination by raising signal SIGABRT 
and exiting the application (unless the signal is caught). 

int atexit (void (*func)(void)); 
specifies that the function func is to be called at normal program 
termination. Multiple functions can be specified by multiple calls to 
atexit. The standard guarantees support of at least 32 such 
functions. 
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void exit (int status); 
normally tenninates the program, calls all functions specified by 
atexit (in the reverse order), flushes and closes all files and returns 
status to the host environment. 

char -getenv (coost char -name); 
searches the environment for a string specified by name and returns 
a pointer to a string associated with the name or NUll if the name 
cannot be found. 

int system (coost char -command); 
passes the com11Ulnd to the command processor of the host 
environment and returns an implementation defined value. 

Searching and Sorting 

void qsort (void -base, size _ t num, size _ t size, int 
(-compar)(const void -, const void*»; 

sorts an array of num objects each of size size. The first object in 
the array is pointed to by base and the comparison function is 
provided by the application and given in com par. The comparison 
function will be passed two pointers to the elements to be compared 
and must return an integer less than, equal to or greater than 0, 
depending on whether the first argument is less than, equal to or 
greater than the second. 

void *bsearch (const void *key, const void *base, size_t num 
size _ t size, int (*compar)(const void *, const void*»; 

performs a binary search on an array of num objects each of size 
size. The first object in the array is pointed to by base and the 
comparison function is provided by the application and given in 
com par. The comparison function will be passed a pointer to the 
key object and an array element and must return an integer less 
than, equal to or greater than 0, depending on whether the key is 
less than, equal to or greater than the array element. The function 
returns a pointer to the matching array element or NULL. 

<string.h> 

The header <string.h> defines types, macros and functions dealing with 
operations on arrays of characters. The functions fall into two main categories. 
Functions whose names start with mem are not sensitive to the content of the 
character strings operated on and can thus be used to operate on arbitrary 
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objects. Functions whose names start with str assume that the objects are null 
tenninated character strings and may tenninate their operation upon 
encountering the null character. All functions defined in this header can be 
easily written in C even if not available on your installation. Many of them 
have been specified in the original K&R language definition. 

Copying 

void *memcpy (void *dest. const void *src. size_t n); 
copies n characters from src to dest. If the areas pointed to by src 
and dest overlap. the behaviour is undefined. The function returns 
the pointer to the destination object. 

void *memmove (void *dest. const void *src. size_t n); 
copies n characters from src to dest. The function works correctly 
for overlapping areas of storage and returns the pointer to the 
destination object. 

char *strcpy (void *dest. const void *src); 
copies characters from src to dest strings including the terminating 
NULL character. If the areas pointed to by src and dest overlap. the 
behaviour is undefined. The function returns the pointer to the 
destination string. 

char *strncpy (void *dest. const void *src. size_t n); 
copies at most n characters from src to dest strings including the 
tenninating NUll character. If the areas pointed to by src and dest 
overlap. the behaviour is undefined. The function returns the pointer 
to the destination string. 

Concatenation 

char *strcat (void *dest. const void *src); 
appends characters from src to dest strings including the 
tenninating NULL character. If the areas pointed to by src and dest 
overlap. the behaviour is undefined. The function returns the 
pointer to the destination string. 

char *strncat (void *dest. const void *src. size_t n); 
appends at most n characters from src to dest strings including the 
tenninating NULL character. If the areas pointed to by src and dest 
overlap. the behaviour is undefined. The function returns the 
pointer to the destination string. 



The Standard C Libraries 149 

Comparison 

int strcmp (const char *sl, const char *s2); 
compares characters from s1 to characters from s2. Returns an 
integer less than, equal to, or greater than zero if the object pointed 
to by s1 is less than, equal to or greater than object pointed to by s2. 

int strncmp (const char *sl, const char *s2, siu_t n); 
compares at most n characters from s1 to characters from s2. 
Returns an integer less than, equal to, or greater than zero if the 
string pointed to by s1 is less than, equal to or greater than string 
pointed to by s2. 

int memcmp (const void *sl, const void *s2, siu_t n); 

Searching 

compares n characters from s1 to characters from s2. Returns an 
integer less than, equal to, or greater than zero if the object pointed 
to by s1 is less than, equal to or greater than objectpointed to by s2. 

void *memchr (const void *s, int c. size_t n); 
returns a pointer to the first occurrence of a character given by c in 
the first n characters of an object pointed to by s, or returns NULL if 
the character does not occur in the object. 

char *strchr (const char *s. int c); 
returns a pointer to the first occurrence of a character given by c in 
the string pointed to by s, or returns NUll if the character does not 
occur in the string. 

char *strrchr (const char *s. int c); 
returns a pointer to the last occurrence of a character given by c in 
the string pointed to by s, or returns NUll if the character does not 
occur in the string. 

size_t strspn (const char *sl. const char *s2); 
returns the length of the maximum initial segment of the string s1 
which consists entirely of characters from s2. 

size_t strcspn (const char *sl, const char *s2); 
returns the length of the maximum initial segment of the string s1 
which consists entirely of characters not from s2. 

char *strpbrk (const char *sl, const char *s2); 
returns a pointer to the first occurrence in s1 of any character from 
s2. 
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char *strstr (const char *sl, const char *s2); 
returns a pointer to the first occurrence in s1 of a sequence of 
characters in s2. 

char *strtok (ronst char *sl, const char *s2); 
breaks the string s1 into tokens delimited by any of the characters 
specified in s2. Returns a pointer to the first character of a token or 
NULL if there are no tokens left. The function is intended to be 
used in a series of calls. The first call passes the address of the first 
character string s1. Subsequent calls are made with the first 
argument set to NUU to indicate that the same initial string is to be 
parsed. It is expected that a series of tokens is returned and a null 
pointer is returned on the last call when all the tokens are parsed. 

Miscellaneous 

size _ t strlen (const char *s); 
returns the length of the string pointed to by s. 

void *memset (void *50 int c, size_t n); 
places the value c into the first n characters of the object pointed to 
by s and returns s. 

char *strerror (int errnum); 
converts an error code in errnum to an implementation defined error 
message. 

<time.h> 

The header <time.h> defines types, macros and functions dealing with 
operations on time values. The types are: clock_t and time_t typically defined 
to be long, and a structure holding the components of a calendar time. The 
structure is defined as follows: 

struct tm { 

} ; 

int tm_sec; 

int tm min; 
int tm-hour; 
int tm-mday; 
int tm-mon; 
int tm-year; 
int tm-wday; 
int tm-yday; 
int tm::)sdst; 

1* seconds after the minute [0,61] 
(leap seconds) *1 

1* minutes after the hour [0,59] *1 
1* hours since midnight [0,23] *1 
1* day of the month [1,31] *1 
1* months since January [0,11] *1 
1* years since 1900 *1 
1* days since Sunday [0,6] *1 
1* days since January 1st [0,365] *1 
1* daylight saving time flag *1 
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In addition, the CLOCKS _ PER_SEC maao is defined and specifies the 
nwnber of system clock ticks per second. For example, the value of this macro 
on MS-DOS machines is 18.2. 

Time Manipulation 

clock_t clock (void); 
returns the nwnber of system clock ticks since the beginning of the 
application. The standard only talks about "best approx-imation", 
therefore, in order to obtain the amount of time spent in an 
application, the current value of clock should be decreased by the 
value obtained at the beginning of a program. 

time_t time (time_t *timer); 
retrieve the system's current calendar time. The encoding of the 
value returned is not specified but it must be suitable for use by 
other functions in the "time" family. 

double difftime (time_t tI. time_t to); 
returns a difference in seconds between t1 and to. 

Time Conversions 

time_t mktime (struct tm *timeptr); 
converts the broken down time in structure timeptr to a calendar 
time value in the same form as the one returned from the time 
function. The values in various element of the time structure are 
not limited to the ranges given above, but rather are recalculated 
and adjusted accordingly so that they fall into the ranges upon the 
function return. 

struct tm *localtime (const time_t *timer); 
converts the calendar time given in timer to a broken down time 
format and returns values expressed in the local time zone. 

struct tm *gmtime (const time_t *timer); 
converts the calendar time given in timer to a broken down time 
format and returns values expressed as Coordinated Universal Time 
(GMT). 

char *asctime (const struct tm *timeptr); 
returns a pointer to a string containing a printable representation of 
the time contained in structure time. The string is of the form: 
"FriAug 2114:03:521981\n\O". 
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char .ctime (const time _ t .timer); 
equivalent to asctime(localtime(timer)) 

size _ t strftime (char .50 size _ t maxsize, const char *format, const 
struct tm .timeptr); 

places a character representation of the time given in timeptr into a 
character string pointed to by s. No more than maxsize characters 
are placed in the string and the conversion is governed by the 
format string. The function behaves like sprint! but operates on the 
time structure rather than arbitrary data values. The format string 
contains character strings conversion specifiers. The character 
strings are placed in s verbatim and the conversion specifiers are 
replaced by the corresponding values as follows: 

%a abbreviated weekday name (locale specific) 
%A full weekday name (locale specific) 
%b abbreviated month name (locale specific) 
%B full month name (locale specific) 
o/oc date and time representation (locale specific) 
%d day of the month [1-31] 
%H hour of the day [00-23] 
%1 hour of the day [01-12] 
%j day of the year [001-366] 
%m month of the year [01-12] 
%M minute of the hour [00-59] 
%p AM/PM designation (locale specific) 
%S seconds [00-61] (up to two leap seconds) 
%U week of the year [00-53] (first Sunday as the first day of week 1) 
%w weekday [0-6] - Sunday=O 
%W week of the year [00-53] (first Monday as the first day of week 1) 
%x date representation (locale specific) 
%X time representation (locale specific) 
%y year without century [00-99] 
%Y year with century 
%z time zone name 
%% % 

Summary 

In contrast with many other modem programming languages, the original C 
definition did not specify any built-in functions. The emphasis has been on the 
language simplicity and power typically associated with lower level languages 
Stich as assembler. However, over the years of usage and popularity of C, a set 
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of de facto standard functions provided in a form of a library on most C 
installations has evolved. The definitions of most of these functions have been 
fonnalised, additional functions have been provided and the set is now part of 
the ANSI standard, in the sense that any implementation claiming to be 
standard must provide them. Even if your installation is not yet standard, you 
should probably expect it to convert soon. It is advisable to ease the stress of 
converting to a different flavour of C by careful planning. Providing some of 
the standard functions ahead of time, together with applying portability 
techniques outlined in Chapter 10, will prove to be a good investment. 
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The features of a program that contribute to its 'elegance' are very much 
subjective, and often instinctive. A superficial analysis of a program's 'style' 
(that is, its visual presentation), while not being the only factor, is certainly an 
indicative, and easily automated, component. 

Presented here is a program that performs a textual analysis of a C program, 
yielding a percentage 'style score'. The code is also available on a floppy 
diskette - see the Introduction for details. 

STYLE ANALYSIS 

The features that contribute to the style score are based on proposals made by 
Rees (1982), adapted for C rather than Pascal: 

Module length 

Identifier length 

Comments 

Indentation 

Blank lines 

The average length, in non-blank lines, of function 
definitions; functions that are prolific and too short 
tend to obscure the program logic, while those that are 
too long are difficult to dismember. 

The average length, in characters, of user identifiers; 
brief identifier names (such as i or c) are often 
meaningless, while overlong names make the program 
verbose (most programmers will know that selection 
of pithy, meaningful identifier names is often one of 
the most time consuming elements of writing code). 

The percentage of all lines that contain comments; 
over-commenting is as much a sin as under­
commenting; some comments, however, are always 
necessary, even in the shortest of programs. 

The ratio of initial spaces to total number of 
characters; indentation can be used to good effect to 
indicate the program structure. 
The percentage of all lines that are blank; blank lines 
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separate functional units of a program. 

Line length The average number of non-blank characters per line; 
sensible use of multiple-statement lines can make a 
program visually concise, but not obscure. 

Embedded spaces The average number of embedded spaces per line; 
embedded spaces do for a line what blank lines do for 
a function. 

Constant definitions The percentage of all user identifiers that are defined 
constants; use of manifest constants not only makes a 
program easier to modify, it also associates meaning 
with a constant. 

Reserved words The number of different reserved words and standard 
functions used; the variety of reserved words used is 
indicative of command of the language. 

Included files The extent to which a program is segmented by using 
#include files; breaking constant definitions, macros 
and type definitions out into shared header files 
reduces program complexity. 

Goto statements The number of occurrences of a goto statement; 
advocates of structured programming will usually 
allow the use of a single goto in a program to handle a 
special exit condition - more than that is a cardinal sin! 

A score is associated with each of the above metrics, each contributing a 
different maximum percentage to the final score, in recognition of the fact that 
some factors are more important than others. All scores are additive, with the 
exception of the last, which is subtractive. Too high or too low a figure for 
each metric is detrimental to the final score. 

The individual score is determined by reference to a table which specifies, 
for each metric (shown graphically in table ALl): 
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TableAU 

Contribution 
(%) 

L 

A Book on C 

s F 

Metric value 

• the point L, below which no score is obtained; 
• the point S, the start of the 'ideal range' for the metric; 
• the point F, the finish of the ideal range; and 
• the point H, above which no score is obtained. 

H 

Values between S and F score maximwn marks; those between L and S, and F 
and H, score marks depending on their exact position within the range. 

THE STYLE PROGRAM 

#include <stdio.h> 
#include <ctype.h> 

1* When dividing, use this to prevent division by zero *1 
#define RDIV(d,v) «v)? (double) (d) 1 (double) (v) : 0.0) 

1* This macro is useful to find the number of elements 
in a statiC structure array *1 

#define ELEMENTS_IN(x) (sizeof(x) 1 sizeof(x[O]» 

1* This structure holds the title and value of 
the measured quantities *1 

#define MQ(x) {x, 0 } 
static struct { 

char *t,itle; 
int value; 

stats[] - { 
MQ ("Blank lines ") , 
MQ ("Total lines ") , 
MQ("Total characters "), 
MQ("Indented spaces "), 
MQ("Embedded spaces "), 
MQ("Nonblank characters "), 
MQ("Comment lines "), 
MQ("Include lines "), 
MQ("Define lines "), 
MQ ("Modules ") , 
MQ("Goto's "), 
MQ ("Reserved word variety"), 
MQ ("Non-reserved words ") 

} ; 
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1* These serve as indexes into the measured 
quantities array (stats) *1 

#define BLANK LINES 0 
#define TOTAL-LINES 1 
#define TOTAL-CHARS 2 
#define INDENT SPACES 3 
#define EMBEDDED SPACES 4 
#define NONBLANK-CHARS 5 
#define COMMENT LINES 6 
#define INCLUDE-LINES 7 
#define DEFINE LINES 8 
#define MODULES 9 
#define GOTOS 10 
#define RESWORD VARIETY 11 
#define NONRESWORDS 12 

1* This structure will hold state information across 
lines of input. Thus, we can keep track of whether 
we are in the middle of a multi-line comment, 
preprocessor directive, identifier, constant, 
or structure declaration *1 

struct state { 

} ; 

char in comment, in define, in include, 
in-strinq const, in char const, 
in-identirier, in num const, 
in=struct_dec; - -

1* This structure (with the add char routine) allows 
identifiers and lines to have unrestricted lenqths *1 

static struct buf { 
int index; 
char *chars; 
unsiqned size; 

line, identifier; 

1* Pointer to the character in the line which 
is beinq examined *1 

statiC char *lineptr; 

1* This structure implements a forward sinqly 
linked list of user identifiers *1 

statiC struct user ident { 
struct user ident *next; 
char name [1 ]; 

*first_user_ident; 

1* Current level, incremented at every "{", 
decremented at every"}" *1 

static int level - 0; 

1* The list of reserved words is kept here *1 
#define RW(x) {x, 0 } 
static struct { 

char *identifier; 
int used; 

} reserved words[] - { 
RW("auto")-;- RW("break") , 
RW("const"), RW("continue") , 
RW("double"), RW("else") , 
RW("float"), RW("for"), 
RW("int"), RW("lonq"), 
RW("short"), RW("siqned"), 
RW("struct"), RW("switch"), 
RW("unsiqned"), RW("void"), 
} ; 

RW("case") , 
RW("default") , 
RW("enum") , 
RW("qoto") , 
RW("reqister") , 
RW("sizeof") , 
RW("typedef") , 
RW("volatile") , 

RW("char") , 
RW("do") , 
RW("extern") , 
RW("if"), 
RW("return") , 
RW("static") , 
RW("union") , 
RW("while") 
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1* Prototypes for ANSI conforminq compilers *1 
IHfdef STDC 
Ndefine-P(x) x 

1* List all external functions that do not return an int *1 
extern void exit (int), free (char *), perror (char *); 
extern char *malloc (unsigned), *realloc (char *, unsiqned), 

*strcpy (char *, char *); 

Nelse 
Ndefine ASTR * 
Ndefine P(x) (/ASTR x ASTR/) 

1* List all external functions that do not return an int *1 
extern void exit (), free (), perror (); 
extern char *malloc (), *realloc (), *strcpy (); 
Nendif 

1* Function prototypes *1 
static char add char P«struct buf *, char»; 
static void add-identifier P«cliar *»; 
static void expand tab P«void»; 
static void free identifiers P«void»; 
static int is-preprocess P«char *»; 
static int is reserved P«char *»; 
int main P«int, char *[]»; 
static int parse const P«char»; 
static int parse-ident P«void»; 
static void parse line P«struct state *»; 
static int parse num const P«void»; 
static void process Iile P«FILE *»; 
static void process-line P«struct state *»; 
static void process=stats P«void»; 

1* Add a character to a _buf structure. Get more space 
if necessary *1 

static char 
add char (buf, c) 
struct buf *buf; 
char c;-
{ 

int offset - lineptr - buf->chars; 

1* ChecK if more space is needed: if so, allocate it *1 
if (buf index >- buf->size) { 

if «buf->chars - realloc (buf->chars, buf->size *- 2» 
-- NULL) { 

} 

fprintf (stderr, "Error allocating %d by tes\n" , 
buf->size); 

exit (1); 

lineptr - buf->chars + offset; 

1* Copy the character and return its value *1 
return (buf->chars[buf->index++] - c); 
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/* Free the list of user identifiers */ 
static void 
free identifiers () 
{ -

struct user_ident *i - first_user_ident; 

/* Go through the list and free each identifier */ 
while (i) { 

i - i->next; 
free (first user ident); 
first_user_Tdent-- i; 

/* Reset the first pointer to zero */ 
first_user_ident - (struct user ident *) 0; 

/* Add a user identifier to the forward singly linked list */ 
static void 
add identifier (ident) 
char *ident; 
{ 

int j; 
struct _user_ident *i; 

/* If this identifier has already been entered, 
just return */ 

for (i - first user ident; i; i - i->next) 
if (!strcmp (i->name, ident» 

return; 

/* Allocate space for the new user ident structure */ 
if «i - (struct user ident *T -

malloc (sizeor(i) + strlen (ident) + 1» -- NULL) 
fprintf (stderr, "Error allocating 'lid bytes.\n", 

sizeof(i) + strlen (ident) + 1); 
exit (1); 

/* Copy the identifier in, link in the new user ident 
structure at the front of the list, update the 
non-reserved words count. */ 

strcpy (i->name, ident); 
i->next - first user ident; 
first user ident - i; 
stats[NONRESWORDS).value++; 

/* Check to see if this is a preprocessor directive */ 
static 
is preprocess (directive) 
char *directive; 
{ 

int i; 
char c; 

/* Check for optional leading white space, then 
the character "t/", then optional white space, 
and then the indicated directive. */ 

for (i - 0; line.chars[i) && isspace(line.chars[i); i++) 
, 

if (line.chars[i++) 1- 't/') 
return 0; 
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while (line.chars[i) && isspace(line.chars[i)) 
i++; 

if (strncmp (directive, &line.chars[i), 
strlen (directive») 

return 0; 

1* Make sure the next character is not 
alphanumeric or " " *1 

c - line.chars[i + strlen (directive»); 
if (isalnum(c) II c -- ' ') 

return 0; 
return 1; 

1* Expand a tab to spaces *1 
static void 
expand tab () 
{ -

int i; 
int offset = lineptr - line.chars;l* Location of tab *1 
int add_spaces - 7 - offset % 8; 1* Number of spaces 

to add *1 

/* Get more space if necessary *1 
if (strlen (line.chars) + add spaces + 1 > line.size) { 

if «line.chars = realloc-(line.chars, 
line.size *- 2» -- NULL) { 

fprintf (stderr, "Error allocatinq %d by tes\n" , 
line.size); 

exit (1); 
} 
lineptr = line.chars + offset; 

1* Shift characters to make room for spaces *1 
for (i = strlen (line.chars); i > offset; i--) 
line.chars[i + add_spaces) - line.chars[i); 

1* Fill in spaces *1 
while (add spaces >- 0) 

line.chars[offset + add_spaces--) - , '. , 

1* Parse the input line, strippinq out comments, fiqurinq 
out where st·rinq constants, character constants, 
identifiers, and numeric constants are. Also, expand 
tabs to spaces when not in constants. *1 

static void 
parse line (state) 
struct state *state; 
{ 

char *comment start; 1* Pointer to start of comment *1 
int comment counted = 0, line_lenqth; 

1* Loop throuqh each character in the line *1 
for (comment_start = lineptr - line.chars; 

*lineptr; lineptr++) 

1* A comment was detected. *1 
if (state->in comment) { 

char *p, *q; 

/* Update statistics, if necessary */ 
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if (Icomment counted) { 
comment counted - 1; 
stats[COMMENT_LINES1.value++; 

1* Look for terminating comment symbol *1 
for ( ; *lineptr; lineptr++) 

if (*lineptr -- '*' && *(lineptr+l) '1') { 
state->in comment - 0; 
lineptr +~ 2; 
break; 

1* Strip out comment by moving characters after 
the comment on top of where comment began *1 

for (p - lineptr, q - comment_start; *q++ - *p++;) 

1* Reposition the pointer to the 
current character *1 

lineptr - comment_start - 1; 

1* A string constant (e.g., "foo") was detected. *1 
} else if (state->in string const) { 

state->in_string=const ~ parse_const ( .... ); 

1* A character constant (e.g., 'f') was detected. *1 
} else if (state->in char const) { 

state->in char const ~ parse const ('\"); 
1* An identifier was detected *1-
} else if (state->in identifier) { 

state->in_identiIier ~ parse_ident (state); 

1* A numeric constant was detected *1 
} else if (state->in num const) { 

state->in_num_const ~ parse_num_const (); 

1* If this is a tab, expand it to spaces *1 
} else if (*lineptr -- '\t') { 

expand_tab (); 

1* Check if this is the start of an identifier *1 
else if (isalpha(*lineptr) I I *lineptr -- ._.) { 

state->in identifier - 1; 
(void) add_char (&identifier, *lineptr); 

1* Check if this is the start of a number *1 
else if (isdigit(*lineptr» { 

state->in_num_const - parse_num_const (); 

1* Check for preprocessor include's or define's *1 
else if (*lineptr -- 'N') { 

if (is preprocess ("include"» 
state->in include - 1; 

else if (is preprocess ("define"» 
state->in_define - 1; 

1* Check if this is the start of a comment *1 
} else if (*lineptr -- '1' && *(lineptr+l) '*') { 

state->in comment - 1; 
comment_start - lineptr++; 
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1* Check if this is the start of a 
character constant *1 

else if (*lineptr -- ',") { 
state->in_char_const - 1; 

1* Check if this is the start of a 
string constant *1 

else if (*lineptr -- '"') { 
state->in_string_const - 1; 

1* Check for function declaration - every time we 
encounter a "{", we bump the level, every time 
we encounter oJ", we reduce it. If a "}" takes 
us to level 0, we've just reached the end of a 
structure or union declaration *1 

else if (*lineptr -- '{') { 
if (!state->in comment && 

!state->in-string const && 
!state->in-char canst) 
level++; - -

else if (*lineptr -- ';') { 
if (state->in struct dec && level -= 0) 

state->in-struct-dec - 0; 
else if (*lineptr -- 'T') { 

if (!state->in comment && 
!state->in-string const && 
!state->in-char canst) 
if (--level -- 0 && 

!state->in struct dec && 
!state->in-define) 
stats[MODULES).value++; 

1* Update number of include line statistics *1 
if (state->in include) { 

stats[INCLUDE LINES).value++; 
line length ·-strlen (line.chars); 
if (line_length -= 0 I I 

line. chars [line length - 1) ! - "") 
state->in char const - state->in string const = 

state=>in include - state->in comment = 
state->in=struct_dec - 0; -

1* Update number of define line statistics *1 
} else if (state->in define) { 

stats[DEFINE LINES).value++; 
line length ~ strlen (line.chars); 
if (line_length -- 0 I I 

line.chars[line length - 1) !- ',,') 
state->in char const - state->in string const 

state=>in define - state->in-comment 
state->in=struct_dec - 0; -
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/* This routine is called once for each input line */ 
static void 
process line (state) 
struct -state *state; 
{ -

int i; 

stats[TOTAL_LINES].value++; 

/* Trim trailing spaces */ 
for (i - strlen (line.chars) - 1; i >- 0; 

line.chars[i--] - '\0') 
if (Iisspace(line.chars[i]» 

break; 

/* Check if this line is a blank line */ 
if (Istrlen (line.chars» 

stats[BLANK_LINES].value++; 

/* Do semantic checking of comments, constants, 
identifiers, and preprocessor directives. */ 

parse_line (state); 

/* Trim trailing spaces again, since line is changed 
if comments have been deleted */ 

for (i - strlen (line.chars) - 1; i >- 0; 
line.chars[i--] - '\0') 

if (!isspace(line.chars[i]» 
break; 

/* Collect some statistics */ 
stats[TOTAL CHARS].value +- strlen (line.chars) + 1; 
for (i - O;-line.chars[i] -- ' '; i++) 

stats[INDENT SPACES].value++; 
while (line.chars[i]) 

if (line.chars[i++] --' ') 
stats[EMBEDDED SPACES].value++; 

else -
stats[NONBLANK_CHARS].value++; 

/* This routine is called once for each file 
listed on the command line */ 

static void 
process file (fp) 
FILE *fp; 
{ 

int c; 
struct _state state; 

/* Initialise global variables */ 
state.in num const - state.in string const -

state. in-identifier - state.in char const -
state.in-comment - state.in include-­
state. in-define - state.in struct dec -
line. index - identifier.index - 0; 

for (c - 0; c < ELEMENTS_IN(stats); stats[c++].value - 0) 
, 

free_identifiers (); 
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/* Break file into lines, and process each line */ 
while «c· qetc (fp» I· EOF) { 

if (add char (&line, c) •• '\n') { 
line. chars [--line.index] - '\0'; 
process line (&state); 
line. index - 0; 

1* Calculate and display statistics */ 
static void 
process stats (file name) 
char *f1le name; -
{ -
#define SC(m.l,s,f,t,x) { m., 1., s., f., t., x, 0.0 } 

static struct { 
double max, 10, lotol, hitol, hi; 
char *name; 
double value; 

scores!] - { 

1* max 10 lotol hitol hi name 
SC( 9, 8, 12, 25, 30, " characters per 
SC( 12, 8, 15, 25, 35, "\ comment lines 
SC( 12, 6, 22, 46, 58, "\ indentation 
SC( 11 , 8, 15, 30, 35, "\ blank lines 

line 

SC( 8, 1 , 4, 10, 12, " spaces per line 
SC( 15. 4. 10, 25, 35, " module lenqth 
SC( 6. 2, 9, 17, 23, " reserved words 
SC( 14, 4, 5, 10, 14, .. identifier lenqth 
SC(-20, 1 , 3, 199, 200, " qotos 
SC( 5, 0, 3, 3, 4, " include files 
SC( 8, 8, 12, 20, 24, "\ defines 

} ; 
int i, sl; 
double nc l1nes; /* Number of non-comment lines 
double nc:nb_lines; 1* Number of non-comment 

non-blank lines 
double score, total score; 
struct _user_ident *ui - first_user_ident; 

nc lines· stats[TOTAL LlNES].value 
- --stats[COMMENT LlNES].value; 

nc_nb_lines • nC_lines - stats[BLANK:LlNES).value; 

1* Calculate the reserved words variety statistic */ 
for (i - 0; i < ELEMENTS IN(reserved words); i++) 

if (reserved words[i).used) -
stats[RESWORD_VARIETY].value++; 

1* Print out statistics qathered *1 
printf ("'s:\n\n", file_name); 

*/ 
n) , 
") , 
") , .. ) , 
n) , .. ) , 
n) , 
") , .. ) , 
") , 
") 

*/ 

*/ 

for (1 - 0; i < ELEMENTS IN(stats); 1++) 
printf ("\S \10d\n",-stats[i).title, stats[i].value); 

printf ("\n\n"); 

1* Calculate derived statistics */ 
scores[O).value RDIV(stats[NONBLANK CHARS).value, 

nc nb lines); -
scores(1).value - 100 * RDIV(stats[COMMENT LlNES).value, 

stats[TOTAL LlNES).value); 
scores[2l.value· 100 * RDIV(stats1INDENT SPACES).value, 

stats[TOTAL CHARS]~value); 
scores(3).value - 100 * RDIV(statsTBLANK_LlNES).value, 
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nc lines); 
scores[4].value - RDIV(stats[EMBEDDED SPACES].value, 

nc nb lines); -
scores[5].value - RDIV(nc-nb-lines. 

statsTMODULES].value); 
scores[6].value - stats[RESWORD_VARIETY].value; 

1* Calculate the average user identifier length *1 
for (sl - i - 0; ui; i++. ui - ui->next) 

sl +- strlen (ui->name); 
scores[7].value - RDIV(sl. i); 

scores[8].value - stats[GOTOS].value; 
scores[9].value - stats[INCLUDE LlNES].value; 
scores[10].value - 100 * -

RDIV(stats[DEFlNE_LlNES].value, i); 

1* Calculate and print individual scores 
and add 'em up. *1 

total score - 0.0; 
for (1 - 0; i < 11; i++) 

score - 0.0; 

} 

1* Use maximum score if value in ideal range *1 
if (scores[i].value >- scores[i].lotol && 

scores[i].value <- scores[i].hitol) 
score - scores[i].max; 

1* Otherwise interpolate to get score *1 
else if (scores[i].value >- scores[i].lo && 

scores[i] .value < scores[i].lotol) 
score - scores[i].max * RDIV(scores[i].value­

scores[i] .10. scores[i].lotol -
scores[i].lo); 

else if (scores[i].value > scores[i].hitol && 
scores[i].value <- scores[i] .hi) 

score - scores[i].max * RDIV(scores[i].hi -
scores[i].value, scores[i].hi -
scores[i].hitol); 

printf ("%5.1f%s : '5.1f (max %3.0f)\n". 
scores[i].value, scores[i].name, 
score, scores[i].max); 

total_score +- score; 

printf ("\nScore ('s): %5.1f\n\n\n". 
file_name. total_score); 

1* Perform style analysis on each file on the command line *1 
main (argc. argv) 
int argc; 
char *argv[]; 
{ 

int argv index; 
FILE *fp; 

/* First. initialise space for identifiers 
and input line *1 

if «identifier.chars -
malloc (identifier.size - 128» -- NULL I I 
(line.chars - malloc (line.size - 128» -- NULL) 

fprintf (stderr. "Error allocating 256 bytes.\n"); 
exit (1); 
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1* Process each file, and print its statistics *1 
for (arQv index· 1; argv index < arQc; argv index++) 

if «rp • fopen (argv[argv index], "r") )-•• NULL) 
perror (argv[arQv index]); 
continue; -

} 

} 
process file (fp); 
fclose Tfp); 
process_stats (argv[argv_index]); 

return 0; 

1* Check if str is a reserved word *1 
static 
is reserved (str, state) 
char *stJ:"; 
struct state *state; 
{ -

int i; 

1* Look through the reserved words table for a match *1 
for (i - 0; i < ELEMENTS IN(reserved words); i++) 

if (!strcmp (str, reserved_words[i].identifier» 
break; 

1* Return zero if not found in table *1 
if (i >- ELEMENTS IN(reserved words» 

return 0; - -

1* Mark reserved word as used and check for goto's 
and global structure declarations *1 

reserved words[i].used • 1; 
if (!strcmp (str, "goto"» 

stats[GOTOS].value++; 
if (level·· 0 && (!strcmp (str, "union") II 

Istrcmp (str, "struct"») 
state->in_struct_dec - 1; 

return 1; 

1* Scan through a string or character constant *1 
static 
parse const (delimiter) 
char delimiter; 1* Constant type: (") for string, 

(') for character *1 

for ( ; *lineptr; lineptr++) 

1* Be certain to skip characters quoted 
with a backslash *1 

if (*lineptr -- '\\' && *(lineptr + 1» 
*++lineptr - '.'; 

else if (*lineptr -- delimiter) 

1* Found end of constant *1 
return 0; 

else if (*lineptr -= ' ') 
/* Make sure quoted spaces are not 

counted as embedded *1 
*lineptr. '.'; 

return 1; 
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1* Parse a reserved word or user identifer *1 
static 
parse ident (state) 
struct state *state; 
{ -

1* Collect characters into identifier buffer *1 
while (*lineptr && (isalnum(*lineptr) I I 

*lineptr -- ' '» 
(void) add_char (&identifier, *lineptr++); 

1* Check if identifier is continued on next line *1 
if (*lineptr -- '\\' && *(lineptr + 1) -- '\0') 

return 1; 

1* Add trailing null *1 
(void) add_char (&identifier, '\0'); 

1* Backup so terminating character is 
next to be scanned *1 

lineptr--; 

1* Check if reserved or a user identifier *1 
if (!is reserved (identifier.chars, state» 

add=identifier (identifier.chars); 

identifier.index - 0; 
return 0; 

1* Parse numeric constant *1 
static 
parse num const () 
{ - -

1* Skip through leading numbers, letters, and dots. *1 
while (*++lineptr && (isalnum(*lineptr) I I 

*lineptr -- '.'» 

1* Check for exponent *1 
if (*lineptr && (*lineptr -- '+' I I 

*lineptr -- '-') && 
*++lineptr && isdigit(*lineptr» 

while (*++lineptr && isalnum(*lineptr» 

1* Check if continued on next line *1 
if (*lineptr -- '\\' && *(lineptr + 1) -- '\0') 

return 1; 

1* Backup so terminating character 
is next to be scanned *1 

lineptr--; 
return 0; 

style 79.8 1 
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THE OUTPUT 

style.c: 

Blank lines 
Total lines 
Total characters 
Indented spaces 
Embedded spaces 
Nonblank characters 
Comment lines 
Include lines 
Define lines 
Modules 
Goto's 
Reserved word variety 
Non-reserved words 

22.6 
19.4% 
19.9% 
18.9% 
2.7 

34.0 
16.0 
6.9 
0.0 
2.0 

16.0% 

characters per line 
comment lines 
indentation 
blank lines 
spaces per line 
module length 
reserved words 
identifier length 
gotos 
include files 
defines 

Score (style.c): 79.8 

111 
728 

15932 
3166 
1283 

10755 
141 

2 
21 
14 
o 

16 
131 

9.0 
12.0 
10.4 
11.0 
4.5 
1.5 
6.0 

14.0 
0.0 
3.3 
8.0 

(max 
(max 
(max 
(max 
(max 
(max 
(max 
(max 
(max 
(max 
(max 

9) 
12) 
12) 
11) 

8) 
15 ) 

6) 
14 ) 

-20) 
5) 
8) 
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Alphabetic List of Keywords 

auto 
break 
case 
char 
const 
continue 
default 
do 
double 
else 
enum 
extern 
float 
for 
goto 
if 
int 
long 
register 
return 
short 
signed 
sizeof 
static 
struct 
switch 
typedef 
union 
unsigned 
void 
volatile 
while 

storage class specifier 
statement 
statement prefix within a switch statement 
type specifier 
storage class specifier 
statement 
statement prefix within a switch statement 
statement 
type specifier 
statement 
type specifier 
storage class specifier 
type specifier 
statement 
statement 
statement 
type specifier 
type specifier 
storage class specifier 
statement 
storage class specifier 
type specifier 
unary operator 
storage class specifier 
type specifier 
statement 
storage class specifier 
type specifier 
type specifier 
type specifier 
storage class specifier 
statement 
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Use of any of the keywords as identifiers will cause syntax errors. The ease 
with which such errors can be related to the source of the problem will depend 
on the particular implementation of C. 

In addition to the above keywords, the C standard defines reserved 
identifiers. If any of the reserved names are redefined by the program, the 
behaviour is undefined and the program is thus not portable. The standard 
defines the following reserved identifiers: 

• any macro name defined in the header files described in Chapter 12, if the 
corresponding header file is included; 

• any identifier described in Chapter 12 and having an extemallinkage; 

• any identifier described in Chapter 12, with file scope, if the 
corresponding header file is included; 

• any identifier which begins with an underscore and an upper case letter or 
another underscore; 

• any identifier which begins with an underscore (reserved for use as an 
identifier with file scope). 

C Operator Precedence 

In the following table, C operators are grouped by precedence in the evaluation 
order. Operators within the same group have equal precedence. The 
associativity rule governs the grouping of expression with operators of equal 
precedence. 

Group Operator Description Associativity 

Postfix () Function call Left to Right 
[] Array subscript 
~ Indirect component selector 

Direct component selector 

Unary Logical negation (NOT) Right to Left 
Bitwise (l's) complement 

+ Unary plus 
Unary minus 

++ Preincrement or postincrement 
Predecrement or postdecrement 

& Address 

* Indirection 
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sizeof Size of operand in bytes 
(type) Cast 

Multiplicative * Multiply Left to Right 
/ Divide 
% Remainder (modulus) 

Additive + Binary plus Left to Right 
Binary minus 

Shift « Shift left Left to Right 
« Shift right 

Relational < Less than Left to Right 
<= Less than or equal to 
> Greater than 
>= Greater than or equal to 

Equality -- Equal to Left to Right 
1-.- Not equal to 

And & Bitwise AND Left to Right 

Xor BitwiseXOR Left to Right 

Or Bitwise OR Left to Right 

Logical and && Logical AND Left to Right 

Logical or II Logical OR Left to Right 

Conditional 1: if a then x, else y Right to Left 

Assignment = Simple assignment Right to Left 
*= Assign product 
/= Assign quotient 
%= Assign modulus 
+= Assign sum 
-- Assign difference 
&= Assign bitwise AND 
= Assign bitwise XOR 

1= Assign bitwise OR 
«= Assign left shifted 
»= Assign right shifted 

Comma Evaluate Left to Right 
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C Basic Data Types 

char 

signed 

unsigned 

float 

double 

long double 

enum 

void 

A character variable can hold any character from the basic 
character set represented as an appropriate integer character 
code. 

There are four signed integer types: signed char, short int. 
intand long into The list describes integer types of increasing 
range of values. signed char occupies the same amount of 
storage as a normal char. int has a size suggested by the 
architecture of the underlying hardware and can contain any 
value between INT MIN and INT MAX as defined in - -
<limits.h> 

For each of the signed types there is a corresponding 
unsigned type which uses the same amount of storage. The 
range of non-negative values of a signed type is a subrange of 
the values of the corresponding unsigned type and the 
standard guarantees that the representation of the same value 
in each corresponding type is the same. <limits.h> defines 
the ranges of possible values. 

A subset of floating point values representable by double can 
be represented by this type. 

A subset of floating point values representable by long 
double can be represented by this type. 

A maximum possible range of floating point values 
(implementation dependent) can be represented by variables 
of this type. 

A variable of this type consists of a set of named integer 
constant values and can be represented by the integer types. 

An empty set of values. This type is incomplete and can 
never be completed. 

More complex data types can be constructed from the above set by recursively 
applying the following methods: 

array 
structure 
union 
function 

A contiguous, nonempty set of values of a specific type. 
A sequential, nonempty set of member objects. 
An overlapping, nonempty set of member objects. 
A function characterised by its return type and the number and 
types of its arguments. 
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pointer An object whose value provides a reference to an object of a 
specified type. 

Escape Characters 

The backslash character is used to construct escape sequences, that is, it is used 
to represent certain non-printing characters by a pair of characters, the first of 
which is the backslash. The following characters can be represented in this 
way: 

Sequence Value Description 

\a Ox07 alarm (bell) 
\b Ox08 backspace 
\f OxOc fonnfeed 
\n OxOa newline 
'c OxOd carriage return 
\t Ox09 horlzontaltab 
\v OxOb vertical tab 
\\ OxSc backs lash 
~ 0x27 apostrophe 
\" 0x22 quote (inside strings) 
\? Ox3f question mark 

In addition, any character can be represented by the corresponding integer code 
in its octal or hexadecimal representation as follows: '<xx> where 000 is a string 
of up to three octal digits, or \xhh where hh is a string of up to two 
hexadecimal digits. For example: \10 is equivalent to \b, the backspace 
character, and \X20 is the space character. 

Escape sequences such as those illustrated above may be used in strings, 
particularly format control strings: 

printf ("\t result = \n"); 
and as character constants: 

bell = I \a I; 

Conversion Characters in Format Strings 

The following conversion characters can be used in format strings controlling 
input and output. Full description of the input and output functions is given in 
chapter 3. Examples of the use of the control strings may be found in tables 
3.1 and 3.2. 
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Modifiers: 

printf scanf Description 

h h short for d. o. u. x. X 
I I long for d. o. u, x. X 

double for e. E. f. g. G 
L L long for d. o. u. x. X 

long double for e. E. f. g. G 

Type: 

printf seanf Description 

c c single character 
d d signed decimal int 

D signed long decimal int 
0 0 unsigned octal int 

0 unsigned long octal int 
u u unsigned decimal int 

U unsigned long decimal int 
x x unsigned hexadecimal int 

X unsigned long hexadecimal int 
f f floating point [-]dddd.ddd 
e e floating point [-]d.ddd e [+/ -]ddd 
g g fonnat e or f based on precision 
s s character string 
% % the % character 
n n count of characters processed so far 

Any invalid conversion character is printed. 
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ASCII Character Set 

ASCII Character Codes 

DEC OCT HEX CHAR DEC OCT HEX CHAR 
0 000 00 "@ 32 040 20 
1 001 01 "A 33 041 21 
2 002 02 "B 34 042 22 
3 003 03 "C 35 043 23 # 
4 004 04 "D 36 044 24 $ 
5 005 05 "E 37 045 25 % 
6 006 06 "F 38 046 26 & 
7 007 07 "G 39 047 27 
8 010 08 "H 40 050 28 ( 
9 011 09 "I 41 051 29 ) 
10 012 Oa "J 42 052 2a * 
11 013 Ob "K 43 053 2b + 
12 014 Oe "L 44 054 2e 
13 015 Od "M 45 055 2d 
14 016 Oe "N 46 056 2e 
15 017 Of "0 47 057 2f / 
16 020 1 "P 48 060 30 0 
17 021 11 "Q 49 061 31 1 
18 022 12 "R 50 062 32 2 
19 023 13 "S 51 063 33 3 
20 024 14 "T 52 064 34 4 
21 025 15 "U 53 065 35 5 
22 026 16 "V 54 066 36 6 
23 027 17 "W 55 067 37 7 
24 030 18 "X 56 070 38 8 
25 031 19 "Y 57 071 39 9 
26 032 la "Z 58 072 3a 
27 033 Ib "[ 59 073 3b 
28 034 Ie "\ 60 074 3c < 
29 035 Id "] 61 075 3d = 
30 036 Ie 62 076 3e > 
31 037 If 63 077 3f ? 
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ASCII Character Codes 

DEC OCT HEX CHAR DEC OCT HEX CHAR 
64 100 40 @ 96 140 60 
65 101 41 A 97 141 61 a 
66 102 42 B 98 142 62 b 
67 103 43 C 99 143 63 c 
68 104 44 D 100 144 64 d 
69 105 45 E 101 145 65 e 
70 106 46 F 102 146 66 f 
71 107 47 G 103 147 67 g 
72 110 48 H 104 150 68 h 
73 111 49 I 105 151 69 
74 112 4a J 106 152 6a j 
75 113 4b K 107 153 6b k 
76 114 4c L 108 154 6c 1 
77 115 4d M 109 155 6d m 
78 116 4e N 110 156 6e n 
79 117 4f 0 111 157 6f 0 

80 120 50 P 112 160 70 P 
81 121 51 Q 113 161 71 q 
82 122 52 R 114 162 72 r 
83 123 53 S 115 163 73 s 
84 124 54 T 116 164 74 t 
85 125 55 U 117 165 75 u 
86 126 56 V 118 166 76 v 
87 127 57 W 119 167 77 w 
88 130 58 X 120 170 78 x 
89 131 59 Y 121 171 79 Y 
90 132 5a Z 122 172 7a z 
91 133 5b [ 123 173 7b { 
92 134 5c \ 124 174 7c I 
93 135 5d ] 125 175 7d } 
94 136 5e 126 176 7e 
95 137 5f 127 177 7f "? 
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Glossary 
ANSI standard 
As used in this book, a specification of the syntax and semantics of computer 
programs written in the C programming language as described in American 
National Standards Institute, Inc., American National Standard X3.159-1989. 

ASCII 
American Standard Code for Infonnation Interchange, specifying a mapping 
between a binary code and a corresponding printable or control character. For 
example, a binary code 1000001 (or decimal 65) corresponds to the letter 'A'. 
The original ASCII character set has been expanded by various vendors to 
include certain graphics symbols and special characters. 

UNIX 
An operating system designed and developed by Dennis Ritchie and Ken 
Thompson at the AT&T Bell Laboratories between 1969 an 1971. The use of 
the system was originally limited to academic and research computer systems. 
Due to its elegance and power it is now in widespread use on a multitude of 
hardware platforms and supports a vast array of widely different applications. 

aggregate 
A collection of data of different types. Aggregate data types can be created in 
C by defining structures or unions. 

algorithm 
A problem solving method suitable for computer implementation. It is a set of 
transformations of inputs into outputs accomplishing a solution to the problem 
in a finite nwnber of steps. 

application 
A piece of software implementing functionality required directly by the end 
users of a computing installation. The term is often contrasted with the 
operating system software. 

argument 
The actual value passed to a function at runtime when the function call is 
executed. All arguments in C are passed "by value", that is, a copy of the 
argument is made before passing it to a function. In order to access the original 
entity, not its copy, a pointer to that entity must be given as an argwnent. 
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array 
A collection of data elements of the same type. Each element of the collection 
can be addressed by specifying one or more integer values called indices. An 
index is an offset from the beginning of the array in a particular dimension and 
in C always starts from O. 

compiler 
A language translator typically accepting as input a higher level computer 
language such as C or Pascal, and producing a lower level output, usually in a 
language specific to the machine for which it was designed. 

constant 
A value which never changes during the lifetime of a program. In C, constants 
can be either literal, such as 42, Ox2a or "forty two", or specified by using the 
keyword const. 

declaration 
A specification of the type of a named object in a computer program. In C it is 
required that all data and functions be declared prior to their use. 

definition 
The actual specification of a function code. The code defines all aspects of a 
function, its parameters and behaviour, whereas a declaration (prototype) 
specifies only the type of parameters and the type of a return value. 

expression 
A series of operators and operands specified in accordance with the syntax 
rules of the language and producing a single value as its result. 

file 
From the perspective of a C program, a source for, or a destination of, data 
required or produced by the program. In that sense, a file may be the keyboard 
at which users type responses, or another program to which data are sent. One 
can also talk of physical files which are persistent representations of data 
stored on media such as magnetic or optical disks. 

function 
A sequence of statements which perfonn some computation. A well-designed 
function will have clearly defined inputs and outputs, usually passed via 
parameters, and should be free of side-effects - that is, no variables other than 
those represented by parameters will have their values changed as a result of 
invoking the function. A function in C is similar to a subroutine or function in 
Fortran, or a procedure or function in Pascal. 

header file 
If a program consists of more than one source file, it is usual to collect shared 
definitions in a separate file, included in all the source files. In that way, 
changes to those definitions are confined to a single file. 
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Definitions most often put in header files are: 
#include's 
#define's 
extern declarations of variables and functions 
typedef's of shared structures 

Several standard headers are provided for C, which must be included in order 
to use functions from the standard library. 

identifier 
The name used to refer to variables, constants, functions and derived data types 
or aggregates. In C, an identifier consists of a sequence of upper or lower case 
letters, digits. and underscores, and must begin with a letter. Although 
identifiers may be of any length, it is recommended that all identifiers are 
unique over the first 31 characters. 

interpreter 
An interpreter accepts source code for a particular language and executes it 
directly. The difference between a compiler and an interpreter is that the 
compiler produces an object program, which is then executed; the interpreter 
executes the source program itself. 

library 
A collection of common functions which may be used by a program if the 
library is linked with the program when the executable is built. It is usually 
provided in binary (and not source) format. In C, standard libraries exist to 
perform. for example, input and output, mathematical functions, and error and 
string handling. 

macro definition 
Specifies a simple textual substitution of one character string in the program 
text by another. In C, macro definitions (or, simply, macros) may have 
arguments - although this may look like a function call, the macro expansion is 
done by the preprocessor prior to the compilation phase. 

macro processor 
See preprocessor. 

operand 
The object, typically a variable or constant, that is manipulated, or operated 
on, as part of an expression. 

operating system 
Manages the resources of the computing environment, typically by providing 
file system maintenance, process management and other housekeeping 
functions. This represents the core, or kernel, of the operating system. A suite 
of other utilities are often provided for other functions, such as text editing and 
formatting, compilers and assemblers, and a command interpreter. 
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operator 
Specifies the action to be performed on its operands. Operators in C are either 
unary, operating on a single operand (like the not operator), binary, taking two 
operands (like plus), or tertiary, with three operands (like the conditional 
operator). 

optimiser 
Code optimisation is usually performed as one stage of the compilation 
process. It involves, for example, moving operations whose operands do not 
change within a for-loop out of the loop, and eliminating redundant operations. 
Most C compilers offer this as a user-selectable feature at compile time. 

parameter 
A variable mentioned in the parenthesised list of a function definition or 
prototype. Contrast this with an argument, which is the value supplied when a 
function is called. 

pointer 
In C, a variable that contains the address of another variable. The value of the 
variable is obtained by dereferencing, using the * operator. 

preprocessor 
A program which performs macro expansion. For C, preprocessing occurs as 
the first stage of the compilation process. It is important to realize that most 
preprocessors are language independent - that is, C's preprocessor could 
equally well be used for some other language, since it is unaware of the 
specific syntax for C, and merely performs textual substitutions. 

processor 
The word 'processor' specifically refers to the CPU (central processing unit) of 
a computer, but in common parlance is used for the whole computer. 

program 
A set of statements that can be submitted as a unit to some computer system 
and used to direct the behaviour of that system. 

programming language 
A notation for the precise description of computer programs or algorithms in 
which the syntax and semantics are strictly defined. 

prototype 
An early version or example that serves as a model on which later stages can 
be based. Typically, a prototype does not implement all the features of a fully 
developed version. In C, a function prototype declares the arguments to a 
function, and their types, prior to its full definition. 
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recursion 
The process of defining or expressing a function, procedure, or solution to a 
problem in tenns of itself. Thus, a recursive subroutine calls itself. 

scope 
The time or region of a program in which the characteristics (e.g., type, value, 
etc.) of an identifier have meaning. 

signal 
An asynchronous event that arises in a program, such as a hardware or timer 
interrupt, or an error in program execution. If the underlying operating system 
supports it, signals can be generated under program control, blocked, ignored, 
or delivered to a function programmed to handle them. 

statement 
The unit from which a program is constructed; a program consists of a 
sequence of statements. 

storage (memory and disk) 
A device or medium that can retain data for subsequent retrieval. 

storage class 
The characteristic of a variable or identifier that determines the location and 
lifetime of the storage that represents it. 

string 
A one dimensional array of characters. 

structure 
A data type aggregate that is composed of smaller parts, which can themselves 
be aggregates. Each of the parts are individually represented by non­
overlapping storage. At the lowest level, the parts consist of atomic data types, 
i.e., char, int, etc. 

union 
A data type aggregate that is composed of smaller parts, which can themselves 
be aggregates. Each of the parts are represented by overlapping storage. At 
the lowest level, the parts consist of atomic data types, i.e., char, int, etc. Thus, 
the same piece of storage can be interpreted differently according to differing 
data types in the union. 

variable 
An identifier used to denote a changeable value inside a computer or program. 

word size 
The length of a set of bits treated as a unit by the computer hardware. The 
number of bits in a word is typically a multiple of 8 bits or 1 byte. A word is 
usually long enough to contain an integer. 
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