
I
R0006018831

Introduction
to Compiler Construction

with UNIX*

Axel T. Schreiner
Sektion Informatik

University of Ulm, West Germany

H. George Friedman, Jr.
Department of Computer Science

University of Illinois at Urbana-Champaign

Prentice-Hall, Inc.
Englewood Cliffs, NJ 07632

* UNLX is a trademark of Bell Laboratories

Library of Congress Catalog Card Number: 84-631)39

Editorial/production supervision:
Sophia PapanikolaouiBarbara Palumbo

Cover design: Lundgren Graphics
Manufacturing buyer: Gordon Osbourne

UNIX is a trademark of Bell Laboratories.

C 1985 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

Prentice-Hall Software Series, Brian W. Kernighan, advisor.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

I0 9 8

ISBN 0-13 - 474396 - 2 01

PRENTICE-HALL INTERNATIONAL, INC. , London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney

EDITORA PRENTICE-HALL DC) BRASIL, Li DA. , Rio de Janeiro
PRENTICE-HALL CANADA INC., Toronto
PRENTICE-HALL HISPANOAMERSCANA, S.A., Mexico
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo
PRENTICE-HALL OF SOUTHEAST ASIA PTA. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

To Carol and Claudia,
who put up with us.

Library of Congress Catalog Card Number: 84-631)39

Editorial/production supervision:
Sophia PapanikolaouiBarbara Palumbo

Cover design: Lundgren Graphics
Manufacturing buyer: Gordon Osbourne

UNIX is a trademark of Bell Laboratories.

C 1985 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

Prentice-Hall Software Series, Brian W. Kernighan, advisor.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

I0 9 8

ISBN 0-13 - 474396 - 2 01

PRENTICE-HALL INTERNATIONAL, INC. , London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney

EDITORA PRENTICE-HALL DC) BRASIL, Li DA. , Rio de Janeiro
PRENTICE-HALL CANADA INC., Toronto
PRENTICE-HALL HISPANOAMERSCANA, S.A., Mexico
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo
PRENTICE-HALL OF SOUTHEAST ASIA PTA. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

To Carol and Claudia,
who put up with us.

Contents

Introduction ix

1. Language Definition 1
1.1 Purpose 1
1.2 Mechanical aspects 3
1.3 Convenient grammars 6
1.4 Checking a grammar
1.5 Common pitfalls 12
1.6 Example 14
1.7 A note on typography 19
1.8 Problems 20

2. Word Recognition 21
2.1 Purpose 21
2.2 Definition tools 21
2.3 Patterns 23
2.4 Ambiguity as a virtue 26
2.5 lex programs 27
2.6 Testing a lexical analyzer 30
2.7 Example 31
2.8 Problems 35

3. Language Recognition 37
3.1 Parser generation 37
3.2 Example 40
3.3 Auxiliary functions 42
3.4 Debugging the parser 46
3.5 User-defined terminal symbols 51
3.6 Typing the value stack 53
3.7 Example 55
3.8 Problems 63

4. Error Recovery 65
4.1 The problem 65
4.2 Basic techniques 66
4.3 Adding the error symbols 70
4.4 Adding the yyerrok actions 74
4.5 Example 75
4.6 Problems 81

6. Semantic Restrictions 83
5.1 The problem 83
5.2 Symbol table principles 85
5.3 Example 86

Contents

Introduction ix

1. Language Definition 1
1.1 Purpose 1
1.2 Mechanical aspects 3
1.3 Convenient grammars 6
1.4 Checking a grammar
1.5 Common pitfalls 12
1.6 Example 14
1.7 A note on typography 19
1.8 Problems 20

2. Word Recognition 21
2.1 Purpose 21
2.2 Definition tools 21
2.3 Patterns 23
2.4 Ambiguity as a virtue 26
2.5 lex programs 27
2.6 Testing a lexical analyzer 30
2.7 Example 31
2.8 Problems 35

3. Language Recognition 37
3.1 Parser generation 37
3.2 Example 40
3.3 Auxiliary functions 42
3.4 Debugging the parser 46
3.5 User-defined terminal symbols 51
3.6 Typing the value stack 53
3.7 Example 55
3.8 Problems 63

4. Error Recovery 65
4.1 The problem 65
4.2 Basic techniques 66
4.3 Adding the error symbols 70
4.4 Adding the yyerrok actions 74
4.5 Example 75
4.6 Problems 81

6. Semantic Restrictions 83
5.1 The problem 83
5.2 Symbol table principles 85
5.3 Example 86

viii CONTENTS

5.4 Typing the value stack
5.5 Problems

6. Memory Allocation
6.1 Principles
6.2 Example
6.3 Problems

7. Code Generation
7.1 Principles
7.2 Example
7.3 Problems

8. A Load-and-Go System
8.1 A machine simulator
8.2 In-core code generation
8.3 Example
8.4 Problems
8.5 Projects

A. "sampleC" Compiler Listing
A.1 Syntax analysis
A.2 Lexical analysis
A.3 Messages
A.4 Symbol table routines
A.5 Memory allocation
A.6 Code generation
A.7 A load-and-go system
A.8 Improved error messages from yaccpar
A.9 Improved debugging output from yaccpar
A.10 Regression testing

References

Index

103
104

105
105
108
115

117
117
117
128

131
131
138
145
147
147

149
149
156
156
158
165
167
172
182
185
186

189

191

0

II

Introduction

Better user interfaces, especially to the many micro computers which are becom-
ing so popular, often require recognition and processing of rather elaborate command
languages. Language recognition thus has many applications. However, it can be
downright unpleasant if done ad-hack. Building a compiler illustrates one application
of language recognition. It also illustrates how to design and implement a large pro-
gram with tools and succ essive extensions of a basic design. Understanding a simple
compiler is interesting in its own right: it helps one to master and better utilize pro-
gramming systems in general.

This book is a. case study: how to create a compiler using generators such as yacc
(LALR(1) parser generator) and lex (regular expression based lexical analyzer genera-
tor), two very powerful yet reasonably easy to use tools available under the UNIX' sys-
tem.

A very simple subset of C, called sampleC, is defined and used as an example for
compiler development. The resulting implementation of sampleC is not intended as an
end in itself, and is therefore allowed to produce less than optimal object code.
Suggestions for improvements to the code and extensions to the language are given as
problems for the reader in several chapters.

The text largely avoids theoretical details, such as detailed discussion of gram-
mars, or explanations of the internal workings of the generators, but it does suggest
readings. It explains at least the simpler aspects of using the generators.

As a result, on one level we present a tutorial on how to use the generators to get
a simple, easily modifiable implementation done quickly and reliably. On another level,
the reader learns practical details about the components of a compiler and the cus-
tomary interfaces between them.

As such, the text is intended both as a short exposition preceding detailed algo-
rithm studies in compiler construction, and as a description of how to productively
employ the generators described. It is not intended to be a comprehensive treatment
of the subject of compiler design. Neither does it discuss all aspects of using the gen-
erators; once the text has been read, the original descriptions of the generators [Joh781
and [Les78b] are accessible, and they are intended to be used as references to accom-
pany the text. Since a compiler is a large program, the text demonstrates how such a
program can be structured and designed with attention to debugging, extension, and
maintenance issues.

The reader is expected to have a working knowledge of an editor, of the host
machine's file system manipulations, and — of course — of C, in which all the exam-
ples are written. Knowledge of other languages, such as Pascal, Fortran, or Basic,
would also be useful to the reader. An understanding of block structured languages
such as C and their scope rules ; and of data structures such as stacks, is important
beginning with chapter 5. Some experience with a. pattern matching editor is assumed
in chapter 2.

t UNIX is a trademark of Bell Laboratories.

4

viii CONTENTS

5.4 Typing the value stack
5.5 Problems

6. Memory Allocation
6.1 Principles
6.2 Example
6.3 Problems

7. Code Generation
7.1 Principles
7.2 Example
7.3 Problems

8. A Load-and-Go System
8.1 A machine simulator
8.2 In-core code generation
8.3 Example
8.4 Problems
8.5 Projects

A. "sampleC" Compiler Listing
A.1 Syntax analysis
A.2 Lexical analysis
A.3 Messages
A.4 Symbol table routines
A.5 Memory allocation
A.6 Code generation
A.7 A load-and-go system
A.8 Improved error messages from yaccpar
A.9 Improved debugging output from yaccpar
A.10 Regression testing

References

Index

103
104

105
105
108
115

117
117
117
128

131
131
138
145
147
147

149
149
156
156
158
165
167
172
182
185
186

189

191

0

II

Introduction

Better user interfaces, especially to the many micro computers which are becom-
ing so popular, often require recognition and processing of rather elaborate command
languages. Language recognition thus has many applications. However, it can be
downright unpleasant if done ad-hack. Building a compiler illustrates one application
of language recognition. It also illustrates how to design and implement a large pro-
gram with tools and succ essive extensions of a basic design. Understanding a simple
compiler is interesting in its own right: it helps one to master and better utilize pro-
gramming systems in general.

This book is a. case study: how to create a compiler using generators such as yacc
(LALR(1) parser generator) and lex (regular expression based lexical analyzer genera-
tor), two very powerful yet reasonably easy to use tools available under the UNIX' sys-
tem.

A very simple subset of C, called sampleC, is defined and used as an example for
compiler development. The resulting implementation of sampleC is not intended as an
end in itself, and is therefore allowed to produce less than optimal object code.
Suggestions for improvements to the code and extensions to the language are given as
problems for the reader in several chapters.

The text largely avoids theoretical details, such as detailed discussion of gram-
mars, or explanations of the internal workings of the generators, but it does suggest
readings. It explains at least the simpler aspects of using the generators.

As a result, on one level we present a tutorial on how to use the generators to get
a simple, easily modifiable implementation done quickly and reliably. On another level,
the reader learns practical details about the components of a compiler and the cus-
tomary interfaces between them.

As such, the text is intended both as a short exposition preceding detailed algo-
rithm studies in compiler construction, and as a description of how to productively
employ the generators described. It is not intended to be a comprehensive treatment
of the subject of compiler design. Neither does it discuss all aspects of using the gen-
erators; once the text has been read, the original descriptions of the generators [Joh781
and [Les78b] are accessible, and they are intended to be used as references to accom-
pany the text. Since a compiler is a large program, the text demonstrates how such a
program can be structured and designed with attention to debugging, extension, and
maintenance issues.

The reader is expected to have a working knowledge of an editor, of the host
machine's file system manipulations, and — of course — of C, in which all the exam-
ples are written. Knowledge of other languages, such as Pascal, Fortran, or Basic,
would also be useful to the reader. An understanding of block structured languages
such as C and their scope rules ; and of data structures such as stacks, is important
beginning with chapter 5. Some experience with a. pattern matching editor is assumed
in chapter 2.

t UNIX is a trademark of Bell Laboratories.

4

INTRODUCTION

A few words about terminology. We make a careful distinction between the
declaration of a variable, function, label, or other program element, and the definition
of that element. A declaration is merely a statement that a. program element exists
and has certain characteristics, such as the type of a variable, the types of the parame-
ters and return value of a function, etc. A definition gives substance to a declared pro-
gram element, by providing a value for a variable, a body of code for a function, a
location for a label, etc.

In discussing grammars, we have departed slightly from traditional terminology.
We prefer to avoid the word production and the terms right hand side and left hand
side. Instead, we refer to a rule, by which we mean all of the productions (and the
alternative right hand sides) of a given non-terminal symbol, and to a formulation, by
which we mean one of the alternatives on the right hand side of a rule.

Machine readable source files for the examples in this book can be obtained from
the second author, e.g., over ARPANET, BITNET, CSNET, or USENET.

We would like to thank the reviewer for his constructive suggestions. We also
gratefully acknowledge the use of the computer facilities of the Computer Science
Department of the University of Illinois at Urbana-Champaign, which are supported in
part by NSF grant MCS 81-05896, and of the Sektion Informatik of the University of
Ulm, with which this book was developed, composed, and typeset.

ATS
HGF
Urbana, Illinois

Chapter 1
Language Definition

A compiler accepts a source program — a program written in some source
language — and constructs an equivalent object program written in an object
language, such as assembler language or binary machine language. In other words, a
compiler must recognize an input source program and check it for consistency of gram-
mar and meaning, then compose an equivalent object program.

Before we can build a compiler, we need to discuss the mechanics of language
definition. The present chapter will describe methods of specifying the grammar of a
source language, and of checking the correctness of that grammar. The next chapter
will show how the individual "words" of the source language can be recognized. In
chapter 3, we will combine these two aspects of a compiler so that it can recognize a
correct source program, and in chapter 4, we will extend it so that it can do something
"reasonable" even with an incorrect source program. Subsequent chapters will show
how to save information needed during compilation and how to use this information to
finally generate an object program.

1.1 Purpose
Two aspects constitute a language definition: syntax and semantics. The syntax

deals with the mechanical aspects, namely whether or not a sequence of words (or
letters) is a sentence in the language. What the sentence means — and sometimes
whether it is legitimate on that account — is determined by the semantics of the
language.

Formal notations exist for both parts of the language definition. The syntax is
usually explained through a sequence of models describing the parts of a sentence.
Syntax graphs, pioneered by Wirth in the definition of Pascal, are drawn like
flowcharts:

INTRODUCTION

A few words about terminology. We make a careful distinction between the
declaration of a variable, function, label, or other program element, and the definition
of that element. A declaration is merely a statement that a. program element exists
and has certain characteristics, such as the type of a variable, the types of the parame-
ters and return value of a function, etc. A definition gives substance to a declared pro-
gram element, by providing a value for a variable, a body of code for a function, a
location for a label, etc.

In discussing grammars, we have departed slightly from traditional terminology.
We prefer to avoid the word production and the terms right hand side and left hand
side. Instead, we refer to a rule, by which we mean all of the productions (and the
alternative right hand sides) of a given non-terminal symbol, and to a formulation, by
which we mean one of the alternatives on the right hand side of a rule.

Machine readable source files for the examples in this book can be obtained from
the second author, e.g., over ARPANET, BITNET, CSNET, or USENET.

We would like to thank the reviewer for his constructive suggestions. We also
gratefully acknowledge the use of the computer facilities of the Computer Science
Department of the University of Illinois at Urbana-Champaign, which are supported in
part by NSF grant MCS 81-05896, and of the Sektion Informatik of the University of
Ulm, with which this book was developed, composed, and typeset.

ATS
HGF
Urbana, Illinois

Chapter 1
Language Definition

A compiler accepts a source program — a program written in some source
language — and constructs an equivalent object program written in an object
language, such as assembler language or binary machine language. In other words, a
compiler must recognize an input source program and check it for consistency of gram-
mar and meaning, then compose an equivalent object program.

Before we can build a compiler, we need to discuss the mechanics of language
definition. The present chapter will describe methods of specifying the grammar of a
source language, and of checking the correctness of that grammar. The next chapter
will show how the individual "words" of the source language can be recognized. In
chapter 3, we will combine these two aspects of a compiler so that it can recognize a
correct source program, and in chapter 4, we will extend it so that it can do something
"reasonable" even with an incorrect source program. Subsequent chapters will show
how to save information needed during compilation and how to use this information to
finally generate an object program.

1.1 Purpose
Two aspects constitute a language definition: syntax and semantics. The syntax

deals with the mechanical aspects, namely whether or not a sequence of words (or
letters) is a sentence in the language. What the sentence means — and sometimes
whether it is legitimate on that account — is determined by the semantics of the
language.

Formal notations exist for both parts of the language definition. The syntax is
usually explained through a sequence of models describing the parts of a sentence.
Syntax graphs, pioneered by Wirth in the definition of Pascal, are drawn like
flowcharts:

2 COMPILER CONSTRUCTION CHAPTER I CHAPTER 1 LANGUAGE DEFINITION 3

Backus Naur Form (BNF) is a language in which the syntax of a language (even of
BNF itself) can be specified:

expression
: expression '+' product
I expression '-' product
1 product

product
: product '*' factor
I product '/' factor
I factor

factor
: IDENTIFIER
I CONSTANT
I 'C' expression ') '

We will discuss BNF in more detail later.
Describing the semantics of a language is much harder. If a formalism is

employed, it essentially simulates execution of a sentence on a more or less well-defined
theoretical machine model, and the resulting machine states — legitimate or not
define the meaning of the sentence, or rule the sentence out as meaningless.

We can use plain English to describe the meaning of a sentence or of a part
thereof. In the absence of a formal notation, simplicity and precision become
extremely important — Wirth's Pascal or Modula-2 definitions, [Jen75] and j Wir82],
are very good examples, and just about any PL/I or Fortran language reference
manual tends to be verbose to the point of destruction.

There is a tradeoff between syntactic and semantic description of limitations
imposed on a sentence. Consider, e.g., Basic, where an identifier can be defined as

id
: LETTER DIGIT
I LEtikli

identifier
: id '$'
I id

If the operator + is used for addition between numerical values and for concatenation
between strings, the semantic description must state that + may not be used to "add"
a string to a numerical value or vice versa.

Alternatively, we can define
real_id

: LETTER DIGIT
1 LETTER

string_id
: real id

In this fashion we can distinguish string and numerical computations in a purely syn-
tactic fashion throughout the language definition.

A Basic identifier is certainly a borderline case between what can (and should)
be specified syntactically, and what can (and should) be specified semantically. In gen-
eral in defining a language, we should not do in English what can be done (sensibly) in
a more formal way.

1.2 Mechanical aspects
BNF is a formalism to describe the syntax of a language. It was pioneered by

Peter Naur in the Algol 60 Report [Nau63] and has since been used to describe
numerous languages. It has also been extended and overloaded, perhaps to a point
where the resulting description is no longer easily grasped [Wij75].

A grammar, the BNF description of a language, consists of a sequence of rules. A
rule consists of a left-hand side and a right-hand side, separated by a colon. The left-
hand side consists of a single, unique non-terminal symbol'. The right-hand side con-
sists of a sequence of one or more formulations, separated from one another by a bar.
Each formulation consists of a sequence of zero or more non-terminal and terminal
symbols. Only one formulation in a rule may be empty; since this can be the only for-
mulation in the rule, the entire right-hand side may be empty. An example of a gram-
mar was shown in section 1.1:

expression
: expression '+' product
I expression '-' product
I product

product
: product '*' factor
I product '/' factor
I factor

factor
: IDENTIFIER
I CONSTANT
I '(' expression ')'

1 We only discuss context-free language definitions in a very informal manner. For a comprehensive
treatment consult, e.g., 1Aho77].

2 COMPILER CONSTRUCTION CHAPTER I CHAPTER 1 LANGUAGE DEFINITION 3

Backus Naur Form (BNF) is a language in which the syntax of a language (even of
BNF itself) can be specified:

expression
: expression '+' product
I expression '-' product
1 product

product
: product '*' factor
I product '/' factor
I factor

factor
: IDENTIFIER
I CONSTANT
I 'C' expression ') '

We will discuss BNF in more detail later.
Describing the semantics of a language is much harder. If a formalism is

employed, it essentially simulates execution of a sentence on a more or less well-defined
theoretical machine model, and the resulting machine states — legitimate or not
define the meaning of the sentence, or rule the sentence out as meaningless.

We can use plain English to describe the meaning of a sentence or of a part
thereof. In the absence of a formal notation, simplicity and precision become
extremely important — Wirth's Pascal or Modula-2 definitions, [Jen75] and j Wir82],
are very good examples, and just about any PL/I or Fortran language reference
manual tends to be verbose to the point of destruction.

There is a tradeoff between syntactic and semantic description of limitations
imposed on a sentence. Consider, e.g., Basic, where an identifier can be defined as

id
: LETTER DIGIT
I LEtikli

identifier
: id '$'
I id

If the operator + is used for addition between numerical values and for concatenation
between strings, the semantic description must state that + may not be used to "add"
a string to a numerical value or vice versa.

Alternatively, we can define
real_id

: LETTER DIGIT
1 LETTER

string_id
: real id

In this fashion we can distinguish string and numerical computations in a purely syn-
tactic fashion throughout the language definition.

A Basic identifier is certainly a borderline case between what can (and should)
be specified syntactically, and what can (and should) be specified semantically. In gen-
eral in defining a language, we should not do in English what can be done (sensibly) in
a more formal way.

1.2 Mechanical aspects
BNF is a formalism to describe the syntax of a language. It was pioneered by

Peter Naur in the Algol 60 Report [Nau63] and has since been used to describe
numerous languages. It has also been extended and overloaded, perhaps to a point
where the resulting description is no longer easily grasped [Wij75].

A grammar, the BNF description of a language, consists of a sequence of rules. A
rule consists of a left-hand side and a right-hand side, separated by a colon. The left-
hand side consists of a single, unique non-terminal symbol'. The right-hand side con-
sists of a sequence of one or more formulations, separated from one another by a bar.
Each formulation consists of a sequence of zero or more non-terminal and terminal
symbols. Only one formulation in a rule may be empty; since this can be the only for-
mulation in the rule, the entire right-hand side may be empty. An example of a gram-
mar was shown in section 1.1:

expression
: expression '+' product
I expression '-' product
I product

product
: product '*' factor
I product '/' factor
I factor

factor
: IDENTIFIER
I CONSTANT
I '(' expression ')'

1 We only discuss context-free language definitions in a very informal manner. For a comprehensive
treatment consult, e.g., 1Aho77].

LANGUAGE. DEFINITION S4 COMPILER CONSTRUCTION CHAPTER 1 CHAPTER 1

A grammar defines a language by explaining which sentences may be formed. The
non-terminal symbol on the left-hand side of the first rule is termed the start symbol.
Here the start symbol is expression. The first rule lists all possible formulations for
the start symbol. Each formulation may introduce new non-terminal symbols, such as
product in this example.

For each non-terminal, a rule must exist, and any one of the formulations from
this rule can be substituted for the non-terminal. Substitution continues until a
sequence of terminal symbols, a sentence, is produced from the start symbol of the
grammar. The terminal symbols are not further explained in the grammar; they are
the alphabet in which are written the sentences of the language which the grammar
describes.

Once the rules of the grammar involve non-terminal symbols in a recursive
fashion, infinitely many — and infinitely long — sentences are possible. In our exam-
ple we have, e.g., the following sentence:

IDENTIFIER

by choosing the formulations product for expression, factor for product, and IDEN-
TIFIER for factor. Another example is

IDENTIFIER * (CONSTANT + IDENTIFIER)

Here, we must use number of intermediate formulations before we can conclude that
this is in fact a sentence described by the grammar. It is customary to arrange these
formulations as a parse tree. The root of this ordered tree is labeled with the start
symbol of the grammar. The leaves are, in order, labeled with the terminal symbols of
a sentence. Each non-terminal node is labeled with a non-terminal symbol, and the
branches from a node lead to nodes which, in order, are labeled with the symbols from
a formulation of this non-terminal.

grammar
: grammar rule
I rule

rule
: rale 'I' formulation
1 NONTERMINAL ':' formulation
1 NONTERMINAL

formulation
: formulation symbol
1 symbol

symbol
: NONTERMINAL
1 TERMINAL

This description is slightly more restrictive than the informal definition given above:
here an empty formulation must be the first one in a rule. (Why?!)

As the examples show, recursion plays a major role in BNF. Rules are usually
written in a left-recursive fashion — the non-terminal to be formulated appears again
at the beginning of one of its own formulations, thus giving rise to an infinitely long
sequence of like phrases. This technique tends to obscure simple situations, and espe-
cially language reference manuals therefore extend BNF with iterative constructs such
as brackets I and J to enclose optional items and braces { and } to enclose items which
may appear zero or more times. Sometimes parentheses are also employed, to intro-
duce precedence and factor the selection operation (bar) and normal concatenation of
symbols in a sequence. Extended BNF (or one variant thereof) can be included in our
description of BNF. We merely need to replace the rule for symbol by the following:

symbol

BNF is itself a language and can be described in BNF:

: NONTERMINAL
I TERMINAL
I '{' formulation '}'
I '(' formulation 1.

Our grammar for arithmetic expressions can then be modified:

expression
: product { '+' product }
I product { '-' product }

product
: factor { '*' factor)
1 factor { '/' factor }

f actor remains as above.

Extended BNF can describe itself:

LANGUAGE. DEFINITION S4 COMPILER CONSTRUCTION CHAPTER 1 CHAPTER 1

A grammar defines a language by explaining which sentences may be formed. The
non-terminal symbol on the left-hand side of the first rule is termed the start symbol.
Here the start symbol is expression. The first rule lists all possible formulations for
the start symbol. Each formulation may introduce new non-terminal symbols, such as
product in this example.

For each non-terminal, a rule must exist, and any one of the formulations from
this rule can be substituted for the non-terminal. Substitution continues until a
sequence of terminal symbols, a sentence, is produced from the start symbol of the
grammar. The terminal symbols are not further explained in the grammar; they are
the alphabet in which are written the sentences of the language which the grammar
describes.

Once the rules of the grammar involve non-terminal symbols in a recursive
fashion, infinitely many — and infinitely long — sentences are possible. In our exam-
ple we have, e.g., the following sentence:

IDENTIFIER

by choosing the formulations product for expression, factor for product, and IDEN-
TIFIER for factor. Another example is

IDENTIFIER * (CONSTANT + IDENTIFIER)

Here, we must use number of intermediate formulations before we can conclude that
this is in fact a sentence described by the grammar. It is customary to arrange these
formulations as a parse tree. The root of this ordered tree is labeled with the start
symbol of the grammar. The leaves are, in order, labeled with the terminal symbols of
a sentence. Each non-terminal node is labeled with a non-terminal symbol, and the
branches from a node lead to nodes which, in order, are labeled with the symbols from
a formulation of this non-terminal.

grammar
: grammar rule
I rule

rule
: rale 'I' formulation
1 NONTERMINAL ':' formulation
1 NONTERMINAL

formulation
: formulation symbol
1 symbol

symbol
: NONTERMINAL
1 TERMINAL

This description is slightly more restrictive than the informal definition given above:
here an empty formulation must be the first one in a rule. (Why?!)

As the examples show, recursion plays a major role in BNF. Rules are usually
written in a left-recursive fashion — the non-terminal to be formulated appears again
at the beginning of one of its own formulations, thus giving rise to an infinitely long
sequence of like phrases. This technique tends to obscure simple situations, and espe-
cially language reference manuals therefore extend BNF with iterative constructs such
as brackets I and J to enclose optional items and braces { and } to enclose items which
may appear zero or more times. Sometimes parentheses are also employed, to intro-
duce precedence and factor the selection operation (bar) and normal concatenation of
symbols in a sequence. Extended BNF (or one variant thereof) can be included in our
description of BNF. We merely need to replace the rule for symbol by the following:

symbol

BNF is itself a language and can be described in BNF:

: NONTERMINAL
I TERMINAL
I '{' formulation '}'
I '(' formulation 1.

Our grammar for arithmetic expressions can then be modified:

expression
: product { '+' product }
I product { '-' product }

product
: factor { '*' factor)
1 factor { '/' factor }

f actor remains as above.

Extended BNF can describe itself:

CHAPTER 16 COMPILER CONSTRUCTION

grammar
rule { rule }

rule
: NONTERMINAL [formulation] { 'I' formulation }

formulation
: symbol { symbol }

symbol
NONTERMINAL

f TERMINAL
I '{' formulation '}'
I '[' formulation '].

CHAPTER 1 LANIM TAGE DEFINITION 7

The left-recursive grammar collects terminal symbols beginning on the left; the
riO)t-recursive grammar builds (in this case) a mirror image of the first parse tree:

p

Our discussion has been quite informal. Still, a word on representation is perhaps
in order: non-terminal symbols are specified like identifiers in a programming language
— they consist of letters and possibly digits and underscores; they start with a letter.
terminal symbols tend to be spelled in upper case; if they are single special characters,
we enclose them in single quotes. White space (spaces and tabs) is usually
insignificant, and merely serves to delimit other symbols.

1.3 Convenient grammars
If we define a language to be a set of sentences, i.e., of sequences of terminal sym-

bols, there are usually many ways to define a grammar describing the language. While
a language need not be finite, a grammar is by definition required to be finite. This
restriction alone, however, is not sufficient. Consider the following two grammars
describing very simple arithmetic expressions:

expression
: expression '-' IDENTIFIER
1 IDENTIFIER

and
expression

: IDENTIFIER '-' expression
I IDENTIFIER

For both grammars, the language consists of all alternating sequences of IDENTIFIER
and –. There is an important difference, which we can see if we compare the parse
trees for an expression:

In the context of arithmetic expressions, the parse tree is interpreted to also
describe precedence and associativity of operators, i.e., to define the order in which the
terms of an arithmetic expression need to be combined for evaluation. This example
introduces only one operator and there is therefore no precedence problem. Depending
on the grammar, however, we would introduce different ways to implicitly
parenthesize: the left-recursive grammar implies that the operator – is left-associative,
i.e., is implicitly parenthesized from the left, and the right-recursive grammar implies
the insertion of parentheses from the right. Most operators are left-associative and
must therefore be introduced using left recursion.

Unfortunately, this is not the only problem. Consider the following proposal for a
grammar, still for the same language of arithmetic expressions:

expression
: expression '-' expression
I IDENTIFIER

With this rule, we can build either parse tree shown above. The grammar is
therefore called ambiguous: there exists a sentence in the language for which two
different parse trees may be built. Ambiguity is often a property of the grammar, not
usually of the language. As the previous examples indicate, there exist non-ambiguous
grammars for the same language. We can make the proposal unambiguous by insisting
that the parse tree must be built up starting on the left — this condition is known as a
disambiguating rule'.

As a first task, a compiler must recognize the language it is to translate, i.e., for
every sequence of terminal symbols, it must be able to determine efficiently whether or
not it is a sentence of the language. The problem can be dealt with by attempting to
build a parse tree. If we have an unambiguous grammar for the language, we can
begin with its start symbol, try each formulation in turn, substitute for each non-
terminal, and attempt to arrive at a parse tree for a proposed sentence. In an organ-
ized fashion, this amounts to backtracking and is thus inherently inefficient. Addition-
ally, if the compiler produces output while it constructs the parse tree, backtracking
cannot even be readily accomplished, since it would involve undoing some of the out-

ut!
A convenient gragimar for language recognition must not only be unambiguous, it

must be deterministic: the as yet unused rest of the input, i.e., the tail of the sequence

CHAPTER 16 COMPILER CONSTRUCTION

grammar
rule { rule }

rule
: NONTERMINAL [formulation] { 'I' formulation }

formulation
: symbol { symbol }

symbol
NONTERMINAL

f TERMINAL
I '{' formulation '}'
I '[' formulation '].

CHAPTER 1 LANIM TAGE DEFINITION 7

The left-recursive grammar collects terminal symbols beginning on the left; the
riO)t-recursive grammar builds (in this case) a mirror image of the first parse tree:

p

Our discussion has been quite informal. Still, a word on representation is perhaps
in order: non-terminal symbols are specified like identifiers in a programming language
— they consist of letters and possibly digits and underscores; they start with a letter.
terminal symbols tend to be spelled in upper case; if they are single special characters,
we enclose them in single quotes. White space (spaces and tabs) is usually
insignificant, and merely serves to delimit other symbols.

1.3 Convenient grammars
If we define a language to be a set of sentences, i.e., of sequences of terminal sym-

bols, there are usually many ways to define a grammar describing the language. While
a language need not be finite, a grammar is by definition required to be finite. This
restriction alone, however, is not sufficient. Consider the following two grammars
describing very simple arithmetic expressions:

expression
: expression '-' IDENTIFIER
1 IDENTIFIER

and
expression

: IDENTIFIER '-' expression
I IDENTIFIER

For both grammars, the language consists of all alternating sequences of IDENTIFIER
and –. There is an important difference, which we can see if we compare the parse
trees for an expression:

In the context of arithmetic expressions, the parse tree is interpreted to also
describe precedence and associativity of operators, i.e., to define the order in which the
terms of an arithmetic expression need to be combined for evaluation. This example
introduces only one operator and there is therefore no precedence problem. Depending
on the grammar, however, we would introduce different ways to implicitly
parenthesize: the left-recursive grammar implies that the operator – is left-associative,
i.e., is implicitly parenthesized from the left, and the right-recursive grammar implies
the insertion of parentheses from the right. Most operators are left-associative and
must therefore be introduced using left recursion.

Unfortunately, this is not the only problem. Consider the following proposal for a
grammar, still for the same language of arithmetic expressions:

expression
: expression '-' expression
I IDENTIFIER

With this rule, we can build either parse tree shown above. The grammar is
therefore called ambiguous: there exists a sentence in the language for which two
different parse trees may be built. Ambiguity is often a property of the grammar, not
usually of the language. As the previous examples indicate, there exist non-ambiguous
grammars for the same language. We can make the proposal unambiguous by insisting
that the parse tree must be built up starting on the left — this condition is known as a
disambiguating rule'.

As a first task, a compiler must recognize the language it is to translate, i.e., for
every sequence of terminal symbols, it must be able to determine efficiently whether or
not it is a sentence of the language. The problem can be dealt with by attempting to
build a parse tree. If we have an unambiguous grammar for the language, we can
begin with its start symbol, try each formulation in turn, substitute for each non-
terminal, and attempt to arrive at a parse tree for a proposed sentence. In an organ-
ized fashion, this amounts to backtracking and is thus inherently inefficient. Addition-
ally, if the compiler produces output while it constructs the parse tree, backtracking
cannot even be readily accomplished, since it would involve undoing some of the out-

ut!
A convenient gragimar for language recognition must not only be unambiguous, it

must be deterministic: the as yet unused rest of the input, i.e., the tail of the sequence

8 COMPILER CONSTRUCTION CHAPTER 1

of terminal symbols proposed as a sentence, together with the partially constructed
parse tree, must enable us to uniquely decide which rule and formulation to use in
order to complete the parse tree if it exists, or to discover that no tree can be con-
structed to accommodate the next input symbol.

Different notions of convenience exist, depending largely on the ingenuity of the
compiler writer and the power of his tools. A simple sufficient condition is, for exam-
ple, that each formulation start in a unique terminal symbol. In this case the next,
single input symbol determines what needs to be done.

The grammars for modern programming languages tend to follow a less restrictive
pattern: they usually possess the LL(1) or LR(1) property, or variants thereof. In the
first case, a parse tree can be built top-down without backtracking; in the second case,
the parse tree can be built bottom-up without backtracking using certain tables, for
which construction programs exist. In each case we only need to know the next input
symbol at all times, i.e., we require one symbol look-ahead.

The LL(1) property is simply this: whenever there is a question as to which rule or
which formulation to use, the next input symbol must enable us to uniquely decide
what to do. The question arises when we need to choose one of several formulations in
a rule. If none of the formulations is empty, each starts either in a terminal or in a

nonstermMal symbol. The next input symbol can be one of these terminal symbols;
alternatively, considering recursively all the formulations for all the (first) non-terminal
symbols, we arrive at more terminal symbols at the beginning of formulations. The
next input symbol must be exactly one of these terminal symbols, which therefore
must all be different. If there is an empty formulation, we need to additionally con-
sider the initial terminal symbols of all the formulations for non-terminal symbols
which can follow in the present situation.

Deciding the LL(1) property is not really difficult, since it can be phrased in terms
of relations such as a terminal symbol starts a formulation for a non-terminal symbol
and two symbols follow each other in a formulation. Such relations can be expressed as
Boolean matrices [Grind, and more complicated relations can be composed and com-
puted. Using the LL(1) property is even easier: once a grammar is LL(1), a recursive
recognizes for its language can be built in a very straightforward manner; see [Wir77].

Even if a grammar is definitely not LL(1), certain semantic tricks can be used to
make language recognition deterministic. Consider a simplified excerpt for Pascal:

statement
: IDENTIFIER ':=' expression
I IDENTIFIER

The first formulation describes an assignment, the second one a procedure call. Both
versions of IDENTIFIER being equal, a name as next input symbol would not decide
which formulation is to be used. The problem is usually circumvented by recognizing
that only a procedure IDENTIFIER can start a procedure call; such an IDENTIFIER can,
however, not start an assignment. Since in Pascal names need to be declared before
they can be used, we can solve our syntactic problem with a semantic trick.

CHAPTER 1
LANGUAGE DEFINITION 9

1.4 Checking a grammar
A compiler must decide whether or not a sequence of terminal symbols is a sen-

tence of a language. A grammar describes a language. A natural question is whether

we can use a grammar more or less directly in the recognition process.

First of all, however, the grammar should be checked: there must be rules for all
non-terminals, all non-terminals must be reachable from the start symbol, and the

grammar should satisfy a property such as LL(1) so that it is suitable for recognition

and not ambiguous.

Johnson's yacc, a powerful utility in the UNIX system [John], can be used to
check a grammar in this fashion. yacc accepts a grammar specified in BNF and (for
the present discussion) will indicate any problems which make the grammar unsuitable
for language recognition. As an example, we prepare the following input file grammar:

first example of a yacc grammar
*/

%token IDENTIFIER

expression
expression '-' IDENTIFIER

I IDENTIFIER

and test it with the command

yacc grammar

Nothing happens, and this is as it should be — the grammar is acceptable according to

yacc. Actually, there will be a new file y.tab.c, which will be discussed in chapter 3.

As the example shows, input to yacc uses the representation for BNF discussed
earlier. Since terminal symbols and non-terminal symbols look alike, yacc requires
that the terminal symbols be defined using %token specifications prior to the actual
grammar. A line containing %% must separate the two parts of the input filet. White
space and C-style comments are ignored.

On a more technical level, let us look at how yacc checks a grammar. (The com-
putational aspects of this are discussed by Horning in chapter 2.C. in [Bau76] or in

[Aho74].) yacc has what amounts to an option for debugging a grammar; if we issue
the command

yacc -v grammar

we obtain the following file y.output:

state 0
$accept : _expression tend

2 We will introduce the relevant aspects of the input language for pee as we go along. As a refer-
ence, the reader is referred to iJoh781.

8 COMPILER CONSTRUCTION CHAPTER 1

of terminal symbols proposed as a sentence, together with the partially constructed
parse tree, must enable us to uniquely decide which rule and formulation to use in
order to complete the parse tree if it exists, or to discover that no tree can be con-
structed to accommodate the next input symbol.

Different notions of convenience exist, depending largely on the ingenuity of the
compiler writer and the power of his tools. A simple sufficient condition is, for exam-
ple, that each formulation start in a unique terminal symbol. In this case the next,
single input symbol determines what needs to be done.

The grammars for modern programming languages tend to follow a less restrictive
pattern: they usually possess the LL(1) or LR(1) property, or variants thereof. In the
first case, a parse tree can be built top-down without backtracking; in the second case,
the parse tree can be built bottom-up without backtracking using certain tables, for
which construction programs exist. In each case we only need to know the next input
symbol at all times, i.e., we require one symbol look-ahead.

The LL(1) property is simply this: whenever there is a question as to which rule or
which formulation to use, the next input symbol must enable us to uniquely decide
what to do. The question arises when we need to choose one of several formulations in
a rule. If none of the formulations is empty, each starts either in a terminal or in a

nonstermMal symbol. The next input symbol can be one of these terminal symbols;
alternatively, considering recursively all the formulations for all the (first) non-terminal
symbols, we arrive at more terminal symbols at the beginning of formulations. The
next input symbol must be exactly one of these terminal symbols, which therefore
must all be different. If there is an empty formulation, we need to additionally con-
sider the initial terminal symbols of all the formulations for non-terminal symbols
which can follow in the present situation.

Deciding the LL(1) property is not really difficult, since it can be phrased in terms
of relations such as a terminal symbol starts a formulation for a non-terminal symbol
and two symbols follow each other in a formulation. Such relations can be expressed as
Boolean matrices [Grind, and more complicated relations can be composed and com-
puted. Using the LL(1) property is even easier: once a grammar is LL(1), a recursive
recognizes for its language can be built in a very straightforward manner; see [Wir77].

Even if a grammar is definitely not LL(1), certain semantic tricks can be used to
make language recognition deterministic. Consider a simplified excerpt for Pascal:

statement
: IDENTIFIER ':=' expression
I IDENTIFIER

The first formulation describes an assignment, the second one a procedure call. Both
versions of IDENTIFIER being equal, a name as next input symbol would not decide
which formulation is to be used. The problem is usually circumvented by recognizing
that only a procedure IDENTIFIER can start a procedure call; such an IDENTIFIER can,
however, not start an assignment. Since in Pascal names need to be declared before
they can be used, we can solve our syntactic problem with a semantic trick.

CHAPTER 1
LANGUAGE DEFINITION 9

1.4 Checking a grammar
A compiler must decide whether or not a sequence of terminal symbols is a sen-

tence of a language. A grammar describes a language. A natural question is whether

we can use a grammar more or less directly in the recognition process.

First of all, however, the grammar should be checked: there must be rules for all
non-terminals, all non-terminals must be reachable from the start symbol, and the

grammar should satisfy a property such as LL(1) so that it is suitable for recognition

and not ambiguous.

Johnson's yacc, a powerful utility in the UNIX system [John], can be used to
check a grammar in this fashion. yacc accepts a grammar specified in BNF and (for
the present discussion) will indicate any problems which make the grammar unsuitable
for language recognition. As an example, we prepare the following input file grammar:

first example of a yacc grammar
*/

%token IDENTIFIER

expression
expression '-' IDENTIFIER

I IDENTIFIER

and test it with the command

yacc grammar

Nothing happens, and this is as it should be — the grammar is acceptable according to

yacc. Actually, there will be a new file y.tab.c, which will be discussed in chapter 3.

As the example shows, input to yacc uses the representation for BNF discussed
earlier. Since terminal symbols and non-terminal symbols look alike, yacc requires
that the terminal symbols be defined using %token specifications prior to the actual
grammar. A line containing %% must separate the two parts of the input filet. White
space and C-style comments are ignored.

On a more technical level, let us look at how yacc checks a grammar. (The com-
putational aspects of this are discussed by Horning in chapter 2.C. in [Bau76] or in

[Aho74].) yacc has what amounts to an option for debugging a grammar; if we issue
the command

yacc -v grammar

we obtain the following file y.output:

state 0
$accept : _expression tend

2 We will introduce the relevant aspects of the input language for pee as we go along. As a refer-
ence, the reader is referred to iJoh781.

10 COMPILER CONSTRUCTION CHAPTER 1
CHAPTER 1 LANGUAGE DEFINITION 11

IDENTIFIER shift 2
error

expression goto 1

state 1
$accept : expression Send
expression : expression- IDENTIFIER

Send accept
- shift 3
• error

state 2
expression : IDENTIFIER (2)

. reduce 2

state 3
expression : expression - IDENTIFIER

IDENTIFIER shift 4
. error

state 4
expression : expression - IDENTIFIER (1)

. reduce 1

4/127 terminals, 1/175 nonterminals
3/350 grammar rules, 5/550 states
0 shift/reduce, 0 reduce/reduce conflicts reported
3/225 working sets used
memory: states,etc. 26/4500, parser 0/3500
3/400 distinct lookahead sets
0 extra closures
3 shift entries, 1 exceptions
1 goto entries
0 entries saved by goto default
Optimizer space used: input 9/4500, output 4/3500
4 table entries, 0 zero
maximum spread: 257, maximum offset: 257

We show the entire y.output file here, but only the first few lines of each state are of
interest now. A more complete explanation of y.output will be provided in section 3.1.

yacc adds the rule
$accept : expression $end

to the grammar and places its position marker, indicated by an underscore in the
rule, just before the start symbol, i.e., expression in this case. This is termed state
0. yacc then tries to move the position marker across the start symbol.

Whenever the position marker is located before a non-terminal, the position
marker is placed before all of its formulations in parallel. A state is a set of formula-

ti position marked, which is derived in this fashion. A formulation together
w

the position mark is called a configuration.
oitnhs with

A new state is computed as follows: for each configuration in the old state in turn,
the position marker is moved across the next symbol. Within the old state, this is
done for all configurations with the same next symbol in parallel. For each possible
symbol, we thus reach a new set of configurations, termed a new state.

As described above, if the position marker in a configuration precedes a non-
terminal symbol, all formulations for that symbol must be added to the state, with the
position marker at the beginning of each new formulation.

The procedure must terminate, since there is by definition a finite number of rules
and non-terminals, of formulations, and of terminals in a grammar, and since the for-
mulations must be of finite length. The set of states is thus finite.

In the example, state 0 is constructed implicitly by yacc. Since the position
marker precedes the non-terminal expression, we must add all formulations for it
with the position marker at the beginning of each formulation:

expression : _expression - IDENTIFIER
expression : _IDENTIFIER

This is omitted in y.output, since it is obvious from the point of view of the yacc algo-

rithm.

In the state, the position marker precedes expression and IDENTIFIER. Moving it
across expression in all possible configurations, we obtain state 1; moving it across
IDENTIFIER, we obtain state 2. In neither state the position marker precedes a non-
terminal, and no new configurations result. State 2 only contains a complete
configuration, where the position marker has reached the end of a formulation.

In state 1 we can move the position marker across the fictitious Send symbol
added by yacc, and across the terminal — symbol in the other configuration. The
former operation is essentially ignored; the latter produces state 3.

Again, state 3 cannot be extended, and we can only move the position marker
across IDENTIFIER to reach state 4. This is the last possible state, since its only
configuration is complete.

The algorithm just described is, of course, the simulation of using all parts of the
grammar for input recognition. Moving the position marker across a terminal, a shift
action, means to accept the terminal at a certain position in an input sequence; moving
across a non-terminal symbol implies that a formulation for the non-terminal symbol
has been completed elsewhere in the simulation. (This is discussed in more detail in
chapter 3.)

The comments following the configurations in each state in y.output outline what
actions would be taken during recognition for each possible input symbol. A period
stands for any other symbol and reduce indicates the fact that a complete
configuration, i.e., a certain formulation, would be used to collect a number of accepted
symbols and to replace them by the appropriate non-terminal. reduce is accompanied
by the number of the formulation to be used. shift indicates the next state which will

10 COMPILER CONSTRUCTION CHAPTER 1
CHAPTER 1 LANGUAGE DEFINITION 11

IDENTIFIER shift 2
error

expression goto 1

state 1
$accept : expression Send
expression : expression- IDENTIFIER

Send accept
- shift 3
• error

state 2
expression : IDENTIFIER (2)

. reduce 2

state 3
expression : expression - IDENTIFIER

IDENTIFIER shift 4
. error

state 4
expression : expression - IDENTIFIER (1)

. reduce 1

4/127 terminals, 1/175 nonterminals
3/350 grammar rules, 5/550 states
0 shift/reduce, 0 reduce/reduce conflicts reported
3/225 working sets used
memory: states,etc. 26/4500, parser 0/3500
3/400 distinct lookahead sets
0 extra closures
3 shift entries, 1 exceptions
1 goto entries
0 entries saved by goto default
Optimizer space used: input 9/4500, output 4/3500
4 table entries, 0 zero
maximum spread: 257, maximum offset: 257

We show the entire y.output file here, but only the first few lines of each state are of
interest now. A more complete explanation of y.output will be provided in section 3.1.

yacc adds the rule
$accept : expression $end

to the grammar and places its position marker, indicated by an underscore in the
rule, just before the start symbol, i.e., expression in this case. This is termed state
0. yacc then tries to move the position marker across the start symbol.

Whenever the position marker is located before a non-terminal, the position
marker is placed before all of its formulations in parallel. A state is a set of formula-

ti position marked, which is derived in this fashion. A formulation together
w

the position mark is called a configuration.
oitnhs with

A new state is computed as follows: for each configuration in the old state in turn,
the position marker is moved across the next symbol. Within the old state, this is
done for all configurations with the same next symbol in parallel. For each possible
symbol, we thus reach a new set of configurations, termed a new state.

As described above, if the position marker in a configuration precedes a non-
terminal symbol, all formulations for that symbol must be added to the state, with the
position marker at the beginning of each new formulation.

The procedure must terminate, since there is by definition a finite number of rules
and non-terminals, of formulations, and of terminals in a grammar, and since the for-
mulations must be of finite length. The set of states is thus finite.

In the example, state 0 is constructed implicitly by yacc. Since the position
marker precedes the non-terminal expression, we must add all formulations for it
with the position marker at the beginning of each formulation:

expression : _expression - IDENTIFIER
expression : _IDENTIFIER

This is omitted in y.output, since it is obvious from the point of view of the yacc algo-

rithm.

In the state, the position marker precedes expression and IDENTIFIER. Moving it
across expression in all possible configurations, we obtain state 1; moving it across
IDENTIFIER, we obtain state 2. In neither state the position marker precedes a non-
terminal, and no new configurations result. State 2 only contains a complete
configuration, where the position marker has reached the end of a formulation.

In state 1 we can move the position marker across the fictitious Send symbol
added by yacc, and across the terminal — symbol in the other configuration. The
former operation is essentially ignored; the latter produces state 3.

Again, state 3 cannot be extended, and we can only move the position marker
across IDENTIFIER to reach state 4. This is the last possible state, since its only
configuration is complete.

The algorithm just described is, of course, the simulation of using all parts of the
grammar for input recognition. Moving the position marker across a terminal, a shift
action, means to accept the terminal at a certain position in an input sequence; moving
across a non-terminal symbol implies that a formulation for the non-terminal symbol
has been completed elsewhere in the simulation. (This is discussed in more detail in
chapter 3.)

The comments following the configurations in each state in y.output outline what
actions would be taken during recognition for each possible input symbol. A period
stands for any other symbol and reduce indicates the fact that a complete
configuration, i.e., a certain formulation, would be used to collect a number of accepted
symbols and to replace them by the appropriate non-terminal. reduce is accompanied
by the number of the formulation to be used. shift indicates the next state which will

12 COMPILER CONSTRUCTION CHAPTER 1 CHAPTER 1 LANGUAGE DEFINITION 13

be entered upon accepting the respective symbol.

1.5 Common pitfalls
It looks like nothing can go wrong in this analysis, but this is not the case. For-

getting to define terminal symbols, forgetting to define a rule for a non-terminal, or
adding non-terminals and rules inaccessible from the start symbol are obvious errors,
which yacc will discover and report immediately.

Problems with the grammar are more subtle and need individual attention. Con-
sider the following excerpt dealing with the usual if statement:

/*
dangling else

*/

%token IF...THEN
%token ELSE

%%

statement
. 0.■ /* empty */•
I IF...THEN statement
I IF...THEN statement ELSE statement

yacc will complain about a shift/reduce conflict and if we look at y.output, we
find the following:

4: shift/reduce conflict (shift 6, red's 2) on ELSE
state 4

statement : IF...THEN statement (2)
statement : IF...THEN statement ELSE statement

ELSE shift 6
. reduce 2

state 6
statement : IF...THEN statement ELSE statement

IF...THEN shift 3
shift 2

. error

statement goto 6

The problem is quite common. It concerns the question to which if the else
belongs in the following program fragment:

if (condition)
if (condition)

/* empty statement */
else

In terms of pace, in state 4 we could still accept (shift) the terminal symbol ELSE

a
nd move on in the second configuration, or we could consider the first, complete

configuration and substitute the non-terminal (reduce) statement. Shifting means to
extend the innermost if statement, i.e., to connect each else to the innermost if, and
this is what languages like C and Pascal require.

Technically, state 4 exhibits a shift/reduce conflict, a mistake in the proposed
grammar, which makes it ambiguous and thus unsuitable for language recognition.

yacc, however, intentionally permits such conflicts, and (as the comments indicate) it
will provide for the longest possible input sequence, i.e., it will do just what is normally
required.

The next problem is more serious. The setting is an excerpt from a Basic dialect,
where the result of a comparison can be assigned to a variable or used in a decision:

/*
multiple clauses

*/

%token IDENTIFIER, IF, THEN, SUM

%%

statement
: IDENTIFIER '=' expression
I IF condition THEN statement

condition
: expression
I SUM '<' SUM

expression
: SUM '<' SUM
I SUM

yacc will note a reduce/reduce conflict, and investigation of y.output reveals the
following:

state 14
condition : SUM < SUM_ (4)
expression : SUM < SUM_ (6)

. reduce 4

State 14 contains more than one complete configuration. In this case, pace would
use the formulation introduced first in the grammar, but this tends to be risky if the
grammar is later modified or rearranged. While we usually tolerate shift/reduce
conflicts such as the dangling else problem, we always attempt to rewrite the gram-

mar to eliminate formulation combinations which provoke reduce/reduce conflicts. In
the present case this is easy — admittedly, the example is too simple to be realistic:

/*
multiple clauses, no conflicts

*/

12 COMPILER CONSTRUCTION CHAPTER 1 CHAPTER 1 LANGUAGE DEFINITION 13

be entered upon accepting the respective symbol.

1.5 Common pitfalls
It looks like nothing can go wrong in this analysis, but this is not the case. For-

getting to define terminal symbols, forgetting to define a rule for a non-terminal, or
adding non-terminals and rules inaccessible from the start symbol are obvious errors,
which yacc will discover and report immediately.

Problems with the grammar are more subtle and need individual attention. Con-
sider the following excerpt dealing with the usual if statement:

/*
dangling else

*/

%token IF...THEN
%token ELSE

%%

statement
. 0.■ /* empty */•
I IF...THEN statement
I IF...THEN statement ELSE statement

yacc will complain about a shift/reduce conflict and if we look at y.output, we
find the following:

4: shift/reduce conflict (shift 6, red's 2) on ELSE
state 4

statement : IF...THEN statement (2)
statement : IF...THEN statement ELSE statement

ELSE shift 6
. reduce 2

state 6
statement : IF...THEN statement ELSE statement

IF...THEN shift 3
shift 2

. error

statement goto 6

The problem is quite common. It concerns the question to which if the else
belongs in the following program fragment:

if (condition)
if (condition)

/* empty statement */
else

In terms of pace, in state 4 we could still accept (shift) the terminal symbol ELSE

a
nd move on in the second configuration, or we could consider the first, complete

configuration and substitute the non-terminal (reduce) statement. Shifting means to
extend the innermost if statement, i.e., to connect each else to the innermost if, and
this is what languages like C and Pascal require.

Technically, state 4 exhibits a shift/reduce conflict, a mistake in the proposed
grammar, which makes it ambiguous and thus unsuitable for language recognition.

yacc, however, intentionally permits such conflicts, and (as the comments indicate) it
will provide for the longest possible input sequence, i.e., it will do just what is normally
required.

The next problem is more serious. The setting is an excerpt from a Basic dialect,
where the result of a comparison can be assigned to a variable or used in a decision:

/*
multiple clauses

*/

%token IDENTIFIER, IF, THEN, SUM

%%

statement
: IDENTIFIER '=' expression
I IF condition THEN statement

condition
: expression
I SUM '<' SUM

expression
: SUM '<' SUM
I SUM

yacc will note a reduce/reduce conflict, and investigation of y.output reveals the
following:

state 14
condition : SUM < SUM_ (4)
expression : SUM < SUM_ (6)

. reduce 4

State 14 contains more than one complete configuration. In this case, pace would
use the formulation introduced first in the grammar, but this tends to be risky if the
grammar is later modified or rearranged. While we usually tolerate shift/reduce
conflicts such as the dangling else problem, we always attempt to rewrite the gram-

mar to eliminate formulation combinations which provoke reduce/reduce conflicts. In
the present case this is easy — admittedly, the example is too simple to be realistic:

/*
multiple clauses, no conflicts

*/

LANGUAGE DEFINITION 1514 COMPILER CONSTRUCTION CHAPTER 1 CHAPTER 1

%token IDENTIFIER, IF, THEN, SUM

%%

statement
: IDENTIFIER '=' expression
I IF expression THEN statement

expression
SUM '<' SUM

vice has a very permissive syntax for its own input. For typographical reasons,
we have even omitted the semicolon which may follow each rule. The inadvertent
addition of an empty formulation can provoke a rather startling number of conflicts!

Another ambiguity problem is, in fact, a virtue. Consider the following grammar
for arithmetic expressions:

While the description is short and devoid of extraneous non-terminal symbols, it does
not convey any notions of precedence and associativity of the operators. yacc permits
such a situation, as long as precedence and associativity are specified explicitly in the
first part of the input file as follows:

%token IDENTIFIER

7 +P

11 4,• P it

left defines a list of terminal symbols to be left-associative and to have equal pre-
cedence among each other. Precedence then increases in the order of appearance of
successive left, right, and nonassoc lines in the input file. right, of course, indicates
right-associativity, and nonassoc lists terminal symbols of equal precedence and does
not permit them to associate with themselves.

This variety of ambiguity and explicit disambiguating rules is preferred — it
introduces fewer non-terminals and thus streamlines a grammar.

1.6 Example
This book will show a complete compiler for sampleC, a. rudimentary subset of C.

The various modules for this compiler will be described in an "example" section near
the end of each chapter.

Here is our informal definition of sampieC in extended BNT, where we enclose ter-
minal symbols composed from special characters in quotes and specify reserved words
in capital letters. Identifier and Constant are additional terminal symbols; unlike

the others, they stand for classes of words and not for themselves. The definition is
,i1,,-ht1v verbose to simplify extensions left as exercises.

%left
%left

LANGUAGE DEFINITION 1514 COMPILER CONSTRUCTION CHAPTER 1 CHAPTER 1

%token IDENTIFIER, IF, THEN, SUM

%%

statement
: IDENTIFIER '=' expression
I IF expression THEN statement

expression
SUM '<' SUM

vice has a very permissive syntax for its own input. For typographical reasons,
we have even omitted the semicolon which may follow each rule. The inadvertent
addition of an empty formulation can provoke a rather startling number of conflicts!

Another ambiguity problem is, in fact, a virtue. Consider the following grammar
for arithmetic expressions:

While the description is short and devoid of extraneous non-terminal symbols, it does
not convey any notions of precedence and associativity of the operators. yacc permits
such a situation, as long as precedence and associativity are specified explicitly in the
first part of the input file as follows:

%token IDENTIFIER

7 +P

11 4,• P it

left defines a list of terminal symbols to be left-associative and to have equal pre-
cedence among each other. Precedence then increases in the order of appearance of
successive left, right, and nonassoc lines in the input file. right, of course, indicates
right-associativity, and nonassoc lists terminal symbols of equal precedence and does
not permit them to associate with themselves.

This variety of ambiguity and explicit disambiguating rules is preferred — it
introduces fewer non-terminals and thus streamlines a grammar.

1.6 Example
This book will show a complete compiler for sampleC, a. rudimentary subset of C.

The various modules for this compiler will be described in an "example" section near
the end of each chapter.

Here is our informal definition of sampieC in extended BNT, where we enclose ter-
minal symbols composed from special characters in quotes and specify reserved words
in capital letters. Identifier and Constant are additional terminal symbols; unlike

the others, they stand for classes of words and not for themselves. The definition is
,i1,,-ht1v verbose to simplify extensions left as exercises.

%left
%left

16 COMPILER CONSTRUCTION CHAPTER I CHAPTER 1 LANGUAGE DEFINITION 17

The semantics of sampleC are those of C, suitably pruned. The language has only
an int data type, functions with a variable and arbitrary number of parameters and
with int result, global, function-local and block-local scalar variables, and the control
structures if-else and while. A number of the C operators are supported. Only one
file will be compiled at a time, and a main() function must be present. This last con-
dition will have to be explicitly accounted for; see chapter 5.

The informal definition above was translated into BNF. This involved mostly ela-
borating the repetitive constructs using recursion. A list of %token definitions and pre-
epdpn ne relationshins ha.r1 to he added The followinir result. is aprontn.hip to 1112.1•1**

16 COMPILER CONSTRUCTION CHAPTER I CHAPTER 1 LANGUAGE DEFINITION 17

The semantics of sampleC are those of C, suitably pruned. The language has only
an int data type, functions with a variable and arbitrary number of parameters and
with int result, global, function-local and block-local scalar variables, and the control
structures if-else and while. A number of the C operators are supported. Only one
file will be compiled at a time, and a main() function must be present. This last con-
dition will have to be explicitly accounted for; see chapter 5.

The informal definition above was translated into BNF. This involved mostly ela-
borating the repetitive constructs using recursion. A list of %token definitions and pre-
epdpn ne relationshins ha.r1 to he added The followinir result. is aprontn.hip to 1112.1•1**

1111111,1*Pw-

CHAPTER CHAPTER 1 LANGUAGE DEFINITION 19

: WHILE *(' expression ')'

1.7 A note on typography

As we remarked before, yacc input is almost entirely free format, but certain con-
ventions are helpful:

Each nonterminal should appear just once on the left hand side of a rule. We
place the nonterminal alone on a line, at the left margin. All formulations are
then listed together.

The colon between left-hand and right-hand side of a rule is indented one tab
position, the first formulation is indented one blank past the colon, and actions —
to be discussed in chapter 3 -- will be indented two tab positions.

1111111,1*Pw-

CHAPTER CHAPTER 1 LANGUAGE DEFINITION 19

: WHILE *(' expression ')'

1.7 A note on typography

As we remarked before, yacc input is almost entirely free format, but certain con-
ventions are helpful:

Each nonterminal should appear just once on the left hand side of a rule. We
place the nonterminal alone on a line, at the left margin. All formulations are
then listed together.

The colon between left-hand and right-hand side of a rule is indented one tab
position, the first formulation is indented one blank past the colon, and actions —
to be discussed in chapter 3 -- will be indented two tab positions.

20 COMPILER CONSTRUCTION CHAPTER 1 Chapter 2
Word Recognition

The colon, the 1 symbol introducing an alternative formulation, and the semicolon
terminating the rule are all vertically aligned.
In order to conserve space in the book, we do not terminate a rule by a semicolon.
While this is acceptable to yarc, it is, however, a bad idea in practice to omit the
semicolon, since omitting it tends to obscure typographical errors such as replac-
ing a colon by a bar.
Rules are separated from one another by a blank line.
Empty formulations are clearly indicated by a suitable comment — this is particu-
larly helpful for debugging.
We prefer long names, joined together by underscores; periods are also acceptable
for this purpose. We also tend to use the suffix _list to indicate a comma-
separated list of things, and plural to indicate a sequence of things.

1.8 Problems
1. Design a. small subset of Pascal, and write a BNF description of it. Add token
definitions and precedence relations to the BNF description. Submit this language
definition to yacc, and correct it if necessary until is acceptable to yacc (i.e., until yacc
does not issue any error messages other than unavoidable shift/reduce conflicts).
2. Extend the definition of sampleC by adding another standard feature of C, such as
arrays. Change the grammar given in section 1.6 so that the new description of sarn-

plee is acceptable to yacc.

3. Write a grammar for EBNF in BNF. A grammar for EBNF in EBNF can be found
in section 1.2. What changes must be made to convert this grammar to BNF? Add
token definitions and whatever else is needed to make the resulting grammar accept-
able to yacc. Hint: to remove all shift/reduce conflicts, you will want to include a
semicolon to terminate each rule.

2.1 Purpose
We have seen in the previous chapter that a language is a set of sentences, which

are sequencesof terminal symbols. Terminal symbols in a programming
come in three varieties: operators are represented as (short) sequences

olinafnsgil tpuea rc

turn
language usually

l characters, reserved words are represented as predefined sequences of letters
whose m eaning cannot vary, and user-defined terminal symbols encompass constants
and identifiers subject to a specialized syntax definition. Then, of course, there is
white space — blanks, tab characters and line separators — which in most modern
programming languages merely separates terminal symbols but is otherwise
insignificant. Comments, too, follow their own syntax, different for just about every
programming language [Wic73] and just as insignificant as white space.

This chapter deals with lexical analysis, that phase of the compilation process
which assembles terminal symbols from the unstructured sequence of input characters
presented to the compiler. White space and comments are usually ignored, while
operators and reserved words are identified and passed on using an internal represen-
tation — typically small integer constants. User-defined constants and identifiers need
to be saved in an appropriate table, and a generic representation such as Identifier
or Constant together with a reference to the table entry passed on.

We could attempt to solve the lexical analysis problem simultaneously with the
actual language definition in the following manner:

statement
"1 "F" condition T H E N statement

The resulting grammar, however, is bound to be loaded with conflicts and the tech-
nique is horribly inefficient.

Lexical analysis accounts for a large amount of the processing which a real com-
piler does. By dealing with lexical analysis mostly independently from the rest of the
compilation process, we can employ more appropriate techniques and can at the same
time hide within a single module all knowledge about the actual representation of our
programming language in a real world character set.

2.2 Definition tools
How do we assemble characters into terminal symbols? Lexical analysis is the

classical application for the theory of finite state automata. A transition diagram is
generally easy to devise from the lexical specification of a programming language, and
an eight to sixteen hour ad-hack approach loosely based on the transition diagram will
cope with just about any such specification. Things usually get messy when we need to
dispose of strings, comments, and (floating-point) constants, in about that order. By
way of illustration let us consider a Gstyle comment described as a transitiondiagram:

20 COMPILER CONSTRUCTION CHAPTER 1 Chapter 2
Word Recognition

The colon, the 1 symbol introducing an alternative formulation, and the semicolon
terminating the rule are all vertically aligned.
In order to conserve space in the book, we do not terminate a rule by a semicolon.
While this is acceptable to yarc, it is, however, a bad idea in practice to omit the
semicolon, since omitting it tends to obscure typographical errors such as replac-
ing a colon by a bar.
Rules are separated from one another by a blank line.
Empty formulations are clearly indicated by a suitable comment — this is particu-
larly helpful for debugging.
We prefer long names, joined together by underscores; periods are also acceptable
for this purpose. We also tend to use the suffix _list to indicate a comma-
separated list of things, and plural to indicate a sequence of things.

1.8 Problems
1. Design a. small subset of Pascal, and write a BNF description of it. Add token
definitions and precedence relations to the BNF description. Submit this language
definition to yacc, and correct it if necessary until is acceptable to yacc (i.e., until yacc
does not issue any error messages other than unavoidable shift/reduce conflicts).
2. Extend the definition of sampleC by adding another standard feature of C, such as
arrays. Change the grammar given in section 1.6 so that the new description of sarn-

plee is acceptable to yacc.

3. Write a grammar for EBNF in BNF. A grammar for EBNF in EBNF can be found
in section 1.2. What changes must be made to convert this grammar to BNF? Add
token definitions and whatever else is needed to make the resulting grammar accept-
able to yacc. Hint: to remove all shift/reduce conflicts, you will want to include a
semicolon to terminate each rule.

2.1 Purpose
We have seen in the previous chapter that a language is a set of sentences, which

are sequencesof terminal symbols. Terminal symbols in a programming
come in three varieties: operators are represented as (short) sequences

olinafnsgil tpuea rc

turn
language usually

l characters, reserved words are represented as predefined sequences of letters
whose m eaning cannot vary, and user-defined terminal symbols encompass constants
and identifiers subject to a specialized syntax definition. Then, of course, there is
white space — blanks, tab characters and line separators — which in most modern
programming languages merely separates terminal symbols but is otherwise
insignificant. Comments, too, follow their own syntax, different for just about every
programming language [Wic73] and just as insignificant as white space.

This chapter deals with lexical analysis, that phase of the compilation process
which assembles terminal symbols from the unstructured sequence of input characters
presented to the compiler. White space and comments are usually ignored, while
operators and reserved words are identified and passed on using an internal represen-
tation — typically small integer constants. User-defined constants and identifiers need
to be saved in an appropriate table, and a generic representation such as Identifier
or Constant together with a reference to the table entry passed on.

We could attempt to solve the lexical analysis problem simultaneously with the
actual language definition in the following manner:

statement
"1 "F" condition T H E N statement

The resulting grammar, however, is bound to be loaded with conflicts and the tech-
nique is horribly inefficient.

Lexical analysis accounts for a large amount of the processing which a real com-
piler does. By dealing with lexical analysis mostly independently from the rest of the
compilation process, we can employ more appropriate techniques and can at the same
time hide within a single module all knowledge about the actual representation of our
programming language in a real world character set.

2.2 Definition tools
How do we assemble characters into terminal symbols? Lexical analysis is the

classical application for the theory of finite state automata. A transition diagram is
generally easy to devise from the lexical specification of a programming language, and
an eight to sixteen hour ad-hack approach loosely based on the transition diagram will
cope with just about any such specification. Things usually get messy when we need to
dispose of strings, comments, and (floating-point) constants, in about that order. By
way of illustration let us consider a Gstyle comment described as a transitiondiagram:

'/' operator

comment has
been collected

CHAPTER 2 WORD RECOGNITION 23CHAPTER 222 COMPILER CONSTRUCTION

In a transition diagram, the states are the numbered nodes, and the transitions
are the branches between the states, labeled with the input characters causing the
transition. Characteristically, the exit from the diagram with the collected terminal
symbol is somewhat haphazard — sometimes the following character has already been
seen, and sometimes it has not.

A transition diagram corresponds quite closely to a syntax graph. The branches in
the transition diagram describe the transitions; the nodes in the syntax graph contain
the symbols which need to be found in order to move on. The difference is that syntax
graphs regularly call one another, while these simple transition diagrams are not sup-
posed to.

A comparison of the two types of diagrams suggests why transition diagrams are
preferred in this approach to lexical analysis. The approach itself, however, is error
prone, and the result tends to be quite hard to modify.

A better solution for the problem of lexical analysis can be derived directly from
the theory: we need a convenient way to describe the finite state automaton
corresponding to the lexical specification of our language, we need a compiler to pro-
duce appropriate tables from the description, and we need an interpreter to simulate
the finite state automaton defined by the tables.

Such a compiler has, in fact, been written: it is called lex [Les78b1. lex accepts a
table of patterns resembling editor patternsl and produces a table-driven C program

capable of recognizing input strings satisfying the patterns. As the substitute com-
mand in the editor shows, patterns can be conveniently used to identify specific char-
acter sequences.

Patterns are a very convenient specification language for the finite state automa-
ton actually constructed. With each pattern a C statement can be associated which
will be executed when a string satisfying the pattern is found in the input. In simple
translation applications the C statement will usually write a modified copy of the
string to standard output; in compiler applications the C statement should return an
appropriate encoding of the string to the caller of the lexical analysis function.

As we shall see, lex is a very powerful tool in its own right, and it can be used to
great advantage in language recognition. However, lex is, in our opinion, quite
unfriendly to use: error messages are short and entirely unspecific, commenting input
for /ex is cumbersome at best, and brute force uses of lex can create huge programs.
Still, lex is the tool of choice, since the alternative — hand-coding the lexical analysis
function — requires a significantly higher investment in manpower.

The rest of this chapter will introduce in reasonable detail a sufficient number of
lex features to cope with most compiler applications. We will first describe the most
frequently used operations in patterns, how patterns are specified to lex, and how typi-
cal language constructs such as identifiers, strings, and comments can be specified as
patterns. While we explain most possibilities, the chapter is not intended as a
comprehensive description.

In section 2.5 we introduce lex as a program generator and we show a few small
but complete lex programs for file inclusion, file splitting, and word counting. Our

sampleC implementation is continued in section 2.7 where the complete lexical
analyzer for sampleC is presented.

2.3 Patterns
Users of ed and similar text editors are already familiar with the following consti-

tuents of patterns:
Letters, digits, and some special characters represent themselves.
Period represents any character, with the exception of line feed.
Brackets, [and 1, enclose a sequence of characters, which is termed a character
class. The class represents any one of its constituents, or any single character not
in the given sequence if the sequence starts with -. Within the sequence, —
between two characters denotes the inclusive range.
If * follows one of these pattern parts, it indicates that the corresponding input
may appear arbitrarily often, or even not at all.

at the beginning of a pattern represents the beginning of an input line.

character itself).
W

el
$ at the end of a pattern represents the end of an input line (but not the line feed

h cter

caapseuictoanbvleenetsicoanps inescape convention for special characters and white space, we can

are two

With
 write patterns for most terminal symbols of a programming language. There

I See ed(1) in Ver78a1,

'/' operator

comment has
been collected

CHAPTER 2 WORD RECOGNITION 23CHAPTER 222 COMPILER CONSTRUCTION

In a transition diagram, the states are the numbered nodes, and the transitions
are the branches between the states, labeled with the input characters causing the
transition. Characteristically, the exit from the diagram with the collected terminal
symbol is somewhat haphazard — sometimes the following character has already been
seen, and sometimes it has not.

A transition diagram corresponds quite closely to a syntax graph. The branches in
the transition diagram describe the transitions; the nodes in the syntax graph contain
the symbols which need to be found in order to move on. The difference is that syntax
graphs regularly call one another, while these simple transition diagrams are not sup-
posed to.

A comparison of the two types of diagrams suggests why transition diagrams are
preferred in this approach to lexical analysis. The approach itself, however, is error
prone, and the result tends to be quite hard to modify.

A better solution for the problem of lexical analysis can be derived directly from
the theory: we need a convenient way to describe the finite state automaton
corresponding to the lexical specification of our language, we need a compiler to pro-
duce appropriate tables from the description, and we need an interpreter to simulate
the finite state automaton defined by the tables.

Such a compiler has, in fact, been written: it is called lex [Les78b1. lex accepts a
table of patterns resembling editor patternsl and produces a table-driven C program

capable of recognizing input strings satisfying the patterns. As the substitute com-
mand in the editor shows, patterns can be conveniently used to identify specific char-
acter sequences.

Patterns are a very convenient specification language for the finite state automa-
ton actually constructed. With each pattern a C statement can be associated which
will be executed when a string satisfying the pattern is found in the input. In simple
translation applications the C statement will usually write a modified copy of the
string to standard output; in compiler applications the C statement should return an
appropriate encoding of the string to the caller of the lexical analysis function.

As we shall see, lex is a very powerful tool in its own right, and it can be used to
great advantage in language recognition. However, lex is, in our opinion, quite
unfriendly to use: error messages are short and entirely unspecific, commenting input
for /ex is cumbersome at best, and brute force uses of lex can create huge programs.
Still, lex is the tool of choice, since the alternative — hand-coding the lexical analysis
function — requires a significantly higher investment in manpower.

The rest of this chapter will introduce in reasonable detail a sufficient number of
lex features to cope with most compiler applications. We will first describe the most
frequently used operations in patterns, how patterns are specified to lex, and how typi-
cal language constructs such as identifiers, strings, and comments can be specified as
patterns. While we explain most possibilities, the chapter is not intended as a
comprehensive description.

In section 2.5 we introduce lex as a program generator and we show a few small
but complete lex programs for file inclusion, file splitting, and word counting. Our

sampleC implementation is continued in section 2.7 where the complete lexical
analyzer for sampleC is presented.

2.3 Patterns
Users of ed and similar text editors are already familiar with the following consti-

tuents of patterns:
Letters, digits, and some special characters represent themselves.
Period represents any character, with the exception of line feed.
Brackets, [and 1, enclose a sequence of characters, which is termed a character
class. The class represents any one of its constituents, or any single character not
in the given sequence if the sequence starts with -. Within the sequence, —
between two characters denotes the inclusive range.
If * follows one of these pattern parts, it indicates that the corresponding input
may appear arbitrarily often, or even not at all.

at the beginning of a pattern represents the beginning of an input line.

character itself).
W

el
$ at the end of a pattern represents the end of an input line (but not the line feed

h cter

caapseuictoanbvleenetsicoanps inescape convention for special characters and white space, we can

are two

With
 write patterns for most terminal symbols of a programming language. There

I See ed(1) in Ver78a1,

24 COMPILER CONSTRUCTION CHAPTER 2

\ quotes a single following special character; in particular, two \ characters
represent a single \. 1 may precede the letters b, n, and t; the combinations then
denote backspace, line feed, and tab characters, just as in C.
A better technique, especially for sequences of characters, is to enclose one or more
characters in double-quotes. The characters thus lose their special meaning.
Most special characters have a special meaning in lex; if a special character should

represent itself, it is best quoted. Special characters need not be quoted inside a char-
acter class. White space must always be quoted or represented by a \ escape sequence.
A double-quote can be introduced within double-quotes with \", just as in C.

By way of example, let us look at patterns for some terminal symbols in sample C.
The operators are simply quoted — we generally prefer double-quotes to the backslash
convention:

■*.

•*=•

and so on. We need a pattern to recognize white space:
\t\n]

Constants consist of one or more digits:
[0-9] [0-9]*

Identifiers follow the rules of C, i.e., they start in a letter or underscore and continue
with arbitrarily many letters, digits, or underscores:

[A-Za-z][A-Za-z0-9]*

The following pattern attempts to deal with single-line comments:
•/*•.,•*/.

A comment should start in /* and terminate with the first occurrence of */. It can
extend over many lines.

The last two patterns exhibit certain limitations with which casual users of ed
should be quite familiar: a pattern, by definition, represents the longest possible input
sequence. In the case of constants and identifiers, this is really what is desired; in the
case of comments, however, we need exactly the opposite! There is also a question as
to what happens if we specify

8<8

1/ <= I

i.e., two patterns which represent the same initial sequence of characters, or
•int•
[a-z] [a-z]*

i.e., two patterns where one represents a subset of the possibilities of the other. We
will deal with ambiguities in the next section.

In order to deal successfully with C- and Pascal-style comments and strings, we
need to introduce a few more lex pattern features. Just as for egrep2 parentheses may

CHAPTER 2 WORD RECOGNITION 25

grouping within a pattern, I denotes alternatives, + denotes one or more

es
of the item preceding it, and ? denotes zero or one occurrence. The last

tobwcecouursfreeed oantucf rres simplify some of the patterns shown earlier, e.g., integer constants are
recognized with

[0-91+

A terminal symbol which is delimited by single characters, such as a Pascal-style
comment enclosed in braces, is easy to handle:

•{■[-)1*■)•

Using an alternative, the technique extends easily to Pascal- or C-style strings,
where the delimiter must be duplicated or escaped if it is to appear within the string:

\ 1\'\')+\ •
•a-•\ n] m[l\ n]) * \.

Note that a Pascal-style string as defined here cannot extend over several lines, and
that it must contain at least one character. A C string can extend over several lines if
the line feed is escaped using \, it can contain escaped double-quotes, and it can be
empty.

If there is a sequence of characters used as a delimiter, as in C-style comments
enclosed by /* and */, or in Pascal-style comments enclosed by (* and *), the neces-
sary pattern becomes quite complicated. The basic idea is not to permit the terminat-
ing delimiter once the opening delimiter has been recognized; unfortunately, this can
only be done by enumeration. Consider the following proposal for a pattern to recog-
nize a C-style comment:

6 /*'([- */]1[- *]•/°1 2 *'[- /])*•*/'

The comment begins with /* and ends with */. In between can be zero or more
occurrences of one of three alternatives, namely any character but * or /, a / preceded
by any character except *, or finally a * followed by any character other then /. Note
that a character class using the complement operator - is somewhat dangerous it
usually includes line feed and thus can easily swallow an entire input file!

Alas, our 'solution' for C-style comments is not quite perfect: /*/ is not recognized
as the beginning of a comment, since in this pattern, / must follow a character in the
comment, and /***/ is not recognized as a complete comment, since in this pattern *
must precede another character in the comment, which causes the third * to be
ignored as part of the delimiter. A better solution is the following pattern, which
admittedly is even harder to read:

•/*•/•*(1 - */31[- *]•/I1•*•[- /])*"*•*•*/•

Now zero or more slashes may immediately follow the opening delimiter, and zero or
more asterisks may precede the closing delimiter. Thus the special cases are also
accounted for.

There is yet more to lex patterns. Iteration can be limited to a specific range
using a notation like

la-z][a-zo-93{0.7)

2 See grep(1) in IKer78a).

24 COMPILER CONSTRUCTION CHAPTER 2

\ quotes a single following special character; in particular, two \ characters
represent a single \. 1 may precede the letters b, n, and t; the combinations then
denote backspace, line feed, and tab characters, just as in C.
A better technique, especially for sequences of characters, is to enclose one or more
characters in double-quotes. The characters thus lose their special meaning.
Most special characters have a special meaning in lex; if a special character should

represent itself, it is best quoted. Special characters need not be quoted inside a char-
acter class. White space must always be quoted or represented by a \ escape sequence.
A double-quote can be introduced within double-quotes with \", just as in C.

By way of example, let us look at patterns for some terminal symbols in sample C.
The operators are simply quoted — we generally prefer double-quotes to the backslash
convention:

■*.

•*=•

and so on. We need a pattern to recognize white space:
\t\n]

Constants consist of one or more digits:
[0-9] [0-9]*

Identifiers follow the rules of C, i.e., they start in a letter or underscore and continue
with arbitrarily many letters, digits, or underscores:

[A-Za-z][A-Za-z0-9]*

The following pattern attempts to deal with single-line comments:
•/*•.,•*/.

A comment should start in /* and terminate with the first occurrence of */. It can
extend over many lines.

The last two patterns exhibit certain limitations with which casual users of ed
should be quite familiar: a pattern, by definition, represents the longest possible input
sequence. In the case of constants and identifiers, this is really what is desired; in the
case of comments, however, we need exactly the opposite! There is also a question as
to what happens if we specify

8<8

1/ <= I

i.e., two patterns which represent the same initial sequence of characters, or
•int•
[a-z] [a-z]*

i.e., two patterns where one represents a subset of the possibilities of the other. We
will deal with ambiguities in the next section.

In order to deal successfully with C- and Pascal-style comments and strings, we
need to introduce a few more lex pattern features. Just as for egrep2 parentheses may

CHAPTER 2 WORD RECOGNITION 25

grouping within a pattern, I denotes alternatives, + denotes one or more

es
of the item preceding it, and ? denotes zero or one occurrence. The last

tobwcecouursfreeed oantucf rres simplify some of the patterns shown earlier, e.g., integer constants are
recognized with

[0-91+

A terminal symbol which is delimited by single characters, such as a Pascal-style
comment enclosed in braces, is easy to handle:

•{■[-)1*■)•

Using an alternative, the technique extends easily to Pascal- or C-style strings,
where the delimiter must be duplicated or escaped if it is to appear within the string:

\ 1\'\')+\ •
•a-•\ n] m[l\ n]) * \.

Note that a Pascal-style string as defined here cannot extend over several lines, and
that it must contain at least one character. A C string can extend over several lines if
the line feed is escaped using \, it can contain escaped double-quotes, and it can be
empty.

If there is a sequence of characters used as a delimiter, as in C-style comments
enclosed by /* and */, or in Pascal-style comments enclosed by (* and *), the neces-
sary pattern becomes quite complicated. The basic idea is not to permit the terminat-
ing delimiter once the opening delimiter has been recognized; unfortunately, this can
only be done by enumeration. Consider the following proposal for a pattern to recog-
nize a C-style comment:

6 /*'([- */]1[- *]•/°1 2 *'[- /])*•*/'

The comment begins with /* and ends with */. In between can be zero or more
occurrences of one of three alternatives, namely any character but * or /, a / preceded
by any character except *, or finally a * followed by any character other then /. Note
that a character class using the complement operator - is somewhat dangerous it
usually includes line feed and thus can easily swallow an entire input file!

Alas, our 'solution' for C-style comments is not quite perfect: /*/ is not recognized
as the beginning of a comment, since in this pattern, / must follow a character in the
comment, and /***/ is not recognized as a complete comment, since in this pattern *
must precede another character in the comment, which causes the third * to be
ignored as part of the delimiter. A better solution is the following pattern, which
admittedly is even harder to read:

•/*•/•*(1 - */31[- *]•/I1•*•[- /])*"*•*•*/•

Now zero or more slashes may immediately follow the opening delimiter, and zero or
more asterisks may precede the closing delimiter. Thus the special cases are also
accounted for.

There is yet more to lex patterns. Iteration can be limited to a specific range
using a notation like

la-z][a-zo-93{0.7)

2 See grep(1) in IKer78a).

26 COMPILER CONSTRUCTION CHAPTER 2 cHAPTER 2 WORD RECOGNITION 27

to denote an identifier starting in a lower case letter, which is followed by zero to seven
letters or digits. A pattern may be recognized only before a certain right context,
which itself is not represented by the pattern; the right context is given following a /
mark:

-0 [ix] / [0-9a-f] +

would recognize the sign and the base prefix of a negative hexadecimal C constant, but
would not include the digits of the constant itself. Patterns can be preceded by start
conditions, which essentially permit the dynamic selection of one of several sets of pat-
terns specified together. Finally, a very able (and careful) programmer can even
interact directly with the input, output, and buffer managing routines employed by the
automaton generated by lex. The patient and imaginative reader is cheerfully referred
to the original publication [Les78b].

2.4 Ambiguity as a virtue
A set of lex patterns tends to be highly ambiguous. Two rules are employed by

lex to sort things out:
lex always chooses that pattern which represents the longest possible input string.
If two patterns represent the same string, the first pattern in the list presented to

lex is chosen.
Both rules are, in fact, assets rather than liabilities. The first rule asserts that the

patterns
int

[a-z] +

completely recognize integer (as an instance of the second pattern) and not only the
initial int. The second rule causes the pattern int and not the second, more general
pattern to recognize int from the input.

As has been demonstrated in the previous section, the first disambiguating rule
can backfire if used carelessly. The second rule, however, encourages an arrangement
in which the most general pattern, e.g., for an identifier, is placed last, with more selec-
tive patterns preceding it to pick off exceptions.

Consider the following recognition problem: when typing German texts on an
American keyboard, umlaut characters are most quickly typed as ae, oe, ue, etc.
Before the resulting document is presented to nroff or trot to be processed, e.g., with
the ms macro package 1Les78a], one should replace all these letter combinations by
invocations of the ms string *:, as for example in *: a, *:o, etc. The pattern

ue

however, recognizes the letter combination ue even in contexts such as Quelle (Ger-
man: fountain), or eventuell (German: possibly), where it does not represent the
umlaut. We therefore need to pick off these special cases before we present the general
combination:

[Gig] ue
ntue
ue

Since ambiguous pattern lists are acceptable as input to lex, we can simply insert more

s
pecial cases as we encounter them.

makeUanl yacc, where only in the case of reduce/reduce conflicts does input order
ly matters in lex since conflicts in the sense of yacc are fre-

quently encountered. This, unfortunately, often leads to illogical arrangements of the
idcie ffe

in
difference, it great

patterns. The order of patterns does imply something like a control structure.

2.5 "lex" programs
Input to lex consists of one file with three parts, separated by lines beginning in

first part

pattern action

- • •

third part

The first part is optional; it can contain lines controlling the dimensions of certain
tables internal to lex, it can contain definitions for text replacements as we shall see in
section 2.7, and it can contain (global) C code preceded by a line beginning in %(and
followed by a line beginning in %}. Even if the first part of the lex specification is
empty, the separator %% between the first and second parts of the lex specification can-
not be omitted.

The third part and the separator preceding it are optional. The third part con-
tains C code which is used as is. As we shall see, it usually contains (local) functions
which the second part uses.

The second part of the specification consists of a table of patterns and actions.
This part of the specification is quite line-oriented. A pattern starts at the beginning
of a line and extends to the first non-escaped white space. Following an arbitrary
amount of white space, an action is specified which is thus associated with the pattern.
The action is a single C statement, or several statements enclosed in a set of braces.
The action may also consist of a bar I, indicating that the present pattern will use the
same action as the next pattern.

lex input itself has no provisions for comments(!), but within braces, regular C
comments can be written.

From the table, lex will construct a C function yylex() in the file lex.yy.c . If this
function is linked with a program and called, standard input is read until the next,
longest possible string represented by a pattern has been collected. The action associ-
ated with the pattern is then executed. If this action contains a return statement,
yylex() will return, possibly with a. function value as dictated by the return state-
ment.

fez adds a default pattern and action to the patterns specified by the user in such
a way that all otherwise unrecognized input characters are copied to standard output.

26 COMPILER CONSTRUCTION CHAPTER 2 cHAPTER 2 WORD RECOGNITION 27

to denote an identifier starting in a lower case letter, which is followed by zero to seven
letters or digits. A pattern may be recognized only before a certain right context,
which itself is not represented by the pattern; the right context is given following a /
mark:

-0 [ix] / [0-9a-f] +

would recognize the sign and the base prefix of a negative hexadecimal C constant, but
would not include the digits of the constant itself. Patterns can be preceded by start
conditions, which essentially permit the dynamic selection of one of several sets of pat-
terns specified together. Finally, a very able (and careful) programmer can even
interact directly with the input, output, and buffer managing routines employed by the
automaton generated by lex. The patient and imaginative reader is cheerfully referred
to the original publication [Les78b].

2.4 Ambiguity as a virtue
A set of lex patterns tends to be highly ambiguous. Two rules are employed by

lex to sort things out:
lex always chooses that pattern which represents the longest possible input string.
If two patterns represent the same string, the first pattern in the list presented to

lex is chosen.
Both rules are, in fact, assets rather than liabilities. The first rule asserts that the

patterns
int

[a-z] +

completely recognize integer (as an instance of the second pattern) and not only the
initial int. The second rule causes the pattern int and not the second, more general
pattern to recognize int from the input.

As has been demonstrated in the previous section, the first disambiguating rule
can backfire if used carelessly. The second rule, however, encourages an arrangement
in which the most general pattern, e.g., for an identifier, is placed last, with more selec-
tive patterns preceding it to pick off exceptions.

Consider the following recognition problem: when typing German texts on an
American keyboard, umlaut characters are most quickly typed as ae, oe, ue, etc.
Before the resulting document is presented to nroff or trot to be processed, e.g., with
the ms macro package 1Les78a], one should replace all these letter combinations by
invocations of the ms string *:, as for example in *: a, *:o, etc. The pattern

ue

however, recognizes the letter combination ue even in contexts such as Quelle (Ger-
man: fountain), or eventuell (German: possibly), where it does not represent the
umlaut. We therefore need to pick off these special cases before we present the general
combination:

[Gig] ue
ntue
ue

Since ambiguous pattern lists are acceptable as input to lex, we can simply insert more

s
pecial cases as we encounter them.

makeUanl yacc, where only in the case of reduce/reduce conflicts does input order
ly matters in lex since conflicts in the sense of yacc are fre-

quently encountered. This, unfortunately, often leads to illogical arrangements of the
idcie ffe

in
difference, it great

patterns. The order of patterns does imply something like a control structure.

2.5 "lex" programs
Input to lex consists of one file with three parts, separated by lines beginning in

first part

pattern action

- • •

third part

The first part is optional; it can contain lines controlling the dimensions of certain
tables internal to lex, it can contain definitions for text replacements as we shall see in
section 2.7, and it can contain (global) C code preceded by a line beginning in %(and
followed by a line beginning in %}. Even if the first part of the lex specification is
empty, the separator %% between the first and second parts of the lex specification can-
not be omitted.

The third part and the separator preceding it are optional. The third part con-
tains C code which is used as is. As we shall see, it usually contains (local) functions
which the second part uses.

The second part of the specification consists of a table of patterns and actions.
This part of the specification is quite line-oriented. A pattern starts at the beginning
of a line and extends to the first non-escaped white space. Following an arbitrary
amount of white space, an action is specified which is thus associated with the pattern.
The action is a single C statement, or several statements enclosed in a set of braces.
The action may also consist of a bar I, indicating that the present pattern will use the
same action as the next pattern.

lex input itself has no provisions for comments(!), but within braces, regular C
comments can be written.

From the table, lex will construct a C function yylex() in the file lex.yy.c . If this
function is linked with a program and called, standard input is read until the next,
longest possible string represented by a pattern has been collected. The action associ-
ated with the pattern is then executed. If this action contains a return statement,
yylex() will return, possibly with a. function value as dictated by the return state-
ment.

fez adds a default pattern and action to the patterns specified by the user in such
a way that all otherwise unrecognized input characters are copied to standard output.

28 COMPILER CONSTRUCTION CHAPTER 2

The following lex program will remove all upper case letters from its input:

%{
/*

remove upper case letters
*/

%}

%%

(A-2)+

Assuming that the program is contained in a file exited, the following commands pro-
duce an executable program exue:

lex exmc.1
cc lex.yy.c -11 -0 eras

-11 references the lex library, which contains a default main() function, which will
just call yylex() once. This library must always be supplied when a function yylex()
generated by lex is to be linked.

More useful actions need to have access to the input string recognized by the pat-
tern with which they are associated. The char vector yytext t] contains this string,
null-terminated, the int variable yyleng has strlen(yytext) as a value, and the int
variable yylineno contains the number of the current input line. Let us look at a few
marginally useful programs:

/*
line numbering

*/

%%

ECHO;
-.*$ printf(qAt%si, yylineno, yytext);

This first program prints standard input and precedes each nonempty input line
by its number and a tab character. ECHO is defined within the C program produced by

lex; it causes yytext t] to be printed.
If we also want to number the empty lines, the following program can be used:

9‘{
/*

line numbering
*/

%%

printi(16At%s•, yylineno-t, yytext);

Now we recognize line feed as part of the pattern. yylineno is already incremented to
the next line when our action gets control.

WORD RECOGNITION 29

This example shows a use for the third part of a lex specification: we include our own
main() function, which here prints the statistics gathered during execution of the

yyiex() function.

The next example is typical of a large class of problems, where a special action —
here it is file inclusion — needs to be taken when just one pattern is recognized. Most
of the input is just passed through. Similar applications include, e.g., adorning
reserved words for the publication of a program, gathering a table of contents, etc.

CHAPTER 2

28 COMPILER CONSTRUCTION CHAPTER 2

The following lex program will remove all upper case letters from its input:

%{
/*

remove upper case letters
*/

%}

%%

(A-2)+

Assuming that the program is contained in a file exited, the following commands pro-
duce an executable program exue:

lex exmc.1
cc lex.yy.c -11 -0 eras

-11 references the lex library, which contains a default main() function, which will
just call yylex() once. This library must always be supplied when a function yylex()
generated by lex is to be linked.

More useful actions need to have access to the input string recognized by the pat-
tern with which they are associated. The char vector yytext t] contains this string,
null-terminated, the int variable yyleng has strlen(yytext) as a value, and the int
variable yylineno contains the number of the current input line. Let us look at a few
marginally useful programs:

/*
line numbering

*/

%%

ECHO;
-.*$ printf(qAt%si, yylineno, yytext);

This first program prints standard input and precedes each nonempty input line
by its number and a tab character. ECHO is defined within the C program produced by

lex; it causes yytext t] to be printed.
If we also want to number the empty lines, the following program can be used:

9‘{
/*

line numbering
*/

%%

printi(16At%s•, yylineno-t, yytext);

Now we recognize line feed as part of the pattern. yylineno is already incremented to
the next line when our action gets control.

WORD RECOGNITION 29

This example shows a use for the third part of a lex specification: we include our own
main() function, which here prints the statistics gathered during execution of the

yyiex() function.

The next example is typical of a large class of problems, where a special action —
here it is file inclusion — needs to be taken when just one pattern is recognized. Most
of the input is just passed through. Similar applications include, e.g., adorning
reserved words for the publication of a program, gathering a table of contents, etc.

CHAPTER 2

0

30 COMPILER CONSTRUCTION CHAPTER 2
WORD RECOGNITION 31

++ s;
if (fp M fopen (s, "r I))

while (0. = getc(fp)) 1= EOF)
output (1) ;

f close (fp) ;

else
porrorCE);

output() is the routine which lex uses to write all output. The program can only han-
dle one level of file inclusion.

The last example deals with depositing output in several files, selected by options
in the input. This is a variant of the split utility.

%{
I*

.di filename file splitting
*/

#include <ctype.h>
#include <stdio.h>
static divert();

%}

%%

-6 .dii.*\n { yytexttyyleng-il = 'W; divert(yytext+3); }

%%

static divert(s)
char * s;

while (*s && isspace (*s))
s;

if (! freopen(s, •wm, stdout))
perror(s);}

This example is quite difficult to handle with tools such as sed or awk, where the
number of output files is severely limited. Since lex can pick the file name from within
a complex context, this solution is significantly easier to modify than a hand-written C
program.

2.6 Testing a lexical analyzer
For use as a lexical analyzer in a compiler, yylex() should be designed as a func-

tion returning an int value. Upon each call, the next terminal symbol should be col-
lected from the input, encoded, and returned as the function value. Each pattern now
is designed to recognize one or more terminal symbols, and the associated action will
contain a return statement to produce the function value. We must make provisions
so that all input characters are recognized, even if they neither belong to terminal
symbols, nor are to be ignored silently, since yylex() is supposed to let all input

disappear in this case.
Testing such a. function can be messy — the function values are numbers and as

such usually not terribly mnemonic. We found a C programming trick quite helpful. 3

P urposes we arrange for the lex program to have the following principalFor debug g ing
g

As the samplee example will show, it is possible to build a lexical analyzer in such a
way that it can always be conditionally compiled for testing purposes in this fashion.

The caller of yylex() receives the value MNEMONIC in printable form as a result
value of yylex(). The simple main() routine will then display the input text yytext
and a decoded representation of the returned value together for debugging purposes.

By convention, yylex() is expected to return zero(!) as an end of file indication.
lex generates the function yylex() so that this happens internally; main() is coded to
terminate once yylex() returns zero.

One last advice: the reserved words of a programming language are particularly
easy to write down as patterns. Unfortunately, a. long list of such self-representing
patterns dramatically increases the size of the program generated by lex. It is much
more efficient to collect reserved words and identifiers with the same, single pattern
and to screen the results with a small C function. A standard approach to this prob-
km is shown in the next section.

2.7 Example
From the yacc specification of sampleC we know which terminal symbols must be

found by the lexical analysis routine for this compiler: yylex() needs to find all sym-
bols mentioned in %token statements and all single-character terminal symbols quoted
directly. At present, using the debugging technique introduced in the previous section,
we do not need to worry about the exact function values which must be returned as
encodings of the various terminal symbols.

Unfortunately, this trick will not work on machines such as the MC 6-8000, where pointer values do
not fit into int variables. The library macro assort° is employed to guard against this possibility; it
will abort the program if the given condition is not met.

0

30 COMPILER CONSTRUCTION CHAPTER 2
WORD RECOGNITION 31

++ s;
if (fp M fopen (s, "r I))

while (0. = getc(fp)) 1= EOF)
output (1) ;

f close (fp) ;

else
porrorCE);

output() is the routine which lex uses to write all output. The program can only han-
dle one level of file inclusion.

The last example deals with depositing output in several files, selected by options
in the input. This is a variant of the split utility.

%{
I*

.di filename file splitting
*/

#include <ctype.h>
#include <stdio.h>
static divert();

%}

%%

-6 .dii.*\n { yytexttyyleng-il = 'W; divert(yytext+3); }

%%

static divert(s)
char * s;

while (*s && isspace (*s))
s;

if (! freopen(s, •wm, stdout))
perror(s);}

This example is quite difficult to handle with tools such as sed or awk, where the
number of output files is severely limited. Since lex can pick the file name from within
a complex context, this solution is significantly easier to modify than a hand-written C
program.

2.6 Testing a lexical analyzer
For use as a lexical analyzer in a compiler, yylex() should be designed as a func-

tion returning an int value. Upon each call, the next terminal symbol should be col-
lected from the input, encoded, and returned as the function value. Each pattern now
is designed to recognize one or more terminal symbols, and the associated action will
contain a return statement to produce the function value. We must make provisions
so that all input characters are recognized, even if they neither belong to terminal
symbols, nor are to be ignored silently, since yylex() is supposed to let all input

disappear in this case.
Testing such a. function can be messy — the function values are numbers and as

such usually not terribly mnemonic. We found a C programming trick quite helpful. 3

P urposes we arrange for the lex program to have the following principalFor debug g ing
g

As the samplee example will show, it is possible to build a lexical analyzer in such a
way that it can always be conditionally compiled for testing purposes in this fashion.

The caller of yylex() receives the value MNEMONIC in printable form as a result
value of yylex(). The simple main() routine will then display the input text yytext
and a decoded representation of the returned value together for debugging purposes.

By convention, yylex() is expected to return zero(!) as an end of file indication.
lex generates the function yylex() so that this happens internally; main() is coded to
terminate once yylex() returns zero.

One last advice: the reserved words of a programming language are particularly
easy to write down as patterns. Unfortunately, a. long list of such self-representing
patterns dramatically increases the size of the program generated by lex. It is much
more efficient to collect reserved words and identifiers with the same, single pattern
and to screen the results with a small C function. A standard approach to this prob-
km is shown in the next section.

2.7 Example
From the yacc specification of sampleC we know which terminal symbols must be

found by the lexical analysis routine for this compiler: yylex() needs to find all sym-
bols mentioned in %token statements and all single-character terminal symbols quoted
directly. At present, using the debugging technique introduced in the previous section,
we do not need to worry about the exact function values which must be returned as
encodings of the various terminal symbols.

Unfortunately, this trick will not work on machines such as the MC 6-8000, where pointer values do
not fit into int variables. The library macro assort° is employed to guard against this possibility; it
will abort the program if the given condition is not met.

,t1 A P TER 2 WORD RECOGNITION 33
32 COMPILER CONSTRUCTION CHAPTER 2

The patterns pose no problems, since we will eventually run the C preprocessor
prior to our own compiler. The C preprocessor will remove comments(!), and it makes
the usual #define, #include, and conditional compilation facilities available for our
sample C implementation.

The complete, final lexical analyzer is shown below. DEBUG must be defined when
we compile the lexical analyzer for testing purposes. A few lines in the following file
should therefore be ignored at present; they will be explained in chapter 3 where we
integrate our language recognition program.

re turn tok n (GE) ;

,t1 A P TER 2 WORD RECOGNITION 33
32 COMPILER CONSTRUCTION CHAPTER 2

The patterns pose no problems, since we will eventually run the C preprocessor
prior to our own compiler. The C preprocessor will remove comments(!), and it makes
the usual #define, #include, and conditional compilation facilities available for our
sample C implementation.

The complete, final lexical analyzer is shown below. DEBUG must be defined when
we compile the lexical analyzer for testing purposes. A few lines in the following file
should therefore be ignored at present; they will be explained in chapter 3 where we
integrate our language recognition program.

re turn tok n (GE) ;

return token(Identifier);
}

Assuming that this text is in the file samplee.1, the lexical analyzer is compiled for
testing purposes as follows:

lex samplec.1
cc -DDEBUG lex.yy.c -11 -o lexi

We can run some tests through this lexical analyzer to check if the proper termi-
nal symbols are recognized. The simplest, complete program is as follows:

main ()

For this program the lexical analyzer will return the following:

Identifier is "main'
yytext[0] is '('
yytext [0] is ') •
yytext[0] is "{'
yytext [o] is "}"

We took a very simple approach to recognizing single character operators and at
the same time finding and signaling all illegal input characters: if no other pattern
catches a character, it is returned itself as value of yylexO. In this fashion we obtain
a compact lexical analyzer, and we will later deal with all input errors in a systematic
way.

A few other features of the lexical analyzer are perhaps worth mentioning. lex
has a rudimentary text replacement facility within the patterns. A line of the form

name replacement

in the first part of the lex specification defines a replacement text for a name. The
name can then be specified as

{name}

within a pattern, and the replacement will be substituted. We use this facility often,
usually to make the patterns more transparent and mnemonic.

The first pattern deals with lines of the form

linenumber filename

Such lines are produced by the C preprocessor as position stamps during file inclusion
and selection for conditional compilation. As will be explained in chapter 3, yymark()
is a function which we designed to record the relevant information for our own error
messages.

As promised, we use a simple binary lookup function screen() to recognize
reserved words as special cases of those terminal symbols recognized by the identifier
pattern. screen() is really intended as a. blueprint solution for such a screening prob-
lem. Notice how the token technique is even used in the reserved word table!

s look - up() is a handle for symbol table management which we will use and
explain beginning in chapter 5.

2.8 Problems
1. Write a lex program which will read a Pascal program and print out only (* *)

co
mments, eliminating everything else. Hint: what modifications are needed to the lex

pattern for C comments given in section 2.3?

2. Write a lex pattern which will recognize a Fortran REAL constant, defined as a
string of digits having either a decimal point or an E-type exponent, or both. For an
additional challenge, take into account the fact that in Fortran, white space is allowed
anywhere outside of quote marks, even within the characters of a constant, identifier,
or keyword.

3. Using the pattern in problem 2, write a complete lex program which will read a
Fortran program and convert all REAL constants to DOUBLE PRECISION. The program
should also change all REAL variable declarations to DOUBLE PRECISION. (It is con-
venient that the word REAL occurs in Fortran only as a variable declaration statement,
assuming that it is not foolishly used as a variable name.)

4. Write a complete lex program which will read a program written in your favorite
programming language, recognize all of the keywords in that program, and print them
in upper case letters. All other upper case letters should be converted to lower case.
Hint: use a function like screen() (see section 2.7) to recognize the keywords.

5. Write a complete lex program which will read a program written in your favorite
programming language and produce a cross-reference table of all identifiers in the pro-
gram. Hint: once your lex program recognizes an identifier, it should use suitable C
functions to compare it to a. table of language keywords, which can be ignored, and to
the list of other previously recognized identifiers. New identifiers should be added to
the latter list. Each list entry should be the head of a chain of cross-reference ele-
ments which record values obtained from yylineno. After yylex() terminates, the
cross-reference table can be printed.

return token(Identifier);
}

Assuming that this text is in the file samplee.1, the lexical analyzer is compiled for
testing purposes as follows:

lex samplec.1
cc -DDEBUG lex.yy.c -11 -o lexi

We can run some tests through this lexical analyzer to check if the proper termi-
nal symbols are recognized. The simplest, complete program is as follows:

main ()

For this program the lexical analyzer will return the following:

Identifier is "main'
yytext[0] is '('
yytext [0] is ') •
yytext[0] is "{'
yytext [o] is "}"

We took a very simple approach to recognizing single character operators and at
the same time finding and signaling all illegal input characters: if no other pattern
catches a character, it is returned itself as value of yylexO. In this fashion we obtain
a compact lexical analyzer, and we will later deal with all input errors in a systematic
way.

A few other features of the lexical analyzer are perhaps worth mentioning. lex
has a rudimentary text replacement facility within the patterns. A line of the form

name replacement

in the first part of the lex specification defines a replacement text for a name. The
name can then be specified as

{name}

within a pattern, and the replacement will be substituted. We use this facility often,
usually to make the patterns more transparent and mnemonic.

The first pattern deals with lines of the form

linenumber filename

Such lines are produced by the C preprocessor as position stamps during file inclusion
and selection for conditional compilation. As will be explained in chapter 3, yymark()
is a function which we designed to record the relevant information for our own error
messages.

As promised, we use a simple binary lookup function screen() to recognize
reserved words as special cases of those terminal symbols recognized by the identifier
pattern. screen() is really intended as a. blueprint solution for such a screening prob-
lem. Notice how the token technique is even used in the reserved word table!

s look - up() is a handle for symbol table management which we will use and
explain beginning in chapter 5.

2.8 Problems
1. Write a lex program which will read a Pascal program and print out only (* *)

co
mments, eliminating everything else. Hint: what modifications are needed to the lex

pattern for C comments given in section 2.3?

2. Write a lex pattern which will recognize a Fortran REAL constant, defined as a
string of digits having either a decimal point or an E-type exponent, or both. For an
additional challenge, take into account the fact that in Fortran, white space is allowed
anywhere outside of quote marks, even within the characters of a constant, identifier,
or keyword.

3. Using the pattern in problem 2, write a complete lex program which will read a
Fortran program and convert all REAL constants to DOUBLE PRECISION. The program
should also change all REAL variable declarations to DOUBLE PRECISION. (It is con-
venient that the word REAL occurs in Fortran only as a variable declaration statement,
assuming that it is not foolishly used as a variable name.)

4. Write a complete lex program which will read a program written in your favorite
programming language, recognize all of the keywords in that program, and print them
in upper case letters. All other upper case letters should be converted to lower case.
Hint: use a function like screen() (see section 2.7) to recognize the keywords.

5. Write a complete lex program which will read a program written in your favorite
programming language and produce a cross-reference table of all identifiers in the pro-
gram. Hint: once your lex program recognizes an identifier, it should use suitable C
functions to compare it to a. table of language keywords, which can be ignored, and to
the list of other previously recognized identifiers. New identifiers should be added to
the latter list. Each list entry should be the head of a chain of cross-reference ele-
ments which record values obtained from yylineno. After yylex() terminates, the
cross-reference table can be printed.

38 COMPILER CONSTRUCTION CHAPTER 3

Current state, on top of the stack, and next terminal symbol, produced as needed by a
call to yylex(), select an operation from the transition matrix. The file _;.output
shows the contents of the transition matrix for each acceptable next terminal symbol
and each state. Five types of operations will be found in the transition matrix:

accept
This operation .happens only once, namely when we have send as next termi-

nal symbol, represented as a non-positive value of yylex(), and are getting ready
to successfully complete recognition.
error

This operation is found as element of the transition matrix for all those next
terminal symbols which must not be seen in a particular current state.
shif t new state

This operatioi , . indicates that the next terminal symbol is acceptable in the
current state. The new state is pushed onto the stack and becomes the current
state. We have, in fact, moved on in some configuration.
reduce formulation nu??loer

This operation is present in the transition matrix for all those states which
contain a complete configuration. The formzilation number indicates the complete
configuration; it appears following the configuration in the file y.output. At this
point, we will pop as many states off the stack as the formulation has symbols.
The uncovered state on top of the stack is the new current state. The non-
terminal whose formulation was just completed is used prior to the next terminal
symbol. The actual next terminal symbol will be processed following the non-
terminal symbol just explained.
goto new state

As we just saw, a reduce operation implicitly generates a non-terminal sym-
bol to he used prior to the next terminal symbol. goto is the shift operation for
this non-terminal symbol. A. shift operation always uses and discards the next
terminal symbol; a goto operation uses a non-terminal symbol and leaves the next
terminal symbol for a subsequent shift operation. Otherwise, goto and sr,ift

CHAPTER
3
	LANGUAGE RECOGNITION 39

operate in the same fashion: the new state is pushed onto the stack and becomes
the current state.
To illustrate the operations in context, let us look again at the simple grammar

introduced in chapter 1:
expression

: expression '-' IDENTIFIER
I IDENTIFIER

In chapter 1 we introduced a file y. output which yacc can produce from this
grammar. We will now once again look at this file to demonstrate that it in fact fully
documents the parser. The parser starts out with state 0 as current state on the
stack:

state 0
$accept : _expression Send

IDENTIFIER shift 2
error

expression goto 1

If the next terminal symbol is an IDENTIFIER, we will perform a shift operation,
i.e., we will accept the syinbol and push the new current state 2 onto the stack. Any
other input symbol would be considered in error.

state 2
expression : IDENTIFIER (2)

reduce 2

Without regard to the new next terminal symbol, we will use formulation 2 for a
reduce operation, i.e., since formulation 2 consists of one symbol (IDENTIFIER), we will
pop one state of the stack. Having come this far we uncover state 0.

The reduce operation has just generated expression as a non-terminal symbol,
and the instructions for state C prescribe that we goto state 1 in this situation.
Notice that the next terminal symbol, if any, has thus far not been considered.

state
$accept : expression_ Send
expression : expression- IDENTIFIER

$end accept
- shift 3

. error

In state 1 we consider the symbol following the first IDENTIFIER in the input.
$end, the end of input, or a – operator are anticipated at this point. $end leads to an
accept operation — our parser has recognized IDENTIFIER as a sentence! It would be
instructive for the reader to follow the parser actions in y.ouput for a longer sentence.

One problem remains: how does yylex() know what values yyparse() expects as
representations of the next terminal symbol? A natural convention is to represent sin-
gle characters as terminal symbols by their value in the character set, i.e., the C

38 COMPILER CONSTRUCTION CHAPTER 3

Current state, on top of the stack, and next terminal symbol, produced as needed by a
call to yylex(), select an operation from the transition matrix. The file _;.output
shows the contents of the transition matrix for each acceptable next terminal symbol
and each state. Five types of operations will be found in the transition matrix:

accept
This operation .happens only once, namely when we have send as next termi-

nal symbol, represented as a non-positive value of yylex(), and are getting ready
to successfully complete recognition.
error

This operation is found as element of the transition matrix for all those next
terminal symbols which must not be seen in a particular current state.
shif t new state

This operatioi , . indicates that the next terminal symbol is acceptable in the
current state. The new state is pushed onto the stack and becomes the current
state. We have, in fact, moved on in some configuration.
reduce formulation nu??loer

This operation is present in the transition matrix for all those states which
contain a complete configuration. The formzilation number indicates the complete
configuration; it appears following the configuration in the file y.output. At this
point, we will pop as many states off the stack as the formulation has symbols.
The uncovered state on top of the stack is the new current state. The non-
terminal whose formulation was just completed is used prior to the next terminal
symbol. The actual next terminal symbol will be processed following the non-
terminal symbol just explained.
goto new state

As we just saw, a reduce operation implicitly generates a non-terminal sym-
bol to he used prior to the next terminal symbol. goto is the shift operation for
this non-terminal symbol. A. shift operation always uses and discards the next
terminal symbol; a goto operation uses a non-terminal symbol and leaves the next
terminal symbol for a subsequent shift operation. Otherwise, goto and sr,ift

CHAPTER
3
	LANGUAGE RECOGNITION 39

operate in the same fashion: the new state is pushed onto the stack and becomes
the current state.
To illustrate the operations in context, let us look again at the simple grammar

introduced in chapter 1:
expression

: expression '-' IDENTIFIER
I IDENTIFIER

In chapter 1 we introduced a file y. output which yacc can produce from this
grammar. We will now once again look at this file to demonstrate that it in fact fully
documents the parser. The parser starts out with state 0 as current state on the
stack:

state 0
$accept : _expression Send

IDENTIFIER shift 2
error

expression goto 1

If the next terminal symbol is an IDENTIFIER, we will perform a shift operation,
i.e., we will accept the syinbol and push the new current state 2 onto the stack. Any
other input symbol would be considered in error.

state 2
expression : IDENTIFIER (2)

reduce 2

Without regard to the new next terminal symbol, we will use formulation 2 for a
reduce operation, i.e., since formulation 2 consists of one symbol (IDENTIFIER), we will
pop one state of the stack. Having come this far we uncover state 0.

The reduce operation has just generated expression as a non-terminal symbol,
and the instructions for state C prescribe that we goto state 1 in this situation.
Notice that the next terminal symbol, if any, has thus far not been considered.

state
$accept : expression_ Send
expression : expression- IDENTIFIER

$end accept
- shift 3

. error

In state 1 we consider the symbol following the first IDENTIFIER in the input.
$end, the end of input, or a – operator are anticipated at this point. $end leads to an
accept operation — our parser has recognized IDENTIFIER as a sentence! It would be
instructive for the reader to follow the parser actions in y.ouput for a longer sentence.

One problem remains: how does yylex() know what values yyparse() expects as
representations of the next terminal symbol? A natural convention is to represent sin-
gle characters as terminal symbols by their value in the character set, i.e., the C

Chapter 3
Language Recognition

in this chapter, we will be putting things together: a grammar presented to yacc,
a lexical analyzer specification presented to lez, combined with a rudimentary symbol
table facility, make up a language recognizer. As the example will show, such a recog-

nizer can be used for such things as pretty-printing programs.

To start, we need to understand the workings of the parser which yacc constructs

from a grammar, deposits in the file y.tab.c, and describes in the file y. output. With
this background in place, we show in section 3.2 bow a recognizer for sampleC is actu-

ally put together.
It turns out that we must supply a main() program to drive the recognizer and a

procedure yyerror() which will be called from the parser if an error is discovered in
the input. In section 3.3 we take time out to present a comfortable version of main()
which allows us to optionally invoke the C preprocessor prior to our own compiler. We
also construct a general yyerror() function which gives a clear indication of the posi-
tion of an error in the input to the parser.

Unfortunately, grammars do not always immediately reflect the true intentions of
the language designer. In section 3.4 we therefore discuss how one goes about finding
bugs in the recognizer. It turns out that the file y. output and a debugging option pro-
vided by yacc can be combined into a useful strategy to locate "misunderstandings" in
the grammar.

We will conclude the chapter with a formatter for satnpleC. Before we can actu-
ally implement such a program, we must still solve the problem of passing information
about terminal symbols from the lexical analyzer to the parser. Thus, in section 3.5,
actions enter the picture in yacc specifications, and we demonstrate their flexibility by
constructing a simple desk calculator.

3.1 Parser generation
We explained in section 1.4 how yacc analyzes a grammar. The analysis

amounted to traversing all rules in a highly parallel fashion while simulating arbitrary
terminal symbol acceptance. If we can somehow feed real input to this algorithm,
things must actually get simpler: rather than following numerous possibilities in paral-
lel, yacc can then move through only those states which are selected by the input.
The result must be a device for language recognition, a parser or syntax analyzer.

yacc, in fact, builds a parser while analyzing the grammar. The parser is a push-
down automaton — a stack machine — consisting of a "large" stack to hold current
states, a transition matrix to derive a new state for each possible combination of
current state and next input symbol, a table of user-definable actions which are to be
executed at certain points in the recognition, and finally an interpreter to actually per-
mit execution. The result is packaged as a function yyparse 0, which calls repeatedly
on a lexical analyzer function yylex() to read standard input, and which returns zero
or one to indicate whether or not a sentence was presented as input file.

Chapter 3
Language Recognition

in this chapter, we will be putting things together: a grammar presented to yacc,
a lexical analyzer specification presented to lez, combined with a rudimentary symbol
table facility, make up a language recognizer. As the example will show, such a recog-

nizer can be used for such things as pretty-printing programs.

To start, we need to understand the workings of the parser which yacc constructs

from a grammar, deposits in the file y.tab.c, and describes in the file y. output. With
this background in place, we show in section 3.2 bow a recognizer for sampleC is actu-

ally put together.
It turns out that we must supply a main() program to drive the recognizer and a

procedure yyerror() which will be called from the parser if an error is discovered in
the input. In section 3.3 we take time out to present a comfortable version of main()
which allows us to optionally invoke the C preprocessor prior to our own compiler. We
also construct a general yyerror() function which gives a clear indication of the posi-
tion of an error in the input to the parser.

Unfortunately, grammars do not always immediately reflect the true intentions of
the language designer. In section 3.4 we therefore discuss how one goes about finding
bugs in the recognizer. It turns out that the file y. output and a debugging option pro-
vided by yacc can be combined into a useful strategy to locate "misunderstandings" in
the grammar.

We will conclude the chapter with a formatter for satnpleC. Before we can actu-
ally implement such a program, we must still solve the problem of passing information
about terminal symbols from the lexical analyzer to the parser. Thus, in section 3.5,
actions enter the picture in yacc specifications, and we demonstrate their flexibility by
constructing a simple desk calculator.

3.1 Parser generation
We explained in section 1.4 how yacc analyzes a grammar. The analysis

amounted to traversing all rules in a highly parallel fashion while simulating arbitrary
terminal symbol acceptance. If we can somehow feed real input to this algorithm,
things must actually get simpler: rather than following numerous possibilities in paral-
lel, yacc can then move through only those states which are selected by the input.
The result must be a device for language recognition, a parser or syntax analyzer.

yacc, in fact, builds a parser while analyzing the grammar. The parser is a push-
down automaton — a stack machine — consisting of a "large" stack to hold current
states, a transition matrix to derive a new state for each possible combination of
current state and next input symbol, a table of user-definable actions which are to be
executed at certain points in the recognition, and finally an interpreter to actually per-
mit execution. The result is packaged as a function yyparse 0, which calls repeatedly
on a lexical analyzer function yylex() to read standard input, and which returns zero
or one to indicate whether or not a sentence was presented as input file.

40 COMPILER CONSTRUCTION CHAPTER 3

constant 'x' will represent the terminal symbol 'x' in the grammar presented to yacc,
For a terminal symbol name, introduced by a %token statement in yacc, however,

yyparse 0 and yylex() must use the same integer value as a representation; this value
must be distinguishable from the representation of single characters.

yacc aids in defining suitable values. The command

yacc -d grammar,y

instructs yacc to produce a file y.tab.h containing one C preprocessor #define state-
ment for each name introduced as %token. 1 The replacement text for each name is a
unique integer constant, starting at 257.

The file y.tab.h is already present within the file y.tab.c, which is also produced

by yacc, and which contains the function yyparse(). The same terminal symbol
representations can thus be used for yylex() by including y.tab.h with a C preproces-
sor #include statement in the definition of the lexical analysis function.

This requires, however, that names used in the grammar for terminal symbols and
introduced through %token statements cannot be reserved words in C. The lexical
analysis function yylex() can be written by hand, or it can be produced by (ex as dis-
cussed in chapter 2.

3.2 Example
In section 1.6, we presented sampleC in a form acceptable to yacc. Assume that

this definition is in a file sarnplec.y. In section 2.7, we showed the file samplec.1 con-

taining a lexical analyzer for the terminal symbols of sampleC. We can now put both
functions together to obtain a parser for sample C.

If we do not define DEBUG while compiling the lexical analyzer, the C preprocessor
statements

#include 'y.tab.h"
#define token(x) x

in samplec.1 will take effect. The first causes the terminal symbol representations pro-
duced by yacc in y.tab.h to be used in compiling yylex(). The second statement dis-
ables our debugging technique for the lexical analyzer: for debugging, we returned the
terminal symbol names via

#define token(x) int ux°

as printable C strings. Now we return the values for those names, as defined in

y.tab.h.
The very last pattern in the lexical analyzer:

{other} return token(yytext [OD ;

takes care of returning the character values for all unrecognized single character termi-
nal symbols. This pattern is placed last so that a single letter or digit is recognized by

I Terminal symbol names can also be introduced through a first appearance in %lert, %right, o
%nonassoc statements. We prefer to always define terminal symbols first with %token.

CHAPTER 3 LANGUAGE RECOGNITION 41

earlier patterns as an Identifier or a Constant.

We produce the recognizer with the following commands:

lex samplec.1
yacc -d samplec.y
cc lex.yy.c y.tab.c - 11

— not quite. If we compile in this fashion, we pick the main() routine from
and as we saw in chapter 2, this routine will only call yylex() once and
rse not at all! We need to supply a different main() routine such as

,t 4t 1 hh c ee t u pi e a ai l r l s y liemb r y paaryianr y,

()
{

yyparse();
}

One more routine must also be provided by the user of yam When the parser
executes an error operation in the transition matrix, there is a syntax error in the
input file. At this point, an error message should be written, and yyparse () therefore
issues the call

yperror(usyntax errors);

It is up to us to program a suitable yyerror0 routine indicating the input position,
etc. A trivial solution is the following:

#include <stdio.h>

yyerror(s)
char * s;

{

fputs(s, stderr), putc('\n', stderr);
}

We need not count the individual errors. This is handled automatically by yyparse ()in the int variable yynerrs.

If those two routines are in a file extra.c, we can complete the compilation begun
above with the command

cc extra.c lex,yy.o y.tab.o -11

The resulting recognizer in file a.out can be executed as follows:
a.out
main () { }

- D

Nothing happens, and this is as it should be:
main 0 {

is a very small, legal sampleC program. Our recognizer will produce nothing at all ifthe input is in factac sentence. If it is not, we will be faced by a curt syntax error.

40 COMPILER CONSTRUCTION CHAPTER 3

constant 'x' will represent the terminal symbol 'x' in the grammar presented to yacc,
For a terminal symbol name, introduced by a %token statement in yacc, however,

yyparse 0 and yylex() must use the same integer value as a representation; this value
must be distinguishable from the representation of single characters.

yacc aids in defining suitable values. The command

yacc -d grammar,y

instructs yacc to produce a file y.tab.h containing one C preprocessor #define state-
ment for each name introduced as %token. 1 The replacement text for each name is a
unique integer constant, starting at 257.

The file y.tab.h is already present within the file y.tab.c, which is also produced

by yacc, and which contains the function yyparse(). The same terminal symbol
representations can thus be used for yylex() by including y.tab.h with a C preproces-
sor #include statement in the definition of the lexical analysis function.

This requires, however, that names used in the grammar for terminal symbols and
introduced through %token statements cannot be reserved words in C. The lexical
analysis function yylex() can be written by hand, or it can be produced by (ex as dis-
cussed in chapter 2.

3.2 Example
In section 1.6, we presented sampleC in a form acceptable to yacc. Assume that

this definition is in a file sarnplec.y. In section 2.7, we showed the file samplec.1 con-

taining a lexical analyzer for the terminal symbols of sampleC. We can now put both
functions together to obtain a parser for sample C.

If we do not define DEBUG while compiling the lexical analyzer, the C preprocessor
statements

#include 'y.tab.h"
#define token(x) x

in samplec.1 will take effect. The first causes the terminal symbol representations pro-
duced by yacc in y.tab.h to be used in compiling yylex(). The second statement dis-
ables our debugging technique for the lexical analyzer: for debugging, we returned the
terminal symbol names via

#define token(x) int ux°

as printable C strings. Now we return the values for those names, as defined in

y.tab.h.
The very last pattern in the lexical analyzer:

{other} return token(yytext [OD ;

takes care of returning the character values for all unrecognized single character termi-
nal symbols. This pattern is placed last so that a single letter or digit is recognized by

I Terminal symbol names can also be introduced through a first appearance in %lert, %right, o
%nonassoc statements. We prefer to always define terminal symbols first with %token.

CHAPTER 3 LANGUAGE RECOGNITION 41

earlier patterns as an Identifier or a Constant.

We produce the recognizer with the following commands:

lex samplec.1
yacc -d samplec.y
cc lex.yy.c y.tab.c - 11

— not quite. If we compile in this fashion, we pick the main() routine from
and as we saw in chapter 2, this routine will only call yylex() once and
rse not at all! We need to supply a different main() routine such as

,t 4t 1 hh c ee t u pi e a ai l r l s y liemb r y paaryianr y,

()
{

yyparse();
}

One more routine must also be provided by the user of yam When the parser
executes an error operation in the transition matrix, there is a syntax error in the
input file. At this point, an error message should be written, and yyparse () therefore
issues the call

yperror(usyntax errors);

It is up to us to program a suitable yyerror0 routine indicating the input position,
etc. A trivial solution is the following:

#include <stdio.h>

yyerror(s)
char * s;

{

fputs(s, stderr), putc('\n', stderr);
}

We need not count the individual errors. This is handled automatically by yyparse ()in the int variable yynerrs.

If those two routines are in a file extra.c, we can complete the compilation begun
above with the command

cc extra.c lex,yy.o y.tab.o -11

The resulting recognizer in file a.out can be executed as follows:
a.out
main () { }

- D

Nothing happens, and this is as it should be:
main 0 {

is a very small, legal sampleC program. Our recognizer will produce nothing at all ifthe input is in factac sentence. If it is not, we will be faced by a curt syntax error.

42 COMPILER CONSTRUCTION CHAPTER 3 CHAPTER 3 LANGUAGE RECOGNITION 43

3.3 Auxiliary functions
The main() and yyerror() routines shown in the preceding section are of the

software engineering quality of lex. User-friendly compilers should pinpoint input
errors at least at the line number level, and the error messages should be more tha n
just syntax error. In this section we discuss a general approach to this problem.

We begin with the main() routine. It turns out that it is quite convenient to
always be able to invoke the C preprocessor to obtain standard file inclusion, t ext
replacement, and conditional compilation facilities. Also, the C preprocessor will
remove C-style comments, unless the —C option is specified. Our standard main() rou-
tine will invoke the C preprocessor if at least one of the option arguments known t o

the preprocessor is used; we can thus always provoke preprocessing through the — 1 3 or
—E option:

The routine checks all arguments. Options always start with —. If there is an
option known to the C preprocessor, the preprocessor will be invoked through our
function cpp() described below, which is given access to all the arguments. Following
the options, there may be one file name argument, which will be opened as the source
file, After argument processing, main() calls yyparse() and propagates the return
value as exit() code of the process. As a test bed, this routine is quite convenient.
Wh en a compiler nears completion, the routine is usually extended with more option

and usage information output for illegal arguments.processing
The routine cppO, which actually runs the C preprocessor, is somewhat involved.

An elegant solution which avoids having temporary files hinges upon being able to con-
nect a pipeline so that yylex() is implicitly forced to read from it. By definition,

yy lex() reads single characters by calling a routine input() defined as a macro by lex.
It turns out that this routine in turn reads from the file pointer yyin which is exter-
nally accessible. This can be used in cpp():

42 COMPILER CONSTRUCTION CHAPTER 3 CHAPTER 3 LANGUAGE RECOGNITION 43

3.3 Auxiliary functions
The main() and yyerror() routines shown in the preceding section are of the

software engineering quality of lex. User-friendly compilers should pinpoint input
errors at least at the line number level, and the error messages should be more tha n
just syntax error. In this section we discuss a general approach to this problem.

We begin with the main() routine. It turns out that it is quite convenient to
always be able to invoke the C preprocessor to obtain standard file inclusion, t ext
replacement, and conditional compilation facilities. Also, the C preprocessor will
remove C-style comments, unless the —C option is specified. Our standard main() rou-
tine will invoke the C preprocessor if at least one of the option arguments known t o

the preprocessor is used; we can thus always provoke preprocessing through the — 1 3 or
—E option:

The routine checks all arguments. Options always start with —. If there is an
option known to the C preprocessor, the preprocessor will be invoked through our
function cpp() described below, which is given access to all the arguments. Following
the options, there may be one file name argument, which will be opened as the source
file, After argument processing, main() calls yyparse() and propagates the return
value as exit() code of the process. As a test bed, this routine is quite convenient.
Wh en a compiler nears completion, the routine is usually extended with more option

and usage information output for illegal arguments.processing
The routine cppO, which actually runs the C preprocessor, is somewhat involved.

An elegant solution which avoids having temporary files hinges upon being able to con-
nect a pipeline so that yylex() is implicitly forced to read from it. By definition,

yy lex() reads single characters by calling a routine input() defined as a macro by lex.
It turns out that this routine in turn reads from the file pointer yyin which is exter-
nally accessible. This can be used in cpp():

44 COMPILER CONSTRUCTION CHAPTER 3
CHAPTER 3

LANGUAGE RECOGNITION 45

4

cpp() first measures the string length of all options known to the C preprocessor.
It then acquires memory for a composite string and builds a command to call the C
preprocessor with those options. Using popen() from the standard library, the C
preprocessor is connected as a filter to yyin, the command string is freed, and cppo
returns zero it all this has worked.

Turning now to error reporting, we first present a standard header for messages
giving a sensible amount of positioning information. We would like to include the
name of the source file, especially when files are preprocessed by the C preprocessor.
The current line number yylineno is maintained correctly by lex as long as no prepro-
cessing takes place. The current or next token can be found in yytext [] but this
token may be a line feed; at the end of the source file it might even be empty. In both
cases, the actual line number of the error is less than yylineno. A lot of information
can be provided in an automated fashion, but it needs to be carefully formatted:

We define yyerfp as a separate file pointer, which is used for all messages. The
compiler designer can thus still choose to emit the messages as standard output (the
default), or to write them to a separate file simply by assigning a different file pointer
to yyerfp.

yymarx() is a routine which extracts source file and line information from the
position stamps emitted by the C preprocessor; see section 2.7.

If all possible parts are present, the message header produced by yywhere() would
appear as follows:

sonrce.c, line 10 near •badsymboll:

where bacleymbol usually is the symbol following the error.
We are now ready to write a standard yyerror() routine which better pinpoints

the location of an error

YYnerrs is a counter which is maintained by yacc; this counter is incremented
once after each call to yyerror() is issued. Especially in a long compilation protocol,

.1

44 COMPILER CONSTRUCTION CHAPTER 3
CHAPTER 3

LANGUAGE RECOGNITION 45

4

cpp() first measures the string length of all options known to the C preprocessor.
It then acquires memory for a composite string and builds a command to call the C
preprocessor with those options. Using popen() from the standard library, the C
preprocessor is connected as a filter to yyin, the command string is freed, and cppo
returns zero it all this has worked.

Turning now to error reporting, we first present a standard header for messages
giving a sensible amount of positioning information. We would like to include the
name of the source file, especially when files are preprocessed by the C preprocessor.
The current line number yylineno is maintained correctly by lex as long as no prepro-
cessing takes place. The current or next token can be found in yytext [] but this
token may be a line feed; at the end of the source file it might even be empty. In both
cases, the actual line number of the error is less than yylineno. A lot of information
can be provided in an automated fashion, but it needs to be carefully formatted:

We define yyerfp as a separate file pointer, which is used for all messages. The
compiler designer can thus still choose to emit the messages as standard output (the
default), or to write them to a separate file simply by assigning a different file pointer
to yyerfp.

yymarx() is a routine which extracts source file and line information from the
position stamps emitted by the C preprocessor; see section 2.7.

If all possible parts are present, the message header produced by yywhere() would
appear as follows:

sonrce.c, line 10 near •badsymboll:

where bacleymbol usually is the symbol following the error.
We are now ready to write a standard yyerror() routine which better pinpoints

the location of an error

YYnerrs is a counter which is maintained by yacc; this counter is incremented
once after each call to yyerror() is issued. Especially in a long compilation protocol,

.1

48 COMPILER CONSTRUCTION CHAPTER 3

it is quite helpful if the error messages are sequentially numbered.

3.4 Debugging the parser
The parser is ready for testing. Unfortunately, nothing at all will happen if we

present a correct input file to our parser for processing. If the input file is incorrect,
we will receive one more or less useful error message. If we believe that the input fil e
is correct, but the error message appears anyhow, things can get messy: we need to dis-
cover why yyparse() decided to issue a call to the error message routine.

The technique outlined in section 2.6 enables us to verify that the lexical analyzer
is not at fault, i.e., that yyparse() actually received the symbols which we assume to
be in the input file. Once this has been verified, we can use a debugging facility pro-
vided by yacc: if we compile the parser y.tab.e with the symbol YYDEBUG defined

cc -DYYDEBUG y.tab.c lem.yy.c main.c yyerror.c -11

the resulting yyparse () function contains a tracing option which can be enabled by
setting the int variable yydebug to a nonzero value. yydebug is a global variable and
can for example be set with adb:

adb -w a.ont
yydebug?w 1

Sq

We illustrate the results of tracing with slightly modified versions of the simple
expression grammar introduced in section 1.4. Here is a rudimentary lexical analyzer:

#innlude "y.tab.h°

Just like a lex specification, the input file for yacc may also contain a third part pre-
This

i
part copied into y.tab.e; here it contains a main() routine which

will esdetby
%%.

yydebug ig if it exists. For illustration purposes, the return value of yyparse 0 is
shown.

yacc will produce the following y. output file for this parser:

ne statistical information has been omitted.
Assume that the inputs to lex and yacc are in the files exp.l and exp.y. We con-

struct the parser and execute it with a correct input:

48 COMPILER CONSTRUCTION CHAPTER 3

it is quite helpful if the error messages are sequentially numbered.

3.4 Debugging the parser
The parser is ready for testing. Unfortunately, nothing at all will happen if we

present a correct input file to our parser for processing. If the input file is incorrect,
we will receive one more or less useful error message. If we believe that the input fil e
is correct, but the error message appears anyhow, things can get messy: we need to dis-
cover why yyparse() decided to issue a call to the error message routine.

The technique outlined in section 2.6 enables us to verify that the lexical analyzer
is not at fault, i.e., that yyparse() actually received the symbols which we assume to
be in the input file. Once this has been verified, we can use a debugging facility pro-
vided by yacc: if we compile the parser y.tab.e with the symbol YYDEBUG defined

cc -DYYDEBUG y.tab.c lem.yy.c main.c yyerror.c -11

the resulting yyparse () function contains a tracing option which can be enabled by
setting the int variable yydebug to a nonzero value. yydebug is a global variable and
can for example be set with adb:

adb -w a.ont
yydebug?w 1

Sq

We illustrate the results of tracing with slightly modified versions of the simple
expression grammar introduced in section 1.4. Here is a rudimentary lexical analyzer:

#innlude "y.tab.h°

Just like a lex specification, the input file for yacc may also contain a third part pre-
This

i
part copied into y.tab.e; here it contains a main() routine which

will esdetby
%%.

yydebug ig if it exists. For illustration purposes, the return value of yyparse 0 is
shown.

yacc will produce the following y. output file for this parser:

ne statistical information has been omitted.
Assume that the inputs to lex and yacc are in the files exp.l and exp.y. We con-

struct the parser and execute it with a correct input:

50 COMPILER CONSTRUCTION CHAPTER 3 crIkP TER 3 LANGUAGE RECOGNITION 51

50 COMPILER CONSTRUCTION CHAPTER 3 crIkP TER 3 LANGUAGE RECOGNITION 51

CHAPTER 3 LANGUAGE RECOGNITION 5352 COMPILER CONSTRUCTION CHAI 'TER 3

The library function atoi0 computes the integer value of a string of digits. This
value is recorded in yylval as the actual value of the Constant.

The value to be pushed during a goto operation, i.e., during acceptance of a non-
term inal symbol produced by a reduce operation, is taken from the global variable

yyva l
defined by yacc; it can be set from within the action executed during the

reduce operation.
As the example shows, the action usually needs to access the values placed on the

value stack during acceptance of the symbols for the formulation which is about to be
reduced. The notation $1 within an action represents the value for the ith symbol in
the formulation presently on the value stack; the notation $$ represents yyval, i.e., it
represents the value which will be pushed onto the value stack during acceptance of
the non-terminal symbol by the goto operation following the reduction.

The action
{ $$ = $1; }

is supplied by default. It states that the value stack entry of the first symbol in the
formulation will become the value stack entry of the non-terminal symbol to which the
formulation is reduced.

Our desk calculator works as advertised. For each Constant, the lexical analyzer
provides the actual value in yylval which yyparse O places on the value stack. Once
a formulation such as

expression : expression '-' expression

is reduced, the associated action
$$ = $1 - $3; }

computes the appropriate difference, which is pushed onto the value stack following
the reduction. The printf 0 function call at the top shows the value of each expres-
sion line presented to the desk calculator.

3.6 Typing the value stack
yylval, yyval, and the value stack can be used to hold a large variety of informa-

tion. By default the value stack consists of int elements. For our desk calculator
double elements may actually be more interesting. In a compiler, yylval will most
likely hold a pointer to a symbol table entry for each "large" terminal symbol. Unfor-
tunately, double values — and on certain machines even pointers cannot be stored
and retrieved from int variables.

The value stack maintained by the parser can be typed from within a yaccspecification. In this section we will describe a way of typing the value stack which isentirely transparent to yacc itself; a more elaborate typing facility which prompts yaccto perform rather extensive semantic checks will be discussed in section 5.4.
ts fisnd y ite y ifi ot

definition

lnvia. l,yycpvapaibed

in

yyval,

be supplied

the value stack are defined in the parser to be of the type YYS-rP
E. YYSTYPE itself is defined with the C preprocesor as int, unless an explicit

supplied ptphleiedfirasst
follows:

yacc specification. Transparent to yacc,
to

n

can

CHAPTER 3 LANGUAGE RECOGNITION 5352 COMPILER CONSTRUCTION CHAI 'TER 3

The library function atoi0 computes the integer value of a string of digits. This
value is recorded in yylval as the actual value of the Constant.

The value to be pushed during a goto operation, i.e., during acceptance of a non-
term inal symbol produced by a reduce operation, is taken from the global variable

yyva l
defined by yacc; it can be set from within the action executed during the

reduce operation.
As the example shows, the action usually needs to access the values placed on the

value stack during acceptance of the symbols for the formulation which is about to be
reduced. The notation $1 within an action represents the value for the ith symbol in
the formulation presently on the value stack; the notation $$ represents yyval, i.e., it
represents the value which will be pushed onto the value stack during acceptance of
the non-terminal symbol by the goto operation following the reduction.

The action
{ $$ = $1; }

is supplied by default. It states that the value stack entry of the first symbol in the
formulation will become the value stack entry of the non-terminal symbol to which the
formulation is reduced.

Our desk calculator works as advertised. For each Constant, the lexical analyzer
provides the actual value in yylval which yyparse O places on the value stack. Once
a formulation such as

expression : expression '-' expression

is reduced, the associated action
$$ = $1 - $3; }

computes the appropriate difference, which is pushed onto the value stack following
the reduction. The printf 0 function call at the top shows the value of each expres-
sion line presented to the desk calculator.

3.6 Typing the value stack
yylval, yyval, and the value stack can be used to hold a large variety of informa-

tion. By default the value stack consists of int elements. For our desk calculator
double elements may actually be more interesting. In a compiler, yylval will most
likely hold a pointer to a symbol table entry for each "large" terminal symbol. Unfor-
tunately, double values — and on certain machines even pointers cannot be stored
and retrieved from int variables.

The value stack maintained by the parser can be typed from within a yaccspecification. In this section we will describe a way of typing the value stack which isentirely transparent to yacc itself; a more elaborate typing facility which prompts yaccto perform rather extensive semantic checks will be discussed in section 5.4.
ts fisnd y ite y ifi ot

definition

lnvia. l,yycpvapaibed

in

yyval,

be supplied

the value stack are defined in the parser to be of the type YYS-rP
E. YYSTYPE itself is defined with the C preprocesor as int, unless an explicit

supplied ptphleiedfirasst
follows:

yacc specification. Transparent to yacc,
to

n

can

CHAPTER 3 LANGUAGE RECOGNITION 63

One problem has not been discussed: this formatter only deals with a source file
that has been preprocessed, i.e., which contains no comments! In a realistic implemen-
tation, the lexical analyzer would have to collect the comments, and pass them to the
formatting routine, probably attached to terminal symbols. This involves a significant
amount of bookkeeping, and the problem of formatting comments is nontrivial.

1;
}

In both cases, cond(IN), is called during the reduction of if_prefix and it sets the

left margin inward. In the first case, statement turns out to be an expression and

the indentation remains. In the second case, statement will be a compound_statement

and therefore lr will be reduced for the left brace before any other reduction takes
place. The action during reduction of ir calls cond(EX) ; which notes from condflag

that a call cond (IN) : has just taken place. The left brace can therefore be exdented

and placed underneath if. As promised, static variables are used to pass context
information between neighboring reductions. The technique has little to recommend it
other than that it avoids a lot of devious rewriting of the grammar itself.

The formulation of compound_statement shows a second method of specifying

actions:
compound_statement

: lr declarations
{ 111(AT), }

statements rr

Our formatting style requires that an empty line follow declarations. The call

nl(AT), will issue the blank line. An action can be placed anywhere in a formulation;
if it does not follow the entire formulation, yacc will generate an anonymous non-
terminal symbol in place of the action and define the non-terminal symbol with a
empty formulation followed by the action. The formulation shown above is really
expanded as follows:

compound_statement
lr declarations $$123 statements rr

$$123
/* empty */

{ n1 (AT) ; }

Actions cannot be placed entirely at will in this fashion; the anonymous non-terminal
symbols can introduce conflicts.

3.8 Problems

1. Extend the desk calculator example so that it uses variables. A very simple exten-
sion is to predefine twenty-six variables, a through z, and the storage in which to save
their values. A more interesting problem is to allow arbitrary variable names; in this
case, storage both for the strings that name the variables and for their values should
be acquired dynamically.
2. The formatting style used in section 3.7 may not be your favorite format. Modify
the formatting program given in that section so that it conforms to your preferredstandards.
3. Write a formatting program for a subset of Pascal, perhaps the one used for prob-
lem 1 of section 1.8.
4. The formatter given in section 3.7 produces a blank line following each function.
This means that if the last definition in a file is a function_ definition, there will
be a useless blank line as the last line of the output. Change the program to suppress
this extra blank line. Hint: it may be easier to control the blank line if you emit it
before each function, rather than after.
5. Write a formatting program for EBNF. It should display an EBNF grammar in a
standard format, such as the one suggested in section 1.7. It is convenient to start
with the solution to problem 3 of section 1.8.
6. Write a program which will convert a grammar written in EBNF to BNF. Hint:for reasons of efficiency internal to yacc, use left-recursion for iterations. See the dis-
cussion of the treatment of its stack by yacc in the left- and right-recursive definitionsof

expression : expression '-' expression

in section 3.4.
7. Modify the standard /usr/lib/yaccpar to produce the trace format shown in this
chapter. For some important hints, see section A.8 in the appendix.
8. In the last paragraph of the previous section, it was mentioned that inclusion of
comments in the formatted output is somewhat difficult. An approach to the solution
of this problem was also suggested. Modify the example from that section, or the pro-
gram from question 2, 3, or 4 above, to display comments. Suggestion: if a comment
is the first "thing" on a line, display it at the beginning of the line (perhaps at the
current indenting level). If the comment follows something else on the same line,
display it at a user-settable or predetermined "tab" position.

9. Using techniques similar to those used in solving the previous problem, write a pro-
gram which will display preprocessor lines (lines with # in column 1) as part of a pro-
gram.

CHAPTER 3 LANGUAGE RECOGNITION 63

One problem has not been discussed: this formatter only deals with a source file
that has been preprocessed, i.e., which contains no comments! In a realistic implemen-
tation, the lexical analyzer would have to collect the comments, and pass them to the
formatting routine, probably attached to terminal symbols. This involves a significant
amount of bookkeeping, and the problem of formatting comments is nontrivial.

1;
}

In both cases, cond(IN), is called during the reduction of if_prefix and it sets the

left margin inward. In the first case, statement turns out to be an expression and

the indentation remains. In the second case, statement will be a compound_statement

and therefore lr will be reduced for the left brace before any other reduction takes
place. The action during reduction of ir calls cond(EX) ; which notes from condflag

that a call cond (IN) : has just taken place. The left brace can therefore be exdented

and placed underneath if. As promised, static variables are used to pass context
information between neighboring reductions. The technique has little to recommend it
other than that it avoids a lot of devious rewriting of the grammar itself.

The formulation of compound_statement shows a second method of specifying

actions:
compound_statement

: lr declarations
{ 111(AT), }

statements rr

Our formatting style requires that an empty line follow declarations. The call

nl(AT), will issue the blank line. An action can be placed anywhere in a formulation;
if it does not follow the entire formulation, yacc will generate an anonymous non-
terminal symbol in place of the action and define the non-terminal symbol with a
empty formulation followed by the action. The formulation shown above is really
expanded as follows:

compound_statement
lr declarations $$123 statements rr

$$123
/* empty */

{ n1 (AT) ; }

Actions cannot be placed entirely at will in this fashion; the anonymous non-terminal
symbols can introduce conflicts.

3.8 Problems

1. Extend the desk calculator example so that it uses variables. A very simple exten-
sion is to predefine twenty-six variables, a through z, and the storage in which to save
their values. A more interesting problem is to allow arbitrary variable names; in this
case, storage both for the strings that name the variables and for their values should
be acquired dynamically.
2. The formatting style used in section 3.7 may not be your favorite format. Modify
the formatting program given in that section so that it conforms to your preferredstandards.
3. Write a formatting program for a subset of Pascal, perhaps the one used for prob-
lem 1 of section 1.8.
4. The formatter given in section 3.7 produces a blank line following each function.
This means that if the last definition in a file is a function_ definition, there will
be a useless blank line as the last line of the output. Change the program to suppress
this extra blank line. Hint: it may be easier to control the blank line if you emit it
before each function, rather than after.
5. Write a formatting program for EBNF. It should display an EBNF grammar in a
standard format, such as the one suggested in section 1.7. It is convenient to start
with the solution to problem 3 of section 1.8.
6. Write a program which will convert a grammar written in EBNF to BNF. Hint:for reasons of efficiency internal to yacc, use left-recursion for iterations. See the dis-
cussion of the treatment of its stack by yacc in the left- and right-recursive definitionsof

expression : expression '-' expression

in section 3.4.
7. Modify the standard /usr/lib/yaccpar to produce the trace format shown in this
chapter. For some important hints, see section A.8 in the appendix.
8. In the last paragraph of the previous section, it was mentioned that inclusion of
comments in the formatted output is somewhat difficult. An approach to the solution
of this problem was also suggested. Modify the example from that section, or the pro-
gram from question 2, 3, or 4 above, to display comments. Suggestion: if a comment
is the first "thing" on a line, display it at the beginning of the line (perhaps at the
current indenting level). If the comment follows something else on the same line,
display it at a user-settable or predetermined "tab" position.

9. Using techniques similar to those used in solving the previous problem, write a pro-
gram which will display preprocessor lines (lines with # in column 1) as part of a pro-
gram.

Chapter 4
Error Recovery

Real compilers deal mostly with incorrect input files. This chapter discusses bow
we can make our parser robust against input errors. We first use tracing to show what
happens inside the parser when an input error is encountered. It turns out that thus
far the parser would "fall off the stack" during an error operation. However, yacc
provides a special error terminal symbol to influence the parsing algorithm. In section
4.2 we demonstrate what happens if a parser is properly prepared to cope with an
error.

The problem in general is to build robust grammars using error symbols in for-
mulations added to some rules. Fortunately we found a straightforward way to extend
a number of constructs frequently found in programming languages in such a way that
they cope with any error. Our technique is presented in section 4.3, and in section 4.5
we show how a robust recognizes for sampleC is defined, and how we can fully demon-
strate its behavior in case of erroneous inputs.

4.1 The problem
Thus far, our parser can recognize and perhaps manipulate a sentence, i.e., a

correct input file. One of the examples in section 3.4 showed what happens if we
present the incorrect input

a - -

to a parser based on the rule
expression

: expression '-' expression
I IDENTIFIER

with — defined to be left-associative. yyparse falls off the stack:

The second — in state 3 leads to an error operation in the transition matrix:
state 3

expression : expression -_expression

IDENTIFIER shift 2

Chapter 4
Error Recovery

Real compilers deal mostly with incorrect input files. This chapter discusses bow
we can make our parser robust against input errors. We first use tracing to show what
happens inside the parser when an input error is encountered. It turns out that thus
far the parser would "fall off the stack" during an error operation. However, yacc
provides a special error terminal symbol to influence the parsing algorithm. In section
4.2 we demonstrate what happens if a parser is properly prepared to cope with an
error.

The problem in general is to build robust grammars using error symbols in for-
mulations added to some rules. Fortunately we found a straightforward way to extend
a number of constructs frequently found in programming languages in such a way that
they cope with any error. Our technique is presented in section 4.3, and in section 4.5
we show how a robust recognizes for sampleC is defined, and how we can fully demon-
strate its behavior in case of erroneous inputs.

4.1 The problem
Thus far, our parser can recognize and perhaps manipulate a sentence, i.e., a

correct input file. One of the examples in section 3.4 showed what happens if we
present the incorrect input

a - -

to a parser based on the rule
expression

: expression '-' expression
I IDENTIFIER

with — defined to be left-associative. yyparse falls off the stack:

The second — in state 3 leads to an error operation in the transition matrix:
state 3

expression : expression -_expression

IDENTIFIER shift 2

CHAPTER 466 COMPILER CONSTRUCTION CHAPTER 4
ERROR RECOVERY 67

error

expression goto 4

Once the error message has been issued, yyparse() seems to remove all states from the
stack — obviously looking for something. Since the stack is cleared in the process,

yyparse0 returns with a function value of one, and the recognition procedure is
aborted on encountering the first error in the input!

4.2 Basic techniques
Our lexical analyzers usually have the following entry at the end of the pattern

table:
return yytextf0];

The pattern is intended to pick up all single character operators. However, this entry
will return the integer value of any single character as function value of yylex(), i.e.,
as a terminal symbol, as long as the character has not been recognized by an earlier
pattern.

Unexpected input characters are thus passed from the lexical analyzer to the
parser as if they were legitimate terminal symboLs, represented by single characters.
This results in a uniform treatment of all input errors. An alternative approach at
this level would be to have the lexical analyzer report its own problems, and then to
ignore illegal characters; however, in this case it is hard to avoid cascades of messages.

At the symbol level, we can add formulations to the grammar that are probable
although illegal. This technique makes our recognizer more tolerant than the language
designer intended it to be. While we can forgive the most frequent user errors in this
fashion, the technique does not have a high probability of complete success — it is
nearly impossible to exactly predict an incorrect input sequence.

A better approach is to treat an input error as a special case of a terminal symbol:
error is a predefined terminal symbol for yacc. error can be used in formulations
just like a terminal symbol; however, error is (normally) not produced by a call to the
lexical analyzer. Instead, the parser believes error to be the next terminal symbol if
the actual next terminal symbol leads to an error operation in the transition matrix
for the current state. Once the error symbol has been internally generated in this
fashion, and the obligatory error message issued, yy - parse0 will set out to accept
error almost like any other symbol.

Consider the following modification to the rule above:

expression
: expression '-' expression
I IDENTIFIER
I error

A parser based on this grammar will silently accept erroneous input. To under-
stand why this is the case, we need to once again follow the traces of a few examples.

yacc will produce the following y.output file:

state 0
$accept : _expression $end

error shift 3
IDENTIFIER shift 2

. error

expression goto 1

state 1

$accept : expression Send
expression : expression_- expression

Send accept
- shift 4

CHAPTER 466 COMPILER CONSTRUCTION CHAPTER 4
ERROR RECOVERY 67

error

expression goto 4

Once the error message has been issued, yyparse() seems to remove all states from the
stack — obviously looking for something. Since the stack is cleared in the process,

yyparse0 returns with a function value of one, and the recognition procedure is
aborted on encountering the first error in the input!

4.2 Basic techniques
Our lexical analyzers usually have the following entry at the end of the pattern

table:
return yytextf0];

The pattern is intended to pick up all single character operators. However, this entry
will return the integer value of any single character as function value of yylex(), i.e.,
as a terminal symbol, as long as the character has not been recognized by an earlier
pattern.

Unexpected input characters are thus passed from the lexical analyzer to the
parser as if they were legitimate terminal symboLs, represented by single characters.
This results in a uniform treatment of all input errors. An alternative approach at
this level would be to have the lexical analyzer report its own problems, and then to
ignore illegal characters; however, in this case it is hard to avoid cascades of messages.

At the symbol level, we can add formulations to the grammar that are probable
although illegal. This technique makes our recognizer more tolerant than the language
designer intended it to be. While we can forgive the most frequent user errors in this
fashion, the technique does not have a high probability of complete success — it is
nearly impossible to exactly predict an incorrect input sequence.

A better approach is to treat an input error as a special case of a terminal symbol:
error is a predefined terminal symbol for yacc. error can be used in formulations
just like a terminal symbol; however, error is (normally) not produced by a call to the
lexical analyzer. Instead, the parser believes error to be the next terminal symbol if
the actual next terminal symbol leads to an error operation in the transition matrix
for the current state. Once the error symbol has been internally generated in this
fashion, and the obligatory error message issued, yy - parse0 will set out to accept
error almost like any other symbol.

Consider the following modification to the rule above:

expression
: expression '-' expression
I IDENTIFIER
I error

A parser based on this grammar will silently accept erroneous input. To under-
stand why this is the case, we need to once again follow the traces of a few examples.

yacc will produce the following y.output file:

state 0
$accept : _expression $end

error shift 3
IDENTIFIER shift 2

. error

expression goto 1

state 1

$accept : expression Send
expression : expression_- expression

Send accept
- shift 4

70 COMPILER CONSTRUCTION CHAPTER 4 I CHAPTER 4 ERROR RECOVERY 71

4.

[yydebug] accepting $error

•• -
[yydebug] recovery discards '+'

. .
yyparse 0 = 0

In order to avoid a cascade of error messages, the parser must shift three terminal
symbols beyond the point of error, before another error results in an error message.
This way a cluster of errors may result in only a single error message. In this example,
this explains the absence of the second error message.

With the yyerrok, action, the parser can be persuaded to feel that it has accepted
enough terminal symbols, and thus to report errors in close proximity to one another.

There is a drawback, though: if yyerrok: is attached as an action to a formula-
tion consisting only of error, yyparse0 immediately believes that enough terminal
symbols have been shifted, and thus can never discard an erroneous input symbol!

A more sensible example for the yyerrok, action is the following extension to our

grammar:
expression

: expression '-' expression
IDENTIFIER

yyerrok;)'
I error

Once we have seen an IDENTIFIER following an error, it is reasonable to assume we are
back on the right track, and thus to request to be informed of subsequent errors. This
extension will produce two error messages for our example:

[error 1] line 1 near •- 1 : expecting: IDENTIFIER
[error 2] line 1 near expecting: '-'

yyparse = 0

The error symbol and the yyerrok. action are the yacc features to use in making
a parser robust. The tricky problem is to employ these basic tools judiciously.

4.3 Adding the "error" symbols
The placement of error symbols is guided by the following, conflicting goals:

• as close as possible to the start symbol of the grammar.
This way there is always a point to recover from, since there should always be

a state very low on the stack in which error can be accepted. The parser then is
never able to clear its stack early, i.e., to not complete by recognizing the end of
file from the lexical analyzer.
• as close as possible to each terminal symbol.

This way only a small amount of input would be skipped on each error. This
can be improved using yyerrok; actions.

• without introducing conflicts.
This may be quite difficult. In fact, accepting shift/reduce conflicts is reason-

able as long as they serve to lengthen strings. E.g., one can continue parsing an
expression past an error, rather then accepting the same error at the statement

level, thus trashing the rest of the expression.

Following these goals, we recommend the following typical positions for error
symbols:

• into each recursive construct, i.e., into each repetition.
• preferably not at the end of a formulation.

This should result in a robust recovery, i.e., in a recovery from which the con-
tinuation is meaningful. Adding a trailing error and yyerrok; action may lead to
cascading error messages, or even to loops if the parser cannot discard input.
• non-empty lists require two error variants, one for a problem at the beginning
of the list, and one for a problem at the current end of the list.
• possibly empty lists require an error symbol in the empty branch.

If this proves impossible, add the symbol to the places where the possibly
empty list is being used.

The following table is our recommendation for the placement of error symbols in
the most frequent repetitive constructs':

construct EBNF
optional sequence x: y

sequence x: y{ y } x:
I x y { yyerrok }
I error

X e rror
list x. y{Ty} x:y

I x T y { yyerrok; }
I error
I x error
x error y { nrerrok; }
x T error

We will demonstrate the three cases in turn. In each case, we use the lexical
analyzer constructed for the desk calculator in section 3.5. Error recovery for the
optional sequence can be studied using the following input for yacc:

1
 This way of extending repetitive constructs has a drawback due to a bug in yacc (as distributedwith Bell version 7, Berkeley 4,2bsd, and various derivatives): if in a state the default action is to reduce,

and if the next terminal symbol cannot be shifted but error could be (e.g., on a trailing error in a rule),yacc's tables dictate that the reduction take place, even if the next terminal symbol cannot be shifted
subsequently. In this case error recovery takes place "too late", and the parser can, in fact, go into a
loop, mistakenly reduce rules several times, etc. The 4.1bsd distribution actually contains a correction
for this bug, based on [Gra791. Essentially, in these cases all possible inputs must be enumerated, so
that the error can be detected; this results in slightly larger parser tables. The correction in 4.1bsd con-
tains a typographical error, however. A definite correction is available from the authors (S. Johnson,personal communication, 1982).

yacc input
x: /* null */

x yyerrok; }
I x error

70 COMPILER CONSTRUCTION CHAPTER 4 I CHAPTER 4 ERROR RECOVERY 71

4.

[yydebug] accepting $error

•• -
[yydebug] recovery discards '+'

. .
yyparse 0 = 0

In order to avoid a cascade of error messages, the parser must shift three terminal
symbols beyond the point of error, before another error results in an error message.
This way a cluster of errors may result in only a single error message. In this example,
this explains the absence of the second error message.

With the yyerrok, action, the parser can be persuaded to feel that it has accepted
enough terminal symbols, and thus to report errors in close proximity to one another.

There is a drawback, though: if yyerrok: is attached as an action to a formula-
tion consisting only of error, yyparse0 immediately believes that enough terminal
symbols have been shifted, and thus can never discard an erroneous input symbol!

A more sensible example for the yyerrok, action is the following extension to our

grammar:
expression

: expression '-' expression
IDENTIFIER

yyerrok;)'
I error

Once we have seen an IDENTIFIER following an error, it is reasonable to assume we are
back on the right track, and thus to request to be informed of subsequent errors. This
extension will produce two error messages for our example:

[error 1] line 1 near •- 1 : expecting: IDENTIFIER
[error 2] line 1 near expecting: '-'

yyparse = 0

The error symbol and the yyerrok. action are the yacc features to use in making
a parser robust. The tricky problem is to employ these basic tools judiciously.

4.3 Adding the "error" symbols
The placement of error symbols is guided by the following, conflicting goals:

• as close as possible to the start symbol of the grammar.
This way there is always a point to recover from, since there should always be

a state very low on the stack in which error can be accepted. The parser then is
never able to clear its stack early, i.e., to not complete by recognizing the end of
file from the lexical analyzer.
• as close as possible to each terminal symbol.

This way only a small amount of input would be skipped on each error. This
can be improved using yyerrok; actions.

• without introducing conflicts.
This may be quite difficult. In fact, accepting shift/reduce conflicts is reason-

able as long as they serve to lengthen strings. E.g., one can continue parsing an
expression past an error, rather then accepting the same error at the statement

level, thus trashing the rest of the expression.

Following these goals, we recommend the following typical positions for error
symbols:

• into each recursive construct, i.e., into each repetition.
• preferably not at the end of a formulation.

This should result in a robust recovery, i.e., in a recovery from which the con-
tinuation is meaningful. Adding a trailing error and yyerrok; action may lead to
cascading error messages, or even to loops if the parser cannot discard input.
• non-empty lists require two error variants, one for a problem at the beginning
of the list, and one for a problem at the current end of the list.
• possibly empty lists require an error symbol in the empty branch.

If this proves impossible, add the symbol to the places where the possibly
empty list is being used.

The following table is our recommendation for the placement of error symbols in
the most frequent repetitive constructs':

construct EBNF
optional sequence x: y

sequence x: y{ y } x:
I x y { yyerrok }
I error

X e rror
list x. y{Ty} x:y

I x T y { yyerrok; }
I error
I x error
x error y { nrerrok; }
x T error

We will demonstrate the three cases in turn. In each case, we use the lexical
analyzer constructed for the desk calculator in section 3.5. Error recovery for the
optional sequence can be studied using the following input for yacc:

1
 This way of extending repetitive constructs has a drawback due to a bug in yacc (as distributedwith Bell version 7, Berkeley 4,2bsd, and various derivatives): if in a state the default action is to reduce,

and if the next terminal symbol cannot be shifted but error could be (e.g., on a trailing error in a rule),yacc's tables dictate that the reduction take place, even if the next terminal symbol cannot be shifted
subsequently. In this case error recovery takes place "too late", and the parser can, in fact, go into a
loop, mistakenly reduce rules several times, etc. The 4.1bsd distribution actually contains a correction
for this bug, based on [Gra791. Essentially, in these cases all possible inputs must be enumerated, so
that the error can be detected; this results in slightly larger parser tables. The correction in 4.1bsd con-
tains a typographical error, however. A definite correction is available from the authors (S. Johnson,personal communication, 1982).

yacc input
x: /* null */

x yyerrok; }
I x error

74 COMPILER CONSTRUCTION CHAPTER 4 CHAPTER 4 ERROR RECOVERY 75

demonstrate that we are able to recover in all cases. Unfortunately, the case
to + 20

is recovered through the rule

list : list error

and the second element of the list is discarded! If we eliminate this formulation, how-
ever, recognition does not terminate properly in the case of a trailing error.

Our recommendations for the placement of error symbols do not guarantee that
a useful input symbol is not ignored in some error situations. Actual use, however, has
convinced us that these recommendations lead to very robust parsers for common
language constructs in a systematic fashion.

4.4 Adding the "yyerrok" actions
yyerrok, should be placed following terminal symbols at all points at which a for-

mulation can end in error and is then followed by a reasonably significant terminal
symbol. The repetitive constructs described above have already included the relevant
actions.

This way, once the terminal symbol is reduced, any subsequent error would again
be reported — the three-symbol-rule notwithstanding.

In effect, some symbols become rather important, in sampleC for example
•sc

rP
rr }

IL

74 COMPILER CONSTRUCTION CHAPTER 4 CHAPTER 4 ERROR RECOVERY 75

demonstrate that we are able to recover in all cases. Unfortunately, the case
to + 20

is recovered through the rule

list : list error

and the second element of the list is discarded! If we eliminate this formulation, how-
ever, recognition does not terminate properly in the case of a trailing error.

Our recommendations for the placement of error symbols do not guarantee that
a useful input symbol is not ignored in some error situations. Actual use, however, has
convinced us that these recommendations lead to very robust parsers for common
language constructs in a systematic fashion.

4.4 Adding the "yyerrok" actions
yyerrok, should be placed following terminal symbols at all points at which a for-

mulation can end in error and is then followed by a reasonably significant terminal
symbol. The repetitive constructs described above have already included the relevant
actions.

This way, once the terminal symbol is reduced, any subsequent error would again
be reported — the three-symbol-rule notwithstanding.

In effect, some symbols become rather important, in sampleC for example
•sc

rP
rr }

IL

78 COMPILER CONSTRUCTION CHAPTER 4 CHAPTER 4 ERROR RECOVERY 79

78 COMPILER CONSTRUCTION CHAPTER 4 CHAPTER 4 ERROR RECOVERY 79

CHAPTER 4 ERROR RECOVERY 81
80 COMPILER CONSTRUCTION

CHAPTER 4

CHAPTER 4 ERROR RECOVERY 81
80 COMPILER CONSTRUCTION

CHAPTER 4

CHAPTER 482 COMPILER CONSTRUCTION Chapter 5
Semantic Restrictions

4. Integrate the techniques used for expression in problem 3 into the error recovery

for sample C.

5. Change the desk calculator of problem 3 so that after any error, it will prompt the
user for a corrected input line. Hint: special care must be taken in the placement of

yyerrok: statements, since it would clearly be unacceptable for the parser to discard
tokens from the re-entered line as part of its response to errors in the original line.

8. Add error recovery features to the grammar produced for a Pascal subset in prob-

lem 1 of section 1.8. Test your grammar with an input file containing a suitable selec-

tion of erroneous Pascal code.

We now turn from the general problem of robust language recognition to the more
specific problem of analyzing a program text in order to produce a translated, execut-
able version of it. The word program will therefore be used in place of sentence, i.e.,
it is defined as a sequence of terminal symbols, for which a unique parse tree with
respect to a grammar can be built. This chapter discusses how we impose additional
restrictions on a program, thus completing the analysis part of a compiler; the follow-
ing chapters describe the synthesis of an executable version of the algorithm described
by a program.

5.1 The problem

A program can be syntactically correct and still contain semantic errors. Some
typical examples are the following:

In Pascal, labels are digit strings which must be declared in a label declara-
tion before they can be used. While the lexical analyzer might return such a digit
string as IntegerConstant, if it is used in a goto statement, a compiler has to
verify that it is a declared label.

In Pascal, labels must be declared before they are used. In C a label is an
Identifier; if it is newly introduced following goto, it is implicitly declared to be
a label. In almost all languages, labels can be defined after they have been used.
For all labels, the compiler must verify that they have, in fact, been defined.

Labels are just one — sticky — example of scope problems: a user-defined object
is only known within a particular area of the program text, known as the scope of a
name. In Basic, the scope of a variable name is the entire program text (with the
exception of user-defined function parameter names). In Fortran, variable names are
known only within a program unit, i.e., a function or subroutine; program unit
names and common area names are known throughout all modules which are bound into
an image, a file which may be executed. In Pascal and other Algol-like languages,
user-defined names are known within a block, Le., a syntactically delimited area of the
program text which contains the definition for the name; blocks can be nested, and the
definition of a name in an outer block can be hidden for the extent of an interior block
by a new definition for the name in the interior block. C combines Algol block struc-
ture and the module concept of Fortran: compound statements are blocks which can
be nested, can contain declarations, and limit their scope; function names are known
globally and need not necessarily be declared before use. It is the compiler's responsi-
bility to monitor the correct use of user-defined names within their respective scopes,
as well as to generate code providing appropriate access to the various objects.

Names cannot in general be declared twice in the same context, e.g., two parame-
ters may not have the same name, two local variables in the same block must use
different names, two components of the same struct, union, or record construct must
differ. While C permits struct and other names to be identical, some versions of C
require component names to be distinct even for different structures.

CHAPTER 482 COMPILER CONSTRUCTION Chapter 5
Semantic Restrictions

4. Integrate the techniques used for expression in problem 3 into the error recovery

for sample C.

5. Change the desk calculator of problem 3 so that after any error, it will prompt the
user for a corrected input line. Hint: special care must be taken in the placement of

yyerrok: statements, since it would clearly be unacceptable for the parser to discard
tokens from the re-entered line as part of its response to errors in the original line.

8. Add error recovery features to the grammar produced for a Pascal subset in prob-

lem 1 of section 1.8. Test your grammar with an input file containing a suitable selec-

tion of erroneous Pascal code.

We now turn from the general problem of robust language recognition to the more
specific problem of analyzing a program text in order to produce a translated, execut-
able version of it. The word program will therefore be used in place of sentence, i.e.,
it is defined as a sequence of terminal symbols, for which a unique parse tree with
respect to a grammar can be built. This chapter discusses how we impose additional
restrictions on a program, thus completing the analysis part of a compiler; the follow-
ing chapters describe the synthesis of an executable version of the algorithm described
by a program.

5.1 The problem

A program can be syntactically correct and still contain semantic errors. Some
typical examples are the following:

In Pascal, labels are digit strings which must be declared in a label declara-
tion before they can be used. While the lexical analyzer might return such a digit
string as IntegerConstant, if it is used in a goto statement, a compiler has to
verify that it is a declared label.

In Pascal, labels must be declared before they are used. In C a label is an
Identifier; if it is newly introduced following goto, it is implicitly declared to be
a label. In almost all languages, labels can be defined after they have been used.
For all labels, the compiler must verify that they have, in fact, been defined.

Labels are just one — sticky — example of scope problems: a user-defined object
is only known within a particular area of the program text, known as the scope of a
name. In Basic, the scope of a variable name is the entire program text (with the
exception of user-defined function parameter names). In Fortran, variable names are
known only within a program unit, i.e., a function or subroutine; program unit
names and common area names are known throughout all modules which are bound into
an image, a file which may be executed. In Pascal and other Algol-like languages,
user-defined names are known within a block, Le., a syntactically delimited area of the
program text which contains the definition for the name; blocks can be nested, and the
definition of a name in an outer block can be hidden for the extent of an interior block
by a new definition for the name in the interior block. C combines Algol block struc-
ture and the module concept of Fortran: compound statements are blocks which can
be nested, can contain declarations, and limit their scope; function names are known
globally and need not necessarily be declared before use. It is the compiler's responsi-
bility to monitor the correct use of user-defined names within their respective scopes,
as well as to generate code providing appropriate access to the various objects.

Names cannot in general be declared twice in the same context, e.g., two parame-
ters may not have the same name, two local variables in the same block must use
different names, two components of the same struct, union, or record construct must
differ. While C permits struct and other names to be identical, some versions of C
require component names to be distinct even for different structures.

84 COMPILER CONSTRUCTION
CHAPTER 5CHAPTER 5 SEMANTIC RESTRICTIONS 85

Declarations in a program convey the intended use of a name to the compiler.
Once the use has been agreed upon, abuse must be prevented. Consider:

In most languages — with the notable exception of PL/I, or deliberately

lenient tools like awk — strings and numerical values cannot be combined, e.g.,
for addition. In Pascal, mixed mode expressions, i.e., combinations of real and
integer values, are permitted for most operators, but certain restrictions apply:

div expresses integer division only, / delivers a real result even for two integer

operands, .= permits assignment from integer to real but not conversely, etc.
Operators change their precise meaning based on the types of their operands.

In some dialects of Basic, + denotes addition for numerical values and concatena-
tion for strings. In Pascal, + denotes addition for numerical values and union for
set values — at least in common representations of the language. In C, + can
describe involved address manipulations if it combines a pointer and an integer
value. Numerically, and as a machine instruction, + is quite a different operation
between integer or between floating point values: the result of the integer opera-
tion is independent of the order of its operands and of implicitly placed
parentheses, whereas the floating point result can critically depend on it.

Component selection in struct, union, or record constructs requires in gen-
eral that the selector name belong to the structure of the variable from which the
selection is to be made, i.e., operators like , -, and -> have rather strict require-
ments for the types of their operands. C is — intentionally — rather permissive
in this respect.
Enumerating a fixed, maximum number of identical phrases is a cumbersome

technique in BNF. It also cannot handle some features usually found in programming
languages. Consider:

Basic arrays normally may have one or two dimensions. Some versions of
Fortran limit arrays to seven dimensions. A compiler must limit the number of
indexing expressions in general, and it must verify for each specific array reference
that the correct, individual number of indices is used. In Pascal or C, arbitrarily
many dimensions can be defined; however, the number of indices used determines
the data type of the reference.

A similar problem arises with function parameters. Number and types of the
arguments are predefined for built-in functions, and follow from the definition for
user-defined functions. A Pascal compiler must at least verify that argument
values and parameters fit together; C is quite permissive in this respect. A PL/I
compiler is even responsible for argument conversion.

Parameter passing poses another problem: if, as in Pascal, a subprogram may
indicate a desire to modify some of its arguments, care must be taken to insure
that only suitable arguments are handed down. In Fortran, all parameters can be
modified, but only certain arguments (I-values in the sense of C) will be changed
as a consequence — this is a code generation problem.
Most semantic restrictions deal with user-defined objects, i.e., constants, types,

variables, subprograms and labels. We will need a symbol table, into which all infor-
mation from declarations and definitions is entered, and which is consulted whenever a
user-defined name is referenced.

Some semantic restrictions, however, deal with problems which defy a simple syn-
tactic resolution. Consider:

In Pascal or C, all constants in the context of case must be distinct. In C,case and default labels must be positioned within a statement dependent on a
switch clause; interestingly enough, this dependent statement need not even be a
compound statement!

Similarly, the break and continue statements of C must be placed in a con-
text from which the desired escape makes sense.

Restrictions like these require a certain amount of local testing associated with
particular constructs. Our implementation of sampleC will demonstrate how one cancheck break and continue by means of a separate stack; in general a certain amount
of ingenuity is required, since these problems do not fit a uniform framework.

5.2 Symbol table principles

A symbol table is the central place in which the compiler keeps all information
associated with user-defined names and constants. While the design of a symbol table
entry depends on the information required by the compiler and obtainable from the
declarations in a program, the organization of the entries for searching reflects the
scope rules of the language:

Basic, for example, can be handled with a table to which each new name is
simply added. All names are globally known; thus the table never needs to be
pruned unless the entire information about a program is erased. Parameters for
user-defined functions are only known within the function; they can be entered
into a second table, which is erased as soon as work on the function has been com-
pleted.

Fortran essentially requires two tables: one table contains information about
all identifiers introduced within a subprogram, while a second table might be used
to store subprogram names. The first table would be erased after compilation of
each subprogram unit. The second table is not really required if subprograms are
combined with a linker; in this case the subprogram names would be reported to
the linker.

Pascal has a strict declare before use rule and nested scopes. The nested
scopes are reflected by using a stack as a symbol table: new names are pushed on
top of the stack, and the stack is appropriately popped once the end of a scope,
i.e., the end of a function or procedure definition, is reached. Whenever a name
is referenced, we can search the stack top-down and thus locate the innermost
definition for the name.

Other members of the Algol family do not necessarily require that names be
declared before use, as long as a declaration is present within the scope of the
name. This situation is somewhat involved: we need two passes over a program,
the first one to collect all declarations and to essentially propagate them to the
beginning of their scope, and the second one to then deal with references based on
the information collected in the first pass.

C permits nested scopes for variables, but functions cannot be nested. There
is a declare before use rule, except that functions with int result need not be

84 COMPILER CONSTRUCTION
CHAPTER 5CHAPTER 5 SEMANTIC RESTRICTIONS 85

Declarations in a program convey the intended use of a name to the compiler.
Once the use has been agreed upon, abuse must be prevented. Consider:

In most languages — with the notable exception of PL/I, or deliberately

lenient tools like awk — strings and numerical values cannot be combined, e.g.,
for addition. In Pascal, mixed mode expressions, i.e., combinations of real and
integer values, are permitted for most operators, but certain restrictions apply:

div expresses integer division only, / delivers a real result even for two integer

operands, .= permits assignment from integer to real but not conversely, etc.
Operators change their precise meaning based on the types of their operands.

In some dialects of Basic, + denotes addition for numerical values and concatena-
tion for strings. In Pascal, + denotes addition for numerical values and union for
set values — at least in common representations of the language. In C, + can
describe involved address manipulations if it combines a pointer and an integer
value. Numerically, and as a machine instruction, + is quite a different operation
between integer or between floating point values: the result of the integer opera-
tion is independent of the order of its operands and of implicitly placed
parentheses, whereas the floating point result can critically depend on it.

Component selection in struct, union, or record constructs requires in gen-
eral that the selector name belong to the structure of the variable from which the
selection is to be made, i.e., operators like , -, and -> have rather strict require-
ments for the types of their operands. C is — intentionally — rather permissive
in this respect.
Enumerating a fixed, maximum number of identical phrases is a cumbersome

technique in BNF. It also cannot handle some features usually found in programming
languages. Consider:

Basic arrays normally may have one or two dimensions. Some versions of
Fortran limit arrays to seven dimensions. A compiler must limit the number of
indexing expressions in general, and it must verify for each specific array reference
that the correct, individual number of indices is used. In Pascal or C, arbitrarily
many dimensions can be defined; however, the number of indices used determines
the data type of the reference.

A similar problem arises with function parameters. Number and types of the
arguments are predefined for built-in functions, and follow from the definition for
user-defined functions. A Pascal compiler must at least verify that argument
values and parameters fit together; C is quite permissive in this respect. A PL/I
compiler is even responsible for argument conversion.

Parameter passing poses another problem: if, as in Pascal, a subprogram may
indicate a desire to modify some of its arguments, care must be taken to insure
that only suitable arguments are handed down. In Fortran, all parameters can be
modified, but only certain arguments (I-values in the sense of C) will be changed
as a consequence — this is a code generation problem.
Most semantic restrictions deal with user-defined objects, i.e., constants, types,

variables, subprograms and labels. We will need a symbol table, into which all infor-
mation from declarations and definitions is entered, and which is consulted whenever a
user-defined name is referenced.

Some semantic restrictions, however, deal with problems which defy a simple syn-
tactic resolution. Consider:

In Pascal or C, all constants in the context of case must be distinct. In C,case and default labels must be positioned within a statement dependent on a
switch clause; interestingly enough, this dependent statement need not even be a
compound statement!

Similarly, the break and continue statements of C must be placed in a con-
text from which the desired escape makes sense.

Restrictions like these require a certain amount of local testing associated with
particular constructs. Our implementation of sampleC will demonstrate how one cancheck break and continue by means of a separate stack; in general a certain amount
of ingenuity is required, since these problems do not fit a uniform framework.

5.2 Symbol table principles

A symbol table is the central place in which the compiler keeps all information
associated with user-defined names and constants. While the design of a symbol table
entry depends on the information required by the compiler and obtainable from the
declarations in a program, the organization of the entries for searching reflects the
scope rules of the language:

Basic, for example, can be handled with a table to which each new name is
simply added. All names are globally known; thus the table never needs to be
pruned unless the entire information about a program is erased. Parameters for
user-defined functions are only known within the function; they can be entered
into a second table, which is erased as soon as work on the function has been com-
pleted.

Fortran essentially requires two tables: one table contains information about
all identifiers introduced within a subprogram, while a second table might be used
to store subprogram names. The first table would be erased after compilation of
each subprogram unit. The second table is not really required if subprograms are
combined with a linker; in this case the subprogram names would be reported to
the linker.

Pascal has a strict declare before use rule and nested scopes. The nested
scopes are reflected by using a stack as a symbol table: new names are pushed on
top of the stack, and the stack is appropriately popped once the end of a scope,
i.e., the end of a function or procedure definition, is reached. Whenever a name
is referenced, we can search the stack top-down and thus locate the innermost
definition for the name.

Other members of the Algol family do not necessarily require that names be
declared before use, as long as a declaration is present within the scope of the
name. This situation is somewhat involved: we need two passes over a program,
the first one to collect all declarations and to essentially propagate them to the
beginning of their scope, and the second one to then deal with references based on
the information collected in the first pass.

C permits nested scopes for variables, but functions cannot be nested. There
is a declare before use rule, except that functions with int result need not be

86 COMPILER CONSTRUCTION CHAPTER 5 CHAPTER 5 SEMANTIC RESTRICTIONS 87

declared. In general, a stack of names will do, as long as we keep functions in a
global table, even if references to them are discovered locally.
What information is stored in a symbol table entry? For searching purposes, the

entry must have access to the user-defined name; for usage verification we must
represent the type of the object; and during code generation we will need to store
information about the representation of the object — location on a stack, offset or
absolute address, length, etc. If the symbol table is organized as a stack, the entries
will be linked; if the stack is popped, we need to remember at which scope nesting level
the entry was defined.

Representing the type of an object might be difficult. In Fortran there is only a
small number of types, and additionally the object can be dimensioned as an array;
this can be represented with a few integer values in the symbol table. In languages
such as Pascal or C, with a rich set of data type constructors, a recursive description
will have to be built, which will usually involve pointers to further symbol table
entries.

Name searching is another area where a number of different techniques are avail-
able. In general, when the lexical analysis function has assembled a user-defined name
or literal constant, it will immediately locate it in the symbol table, or enter it there if
it is as yet unknown. From then on, a pointer to the symbol table entry is passed
along providing access to information about the symbol, and eliminating the need to
search the symbol table more then once. The initial search is thus performed by a
routine which is called only from the lexical analyzer; in order to speed up this search,
data structures such as hash tables might be used in addition to the symbol table
itself. Since a lexical analyzer spends a significant amount of processing time on the
name search, a lot of literature is available on the subject of table searching; for star-
ters consult, e.g., chapter 3.D. by W. McKeeman in [Bau76].

5.3 Example
For sampleC we stick with a symbol table stack, represented as a linear list of

entries. In order to keep things as simple as possible, we will not use additional data
structures to speed up searching — this is left as an exercise. We manage the entries
dynamically using the canoe() and ef ree0 library routines.

We will search the symbol table stack backwards from newest to oldest symbol.
In this fashion, the innermost declaration of a name will be found first, provided that
we pop local entries off the stack once we leave a compound statement.

We therefore need to know where the local declarations of each open block begin.
This could be done by a stack of open block descriptors, from which a linked list con-
nects the relevant symbol table entries. To simplify, at the expense of some processing
time during block closure, we maintain a global counter of nesting depth of compound
statements, and copy the current value of this counter into each symbol table entry
when a declaration for the symbol is performed. Local entries on the symbol table
stack then are precisely those which were marked with the current nesting depth.
Defective programs may result in some symbols never being declared; they are marked
with an initialization value for the depth field and are also removed at block closure.

One complication arises from the fact that functions need not be defined before
they are used. However, functions may not be nested, so this problem can be solved
by moving function descriptors in the symbol table to the outermost block. In our
dynamically linked scheme, this is quite easy to accomplish: we simply relink a function
descriptor at the bottom of the symbol table stack. We do need to save function
descriptors, since we are building a one pass, load-and-go compiler, which does not
employ a linker for image assembly, and which therefore must itself check that all
referenced functions have actually been defined.

Another, smaller complication is the fact that in C parameters need not be expli-
citly declared: once their names have been mentioned in a parameter list, they become
int variables by default. This can be handled by chaining the parameters in the sym-
bol table, when they are initially found in the parameter list. Once the

parameter_declarations have been reduced, we can follow the chain and default all
remaining, undeclared parameters.

While it is not required, we will check consistent use of functions, i.e., we will at
least count that they are always called with the same number of arguments.

There is one massive simplification in sampleC: since the language only supports
an int data type, we need not worry about type incompatibilities. In general, seman-
tic restrictions need to be enforced in this context; this is best done by computing
result types as the various operations are recognized by the parser, and by passing the
result types along on the yacc stack. The resulting analysis is bulky enough so that we
decided to omit it here by not supporting additional data types.

First we design a symbol table entry and define possible values for certain fields.
This information is placed into symtab. h:

86 COMPILER CONSTRUCTION CHAPTER 5 CHAPTER 5 SEMANTIC RESTRICTIONS 87

declared. In general, a stack of names will do, as long as we keep functions in a
global table, even if references to them are discovered locally.
What information is stored in a symbol table entry? For searching purposes, the

entry must have access to the user-defined name; for usage verification we must
represent the type of the object; and during code generation we will need to store
information about the representation of the object — location on a stack, offset or
absolute address, length, etc. If the symbol table is organized as a stack, the entries
will be linked; if the stack is popped, we need to remember at which scope nesting level
the entry was defined.

Representing the type of an object might be difficult. In Fortran there is only a
small number of types, and additionally the object can be dimensioned as an array;
this can be represented with a few integer values in the symbol table. In languages
such as Pascal or C, with a rich set of data type constructors, a recursive description
will have to be built, which will usually involve pointers to further symbol table
entries.

Name searching is another area where a number of different techniques are avail-
able. In general, when the lexical analysis function has assembled a user-defined name
or literal constant, it will immediately locate it in the symbol table, or enter it there if
it is as yet unknown. From then on, a pointer to the symbol table entry is passed
along providing access to information about the symbol, and eliminating the need to
search the symbol table more then once. The initial search is thus performed by a
routine which is called only from the lexical analyzer; in order to speed up this search,
data structures such as hash tables might be used in addition to the symbol table
itself. Since a lexical analyzer spends a significant amount of processing time on the
name search, a lot of literature is available on the subject of table searching; for star-
ters consult, e.g., chapter 3.D. by W. McKeeman in [Bau76].

5.3 Example
For sampleC we stick with a symbol table stack, represented as a linear list of

entries. In order to keep things as simple as possible, we will not use additional data
structures to speed up searching — this is left as an exercise. We manage the entries
dynamically using the canoe() and ef ree0 library routines.

We will search the symbol table stack backwards from newest to oldest symbol.
In this fashion, the innermost declaration of a name will be found first, provided that
we pop local entries off the stack once we leave a compound statement.

We therefore need to know where the local declarations of each open block begin.
This could be done by a stack of open block descriptors, from which a linked list con-
nects the relevant symbol table entries. To simplify, at the expense of some processing
time during block closure, we maintain a global counter of nesting depth of compound
statements, and copy the current value of this counter into each symbol table entry
when a declaration for the symbol is performed. Local entries on the symbol table
stack then are precisely those which were marked with the current nesting depth.
Defective programs may result in some symbols never being declared; they are marked
with an initialization value for the depth field and are also removed at block closure.

One complication arises from the fact that functions need not be defined before
they are used. However, functions may not be nested, so this problem can be solved
by moving function descriptors in the symbol table to the outermost block. In our
dynamically linked scheme, this is quite easy to accomplish: we simply relink a function
descriptor at the bottom of the symbol table stack. We do need to save function
descriptors, since we are building a one pass, load-and-go compiler, which does not
employ a linker for image assembly, and which therefore must itself check that all
referenced functions have actually been defined.

Another, smaller complication is the fact that in C parameters need not be expli-
citly declared: once their names have been mentioned in a parameter list, they become
int variables by default. This can be handled by chaining the parameters in the sym-
bol table, when they are initially found in the parameter list. Once the

parameter_declarations have been reduced, we can follow the chain and default all
remaining, undeclared parameters.

While it is not required, we will check consistent use of functions, i.e., we will at
least count that they are always called with the same number of arguments.

There is one massive simplification in sampleC: since the language only supports
an int data type, we need not worry about type incompatibilities. In general, seman-
tic restrictions need to be enforced in this context; this is best done by computing
result types as the various operations are recognized by the parser, and by passing the
result types along on the yacc stack. The resulting analysis is bulky enough so that we
decided to omit it here by not supporting additional data types.

First we design a symbol table entry and define possible values for certain fields.
This information is placed into symtab. h:

88 COMPILER CONSTRUCTION
CHAPTER 5 CHAPTER 5 SEMANTIC RESTRICTIONS 89

currently,

88 COMPILER CONSTRUCTION
CHAPTER 5 CHAPTER 5 SEMANTIC RESTRICTIONS 89

currently,

I
CHAPTER 5 CHAPTER 5 SEMANTIC RESTRICTIONS 91

s_gb1 - >s_next = (struct symtab *) 0;
}

Note that the entry is only linked into a different position on the symbol table stack;
the entry itself is not moved in memory, so the pointer value referencing the element
and passed as an argument does not change.

We placed a blind element on top of the symbol table stack, so that we do not
need to check if we are moving the current top of the stack, i.e., so that we do not
need to adjust s ici as a special case.

Initially, however, s_gbi may not point at the blind element — if it did, we would
add the first (global) definition following s_gbl, local definitions might get positioned
between sgbl and this global definition, eventually one of them might be moved to
become global.. and general mayhem would result! s_gbi must be initialized to point
to a global entry — a blind element there would split the symbol table into two halves
and would thus create another special case. Fortunately, there is a useful global entry:
every sampieC program must contain a main() function initially, we therefore open
the outermost block, and initialize s_gbl to point to an entry for main as an undefined
function:

blk_pusb();
s_gbl = s create(I main°);
s_gb1 - >slype UFUNC;

}

init() must be called before the symbol table can be accessed. A call to init()
therefore can be placed into the main() function of our compiler, prior to the call to

yyparse(). Another, more visible solution is to call init 0 very early from the parser
itself. This is the first action added to the parser:

program
• { init(); }
definitions

{ bik_pop(); }

In this fashion, snit() will be called before any calls to the lexical analyzer.
init 0 pushes the block stack:

bik_push()

++ blknum;
}

Every call to blk_push() must be balanced by a call to blk_pop() to pop hen-
ceforth inaccessible symbols from the symbol table stack, to discover undefined func-
tions, etc. We will defer a discussion of blk_pop() until we have seen how symbols are
actually entered into the symbol table.

Every user-defined name is first seen by the lexical analyzer. yylex() must enterevery symbol into the symbol table, as long as it is not already there. We have already
placed calls to a function s lookup() into the lexical analyzer for this purpose;

s_lookup() is called with the terminal symbol representation in yytext E and with

I
CHAPTER 5 CHAPTER 5 SEMANTIC RESTRICTIONS 91

s_gb1 - >s_next = (struct symtab *) 0;
}

Note that the entry is only linked into a different position on the symbol table stack;
the entry itself is not moved in memory, so the pointer value referencing the element
and passed as an argument does not change.

We placed a blind element on top of the symbol table stack, so that we do not
need to check if we are moving the current top of the stack, i.e., so that we do not
need to adjust s ici as a special case.

Initially, however, s_gbi may not point at the blind element — if it did, we would
add the first (global) definition following s_gbl, local definitions might get positioned
between sgbl and this global definition, eventually one of them might be moved to
become global.. and general mayhem would result! s_gbi must be initialized to point
to a global entry — a blind element there would split the symbol table into two halves
and would thus create another special case. Fortunately, there is a useful global entry:
every sampieC program must contain a main() function initially, we therefore open
the outermost block, and initialize s_gbl to point to an entry for main as an undefined
function:

blk_pusb();
s_gbl = s create(I main°);
s_gb1 - >slype UFUNC;

}

init() must be called before the symbol table can be accessed. A call to init()
therefore can be placed into the main() function of our compiler, prior to the call to

yyparse(). Another, more visible solution is to call init 0 very early from the parser
itself. This is the first action added to the parser:

program
• { init(); }
definitions

{ bik_pop(); }

In this fashion, snit() will be called before any calls to the lexical analyzer.
init 0 pushes the block stack:

bik_push()

++ blknum;
}

Every call to blk_push() must be balanced by a call to blk_pop() to pop hen-
ceforth inaccessible symbols from the symbol table stack, to discover undefined func-
tions, etc. We will defer a discussion of blk_pop() until we have seen how symbols are
actually entered into the symbol table.

Every user-defined name is first seen by the lexical analyzer. yylex() must enterevery symbol into the symbol table, as long as it is not already there. We have already
placed calls to a function s lookup() into the lexical analyzer for this purpose;

s_lookup() is called with the terminal symbol representation in yytext E and with

CHAPTER 5 vi rr
CHAPTER 5 SEMANTIC RESTRICTIONS 99

CHAPTER 5 vi rr
CHAPTER 5 SEMANTIC RESTRICTIONS 99

CHAPTER 5 SEMANTIC RESTRICTIONS 101CHAP TER 5100 COMPILER CONSTRUCTION

CHAPTER 5 SEMANTIC RESTRICTIONS 101CHAP TER 5100 COMPILER CONSTRUCTION

CHAPTER 5 SEMANTIC RESTRICTIONS 103

5.4 Typing the value stack
While implementing the symbol table facilities and semantic checks, we have made

heavy use of the value stack: for Identifier terminal symbols, we passed symbol table
pointers from the lexical analyzer to the parser; for constant terminal symbols, we
passed pointers to dynamically acquired string storage; we chained the
parameter list using symbol table pointers; and we counted up the number of
expressions in the argument_list on the value stack as well. This last use of stack ele-
ments unfortunately necessitates a union of types for the value stack. We count using
an int variable, but we point to the symbol table using a pointer data type. While
pointers in C can be cast as pointers to any data type, it is still a good idea to employ
different data type specifications when pointing to strings and to symbol table ele-
ments.

Even as a union, the value stack could still be typed as described in section 3.6.
However, once we refer to stack elements using the $i syntax within actions, we need
to inform yacc just what component of the union should be referenced in each case.
To put it differently, we must associate a data type syntactically represented as a
union component with all those symbols presented to yacc which we reference through
Si or $$. This of course requires certain extensions of the yacc specification syntax
described up to now.

We prefer to "type" our grammar in a separate editing pass following construction
of all the actions. During this pass we need to note all terminal and non-terminal sym-
bols which are referenced on the value stack and decide on a data type for the
corresponding value stack element. If we rely on the default action

$S = $1;

to actually pass a value, we need to consider the associated symbols even if the default
action is not explicitly specified. (This is one reason why we usually comment those
points in a yacc specification in which we rely on the default action.)

Once all the necessary data types are known together with those symbols which
need to be typed, we can proceed to modify the yacc specification. We will describe
the modification using the sampleC specification as a concrete example.

First we must define the data type of value stack elements. This is done in the
first part of the yacc specification using a union declaration in the style of C, prefixed
by a % characters. In our case, value stack elements can be pointers to the symbol
table, pointers to character strings, and integer values for counting. We define:

%union {
struct symtab * y_sym; /* Identifier */
char * y_str; /* Constant */
int y_num; /* count */

1 There are other methods to define the data type, but we believe this technique to be both visible in
the yacc specification, and convenient, since the resulting union declaration as well as an extern declara-
tion for yylvsil are automatically placed into the file y.tab.h.

CHAPTER 5 SEMANTIC RESTRICTIONS 103

5.4 Typing the value stack
While implementing the symbol table facilities and semantic checks, we have made

heavy use of the value stack: for Identifier terminal symbols, we passed symbol table
pointers from the lexical analyzer to the parser; for constant terminal symbols, we
passed pointers to dynamically acquired string storage; we chained the
parameter list using symbol table pointers; and we counted up the number of
expressions in the argument_list on the value stack as well. This last use of stack ele-
ments unfortunately necessitates a union of types for the value stack. We count using
an int variable, but we point to the symbol table using a pointer data type. While
pointers in C can be cast as pointers to any data type, it is still a good idea to employ
different data type specifications when pointing to strings and to symbol table ele-
ments.

Even as a union, the value stack could still be typed as described in section 3.6.
However, once we refer to stack elements using the $i syntax within actions, we need
to inform yacc just what component of the union should be referenced in each case.
To put it differently, we must associate a data type syntactically represented as a
union component with all those symbols presented to yacc which we reference through
Si or $$. This of course requires certain extensions of the yacc specification syntax
described up to now.

We prefer to "type" our grammar in a separate editing pass following construction
of all the actions. During this pass we need to note all terminal and non-terminal sym-
bols which are referenced on the value stack and decide on a data type for the
corresponding value stack element. If we rely on the default action

$S = $1;

to actually pass a value, we need to consider the associated symbols even if the default
action is not explicitly specified. (This is one reason why we usually comment those
points in a yacc specification in which we rely on the default action.)

Once all the necessary data types are known together with those symbols which
need to be typed, we can proceed to modify the yacc specification. We will describe
the modification using the sampleC specification as a concrete example.

First we must define the data type of value stack elements. This is done in the
first part of the yacc specification using a union declaration in the style of C, prefixed
by a % characters. In our case, value stack elements can be pointers to the symbol
table, pointers to character strings, and integer values for counting. We define:

%union {
struct symtab * y_sym; /* Identifier */
char * y_str; /* Constant */
int y_num; /* count */

1 There are other methods to define the data type, but we believe this technique to be both visible in
the yacc specification, and convenient, since the resulting union declaration as well as an extern declara-
tion for yylvsil are automatically placed into the file y.tab.h.

104 COMPILER CONSTRUCTION CHAPTER 5 Chapter
Memory Allocation

Next we type those terminal symbols for which during lexical analysis a value is
assigned to yylval. Syntactically, this is achieved by placing the name of a union
component, enclosed in angle brackets, between %token and the list of terminal names
to be so typed. In our case, Identifier and Constant have corresponding values on
the stack:

%token <y_sym> Identifier
%token <y_str> Constant

The values are assigned to yylval by the routine slookup0. These assignments
must, of course, also use union components — this has already been tacitly done
correctly in section 5.3.

Finally we must type all those non-terminal symbols for which $1 or $$ are refer-
enced. This is accomplished by making a %type definition in a manner very similar to
a %token definition for terminal symbols. We must type argument_list and
optional_argument_list for counting purposes, and parameter_list and
optional_parameter_list to pass the parameter chain header:

%type <y_syro> optional_parameter_list, parameter list
%type <y_num> optional_argument_list, argument_list

It should be noted that as soon as %union, %type, or the < > syntax is used, yace
very strictly checks that all references to the value stack are typed appropriately. Any
omission immediately causes yace to terminate with a fatal error indicating the
offending line in the specification.

One subtle typing facility, required especially for anonymous non-terminal sym-
bols (see section 3.7), has not yet been discussed. It will be shown when it is required
in section 6.2.

5.5 Problems
1. Write a sampleC test program containing deliberate errors to provoke all semantic
error messages in the compiler.
2. Change the method of storing symbols for sampleC to use a hash scheme, to speed
up the search for names. Demonstrate, e.g., using the C profiling option, that there is
a gain in efficiency.
3. Add to sampleC a block descriptor stack, which can essentially be maintained as
part of the yace value stack. What changes will this require in typing of the value
stack? Again, try to measure the gain in efficiency.
4. Remove those parts of symbol table management which will be unnecessary if a
linking loader is used. Decide how (and when) to pass information to the linker.
5. Extend the desk calculator with simple string operations. Use the operator + to
denote both addition and string concatenation. Should the resulting problem be han-
dled in the grammar, or by separate semantic routines? I.e., should the grammar
know Constant, or rather Number and String?

We are now ready to define an implementation of the sampleC language for a par-
ticular machine. We must develop policies for memory allocation and code generation.

It is interesting to note that the entire problem of language recognition could be
solved without any knowledge of the target machine. This serves to emphasize that a
significant amount of the code of a compiler can be completely target- and host-
machine independent.

In this and the following chapters, we will emphasize the principles rather than
attempt to cope with the peculiarities of a particular machine. We will therefore
describe the implementation for a fictitious machine which is adapted to the require-
ments of the sampleC source language.

6.1 Principles
The memory allocation policy defines the representation of variables, i.e., the

implementation of declarations. We must decide how much memory to allocate to an
object of each data type, and how to address the object, i.e., where to place it during
program execution, to support particular life expectancies.

Run time memory assignment tends to mirror symbol table organization to some
extent. Consider:

In Basic, there are only global variables, kept in a global symbol table, which
for an interpreter might as well also hold the values of the variables during execu-
tion. The parameters of user-defined functions can be handled with the same
stack which is normally used for expression evaluation.

In Fortran, subprograms cannot be called recursively. Since the values of
local variables must be preserved between successive calls to the same function, we
must assign a unique memory cell for each variable in each subprogram.

In C, Pascal, and other Algol-like languages, subprograms can be called recur-
sively; hence, we must dynamically allocate space for the local variables of a sub-
program as it is called. Since local variables normally cease to exist once a subpro-
gram terminates, we can free and reuse their space. Function invocation is a
stack discipline, and this discipline must be employed for managing the local vari-
ables as well.
The nesting of scopes in Algol-like languages poses an additional problem. If func-

tions may be nested during definition, they have access by name only to a selective
subset of the local variables of the currently activated functions.

The nesting of compound statements, with the associated rules for the life expec-
tancy of variables declared within a compound statement, leads to a reuse of memory
which can be managed at compile time. Compound statements can be viewed as
anonymous subprograms which can only he entered sequentially, i.e., in the same order
as the compiler sees them. Since compound statements are anonymous, they can
themselves not be called recursively; thus, the compiler has full information about the
behavior of the life expectancy of local variables defined in a compound statement.

104 COMPILER CONSTRUCTION CHAPTER 5 Chapter
Memory Allocation

Next we type those terminal symbols for which during lexical analysis a value is
assigned to yylval. Syntactically, this is achieved by placing the name of a union
component, enclosed in angle brackets, between %token and the list of terminal names
to be so typed. In our case, Identifier and Constant have corresponding values on
the stack:

%token <y_sym> Identifier
%token <y_str> Constant

The values are assigned to yylval by the routine slookup0. These assignments
must, of course, also use union components — this has already been tacitly done
correctly in section 5.3.

Finally we must type all those non-terminal symbols for which $1 or $$ are refer-
enced. This is accomplished by making a %type definition in a manner very similar to
a %token definition for terminal symbols. We must type argument_list and
optional_argument_list for counting purposes, and parameter_list and
optional_parameter_list to pass the parameter chain header:

%type <y_syro> optional_parameter_list, parameter list
%type <y_num> optional_argument_list, argument_list

It should be noted that as soon as %union, %type, or the < > syntax is used, yace
very strictly checks that all references to the value stack are typed appropriately. Any
omission immediately causes yace to terminate with a fatal error indicating the
offending line in the specification.

One subtle typing facility, required especially for anonymous non-terminal sym-
bols (see section 3.7), has not yet been discussed. It will be shown when it is required
in section 6.2.

5.5 Problems
1. Write a sampleC test program containing deliberate errors to provoke all semantic
error messages in the compiler.
2. Change the method of storing symbols for sampleC to use a hash scheme, to speed
up the search for names. Demonstrate, e.g., using the C profiling option, that there is
a gain in efficiency.
3. Add to sampleC a block descriptor stack, which can essentially be maintained as
part of the yace value stack. What changes will this require in typing of the value
stack? Again, try to measure the gain in efficiency.
4. Remove those parts of symbol table management which will be unnecessary if a
linking loader is used. Decide how (and when) to pass information to the linker.
5. Extend the desk calculator with simple string operations. Use the operator + to
denote both addition and string concatenation. Should the resulting problem be han-
dled in the grammar, or by separate semantic routines? I.e., should the grammar
know Constant, or rather Number and String?

We are now ready to define an implementation of the sampleC language for a par-
ticular machine. We must develop policies for memory allocation and code generation.

It is interesting to note that the entire problem of language recognition could be
solved without any knowledge of the target machine. This serves to emphasize that a
significant amount of the code of a compiler can be completely target- and host-
machine independent.

In this and the following chapters, we will emphasize the principles rather than
attempt to cope with the peculiarities of a particular machine. We will therefore
describe the implementation for a fictitious machine which is adapted to the require-
ments of the sampleC source language.

6.1 Principles
The memory allocation policy defines the representation of variables, i.e., the

implementation of declarations. We must decide how much memory to allocate to an
object of each data type, and how to address the object, i.e., where to place it during
program execution, to support particular life expectancies.

Run time memory assignment tends to mirror symbol table organization to some
extent. Consider:

In Basic, there are only global variables, kept in a global symbol table, which
for an interpreter might as well also hold the values of the variables during execu-
tion. The parameters of user-defined functions can be handled with the same
stack which is normally used for expression evaluation.

In Fortran, subprograms cannot be called recursively. Since the values of
local variables must be preserved between successive calls to the same function, we
must assign a unique memory cell for each variable in each subprogram.

In C, Pascal, and other Algol-like languages, subprograms can be called recur-
sively; hence, we must dynamically allocate space for the local variables of a sub-
program as it is called. Since local variables normally cease to exist once a subpro-
gram terminates, we can free and reuse their space. Function invocation is a
stack discipline, and this discipline must be employed for managing the local vari-
ables as well.
The nesting of scopes in Algol-like languages poses an additional problem. If func-

tions may be nested during definition, they have access by name only to a selective
subset of the local variables of the currently activated functions.

The nesting of compound statements, with the associated rules for the life expec-
tancy of variables declared within a compound statement, leads to a reuse of memory
which can be managed at compile time. Compound statements can be viewed as
anonymous subprograms which can only he entered sequentially, i.e., in the same order
as the compiler sees them. Since compound statements are anonymous, they can
themselves not be called recursively; thus, the compiler has full information about the
behavior of the life expectancy of local variables defined in a compound statement.

110 COMPILER CONSTRUCTION CHAPTER 6 CHAPTER
6
	MEMORY ALLOCATION 111

110 COMPILER CONSTRUCTION CHAPTER 6 CHAPTER
6
	MEMORY ALLOCATION 111

114 COMPILER CONSTRUCTION CHAPTER 6 CHAP TER 6 MEMORY ALLOCATION 115

6.3 Problems
1. Suppose that the output from our compiler is to be processed by an assembler, i.e.,
the compiler will emit assembler code rather than machine code. What would be
needed to allocate global variables by name? How would this simplify the compilation?
2. Suppose that sampleC is to be implemented on a machine in which one word occu-
pies more than one addressable memory location (e.g., one word is made up of two
separately-addressable bytes). What changes must be made to the memory allocation
routines?
3. Many languages allow nesting of function definitions. What part of the allocation
algorithm for sampleC would have to be changed so that function definitions could be
nested? Keep in mind that a variable in an outer nesting block may be accessed as a
global variable by an internally nested function (as long as there is no conflicting
definition of its name in the internal function). How can the internal function refer-
ence such variables?
4. Using right recursion, it was simple to reverse the order of acceptance of the names
in a parameter_ list. What happens if we write an argument_list in a right recur-
sive fashion? Since right recursion is not acceptable in this case, what other technique
could be used to arrange for the arguments to a function call to be pushed onto the
stack in reverse order?

114 COMPILER CONSTRUCTION CHAPTER 6 CHAP TER 6 MEMORY ALLOCATION 115

6.3 Problems
1. Suppose that the output from our compiler is to be processed by an assembler, i.e.,
the compiler will emit assembler code rather than machine code. What would be
needed to allocate global variables by name? How would this simplify the compilation?
2. Suppose that sampleC is to be implemented on a machine in which one word occu-
pies more than one addressable memory location (e.g., one word is made up of two
separately-addressable bytes). What changes must be made to the memory allocation
routines?
3. Many languages allow nesting of function definitions. What part of the allocation
algorithm for sampleC would have to be changed so that function definitions could be
nested? Keep in mind that a variable in an outer nesting block may be accessed as a
global variable by an internally nested function (as long as there is no conflicting
definition of its name in the internal function). How can the internal function refer-
ence such variables?
4. Using right recursion, it was simple to reverse the order of acceptance of the names
in a parameter_ list. What happens if we write an argument_list in a right recur-
sive fashion? Since right recursion is not acceptable in this case, what other technique
could be used to arrange for the arguments to a function call to be pushed onto the
stack in reverse order?

Chapter 7
Code Generation

Now that we are able to allocate memory in our fictitious machine, we are ready
to produce a compiler that will generate code for it. Most of this chapter is devoted to
showing how to generate code for a stack machine. Section 7.2 begins by defining the
operations available on our machine, proceeds to the generation of code for the calcula-
tion of expression values and for assignment statements, and then considers the prob-
lems of generating code to implement if and while control structures. Very little
attempt is made to optimize the generated code; however, the problems at the end of
the chapter suggest how some additional efficiency could be achieved.

7.1 Principles
The code generation policy determines what instructions need to be issued for

each action that can be expressed in the programming language. A straightforward
approach, given a stack machine, is to arrange for the expressions to be converted to
postfix notation. Making local and global variables addressable might pose a problem,
depending on the addressing structure of the target machine.

The only difficult aspect, which for an actual implementation is quite important, is
the design of the calling sequence for function calls. For our example we will assume
"suitable" instructions; managing the activation record stack on a real machine may
require that appropriate subprograms be designed and linked with each compiled pro-
gram. Such subprograms are a natural place to insert traces for debugging or profiling
of the compiled code.

The implementation of iteration and decision statements usually requires a
number of forward branches, e.g., around the else part of an if statement. Unfor-
tunately, these forward branch instructions usually have to be emitted twice: once
with an unknown target address, so that space for the instruction is reserved, and
later with the corrected address. If we actually construct a program in memory, we
need to fix the relevant memory locations.

If we decide to emit assembler text, we could use an origin pseudo-instruction to
direct the assembler later to the proper program address so that we may reissue the
jump instruction once we know its actual target address. A much better technique in
this case, however, is to simply generate a symbolic label, and let the assembler deal
with the forward branch.

The break and continue statements of sample(' require stacks onto which the
relevant label information is pushed when a while or similar statement is processed. If
a switch statement is included in the language, two stacks are required, since then the
information for continue can significantly differ from the information for break, The
stacks aLso serve to determine the legality of the use of these statements, a semantic
test which we had deliberately postponed in chapter 5.

Chapter 7
Code Generation

Now that we are able to allocate memory in our fictitious machine, we are ready
to produce a compiler that will generate code for it. Most of this chapter is devoted to
showing how to generate code for a stack machine. Section 7.2 begins by defining the
operations available on our machine, proceeds to the generation of code for the calcula-
tion of expression values and for assignment statements, and then considers the prob-
lems of generating code to implement if and while control structures. Very little
attempt is made to optimize the generated code; however, the problems at the end of
the chapter suggest how some additional efficiency could be achieved.

7.1 Principles
The code generation policy determines what instructions need to be issued for

each action that can be expressed in the programming language. A straightforward
approach, given a stack machine, is to arrange for the expressions to be converted to
postfix notation. Making local and global variables addressable might pose a problem,
depending on the addressing structure of the target machine.

The only difficult aspect, which for an actual implementation is quite important, is
the design of the calling sequence for function calls. For our example we will assume
"suitable" instructions; managing the activation record stack on a real machine may
require that appropriate subprograms be designed and linked with each compiled pro-
gram. Such subprograms are a natural place to insert traces for debugging or profiling
of the compiled code.

The implementation of iteration and decision statements usually requires a
number of forward branches, e.g., around the else part of an if statement. Unfor-
tunately, these forward branch instructions usually have to be emitted twice: once
with an unknown target address, so that space for the instruction is reserved, and
later with the corrected address. If we actually construct a program in memory, we
need to fix the relevant memory locations.

If we decide to emit assembler text, we could use an origin pseudo-instruction to
direct the assembler later to the proper program address so that we may reissue the
jump instruction once we know its actual target address. A much better technique in
this case, however, is to simply generate a symbolic label, and let the assembler deal
with the forward branch.

The break and continue statements of sample(' require stacks onto which the
relevant label information is pushed when a while or similar statement is processed. If
a switch statement is included in the language, two stacks are required, since then the
information for continue can significantly differ from the information for break, The
stacks aLso serve to determine the legality of the use of these statements, a semantic
test which we had deliberately postponed in chapter 5.

118 COMPILER CONSTRUCTION
CHAPTER 7 CHAPTER 7 CODE GENERATION 119

7.2 Example
We will demonstrate how to generate assembler code for our fictitious machine.

The assembler source format is similar to that of many existing assemblers: one
instruction per line; an optional label field starts in column one; the second, mandatory
field contains a mnemonic operation code; a third field might contain an operation
modifier or other information; fields are separated by white space; and a comment may
follow at the end of the line. The details of the format are not really important at this
point, since they are easily changed in the code generation routines.

As a quick overview of the available instructions, consider their definition in the

following header file gen.h:

/*
typed functions, code generator

*/

char * gen_mod(); /* region modifier */

The precise definition of each instruction is implied by the simulator presented in
chapter 8. For the purposes of code generation, the following remarks should suffice to
characterize the effect of each instruction:

Our fictitious machine is a stack machine. Code generation for expressions is
therefore quite simple: the values of variables and constants must be pushed onto the
stack, using load instructions provided for this purpose, and for operators an alu
instruction must be issued_ The alu instruction has a modifier which indicates what
arithmetic or logic operation is to be performed on the two elements on top of the
stack. The result of the operation then replaces the two elements on the stack.
Modifiers happen to exist corresponding to each operator in sampleC.

Assignments, of course, correspond to store instructions. In sarnpleC, however,
assignment can be an embedded operation. The store instruction therefore will not
remove a value from the stack. This is instead accomplished by an explicit pop
instruction, which must be coded whenever an expression value is to be discarded.

Code generation for if and while statements involves the construction of
appropriate branching instructions. There are some forward references, e.g., to the
else part of an if statement; these are handled by generating unique labels based on a
counter, passing them on the semantic stack in yacc actions, and letting the assembler
resolve the definitions.

break and continue pose a more subtle problem: in sampleC they are allowed
only inside a while loop. This is best monitored by separate stacks, on which each
while statement is expected to deposit appropriate labels, which are removed at the
end of the dependent statement.

Function calls are handled by a call instruction, which expects the function argu-
ments to be on the stack. This instruction contains the number of actual arguments,
so that the parameter segment can be set up properly.

At the beginning of a function we need to code an entry instruction specifying the
amount of space to reserve on the stack for local variables. The combination of call
and entry instructions is assumed to handle all problems associated with parameter
passing and dynamic allocation of local variables.

The return instruction will remove the local activation record from the stack, and
restore all relevant hardware registers. If the return instruction is preceded by the
evaluation of an expression, the value must be saved prior to return, since code follow-
ing call must be generated to remove all arguments from the stack. This code is also
expected to push any result value of a function back onto the stack.

We will again show additions to the grammar next to the new code generation
functions called by these actions. A complete listing is in section 6 in the appendix.
Let us start by considering code generation for arithmetic expressions:

118 COMPILER CONSTRUCTION
CHAPTER 7 CHAPTER 7 CODE GENERATION 119

7.2 Example
We will demonstrate how to generate assembler code for our fictitious machine.

The assembler source format is similar to that of many existing assemblers: one
instruction per line; an optional label field starts in column one; the second, mandatory
field contains a mnemonic operation code; a third field might contain an operation
modifier or other information; fields are separated by white space; and a comment may
follow at the end of the line. The details of the format are not really important at this
point, since they are easily changed in the code generation routines.

As a quick overview of the available instructions, consider their definition in the

following header file gen.h:

/*
typed functions, code generator

*/

char * gen_mod(); /* region modifier */

The precise definition of each instruction is implied by the simulator presented in
chapter 8. For the purposes of code generation, the following remarks should suffice to
characterize the effect of each instruction:

Our fictitious machine is a stack machine. Code generation for expressions is
therefore quite simple: the values of variables and constants must be pushed onto the
stack, using load instructions provided for this purpose, and for operators an alu
instruction must be issued_ The alu instruction has a modifier which indicates what
arithmetic or logic operation is to be performed on the two elements on top of the
stack. The result of the operation then replaces the two elements on the stack.
Modifiers happen to exist corresponding to each operator in sampleC.

Assignments, of course, correspond to store instructions. In sarnpleC, however,
assignment can be an embedded operation. The store instruction therefore will not
remove a value from the stack. This is instead accomplished by an explicit pop
instruction, which must be coded whenever an expression value is to be discarded.

Code generation for if and while statements involves the construction of
appropriate branching instructions. There are some forward references, e.g., to the
else part of an if statement; these are handled by generating unique labels based on a
counter, passing them on the semantic stack in yacc actions, and letting the assembler
resolve the definitions.

break and continue pose a more subtle problem: in sampleC they are allowed
only inside a while loop. This is best monitored by separate stacks, on which each
while statement is expected to deposit appropriate labels, which are removed at the
end of the dependent statement.

Function calls are handled by a call instruction, which expects the function argu-
ments to be on the stack. This instruction contains the number of actual arguments,
so that the parameter segment can be set up properly.

At the beginning of a function we need to code an entry instruction specifying the
amount of space to reserve on the stack for local variables. The combination of call
and entry instructions is assumed to handle all problems associated with parameter
passing and dynamic allocation of local variables.

The return instruction will remove the local activation record from the stack, and
restore all relevant hardware registers. If the return instruction is preceded by the
evaluation of an expression, the value must be saved prior to return, since code follow-
ing call must be generated to remove all arguments from the stack. This code is also
expected to push any result value of a function back onto the stack.

We will again show additions to the grammar next to the new code generation
functions called by these actions. A complete listing is in section 6 in the appendix.
Let us start by considering code generation for arithmetic expressions:

124 COMPILER CONSTRUCTION CHAPTER 7 CHAPTER 7 CODE GENERATION 125

Code for the dependent statement can then be generated. An unconditional branch to
the continuation point follows, and then the label must be defined to which we branch
when we want to leave the while construct.

The resulting code is not optimally efficient: if we moved the code for the condi-
tion to follow the dependent statement, we could use the conditional branch to iterate
the loop and thus save one branch per iteration. This, however, would require that we
save the code for an expression somewhere.

sampleC has break and continue statements, which within a while construct
transfer control to the termination or iteration points. The statements must be imple-
mented as unconditional jumps, and we must supply appropriate labels. Since while
statements can be nested, the labels must be stacked; since in C a switch establishes a
new nesting level for break but not for continue, we chose to implement two stacks,
although sampleC could be implemented with one.

We have already pushed the stacks in the loop_prefix and in the while state-
ment expansion; following the while construct, we have popped the labels. Assuming
the existence of push() and pop() stack management functions, the routines can be

1 0 1-

124 COMPILER CONSTRUCTION CHAPTER 7 CHAPTER 7 CODE GENERATION 125

Code for the dependent statement can then be generated. An unconditional branch to
the continuation point follows, and then the label must be defined to which we branch
when we want to leave the while construct.

The resulting code is not optimally efficient: if we moved the code for the condi-
tion to follow the dependent statement, we could use the conditional branch to iterate
the loop and thus save one branch per iteration. This, however, would require that we
save the code for an expression somewhere.

sampleC has break and continue statements, which within a while construct
transfer control to the termination or iteration points. The statements must be imple-
mented as unconditional jumps, and we must supply appropriate labels. Since while
statements can be nested, the labels must be stacked; since in C a switch establishes a
new nesting level for break but not for continue, we chose to implement two stacks,
although sampleC could be implemented with one.

We have already pushed the stacks in the loop_prefix and in the while state-
ment expansion; following the while construct, we have popped the labels. Assuming
the existence of push() and pop() stack management functions, the routines can be

1 0 1-

125 COMPILER CONSTRUCTION CHAPTER 7 CHAPTER 7 CODE GENERATION 127

125 COMPILER CONSTRUCTION CHAPTER 7 CHAPTER 7 CODE GENERATION 127

CODE GENERATION 129

CODE GENERATION 129

Chapter 8
A Load-and-Go System

130 COMPILER CONSTRUCTION CHAPTER 7

The preceding chapter demonstrated that it is relatively simple to construct a
rod e generator if the target machine architecture is close enough to the source
language. Once the implementation, Le., a memory allocation policy and code
sequences for the various actions in the source language, has been defined, we can turn
lo s imulation of a suitable machine architecture as one means of completing the pro-
gramm ing system- This chapter will show the construction of a simulator for the
machin e assumed in the previous two chapters, and it will show how a load-and-go sys-
t em is developed using such a simulator. The discussion is necessarily quite specific to
marn pieC. However, several languages have been implemented in a similar fashion, e.g.,

Pascal and Mod u la-2.

8.1 A machine simulator
A simulator for our fictitious machine is actually quite simple to construct. First

we need to define numerical codes for the individual instructions and instruction
modifiers. The resulting header file sim.h provides a different representation for all
names nreviousIv defined in gen.h:

Chapter 8
A Load-and-Go System

130 COMPILER CONSTRUCTION CHAPTER 7

The preceding chapter demonstrated that it is relatively simple to construct a
rod e generator if the target machine architecture is close enough to the source
language. Once the implementation, Le., a memory allocation policy and code
sequences for the various actions in the source language, has been defined, we can turn
lo s imulation of a suitable machine architecture as one means of completing the pro-
gramm ing system- This chapter will show the construction of a simulator for the
machin e assumed in the previous two chapters, and it will show how a load-and-go sys-
t em is developed using such a simulator. The discussion is necessarily quite specific to
marn pieC. However, several languages have been implemented in a similar fashion, e.g.,

Pascal and Mod u la-2.

8.1 A machine simulator
A simulator for our fictitious machine is actually quite simple to construct. First

we need to define numerical codes for the individual instructions and instruction
modifiers. The resulting header file sim.h provides a different representation for all
names nreviousIv defined in gen.h:

134 COMPILER CONSTRUCTION CHAPTER 8 CHAPTER 8 A LOAD-AND-GO SYSTEM 135

134 COMPILER CONSTRUCTION CHAPTER 8 CHAPTER 8 A LOAD-AND-GO SYSTEM 135

138 COMPILER CONSTRUCTION CHAPTER 8 A LOAD-AND-GO SYSTEM 139CHAPTER 8

138 COMPILER CONSTRUCTION CHAPTER 8 A LOAD-AND-GO SYSTEM 139CHAPTER 8

140 COMPILER CONSTRUCTION A LOAD-AND-GO SYSTEM 141

140 COMPILER CONSTRUCTION A LOAD-AND-GO SYSTEM 141

CHAPTER 8 A LOAD-AND-GO SYSTEM 147

The example shows nicely that the code could be shortened by postprocessing,
s ince, e.g., of a series of return instructions only the first can actually be reached.

g,4 Problems
1. Improve the simulator by having return pass result values on the stack, and by
eliminating from gen_call the pop and load instructions following call. (See sec-
tion 8. 1 .)
2. As was mentioned, the call, return, and entry instructions for our fictitious
machine are not very realistic. On real machines, these instructions tend to be much
s impler. Design more "realistic" instructions, and change the code generator and the
simulator to use them. Hint: you will probably need some register manipulation
instructions.
3. Add run-time options to the simulator, either through compiler options or by spe-
cial comments which generate appropriate pseudo-instructions. Possible options
include: printing or suppressing a listing of the compiled code before execution begins;
an option of whether to execute the program, based on the presence or absence of com-
pilation errors, or on the number or type of errors (ordinary errors, or warnings); a
limit on the number of instructions to be simulated; a more extensive trace option,
perhaps with a limit to the number or type of instructions to be traced.
4. Modify the simulator to handle arithmetic exceptions, such as division by zero.
5. Modify the simulator to use dynamically managed memory, rather than the fixed-
size arrays of "tunable size" defined near the beginning of this chapter.
8. The program segment structure, defined near the beginning of this chapter to sim-
plify decoding, is neither realistic of ordinary machine architecture, nor particularly
compact. Modify this feature of the simulator to make it more efficient and more real-
istic.

8.5 Projects
1. Reorganize the compiler so that it consists of several separate programs: (1) the
compiler of chapter 7, which generates assembler code; (2) a simple assembler (the
assembler can, of course, be written using yacc and lex!); and (3) the simulator.
2. Using the three programs of the previous project, rearrange the compiler so that
functions can be compiled separately, and the results combined either by the assembler
or by a separate linking loader. Note that global variables might be included in any
function compilation, and all must appear in the final executed program.
3. A large number of language extensions is conceivable: char or other integer-type
variables, floating point variables, vectors with or without pointers, structures; other
control features, such as switch, for, do while.
4. More interesting language extensions result from introducing parallelism, e.g., by
introducing standard procedures (i.e., simulator instructions) for coroutine jumps in
the style of Modula-2, or by adding a parallel control structure. Vectors should be
added also to make this project more realistic.

CHAPTER 8 A LOAD-AND-GO SYSTEM 147

The example shows nicely that the code could be shortened by postprocessing,
s ince, e.g., of a series of return instructions only the first can actually be reached.

g,4 Problems
1. Improve the simulator by having return pass result values on the stack, and by
eliminating from gen_call the pop and load instructions following call. (See sec-
tion 8. 1 .)
2. As was mentioned, the call, return, and entry instructions for our fictitious
machine are not very realistic. On real machines, these instructions tend to be much
s impler. Design more "realistic" instructions, and change the code generator and the
simulator to use them. Hint: you will probably need some register manipulation
instructions.
3. Add run-time options to the simulator, either through compiler options or by spe-
cial comments which generate appropriate pseudo-instructions. Possible options
include: printing or suppressing a listing of the compiled code before execution begins;
an option of whether to execute the program, based on the presence or absence of com-
pilation errors, or on the number or type of errors (ordinary errors, or warnings); a
limit on the number of instructions to be simulated; a more extensive trace option,
perhaps with a limit to the number or type of instructions to be traced.
4. Modify the simulator to handle arithmetic exceptions, such as division by zero.
5. Modify the simulator to use dynamically managed memory, rather than the fixed-
size arrays of "tunable size" defined near the beginning of this chapter.
8. The program segment structure, defined near the beginning of this chapter to sim-
plify decoding, is neither realistic of ordinary machine architecture, nor particularly
compact. Modify this feature of the simulator to make it more efficient and more real-
istic.

8.5 Projects
1. Reorganize the compiler so that it consists of several separate programs: (1) the
compiler of chapter 7, which generates assembler code; (2) a simple assembler (the
assembler can, of course, be written using yacc and lex!); and (3) the simulator.
2. Using the three programs of the previous project, rearrange the compiler so that
functions can be compiled separately, and the results combined either by the assembler
or by a separate linking loader. Note that global variables might be included in any
function compilation, and all must appear in the final executed program.
3. A large number of language extensions is conceivable: char or other integer-type
variables, floating point variables, vectors with or without pointers, structures; other
control features, such as switch, for, do while.
4. More interesting language extensions result from introducing parallelism, e.g., by
introducing standard procedures (i.e., simulator instructions) for coroutine jumps in
the style of Modula-2, or by adding a parallel control structure. Vectors should be
added also to make this project more realistic.

150 COMPILER CONSTRUCTION APPENDIX A AppENDIX A 'sampleen COMPILER LISTING 151

150 COMPILER CONSTRUCTION APPENDIX A AppENDIX A 'sampleen COMPILER LISTING 151

APPENDIX A APPENDIX A "sampleC' COMPILER LISTING 153152 COMPILER CONSTRUCTION

APPENDIX A APPENDIX A "sampleC' COMPILER LISTING 153152 COMPILER CONSTRUCTION

APPENDIX A154 COMPILER CONSTRUCTION APPENDIX A "sampleC" COMPILER LISTING 155

APPENDIX A154 COMPILER CONSTRUCTION APPENDIX A "sampleC" COMPILER LISTING 155

"sampleC" COMPILER LISTING 157APPENDIX A156 COMPILER CONSTRUCTION APPENDIX A

A parser is then prepared with the following command:
pace -d samplee.y

The —d option instructs yacc to produce both the parser y.tab.c and the token
definition file y.tab.h.

A.2 Lexical analysis
The lexical analyzer function in file samplec.1 was shown in section 2.7. From this

file, the lexical analyzer is prepared with the following command:
lex samplec.1

A.3 Messages
File message.c contains the C functions introduced in chapter 5 to issue error

messages. (The comments /*VARARGS1*/ prevent lint from complaining about the
varying number of arguments with which these functions are called.)

"sampleC" COMPILER LISTING 157APPENDIX A156 COMPILER CONSTRUCTION APPENDIX A

A parser is then prepared with the following command:
pace -d samplee.y

The —d option instructs yacc to produce both the parser y.tab.c and the token
definition file y.tab.h.

A.2 Lexical analysis
The lexical analyzer function in file samplec.1 was shown in section 2.7. From this

file, the lexical analyzer is prepared with the following command:
lex samplec.1

A.3 Messages
File message.c contains the C functions introduced in chapter 5 to issue error

messages. (The comments /*VARARGS1*/ prevent lint from complaining about the
varying number of arguments with which these functions are called.)

15S COMP13.EF? CONSTfirCT2ON Arr 117:7' , IT M A M-TENDLX A 'ti.ainplee" COMPILER LISTING 159

15S COMP13.EF? CONSTfirCT2ON Arr 117:7' , IT M A M-TENDLX A 'ti.ainplee" COMPILER LISTING 159

160 COMPILER CONSTRUCTION APPENDIX A APPENDIX A "sampleC" COMPILER LISTING 161

160 COMPILER CONSTRUCTION APPENDIX A APPENDIX A "sampleC" COMPILER LISTING 161

162 COMPILER CONSTRUCTION APPENDIX A
APPENDIX A 'sampleC" COMPILER LISTING 163I

162 COMPILER CONSTRUCTION APPENDIX A
APPENDIX A 'sampleC" COMPILER LISTING 163I

APPENDIX A
164 COMPILER CONSTRUCTION APPENDIX A "sampleC" COMPILER LISTING 165

APPENDIX A
164 COMPILER CONSTRUCTION APPENDIX A "sampleC" COMPILER LISTING 165

166 COMPILER CONSTRUCTION APPENDIX A APPENDIX A "sampleC" COMPILER LISTING 167

166 COMPILER CONSTRUCTION APPENDIX A APPENDIX A "sampleC" COMPILER LISTING 167

File gen.c includes the C functions which generate assembler code for our ficti-
tious aampleC machine. These routines were introduced in chapter 7.
gen.c

168 COMPILER CONSTRUCTION APPENDIX A APPENDIX A "sarnpleC" COMPILER LISTING 169

File gen.c includes the C functions which generate assembler code for our ficti-
tious aampleC machine. These routines were introduced in chapter 7.
gen.c

168 COMPILER CONSTRUCTION APPENDIX A APPENDIX A "sarnpleC" COMPILER LISTING 169

170 COMPILER CONSTRUCTION APPENDIX A APPENDIX A "sampleC" COMPILER LISTING 171

170 COMPILER CONSTRUCTION APPENDIX A APPENDIX A "sampleC" COMPILER LISTING 171

"sampleC" COMPILER LISTING 173172 COMPILER CONSTRUCTION APPENDIX A APPENDIX A

"sampleC" COMPILER LISTING 173172 COMPILER CONSTRUCTION APPENDIX A APPENDIX A

I

174 COMPILER CONSTRUCTION APPENDIX A APPENDIX A "sampleC" COMPILER LISTING 175

I

174 COMPILER CONSTRUCTION APPENDIX A APPENDIX A "sampleC" COMPILER LISTING 175

"sampleC" COMPILER LISTING 177176 COMPILER CONSTRUCTION APPENDIX A APPENDIX A

"sampleC" COMPILER LISTING 177176 COMPILER CONSTRUCTION APPENDIX A APPENDIX A

APPENDIX A "sampleC" COMPILER LISTING 179178 COMPILER CONSTRUCTION APPENDIX A

APPENDIX A "sampleC" COMPILER LISTING 179178 COMPILER CONSTRUCTION APPENDIX A

180 COMPILER CONSTRUCTION APPENDIX A "sampleC" COMPILER LISTING 181APPENDIX A

180 COMPILER CONSTRUCTION APPENDIX A "sampleC" COMPILER LISTING 181APPENDIX A

182 COMP ILER CONSTRUCTION APPENDIX A APPENDIX A "sampleC" COMPILER LISTING 183

182 COMP ILER CONSTRUCTION APPENDIX A APPENDIX A "sampleC" COMPILER LISTING 183

184 COMPILER CONSTRUCTION APPENDIX A APPENDIX A "sampleC" COMPILER LISTING 185

184 COMPILER CONSTRUCTION APPENDIX A APPENDIX A "sampleC" COMPILER LISTING 185

186 COMPILER CONSTRUCTION APPENDIX A APPENDIX A "sampleC" COMPILER LISTING 187

186 COMPILER CONSTRUCTION APPENDIX A APPENDIX A "sampleC" COMPILER LISTING 187

References

[Aho74] A. V. Aho and S. C. Johnson, "LR Parsing," Comp. Surveys, vol. 6, no. 2,
pp. 99-124, June 1974.

[Aho77] A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-
Wesley, Reading, Mass., 1977.

[Bau76] F. L. Bauer and J. Eickel (ed.), Compiler Construction: An Advanced
Course, Springer, Berlin, 1974, 1976.

[Gra79] S. L. Graham, C. B. Haley, and W. N. Joy, "Practical LR error
recovery," SIGPLAN Notices, Aug 1979.

[Gri71] D. Cries, Compiler Construction for Digital Computers, Wiley, New York,
1971.

Pen751 K. Jensen and N Wirth, Pascal: User Manual and Report, Springer, Ber-
lin, 1975.

[Joh78] S. C. Johnson, "Yacc: Yet Another Compiler-Compiler," in [Ker78a].
[Ker78a] B. W. Kernighan and M. D. McIlroy, UNIX Programmer's Manual, Bell

Laboratories, 1978. Seventh Edition.
[Ker78b1 B. W. Kernighan and D. M. Ritchie, The C Programming Language,

Prentice-Hall, Englewood Cliffs, New Jersey, 1978.
[Les78a] M. E. Lesk, "Typing Documents on the UNIX System: Using the -ms

Macros with Trod and Nroff," in [Ker78a].
fLes78b1 M. E. Lesk and E. Schmidt, "Lex: A Lexical Analyzer Generator," in

[Ker78a].
[Nau63] P. Naur (ed.), "Revised Report on the Algorithmic Language Algol 60,"

CACM, pp. 1-17, Jan. 1963.
[Wic73] B. A. Wichman, "The Definition of Comments in Programming

Languages," NPL Report NAC-34, National Physics Laboratory, Division
of Numerical Analysis and Computing, Teddington, England, May 1973.

[Wij75] A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck, C. H. A. Koster, M.
Sintzoff, C. H. Lindsey, L. G. L. T. Meertens, and R. G. Fisker, "Revised
Report on the Algorithmic Language Algol 68," Acta Informatica, pp. 1-
236, 1, 1975.

[Wir771 N. Wirth, Compilerbau, B. G. Teubner, Stuttgart, 1977.
[Wir821 N. Wirth, Programming in Modula-2, Springer, Berlin, 1982.

Ire M■■■■■_

error
operation (in yacc) ... 38, 67
terminal symbol (in yacc) ... 66, 67

placement of ... 70, 71
error() .. 101, 156
Extended Backus Naur form, See El3NF
fatal() .. 101, 156
finite state automata .. 21
formulation ... x, 3, 8
forward branch ... 117, 119, 122, 138, 140, 143
function

call ... 117, 119, 125, 136, 137, 143
declaration ... 87
return ... 119, 126, 137

goto operation (in yacc) .. 38, 52
grammar .. 4, 6, 9

ambiguity ... 7
deterministic .. 7
LL(1) ... 8
LR(1) ... 8
recursion ... 4
recursion, See recursion

lex ..
comments ...
debugging ...
input syntax ...
library ...
replacement text ..
with yacc ..

lexical analysis ...
library ..
load-and-go, See simulation
look-ahead ..
main () ...
memory allocation ...
message C) ..
operator ...
parameter

allocation ..
declaration ...

parse tree ..
parser ...
pattern ...

ambiguous ..
floating point constant

28, 29, 31,

22
27

30, 32, 34
27
28
34

30, 37, 38
21, 86, 91

28, 185

8
41, 42, 91

105, 165
101, 156

21

112
87

4, 6, 7
37
23
26
54

pattern, continued
for

comment .. 24, 25
constant .. 24, 25
identifier ... 24
position stamp .. 32
reserved words ... 31
string .. 25
white space ... 24

iteration .. 25
right context .. 26

pointer
allocation ... 106

precedence ... 7, 14, 16
push-down automaton .. 37
recursion ... 105

left ... 5, 7, 112
right .. 7, 113

reduce operation ... 11, 38
reserved word .. 21
rule ... x, 3, 8

See also disambiguating rule
scope (of a. name) .. 83, 105
semantic error ... 83
semantics .. 1
sentence ... 1
shif t operation ... 11, 12, 38, 52
simulation .. 131, 172
stack

activation record .. 106
break ... 117, 119, 124, 142, 143
continue ... 117, 119, 124, 142, 143
execution .. 105, 106, 126, 133, 135, 136, 137, 138
See also yacc, state stack and value stack

statement
compound ... 105, 110, 121

strsave 0 ... 58, 88, 157
symbol table .. 85, 105, 120, 144, 158

blind element .. 90
search .. 86, 92

symbol
non-terminal .. 3, 6, 8
start 4
terminal ... 3, 6, 8, 21, 51

representation .. 39
syntax analysis .. 37
syntax error ... 41, 182

INDEX 193192 COMPILER CONSTRUCTION INDEX

error
operation (in yacc) ... 38, 67
terminal symbol (in yacc) ... 66, 67

placement of ... 70, 71
error() .. 101, 156
Extended Backus Naur form, See El3NF
fatal() .. 101, 156
finite state automata .. 21
formulation ... x, 3, 8
forward branch ... 117, 119, 122, 138, 140, 143
function

call ... 117, 119, 125, 136, 137, 143
declaration ... 87
return ... 119, 126, 137

goto operation (in yacc) .. 38, 52
grammar .. 4, 6, 9

ambiguity ... 7
deterministic .. 7
LL(1) ... 8
LR(1) ... 8
recursion ... 4
recursion, See recursion

lex ..
comments ...
debugging ...
input syntax ...
library ...
replacement text ..
with yacc ..

lexical analysis ...
library ..
load-and-go, See simulation
look-ahead ..
main () ...
memory allocation ...
message C) ..
operator ...
parameter

allocation ..
declaration ...

parse tree ..
parser ...
pattern ...

ambiguous ..
floating point constant

28, 29, 31,

22
27

30, 32, 34
27
28
34

30, 37, 38
21, 86, 91

28, 185

8
41, 42, 91

105, 165
101, 156

21

112
87

4, 6, 7
37
23
26
54

pattern, continued
for

comment .. 24, 25
constant .. 24, 25
identifier ... 24
position stamp .. 32
reserved words ... 31
string .. 25
white space ... 24

iteration .. 25
right context .. 26

pointer
allocation ... 106

precedence ... 7, 14, 16
push-down automaton .. 37
recursion ... 105

left ... 5, 7, 112
right .. 7, 113

reduce operation ... 11, 38
reserved word .. 21
rule ... x, 3, 8

See also disambiguating rule
scope (of a. name) .. 83, 105
semantic error ... 83
semantics .. 1
sentence ... 1
shif t operation ... 11, 12, 38, 52
simulation .. 131, 172
stack

activation record .. 106
break ... 117, 119, 124, 142, 143
continue ... 117, 119, 124, 142, 143
execution .. 105, 106, 126, 133, 135, 136, 137, 138
See also yacc, state stack and value stack

statement
compound ... 105, 110, 121

strsave 0 ... 58, 88, 157
symbol table .. 85, 105, 120, 144, 158

blind element .. 90
search .. 86, 92

symbol
non-terminal .. 3, 6, 8
start 4
terminal ... 3, 6, 8, 21, 51

representation .. 39
syntax analysis .. 37
syntax error ... 41, 182

INDEX 193192 COMPILER CONSTRUCTION INDEX

194 COMPILER CONSTRUCTION

syntax graph ..
syntax
testing, See debugging
tracing, See debugging
transfer vector ..
transition diagram ...
transition matrix ..
type (of a name) ...
typographical conventions

yacc ..
warning() ..

yacc ..
action ..

within a formulation
debugging ...
input syntax ..
library ...
state stack ...
typographical conventions
value stack ...

typing ..
as a pointer type

with lex ...
yaccpar modification

yyerrok; action ..
yyerror() ..

yymark 0 ..
See also C preprocessor, position stamps

yywhere() ...

52, 93, 111, 120, 122, 126,

INDEX

22
1

144
21
38
86

19
101, 156

9, 37
52
62

46, 185
14

185
37
19

140, 142, 144
53, 103, 111

54
37, 39

182, 185
70, 74

37, 45, 183
45

44

INTRODUCTION
TTOMPILER

Axel T. SchreintirTH. - • "e Friedman

The authors designed this practical book as a case study of two powerful,
yet easy-to-use tools in the UNIX system. They show you how to create a
compiler using generators such as yacc (LALR(1) parser generator) and lex
(regular expression-based lexical analyzer generator).

SampleC, a simple subset of C, is defined and used as an example of
compiler development. The implementation is intended to produce less
than optimal object code, and suggestions for improvements to the code
and extensions to the language provide problems in several chapters.

This tutorial shows how to get a si mple, easily modifiable implementation
quickly and reliably. It also helps the reader to learn practical details of the
components of a compiler and the interfaces between them. The book is a
short exposition preceding detailed algorithm studies in compiler
construction and offers a description of how to employ productively the
generators described.

PRENTICE-HALL, INC., Englewood Cliffs, N.J. 07632

ISBN 0-1B-474196 - 2

