
Reactive Java
Programming

—
Andrea Maglie

 Reactive Java
Programming

 Andrea Maglie

Reactive Java Programming

Andrea Maglie
Venice, Italy

ISBN-13 (pbk): 978-1-4842-1429-9 ISBN-13 (electronic): 978-1-4842-1428-2
DOI 10.1007/978-1-4842-1428-2

Library of Congress Control Number: 2016957883

Copyright © 2016 by Andrea Maglie

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Manuel Jordan Elera
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black,

Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil
Karkal, James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan
Spearing

Coordinating Editor: Mark Powers
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com , or visit www.springeronline.com . Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text are
available to readers at www.apress.com . For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/ . Readers can also access source code
at SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/

 Dedicated to Alessandra

v

Contents at a Glance

About the Author .. xi

About the Technical Reviewer .. xiii

Acknowledgments ... xv

Introduction ... xvii

 ■Chapter 1: ReactiveX and RxJava ... 1

 ■Chapter 2: Observables and Observers .. 11

 ■Chapter 3: Subscription Lifecycle ... 41

 ■Chapter 4: Subjects .. 61

 ■Chapter 5: Networking with RxJava and Retrofi t 79

 ■Chapter 6: RxJava and Android .. 95

Index .. 107

vii

Contents

About the Author .. xi

About the Technical Reviewer .. xiii

Acknowledgments ... xv

Introduction ... xvii

 ■Chapter 1: ReactiveX and RxJava ... 1

Introduction ... 1

Imperative and Functional Programming .. 1

Lambda Expressions ... 3

Imperative or Functional? ... 4

Reactive Programming .. 4

Streams of Data .. 5

The Observer Pattern .. 5

What’s ReactiveX? ... 6

What’s RxJava? ... 7

 ■Chapter 2: Observables and Observers .. 11

Introduction ... 11

Adding RxJava to Your Project ... 11

Defi nition of Observable .. 12

Defi nition of Observer ... 12

onNext, onCompleted, onError... 13

Hot and Cold Observables ... 15

 ■ CONTENTS

viii

Creating Observables .. 16

Observable.just() ... 16

Observable.range() ... 17

Observable.interval() ... 17

Observable.timer() .. 18

Observable.create()... 18

Observable.empty() ... 19

Observable.error() ... 19

Observable.never() .. 19

Observable.defer() .. 20

Composing and Transforming Observables ... 22

map... 22

fl atMap ... 24

concatMap .. 25

zip ... 26

concat ... 27

fi lter .. 29

distinct .. 30

fi rst ... 30

last .. 31

take ... 33

startWith ... 34

scan .. 35

Other Operators .. 36

 ■ CONTENTS

ix

 ■Chapter 3: Subscription Lifecycle ... 41

Introduction ... 41

Error Handling ... 41

Handling Errors in the onError() Method ... 42

Ignoring the Exception and Continuing with Item Emission 43

Retry ... 46

Schedulers .. 49

Transformers .. 53

Advanced Use of Schedulers .. 54

Backpressure .. 55

Handling Backpressure During Emission: Throttling .. 55

Handling Backpressure During Emission: Buffering ... 57

Handling Backpressure Inside the Subscriber .. 59

 ■Chapter 4: Subjects .. 61

PublishSubject .. 63

BehaviorSubject .. 66

ReplaySubject ... 69

AsyncSubject ... 70

When Should You Use Subjects? ... 72

Connectable Observables .. 76

 ■Chapter 5: Networking with RxJava and Retrofi t 79

Retrofi t’s Built-in Support for RxJava .. 80

Setting Up Retrofi t in Your Java Project .. 80

Creating a Retrofi t Service ... 80

Filter Results ... 85

Choosing the Right Scheduler ... 87

 ■ CONTENTS

x

Chaining Multiple Network Calls ... 88

Caching Data ... 90

 ■Chapter 6: RxJava and Android .. 95

RxAndroid .. 95

RxBindings .. 97

Activity and Fragment Life Cycle ... 101

Index .. 107

xi

 About the Author

 Andrea Maglie (Venice, Italy, 1981) is an IT Engineer.
He graduated from the University of Padua and is a
Senior Java/Android Developer.

 He has been working on RxJava since 2014,
concentrating on Android development.

 Currently, he has three apps published in the
Play Store as a contributor (MiSiedo, Texa CARe,
Musement), plus two apps as an indie developer
(Setlist and Loopo). Between 2013 and 2015, he ran
Sono Digitale, an Italian podcast about technology
and development. In 2015, he founded the Google
Developer Group (GDG) of Venice.

 In his free time, he plays guitar and writes on his
tech blog at www.andreamaglie.com .

http://www.andreamaglie.com/

xiii

 About the Technical
Reviewer

 Manuel Jordan Elera is an autodidactic developer and
researcher who enjoys learning new technologies for
his own experiments and creating new integrations.

 Manuel won the 2010 Springy Award – Community
Champion and the Spring Champion 2013. Manuel is
known as dr_pompeii. He has tech reviewed numerous
books for Apress, including Pro Spring, 4th Edition
(2014), Practical Spring LDAP (2013), Pro JPA 2, Second
Edition (2013), and Pro Spring Security (2013).
Read his 13 detailed tutorials about many Spring
technologies and contact him through his blog at
 www.manueljordanelera.blogspot.com and follow
him on his Twitter account, @dr_pompeii.

 In his little free time, he reads the Bible and
composes music on his guitar.

http://www.manueljordanelera.blogspot.com/

xv

 Acknowledgments

 I would like to thank Mark Powers, Steve Anglin, and Apress for enabling me to publish
this book.

 Above all, I want to thank my love, Alessandra, and the rest of my family, who
supported and encouraged me in spite of all the time it took me away from them.

xvii

 Introduction

 Welcome to Reactive Java Programming . With this book you’ll learn how to transform
the way you develop your Java (and Android) applications in a reactive way, moving from
synchronous state management with variables to working with asynchronous streams of
data. This means that you’ll learn how to apply elements of functional programming to
Java programs and how to write code that “reacts” to events; you’ll also be able to produce
shorter, more readable, more maintainable, and less error-prone code. To do this, you’ll
study the RxJava library, the Java implementation of the reactive extension (Rx) library
originally developed by Erik Meijer for .NET.

 You’ll start by learning what reactive functional programming is and why it’s different
from imperative programming.

 In Chapter 2 , you’ll see how to include the RxJava library in your projects, and you’ll
explore the main classes and methods provided by this library.

 Chapters 3 and 4 cover more advanced concepts of working with asynchronous
streams of data, like error handling and threading.

 In Chapter 5 , you will apply what you learned in the previous chapters to a specific
area: networking.

 Finally, in Chapter 6 , you will take a look at some libraries created to extend RxJava to
Android development.

http://dx.doi.org/10.1007/978-1-4842-1428-2_2
http://dx.doi.org/10.1007/978-1-4842-1428-2_3
http://dx.doi.org/10.1007/978-1-4842-1428-2_4
http://dx.doi.org/10.1007/978-1-4842-1428-2_5
http://dx.doi.org/10.1007/978-1-4842-1428-2_6

1© Andrea Maglie 2016
A. Maglie, Reactive Java Programming, DOI 10.1007/978-1-4842-1428-2_1

 CHAPTER 1

 ReactiveX and RxJava

 Introduction
 Java is an object-oriented programming language that has been around for many years
(it was officially introduced in 1995). Today, it is one of the most appreciated and used
languages, thanks to its maturity, stability, and great community support.

 Java is anchored to the concepts upon which it was built: Java is an imperative,
object-oriented language.

 In recent years, new programming paradigms have become popular, such as functional
programming and reactive programming. Many new languages have been created.

 Java was left behind for some time. However, functional programming was
introduced in Java 8 with the support of lambda expressions and streams, but the RxJava
library provides the classes and methods we need to implement functional and reactive
programming in all Java versions starting from Java 5.

 In this chapter, I will introduce the concepts of functional programming, reactive
programming, and the Observer pattern. Then I will show you what ReactiveX and RxJava
are and how RxJava can help you to write more readable, shorter, more maintainable, and
error-free code.

 In the following chapters, you will dig into RxJava, learning about the common
classes and methods via concrete examples of where you can use them.

 I am assuming that you have basic knowledge of Java pogramming, although deep
skills are not required.

 Imperative and Functional Programming
 As you may already know, Java is an imperative programming language. Typically, a Java
program consists of a sequence of instructions. Each of these instructions is executed in
the same order in which you write them, and the execution leads to changes in the state
of the program.

Electronic supplementary material The online version of this chapter
(doi: 10.1007/978-1-4842-1428-2_1) contains supplementary material, which is available to
authorized users.

http://dx.doi.org/10.1007/978-1-4842-1428-2_1

CHAPTER 1 ■ REACTIVEX AND RXJAVA

2

 For example, the following code creates a collection of even numbers:

 List<Integer> input = Arrays.asList(1, 2, 3, 4, 5);

 List<Integer> output = new ArrayList<>();

 for (Integer x : input) {
 if (x % 2 == 0) {
 output.add(x);
 }
 }

 In order to produce the desired output, you define every step that the program has to
take to build the result list, and each step is defined sequentially.

 1. Define and create an input list.

 2. Define and create an empty output list.

 3. Take each item of the input list.

 4. If the item is even, add it to the output list.

 5. Continue with the following item until the end of the input list
is reached.

 One alternative to imperative programming is functional programming .
 In functional programming, the result of the program derives from the evaluation of

mathematical functions, without changing the internal program state. In fact, for every
function f(x) , the result of the function depends on the arguments passed to the function.
Each time f(x) is called, passing the same parameter x , you always get the same result. This
is similar to an Object’s static method that does not depend on any of the Object’s members.

 In simpler terms, in functional programming the blocks with which you build the
program are not objects but functions and procedures.

 So, using functional programming, the example above can be rewritten with the
following pseudocode:

 var output = input.where(x -> x % 2 == 0);

 Here, you don't have a sequence of steps but just a function (x % 2 == 0) passed as
a parameter to another function (where()) that is applied to an object (input). The arrow
(->) annotation means “apply function f(x) (right side of the expression) to the variable x
(left side of expression).”

 The features of a functional language are the following:

• Higher-order functions : Higher-order functions are functions
that take other functions as arguments.

• Immutable data : Data is immutable by default; instead of
modifying existing values, functional languages often operate on
a copy of original values to preserve them (in Java, primitive types
are already immutable but an object is not, so its implementation
must not allow the object’s state to be changed after creation).

CHAPTER 1 ■ REACTIVEX AND RXJAVA

3

• Concurrency : Concurrency is supported and is safer to
implement, thanks also to the immutability by default.

• Referential transparency : This term defines the fact that
computations can be performed at any time, always producing
the same result (similar to static methods in Java).

• Lazy evaluation : Values can be computed only when needed
(lazily) because functions can be evaluated at any time, always
giving the same result (these functions do not depend on the
program’s internal state).

 There are programming languages that are defined as purely functional
programming languages, like Haskell, Hope, and Mercury. Java is not one of these
languages, but we can get the advantages of functional programming also in Java.

 With the release of Java 8, some constructs of functional programming have been
added, like lambda functions and streams. But with the RxJava library we can use
concepts of functional programming with Java 1.7 and Java 1.6.

 Lambda Expressions
 Lambda expressions are anonymous functions; the lambda operator is indicated using an
arrow symbol pointing to the right (->). Inputs are placed at the left of the operator, and
the function body is placed at the right.

 In Java, lambda expressions can be used to replace anonymous inner classes that
implement an interface with just one method. For example, consider the following
 Button object:

 class Button {
 ...
 setOnClickListener(OnButtonClickListener listener) {
 ...
 }
 }

 interface OnButtonClickListener {
 void onButtonClicked();
 }

 To attach a click listener to the Button , you can use an anonymous function:

 Button button = ...
 button.setOnClickListener(
 new OnButtonClickListener() {
 void onButtonClicked() {
 // do something on button clicked
 }
 }
)

CHAPTER 1 ■ REACTIVEX AND RXJAVA

4

 Using lambda expressions, the code above becomes the following:

 Button button = ...
 button.setOnClickListener(() -> // do something on button clicked)

 On the right side of the lambda operator you include all of the code to be executed
when the button is clicked; this code has no input, as indicated by the two brackets on the
left side of the lambda operator.

 If the method onButtonClicked accepts some parameters, the example above
becomes

 interface OnButtonClickListener {
 void onButtonClicked(Object param);
 }

 Button button = ...
 button.setOnClickListener(param ->
 // do something on button clicked
 // param can be used in this code block
)

 Java support for lambda expressions was introduced in Java 8, but you can use them
in previous Java versions using the retrolambda library (https://github.com/evant/
gradle-retrolambda).

 Imperative or Functional?
 So, why should you choose functional programming over imperative programming?

 Functional code is often shorter and easier to understand than the corresponding
imperative code. You can do the same work by writing less code, and every programmer
knows that less code leads to less bugs.

 In imperative programming, implementing abstraction requires you to define
interfaces and split code into components that implement those interfaces; functional
languages make it easier to create abstractions (just think about how lambda expressions
avoid the necessity of creating interfaces with implementations).

 Reactive Programming
 Reactive programming takes functional programming a little bit further, by adding the
concept of data flows (see the next section) and propagation of data changes.

 In imperative programming, a value can be assigned to a variable in the following way:

 x = y + z

 Here, the sum of y and z will be assigned to variable x at the same time that
the function is called; later, variables y and z can change, but these changes will not
automatically influence the value of x .

https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda

CHAPTER 1 ■ REACTIVEX AND RXJAVA

5

 In reactive programming, the value of x should updated whenever the values of y or z
 change.

 So, if the initial values are y = 1 and z = 1 , you’ll have

 x = y + z = 2 .

 If y (or z) changes its value, this does not mean that x changes automatically, but you
must implement a mechanism to update the values of x when values of y and z are changed.

 Functional reactive programming is a new programming paradigm; it was made
popular by Erik Meijer (who created the Rx library for .NET when working at Microsoft)
and it’s based on two concepts:

• Code “reacts” to events.

• Code handles values as they vary in time, propagating changes to
every part of the code that uses those values.

 Streams of Data
 The key to understand reactive programming is to think about it as operating on a stream
of data.

 But what do I mean by “stream of data?” I mean a sequence of events, where an
event could be user input (like a tap on a button), a response from an API request (like a
Facebook feed), data contained in a collection, or even a single variable.

 In reactive programming, there's often a component that acts as the source, emitting
a sequence of items (or a stream of data), and some other components that observe this
flow of items and react to each emitted item (they “react” to item emission).

 The Observer Pattern
 The Observer pattern is a design pattern in which there are two kinds of objects:
observers and subjects. An observer is an object that observes the changes of one or more
subjects; a subject is an object that keeps a list of its observers and automatically notifies
them when it changes its state.

 The definition of the Observer pattern from the “Gang of Four” book (Design
Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides, ISBN 0-201-63361-2) is to

 “Define a one-to-many dependency between objects so that when
one object changes state, all its dependents are notified and updated
automatically.”

 This pattern is the core of reactive programming. It fits perfectly the concept of
reactive programming by providing the structures to implement the produce/react
mechanism.

CHAPTER 1 ■ REACTIVEX AND RXJAVA

6

 Java SDK implements the Observer pattern with the class java.util.Observable
and the interface java.util.Observer .

 class Subject extends java.util.Observable {

 public void doWorkAndNotify() {
 Object result = doWork();
 notifyObservers(result);
 }

 }

 class MyObserver implements Observer {

 @Override
 public void update(Observable obs, Object item) {
 doSomethingWith(item)
 }

 }

 The Subject class extends java.utils.Observable and is responsible for producing
an object and notifying the observers as soon as the item has been produced.

 MyObserver implements Observer and is responsible for observing Subject and
consuming every item that Subject produces.

 Putting Subject and MyObserver together,

 MyObserver myObserver = new MyObserver();
 Subject subject = new Subject();
 subject.addObserver(myObserver);
 subject.doWorkAndNotify();

 Unfortunately, this implementation reveals itself to be too simple when you start to
write more complex logic.

 You’ll never use this implementation; instead you’ll use the built-in RxJava
implementation.

 What’s ReactiveX?
 From http://reactivex.io/ comes the following defintion: ReactiveX is a combination
of the best ideas from the Observer pattern, the Iterator pattern, and functional
programming.

 It’s a library that implements functional reactive programming in many languages.
It uses “observables” to represent asynchronous data streams, and it abstracts all details
related to threading, concurrency, and synchronization. Thanks to ReactiveX, writing
concurrent programs becomes a lot easier because

http://reactivex.io/

CHAPTER 1 ■ REACTIVEX AND RXJAVA

7

• You don’t have to deal with multithreading problems.

• You can easily transform a data stream into another data stream
(where the data type can differ from the source stream’s data
type).

• You can easily combine different data streams (like merging two
or more data streams into one stream or concatenating streams).

 What’s RxJava?
 ReactiveX has been implemented as a library for the most used programming languages:
Java, JavaScript, C#, Scala, Clojure, C++, Ruby, Python, Groovy, JRuby, Kotlin, Swift, and
more. (See the full list at http://reactivex.io/languages.html .)

 RxJava is a library that implements the concepts of ReactiveX in Java. As you will see
in following chapters, you can rewrite the imperative code that filters even numbers using
RxJava:

 List<Integer> input = Arrays.asList(1, 2, 3, 4, 5);

 Observable.from(input)
 .filter(new Func1() {
 @Override
 public Boolean call(Integer x) {
 return x % 2 == 0;
 }
 })

 Or, using a lambda expression:

 Observable.from(input)
 .filter(x -> x % 2 == 0);

 The resulting object (the instance of rx.Observable) will generate a sequence of the
even numbers contained in the input sequence: 2 and 4.

 In RxJava, rx.Observable adds two semantics to the Gang of Four's Observer pattern
(the default semantic is to emit created items, like a list with items 2,4 in the example
above):

• The producer can notify the consumer that there is no more data
available.

• The producer can notify the consumer that an error has occurred.

 ■ Note The RxJava library provides a programming model where we can work with
events generated from UI or asynchronous calls in the same way in which we operate with
collections and streams in Java 8.

http://reactivex.io/languages.html

CHAPTER 1 ■ REACTIVEX AND RXJAVA

8

 The RxJava library was created at Netflix as a smarter alternative to Java Futures and
callbacks. Both Futures and callbacks are straightforward to use when there's just one
level of asynchronous execution, but they are hard to manage when they're nested.

 The following example shows how the nested callbacks problem is handled in RxJava.

 EXAMPLE: NESTED API CALLS

 Suppose that you need to call a remote API to authenticate a user, then another one
to get the user’s data, and another API to get a user’s contacts. Typically, you would
have to write nested API calls like this:

 User user = null;

 serviceEndpoint.login(username, password, new Callback<AccessToken>() {

 @Override
 public void success(User user, Response response) {

 // store accessToken somewhere

 serviceEndpoint.getUser(new Callback<User>() {
 @Override
 public void success(User userResponse, Response response) {

 user = userResponse;

 serviceEndpoint.getUserContact(user.getId(), new
Callback<Contact>() {
 @Override
 public Contact success(Contact contact, Response response) {
 user.setContact(contact);
 }

 @Override
 public void failure(RetrofitError error) {
 // handle error here...
 }
 });
 }

 @Override
 public void failure(RetrofitError error) {
 // handle error here...
 }
 });

CHAPTER 1 ■ REACTIVEX AND RXJAVA

9

 }

 @Override
 public void failure(RetrofitError error) {
 // handle error here...
 }
 });

 With RxJava, the nested callbacks are replaced with more efficient, readable, and
maintainable composed functions:

 serviceEndpoint.login()
 .doOnNext(accessToken -> storeCredentials(accessToken))
 .flatMap(accessToken -> serviceEndpoint.getUser())
 .flatMap(user -> serviceEndpoint.getUserContact(user.getId()))

 As you can see, this piece of code has all the properties of functional programming,
with the addition of the reactive component (functions are executed as a reaction to
the response received from the login() method).

11© Andrea Maglie 2016
A. Maglie, Reactive Java Programming, DOI 10.1007/978-1-4842-1428-2_2

 CHAPTER 2

 Observables and Observers

 Introduction
 In this chapter, you’ll dive into the RxJava library. First, you’ll learn how to include RxJava
in your Java project. Then, you will learn

• About the building blocks of RxJava (rx.Observable<T> , rx.
Observer<T> , rx.Subscriber<T>)

• The type of events that can be emitted by rx.Observable<T> and
received by rx.Observer<T>

• The operators that can be applied to observables

 Adding RxJava to Your Project
 The RxJava library (https://github.com/ReactiveX/RxJava) can be included by simply
adding the corresponding dependency to your project (no other dependencies are
required). At the time of writing, the latest version is 1.1.10.

 You include it in a Maven project like so:

 <dependency>
 <groupId>io.reactivex</groupId>
 <artifactId>rxjava</artifactId>
 <version>1.1.10</version>
 </dependency>

 If you're working with a gradle project, it looks like this:

 compile 'io.reactivex:rxjava: 1.1.10'

 RxJava supports all versions of JDK starting from Java 6. If you’re working with Java 8,
you can take advantage of Java native support for lambda expressions; otherwise, you can
use lambda expression by adding retrolambda as a dependency (https://github.com/
evant/gradle-retrolambda).

https://github.com/ReactiveX/RxJava
https://github.com/evant/gradle-retrolambda
https://github.com/evant/gradle-retrolambda

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

12

 Definition of Observable
 An Observable is an object that emits a sequence (or stream) of events. It represents a
push-based collection, which is a collection in which events are pushed when they are
created.

 An observable emits a sequence that can be empty, finite, or infinite. When the
sequence is finite, a complete event is emitted after the end of the sequence. At any time
during the emission (but not after the end of it) an error event can be emitted, stopping
the emission and cancelling the emission of the complete event.

 When the sequence is empty, only the complete event is emitted, without emitting
any item. With an infinite sequence, the complete event is never emitted.

 As you'll see later, the emission can be tranformed, filtered, or combined with other
emissions.

 Definition of Observer
 An Observer is an object that subscribes to an Observable. It listens and reacts to
whatever sequence of items is emitted by the Observable.

 The Observer is not blocked while waiting for new emitted items, so in concurrent
operations, no blocking occurs. It just wakes up when a new item is emitted.

 This is one of the core principles of reactive programming: instead of executing
instructions one at a time (always waiting for the previous instruction to be completed),
the observable provides a mechanism to retrieve and transform data, and the Observer
activates this mechanism, all in a concurrent way.

 The following pseudocode is an example of the method that the Observer
implements that reacts to the Observable’s items:

 onNext = { it -> doSomething }

 Here, the method is defined, but nothing is invoked. To start reacting, you need to
subscribe to the Observable:

 observable.subscribe(onNext)

 Now the observer is listening for items and will react to every new item that will be
emitted.

 Let’s rewrite this example in Java code using RxJava APIs:

 public void subscribeToObservable(Observable<T> observable) {
 observable.subscribe(nextItem -> {
 // invoked when Observable emits an item
 // usually you will consume the nextItem here
 });
 }

 Now it’s clear that in order to connect an observable with an observer, you must use
the subscribe method.

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

13

 onNext, onCompleted, onError
 The rx.Observer<T> interface does not define only the onNext(T) method, but also the
following methods:

• onCompleted() notifies the Observer when the Observable stops
emitting items because the sequence is completed normally.

• onError(Throwable) notifies the Observer when the Observable
raises an error and stops emitting items, even if the sequence is
not completed.

 public void subscribeToObservable(Observable<T> observable) {
 observable.subscribe(new Subscriber<>() {

 @Override
 public void onCompleted() {
 // invoked when Observable stops emitting items
 }

 @Override
 public void onError(Throwable e) {
 // invoked when Observable throws an exception
 // while emitting items
 }

 @Override
 public void onNext(T nextItem) {
 // invoked when Observable emits an item
 // usually you will consume the nextItem here
 }
 });
 }

 But wait, why are you using an instance of rx.Subscriber<T> here? If you take a
look at the RxJava documentation, you will see that Subscriber<T> is an object that
implements the rx.Observer<T> interface, so it’s legal to use it as an Observer. The
reason why you use Subscriber instead of any other implementation of the Observer
interface is that Subscriber also implements the Subscription interface, which allow you
to check if the subscriber is unsubscribed (with the isUnsubscribed() method) and to
unsubscribe it (with the unsubscribe() method).

 For simplicity, I will omit the generic syntax for rx.Subscriber<T> , Observer<T> , and
 Observable<T> , unless it affects the readability and comprehension of text and examples.

 From the previous example, notice that an Observer reacts to three types of events:

• Item emission by the Observable : It occurs zero, one, or more
times. If the sequence completes correctly, the onNext method
will be invoked as many times as the number of items in the
sequence. If an error occurs at a certain point, the onNext method
won’t be invoked any further.

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

14

• The completion of items emission : Only when all items in the
sequence are emitted correctly will the onCompleted method
be invoked. It’s invoked only once, and after the last item has
been emitted. It also can never happen if you’re working with an
infinite sequence.

• An error : Error can occur in every moment of the sequence, and the
sequence will stop immediately. In this case, the method onError
will be invoked, passing the error as a Throwable object. The other
two methods, onNext and onCompleted , won’t be invoked.

 An observable cannot notify both onCompleted and onError methods, only one of
them. It will always be the last method invoked.

 ■ Note If you use the shortest notation

 observable.subscribe(nextItem -> {
 // do something with nextItem

 });

 you won’t get notified when the sequence completes. More importantly, if an error occurs,
an exception will be thrown by RxJava because no implementation of onError can be
found, and your app will crash!

 With the Observable.subscribe() method (an operation-called subscription), you
can connect an Observable to an Observer, but what if you want to disconnect them? This
operation is called unsubscription and it looks like this:

 public void subscribeToObservable(Observable<T> observable) {
 Subscription subscription =
 observable.subscribe(new Subscriber() {
 @Override
 public void onCompleted() {
 // invoked when Observable stops emitting items
 }

 @Override
 public void onError(Throwable e) {
 // invoked when Observable throws an exception
 // while emitting items
 }

 @Override
 public void onNext(T nextItem) {
 // invoked when Observable emits an item

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

15

 // usually you will consume the nextItem here
 }
 })

 // disconnect observable and observer
 subscription.unsubscribe()
 }

 You can check if the subscription has been unsubscribed (Observer and Observable
are no longer connected) with the following method:

 subscription.isUnsubscribed()

 The unsubscribe method can be called at any time during items emission. After the
call to unsubscribe, onNext won’t receive any other item, and the other two methods,
 onCompleted and onError , won’t be notified. After unsubscription, the observable can
stop or continue with item emission, but the observer will not be notified about it.

 Hot and Cold Observables
 In the examples so far we assumed that an Observable begins emitting a sequence
of items when the Observer subscribes to it: they are called cold observables . Cold
observables always wait to have at least one observer subscribed to start emitting items.

 On the other hand, an Observable that begins emitting items before being connected
to an observer is called a hot observable .

 With hot observables, an observer can subscribe and start receiving items at any
time during the emission. With hot observables, the observer may receive the complete
sequence of items starting from the beginning or not.

 ■ Note There’s another kind of observable called a connectable observable . This kind of
observable begins emitting items when its “connect” method is called, whether or not any
observers have subscribed to it.

 Let’s go with a more concrete, yet simple, example. Let’s create an Observable that
emits all integers from 1 to 5 and subscribe to it:

 Observable<Integer> observable =
 Observable.from(new Integer[]{1, 2, 3, 4, 5});

 observable.subscribe(new Subscriber<Integer>() {
 @Override
 public void onCompleted() {
 System.out.println("Sequence completed!");
 }

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

16

 @Override
 public void onError(Throwable e) {
 System.err.println("Exception: " + e.getMessage());
 }

 @Override
 public void onNext(Integer integer) {
 System.out.println("next item is: " + integer);
 }
 });

 The expected output is

 next item is: 1
 next item is: 2
 next item is: 3
 next item is: 4
 next item is: 5
 Sequence completed!

 Let’s go over the details. This is a cold observable because it will begin emitting
items only when the observer subscribes. The observable will generate a sequence of five
items, each one representing an integer object (from 1 to 5), so the onNext method of the
observer will be invoked five times. At the end of the sequence, the method onCompleted
will be notified. The method onError will never be notified because this sequence does
not generate any kind of error or exception.

 An example of a hot observable could be an observable that emits an event every
time a UI button is clicked. It does not start to emit events when the observer subscribes;
it emits events even if no Subscriber is subscribed. I will talk about hot observables in the
section dedicated to Subjects.

 As you may noticed, in this example, you created an observable using the method
 Observable.from() , a static factory method that can create an Observable out of an
array, an iterable, or a Future.

 This is not the only way to create observables.

 Creating Observables
 The easiest way to create an observable is to use the factory methods that are
implemented in the RxJava library. You’ve already seen how to create an Observable
using the Observable.from() method, so let’s take a look at the other available methods.

 Observable.just()
 Observable.just() creates an Observable that emits the object or the objects that are
passed in as parameters:

 Observable.just("an item")

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

17

 Observable.just("first item", "second item")
 Observable.just(1, 2, 3)

 With this operator you can rewrite your previous example as

 Observable<Integer> observable =
 Observable.just(1, 2, 3, 4, 5);
 observable.subscribe(new Subscriber<Integer>() {
 @Override
 public void onCompleted() {
 System.out.println("Sequence completed!");
 }

 @Override
 public void onError(Throwable e) {
 System.err.println("Exception: " + e.getMessage());
 }

 @Override
 public void onNext(Integer integer) {
 System.out.println("next item is: " + integer);
 }
 });

 The output will be the same:

 next item is: 1
 next item is: 2
 next item is: 3
 next item is: 4
 next item is: 5
 Sequence completed!

 Observable.range()
 Observable.range(a, n) creates an Observable that emits a range of n consecutive
integers starting from a.

 Observable.just(1, 2, 3, 4, 5) and Observable.range(1, 5) will emit the same
sequence.

 Observable.interval()
 The previous methods created observables that emit items in sequence, one after
another, with no delay between items.

 But what if you want your items to be emitted with some time interval?

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

18

 Observable.interval(long, TimeUnit) does exactly this: it creates an Observable
that emits a sequence of integers starting from 0 that are spaced by a given time interval.
The first argument is the amount of time, and the second argument defines the time unit.

 The following observable emits an item every 1 second:

 Observable.interval(1, TimeUnit.SECONDS)

 The sequence is an infinite sequence, with no natural end, so onCompleted will
never be notified. The sequence stops only when no more observers are connected
(subscribed) to the observable.

 Observable.timer()
 Observable.timer(long, TimeUnit) creates an Observable that emits just one item
after a given delay. It can be useful when combined with other observables to introduce a
delay before the beginning of another observable's sequence, as you will see later.

 Observable.create()
 Observable.create() is the method that lets you create an Observable from scratch. For
example, if you want to create an observable that emits only one string, “Hello!”, you can
write

 Observable.create(
 new Observable.OnSubscribe<String>() {
 @Override
 public void call(Subscriber<? super String> observer) {
 observer.onNext("Hello!");

 observer.onCompleted();
 }
 }
);

 Suppose now that you want to create an observable that emits a JSON string resulting
from a networking operation. If the response is successful, the observable will emit the
result and terminate. Otherwise, it will raise an error.

 Observable.create(
 new Observable.OnSubscribe<String>() {
 @Override
 public void call(Subscriber<? super String> observer) {
 Response response = executeNextworkCall();
 if (observer.isUnsubscribed()) {
 // do not emit the item,
 // observer is not subscribed anymore
 return;
 }

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

19

 if (response != null && response.isSuccessful()) {
 observer.onNext(convertToJson(response));
 observer.onCompleted();
 } else {
 observer
 .onError(new Exception("network call error"));
 }
 }
 }
);

 Observable.empty()
 Observable.empty() creates an Observable that emits an empty sequence (zero items)
and then completes. So only onCompleted() will be notified.

 It can be useful if you want to emit an empty sequence insted of emitting null items
or throwing errors, like so:

 Object data = ...;

 public Observable<Object> getData() {
 if (data == null) {
 return Observable.empty();
 } else {
 return Observable.just(data);
 }
 }

 Observable.error()
 Observable.error(throwable) creates an Observable that emits an empty sequence
(zero items) and then notifies an error. So only onError() will be called.

 Object data = ...;

 public Observable<Object> getData() {
 if (data == null) {
 return Observable.error(new Exception("no data!")); } else {
 return Observable.just(data);
 }
 }

 Observable.never()
 Observable.never() creates an Observable that emits an empty sequence (zero items)
and never completes. No method of the observer will be invoked.

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

20

 Observable.defer()
 Observable.defer() creates an Observable only when a Subscriber subscribes.

 The best way to explain what defer() does is with the following example. Let’s start
from the class Person , which has two fields: name and age .

 class Person {
 private String name;
 private int age;

 public void setAge(int age) {
 this.age = age;
 }

 public void setName(String name) {
 this.name = name;
 }

 public int getAge() {
 return age;
 }

 public String getName() {
 return name;
 }
 }

 Now create an instance of Person , two Observables to be notified with age and name
values, and set the values for age and name :

 // create a new instance of Person
 final Person person = new Person();

 Observable<String> nameObservable =
 Observable.just(person.getName());

 Observable<Integer> ageObservable =
 Observable.just(person.getAge());

 // set age and name
 person.setName("Bob");
 person.setAge(35);

 ageObservable.subscribe(new Subscriber<Integer>() {
 @Override
 public void onCompleted() {

 }

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

21

 @Override
 public void onError(Throwable e) {

 }

 @Override
 public void onNext(Integer age) {
 System.out.println("age is: " + age);
 }
 });

 nameObservable.subscribe(new Subscriber<String>() {
 @Override
 public void onCompleted() {

 }

 @Override
 public void onError(Throwable e) {

 }

 @Override
 public void onNext(String name) {
 System.out.println("name is: " + name);
 }
 });

 What happens when you call methods observeName() and observeAge()
on an instance of Person ? What will be the sequence emitted by the observables?
Unfortunately, the output will be

 age is: 0
 name is: null

 This is not what you wanted. The problem here is that Observable.just() is
evaluated as soon as it's invoked, so it will create a sequence using the exact value
that name and age reference when the observable is created. In the example, when the
observable is created, age is 0 and name is null.

 You'd like to have a little different behavior here: you want the values to be evaluted
when you subscribe to the observables, and you can do this using Observable.defer() .

 Observable.defer() accepts an instance of Func0<Observable<T>> as parameter.
 Func0<R> is an interface that exposes just one method that accepts zero arguments and
returns a value of type R . There is also a Func1<T,R> interface that exposes just one method
that accepts one argument of type T and returns a value of type R . RxJava provides similar
interfaces for up to nine arguments (Func9<T,R>) and a varagrs version (FuncN<R>).

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

22

 Observable<String> nameObservable =
 Observable.defer(new
 Func0<Observable<String>>() {
 @Override
 public Observable<String> call() {
 return Observable.just(person.getName());
 }
 });

 Observable<Integer> ageObservable =
 Observable.defer(new Func0<Observable<Integer>>() {
 @Override
 public Observable<Integer> call() {
 return Observable.just(person.getAge());
 }
 });

 By using these two observables, the output of the previous examples becomes

 age is: 35
 name is: Bob

 And that's what you expected.

 Composing and Transforming Observables
 Observables are especially good at being composed and transformed. With the usage of
some operators defined in the library, you can compose and transform sequences of data
in a easy way that requires little coding, so it’s less prone to error.

 In the following sections I’ll use special diagrams called marble diagrams that
efficiently explain what operators do.

 map
 The map operator is one of the most common operators in reactive programming. It lets
you transform every item of the emitted sequence with a specified function.

 In the example shown in Figure 2-1 , the input sequence is a series of integers
(1, 2, and 3), and every item of the sequence is multiplied by 10. Applying the map
operator to an observable, a new observable will be created; this new observable
will emit x*10 every time the first observable emits x.

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

23

 Observable.just(1, 2, 3)
 .map(new Func1<Integer, Integer>() {
 @Override
 public Integer call(Integer x) {
 return x * 10;
 }
 })
 .subscribe(new Subscriber<Integer>() {
 @Override
 public void onCompleted() {

 }

 @Override
 public void onError(Throwable e) {

 }

 @Override
 public void onNext(Integer integer) {
 System.out.println("next item is: " + integer);
 }
 });

 The output of this operation is

 next item is: 10
 next item is: 20
 next item is: 30

 Let’s try to understand the marble diagram: the line above represents the original
sequence of items that are emitted by the original observable. The line below represents
the items transformed by the operator and emitted by the second observable (remember
that the second observable is the first one plus the operator). The box in the middle
contains the function that the operator will perform on each item.

 Figure 2-1. A marble diagram of the map operator

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

24

 The two lines must be considered as synchronized timelines: the marbles are placed
in a way that reflects what happens in time.

 Figure 2-1 shows that when the marble with item 1 is emitted, the marble with item
10 is also emitted, so the transformation occurs as soon as the item 1 is emitted, before
item 2 is emitted. When item 2 is emitted, the operator is applied and item 20 is emitted,
and so on.

 flatMap
 The flatMap operator (Figure 2-2) performs two types of actions: the “map” action that
transforms the emitted items into observables and a “flatten” action that converts those
observables into one observable. So, you can use flatMap to convert the input observable into
any other observable (or, in other words, to convert the input stream into a different stream).

 So, like the map operator, flatMap applies a function to each emitted item, but this
function must return an observable. Then those items are merged into one observable, so
the observables may be interleaved. If you need your observables not to be interleaved,
you must use the operator concatMap .

 For example, suppose that you have a list of integers as input and you want to
convert it in a sequence of strings in the format “Number x” where x is the next integer in
the input list. You can combine flatMap and map as follows:

 List<Integer> input = Arrays.asList(1, 2, 3, 4, 5);

 Observable.just(input)

 Figure 2-2. A marble diagram of the flatMap operator

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

25

 .flatMap(new Func1<List<Integer>, Observable<Integer>>() {
 @Override
 public Observable<Integer> call(List<Integer> item) {
 return Observable.from(item);
 }
 })
 .map(new Func1<Integer, String>() {
 @Override
 public String call(Integer t) {
 return "Number " + t;
 }
 })
 .subscribe(new Subscriber<String>() {
 @Override
 public void onCompleted() {
 System.out.println("sequence completed!");
 }

 @Override
 public void onError(Throwable e) {
 }

 @Override
 public void onNext(String item) {
 System.out.println("next item is: " + item);
 }
 });

 The results are

 next item is: Number 1
 next item is: Number 2
 next item is: Number 3
 next item is: Number 4
 next item is: Number 5
 sequence completed!

 concatMap
 The concatMap operator (Figure 2-3) behaves like flatMap , except that it ensures that the
observables are not interleaved but concatenated, keeping their order.

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

26

 zip
 The zip operator (Figure 2-4) takes multiple observables as inputs and combines each
emission via a specified function and emits the results of this function as a new sequence.

 The function is applied in strict sequence. If there are two sequences as input, zip
waits for the first item emitted by the first sequence, then the first item from the second
sequence, applies the function to them, and emits the result of the function. It then waits
for the second item from the first sequence, the second item from the second sequence,
applies the function to these two items, and emits the result as a function. And so on. It
will stop when the shortest sequence stops.

 Here’s an example:

 Observable<Integer> rangeMajor = Observable.range(1, 3);

 Figure 2-4. A marble diagram of the zip operator

 Figure 2-3. A marble diagram of the concatMap operator

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

27

 Observable<Integer> rangeMinor = Observable.range(5, 10);

 Observable.zip(rangeMajor, rangeMinor,
 new Func2<Integer, Integer, String>() {
 @Override
 // order of parameters here is the same order
 // of zip parameters
 public String call(Integer major, Integer minor) {
 return major + "." + minor;
 }
 }).subscribe(new Subscriber<String>() {
 @Override
 public void onCompleted() {
 System.out.println("sequence completed!");
 }

 @Override
 public void onError(Throwable e) {

 }

 @Override
 public void onNext(String s) {
 System.out.println("next item is: " + s);
 }
 });

 In this example, the zip operator takes two sequences as inputs and a function that
simply takes two integers and builds a string.

 The output of this code is

 next item is: 1.5
 next item is: 2.6
 next item is: 3.7
 sequence completed!

 As you can see, the emitted sequence stops when the shortest sequence stops, and in
this case the shortest sequence is the first one (1,2,3).

 concat
 The concat operator (Figure 2-5) concatenates two or more emissions, generating one
emission where all the items from the first source emission appear before the items of
the second source emission. Also, the concat operator waits for each sequence to be
completed before subscribing to the next observable.

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

28

 In the following example, you concatenate two sequences of strings:

 Observable<String> first =
 Observable.just("one", "two");

 Observable<String> second =
 Observable.just("three", "four", "five");

 Observable.concat(first, second)
 .subscribe(new Subscriber<String>() {
 @Override
 public void onCompleted() {
 System.out.println("sequence completed!");
 }

 @Override
 public void onError(Throwable e) {

 }

 @Override
 public void onNext(String s) {
 System.out.println("next item is: " + s);
 }
 });

 The output is

 next item is: one
 next item is: two
 next item is: three
 next item is: four
 next item is: five
 sequence completed!

 Figure 2-5. A marble diagram of the concat operator

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

29

 Note that you can only concatenate sequences of objects of the same type (i.e., you
cannot concatenate an observable that emits strings with one that emits integers).

 Do you remember the definition of hot and cold observables?
 What would happen if you concatenate a cold observable (first) with a hot one

(second)? The concat operator will emit all items from the first observable, and then it will
subscribe to the second (the hot observable) and will start to emit all items from the hot
observable, losing all of the items that the hot observable emitted before the subscription.

 filter
 The filter operator uses a specified function to allow only some items of the source
sequence to be emitted.

 Here is the translation of the diagram shown in Figure 2-6 into Java code:

 Observable.from(new Integer[]{2, 30, 22, 5, 60, 1})
 .filter(new Func1<Integer, Boolean>() {
 @Override
 public Boolean call(Integer x) {
 return x > 10;
 }
 }).subscribe(new Subscriber<Integer>() {
 @Override
 public void onCompleted() {
 System.out.println("sequence completed!");
 }

 @Override
 public void onError(Throwable e) {

 }

 @Override
 public void onNext(Integer item) {
 System.out.println("next item is: " + item);
 }
 });

 Figure 2-6. A marble diagram of the filter operator

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

30

 And the output of this code is

 next item is: 30
 next item is: 22
 next item is: 60
 sequence completed!

 distinct
 The distinct operator (Figure 2-7) applies a filter to the source sequence. If an item is
emitted more than once, only the first occurrence will be emitted.

 first
 The first operator (Figure 2-8) emits only the first item of a sequence. If a function is
specified, it will be used to filter the items, so only the first item of the sequence that
meets the conditions will be emitted.

 You can take the example written for the filter operator and change it by applying
the operator first instead of filter :

 Observable.from(new Integer[]{2, 30, 22, 5, 60, 1})

 Figure 2-8. A marble diagram of the first operator

 Figure 2-7. A marble diagram of the distinct operator

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

31

 .first(new Func1<Integer, Boolean>() {
 @Override
 public Boolean call(Integer x) {
 return x > 10;
 }
 }).subscribe(new Subscriber<Integer>() {
 @Override
 public void onCompleted() {
 System.out.println("sequence completed!");
 }

 @Override
 public void onError(Throwable e) {

 }

 @Override
 public void onNext(Integer item) {
 System.out.println("next item is: " + item);
 }
 });

 As you may expect, the output will be similar to the output of the filter operator,
but limited to one item:

 next item is: 30
 sequence completed!

 last
 If you can apply a filter to the beginning of the sequence with the operator first , you can
also filter the end of the sequence with the operator last (Figure 2-9).

 Observable.just("first", "second", "third")
 .last()

 Figure 2-9. A marble diagram of the last operator

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

32

 .subscribe(new Subscriber<Integer>() {
 @Override
 public void onCompleted() {
 System.out.println("sequence completed!");
 }

 @Override
 public void onError(Throwable error) {

 }

 @Override
 public void onNext(String item) {
 System.out.println("next item is: " + item);
 }
 });

 The output of this code is

 next item is: third
 sequence completed!

 The last operator can take a predicate as a parameter, and only the last item from
the source sequence that evaluates that predicate to true is emitted.

 Observable.just("first", "second", "third")
 .last(new Func1<String, Boolean>() {
 @Override
 public Boolean call(String t) {
 return t.startsWith("s");
 }
 })
 .subscribe(new Subscriber<String>() {
 @Override
 public void onCompleted() {
 System.out.println("sequence completed!");
 }

 @Override
 public void onError(Throwable error) {

 }

 @Override
 public void onNext(String item) {
 System.out.println("next item is: " + item);
 }
 });

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

33

 The output of this code is

 next item is: second
 sequence completed!

 take
 The operator first is good for filtering the beginning of a sequence, but what if you are
interested not only in the first item but you want the first n items? Here’s where the take
operator (Figure 2-10) comes in handy. It takes an integer n as a parameter, allowing only
the first n items to be emitted.

 Observable.just("first", "second", "third")
 .take(2)
 .subscribe(new Subscriber<String>() {
 @Override
 public void onCompleted() {
 System.out.println("sequence completed!");
 }

 @Override
 public void onError(Throwable error) {

 }

 @Override
 public void onNext(String item) {
 System.out.println("next item is: " + item);
 }
 });

 The output of this code is

 next item is: first
 next item is: second
 sequence completed!

 Figure 2-10. A marble diagram of the take operator

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

34

 Another version of this operator accepts a timeout as input (take(long, TimeUnit)),
emitting only the items that are emitted by the source sequence before this timeout.

 ■ Note One may think that the first() and take(1) operators should have the same
behavior. They emit the same output sequence if applied to the same input sequence,
but there’s a difference: take(1) emits once or nothing at all, and first() emits once or
crashes if the source sequence is empty.

 startWith
 The operator startWith (Figure 2-11) takes the input sequence and adds a given item to
it. It can be useful if you want to force your sequence to begin with a default value, or with
a cached one.

 Observable.just("first", "second", "third")
 .startWith("zero")
 .subscribe(new Subscriber<String>() {
 @Override
 public void onCompleted() {
 System.out.println("sequence completed!");
 }

 @Override
 public void onError(Throwable error) {

 }

 @Override
 public void onNext(String item) {

 Figure 2-11. A marble diagram of the startWith operator

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

35

 System.out.println("next item is: " + item);
 }
 });

 The output of this code is

 next item is: zero
 next item is: first
 next item is: second
 next item is: third
 sequence completed!

 scan
 The operator scan takes one sequence and applies a function to each pair of sequentially
emitted items.

 Observable<Integer> sourceObservable = Observable.range(1, 5);
 Observable<Integer> scanObservable = sourceObservable
 .scan(new Func2<Integer, Integer, Integer>() {
 @Override
 public Integer call(Integer i1, Integer i2) {
 return i1 + i2;
 }
 });

 scanObservable.subscribe(new Subscriber<Integer>() {
 @Override
 public void onCompleted() {
 System.out.println("sequence completed!");
 }

 @Override
 public void onError(Throwable e) {

 }

 @Override
 public void onNext(Integer item) {
 System.out.println("next item is: " + item);
 }
 });

 This code mimics the behavior of the diagram in Figure 2-12 .

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

36

 After the emission of the first item from sourceObservable , scanObservable will
emit the same item without any transformation. When the second item is emitted from
the source, scanObservable will apply the function to the first and the second item,
emitting the result.

 The output of the code is

 next item is: 1
 next item is: 3
 next item is: 6
 next item is: 10
 next item is: 15
 sequence completed!

 Other Operators
 There are many other operators available to transform, filter, or combine observables.

 Operators for Transforming Observables
• buffer : Periodically gathers items from an Observable into

bundles and emits these bundles rather than emitting the items
one at a time.

• groupBy : Divides an Observable into a set of observables that
each emit a different group of items from the original Observable,
organized by key.

• window : Periodically subdivides items from an Observable into
Observable windows and emits these windows rather than
emitting the items one at a time.

 Operators for Filtering Observables
• debounce : Only emits an item from an Observable if a particular

timespan has passed without it emitting another item.

 Figure 2-12. A marble diagram of the scan operator

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

37

• elementAt : Emits only item n emitted by an Observable.

• ignoreElements : Does not emit any items from an Observable
but mirrors its termination notification.

• sample : Emits the most recent item emitted by an Observable
within periodic time intervals.

• skip : Suppresses the first n items emitted by an Observable.

• skipLast : Suppresses the last n items emitted by an Observable.

• takeLast : Emits only the last n items emitted by an Observable.

 Operators for Combining Observables
• And/Then/When : Combines sets of items emitted by two or more

observables by means of pattern and plan intermediaries; these
operators are not part of the RxJava library but can be found
in the RxJavaJoins library. (https://github.com/ReactiveX/
RxJavaJoins)

• combineLatest : When an item is emitted by either of two
Observables, it combines the latest item emitted by each
Observable via a specified function and emits items based on the
results of this function.

• join : Combines items emitted by two Observables whenever
an item from one Observable is emitted during a time window
defined according to an item emitted by the other Observable.

• merge : Combines multiple Observables into one by merging their
emissions.

• switchOnNext : Converts an Observable that emits Observables
into a single Observable that emits the items emitted by the most-
recently-emitted of those Observables.

 EXAMPLE: GENERATE A SEQUENCE OF ODD INTEGERS

 To create a sequence of odd numbers, you need to generate a sequence of integers
and then filter the emitted items, removing even integers.

 You start with a finite sequence of integers, and this sequence can be created using
 just or range .

 Then you apply the filter operator, passing a function that returns true if the
emitted integer is odd.

https://github.com/ReactiveX/RxJavaJoins
https://github.com/ReactiveX/RxJavaJoins

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

38

 Observable.just(1, 2, 3, 4, 5, 6)
 .filter(new Func1() {
 @Override
 public Boolean call(Integer value) {
 return value % 2 == 1;
 }
 })
 .subscribe(new Subscriber() {
 @Override
 public void onCompleted() {
 System.out.println("sequence completed!");
 }

 @Override
 public void onError(Throwable e) {
 }

 @Override
 public void onNext(Integer item) {
 System.out.println("next item: " + item);
 }
 });

 EXAMPLE: FIBONACCI SEQUENCE

 You want to create a method that takes an integer n and outputs the Fibonacci
sequence F(n) .

 First, you create an observable that emits a sequence of n integers: Observable.
range(n) is the perfect candidate for this role. Second, you apply a function on each
of these items, and you use the map operator to do so.

 Here’s the code:

 public static void rxFibonacci(int n) {
 final int[] tmp = {0, 0};

 Observable.range(1, n)
 .map(new Func1<Integer, Integer>() {
 @Override
 public Integer call(Integer x) {
 if (x < 3) {
 tmp[0] = 1;
 tmp[1] = 1;
 return 1;

CHAPTER 2 ■ OBSERVABLES AND OBSERVERS

39

 } else {
 int item = tmp[0] + tmp[1];
 tmp[0] = tmp[1];
 tmp[1] = item;
 return item;
 }
 }
 })
 .subscribe(new Subscriber<Integer>() {
 @Override
 public void onCompleted() {
 System.out.println("sequence completed!");
 }

 @Override
 public void onError(Throwable e) {

 }

 @Override
 public void onNext(Integer item) {
 System.out.println("next item: " + item);
 }
 });
 }

 Observable.range(1,n) will emit a sequence of n integers starting from 1. Then,
for each emitted item, a function is applied through the map operator. The function
uses a temporary array to store the results of F(n-1) and F(n-2) and uses this
values to evaluate F(n) .

 For example, calling rxFibonacci(10) produces the following output:

 next item: 1
 next item: 1
 next item: 2
 next item: 3
 next item: 5
 next item: 8
 next item: 13
 next item: 21
 next item: 34
 next item: 55

 sequence completed!

41© Andrea Maglie 2016
A. Maglie, Reactive Java Programming, DOI 10.1007/978-1-4842-1428-2_3

 CHAPTER 3

 Subscription Lifecycle

 Introduction
 Working with observables is not only about subscribing and receiving items.

 In previous chapters, you saw that sequences can also terminate with an error
event, but what can you do to handle an error event? And what about threads? Can an
Observable operate and notify on different threads?

 In this chapter, you'll learn

• The tools that RxJava provides to manage error events

• How to use schedulers to operate on different threads

• How to deal with backpressure

 Error Handling
 As mentioned, an observable's emission can end with either a completed event or error
event, but not both.

 If an error occurs at any time during the emission, the sequence is stopped and the
 onError() method is called.

 But what do we mean by "error?"

• An error is any exception than is thrown during the emission of
the sequence.

• It can be thrown by the source observable or by any operator
applied to the source observable.

• The first exception that is thrown causes the sequence to be
stopped, so no other exception can be thrown.

• The exception is propagated from the observable that throws it to
the subscribers, so the other operators are skipped.

• Operators don’t have to handle the exception; it's all left up to the
subscriber (as opposed to the callback mechanism, where you
have to handle errors in each callback).

CHAPTER 3 ■ SUBSCRIPTION LIFECYCLE

42

 The observable itself does not throw the exception; it only notifies the subscriber
calling the onError() method. If the observable fails calling the onError() method (i.e.
an exception is thrown when calling onError()), the onError() method won't be called
anymore and another exception will be thrown.

 There are some exceptions that are not handled as error events but they are thrown,
causing JVM to stop:

• rx.exceptions.OnErrorNotImplementedException

• rx.exceptions.OnErrorFailedException

• rx.exceptions.OnCompletedFailedException

• java.lang.StackOverflowError

• java.lang.VirtualMachineError

• java.lang.ThreadDeath

• java.lang.LinkageError

 Typically, in Java code, you catch exceptions using the try/catch block. With
observables, there's no try/catch block, but you can choose between different techniques
to recover from errors.

 Handling Errors in the onError() Method
 The most common scenario is to handle errors in the onError() method. The
subscriber's onError() method is responsible for handling the error state.

 In the following example, you generate a sequence of strings in which every string
should represent an integer, and then you deliberately introduce an invalid string in the
middle of the sequence.

 Observable.just("1", "2", "a", "3", "4")
 .map(new Func1<String, Integer>() {
 @Override
 public Integer call(String s) {
 return Integer.parseInt(s);
 }
 }).subscribe(new Subscriber<Integer>() {
 @Override
 public void onCompleted() {
 System.out.println("sequence completed!");
 }

 @Override
 public void onError(Throwable e) {
 System.err.println("error! " + e.toString());
 }

 @Override

CHAPTER 3 ■ SUBSCRIPTION LIFECYCLE

43

 public void onNext(Integer item) {
 System.out.println("next item is: " + item);
 }
 });

 The first two emitted items (string “1” and “2”) are correctly parsed as integers. When
item “a” is emitted, the function inside the map operator fails, throwing a java.lang.
NumberFormatException , and this exception is sent to the subscriber in the onError()
method. The NumberFormatException is passed to the onError() method as a parameter.

 The output is

 next item is: 1

 next item is: 2

 error! java.lang.NumberFormatException: For input string: “a”

 Ignoring the Exception and Continuing with Item
Emission
 Continuing the previous example, suppose you want the sequence to terminate
normally when an invalid string is emitted. You can achieve this by applying the operator
 onErrorResumeNext() to the observable.

 Observable.just("1", "2", "a", "3", "4")
 .map(new Func1<String, Integer>() {
 @Override
 public Integer call(String s) {
 return Integer.parseInt(s);
 }
 })
 .onErrorResumeNext(Observable.<Integer>empty())
 .subscribe(new Subscriber<Integer>() {
 @Override
 public void onCompleted() {
 System.out.println("sequence completed!");
 }

 @Override
 public void onError(Throwable e) {
 System.err.println("error! " + e.toString());
 }

 @Override
 public void onNext(Integer item) {
 System.out.println("next item is: " + item);
 }
 });

CHAPTER 3 ■ SUBSCRIPTION LIFECYCLE

44

 The output is

 next item is: 1
 next item is: 2
 sequence completed!

 The onErrorResumeNext() operator tells the observable to avoid notifying the
 onError method when exception is thrown and to continue by emitting the sequence that
is specified as a parameter of the operator. In this case, when an error event occurs, the
original sequence is stopped and the emission continues with the sequence emitted by
 Observable.empty() , which is an empty sequence. In other words, in the code above, if
an error occurs, the sequence is stopped and no error event is notified.

 Two other similar operators are

• onErrorReturn() , which makes the observable emit a specified
item when an error occurs; the item emitted is the result of the
function passed as parameter.

• onExceptionResumeNext() , which makes the observable
continuing emitting items from a specified observable when an
exception (and not any other throwable) is thrown.

 Continuing the example above, suppose you want to emit the integer -1 when the
error event occurs. For this, you can use onErrorReturn() :

 Observable.just("1", "2", "a", "3", "4")
 .map(new Func1<String, Integer>() {
 @Override
 public Integer call(String s) {
 return Integer.parseInt(s);
 }
 })
 .onErrorReturn(new Func1<Throwable, Integer>() {
 @Override
 public Integer call(Throwable t) {
 return -1;
 }
 })
 .subscribe(new Subscriber<Integer>() {
 @Override
 public void onCompleted() {
 System.out.println("sequence completed!");
 }

 @Override
 public void onError(Throwable e) {
 System.err.println("error! " + e.toString());
 }

CHAPTER 3 ■ SUBSCRIPTION LIFECYCLE

45

 @Override
 public void onNext(Integer item) {
 System.out.println("next item is: " + item);
 }
 });

 The output is

 next item is: 1
 next item is: 2
 next item is: -1
 sequence completed!

 You can get the same effect using onExceptionResumeNext:

 Observable.just("1", "2", "a", "3", "4")
 .map(new Func1<String, Integer>() {
 @Override
 public Integer call(String s) {
 return Integer.parseInt(s);
 }
 })
 .onExceptionResumeNext(Observable.just(-1))
 .subscribe(new Subscriber<Integer>() {
 @Override
 public void onCompleted() {
 System.out.println("sequence completed!");
 }

 @Override
 public void onError(Throwable e) {
 System.err.println("error! " + e.toString());
 }

 @Override
 public void onNext(Integer item) {
 System.out.println("next item is: " + item);
 }
 });

 The output is the same:

 next item is: 1
 next item is: 2
 next item is: -1
 sequence completed!

CHAPTER 3 ■ SUBSCRIPTION LIFECYCLE

46

 Retry
 The RxJava library also contains two operators that let you recover from error
implementing with a retry mechanism.

• The Observable.retry(...) operator does not notify the error
and resubscribes to the source observable.

• The Observable.retryWhen(...) operator passes the error event
to another observable that becomes responsible for determining
whether to resubscribe to the source observable.

 Let’s apply the retry() operator to the previous examples instead of
 onErrorResumeNext() :

 Observable.just("1", "2", "a", "3", "4")
 .map(new Func1<String, Integer>() {
 @Override
 public Integer call(String s) {
 return Integer.parseInt(s);
 }
 })
 .retry()
 .subscribe(new Subscriber<Integer>() {
 @Override
 public void onCompleted() {
 System.out.println("sequence completed!");
 }

 @Override
 public void onError(Throwable e) {
 System.err.println("error! " + e.toString());
 }

 @Override
 public void onNext(Integer item) {
 System.out.println("next item is: " + item);
 }
 });

 Whenever an error occurs, retry() will resubscribe to the source, restarting with the
emission and encountering the error again and again. As you may have guessed, this code
will run forever, emitting the following output:

 ...
 next item is: 1
 next item is: 2
 next item is: 1
 next item is: 2
 next item is: 1
 ...

CHAPTER 3 ■ SUBSCRIPTION LIFECYCLE

47

 You can use retry(1) instead of retry() , so the retry mechanism will be executed
only one time (the argument passed in determines the number of retries):

 Observable.just("1", "2", "a", "3", "4")
 .map(new Func1<String, Integer>() {
 @Override
 public Integer call(String s) {
 return Integer.parseInt(s);
 }
 })
 .retry(1)
 .subscribe(new Subscriber<Integer>() {
 @Override
 public void onCompleted() {
 System.out.println("sequence completed!");
 }

 @Override
 public void onError(Throwable e) {
 System.err.println("error! " + e.toString());
 }

 @Override
 public void onNext(Integer item) {
 System.out.println("next item is: " + item);
 }
 });

 In this case, the emission will be retried just once; after that, if the error condition
persists, the error event will be propagated. The output is

 next item is: 1
 next item is: 2
 next item is: 1
 next item is: 2
 error! java.lang.NumberFormatException : For input string: "a"

 If you want to retry one time after 5 seconds, you can use retryWhen() :

 .retryWhen(new Func1<Observable<? extends Throwable>, Observable<?>>() {
 @Override
 public Observable<?> call(Observable<? extends Throwable> observable) {
 return Observable.timer(5, TimeUnit.SECONDS);
 }
 })

 After the specified timeout (5 seconds in this example), the sequence will be retried.
If an error occurs during the retry, the error event will not be notified. Instead the
complete event will be notified. The output is

CHAPTER 3 ■ SUBSCRIPTION LIFECYCLE

48

 next item is: 1
 next item is: 2
 next item is: 1
 next item is: 2
 sequence completed!

 In the following more complex example, you combine different operators to get three
retries, one every 5 seconds:

 .retryWhen(new Func1<Observable<? extends Throwable>, Observable<?>>() {
 @Override
 public Observable<?> call(Observable<? extends Throwable> observable) {
 return observable.zipWith(Observable.range(1, 3),
 new Func2<Throwable, Integer, Integer>() {
 @Override
 public Integer call(Throwable throwable,
 Integer retryCount) {
 System.out.println("retry #" + retryCount);
 return retryCount;
 }
 }).flatMap(new Func1<Integer, Observable<?>>() {
 @Override
 public Observable<?> call(Integer integer) {
 return Observable.timer(5, TimeUnit.SECONDS);
 }
 });
 }
 })

 The idea here is to combine a sequence of three items (because you want three
retries) with a delay of 5 seconds for each retry. The sequence of three items is generated by
 Observable.range(1,3) (also Observable.just(1,2,3) would work). For the delay, you still
use Observable.timer(5, TimeUnit.SECONDS) . For every integer emitted, a timer is launched,
and this timer triggers the retry mechanism. In addition, you print the current retry count.

 The Observable.zipWith() operator is applied to the source observable and takes
two parameters:

• An observable (Observable.range(1, 3) in this example) that is
the observable that you want to zip with the source observable
(as with the Observable.zip() operator).

• An instance of Func2<Throwable, Integer, Integer> . A
 Func2 is required because you have two inputs: the Throwable
emitted by the retryWhen operator and an Integer emitted by the
 Observable.range(1,3) .

 Then you use flatMap to transform the items emitted by the zipWith operator into a
5-second delay. The resulting observable is used by retryWhen to apply the retry logic to
the source observable.

CHAPTER 3 ■ SUBSCRIPTION LIFECYCLE

49

 If you apply this retry mechanism to the previous example, you get the following
output:

 next item is: 1
 next item is: 2
 retry #1
 next item is: 1
 next item is: 2
 retry #2
 next item is: 1
 next item is: 2
 retry #3
 next item is: 1
 next item is: 2
 sequence completed!

 Schedulers
 By default the chain of operations of an observable is executed in the same thread on
which the subscribe method is called. You can change this behavior using two operators:

• Observable.subscribeOn(...) lets you specify a scheduler on
which the observable operates.

• Observable.observeOn(...) lets you specify a scheduler on
which the observers will be notified.

 This means you can use a thread for the executions of all the chains of operations
and a different thread to receive the onNext() , onCompleted() , and onError()
notifications. This is often used when your observable executes I/O operations (like
network requests or reading/writing on disk):

 myNetworkObservable()
 .subscribeOn(<background thread>)
 .observeOn(<ui thread>)
 .subscribe(...)

 The two operators can be called from any point in the chain of operators, but their
behavior is different:

• subscribeOn() changes the thread on which the observable
operates, regardless of where in the chain it is applied.

• observeOn() changes the thread that Observable will use, starting
from the point at which it is applied.

 Usually you don't have to create or specify a thread directly; instead, you can choose
among the schedulers that are built in the RxJava library:

CHAPTER 3 ■ SUBSCRIPTION LIFECYCLE

50

• Schedulers.immediate() schedules work to begin immediately
in the current thread.

• Schedulers.computation() can be used for computational work,
and by default it allocates as many threads as the number of
processors. It's not meant for I/O operations.

• Schedulers.io() is meant for I/O operations.

• Schedulers.newThread() creates a new thread for each
operation.

• Schedulers.trampoline() keeps a queue of operations, and
every operation begins on the current thread after all previous
operations have finished.

• Schedulers.from(java.util.concurrent.Executor) uses the
specified Executor as Scheduler.

 You have implicitly used schedulers before: Observable.timer() operates with the
 Scheduler.computation() scheduler, which will operate on a different thread. There
are some other operators that have a particular default scheduler: buffer , debounce ,
 delay , delaySubscription , interval , repeat , replay , retry , sample , skip , skipLast ,
 take , takeLast , takeLastBuffer , throttleFirst , throttleLast , throttleWithTimeout ,
 timeInterval , timeout , timer , timestamp , window .

 EXAMPLE: MULTITHREADING FIBONACCI

 Take a look at the Fibonacci Sequence example from Chapter 2 . How can you modify
it to add multithreading? You just need one line of code!

 final int[] tmp = {0, 0};

 Observable.range(1, n)
 .map(new Func1<Integer, Integer>() {
 @Override
 public Integer call(Integer x) {
 if (x < 3) {
 tmp[0] = 1;
 tmp[1] = 1;
 return 1;
 } else {
 int item = tmp[0] + tmp[1];
 tmp[0] = tmp[1];
 tmp[1] = item;
 return item;
 }
 }

http://dx.doi.org/10.1007/978-1-4842-1428-2_2

CHAPTER 3 ■ SUBSCRIPTION LIFECYCLE

51

 })
 .subscribeOn(Schedulers.computation())
 .subscribe(new Subscriber<Integer>() {
 @Override
 public void onCompleted() {
 System.out.println("sequence completed!");
 }

 @Override
 public void onError(Throwable e) {

 }

 @Override
 public void onNext(Integer item) {
 System.out.println("next item: " + item);
 }
 });
 }

 You only applied the subscribeOn() operator, passing the scheduler Schedulers.
computation() as a parameter, and your code is now multithreading! Remember
that the subscribeOn() operator can be applied at any point in the chain, but the
preferred place is right before the call to the subscribe() method. It makes the
code more readable; if you have a long chain of operators, you don't want your
 subscribeOn() call to be lost in the chain.

 EXAMPLE: NETWORK CALLS

 A typical use case in which you have to specify both the subscribeOn() and
 observeOn() operators is when you’re developing an Android app and you have to
update the UI after getting data from a remote server.

 Observable<MyResponseObject> networkCall = ...

 networkCall.subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(new Subscriber<MyResponseObject>() {
 @Override
 public void onCompleted() {

 }

 @Override
 public void onError(Throwable e) {

CHAPTER 3 ■ SUBSCRIPTION LIFECYCLE

52

 // here we can update the UI showing an error message
 }

 @Override
 public void onNext(MyResponseObject item) {
 // here we can update the UI reading item data
 }
 });

 In this example, you applied

• The subscribeOn() operator because otherwise the UI (the main
thread in Android) will hang until the operation is complete (and
an ANR - Application Not Responding error will be shown by the
operating system). The Schedulers.io() scheduler is a good
choice because you're dealing with a network operation, which is
an I/O operation.

• The observeOn() operator because you cannot update the
UI from a thread that is different from the UI thread; the
 AndroidSchedulers.mainThread() that you've used here is a
special scheduler that is not included in the RxJava library but is
implemented in the RxAndroid library (a sort of add-on to RxJava
for Android development; see https://github.com/ReactiveX/
RxAndroid) which will return the UI thread. If you don't apply the
 observeOn() operator, your app will crash when trying to change
the UI items (like updating a TextView).

 EXAMPLE: INSERTING DATA INTO A DATABASE

 Suppose that you want to store some data in a database as soon as a user changes
the value of an input form, without having to wait for a click of a button and without
blocking the UI thread.

 Given an observable that emits an item (the content of the form field) whenever the
input changes, you can use schedulers to execute the insertion in a separate thread.

 Observable<String> inputObservable = ...

 inputObservable.flatMap(x -> validate(x))
 .observeOn(Schedulers.io())
 .subscribe(new Subscriber<String>() {
 @Override
 public void onCompleted() {

https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid

CHAPTER 3 ■ SUBSCRIPTION LIFECYCLE

53

 }

 @Override
 public void onError(Throwable e) {

 }

 @Override
 public void onNext(String item) {
 db.insert(item);
 }
 });

 Here you apply the observeOn() operator so that the onNext method will be notified
on the io scheduler, which is the right one for I/O operations such as writing on a db.

 Transformers
 As mentioned, the subscribeOn() / observeOn() pair can be used many times, forcing
you to copy/paste the two lines of code necessary to apply these two operators. Copy/
paste leads to duplicated code, and it's is not a good practice. So, how can you create an
operator that automatically applies these two operators?

 You can do it using Observable.Transformer<T,R> (T is the type of input Observable
and R is the type of output Observable). Instances of Transformer are functions that are
applied to an observable using Observable.compose() , an operator that gives you the
ability to modify the source Observable, not only the items of the sequence.

 public static <T> Observable.Transformer<T, T> mySchedulers() {
 return new Observable.Transformer<T, T>() {
 @Override
 public Observable<T> call(Observable<T> observable) {
 return observable
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread());
 }
 };
 }

 When you implement Transformer<T,R> , you receive in input an Observable<T>
and you must return an Observable<R> . In the example above, T and R are the same
object because your Transformer does not modify the items of the emitted sequence.

 Now you can rewrite the previous example as

 Observable<MyResponseObject> networkCall = ...

CHAPTER 3 ■ SUBSCRIPTION LIFECYCLE

54

 networkCall
 .compose(mySchedulers())
 .subscribe(new Subscriber<MyResponseObject>() {
 @Override
 public void onCompleted() {

 }

 @Override
 public void onError(Throwable e) {
 // here we can update the UI showing an error message
 }

 @Override
 public void onNext(MyResponseObject item) {
 // here we can update the UI reading item data
 }
 });

 Advanced Use of Schedulers
 You can also use schedulers without applying operators in a chain of observables. For
example, if you want to execute some operations in a dedicated thread, you can use the
rx .Scheduler.Worker class, like so:

 Worker worker = Schedulers.newThread().createWorker();
 worker.schedule(new Action0() {
 @Override
 public void call() {
 // do your work here
 }
 });

 The Worker class implements the Subscription interface, so you can call methods
 unsubscribe() and isUnsubscribed() on it.

 Action0 is an interface that defines just one method, call() , which accepts no
parameters and returns void.

 Worker also implements two methods to execute actions after a certain amount of
time or periodically:

• Worker.schedule(Action0 action, long delayTime, TimeUnit
unit) executes an action after the specified delay.

• Worker.schedulePeriodically(Action0 action, long
initialDelay, long period, TimeUnit unit) executes an
action periodically, optionally starting after a delay.

CHAPTER 3 ■ SUBSCRIPTION LIFECYCLE

55

 Backpressure
 Until now we have considered only situations in which the emission of items is slower
than the operations executed on each of the items. So, for every emission, there's enough
time for the subscriber to consume the emitted item before the next one is emitted.

 There are also situations in which the observable emits items too fast for the
subscriber, and the subscriber cannot continue the single item before receiving the next
one.

 For example, take two observables, A and B, where A emits items twice as fast as B
and creates an Observable.zip of A and B. The resulting observable combines the n-th
item from A and n-th item from B, but meanwhile B has also emitted items n+1 to n+m,
so it should keep an always increasing buffer of the emitted items.

 Another typical case is when inside the onNext method the UI is updated with data
from the emitted item, but items are emitted at a frequency higher than the frequency
with which the UI is updated.

 Backpressure happens every time we face such situations. We can handle
backpressure in the following ways:

• By controlling the emission, applying some specific operator to
the observable

• At consumption time in the subscriber

 Handling Backpressure During Emission: Throttling
 You can use some RxJava operators to adjust the rate at which the Observable emits
items.

 sample
 With Observable.sample() you can periodically take samples of the sequence and emit
the most recent item of each sample. Figure 3-1 shows this process.

 Figure 3-1. The marble diagram of Observable.sample()

CHAPTER 3 ■ SUBSCRIPTION LIFECYCLE

56

 Looking at the diagram in Figure 3-1 , you can see that at the end of each period only
the last emitted item (from the source observable) is emitted by the resulting observable,
and the other items are discarded.

 throttleFirst
 Observable.throttleFirst() behaves like sample , but it emits the first item of each
sample (Figure 3-2).

 debounce
 Observable.debounce() emits only items that are not followed by any other item within a
specified interval, as shown in Figure 3-3 .

 Figure 3-2. The marble diagram of Observable.throttleFirst()

 Figure 3-3. The marble diagram of Observable.debounce()

CHAPTER 3 ■ SUBSCRIPTION LIFECYCLE

57

 Handling Backpressure During Emission: Buffering
 Another way to control backpressure is to collect items into buffers before notifying the
subscriber. The subscriber's onNext() method will not receive the single emitted item but
a collection that contains the items collected in the buffer.

 To apply this technique, you can use the operators buffer() and window() .

 Buffer
 Observable.buffer() lets you collect items periodically at a specified interval of time.

 You can choose to create buffers based on the number of items or on a time interval
by passing a function that computes the necessary conditions to close each buffer
(Figure 3-4). You can also specify an Observable that triggers the beginning of a buffer.

 Window
 Observable.window() is similar to buffer , but rather than emitting collections of items
from the source Observable, it emits observables, and each one of these observables
emits a subset of items from the source Observable and then terminates with an
 onCompleted notification.

 You can choose to create “windows” based on a time interval (Figure 3-5), the
number of items (Figure 3-6), or by passing a function that computes the necessary
conditions to close each window.

 Figure 3-4. The marble diagram of Observable.buffer()

CHAPTER 3 ■ SUBSCRIPTION LIFECYCLE

58

 ■ Note If an error occurs, both operators will notify the onError method and stop
building the current buffer or window. The items contained in the unfinished buffer/window
will not be forwarded to the subscriber.

 Figure 3-5. The marble diagram of Observable. window() based on a time interval

 Figure 3-6. The marble diagram of Observable. window() based on number of items

CHAPTER 3 ■ SUBSCRIPTION LIFECYCLE

59

 Handling Backpressure Inside the Subscriber
 Inside the subscriber you can ask the observable to slow down the emission. So, in the
zip example above, you can ask B to emit items slowly instead of applying a throttling
operator.

 Inside the subscriber's onStart() method you must call the Subscriber.request(n)
method, where n is an integer representing the maximum of items you want the
Observable to emit before the next request() call. Then, after consuming the item in the
 onNext() method, you have to call request() again to tell the observable to continue
with the emission of the following n items.

 In the following example, you set n = 1, so you can consume each item before the
next one is emitted:

 myObservable.subscribe(new Subscriber<T>() {
 @Override
 public void onStart() {
 request(1);
 }

 @Override
 public void onCompleted() {
 }

 @Override
 public void onError(Throwable e) {
 }

 @Override
 public void onNext(T item) {
 consume(item)
 request(1);
 }
 });

 Here you called the request() method in onStart() and onNext() with the same
parameter of 1, because you supposed that you can consume only one item before the
next one is emitted, but these values are independent and can be tuned based on the use
case.

 If you omit the request() call, the observable emits items as it would do normally,
without slowing down the emission; the same effect can be achieved calling request(0) .

61© Andrea Maglie 2016
A. Maglie, Reactive Java Programming, DOI 10.1007/978-1-4842-1428-2_4

 CHAPTER 4

 Subjects

 In previous chapters, you learned about Observable<T> , Observer<T> , and
 Subscriber<T> and their role in reactive programming with RxJava: an Observable object
emits a sequence of events, and a Subscriber object acts as an observer, reacting to each
event emitted by the Observable.

 The RxJava library provides a proxy that acts both as Observable and Observer: it's called
 Subject<T,R> , where T is the type of the input value and R is the type of the output value.

 A Subject can

• Subscribe to one or more Observables (as a Subscriber)

• Pass through the items it observes by reemitting them

• Emit new items

 A subject does not take a scheduler but rather assumes that all serialization and
grammatical correctness are handled by the caller of the subject.

 Let’s see how a Subject can act as Observable (PublishSubject will be introduced
later):

 Subject<String, String> subject = PublishSubject.create();
 subject.subscribe(new Subscriber<String>() {

 @Override
 public void onCompleted() {
 System.out.println("sequence completed");
 }

 @Override
 public void onError(Throwable e) {

 }

 @Override
 public void onNext(String item) {
 System.out.println(item);
 }

 });

CHAPTER 4 ■ SUBJECTS

62

 subject.onNext("first item");
 subject.onNext("second item");
 subject.onNext("third item");
 subject.onCompleted();

 As you may expect, if you run this code you get the following output:

 first item
 second item
 third item
 sequence completed

 Now let’s create a Subject that acts both as Observable and as Subscriber:

 Observable<Long> interval =
 Observable.interval(1, TimeUnit.SECONDS);

 Subject<Long, Long> subject = PublishSubject.create();
 interval.subscribe(subject);

 subject.subscribe(new Subscriber<Long>() {

 @Override
 public void onCompleted() {
 System.out.println("first sequence completed");
 }

 @Override
 public void onError(Throwable e) {
 }

 @Override
 public void onNext(Long item) {
 System.out.println("first sequence, item: " + item);
 }
 });

 subject.subscribe(new Subscriber<Long>() {

 @Override
 public void onCompleted() {
 System.out.println("second sequence completed");
 }

CHAPTER 4 ■ SUBJECTS

63

 @Override
 public void onError(Throwable e) {
 }

 @Override
 public void onNext(Long item) {
 System.out.println("second sequence, item: " + item);
 }
 });

 The Subject here first subscribes to the interval observable (which emits an
incremental long value every second), then reemits a Long object every time it receive an
item from the interval observable. The output of this code is

 first sequence, item: 0
 second sequence, item: 0
 first sequence, item: 1
 second sequence, item: 1
 first sequence, item: 2
 second sequence, item: 2
 first sequence, item: 3
 second sequence, item: 3
 first sequence, item: 4
 second sequence, item: 4
 first sequence, item: 5
 ...

 In RxJava, the class Subject is an abstract class. In these examples, you didn't create
a concrete implementation of Subject; you used one of the built-in implementations
available, returned by the static factory method PublishSubject.create() .

 RxJava provides four different implementations of Subject .

 PublishSubject
 PublishSubject<T> (Figure 4-1) is a Subject that

• Emits all the items emitted by the source observable, starting
from the moment of the subscription

• Notifies of an error event and does not emit any other item if the
source Observable terminates with an error

CHAPTER 4 ■ SUBJECTS

64

 To create an instance of PublishSubject (Figure 4-1), you can use the static factory
method PublishSubject.create() .

 Now, create an instance of PublishSubject that emits a sequence of integers, and
then subscribe to two different subscribers:

 PublishSubject<Integer> subject = PublishSubject.create();
 Observable<Integer> subjectAsObservable =
 subject.asObservable();

 // subscribe the first Subscriber
 subjectAsObservable.subscribe(new Subscriber<Integer>() {

 @Override
 public void onCompleted() {
 System.out.println("first: sequence completed");
 }

 @Override
 public void onError(Throwable e) {

 }

 @Override
 public void onNext(Integer item) {
 System.out.println("first: next item is " + item);

 Figure 4-1. The marble diagram for PublishSubject<T>

CHAPTER 4 ■ SUBJECTS

65

 }
 });

 subject.onNext(1);
 subject.onNext(2);

 // subscribe the second Subscriber
 subjectAsObservable.subscribe(new Subscriber<Integer>() {

 @Override
 public void onCompleted() {
 System.out.println("second: sequence completed");
 }

 @Override
 public void onError(Throwable e) {

 }

 @Override
 public void onNext(Integer item) {
 System.out.println("second: next item is " + item);

 }
 });

 subject.onNext(3);
 subject.onNext(4);
 subject.onNext(5);
 subject.onCompleted();

 The output of this code is

 first: next item is 1
 first: next item is 2
 first: next item is 3
 second: next item is 3
 first: next item is 4
 second: next item is 4
 first: next item is 5
 second: next item is 5
 first: sequence completed
 second: sequence completed

 The first subscriber subscribes before PublishSubject starts to emit items, so it will
receive all five items and then complete. The second subscriber subscribes in the middle
of the sequence, so it will receive only the subsequent items.

CHAPTER 4 ■ SUBJECTS

66

 Are Subjects hot or cold observables? This example makes it easy to answer the
question: Subjects are hot observables because they can produce items when no
Observer is subscribed.

 Another interesting point is the usage of the Subject.asObservable() method.
Subscribing to subject instead of subjectAsObservable will produce the same output, but
the method Subject.asObservable() helps you by wrapping your Subject instance in
an Observable instance. This means you can expose only the Observable interface to the
subscribers and it also means that no one else can use the Subject instance to emit items
or notify completed/error events.

 BehaviorSubject
 BehaviorSubject<T> (Figure 4-2) is similar to PublishSubject , except that the subscriber
will also receive the last item emitted before its subscription.

 Let’s take the previous example and change the PublishSubject instance to a
 BehaviorSubject instance:

 BehaviorSubject <Integer> subject = BehaviorSubject.create();
 Observable<Integer> subjectAsObservable =
 subject.asObservable();

 Figure 4-2. The marble diagram for BehaviorSubject<T>

CHAPTER 4 ■ SUBJECTS

67

 // subscribe the first Subscriber
 subjectAsObservable.subscribe(new Subscriber<Integer>() {

 @Override
 public void onCompleted() {
 System.out.println("first: sequence completed");
 }

 @Override
 public void onError(Throwable e) {

 }

 @Override
 public void onNext(Integer item) {
 System.out.println("first: next item is " + item);

 }
 });

 subject.onNext(1);
 subject.onNext(2);

 // subscribe the second Subscriber
 subjectAsObservable.subscribe(new Subscriber<Integer>() {

 @Override
 public void onCompleted() {
 System.out.println("second: sequence completed");
 }

 @Override
 public void onError(Throwable e) {

 }

 @Override
 public void onNext(Integer item) {
 System.out.println("second: next item is " + item);

 }
 });

 subject.onNext(3);
 subject.onNext(4);
 subject.onNext(5);
 subject.onCompleted();

CHAPTER 4 ■ SUBJECTS

68

 This code produces the following output:

 first: next item is 1
 first: next item is 2
 second: next item is 2
 first: next item is 3
 second: next item is 3
 first: next item is 4
 second: next item is 4
 first: next item is 5
 second: next item is 5
 first: sequence completed
 second: sequence completed

 Here the second subscriber receives the sequence starting from item 2, and it
subscribes after the emission of item 2.

 RxJava also provides the static factory method BehaviorSubject.create
(T defaultValue) ; the instance returned by this method will emit the provided default
item as long as no item has been received from the source observable.

 BehaviorSubject <Integer> subject =
 BehaviorSubject.create(-1);

 Observable<Integer> subjectAsObservable =
 subject.asObservable();

 // subscribe the first Subscriber
 subjectAsObservable.subscribe(new Subscriber<Integer>() {

 @Override
 public void onCompleted() {
 System.out.println("first: sequence completed");
 }

 @Override
 public void onError(Throwable e) {

 }

 @Override
 public void onNext(Integer item) {
 System.out.println("first: next item is " + item);

 }
 });

 subject.onNext(1);
 subject.onNext(2);

CHAPTER 4 ■ SUBJECTS

69

 // subscribe the second Subscriber
 subjectAsObservable.subscribe(new Subscriber<Integer>() {

 @Override
 public void onCompleted() {
 System.out.println("second: sequence completed");
 }

 @Override
 public void onError(Throwable e) {

 }

 @Override
 public void onNext(Integer item) {
 System.out.println("second: next item is " + item);

 }
 });

 subject.onNext(3);
 subject.onNext(4);
 subject.onNext(5);
 subject.onCompleted();

 The output is

 first: next item is -1
 first: next item is 1
 first: next item is 2
 second: next item is 2
 first: next item is 3
 second: next item is 3
 first: next item is 4
 second: next item is 4
 first: next item is 5
 second: next item is 5
 first: sequence completed
 second: sequence completed

 What if you want the subscriber to receive all items emitted prior to its subscription
instead of only the last one? Just use a ReplaySubject .

 ReplaySubject
 ReplaySubject<T> (Figure 4-3) emits all items emitted by the source Observable,
regardless of when the observer subscribes, by keeping a buffer of the emitted items.

CHAPTER 4 ■ SUBJECTS

70

 This buffer is backed up by an ArrayList, and by default it has an initial capacity of 16
and no upper bounds.

 RxJava provides other static factory methods to create an instance of ReplaySubject
with different behaviors:

• ReplaySubject.create(int capacity) creates an instance of
 ReplaySubject with the specified initial capacity.

• ReplaySubject.createWithSize(int size) creates an instance
that will keep a buffer with the specified size; when the buffer is
full, older items are discarded.

• ReplaySubject.createWithTime(long time, TimeUnit unit,
Scheduler scheduler) creates a time-bounded ReplaySubject .

• ReplaySubject.createWithTimeAndSize(long time, TimeUnit
unit, int size, Scheduler scheduler) lets you create a
 ReplaySubject that is both time-bounded and size-bounded.

 AsyncSubject
 AsyncSubject<T> (Figure 4-4) is an implementation of Subject that

• Emits only the last emitted item from the source observable after
that observable completes.

 Figure 4-3. The marble diagram for ReplaySubject<T>

CHAPTER 4 ■ SUBJECTS

71

• Emits no item if the source observable does not emit any item.

• Notifies an error event (without emitting any item) if the source
Observable terminates with an error.

 Let’s change the previous example to use AsyncSubject instead of PublishSubject :

 AsyncSubject<Integer> subject = AsyncSubject.create();

 Observable<Integer> subjectAsObservable =
 subject.asObservable();

 // subscribe the first Subscriber
 subjectAsObservable.subscribe(new Subscriber<Integer>() {

 @Override
 public void onCompleted() {
 System.out.println("first: sequence completed");
 }

 @Override
 public void onError(Throwable e) {

 }

 Figure 4-4. The marble diagram for AsyncSubject<T>

CHAPTER 4 ■ SUBJECTS

72

 @Override
 public void onNext(Integer item) {
 System.out.println("first: next item is " + item);

 }
 });

 subject.onNext(1);
 subject.onNext(2);

 // subscribe the second Subscriber
 subjectAsObservable.subscribe(new Subscriber<Integer>() {

 @Override
 public void onCompleted() {
 System.out.println("second: sequence completed");
 }

 @Override
 public void onError(Throwable e) {

 }

 @Override
 public void onNext(Integer item) {
 System.out.println("second: next item is " + item);

 }
 });

 subject.onNext(3);
 subject.onNext(4);
 subject.onNext(5);
 subject.onCompleted();

 This code produces the following output:

 first: next item is 5
 first: sequence completed
 second: next item is 5
 second: sequence completed

 When Should You Use Subjects?
 There's an ongoing debate about the usage of Subjects. Erik Meijer, one of the RxJava's
fathers, says that

CHAPTER 4 ■ SUBJECTS

73

 They are the mutable variables of the Rx world and in most cases you do
not need them. Typically a solution with Create or the other operators
allows you to just wire up continuations without adding extra state.
Stated slightly differently, it is good practice to minimize the number of
objects that hold on to subscribers, you just want to pass them through.

 [https://social.msdn.microsoft.com/Forums/en-US/bbf87eea-6a17-4920-
96d7-2131e397a234/why-does-emeijer-not-like-subjects]

 As a general rule, before using a Subject, ask yourself if the same purpose can be
achieved with Observable.create() (or any other operator that creates observables).
And, if you need to use a Subject, it’s a good idea to expose it wrapped inside an
Observable with the method Subject.asObservable() , because by doing so you will not
expose the mutable component of the Subject.

 EXAMPLE: A REACTIVE VERSION OF ARRAYLIST

 The following example shows how to create a reactive version of ArrayList. This
implementation of ArrayList exposes two additional methods to get notified when an
item is added or removed:

 class ReactiveArrayList<T> extends ArrayList<T> {

 private PublishSubject<T> addSubject =
 PublishSubject.create();
 private PublishSubject<Object> removeSubject =
 PublishSubject.create();

 @Override
 public boolean add(T item) {
 boolean result = super.add(item);
 if (result) {
 addSubject.onNext(item);
 }
 return result;
 }

 @Override
 public void add(int index, T item) {
 super.add(index, item);
 addSubject.onNext(item);
 }

 @Override

https://social.msdn.microsoft.com/Forums/en-US/bbf87eea-6a17-4920-96d7-2131e397a234/why-does-emeijer-not-like-subjects
https://social.msdn.microsoft.com/Forums/en-US/bbf87eea-6a17-4920-96d7-2131e397a234/why-does-emeijer-not-like-subjects

CHAPTER 4 ■ SUBJECTS

74

 public T remove(int index) {
 T removedItem = super.remove(index);
 removeSubject.onNext(removedItem);
 return removedItem;
 }

 @Override
 public boolean remove(Object object) {
 boolean result = super.remove(object);
 if (result) {
 removeSubject.onNext(object);
 }
 return result;
 }

 @Override
 public boolean addAll(Collection<? extends T> c) {
 boolean result = super.addAll(c);
 if (result) {
 for (T t : c) {
 addSubject.onNext(t);
 }
 }
 return result;
 }

 @Override
 public boolean addAll(int index, Collection<? extends T> c) {
 boolean result = super.addAll(index, c);
 if (result) {
 for (T t : c) {
 addSubject.onNext(t);
 }
 }
 return result;
 }

 public Observable<T> observeItemsAdded() {
 return addSubject.asObservable();
 }

 public Observable<Object> observeItemsRemoved() {
 return removeSubject.asObservable();
 }
 }

 This is a usage example:

 ReactiveArrayList<String> reactiveList =
 new ReactiveArrayList<String>();

CHAPTER 4 ■ SUBJECTS

75

 reactiveList.observeItemsAdded()
 .subscribe(new Subscriber<String>() {

 @Override
 public void onCompleted() {
 }

 @Override
 public void onError(Throwable e) {
 }

 @Override
 public void onNext(String item) {
 System.out.println("item added: " + item);
 }

 });

 reactiveList.observeItemsRemoved()
 .subscribe(new Subscriber<Object>() {

 @Override
 public void onCompleted() {
 }

 @Override
 public void onError(Throwable e) {
 }

 @Override
 public void onNext(Object item) {
 System.out.println("item removed: " + item);
 }

 });

 reactiveList.add("1");
 reactiveList.add("2");
 reactiveList.remove("1");
 reactiveList.addAll(Arrays.asList("4", "5", "6"));
 reactiveList.remove("5");

 The output of this code is

 item added: 1
 item added: 2
 item removed: 1

CHAPTER 4 ■ SUBJECTS

76

 item added: 4
 item added: 5
 item added: 6
 item removed: 5

 ■ Note Subjects are not thread-safe by default. They do not perform any synchronization
across threads, so you must not call the onNext() / onCompleted() / onError() methods
from multiple threads, as this could lead to non-serialized calls, which violates the
Observable contract and creates an ambiguity in the resulting Subject.

 To make the Subject thread-safe, convert it into a SerializedSubject<T,R> (a subclass of
 Subject<T,R>) with code like the following:

 new SerializedSubject(myUnsafeSubject);

 Connectable Observables
 Connectable Observables are another alternative to the usage of Subjects. A
 ConnectableObservable<T> behaves like an Observable, but it begins emitting items only
when its connect() method is called.

 ConnectableObservable<String> observable =
 Observable.range(0, 5)
 .map(new Func1<Integer, String>() {

 @Override
 public String call(Integer t) {
 return String.valueOf(t);
 }

 }).publish();

 observable.subscribe(new Subscriber<String>() {

 @Override
 public void onCompleted() {
 System.out.println("first: sequence completed");
 }

 @Override
 public void onError(Throwable e) {

 }

 @Override

CHAPTER 4 ■ SUBJECTS

77

 public void onNext(String item) {
 System.out.println("first: next item is " + item);

 }
 });

 observable.subscribe(new Subscriber<String>() {

 @Override
 public void onCompleted() {
 System.out.println("second: sequence completed");
 }

 @Override
 public void onError(Throwable e) {

 }

 @Override
 public void onNext(String item) {
 System.out.println("second: next item is " + item);

 }
 });

 If you run this code, the output is… nothing! This is because you are missing the call
to the connect() method:

 observable.connect();

 By adding this line, the observable starts emitting items and the output becomes

 first: next item is 0
 second: next item is 0
 first: next item is 1
 second: next item is 1
 first: next item is 2
 second: next item is 2
 first: next item is 3
 second: next item is 3
 first: next item is 4
 second: next item is 4
 first: sequence completed
 second: sequence completed

 As you can see, every event generated by the observable is propagated to both
subscribers, preserving the order of subscription (the first subscriber is notified first for
each event).

79© Andrea Maglie 2016
A. Maglie, Reactive Java Programming, DOI 10.1007/978-1-4842-1428-2_5

 CHAPTER 5

 Networking with RxJava
and Retrofit

 Network operations like calling the RESTful API are an example of a scenario where you
can apply RxJava. In fact,

• You need to implement a callback mechanism to react to
the response of the network call, which can terminate with a
succesful state or a failure.

• Sometimes you need to chain different network calls sequentially.

• Often these operations need to be executed in a separated thread.

 It’s trivial now to map the idea of a response with a successful or error state to
the Subcriber’s onNext and onError methods, chaining operations to an Observable
concatenation (or transformation), and the idea of using a separate thread for the
application of a Scheduler.

 Java provides a basic support for network operations (look at packages java.net
and javax.net), but there are many other libraries that really simplify working with a
network, like

• Netty (http://netty.io/)

• Async Http Client (https://github.com/AsyncHttpClient/
async-http-client)

• OkHttp (http://square.github.io/okhttp/)

• Retrofit (http://square.github.io/retrofit/)

 This chapter covers Retrofit because it has an interesting feature: built-in support
for RxJava that lets you choose if you want the network response to be wrapped inside an
 Observable object.

 I’m assuming that you know what RESTful APIs (https://en.wikipedia.org/wiki/
Representational_state_transfer) are and that you have a basic knowledge of JSON
(Google Gson will be used for JSON parsing - https://github.com/google/gson).

http://netty.io/
https://github.com/AsyncHttpClient/async-http-client
https://github.com/AsyncHttpClient/async-http-client
http://square.github.io/okhttp/)
http://square.github.io/retrofit/
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://github.com/google/gson

CHAPTER 5 ■ NETWORKING WITH RXJAVA AND RETROFIT

80

 Retrofit’s Built-in Support for RxJava
 Retrofit is a library that provides a type-safe HTTP client for Java (and Android). The great
point about Retrofit is that you just have to define an interface that will act as a proxy for
the HTTP API, and the library will automatically generate the implementation of this
interface for you.

 All examples are based on version 2.1.0 of Retrofit. It supports Java 7 and 8, but not
Java 6.

 Setting Up Retrofit in Your Java Project
 The setup is straightforward. If you're using maven, just add the following dependency
declaration:

 <dependency>
 <groupId>com.squareup.retrofit2</groupId>
 <artifactId>retrofit</artifactId>
 <version>2.1.0</version>
 </dependency>

 If you’re using gradle:

 compile 'com.squareup.retrofit2:retrofit:2.1.0'

 Alternatively, you can download the jar from the web site.

 Creating a Retrofit Service
 Let's consider the APIs that are provided by GitHub (https://developer.github.com/
v3/). GitHub provides many APIs to access user's information, repositories, and gists, but
for now let’s just consider the API to retrieve a user's list of public repositories.

 From the GitHub API documentation, the URL of this API is

 https://api.github.com/users/{user}/repos

 where {user} is the name of the GitHub user.
 A Retrofit interface that maps such API will look like this:

 import java.util.List;
 import retrofit2.http.GET;
 import retrofit2.http.Path;
 import rx.Observable;

 public interface GitHubService {
 @GET("users/{user}/repos")
 Observable<List<Repo>> listRepos(@Path("user") String user);
 }

https://developer.github.com/v3/
https://developer.github.com/v3/
https://api.github.com/users/{user}/repos

CHAPTER 5 ■ NETWORKING WITH RXJAVA AND RETROFIT

81

 The Repo object is used to map the JSON returned by the API to a POJO (plain
old Java object); this is a simple implementation that maps only the fields
that you need in the examples:

 public class Repo {

 @SerializedName("id")
 private int id;

 @SerializedName("name")
 private String name;

 @SerializedName("url")
 private String url;

 @SerializedName("watchers_count")
 private int watchersCount;

 @SerializedName("open_issues_count")
 private int openIssueCount;

 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getUrl() {
 return url;
 }

 public void setUrl(String url) {
 this.url = url;
 }

 public int getWatchersCount() {
 return watchersCount;
 }

CHAPTER 5 ■ NETWORKING WITH RXJAVA AND RETROFIT

82

 public void setWatchersCount(int watchersCount) {
 this.watchersCount = watchersCount;
 }

 public int getOpenIssueCount() {
 return openIssueCount;
 }

 public void setOpenIssueCount(int openIssueCount) {
 this.openIssueCount = openIssueCount;
 }
 }

 Here you've defined a method that maps a GET request (see the @GET annotation) to
the API "users/{user}/repos" (passed as parameter to the @GET annotation). The value
of {user} is a parameter of the method, and with the annotation @Path you're telling
Retrofit that the "user" parameter must be substituted to the {user} part of the API URL.

 The method will return an Observable that will do the following:

• Emit a sequence of just a non-null object of type List<Repo> if the
request is successfull (and then terminates).

• Notify with an error event if some error occurs.

 The implementation of the GitHubService interface can be generated as follows:

 Retrofit retrofit = new Retrofit.Builder()
 .baseUrl("https://api.github.com/")
 .addCallAdapterFactory(RxJavaCallAdapterFactory.create())
 .addConverterFactory(GsonConverterFactory.create())
 .build();

 GitHubService service = retrofit.create(GitHubService.class);

 The support for RxJava must be enabled by including the following dependency:

 <dependency>
 <groupId>com.squareup.retrofit2</groupId>
 <artifactId>adapter-rxjava</artifactId>
 <version>2.1.0</version>
 </dependency>

 You must also register the adapter with the method

 addCallAdapterFactory(RxJavaCallAdapterFactory.create())

 You also need to add support for converting the response body from JSON to your
 Repo object using Gson. To do this, you need to add the following dependency:

 <dependency>

CHAPTER 5 ■ NETWORKING WITH RXJAVA AND RETROFIT

83

 <groupId>com.squareup.retrofit2</groupId>
 <artifactId>converter-gson</artifactId>
 <version>2.1.0</version>
 </dependency>
 </dependencies>

 You also need to register the converter:

 addConverterFactory(GsonConverterFactory.create())

 Now you can use the service implementation and make a subscription:

 String user = ...

 service.listRepos(user)
 .subscribe(new Subscriber<List<Repo>>() {

 @Override
 public void onCompleted() {
 System.out.println("sequence completed");
 }

 @Override
 public void onError(Throwable e) {
 e.printStackTrace();
 }

 @Override
 public void onNext(List<Repo> repos) {
 for (Repo repo : repos) {
 System.out.println("Repo: " + repo.getName());
 }
 }
 });

 Putting all together,

 import retrofit2.Retrofit;
 import retrofit2.adapter.rxjava.RxJavaCallAdapterFactory;
 import retrofit2.converter.gson.GsonConverterFactory;
 import rx.Observable;
 import rx.Subscriber;
 import rx.functions.Func1;
 import rx.schedulers.Schedulers

 public static void listRepos(String user) {
 retrofit2.Retrofit retrofit =
 new retrofit2.Retrofit.Builder()

CHAPTER 5 ■ NETWORKING WITH RXJAVA AND RETROFIT

84

 .baseUrl("https://api.github.com/")
 .addCallAdapterFactory(RxJavaCallAdapterFactory.create())
 .addConverterFactory(GsonConverterFactory.create())
 .build();

 GitHubService service = retrofit.create(GitHubService.class);

 service.listRepos(user)
 .subscribe(new Subscriber<List<Repo>>() {

 @Override
 public void onCompleted() {
 System.out.println("sequence completed");
 }

 @Override
 public void onError(Throwable e) {
 e.printStackTrace();
 }

 @Override
 public void onNext(List<Repo> repos) {
 for (Repo repo : repos) {
 System.out.println("Repo: " + repo.getName());
 }
 }
 });
 }

 For example, to print a list of the GitHub repositories of user “octocat”, you can call
method

 listRepos("octocat");

 and the results will be

 Repo: git-consortium
 Repo: hello-worId
 Repo: Hello-World
 Repo: linguist
 Repo: octocat.github.io
 Repo: Spoon-Knife
 Repo: test-repo1
 sequence completed

CHAPTER 5 ■ NETWORKING WITH RXJAVA AND RETROFIT

85

 Filter Results
 Now that you've got the list of repositories, you want to filter that list and show only the
repositories with at most two open issues. You can do this by applying the filter()
operator.

 The Observable returned by the method listRepos() emits a sequence of only one
item of type List<Repo> . To apply the filter() operator, you need the Observable to
emit an item for each Repo object. The following code shows how you can transform the
Observable into another Observable and then apply a filter:

 String user = ...
 Int maxOpenIssues = ...
 service.listRepos(user)
 .flatMap(new Func1<List<Repo>, Observable<Repo>>() {

 @Override
 public Observable<Repo> call(List<Repo> repos) {
 return Observable.from(repos);
 }

 })
 .filter(new Func1<Repo, Boolean>() {

 @Override
 public Boolean call(Repo repo) {
 return repo.getOpenIssueCount() <= maxOpenIssues;
 }

 })
 .subscribe(new Subscriber<Repo>() {

 @Override
 public void onCompleted() {
 System.out.println("sequence completed");
 }

 @Override
 public void onError(Throwable e) {
 e.printStackTrace();
 }

 @Override
 public void onNext(Repo repo) {
 System.out.println("Repo: " + repo.getName());
 }
 });

CHAPTER 5 ■ NETWORKING WITH RXJAVA AND RETROFIT

86

 The complete method is

 public static void listReposWithMaxIssues(String user, final int
maxOpenIssues) {
 Retrofit retrofit = new Retrofit.Builder()
 .baseUrl("https://api.github.com/")
 .addCallAdapterFactory(RxJavaCallAdapterFactory.create())
 .addConverterFactory(GsonConverterFactory.create())
 .build();

 GitHubService service = retrofit.create(GitHubService.class);

 service.listRepos(user)
 .flatMap(new Func1<List<Repo>, Observable<Repo>>() {

 @Override
 public Observable<Repo> call(List<Repo> repos) {
 return Observable.from(repos);
 }

 })
 .filter(new Func1<Repo, Boolean>() {

 @Override
 public Boolean call(Repo repo) {
 return repo.getOpenIssueCount() <= maxOpenIssues;
 }

 })
 .subscribe(new Subscriber<Repo>() {

 @Override
 public void onCompleted() {
 System.out.println("sequence completed");
 }

 @Override
 public void onError(Throwable e) {
 e.printStackTrace();
 }

 @Override
 public void onNext(Repo repo) {
 System.out.println("Repo: " + repo.getName());
 }
 });
 }

CHAPTER 5 ■ NETWORKING WITH RXJAVA AND RETROFIT

87

 And here’s the output:

 Repo: hello-worId
 Repo: test-repo1
 sequence completed

 Choosing the Right Scheduler
 In the previous example, you didn't specify any Scheduler, so the code is executed using
the default Scheduler.

 Suppose that you're working on an application with a UI and that the network
operation is kicked off by clicking on a button. You don't want the UI to be blocked
waiting for the response, so you need to execute all the networking stuff on a separate
thread. This can be done by applying the subscribeOn() operator. A network operation is
an I/O operation, so the right scheduler to apply is Schedulers.io() .

 But you need also to ensure that the result is notified on the UI thread (if the result
is used to update the UI), so you also need to apply the observeOn() operator. The right
scheduler here depends on the library or framework you are using to build the UI. For
example, in JavaFx, you can use the JavaFxScheduler provided by RxJavaFX (https://
github.com/ReactiveX/RxJavaFX); in Android use AndroidSchedulers.mainThread()
provided by RxAndroid (https://github.com/ReactiveX/RxAndroid).

 service.listRepos(user)
 .flatMap(new Func1<List<Repo>, Observable<Repo>>() {

 @Override
 public Observable<Repo> call(List<Repo> repos) {
 return Observable.from(repos);
 }
 })
 .filter(new Func1<Repo, Boolean>() {

 @Override
 public Boolean call(Repo repo) {
 return repo.getOpenIssueCount() <= maxOpenIssues;
 }
 })
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(new Subscriber<Repo>() {

 @Override
 public void onCompleted() {
 System.out.println("sequence completed");
 }

https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxAndroid

CHAPTER 5 ■ NETWORKING WITH RXJAVA AND RETROFIT

88

 @Override
 public void onError(Throwable e) {
 e.printStackTrace();
 }

 @Override
 public void onNext(Repo repo) {
 System.out.println("Repo: " + repo.getName());
 }
 });

 By adding subscribeOn(Schedulers.io()) right before subscribe() call, methods
 listRepos() , flatMap() , and filter() will be executed on a different thread.

 The results (onNext , onError , and onCompleted) will be notified on the main thread.

 Chaining Multiple Network Calls
 Chaining multiple network calls often means dealing with nested callbacks, which
make your code hard to read and maintain. Moreover, you have to handle errors in each
callback, increasing the code complexity.

 From what you've seen so far, it's easy to understand how to use RxJava to substitute
the callback chain with a combination of observables.

 In this simple scenario, you need to call a remote API to authenticate a user, then
another one to get the user's data, and again another API to get the user's contacts.

 The following code shows nested API calls with callbacks:

 import retrofit2.Callback;
 import retrofit2.Call;
 import retrofit2.Response;

 User user = null;

 myService.login(username, password,
 new Callback<AccessToken>() {

 @Override
 public void success(User user, Response response) {

 storeCredentials(response.getAccessToken())

 myService.getUser(accessToken, new Callback<User>() {
 @Override
 public void onResponse(Call<User> call,
 Response<User> response) {

 user = response.getBody();

CHAPTER 5 ■ NETWORKING WITH RXJAVA AND RETROFIT

89

 myService.getUserContact(user.getId(),
 new Callback<Contact>() {
 @Override
 public Contact onResponse(Call<Contact> contact,
 Response<Contact> response) {
 user.setContact(response.getBody());
 }

 @Override
 public void onFailure(RetrofitError error) {
 // handle error here...
 }
 });
 }

 @Override
 public void onFailure(RetrofitError error) {
 // handle error here...
 }
 });
 }

 @Override
 public void failure(RetrofitError error) {
 // handle error here...
 }
 });

 And this is how you can transform this code using RxJava:

 myService.login()
 .doOnNext(accessToken -> storeCredentials(accessToken))
 .flatMap(accessToken -> myService.getUser(accessToken))
 .flatMap(user -> myService.getUserContact(user.getId()))
 .subscribe(new Subscriber<Contact>() {
 @Override
 public void onCompleted() {
 }

 @Override
 public void onError(Throwable e) {
 }

 @Override
 public void onNext(Contact contact) {
 }
 });

CHAPTER 5 ■ NETWORKING WITH RXJAVA AND RETROFIT

90

 where

• myService.login() returns an Observable<AccessToken>.

• The doOnNext() method is applied to the result of myService.
login() to invoke storeCredentials() every time an instance of
 AccessToken is emitted.

• The same instance of AccessToken is used by the first
 flatMap operator to invoke the method myService.
getUser(accessToken) and thus return an Observable<User>.

• Another flatMap operator is applied to use the emitted instance
of User to call myService.getUserContact(user.getId()) .

 The code becomes simpler to read and maintain because it's built using reusable
blocks of code.

 With the nested callbacks version, there are three different places where you have to
handle errors; in the RxJava version, you can handle errors in just one place, since every
error will be forwarded to the observer and notified in the onError method.

 Caching Data
 When working with network calls, an important topic is caching. Caching is a mechanism
to save a local copy of the network response to be used when the network is unreachable
or to avoid doing too many subsequent network calls.

 Retrofit supports caching network responses using OkHttpClient 's cache
mechanism. In some cases, this is not enough and you need to cache data by applying
your own custom logic.

 Again, RxJava can help you build a complex caching mechanism with simple and
readable code. The following code shows an abstract implementation of a class that
caches a network response on disk and in memory. Note that in this example you take
advantage of lambda expressions (provided by Java 8) to make your code less verbose.

 abstract class CacheManager<T> {

 private T mMemoryCache;

 public Observable<T> getData() {
 return Observable.concat(fromMemory(),
 fromDisk(), fromNetwork())
 .first(response -> isValid(response))
 .onErrorResumeNext(t -> fallbackToDiskCache());
 }

 protected Observable<T> fromNetwork() {
 return doNetworkCall()
 .doOnNext(response -> {

CHAPTER 5 ■ NETWORKING WITH RXJAVA AND RETROFIT

91

 cacheInMemory(response);
 cacheOnDisk(response);
 })
 .compose(logSource("network"));
 }

 private Observable<T> fallbackToDiskCache() {
 System.out.println("fallback to disk cache");
 return fromDisk();
 }

 protected void cacheOnDisk(T response) {
 System.out.println("saving data on disk: " + response);
 persistOnDisk(response);
 }

 protected Observable<T> fromDisk() {
 Observable<T> observable = Observable.create(subscriber -> {
 T response = readFromDisk();
 if (response != null) {
 subscriber.onNext(response);
 cacheInMemory(response);
 }
 subscriber.onCompleted();
 });

 return observable.compose(logSource("disk"));
 }

 protected void cacheInMemory(T response) {
 mMemoryCache = response;
 }

 protected Observable<T> fromMemory() {
 Observable<T> observable = Observable.create(subscriber -> {
 subscriber.onNext(mMemoryCache);
 subscriber.onCompleted();
 });

 return observable.compose(logSource("memory"));
 }

 public void deleteAll() {
 mMemoryCache = null;
 deleteFromDisk();
 }

 private Observable.Transformer<T, T> logSource(final String source) {

CHAPTER 5 ■ NETWORKING WITH RXJAVA AND RETROFIT

92

 return dataObservable -> dataObservable.doOnNext(data -> {
 if (data == null) {
 System.out.println(source + " does not have any data.");
 } else if (!isValid(data)) {
 System.out.println(source + " has stale data.");
 } else {
 System.out.println(source + " has the data you are looking for!");
 }
 });
 }

 abstract boolean isValid(T data);

 abstract Observable<T> doNetworkCall();

 abstract void persistOnDisk(T response);

 abstract T readFromDisk();

 abstract void deleteFromDisk();

 }

 Let’s break down this code:

• The main idea is to use the Observable.concat() operator to
concatenate three operations: getting data from memory, getting
data from the disk, and getting data from the network, in this
exact order.

• Then you apply the first() operator with a function that filters
out data that is not valid (i.e. it's not null or it's not too old).
So if the memory returns valid data, it will be forwarded to the
subscriber and no data will be read from the disk or the network.
If the memory returns invalid data, the data will be read from the
disk, checking if it's valid, and so on.

• If some error occurs (for example, no network connection or
server unreachable), you fall back to disk cache. This is done
with the help of operator onErrorResumeNext() , which makes
the source Observable emit items from the given Observable
(fallbackToDiskCache()) in case of an error.

• The fromNetwork() Observable retrieves data from the network
and uses the onNext() operator to cache data on disk and in
memory when the subscriber's onNext() method is notified.
Remember that fromNetwork() is called only if memory and the
disk contain invalid data.

CHAPTER 5 ■ NETWORKING WITH RXJAVA AND RETROFIT

93

• The same logic is applied to the fromDisk() method, where you
save data in memory before notifying the subscriber's onNext()
method.

• Finally, you use the Observable.compose() operator to apply the
 logSource() operator that prints informations about the current
source of data.

 Note how you used Observable.create() to create the observers for getting data
from memory and from disk.

 The details about getting data from the network and saving and reading data from
disk are left to the concrete implementation.

 In these examples, you’ve used only a few of the many features that the Retrofit
library provides, because the focus was on the RxJava integration part. With Retrofit, you
can manage not only GET requests but also POST, DELETE, PUT, and PATCH requests.
You can specify header and query parameters, manipulate a URL’s path, send form-
encoded and multipart data. Go to http://square.github.io/retrofit/ for the full
documentation.

http://square.github.io/retrofit/

95© Andrea Maglie 2016
A. Maglie, Reactive Java Programming, DOI 10.1007/978-1-4842-1428-2_6

 CHAPTER 6

 RxJava and Android

 In the actual mobile-driven world, talking about Java also means also talking about
Android.

 The RxJava library can be used in Android development without any other
requirements. This means that all the code examples that you have seen so far can be
included in an Android project; all you need to do is add the dependency for RxJava in
your build.gradle file.

 There are some libraries that provide additional support for applying RxJava
concepts in the Android environment. The fundamentals are

• RxAndroid

• RxBindings

• RxLifecycle

 RxAndroid
 RxAndroid is the first open-source library for Android that you'll need. In fact, it provides
a very useful instance of Scheduler that schedules on the main thread (or a given looper).

 To install the dependency, you just need to add the two dependency declarations to
your build.gradle file:

 apply plugin: 'com.android.application'

 android {
 compileSdkVersion 24
 buildToolsVersion "24.0.1"

 defaultConfig {
 applicationId "com.example"
 minSdkVersion 14
 targetSdkVersion 24
 versionCode 1
 versionName "1.0"
 }

CHAPTER 6 ■ RXJAVA AND ANDROID

96

 buildTypes {
 release {
 minifyEnabled true
 shrinkResources true
 proguardFiles getDefaultProguardFile('proguard-android.txt'),
 'proguard-rules.pro'
 }
 }
 }

 dependencies {
 compile 'com.android.support:appcompat-v7:24.1.1'
 compile 'io.reactivex:rxjava:1.2.0'
 compile 'io.reactivex:rxandroid:1.2.1'
 }

 RxJava requires minSdkVersion 9 , but RxAndroid requires minSdkVersion 14 .
 Refer to the project web site (https://github.com/ReactiveX/RxAndroid) to know

the latest version of the library.
 As you've already seen, you can use the provided AndroidSchedulers.mainThread()

as a parameter to the observeOn() operator to make your Subscriber notified of the onCom
pleted() / onError() / onNext() events on the UI thread:

 Observable.range(1, 10)
 .subscribeOn(Schedulers.newThread())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(new Subscriber<Integer>() {

 @Override
 public void onCompleted() {
 // notified on UI thread
 }

 @Override
 public void onError(Throwable e) {
 // notified on UI thread
 }

 @Override
 public void onNext(Integer item) {
 // notified on UI thread
 }
 });

 You can also subscribe on another thread; the corresponding Scheduler can be
instantiated with the AndroidSchedulers.from() method:

 BackgroundThread myThread = new myThread();
 myThread.start();

https://github.com/ReactiveX/RxAndroid

CHAPTER 6 ■ RXJAVA AND ANDROID

97

 Observable.range(1, 10)
 .subscribeOn(AndroidSchedulers.from(myThread.getLooper())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(new Subscriber<Integer>() {

 @Override
 public void onCompleted() {
 // notified on UI thread
 }

 @Override
 public void onError(Throwable e) {
 // notified on UI thread
 }

 @Override
 public void onNext(Integer item) {
 // notified on UI thread
 }
 });

 If you want to build a Scheduler around your Handler, use HandlerThreadScheduler .

 RxBindings
 RxJava can also be used to interact with UI components in a reactive way, instead of using
listeners.

 For example, to be notified when a View is clicked, you must implement an
 OnClickListener() :

 myView.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(final View v) {

 }
 });

 Or if you want to listen for changes to the text typed in an EditText , you must add a
 TextWatcher with the method EditText.addTextChangedListener(TextWatcher) :

 editText.addTextChangedListener(new TextWatcher() {

 @Override
 public void onTextChanged(CharSequence s, int start, int before, int count)
{

 }

CHAPTER 6 ■ RXJAVA AND ANDROID

98

 @Override
 public void beforeTextChanged(CharSequence s, int start, int count,

int after) {

 }

 @Override
 public void afterTextChanged(Editable s) {

 }
 });

 RxBinding (https://github.com/JakeWharton/RxBinding) is an open source
library that provides some methods to avoid using this callback mechanism, applying the
reactive logic instead.

 To add this library to your Android project, add the dependency into your app’s
 build.gradle file:

 apply plugin: 'com.android.application'

 android {
 compileSdkVersion 24
 buildToolsVersion "24.0.1"

 defaultConfig {
 applicationId "com.example"
 minSdkVersion 14
 targetSdkVersion 24
 versionCode 1
 versionName "1.0"
 }

 buildTypes {
 release {
 minifyEnabled true
 shrinkResources true
 proguardFiles getDefaultProguardFile('proguard-android.txt'),
 'proguard-rules.pro'
 }
 }
 }

 dependencies {
 compile 'com.android.support:appcompat-v7:24.1.1'
 compile 'io.reactivex:rxjava:1.2.0'
 compile 'io.reactivex:rxandroid:1.2.1'
 compile 'com.jakewharton.rxbinding:rxbinding:0.4.0'
 }

https://github.com/JakeWharton/RxBinding

CHAPTER 6 ■ RXJAVA AND ANDROID

99

 EXAMPLE: REACTING TO CLICKS ON A VIEW

 Listening for clicks can be implemented with the method

 RxView.clicks(myView)
 .subscribe(click -> doSomething());

 RxView.clicks() returns a hot Observable (hot because clicks are fired even when
there are no subscribers).

 You can also apply operators to this Observable.

 It could be useful to implement a mechanism to avoid too many consecutive clicks
on a view. This can be achieved with the throttleFirst operator (see Chapter 3 for
the definition of throttleFirst) :

 RxView.clicks(myView)
 .throttleFirst(300, TimeUnit.MILLISECONDS)
 .subscribe(click -> doSomething());

 EXAMPLE: REACTING TO TEXT TYPED IN AN EDITTEXT

 The method RxTextView.afterTextChangeEvents() provides an Observable that
notifies the subscribers when a change occurs in an EditText :

 RxTextView.afterTextChangeEvents(editText)
 .subscribe(new Subscriber<TextViewAfterTextChangeEvent>() {
 @Override
 public void onCompleted() {
 }

 @Override
 public void onError(Throwable e) {
 }

 @Override
 public void onNext(TextViewAfterTextChangeEvent event) {
 CharSequence text = event.view().getText();
 // do something
 }
 });

http://dx.doi.org/10.1007/978-1-4842-1428-2_3

CHAPTER 6 ■ RXJAVA AND ANDROID

100

 If you want to be notified of text changes only every 500 milliseconds, you can apply
the debounce operator:

 RxTextView.afterTextChangeEvents(editText)
 .debounce(500, TimeUnit.MILLISECONDS)
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(new Subscriber<TextViewAfterTextChangeEvent>() {
 @Override
 public void onNext(TextViewAfterTextChangeEvent event) {
 CharSequence text = event.view().getText();
 // do something
 }
 });

 Looking at the source code of RxTextView , you can see that afterTextChangeEvents
returns an Observable that implements a TextWatcher for you:

 Observable<TextViewAfterTextChangeEvent> afterTextChangeEvents(
 @NonNull TextView view) {
 checkNotNull(view, "view == null");
 return Observable
 .create(new TextViewAfterTextChangeEventOnSubscribe(view));
 }

 class TextViewAfterTextChangeEventOnSubscribe
 implements Observable.OnSubscribe<TextViewAfterTextChangeEvent> {
 final TextView view;

 TextViewAfterTextChangeEventOnSubscribe(TextView view) {
 this.view = view;
 }

 @Override public void call(final Subscriber<? super
TextViewAfterTextChangeEvent> subscriber) {

 verifyMainThread();

 final TextWatcher watcher = new TextWatcher() {
 @Override public void beforeTextChanged(CharSequence s, int start, int

count, int after) {
 }

 @Override public void onTextChanged(CharSequence s, int start, int
before, int count) {

 }

 @Override public void afterTextChanged(Editable s) {
 if (!subscriber.isUnsubscribed()) {
 subscriber.onNext(TextViewAfterTextChangeEvent.create(view, s));

CHAPTER 6 ■ RXJAVA AND ANDROID

101

 }
 }
 };
 view.addTextChangedListener(watcher);

 subscriber.add(new MainThreadSubscription() {
 @Override protected void onUnsubscribe() {
 view.removeTextChangedListener(watcher);
 }
 });

 // Emit initial value.
 subscriber.onNext(TextViewAfterTextChangeEvent.create(view, view.

getEditableText()));
 }

 In this code,

• A TextWatcher is implemented and added to the EditText .

• The TextWatcher is removed when the observable is
unsubscribed.

• The Subscriber’s onNext method is called every time the
 TextWatcher.afterTextChanged() method is called (if the
subscriber is still subscribed).

 Activity and Fragment Life Cycle
 If you develop on Android, you should be familiar with the concept of the Activity life
cycle: during the process of setting up and displaying an Activity, the operating system
calls a series of methods on the Activity; other methods are called when a user performs
an action (like rotating the device); some others are called in response to external events
(as when an incoming call pauses your app's Activity).

 How do subscriptions behave in these situations? There is no built-in mechanism in
RxJava (nor in RxAndroid) that manages those cases for you.

 Let's take a look at some examples. Suppose that you subscribe to an observable
inside an Activity's onCreate method:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_layout)
 TextView textView = findViewById(R.id.text_view)

 Observable.timer(2, TimeUnit.MINUTES)
 .subscribeOn(Schedulers.newThread())
 .observeOn(AndroidSchedulers.mainThread())

CHAPTER 6 ■ RXJAVA AND ANDROID

102

 .subscribe(new Subscriber<Long>() {
 @Override
 public void onCompleted() {

 }

 @Override
 public void onError(Throwable e) {

 }

 @Override
 public void onNext(Long item) {
 textView.setText("Timeout!");
 }
 });
 }

 A timer observable is subscribed in the onCreate method; after 2 minutes, the
 TextView will be updated with the message “Timeout!”

 What happens if user rotates the screen before 2 minutes has passed?
 When the screen is rotated, the Activity is destroyed and recreated. This leads to two

problems in your situation:

• The observable will continue its execution at the activity rotation,
but when it completes, it will try to update a wrong instance of
 TextView.

• The observable will keep a reference to the the old Activity,
causing a memory leak.

 The solution here is simple: you must unsubscribe according to the life cycle. For
example, let's keep a reference to the subscription and unsubscribe it when Activity is
destroyed:

 Subscription subscription = null;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_layout)
 TextView textView = findViewById(R.id.text_view)

 subscription = Observable.timer(2, TimeUnit.MINUTES)
 .subscribeOn(Schedulers.newThread())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(new Subscriber<Long>() {
 @Override
 public void onCompleted() {

CHAPTER 6 ■ RXJAVA AND ANDROID

103

 }

 @Override
 public void onError(Throwable e) {

 }

 @Override
 public void onNext(Long item) {
 textView.setText("Timeout!");
 }
 });
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();

 if (subscription != null && !subscription.isUnsubscribed()) {
 subscription.unsubscribe();
 }
 }

 You can also create a CompositeSubscription object and add all subscriptions to it.
Then you can unsubscribe all of them at once:

 CompositeSubscription compositeSubscription
 = new CompositeSubscription();

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_layout)
 TextView textView = findViewById(R.id.text_view)

 subscription = Observable.timer(2, TimeUnit.MINUTES)
 .subscribeOn(Schedulers.newThread())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(new Subscriber<Long>() {
 @Override
 public void onCompleted() {

 }

 @Override
 public void onError(Throwable e) {

 }

CHAPTER 6 ■ RXJAVA AND ANDROID

104

 @Override
 public void onNext(Long item) {
 textView.setText("Timeout!");
 }
 });
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();

 compositeSubscription.unsubscribe();
 }

 Note that once CompositeSubscription.unsubscribe() is called, the object
becomes unusable, because it will automatically unsubscribe any other subscription that
will be added.

 Trello made an open source library called RxLifecycle (https://github.com/
trello/RxLifecycle) that simplifies managing subscription/unsubscription in the
Activity (or Fragment) life cycle.

 To include it into your project, add the dependency to your app’s build.gradle file:

 dependencies {
 compile 'com.android.support:appcompat-v7:24.1.1'
 compile 'io.reactivex:rxjava:1.2.0'
 compile 'io.reactivex:rxandroid:1.2.1'
 compile 'com.jakewharton.rxbinding:rxbinding:0.4.0'
 compile 'com.trello:rxlifecycle:0.7.0'
 compile 'com.trello:rxlifecycle-android:0.7.0'
 }

 With this library, you can use the compose() operator to specify when to unsubscribe
from Observable:

 myObservable
 .compose(RxLifecycle.bindUntilEvent(lifecycle,
 ActivityEvent.DESTROY))
 .subscribe();

 Or you can let the library auto-detect when to unsubscribe:

 myObservable
 .compose(RxLifecycleAndroid.bindActivity(lifecycle))
 .subscribe();

 In the latter case, the unsubscription is managed in the life cycle event opposed to
the subscription (for example, if subscription occurs in the Activity's onStart() method,
the unsubscription will happen in onStop()).

https://github.com/trello/RxLifecycle
https://github.com/trello/RxLifecycle

CHAPTER 6 ■ RXJAVA AND ANDROID

105

 Android development with RxJava is a hot topic and many other open source
libraries have been developed, covering many areas. Some of those libraries are

• Android-ReactiveLocation (https://github.com/mcharmas/
Android-ReactiveLocation)

• rx-android-permissions (https://github.com/beworker/rx-
android-permissions)

• RxSensor (https://github.com/wandup/RxSensor)

https://github.com/mcharmas/Android-ReactiveLocation
https://github.com/mcharmas/Android-ReactiveLocation
https://github.com/beworker/rx-android-permissions
https://github.com/beworker/rx-android-permissions
https://github.com/wandup/RxSensor

107© Andrea Maglie 2016
A. Maglie, Reactive Java Programming, DOI 10.1007/978-1-4842-1428-2

 A
 Activity Lifecycle , 101–105
 AsyncSubject , 70–72

 B
 Backpressure , 41, 55–59
 BehaviorSubject , 66–69

 C, D, E
 Callback , 8–9, 41, 79, 88–90, 98
 Cold observable , 15–16, 29, 66
 Connectable observable , 15, 76–77

 F
 Fragment Lifecycle , 101–105
 Func0R , 21
 Func1T, R , 21
 Functional programming , 1–4, 6, 9

 G
 Gradle , 4, 11, 80, 95, 98, 104
 Gson , 79, 82

 H
 Handler , 97
 Hot observable , 15–16, 29, 66, 99

 I
 Imperative programming , 1–4

 J, K
 JSON , 18, 79, 81–82

 L, M
 Lambda expressions , 1, 3–4, 7, 11, 90

 N
 Network , 18–19, 49, 51–52, 79–93

 O
 Observable (defi nition) , 12
 Observable class (java.util) , 6
 Observable composition , 22–39
 Observable operators

 buff er , 36, 57
 debounce , 36, 56
 empty , 12, 19, 44
 observeOn , 49, 51–53, 87, 96–97,

101–103
 onErrorReturn , 44
 onExceptionResumeNext , 44–45
 retry , 46–50
 retryWhen , 46–48
 sample , 37, 50, 55–56
 subscribeOn , 49, 51–53, 87
 throttleFirst , 50, 56, 99
 window , 36, 50, 57–58

 Observer (defi nition) , 5, 12
 Observer design pattern , 5–6
 onCompleted , 13–21, 23, 25, 27–29, 31–35,

38–39, 42–47, 49, 51–52, 54, 57,
59, 61–62, 64–65, 67–69, 71–72,
75–77, 83–89, 96–97, 99, 102–103

 Index

■ INDEX

108

 onError , 13–17, 19, 21, 23, 25, 27–29,
31–35, 38–39, 41–47, 49, 51,
53–54, 58–59, 61–65, 67–69,
71–72, 75–77, 79, 83–86, 88–90,
96–97, 102–103

 onNext , 12–19, 21, 23, 25, 28–29,
31–35, 38–39, 43, 45–47, 49,
51–55, 57, 59, 61–65, 67–69,
72–77, 79, 83–86, 88–93,
96–97, 99–104

 Operators
 from , 7, 15–16, 25, 29–30, 85–87
 and/then/when , 37
 buff er , 36
 combineLatest , 37
 concat , 27–29
 concatMap , 24–26
 create , 18–19
 debounce , 36
 defer , 20–22
 distinct , 30
 elementAt , 37
 empty , 12, 19, 44
 error , 19
 fi lter , 29–30
 fi rst , 30–31
 fl atMap , 24–25, 48
 groupBy , 36
 ignoreElements , 37
 interval , 37
 join , 37
 just , 16–17, 21
 last , 31–33
 map , 22–24
 merge , 37
 never , 19
 range , 17, 37–39, 48, 50, 76, 96–97
 sample , 37
 scan , 35–36
 skip , 37
 skipLast , 37
 startWith , 34–35
 switchOnNext , 37
 take , 33–34
 takeLast , 37
 timer , 18, 48, 50, 101–103
 window , 36
 zip , 26–27

 P, Q
 PublishSubject , 61–66, 71, 73

 R
 Reactive programming , 1, 4–6, 12, 22, 61
 ReactiveX , 1–9, 11, 37, 52, 87, 96
 ReplaySubject , 69–70
 RESTful API , 79
 Retrofi t , 79–93
 RxAndroid , 52, 87, 95–97, 101
 RxBindings , 95, 97–98
 RxJava , 1–9, 11–14, 16, 21, 37, 41, 46, 49,

52, 55, 61, 63, 68, 70, 72, 79–93,
95–105

 RxJavaFX , 87
 RxLifecycle , 95, 104
 rx.ObservableT , 11
 rx.ObserverT , 11, 13
 rx.SubscriberT , 11, 13

 S
 Schedulers , 41, 49–54, 61, 79, 87–88, 95–97

 from , 50
 computation , 50–51
 immediate , 50
 io , 50–53, 87–88
 newTh read , 50, 54, 96, 101–103
 trampoline , 50

 SerializedSubject , 76
 Subject , 5, 6, 16, 61–77
 Subscription , 13–15, 29, 41–59, 63, 66, 69,

77, 83, 101–104

 T
 Transformers , 53–54

 U, V
 Unsubscription , 14–15, 104

 W, X, Y, Z
 Worker , 54
 Worker.schedule , 54
 Worker.schedulePeriodically , 54

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: ReactiveX and RxJava
	Introduction
	Imperative and Functional Programming
	Lambda Expressions
	Imperative or Functional?

	Reactive Programming
	Streams of Data
	The Observer Pattern
	What’s ReactiveX?
	What’s RxJava?

	Chapter 2: Observables and Observers
	Introduction
	Adding RxJava to Your Project
	Definition of Observable
	Definition of Observer
	onNext, onCompleted, onError
	Hot and Cold Observables
	Creating Observables
	Observable.just()
	Observable.range()
	Observable.interval()
	Observable.timer()
	Observable.create()
	Observable.empty()
	Observable.error()
	Observable.never()
	Observable.defer()

	Composing and Transforming Observables
	map
	flatMap
	concatMap
	zip
	concat
	filter
	distinct
	first
	last
	take
	startWith
	scan
	Other Operators
	Operators for Transforming Observables
	Operators for Filtering Observables
	Operators for Combining Observables

	Chapter 3: Subscription Lifecycle
	Introduction
	Error Handling
	Handling Errors in the onError() Method
	Ignoring the Exception and Continuing with Item Emission
	Retry

	Schedulers
	Transformers
	Advanced Use of Schedulers

	Backpressure
	Handling Backpressure During Emission: Throttling
	sample
	throttleFirst
	debounce

	Handling Backpressure During Emission: Buffering
	Buffer
	Window

	Handling Backpressure Inside the Subscriber

	Chapter 4: Subjects
	PublishSubject
	BehaviorSubject
	ReplaySubject
	AsyncSubject
	When Should You Use Subjects?
	Connectable Observables

	Chapter 5: Networking with RxJava and Retrofit
	Retrofit’s Built-in Support for RxJava
	Setting Up Retrofit in Your Java Project
	Creating a Retrofit Service
	Filter Results

	Choosing the Right Scheduler
	Chaining Multiple Network Calls
	Caching Data

	Chapter 6: RxJava and Android
	RxAndroid
	RxBindings
	Activity and Fragment Life Cycle

	Index

