
www.apress.com

Paul · N
alw

aya
React N

ative for iOS Developm
ent

React Native for
iOS Development

Harness the power of React and JavaScript
to build stunning iOS applications
—
Akshat Paul
Abhishek Nalwaya

React Native for iOS Development

B O O K S F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S® THE E XPER T ’S VOICE® I N J AVA S C R I P T

This book is your hands-on guide to developing native iOS apps with ease. With React Native for
iOS Development you’ll challenge the status quo of native iOS development with revolutionary
components, asynchronous execution, unique methods for touch handling, and much more.

You will begin by understanding the path-breaking concepts of React.js, which makes it
distinctive. You will set up React Native and begin exploring the anatomy of React Native apps.
You’ll also learn about � ux architecture, how it diff ers from MVC, and how you can include it
in your React Native project to solve problems diff erently and effi ciently. Next, you will learn
to create stunning user interfaces and interact with various device capabilities. You will then
boost your development by including some popular packages already developed by the React
Native community that will helps you write less but do more.

Using React Native for iOS Development’s real-world examples and hands-on approach, you
will learn by doing and have a running app at the end of each chapter.

Shelve in:
Web Development/JavaScript

User level:
Intermediate9 781484 213964

ISBN 978-1-4842-1396-4ISBN 978-1-4842-1396-4

React Native for iOS
Development

Akshat Paul
Abhishek Nalwaya

React Native for iOS Development

Copyright © 2016 by Akshat Paul and Abhishek Nalwaya

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1396-4

ISBN-13 (electronic): 978-1-4842-1395-7

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Louise Corrigan
Development Editor: James Markham
Technical Reviewer: Bruce Wade
Editorial Board: Steve Anglin, Pramila Balen, Louise Corrigan, Jim DeWolf, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, Michelle Lowman, James Markham, Susan McDermott,
Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Melissa Maldonado
Copy Editor: Mary Behr and April Rondeau
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC and the
sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers
at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

iii

Contents at a Glance

About the Authors��� ix

About the Technical Reviewer�� xi

Acknowledgments�� xiii

Introduction��xv

■■Chapter 1: Learning the Basics: A Whistle-Stop Tour of React������������������������������� 1

■■Chapter 2: The Simplest Program: Hello World with React Native����������������������� 19

■■Chapter 3: Canvas, Brush, and Paint: Working with the User Interface��������������� 41

■■Chapter 4: Flux: Solving Problems Differently�� 75

■■Chapter 5: Device Capabilities�� 95

■■Chapter 6: Communicating with Servers�� 135

■■Chapter 7: React Native Supplements�� 149

Index�� 169

v

Contents

About the Authors��� ix

About the Technical Reviewer�� xi

Acknowledgments�� xiii

Introduction��xv

■■Chapter 1: Learning the Basics: A Whistle-Stop Tour of React������������������������������� 1

Why React?��� 2

Virtual DOM��� 2

One-Way Data Flow��� 4

Installation and Setup��� 6

Introduction to Components�� 7

JSX�� 8

Deep-Dive Into Components�� 12

Properties�� 12

State�� 14

Summary��� 17

vi Contents

■■Chapter 2: The Simplest Program: Hello World with React Native����������������������� 19

What Is React Native?��� 20

React Native Prerequisites�� 20

Installation��� 20

Installing Node and npm�� 21

Installing Watchman�� 21

Installing the React Native Package�� 21

Updating React Native��� 21

Your First App�� 22

Creating a Basic Skelton��� 22

It’s Not a UIWebView�� 28

Enabling Live Reload��� 29

Why Is React Native Different?�� 29

The Anatomy of a React Native Application��� 30

Debugging��� 32

Reload�� 33

Debugging in Chrome�� 34

Debugging in Safari��� 35

Showing the FPS Monitor�� 35

The Inspect Element�� 36

Starting Profiling�� 38

Summary��� 39

■■Chapter 3: Canvas, Brush, and Paint: Working with the User Interface��������������� 41

NavigatorIOS��� 42

Flexbox�� 45

Flex-direction�� 48

Flex�� 50

Adding Images�� 54

TouchableHighlight�� 58

Routing to a Component�� 61

viiContents

ListView��� 67

ScrollView��� 73

Summary��� 74

■■Chapter 4: Flux: Solving Problems Differently�� 75

MVC Pattern�� 76

MVC Problem��� 76

Flux�� 77

Success of Flux��� 79

Flux Deep Dive�� 79

The Dispatcher�� 79

The Need for Dispatcher [dispatch() and waitFor()]��� 79

Stores�� 80

Actions��� 80

Flux with ReactJS Example��� 81

Flux with React Native Example�� 87

Summary��� 93

■■Chapter 5: Device Capabilities�� 95

GeoLocation��� 95

Reviewing the GeoLocationMap Code��� 97

Adding Annotation on Map�� 98

Displaying the Latitude and Longitude of the Present Location�� 100

AsyncStorage�� 108

Reviewing the AsyncStorage Code�� 111

Native Alert�� 114

Reviewing the NativeAlert Code�� 117

Extending the NativeAlert Example��� 119

Reviewing the Extended NativeAlert Example Code�� 123

viii Contents

WebView�� 124

Reviewing the WebView Code��� 125

Animations�� 126

Reviewing the Animation Code�� 132

Summary��� 134

■■Chapter 6: Communicating with Servers�� 135

XMLHttpRequest�� 135

WebSocket�� 136

Fetch��� 137

Getting Data from a Server�� 139

Saving Data to a Server��� 143

Summary��� 147

■■Chapter 7: React Native Supplements�� 149

Reflux�� 149

Differences from Flux�� 150

Redux�� 160

Debug on Device��� 161

Popular Modules for React Native��� 166

react-native-fbsdk��� 166

react-native-scrollable-tab-view��� 166

react-native-webpack-server�� 166

react-native-side-menu��� 166

Where to Go from Here�� 167

Index�� 169

ix

About the Authors

Akshat Paul is a developer and author of the book
“RubyMotion iOS Development Essentials”. He has extensive
experience of mobile and web development and has delivered
many enterprise and consumer applications over the years.

In other avatars, Akshat frequently speaks at conferences
and meetups on various technologies. He has given talks at
RubyConf India, RubyMotion #Inspect conference in Brussels
and was keynote speaker at technology leadership events in
Bangkok. Besides writing code, Akshat spends time with his
family, is an avid reader and obsessive about healthy eating.

Abhishek Nalwaya is an author of the book, “RubyMotion iOS
Development Essentials”. He is a Ruby enthusiast and loves to
participate regularly at Ruby and Ruby on Rails meetup groups.
He works for a management consulting firm. He has spoken at
many conferences, meetups like RubyConf India and the
RubyMotion #inspect conference. Besides programming,
Abhishek loves to run a few miles and cook healthy food.

xi

About the Technical
Reviewer

Bruce Wade is the founder of Warply Designed Inc.
(www.warplydesigned.com), a company specializing in using
game technology for real-world applications. He has more
than 16 years of software development experience with a
strong focus on 2D/3D animation and interactive applications,
primarily using Apple technology.

www.warplydesigned.com

xiii

Acknowledgments

We would like to thank our families and friends, who saw us through this book, provided
support, talked things over, read, wrote, and offered comments, without which conceiving
this book wouldn’t have been possible.

Also, we would like to thank Melissa, Louise, James, the entire team at Apress, and
especially Jeffrey Pepper who allowed us to quote their remarks and assisted in the editing,
proofreading, and design of this book. Writing a book is a long and arduous journey, but you
all made it so easy for us.

xv

Introduction

As the title suggests, this is an introduction to React Native. React has become a leading
technology for building fast, responsive native iOS apps.

You will begin by understanding the path breaking concepts of React, which makes it
distinctive. React is a JavaScript library for creating user interfaces and yet is much more.
You will set up React Native and begin exploring the anatomy of React Native apps.
You will learn about the React “way of thinking” and “write once and read everywhere” and
how that works. You will learn why the DOM can impede the speed of any usage heavy or
large app and how React offers an incredible and simple solution in Virtual DOM to speed
your applications. You’ll also learn about flux architecture, how it differs from MVC, and how
you can include it in your React Native project to solve problems differently and efficiently.
You will learn to create stunning user interfaces and interact with the various device
capabilities. You will then boost your development capabilities by including some popular
packages already developed by the React Native community that will helps you write less
but do more. Finally, you’ll learn to how write test cases and submit your application to App
Store. Using real-world examples with an example-driven approach, you will learn by doing
and have a running app at the end of each chapter.

In all, we hope that you will find this a useful and quick read that will get you started with
creating responsive and efficient apps.

Programming Code
The programming code for the examples in this book are located in a zip file that may be
updated from time to time. This file may be found in the Source Code/Errata tab on the
book’s page at Apress.com/9781484213964.

www.Apress.com/9781484213964

1

Chapter 1
Learning the Basics: A
Whistle-Stop Tour of React

“The journey of a thousand miles begins with one step.”

—Lao Tzu

Before you embark on your React Native journey, you must know a little bit about React(also
known as ReactJS or React.js). In this chapter, you will quickly look at the core concepts of
React, which will help you to work on React Native. React is different from most popular web
technologies, and you will learn why as you move forward in this chapter. Its core concepts
will really open up your mind to a new way of thinking if you have spent a considerable
amount of time with traditional frameworks; this new way of thinking is sometimes called
the React way of thinking. You may have heard the phrase “write once, run everywhere”
but dismissed it as nearly impossible due to the proliferation of form factors (web, mobile,
tablets). React has a different guiding principle: “learn once, write anywhere.” Wow, that
seems quite different, and liberating. So you’ll begin this first chapter with a quick tour of
React, which will help you get ready for React Native. If you have an elementary knowledge
of React, you may skip this chapter and move on to Chapter 2.

React is a JavaScript library for creating user interfaces. It was built in a combined effort by
Facebook and Instagram teams. React was first introduced to the world in 2013, and has
taken it by storm, with community-wide acceptance and the benefit of being the technology
at the heart of Facebook. According to official documentation, some consider React Native
as the V in MVC because React Native makes no assumptions about rest of the technology
stack used. You may use whatever technology you wish and you can create a single section
of your app with React Native; you may also conveniently make changes in an already
created application.

http://dx.doi.org/10.1007/978-1-4842-1395-7_2

2 CHAPTER 1: Learning the Basics: A Whistle-Stop Tour of React

Why React?
But do we need another JavaScript library in a world full of js libraries and frameworks?
There is hardly a month that goes by without a new js framework introduced.

React came into existence because its creators were faced with a significant problem: how
to build large applications where data changes frequently. This problem occurs in almost any
real-world application and React was created from the ground up to solve it. As you know,
many popular frameworks are MVC or MV* but here’s a point to be noted and re-iterated:
React is not an MV* framework. It’s a just a library for building composable user interfaces
for UI components whose data changes over time. Unlike popular js frameworks, React
does not use templates or HTML directives. React builds user interfaces by breaking the UI
into many components. That’s it–nothing else. This means that React uses the full features
of programming languages to build and render views.

The following are some of the advantages of choosing React for your next project:

	React uses JavaScript extensively: Traditionally the views in HTML are
separated from the functionality in JavaScript. With React, components
are created and there is one monolithic section where JavaScript has
intimate knowledge of your HTML.

	Extendable and maintainable: Components are formed by a unified
markup with its view logic, which actually makes the UI easy to extend
and maintain.

	Virtual DOM: React applications are blazing fast. The credit for this goes
to the virtual DOM and its diffing algorithm.

	One-way data flow: Two-way data binding is a great idea, but in real-
world applications it produces more pain than benefits. One of the
common drawbacks with two-way data binding is that you have no idea
how your data gets updated. With one-way data flow, things are simple:
you know exactly where data is mutating, which makes it easier to
maintain and test your app.

In order to have a strong foundation of a new technology, it’s necessary to understand its
core concepts. In the next section, you will explore a few unique concepts of React, which
will takes you one step closer to understanding this amazing technology.

Virtual DOM
In all web applications one of the most expensive operations from which an app suffers is
mutating the DOM. To solve this problem, React maintains a virtual representation of the
DOM (as shown in Figure 1-1), which is called Virtual DOM or VDOM. Along with a diffing
algorithm, React Native is able to compute the delta against the actual DOM and only
update the part of the DOM that is changed. The amount of change is therefore less, which
leads to a blazing fast application. In the beginning of your application you might not see it,
but as your project balloons to insane complexity (which usually happens in real-world apps)
you will begin to see the benefits of a snappy experience for users.

3CHAPTER 1: Learning the Basics: A Whistle-Stop Tour of React

Figure 1-1.  Virtual DOM and diffing algorithm operations

Manual DOM manipulation is messy, and keeping track of the previous state of the DOM
is very hard. As shown in Figure 1-1, React solves this problem by keeping two copies of a
virtual DOM. Next, a diffing algorithm is applied on these two virtual DOMs, which essentially
checks for the changes that occurred and returns a stream of DOM operations. These DOM
operations are then applied to the actual browser DOM.

Let’s now understand in terms of components how a virtual DOM works. In React, every
component has a state; this state is likely observable. Whenever there is a change in state,
React essentially knows that this change requires a re-render. So when the application state
changes, it generates a new VTree; once again the diff algorithm shared the DOM paths for
required changes, as shown in Figure 1-2. This results in keeping manual DOM manipulation
to the minimum.

4 CHAPTER 1: Learning the Basics: A Whistle-Stop Tour of React

This feature of virtual DOM is not just important but a killer feature of React. DOM access
is super slow, and humbly speaking, the world has made it worse by hitting the DOM again
and again in most of the applications. To make your application fast, you should touch the
DOM as little as possible, and this is beautifully handled by the implementation of virtual
DOM. You won’t notice this with a small and trivial application, but once your app grows
to having thousands of DOM elements all trying to get updated, React will not let your
performance feel the impact.

One-Way Data Flow
React is primarily the V in a MVC pattern but before you dive into the idea of one-way data
flow in React, you must understand the challenges of MVC frameworks. One of the biggest
challenges of a MVC framework is managing the view. As you know, the view component of
the MVC framework is mainly the DOM representation. It is simple when you write code that
interacts with the DOM, but it is very complicated for the framework to handle various DOM
manipulations.

Traditional MVC views generally encompass a lot of heavy UI, and as the data changes
even for a tiny element, it eventually re-renders the app again, and the cycle continues. The
reason for this is that typically most of these MVC frameworks follow two-way data binding
(see Figure 1-3).

Figure 1-2.  Components with virtual DOM

5CHAPTER 1: Learning the Basics: A Whistle-Stop Tour of React

In JavaScript, data changes in memory and it is bound to a view in the UI, which means that
when data is modified in JavaScript, which is in memory, the data will be changed in the UI
as well. In return, when data changes in the UI (that is, the DOM) by clicking a button or any
other event, it gets updated in memory also, keeping the two in sync. In theory, this works
flawlessly and the idea is romantically perfect. However, in real-world applications, problems
arise when you have a fairly complex and large application with multiple views representing
data in one of your models. As you add more models and more views this two-way data
binding ends up as spaghetti with every change in data added to the pot, which sometimes
even ends up in an infinite event loop where one view updates a model, which in turn
updates a view, and so on, as shown in Figure 1-4.

Figure 1-3.  Two-way data binding

Figure 1-4.  Unwanted spaghetti relationship

6 CHAPTER 1: Learning the Basics: A Whistle-Stop Tour of React

Another issue with this system is that making changes comes at a very high cost. When you
introduce a new developer to an application that is this complex, it’s tough to understand
the impact one change might cause in this abyss of spaghetti relationships.

React follows one-way data flow to keep things simple, as shown in Figure 1-5. It is
based on the concept of separation of concerns (SoC). This is a design principle in
computer science in which an application or program is divided into distinct sections, each
addressing a single or specific concern. The value of this design principle is that it simplifies
development to create a maintainable and scalable application. This leads to modularized
code where an individual section can be reused, developed, and modified independently.
This makes so much sense and is indeed an example of intelligent thinking.

Figure 1-5.  React Native’s one-way data flow

Installation and Setup
In order to understand practical examples, you must first set up your environment to run your
React examples. The easiest way to start working with React is using JSFiddle examples.

	React JSFiddle with JSX (you will learn about JSX shortly):
https://jsfiddle.net/reactjs/69z2wepo/

	React JSFiddle: https://jsfiddle.net/reactjs/5vjqabv3/

Another way is to download the complete starter kit to even work offline:
http://facebook.github.io/react/downloads/react-0.13.3.zip

You may also install react-tools using npm: npm install -g react-tools.

https://jsfiddle.net/reactjs/69z2wepo/
https://jsfiddle.net/reactjs/69z2wepo/
https://jsfiddle.net/reactjs/5vjqabv3/
http://facebook.github.io/react/downloads/react-0.13.3.zip

7CHAPTER 1: Learning the Basics: A Whistle-Stop Tour of React

Another useful instrument to boost your productivity with React Native is React Developer
Tools, which is a very useful Chrome extension that allows you to inspect React component
hierarchy in the Chrome browser:

https://chrome.google.com/webstore/detail/react-developer-tools/
fmkadmapgofadopljbjfkapdkoienihi

For convenience, you will be using the following setup for your examples in this chapter:
Facebook cdn for both React Native and JSX transformer.

react.js: http://fb.me/react-0.13.3.js

JSX transformer: http://fb.me/JSXTransformer-0.13.3.js

Simply refer to them in your code. Next, you will install the node packages browserify,
watchify, and babelify, which will help you transform and keep your JSX in appropriate js files:

$ npm install react browserify watchify babelify --save-dev
$ watchify –t babelify ./your-jsx-file.jsx –o ./final-js-file.js –v

That’s great! To serve the application, you will be using the simple python server
(SimpleHTTPServer) in the root of the project folder via the following command:

$ python -m SimpleHTTPServer

Simple python server will serve your examples by default on the 8000 port.

Now that you are done with your setup, you can quickly start to understand the concepts
of React.

Introduction to Components
React is all about components. Anything and everything you do in React is based on reusable
components. In other words, with React you only do one thing, and that is build components.
In previous sections, we discussed separation of concerns. The whole concept of these
components is that they are totally encapsulated, making them easy to test and reuse.

Creating reusable components is a work of art and React Native provides many features
for you. You will do a deep dive into them soon, but first let’s create a simple “Hello World”
component.

Create a hello_world.html file and paste the following code into it:

<!DOCTYPE html>
<html>
 <head>
 <script src="http://fb.me/react-0.13.3.js"></script>
 <script src="http://fb.me/JSXTransformer-0.13.3.js"></script>
 </head>

https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
http://fb.me/react-0.13.3.js
http://fb.me/JSXTransformer-0.13.3.js
http://fb.me/react-0.13.3.js
http://fb.me/JSXTransformer-0.13.3.js

8 CHAPTER 1: Learning the Basics: A Whistle-Stop Tour of React

 <body>
 <div id="intro"></div>
 <script type="text/jsx">
 React.render(
 <h1>Hello, world </h1>, document.getElementById('intro')
);
 </script>
 </body>
</html>

That was simple. Your code is residing in HTML tags. JavaScriptresides in script tags. We
do see something different here in type ‘text/jsx’; this is JSX which we will explain in detail
in upcoming sections. We also see a keyword ‘React’ which is the entry point into the React
library. Inside of which there are H1 tags with the required text, along with the target where
the text appears (in this case, document.getElementById(intro)). Also, this React code can
live in a separate file and can be referenced in the HTML. Let’s create a separate file named
src/helloworld.js.

React.render(
 <h1>Hello, world </h1>,
 document.getElementById(“intro”)
);

And now let’s reference it in your hello_world.html file:

<script type="text/jsx" src="src/hello-world.js"></script>

That was simple. But what is JSX? Let’s look into JSX before we go full throttle into different
aspects of components.

JSX
React does not require you to use JSX. However, JSX does make life simpler. Its XML-
like syntax helps define tree structures with attributes very easily. XML has benefits like
balancing open and closed tags. This makes a large tree easier to read than function calls or
object literals.

Let’s look at a simple example, first without JSX to see how things get simplified as we
gradually include JSX.

<!DOCTYPE HTML>
<html lang='en'>
 <head>
 <meta charset="UTF-8">
 <title>Example without JSX</title>
 <script src=" http://fb.me/react-0.13.3.js"></script>
 </head>
 <body>
  

http://fb.me/react-0.13.3.js

9CHAPTER 1: Learning the Basics: A Whistle-Stop Tour of React

 <script >
 
 var Appo = React.createClass({
 render:function(){
 return React.createElement("h1",null, "Hello Dear")
 }
 });
 
 React.render(React.createElement(Appo), document.body);
 </script>
 </body>
</html>

In this example you use React.createElement. You first pass a string representing the HTML
tag, the second is your property, and the third is the child, which is inner HTML in this case.

Next, you want to render your component in React.render so you pass the App component
and target where it has to be loaded as document.body. The output is similar to Figure 1-6.

Figure 1-6.  Output in React.render

Next, let’s look at one more method, which is deprecated and no longer used. (The React
ecosystem is developing so fast that things are already getting deprecated; however, having
a look at the past shows how far they have come in making things easier in such a short
period of time.)

<!DOCTYPE HTML>
<html lang='en'>
 <head>
 <meta charset="UTF-8">
 <title>Old world example</title>
 <script src="http://fb.me/react-0.13.3.js"></script>
 </head>

http://fb.me/react-0.13.3.js

10 CHAPTER 1: Learning the Basics: A Whistle-Stop Tour of React

 <body>
 <script>
 var Appo = React.createClass({
 render:function(){
 return React.DOM.h1(null, "Hello Past")
 }
 });
 
 React.render(Appo(), document.body);
 </script>
 </body>
</html>

This example uses the React.DOM pattern where you specify the tag to be used (in this case, h1);
the first parameter is the property and the second is a string, which is used as your inner
HTML. When rendering with React.render you pass your component function and target
where it is to be loaded (in this case, the document body). If you have latest version of
React, you will get the warning and error shown in Figure 1-7 in your console.

Figure 1-7.  DevTools will show this warning

Visit http://fb.me/react-legacyfactory to find another way besides JSX called factory to
wrap your component before calling it. This also reminds you that it is time to use JSX.

Let’s now see how the same example looks when using JSX (see also Figure 1-8):

<!DOCTYPE HTML>
<html lang='en'>
 <head>
 <meta charset="UTF-8">
 <title>JSX me like !</title>
 <script src="http://fb.me/react-0.13.3.js"></script>
 <script src="http://fb.me/JSXTransformer-0.13.3.js"></script>
 </head>
 <body>
 <!-- with JSX -->
 <script type="text/jsx">
 var App = React.createClass({
 render:function(){
 return <h1>Hi from JSX</h1>
 }
 });
 React.render(<App />, document.body);
 </script>
 </body>
</html>

http://fb.me/react-legacyfactory
http://fb.me/react-0.13.3.js
http://fb.me/JSXTransformer-0.13.3.js

11CHAPTER 1: Learning the Basics: A Whistle-Stop Tour of React

Here, we have included JSX transformer, the in-browser transformer. Your component App
has h1 tags. Next, you render it using React.render, passing your component in JSX syntax
and the second argument as the target, which is document.body. That’s it.

Now separate your JSX code into a separate JSX file and convert it into pure JavaScript to
see what’s happening. For that, let’s create a folder named src and place your JSX code into
the hello.jsx file:

var Appo = React.createClass({
 render:function(){
 return React.DOM.h1(null, "Hello Past")
 }
 });
 React.render(Appo(), document.body);

Next, let’s add a dist folder where you can keep your converted js file example, bundle.js.
After this, reference your bundle.js file in your HTML file (in this case, jsx_example.html).

As discussed earlier, you should install the node packages browserify, babelify, and watchify
in order to use them to convert your JSX into js. This can be done using the following
command:

$ npm install react browserify watchify babelify --save-dev

Now, convert your hello.jsx into bundle.js with the following command:

$ watchify –t babelify ./src/hello.jsx –o ./dist/bundle.js –v

Figure 1-8.  Output using JSX

12 CHAPTER 1: Learning the Basics: A Whistle-Stop Tour of React

The result is the following bundle.js file:

var Appo = React.createClass({
 displayName: "Appo",
 render: function render() {
 return React.DOM.h1(null, "Hello Past");
 }
});
React.render(Appo(), document.body);

Although JSX is not required explicitly with React, it is preferred. It lets you create JavaScript
objects using HTML syntax. Components serve two purposes: templates and display logic.
Therefore, markup and code are tied intimately together. Display logic often is quite complex
and to express it using template languages does become difficult. The best way to solve
this problem is to generate HTML and components from JavaScript itself. JSX solves these
problems with its HTML-type syntax by creating React tree nodes.

You can keep the JSX source code intact for better maintainability; just keep it in a
separate folder of JSX files. To convert JSX code to normal JavaScript, use the JSX compiler
(http://facebook.github.io/react/jsx-compiler.html) either manually or via a build script.
It is possible to serve JSX files in your production environment, but React will give you
console notices about reduced performance.

Deep-Dive Into Components
In next section, you will explore the vital concepts of components, which will help you work
with them easily.

Properties
React has something similar to attributes in HTML: properties. You can use them to initialize
your component, like so:

React.render(<App myProp="Hi from prop" />, document.getElementById('container'))

Here you are initializing the App component with a prop named myProp, which is targeted for
the id of 'container'. You can access this prop in JSX via interpolation in the following way.
Let’s create a component App:

var App = React.createClass({
 render: function(){
 var txt = this.props.txt
 return (
 <div>
 <h1> {myProp} </h1>
 </div>
);
 }
});
React.render(<App myProp="Hi from prop" />, document.getElementById('container'))

http://facebook.github.io/react/jsx-compiler.html

13CHAPTER 1: Learning the Basics: A Whistle-Stop Tour of React

If you refresh your browser, you will see a message from the property for your inner HTML.
Please use the following code for your HTML file (the results are shown in Figure 1-9):

<!DOCTYPE html>
<html>
 <head>
 </head>
 <body>
 <div id="container"></div>
 </body>
 <script src="http://fb.me/react-0.13.3.js"></script>
 <script src="http://fb.me/JSXTransformer-0.13.3.js"></script>
 <script src="dist/bundle.js"></script>
</html>

Figure 1-9.  Refreshing your browser produces this message

As your application grows, you need to make sure your components are correctly created in
the first place. In the case of a property, you can specify a kind of property with a range of
validators. This ensures and validates the kind of data received. Let’s look at some of them
with an example:

var App = React.createClass({
 propTypes: {
 message: React.PropTypes.string,
 age: React.PropTypes.number
 
 },
 render: function(){
 // keeping props in a variable to use to often
 var message = this.props.message,
 age = this.props.age
 return (
 <div>
 <h1> {message} </h1>
 <p> My age is {age}</p>
 </div>
);
 }
});
 
React.render(<App age={5} message="Hi from prop" />, document.getElementById('container'))

http://fb.me/react-0.13.3.js
http://fb.me/JSXTransformer-0.13.3.js

14 CHAPTER 1: Learning the Basics: A Whistle-Stop Tour of React

Here, the propType keyword signifies a hash of prop names and their types. There are
two propTypes in your example: string and number for the message and age properties,
respectively.

There are many other property types. Note that you can add isRequired to the end of any
propType to make it required:

propTypes: {
//some specific JS primitive
 arrayType: React.PropTypes.array,
 boolType: React.PropTypes.bool,
 funcType: React.PropTypes.func,
 objectType: React.PropTypes.object,
//if a value of a prop is necessary
 numberType: React.PropTypes.number.isRequired
}

There is also a default type in properties via the keyword getDefaultProps. For example, in
your same component, you can mention default types for your message and age properties:

getDefaultProps: function(){
 return {
 message: 'Default value of message',
 age: 0
 }
 },

State
In the last section, you learned about properties, which are static values that are passed into
your component. State, on the other hand, is maintained and updated by the component.
Let’s understand this concept with an example:

var App = React.createClass({
 getInitialState: function(){
 return {
 message: 'this is a default message from state',
 }
 },
 render: function(){
 return (
 <div>
 <h1> {this.state.message} </h1>
 </div>
);
 }
});
React.render(<App />, document.getElementById('container'))

15CHAPTER 1: Learning the Basics: A Whistle-Stop Tour of React

If you run this snippet, you will the result shown in Figure 1-10 in your browser.

Figure 1-10.  Resulting message using state

Let’s look at the code. In your same component, you initialize the state using the
getInitialState keyword, in which you set up the initial state of the message:

getInitialState: function(){
 return {
 message: 'this is a default message from state',
 }
 },

Next, unlike the last example, you access this state using this.state.message, which prints
the initial text of the message state:

<div>
 <h1> {this.state.message} </h1>
</div>

Now let’s add some functionality to your component. You add a text box above your
message statement. As you type in the text box, the message gets updated in real time
using the concept of state:

var App = React.createClass({
 getInitialState: function(){
 return {
 message: 'this is a default message from state',
 }
 },
 updateState: function(e){
 this.setState({message: e.target.value})
 },

16 CHAPTER 1: Learning the Basics: A Whistle-Stop Tour of React

 render: function(){
 return (
 <div>
 <input type="text" onChange={this.updateState} />
 <h1> {this.state.message} </h1>
 
 </div>
);
 }
});
 
React.render(<App />, document.getElementById('container'))

If you execute this code in your browser, you will see the result shown in Figure 1-11.

Figure 1-11.  Adding a text box above your message statement

Let’s see what you added to your component. First, you introduced a function named
updateState:

updateState: function(e){
 this.setState({message: e.target.value})
 }

This new function, updateState, takes an event called (e) and updates the value of message
state. Also, you added an input field:

<div>
 <input type="text" onChange={this.updateState} />
 <h1> {this.state.message} </h1>
</div>

The input box has an onChange event, which calls your custom method updateState
whenever the state gets updated. As you type in your textbox, your printed message gets
updated instantaneously.

17CHAPTER 1: Learning the Basics: A Whistle-Stop Tour of React

Summary
This chapter provided a quick tour of React. Before you begin with the next chapter, let’s
recap what you have learned so far. You were introduced to the React library and the
reasons behind its invention. Then you learned how to install and set up React. You studied
the fundamentals of this technology, such as virtual DOM, one-way data flow, and JSX. You
also got an introduction to components, and using states and props with components.

Now that you are equipped to code and work in the React ecosystem, the interesting path of
your journey begins in the next chapter. You’ll start working with React Native.

19

Chapter 2
The Simplest Program: Hello
World with React Native

“Big things have small beginnings.”

—Prometheus

In the last chapter, you got a good overview of the React ecosystem. Now it’s time to get
your hands dirty with React Native. In this chapter, you will set up your environment by
installing the prerequisites and then you will create your first React Native application.

The best way to learn is through practical examples. Continuing this theme throughout the
book, you will follow examples to learn React Native by programming to understand the
concepts.

In this chapter, you will explore the following topics:

	An introduction to React Native

	The essentials of React Native

	The installation of React Native

	Your first application

	The anatomy of a React Native application

	How to debug your application

Note  You might face a situation where different projects work on different Node versions.
Therefore, it’s recommended you install NVM (node version manager) to help keep multiple node
versions that can be switched between projects.

20 CHAPTER 2: The Simplest Program: Hello World with React Native

What Is React Native?
React Native is an open source platform for developing native mobile applications; it was
developed largely by a team at Facebook. The cool part of working with React Native
is that your program uses standard web technologies like JavaScript (JSX), CSS, and
HTML, yet your application is fully native. In other words, your application is blazing
fast and smooth, and it is equivalent to any native application built using traditional iOS
technologies like Objective-C and Swift. However, React Native does not compromise in
terms of performance and overall experience, like popular hybrid frameworks that use web
technologies to build iOS apps.

React Native aims to bring the power of React, which was explained in Chapter 1, to mobile
development. In the words of the React team, “learn once, write anywhere.” Working with
React and React Native, you will see how many of your components built for the Web using
React can be easily ported to your React Native iOS apps with little or no modification.
React Native introduces a highly functional approach to constructing user interfaces, which
is very different from the traditional iOS development approach.

Although React Native was built by Facebook developers, it’s an open source project. The
code is available at https://github.com/facebook/reactreact-native.

React Native Prerequisites
Before starting the installation, let’s first review the prerequisites for React Native:

	iOS apps can be developed only on an Apple Mac with OSX installed.
You need OSX version 10.10 or above.

	You need Xcode 6 or above, which includes the iOS SDK and
simulators. React Native only supports iOS7 or above. Xcode can be
downloaded from the Apple App Store.

	It’s helpful if you are enrolled in the Apple iOS Developer program.
If you’re not in the iOS Developer Program, you won’t be able to

	Test applications on actual devices.

	Access beta OS releases.

	Test flight for beta testing.

	Submit your app to the App Store.

Installation
Let’s do a quick, one-time setup of React Native. React Native is an assortment of
JavaScript and Objective-C code, so you need tools that create, run, and debug your native
application written in JavaScript. Let’s go one by one.

http://dx.doi.org/10.1007/978-1-4842-1395-7_1
https://github.com/facebook/reactreact-native

21CHAPTER 2: The Simplest Program: Hello World with React Native

Installing Node and npm
Node.js is an open source platform built on Chrome's JavaScript runtime; it offers a way to
easily build fast, scalable programs. Node.js allows you to run JavaScript in Terminal, and
helps create modules. You install Node.js by running the following command in Terminal:
$brew install node.

Homebrew is the recommended way to install Node. You can also download the installer
from https://nodejs.org and install it manually.

npm is the package manager for Node.js. If you’re from the iOS world, it’s similar to
CocoaPods.

Check your Node installation by running the following command in Terminal:

>> node –v
v4.2.1
 
>> npm –v
2.13.1

Installing Watchman
Watchman observes your files and records when they change. It can also trigger
actions (such as rebuilding assets) when matching files change. For more details, visit
https://facebook.github.io/watchman/.

You can install Watchman by running the following command:

$brew install watchman

Installing the React Native Package
React Native comes as an npm package, so use the following code to install the
React Native-cli module:

npm install -g react-native-cli

Updating React Native
Both React Native and iOS are fast-moving frameworks. It is recommended to update them
every time a new release is available. Upgrading React Native is simple. Run the following
command in Terminal:

npm update -g react-native-cli

https://nodejs.org/
https://facebook.github.io/watchman/

22 CHAPTER 2: The Simplest Program: Hello World with React Native

Your First App
Now that you are all charged up about React Native and have your system set up, it’s time
to create your first application. To keep things simple, in the beginning just follow along.
Sometimes you might feel disconnected by monotonously typing in the code, but going
along is enough for now. Remember that mimicry is a powerful form of learning; it’s how we
learned most of our skills, such as talking, reading, writing, and it is how you will learn to
program with React Native. As you proceed, this method will help you understand deeply
why you authored certain pieces of code.

Throughout the book, you will create one application and take it from just Hello World to a
full-blown, distribution-level application, except in some places where we need to digress
to explore a concept independently. So before you set it up, let’s talk about the problem
you plan to solve. The app you will create during the course of this book plans to solve
a few housing problems; it will be a very primitive version of any popular property search
application.

Let’s call it HouseShare. It will have some rudimentary features like listings, creating an entry,
geolocating a property, and many more. As you move along, you will see how various React
Native features fit with your application.

That’s quite a lot, but in this chapter you will just create the basic structure for your project
using React Native and some Hello World code.

Creating a Basic Skelton
Fire up Terminal and type in the following command:

react-native init HouseShare

This code uses the CLI tool to construct a React Native project that is ready to build and run
as-is. This command creates the basic folder structure for your React Native iOS project.
Next, let’s get into this directory:

> cd HouseShare/ios/

Now, click HouseShare.xcodeproj. This is an Xcode project file and will open up your project
in Xcode. Next, let’s load your application in the iOS simulator. To build your application
and load it in the simulator, simply click the Run button at the top (Figure 2-1) or execute
Command + R. This will compile, build, and fire up your project in the iOS simulator
(Figure 2-2).

23CHAPTER 2: The Simplest Program: Hello World with React Native

That was really quick. Thanks to a single command, the basic structure of your project is
in place and your application is loaded in the simulator. Also note that Terminal is opened
automatically when you run the application from Xcode. This is the Node package manager
for React Native. If you kill this, the app will stop working.

Terminal is opened to start the React Native Packager and a server to handle the above
request (Figure 2-3). The React Native Packager is responsible for reading and building the
JSX (you’ll look at this later) and JavaScript code.

http://localhost:8081/index.ios.bundle

Figure 2-1.  Building by clicking the Run button

Figure 2-2.  Using the iOS simulator

24 CHAPTER 2: The Simplest Program: Hello World with React Native

Set up your project in any editor you prefer. React Native does not force you nor does it
have a preference towards any specific editor, so you may continue to use Xcode as default.
However, we recommend you open your project in an editor like our personal favorite,
Sublime Text.

Make some changes in index.io.js. In fact, remove all code from the file. Now, add the
following code:

'use strict';
 
var React = require('react-native');
var {
 AppRegistry,
 StyleSheet,
 Text,
 View,
} = React;
 

Figure 2-3.  The packager is ready

Note  If Terminal is not started and the iPhone shows a red screen, run npm start and keep
Terminal open.

25CHAPTER 2: The Simplest Program: Hello World with React Native

var HelloWorld = React.createClass({
 render: function() {
 return (
 <View style={styles.container}>
 <Text style={styles.welcome}>
 HelloWorld !!
 </Text>
 </View>
);
 }
});
 
var styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 },
 welcome: {
 fontSize: 25,
 textAlign: 'center'
 }
});
 
AppRegistry.registerComponent('HouseShare', () => HelloWorld);

Press Command + R in the iOS simulator and it will refresh the screen, as shown in Figure 2-4.
(Note that in this book, we will use the Command key instead of the CMD key, which is
equivalent.)

26 CHAPTER 2: The Simplest Program: Hello World with React Native

That was quick! In a fraction of a second you can see the changes you applied. You don’t
need to compile the code and restart the simulator for React Native changes. If you have
done any native iOS app development before, hitting Refresh to see the changes may seem
like a miracle.

Now, let’s understand the code. At the top of the file is the following line:

'use strict';

This enables strict mode, which adds improved error handling to the React Native JavaScript
code. The fifth edition of the ECMAScript specification introduced strict mode. Strict mode
makes it easier to write secure JavaScript and convert bad syntax into real errors. This is
very important for debugging any example and using undeclared variables.

Next is the following line:

var React = require('react-native');

Figure 2-4.  The screen is refreshed

27CHAPTER 2: The Simplest Program: Hello World with React Native

This loads the React Native module and assigns it to a React Native variable that can be
used in your code. React Native uses the same module-loading technology as Node.js with
the require function; this is roughly equivalent to linking and importing libraries in Swift.

After that, you add the following snippet:

var {
 AppRegistry,
 StyleSheet,
 Text,
 View,
} = React;

You are assigning multiple object properties to a single variable; this is called a destructuring
the assignment. This cool feature was proposed in JavaScript ECMAScript 6. Although it is
optional, it’s very beneficial; otherwise, every time you use a component in your code, you
would have to use a fully qualified name for it, such as React.AppRegistry, React.Stylesheet,
and so on. This saves quite some time.

Next, you create a view:

var HelloWorld = React.createClass({
 render: function() {
 return (
 <View style={styles.container}>
 <Text style={styles.welcome}>
 HelloWorld !!
 </Text>
 </View>
);
 }
});

React Native’s basic building blocks are called components. You can use the createClass
method to create custom component classes. This class has just one function, render().
The render function is responsible for what is shown on the screen. You use JavaScript
syntax extensions (JSX) for rendering the UI. JSX is a JavaScript syntax extension that looks
similar to XML.

Now you define the styling of your app. Here you will use Flexbox; it is similar to what CSS is
to HTML. For now, you can type this code. We will explain styling in the next chapter.

var styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 },
 welcome: {
 fontSize: 25,
 textAlign: 'center'
 }
});

28 CHAPTER 2: The Simplest Program: Hello World with React Native

You can see that this styling is very similar to CSS; you can define font size, alignment, and
so on.

The last step is to define the entry point and root component of the app:

AppRegistry.registerComponent('HouseShare', () => HelloWorld);

It’s Not a UIWebView
You are using web technologies, but your app does not have a web component; it has a native
component. Open Debug ➤ View Debugging ➤ Capture View Hierarchy (see Figure 2-5).

Figure 2-5.  Using the native component

29CHAPTER 2: The Simplest Program: Hello World with React Native

Enabling Live Reload
Another cool feature of React Native is live reload. It reloads your application view inside
the iOS simulator the moment there is a change. To activate this option, you need to access
the developer menu from the application opened in the iOS simulator by pressing Ctrl +
Command + Z and select the Enable Live Reload option. Now any change made in your
JavaScript code will cause your app to reload automatically.

Why Is React Native Different?
Before you deep dive further into the React Native world, you must understand why there
was a need for another framework to build mobile apps. We already live in a world full of
frameworks and tool chains that are capable of building mobile apps. Prior to the inception of
React Native, building mobile apps using web technologies was possible via two strategies:

	WebView-based: These frameworks use common web technologies
like HTML and JavaScript, and use WebView to load the application.
An example is the popular framework Phonegap.

	Native apps using web technologies: These frameworks again use
common web technologies like HTML and JavaScript (to be precise,
they imitate using JavaScript and HTML) to create native apps. An
example is the popular framework Titanium Appcelerator.

As you traverse through the tree of UIWindow, you’ll see that there is no UIWebView in the
code, and “Hello World !!” is the call of RCTText, as shown in Figure 2-6.

Figure 2-6.  “Hello World !!” is the call of RCTText

30 CHAPTER 2: The Simplest Program: Hello World with React Native

Apps created using these strategies have performance issues. WebView-based apps are
slow because they use the DOM, and DOM manipulations are expensive, which leads to
performance issues. As stated in one of the blog posts at Flipboard (http://engineering.
flipboard.com/2015/02/mobile-web/), “you cannot build a 60fps scrolling list view with
DOM.” This is one of the fundamental problems with apps developed through this technique:
although development time may be quick, you end up with a sluggish experience.

The other strategy, where the framework imitates JavaScript and HTML, and converts them
to native code, has other challenges. Although the final app is native in nature, there is a
basic issue during this conversion from JavaScript to native: it runs on the main thread. In
these apps, you interface directly with native objects all the time, which leads to once again
a slow and sluggish experience.

React Native is fundamentally different from these two approaches. It runs all layouts on
separate threads, and your main thread is free to update the UI, which makes the animation
and UI rendering smooth, just like 100% pure native apps.

React Native use the JavaScriptCore framework to run JavaScript. In iOS 7, Apple introduced
a native Objective-C API for JavaScriptCore. This framework allows JavaScript and
Objective-C to talk to each other. This means you can create and call JavaScript functions
from Objective-C or call back into Objective-C from JavaScript. It all works like a charm.

React Native is different in one more aspect. As seen in your Hello World example, you write
a component in JavaScript just like you would do with React, except that instead of using
an HTML div, you use tags like View and Text. In the case of an iOS application, a View is
basically a UIView.

The Anatomy of a React Native Application
Now let’s understand the application structure that the React Native init command has
generated. If you open the project called HouseShare, it looks like a normal Xcode project. It
has the following folder structure:

|ios
 |- HouseShare
 |- HouseShare.xcodeproj
 |- HouseShareTests
|android
node_modules
index.ios.js
index.android.js
package.json

Note  The folder structure defined here might be changed or modified as the framework evolves,
but the majority of the functionality remains the same.

http://engineering.flipboard.com/2015/02/mobile-web/
http://engineering.flipboard.com/2015/02/mobile-web/

31CHAPTER 2: The Simplest Program: Hello World with React Native

If you open the project in Xcode, it will have a different folder structure. The “folders” in
Xcode are actually groups and are not necessarily linked to a folder in Finder.

	iOS: The iOS folder has two folders and one file. As seen above, there
is a HouseShare folder, which has all the Objective-C code, such as
AppDelegate, Images.xcassets, Info.plistLaunchScreen.xib, and
other files. Another folder is HouseShareTests, which is where all your
test cases reside. Finally, there is your Xcode project file, HouseShare.
xcodeproj, which is used to load into Xcode to build your application.

	package.json: This folder contains metadata about your app, and it will
install all dependencies when you run the npm install. If you're familiar
with Ruby, it's similar to a Gemfile.

	node_modules: All of the Node modules mentioned in package.json will
be downloaded to this folder. This folder also contains the code for the
React Native framework.

	index.ios.js: This is the file where you begin programming your iOS
application.

	AppDelegate.m: This is the starting point of any iOS app.

	Android: React Native also supports development for Android. All your
native Android code resides in this folder.

	index.android.js: This file is where you begin programming for an
Android application.

Let’s open the AppDelegate.m file from HouseShare/ios/HouseShare/AppDelegate.m:

#import "AppDelegate.h"
 
#import "RCTRootView.h"
 
@implementation AppDelegate
 
- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary
*)launchOptions
{
 NSURL *jsCodeLocation;
 
 /**
 * Loading JavaScript code - uncomment the one you want.
 *
 * OPTION 1
 * Load from development server. Start the server from the repository root:
 *
 * $ npm start
 *
 * To run on a device, change `localhost` to the IP address of your computer
 * (you can get this by typing `ifconfig` into Terminal and selecting the
 * `inet` value under `en0:`) and make sure your computer and iOS device are
 * on the same Wi-Fi network.
 */
 

32 CHAPTER 2: The Simplest Program: Hello World with React Native

 jsCodeLocation = [NSURL URLWithString:@"http://localhost:8081/index.ios.bundle"];
 
 /**
 * OPTION 2
 * Load from pre-bundled file on disk. To re-generate the static bundle
 * from the root of your project directory, run
 *
 * $ react-native bundle --minify
 *
 * see http://facebook.github.io/react-native/docs/runningondevice.html
 */
 
// jsCodeLocation = [[NSBundle mainBundle] URLForResource:@"main"
withExtension:@"jsbundle"];
 
 RCTRootView *rootView = [[RCTRootView alloc] initWithBundleURL:jsCodeLocation
 moduleName:@"HouseShare"
 launchOptions:launchOptions];
 
 self.window = [[UIWindow alloc] initWithFrame:[UIScreen mainScreen].bounds];
 UIViewController *rootViewController = [[UIViewController alloc] init];
 rootViewController.view = rootView;
 self.window.rootViewController = rootViewController;
 [self.window makeKeyAndVisible];
 return YES;
}
 
@end

RCTRootView is an Objective-C class provided by React Native, which is inherited from the
iOS UIView Class. It takes your JavaScript code and executes it.

It also loads the http://localhost:8081/index.ios.bundle URL, which has your code
written in index.ios.js and also a program added by the React Native framework.

Debugging
Debugging with React Native is in line with how we debug web apps; in short, it’s really
simple. To access debugging options, press Command + D within the loaded application
from the iOS simulator. This will open a menu that provides several debugging options, as
shown in Figure 2-7.

http://facebook.github.io/react-native/docs/runningondevice.html

33CHAPTER 2: The Simplest Program: Hello World with React Native

You must disable this menu for the final build because your end user should not see these
options. To disable it, open the project in Xcode and select: Product ➤ Scheme ➤ Edit
Scheme (or press Command + <). Then select Run from the menu on the left and change the
Build Configuration to Release.

Let’s review each of the options shown in Figure 2-7.

Reload
The reload option refreshes the screen in the simulator with the latest React Native code
without compiling the project again. This can be done in two ways: one, by clicking the
Reload option in the menu, as shown in Figure 2-7, or by pressing Command + R. This will
reload all the changes made in the JavaScript code.

Any changes made in your Swift or Objective-C files will not be reflected this since these
changes require recompilation. Also, if you add any assets like images, the app needs to
be restarted.

Figure 2-7.  Debugging options

34 CHAPTER 2: The Simplest Program: Hello World with React Native

Debugging in Chrome
This is one of the best and most used options for debugging your JavaScript code written
in React Native. As with web apps, you can debug your React Native application in Chrome.
When you click “Debug in Chrome” it opens http://localhost:8081/debugger-ui in Chrome
(Figure 2-8).

Figure 2-9.  Debugging in Chrome DevTools

Figure 2-8.  Debugging in Chrome

Install the React Developer Tools, which is a Chrome extension for debugging both
your React application and React Native code. It allows you to inspect the React Native
component hierarchies in the Chrome Developer Tools. To install it, please visit the Chrome
webstore or go to the following URL: https://chrome.google.com/webstore/detail/
react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en.

Once the extension is installed, press Command + Option + J or select View ➤ Developer ➤
Developer Tools from your Chrome browser to access the developer tools console.

You will get a new tab called React in your Chrome DevTools. This shows that you the root
React components that have been rendered on the page, as well as the subcomponents that
they ended up rendering. You can also see props, state, components, and event listeners, as
shown in Figure 2-9.

https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en

35CHAPTER 2: The Simplest Program: Hello World with React Native

Look at Figure 2-10 and you can see a similar hierarchy to your Xcode: Hello World is
wrapped in RCTText and that is in turn wrapped in RCTview.

Figure 2-10.  Debugging the app with the React tab in Chrome DevTools

Debugging in Safari
If you do not have Chrome, you may also use Safari for debugging, but Chrome is preferred
for debugging React Native apps.

Showing the FPS Monitor
Many applications use a lot of animations and graphics. FPS (frames per second) defines
the smoothness of these animations for your application; this is used extensively in gaming
apps. When you select “Show FPS Monitor” in the menu, it shows a few properties for your
app in the simulator (Figure 2-11). Although you might not find much use for these properties
in your Hello World app, they are great for animation-intensive apps to prevent them from
getting into lethargic mode, creating a bumpy user experience. See Figure 2-11.

36 CHAPTER 2: The Simplest Program: Hello World with React Native

The Inspect Element
You can also inspect a React Native element from the simulator, somewhat similar to how
you inspect an element in a browser, although you can’t currently change live values of
properties as you can in a browser. For now, you can see your style sheet properties for any
object. Click the HelloReact!! text (Figure 2-12) and it will open the details of that element.

Figure 2-11.  Additional properties in the simulator

37CHAPTER 2: The Simplest Program: Hello World with React Native

The details of that element are shown in Figure 2-13 at the bottom left.

Figure 2-12.  Click the text to see element details

38 CHAPTER 2: The Simplest Program: Hello World with React Native

Figure 2-13.  Font details

You can see that the font size for Hello World is 25 and it is aligned at the center.

Starting Profiling
Profiling is used to measure performance. The profiling session provides insight into which
parts of your code are used most, how much time it takes, and which sections of your code
you should improve. You can also find the time spent in each method from the number of
times the profiler stopped on a method.

The following URL links to a very nice blog post that will give you a good overview of how to
use profiling with Xcode: www.raywenderlich.com/23037/how-to-use-instruments-in-xcode.

http://www.raywenderlich.com/23037/how-to-use-instruments-in-xcode

39CHAPTER 2: The Simplest Program: Hello World with React Native

Summary
In this chapter, you were introduced to React Native. You set up the React Native
development environment and you wrote your first application. You also learned about the
folder structure of React Native applications and how to debug. You are now all set to take a
deep dive into creating a user interface with React Native for your iOS application.

In the next chapter, you will learn how to create stunning user interfaces by mastering
Flexbox. You’ll see how to navigate from one component to another, how to add images to
your unembellished application, and how to create a ListView and a ScrollView using
React Native.

41

Chapter 3
Canvas, Brush, and Paint:
Working with the User
Interface

“User interface is the process of shifting from chaotic complexity to elegant
simplicity.”

—Akshat Paul

In the previous chapter, we were introduced to React Native and created our first React
Native application. Now that we have a blank skeleton for our project, we will fill it with a
stunning user interface. In this chapter, we will cover the following topics:

	NavigatorIOS

	Flexbox

	Image

	TouchableHighlight

	Routing to a new component

	ListView

	ScrollView

Any experienced software professional will agree—the success of an app depends on the
fact that it not only works flawlessly, but also looks great. Therefore, a great user interface
makes a huge difference in the success of your app.

42 CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

The layout system is a fundamental concept that needs to be mastered in order to create
great applications. Let’s begin by understanding how to navigate within an iOS application
using React Native.

NavigatorIOS
NavigatorIOS is a React Native component for creating navigation. It wraps UIKit navigation
and allows you to add a back-swipe feature to your app. NavigatorIOS manages a stack of
view controllers so as to provide a drill-down interface for hierarchical content. Now that we
know what NavigatorIOS does, let’s implement it in our project.

First, add NavigatorIOS in the list of components in the index.ios.js file:

var {
 AppRegistry,
 StyleSheet,
 Text,
 View,
 NavigatorIOS,
} = React;

Let’s now create a component that has NavigatorIOS and call it mainView, and then let’s load
another component within mainView, which we will call Home:

var mainView = React.createClass ({
 render: function() {
 return (
 <NavigatorIOS
 style={styles.navigator} initialRoute={{
 title: 'House Share',
 component: Home
 }}
 
 />
);
 },
});
Home component will be like home page of our application.

NavigatorIOS is a React Native component; we have also provided a title (House Share) and
component name (Home) for the page using initialRoute. There are other options available,
which are documented at https://facebook.github.io/react-native/docs/navigatorios.html.

https://facebook.github.io/react-native/docs/navigatorios.html

43CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

NavigatorIOS helps with the most basic iOS routing. A route is an object that describes each
view in the navigator. First, the route is provided to NavigatorIOS. In the previous code, we
called component Home from our mainView. Let’s add an empty Home component:

var Home = React.createClass({
 render: function() {
 return (
 <View>
 </View>
);
 }
});

Let’s also add some styles to our mainView component:

var styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 },
 welcome: {
 fontSize: 25,
 textAlign: 'center'
 },
 navigator: {
 flex: 1
 }
});

Let’s now update the entry point for our application to mainView:

AppRegistry.registerComponent('HouseShare', () => mainView);

Let’s now build our application with Xcode and see the result, as shown in Figure 3-1.

44 CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

Excellent—we can see an updated navigation bar at the top. Let’s add some color to this
navigation bar to make our changes more visible:

var mainView = React.createClass ({
 render: function() {
 return (
 
 �<NavigatorIOS barTintColor='#48BBEC' titleTextColor= "#FFFFFF" style={styles.

navigator} initialRoute={{
 title: 'House Share',
 component: Home
 }}
 
 />
);
 },
});

Figure 3-1.  Our application, with updated navigation bar at the top

45CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

We have used barTintColor and titleTextColor to add colors to our navigation bar
(see Figure 3-2).

Figure 3-2.  Our toolbar now has color

We have done a little bit of styling in this section, which might be something new for you if
you come from a grid-layout background. React Native uses Flexbox for styling, which we
will discuss in detail in the following section.

Flexbox
While creating our layout in previous example, you must have seen the flex property
mentioned in the styles. This is because React Native apps use the Flexbox layout model.

The React Native Flexbox layout model is inspired by CSS Flex Box Layout in CSS3. The
React Native team has rewritten this feature specifically for iOS. The main idea behind the
Flexbox is being able to create the layout without worrying about different screen sizes or
orientation of devices. A flex container expands items to fill available free space, or shrinks
them to prevent overflow. Let’s get some basic knowledge of Flexbox to expedite our layout
development. First, let’s update the view:

var Home = React.createClass({
 render: function() {
 return (
 <View style={styles.container}>
 <View style={styles.topBox} />
 <View style={styles.bottomBox} />
 </View>
);
 }
});

46 CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

We have created one main view with a style container and two subviews with the styles
topBox and bottomBox. Now, let’s create the styles:

var styles = StyleSheet.create({
 container: {
 flex: 1,
 flexDirection: 'column'
 },
 welcome: {
 fontSize: 25,
 textAlign: 'center'
 },
 navigator: {
 flex: 1
 },
 topBox: {
 flex: 2,
 backgroundColor: '#CCE5FF'
 },
 bottomBox: {
 flex: 1,
 backgroundColor: '#FFFFCC'
 }
});

Turn back to the simulator and refresh the view using Command+R.

47CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

Figure 3-3.  Screen in portrait mode

Now, rotate the simulator, and you will see it automatically adjust the size of these
colored boxes.

Let’s change the simulator to landscape mode (see Figure 3-4). This can be done easily
using Command + Right/Left arrow key (+Left Arrow). You can see how the box has
adjusted its size, and how the title adjusted its width, in order to use all the available space.
Thanks to Flexbox, a pretty laborious task is simplified.

48 CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

Now, let’s review the flex properties Flex-direction and Flex.

Flex-direction
Flexbox is a single-direction layout concept. Flex-direction allows you to define the
direction in which the child elements are going to flow. It can have two values, row and
column. In the previous example we used column.

Let’s change it to row:

container: {
 flex: 1,
 flexDirection: 'row'
}

Figure 3-4.  Screen in landscape mode

49CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

Figure 3-5.  Changing the orientation of the box

Turn back to the simulator and refresh the view with Command+R (see Figure 3-5).

We can see how the orientation of the box has changed. Now again change the property
flexDirection to column (see Figure 3-6).

50 CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

Figure 3-6.  Changing the property to column

Flex
You must have seen the flex value in the stylesheet; it can be either integers or decimals,
indicating the relative size of the box:

container: {
 flex: 1,
 flexDirection: 'column'
 },
 
topBox: {
 flex: 2,
 backgroundColor: '#CCE5FF',
 },
 bottomBox: {
 flex: 1,
 backgroundColor: '#FFFFCC'
 }

51CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

And our view says:

 <View style={styles.container}>
 <View style={styles.topBox} />
 <View style={styles.bottomBox} />
 </View>

So flex defines the size percentage for the box. We can see that the container has two
views inside, topBox and bottomBox, with flex values of 2 and 1 respectively (see Figure 3-7).

Figure 3-7.  Container in 2:1 ratio

Now, update the view and add one topBox view inside container view:

 <View style={styles.container}>
 <View style={styles.topBox} />
 <View style={styles.bottomBox} />
 <View style={styles.topBox} />
 </View>

52 CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

Refresh the view. The container has three views now: topBox, bottomBox, and then topBox
again (see Figure 3-8).

Figure 3-8.  Container with three views

This will divide the view into a 2:1:2 ratio, since their flex values are in the ratio 2:1:2.

To get better sense of how this works, let’s change the flex values and see how it changes
our screen. Let’s change the flex value of topBox to 1.

Let’s update the CSS to:

 container: {
 flex: 1,
 flexDirection: 'column'
 },
 

53CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

topBox: {
 flex: 1,
 backgroundColor: '#CCE5FF',
 },
 bottomBox: {
 flex: 1,
 backgroundColor: '#FFFFCC'
 }

Refresh the view to see the changes, as shown in Figure 3-9.

Figure 3-9.  View in ratio of 1:1:1

We can see that now the screen is divided in a ratio of 1:1:1, since the flex values of
the views are in a ratio of 1:1:1. With Flexbox, it is easy to create layouts that can resize
according to screen size and orientation. This is just introduction to Flexbox; we will explain
more properties throughout the book as and when needed. You can also find more options
at https://facebook.github.io/react-native/docs/flexbox.html.

https://facebook.github.io/react-native/docs/flexbox.html

54 CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

Adding Images
React Native has a built-in component, Image, which will help us to display images, including
network images, temporary local images, and also images from local disk, such as the
camera roll. To start, we will display local images.

Open the Image.xacassets file in Xcode (see Figure 3-10). Click on the + button at the bottom.

Figure 3-10.  Image.xacassets in Xcode

55CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

Name the image set “home” and drag the home images to the boxes on the screen
(see Figure 3-11).

Figure 3-11.  Image set “home”

The use of xcassets is the new standard after iOS 7. The asset catalog manages your app’s
images; iOS has different image resolutions and it groups them together. When building,
Xcode compiles this image catalog into the most efficient bundle for final distribution.

Now that we have added an image to our project, let’s add it to our component. First, add
the Image component to our list of components:

var {
 AppRegistry,
 StyleSheet,
 Text,
 View,
 NavigatorIOS,
 Image
} = React;

Let’s now add the image to our view:

var home = React.createClass({
 render: function() {
 return (
 <View style={styles.container}>
 <View style={styles.topBox} >
 </View>

56 CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

 <View style={styles.bottomBox} >
 <Image source={require('image!home')} style={styles.image}/>
 </View>
 <View style={styles.topBox} >
 </View>
 </View>
);
 }
});

require('image!home) is pointing to the asset catalog of the image with the name home.

Let’s also specify the width and height for this image:

image: {
 width: 70,
 height: 70
},

Since we have made changes in Xcode, we have to restart the simulator. Stop the application
and rebuild the code. We can see that the house image is shown on the screen (see Figure 3-12).

Figure 3-12.  Now we have a house image

57CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

Now, let’s add some styling to it by updating bottomBox with the following style:

 bottomBox: {
 flex: 1,
 backgroundColor: '#FFFFCC',
 alignItems: 'center',
 justifyContent: 'center',
 },

alignItems and justifyContent define the default behavior for how flex items are laid out
along the cross axis and main axis respectively. Since we want to show this in the center, we
have updated these values to center.

Refresh the screen, and you will find that the house image is centered in the view
(see Figure 3-13).

Figure 3-13.  The house is now centered

We can also give any server image URL as the source, and the Image component will take
care of loading it from the network. We will do this in a later part of this chapter.

58 CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

TouchableHighlight
Touch is a fundamental way to interact with an iOS application. TouchableHighlight is a
React Native component that helps us create buttons that give a proper response in the
event of touch. These are not actually buttons, but the React Native team decided that it
was easier to construct buttons directly in JavaScript instead of using UIButton. The buttons
in your app use TouchableHighlight, which is not a button but works like a button. Let us
understand this with an example.

Let’s add the TouchableHighlight component to our code:

var {
 AppRegistry,
 StyleSheet,
 Text,
 View,
 NavigatorIOS,
 TouchableHighlight
} = React;

Update the view and add two TouchableHighlight buttons:

var Home = React.createClass({
 render: function() {
 return (
 <View style={styles.container}>
 <View style={styles.topBox} />
 <View style={styles.bottomBox} />
  
 <View style={styles.topBox} >
 <TouchableHighlight style={styles.button}
 underlayColor='#99d9f4'>
 <Text style={styles.buttonText}>Show Houses</Text>
 </TouchableHighlight>
 <TouchableHighlight style={styles.button}
 underlayColor='#99d9f4'>
 <Text style={styles.buttonText}>Add House</Text>
 </TouchableHighlight>
 </View>
 </View>
);
 }
});

And of course we need stylesheets for our buttons:

 button: {
 
 flex: 1,
 backgroundColor: '#48BBEC',
 borderColor: '#48BBEC',
 borderWidth: 1,

59CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

Figure 3-14.  Screen with two buttons at bottom

 borderRadius: 8,
 alignSelf: 'stretch',
 justifyContent: 'center',
 margin: 10
},
buttonText: {
 fontSize: 18,
 color: 'white',
 alignSelf: 'center'
}

Refresh the app in the iOS simulator. We will see two buttons on the screen in our third block
(as shown in Figure 3-14).

60 CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

Let’s continue building our page by adding one more view in which to list the housing
options. This will be done by clicking on the show house page, which will redirect to another
component. Replace the following code for the Home component:

var Home = React.createClass({
 _handleListProperty: function() {
 console.log(‘Button clicked successfully’);
 },
 render: function() {
 return (
 <View style={styles.container}>
 <View style={styles.topBox} />
 <View style={styles.bottomBox} />
  
 <View style={styles.topBox} >
 <TouchableHighlight
 style={styles.button}
 onPress= {this._handleListProperty }
 underlayColor='#99d9f4'
 >
 <Text style={styles.buttonText}>List properties</Text>
 </TouchableHighlight>
 <TouchableHighlight style={styles.button}
 underlayColor='#99d9f4'>
 <Text style={styles.buttonText}>Add House</Text>
 </TouchableHighlight>
 </View>
 </View>
);
 }
});

Let us review what we have done here; we have added an onPress attribute to our
TouchableHighlight component for the List Properties section. Whenever someone presses
the List Properties button, it calls the function _handleListProperty.

If you build your application and open up the console in your developer tools, every time you
click on the List Properties button you will see the message “Button clicked successfully”
printed in the console.

Next, we will create our ListProperty component. But first, let’s refactor our code and keep
our components in separate files. Create an App folder that has a Components subfolder,
which is where we will keep our React Native components. Inside the Components folder,
create the file Home.js and place its respective components there. We will then require them
in our index.ios.js, which will now look like this:

'use strict';
var React = require('react-native');
var Home = require('./App/Components/Home');
var {
 AppRegistry,
 StyleSheet,

61CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

 Text,
 View,
 NavigatorIOS,
 TouchableHighlight
} = React;
var mainView = React.createClass ({
 render: function() {
 return (
 
 <NavigatorIOS barTintColor='#48BBEC' titleTextColor= "#FFFFFF"
style={styles.navigator} initialRoute={{
 title: 'House Share',
 component: Home
 }}/>
);
 },
});
 
var styles = StyleSheet.create({
 navigator: {
 flex: 1
 }
});
AppRegistry.registerComponent('HouseShare', () => mainView);

Routing to a Component
In React Native, you will be building many components and will be routing back and
forth between them. We must have a way to do that. In this section, we will learn to
route from one component to another. Before we create our component ListProperty,
we need to navigate the route to this component. This can be done by modifying our
_handleListProperty function in the Home component. Replace _handleListProperty
function with the following code at ./App/Components/Home.js:

_handleListProperty: function() {
 this.props.navigator.push({
 title: "List Properties",
 component: ListProperty
 })
 },

Here, navigator.push navigates forward to a new route; in this case it’s ListProperty.

Let us now create a List Property component by creating a file ListProperty.js in the
./App/Components/ folder. Add the following code in your ListProperty.js file:

var React = require('react-native');
var {
 View
} = React;
 

62 CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

var ListProperty = React.createClass({
 render: function() {
 return (
 <View />
);
 }
});
module.exports = ListProperty;

Refresh your application and click the List Properties button, which will bring you to the
empty view shown in Figure 3-15.

Figure 3-15.  Empty view with traversing option

In left corner, you will see an option to traverse back to the previous component.
NavigatorIOS maintains this back stack by which to go back to the previous component.
Let’s now work on this empty component. The idea is to create a table view having a list
of properties, each of which has an image thumbnail to the left side. The rest of the details
should appear next to it.

63CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

To keep things simple for this chapter, we will mock up data instead of pulling it from some
external service (later, you will learn how to pull the same data from an external API). With
this data, we will show the name of the property, its address, and a thumbnail picture. This
will look something like Figure 3-16.

Figure 3-16.  Property name and address

Add the following code to your ListProperty component in the file ./App/Components/
ListProperty.js:

var React = require('react-native');
 
var {
 Image,
 StyleSheet,
 Text,
 View
} = React;
 
var MOCK_DATA = [
 {name: 'Mr. Johns Conch house', address: '12th Street, Neverland', images: {thumbnail:
'http://hmp.me/ol5'}},
];
 
var ListProperty = React.createClass({
 render: function() {
 var property = MOCK_DATA[0]
 return (
 <View style={styles.container}>
 <Image
 source={{uri: property.images.thumbnail}}
 style={styles.thumbnail}/>
 <View style={styles.rightContainer}>
 <Text style={styles.name}>{property.name}</Text>
 <Text style={styles.address}>{property.address}</Text>
 </View>
 </View>
);
 }
});
 

http://hmp.me/ol5

64 CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

var styles = StyleSheet.create({
 container: {
 flex: 1,
 flexDirection: 'row',
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 },
 thumbnail: {
 width: 53,
 height: 81,
 },
 rightContainer: {
 flex: 1,
 },
 name: {
 fontSize: 20,
 marginBottom: 8,
 textAlign: 'center',
 },
 address: {
 textAlign: 'center',
 },
});
module.exports = ListProperty;

Let’s refresh our application in the iOS simulator to see the changes (see Figure 3-17).

65CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

Let us review what we have done here:

var React = require('react-native');
 
var {
 Image,
 StyleSheet,
 Text,
 View
} = React;

We first specified all components to be used in this section. We once again added the
Image component, which will be used to load our image—not from a bundled image but, as
promised earlier, from an image URL.

Figure 3-17.  Thumbnail image with property name and address

66 CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

Next, we added some mock data:

var MOCK_DATA = [
 {name: 'Mr. Johns Conch house', address: '12th Street, Neverland', images: {thumbnail:
'http://hmp.me/ol5'}},
];

Here, we added name, address, and image URL for our property thumbnail. We will be
adding more values to this mock data as we move forward with the example.

Next, we created our ListProperty component:

var ListProperty = React.createClass({
 render: function() {
 var property = MOCK_DATA[0]
 return (
 <View style={styles.container}>
 <Image
 source={{uri: property.images.thumbnail}}
 style={styles.thumbnail}/>
 <View style={styles.rightContainer}>
 <Text style={styles.name}>{property.name}</Text>
 <Text style={styles.address}>{property.address}</Text>
 </View>
 </View>
);
 }
});

Our ListProperty component has a variable property, which has data from the MOCK_DATA
array. We then used a View component to create a view containing the thumbnail image
within an Image component. In the Image component we have the property source, which
can have the values http address, local file path, or the name of a static image resource.

Using a Text component we have specified the name and address from the mock data:

var styles = StyleSheet.create({
 container: {
 flex: 1,
 flexDirection: 'row',
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 },
 thumbnail: {
 width: 53,
 height: 81,
 },
 rightContainer: {
 flex: 1,
 },

http://hmp.me/ol5

67CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

 name: {
 fontSize: 20,
 marginBottom: 8,
 textAlign: 'center',
 },
 address: {
 textAlign: 'center',
 },
});
 
module.exports = ListProperty;

Finally, we added the styles and exported our ListProperty component.

ListView
In previous section, we populated one element of an array by specifying the index of the
element. In this section, we will populate a list of data using ListView. Before we embark on
that, let’s learn a bit more about the ListView component.

A ListView is a component designed for populating vertically scrolling lists of dynamic data.
The minimal steps are to create a ListView data source, populate it with an array of data
similar to the native TableView data source, and then instantiate a ListView component with
that data source and a renderRow callback. This takes a blob from the data array and returns
a renderable component, which will be shown.

ListView looks very similar to TableView, but the implementation doesn’t actually use
TableView. Rather, it uses ScrollView behind the scenes. Features like swipe to delete,
reordering, and so on can’t be used directly through ListView.

Replace the following code in your ListProperty.js:

var React = require('react-native');
 
var {
 Image,
 StyleSheet,
 Text,
 View,
 ListView
} = React;
 
var MOCK_DATA = [
 �{name: 'Mr. Johns Conch house', address: '12th Street, Neverland', images: {thumbnail:
'http://hmp.me/ol5'}},

 �{name: 'Mr. Pauls Mansion', address: '625, Sec-5, Ingsoc', images: {thumbnail:
'http://hmp.me/ol6'}},

 �{name: 'Mr. Nalwayas Villa', address: '11, Heights, Oceania', images: {thumbnail:
'http://hmp.me/ol7'}},

 �{name: 'Mr. Johns Conch house', address: '12th Street, Neverland', images:
{thumbnail: 'http://hmp.me/ol5'}},

http://hmp.me/ol5
http://hmp.me/ol6
http://hmp.me/ol7
http://hmp.me/ol5

68 CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

 �{name: 'Mr. Pauls Mansion', address: '625, Sec-5, Ingsoc', images: {thumbnail:
'http://hmp.me/ol6'}},

 �{name: 'Mr. Nalwayas Villa', address: '11, Heights, Oceania', images: {thumbnail:
'http://hmp.me/ol7'}},

 �{name: 'Mr. Johns Conch house', address: '12th Street, Neverland', images: {thumbnail:
'http://hmp.me/ol5'}},

 �{name: 'Mr. Pauls Mansion', address: '625, Sec-5, Ingsoc', images: {thumbnail:
'http://hmp.me/ol6'}},

 �{name: 'Mr. Nalwayas Villa', address: '11, Heights, Oceania', images: {thumbnail:
'http://hmp.me/ol7'}}

];
 
var ListProperty = React.createClass({
  
 getInitialState: function() {
 var ds = new ListView.DataSource({rowHasChanged: (r1, r2) => r1 !== r2});
 return {
 dataSource: ds.cloneWithRows(MOCK_DATA),
 };
 },
 
 render: function() {
 return (
 <ListView
 dataSource={this.state.dataSource}
 renderRow={this.renderProperty}
 style={styles.listView}/>
);
 },
 
 renderProperty: function(property) {
 return (
 <View style={styles.container}>
 <Image
 source={{uri: property.images.thumbnail}}
 style={styles.thumbnail}/>
 <View style={styles.rightContainer}>
 <Text style={styles.name}>{property.name}</Text>
 <Text style={styles.address}>{property.address}</Text>
 </View>
 </View>
);
 },
 
});
 
var styles = StyleSheet.create({
 container: {
 flex: 1,
 flexDirection: 'row',

http://hmp.me/ol6
http://hmp.me/ol7
http://hmp.me/ol5
http://hmp.me/ol6
http://hmp.me/ol7

69CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 },
 thumbnail: {
 width: 63,
 height: 91,
 },
 rightContainer: {
 flex: 1,
 },
 name: {
 fontSize: 20,
 marginBottom: 8,
 textAlign: 'center',
 },
 address: {
 textAlign: 'center',
 },
 listView: {
 paddingTop: 20,
 backgroundColor: '#F5FCFF',
 },
});
 
module.exports = ListProperty;

Refresh your application in the iOS simulator to see the updated view, as shown in Figure 3-18.

70 CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

Great! Now we have a list of properties that we can scroll through. Let us review the
implementation now:

var React = require('react-native');
var {
 Image,
 StyleSheet,
 Text,
 View,
 ListView
} = React;

We have once again specified what all components will be used for in this section. There
is a new component added—ListView. If you have seen React Native documentation
besides ListView to implement similar functionality, it may have been ScrollView. ListView
is, however, much better than simply rendering all of these elements or putting them in
a ScrollView. This is because, despite React Native being fast, rendering a very big list

Figure 3-18.  Scrollable addresses

71CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

of elements could be slow. Similar to TableView, ListView implements the rendering list
of elements so that you only display the ones shown on screen; those already rendered
but that are now off screen are removed from the native-view hierarchy, which makes the
rendering smooth and fast.

Moving forward, we have updated our MOCK_DATA:

var MOCK_DATA =[
 �{name: 'Mr. Johns Conch house', address: '12th Street, Neverland', images: {thumbnail:
'http://hmp.me/ol5'}},

 �{name: 'Mr. Pauls Mansion', address: '625, Sec-5, Ingsoc', images: {thumbnail:
'http://hmp.me/ol6'}},

 �{name: 'Mr. Nalwayas Villa', address: '11, Heights, Oceania', images: {thumbnail:
'http://hmp.me/ol7'}},

 �{name: 'Mr. Johns Conch house', address: '12th Street, Neverland', images: {thumbnail:
'http://hmp.me/ol5'}},

 �{name: 'Mr. Pauls Mansion', address: '625, Sec-5, Ingsoc', images: {thumbnail:
'http://hmp.me/ol6'}},

 �{name: 'Mr. Nalwayas Villa', address: '11, Heights, Oceania', images: {thumbnail:
'http://hmp.me/ol7'}},

 �{name: 'Mr. Johns Conch house', address: '12th Street, Neverland', images: {thumbnail:
'http://hmp.me/ol5'}},

 �{name: 'Mr. Pauls Mansion', address: '625, Sec-5, Ingsoc', images: {thumbnail:
'http://hmp.me/ol6'}},

 �{name: 'Mr. Nalwayas Villa', address: '11, Heights, Oceania', images: {thumbnail:
'http://hmp.me/ol7'}}

];

In this code we added more entries in order to create a scrollable view. Now, let’s look at the
changes we made in our ListProperty component:

var ListProperty = React.createClass({
 getInitialState: function() {
 var ds = new ListView.DataSource({rowHasChanged: (r1, r2) => r1 !== r2});
 return {
 dataSource: ds.cloneWithRows(MOCK_DATA),
 };
 },
 render: function() {
 return (
 <ListView
 dataSource={this.state.dataSource}
 renderRow={this.renderProperty}
 style={styles.listView}/>
);
 },
 renderProperty: function(property) {
 return (
 <View style={styles.container}>
 <Image
 source={{uri: property.images.thumbnail}}
 style={styles.thumbnail}/>

http://hmp.me/ol5
http://hmp.me/ol6
http://hmp.me/ol7
http://hmp.me/ol5
http://hmp.me/ol6
http://hmp.me/ol7
http://hmp.me/ol5
http://hmp.me/ol6
http://hmp.me/ol7

72 CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

 <View style={styles.rightContainer}>
 <Text style={styles.name}>{property.name}</Text>
 <Text style={styles.address}>{property.address}</Text>
 </View>
 </View>
);
 },
});

Here, we set the component specification of getInitialState:

getInitialState: function() {
 var ds = new ListView.DataSource({rowHasChanged: (r1, r2) => r1 !== r2});
 return {
 dataSource: ds.cloneWithRows(MOCK_DATA),
 };
 },

getInitialState is invoked only once before the component is mounted. The return value
will be used as the initial value of this.state.

Next, we modified the render function so that, once we have our data, it renders a ListView
instead of a single entry:

 render: function() {
 return (
 <ListView
 dataSource={this.state.dataSource}
 renderRow={this.renderProperty}
 style={styles.listView}/>
);
 },
 renderProperty: function(property) {
 return (
 <View style={styles.container}>
 <Image
 source={{uri: property.images.thumbnail}}
 style={styles.thumbnail}/>
 <View style={styles.rightContainer}>
 <Text style={styles.name}>{property.name}</Text>
 <Text style={styles.address}>{property.address}</Text>
 </View>
 </View>
);
 },
 
});

73CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

You’ll notice we used dataSource from this.state, which is already set up by
getIntialState. We also called the renderProperty function to set up every row with an
image, name, and address. Finally, we added some styles:

listView: {
 paddingTop: 20,
 backgroundColor: '#F5FCFF',
 },

ScrollView
Although we are not using ScrollView in our House Share application, to populate a list we
can use ScrollView just like we used ListView. ScrollView is one of the most versatile and
useful controls in iOS, as it is a great way to list content that is greater in size than the screen
size.

We can add a basic ScrollView by using the following code:

var scrollview = React.createClass({
 getInitialState: function() {
 return {
 values: values
 };
 },
 _renderRow: function(value, index) {
 return (
 <View
 style={styles.row}
 key={index}
 >
 <Text>{value + " <----- Slide the row "}</Text>
 </View>
)
 },
 render: function() {
 return (
 <View style={styles.container}>
 <ScrollView style={styles.outerScroll}>
 {this.state.values.map(this._renderRow, this)}
 </ScrollView>
 </View>
);
 }
});

We will set up getInitialState for ScrollView with the following:

var values = [1,2,3,4]

74 CHAPTER 3: Canvas, Brush, and Paint: Working with the User Interface

We can map those values to the _renderRow function, which will just return a basic view, with
some text. This is basic ScrollView; if we want to scroll horizontally and we want to lock
that direction, we can do so with the following:

<ScrollView
 horizontal={true}
 directionalLockEnabled={true}
 >

There are lots of other options available with ScrollView; for documentation and examples,
you may visit the following URL: https://facebook.github.io/react-native/docs/
scrollview.html.

Summary
In this chapter, we learned some of the fundamentals that are essential for creating a
stunning user experience. We covered the following:

	NavigatorIOS for back-swipe functionality across app

	Flexbox layout model

	TouchableHighlight, a wrapper for making views respond properly to
touches

	Routing to another component

	Using ListView for efficient scrolling of vertical lists

	Using ScrollView for listing content larger than the screen size.

In the next chapter, we will learn how to solve problem in a different way by using Flux. We will
not only discover how to work with flux patterns, but also how it’s different than the ubiquitous
MVC pattern. We will also create a simple flux app with React and port it in React Native.

https://facebook.github.io/react-native/docs/scrollview.html
https://facebook.github.io/react-native/docs/scrollview.html

75

Chapter 4
Flux: Solving Problems
Differently

“Simplicity is prerequisite for reliability.”

—Djikstra

Flux is an application architecture that Facebook introduced to the world and uses for
building client-side applications. It complements React Native composable view components
by utilizing a unidirectional data flow. It’s more of a pattern than a proper framework, and one
can start using Flux immediately without an excess load of code. Before we delve into the
details, it is important to know of the popular pattern MVC, which is commonly used, and
how it differs from Flux. In this chapter we will learn about the following topics:

	MVC pattern

	MVC problem

	Flux

	Flux deep dive

	Flux example with ReactJS

	Flux example with React Native

76 CHAPTER 4: Flux: Solving Problems Differently

MVC Pattern
Historically, the MVC pattern separates code into three distinct parts: model, view, and
controller. The main purpose of this pattern is to isolate the representation of information
from user interaction. Let’s understand each of these parts individually:

	Model: Manages the behavior and data of application

	View: Representation layer of the model in the user interface

	Controller: Takes user input and makes necessary manipulations to the
model, causing the view to get updated

MVC Problem
MVC is a very popular pattern to design applications, but it comes with its own set of
problems. The more complex your source code becomes, the more complex things get.
Figure 4-1 shows the simplest implementation of MVC, which works pretty well with small
applications. But as our application grows, it demands new features, so there should be
room to accommodate more models and views.

Figure 4-1.  Basic MVC implementation

77CHAPTER 4: Flux: Solving Problems Differently

Figure 4-2 shows what happens when the models and views increase.

Figure 4-2.  An explosion of arrows

With so many models and views interacting with each other, when we track a model it
triggers a view, and the view triggers another model, and this goes on like spaghetti, which
many times ends up in an infinite loop. The worst part is that it’s really difficult to debug code
in such a situation, which eventually makes the system fragile. Well, Facebook faced similar
setbacks and solved this problem with a new pattern called Flux!

Flux
Flux abjures MVC in favor of a unidirectional data flow. Flux works well, since the
single-direction data flow makes it easy to understand and modify an application as it
grows and becomes more complicated. Earlier, we found that two-way data bindings lead
to cascading updates, where change in one data model leads to updates in to another data
model, making it very difficult to predict what would change as the result of a single user
interaction. As shown in Figure 4-3, Flux applications have three major parts: the dispatcher,
the stores, and the views (where we use React Native components). These should not be
compared with the Model View Controller elements of the MVC pattern.

78 CHAPTER 4: Flux: Solving Problems Differently

Image source: https://github.com/facebook/flux/blob/master/docs/img/flux-diagram-
white-background.png

Though controllers do exist in a Flux application, they are controller views, where views
are found at the top of the hierarchy that retrieves data from the stores and forwards it to
their children. Looking at Figure 4-4, the most important part of the Flux architecture is the
dispatcher, which is a singleton that directs the flow of data and ensures that updates do
not cascade.

Figure 4-4.  Dispatcher directs the flow of data

Figure 4-3.  Three major components of Flux

As an application grows, the dispatcher becomes more vital, as it is responsible for managing
dependencies between stores by invoking the registered callbacks in a specific order.

When a user interacts with a React Native view, the view sends an action (usually
represented as a JavaScript object with some fields) through the dispatcher, which notifies
the various stores that hold the application’s data and business logic. When the stores
change state, they notify the views that something has been updated. This works especially

https://github.com/facebook/flux/blob/master/docs/img/flux-diagram-white-background.png
https://github.com/facebook/flux/blob/master/docs/img/flux-diagram-white-background.png

79CHAPTER 4: Flux: Solving Problems Differently

well with React Native’s declarative model, which allows the stores to send updates without
specifying how to transition views between states.

In short, Flux offers the following benefits:

	Improves data consistency

	Makes it easier to pinpoint the bugs

	Offers more meaningful unit tests; since all the states of a module are
there in same place, we can test a module independently

	Contains predictable code

Success of Flux
One of Facebook’s most popular features was chat. However, it was extremely buggy and
had the most negative user feedback. The new chat system that Facebook implemented
uses Flux, and it now has a seamless experience; you can look at example chat code in a
Facebook React Native example at the following URL:

https://github.com/facebook/flux/tree/master/examples/flux-chat.

Flux Deep Dive
In this section, we’ll take a closer look at some of Flux’s core concepts.

The Dispatcher
The dispatcher is the central hub that manages all data flow in a Flux application. It is
essentially a registry of callbacks into the stores and has no real intelligence of its own; it is
a simple mechanism for distributing the actions to the stores. Each store registers itself and
provides a callback. When an action creator provides the dispatcher with a new action, all
stores in the application receive the action via the callbacks in the registry. Dispatcher also
acts like a traffic controller. If it gets an action while the data layer is still processing, it can
reject the action, which is a good constraint to have. It is a guarantee that you will know
when your action starts and what changes it makes to the data layer, as there are cascading
effects that build up in between—you are indeed in full control of your system.

The Need for Dispatcher [dispatch() and waitFor()]
As an application grows, dependencies across different stores also increase. Imagine we
have a situation where store A needs store B to update itself first, so that it can itself know
how to update. We need the dispatcher to invoke the callback for store B, and finish that
callback, before moving forward with store A. To assert this dependency, store A needs
to communicate with the dispatcher to first complete the action updating store B. The
dispatcher provides this functionality through the waitFor() method.

https://github.com/facebook/flux/tree/master/examples/flux-chat

80 CHAPTER 4: Flux: Solving Problems Differently

The dispatch() method provides a simple, synchronous iteration through the callbacks,
invoking each in turn. When waitFor() is encountered within one of the callbacks, execution
of that callback stops and waitFor() provides us with a new iteration cycle over the
dependencies. After the entire set of dependencies has been fulfilled, the original callback
then continues to execute.

Further, the waitFor() method may be used in different ways for different actions, within the
same store’s callback. In one case, store A might need to wait for store B. But in another
case, it might need to wait for store C. Using waitFor() within the code block that is specific
to an action allows us to have fine-grained control of these dependencies.

Problems arise, however, if we have circular dependencies. That is, if store A needs to wait
for store B, and store B needs to wait for store A, we could wind up in an endless loop. The
dispatcher now available in the Flux repo protects against this by throwing an informative
error to alert the developer that this problem has occurred. The developer can then create a
third store and resolve the circular dependency.

Stores
Stores contain the application state and logic. Their role is somewhat similar to that of
a model in a traditional MVC, but they manage the state of many objects—they do not
represent a single record of data like ORM models do. More than simply managing a
collection of ORM-style objects, stores manage the application state for a particular domain
within the application.

As mentioned earlier, a store registers itself with the dispatcher and provides it with a
callback. This callback receives the action as a parameter. Within the store’s registered
callback, a switch statement based on the action’s type is used to interpret the action and
to provide the proper hooks into the store’s internal methods. This allows an action to result
in an update to the state of the store, via the dispatcher. After the stores are updated, they
broadcast an event declaring that their state has changed, so the views may query the new
state and update themselves.

Actions
When new data enters the system, whether through a person interacting with the application
or through a web API call, that data is packaged into an action—an object literal containing
the new fields of data and a specific action type. We often create a library of helper
methods called action creators that not only create the action object, but also pass the
action to the dispatcher.

Different actions are identified by a type attribute. When all of the stores receive the action,
they typically use this attribute to determine if and how they should respond to it. In a Flux
application, both stores and views control themselves; external objects do not act upon
them. Actions flow into the stores through the callbacks they define and register, not through
setter methods.

81CHAPTER 4: Flux: Solving Problems Differently

Letting the stores update themselves eliminates many entanglements typically found in
MVC applications, where cascading updates between models can lead to unstable state
and make accurate testing very difficult. The objects within a Flux application are highly
decoupled and adhere very strongly to the Law of Demeter, the principle that each object
within a system should know as little as possible about the other objects in the system.
This results in software that is more maintainable, adaptable, testable, and easier for new
engineering team members to understand.

Flux with ReactJS Example
In this section we will create a simple ReactJS application with Flux. We are keeping this
example to a minimum with the purpose of understanding the theoretical explanation in the
previous section via an application implementation.

You can refer to the flux-with-react source provided and follow along or you can create a
brand new ReactJS application. Inside the root directory of flux-with-react, you will need to
install the required packages.

This example is a web application in which we will be using couple of npm modules. Initialize
your project with the following:

$ npm init

This will initialize your project; fill in the required information. Next, let’s install some node
modules, which will be helpful for our project:

$ npm install –save-dev react reactify object-assign gulp gulp-browserify gulp-concat
es6-promise flux

Out of all of these packages, the most important ones are eact, which is the JavaScript
library for ReactJS; reactify, which helps convert ES6 syntax to ES5 syntax constructs; gulp,
which builds in system help for automating painful tasks during the development workflow;
and lastly flux, Facebook’s npm module to implement Flux architecture.

Next, create gulpfile.js and add the following tasks to it:

var gulp = require('gulp');
var browserify = require('gulp-browserify');
var concat = require('gulp-concat');
 
gulp.task('browserify', function() {
 gulp.src('src/js/main.js')
 .pipe(browserify({transform:'reactify'}))
 .pipe(concat('main.js'))
 .pipe(gulp.dest('dist/js'));
});
 

82 CHAPTER 4: Flux: Solving Problems Differently

gulp.task('copy', function() {
 gulp.src('src/index.html')
 .pipe(gulp.dest('dist'));
});
 
gulp.task('default',['browserify', 'copy'], function() {
 return gulp.watch('src/**/*.*', ['browserify', 'copy'])
});

Here, we have two tasks: browserify and copy. What browserify does is grab, transform,
and concatenate main.js (where our application code resides) and place it in our distribution
folder, which is dist. The next task, copy, copies index.html to the dist folder.

We have another default, task which runs both these tasks and also watches continuously
to see if there are any changes happening to files related to these tasks.

Next, let’s create our folder structure, which should support a Flux architecture. Create the
folder structure shown in Figure 4-5 with empty files inside your root folder:

Figure 4-5.  New Flux file structure

83CHAPTER 4: Flux: Solving Problems Differently

Now, let’s begin creating our application from scratch. Add the following code in your file
index.html:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <title>Flux example with ReactJS</title>
 </head>
 <body>
 <div id="main" class="container"></div>
 <script src="js/main.js"></script>
 </body>
</html>

Not much is happening in this file; it is the html file where we load our main.js, which is our
entry point to all our JavaScript code. The id main is the target where our component will be
loaded. Next, use the following code in src/main.js:

var React = require('react');
var App = require('./components/app');
 
React.render(
 <App />,
 document.getElementById('main')
);

Here in src/main.js, we use the variable React to grab react, and we use the variable App
to grab our component from ./components/app.js. We render the App component—where
all the magic of Flux is happening—on the target id main. Next, we create our component by
adding the following code in src/components/app.js:

var React = require('react');
var AppActions = require('../actions/app-actions');
var AppStore = require('../stores/app-store');
 
var AppTitle = React.createClass({
 onClickHandler:function(){
 AppActions.addElement('element added');
 },
 render:function(){
 return (
 <div className="wrapper">
 <h3 onClick={this.onClickHandler}>Open console and Click Here </h3>
 </div>
)
 }
 });
 
module.exports = AppTitle;

84 CHAPTER 4: Flux: Solving Problems Differently

Once again, we have few require statements that grab react, actions, and stores. Next,
using createClass we create an AppTitle component that has a render method with a div,
which has an h3 tag with an onClick event. We also have another function, onClickHandler,
which is fired with an onClick event whenever the h3 tag is clicked.

Let’s take a closer look at the onClickHandler function:

onClickHandler:function(){
 AppActions.addElement('element added');
 },

The AppActions here is a fire and forget, which has one action to perform, addElement (which
we will investigate when we get into actions), and some data to pass along. Let’s now open
src/actions/app-actions.js and paste the following code in it:

var AppDispatcher = require('../dispatcher/app-dispatcher');
var AppConstants = require('../constants/app-constants');
 
var AppActions = {
 addElement: function(param){
 AppDispatcher.handleAction({
 actionType:AppConstants.ADD_ELEMENT,
 description: param
 })
 }
}
module.exports = AppActions

Once again we have some required items in the beginning—dispatcher and some constants.
If you remember, in our App component code we called the addElement function inside
onClickHandler. That function is described here:

addElement: function(param){
 AppDispatcher.handleAction({
 actionType:AppConstants.ADD_ELEMENT,
 description: param
 })
 }

The addElement function has an object description that it receives as a parameter and is then
passed to the dispatcher. We also have an actionType described here, which we received
from AppConstants. In src/constants/app-constants.js add the following code:

module.exports = {
 ADD_ELEMENT: 'ADD_ELEMENT'
};

85CHAPTER 4: Flux: Solving Problems Differently

Here, we have created a few constants that can be reused across the application. Let’s
move to dispatcher and add following code to src/dispatcher/app-dispatcher.js:

var Dispatcher = require('flux').Dispatcher;
var assign = require('object-assign');
 
var AppDispatcher = assign(new Dispatcher(), {
 handleAction: function(action) {
 this.dispatch({
 source: 'TEST_ACTION',
 action: action
 });
 }
});
 
module.exports = AppDispatcher;

Here, we have used the Dispatcher variable to frap dispatcher from the flux module.
If you remember, in app-actions.js we had called the function handleAction; here we have
described what it does. From the action we had to send an object, which is here used
as a parameter, which is further wrapped and given context as TEST_ACTION. This is then
broadcasted using this.dispatch. This broadcasted object is listened to by stores.
Let’s add the following code to src/stores/app-stores.js:

var AppDispatcher = require('../dispatcher/app-dispatcher');
var EventEmitter = require('events').EventEmitter;
var assign = require('object-assign');
 
var CHANGE_EVENT = 'change';
 
var AppStore = assign({}, EventEmitter.prototype, {
 emitChange: function() {
 this.emit(CHANGE_EVENT);
 }
});
 
AppDispatcher.register(function(payload){
 console.log(payload);
 return true;
});
 
module.exports = AppStore;

To get started with stores, we will use node’s EventEmitter. We need an EventEmitter to
broadcast the change event to our control views. However, in our example, even if we keep
our emit function empty, it won’t work since there is nothing changing on our control views.
Let’s now review the important part here: where all the stuff is happening:

AppDispatcher.register(function(payload){
 console.log(payload);
 return true;
});

86 CHAPTER 4: Flux: Solving Problems Differently

The store registers to AppDispatcher and takes the payload—which is the object
broadcasted by the dispatcher. In this case, we log this payload on the console, so that
every time you click on the h3 tag on screen you will see the payload logged on the console.
Let’s create a build:

$ gulp

Open dist/index.html along with your developer tools in your browser. Click “Open console
and Click Here” and you will see the result shown in Figure 4-6.

Figure 4-6.  Result of $ gulp build

87CHAPTER 4: Flux: Solving Problems Differently

Now that we have a good understanding of Flux and how it works with React it’s time to use
all of this knowledge to implement the same task with React Native.

Flux with React Native Example
In the previous section, we learned how to use Flux with ReactJS. The beauty of React
Native is that we can use the concepts we learned with ReactJS to implement similar tasks
for an iOS application with React Native and Flux. In this section, we will create a classic
ToDo application with Flux and React Native.

To begin, let’s set up our environment by creating a new React Native application:

$ react-native init FluxTodo

Although we have named our application FluxTodo, it does not mean we are even close to
building a Flux app. We need to add some npm modules in order to begin building our app.
Let’s add the following node modules to our application:

$ npm install –save-dev events key-mirror object-assign flux

Next, in order to keep things simple, we will keep all of our code within index.ios.js;
however, its a good practice to keep actions, dispatcher, stores and components separately.

Let’s begin by requiring a dispatcher and grabbing a few important modules that are
necessary for our application. Add the following code in index.ios.js:

'use strict';
var React = require('react-native');
var ReactPropTypes = React.PropTypes;
var assign = require('object-assign');
var keyMirror = require('key-mirror');
var EventEmitter = require('events').EventEmitter;
 
var Dispatcher = require('flux').Dispatcher;
var AppDispatcher = new Dispatcher();

Here, we have grabbed dispatcher and created a new instance, AppDispatcher, which we
will later use with our actions.

Next, add the constants we will be using in our application:

var TodoConstants = keyMirror({
 TODO_CREATE: null,
 TODO_COMPLETE: null,
 TODO_DESTROY: null,
 TODO_UNDO_COMPLETE: null
});

88 CHAPTER 4: Flux: Solving Problems Differently

Let’s now add actions for our ToDo application to index.ios.js:

var TodoActions = {
 create: function(text) {
 AppDispatcher.dispatch({
 actionType: TodoConstants.TODO_CREATE,
 text: text
 });
 },
 toggleComplete: function(todo) {
 var id = todo.id;
 if (todo.complete) {
 AppDispatcher.dispatch({
 actionType: TodoConstants.TODO_UNDO_COMPLETE,
 id: id
 });
 } else {
 AppDispatcher.dispatch({
 actionType: TodoConstants.TODO_COMPLETE,
 id: id
 });
 }
 },
 destroy: function(id) {
 AppDispatcher.dispatch({
 actionType: TodoConstants.TODO_DESTROY,
 id: id
 });
 }
};

Here we have created TodoActions, which is a function to add new entries to your to do list
by assigning an actionType—TodoConstants.TODO_CREATE. Similarly, we have actionTypes
for TODO_UNDO_COMPLETE, TODO_COMPLETE, and TODO_DESTROY. Let us now add logic for these
operations using the store. Add the following code to index.ios.js:

var CHANGE_EVENT = 'change';
 
var _todos = {};
 
function create(text) {
 var id = (+new Date() + Math.floor(Math.random() * 999999)).toString(36);
 _todos[id] = {
 id: id,
 complete: false,
 text: text
 };
}
function update(id, updates) {
 _todos[id] = assign({}, _todos[id], updates);
}

89CHAPTER 4: Flux: Solving Problems Differently

function destroy(id) {
 delete _todos[id];
}
var TodoStore = assign({}, EventEmitter.prototype, {
 getAll: function() {
var todos = [];
 for(var key in _todos) {
 todos.push(_todos[key]);
 }
 return todos;
 },
 emitChange: function() {
 this.emit(CHANGE_EVENT);
 },
 addChangeListener: function(callback) {
 this.on(CHANGE_EVENT, callback);
 },
 removeChangeListener: function(callback) {
 this.removeListener(CHANGE_EVENT, callback);
 }
});
 
AppDispatcher.register(function(action) {
 var text;
 switch(action.actionType) {
 case TodoConstants.TODO_CREATE:
 text = action.text.trim();
 if (text !== '') {
 create(text);
 TodoStore.emitChange();
 }
 break;
 case TodoConstants.TODO_UNDO_COMPLETE:
 update(action.id, {complete: false});
 TodoStore.emitChange();
 break;
 case TodoConstants.TODO_COMPLETE:
 update(action.id, {complete: true});
 TodoStore.emitChange();
 break;
 case TodoConstants.TODO_DESTROY:
 destroy(action.id);
 TodoStore.emitChange();
 break;
 default:
 }
});

90 CHAPTER 4: Flux: Solving Problems Differently

Finally, let’s add our components and some styling. Also register the MainSection component:

var MainSection = React.createClass({
 propTypes: {
 todos: ReactPropTypes.object.isRequired
 },
 render: function() {
 return (
 <View>
 <ListView dataSource={this.props.todos} renderRow={this.renderItem} />
 </View>
);
 },
 renderItem: function(todo) {
 return <TodoItem todo={todo} />;
 }
});
 
var TodoItem = React.createClass({
 render: function() {
 var todo = this.props.todo;
 var todoItemStyle;
 todoItemStyle = (todo.complete) ? styles.TodoItemDone: styles.TodoItem;
 return (
 <View style={todoItemStyle}>
 <Text style={styles.text}>{todo.text}</Text>
 <Text onPress={() => this._onToggleComplete(todo)}>[Complete]</Text>
 <Text onPress={() => this._onDestroy(todo)}>[Delete]</Text>
 </View>
);
 },
 _onToggleComplete: function(todo) {
 TodoActions.toggleComplete(todo);
 },
 _onDestroy: function(todo) {
 TodoActions.destroy(todo.id);
 }
});
 
var Header = React.createClass({
 render: function() {
 return (
 <View>
 <TodoTextInput />
 </View>
);
 }
});
 

91CHAPTER 4: Flux: Solving Problems Differently

var TodoTextInput = React.createClass({
 getInitialState: function() {
 return {
 value: ''
 }
 },
 render: function() {
 return (
 <View>
 <TextInput
 style={styles.TodoTextInput}
 onChangeText={(text) => this.setState({value: text})}
 onBlur={this._save}
 placeholder={'What needs to be done?'}
 value={this.state.value}
 />
 </View>
);
},
_save: function() {
 var text = this.state.value;
 if(text) TodoActions.create(text);
 this.setState({
 value: ''
 });
 }
});

And, finally, let’s add styles:

var styles = StyleSheet.create({
 TodoApp: {
 padding: 20,
 paddingTop: 40
 },
 TodoItem: {
 flex: 1,
 flexDirection: 'row',
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#FFFFFF',
 height: 58
 },
 TodoItemDone: {
 flex: 1,
 flexDirection: 'row',
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#FFFFFF',
 height: 58,
 opacity: .3
 },

92 CHAPTER 4: Flux: Solving Problems Differently

 text: {
 flex: 1,
 textAlign: 'left',
 fontSize: 16
 },
 TodoTextInput: {
 height: 40,
 backgroundColor: '#EEEEEE',
 padding: 10,
 fontSize: 16
 }
});
 
AppRegistry.registerComponent(‘FluxTodo’, () => FluxTodo);

It’s time to build our application in Xcode to test what we have done. Fire up your Xcode and
build FluxTodo application. You will see following screen as shown in Figure 4-7.

Figure 4-7.  MainSection of the todo application to add todo tasks

We can add any todo task in the text box which will be immediately populated below the
text box as shown in Figure 4-8.

93CHAPTER 4: Flux: Solving Problems Differently

We also have the option to mark a task as done or delete it. If a task is deleted, it is removed
from the list and when a task is marked as done it gets faded as shown in Figure 4-9.

Figure 4-9.  The done and deletes tasks from the populated list

Figure 4-8.  Populated the todo list

Summary
In this chapter, we have learned about Flux patterns and how Flux differs from and solves
problems fundamentally differently than traditional MVC patterns. We also deep-dove into
Flux core concepts, followed by looking at examples of using it in a project. We concluded
by creating a React Native application with Flux.

95

Chapter 5
Device Capabilities
An iOS device is not just limited to making phone calls; it’s one of the most advanced pieces
of machinery ever invented. And the real power lies in the various device capabilities. In this
chapter we will learn about the following device capabilities:

	GeoLocation

	AsyncStorage

	Native Alert

	WebView

	Animations

GeoLocation
In this section, you will learn how to use iOS location services with a React Native
application. Location services are used very often in many popular apps, especially in travel,
navigation, cab sharing and the list is endless. This single feature significantly improves the
user experience and the silver lining is it’s very easily implemented.

The Geolocation property is enabled in React Native by default when we setup a project with
react-native init. Let’s create an application to implement this capability:

$react-native init GeoLocationMap

Update index.ios.js with the following code:

'use strict';
 
var React = require('react-native');
var {
 AppRegistry,
 StyleSheet,

96 CHAPTER 5: Device Capabilities

 Text,
 View,
 MapView
} = React;
 
var GeoLocationMap = React.createClass({
 getInitialState: function() {
 return {
 region: {
 latitude: 40.712784,
 longitude: -74.005941,
 latitudeDelta: 10,
 longitudeDelta: 10,
 },
 };
 },
 render: function() {
 return (
 <View style={styles.container}>
 <View style={styles.desc}>
 <Text> Maps </Text>
 </View>
 <MapView
 style={styles.map}
 region={this.state.region}
 />
 </View>
);
 }
});
 
var styles = StyleSheet.create({
 container: {
 flex: 1,
 flexDirection: 'column',
 backgroundColor: '#F5FCFF',
 alignItems: 'stretch'
 
 },
 desc: {
 flex: 1,
 alignItems: 'center',
 justifyContent: 'center'
 },
 map: {
 flex: 5,
 },
});
 
AppRegistry.registerComponent('GeoLocationMap', () => GeoLocationMap);

97CHAPTER 5: Device Capabilities

Now build your application in Xcode for the first time to see the results shown in Figure 5-1.

Reviewing the GeoLocationMap Code
Let’s now understand what we have done in this part of our program.

var {
 AppRegistry,
 StyleSheet,
 Text,
 View,
 MapView
} = React;

Figure 5-1.  GeoLocation MapView

98 CHAPTER 5: Device Capabilities

Here we are first including the React Native component MapView, which is pivotal to
accessing the location services. Next we create our Geolocation component which will
utilize MapView:

var GeoLocationMap = React.createClass({
 getInitialState: function() {
 return {
 region: {
 latitude: 40.712784,
 longitude: -74.005941,
 latitudeDelta: 10,
 longitudeDelta: 10,
 },
 };
 },
 render: function() {
 return (
 <View style={styles.container}>
 <View style={styles.desc}>
 <Text> Maps </Text>
 </View>
 <MapView
 style={styles.map}
 region={this.state.region}
 />
 </View>
);
 }
});

Here, we have set the initial state for the region with certain latitude and longitude
parameters, which will be later set when we render the function with the MapView
component. In the MapView component, we are using the region prop, which is supplied
with latitude, longitude, longitudeDelta and latitudeDelta. These should always be
numbers(integer or float) and they help us plot a specific region on the map. Finally we have
added some style with Flex and registered our component.

Adding Annotation on Map
Next, let’s add annotations to our application, and update getInitialState with the new state
annotations, having parameters like latitude, longitude, title and subtitle:

getInitialState: function() {
 return {
 region: {
 latitude: 40.712784,
 longitude: -74.005941,
 latitudeDelta: 10,
 longitudeDelta: 10,
 },

99CHAPTER 5: Device Capabilities

 annotations: [{
 latitude: 40.72052634,
 longitude: -73.97686958312988,
 title: 'New York',
 subtitle: 'This is cool!'
 }],
 };
 },

Now update the MapView component with the new prop called annotations:

<MapView
 style={styles.map}
 region={this.state.region}
 annotations= {this.state.annotations}
 />

Besides the mentioned values, the annotations prop can have the following additional
parameters:

annotations [{latitude: number, longitude: number, animateDrop: bool, title: string,
subtitle: string, hasLeftCallout: bool, hasRightCallout: bool, onLeftCalloutPress: function,
onRightCalloutPress: function, id: string}] #

Let’s refresh and see the changes shown in Figure 5-2.

100 CHAPTER 5: Device Capabilities

Displaying the Latitude and Longitude of the Present Location
In this final part of our Geolocation application, we will display our present latitude and
longitude on the view. In the previous example, we had a constant location; in this part, we
will fly to our current location in real-time. Now that sounds like something exciting, so let’s
start building it. There are two ways to check for the current location on our maps. One is to
simply add showsUserLocation={true} to your MapView component.

Another way is to use NSLocationWhenInUseUsageDescription geolocation. We will need to
update info.plist to add this key, but it is enabled by default when you create a project with
react-native init.

Replace your index.ios.js with the following code:

'use strict';
 
var React = require('react-native');
var {
 AppRegistry,
 StyleSheet,
 Text,

Figure 5-2.  MapView with added parameters

101CHAPTER 5: Device Capabilities

 View,
 MapView
} = React;
 
var GeoLocationMap = React.createClass({
 getInitialState: function() {
 return {
 region: {
 latitude: 40.712784,
 longitude: -74.005941,
 latitudeDelta: 10,
 longitudeDelta: 10,
 },
 annotations: [{
 latitude: 40.72052634,
 longitude: -73.97686958312988,
 title: 'New York',
 subtitle: 'This is cool!'
 }],
 };
 },
 componentDidMount: function() {
 navigator.geolocation.getCurrentPosition(
 (initialPosition) => this.setState({initialPosition}),
 (error) => alert(error.message),
 {enableHighAccuracy: true, timeout: 20000, maximumAge: 1000}
);
 this.watchID = navigator.geolocation.watchPosition((lastPosition) => {
 this.setState({latitude: lastPosition.coords.latitude});
 this.setState({longitude: lastPosition.coords.longitude});
 var newRegion = {
 latitude: lastPosition.coords.latitude,
 longitude: lastPosition.coords.longitude,
 latitudeDelta: 10,
 longitudeDelta: 10,
 }
 this.setState({ region: newRegion});
 
 this.setState({ annotations: [{
 latitude: lastPosition.coords.latitude,
 longitude: lastPosition.coords.longitude,
 title: 'Current Location',
 subtitle: 'You are here'
 }]});
 

 });
 },
 

102 CHAPTER 5: Device Capabilities

 componentWillUnmount: function() {
 navigator.geolocation.clearWatch(this.watchID);
 },
 render: function() {
 return (
 <View style={styles.container}>
 <View style={styles.desc}>
 <Text>
 latitude: {this.state.latitude}
 </Text>
 <Text>
 longitude: {this.state.longitude}
 </Text>
 </View>
 <MapView
 style={styles.map}
 region={this.state.region}
 annotations= {this.state.annotations}
 />
 </View>
);
 }
});
 
var styles = StyleSheet.create({
 container: {
 flex: 1,
 flexDirection: 'column',
 backgroundColor: '#F5FCFF',
 alignItems: 'stretch'
 
 },
 desc: {
 flex: 1,
 alignItems: 'center',
 justifyContent: 'center'
 },
 map: {
 flex: 5,
 },
});
 
AppRegistry.registerComponent('GeoLocationMap', () => GeoLocationMap); 

103CHAPTER 5: Device Capabilities

Now build our application to load it on the iOS simulator shown in Figure 5-3.

Figure 5-3.  Access location prompt

104 CHAPTER 5: Device Capabilities

Figure 5-4.  Fly to a specified location in the code

If we allow this request, we will fly to the location we mentioned in our code; in this case it’s
California (Figure 5-4).

105CHAPTER 5: Device Capabilities

Figure 5-5.  Select debug in chrome option

Figure 5-6.  Allow the present location to be shared with the iOS simulator

There is one extra step when you debug a GeoLocation application. As mentioned, in this
example we will fly to our present location. We have saved that requirement so that it can
be accomplished now. Open the Debug menu using Ctrl + Command + z and select the
“Debug in Chrome” option as shown in Figure 5-5.

Once you click “Debug in Chrome” you will get a popup to allow your location to be served
to the iOS simulator application as shown in Figure 5-6.

106 CHAPTER 5: Device Capabilities

Figure 5-7.  Current location is now shown

Once you allow this, you will move to your current location in the app(Figure 5-7).

Reviewing the GeoLocation Code for the Present Location
Let’s review what we have programmed in this example.

componentDidMount: function() {
 navigator.geolocation.getCurrentPosition(
 (initialPosition) => this.setState({initialPosition}),
 (error) => alert(error.message),
 {enableHighAccuracy: true, timeout: 20000, maximumAge: 1000}
);
 this.watchID = navigator.geolocation.watchPosition((lastPosition) => {
 this.setState({latitude: lastPosition.coords.latitude});
 this.setState({longitude: lastPosition.coords.longitude});
 var newRegion = {
 latitude: lastPosition.coords.latitude,
 longitude: lastPosition.coords.longitude,
 latitudeDelta: 10,
 longitudeDelta: 10,
 }

107CHAPTER 5: Device Capabilities

Here, in componentDidMount, we first get the current position; by default, the iOS simulator
gives us a default value which you can change using debug ➤ location. If navigator.
geolocation.getCurrentPosition does get the value, then we set various states and their
parameters. In this example, we have latitude and longitude description which are at the top
of the view and are set using this.setState({latitude :}) and this.setState({longitude:}). And the
map below it is plotted with newRegion.

 this.setState({ region: newRegion});
 
 this.setState({ annotations: [{
 latitude: lastPosition.coords.latitude,
 longitude: lastPosition.coords.longitude,
 title: 'Current Location',
 subtitle: 'You are here'
 }]});
 

 });
},

We use React’s superb power to rerender the component whenever the state changes. With
the above code snippet, we will rerender newRegion with updated coordinates.

componentWillUnmount: function() {
 navigator.geolocation.clearWatch(this.watchID);
},
 
With componentWillUnmount, we will clear navigator.geolocation in case we move to some
other part of the application.

 render: function() {
 return (
 <View style={styles.container}>
 <View style={styles.desc}>
 <Text>
 latitude: {this.state.latitude}
 </Text>
 <Text>
 longitude: {this.state.longitude}
 </Text>
 </View>
 <MapView
 style={styles.map}
 region={this.state.region}
 annotations= {this.state.annotations}
 />
 </View>
);
 }
});
 

108 CHAPTER 5: Device Capabilities

Finally, we render our components on the view with the latitude and longitude description
having its respective style and the updated MapView component with its respective style,
region mapping and annotations.

AsyncStorage
AsyncStorage is a key-value based storage system. It can be easily implemented and is
globally available to the app. This persistence system is simple and asynchronous, and also
a recommended way to store data.

Let’s create an AsyncStorage example application; to do so, execute the following command:

$react-native init AsyncStorage

Great now lets add the following code in our index.ios.js

'use strict';
 
var React = require('react-native');
var {
 AppRegistry,
 StyleSheet,
 Text,
 View,
 TextInput,
 TouchableHighlight,
 AsyncStorage
} = React;
 
var STORAGE_KEY = '@AsyncStorageExample:someKey';
 
var AsyncStorageExample = React.createClass({
 getInitialState: function() {
 return {
 messages: '',
 textInputMessage: ''
 };
 },
 componentDidMount() {
 AsyncStorage.getItem(STORAGE_KEY).then((value) => {
 this.addMessage(value);
 }).done();
 },
  
 addMessage(message) {
 this.setState({messages: message});
 },
 

109CHAPTER 5: Device Capabilities

 updateStorage () {
 AsyncStorage.setItem(STORAGE_KEY, this.state.textInputMessage);
 AsyncStorage.getItem(STORAGE_KEY).then((value) => {
 this.addMessage(value);
 }).done();
 
 },
 
 render: function() {
 return (
 <View style={styles.container}>
 <View style={styles.form}>
 <TextInput style={styles.textField}
 onChangeText={(textInputMessage) => this.setState({textInputMessage})}
 value={this.state.textInputMessage}/>
 <TouchableHighlight style={styles.button} onPress={this.updateStorage}>
 <Text> Update Storage </Text>
 </TouchableHighlight>
 </View>
 <View style={styles.message}>
 <Text> Text from local storage:</Text>
 <Text>{this.state.messages} </Text>
 </View>
 </View>
);
 }
});
 

var styles = StyleSheet.create({
 container: {
 flex: 1,
  
justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 },
 form: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 },
 textField: {
 height: 40,
 borderColor: 'gray',
 borderWidth: 1,
 width: 180},
 message: {
 flex: 1,
 alignItems: 'center'
 },

110 CHAPTER 5: Device Capabilities

 button: {
 backgroundColor: '#05A5D1',
 marginTop: 10,
 height: 40,
 width: 180,
 alignItems: 'center',
 justifyContent: 'center'
 }
});
 
AppRegistry.registerComponent('AsyncStorage', () => AsyncStorageExample);

Let’s build our application in Xcode to see the results. You can enter the text in a text box as
shown in Figure 5-8 and then click “Update Storage.”

Figure 5-8.  Storage is updated

111CHAPTER 5: Device Capabilities

Once that is done refresh for the result shown in Figure 5-9.

This time the text below “Text from local storage” is coming from the async storage
mechanism, which we have set in place.

Reviewing the AsyncStorage Code
In this example, we have included the AsyncStorage default component in our list of
components to be used for this app.

var React = require('react-native');
var {
 AppRegistry,
 StyleSheet,
 Text,
 View,
 TextInput,
  

Figure 5-9.  Text from the async storage mechanism

112 CHAPTER 5: Device Capabilities

TouchableHighlight,
 AsyncStorage
} = React;
 
var STORAGE_KEY = '@AsyncStorageExample:someKey';

We will be using this AsyncStorage React component within our AsyncStorageExample
component. Above, we have also specified a key, which we will use, with our Async Storage.

Inside our AsyncStorageExample component we have set up getInitialState and
componentDidMount methods and also, created addMessage & updateStorage. Let’s
discuss them one by one.

 getInitialState: function() {
 return {
 messages: '',
 textInputMessage: ''
 };
 },

In getInitialState we have specified blank values for messages & textInputMessages, which
we will keep updating as and when their state changes.

 componentDidMount() {
 AsyncStorage.getItem(STORAGE_KEY).then((value) => {
 this.addMessage(value);
 }).done();
 },

With componentDidMount AsyncStorage the getItem method is loaded with the
addMessage value. This is invoked only at the time of initial rendering and is responsible
for showing the text below ‘text from local storage’, once we have updated the storage and
refreshed the app again.

 addMessage(message) {
 this.setState({messages: message});
 },

The method addMessage updates the message state with a new updated value whenever it
is triggered.

 updateStorage () {
 AsyncStorage.setItem(STORAGE_KEY, this.state.textInputMessage);
 AsyncStorage.getItem(STORAGE_KEY).then((value) => {
 this.addMessage(value);
 }).done();
 },

113CHAPTER 5: Device Capabilities

Update storage updates Asyc Storage values, which are persisted permanently.

render: function() {
 return (
 <View style={styles.container}>
 <View style={styles.form}>
 <TextInput style={styles.textField}
 onChangeText={(textInputMessage) => this.setState({textInputMessage})}
 value={this.state.textInputMessage}/>
 <TouchableHighlight style={styles.button} onPress={this.updateStorage}>
 <Text> Update Storage </Text>
 </TouchableHighlight>
 </View>
 <View style={styles.message}>
 <Text> Text from local storage:</Text>
 <Text>{this.state.messages} </Text>
 </View>
 </View>
);
 }
});

With the above code, we set up various sections of our AsyncStorageExample component.
Here, we can change a text input field to update the textInputMessage state. We also have
an onPress prop for the TouchableHighlight component, which calls the updatedStorage
method and persists the values permanently. In the end, we display the saved message by
accessing the present state of the message.

var styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 },
 form: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 },
 textField: {
 height: 40,
 borderColor: 'gray',
 borderWidth: 1,
 width: 180},
 message: {
 flex: 1,
 alignItems: 'center'
 },
 button: {
 backgroundColor: '#05A5D1',
 marginTop: 10,

114 CHAPTER 5: Device Capabilities

 height: 40,
 width: 180,
 alignItems: 'center',
 justifyContent: 'center'
 }
});
 
AppRegistry.registerComponent('AsyncStorage', () => AsyncStorageExample);

Finally, we set up a user interface style with some self-explanatory Flex settings and register
our AsyncStorageExample component.

Native Alert
Alerts are used to give important information to application users. In the case of iOS, only
after selecting the option in the alert view, can we proceed further to use the app. Optionally,
we can provide a list of buttons. Tapping any button will fire the respective onPress callback
and dismiss the alert. By default, there is only one button.

Let’s create a project to understand more about native alert:

$react-native init NativeAlert

React Native provides a component AlertIOS for creating Alert boxes. Let’s create a Button
that will open an alert box when clicked.

Update index.ios.js with the following code:

'use strict';
 
var React = require('react-native');
var {
 AppRegistry,
 StyleSheet,
 Text,
 View,
 TouchableHighlight,
 AlertIOS
} = React;
 
var NativeAlert = React.createClass({
 render: function() {
 return (
 <View style={styles.container}>
 <TouchableHighlight style={styles.wrapper}
 onPress={() => AlertIOS.alert(
 'Alert Title',
 'Alert Message'
)}>

115CHAPTER 5: Device Capabilities

 <View style={styles.button}>
 <Text style={styles.buttonText}>Click me !!</Text>
 </View>
 </TouchableHighlight>
 </View>
);
 }
});
 
var styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#FFFFFF',
 },
 button: {
 backgroundColor: '#659EC7',
 padding: 10,
 margin: 10
 },
 buttonText: {
 color: '#FFFFFF'
 }
 
});
 
AppRegistry.registerComponent('NativeAlert', () => NativeAlert);

116 CHAPTER 5: Device Capabilities

Let’s build the application and test it in the simulator. Figure 5-10 shows the result.

Figure 5-10.  This button will open an alert box when clicked

117CHAPTER 5: Device Capabilities

Figure 5-11.  The Alert box appears

Reviewing the NativeAlert Code
After we created a new NativeAlert project, we created a new component NativeAlert:

var NativeAlert = React.createClass({
 render: function() {
 return (
 <View style={styles.container}>
 <TouchableHighlight style={styles.wrapper}
 onPress={() => AlertIOS.alert(
 'Alert Title',
 'Alert Message'
)}>

Tap the “Click me !!” button to see an alert box as shown in Figure 5-11.

118 CHAPTER 5: Device Capabilities

 <View style={styles.button}>
 <Text style={styles.buttonText}>Click me !!</Text>
 </View>
 </TouchableHighlight>
 </View>
);
 }
});

In the component NativeAlert, we have used onPress callback. The method alert, passes the
string ‘Alert Title’ and ‘Alert Message’, which produces an alert box having a title, message
and a button. AlertIOS provides two methods: alert and prompt.

static alert(title: string, message?: string, buttons?: Array<{ text: ?string; onPress?:
?Function; }>, type?: string)
 
static prompt(title: string, value?: string, buttons?: Array<{ text: ?string; onPress?:
?Function; }>, callback?: Function)

Finally, we have added some style in the following segment and registered our root
component with AppRegistry.

var styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#FFFFFF',
 },
 button: {
 backgroundColor: '#659EC7',
 padding: 10,
 margin: 10
 },
 buttonText: {
 color: '#FFFFFF'
 }
 
});
 
AppRegistry.registerComponent('NativeAlert', () => NativeAlert);

119CHAPTER 5: Device Capabilities

Extending the NativeAlert Example
Now let’s add some more buttons to our application, replace the following code for your
NativeAlert component in index.ios.js:

var NativeAlert = React.createClass({
 getInitialState: function(){
 return{
 textForButton: 'Button text will come here'
 }
 },
 render: function() {
 return (
 <View style={styles.container}>
 <TouchableHighlight style={styles.wrapper}
 onPress={() => AlertIOS.alert(
 'Alert Title',
 'Alert Message'
)}>
 <View style={styles.button}>
 <Text style={styles.buttonText}>Click me !!</Text>
 </View>
 </TouchableHighlight>
 <TouchableHighlight style={styles.wrapper}
 onPress={() => AlertIOS.alert(
 'Alert Title',
 'Alert Message',
 [
 {text: 'Button 1', onPress: () => this.setState({textForButton: 'Button 1 clicked'})},
 {text: 'Button 2', onPress: () => this.setState({textForButton: 'Button 2 clicked'})}
]
)}>
 <View style={styles.button}>
 <Text style={styles.buttonText}>Alert with Buttons !!</Text>
 </View>
 </TouchableHighlight>
 <Text> {this.state.textForButton} </Text>
 </View>
);
 }
});

120 CHAPTER 5: Device Capabilities

Let’s refresh our view to see the changes in Figure 5-12.

Figure 5-12.  “Alert with Buttons !!” has been added

121CHAPTER 5: Device Capabilities

Click “Alert with Buttons!!” to see the result shown in Figure 5-13.

Figure 5-13.  Select Button 1 or 2

122 CHAPTER 5: Device Capabilities

Figure 5-14.  Button 1 was clicked

In Figure 5-14, the home page shows which button is clicked.

123CHAPTER 5: Device Capabilities

Reviewing the Extended NativeAlert Example Code
Now let’s understand what we have done in this updated NativeAlert component:

var NativeAlert = React.createClass({
 getInitialState: function(){
 return{
 textForButton: 'Button text will come here'
 }
 },
 render: function() {
 return (
 <View style={styles.container}>
 <TouchableHighlight style={styles.wrapper}
 onPress={() => AlertIOS.alert(
 'Alert Title',
 'Alert Message'
)}>
 <View style={styles.button}>
 <Text style={styles.buttonText}>Click me !!</Text>
 </View>
 </TouchableHighlight>
 <TouchableHighlight style={styles.wrapper}
 onPress={() => AlertIOS.alert(
 'Alert Title',
 'Alert Message',
 [
 {text: 'Button 1', onPress: () => this.setState({textForButton: 'Button 1 clicked'})},
 {text: 'Button 2', onPress: () => this.setState({textForButton: 'Button 2 clicked'})}
]
)}>
 <View style={styles.button}>
 <Text style={styles.buttonText}>Alert with Buttons !!</Text>
 </View>
 </TouchableHighlight>
 <Text> {this.state.textForButton} </Text>
 </View>
);
 }
});

Here, we have set our getInitialState method with a state textForButton, which we will later
get updated with the button we have clicked. Tapping the “Alert with Buttons!!” button fires
an onPress call back which uses the alert method of AlertIOS to set title, message and
buttons for our alert box. In this part of the NativeAlert component we have two buttons
whose ‘textForButton’ state is updated with required text on execution of onPress callback.

124 CHAPTER 5: Device Capabilities

WebView
In this section, we will create a shell for loading any URL in WebView with React Native. Let’s
begin with generating the application structure:

$ react-native init WebviewShell

Next, open up file index.ios.js and replace its code with the following:

'use strict';
 
var React = require('react-native');
var {
 AppRegistry,
 StyleSheet,
 Text,
 View,
 WebView
} = React;
 
var WebviewShell = React.createClass({
 render: function() {
 return (
 <View style={styles.container}>
 <WebView url={'https://www.facebook.com/'} />
 </View>
);
 }
});
 
var styles = StyleSheet.create({
 container: {
 flex: 1
 }
});
 
AppRegistry.registerComponent('WebviewShell', () => WebviewShell);
 

https://www.facebook.com/

125CHAPTER 5: Device Capabilities

Figure 5-15.  WebView with a URL

Let’s build our WebviewShell application with Xcode and load in iOS simulator to see the
results as shown in Figure 5-15.

Reviewing the WebView Code
In this example, we have created a component WebviewShell that returns a View. The
following code creates a view with our desired URL loaded in the WebView.

var WebviewShell = React.createClass({
 render: function() {
 return (
 <View style={styles.container}>
 <WebView url={'https://www.facebook.com/'} />
 </View>
);
 }
});

https://www.facebook.com/

126 CHAPTER 5: Device Capabilities

Animations
Fluid, meaningful animations are essential in creating a stunning user experience. In this
section, we will achieve this using React Native animation APIs. Animations with React
Native revolve around two complementary systems: LayoutAnimation for animating global
layout transactions, and Animated for more granular control over specific properties.

The Animated library is designed in a way to make a variety of amazing animations and
interactions with your app with simplicity and high performance. The Animated library
focuses on configurable transforms in between, having declarative relationships between
input and output, and easy start-stop methods, which control animations based on time.

Let’s understand this library with an example by creating an AnimationExample React
Native project:

$react-native init AnimationExample

Add the following code to your index.ios.js:

'use strict';
 
var React = require('react-native');
var {
 AppRegistry,
 StyleSheet,
 Text,
 View,
} = React;
 
var AnimationExample = React.createClass({
 render: function() {
 return (
 <View style={styles.container}>
 <View
 style={{
 backgroundColor: '#DC143C',
 flex: 1
 }} />
 <View
  
style={{
 backgroundColor: '#1E90FF',
 flex: 1,
 }} />
 </View>
 
);
 }
});
 

127CHAPTER 5: Device Capabilities

Figure 5-16.  The project now has a red and blue box

var styles = StyleSheet.create({
 container: {
 flex: 1,
 flexDirection: 'column'
 },
});
 

AppRegistry.registerComponent('AnimationExample', () => AnimationExample);

Build the project with Xcode to load it on the iOS simulator. Figure 5-16 shows two
colorful boxes.

128 CHAPTER 5: Device Capabilities

Now let’s add some animation. Update your index.ios.js with the following code:

'use strict';
 
var React = require('react-native');
 
var {
 AppRegistry,
 StyleSheet,
 Text,
 View,
  
Animated
} = React;
 
var AnimationExample = React.createClass({
 getInitialState: function() {
 return {
 bounceValue: new Animated.Value(0)
 };
 },
 componentDidMount() {
 this.state.bounceValue.setValue(1.5);
 Animated.spring(
 this.state.bounceValue,
 {
 toValue: 0.8,
 friction: 1,
 }
).start();
 },
 render: function() {
 return (
 <View style={styles.container}>
 <Animated.View
 style={{
 backgroundColor: '#DC143C',
 flex: 1,
 transform: [
 {scale: this.state.bounceValue},
]
 }} />
 <View
 style={{
 backgroundColor: '#1E90FF',
 flex: 1,
 }} />
 </View>
 
);
 }
});
 

129CHAPTER 5: Device Capabilities

Figure 5-17.  The red box in the upper half now has a bounce effect in it

var styles = StyleSheet.create({
 container: {
 flex: 1,
 flexDirection: 'column'
 },
});
 

AppRegistry.registerComponent('AnimationExample', () => AnimationExample);

Let’s refresh to see the changes (Figure 5-17).

130 CHAPTER 5: Device Capabilities

Great, let’s now add some animation to our bottom half section. Update index.ios.js with the
following code:

'use strict';
 
var React = require('react-native');
var {
 AppRegistry,
 StyleSheet,
 Text,
 View,
 Animated
} = React;
 
var AnimationExample = React.createClass({
 getInitialState: function() {
 return {
 bounceValue: new Animated.Value(0),
 fadeAnim: new Animated.Value(0)
 };
 },
 componentDidMount() {
 this.state.bounceValue.setValue(1.5);
 Animated.spring(
 this.state.bounceValue,
 {
 toValue: 0.8,
 friction: 1,
 }
).start();
 Animated.timing(
 this.state.fadeAnim,
 {
 toValue: 1,
 duration: 2000,
 },
).start();
 },
 render: function() {
 return (
 <View style={styles.container}>
 <Animated.View
 style={{
 backgroundColor: '#DC143C',
 flex: 1,
 transform: [
  
{scale: this.state.bounceValue},
]
 }} />
 <Animated.View
 style={{

131CHAPTER 5: Device Capabilities

Figure 5-18.  Now there is a bounce in the upper half of the screen and fading animation in the bottom half

 backgroundColor: '#1E90FF',
 flex: 1,
 opacity: this.state.fadeAnim,
  
 }} />
 </View>
 
);
 }
});
 
var styles = StyleSheet.create({
 container: {
 flex: 1,
 flexDirection: 'column'
 },
});
 
AppRegistry.registerComponent('AnimationExample', () => AnimationExample);

Figure 5-18 shows the changes.

132 CHAPTER 5: Device Capabilities

Let’s now get into our code and see what we have done here.

Reviewing the Animation Code
In the first part of this example, we have created the AnimationExample component, which
has a split, having two sections, which we will use for animations later on. We have not used
any default React Native component yet.

Next, we have added components necessary for use in our example.

'use strict';
 
var React = require('react-native');
var {
 AppRegistry,
 StyleSheet,
 Text,
 View,
 Animated
} = React;

Here, we have added an Animated React Native default component, which is necessary for
animations in various segments of our example. Let’s now understand how we have shaped
our AnimationExample component with two different animations.

var AnimationExample = React.createClass({
 getInitialState: function() {
 return {
 bounceValue: new Animated.Value(0),
 fadeAnim: new Animated.Value(0)
 };
 },

With getInitialState, we are setting up an initial state for bounceValue, which will be used for
the bounce effect in the upper half, and fadeAnim, which will add fading animation to the
bottom half. Initially both are set to 0.

 componentDidMount() {
 this.state.bounceValue.setValue(1.5);
 Animated.spring(
 this.state.bounceValue,
 {
 toValue: 0.8,
 friction: 1,
 }

133CHAPTER 5: Device Capabilities

).start();
 Animated.timing(
 this.state.fadeAnim,
 {
 toValue: 1,
 duration: 2000,
 },
).start();
 },

With componentDidMount, we are setting the value of bounceValue to have a spring effect.
We are also setting up a value for fadeAnim so that its fading effect has certain timing. Both
start immediately at the time the application loads.

 render: function() {
 return (
 <View style={styles.container}>
 <Animated.View
 style={{
 backgroundColor: '#DC143C',
 flex: 1,
 transform: [
 {scale: this.state.bounceValue},
]
 }} />
 <Animated.View
 style={{
 backgroundColor: '#1E90FF',
 flex: 1,
 opacity: this.state.fadeAnim,
  
 }} />
 </View>
 
);
 }
});

Next, we render both our animations on a specific section of the app. In the first container,
we set the bounce effect and in second, we have fading animation.

var styles = StyleSheet.create({
 container: {
 flex: 1,
 flexDirection: 'column'
 },
});
 
AppRegistry.registerComponent('AnimationExample', () => AnimationExample);

134 CHAPTER 5: Device Capabilities

Lastly, we have some more Flex styling and register our AnimationExample component.

As discussed earlier animations with React Native have two system Animated and layout
animations. We have gone in details on animated, as an exercise, explore layout animation
with the same example.

Summary
In this chapter, we learned about capabilities of your iOS device beyond just user interface.
We learned how to use Geolocation and loading maps for your app, AsyncStorage to persist
data, Native alerts to share important info in your app, WebView to load HTML5 content and
lastly animations.

In next chapter we will learn how to interact with a backend server because probably no real
world application is complete without connecting to a backend.

135

Chapter 6
Communicating with Servers

“Communication is everyone’s panacea for everything.”

—Tom Peters

After learning about the powers of device capabilities via multiple examples, it’s time to get
back to your housing application. So far, you have been populating your app locally with
some dummy data, but no application can survive without communicating with a server.
In this chapter, you will learn how to interact with network APIs. You will explore the
following topics:

	XMLHttpRequest

	WebSocket

	Fetch

	Getting data from a server

	Posting data to a server

Earlier you were getting all the data from a dummy data object, which was static within your
application. It’s a rare chance any production application will entirely work with static data.
Happily, React Native provides many ways to interact with network APIs. The following
sections cover the ways the network stack is supported in React Native.

XMLHttpRequest
XMLHttpRequest is an API that provides the ability to transfer data between a client and a
server. It provides an easy way to retrieve data from a URL without having to do a full-page
refresh. In React Native, the XMLHttpRequest API is applied on top of the iOS networking
APIs. A notable difference from the Web is the security model; you can read from any
website on the Internet since there is no concept of CORS.

136 CHAPTER 6: Communicating with Servers

var xhttp= new XMLHttpRequest();
xhttp.onreadystatechange = (e) => {
 if (xhttp.readyState !== 4) {
 return;
 }
 
 if (xhttp.status === 200) {
 console.log('success', xhttp.responseText);
 } else {
 console.warn('error');
 }
};
 
xhttp.open('GET', 'https://example.com/myendpoint.php');
request.send();

Using XMLHttpRequest is quite tedious. But since it is compatible with the browser API,
it lets you use third-party libraries directly from npm like Parse. For more information on this
API, please refer to its documentation at https://developer.mozilla.org/en-US/docs/Web/
API/XMLHttpRequest.

WebSocket
WebSocket is a protocol that provides full-duplex communication channels over a single
TCP connection.

var ws = new WebSocket('ws://example.com/path');
 
ws.on('open', function() {
 // connection opened
 ws.send('example data');
});
 
ws.on('message', function(e) {
 // a message received
 console.log(e.data);
});
 
ws.on('error', function(e) {
 // an error occurred
 console.log(e.message);
});
 
ws.on('close', function(e) {
 // connection closed
 console.log(e.code, e.reason);
});

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

137CHAPTER 6: Communicating with Servers

Fetch
Fetch is a popular networking API. It was created by a standard committee and has well-defined
requests, responses, and the process to bind them. The following is an example of a post
request with fetch:

fetch('https://example.com/endpoint/', {
 method: 'POST',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 },
 body: JSON.stringify({
 firstParam: 'yourValue',
 secondParam: 'otherValue',
 })
})

Fetch returns a promise, which is processed using then and catch.

fetch('https:// example.com/endpoint')
 .then((response) => response.text())
 .then((responseText) => {
 console.log(responseText);
 })
 .catch((error) => {
 console.warn(error);
 });

Now that you know how to interact with network APIs, let’s use one of the options, fetch,
to get and post data to a server. In order to keep things simple, we have hosted a simple
backend server with restful APIs that you can consume for your application.

We will be using following URLs to get and post data to a backend server. You can use curl
to see the response you get from making a request to these URLs.

To get an initial seed list of properties:

$curl 'http://www.akshatpaul.com/list-all-properties'
[
{
name: "Mr. Johns Conch house",
address: "12th Street, Neverland",
images: {
thumbnail: "http://hmp.me/ol5"
}
},
{
name: "Mr. Pauls Mansion",
address: "625, Sec-5, Ingsoc",
images: {
thumbnail: "http://hmp.me/ol6"
}
},

http://www.akshatpaul.com/list-all-properties
http://hmp.me/ol5
http://hmp.me/ol6

138 CHAPTER 6: Communicating with Servers

{
name: "Mr. Nalwayas Villa",
address: "11, Heights, Oceania",
images: {
thumbnail: "http://hmp.me/ol7"
}
},
{
name: "Mr. Johns Conch house",
address: "12th Street, Neverland",
images: {
thumbnail: "http://hmp.me/ol5"
}
},
{
name: "Mr. Pauls Mansion",
address: "625, Sec-5, Ingsoc",
images: {
thumbnail: "http://hmp.me/ol6"
}
},
{
name: "Mr. Nalwayas Villa",
address: "11, Heights, Oceania",
images: {
thumbnail: "http://hmp.me/ol7"
}
},
{
name: "Mr. Johns Conch house",
address: "12th Street, Neverland",
images: {
thumbnail: "http://hmp.me/ol5"
}
},
{
name: "Mr. Pauls Mansion",
address: "625, Sec-5, Ingsoc",
images: {
thumbnail: "http://hmp.me/ol6"
}
},
{
name: "Mr. Nalwayas Villa",
address: "11, Heights, Oceania",
images: {
thumbnail: "http://hmp.me/ol7"
}
}
]

http://hmp.me/ol7
http://hmp.me/ol5
http://hmp.me/ol6
http://hmp.me/ol7
http://hmp.me/ol5
http://hmp.me/ol6
http://hmp.me/ol7

139CHAPTER 6: Communicating with Servers

To get list of properties that users have saved:

$curl 'http://www.akshatpaul.com/list-properties'

To post data to the server in order to save a property:

url: 'http://www.akshatpaul.com/properties'

Getting Data from a Server
First, you need some fixed data from our server to populate the list of properties. Insert the
following code into the ListProperty.js component:

var React = require('react-native');
 
var {
 Image,
 StyleSheet,
 Text,
 View,
 ListView,
 AlertIOS
} = React;
 
var REQUEST_URL = 'http://www.akshatpaul.com/list-all-properties';
 
var ListProperty = React.createClass({
  
 getInitialState: function() {
 var ds = new ListView.DataSource({rowHasChanged: (r1, r2) => r1 !== r2});
 return {
 dataSource: ds,
 loaded: false
 };
 },
  
 componentDidMount: function() {
 this.fetchData();
 },
 fetchData: function() {
 fetch(REQUEST_URL)
 .then((response) => response.json())
 .then((responseData) => {
 console.log(responseData);
 this.setState({
 house: responseData,
 dataSource: this.state.dataSource.cloneWithRows(responseData),
 loaded: true
 });
 })

http://www.akshatpaul.com/list-properties
http://www.akshatpaul.com/properties
http://www.akshatpaul.com/list-all-properties

140 CHAPTER 6: Communicating with Servers

 .catch((error) => {
 AlertIOS.alert('No Donut for you');
 loaded: true
 })
 .done();
 },
  
 render: function() {
 if (!this.state.loaded) {
 return this.renderLoadingView();
 }
 return (
 <ListView
 dataSource={this.state.dataSource}
 renderRow={this.renderProperty}
 style={styles.listView}/>
);
 },
 
 renderProperty: function(property) {
 return (
 <View style={styles.container}>
 <Image
 source={{uri: property.images.thumbnail}}
 style={styles.thumbnail}/>
 <View style={styles.rightContainer}>
 <Text style={styles.name}>{property.name}</Text>
 <Text style={styles.address}>{property.address}</Text>
 </View>
 </View>
);
 },
 renderLoadingView: function() {
 return (
 <View style={styles.container}>
 <Text>
 Loading houses…
 </Text>
 </View>
);
 },
 
});
 
var styles = StyleSheet.create({
 container: {
 flex: 1,
 flexDirection: 'row',
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 },

141CHAPTER 6: Communicating with Servers

 thumbnail: {
 width: 63,
 height: 91,
 },
 rightContainer: {
 flex: 1,
 },
  
name: {
 fontSize: 20,
 marginBottom: 8,
 textAlign: 'center',
 },
 address: {
 textAlign: 'center',
 },
 listView: {
 paddingTop: 70,
 backgroundColor: '#F5FCFF',
 },
});
  
module.exports = ListProperty;

Now, build or refresh the application. Figure 6-1 shows it loaded on an iOS simulator.

142 CHAPTER 6: Communicating with Servers

Here you use the request URL to get the initial seed data not from a client but from a server.
Inside the componentDidMount method you make a request using fetch:

fetchData: function() {
 fetch(REQUEST_URL)
 .then((response) => response.json())
 .then((responseData) => {
 console.log(responseData);
 this.setState({
 house: responseData,
 dataSource: this.state.dataSource.cloneWithRows(responseData),
 loaded: true
 });
 })
 .catch((error) => {
 AlertIOS.alert('No Donut for you');
 loaded: true
 })
 .done();
 }

This returns a promise that is processed using then and catch.

Figure 6-1.  Populating the app with static data fetched from a server

143CHAPTER 6: Communicating with Servers

Saving Data to a Server
In your housing application, you have an option to add new properties to your back-end
application. You used this feature earlier to learn how to submit data to a backend API.
Add following code into your AddProperty.js component:

var React = require('react-native');
 
var {
 Image,
 StyleSheet,
 Text,
 View,
 ListView,
 AlertIOS,
 TextInput,
 TouchableHighlight
} = React;
 

var AddProperty = React.createClass({
 getInitialState: function() {
 return {
 name: "",
 address: ""
 };
 },
 _onPressButtonPOST: function() {
 �fetch("http://www.akshatpaul.com/properties", {method: "POST", body:

JSON.stringify({property: {name: this.state.name, address: this.state.address}})})
 .then((responseData) => {
 AlertIOS.alert(
 "Created"
)
 })
 .done();
 },
  
 render: function() {
 
 return (
 <View style={styles.container}>
  
 �<TextInput style={styles.textBox} placeholder='name' onChangeText={(name) =>

this.setState({name})} value={this.state.name} />
 �<TextInput style={styles.textBox} placeholder='address' onChangeText={(address) =>

this.setState({address})} value={this.state.address} />
 <TouchableHighlight style={styles.button}
 onPress= {this._onPressButtonPOST}
 

http://www.akshatpaul.com/properties

144 CHAPTER 6: Communicating with Servers

 underlayColor='#99d9f4'>
 <Text style={styles.buttonText}>Add House</Text>
 </TouchableHighlight>
 </View>
);
},
});
 
var styles = StyleSheet.create({
 container: {
 flex: 1,
 flexDirection: 'column',
 justifyContent: 'center',
  
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 },
 textBox: {
 width:300,
 height:60,
 borderColor: 'gray',
 borderWidth: 1,
 alignSelf: 'center',
 marginTop: 10,
 },
 button: {
 
 height: 60,
 backgroundColor: '#48BBEC',
 borderColor: '#48BBEC',
 borderWidth: 1,
 borderRadius: 8,
 alignSelf: 'stretch',
 justifyContent: 'center',
 margin: 10
},
buttonText: {
 fontSize: 18,
 color: 'white',
 alignSelf: 'center'
}
});
  
module.exports = AddProperty;

145CHAPTER 6: Communicating with Servers

Refresh to test this functionality. The result is shown in Figure 6-2.

Figure 6-2.  Form to submit record

Next, add some values and post it to our server (Figure 6-3).

Figure 6-3.  Values are added to the server.

146 CHAPTER 6: Communicating with Servers

Let’s update the ListProperty.js component with a URL that can fetch the user-added
property list. Update the following variable in ListProperties.js:

var REQUEST_URL = 'http://www.akshatpaul.com/list-properties'

If you curl this URL, you will get following JSON of user added properties:

$curl 'http://www.akshatpaul.com/list-properties'
[
{
name: "Mr. Paul's Mansion",
address: "11, Golden View, San Francisco",
images: {
thumbnail: "http://hmp.me/ol7"
}
}
]

Note  This API shows data submitted by various readers of this book. Your data set may differ.

When this data is saved, you get an alert box as confirmation, as shown in Figure 6-4.

Figure 6-4.  Confirmation of successful submission

http://www.akshatpaul.com/list-properties
http://www.akshatpaul.com/list-properties
http://hmp.me/ol7

147CHAPTER 6: Communicating with Servers

Refresh the app and go to the “List of Properties” section (Figure 6-5).

Figure 6-5.  Output showing Mr. Paul’s Mansion address

Now add a URL for post requests:

var REQUEST_URL = 'http://www.akshatpaul.com/properties';

Next, modify the onPressButtonPOST function:

_onPressButtonPOST: function() {
 �fetch(REQUEST_URL, {method: "POST", body: JSON.stringify({property:

{name: this.state.name, address: this.state.address}})})
 .then((responseData) => {
 AlertIOS.alert(
 "Created"
)
 })
 .done();
 }

Here, you make a post request using fetch and serialize your JSON, which returns a
promise and, upon success, issues an alert box with a “Created” message.

Summary
In this chapter, you learned about various network APIs that are reimplemented from the
ground up by the React Native team. You also learned various options like XMLHttpRequest,
WebSocket, and Fetch. Since no application is complete without making server calls, you
added this capability into your housing application and learned how to get data from a
server, add new records, and save them to a server.

In the final chapter of this book, you will learn about popular Node packages that you can
use with React Native, specifically awesome React libraries like Reflux and Redux, which
make development slightly simple and faster.

http://www.akshatpaul.com/properties

149

Chapter 7
React Native Supplements

“A good way to stay flexible is to write less code.”

—Pragmatic Programmer

By now, you should be comfortable building apps using React Native and have become
accustomed to all the basics as well as many advanced features of the React Native
framework. In this final chapter, we will learn about a few supplements, which may not be
necessary but are very useful in certain situations and reduce our work significantly. In this
chapter we will cover the following topics:

	Reflux

	Redux

	Debugging on a device

	Popular node modules

	Where to go from here

Reflux
We learned about Flux architecture in Chapter 4. We have some other ways to implement
unidirectional data flow, including a lean approach to flux called Reflux. It’s a simple library
for unidirectional data flow inspired by React’s Flux. As shown in Figure 7-1, a Reflux pattern
has actions and stores. Actions initiate new data, which is passed through data stores,
which are then passed to view components and in turn passed back to actions. If a view
component has an event that makes changes to data stores, it needs to send a signal to the
stores via the actions available.

http://dx.doi.org/10.1007/978-1-4842-1395-7_4

150 CHAPTER 7: React Native Supplements

Differences from Flux
Reflux has actually refactored Flux to be closer to Functional Reactive Programming (FRP).
The following are a few differences between Reflux and Flux:

	The singleton dispatcher is not present, letting every action act like a
dispatcher instead.

	Because actions are listenable, the stores listen to them. Stores don't
need to have big switch statements that do static type checking (of
action types) with strings.

	Stores can listen to other stores; it is possible to create stores that can
aggregate data further, similar to a map/reduce.

	Action creators are not needed, because Reflux actions are functions
that will pass on the payload they receive to anyone listening to them.

	waitFor is replaced to handle serial and parallel data flows. Aggregate
data stores may listen to other stores in serial and to joins for joining
listeners in parallel.

In order to understand Reflux better, let’s create a simple ToDo application just like we did
earlier in Chapter 4. Let’s generate a React Native application:

$ react-native init RefluxTodo

Our basic project structure is now ready. Let’s add a Reflux node module to our project:

$ cd RefluxTodo
$ npm install reflux --save-dev

Now that we have Reflux added to our project, let’s create a structure that we can use
with Reflux. First, create a root folder named Apps that contains the subfolders Actions,
Components, and Stores, which hold the files shown in Figure 7-2.

Figure 7-1.  Reflux unidirectional flow

http://dx.doi.org/10.1007/978-1-4842-1395-7_4

151CHAPTER 7: React Native Supplements

Unlike in Flux patterns, with Reflux we only have actions and stores, as we dropped
dispatcher altogether. We will keep various components in our Component folder so as to
keep our index.ios.js file lean. These files are empty for now, so let’s add the requried code
in each of them via the following steps.

Figure 7-2.  Root folder Apps with subfolders and files

152 CHAPTER 7: React Native Supplements

1.	 Start with Actions. Open Apps/Actions/TodoActions.js and add the
following code:

'use strict';
 
var Reflux = require('reflux');
 
module.exports = Reflux.createActions([
 'todoCreate',
 'todoUpdate',
 'todoComplete',
 'todoUndoComplete',
 'todoDestroy',
 
]);

2.	 Add the following code to Stores, which resides in Apps/Stores/
Todostore.js:

'use strict';
 
var Reflux = require('reflux');
var _ = require("underscore");
 
module.exports = Reflux.createStore({
 listenables: [require('../Actions/TodoActions')],
 
 todos: {},
 
 onTodoCreate: function(text) {
 var id = (+new Date() + Math.floor(Math.random() * 999999)).toString(36);
 this.todos[id] = {
 id: id,
 complete: false,
 text: text,
 };
 this.trigger(null);
 },
 onTodoUpdate: function(id, updates) {
 this.todos[id] = _.extend({}, this.todos[id], updates);
 this.trigger(null);
 },
 onTodoComplete: function(id) {
 this.onTodoUpdate(id, {complete: true});
 },
 onTodoUndoComplete: function(id) {
 this.onTodoUpdate(id, {complete: false});
 },

153CHAPTER 7: React Native Supplements

 onTodoDestroy: function(id) {
 delete this.todos[id];
 this.trigger(null);
 },
 
 getAll: function() {
 return _.values(this.todos);
 },
});

3.	 Create the components that will interact with Actions,
which in turn interacts with Stores. Let’s add the following code to
Apps/Components/TodoForm.js:

TodoForm.js
'use strict';
 
var React = require('react-native');
var {
 StyleSheet,
 TextInput,
 View,
} = React;
 
var TodoActions = require('../Actions/TodoActions');
var TodoStore = require('../Stores/TodoStore');
 
module.exports = React.createClass({
 propTypes: {
 value: React.PropTypes.string,
 },
 
 getInitialState: function() {
 return {
  
 value: '',
 };
 },
 
 render: function() {
 return (
 <View style={styles.header}>
 <TextInput
 style={styles.textInput}
 onChangeText={(text) => this.setState({value: text})}
 onBlur={this._save}
 placeholder={'What needs to be done?'}
 value={this.state.value}
 />
 </View>
);
 },
 

154 CHAPTER 7: React Native Supplements

 _save: function() {
 var text = this.state.value;
 if (text) {
 TodoActions.todoCreate(text);
  
this.setState({
  
value: ''
 });
 }
 },
});
 

var styles = StyleSheet.create({
 header: {
 marginTop: 21,
 },
 textInput: {
 height: 40,
 backgroundColor: '#EEEEEE',
 padding: 10,
 fontSize: 16
 },
});

4.	 Add the following code to the TodoItem component in
Apps/Components/TodoItem.js:

TodoItem.js
'use strict';
 
var React = require('react-native');
var {
 StyleSheet,
 Text,
 View,
} = React;
var Reflux = require('reflux');
 
var TodoActions = require('../Actions/TodoActions');
 
module.exports = React.createClass({
 render: function() {
 var todo = this.props.todo;
 var styleTodoItemComplete = (todo.complete) ? styles.todoItemComplete : null;
 return (
 <View>
 <View style={[styles.todoItem, styleTodoItemComplete]}>
 <Text style={styles.text}>{todo.text}</Text>
 <Text style={styles.text}>{todo.complete}</Text>

155CHAPTER 7: React Native Supplements

 <Text onPress={() => this._onToggleComplete(todo)}>|Mark as done|</Text>
 <Text onPress={() => this._onDestroy(todo)}> Delete|</Text>
 </View>
 <View style={styles.separator} />
 </View>
);
 },
 
 _onToggleComplete: function(todo) {
 if (todo.complete) {
 TodoActions.todoUndoComplete(todo.id);
 } else {
 TodoActions.todoComplete(todo.id);
 }
 },
 _onDestroy: function(todo) {
 TodoActions.todoDestroy(todo.id);
 }
});
 
var styles = StyleSheet.create({
  
todoItem: {
 flex: 1,
 flexDirection: 'row',
 justifyContent: 'center',
  
alignItems: 'center',
 backgroundColor: '#FFFFFF',
 padding: 10,
 height: 58,
 },
 todoItemComplete: {
 opacity: 0.3,
 },
 text: {
 flex: 1,
 textAlign: 'left',
 fontSize: 16,
 },
 separator: {
 height: 1,
 backgroundColor: '#CCCCCC',
 },
});

156 CHAPTER 7: React Native Supplements

5.	 Add the following code to TodoList.js, which is found in
Apps/Components/TodoList.js:

Todolist.js
'use strict';
 
var React = require('react-native');
var {
 ListView,
 StyleSheet,
} = React;
var Reflux = require('reflux');
 
var TodoStore = require('../Stores/TodoStore');
var TodoItem = require('./TodoItem');
  
module.exports = React.createClass({
 mixins: [Reflux.listenTo(TodoStore, 'handlerTodoUpdate')],
 
 getInitialState: function() {
 var ds = new ListView.DataSource({rowHasChanged: (r1, r2) => r1 !== r2});
 return {
 todoDataSource: ds.cloneWithRows(TodoStore.getAll()),
 };
 },
 
 handlerTodoUpdate: function(err) {
 if (err) {
 return
 }
 this.setState({
 todoDataSource: this.state.todoDataSource.cloneWithRows(TodoStore.getAll()),
 });
 },
 
 render: function() {
 return (
 <ListView
 dataSource={this.state.todoDataSource}
 renderRow={(rowData) => <TodoItem todo={rowData} />}
 />
);
 },
});
 
var styles = StyleSheet.create({
 list: {
 flex: 1,
 backgroundColor: '#0FF',
 },
});
  

157CHAPTER 7: React Native Supplements

index.ios.js
'use strict';
 
var React = require('react-native');
var {
 AppRegistry,
} = React;
 
var TodoApp = require('./Apps/Components/TodoApp');
 
AppRegistry.registerComponent('TodoProject', () => TodoApp);

6.	 Add the following code to TodoApp.js, found in Apps/Components/
TodoApp.js:

TodoApp.js
'use strict';
 
var React = require('react-native');
var {
 StyleSheet,
 View,
} = React;
 
var TodoForm = require('./TodoForm');
var TodoList= require('./TodoList');
 
module.exports = React.createClass({
 render: function() {
 return (
 <View style={styles.container}>
 <TodoForm />
 <TodoList />
 </View>
);
 },
});
 
var styles = StyleSheet.create({
 container: {
 flex: 1,
 },
 
});

158 CHAPTER 7: React Native Supplements

7.	 In order to use the components just created, update index.ios.js
with the following code:

'use strict';
 
var React = require('react-native');
var {
 AppRegistry,
} = React;
 
var TodoApp = require('./Apps/Components/TodoApp');
 
AppRegistry.registerComponent('RefluxTodoProject', () => TodoApp);

With these steps complete, we can now build our application in Xcode in order to run
through our application. Once the application gets loaded, the home screen in Figure 7-3
appears. Here we can add any item to the To Do list (“What needs to be done?”).

Figure 7-3.  To do list is ready to be populated with user input

159CHAPTER 7: React Native Supplements

Once added, the items are listed one after another with options “Mark as done” or “Delete”
displayed on the right side of each row, as shown in Figure 7-4.

When ”Mark as done” is clicked, the row becomes faded, indicating this item is done.
Clicking this option again will unfade the row. Click on “Delete” to remove items from the list
entirely (see Figure 7-5).

Figure 7-4.  Each item in the populated list now has two options

160 CHAPTER 7: React Native Supplements

Redux
Redux is a predictable-state container for JavaScript apps, and it has become very
popular, especially in the React community. Though you can use the Redux concept in
React, AngularJS, or any framework. Redux is open source, with Dan Abramov as its lead
developer. Redux makes state mutations predictable by imposing certain controls on how
and when updates can be made to state.

Until now, we have seen that state is used a lot in React Native apps, and the state value is
always changing. When our actual app grows, handling these state changes can become
unpredictable. Utilizing React with Flux is a good method by which to solve issues using
mutation and synchronicity, as React has removed asynchrony from the view-layer and
direct-DOM manipulation. However, managing the state of data is left up to the developer.
Redux has solved the problem of managing state using three principles:

	Single source of truth

	State is read-only

	Mutations are written as pure functions 

Figure 7-5.  Two items have been marked as done

161CHAPTER 7: React Native Supplements

Single Source of Truth
The store of your application is stored in an object tree within a single store. A single-state
tree has all the state changes done. This makes it easy to create universal apps, since we
know all actions the client app has performed are done. It also makes debugging easier,
since we can track all of the state changes.

State Is Read-only
The only way to change the state is to emit an action—an object describing what happened.
Thus, we can’t directly update state; it can only be updated though actions. View and
network calls can’t update the state directly.

Mutations Are Written as Pure Functions
To specify how the state tree is transformed by actions, you write pure reducers. Reducers
will take old state and actions and return a new state. Reducers are normal JavaScript
functions. It is important to understand that reducers do not update the state, they just
return the new state.

Debug on Device
So far we have been debugging and testing our application on an iOS simulator, which
works pretty well most of the times, but in real-world projects we would need to load our
application time and again on an iOS device to test and debug.

To debug your application iOS device, simply plug in your device (in our case it’s an iPad).
Open up Xcode and select your device instead of the simulator (see Figure 7-6).

Figure 7-6.  Selecting an iPad as your device

162 CHAPTER 7: React Native Supplements

We are using our RefluxTodo application for this section, but you can use any React Native
project you have built so far. Build the application to load it on the device. The application
icon should appear, but we will get the error shown in Figure 7-7.

Figure 7-7.  “Unable to connect” error message

The reason for this error is that our application is not able to connect to the development
server. Let’s fix this by getting into our application code. Go to the AppDelegate.m file,
which is usually placed in project-name/ios/project-name/AppDelegate.m, and change the
following lines:

jsCodeLocation = [NSURL URLWithString:@"http://localhost:8081/index.ios.bundle?platform=
ios&dev=true"];

to:

jsCodeLocation = [NSURL URLWithString:@"http://machine-ip-address:8081/index.ios.bundle?
platform=ios&dev=true"];

http://machine-ip-address:8081/index.ios.bundle?platform=ios&dev=true
http://machine-ip-address:8081/index.ios.bundle?platform=ios&dev=true

163CHAPTER 7: React Native Supplements

Here, we have to replace localhost with our machine’s IP address. Doing so allows our
application to load and run properly on the device (see Figure 7-8).

Figure 7-8.  Application is now running properly

164 CHAPTER 7: React Native Supplements

We can enable live reload, and just like in the iOS simulator, all changes will automatically be
reflected on the device too. Click Debug in Chrome to see the result shown in Figure 7-10.

In order to access the developer menu, simply shake your device—the menu appears from
the bottom of the view (see Figure 7-9).

Figure 7-9.  Developer menu is now visible

165CHAPTER 7: React Native Supplements

However, we get another error. In order to solve this one, we have to get back to our code
and make a few changes. For this, we need to go to RCTWebSocketExecuter.m, which is
placed in the ReactNative node module, traverse to /your-project-name/node_module/
react-native/Libraries/WebSocket/ RCTWebSocketExecuter.m, and again we need to
change our localhost to the machine’s IP address in the following section of code:

From
- (instancetype)init
{
 return [self initWithURL:[RCTConvert NSURL:@"http://localhost:8081/debugger-proxy"]];
}
 
to
- (instancetype)init
{
  
return [self initWithURL:[RCTConvert NSURL:@"http://your-machine-ip-address:8081/debugger-proxy"]];
}

With this change, we can debug our application just like we have so far using the simulator.

Figure 7-10.  WebSocket error message

166 CHAPTER 7: React Native Supplements

Popular Modules for React Native
The React Native community may be young, but it has already started to flourish. Like any
other popular framework, lots of open-source projects have been created, which helps
developers to avoid re-inventing features already developed. You can find hundreds of such
node modules on GitHub; we are listing a few that can help you quickly build and deliver
your next React Native application.

react-native-fbsdk
React Native FBSDK is a wrapper for iOS Facebook SDK that helps Facebook integration
with React Native apps. Documented JavaScript modules help access native components
like login, sharing, and share using three npm modules. You have to include three npm
packages: react-native-fbsdkcore, react-native-fbsdkshare, and react-native-
fbsdklogin—that’s it.

For complete documentation or to make a contribution to this project, you may visit the
following: https://github.com/facebook/react-native-fbsdk.

react-native-scrollable-tab-view
Fluid animations really add meaning to any feature in your application. React Native
animations API are getting robust very rapidly; creating smooth animations for scrolling
within tabs is a problem solved by the react-native-scrollable-tab-view npm package.
It’s a very simple JavaScript-only implementation for React Native.

For complete documentation or to make a contribution to this project, you may visit the
following: https://github.com/brentvatne/react-native-scrollable-tab-view.

react-native-webpack-server
react-native-webpack-server allows you to use the webpack ecosystem with React Native.
It is a development server that uses Webpack Dev Server and the React Packager to enable
building React Native JavaScript bundles with webpack.

For complete documentation or to make a contribution to this project, you may visit the
following: https://github.com/mjohnston/react-native-webpack-server.

react-native-side-menu
A very simple implementation of an expandable side menu, this package helps you add a
side menu that scrolls from either the left or right side with an easy swipe gesture.

For complete documentation or to make a contribution to this project, you may visit
the following: https://github.com/react-native-fellowship/react-native-side-
menu#component-props.

https://github.com/facebook/react-native-fbsdk
https://github.com/brentvatne/react-native-scrollable-tab-view
https://github.com/mjohnston/react-native-webpack-server
https://github.com/react-native-fellowship/react-native-side-menu#component-props
https://github.com/react-native-fellowship/react-native-side-menu#component-props

167CHAPTER 7: React Native Supplements

Here are some other notable mentions:

	react-native-vector-icons

	react-native-facebook-login

	react-native-google-places-autocomplete

	react-native-sqlite-storage

	react-native-tableview

	react-native-background-geolocation

Where to Go from Here
Congratulations. You have learned a lot about the React Native framework. But it’s just the
beginning, as the React Native community and ecosystem is expanding rapidly every day.
New development, innovative changes, and cutting-edge features are getting added into
the framework all the time—in short, there is something new to learn every day. For the bold,
it’s an opportunity to embrace. So the obvious question that comes to mind is, What’s next?
The answer is, Plenty.

If you are looking for React Native components that are already built and are available to
be used, you can visit react.parts, which has an exhaustive list of all available reusable
modules; see https://react.parts/native.

For any questions or queries, you can always use stackoverflow with tag react-native. For
really quick responses from fellow developers, you can always hop on the IRC channel for
React Native at #reactnative on IRC: chat.freenode.net. You can also chat with the
React Native community using discord channel Reactiflux at https://discordapp.com/
invite/0ZcbPKXt5bWJVmUY (yep, the React Native community is cool enough to use chat
platforms used by gamers).

React Native is a very young framework, and while working on it you might come up with
suggestions that could help the framework, or maybe some stuff that is overkill for the
framework. The React Native community is very open to suggestions; if you have any
you can start a thread at https://discuss.reactjs.org/. This discussion page is also a
wonderful place for learning about best practices from others and to learn from old threads.
Also, it’s a great place to get your question resolved by the experts. Better yet, you might
just get some job offers too.

Finally, to be a master in React Native there is no better way than to simply build apps. There
is no faster way to become a master of a technology than by getting a little dirty with real-
world projects, solving real-life problems. Since the React Native community is still in its
infancy, there is a wonderful opportunity to learn and share by creating your own modules,
which can help the rest of the community, an added benefit. We hope you enjoyed reading
and learning with this book and have now evolved into a React Native developer building
iOS apps. Just like you, we are very excited about React Native and look forward to seeing
your work make a mark in the world of iOS and React Native. Adios.

https://react.parts/native
https://discordapp.com/invite/0ZcbPKXt5bWJVmUY
https://discordapp.com/invite/0ZcbPKXt5bWJVmUY
https://discuss.reactjs.org/

169

■■A, B
addElement function, 84

■■C
Communication, 135

fetch, 137
server

getting data, 139
saving data, 143

WebSocket, 136
XMLHttpRequest, 135

componentDidMount method, 142

■■D, E
Debugging

code implementation, 165
developer menu, 164
device selection, 161
error message, 162
jsCodeLocation, 162
localhost, 163
React Native, 32

FPS Monitor, 35
in Chrome, 34
in Safari, 35
inspect element, 36
profiling, 38
reload option, 33

WebSocket error message, 165
Device capabilities

animations
Animated library, 126
AnimationExample component, 132
componentDidMount, 133
getInitialState, 132
LayoutAnimation, 126

AsyncStorage, 108
addMessage method, 112
async storage mechanism, 111
getInitialState, 112
React component, 111
updatedStorage method, 113
Update Storage, 110

GeoLocation, 95, 98
annotations, 99
lattitude and longitude, 100
MapView component, 97
parameters, 99

NativeAlert, 114, 119, 123
alert and prompt method, 118
textForButton state, 123

WebView, 124
code review, 125
with URL, 125

Dispatch( ) method, 80

■■F
Fetch, 137
Flexbox

Flex-direction, 48
flex values, 50
landscape mode screen, 48
NavigatorIOS. NavigatorIOS
portrait mode screen, 47
styles, 46

Flux
actions, 80
benefits, 79
components, 78
definition, 75
dispatcher, 78–79
MVC pattern, 76
MVC problem, 76

Index

170 Index

ReactJS application, 81
React Native

add styles, 91
code implementation, 87
MainSection, 90, 92
ToDo application, 88
todo list, 93

stores, 80
Functional Reactive Programming (FRP), 150

■■G
GeoLocation, 95

■■H, I
_handleListProperty function, 60–61

■■J, K
JSX, 8

■■L
ListView, 67

■■M
Model, view and controller (MVC) pattern, 76
MVC problems, 76

■■N
NavigatorIOS

components, 42
mainView component, 43
toolbar, 45
updated navigation bar, 44

■■O
onClickHandler function, 84

■■P, Q
Profiling, 38

■■R
React, 1

advantages, 2
components, 7

HTML properties, 12
state, 14

installation and setup, 6
JSX, 8
one-way data flow, 4, 6
problems, 2
spaghetti relationship, 5
two-way data binding, 4
VDOM, 2

components, 4
working principle, 3

React Native, 20
background-geolocation, 167
debugging, 32 (see also Debugging)

FPS Monitor, 35
in Chrome, 34
in Safari, 35
inspect element, 36
profiling, 38
reload option, 33

facebook-login, 167
FBSDK, 166
google-places-autocomplete, 167
Hello World application, 22

destructuring, 27
iOS simulator, 22
render function, 27
require function, 27
strict mode, 26
Xcode editor, 24

HouseShare project, 30
Android, 31
AppDelegate.m, 31
index.android.js, 31
index.ios.js, 31
iOS folder, 31
node_modules, 31
package.json, 31
RCTRootView, 32

Flux (cont.)

171Index

installation, 20
cli module, 21
Node and npm, 21
updates, 21
Watchman, 21

JavaScriptCore framework, 30
live reload, 29
prerequisites, 20
RCTText, 28
Redux. (see Redux)
Reflux. (see Reflux)
scrollable-tab-view, 166
side menu, 166
sqlite-storage, 167
tableview, 167
TouchableHighlight, 58
vector-icons, 167
webpack-server, 166
web technologies, 29
WebView-based, 29

Redux
definition, 160
principles

Mutations Are Written as Pure
Functions, 161

Single Source of Truth, 161
State Is Read-only, 161

Reflux
Actions, 152
components, 153
definition, 149
vs. Flux, 150
pattern, 150
populated list with options, 159
RefluxTodo, 150
Stores, 152
TodoApp.js, 157
TodoItem component, 154
TodoList.js, 156, 158
updated index.ios.js, 158

renderProperty function, 73
_renderRow function, 74

■■S
ScrollView, 73
Separation of concerns (SoC), 6
Server

getting data, 139
saving data, 143

■■T
TouchableHighlight, 58

■■U
User interface

add images, 54
Flexbox. Flexbox
_handleListProperty

function, 61
List Property component, 61
ListView component, 67
ScrollView, 73
TouchableHighlight, 58

■■V
Virtual DOM (VDOM)

components, 4
working principle, 3

Virtual DOM (VDOM), 2

■■W
waitFor( ) method, 80
WebSocket, 136

■■X, Y, Z
XMLHttpRequest, 135

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Learning the Basics: A Whistle-Stop Tour of React
	 Why React?
	 Virtual DOM
	 One-Way Data Flow
	 Installation and Setup
	 Introduction to Components
	 JSX
	 Deep-Dive Into Components
	 Properties

	 State
	 Summary

	Chapter 2: The Simplest Program: Hello World with React Native
	 What Is React Native?
	 React Native Prerequisites
	 Installation
	 Installing Node and npm
	 Installing Watchman
	 Installing the React Native Package
	 Updating React Native

	 Your First App
	 Creating a Basic Skelton
	 It’s Not a UIWebView
	 Enabling Live Reload

	 Why Is React Native Different?
	 The Anatomy of a React Native Application
	 Debugging
	 Reload
	 Debugging in Chrome
	 Debugging in Safari
	 Showing the FPS Monitor
	 The Inspect Element
	 Starting Profiling

	 Summary

	Chapter 3: Canvas, Brush, and Paint: Working with the User Interface
	 NavigatorIOS
	 Flexbox
	 Flex-direction
	 Flex

	 Adding Images
	 TouchableHighlight
	 Routing to a Component
	 ListView
	 ScrollView
	 Summary

	Chapter 4: Flux: Solving Problems Differently
	 MVC Pattern
	 MVC Problem
	 Flux
	 Success of Flux

	 Flux Deep Dive
	 The Dispatcher
	 The Need for Dispatcher [dispatch() and waitFor()]
	 Stores
	 Actions

	 Flux with ReactJS Example
	 Flux with React Native Example
	 Summary

	Chapter 5: Device Capabilities
	 GeoLocation
	 Reviewing the GeoLocationMap Code
	 Adding Annotation on Map
	 Displaying the Latitude and Longitude of the Present Location
	Reviewing the GeoLocation Code for the Present Location

	 AsyncStorage
	 Reviewing the AsyncStorage Code

	 Native Alert
	 Reviewing the NativeAlert Code
	 Extending the NativeAlert Example
	 Reviewing the Extended NativeAlert Example Code

	 WebView
	 Reviewing the WebView Code

	 Animations
	 Reviewing the Animation Code

	 Summary

	Chapter 6: Communicating with Servers
	 XMLHttpRequest
	 WebSocket
	 Fetch
	 Getting Data from a Server
	 Saving Data to a Server
	 Summary

	Chapter 7: React Native Supplements
	 Reflux
	 Differences from Flux

	 Redux
	
	Single Source of Truth
	 State Is Read-only
	 Mutations Are Written as Pure Functions

	 Debug on Device
	 Popular Modules for React Native
	 react-native-fbsdk
	 react-native- scrollable-tab-view
	 react-native-webpack-server
	 react-native-side-menu

	 Where to Go from Here

	Index

