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Series Editors’ Foreword 

The series Advances in Industrial Control aims to report and encourage 
technology transfer in control engineering. The rapid development of control 
technology has an impact on all areas of the control discipline. New theory, new 
controllers, actuators, sensors, new industrial processes, computer methods, new 
applications, new philosophies…, new challenges. Much of this development 
work resides in industrial reports, feasibility study papers and the reports of 
advanced collaborative projects. The series offers an opportunity for researchers 
to present an extended exposition of such new work in all aspects of industrial 
control for wider and rapid dissemination. 

Over recent years there has been considerable interest in trying to understand 
and quantify the potential benefits that nonlinear control could bring to industrial 
applications. One obstacle to the widespread use of nonlinear control has been the 
issue of finding appropriate nonlinear system models easily. This obstacle is 
commonly avoided by finding a linear model of limited validity and then 
designing a robust control able to deliver satisfactory system performance for a 
wider range of system parameter variations. Finding analytical dynamical 
nonlinear models for routine industrial application to allow the straightforward 
development of nonlinear control designs has been a little more problematic; 
however, there are some industrial areas, such as electrical machines, marine 
systems, and chemical processes, where nonlinear system models are more readily 
available for use in nonlinear control designs. 

In the field of chemical processes, K.M. Hangos, J. Bokor, and G. Szederkényi 
exploited nonlinear system models and used nonlinear control techniques in their 
textbook Analysis and Control of Nonlinear Process Systems (ISBN 978-1-85233-
600-4, 2004) that was published in our related series: Advanced Textbooks in 
Control and Signal Processing. Marine systems is another field where there are 
well-known nonlinear models, and researchers K. D. Do and J. Pan have recently 
developed a whole series of new nonlinear control algorithms for the different 
control tasks demanded of such systems. A comprehensive presentation of their 
work can be found in the Advances in Industrial Control monograph Control of 
Ships and Underwater Vehicles (ISBN 978-1-84882-729-5, 2009). 
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This Advances in Industrial Control monograph by R. Marino, P. Tomei and 
G.M. Verrelli is devoted to the control of induction motors from the industrial 
field of electrical machines. In the monograph the authors report the systematic 
application of nonlinear control techniques to develop a sequence of sophisticated 
control algorithms. The key facilitator in this development is the availability of a 
set of analytical dynamical state space models for induction motor behavior. The 
authors then exploit the structure of these models in a variety of ingenious ways to 
develop the increasingly complex nonlinear control algorithms. Despite the 
closely argued theoretical presentation in the monograph, the basic outline of the 
approach taken should be easily recognizable to any industrial engineer familiar 
with the modern control paradigm, namely: 

• modelling in this case basic electrical equations leading to nonlinear state 
space models (Chapter 1); 

• open-loop inverse model-based control (Chapter 1); 
• feedback control based on a full state vector, including states that are 

unmeasurable (Chapter 2); 
• observers to reconstruct unmeasurable states and observers to estimate 

uncertain system parameter values (Chapter 3). State observers driven by 
measurable outputs will facilitate output feedback designs and parameter 
observers will facilitate adaptive control designs; 

• general output feedback control designs (Chapter 4); and 
• specialized output feedback designs in this case speed sensorless feedback 

control (Chapter 5). 

The authors use this agenda for induction motor control, carefully absorbing 
more and more realistic practical assumptions to develop increasingly general 
control algorithms. At each step of the way, useful validating simulation results 
are presented. These use the same induction motor parameters so it is possible to 
compare results within and indeed across chapters as the various control schemes 
evolve. Surprisingly, not too many different analysis tools from Lyapunov and 
nonlinear control theory are used in the development and the context and 
explanation of those that are used can be found in two useful reference 
appendices. 

The Advances in Industrial Control monograph series has not seen many 
entries that present a wholly nonlinear viewpoint for industrial control system 
design so it is a pleasure to welcome this exhaustive volume by R. Marino, P. 
Tomei and G.M. Verrelli to the series. The authors have stated that one of their 
aims in writing this monograph was to give a unified presentation of these 
nonlinear induction motor controls that subsumes and archives the last thirty or 
more years of development since the engineers at Siemens (1971) and Toshiba 
(1980) first developed the nonlinear control method called the direct field-
oriented control algorithm. Also threaded into the volume is their own significant 
research contribution to the field. Clearly, the monograph will be of great interest 
to electrical and control engineers working in the electrical machines field. 
Academics, postgraduate students and researchers working in the nonlinear 
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control paradigm will also find new inspiration from the work of the authors and 
much transferable knowledge for tackling nonlinear control problems in other 
industrial applications fields. 

Industrial Control Centre M.J. Grimble 
Glasgow M.A. Johnson 
Scotland, UK 
2008 





Preface

The control of induction motors has attracted much attention from researchers and
engineers since 1971. More than 4,000 journal papers have been published on in-
duction motor control and more than 500 specifically on the adaptive control of
induction motors: it is still a very active research area since more than 300 journal
papers appeared in 2008. The industrial interest in induction motor control is docu-
mented by over 80,000 patents on this subject. The availability of low cost powerful
digital signal processors and significant advances in power electronics motivated
the design of complex induction motor controls. The aim is to achieve the same, or
even superior, performance on speed tracking and power efficiency which are ob-
tained by more sophisticated and expensive, but less reliable, electric motors such
as direct current or permanent magnet ones. Direct current motors are extensively
used in variable speed applications since their flux and torque are independently
controlled by the field and the armature current. However, they have disadvantages
due to the mechanical commutator and the brushes so that they are limited in high-
speed, high-voltage operating conditions. Induction motors are much more difficult
to control but have definite advantages since they have no commutator, no brushes,
no rotor windings in squirrel cage motors, they have a simple rugged structure, can
tolerate heavy overloading, and can produce higher torques with a lower weight,
smaller size, and lower rotating mass than direct current motors.

The design of control algorithms for induction motors is, however, very complex
for many reasons. It is a multivariable control problem since there are two indepen-
dent control inputs and two outputs to be controlled: the primary output is the rotor
speed to achieve the required dynamic performance, while the secondary output is
the rotor flux modulus for power efficiency maximization. It is an intrinsic nonlin-
ear problem since the electromagnetic torque, which controls the rotor speed, is a
nonlinear function of stator currents and rotor fluxes, and the operating conditions
of interest are away from the equilibrium points so that linear approximation tech-
niques do not apply. It involves parameters such as load torque and rotor resistance
which may vary widely during operation; they are critical in the control design and
should be identified online to maximize power efficiency. The control design cannot
rely on state variable feedback since rotor flux measurements are not easily avail-

xiii
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able. If rotor speed is not measured in order to reduce costs or due to sensor failures
and only stator currents and voltages are available from measurements, the control
problem is called speed-sensorless. In this case the desired reference signals for ro-
tor speed and flux modulus are to be tracked in spite of parameter perturbations,
while both tracking errors are not available for feedback to the controller. The feed-
forward control which solves the tracking problem in open-loop may be explicitly
obtained by computing the induction motor nonlinear inverse dynamics. The stabil-
ity of the resulting open-loop controlled motor is, however, not always guaranteed
since it depends both on the reference trajectories to be tracked and on motor pa-
rameters. Even in stable operating conditions the dynamic responses may be unsat-
isfactory and poorly damped. Hence, feedback from stator currents, and from rotor
speed when available, has the goal of enhancing both stability and robustness with
respect to parameter perturbations; moreover, it should improve transient behaviors
and power efficiency. This book is focused on the nonlinear feedback control de-
sign techniques, including adaptive ones, which are required to achieve high speed
tracking performance along with high power efficiency in induction motor control.

Besides its technological motivations for electric traction and electric drives, the
control of induction motors has an intrinsic interest from the view point of nonlinear
control theory, since it involves clearly modeled nonlinear terms such as electromag-
netic torque and two critical parameters; the appropriate tools belong to the theory
of adaptive output feedback for multi-input, multi-output nonlinear systems. Such
a theory started to be developed in 1992 for special classes of single-input, single-
output nonlinear systems but it does not encompass the induction motor models.
Hence, the control of induction motors constitutes a very interesting case study
which evolved into a benchmark nonlinear control problem. In fact, most of the
fundamental concepts of nonlinear control theory apply in a nontrivial way. Induc-
tion motors are not feedback linearizable by static state feedback but they are feed-
back linearizable by a dynamic state feedback. It is enough to add one integrator to
achieve feedback linearization; this can be done in many different ways even though
they all lead to singularities that make it inadvisable to render the closed-loop linear
in all operating conditions. Induction motors are input–output feedback linearizable
but the input–output feedback linearizing control, which makes the rotor flux angle
unobservable, is singular when the rotor flux is zero and it is not power efficient
at low rotor flux levels. Induction motors are observable from rotor speed and sta-
tor current measurements so that flux observers, including adaptive ones, can be
designed. Observer-based output feedback controls can also be designed using Lya-
punov techniques. The steady-state dynamics of induction motors are very intrigu-
ing: in the case of constant reference signals for rotor speed and rotor flux modulus,
they constitute a limit cycle in the state space where the rotating speed of the flux
vector is equal to the sum of the desired rotor speed and the so-called slip speed,
which depends on the load torque, the rotor resistance, and the flux modulus. In the
more general case of bounded reference signals the steady-state dynamics may be
very complex. They remain bounded but their stability and attractivity are in gen-
eral difficult to study. In many cases the attractivity is not global and the stability
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is not exponential, depending on the reference signals and physical parameters, and
instabilities or poor dynamic responses may arise.

Engineers at Siemens and Toshiba developed ante litteram in 1971 and 1980, re-
spectively, nonlinear feedback control algorithms which are now called direct field-
oriented control and indirect field-oriented control. At that time nonlinear control
theory was just at its beginning: researchers were investigating basic controllabil-
ity (1972) and observability (1977) properties. In fact, the proof that indirect field-
oriented control is globally stable was published in 1996. Using today’s terminology
we can say that direct field-oriented control is an asymptotic state feedback lin-
earizing control which has a singularity when rotor flux is zero, while indirect field-
oriented control is a global dynamic output feedback control which has no singular-
ities and allows the motor to start from any initial condition. Field-oriented controls
were originally conceived for current-fed motors in which the stator currents can
be controlled very rapidly by stator voltages, so that they may be considered con-
trol inputs by neglecting the stator currents dynamics; they were then extended to
general induction motor models. During the 1980s new important tools in nonlinear
state feedback design were developed: feedback linearization and input–output de-
coupling along with their adaptive generalizations. Good theories proved once again
very useful in applications since they led to very innovative control algorithms for
induction motors, with superior performance with respect to field-oriented controls.
An adaptive feedback linearizing control with online identification of load torque
and rotor resistance was developed in 1991. The goals of field-oriented controls
and feedback linearizing controls are indeed very similar: they both use nonlinear
feedback and nonlinear change of coordinates so that the feedback systems have a
simpler structure.

Since both direct field-oriented control and feedback linearizing control make
use of rotor flux signals there was a strong motivation to design rotor flux observers.
At that time nonlinear observer theory was not fully developed. Nevertheless nonlin-
ear observers for induction motors were designed in 1978: they were called bilinear
observers. A complete theory for rotor flux observers, including observers with ar-
bitrary rate of convergence, was successively developed. Adaptive flux observers
were also designed which are adaptive with respect to rotor resistance, since rotor
flux observers were found to be very sensitive with respect to rotor resistance varia-
tions. Identifiability questions naturally arose and were answered using the concepts
of persistency of excitation and nonlinear observability. Since 1991 the problem of
designing a global output feedback tracking control which does not require rotor
flux measurements, is adaptive with respect to load torque and rotor resistance vari-
ations, and has no singularities was posed and finally solved in 1999 following the
indirect field-oriented approach.

More recently, an important line of research was focused on the design of feed-
back control algorithms based on stator current measurements only. The absence of
rotor speed measurements, which improves the reliability of the motor and reduces
its cost, forced the redesign of those control algorithms which make use of rotor
speed measurements in many crucial steps. The question itself of speed and rotor
flux observability from stator current measurements is rather delicate and leads to
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the discovery of operating conditions in which observability fails: of course, the con-
cept of nonlinear observability has to be used since the motor model is nonlinear.
The study of identifiability of rotor resistance and load torque from stator current
measurements leads to the discovery of persistently exciting reference signals for
the flux modulus, which is required to be time-varying. Several speed sensorless
control algorithms were recently developed which show superior performance with
respect to inverse system based controls but are of course inferior to controls which
make use of speed sensors.

At the present stage of research on induction motor control a coherent collection
of estimation and control algorithms is available, including the most recent speed
sensorless controllers. This book collects and discusses, using a unified notation
and a modern nonlinear control terminology, the most important steps and issues
in the design of estimation and control algorithms for induction motors. Many es-
timation and control algorithms are reported: their stability is analyzed and their
performance is illustrated by simulations and experiments on the same induction
motor. An intense and challenging collective research effort (which also involved
at various stages the authors of this book) is carefully documented and analyzed,
with the aim of providing and clarifying the basic intuition and tools required in the
analysis and design of nonlinear adaptive feedback control algorithms. This material
should be of specific interest to engineers who are engaged in the design of control
algorithms for electric motors and, more generally, to a broader audience interested
in nonlinear control design. In fact, induction motor dynamics are surprisingly rich
and their control is challenging even to engineers with a strong nonlinear control
background. The induction motor is an excellent source of projects, examples, and
exercises for courses in nonlinear control design since they can be physically and
experimentally tested. The book can be used for graduate courses on the control of
induction motors and for independent study.

This book is divided into six chapters and two appendices. Since the stability
of controlled induction motors is carefully analyzed throughout the book, the basic
definitions and tools from Lyapunov stability theory are recalled in Appendix A.
Since in many instances the basic concepts and tools from nonlinear control the-
ory (nonlinear change of coordinates, observability, feedback linearization, input–
output decoupling) are used, they are recalled in Appendix B. In Chapter 1, the
modeling issues and the basic assumptions are discussed; moreover the structural
properties of the models such as observability, parameter identifiability, lineariz-
ability, inverse dynamics and steady-state behaviors, including power losses mini-
mization, are analyzed. Chapter 2 is devoted to state feedback control to explore the
performance which can be obtained using full state variables measurements, and
to examine those controllers which could tolerate the replacements of sensors by
asymptotic observers and those which can be made adaptive with respect to uncer-
tain parameters. The estimation of state variables, in particular rotor fluxes and rotor
currents, and the identification of physical parameters such as load torque and resis-
tances are discussed in Chapter 3: adaptive rotor flux observers are also presented.
In Chapter 4 output feedback controls based on rotor speed, stator current, and stator
voltage measurements are presented: some algorithms incorporate flux observers to
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improve performance, while the most complex algorithm is adaptive with respect to
both torque load and rotor resistance. In Chapter 5 speed-sensorless output feedback
controls which are based only on stator current measurements are discussed along
with their adaptive versions. Chapter 6 contains some concluding remarks. All the
control schemes are numerically simulated for the same motor with similar refer-
ences to illustrate their performance, so that they can be compared: advantages and
drawbacks of each scheme are pointed out. Some estimation and control algorithms
are validated by experiments. Experimental tests are also presented which validate
the motor model and the parameters used. The bibliography collects more than 200
journal papers and books on induction motor control from 1971 to 2009; it is, how-
ever, far from being complete and only contains all the material which was actually
used during the preparation of this book. Finally, frequent exchanges of ideas and
fruitful collaborations with Professor Sergei Peresada on induction motor control
are acknowledged with pleasure.

Rome, Riccardo Marino
December 2009 Patrizio Tomei

Cristiano Maria Verrelli
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Chapter 1

Dynamical Models and Structural Properties

Abstract Starting from the three physical stator and rotor windings, several state
space dynamical models for the induction motor are introduced in this chapter. Each
model clarifies specific dynamical properties. Their steady-state operating condi-
tions are determined and analyzed: in particular the steady-state torque–speed char-
acteristic curve is computed when sinusoidal voltages with constant amplitude and
frequency are applied. This curve reveals many important nonlinear features: for
instance, for a given load torque there may be two operating conditions, a stable
one and an unstable one; they become closer and closer as the load torque increases
up to a load torque bifurcation value. More generally, the dynamic inverse system
is explicitly computed: it generates the voltage inputs which are required to track
a desired time-varying rotor speed profile with the desired rotor flux modulus. The
flux modulus parameterizes the control input: it may be chosen to minimize the
power losses or to keep the voltage modulus constant or below a desired level (field
weakening). The corresponding tracking dynamics are also computed: they deter-
mine limit cycles in the state space whose speed depends on the load torque and the
desired rotor speed and flux. The structural properties of the motor from the control
view point are studied: observability from stator currents and rotor speed measure-
ments; observability from stator currents and rotor fluxes; observability from stator
current measurements only; feedback linearizability, i.e. the possibility of trans-
forming the motor model into a linear and controllable system by state feedback
(either static or dynamic), which implies the controllability property; the identifia-
bility, from different set of measurements, of critical parameters such as load torque
and rotor resistance which may vary during operations. The induction motor turns
out to be feedback linearizable by a dynamic state feedback; it is observable for any
voltage input if stator currents and rotor speed are measured but it is not observ-
able if only stator currents are measured and rotor speed and rotor fluxes are kept
constant.

1



2 1 Dynamical Models and Structural Properties

1.1 Modeling Assumptions

Consider a two-pole, three-phase symmetrical induction machine (see Figure 1.1).
The stator windings are assumed to be identical with resistance Rs and equivalent

Fig. 1.1 Three-phase induction motor

turns Ns. The rotor windings are also assumed to be identical with resistance Rr and
equivalent turns Nr. The air gap is assumed to be uniform. Stator and rotor windings
are assumed to be approximated as sinusoidally distributed windings. The angle δ
represents the rotor position with respect to the stator. We assume that the induction
machine is operated as a motor, that is the rotor speed

ω =
dδ
dt

and the load torque TL have opposite signs. The rotor windings are short circuited
while the stator windings are connected to a balanced three-phase source. When a
balanced three-phase current is flowing in the stator windings an air gap magneto-
motive force rotates about the air gap at a speed determined by the frequency of
the stator currents and the number of poles. If the speed of the rotating magneto-
motive force is different from the rotor speed, balanced three-phase currents will
be induced in the short circuited rotor windings; the names of induction motor or
asynchronous motor are due to this physical principle. The difference between the
speed of the rotating magneto-motive force due to stator currents and the speed
of the rotor determines the frequency of the induced rotor currents. If this speed
difference is zero, that is the rotor rotates at the same speed as the magneto-motive
force, no rotor currents are induced. Let

Ψs = [ψs1,ψs2,ψs3]T
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Ψr = [ψr1,ψr2,ψr3]T

be the vectors whose components are the stator and rotor flux linkages, respectively,
with 1,2,3 denoting the three phases. Similarly, let

Is = [is1, is2, is3]T

Ir = [ir1, ir2, ir3]T

be the vectors whose components are the stator and rotor currents. Then, for an
induction motor with one pole pair, we can write

dψs1

dt
+Rsis1 = us1

dψs2

dt
+Rsis2 = us2

dψs3

dt
+Rsis3 = us3

dψr1

dt
+Rrir1 = 0

dψr2

dt
+Rrir2 = 0

dψr3

dt
+Rrir3 = 0 (1.1)

where the stator and rotor fluxes, under the assumption of linear magnetic circuits,
satisfy the linear relation [

Ψs
Ψr

]
=
[

ls ls,r
lT
s,r lr

][
Is
Ir

]
(1.2)

with

ls =

⎡
⎣ lsl + lsm − lsm

2 − lsm
2

− lsm
2 lsl + lsm − lsm

2
− lsm

2 − lsm
2 lsl + lsm

⎤
⎦

ls,r = lsr

⎡
⎣ cos(δ ) cos

(
δ + 2

3π
)

cos
(
δ − 2

3π
)

cos
(
δ − 2

3π
)

cos(δ ) cos
(
δ + 2

3π
)

cos
(
δ + 2

3π
)

cos
(
δ − 2

3π
)

cos(δ )

⎤
⎦

lr =

⎡
⎣ lrl + lrm − lrm

2 − lrm
2

− lrm
2 lrl + lrm − lrm

2
− lrm

2 − lrm
2 lrl + lrm

⎤
⎦ . (1.3)

In (1.3) lsl denotes the leakage inductance of the stator windings, lsm denotes the
magnetizing inductance of the stator windings, lrl denotes the leakage inductance
of the rotor windings, lrm denotes the magnetizing inductance of the rotor windings,
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and lsr denotes the amplitude of the mutual inductance between stator and rotor
windings. Neglecting iron losses we set lsl = 0 and lrl = 0 so that (1.3) becomes

ls = lsm

⎡
⎣ 1 − 1

2 − 1
2

− 1
2 1 − 1

2
− 1

2 − 1
2 1

⎤
⎦

lr = lrm

⎡
⎣ 1 − 1

2 − 1
2

− 1
2 1 − 1

2
− 1

2 − 1
2 1

⎤
⎦ .

Denote by

Ls =
3
2

lsm

Lr =
3
2

lrm

M =
3
2

lsr

the stator, rotor, and mutual inductances, respectively. Hence, from (1.3) we have

ls =
2
3

Ls

⎡
⎣ 1 − 1

2 − 1
2

− 1
2 1 − 1

2
− 1

2 − 1
2 1

⎤
⎦

ls,r =
2
3

M

⎡
⎣ cos(δ ) cos

(
δ + 2

3π
)

cos
(
δ − 2

3π
)

cos
(
δ − 2

3π
)

cos(δ ) cos
(
δ + 2

3π
)

cos
(
δ + 2

3π
)

cos
(
δ − 2

3π
)

cos(δ )

⎤
⎦

lr =
2
3

Lr

⎡
⎣ 1 − 1

2 − 1
2

− 1
2 1 − 1

2
− 1

2 − 1
2 1

⎤
⎦ . (1.4)

When the motor is operating in balanced conditions we have the constraints

is1 + is2 + is3 = 0
ir1 + ir2 + ir3 = 0

us1 +us2 +us3 = 0 (1.5)

and, therefore, it is convenient to introduce the new variables

⎡
⎣ is0

isa
isb

⎤
⎦ =

√
2
3

⎡
⎢⎣

√
2

2

√
2

2

√
2

2
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

⎤
⎥⎦
⎡
⎣ is1

is2
is3

⎤
⎦ �= U

⎡
⎣ is1

is2
is3

⎤
⎦ (1.6)

in which U is a unitary matrix (U−1 = UT and det[U ] = 1); similarly we define
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⎣ ir0

ird′
irq′

⎤
⎦ = U

⎡
⎣ ir1

ir2
ir3

⎤
⎦

⎡
⎣ψs0
ψsa
ψsb

⎤
⎦ = U

⎡
⎣ψs1
ψs2
ψs3

⎤
⎦

⎡
⎣ ψr0
ψrd′
ψrq′

⎤
⎦ = U

⎡
⎣ψr1
ψr2
ψr3

⎤
⎦

⎡
⎣us0

usa
usb

⎤
⎦ = U

⎡
⎣us1

us2
us3

⎤
⎦ (1.7)

where (ψrd′ ,ψrq′) and (ird′ , irq′) denote the (d′,q′)-components of the rotor flux and
current vectors in the (d′,q′) reference frame attached to the rotor, rotating at rotor
speed ω = δ̇ and identified by the rotor angle δ in the fixed (a,b) reference frame
attached to the stator, while (ψsa, ψsb) and (usa, usb) denote the (a,b)-components
of the stator flux and the stator voltage vectors in the fixed (a,b) frame.

1.2 State Space Models

Let Te be the electromagnetic torque produced by the motor and J the motor moment
of inertia. Recall that TL is the load torque while Rs and Rr are the stator and rotor
resistances, respectively. Since in balanced operating conditions (1.5) is0 = 0, ir0 = 0
and us0 = 0, on the basis of (1.1), (1.6), and (1.7), for an induction motor with one
pole pair we can write (the damping friction torque is usually negligible in induction
motors and it is therefore set equal to zero)

ψ̇sa +Rsisa = usa

ψ̇sb +Rsisb = usb

ψ̇rd′ +Rrird′ = 0
ψ̇rq′ +Rrirq′ = 0

δ̇ = ω
Jω̇ = Te −TL (1.8)

in which [
ird′
irq′

]
=
[

cosδ sinδ
−sinδ cosδ

][
ira
irb

]
[
ψrd′
ψrq′

]
=
[

cosδ sinδ
−sinδ cosδ

][
ψra
ψrb

]
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with (ψra, ψrb) and (ira, irb) denoting the (a,b)-components of the rotor flux and
the rotor current in the fixed (a,b) frame. Since[

ψ̇ra
ψ̇rb

]
=
[

cosδ −sinδ
sinδ cosδ

][
ψ̇rd′
ψ̇rq′

]
+ω
[−sinδ −cosδ

cosδ −sinδ

][
ψrd′
ψrq′

]

= −
[

Rr 0
0 Rr

][
ira
irb

]
+
[−ωψrb
ωψra

]
(1.9)

we can write in (a,b) coordinates [
ψ̇sa
ψ̇sb

]
+
[

Rs 0
0 Rs

][
isa
isb

]
=
[

usa
usb

]
[
ψ̇ra
ψ̇rb

]
+
[

Rr 0
0 Rr

][
ira
irb

]
+
[

0 ω
−ω 0

][
ψra
ψrb

]
=
[

0
0

]
. (1.10)

From (1.2), (1.4), (1.6), and (1.7), the electromagnetic equations are⎡
⎢⎢⎣
ψsa
ψsb
ψra
ψrb

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Ls 0 M 0
0 Ls 0 M
M 0 Lr 0
0 M 0 Lr

⎤
⎥⎥⎦
⎡
⎢⎢⎣

isa
isb
ira
irb

⎤
⎥⎥⎦ �= L

⎡
⎢⎢⎣

isa
isb
ira
irb

⎤
⎥⎥⎦ . (1.11)

The matrix L is positive definite, i.e. the quadratic form associated to L

1
2

iTLi (1.12)

is positive for any nonzero value of the current vector i = [isa, isb, ira, irb]T: (1.12)
represents the magnetic energy. This implies that LsLr > M2. Define

R �=

⎡
⎢⎢⎣

Rs 0 0 0
0 Rs 0 0
0 0 Rr 0
0 0 0 Rr

⎤
⎥⎥⎦ (1.13)

so that, if we eliminate (ψsa,ψsb,ψra,ψrb) in (1.10) by using (1.11), we obtain the
first state space model

L

⎡
⎢⎢⎣

disa
dt

disb
dt

dira
dt

dirb
dt

⎤
⎥⎥⎦ = −R

⎡
⎢⎢⎣

isa
isb
ira
irb

⎤
⎥⎥⎦−
⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 ωM 0 ωLr

−ωM 0 −ωLr 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

isa
isb
ira
irb

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

usa
usb
0
0

⎤
⎥⎥⎦

J
dω
dt

= Te −TL (1.14)
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in which the state variables are (isa, isb, ira, irb,ω) and the electromagnetic torque
Te is still to be determined as a function of the state variables. This choice of state
variables is naturally linked to the energy stored in the motor given by

E =
1
2

iTLi+
1
2

Jω2 (1.15)

which is the sum of the magnetic energy (1.12) and of the kinetic energy

1
2

Jω2 . (1.16)

The expression of Te can be obtained from the energy balance

dE
dt

= [isa, isb][usa,usb]T −TLω− iTRi

+ω [ira, irb]
[

0 −M
M 0

]
[isa, isb]T +Teω . (1.17)

Let Pin, Pout , and Ploss denote the input power, the output power, and the power
losses, respectively; since

dE
dt

= Pin −Pout −Ploss

= [isa, isb][usa,usb]T −TLω− iTRi , (1.18)

comparing (1.17) with (1.18) it follows that

Te = [ira, irb]
[

0 −M
M 0

]
[isa, isb]T = M(iraisb − irbisa) . (1.19)

Note that the electromagnetic torque Te produced by the motor is a nonlinear func-
tion of the state variables and constitutes the main nonlinear term in the induction
motor model. Since from (1.11)

ira = −M
Lr

isa +
1
Lr
ψra

irb = −M
Lr

isb +
1
Lr
ψrb (1.20)

the electromagnetic torque Te can also be expressed as

Te =
M
Lr

(ψraisb −ψrbisa) . (1.21)

From (1.14) and (1.19) we obtain the overall state space model in terms of the state
variables (isa, isb, ira, irb,ω) and the input variables (usa,usb,TL)
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B

⎡
⎢⎢⎢⎢⎢⎣

disa
dt

disb
dt

dira
dt

dirb
dt
dω
dt

⎤
⎥⎥⎥⎥⎥⎦+(K +C)

⎡
⎢⎢⎢⎢⎣

isa
isb
ira
irb
ω

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

usa
usb
0
0

−TL

⎤
⎥⎥⎥⎥⎦ (1.22)

with

B =

⎡
⎢⎢⎢⎢⎣

Ls 0 M 0 0
0 Ls 0 M 0
M 0 Lr 0 0
0 M 0 Lr 0
0 0 0 0 J

⎤
⎥⎥⎥⎥⎦ , K =

⎡
⎢⎢⎢⎢⎣

Rs 0 0 0 0
0 Rs 0 0 0
0 0 Rr 0 0
0 0 0 Rr 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

C =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 ωLr Misb
0 0 −ωLr 0 −Misa
0 0 −Misb Misa 0

⎤
⎥⎥⎥⎥⎦ . (1.23)

Note that the matrix C is skew-symmetric, i.e. C = −CT. If we differentiate with
respect to time the total energy (1.15), which can also be expressed as

E =
1
2
[iT,ω]B

[
i
ω

]

we reobtain (1.18)

dE
dt

= −[iT,ω]K
[

i
ω

]
+ isausa + isbusb −ωTL

= −Ploss +Pin −Pout

since C = −CT. The model (1.22) is very advantageous to analyze the energy bal-
ance: for this reason the model (1.22) will be referred to as the energy model. In
fact, integrating with respect to time the power balance (1.18), we obtain the total
energy balance from an initial time t0 to the time t:

E(t)−E(t0)+
∫ t

t0
i(τ)TRi(τ)dτ

=
1
2

i(t)TLi(t)− 1
2

i(t0)TLi(t0)+
1
2

Jω2(t)− 1
2

Jω2(t0)+
∫ t

t0
i(τ)TRi(τ)dτ

=
∫ t

t0
[isa(τ)usa(τ)+ isb(τ)usb(τ)]dτ−

∫ t

t0
TLω(τ)dτ .

Eliminating (ψsa,ψsb, ira, irb) in (1.10) by using (1.11), namely (recall also (1.20))
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[
ira
irb

]
=
[−M

Lr
0

0 −M
Lr

][
isa
isb

]
+

[
1
Lr

0
0 1

Lr

][
ψra
ψrb

]
(1.24)

[
ψsa
ψsb

]
=

[
Ls − M2

Lr
0

0 Ls − M2

Lr

][
isa
isb

]
+
[ M

Lr
0

0 M
Lr

][
ψra
ψrb

]
(1.25)

we obtain a state space model in terms of the state variables (ω,ψra,ψrb, isa, isb) and
the input variables (usa,usb,TL)

dω
dt

= μ (ψraisb −ψrbisa)− TL

J
dψra

dt
= −αψra −ωψrb +αMisa

dψrb

dt
= −αψrb +ωψra +αMisb

disa

dt
= −γisa +

usa

σ
+βαψra +βωψrb

disb

dt
= −γisb +

usb

σ
+βαψrb −βωψra (1.26)

in which the following reparameterization is used:

μ =
M

JLr

α =
Rr

Lr

σ = Ls

(
1− M2

LsLr

)

β =
M
σLr

γ =
Rs

σ
+βαM . (1.27)

Note that since σ > 0, all the above parameters are greater than zero. From (1.26) it
follows that

disa

dt
= −Rs

σ
isa +

usa

σ
−β dψra

dt
disb

dt
= −Rs

σ
isb +

usb

σ
−β dψrb

dt
. (1.28)

The state space model (1.26), which will be referred to as the fixed frame model,
has some advantages from the control view point since it clarifies that the control
inputs (usa,usb) directly affect the dynamics of the stator currents (isa, isb) which
can be viewed as intermediate control variables since they control the rotor speed ω
and the rotor flux modulus

√
ψ2

ra +ψ2
rb in the first three equations in (1.26). Note
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that the model (1.26) is highly nonlinear due to the expression of the produced
electromagnetic torque Te = μ(ψraisb −ψrbisa) and to the products ωψrb and ωψra
appearing in the last four equations in (1.26) which are originated by the rotation of
the rotor at speed ω(t), according to (1.9).

Let us now introduce a time-varying (d,q) frame which rotates at an arbitrary
speed ω0(t) and is identified at each time t by the angle ε0(t) so that

dε0

dt
= ω0 (1.29)

with ε0(0) an arbitrary initial condition. Rotor fluxes (ψra,ψrb), stator currents

Fig. 1.2 (d,q) reference frame for the rotating frame model

(isa, isb), and stator voltages (usa,usb) are expressed with respect to the time-varying
rotating (d,q) frame as (see Figure 1.2)[

ψrd
ψrq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
ψra
ψrb

]
[

isd
isq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
isa
isb

]
[

usd
usq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
usa
usb

]
. (1.30)

If the new state variables (ω,ψrd ,ψrq, isd , isq) and input variables (usd ,usq,TL) are
used, in the new (d,q) rotating coordinates the induction motor model (1.26) be-
comes

dω
dt

= μ (ψrdisq −ψrqisd)− TL

J
dψrd

dt
= −αψrd +(ω0 −ω)ψrq +αMisd
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dψrq

dt
= −αψrq − (ω0 −ω)ψrd +αMisq

disd

dt
= −γ isd +ω0isq +βαψrd +βωψrq +

usd

σ
disq

dt
= −γ isq −ω0isd +βαψrq −βωψrd +

usq

σ
(1.31)

which generalizes the fixed frame model (1.26) since (1.31) becomes (1.26) in the
special case in which the speed ω0 of the rotating coordinate frame is zero along
with the initial angle ε0(0) (i.e. ω0 = ε0(0) = 0 in (1.31)). The state space model
(1.31) will be referred to as the rotating frame model.

In the third equation in (1.31) ω0 can be freely chosen to our advantage. If we
set, assuming ψrd �= 0,

ω0 = ω+
αMisq

ψrd
(1.32)

the third equation in (1.31) becomes

dψrq

dt
= −αψrq (1.33)

which implies, since α > 0, that ψrq(t) tends exponentially to zero for any initial
condition ψrq(0), i.e.

ψrq(t) = e−αtψrq(0) . (1.34)

If ψrq(0) = 0 then ψrq(t) = 0 for every t ≥ 0. Equations (1.29) and (1.32) give

dε0

dt
= ω+

αMisq

ψrd
. (1.35)

Substituting (1.32) in (1.31) we obtain

dω
dt

= μ (ψrdisq −ψrqisd)− TL

J
dψrd

dt
= −αψrd +

αMisq

ψrd
ψrq +αMisd

dψrq

dt
= −αψrq

disd

dt
= −γisd +ωisq +

αMi2sq

ψrd
+βαψrd +βωψrq +

usd

σ
disq

dt
= −γisq −ωisd − αMisqisd

ψrd
+βαψrq −βωψrd +

usq

σ
. (1.36)

The model (1.36) is a special case of the rotating frame model (1.31) in which ω0
is chosen according to (1.32). If ψrq(0) = 0 and consequently, according to (1.34),
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ψrq(t) = 0 for every t ≥ 0, then the (d,q) frame rotates so that the direct axis coin-
cides with the rotor flux vector and ε0 coincides with the angle ρ between the flux
vector and the a-axis (see Figure 1.3), that is

ψra = ψrd cosρ
ψrb = ψrd sinρ (1.37)

with

ψrd =
√
ψ2

ra +ψ2
rb

ρ = arctan
(
ψrb

ψra

)
. (1.38)

In this case, i.e. when ψrq(0) = 0 or equivalently ε0 = ρ , equations (1.36) become

Fig. 1.3 (d,q) reference frame when ε0 = ρ for the field-oriented model

dω
dt

= μψrdisq − TL

J
dψrd

dt
= −αψrd +αMisd

dρ
dt

= ω+
αMisq

ψrd

disd

dt
= −γisd +ω isq +

αMi2sq

ψrd
+βαψrd +

usd

σ
disq

dt
= −γisq −ωisd − αMisqisd

ψrd
−βωψrd +

usq

σ
(1.39)
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which constitutes a motor state space model with state variables (ω ,ψrd ,ρ, isd , isq)
and input variables (usd ,usq,TL). The model (1.39) will be referred to as field-
oriented model. Several important comments on the field-oriented model (1.39) are
in order:

1. The difference between the rotor flux speed of rotation ρ̇ and the rotor speed ω
is equal to αMisq

ψrd
: it is usually called slip speed ωs and is expressed as follows:

ωs = ρ̇−ω =
αMisq

ψrd
=
αMTe

μψ2
rd

=
RrM(ψraisb −ψrbisa)

Lr(ψ2
ra +ψ2

rb)
; (1.40)

it is proportional to the electromagnetic torque Te and inversely proportional to
the the flux modulus squared: the smaller the flux modulus, the larger the flux
speed of rotation ρ̇ while the larger the electromagnetic torque Te, the larger the
flux speed of rotation ρ̇ .

2. No matter how ε0(0), or equivalently ψrq(0), is chosen, (1.39) describes the lim-
iting behavior of (1.36) as t goes to infinity according to (1.34).

3. The field-oriented model (1.39) is an equivalent (except at ψra = ψrb = 0) de-
scription of the fixed frame model (1.26) in the new state variables

ω = ω

ψrd =
√
ψ2

ra +ψ2
rb

ρ = arctan
(
ψrb

ψra

)

isd =
ψraisa +ψrbisb√
ψ2

ra +ψ2
rb

= isa cosρ+ isb sinρ

isq =
ψraisb −ψrbisa√
ψ2

ra +ψ2
rb

= −isa sinρ+ isb cosρ (1.41)

and new control input coordinates

usd =
ψrausa +ψrbusb√

ψ2
ra +ψ2

rb

= usa cosρ+usb sinρ

usq =
ψrausb −ψrbusa√

ψ2
ra +ψ2

rb

= −usa sinρ+usb cosρ . (1.42)

4. The field-oriented model (1.39) is the most advantageous from the control view
point since the control inputs (usd ,usq) directly affect the currents (isd , isq) dy-
namics only; the stator current vector (isd , isq) can be viewed as an intermediate
control vector in the reduced order model
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dω
dt

= μψrdisq − TL

J
dψrd

dt
= −αψrd +αMisd

dρ
dt

= ω+
αMisq

ψrd

which is often called current-fed model. This model clarifies that the direct cur-
rent component isd (which is sometimes called excitation current) is solely and
directly responsible for the rotor flux modulus ψrd dynamics and indirectly re-
sponsible for the electromagnetic torque production through ψrd itself, while the
quadrature current component isq is directly responsible for the electromagnetic
torque production and therefore for the rotor speed ω dynamics.

5. As we shall see in the next section, the field-oriented model (1.39) allows
us to determine immediately the sinusoidal steady-state operating condition
corresponding to a constant speed ω∗ and to a constant flux modulus ψ∗ =√
ψ2

ra +ψ2
rb. Given ω∗, ψ∗, and TL, if we set in (1.39) the time derivatives equal

to zero and solve for (i∗sd , i∗sq, u∗sd , u∗sq) the right-hand side in (1.39), we easily
obtain (i∗sd , i∗sq) from the first two equations in (1.39) and (u∗sd , u∗sq) from the
last two equations in (1.39), while the third equation gives the speed of rotation
ω∗ +αMi∗sq/ψ∗ for the operating condition.

In conclusion, four state space models have been determined for the balanced,
unsaturated induction motor:

1. The energy model

B

⎡
⎢⎢⎢⎢⎢⎣

disa
dt

disb
dt

dira
dt

dirb
dt
dω
dt

⎤
⎥⎥⎥⎥⎥⎦+(K +C)

⎡
⎢⎢⎢⎢⎣

isa
isb
ira
irb
ω

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

usa
usb
0
0

−TL

⎤
⎥⎥⎥⎥⎦

with

B =

⎡
⎢⎢⎢⎢⎣

Ls 0 M 0 0
0 Ls 0 M 0
M 0 Lr 0 0
0 M 0 Lr 0
0 0 0 0 J

⎤
⎥⎥⎥⎥⎦ , K =

⎡
⎢⎢⎢⎢⎣

Rs 0 0 0 0
0 Rs 0 0 0
0 0 Rr 0 0
0 0 0 Rr 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

C =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 ωLr Misb
0 0 −ωLr 0 −Misa
0 0 −Misb Misa 0

⎤
⎥⎥⎥⎥⎦
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in which (isa, isb, ira, irb, ω) are the state variables and (usa, usb) are the
control inputs.

2. The fixed frame model

dω
dt

= μ (ψraisb −ψrbisa)− TL

J
dψra

dt
= −αψra −ωψrb +αMisa

dψrb

dt
= −αψrb +ωψra +αMisb

disa

dt
= −γisa +

usa

σ
+βαψra +βωψrb

disb

dt
= −γisb +

usb

σ
+βαψrb −βωψra

in which (ω , ψra, ψrb, isa, isb) are the state variables and (usa, usb) are the
control inputs.

3. The rotating frame model

dω
dt

= μ (ψrdisq −ψrqisd)− TL

J
dψrd

dt
= −αψrd +(ω0 −ω)ψrq +αMisd

dψrq

dt
= −αψrq − (ω0 −ω)ψrd +αMisq

disd

dt
= −γisd +ω0isq +βαψrd +βωψrq +

usd

σ
disq

dt
= −γisq −ω0isd +βαψrq −βωψrd +

usq

σ

in which (ω , ψrd , ψrq, isd , isq) are the state variables, (usd , usq) are the
control inputs, and ω0 is the speed of the rotating coordinate frame.

4. The field-oriented model (ψrd > 0)

dω
dt

= μψrdisq − TL

J
dψrd

dt
= −αψrd +αMisd

dρ
dt

= ω+
αMisq

ψrd

disd

dt
= −γ isd +ω isq +

αMi2sq

ψrd
+βαψrd +

usd

σ
disq

dt
= −γ isq −ωisd − αMisqisd

ψrd
−βωψrd +

usq

σ
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in which (ω ,ψrd , ρ , isd , isq) are the state variables, (usd , usq) are the control
inputs and ρ̇ is the speed of the rotating coordinate frame.

Throughout this book all numerical simulations are performed for a low power in-
duction motor whose parameters are provided by the manufacturer and are given in
Table 1.1. A detailed description of the experimental set-up, including the motor, is
given in Section 1.8 where simulated and experimental data are compared.

Table 1.1 Nominal motor parameters

Motor-load inertia J = 0.0075Kgm2

Stator resistance Rs = 5.3Ω
Rotor resistance Rr = 3.3Ω
Stator inductance Ls = 0.365H
Rotor inductance Lr = 0.375H
Mutual inductance M = 0.34H

1.3 Steady-state Operating Conditions with Sinusoidal Voltages

Let us first determine the constant vectors (ψ∗,0), (i∗sd , i
∗
sq), (u∗sd ,u

∗
sq) which rotate

at constant speed

ρ̇∗ = ω∗ +
αMi∗sq

ψ∗ = ω∗ +ω∗
s (1.43)

when the rotor speed ω∗ is constant and constitute a steady-state solution for the
field-oriented model (1.39) if ρ∗(0) = ρ(0), i.e. they satisfy (1.43) and

μψ∗i∗sq −
TL

J
= 0

−αψ∗ +αMi∗sd = 0

−γi∗sd +ω∗i∗sq +
αMi∗2

sq

ψ∗ +βαψ∗ +
u∗sd
σ

= 0

−γ i∗sq −ω∗i∗sd −
αMi∗sqi∗sd

ψ∗ −βω∗ψ∗ +
u∗sq

σ
= 0 . (1.44)

Solving for (i∗sd , i
∗
sq) the first two equations in (1.44) we obtain

i∗sd =
ψ∗

M
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i∗sq =
TL

Jμψ∗ (1.45)

so that the steady-state slip speed is from (1.43)

ω∗
s =

αMTL

Jμψ∗2 =
RrTL

ψ∗2 .

Note that the steady-state slip speed ω∗
s depends on ψ∗ and on two critical parame-

ters Rr and TL only, while the rotation speed of the steady-state operating condition
is ω∗ + RrTL/ψ∗2 and depends on the references (ω∗, ψ∗) and on the parameters
(Rr, TL). Substituting (1.45) in the last two equations in (1.44) we obtain (recall that
μJ = M

Lr
and γ = Rs

σ +αβM)

u∗sd =
Rs

M
ψ∗ − σTLω∗

Jμψ∗ − σαMT 2
L

J2μ2ψ∗3

u∗sq =
σ(γ+α)TL

Jμψ∗ +σ
(

1
M

+β
)
ω∗ψ∗ . (1.46)

Hence the steady-state, time-varying operating conditions in fixed coordinates for
(1.26) are given by[

ψ∗
ra
ψ∗

rb

]
=
[

cosρ∗ −sinρ∗
sinρ∗ cosρ∗

][
ψ∗
0

]
[

i∗sa
i∗sb

]
=
[

cosρ∗ −sinρ∗
sinρ∗ cosρ∗

][ ψ∗
M
TL

Jμψ∗

]

[
u∗sa
u∗sb

]
=
[

cosρ∗ −sinρ∗
sinρ∗ cosρ∗

]⎡⎣ Rs
Mψ

∗ − σTLω∗
Jμψ∗ − σαMT 2

L
J2μ2ψ∗3

σ(γ+α)TL
Jμψ∗ +σ

( 1
M +β

)
ω∗ψ∗

⎤
⎦

ρ̇∗ = ω∗ +
αMTL

Jμψ∗2 = ω∗ +
RrTL

ψ∗2 = ω∗ +ω∗
s

ρ∗(0) = arctan
(
ψrb(0)
ψra(0)

)
. (1.47)

The motor trajectories in the (ψra,ψrb,ω) space are reported in Figure 1.4 for
ω∗ = 100rad/s, ψ∗ = 1.16Wb, and TL = 3Nm. The steady-state solutions (1.47)
are parametrized by the flux modulus ψ∗. In fact, given a desired rotor speed
value ω∗, a load torque TL and a fixed set of motor parameter values, there are in-
finitely many compatible operating conditions (ψ∗,0), [i∗sd(ψ

∗), i∗sq(ψ∗)], [u∗sd(ψ
∗),

u∗sq(ψ∗)] which depend on the rotor flux modulus ψ∗ and which rotate at speed
ρ̇∗ = ω∗ +ω∗

s (ψ∗). Hence the rotor flux modulus ψ∗ can be chosen for optimal
steady-state performance and in particular to minimize the steady-state power losses
given by Ploss = i∗TRi∗ and to keep the voltage vector modulus constant or below a
desired level (field weakening).
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Fig. 1.4 Motor trajectories in the (ψra,ψrb,ω) state space (ω∗ = 100rad/s, ψ∗ = 1.16Wb, TL =
3Nm)

Remarks

1. If TL = 0 then (1.46) and (1.47) become[
u∗sa
u∗sb

]
=
[

cosρ∗ −sinρ∗
sinρ∗ cosρ∗

][ Rs
Mψ

∗

σ
( 1

M +β
)
ω∗ψ∗

]
ρ̇∗ = ω∗

which are independent of Rr while

i∗sd =
ψ∗

M
i∗sq = 0 .

Hence, in the case of TL = 0 the steady-state is independent of Rr: consequently
Rr cannot be determined from steady-state measurements (ω∗, ψ∗

ra, ψ∗
rb, i∗sa, i

∗
sb,

u∗sa,u
∗
sb), since the rotor currents are zero according to (1.24).

2. If rotor speed measurements are not available, the rotor speed ω∗ and the param-
eter α = Rr

Lr
cannot be uniquely determined from rotor fluxes (ψ∗

ra,ψ∗
rb), stator

currents (i∗sa, i
∗
sb), and stator voltages (u∗sa,u

∗
sb) since (1.47) can be rewritten as

[
u∗sa
u∗sb

]
=
[

cosρ∗ −sinρ∗
sinρ∗ cosρ∗

][ Rs
Mψ

∗ − σTLρ̇∗
Jμψ∗

RsTL
Jμψ∗ +σ

( 1
M +β

)
ψ∗ρ̇∗

]

ρ̇∗ = ω∗ +
RrTL

ψ∗2 .
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Only the linear combination ρ̇∗ = ω∗ + TL
ψ∗2 Rr can be determined from steady-

state measurements (ψ∗
ra,ψ∗

rb, i∗sa, i
∗
sb, u∗sa,u

∗
sb): hence ω∗ can be uniquely deter-

mined only when TL = 0.

1.3.1 Power Loss Minimization

The power which is required at the steady-state

P∗
in = u∗sai∗sa +u∗sbi∗sb

to balance a given load torque TL at a desired speed ω∗ is given by

u∗sai∗sa +u∗sbi∗sb = TLω∗ +P∗
loss

and is minimized if P∗
loss is minimized. Power losses are expressed as

Ploss = Rs
(
i2sa + i2sb

)
+Rr
(
i2ra + i2rb

)
.

Substituting (ira, irb) given in (1.20) we can also write

Ploss = Rs
(
i2sa + i2sb

)
+Rr

[(
−M

Lr
isa +

1
Lr
ψra

)2

+
(
−M

Lr
isb +

1
Lr
ψrb

)2
]

=
(

Rs +
RrM2

L2
r

)(
i2sa + i2sb

)
+

Rr

L2
r

(
ψ2

ra +ψ2
rb
)

−2RrM
L2

r
(isaψra + isbψrb) . (1.48)

At steady-state, from (1.47) we compute

i∗2
sa + i∗2

sb =
ψ∗2

M2 +
T 2

L
J2μ2ψ∗2

i∗saψ∗
ra + i∗sbψ

∗
rb =

ψ∗2

M
(1.49)

so that, from (1.48), we obtain the steady-state power losses (recall that Jμ = M
Lr

)

P∗
loss =

Rs

M2ψ
∗2 +
(

Rs +
RrM2

L2
r

)
L2

r T 2
L

M2ψ∗2 . (1.50)

Differentiating with respect to ψ∗2 and equating to zero we have

dP∗
loss

dψ∗2 =
Rs

M2 −
(

Rs +
RrM2

L2
r

)
L2

r T 2
L

M2ψ∗4 = 0
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which gives the value ψ∗ at which the minimum for P∗
loss is attained, i.e.

ψ∗4 =
(

L2
r +

RrM2

Rs

)
T 2

L

or

ψ∗ = 4

√(
L2

r +
RrM2

Rs

)
T 2

L . (1.51)

Note that the optimal flux modulus is independent of the desired speed (since no
damping is assumed) and depends on four motor parameters (Lr,M,Rr,Rs) and on
the load torque TL. It does not depend on Ls. Hence, one of the motivations for
online parameter estimation is the minimization of power losses by adjusting the
desired flux modulus on the basis of the estimated parameter values. The most crit-
ical parameters which may vary online are the load torque, since it can abruptly
change, and the rotor resistance, which changes due to rotor heating and cannot be
measured.

1.3.2 Field Weakening

If we impose that the voltage vector modulus should not exceed (or should be equal
to) a given desired value V ∗ for any desired speed ω∗, according to (1.47), from

u∗2
sa +u∗2

sb =
[

Rs

M
ψ∗ − σTLω∗

Jμψ∗ − σαMT 2
L

J2μ2ψ∗3

]2

+
[
σ(γ+α)TL

Jμψ∗ +σ
(

1
M

+β
)
ω∗ψ∗

]2

≤V ∗2 (1.52)

or

u∗2
sa +u∗2

sb =
[

Rs

M
ψ∗ − σTLω∗

Jμψ∗ − σαMT 2
L

J2μ2ψ∗3

]2

+
[
σ(γ+α)TL

Jμψ∗ +σ
(

1
M

+β
)
ω∗ψ∗

]2

= V ∗2 (1.53)

the value of ψ∗ can be chosen in terms of ω∗ and TL. For instance, in the case in
which the load torque TL is zero the inequality (1.52) becomes

R2
s

M2ψ
∗2 +σ2

(
1
M

+β
)2

ω∗2ψ∗2 ≤ V ∗2 . (1.54)

Solving (1.54) for ψ∗2 we obtain
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ψ∗2 ≤ V ∗2

R2
s

M2 +σ2
( 1

M +β
)2ω∗2

which reveals that, given a desired value V ∗, the desired flux must not exceed a
critical value which decreases as the speed reference ω∗ increases: this property is
usually referred to as field weakening. On the other hand, the situation for nonzero
load torque is not much different since, by using the approximation Ls 	 Lr 	 M,
inequality (1.52) becomes (recall (1.27))

R2
s

M2ψ
∗2 +ω∗2ψ∗2 ≤ V ∗2

and therefore

ψ∗2 ≤ V ∗2

R2
s

M2 +ω∗2

from which the field weakening property can still be seen.

1.3.3 Torque–Speed Characteristics

If, in addition to the requirement that the the voltage vector modulus should be equal
to a given desired value V ∗, the voltage vector is also required to rotate at a constant
speed ρ̇∗, there is an additional relationship for the triple (ω∗,ψ∗,TL) to be satisfied
together with (1.53):

ρ̇∗ = ω∗ +
RrTL

ψ∗2 . (1.55)

On the basis of the two relationships (1.53) and (1.55) we can compute the so-called
torque–speed motor characteristics. Assume that the load torque is nonzero; from
(1.55) we obtain the rotor flux modulus

ψ∗ =

√
RrTL

(ρ̇∗ −ω∗)
. (1.56)

By substituting (1.56) in (1.53) and solving it for TL we obtain

TL(ω∗) = V ∗2M2Rr(ρ̇∗ −ω∗)
[
ρ̇∗4L2

s L2
r +2RsRrρ̇∗2M2 −2ρ̇∗3L2

s L2
rω

∗

−2ρ̇∗4LsLrM2 + ρ̇∗2L2
s L2

rω
∗2 + ρ̇∗2M4ω∗2 −2ρ̇∗3M4ω∗ +R2

s R2
r

+ρ̇∗4M4 −2RsRrρ̇∗M2ω∗ +4ρ̇∗3LsLrM2ω∗ −2ρ̇∗2LsLrω∗2M2

+R2
s L2

r ρ̇∗2 −2R2
s L2

r ρ̇
∗ω∗ +R2

SL2
rω

∗2 + ρ̇∗2R2
r L2

s

]−1
(1.57)
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which is usually called torque–speed motor characteristics and describes, for given
constant V ∗ and ρ̇∗ which are the modulus and the frequency of the sinusoidal volt-
age input, the motor speed constant values corresponding to each admissible value
of TL. By substituting (1.57) into (1.56) we obtain the flux modulus

ψ∗(ω∗) =

√
RrTL(ω∗)
(ρ̇∗ −ω∗)

(1.58)

while from (1.47) we obtain the stator current modulus

I∗(ω∗) �=
√

i∗2
sa (ω∗)+ i∗2

sb (ω∗) =

√
ψ∗2(ω∗)

M2 +
T 2

L (ω∗)
J2μ2ψ∗2(ω∗)

. (1.59)

The functions (1.57), (1.58), and (1.59) are plotted in Figures 1.5, 1.6, and 1.7,
respectively, for the nominal motor parameters given in Table 1.1. From (1.57) and
Figure 1.5 we can first establish that there is one value for the load torque TLs,
usually called load torque at stall or stalled torque,

TLs = V ∗2M2Rrρ̇∗
[
ρ̇∗4L2

s L2
r +2RsRrρ̇∗2M2 −2ρ̇∗4LsLrM2

+R2
s R2

r + ρ̇∗4M4 +R2
s L2

r ρ̇
∗2 + ρ̇∗2R2

r L2
s

]−1
(1.60)

which is compatible with ω∗ = 0 (motor at stall). Then, by differentiating TL(ω∗)
with respect to ω∗ in (1.57) and equating to zero, we can obtain the value ω∗

p for ω∗
which is usually called pull-out speed

ω∗
p =

[
2ρ̇∗3M4 −4ρ̇∗3LsLrM2 +2R2

s L2
r ρ̇

∗ +2ρ̇∗3L2
s L2

r −2
(

R4
s L2

r R2
r

+2ρ̇∗2L2
s L2

r R2
s R2

r + ρ̇∗4L4
s L2

r R2
r + ρ̇∗4M4R2

r L2
s + ρ̇∗2M4R2

s R2
r

−2ρ̇∗4L3
s LrM2R2

r −2ρ̇∗2LsLrM2R2
s R2

r

) 1
2

][
2
(
ρ̇∗2L2

s L2
r

+ρ̇∗2M4 −2ρ̇∗2LsLrM2 +R2
s L2

r

)]−1
(1.61)

corresponding to the maximum value TLp of TL which is usually called pull-out
torque, or peak torque, and is given by

TLp = V ∗2M2
(
ρ̇∗2L2

s +R2
s

) 1
2
(
ρ̇∗2L2

s L2
r + ρ̇∗2M4 −2ρ̇∗2LsLrM2

+R2
s L2

r

) 1
2

[
2

(
R4

s L2
r +2ρ̇∗2L2

s L2
r R2

s + ρ̇∗4L4
s L2

r −2ρ̇∗2LsLrM2R2
s

−2ρ̇∗4L3
s LrM2 + ρ̇∗2M4R2

s + ρ̇∗M2
(
ρ̇∗2L2

s +R2
s

) 1
2
(
ρ̇∗2L2

s L2
r + ρ̇∗2M4
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−2ρ̇∗2LsLrM2 +R2
s L2

r

) 1
2
Rs + ρ̇∗4M4L2

s

)]−1

. (1.62)

Note that the pull-out torque TLp does not depend on the rotor resistance Rr even
though the pull-out speed ω∗

p does and increases when Lr decreases since LsLr −M2

is positive in induction motors (the matrix L in (1.11) being positive definite). Finally
recall that, in the case of zero load torque (unloaded motor), (1.56) does not hold
since it has been obtained from (1.55) under the assumption that TL �= 0. When
TL = 0, from (1.55) we have ρ̇∗ =ω∗ while the rotor flux modulus which is obtained
by solving (1.53) with TL = 0 and ρ̇∗ = ω∗ is

ψ∗ =
MV ∗√

R2
s + ρ̇∗2L2

s

and does not depend on the rotor resistance Rr. Note that the functions TL(ω∗) and
ψ∗(ω∗) in (1.57) and (1.58) (and therefore I∗(ω∗) in (1.59)) are continuous on
[0, ρ̇∗] since

lim
ω∗→ρ̇∗

TL(ω∗) = 0

lim
ω∗→ρ̇∗

ψ∗(ω∗) =
MV ∗√

R2
s + ρ̇∗2L2

s
.

The torque–speed characteristics TL(ω∗) obtained in (1.57) and the corresponding
ψ∗(ω∗) and I∗(ω∗) given in (1.58) and (1.59) are plotted in Figures 1.8–1.16 for
different values of V ∗, ρ̇∗ and motor parameters: recall that the nominal motor pa-
rameters are reported in Table 1.1.

Fig. 1.5 Torque–speed characteristics TL(ω∗) for V ∗ = 110V, ρ̇∗ = 16.7Hz and nominal motor
parameters given in (1.57)
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Fig. 1.6 Rotor flux modulus ψ∗(ω∗) for V ∗ = 110V, ρ̇∗ = 16.7Hz and nominal motor parameters
given in (1.58)

Fig. 1.7 Stator current modulus I∗(ω∗) for V ∗ = 110V, ρ̇∗ = 16.7Hz and nominal motor parame-
ters given in (1.59)

Hence, given V ∗ and ρ̇∗, the key features of the torque–speed characteristic curve
are:

1. There is only one TL value, i.e. TL = TLs (load torque at stall), compatible with
ω∗ = 0.

2. When TL = TLp, there is only one compatible value ω∗ = ω∗
p for ω∗.

3. There is a unique value ω∗ = ρ̇∗ for ω∗ corresponding to zero load torque, i.e. to
unloaded motors: the maximum speed is attained when the motor is unloaded.
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Fig. 1.8 Torque–speed characteristics TL(ω∗) for V ∗ = 50V, ρ̇∗ = 8.35Hz and nominal motor
parameters

Fig. 1.9 Rotor flux modulus ψ∗(ω∗) for V ∗ = 50V, ρ̇∗ = 8.35Hz and nominal motor parameters

4. When typically TL ∈ (TLs,TLp) there are two compatible values for ω∗ and ψ∗
which correspond to two different steady-state operating conditions: as we shall
see, for the specific motor considered in this book, the operating condition corre-
sponding to the smaller ω∗ is unstable while the operating condition correspond-
ing to the larger ω∗ is exponentially stable.

5. When TL < TLs there is only one operating condition.
6. If the difference ρ̇∗ −ω∗

p is small, then large variations of TL in the range [0,TLp]
correspond to small variations for the steady-state rotor speed ω∗ ∈ (ω∗

p,ω0].
7. The comparison of the torque–speed characteristics at nominal rotor resistance

value given in Figure 1.5 with the characteristics given in Figure 1.11 when the
rotor resistance value is twice the nominal value shows that the rotor resistance
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Fig. 1.10 Stator current modulus I∗(ω∗) for V ∗ = 50V, ρ̇∗ = 8.35Hz and nominal motor parame-
ters

Fig. 1.11 Torque–speed characteristics TL(ω∗) for V ∗ = 110V, ρ̇∗ = 16.7Hz and Rr = 6.6Ω
(twice the nominal value)

has a very important effect on the torque–speed characteristics: the peak torque
TLp does not depend on Rr, as shown in (1.62), but it corresponds to a much
smaller value for ω∗

p as Rr increases.
8. The comparison of Figure 1.5 corresponding to Lr = 0.375H with Figure 1.14

corresponding to Lr = 0.3375H confirms that the load torque increases if Lr
decreases, according to (1.62).

Figure 1.6 shows that the rotor flux modulus increases as rotor speed increases: this
also happens when smaller voltages and frequencies are applied as shown in Fig-
ure 1.9 and for parameters which are different from the nominal ones as shown in
Figure 1.12 and in Figure 1.15. On the contrary, Figures 1.7, 1.10, 1.13, and 1.16
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Fig. 1.12 Rotor flux modulus ψ∗(ω∗) for V ∗ = 110V, ρ̇∗ = 16.7Hz and Rr = 6.6Ω

Fig. 1.13 Stator current modulus I∗(ω∗) for V ∗ = 110V, ρ̇∗ = 16.7Hz and Rr = 6.6Ω

show that the stator current modulus has its maximum at zero speed and then de-
creases as speed increases: this happens for different values of voltage modulus,
voltage frequency, rotor resistance, and rotor inductances. It is apparent that the
operating condition at zero speed is the most critical when sinusoidal inputs are ap-
plied, since it may be unstable and it corresponds to the minimum rotor flux modulus
and to the maximum stator current modulus.

Let us now investigate in detail the stability and the attractivity properties of the
operating conditions determined in (1.47). To this end, consider the rotating frame
model (1.31) with ω0 = ρ̇∗ = ω∗ +ω∗

s as in (1.43); introduce the error variables

ω̃ = ω−ω∗

ψ̃rd = ψrd −ψ∗



28 1 Dynamical Models and Structural Properties

Fig. 1.14 Torque–speed characteristics TL(ω∗) for V ∗ = 110V, ρ̇∗ = 16.7Hz and Lr = 0.3375H

Fig. 1.15 Rotor flux modulus ψ∗(ω∗) for V ∗ = 110V, ρ̇∗ = 16.7Hz and Lr = 0.3375H

ψ̃rq = ψrq

ĩsd = isd − i∗sd

ĩsq = isq − i∗sq

with (ω∗,ψ∗, i∗sd , i
∗
sq) satisfying (1.44). The error dynamics are given by

dω̃
dt

= μ
[
ψ̃rdi∗sq − ψ̃rqi∗sd

]
+μψ∗ ĩsq +μ

[
ψ̃rd ĩsq − ψ̃rqĩsd

]
dψ̃rd

dt
= −αψ̃rd − ω̃ψ̃rq +ω∗

s ψ̃rq +αMĩsd

dψ̃rq

dt
= −αψ̃rq + ω̃ψ̃rd −ω∗

s ψ̃rd + ω̃ψ∗ +αMĩsq
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Fig. 1.16 Stator current modulus I∗(ω∗) for V ∗ = 110V, ρ̇∗ = 16.7Hz and Lr = 0.3375H

dĩsd

dt
= −γ ĩsd +ω∗

0 ĩsq +βαψ̃rd +βω∗ψ̃rq +βω̃ψ̃rq

dĩsq

dt
= −γ ĩsq −ω∗

0 ĩsd +βαψ̃rq −βω∗ψ̃rd −βω̃ψ̃rd −βψ∗ω̃ . (1.63)

The linear approximation about the origin (ω̃ , ψ̃rd , ψ̃rq, ĩsd , ĩsq) = 0 is given by

dω̃
dt

= μi∗sqψ̃rd −μ i∗sdψ̃rq +μψ∗ ĩsq

dψ̃rd

dt
= −αψ̃rd +ω∗

s ψ̃rq +αMĩsd

dψ̃rq

dt
= ψ∗ω̃−ω∗

s ψ̃rd −αψ̃rq +αMĩsq

dĩsd

dt
= βαψ̃rd +βω∗ψ̃rq − γ ĩsd +(ω∗ +ω∗

s )ĩsq

dĩsq

dt
= −βψ∗ω̃−βω∗ψ̃rd +βαψ̃rq − (ω∗ +ω∗

s )ĩsd − γ ĩsq . (1.64)

Given the nominal motor parameters in Table 1.1, the five eigenvalues of the matrix
in the linear approximation (1.64)⎡

⎢⎢⎢⎢⎣
0 μ i∗sq −μi∗sd 0 μψ∗

0 −α ω∗
s αM 0

ψ∗ −ω∗
s −α 0 αM

0 βα βω∗ −γ ω∗ +ω∗
s

−βψ∗ −βω∗ βα −ω∗ −ω∗
s −γ

⎤
⎥⎥⎥⎥⎦
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are reported in Tables 1.2 and 1.3, for the operating conditions (ω∗, TL(ω∗),
ψ∗(ω∗), I(ω∗)) (corresponding to sinusoidal voltages of amplitude V ∗ = 110V and
frequency ρ̇∗ = 16.7Hz) which are listed in Tables 1.4 and 1.5.

Table 1.2 Linear approximation (V ∗ = 110V, ρ̇∗ = 16.7Hz): eigenvalues for ω∗ < ω∗
p

ω∗ (rad/s) (λ1,λ2) (λ3,λ4) λ5
0 −144.0043±105.8864i −7.5129±105.1025i 2.9641
2 −143.9905±105.1730i −7.5434±103.8647i 2.9974
4 −143.9626±104.4608i −7.5872±102.6282i 3.02931
6 −143.9206±103.7499i −7.6444±101.3929i 3.0596
8 −143.8645±103.0407i −7.7148±100.1586i 3.0881

10 −143.7942±102.3332i −7.7983±98.9254i 3.1145
12 −143.7095±101.6279i −7.8948±97.6931i 3.1384
14 −143.6105±100.9249i −8.0043±96.4617i 3.1593
16 −143.4971±100.2245i −8.1265±95.2310i 3.1768
18 −143.369±99.527i −8.2614±94.001i 3.1905
20 −143.2263±98.8326i −8.4088±92.7716i 3.1998
22 −143.0687±98.1416i −8.5684±91.5427i 3.2039
24 −142.8962±97.4545i −8.7401±90.3142i 3.2023
26 −142.7086±96.7714i −8.9236±89.086i 3.194
28 −142.5057±96.0927i −9.1186±87.858i 3.1783
30 −142.2873±95.4189i −9.3249±86.63i 3.154
32 −142.0533±94.7503i −9.542±85.4019i 3.1201
34 −141.8034±94.0873i −9.7695±84.1736i 3.0753
36 −141.5374±93.4305i −10.0069±82.9448i 3.01825
38 −141.255±92.7801i −10.2537±81.7154i 2.9471
40 −140.9561±92.1369i −10.5093±80.4851i 2.8603
42 −140.6402±91.5014i −10.7728±79.2536i 2.7557
44 −140.3072±90.8741i −11.0435±78.0206i 2.6311
46 −139.9566±90.2557i −11.3205±76.7857i 2.4838
48 −139.5882±89.647i −11.6025±75.5486i 2.311
50 −139.2015±89.0486i −11.8884±74.3088i 2.1095
52 −138.7962±88.4615i −12.1767±73.0656i 1.8755
54 −138.3719±87.8865i −12.4657±71.8186i 1.6048
56 −137.9281±87.3247i −12.7534±70.5669i 1.2927
58 −137.4643±86.777i −13.0377±69.3099i 0.9338
60 −136.9802±86.2448i −13.316±68.0467i 0.5219
62 −136.475±85.7292i −13.5851±66.7763i 0.05

The eigenvalues are also plotted in Figures 1.17–1.20 for different V ∗, ρ̇∗, and
motor parameters, as rotor speed goes from zero to its maximum value. According
to the linear approximation Theorem A.7 in Appendix A, we can conclude that the
operating conditions (TL(ω∗),ω∗) are unstable for ω∗ ∈ (0,ω∗

p) since there is one
positive real eigenvalue, while the steady-state conditions (TL(ω∗),ω∗) are locally
exponentially stable for ω∗ ∈ (ω∗

p,ω0] since all eigenvalues have negative real parts.
When TL = TLp the linear approximation (1.64) has one eigenvalue at zero and two
pairs of complex conjugate eigenvalues with negative real parts: we are in a critical
case in which the linear approximation Theorem A.7 in AppendixA does not apply.
The motor transient behavior, when sinusoidal voltages of modulus V ∗ = 110 V and
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Table 1.3 Linear approximation (V ∗ = 110V, ρ̇∗ = 16.7Hz): eigenvalues for ω∗ > ω∗
p

ω∗ (rad/s) (λ1,λ2) (λ3,λ4) λ5
64 −135.9485±85.2317i −13.8416±65.4978i -0.49
66 −135.3999±84.7539i −14.0814±64.2102i -1.1077
68 −134.8287±84.2974i −14.2996±62.9124i -1.8136
70 −134.2345±83.8642i −14.4904±61.6037i -2.6206
72 −133.6166±83.4561i −14.6470±60.2833i -3.5431
74 −132.9746±83.0755i −14.7614±58.9513i -4.5983
76 −132.3079±82.7247i −14.8241±57.6083i -5.8063
78 −131.6162±82.4064i −14.8237±56.2564i -7.1903
80 −130.8992±82.1234i −14.7474±54.9001i -8.777
82 −130.1568±81.8786i −14.5803±53.547i -10.5961
84 −129.3888±81.6752i −14.3068±52.2102i -12.6789
86 −128.5957±81.5166i −13.9121±50.9092i -15.0546
88 −127.7781±81.4062i −13.3856±49.6722i -17.743
90 −126.9368±81.3475i −12.7265±48.5353i -20.7438
92 −126.0733±81.3438i −11.9497±47.5381i -24.0244
94 −125.1896±81.3982i −11.0887±46.7143i -27.5135
96 −124.2884±81.5134i −10.1916±46.0816i -31.1103
98 −123.3729±81.6913i −9.3096±45.6357i -34.7053
100 −122.4472±81.9329i −8.4867±45.3542i -38.2024
102 −121.5160±82.2379i −7.7543±45.2038i -41.5297
104 −120.5847±82.6043i −7.1314±45.1483i -44.6381

frequency ρ̇∗ = 16.7 Hz are imposed, is shown in Figures 1.21–1.24 for zero and
nonzero applied load torques, respectively.

In conclusion:

1. Given constant references (ω∗, ψ∗), the steady-state operating conditions
are [

ψ∗
ra
ψ∗

rb

]
=
[

cosρ∗ −sinρ∗
sinρ∗ cosρ∗

][
ψ∗
0

]
[

i∗sa
i∗sb

]
=
[

cosρ∗ −sinρ∗
sinρ∗ cosρ∗

][ ψ∗
M
TL

Jμψ∗

]

[
u∗sa
u∗sb

]
=
[

cosρ∗ −sinρ∗
sinρ∗ cosρ∗

]⎡⎣ Rs
Mψ

∗ − σTLω∗
Jμψ∗ − σαMT 2

L
J2μ2ψ∗3

σ(γ+α)TL
Jμψ∗ +σ

( 1
M +β

)
ω∗ψ∗

⎤
⎦

ρ̇∗ = ω∗ +
αMTL

Jμψ∗2 = ω∗ +
RrTL

ψ∗2 = ω∗ +ω∗
s

ρ∗(0) = arctan
(
ψrb(0)
ψra(0)

)
.

2. If ψ∗ is chosen as
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Table 1.4 TL(ω∗), ψ∗(ω∗), I∗(ω∗) for ω∗ < ω∗
p (V ∗ = 110V, ρ̇∗ = 16.7Hz)

ω∗ (rad/s) TL (Nm) ψ∗ (Wb) I∗ (A)
0 4.5685 0.3791 13.3366
2 4.6137 0.3847 13.2758
4 4.6594 0.3904 13.2130
6 4.7057 0.3963 13.1481
8 4.7524 0.4023 13.0811

10 4.7995 0.4086 13.0117
12 4.8471 0.4150 12.9399
14 4.8951 0.4216 12.8655
16 4.9435 0.4284 12.7886
18 4.9921 0.4355 12.7088
20 5.0410 0.4427 12.6260
22 5.0900 0.4502 12.5402
24 5.1391 0.4579 12.4510
26 5.1883 0.4659 12.3585
28 5.2373 0.4741 12.2623
30 5.2861 0.4827 12.1622
32 5.3345 0.4915 12.0581
34 5.3825 0.5006 11.9497
36 5.4297 0.5100 11.8368
38 5.4761 0.5198 11.7191
40 5.5213 0.5300 11.5963
42 5.5652 0.5404 11.4681
44 5.6074 0.5513 11.3341
46 5.6475 0.5626 11.1942
48 5.6853 0.5743 11.0477
50 5.7202 0.5865 10.8945
52 5.7518 0.5991 10.7340
54 5.7795 0.6123 10.5657
56 5.8026 0.6259 10.3892
58 5.8205 0.6401 10.2040
60 5.8322 0.6549 10.0095
62 5.8369 0.6703 9.8051

ψ∗ = 4

√(
L2

r +
RrM2

Rs

)
T 2

L

then the power losses at steady-state

P∗
loss =

Rs

M2ψ
∗2 +
(

Rs +
RrM2

L2
r

)
L2

r T 2
L

M2ψ∗2

are minimized.
3. Given V ∗ and ω∗, the voltage constraint

u∗2
sa +u∗2

sb ≤ V ∗2
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Table 1.5 TL(ω∗), ψ∗(ω∗), I∗(ω∗) for ω∗ > ω∗
p (V ∗ = 110V, ρ̇∗ = 16.7Hz)

ω∗ (rad/s) TL (Nm) ψ∗ (Wb) I∗ (A)
64 5.8335 0.6863 9.5903
66 5.8206 0.7029 9.3642
68 5.7971 0.7203 9.1264
70 5.7612 0.7383 8.8760
72 5.7113 0.7572 8.6125
74 5.6452 0.7768 8.3350
76 5.5608 0.7972 8.0430
78 5.4554 0.8184 7.7358
80 5.3262 0.8406 7.4130
82 5.1699 0.8636 7.0744
84 4.9829 0.8875 6.7201
86 4.7612 0.9124 6.3506
88 4.5005 0.9381 5.9674
90 4.1958 0.9648 5.5732
92 3.8420 0.9923 5.1724
94 3.4335 1.0207 4.7726
96 2.9645 1.0498 4.3856
98 2.4288 1.0797 4.0299

100 1.8206 1.1100 3.7325
102 1.1342 1.1408 3.5299
104 0.3645 1.1717 3.4633

is satisfied if ψ∗ is chosen so that

[
Rs

M
ψ∗ − σTLω∗

Jμψ∗ − σαMT 2
L

J2μ2ψ∗3

]2

+
[
σ(γ+α)TL

Jμψ∗ +σ
(

1
M

+β
)
ω∗ψ∗

]2

≤V ∗2 .

4. Given V ∗ and ρ̇∗, the load torque TL and the rotor speed ω∗ are related at
steady-state by the motor torque–speed characteristics

TL(ω∗) = V ∗2M2Rr(ρ̇∗ −ω∗)
[
ρ̇∗4L2

s L2
r +2RsRrρ̇∗2M2 −2ρ̇∗3L2

s L2
rω

∗

−2ρ̇∗4LsLrM2 + ρ̇∗2L2
s L2

rω
∗2 + ρ̇∗2M4ω∗2 −2ρ̇∗3M4ω∗ +R2

s R2
r

+ρ̇∗4M4 −2RsRrρ̇∗M2ω∗ +4ρ̇∗3LsLrM2ω∗ −2ρ̇∗2LsLrω∗2M2

+R2
s L2

r ρ̇∗2 −2R2
s L2

r ρ̇
∗ω∗ +R2

SL2
rω

∗2 + ρ̇∗2R2
r L2

s

]−1
.

5. Given the nominal motor parameters in Table 1.1, for every ω∗ such that
ω∗ > ω∗

p , with ω∗
p given in (1.61) corresponding to the maximum torque

TLp given in (1.62), the operating condition is exponentially stable while
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it is unstable with one positive real eigenvalue for every ω∗ such that 0 ≤
ω∗ < ω∗

p .

Fig. 1.17 Linear approximation: eigenvalues for V ∗ = 110V, ρ̇∗ = 16.7Hz and nominal motor
parameters

Fig. 1.18 Linear approximation: eigenvalues for V ∗ = 50V, ρ̇∗ = 8.35Hz and nominal motor pa-
rameters
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Fig. 1.19 Linear approximation: eigenvalues for V ∗ = 110V, ρ̇∗ = 16.7Hz and Rr = 6.6Ω

Fig. 1.20 Linear approximation: eigenvalues for V ∗ = 110V, ρ̇∗ = 16.7Hz and Lr = 0.3375H

1.4 Inverse System and Tracking Dynamics

Consider the induction motor field-oriented model (1.39) expressed in state coordi-
nates (1.41), i.e. in a (d,q) reference whose d-axis coincides with the flux vector
and assume that the motor speed ω coincides, along with its time derivatives, with
the desired rotor speed reference ω∗ and that the flux modulus ψrd coincides, along
with its time derivatives, with the desired reference ψ∗: the goal of this section is to
determine the corresponding voltage control inputs. To this end, we compute the left
inverse system, that is the dynamical system generating, on the basis of the refer-
ence signals (ω∗,ψ∗) and their time derivatives, the control inputs (u∗sd ,u

∗
sq) which,

applied to the field-oriented model (1.39) with compatible initial conditions, forces
ω(t) to be equal to ω∗(t) and ψrd(t) to be equal to ψ∗(t) for all t ≥ 0. In order to
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Fig. 1.21 Transient behavior for zero load torque in the (ω,Jω̇) plane

Fig. 1.22 Transient behavior for zero load torque: rotor speed and rotor flux modulus

compute the inverse system it is useful to compute first the tracking dynamics (see
Appendix B), that is the motor dynamics constrained to the manifold in the state
space which is characterized by

ω(t) = ω∗(t) , ∀ t ≥ 0
ψrd(t) = ψ∗(t) , ∀ t ≥ 0 . (1.65)

According to (1.65), from the first two equations in the field-oriented model (1.39)
it follows that

ω̇∗ = μψ∗i∗sq −
TL

J
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Fig. 1.23 Transient behavior for zero load torque: stator currents (isa, isb)

Fig. 1.24 Transient behavior for nonzero load torque: applied load torque, rotor speed, rotor flux
modulus and stator currents (isa, isb)

ψ̇∗ = −αψ∗ +αMi∗sd (1.66)

which constrains the currents (i∗sd , i
∗
sq) to be

i∗sd =
ψ∗

M
+
ψ̇∗

αM

i∗sq =
ω̇∗

μψ∗ +
TL

Jμψ∗ (1.67)

and consequently the rotor flux angle ρ to satisfy the differential equation
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ρ̇∗ = ω∗ +
αMi∗sq

ψ∗

= ω∗ +
αMω̇∗

μψ∗2 +
αMTL

μJψ∗2 , ρ∗(0) = ρ(0) (1.68)

which is obtained by substituting ω∗, ψ∗, i∗sq in the third equation on the field-
oriented model (1.39). Equations (1.67) and (1.68) constitute the first order tracking
dynamics for the field-oriented model (1.39); they can be expressed in the (a,b)
fixed coordinates as

ρ̇∗ = ω∗ +
αMω̇∗

μψ∗2 +
αMTL

μJψ∗2 , ρ∗(0) = arctan
(
ψrb(0)
ψra(0)

)
[

i∗sa
i∗sb

]
=
[

cosρ∗ −sinρ∗
sinρ∗ cosρ∗

][ ψ∗
M + ψ̇∗

αM
ω̇∗
μψ∗ + TL

Jμψ∗

]
[
ψ∗

ra
ψ∗

rb

]
=
[

cosρ∗ −sinρ∗
sinρ∗ cosρ∗

][
ψ∗
0

]
ω∗ = ω∗ (1.69)

which constitute the first order tracking dynamics for the fixed frame model (1.26).
Note that in the special cases in which (ω∗,ψ∗) are constant values both the current
vector (i∗sa, i

∗
sb) and the flux vector (ψ∗

ra,ψ∗
rb) are time-varying and rotating at the

same constant speed of rotation

ρ̇∗ = ω∗ +
αMTL

μJψ∗2 , ρ∗(0) = arctan
(
ψrb(0)
ψra(0)

)
(1.70)

that is [
i∗sa(t)
i∗sb(t)

]
=
[

cos(ρ∗(0)+ ρ̇∗t) −sin(ρ∗(0)+ ρ̇∗t)
sin(ρ∗(0)+ ρ̇∗t) cos(ρ∗(0)+ ρ̇∗t)

][ ψ∗
M
TL

Jμψ∗

]
[
ψ∗

ra(t)
ψ∗

rb(t)

]
=
[

cos(ρ∗(0)+ ρ̇∗t) −sin(ρ∗(0)+ ρ̇∗t)
sin(ρ∗(0)+ ρ̇∗t) cos(ρ∗(0)+ ρ̇∗t)

][
ψ∗
0

]
. (1.71)

Hence, in this special case of constant references (ω∗, ψ∗) we reobtain the re-
sults in (1.47) of the previous Section 1.3. Equations (1.70) and (1.71) describe
a hypersphere in the state space (ω , ψra, ψrb, isa, isb). The motor trajectories in
the (ψra, ψrb, ω) space are reported in Figure 1.25 for ω∗ = 1 rad/s, ψ∗(t) =
1.16 + 0.2sin(6πt)Wb, and TL = 0.1Nm. As we shall see, a time-varying refer-
ence is needed for the online estimation of the rotor resistance when the rotor
speed is not measured. Figure 1.26 shows the motor trajectories in the (ψra, ψrb,
ω) space when ψ∗(t) = 1.16 + 0.2sin(6πt)Wb; ω∗(t) is the output of the unitary
gain third order linear filter with transfer function F(s) = 1/(1 + s/50)3 and in-
put signal ω f (t) = 1 +[45 + 12sin(2πt)]H(t −5) with H(t) the unit step function;
TL = 0.1Nm. If we substitute (1.65) and (1.67) in the last two equations in the field-
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Fig. 1.25 Motor trajectories in the (ψra, ψrb, ω) space (ω∗ = 1rad/s, ψ∗(t) = 1.16 +
0.2sin(6πt)Wb, TL = 0.1Nm)

Fig. 1.26 Motor trajectories in the (ψra, ψrb, ω) space with time-varying speed reference

oriented model (1.39) and solve for (u∗sd ,u
∗
sq) we obtain the control inputs which are

compatible with the tracking dynamics; equivalently, if we set ω = ω∗, ψrd = ψ∗,
ψrq = 0, isd = i∗sd , and isq = i∗sq in the last two equations in (1.36) we obtain

di∗sd
dt

= −γ i∗sd +ω∗i∗sq +
αMi∗2

sq

ψ∗ +βαψ∗ +
u∗sd
σ

di∗sq

dt
= −γ i∗sq −ω∗i∗sd −

αMi∗sqi∗sd

ψ∗ −βω∗ψ∗ +
u∗sq

σ
. (1.72)

Substituting in (1.72) the currents (i∗sd , i
∗
sq) given in (1.67) and solving for (u∗sd ,u

∗
sq)

we obtain



40 1 Dynamical Models and Structural Properties

u∗sd = σ

[
ψ̇∗

M
+
ψ̈∗

αM
+

Rsψ∗

σM
+
γψ̇∗

αM
− ω

∗ω̇∗

μψ∗ − ω∗TL

μJψ∗

−αM
ψ∗

(
ω̇∗

μψ∗ +
TL

Jμψ∗

)2
]

u∗sq = σ

[
ω̈∗

μψ∗ −
ω̇∗ψ̇∗

μψ∗2 − TLψ̇∗

Jμψ∗2 +
γω̇∗

μψ∗ +
γTL

Jμψ∗ +
ω∗ψ∗

M

+
ω∗ψ̇∗

αM
+βω∗ψ∗ +

αM
ψ∗

(
ω̇∗

μψ∗ +
TL

Jμψ∗

)(
ψ∗

M
+
ψ̇∗

αM

)]

ρ̇∗ = ω∗ +
αMω̇∗

μψ∗2 +
αMTL

μJψ∗2 , ρ∗(0) = arctan
(
ψrb(0)
ψra(0)

)
[

u∗sa
u∗sb

]
=
[

cosρ∗ −sinρ∗
sinρ∗ cosρ∗

][
u∗sd
u∗sq

]
(1.73)

which constitute a first order dynamic left inverse system for the induction motor
model (1.26) with ω∗, ω̇∗, ω̈∗, ψ∗, ψ̇∗, ψ̇∗, ψ̈∗ as inputs and u∗sa, u∗sb as outputs.

In conclusion, the first order feedforward control[
u∗sa
u∗sb

]
=
[

cosρ∗ −sinρ∗
sinρ∗ cosρ∗

][
u∗sd
u∗sq

]

u∗sd = σ

[
ψ̇∗

M
+
ψ̈∗

αM
+

Rsψ∗

σM
+
γψ̇∗

αM
− ω

∗ω̇∗

μψ∗ − ω∗TL

μJψ∗

−αM
ψ∗

(
ω̇∗

μψ∗ +
TL

Jμψ∗

)2
]

u∗sq = σ

[
ω̈∗

μψ∗ −
ω̇∗ψ̇∗

μψ∗2 − TLψ̇∗

Jμψ∗2 +
γω̇∗

μψ∗ +
γTL

Jμψ∗ +
ω∗ψ∗

M

+
ω∗ψ̇∗

αM
+βω∗ψ∗ +

αM
ψ∗

(
ω̇∗

μψ∗ +
TL

Jμψ∗

)(
ψ∗

M
+
ψ̇∗

αM

)]

ρ̇∗ = ω∗ +
αMω̇∗

μψ∗2 +
αMTL

μJψ∗2 , ρ∗(0) = arctan
(
ψrb(0)
ψra(0)

)
(1.74)

is such that, when applied to the induction motor fixed frame model (1.26)
with initial conditions

ω(0) = ω∗(0)
ψra(0) = ψ∗(0)cosρ∗(0)
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ψrb(0) = ψ∗(0)sinρ∗(0)[
isa(0)
isb(0)

]
=
[

cosρ∗(0) −sinρ∗(0)
sinρ∗(0) cosρ∗(0)

][ ψ∗(0)
M + ψ̇∗(0)

αM
ω̇∗(0)
μψ∗(0) + TL

Jμψ∗(0)

]
,

guarantees that

ω(t) = ω∗(t)
ψra(t) = ψ∗(t)cosρ∗(t)
ψrb(t) = ψ∗(t)sinρ∗(t)[

isa(t)
isb(t)

]
=
[

cosρ∗(t) −sinρ∗(t)
sinρ∗(t) cosρ∗(t)

][ ψ∗(t)
M + ψ̇∗(t)

αM
ω̇∗(t)
μψ∗(t) + TL

Jμψ∗(t)

]
.

1.5 Observability

In this section Definition B.8 presented in Appendix B concerning local observ-
ability for nonlinear systems and the corresponding sufficient conditions given by
Theorem B.11 will be used to investigate the observability properties of the induc-
tion motor. Since rotor flux measurements are not easily available, the first question
to be addressed is the observability of rotor fluxes from stator currents, stator volt-
ages, and rotor speed measurements. Since rotor speed measurements may also not
be available due to sensor failures or on purpose to increase the reliability of the
drive system, the second important question that will be discussed is the observ-
ability of rotor speed. Consider the induction motor fixed frame model (1.26) and
assume that the rotor speed ω is constant so that the model becomes linear:⎡

⎢⎢⎢⎣
dψra

dt
dψrb

dt
disa
dt

disb
dt

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

−α −ω αM 0
ω −α 0 αM
βα βω −γ 0
−βω βα 0 −γ

⎤
⎥⎥⎦
⎡
⎢⎢⎣
ψra
ψrb
isa
isb

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0 0
0 0

1/σ 0
0 1/σ

⎤
⎥⎥⎦
[

usa
usb

]

[
isa
isb

]
=
[

0 0 1 0
0 0 0 1

]⎡⎢⎢⎣
ψra
ψrb
isa
isb

⎤
⎥⎥⎦ . (1.75)

It is easy to check (see Problem 1.1) that the system (1.75) is observable for any
constant value of rotor speed, including zero speed, and for any motor parameter
(α , M, β , γ , σ): this implies that the rotor fluxes are observable from stator current
measurements at constant rotor speed. If we also pose the problem of rotor speed
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observability from stator current measurements when the rotor speed ω is constant,
the fixed frame model (1.26) should be considered

dω
dt

= 0

dψra

dt
= −αψra −ωψrb +αMisa

dψrb

dt
= −αψrb +ωψra +αMisb

disa

dt
= −γisa +

usa

σ
+βαψra +βωψrb

disb

dt
= −γisb +

usb

σ
+βαψrb −βωψra

which can be rewritten as

ẋ = f (x)+gausa +gbusb

with x = [isa, isb,ψra,ψrb,ω ]T and suitable vector fields f ,ga,gb. Define the mea-
sured output functions

h1(isa) = isa

h2(isb) = isb .

Compute the Lie derivatives

L f h1 = −γisa +βαψra +βωψrb

L f h2 = −γisb +βαψrb −βωψra

L2
f h1 = −γ [−γisa +βαψra +βωψrb]+βα [−αψra −ωψrb +αMisa]

+βω [−αψrb +ωψra +αMisb]
L2

f h2 = −γ [−γisb +βαψrb −βωψra]−βω [−αψra −ωψrb +αMisa]
+βα [−αψrb +ωψra +αMisb] .

Consider the matrix ⎡
⎢⎢⎢⎢⎣

dh1
dh2

d(L f h1)
d(L f h2)
d(L2

f h2)

⎤
⎥⎥⎥⎥⎦

whose determinant is

−β 3(α2 +ω2)(−αψra −ωψrb +αMisa) .

Consider also the matrix
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⎢⎢⎢⎢⎣

dh1
dh2

d(L f h1)
d(L f h2)
d(L2

f h1)

⎤
⎥⎥⎥⎥⎦

whose determinant is

β 3(α2 +ω2)(−αψrb +ωψra +αMisb) .

Therefore, in the case of constant rotor speed, if

(−αψra −ωψrb +αMisa)2 +(−αψrb +ωψra +αMisb)2 > 0

then, by Theorem B.11 in Appendix B, the induction motor is locally observable at
any state in which the above inequality holds. In other words, when ω is constant, it
is locally observable provided that the rotor flux vector rotates or its modulus is not
constant.

In the general case in which the rotor speed ω is not constant and is available
from measurements, consider the induction motor fixed frame model (1.26) which
can be rewritten as

ẋ = f (x)+gausa +gbusb

with x = [isa, isb,ω,ψra,ψrb]T being the state variable vector and f ,ga,gb being suit-
able vector fields. Define the measured output functions

h1(isa) = isa

h2(isb) = isb

h3(ω) = ω .

Compute the Lie derivatives

L f h1 = −γisa +βαψra +βωψrb

L f h2 = −γisb +βαψrb −βωψra

L f h3 = μψraisb −μψrbisa − TL

J
.

Since the determinant of the matrix⎡
⎢⎢⎢⎢⎣

dh1
dh2
dh3

d(L f h1)
d(L f h2)

⎤
⎥⎥⎥⎥⎦
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is β [α2 +ω2] and is always different from zero, it follows from Theorem B.11 in
Appendix B that the induction motor is locally observable at any x ∈ R

5. Moreover,
the rotor fluxes (ψra,ψrb) can be uniquely expressed in terms of the inputs (usa,usb),
the outputs (ω , isa, isb), and their time derivatives. In fact, from the last two equations
in the fixed frame model (1.26) we have

[
α ω
−ω α

][
ψra
ψrb

]
=

[
1
β

disa
dt + γ isa

β − usa
σβ

1
β

disb
dt + γ isb

β − usb
σβ

]

from which it follows that[
ψra
ψrb

]
=

1
α2 +ω2

[
α −ω
ω α

][ 1
β

disa
dt + γisa

β − usa
σβ

1
β

disb
dt + γisb

β − usb
σβ

]
. (1.76)

In other words, there cannot be two different solutions (ψra1(t), ψrb1(t)) and
(ψra2(t), ψrb2(t)) giving rise to the same measurements (isa(t), isb(t), ω(t)) when
the same inputs (usa(t), usb(t)) are applied, so there cannot be any pair of indis-
tinguishable initial states for any admissible control input. The induction motor is
therefore observable from rotor speed and stator current measurements for any volt-
age input (usa(t), usb(t)).

The most difficult problem is the observability of the induction motor when the
rotor speed ω is not measured and is not constant. To this end, let us consider the
fixed frame model (1.26) with output functions

h1(isa) = isa

h2(isb) = isb

h3(ψra) = ψra

h4(ψrb) = ψrb

which can be rewritten as

ẋ = f (x)+gausa +gbusb

y1 = h1(x)
y2 = h2(x)
y3 = h3(x)
y4 = h4(x)

with x = [ω ,ψra,ψrb, isa, isb]T and f , ga, gb suitable vector fields. Compute the Lie
derivatives

L f h1 = −γisa +αβψra +βωψrb

L f h2 = −γisb +αβψrb −βωψra

L f h3 = −αψra −ωψrb +αMisa
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L f h4 = −αψrb +ωψra +αMisb

L2
f h1 = −γ(−γisa +αβψra +βωψrb)

+βα(−αψra −ωψrb +αMisa)
+βω(−αψrb +ωψra +αMisb)

+βψrb

[
μ(ψraisb −ψrbisa)− TL

J

]
L2

f h2 = −γ(−γisb +αβψrb −βωψra)
−βω(−αψra −ωψrb +αMisa)
+βα(−αψrb +ωψra +αMisb)

−βψra

[
μ(ψraisb −ψrbisa)− TL

J

]
.

In order to explore the observability from (ψra, ψrb, isa, isb) measurements we con-
sider the matrix ⎡

⎢⎢⎢⎢⎢⎢⎣

dh1
dh2
dh3
dh4

d(L f h3)
d(L f h4)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Since it has full rank provided that ψ2
ra +ψ2

rb > 0, it follows from Theorem B.11 in
Appendix B that the induction motor is locally observable from stator current and
rotor flux measurements at any state in which ψ2

ra +ψ2
rb > 0.

In order to explore the observability from stator current measurements only we
consider the matrix ⎡

⎢⎢⎢⎢⎢⎢⎣

dh1
dh2

d(L f h1)
d(L f h2)
d(L2

f h1)
d(L2

f h2)

⎤
⎥⎥⎥⎥⎥⎥⎦

=
[

0 I2×2
J3 J4

]
.

We need to evaluate the rank of the matrix J3 whose elements J3,i j, 1 ≤ i ≤ 4, 1 ≤
j ≤ 3, are listed in the following:

J3,11 = βψrb

J3,12 = J3,23 = αβ
J3,13 = −J3,22 = βω
J3,21 = −βψra

J3,31 = (−γβ −2βα)ψrb +2βωψra +αβMisb



46 1 Dynamical Models and Structural Properties

J3,32 = −αβγ−α2β +βω2 +βμψrbisb

J3,33 = −βγω−2βαω−2βμψrbisa

J3,41 = (γβ +2βα)ψra +2βωψrb −αβMisa

J3,42 = βγω+2βαω−2βμψraisb

J3,43 = −αβγ−α2β +βω2 +βμψraisa .

We can conclude, by virtue of Theorem B.11 in Appendix B, that the induction
motor model (1.26) is locally observable at any state (ω , ψra, ψrb, isa, isb) in which
rank J3 = 3.

In conclusion:

1. If ω(t) is constant for every t ≥ 0, the induction motor model (1.26) is
locally observable from stator current measurements at any state (ω , ψra,
ψrb, isa, isb) such that

(−αψra −ωψrb +αMisa)2 +(−αψrb +ωψra +αMisb)2 > 0 ,

i.e. when ψ̇2
ra + ψ̇2

rb > 0.
2. The induction motor model (1.26) is observable from rotor speed and stator

current measurements for any voltage inputs (usa, usb).
3. The induction motor model (1.26) is locally observable from rotor flux and

stator current measurements at any state (ω , ψra, ψrb, isa, isb) such that
ψ2

ra +ψ2
rb > 0.

1.6 Parameter Identifiability

In this section the identifiability properties for the load torque and the rotor resis-
tance will be investigated.

1.6.1 Load Torque Identifiability

Consider the induction motor fixed frame model (1.26) with the additional state
variable TL

dω
dt

= μ (ψraisb −ψrbisa)− TL

J
dψra

dt
= −αψra −ωψrb +αMisa
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dψrb

dt
= −αψrb +ωψra +αMisb

disa

dt
= −γisa +

usa

σ
+βαψra +βωψrb

disb

dt
= −γisb +

usb

σ
+βαψrb −βωψra

dTL

dt
= 0 (1.77)

which can be rewritten as

ż = f (z)+gausa +gbusb

with z = [isa, isb, ω , ψra, ψrb, TL]T and suitable vector fields f , ga, and gb. Define
the output functions

h1(isa) = isa

h2(isb) = isb

h3(ψra) = ψra

h4(ψrb) = ψrb

h5(ω) = ω .

Compute the Lie derivatives

L f h1 = −γisa +αβψra +βωψrb

L f h2 = −γisb +αβψrb −βωψra

L f h3 = −αψra −ωψrb +αMisa

L f h4 = −αψrb +ωψra +αMisb

L f h5 = μ(ψraisb −ψrbisa)− TL

J
.

If the variables (isa, isb, ω , ψra, ψrb) are measured, then from the speed dynamics
in (1.77) we obtain

TL = Jμ(ψraisb −ψrbisa)− Jω̇ .

Hence, TL can be obtained from the measured signals and their time derivatives and
it is, therefore, identifiable.

If the only variables (isa, isb, ω) are measured, then consider the matrix
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⎢⎢⎢⎢⎢⎢⎣

dh1
dh2
dh5

d(L f h1)
d(L f h2)
d(L f h5)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

I3×3 0
βα βω 0

∗ −βω βα 0
μ isb −μ isa −1/J

⎤
⎥⎥⎦

whose determinant is

−β
J

(α2 +ω2)

which is different from zero for every extended state z: hence, according to Theo-
rem B.11 in Appendix B, the system is locally observable at any extended state from
(isa, isb, ω) measurements. Moreover, there cannot be two initial conditions z1 and
z2 which are indistinguishable from (isa, isb, ω) measurements since the load torque
TL and the rotor fluxes (ψra, ψrb) can be expressed in terms of the inputs (usa, usb),
the outputs (isa, isb, ω), and their time derivatives as follows:

TL = Jμ(ψraisb −ψrbisa)− Jω̇[
ψra
ψrb

]
=

1
β (α2 +ω2)

[
α −ω
ω α

][ disa
dt + γisa − 1

σ usa
disb
dt + γisb − 1

σ usb

]
.

Hence, the induction motor is observable and identifiable with respect to TL from
(isa, isb, ω) measurements for any voltage inputs (usa, usb).

1.6.2 Rotor Resistance Identifiability

Consider the induction motor fixed frame model (1.26) with one additional state
variable α

dω
dt

= μ (ψraisb −ψrbisa)− TL

J
dψra

dt
= −αψra −ωψrb +αMisa

dψrb

dt
= −αψrb +ωψra +αMisb

disa

dt
= −
(

Rs

σ
+αβM

)
isa +βαψra +βωψrb +

usa

σ
disb

dt
= −
(

Rs

σ
+αβM

)
isb +βαψrb −βωψra +

usb

σ
α̇ = 0 (1.78)

which can be rewritten as
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ẋ = f (x)+gausa +gbusb

with x = [isa, isb, ω , ψra, ψrb, α ]T and suitable vector fields f ,ga,gb. Define the
output functions

h1(isa) = isa

h2(isb) = isb

h3(ψra) = ψra

h4(ψrb) = ψrb

h5(ω) = ω . (1.79)

Compute the Lie derivatives

L f h1 = −
(

Rs

σ
+αβM

)
isa +βαψra +βωψrb

L f h2 = −
(

Rs

σ
+αβM

)
isb +βαψrb −βωψra

L f h3 = −αψra −ωψrb +αMisa

L f h4 = −αψrb +ωψra +αMisb

L f h5 = μ(ψraisb −ψrbisa)− TL

J
.

If the variables (isa, isb, ψra, ψrb, ω) are measured then from the flux dynamics in
(1.26) we obtain

α(Misa −ψra) = ψ̇ra +ωψrb

α(Misb −ψrb) = ψ̇rb −ωψra .

Hence, α can be obtained from the measured signals and their time derivatives and
is therefore identifiable, provided that for all t ≥ 0[

ψra(t)
ψrb(t)

]
�= M
[

isa(t)
isb(t)

]
. (1.80)

If only the variables (isa, isb, ω) are measured then consider the matrix⎡
⎢⎢⎢⎢⎢⎢⎣

dh1
dh2
dh5

d(L f h1)
d(L f h2)
d(L f h5)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

I3×3 0
βα βω β (ψra −Misa)

∗ −βω βα β (ψrb −Misb)
μ isb −μisa 0

⎤
⎥⎥⎦

whose determinant is
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μβ 2 [−Mω(i2sa + i2sb)+ω(isaψra + isbψrb)−α(ψraisb −ψrbisa)
]

. (1.81)

If ω = 0 the determinant (1.81) is different from zero provided that the electromag-
netic torque Jμ(ψraisb−ψrbisa) is different from zero. If the electromagnetic torque
is equal to zero the determinant (1.81) is different from zero when (1.80) is satisfied.
If (1.81) is satisfied at an extended state (isa, isb, ω , ψra, ψrb, α) then, according to
Theorem B.11 in Appendix B, the system is locally observable at such extended
state from (isa, isb, ω) measurements.

If only the variables (isa, isb, ψra, ψrb) are measured then consider the matrix⎡
⎢⎢⎢⎢⎢⎢⎣

dh1
dh2
dh3
dh4

d(L f h3)
d(L f h4)

⎤
⎥⎥⎥⎥⎥⎥⎦

which has full rank provided that

ψ2
ra +ψ2

rb −M(ψraisa +ψrbisb) �= 0 . (1.82)

Note that

d(ψ2
ra +ψ2

rb)
dt

= −2α(ψ2
ra +ψ2

rb −Mψraisa −Mψrbisb) . (1.83)

Hence, by virtue of Theorem B.11 in Appendix B the induction motor is locally
observable and locally identifiable with respect to the parameter α at each (isa, isb,
ψra, ψrb, ω , α) such that (1.82) holds, i.e. when (1.83) is different from zero.

In conclusion:

1. The load torque TL is identifiable if the state variables (isa, isb, ψra, ψrb, ω)
are measured for any voltage inputs (usa, usb).

2. The induction motor is observable and identifiable with respect to TL from
(isa, isb, ω) measurements for any voltage inputs (usa, usb).

3. The rotor resistance Rr is identifiable if the state variables (isa, isb, ψra, ψrb,
ω) are measured along any trajectory such that[

ψra(t)
ψrb(t)

]
�= M
[

isa(t)
isb(t)

]
.

4. The induction motor model (1.26) is locally observable and the rotor resis-
tance is locally identifiable from (isa, isb, ω) measurements at any (isa, isb,
ψra, ψrb, ω , Rr) such that
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−Mω(i2sa + i2sb)+ω(isaψra + isbψrb)− Rr

Lr
(ψraisb −ψrbisa) �= 0 .

5. The induction motor model (1.26) is locally observable and the rotor resis-
tance is locally identifiable from (isa, isb, ψra, ψrb) measurements at any
(isa, isb, ψra, ψrb, ω , Rr) such that

ψ2
ra +ψ2

rb −M(ψraisa +ψrbisb) �= 0

i.e. when

d(ψ2
ra +ψ2

rb)
dt

�= 0 .

1.7 Feedback Linearizability

In this section we explore the controllability properties of the induction motor. Let
us first reconsider the induction motor fixed frame model (1.26) and assume that the
rotor speed ω is constant so that the model becomes (1.75), which is rewritten for
convenience as⎡

⎢⎢⎢⎣
dψra

dt
dψrb

dt
disa
dt

disb
dt

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

−α −ω αM 0
ω −α 0 αM
βα βω −γ 0
−βω βα 0 −γ

⎤
⎥⎥⎦
⎡
⎢⎢⎣
ψra
ψrb
isa
isb

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0 0
0 0

1/σ 0
0 1/σ

⎤
⎥⎥⎦
[

usa
usb

]

[
isa
isb

]
=
[

0 0 1 0
0 0 0 1

]⎡⎢⎢⎣
ψra
ψrb
isa
isb

⎤
⎥⎥⎦ . (1.84)

It is easy to check (see Problem 1.2) that the linear system (1.84) is controllable with
controllability indices (2,2), for any constant value of rotor speed, including zero
speed, and for any motor parameter (α , M, β , γ , σ): this implies that we can control
the rotor fluxes from stator voltages when the rotor speed is constant. However, the
main question is whether we can control the rotor speed. To answer this question
positively we shall make use of the concept of feedback linearzation, i.e. the prop-
erty for a nonlinear system to be transformed into a linear controllable system by a
state feedback either static or dynamic. Let us introduce the following notations:

x = [ω,ψra,ψrb, isa, isb]T



52 1 Dynamical Models and Structural Properties

f (x) =

⎡
⎢⎢⎢⎢⎣
μ(ψraisb −ψrbisa)− TL

J−αψra −ωψrb +αMisa
ωψra −αψrb +αMisb
αβψra +βωψrb − γ isa
−βωψra +αβψrb − γ isb

⎤
⎥⎥⎥⎥⎦

ga =
[

0,0,0,
1
σ

,0
]T

gb =
[

0,0,0,0,
1
σ

]T

.

The induction motor fixed frame model (1.26) can be rewritten as

ẋ = f (x)+gausa +gbusb .

Let us compute

ad f ga =
[
μψrb

σ
,−αM

σ
,0,
γ
σ

,0
]T

ad f gb =
[
−μψra

σ
,0,−αM

σ
,0,
γ
σ

]T

[
ad f ga,ad f gb

]
=
[
−2αMμ

σ
,0,0,0,0

]T

.

The distribution

span{ga,gb,ad f ga,ad f gb}

is not involutive since[
ad f ga,ad f gb

]
/∈ span{ga,gb,ad f ga,ad f gb} .

In fact the vector fields ga,gb,ad f ga,ad f gb,
[
ad f ga,ad f gb

]
are linearly independent

for every x ∈ R
5. Hence, according to Theorem B.8 in Appendix B, the system

(1.26) is not feedback linearizable, i.e., it cannot be transformed by a nonsingular
state feedback into a linear controllable system in suitable state coordinates with two
inputs. According to Theorem B.9 in Appendix B, the largest feedback linearizable
subsystem has dimension 4. However there are many choices of four state variables
whose dynamics can be made linear by state feedback. The most obvious choice
is to make linear the dynamics of the state variables (ψra, ψ̇ra,ψrb, ψ̇rb) by state
feedback. Note in fact that the stator currents(isa, isb) can be replaced by ψ̇ra = Φa
and ψ̇rb =Φb as new state variables since

Φa = −αψra −ωψrb +αMisa

Φb = −αψrb +ωψra +αMisb
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and

isa =
Φa

αM
+
ψra

M
+
ωψrb

αM

isb =
Φb

αM
+
ψrb

M
− ωψra

αM
.

In the new state variables we have

ψ̇ra = Φa

Φ̇a = α2ψra +αωψrb −α2Misa +αωψrb −ω2ψra −ωαMisb

−μψraψrbisb +μψ2
rbisa +

ψrbTL

J
−αMγ isa +α2βMψra

+αMβωψrb +
αM
σ

usa

�= −ka1ψra − ka2Φa + va

ψ̇rb = Φb

Φ̇b = α2ψrb −αωψra −α2Misb −αωψra +ω2ψrb +αωMisa

+μψ2
raisb −μψraψrbisa − ψraTL

J
−αMγisb +α2βMψrb

−αMβωψra +
αM
σ

usb

�= −ka1ψrb − ka2Φb + vb

ω̇ = −μ
(
ψ2

ra +ψ2
rb

)
ω

αM
+
μ
αM

(ψraΦb −ψrbΦa)− TL

J
.

Hence the fluxes ψra and ψrb can be controlled linearly from the new control in-
puts (va,vb) and no singularities are introduced by the linearizing procedure. How-
ever, the speed dynamics remain nonlinear and it is difficult to control the speed ω
through the rotor fluxes (ψra,ψrb) and their time derivatives (Φa,Φb). If we define
the dynamic extension

dusa

dt
=

vsa

σ
(1.85)

the input usa becomes an additional state variable so that the extended state vector
is

z = [ω,ψra,ψrb, isa, isb,usa]
T

while vsa becomes the new control input so that the new control input vector is

v = [vsa,usb]
T .

The extended system (1.26) and (1.85) becomes
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dz
dt

= f̄ (z)+ ḡavsa + ḡbusb (1.86)

with

f̄ (z) =

⎡
⎢⎢⎢⎢⎢⎢⎣

μ(ψraisb −ψrbisa)− TL
J−αψra −ωψrb +αMisa

ωψra −αψrb +αMisb
αβψra +βωψrb − γ isa + usa

σ−βωψra +αβψrb − γisb
0

⎤
⎥⎥⎥⎥⎥⎥⎦

ḡa =
[

0,0,0,0,0,
1
σ

]T

ḡb =
[

0,0,0,0,
1
σ

,0
]T

.

Let us compute

ad f̄ ḡa =
[

0,0,0,− 1
σ2 ,0,0

]T

ad f̄ ḡb =
[
−μψra

σ
,0,−αM

σ
,0,
γ
σ

,0
]T

.

Since ḡa and ḡb are constant linearly independent vector fields, the distribution

span{ḡa, ḡb}

is involutive of dimension 2 for every z ∈ R
6. Since ḡa, ḡb, ad f̄ ḡa are constant

linearly independent vector fields and
[
ad f̄ ḡb, ḡa

]
= 0,

[
ad f̄ ḡb, ḡb

]
= 0,

[
ad f̄ ḡa,

ad f̄ ḡb
]
= 0, the distribution

span{ḡa, ḡb,ad f̄ ḡa,ad f̄ ḡb}

is involutive and its dimension is 4 for every z ∈ R
6. Let us compute

ad2
f̄ ḡa =

[
−μψrb

σ2 ,
αM
σ2 ,0,− γ

σ2 ,0,0
]T

and
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ad2
f̄ ḡb =

⎡
⎢⎢⎢⎢⎢⎢⎣

μ
σ αψra + μ

σ ωψrb −2 μσ αMisa − μ
σ γψra

− μ
σ ψraψrb −α M

σ ωμ
σ ψ

2
ra − M

σ α
2 − M

σ αγμ
σ βψraψrb + M

σ αβω
− μ
σ βψ

2
ra + M

σ α
2β + γ2

σ
0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The distribution

span{ḡa, ḡb,ad f̄ ḡa,ad f̄ ḡb,ad2
f̄ ḡa,ad2

f̄ ḡb}

has dimension 6 for every z ∈ R
6 except singular points. Hence, the extended sys-

tem (1.86) is feedback linearizable according to Theorem B.8 in Appendix B and,
consequently, the system (1.26) is dynamically feedback linearizable.

In conclusion:

1. The induction motor model (1.26) is not linearizable by static state feed-
back.

2. The largest feedback linearizable subsystem by static state feedback of the
induction motor model (1.26) has dimension 4.

3. The induction motor model (1.26) is dynamically feedback linearizable at
nonsingular points.

1.8 Experimental Set-up

The experimental set-up which will be used throughout this book is illustrated in
Figure 1.27. A current controlled direct current (DC) motor provides constant or
time-varying load torque. A 32-bit digital signal processor (DSP) performs data ac-
quisition, implements the control law using an improved Euler integration algorithm
with a sampling time equal to 0.5ms, and generates reference voltages for the power
inverter with symmetrical pulse width modulation (PWM) and switching frequency
of 15kHz. A personal computer is used to program the DSP, to generate load torque
or speed commands to the DC motor control system, and to display experimental
data. The stator phase currents and voltages are measured by Hall-type sensors and
three-phase isolated voltage sensors, respectively. The motor instantaneous speed is
measured by an optical incremental encoder with 2,000 lines per revolution. The
value of the stator resistance is updated using a temperature sensor mounted on
the motor. All measured electrical signals are filtered by analog second order low-
pass filters with cut off frequency equal to 2.6kHz and converted by two parallel
12 bit analog/digital (A/D) converter channels with 25μs conversion time. A 0.6-
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Fig. 1.27 Block diagram of the experimental set-up

kW induction motor (OEMER 7-80/C) has been used whose data, provided by the
manufacturer, are given in Table 1.6. The accuracy of the model and its parame-

Table 1.6 Induction motor data
Rated power 600W
Rated speed 1000r/min
Rated torque 5.8Nm
Maximum peak torque 28Nm
Maximum mechanical speed 6000r/min
Power supply three-phase 120V
Rated current 4A
Excitation current 2A
Angular acceleration 17500rad/s2

Rotor inertia 0.0016Kgm2

Motor-Load inertia 0.0075Kgm2

Thermal time constant 30min
Weight 12Kg
Stator resistance 5.3Ω
Rotor resistance 3.3Ω
Stator inductance 0.365H
Rotor inductance 0.375H
Mutual inductance 0.34H

ters was first tested. Figure 1.28 compares experimental (dashed line) and simulated
(solid line) static torque–speed motor characteristics: a good matching is exhibited
for small slip speed operating conditions, that is for load torque values smaller than
the load torque at stall TLs. The transients corresponding to unloaded motor start up,
when a phase input of 110V/16.7Hz is applied, are given in Figure 1.29: we note
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Fig. 1.28 Experimental (dashed line) and computed (solid line) static torque–speed characteristics

that the reference (dashed line) and the real (solid line) voltages are different due to
the presence of high-order harmonics generated by the inverter. The discrepancies
between simulated and experimental results are also due to parameter inaccuracies
and unmodeled effects (such as magnetic saturation and skin effect).

Fig. 1.29 Experimental (solid line) and simulated (dashed line) unloaded motor start-up



58 1 Dynamical Models and Structural Properties

1.9 Conclusions

In this chapter four different nonlinear state space models for a balanced unsat-
urated induction motor have been derived starting from three short circuited rotor
windings and three stator windings whose inputs are three balanced voltages: the en-
ergy model, the fixed frame model, the rotating frame model, and the field-oriented
model. The energy model, in which the currents are chosen as state variables, clari-
fies the motor power balance. The rotating frame model which is expressed in a ro-
tating frame whose axis coincides with the rotor flux vector is called field-oriented
model: it is very helpful in determining the motor steady-state conditions when the
voltage inputs are sinusoidal and to compute the inverse system which generates the
control inputs required to follow arbitrary reference signals for the rotor speed and
the rotor flux modulus. Even when the reference signals are constant, the steady-
state conditions are limit cycles in the state space whose stability is studied using
linear approximations and the corresponding eigenvalues. When the control inputs
are sinusoidal voltages with constant modulus and frequency, the explicit formula
for the torque–speed characteristic curve is determined which gives the steady-state
rotor speed corresponding to a given load torque. As far as the specific motor con-
sidered in this book is concerned, the eigenvalues of the linear approximation at sev-
eral operating conditions have been numerically determined: when the rotor speed
is smaller than the critical value ω∗

p , the corresponding operating conditions are
unstable since there is one eigenvalue with positive real part, while they are expo-
nentially stable when the rotor speed is larger than ω∗

p . The explicit formula for the
flux modulus which minimizes the power losses at steady-state is given: it depends
on motor parameters and on the load torque. Structural properties such as observ-
ability, identifiability, and feedback linearizability are then studied using tools from
nonlinear control theory. The induction motor is transformable into a linear and con-
trollable system by state feedback if a first order dynamic extension is applied, i.e.
it is dynamically feedback linearizable. Hence, the induction motor possesses good
controllability properties. Rotor fluxes are observable from rotor speed and stator
current measurements for any voltage input while rotor speed and rotor fluxes are
locally observable from stator current measurements only, provided that a certain
condition holds. The load torque is identifiable from rotor speed and stator current
measurements for any voltage input, while the rotor resistance is identifiable even
though the rotor speed is not measured provided that the time derivative of the rotor
flux modulus is different from zero. The experimental set-up which will be used
throughout this book to illustrate the performance of the control algorithms is de-
scribed in Section 1.8. A good match between simulated and experimental data is
obtained for operating conditions with small slip speed, while at higher slip speed
some discrepancies arise due to unmodeled effects and measurement inaccuracies.
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Problems

1.1. Consider the induction motor model (1.26) when the rotor speed ω is constant
so that (1.26) becomes linear in the state variables (ψra, ψrb, isa, isb). Show that,
for any rotor speed ω and for any motor parameter value, it is observable from the
measurements (isa, isb).

1.2. Consider the induction motor model (1.26) when the rotor speed ω is constant
so that (1.26) becomes linear in the state variables (ψra, ψrb, isa, isb). Show that,
for any rotor speed ω and for any motor parameter value, it is controllable from the
inputs (usa, usb) with controllability indices (2,2).

1.3. Assume zero load torque and restrict the family of admissible inputs to the set
of constant inputs (usa, usb). Show that the two equilibrium points for (1.26) with
the additional state variable α

(ω,ψra,ψrb, isa, isb,α) =
(

0,
Musa

Rs
,

Musb

Rs
,

usa

Rs
,

usb

Rs
,α1

)

(ω,ψra,ψrb, isa, isb,α) =
(

0,
Musa

Rs
,

Musb

Rs
,

usa

Rs
,

usb

Rs
,α2

)

are indistinguishable from input–output measurements (usa, usb), (ω , ψra, ψrb, isa,
isb).

1.4. Show that the induction motor is locally observable and locally identifiable
from the outputs (isa, isb,ψra,ψrb) with respect to both the load torque TL and the
parameter α provided that

−α(ψ2
ra +ψ2

rb)+αM(ψraisa +ψrbisb) �= 0

i.e. when

d
(
ψ2

ra +ψ2
rb

)
dt

�= 0 .

Suggestion: consider the model (1.26) with the two additional state variables TL and
α satisfying ṪL = 0 and α̇ = 0, respectively.

1.5. Assume nonzero load torque and restrict the family of admissible inputs to the
set of constant inputs (usa,usb) satisfying

(
u2

sa +u2
sb
)2

>
4T 2

L R2
s

J2μ2α2M2 .

Show that the two equilibrium points for (1.26) (Δ =
J2μ2α2M2(u2

sa+u2
sb)

2

T 2
L R2

s
−4)

ω1 = −JμαM
2TLR2

s

(
u2

sa +u2
sb
)
+

√
Δ

2
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ψra1
ψrb1

]
=

αM
Rs
(
α2 +ω2

1

) [ α −ω1
ω1 α

][
usa
usb

]

isa =
usa

Rs

isb =
usb

Rs

and

ω2 = −JμαM
2TLR2

s

(
u2

sa +u2
sb
)−

√
Δ

2[
ψra2
ψrb2

]
=

αM
Rs
(
α2 +ω2

2

) [ α −ω2
ω2 α

][
usa
usb

]

isa =
usa

Rs

isb =
usb

Rs

are indistinguishable from input–output measurements (usa,usb), (isa, isb) for every
input satisfying the above inequality.

1.6. Determine constant inputs (usa, usb) and two equilibrium points for the model
(1.26) with the additional state variable TL which are indistinguishable from input–
output measurements (usa, usb), (isa, isb). Suggestion: see Problem 1.5.

1.7. Assume nonzero load torque and restrict the family of admissible inputs to the
set of inputs usa and usb guaranteeing, for suitable initial conditions,

μ(ψraisb −ψrbisa) = TL

−2α(ψ2
ra +ψ2

rb)+2αM(ψraisa +ψrbisb) = 0 .

Show that there exist two state vectors for the model (1.26) with the additional state
variable α which are indistinguishable from input–output measurements (usa, usb),
(ψra, ψrb, isa, isb).

1.8. Consider the induction motor model (1.39) and define the dynamic extension

dusq

dt
= vq .

Show that the extended system is state feedback linearizable and determine the cor-
responding singularities.

1.9. Consider the induction motor model (1.39) and define

usd = σ

[
−ωisq −

αMi2sq

ψrd
−βαψrd

]
+ vd
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usq = σ
[
ω isd +

αMisdisq

ψrd
+βωψrd

]
+ξ

dξ
dt

= vq .

Show that the extended system is state feedback linearizable and determine the cor-
responding singularities.

1.10. Consider the induction motor model (1.26) and define the dynamic extension

dusb

dt
=

vsb

σ
.

Show that the extended system is state feedback linearizable.





Chapter 2

State Feedback Control

Abstract In this chapter we explore the advantages of feedback control assuming
that all the state variables are measurable. This is not a realistic assumption since the
rotor variables are usually not measured but it allows us to explore fully the poten-
tiality of feedback control. In Section 2.1 we establish that the feedforward control
does not guarantee the asymptotic stability of the desired operating point for every
initial condition and for every parameter value: the load torque in particular is a crit-
ical parameter. Hence, feedback control is needed to achieve the asymptotic stability
of the desired operating condition, for any load torque and for any initial condition.
Six feedback control algorithms are then presented. The most complex is the dy-
namic feedback linearizing control presented in the last Section 2.6, which imposes
an arbitrary linear dynamic behavior to the controlled motor. The input–output feed-
back linearizing control is presented in Section 2.4: it achieves arbitrary and decou-
pled linear dynamics for the two tracking errors of rotor speed and flux modulus; it is
generalized in Section 2.5 by an adaptive input–output feedback linearizing control
which identifies both the load torque and the rotor resistance in realistic operating
conditions. The identification of these two parameters allows computation online of
the optimal value of the rotor flux modulus which minimizes the power losses. All
three feedback linearizing control schemes have excellent performances provided
that the initial errors are sufficiently small: this is a significant limitation which is
removed by the global control with arbitrary rate of convergence presented in Sec-
tion 2.7. It is the evolution of the historically important direct field-oriented control
which is presented in Section 2.2 and its variant, the indirect field-oriented con-
trol, which is discussed in Section 2.3 and can operate from any initial conditions.
The field-oriented controls constitute a modification of the feedforward control dis-
cussed in Section 2.1 and contain the key steps to design the global control with
arbitrary rate of convergence, which can operate from any motor initial conditions.
The indirect field-oriented control is tested by experiments in Section 2.8 and its
robustness with respect to rotor resistance variations is explored.

63
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2.1 Stability Analysis of Feedforward Control

In this section we assume that the left inverse control (1.74) is applied as a feed-
forward control to the induction motor fixed frame model (1.26) and we study the
case in which the initial conditions are not compatible in (1.74). We have seen in
the previous chapter that if the initial conditions of the induction motor and of the
inverse system are compatible and the inverse feedforward control (1.74) is applied,
then the induction motor satisfies the equations

dω∗

dt
= μψ∗i∗sq −

TL

J
dψ∗

dt
= −αψ∗ +αMi∗sd

0 = −(ω∗
0 −ω∗)ψ∗ +αMi∗sq

di∗sd
dt

= −γi∗sd +ω∗
0 i∗sq +βαψ∗ +

u∗sd
σ

di∗sq

dt
= −γi∗sq −ω∗

0 i∗sd −βω∗ψ∗ +
u∗sq

σ
(2.1)

in which the (d,q) reference rotating frame rotates at speed

dε∗0
dt

= ω∗
0 = ω∗ +

αMi∗sq

ψ∗ = ω∗ +ω∗
s (2.2)

and it is identified by the angle ε∗0 (t) = ρ∗(t) = ρ(t) in the fixed (a,b) frame. The
crucial question we are going to answer in this section is the following: what hap-
pens when the initial conditions of the inverse control (1.74) are not compatible
and in particular when ρ∗(0) �= arctan ψrb(0)

ψra(0) , which is very likely to happen since
measurements of (ψra,ψrb) are typically not available? In other words we are go-
ing to explore the stability and the attractivity (see Appendix A) of the steady-state
solution (ω∗,ψ∗,0, i∗sd , i

∗
sq). Since the rotor flux angle ρ no longer coincides with

the angle ρ∗, consider the (d,q) frame identified by the angle ε∗0 . In the considered
(d,q) frame the induction motor satisfies (1.31) with ω∗

0 in place of ω0. If we now
subtract (2.1) from (1.31) we obtain the tracking error dynamics

d(ω−ω∗)
dt

= μ
[
(ψrd −ψ∗) i∗sq −ψrqi∗sd

]
+μψ∗ (isq − i∗sq

)
+μ
[
(ψrd −ψ∗)

(
isq − i∗sq

)−ψrq (isd − i∗sd)
]

d(ψrd −ψ∗)
dt

= −α (ψrd −ψ∗)− (ω−ω∗)ψrq

+ω∗
s ψrq +αM (isd − i∗sd)

dψrq

dt
= −αψrq +(ω−ω∗)(ψrd −ψ∗)

−ω∗
s (ψrd −ψ∗)+(ω−ω∗)ψ∗ +αM

(
isq − i∗sq

)
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d
(
isd − i∗sd

)
dt

= −γ (isd − i∗sd)+ω∗
0
(
isq − i∗sq

)
+βα (ψrd −ψ∗)

+βω∗ψrq +β (ω−ω∗)ψrq

d
(
isq − i∗sq

)
dt

= −γ (isq − i∗sq
)−ω∗

0 (isd − i∗sd)+βαψrq

−βω∗ (ψrd −ψ∗)−β (ω−ω∗)(ψrd −ψ∗)
−β (ω−ω∗)ψ∗ (2.3)

where we recall that

i∗sd =
ψ∗

M
+
ψ̇∗

αM

i∗sq =
ω̇∗

μψ∗ +
TL

Jμψ∗ (2.4)

and ω∗
s is defined in (2.2). The origin

[
(ω−ω∗) ,(ψrd −ψ∗) ,ψrq,(isd − i∗sd) ,

(
isq − i∗sq

)]T = 0 ,

which corresponds to zero tracking errors, is clearly an equilibrium point for the
tracking error dynamics (2.3): this is the case of compatible initial conditions in
which

ω(0) = ω∗(0)
ψra(0) = ψ∗(0)cosρ∗(0)
ψrb(0) = ψ∗(0)sinρ∗(0)[

isa(0)
isb(0)

]
=
[

cosρ∗(0) −sinρ∗(0)
sinρ∗(0) cosρ∗(0)

][ ψ∗(0)
M + ψ̇∗(0)

αM
ω̇∗(0)
μψ∗(0) + TL

Jμψ∗(0)

]

ρ∗(0) = ρ(0) .

In order to have a more compact notation, let us rewrite the tracking error dynamics
in terms of the tracking errors

ω̃ = ω−ω∗

ψ̃rd = ψrd −ψ∗

ψ̃rq = ψrq

ĩsd = isd − i∗sd

ĩsq = isq − i∗sq

as

dω̃
dt

= μ i∗sqψ̃rd −μ i∗sdψ̃rq +μψ∗ ĩsq +μψ̃rd ĩsq −μψ̃rqĩsd
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dψ̃rd

dt
= −αψ̃rd +ω∗

s ψ̃rq − ω̃ψ̃rq +αMĩsd

dψ̃rq

dt
= −αψ̃rq −ω∗

s ψ̃rd + ω̃ψ̃rd +αMĩsq +ψ∗ω̃

dĩsd

dt
= −γ ĩsd +ω∗

0 ĩsq +βαψ̃rd +βω∗ψ̃rq +βω̃ψ̃rq

dĩsq

dt
= −γ ĩsq −ω∗

0 ĩsd +βαψ̃rq −βω∗ψ̃rd −βω̃ψ̃rd −βψ∗ω̃ . (2.5)

Many questions are naturally posed on the tracking error dynamics (2.5): is the ori-
gin stable, asymptotically stable, exponentially stable, globally asymptotically sta-
ble, globally exponentially stable? How large is the region of attraction of the origin
and what is the influence of critical parameters, such as rotor resistance Rr and load
torque TL, on the region of attraction and on the dynamic behavior? These questions
have no simple answers since the system (2.5) is nonlinear and time-varying when
the reference signals (ω∗,ψ∗) are time-varying. On the other hand, these questions
are extremely important since, for instance, if the origin were globally exponentially
stable with satisfactory transient properties and robustness with respect to parameter
variations then no feedback control would be needed and the feedforward control
(1.74) would achieve the tracking of (ω∗,ψ∗) from any initial condition. To examine
one of those questions, consider the error system dynamics (2.5) and compute the
equilibrium points for (2.5) in the case of constant references (ω∗,ψ∗) and TL �= 0.
In order to use a more compact notation and simplify the analysis, define the track-
ing error variables

zd = ĩsd +βψ̃rd

zq = ĩsq +βψ̃rq

so that the error system (2.5) in the case of constant references (ω∗,ψ∗) may be
rewritten in the simpler form

˙̃ω = Aψ̃rd −Bψ̃rq +Czq +μψ̃rdzq −μψ̃rqzd

˙̃ψrd = −Dψ̃rd − ω̃ψ̃rq +Eψ̃rq +αMzd

˙̃ψrq = −Dψ̃rq + ω̃ψ̃rd −Eψ̃rd +ψ∗ω̃+αMzq

żd = Fzq − kzd + kβψ̃rd

żq = −Fzd − kzq + kβψ̃rq (2.6)

in which the following reparameterization is used

A =
TL

Jψ∗ , B = μψ∗
(

1
M

+β
)

,

C = μψ∗, D = α+αMβ ,

E =
αMTL

μJψ∗2 , F = ω∗ +E, k =
Rs

σ
.
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By direct computation it is possible to show that there exist constant references
(ω∗,ψ∗) and TL �= 0, which are within physical bounds such that the tracking error
dynamics (2.6) have an explicitly computable additional equilibrium point besides
the origin whose first component

ω̃e =
(
βkCF −βkψ∗μF − k2A−AF2)−1

[
αβ 2MCk2 −αβMBk2

−αβMAFk−βCDk2 +βkCFE − k2AE + k2BD+BF2D−AF2E
]

is nonzero. Hence, for such references and load torque values, the origin is not a
globally attractive equilibrium point for (2.6) and rotor speed tracking cannot be
achieved for any motor initial condition. Furthermore, consider the linear approxi-
mation about the origin of system (2.5):

dω̃
dt

= μi∗sqψ̃rd −μ i∗sdψ̃rq +μψ∗ ĩsq

dψ̃rd

dt
= −αψ̃rd +ω∗

s ψ̃rq +αMĩsd

dψ̃rq

dt
= ψ∗ω̃−ω∗

s ψ̃rd −αψ̃rq +αMĩsq

dĩsd

dt
= βαψ̃rd +βω∗ψ̃rq − γ ĩsd +(ω∗ +ω∗

s )ĩsq

dĩsq

dt
= −βψ∗ω̃−βω∗ψ̃rd +βαψ̃rq − (ω∗ +ω∗

s )ĩsd − γ ĩsq . (2.7)

According to the linear approximation Theorem A.7 in Appendix A, if the load
torque satisfies the inequality

T 2
L ≥ (1+Mβ )2ψ∗4

L2
r

then the origin is an unstable equilibrium point for the error system (2.5). Recall that
in the analysis of the torque–speed characteristic curve in Section 1.3 we observed in
Figures 1.5 and 1.6 that unstable operating conditions at low rotor speed correspond
to low rotor flux modulus and high load torques.

In conclusion, there exist constant references (ω∗,ψ∗) and TL �= 0 such that
the feedforward control (1.74), specialized to the case of constant rotor speed
and flux modulus references (see Figure 2.1 for current-fed motors),[

u∗sa
u∗sb

]
=
[

cosρ∗ −sinρ∗
sinρ∗ cosρ∗

][
u∗sd
u∗sq

]

u∗sd = σ

[
Rsψ∗

σM
− ω∗TL

μJψ∗ −
αM
ψ∗

(
TL

Jμψ∗

)2
]
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Fig. 2.1 Feedforward control for current-fed motors (constant references ω∗,ψ∗)

u∗sq = σ
[
γTL

Jμψ∗ +
ω∗ψ∗

M
+
αTL

Jμψ∗ +βω∗ψ∗
]

ρ̇∗ = ω∗ +
αMTL

μJψ∗2 (2.8)

depending on the reference signals (ω∗,ψ∗), on the initial condition ρ∗(0),
and on the machine parameters M, Rr, Lr, J, Rs, Ls, does not guarantee ro-
tor speed tracking for any motor initial condition. Furthermore, the origin of
the error system (2.5), which implies zero tracking error, is unstable if the

inequality |TL| ≥ (1+Mβ )ψ∗2

Lr
is satisfied.

Illustrative Simulations

We tested the feedforward control (2.8) by simulations for the three-phase sin-
gle pole pair 0.6-kW induction motor whose parameters have been reported in
Chapter 1. All the motor initial conditions have been set equal to zero except for
ψra(0) = ψrb(0) = 0.1Wb. The references for the speed and flux modulus along
with the applied load torque are reported in Figures 2.2–2.4. The rotor flux modulus
reference signal starts from 0.001Wb at t = 0s and grows up to the constant value
1.16Wb. The speed reference is zero until t = 0.32s and grows up to the constant
value 100rad/s; at t = 1.5s the reference for the flux modulus is reduced to 0.5Wb.
A 5.8-Nm load torque is applied to the motor and then is reduced to 4.8Nm. Fig-
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ures 2.3 and 2.4 show the time histories of rotor speed and flux modulus along with
the corresponding tracking errors: the rotor speed and flux modulus are regulated
to their corresponding references as long as the load torque satisfies the inequality
TL < ψ∗2(1+Mβ )

Lr
, while rotor speed and rotor flux modulus regulation is not achieved

when the load torque is greater than ψ∗2(1+Mβ )
Lr

. In fact, for a load torque TL = 4.8Nm
and a constant rotor flux reference ψ∗ = 0.5Wb, the origin of the error system (2.5)
is unstable while the computed additional equilibrium point for (2.5) is exponen-
tially stable. Finally, the stator currents and voltages profiles, which are within the
physical saturation limits, are reported in Figures 2.5 and 2.6.

Fig. 2.2 Feedforward control: applied load torque TL

Fig. 2.3 Feedforward control: rotor speed ω and its reference ω∗; rotor speed tracking error
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Fig. 2.4 Feedforward control: rotor flux modulus
√
ψ2

ra +ψ2
rb and its reference ψ∗; rotor flux

modulus tracking error

Fig. 2.5 Feedforward control: stator current vector (a,b)-components

A second simulation is performed in order to illustrate, in the particular case in
which the origin of the error system (2.5) is exponentially stable according to the
linear approximation Theorem A.7 in Appendix A, the effect of uncertainties in both
load torque and rotor resistance. All motor initial conditions have been set equal to
zero except for ψra(0) = ψrb(0) = 0.1Wb. A 5.8-Nm load torque is applied to the
motor and is reduced to 0.5Nm as shown in Figure 2.7. The references for the speed
and flux modulus are reported in Figures 2.8 and 2.9. The rotor flux modulus ref-
erence signal starts from 0.001Wb at t = 0s and grows up to the constant value
1.16Wb. The speed reference is zero until t = 0.32s and grows up to the constant
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Fig. 2.6 Feedforward control: stator voltage vector (a,b)-components

value 100rad/s; at t = 1.5s the reference for the flux modulus is then reduced to
0.5Wb. The value of the rotor resistance used by the feedforward control is 50%
greater than the true value Rr = 3.3Ω while only a 0.2-Nm load torque is compen-
sated by the controller for t ≥ 1s (see Figure 2.7). Figures 2.8 and 2.9 show the time
histories of rotor speed and flux modulus along with the corresponding tracking
errors: note that steady-state errors appear as expected. Finally, the stator currents
and voltages profiles, which are within the physical saturation limits, are reported in
Figures 2.10 and 2.11.

Fig. 2.7 Feedforward control with parameter uncertainties: applied load torque TL and compen-
sated load torque
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Fig. 2.8 Feedforward control with parameter uncertainties: rotor speed ω and its reference ω∗;
rotor speed tracking error

Fig. 2.9 Feedforward control with parameter uncertainties: rotor flux modulus
√
ψ2

ra +ψ2
rb and its

reference ψ∗; rotor flux modulus tracking error

In summary, we have shown that the feedforward control (2.8), which is required
to keep the motor at constant speed ω∗ with a desired constant flux modulus ψ∗,
does not guarantee the regulation to ω∗ for any motor initial condition and may
yield unstable steady-state operating conditions depending on load torque TL, mo-
tor parameters, and desired flux modulus ψ∗, even when exact parameter values are
used in (2.8). On the other hand, if the values of the critical parameters Rr and TL
used in (2.8) do not coincide with the corresponding actual values then the simu-
lations show that steady-state tracking errors appear. Feedback is then required to
guarantee asymptotically stable operating conditions for any initial condition and,
at the same time, robustness with respect to uncertainties in critical motor parame-
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Fig. 2.10 Feedforward control with parameter uncertainties: stator current vector (a,b)-
components

Fig. 2.11 Feedforward control with parameter uncertainties: stator voltage vector (a,b)-
components

ters such as rotor resistance and load torque. This goal will be achieved in the next
sections.

2.2 Direct Field-oriented Control

The purpose of this section is to illustrate the benefits of feedback control. Consider
the reduced third-order model in the (d,q) frame rotating at rotor flux speed of
rotation ρ̇ and identified by the rotor flux angle ρ (see (1.39))
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dω
dt

= μψrdisq − TL

J
dψrd

dt
= −αψrd +αMisd

dρ
dt

= ω+
αMisq

ψrd
(2.9)

in which the pair (isd , isq) in (1.41) is viewed as the control input vector, under the
assumption that the actual physical inputs (usd ,usq) in (1.42) can be designed to
track very quickly any desired stator current pair (isd , isq). The currents (isd , isq),
which are related to the stator currents (isa, isb) in the fixed (a,b) frame attached to
the stator by the nonsingular transformation (recall (1.30) with ε0 = ρ and (1.37),
(1.38))

cosρ =
ψra√
ψ2

ra +ψ2
rb

sinρ =
ψrb√
ψ2

ra +ψ2
rb[

isa
isb

]
=
[

cosρ −sinρ
sinρ cosρ

][
isd
isq

]
(2.10)

are to be designed to track the desired signals (ω∗,ψ∗).
The structure of system (2.9) in the rotating frame is very suitable for multivari-

able feedback control design as the field-oriented control strategy shows. The flux
modulus dynamics are linear and can be independently controlled by isd while, when
the flux modulus ψrd coincides with its reference ψ∗, the rotor speed dynamics

dω
dt

= μψ∗isq − TL

J
(2.11)

are also linear with respect to isq and can be independently controlled by isq. Since
the unforced direct flux ψrd dynamics

dψrd

dt
= −αψrd (2.12)

are asymptotically stable (α > 0) when isd = 0, the control input isd can be designed
as the following feedforward signal (recall (1.67))

isd =
ψ∗

M
+
ψ̇∗

αM
(2.13)

which, substituted in (2.9), gives (recall that ψ̃rd = ψrd −ψ∗)

dψ̃rd

dt
= −αψ̃rd . (2.14)
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On the other hand, from the first equation in (2.9), the speed error dynamics are
(recall that ω̃ = ω−ω∗)

dω̃
dt

= μψrdisq − TL

J
− ω̇∗

= μψ∗isq − TL

J
+μψ̃rdisq − ω̇∗ . (2.15)

Define the control for isq as (kω is a positive control parameter)

isq =
1
μψ∗

[
−kωω̃+ ω̇∗ +

TL

J

]
(2.16)

and substitute it into the first equation in (2.9) or, equivalently, in (2.15) so that

dω̃
dt

= −kωω̃+μψ̃rdisq (2.17)

in which ψ̃rd(t), according to (2.14), is an exponentially decaying signal for any
ψrd(0). According to (2.16), (2.17) may be rewritten as

dω̃
dt

= −kω

[
1+

ψ̃rd

ψ∗

]
ω̃+

ψ̃rd

ψ∗

(
ω̇∗ +

TL

J

)
. (2.18)

On the basis of (2.14) and (2.18), we conclude that ω̃(t) is bounded in the time
interval [0,t∗], with t∗ any positive real. On the other hand, according to (2.14), for
any initial condition ψrd(0) and any positive real η < 1 there exists t̃∗ ≥ 0 such that,
for all t ≥ t̃∗, ∣∣∣∣ ψ̃rd(t)

ψ∗(t)

∣∣∣∣≤ 1−η .

Therefore, according to (2.18), ω̃(t) is an exponentially decaying signal for any
initial condition ω(0). Note that in order to avoid the singularities in the controller

at ψrd =
√
ψ2

ra +ψ2
rb = 0 which appear in (2.10), according to (2.14) ψrd(0) must

be greater than zero so that ψrd(t) > 0 for all t ≥ 0.

In conclusion: the direct field-oriented control (see Figure 2.12) is defined as[
isa
isb

]
=
[

cosρ −sinρ
sinρ cosρ

][
isd
isq

]

isd =
ψ∗

M
+
ψ̇∗

αM

isq =
1
μψ∗

[
−kω (ω−ω∗)+ ω̇∗ +

TL

J

]
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Fig. 2.12 Direct field-oriented control for current-fed motors (constant references ω∗,ψ∗)

cosρ =
ψra√
ψ2

ra +ψ2
rb

sinρ =
ψrb√
ψ2

ra +ψ2
rb

; (2.19)

it is a static nonlinear feedback control algorithm which depends on the
measurements of the state variables (ω,ψra,ψrb), on the reference signals
(ω∗,ψ∗), on the positive control parameter kω , on the load torque TL, and on
the machine parameters M,Rr,Lr,J, since μ = M

JLr
and α = Rr

Lr
; it guarantees

that, for any initial condition of the current-fed reduced order motor model
(2.9) such that ψrd(0) > 0, the rotor speed and rotor flux modulus tracking
errors decay exponentially to zero.
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Remarks

1. The name direct field-oriented control is due to the fact that the stator current vec-
tor (isa, isb) rotates at the same speed ρ̇ at which the rotor flux vector (ψra,ψrb)
rotates, i.e. it follows the orientation of the flux vector. The quadrature axis com-
ponent isq of the stator current vector is responsible, according to (2.16), for the
rotor speed tracking and depends on the load torque TL, while the direct axis
component isd of the stator current vector is responsible, according to (2.13), for
the tracking of the rotor flux modulus.

2. The direct field-oriented control (2.19) is a static state feedback control which
generates bounded currents (isa, isb) for every state value (ω,ψrd ,ρ); it is not
well defined at ψrd = 0 where (2.9) is no longer an equivalent description of the
fixed frame model (1.26).

3. The measurements of (ψra,ψrb) are required; the critical parameter Rr, which
appears in isd through α = Rr

Lr
when the reference ψ∗ is not constant, is required

only when the reference ψ∗ is time-varying; if ψ∗ is constant the direct field-
oriented control does not depend on Rr.

4. If the flux modulus and the rotor speed are constant and equal to the desired
values (ω∗,ψ∗) then the rotor flux rotates at constant speed w = (ω∗ +ωs), with
ωs = αMTL

μψ∗2 , and the induction motor is driven by the sinusoidal currents obtained
from (2.19):

[
isa
isb

]
=
[

cos(ρ(0)+wt) −sin(ρ(0)+wt)
sin(ρ(0)+wt) cos(ρ(0)+wt)

][ ψ∗
M
TL

Jμψ∗

]
.

5. The direct field-oriented control (2.19) achieves asymptotic input–output feed-
back linearization: according to (2.14), the closed-loop dynamics for (ψrd −ψ∗)
are linear with a time constant equal to α−1 = LrR−1

r depending on the machine
parameters; according to (2.17), once ψrd tends to its reference ψ∗, the closed-
loop dynamics for ω̃ tend to be linear with arbitrary time constant k−1

ω . During
the transient, the nonlinear term Jμψrdisq, which represents the electromagnetic
torque Te in the first equation in (2.9), makes the first two equations in (2.9) still
nonlinear and coupled: for this reason the speed transients may be unsatisfactory.

6. The direct field-oriented control (2.19) can be simply modified by replacing ψrd
with its reference ψ∗ in the dynamic equation which generates the angle of rota-
tion of the (d,q) reference frame, so that the indirect field-oriented control which
will be discussed in the next section (ε0(0) is an arbitrary initial condition)[

isa
isb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
isd
isq

]
dε0

dt
= ω0 = ω+

αMisq

ψ∗

isd =
ψ∗

M
+
ψ̇∗

αM
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isq =
1
μψ∗

[
−kω (ω−ω∗)+ ω̇∗ +

TL

J

]
(2.20)

is obtained. Note that (2.20) is always well defined even at ψrd = 0 where (2.19)
is, on the contrary, not well defined. Furthermore, (2.20) does not require the
measurement of rotor fluxes (ψra,ψrb) but only the measurement of ω while ε0
no longer coincides with the rotor flux angle ρ .

7. The direct field-oriented control (2.19) can be modified to obtain input–output
feedback linearization (and not only asymptotic input–output feedback lineariza-
tion) by using ψrd in place of ψ∗ in the isq espression and by adding a feedback
term in the isd espression in (2.19) as follows:[

isa
isb

]
=
[

cosρ −sinρ
sinρ cosρ

][
isd
isq

]

isd =
ψ∗

M
+
ψ̇∗

αM
− kψ (ψrd −ψ∗)

αM

isq =
1
μψrd

[
−kω (ω−ω∗)+ ω̇∗ +

TL

J

]
ψrd = ψra cosρ+ψrb sinρ

cosρ =
ψra√
ψ2

ra +ψ2
rb

sinρ =
ψrb√
ψ2

ra +ψ2
rb

; (2.21)

substituting (2.21) in (2.9) we have for the rotor speed and flux modulus tracking
errors

dω̃
dt

= −kωω̃

dψ̃rd

dt
= −(α+ kψ

)
ψ̃rd (2.22)

which clarifies that the dynamics for the speed and flux modulus tracking er-
rors are decoupled and linear with arbitrary time constants k−1

ω and
(
α+ kψ

)−1.
Note, however, that exact input–output decoupling and linearization have been
achieved by the controller (2.21) at the expense of a singularity at ψrd = 0 which,
in contrast to the indirect field-oriented control (2.20), may imply very large cur-
rents (isa, isb) when ψrd is close to zero.

It is instructive to compare the structures of the following four control algorithms:
the feedforward control (1.74), the indirect field-oriented control (2.20), the di-
rect field-oriented control (2.19) and the input–output feedback linearizing control
(2.21). They are listed in terms of increasing complexity. In fact, the feedforward
control (1.74) requires no state variable measurements but precise initialization for
ρ∗(0). The indirect field-oriented control (2.20) requires only rotor speed measure-
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ments which are used to introduce the feedback term −kω(ω −ω∗) in the expres-
sion of isq and to replace ω∗ by ω in the dynamic equation which produces the
rotation angle ε0 and can be arbitrarily initialized: the first action is the classical
feedback proportional to the speed tracking error, while the second action is uncon-
ventional and is aimed to achieve the field orientation without flux measurements,
as we shall see in the next section. Both the direct field-oriented control and the
input–output feedback linearizing control generate the rotation matrix on the basis
of rotor flux measurements (ψra,ψrb) without computing the angles ρ∗ or ε0 by
integration: they differ since the input–output linearizing control contains an addi-
tional feedback term −kψ(ψrd −ψ∗)/(αM) in the expression of isd and makes use
of ψrd instead of its reference ψ∗ in the expression of isq.

Illustrative Simulations

We tested the direct field-oriented control by simulations for the current-fed three-
phase single pole pair 0.6-kW induction motor whose parameters have been re-
ported in Chapter 1: stator currents dynamics have been neglected so that the stator
currents (isa, isb) constitute the motor control inputs. The rotor speed initial condi-
tion has been set equal to zero while the rotor fluxes initial conditions have been
set equal to ψra(0) = ψrb(0) = 0.1Wb. The control algorithm has been tested us-
ing the control parameter (the value is in SI units) kω = 12, which directly affects
the speed tracking error dynamics. The references for the speed and flux modu-
lus along with the applied load torque are reported in Figures 2.13–2.15. The rotor
flux modulus reference signal starts from 0.001Wb at t = 0s and grows up to the
constant value 1.16Wb. The speed reference is zero until t = 0.32s and grows up
to the constant value 100rad/s; at t = 1.5s the speed is required to go up to the
value 200rad/s, while the reference for the flux modulus is reduced to 0.5Wb. A
5.8-Nm load torque is first applied to the motor and then is reduced to 1.8Nm. Fig-
ures 2.14 and 2.15 show the time histories of rotor speed and flux modulus along
with the corresponding tracking errors: the rotor speed and flux modulus track their
references tightly. As illustrated by Figure 2.16, the motor trajectories in the state
space tend to two attractive limit cycles corresponding to the two constant operat-
ing conditions imposed by the reference signals. Finally, the stator currents profiles,
which are within the physical saturation limits, are reported in Figure 2.17. It is very
interesting to compare Figures 2.2–2.5 which illustrate the feedforward control per-
formance with Figures 2.13–2.17 which illustrate the performance of the feedback
direct field-oriented control for the same parameters and similar reference signals.
The rotor speed tracking errors (see Figures 2.3 and 2.14) are two orders of magni-
tude smaller in the feedback case (maximum error of 5rad/s and 0.09rad/s, respec-
tively). Moreover, the feedback control also achieves very precise tracking when the
load torque reduces its value to 1.8Nm. Similar improvements are obtained in rotor
flux tracking (compare Figures 2.4 and 2.15).
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Fig. 2.13 Direct field-oriented control: applied load torque TL

Fig. 2.14 Direct field-oriented control: rotor speed ω and its reference ω∗; rotor speed tracking
error

So far we have designed the direct field-oriented control (2.19) and its variants (2.20)
and (2.21) on the basis of the reduced order model (2.9) in which the stator current
dynamics have been neglected, which is clearly an approximation. Reconsider now
the full order model (1.39) expressed in the state coordinates (1.41) and in the con-
trol coordinates (usd ,usq) which are related to the original control inputs (usa,usb)
by [

usa
usb

]
=
[

cosρ −sinρ
sinρ cosρ

][
usd
usq

]
. (2.23)
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Fig. 2.15 Direct field-oriented control: rotor flux modulus
√
ψ2

ra +ψ2
rb and its reference ψ∗; rotor

flux modulus tracking error

Fig. 2.16 Direct field-oriented control: (ψra,ψrb,ω)-trajectories

Let us now design (usd ,usq) as state feedback controls so that the desired references
(ω∗,ψ∗) are asymptotically tracked. From the last two equations in (1.39) define
the state feedback control

usd = σ

[
−ωisq −

αMi2sq

ψrd
−βαψrd + vd

]

usq = σ
[
ωisd +

αMisqisd

ψrd
+βωψrd + vq

]
(2.24)

in which (vd ,vq) are new control inputs yet to be designed. Note that the state feed-
back control (2.23), (2.24) introduces a singularity at ψrd = 0 so that very large input
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Fig. 2.17 Direct field-oriented control: stator current vector (a,b)-components (isa, isb)

voltages are to be expected when the rotor flux modulus is close to zero. Substituting
(2.24) in (1.39) we obtain the closed-loop system

dω
dt

= μψrdisq − TL

J
disq

dt
= −γ isq + vq

dψrd

dt
= −αψrd +αMisd

disd

dt
= −γ isd + vd

dρ
dt

= ω+
αMisq

ψrd
. (2.25)

In other words, the system (1.26) is transformed into (2.25) by the state space change
of coordinates (1.41) and the state feedback control (2.23), (2.24) provided that
ψrd �= 0, since in ψrd = 0 the field-oriented model (1.39) is no longer an equivalent
description of the fixed frame model (1.26). The closed-loop system (2.25) has a
much simpler structure than system (1.26): the flux amplitude dynamics are linear

dψrd

dt
= −αψrd +αMisd

disd

dt
= −γ isd + vd (2.26)

and can be independently controlled by vd for instance via a proportional-integral
(PI) controller (kd p and kdi are positive control parameters)
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vd(t) = −kd p(ψrd(t)−ψ∗(t))− kdi

∫ t

0
(ψrd(τ)−ψ∗(τ))dτ . (2.27)

Once the flux amplitude ψrd tracks its reference ψ∗, the rotor speed dynamics are
also linear

dω
dt

= μψ∗isq − TL

J
disq

dt
= −γisq + vq (2.28)

and can be independently controlled by vq for instance via two nested loops of PI
controllers (kqp and kqi are positive control parameters)

vq(t) = −kqp(Te(t)−T ∗
e (t))− kqi

∫ t

0
(Te(τ)−T ∗

e (τ))dτ (2.29)

with (kT p and kTi are positive control parameters)

Te(t) = μψrd(t)isq(t)

T ∗
e (t) = −kT p(ω(t)−ω∗(t))− kTi

∫ t

0
(ω(τ)−ω∗(τ))dτ . (2.30)

We can then say that the state feedback control (2.23), (2.24) achieves asymptotic
input–output linearization and decoupling since the first four equations in (2.25)
tend to the linear ones (2.26) and (2.28) as ψrd tends to its reference ψ∗; moreover
the outputs ω and ψrd can be independently controlled by the new inputs vd and vq,
respectively. Note, however, that during flux transients the nonlinear term Jμψrdisq,
which represents the electromagnetic torque Te in the first equation in (2.25), makes
the first four equations in (2.25) still nonlinear and coupled; consequently, the speed
transients are difficult to evaluate and may result unacceptable when the flux under-
goes a transient to improve efficiency.

2.3 Indirect Field-oriented Control

The indirect field-oriented control (2.20) is a modification of the direct field-oriented
control (2.19) which uses, instead of the rotor flux angle ρ , an arbitrary rotating
angle ε0 which is generated replacing ψrd by its reference ψ∗ in the differential
equation defining the ε0 dynamics, i.e.

[
isa
isb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][ ψ∗
M + ψ̇∗

αM
1
μψ∗
[
−kω (ω−ω∗)+ ω̇∗ + TL

J

]]

dε0

dt
= ω0 = ω+

αMisq

ψ∗
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= ω+
αM
μψ∗2

[
−kω (ω−ω∗)+ ω̇∗ +

TL

J

]
(2.31)

with arbitrary ε0(0).
The indirect field-oriented control (2.31) may also be designed directly on the

basis of the first three equations in the rotating frame model (1.31):

dω
dt

= μ (ψrdisq −ψrqisd)− TL

J
dψrd

dt
= −αψrd +(ω0 −ω)ψrq +αMisd

dψrq

dt
= −αψrq − (ω0 −ω)ψrd +αMisq . (2.32)

Let (ω∗(t),ψ∗(t),0) be the reference signals for (ω(t),ψrd(t),ψrq(t)): (2.32) can
be rewritten as (ω̃ = ω−ω∗, ψ̃rd = ψrd −ψ∗, ψ̃rq = ψrq)

dω̃
dt

= μ (ψ̃rdisq − ψ̃rqisd)+μψ∗isq − ω̇∗ − TL

J
dψ̃rd

dt
= −αψ̃rd +(ω0 −ω) ψ̃rq −αψ∗ − ψ̇∗ +αMisd

dψ̃rq

dt
= −αψ̃rq − (ω0 −ω) ψ̃rd − (ω0 −ω)ψ∗ +αMisq . (2.33)

Our goal is to design a dynamic feedback control[
isa
isb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
isd
isq

]
ε̇0 = ω0 (2.34)

so that the tracking errors (ω̃, ψ̃rd , ψ̃rq) tend exponentially to zero from any initial
condition. Note that by introducing a dynamic feedback we add an extra degree of
freedom in the design since we can now freely choose in (2.33) three independent
feedback terms (isd , isq, ω0) in place of (isd , isq) which are at our disposal if a static
feedback is designed. We design (isd , isq,ω0) as feedback terms so that

μψ∗isq − ω̇∗ − TL

J
= −kω(ω−ω∗)

−αψ∗ − ψ̇∗ +αMisd = 0
−(ω0 −ω)ψ∗ +αMisq = 0 (2.35)

since, substituting (2.35) in (2.33), we obtain

dω̃
dt

= −kωω̃+μ (ψ̃rdisq − ψ̃rqisd)

dψ̃rd

dt
= −αψ̃rd +(ω0 −ω) ψ̃rq
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dψ̃rq

dt
= −αψ̃rq − (ω0 −ω) ψ̃rd .

Solving (2.35) for (isd , isq,ω0), we explicitly obtain the feedback terms to be used
in (2.34)

isd =
ψ∗

M
+
ψ̇∗

αM

isq =
1
μψ∗

[
−kω(ω−ω∗)+ ω̇∗ +

TL

J

]

ω0 = ω+
αM
μψ∗2

[
−kω(ω−ω∗)+ ω̇∗ +

TL

J

]

which, substituted in (2.34), gives exactly the indirect field-oriented control (2.31)
in (a,b) coordinates.

The advantages of (2.31) with respect to (2.19) are:

1. while (2.19) is not well defined at ψ2
ra +ψ2

rb = 0, the indirect field-oriented con-
trol (2.31) is always well defined since ψ∗(t) ≥ cψ > 0 for all t ≥ 0;

2. the control (2.31) requires only the measurement of rotor speed ω while (2.19)
also requires the measurement of (ψra,ψrb) to compute cosρ and sinρ ;

3. the control (2.31) is a dynamic first order output feedback controller for the
current-fed model (2.9) from rotor speed measurements while (2.19) is a static
state feedback controller for the same reduced order model (2.9) from rotor speed
and flux measurements.

We now substitute (2.31) in the first three equations of the fixed frame model (1.26):
to evaluate the closed-loop stability it is more convenient to use directly the rotating
frame model (1.31) in the (d,q) reference frame rotating at the speed

dε0

dt
= ω0 (2.36)

defined in (2.31). Substituting

isd =
ψ∗

M
+
ψ̇∗

αM

isq =
1
μψ∗

[
−kω (ω−ω∗)+ ω̇∗ +

TL

J

]
(2.37)

in the first three equations of model (1.31) we obtain for the second equation in
(1.31)

dψ̃rd

dt
= −αψ̃rd +(ω0 −ω) ψ̃rq (2.38)

while for the third equation in (1.31), since

(ω0 −ω)ψ∗ = αMisq , (2.39)
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we have

dψ̃rq

dt
= −αψ̃rq − (ω0 −ω) ψ̃rd . (2.40)

The first equation in (1.31) can be rewritten as

dω
dt

= μψ∗isq − TL

J
+μ (ψ̃rdisq −ψrqisd) (2.41)

so that, substituting (2.37) in (2.41), we obtain

dω̃
dt

= −kωω̃+μ (ψ̃rdisq − ψ̃rqisd) (2.42)

which along with (2.38) and (2.40), namely[ ˙̃ψrd
˙̃ψrq

]
=
[ −α (ω0 −ω)
−(ω0 −ω) −α

][
ψ̃rd
ψ̃rq

]
, (2.43)

constitute the closed-loop linear, time-varying tracking dynamics in the (d,q) frame
defined by (2.36). Consider the positive definite function

V =
1
2
ψ̃2

rd +
1
2
ψ̃2

rq (2.44)

whose time derivative along the trajectories of the closed-loop system (2.43) is

V̇ = −αψ̃2
rd −αψ̃2

rq = −2αV . (2.45)

Since, according to (2.45),

V (t) = e−2αtV (0) (2.46)

we can establish that ψ̃rd(t) and ψ̃rq(t) exponentially tend to zero for any initial
condition (ψrd(0),ψrq(0)). In particular, since ψrq(t) tends to zero, (ε0(t)−ρ(t))
tends to zero, i.e. the (d,q) frame rotating at speed ω0(t) given by (2.36) will tend
to have its d-axis coincident with the rotating rotor flux vector: field orientation is
asymptotically achieved. According to (2.37), (2.42) may be rewritten as

dω̃
dt

= −kω

[
1+

ψ̃rd

ψ∗

]
ω̃

+
ψ̃rd

ψ∗

(
ω̇∗ +

TL

J

)
−μψ̃rq

[
ψ∗

M
+
ψ̇∗

αM

]
. (2.47)

According to (2.46) and (2.47), ω̃(t) is bounded on [0, t∗] with t∗ any positive real.
On the other hand, according to (2.46), for any initial condition (ψrd(0),ψrq(0)) and
any positive real η < 1 there exists t̃∗ ≥ 0 such that for all t ≥ t̃∗
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ψ∗(t)

∣∣∣∣≤ 1−η .

Therefore, according to (2.47), ω̃(t) is an exponentially decaying signal for any
initial condition ω(0).

Fig. 2.18 Indirect field-oriented control for current-fed motors (constant references ω∗,ψ∗)

In conclusion: the indirect field-oriented control (see Figure 2.18) is defined
as [

isa
isb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
isd
isq

]

isd =
ψ∗

M
+
ψ̇∗

αM

isq =
1
μψ∗

[
−kω (ω−ω∗)+ ω̇∗ +

TL

J

]
dε0

dt
= ω+

αMisq

ψ∗ ; (2.48)

it is a first order dynamic control algorithm which depends on the measure-
ments of the rotor speed ω , on the reference signals (ω∗,ψ∗), on the arbitrary
initial condition ε0(0), on the positive control parameter kω , on the load torque
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TL, and on the machine parameters M,Rr,Lr,J, since μ = M
JLr

and α = Rr
Lr

; it
guarantees that, for any ε0(0) and for any initial condition of the current-fed
reduced order motor model (2.32), the rotor speed and flux modulus tracking
errors decay exponentially to zero.

Remarks

1. The name indirect field-oriented control arises from the fact that it is obtained
from the direct field-oriented control by using the angle ε0 in place of the the
rotor flux angle ρ: the rotor flux angle dynamics

dρ
dt

= ω+
αMisq

ψrd

with ρ(0) = arctan
(
ψrb(0)
ψra(0)

)
are replaced by

dε0

dt
= ω+

αMisq

ψ∗

with arbitrary ε0(0) in which the reference flux ψ∗ simply replaces the unmea-
sured ψrd . Note that, even though ε0 does not coincide with the rotor flux angle
ρ , [ε0(t)−ρ(t)] exponentially tends to zero for every initial condition ε0(0): the
remarkable fact is that field orientation is achieved for any ε0(0).

2. As in direct field-oriented control, according to (2.37), the quadrature axis com-
ponent isq of the stator current vector is responsible for the rotor speed tracking
and depends on TL, while the direct axis component isd of the stator current vector
is responsible for the tracking of the rotor flux modulus.

3. The critical parameter Rr is required to generate the angle ε0 in (2.48), since α =
Rr/Lr. This feature makes the indirect field-oriented control more sensitive with
respect to α than the direct field-oriented control, as the experiments reported
in Section 2.8 confirm. As we shall see in Chapter 3, the online identification
of α is related to the estimation of the rotor flux, so that the need for rotor flux
estimation, which is seemingly eliminated by the indirect field-oriented control,
reappears through the critical parameter α , whose identification is very closely
related to the flux estimation.

4. The measurement of ω is always required in (2.48) even when stringent specifi-
cations on speed dynamics are not required so that the gain kω in isq is set equal
to zero. In fact, ω is still needed to compute the angle ε0.

5. As in direct field-oriented control, if the flux modulus and the rotor speed are
constant and equal to the desired values (ω∗,ψ∗), then the rotor flux rotates at
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constant speed w = (ω∗+ωs), with ωs = αMTL
μψ∗2 , and the induction motor is driven

by the sinusoidal currents obtained from (2.48):

[
isa
isb

]
=
[

cos(ε0(0)+wt) −sin(ε0(0)+wt)
sin(ε0(0)+wt) cos(ε0(0)+wt)

][ ψ∗
M
TL

Jμψ∗

]
.

6. According to (2.47), once ψrd tends to its reference ψ∗ and ψrq tends to zero, the
closed-loop dynamics for ω̃ tend to be linear with arbitrary time constant k−1

ω .
During the transient, the nonlinear term Jμ (ψrdisq −ψrqisd), which represents
the electromagnetic torque Te in the first equation in (1.31), makes the first two
equations in (1.31) still nonlinear and coupled: for this reason the speed transients
may be unsatisfactory, for instance when the flux modulus is adjusted to improve
power efficiency.

Illustrative Simulations

We tested the indirect field-oriented control by simulations for the current-fed, three-
phase, single pole pair 0.6-kW induction motor whose parameters have been re-
ported in Chapter 1: stator currents dynamics have been neglected so that the stator
currents (isa, isb) constitute the motor control inputs. The rotor speed initial condi-
tion has been set equal to zero while the rotor fluxes initial conditions have been
set equal to ψra(0) = ψrb(0) = 0.1Wb. The control algorithm has been tested with
the control parameter (the value is in SI units) kω = 12, which directly affects the
speed tracking error dynamics, and the initial condition ε0(0) = 0. The references
for the speed and flux modulus along with the applied load torque are reported in
Figures 2.19–2.21. The rotor flux modulus reference signal starts from 0.001Wb
at t = 0s and grows up to the constant value 1.16Wb. The speed reference is zero
until t = 0.32s and grows up to the constant value 100rad/s; at t = 1.5s the speed
is required to go up to the value 200rad/s, while the reference for the flux modu-
lus is reduced to 0.5Wb. A 5.8-Nm load torque is applied to the motor at t = 0.5s
and is reduced to 1.8Nm at t = 1s. Figures 2.20 and 2.21 show the time histo-
ries of rotor speed and flux modulus along with the corresponding tracking errors:
both the rotor speed and the flux modulus track their references tightly. As illus-
trated by Figure 2.22 the motor trajectories in the state space tend to two attractive
limit cycles corresponding to the two constant operating conditions imposed by the
reference signals. Finally, the stator currents profiles, which are within physical sat-
uration limits, are reported in Figure 2.23. We now compare the performance of the
direct field-oriented control illustrated in Figures 2.13–2.17 with the performance
obtained by the indirect field-oriented control illustrated in Figures 2.19–2.23 for
the same motor, same initial conditions, same motor parameters, same control pa-
rameters (kω = 12), and same reference signals. While the stator current inputs can
be hardly distinguished (compare Figures 2.17 and 2.23) and the state space trajec-
tories are very similar (compare Figures 2.16 and 2.22), the only difference is in
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the transient behavior of the speed errors (compare Figures 2.14 and 2.20), which
shows a worse speed transient during the time interval [0,1]s in which the rotor flux
error is different from zero (see Figure 2.21) when the indirect field-oriented control
is used.

Fig. 2.19 Indirect field-oriented control: applied load torque TL

Fig. 2.20 Indirect field-oriented control: rotor speed ω and its reference ω∗; rotor speed tracking
error

So far we have designed the indirect field-oriented control (2.48) on the basis
of the reduced order model (2.9). If the full order model (1.31), expressed in the
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Fig. 2.21 Indirect field-oriented control: rotor flux modulus
√
ψ2

ra +ψ2
rb and its reference ψ∗;

rotor flux modulus tracking error

Fig. 2.22 Indirect field-oriented control: (ψra,ψrb,ω)-trajectories

state and control coordinates (1.30), is considered, then (usd ,usq) are to be designed
as state feedback controls so that the reference signals (ω∗,ψ∗) are asymptotically
tracked. This can actually be achieved by defining the speed of the rotating (d,q)
frame and the reference signals for the stator current vector (d,q) components as

dε0

dt
= ω0 = ω+

αMisq

ψ∗

i∗sd =
ψ∗

M
+
ψ̇∗

αM

i∗sq =
1
μψ∗

[
−kω (ω−ω∗)+ ω̇∗ +

TL

J

]
(2.49)
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Fig. 2.23 Indirect field-oriented control: stator current vector (a,b)-components (isa, isb)

and the stator voltages (usd ,usq) in the (d,q) frame rotating at speed ω0 as (ki is a
positive control parameter)

usd = σ
[
γi∗sd −ω0isq −βαψrd −βωψrq +

di∗sd
dt

− ki (isd − i∗sd)−αM (ψrd −ψ∗)
]

usq = σ
[
γi∗sq +ω0isd −βαψrq +βωψrd +

di∗sq

dt
− ki
(
isq − i∗sq

)]
(2.50)

in which, according to (2.49) and the first equation in (1.31), the time derivatives of
i∗sd and i∗sq are given by

di∗sd
dt

=
ψ̇∗

M
+
ψ̈∗

αM
di∗sq

dt
=

1
μψ∗ [−kω (ω̇− ω̇∗)+ ω̈∗]− ψ̇∗

μψ∗2

[
−kω (ω−ω∗)+ ω̇∗ +

TL

J

]

=
1
μψ∗

[
−kω

[
μ (ψrdisq −ψrqisd)− TL

J
− ω̇∗
]

+ ω̈∗
]

− ψ̇∗

μψ∗2

[
−kω (ω−ω∗)+ ω̇∗ +

TL

J

]
. (2.51)

Exponential rotor speed and flux modulus tracking can be proved for any motor
initial condition (see Problem 2.6). However, as in the current-fed case, the rate of
convergence depends on α , according to (2.46).
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2.4 Input–Output Feedback Linearizing Control

The input–output feedback linearizing control (2.21) for current-fed induction mo-
tors has the structure given in Figure 2.24 (compare with Figures 2.1 and 2.12).
In this section we design an input–output feedback linearizing control both for the
field-oriented model (1.39) and for the fixed frame model (1.26). The direct field-

Fig. 2.24 Input–output feedback linearizing control for current-fed motors (constant references
ω∗,ψ∗)

oriented control design which led us to the state feedback control (2.23), (2.24)
can be improved by designing the additional control input vq so that the first two
equations in (2.25) are made linear by state feedback and input–output feedback
linearization and decoupling are achieved: to this end, introduce the rotor angular
acceleration

a = μψrdisq − TL

J
(2.52)

in place of isq as a new state variable so that the first two equations in (2.25) become
(recall that TL is assumed to be constant)

dω
dt

= a
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da
dt

= μ
dψrd

dt
isq +μψrd

disq

dt
= −μαψrdisq +μαMisdisq − γμψrdisq +μψrdvq . (2.53)

Define the additional state feedback term

vq = αisq + γisq − αMisdisq

ψrd
+

1
μψrd

v′q (2.54)

in which v′q is an additional control input. Substituting (2.54) in (2.53), the closed-
loop system (2.25), (2.54) becomes

dω
dt

= a

da
dt

= v′q
dψrd

dt
= −αψrd +αMisd

disd

dt
= −γ isd + vd

dρ
dt

= ω+
αMisq

ψrd
. (2.55)

The first four equations in (2.55) are linear and decoupled since the dynamics of
ω and ψrd are independent and can be independently controlled by the control in-
puts v′q and vd , respectively. If we compare the closed-loop dynamics (2.25) with
(2.55) we note that while rotor speed ω transients in (2.55) are not influenced by
rotor flux ψrd transients, this is not so in (2.25). We can then conclude that the state
feedback control (2.23), (2.24), and (2.54) improves the direct field-oriented control
since it achieves input–output feedback linearization and decoupling as shown by
the closed-loop dynamics (2.55). To design vd in (2.26), introduce the time deriva-
tive of ψrd

vψd = −αψrd +αMisd

so that (2.26) is transformed into

dψrd

dt
= vψd

dvψd

dt
= −α(αMisd −αψrd)+αM(−γ isd + vd) .

Define

vd = γ isd − αψrd

M
+α isd + v′d (2.56)

so that we can write
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dω
dt

= a

da
dt

= v′q
dψrd

dt
= vψd

dvψd

dt
= v′d .

In order to track the desired references ω∗ and ψ∗ for ω and ψrd , the input signals
(v′d ,v

′
q) are designed as

v′d(t) = −kψ p (ψrd(t)−ψ(t))− kψd
(
vψd(t)− ψ̇∗(t)

)
+ ψ̈∗(t)

v′q(t) = −kω p (ω(t)−ω∗(t))− kωd (a(t)− ω̇∗(t))+ ω̈∗(t) (2.57)

where kψ p, kψd , kω p and kωd are positive constant design parameters to be deter-
mined in order to make the decoupled, linear, time-invariant, second order systems
(ω̃ = ω−ω∗, ψ̃rd = ψrd −ψ∗)

d2ω̃
dt2 = −kω pω̃− kωd

dω̃
dt

d2ψ̃rd

dt2 = −kψ pψ̃rd − kψd
dψ̃rd

dt

exponentially stable and to shape their dynamics.
Note that the same result can be achieved directly in fixed (a,b) coordinates

without introducing any rotating frame at all. It is enough to perform the following
state space change of coordinates z = ϕ(ω,ψra,ψrb, isa, isb) with z = [z1, . . . ,z5] and

z1 = ω

z2 = a = μ (ψraisb −ψrbisa)− TL

J
z3 = ψ2

ra +ψ2
rb

z4 =
d
(
ψ2

ra +ψ2
rb

)
dt

= −2α
(
ψ2

ra +ψ2
rb
)
+2αM (ψraisa +ψrbisb)

z5 = ρ = arctan
(
ψrb

ψra

)
. (2.58)

According to the Inverse Function Theorem B.1 in Appendix B, for any point p =
(ω ,ψra, ψrb, isa, isb) satisfying ψ2

ra +ψ2
rb �= 0 there exists an open neighborhood U

of p such that ϕ(p) = (z1(p), . . . ,zn(p)) : U → ϕ(U) is a diffeomorphism, that is
a bijection with ϕ(·) and ϕ−1(·) smooth maps. In the new z-coordinates, system
(1.26) becomes
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⎡
⎢⎢⎢⎢⎣

ż1
ż2
ż3
ż4
ż5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

z2
Γ1
z4
Γ2

ω+
αM (ψraisb −ψrbisa)(

ψ2
ra +ψ2

rb

)

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0 0
1 0
0 0
0 1
0 0

⎤
⎥⎥⎥⎥⎦
⎡
⎣ −μψrb

σ
μψra

σ
2αMψra

σ
2αMψrb

σ

⎤
⎦[usa

usb

]
(2.59)

in which the nonlinear terms

Γ1(ω,ψra,ψrb, isa, isb) = −μβω (ψ2
ra +ψ2

rb
)−μ (α+ γ)(ψraisb −ψrbisa)

−μω (ψraisa +ψrbisb)
Γ2(ω,ψra,ψrb, isa, isb) =

(
4α2 +2α2βM

)(
ψ2

ra +ψ2
rb
)
+2αMω (ψraisb −ψrbisa)

−(6α2M +2αγM
)
(ψraisa +ψrbisb)+2α2M2 (i2sa + i2sb

)
appear and the decoupling matrix

D(ψra,ψrb) =

⎡
⎣ −μψrb

σ
μψra

σ
2αMψra

σ
2αMψrb

σ

⎤
⎦

whose determinant is

det [D] (ψra,ψrb) = −2μαM
σ2

(
ψ2

ra +ψ2
rb
)

is nonsingular provided that (ψ2
ra +ψ2

rb) �= 0: hence, Theorem B.10 in Appendix B
applies with control characteristic indices ρ1 = 2, ρ2 = 2. As a matter of fact, The-
orem B.10 applies directly to the induction motor fixed frame model (1.26) with
outputs ω and ψ2

ra +ψ2
rb and decoupling indices ρ1 = 2, ρ2 = 2. The input–output

state feedback linearizing control is[
usa
usb

]
= D(ψra,ψrb)−1

[−Γ1 + va
−Γ2 + vb

]
(2.60)

which substituted in (2.59) gives
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⎡
⎢⎢⎢⎢⎣

ż1
ż2
ż3
ż4
ż5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

z2
va
z4
vb

ω+
αM (ψraisb −ψrbisa)(

ψ2
ra +ψ2

rb

)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

z2
va
z4
vb

z1 +
αM
(

z2 + TL
J

)
μz3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

z2
va
z4
vb

z1 +
Rr (Jz2 +TL)

z3

⎤
⎥⎥⎥⎥⎥⎦ . (2.61)

The last equation in (2.61) represents the dynamics which have been made unob-
servable from the outputs ω and (ψ2

ra +ψ2
rb) by the state feedback control (2.60).

The same interpretation can be given to the last equation in (2.55).

Remarks

1. The closed-loop system (2.61) is input–output decoupled and linear: the input–
output map consists of a pair of second order linear time-invariant systems. This
allows for an independent tracking of the outputs so that transient responses can
be decoupled: this is an improvement with respect to both the direct and the indi-
rect field-oriented controls. Note however that the exact input–output decoupling
and linearization have been achieved by the controller (2.60) at the expense of
a singularity at (ψ2

ra +ψ2
rb) = 0 introduced by the inversion of the decoupling

matrix

D(ψra,ψrb)−1 = [det [D] (ψra,ψrb)]
−1

[
2αMψrb
σ − μψra

σ
− 2αMψra

σ − μψrb
σ

]

=
[
−2μαM

σ2

(
ψ2

ra +ψ2
rb
)]−1
[

2αMψrb
σ − μψra

σ
− 2αMψra

σ − μψrb
σ

]
(2.62)

in (2.60) which, in contrast to the indirect field-oriented control, may imply very
large voltages (usa,usb) when (ψ2

ra +ψ2
rb) is close to zero. Recall that the direct

field-oriented control also cannot operate when the rotor flux modulus is zero.
Note that (2.62) can be rewritten as

D(ψra,ψrb)−1 =
[−sinρ cosρ

cosρ sinρ

]⎡⎢⎣
σ

μ
√
ψ2

ra+ψ2
rb

0

0 σ
2αM
√
ψ2

ra+ψ2
rb

⎤
⎥⎦
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with sinρ = ψrb/
√
ψ2

ra +ψ2
rb and cosρ = ψra/

√
ψ2

ra +ψ2
rb. The rotation matrix

has been reobtained without introducing any rotating frame from the beginning.
2. Measurements of the state variables are required both by the control (2.60) and

by the direct field-oriented control.
3. While the indirect field-oriented control is a first order output feedback (from ω)

dynamic control, the control (2.60) is a static state feedback control law.
4. Since it has been previously shown that the induction motor model (1.26) is not

feedback linearizable and that the largest feedback linearizable subsystem has
dimension 4, the control (2.60) provides the largest linearizable subsystem in the
closed-loop.

We now design the input signals va and vb in (2.60) in order to track the desired
references ω∗ and ψ∗2 for the rotor speed z1 = ω and z3 = (ψ2

ra +ψ2
rb). Similarly to

the design of v′d and v′q, we choose

va = −kω p (z1 −ω∗)− kωd (ż1 − ω̇∗)+ ω̈∗

= −kω p (ω−ω∗)− kωd

(
μ (ψraisb −ψrbisa)− TL

J
− ω̇∗
)

+ ω̈∗

vb = −kψ p
(
z3 −ψ∗2)− kψd (ż3 −2ψ∗ψ̇∗)+2ψ̇∗2 +2ψ∗ψ̈∗

= −kψ p
[(
ψ2

ra +ψ2
rb
)−ψ∗2]

−kψd
[−2α

(
ψ2

ra +ψ2
rb
)
+2αM (ψraisa +ψrbisb)−2ψ∗ψ̇∗]

+2ψ̇∗2 +2ψ∗ψ̈∗

where kω p, kωd , kψ p, kψd are constant design parameters to be determined in order to
make the decoupled, linear, time-invariant, second order systems (Ψ̃ = ψ2

ra +ψ2
rb −

ψ∗2)

d2ω̃
dt2 = −kω pω̃− kωd

dω̃
dt

d2Ψ̃
dt2 = −kψ pΨ̃ − kψd

dΨ̃
dt

(2.63)

exponentially stable and to shape their dynamics.

In conclusion: the input–output feedback linearizing control is defined as

[
usa
usb

]
=
[
−2μαM

σ2

(
ψ2

ra +ψ2
rb
)]−1

⎡
⎢⎣

2αMψrb

σ
−μψra

σ
−2αMψra

σ
−μψrb

σ

⎤
⎥⎦[−Γ1 + va

−Γ2 + vb

]

Γ1 = −μβω (ψ2
ra +ψ2

rb
)−μ (α+ γ)(ψraisb −ψrbisa)

−μω (ψraisa +ψrbisb)
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Γ2 =
(
4α2 +2α2βM

)(
ψ2

ra +ψ2
rb
)
+2αMω (ψraisb −ψrbisa)

−(6α2M +2αγM
)
(ψraisa +ψrbisb)+2α2M2 (i2sa + i2sb

)
va = −kω p (ω−ω∗)− kωd

(
μ (ψraisb −ψrbisa)− TL

J
− ω̇∗
)

+ ω̈∗

vb = −kψ p
[(
ψ2

ra +ψ2
rb
)−ψ∗2]

−kψd
[−2α

(
ψ2

ra +ψ2
rb
)
+2αM (ψraisa +ψrbisb)−2ψ∗ψ̇∗]

+2ψ̇∗2 +2ψ∗ψ̈∗; (2.64)

it is a static nonlinear feedback control algorithm which depends on the mea-
surements of the state variables (ω,ψra,ψrb, isa, isb), on the reference signals
(ω∗,ψ∗), on the positive control parameters kω p, kωd , kψ p, kψd , on the load

torque TL and on the machine parameters M,Rr,Lr,J,Rs,Ls, since μ =
M

JLr
,

α =
Rr

Lr
, σ = Ls

(
1− M2

LsLr

)
, β =

M
σLr

, γ =
Rs

σ
+βαM; it guarantees that,

for suitable motor initial conditions such that ψ2
ra(t) +ψ2

rb(t) ≥ cψ > 0 for
all t ≥ 0, the rotor speed and flux modulus tracking errors have decoupled
dynamics and decay exponentially to zero according to (2.63).

Illustrative Simulations

We tested the input–output feedback linearizing control by simulations for the three-
phase single pole pair 0.6-kW induction motor whose parameters have been re-
ported in Chapter 1. All the motor initial conditions have been set equal to zero
except for ψra(0) = ψrb(0) = 0.1Wb. The control algorithm has been tested with
the control parameters (all the values are in SI units) kω p = 8100, kωd = 180,
kψ p = 8100, kψd = 180; real coincident eigenvalues are assigned to the matrices as-
sociated with the decoupled, linear time-invariant second order systems (2.63). The
references for the speed and flux modulus along with the applied load torque are
reported in Figures 2.25–2.27. The rotor flux modulus reference signal starts from
0.001Wb at t = 0s and grows up to the constant value 1.16Wb. The speed reference
is zero until t = 0.32s and grows up to the constant value 100rad/s; at t = 1.5s the
speed is required to go up to the value 200rad/s, while the reference for the flux
modulus is reduced to 0.5Wb. A 5.8-Nm load torque is applied to the motor and is
reduced to 1.8Nm. Figures 2.26 and 2.27 show the time histories of rotor speed and
flux modulus along with the corresponding tracking errors: the rotor speed and flux
modulus track tightly their references. Note that there is no coupling between rotor
speed tracking and rotor flux modulus tracking at t = 0.5s and t = 1s when rotor
speed is perturbed by the uncompensated load torque time derivative. Finally, the
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stator current and voltages profiles, which are within the physical saturation limits,
are reported in Figures 2.28 and 2.29.

Fig. 2.25 Input–output feedback linearizing control: applied load torque TL

Fig. 2.26 Input–output feedback linearizing control: rotor speed ω and its reference ω∗; rotor
speed tracking error
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Fig. 2.27 Input–output feedback linearizing control: rotor flux modulus
√
ψ2

ra +ψ2
rb and its refer-

ence ψ∗; rotor flux modulus tracking error

Fig. 2.28 Input–output feedback linearizing control: stator current vector (a,b)-components
(isa, isb)

2.5 Adaptive Input–Output Feedback Linearizing Control

So far we have designed the state feedback control algorithms by assuming the
knowledge of the rotor resistance Rr and of the load torque TL. While the load
torque depends on applications, the rotor resistance may vary up to 100% during
operations due to rotor heating: thus they constitute typically uncertain parameters.
Experiments reported in Section 2.8 will show how critical the rotor resistance pa-
rameter is for the control design. In this section we shall estimate its value online
along with the load torque.



102 2 State Feedback Control

Fig. 2.29 Input–output feedback linearizing control: stator voltage vector (a,b)-components
(usa,usb)

Reconsider the state feedback input–output linearizing control (2.23), (2.24),
(2.54) and (2.56); note that (usd ,usq) defined in (2.24) are linear with respect to
the unknown parameter α = RrL−1

r . Hence, the controller (2.23), (2.24), (2.54) and
(2.56) constitutes a good starting point to design an adaptation with respect to α . To
this end, let us denote by α̂ the estimate of the parameter α and by

α̃ = α− α̂

the corresponding estimation error. Recalling (2.24), define (usd ,usq) as

usd = σ

[
Rs

σ
isd −ωisq −

α̂Mi2sq

ψrd
− α̂βψrd + α̂Mβ isd + vd

]

usq = σ

[
Rs

σ
isq +ωisd +

α̂Misqisd

ψrd
+βωψrd + α̂Mβ isq + vq

]
(2.65)

in which (vd ,vq) are additional control inputs to be designed. Substituting (2.65) in
(1.39) we obtain

dω
dt

= μψrdisq − TL

J
disq

dt
= −
(

Misqisd

ψrd
+Mβ isq

)
α̃+ vq

dψrd

dt
= −αψrd +αMisd

disd

dt
=

(
Mi2sq

ψrd
+βψrd −Mβ isd

)
α̃+ vd
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dρ
dt

= ω+
αMisq

ψrd
. (2.66)

Let us denote by T̂L the estimate of the load torque TL and by

T̃L = TL − T̂L

the corresponding estimation error. Since the load torque appears additively in the
rotor speed dynamics given by the first equation in (1.31), we design the load torque
estimate T̂L as the output of a linear time-invariant one-dimensional system

ξ̇ = −λξ +λJμψrdisq +λ 2Jω− vT

T̂L = ξ −λJω (2.67)

in which the term vT is yet to be defined. The above choice is justified by the fact
that, according to (2.67), ˙̂T L satisfies

˙̂T L = −λJμψrdisq +λTL + ξ̇
= λTL −λ (ξ −λJω)− vT

= λ (TL − T̂L)− vT (2.68)

and therefore

˙̃T L = −λ T̃L + vT (2.69)

which will be useful in the overall stability analysis. Introduce two new state vari-
ables: the estimated rotor angular acceleration

â = μψrdisq − T̂L

J
(2.70)

and the estimated time derivative of the rotor flux direct component ψrd

v̂ψd = −α̂ψrd + α̂Misd . (2.71)

In new state coordinates (ω, â,ψrd , v̂ψd ,ρ), (2.66) are rewritten as (recall (2.53))

dω
dt

= â− T̃L

J
dâ
dt

= μ(−αψrd +αMisd)isq −μα̃Misqisd +μψrdvq −μα̃ψrdβMisq

−λ
J

T̃L +
vT

J
dψrd

dt
= v̂ψd +(Misd −ψrd)α̃

dv̂ψd

dt
= ˙̂α(Misd −ψrd)− α̂(αMisd −αψrd)
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+α̂M

[(
Mi2sq

ψrd
+βψrd −Mβ isd

)
α̃+ vd

]

dρ
dt

= ω+αM
(

â
μψ2

rd
+

T̂L

Jμψ2
rd

)
. (2.72)

Define

vq = α̂ isq − α̂Misdisq

ψrd
− vT

Jμψrd

+
1
μψrd

[−kω p(ω−ω∗)− kωd(â− ω̇∗)+ ω̈∗]

vd = − α̂ψrd

M
+ α̂isd +

1
α̂M

[
− ˙̂α(Misd −ψrd)

−kψ p(ψrd −ψ∗)− kψd(v̂ψd − ψ̇∗)+ ψ̈∗
]

(2.73)

which substituted in (2.72) give

dω
dt

= â− T̃L

J
dâ
dt

= −kω p(ω−ω∗)− kωd(â− ω̇∗)+ ω̈∗ −μα̃(1+βM)ψrdisq − λJ T̃L

dψrd

dt
= v̂ψd +(Misd −ψrd)α̃

dv̂ψd

dt
= −kψ p(ψrd −ψ∗)− kψd(v̂ψd − ψ̇∗)+ ψ̈∗

+α̃

[
−α̂M(1+βM)isd + α̂(1+βM)ψrd +

α̂M2i2sq

ψrd

]

dρ
dt

= ω+αM
(

â
μψ2

rd
+

T̂L

Jμψ2
rd

)
. (2.74)

Let Pω and Pψ be the positive definite solutions of the Lyapunov matrix equations
(see Theorem A.6 in Appendix A)[

0 −kω p
1 −kωd

]
Pω +Pω

[
0 1

−kω p −kωd

]
= −I2 (2.75)[

0 −kψ p
1 −kψd

]
Pψ +Pψ

[
0 1

−kψ p −kψd

]
= −I2 (2.76)

in which I2 is the 2×2 identity matrix. Define the tracking errors

ω̃ = ω−ω∗
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ã = â− ω̇∗

ψ̃rd = ψrd −ψ∗

ṽψd = v̂ψd − ψ̇∗

and introduce the error vectors

w1 = [ω̃, ã]T

w2 = [ψ̃rd , ṽψd ]T .

Consider the Lyapunov function

V = wT
1 Pωw1 +wT

2 Pψw2 + T̃ 2
L +

α̃2

λα
(2.77)

in which λα is a positive control parameter. The time derivative of function V along
the trajectories of the closed-loop system (2.74) is

V̇ = −‖w1‖2 −‖w2‖2 −2λ T̃ 2
L + T̃L

(
2vT +2wT

1 Pω

[
−1

J
,−λ

J

]T
)

+α̃

(
2λ−1
α ˙̃α+2wT

1 Pω [0,−(1+Mβ )μψrdisq]
T

+2wT
2 Pψ

[
Misd −ψrd ,−(1+Mβ )α̂Misd +(1+Mβ )α̂ψrd +

α̂M2i2sq

ψrd

]T)
.

(2.78)

If we design the yet undefined term vT and the estimation law for α̂ as

vT = −wT
1 Pω

[
−1

J
,−λ

J

]T

˙̂α = λα

(
wT

1 Pω [0,−(1+Mβ )μψrdisq]
T

+wT
2 Pψ

[
Misd −ψrd ,−(1+Mβ )α̂Misd +(1+Mβ )α̂ψrd +

α̂M2i2sq

ψrd

]T)

then from (2.78) we obtain

V̇ = −‖w1‖2 −‖w2‖2 −2λ T̃ 2
L . (2.79)

Since the previous equation implies that for all t ≥ 0

V (t) ≤V (0)
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then we can restrict the initial conditions for the tracking and the estimation errors
such that V (0) is sufficiently small to guarantee ψrd(t) ≥ c1 > 0 and α̂(t) ≥ c2 > 0
for all t ≥ 0. On the other hand, from (2.77) and (2.79) we can establish that w1(t),
w2(t), T̃L(t), and α̃(t) are bounded functions on [0,∞) and therefore, according to
(2.70) and (2.71), μψrd(t)isq(t) and (Misd(t)−ψrd(t)) are bounded functions on
[0,∞). Since ψrd(t) is a bounded function on [0,∞), it follows that isd(t) and isq(t)
are bounded functions on [0,∞). Therefore ω̇(t), ψ̇rd(t), ˙̂T L(t), and ˙̂a(t) are bounded
functions on [0,∞) so that ω̃(t), ψ̃rd(t), and T̃L(t) are uniformly continuous func-
tions on [0,∞). Since for any t ≥ 0

∫ t

0
(ω̃2(τ)+ ψ̃2

rd(τ)+ ã2(τ)+2λ T̃ 2
L (τ))dτ ≤ V (0)−V (t) ≤V (0) (2.80)

which implies

lim
t→∞

∫ t

0
[ω̃2(τ)+ ψ̃2

rd(τ)+ ã2(τ)+2λ T̃ 2
L (τ)]dτ ≤ V (0) (2.81)

by applying Barbalat’s Lemma A.2 in Appendix A, we have

lim
t→∞ω̃(t) = 0

lim
t→∞ψ̃rd(t) = 0

lim
t→∞ ã(t) = 0

lim
t→∞ T̃L(t) = 0 . (2.82)

Hence, asymptotic rotor speed and flux modulus tracking of the reference signals
ω∗ and ψ∗ is achieved along with estimation of the unknown load torque.

On the other hand, since ¨̃a(t) is a bounded function on [0,∞), ˙̃a(t) is a uniformly
continuous function on [0,∞) so that, by Barbalat’s Lemma A.2,

lim
t→∞

˙̃a(t) = 0 .

Since from (2.74) we have

˙̃a = −kω pω̃− kωdã− α̃(1+βM)
(

â+
T̂L

J

)
− λ

J
T̃L

= −kω pω̃− kωdã− α̃(1+βM)
(

ã− T̃L

J

)
− λ

J
T̃L − α̃(1+βM)

(
ω̇∗ +

TL

J

)
,

according to (2.82) we can finally establish that

lim
t→∞

[(
ω̇∗(t)+

TL

J

)
α̃(t)
]

= 0 (2.83)
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which implies that α̃(t) asymptotically converges to zero provided that ω̇∗(t)+TL/J
is different from zero for all t ≥ 0. A stronger result is obtained since, if there exist
two positive reals Tp and cp such that

∫ t+Tp

t

[(
ω̇∗(τ)+

TL

J

)2
]

dτ ≥ cp, ∀t ≥ 0 , (2.84)

then exponential convergence to zero of the rotor speed and rotor flux modulus
tracking errors is guaranteed, for sufficiently small initial conditions, along with
exponential estimation of both the uncertain parameters α and TL.

In conclusion: the adaptive input–output feedback linearizing control is de-
fined as[

usa
usb

]
=
[

cosρ −sinρ
sinρ cosρ

][
usd
usq

]

usd = σ

[
Rs

σ
isd −ωisq −

α̂Mi2sq

ψrd
− α̂βψrd + α̂Mβ isd + vd

]

usq = σ

[
Rs

σ
isq +ωisd +

α̂Misqisd

ψrd
+βωψrd + α̂Mβ isq + vq

]

vd = − α̂ψrd

M
+ α̂ isd +

1
α̂M

[
− ˙̂α(Misd −ψrd)

−kψ p(ψrd −ψ∗)− kψd(v̂ψd − ψ̇∗)+ ψ̈∗
]

vq = α̂ isq − α̂Misdisq

ψrd
− vT

Jμψrd

+
1
μψrd

[−kω p(ω−ω∗)− kωd(â− ω̇∗)+ ω̈∗]

ψrd = ψra cosρ+ψrb sinρ[
isd
isq

]
=
[

cosρ sinρ
−sinρ cosρ

][
isa
isb

]

−I2 =
[

0 −kω p
1 −kωd

]
Pω +Pω

[
0 1

−kω p −kωd

]

−I2 =
[

0 −kψ p
1 −kψd

]
Pψ +Pψ

[
0 1

−kψ p −kψd

]
ξ̇ = −λξ +λJμψrdisq +λ 2Jω− vT

T̂L = ξ −λJω
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vT = wT
1 Pω

[
1
J
,
λ
J

]T

˙̂α = λα

(
wT

1 Pω [0,−(1+Mβ )μψrdisq]
T +wT

2 Pψ

[
Misd −ψrd ,

−(1+Mβ )α̂Misd +(1+Mβ )α̂ψrd +
α̂M2i2sq

ψrd

]T
)

; (2.85)

it is a second order dynamic nonlinear feedback control algorithm which de-
pends on the measurements of the state variables (ω ,ψra,ψrb, isa, isb), on the
reference signals (ω∗,ψ∗), on the positive control parameters kω p, kωd , kψ p,

kψd , λ , λα , and on the machine parameters M,Lr,J,Rs,Ls since μ =
M

JLr
,

α =
Rr

Lr
, σ = Ls

(
1− M2

LsLr

)
, β =

M
σLr

; it guarantees that, for any initial con-

dition such that ψrd(t)≥ c1 > 0 and α̂(t)≥ c2 > 0 for all t ≥ 0, the rotor speed
and flux modulus tracking errors tend asymptotically to zero; moreover, the
rotor speed and flux modulus tracking errors along with the rotor resistance
and load torque estimation errors decay exponentially to zero provided that
there exist two positive reals Tp and cp such that the persistency of excitation
condition (2.84) is satisfied.

Remarks

1. Note that even for constant speed and zero load torque, that is when the rotor
resistance estimate is not guaranteed to converge to the true value, both the rotor
speed and the rotor flux modulus tracking errors asymptotically converge to zero.

2. When both the critical parameters TL and α are known, so that we can set T̂L ≡ TL
and α̂ ≡ α , the controller (2.85) reduces to the input–output feedback linearizing
controller designed in the first part of Section 2.4.

3. When the critical parameter α is known, so that we can set α̂ = α , the controller
(2.85) guarantees exponential rotor speed and flux modulus tracking along with
exponential load torque estimation.

4. The resulting controller (2.85) shows singularities at ψrd = 0 and α̂ = 0 which
can imply very large voltages when ψrd and α̂ are close to zero.
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Illustrative Simulations

We tested the adaptive input–output feedback linearizing control by simulations for
the three-phase single pole pair 0.6-kW induction motor whose parameters have
been reported in Chapter 1. All the motor initial conditions have been set equal to
zero except for ψra(0) = ψrb(0) = 0.1Wb. The control algorithm has been tested
with the control parameters (all the values are in SI units): kω p = 8100, kωd = 180,
kψ p = 8100, kψd = 180. Real coincident eigenvalues are assigned to the matrices
associated with the decoupled, linear, time-invariant, second order systems describ-
ing the dynamics of the rotor speed and tracking errors when the estimates of the
unknown parameters are equal to the corresponding true parameter values. Those
values are the same as those used for the nonadaptive version of the previous sec-
tion. The parameters λ and λα , which are the adaptation gains for the estimates
of the load torque TL and of the parameter α , have been set equal to λ = 120 and
λα = 0.09. The initial condition T̂L(0) has been set equal to zero while the initial
condition for the estimate of α has been set equal to α̂(0) = 13.2s−1 which is 50%
greater than the true parameter value α = 8.8 s−1. The references for the speed and
flux modulus along with the applied load torque are reported in Figures 2.30–2.32.
The rotor flux modulus reference signal starts from 0.001Wb at t = 0s and grows
up to the constant value 1.16Wb. The speed reference is zero until t = 0.32s and
grows up to the constant value 100rad/s; at t = 1.5s the speed is required to go up to
the value 200rad/s, while the reference for the flux modulus is reduced to 0.5Wb. A
5.8-Nm load torque is applied to the motor and is reduced to 1.8Nm. Figures 2.30
and 2.31 show the time histories of rotor speed and flux modulus along with the cor-
responding tracking errors: the rotor speed tracks its reference tightly even though
load torque sharply changes since, according to Figure 2.32, the load torque estimate
quickly recovers the applied unknown load torque. The rotor flux modulus tracks its
reference: there is, however, a coupling with rotor speed tracking at t = 0.5s and
t = 1s when the rotor speed tracking error is perturbed by the unknown load torque.
Also the estimate of α quickly converges, according to Figure 2.33, to the true value
(unknown to the controller). Stator currents and voltages are within the saturation
limits, as illustrated by Figures 2.34 and 2.35.

2.6 Dynamic Feedback Linearizing Control

The key idea of field-oriented control is to use the direct current component isd to
control the flux modulus ψrd and the quadrature current component isq to control
the speed ω in (1.39): there is no concern on controlling the dynamics of the re-
maining state variable in (2.9). However, while the dynamics of ψrd are linear and
the dynamics of ω tend to be linear if ψrd tends to be constant, the dynamics of ρ in
(2.9) remain nonlinear in terms of the states (ω,ψrd) and of the control input isq in
(2.9). Similarly, the input–output feedback linearizing control (2.23), (2.24), (2.54),
(2.56) aims at controlling linearly and independently ω and ψrd while leaving the
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Fig. 2.30 Adaptive input–output feedback linearizing control: rotor speed ω and its reference ω∗;
rotor speed tracking error

Fig. 2.31 Adaptive input–output feedback linearizing control: rotor flux modulus
√
ψ2

ra +ψ2
rb and

its reference ψ∗; rotor flux modulus tracking error

dynamics of ρ nonlinearly dependent on the state variables (ω ,ψrd , isq) in (2.55).
For this reason the state feedback control (2.23), (2.24), (2.54), (2.56) linearizes
the input–output behavior from (vd ,v′q) to (ω,ψrd) but fails to make the controlled
system dynamics (2.55) linear since the dynamics of ρ remain nonlinear.

On the other hand, if the goal of the control is to make the system, in suitable
state coordinates, linear by state feedback, then it is convenient to consider the four
equations in (1.39)

dω
dt

= μψrdisq − TL

J
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Fig. 2.32 Adaptive input–output feedback linearizing control: applied load torque TL and its esti-
mate T̂L

Fig. 2.33 Adaptive input–output feedback linearizing control: parameter α and its estimate α̂

disq

dt
= −γisq −ωisd − αMisqisd

ψrd
−βωψrd +

usq

σ
dρ
dt

= ω+
αMisq

ψrd

dψrd

dt
= −αψrd +αMisd (2.86)

in which usq and isd are viewed as the control inputs.
Consider the state space change of coordinates from (ω , isq, ρ , ψrd) to (ω , ω̇ , ρ ,

ρ̇), which is nonsingular provided that ψrd �= 0 and isq �= 0 since from
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Fig. 2.34 Adaptive input–output feedback linearizing control: stator current vector (a,b)-
components (isa, isb)

Fig. 2.35 Adaptive input–output feedback linearizing control: stator voltage vector (a,b)-
components (usa,usb)

ρ̇−ω =
αMisq

ψrd
=
αM
μψ2

rd

(
ω̇+

TL

J

)

we can solve for ψrd obtaining (if isq �= 0)

ψrd =

√√√√√αM
(
ω̇+

TL

J

)
μ(ρ̇−ω)

(2.87)

while



2.6 Dynamic Feedback Linearizing Control 113

isq =

(
ω̇+

TL

J

)
μψrd

=

√√√√√
(
ω̇+

TL

J

)
(ρ̇−ω)

μαM
. (2.88)

In new coordinates (ω, ω̇ ,ρ , ρ̇) the dynamics become

[
ω̈
ρ̈

]
=

⎡
⎣ −μ(γ+α)ψrdisq −μβωψ2

rd

μψrdisq − TL

J
+
αM(α− γ)isq

ψrd
−αMβω

⎤
⎦

+

⎡
⎢⎣
μψrd

σ
−μωψrd

αM
σψrd

−2α2M2isq

ψ2
rd

− αMω
ψrd

⎤
⎥⎦[usq

isd

]

�=

⎡
⎣ −μ(γ+α)ψrdisq −μβωψ2

rd

μψrdisq − TL

J
+
αM(α− γ)isq

ψrd
−αMβω

⎤
⎦+Dd

[
usq
isd

]
. (2.89)

Since

det [Dd ] = −2μα2M2isq

σψrd
,

provided that ψrd �= 0 and isq �= 0, the signals usq and isd can be uniquely expressed
in terms of (ω, ω̇, ω̈,ρ, ρ̇, ρ̈) from (2.87), (2.88) and (2.89) as

[
usq
isd

]
= D−1

d

⎡
⎣ ω̈+μ(γ+α)ψrdisq +μβωψ2

rd

ρ̈−μψrdisq +
TL

J
− αM(α− γ)isq

ψrd
+αMβω

⎤
⎦ (2.90)

with ψrd and isq given by (2.87) and (2.88). Hence, if a new input vsq is defined as

dusq

dt
=

vsq

σ
(2.91)

so that the variable usq becomes an additional state, (1.39) together with (2.91) be-
come

dω
dt

= μψrdisq − TL

J
disq

dt
= −γisq −ωisd − αMisdisq

ψrd
−βωψrd +

usq

σ
dusq

dt
=

vsq

σ
dρ
dt

= ω+
αMisq

ψrd



114 2 State Feedback Control

dψrd

dt
= −αψrd +αMisd

disd

dt
= −γisd +ω isq +

αMi2sq

ψrd
+βαψrd +

usd

σ
(2.92)

in which (ω, isq,usq,ρ,ψrd , isd) are the state variables and (vsq,usd) are the control
input variables. From (2.87), (2.88), and (2.90) it follows that (ω , ω̇, ω̈ ,ρ, ρ̇ , ρ̈) de-
fined in (2.86) and (2.89) constitute an equivalent set of state variables if ψrd �= 0
and isq �= 0 since (ω , isq,usq,ρ,ψrd , isd) can be uniquely expressed in terms of
(ω , ω̇ , ω̈ ,ρ, ρ̇, ρ̈). Hence, differentiating (2.89) with respect to time we can express
the dynamics (2.92) in new coordinates (ω, ω̇, ω̈,ρ, ρ̇, ρ̈) as follows[ ˙̈ω

˙̈ρ

]
=
[
Φω
Φρ

]
+

Dd

σ

[
vsq
usd

]

with

Φω = −μ(γ+α)[Δ1isq +Δ2ψrd ]−μβ [Δ3ψ2
rd +2ωψrdΔ1]

+
μΔ1usq

σ
−μΔ1ω isd −μωψrdΔ4 −μΔ3ψrdisd

Φρ = μΔ1isq +μψrdΔ2 +
αM(α− γ)Δ2

ψrd
− αM(α− γ)isqΔ1

ψ2
rd

−αMβΔ3

−αMΔ1usq

σψ2
rd

− αMΔ3isd

ψrd
+
αMωΔ1isd

ψ2
rd

− 2α2M2Δ2isd

ψ2
rd

+
4α2M2isqisdΔ1

ψ3
rd

−
(

2α2M2isq

ψ2
rd

+
αMω
ψrd

)
Δ4

and

Δ1 = −αψrd +αMisd

Δ2 = −γisq −ωisd − αMisdisq

ψrd
−βωψrd +

usq

σ

Δ3 = μψrdisq − TL

J

Δ4 = −γisd +ωisq +
αMi2sq

ψrd
+βαψrd .

By defining the state feedback control law[
vsq
usd

]
= σD−1

d

[−Φω − kω1(ω−ω∗)− kω2(ω̇− ω̇∗)− kω3(ω̈− ω̈∗)+ ˙̈ω∗

−Φρ − kρ1(ρ−ρ∗)− kρ2(ρ̇− ρ̇∗)− kρ3(ρ̈− ρ̈∗)+ ˙̈ρ∗
]

the closed-loop linear dynamics are obtained
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d3ω̃
dt3 = −kω1ω̃− kω2

dω̃
dt

− kω3
d2ω̃
dt2

d3ρ̃
dt3 = −kρ1ρ̃− kρ2

dρ̃
dt

− kρ3
d2ρ̃
dt2 (2.93)

with ω̃ = ω−ω∗, ρ̃ = ρ−ρ∗, ρ∗ defined in (1.70) and kω1, kω2, kω3, kρ1, kρ2, kρ3
positive control parameters such that all the roots of the polynomials

πω(s) = s3 + kω3s2 + kω2s+ kω1

πρ(s) = s3 + kρ3s2 + kρ2s+ kρ1

have negative real parts.

In conclusion: the dynamic feedback linearizing control is defined as[
usa
usb

]
=
[

cosρ −sinρ
sinρ cosρ

][
usd
usq

]
dusq

dt
=

vsq

σ[
vsq
usd

]
= σD−1

d

[−Φω − kω1(ω−ω∗)− kω2(ω̇− ω̇∗)− kω3(ω̈− ω̈∗)+ ˙̈ω∗

−Φρ − kρ1(ρ−ρ∗)− kρ2(ρ̇− ρ̇∗)− kρ3(ρ̈− ρ̈∗)+ ˙̈ρ∗
]

ρ̇ = ω+
αMisq

ψrd

ρ̇∗ = ω∗ +
αMTL

μJψ∗2 , ρ∗(0) = arctan
(
ψrb(0)
ψra(0)

)
ψrd = ψra cosρ+ψrb sinρ[

isd
isq

]
=
[

cosρ sinρ
−sinρ cosρ

][
isa
isb

]
Φω = −μ(γ+α)[Δ1isq +Δ2ψrd ]−μβ [Δ3ψ2

rd +2ωψrdΔ1]

+
μΔ1usq

σ
−μΔ1ωisd −μωψrdΔ4 −μΔ3ψrdisd

Φρ = μΔ1isq +μψrdΔ2 +
αM(α− γ)Δ2

ψrd
− αM(α− γ)isqΔ1

ψ2
rd

−αMβΔ3

−αMΔ1usq

σψ2
rd

− αMΔ3isd

ψrd
+
αMωΔ1isd

ψ2
rd

− 2α2M2Δ2isd

ψ2
rd

+
4α2M2isqisdΔ1

ψ3
rd

−
(

2α2M2isq

ψ2
rd

+
αMω
ψrd

)
Δ4

Δ1 = −αψrd +αMisd

Δ2 = −γisq −ωisd − αMisdisq

ψrd
−βωψrd +

usq

σ



116 2 State Feedback Control

Δ3 = μψrdisq − TL

J

Δ4 = −γisd +ωisq +
αMi2sq

ψrd
+βαψrd ; (2.94)

it is a third order dynamic nonlinear feedback control algorithm which de-
pends on the measurements of the state variables (ω,ψra,ψrb, isa, isb), on
the reference signals (ω∗,ψ∗), on the positive control parameters kω1, kω2,
kω3, kρ1, kρ2, kρ3, on the load torque TL, and on the machine parameters

M,Rr,Lr,J,Rs,Ls, since μ =
M

JLr
, α =

Rr

Lr
, σ = Ls

(
1− M2

LsLr

)
, β =

M
σLr

,

γ =
Rs

σ
+ βαM; it guarantees that, for suitable initial and operating condi-

tions such that ψrd(t) ≥ c1 > 0 and isq(t) ≥ c2 > 0 for all t ≥ 0, the rotor
speed and flux angle tracking errors have decoupled dynamics and decay ex-
ponentially to zero according to (2.93), with c1 and c2 depending on the initial
tracking errors.

Illustrative Simulations

We tested the dynamic feedback linearizing control by simulations for the three-
phase single pole pair 0.6-kW induction motor whose parameters have been re-
ported in Chapter 1. All the motor initial conditions have been set equal to zero ex-
cept for ψra(0) = ψrb(0) = 0.1Wb. The motor is driven by the feedforward control
until t = 0.7s in order to avoid the singularities appearing in the dynamic feedback
linearizing control; at t = 0.7s the dynamic feedback linearizing control is applied.
The control parameters used in the simulation are (all the values are in SI units):
kω1 = 106, kω2 = 3×104, kω3 = 3×102, kρ1 = 106, kρ2 = 3×104, kρ3 = 3×102;
real coincident eigenvalues are assigned to the matrices associated to the decou-
pled, linear time-invariant third order systems (2.93). The controller initial condition
has been set equal to usq(0) = 171.46922V in order to avoid discontinuities at the
switching time t = 0.7s. The references for the speed and flux modulus along with
the applied load torque are reported in Figures 2.36–2.38. The rotor flux modulus
reference signal starts from 0.001Wb at t = 0s and grows up to the constant value
1.16Wb. The speed reference is zero until t = 0.32s and grows up to the constant
value 100rad/s. A 5.8-Nm load torque is applied to the motor and is reduced to
4.8Nm. Figures 2.37 and 2.38 show the time histories of the rotor speed and rotor
flux modulus along with the corresponding tracking errors: the rotor speed and rotor
flux modulus track their references. Note that at t = 1.5s the speed and flux modu-
lus tracking errors are perturbed by the uncompensated load torque time derivatives.
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Finally, the stator current and voltages profiles, which are within the physical satu-
ration limits, are reported in Figures 2.39 and 2.40.

Fig. 2.36 Dynamic feedback linearizing control: applied load torque TL

Fig. 2.37 Dynamic feedback linearizing control: rotor speed ω and its reference ω∗; rotor speed
tracking error
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Fig. 2.38 Dynamic feedback linearizing control: rotor flux modulus
√
ψ2

ra +ψ2
rb and its reference

ψ∗; rotor flux modulus tracking error

Fig. 2.39 Dynamic feedback linearizing control: stator current vector (a,b)-components (isa, isb)

2.7 Global Control with Arbitrary Rate of Convergence

The goal of this section is to improve the indirect field-oriented control presented
in Section 2.3, which has the advantage of allowing for any motor initial condition
but has the drawback of not guaranteeing exponential tracking of reference signals
(ω∗(t),ψ∗(t)) with arbitrary rate of convergence. On the other hand, we have seen
in Section 2.4 that it is possible to design a state feedback control which achieves
exponential tracking with arbitrary rate from sufficiently small initial errors. We
would like to bridge the gap between these two control schemes. To this end, we re-
consider the control algorithm (2.48) and modify the reference for the stator current
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Fig. 2.40 Dynamic feedback linearizing control: stator voltage vector (a,b)-components (usa,usb)

vector d-component and the speed of the rotating (d,q) frame as follows:

i∗sd =
ψ∗

M
+
ψ̇∗

αM
+
ηd

αM

ω0 = ω+
αMisq

ψ∗ − ηq

ψ∗ , (2.95)

i.e. by adding two feedback terms ηd and ηq which will be designed in the following.
The reference for the stator current vector q-component remains the same as in
(2.48), i.e.

i∗sq =
1
μψ∗

[
−kω(ω−ω∗)+ ω̇∗ +

TL

J

]
. (2.96)

Introduce the tracking errors

ω̃ = ω−ω∗

ψ̃rd = ψrd −ψ∗

ψ̃rq = ψrq

ĩsd = isd − i∗sd

ĩsq = isq − i∗sq

for the rotor speed, rotor flux vector (d,q)-components and stator current vector
(d,q)-components, respectively. The dynamics for ω̃ , ψ̃rd , and ψ̃rq are given by

˙̃ω = −kωω̃+μ(ψ̃rdisq − ψ̃rqisd)+μψ∗ ĩsq

˙̃ψrd = −αψ̃rd +(ω0 −ω)ψ̃rq +αMĩsd +ηd

˙̃ψrq = −αψ̃rq − (ω0 −ω)ψ̃rd +ηq . (2.97)
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In order to design the additional undetermined terms ηd and ηq in (2.95), we intro-
duce the positive control parameter λ and consider the Lyapunov function

W =
1
2
(
λω̃2 + ψ̃2

rd + ψ̃2
rq
)

(2.98)

whose time derivative along the trajectories of (2.97) is

Ẇ = −λkωω̃2 +λμ(ψ̃rdisq − ψ̃rqisd)ω̃+λμψ∗ ĩsqω̃
−α(ψ̃2

rd + ψ̃2
rq)+αMĩsdψ̃rd +ηdψ̃rd +ηqψ̃rq . (2.99)

Since isq = ĩsq + i∗sq, we define the additive feedback terms in (2.95) as

ηd = −kψ(ψrd −ψ∗)−λμ i∗sqω̃
ηq = −kψψrq +λμ isdω̃ (2.100)

in which kψ is a positive control parameter and (ψrd ,ψrq) are the measured rotor
flux vector components in the (d,q) frame which is identified by the rotating angle
ε0, whose dynamics are

dε0

dt
= ω0 = ω+

αMisq

ψ∗ +
kψψrq

ψ∗ − λμisdω̃
ψ∗

with arbitrary initial condition ε0(0). Recall that[
ψrd
ψrq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
ψra
ψrb

]
[

isd
isq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
isa
isb

]
.

By substituting (2.100) in (2.99) we obtain

Ẇ = −λkωω̃2 − (α+ kψ)(ψ̃2
rd + ψ̃2

rq)+λμψrd ĩsqω̃+αMĩsdψ̃rd . (2.101)

Note that the feedback terms depending on the arbitrary control parameter kψ intro-
duced in (2.100) are beneficial since kψ is added to the given motor parameter α in
(2.101). The influence of the last two terms in (2.101) will then be compensated by
a suitable choice of the stator voltages (usd ,usq). To this end, let us compute

di∗sq

dt
= Γq (2.102)

in which the term Γq depending on known signals is

Γq =
1
μψ∗
[
k2
ωω̃− kωμψ∗ ĩsq + ω̈∗]− ψ̇∗

μψ∗2

[
−kωω̃+

TL

J
+ ω̇∗
]
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−kω isq

ψ∗ ψ̃rd +
kω isd

ψ∗ ψ̃rq . (2.103)

Similarly, let us compute

di∗sd
dt

= Γd (2.104)

in which the term Γd depending on known signals is

Γd =
ψ̇∗

M
+
ψ̈∗

αM
− λμ

2ψ∗ ĩsqi∗sq

αM
− λμΓqω̃

αM
+
λμkωω̃i∗sq

αM
+

kψψ̇∗

αM

− kψ
αM

[−αψrd +(ω0 −ω)ψrq +αMisd ]

−λμ
2ψ̃rdisqi∗sq

αM
+
λμ2ψ̃rqisdi∗sq

αM
. (2.105)

On the basis of (2.102) and (2.104) the dynamics for the stator currents tracking
errors ĩsd and ĩsq can be computed as follows

dĩsd

dt
= −γisd +ω0isq +αβψrd +βωψrq +

usd

σ
−Γd

dĩsq

dt
= −γisq −ω0isd +αβψrq −βωψrd +

usq

σ
−Γq . (2.106)

Design the control inputs (usd ,usq) as

usd = σ
[
γ i∗sd −ω0isq −αβψrd −βωψrq +Γd − kiĩsd + vd

]
usq = σ

[
γ i∗sq +ω0isd −αβψrq +βωψrd +Γq − kiĩsq + vq

]
(2.107)

where vd and vq are yet to be designed and ki is a positive control parameter, so that
(2.106) becomes

dĩsd

dt
= −(γ+ ki)ĩsd + vd

dĩsq

dt
= −(γ+ ki)ĩsq + vq . (2.108)

In order to choose the undefined terms vd and vq, consider the Lyapunov function
for the overall tracking error dynamics

V = W +
1
2
(
ĩ2sd + ĩ2sq

)
(2.109)

whose time derivative along the trajectories of the closed-loop system (2.97),
(2.106) and (2.107) satisfies

V̇ = −λkωω̃2 −(α+ kψ
)
(ψ̃2

rd + ψ̃2
rq)+λμψrd ĩsqω̃+αMĩsdψ̃rd
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−(γ+ ki)(ĩ2sd + ĩ2sq)+ vd ĩsd + vqĩsq . (2.110)

If we design the yet undefined terms vd and vq as

vd = −αMψ̃rd

vq = −λμψrdω̃ (2.111)

then from (2.110) we obtain

V̇ ≤ −λkωω̃2 −(α+ kψ
)
(ψ̃2

rd + ψ̃2
rq)− (γ+ ki)(ĩ2sd + ĩ2sq)

≤ −2min{kω ,α+ kψ ,γ+ ki}V . (2.112)

Fig. 2.41 Global control with arbitrary rate of convergence for current-fed motors (constant refer-
ences ω∗,ψ∗)

In conclusion, the first order nonlinear state feedback global control with
arbitrary rate of convergence (see Figure 2.41)
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usd = σ [γi∗sd −ω0isq −αβψrd −βωψrq +Γd − ki(isd − i∗sd)+ vd ]
usq = σ

[
γi∗sq +ω0isd −αβψrq +βωψrd +Γq − ki(isq − i∗sq)+ vq

]
vd = −αM(ψrd −ψ∗)
vq = −λμψrd(ω−ω∗) (2.113)

with Γd and Γq given in (2.105) and (2.103) and[
usa
usb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
usd
usq

]

i∗sd =
ψ∗

M
+
ψ̇∗

αM
+
ηd

αM

i∗sq =
1
μψ∗

[
−kω(ω−ω∗)+ ω̇∗ +

TL

J

]
dε0

dt
= ω0 = ω+

αMisq

ψ∗ − ηq

ψ∗

ηd = −kψ(ψrd −ψ∗)−λμ i∗sq(ω−ω∗)
ηq = −kψψrq +λμ isd(ω−ω∗)[

isd
isq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
isa
isb

]
[
ψrd
ψrq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
ψra
ψrb

]
(2.114)

with (kω ,kψ ,ki) arbitrary positive design parameters, is such that (ω −ω∗),
(ψrd −ψ∗), ψrq, (isd − i∗sd), (isq − i∗sq) tend exponentially to zero from any
initial condition with arbitrary rate of convergence min{kω ,α+ kψ ,γ+ ki}.

As we shall see, in Chapter 4 a global adaptive version of the controller (2.114)
will be presented which does not rely on rotor flux measurements and is adaptive
with respect to both critical parameters TL and α: no arbitrary exponential rate of
convergence will, however, be obtained when the parameters TL and α are uncertain.

Illustrative Simulations

We tested the global control with arbitrary rate of convergence by simulations for
the three-phase single pole pair 0.6-kW induction motor whose parameters have
been reported in Chapter 1. All the motor and controller initial conditions have been
set to zero except for ψra(0) = ψrb(0) = 0.1Wb. The control parameters are (all
values are in SI units) λ = 0.005, kω = 450, ki = 800, kψ = 12. The references
for the speed and flux modulus along with the applied load torque are reported in
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Figures 2.42–2.44. The rotor flux modulus reference signal starts from 0.01Wb at
t = 0s and grows up to the constant value 1.16Wb. The speed reference is zero
until t = 0.32s and grows up to the constant value 100rad/s; at t = 1.5s the speed
is required to go up to the value 200rad/s, while the reference for the flux modulus
is reduced to 0.5Wb. A 5.8-Nm load torque is applied to the motor and is reduced
to 1.8Nm. Figures 2.43 and 2.44 show the time histories of the rotor speed and the
flux modulus along with the corresponding tracking errors: the rotor speed and the
flux modulus track their references tightly. Finally, the stator current and voltages
profiles (which are within physical saturation limits) are reported in Figures 2.45
and 2.46.

Fig. 2.42 Global control with arbitrary rate of convergence: applied load torque TL

2.8 Experimental Results

Two experiments have been performed in order to test how critical the parameter α
is in practice. The indirect field-oriented control (2.49) has been tested with usd and
usq in (2.50) simplified by PI controls on the current errors isd − i∗sd and isq − i∗sq and
TL replaced by its estimate (2.115) (see Problem 2.5), in which in place of the true
value of α a constant estimate α̂ has been used. The reference signals for speed and
rotor flux modulus in the experiments are reported in Figure 2.47: the flux modulus
is first required to reach its desired value of 1.16Wb before 0.5s when the rotor
speed is then required to reach its desired value of 100rad/s. After start-up, a con-
stant load torque of 5.8Nm is applied. In the first experiment α̂ underestimates the
correct value of α , i.e. α̂/α = 0.7, while in the second one α is overestimated, i.e.
α̂/α = 1.5. The following control parameters and initial conditions have been used:
kω = 300, kT = 187, T̂L(0) = 0, ε0(0) = 0. The gains kP and kI of the PI controllers
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Fig. 2.43 Global control with arbitrary rate of convergence: rotor speed ω and its reference ω∗;
rotor speed tracking error

Fig. 2.44 Global control with arbitrary rate of convergence: rotor flux modulus
√
ψ2

ra +ψ2
rb and

its reference ψ∗; rotor flux modulus tracking error

for the voltages (usd ,usq) are chosen so that a unit step reference is tracked with
a settling time of about 2.5ms. The flux is estimated by the open-loop rotor flux
observer (3.8) which will be given in Section 3.1.1 (converging outside the mag-
netic saturation region), which makes use of the true value of α . The performance
achieved by the controller in the two cases are reported in Figures 2.48 and 2.49:
while the speed error is still satisfactory, the flux modulus is above the reference
rated value when α̂/α = 0.7 and below when α̂/α = 1.5 and, therefore, the power
efficiency degrades. In both cases higher iq currents (when compared with the corre-
sponding iq obtained in simulations) are required to produce the rated torque: this is
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Fig. 2.45 Global control with arbitrary rate of convergence: stator current vector (a,b)-
components (isa, isb)

Fig. 2.46 Global control with arbitrary rate of convergence: stator voltage vector (a,b)-
components (usa,usb)

due to the magnetic saturation when α̂/α = 0.7 and to the low flux modulus when
α̂/α = 1.5.

2.9 Conclusions

In this chapter the potentiality of feedback control for induction motors has been
fully explored under the assumption that all the state variables are available for
feedback. The motivation for introducing feedback actions in the controller comes
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Fig. 2.47 Reference signals in the experiments

Fig. 2.48 Experimental results with the indirect field-oriented control and underestimated rotor
resistance

Fig. 2.49 Experimental results with the indirect field-oriented control and overestimated rotor re-
sistance
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from the analysis in Section 2.1 of the motor driven by the feedforward control
which, when the initial conditions are compatible and the parameters values are ex-
act, forces the motor to follow the desired rotor speed and flux modulus reference
signals as shown in Chapter 1. In Section 2.1 the existence of constant rotor speed
and flux modulus references and nonzero load torque is shown such that the origin of
the error system is not globally attractive. In fact, an additional nonzero equilibrium
point exists so that rotor speed tracking is not achieved for any motor initial condi-
tion. Moreover, the stability of the origin of the error system critically depends on
the load torque which turns an asymptotically stable operating condition into an un-
stable one by crossing a critical value. Hence, the main goal of the feedback control
is to make the desired operating condition attractive for any motor initial condition,
for any value of the load torque, and robust with respect to motor parameter vari-
ations. The simplest way to achieve this goal is to modify the feedforward control
by including a feedback action from the rotor speed as in the indirect field-oriented
control presented in Section 2.3. This control is a modification of the original, his-
torically important, direct field-oriented control, which requires rotor flux measure-
ments and has a distinctive drawback: a singularity when the rotor flux modulus is
zero requires the motor to start from nonzero rotor flux modulus initial conditions,
in order to achieve exponential tracking of rotor speed reference signals for any load
torque. If one is willing to accept singularities in the control law and to rely on rotor
flux measurements with the aim of improving the closed-loop motor performance,
then the input–output feedback linearizing control presented in Section 2.4 achieves
an independent exponential tracking of rotor speed and flux modulus reference sig-
nals. For instance, the rotor flux modulus reference can be independently adjusted
to minimize the power losses, as discussed in Chapter 1, without affecting the speed
tracking: this feature is very appealing in electric traction applications. This control
strategy can be rendered adaptive with respect to uncertainties in the load torque and
rotor resistance by the adaptive input–output feedback linearizing control which is
presented in Section 2.5. This control involves estimates of both parameters: assum-
ing that either the load torque is different from zero or the rotor speed is not constant,
the convergence of the rotor resistance estimator is achieved while the load torque
estimator is always convergent to the true value. The online estimation of critical
parameters constitutes a strong motivation for the use of feedback control and leads
to an improved efficiency. In Section 2.6 it is shown that a dynamic third order state
feedback control, the dynamic feedback linearizing control, can render the closed-
loop motor linear so that the rotor speed and rotor flux angle can independently track
their desired reference signals. However the control shows singularities when either
the rotor flux modulus is zero or the stator current vector quadrature component is
zero and it works only when the initial tracking errors are sufficiently small. Finally,
in Section 2.7 the indirect field-oriented control introduced in Section 2.4 is gen-
eralized to obtain a global control that has several important features: it works for
any motor initial condition and for any load torque; it achieves exponential tracking
of desired reference signals (ω∗(t),ψ∗(t)) with arbitrary rate of convergence; it is
linear with respect to the rotor fluxes, the load torque, and the rotor resistance, so
that, as we shall see in Chapter 4, rotor flux observers and uncertain parameter es-
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timators can be incorporated. An indirect field-oriented control, which is the only
implementable since it does not require flux measurements, has been experimen-
tally tested in Section 2.8 to evaluate how critical the exact knowledge of the rotor
resistance is. It turns out that an uncertain rotor resistance causes errors in the flux
regulation so that power efficiency degrades. Many control algorithms presented in
this chapter require flux measurements and exact parameter values. It will be dis-
cussed in Chapter 3 how to design rotor flux observers, adaptive observers, and
parameter estimators for load torque and rotor resistance. The global control with
arbitrary rate of convergence presented in Section 2.7 will be the starting point in
Chapter 4 to design control algorithms which achieve rotor speed and flux modulus
tracking for any initial condition, without the need of rotor flux measurements and
of load torque and rotor resistance exact values.

Problems

2.1. Given any positive constant rotor speed and flux modulus reference values
(ω∗,ψ∗), show that, in the case of zero load torque, exponential rotor speed and
flux modulus tracking are guaranteed for any motor initial condition by the feedfor-
ward control (2.8). Suggestion: use the positive definite function V = γ1(ω−ω∗)2 +
γ2(ψrd −ψ∗)2 +γ2ψ2

rq +γ3(isd − i∗sd)
2 +γ3(isq− i∗sq)

2 with γ1μ = γ2M = γ3β and γ1,
γ2, γ3 positive reals.

2.2. Show that the constant rotor flux modulus reference minimizing the power
losses given by (1.51) in Chapter 1 makes the origin of the error system exponen-
tially stable.

2.3. Show that exponential rotor speed and flux modulus tracking along with expo-
nential load torque estimation can be achieved for current-fed motors by both the
direct and the indirect field-oriented controls (2.19) and (2.48) with the load torque
estimate (kT is a positive control parameter)

T̂L(t) = T̂L(0)− kT

∫ t

0
(ω(τ)−ω∗(τ))dτ (2.115)

in place of TL. Suggestion: follow the analysis performed for the nonadaptive case.

2.4. Design a modified version of the indirect field-oriented control (2.48) for
current-fed motors which guarantees, for any motor initial condition using rotor
speed measurements only, exponential rotor speed and flux modulus tracking with
a rate of decay which depends on α . Suggestion: use the positive definite function
V = λ (ω−ω∗)2 +(ψrd −ψ∗)2 +ψ2

rq with λ a positive real.

2.5. Consider the indirect field-oriented control algorithm (2.48) with T̂L given in
Problem 2.3 in place of TL
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i∗sa
i∗sb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
i∗sd
i∗sq

]

i∗sd =
ψ∗

M
+
ψ̇∗

αM

i∗sq =
1
μψ∗

[
−kω (ω−ω∗)+ ω̇∗ +

T̂L

J

]

ε̇0 = ω0 = ω+
αMisq

ψ∗

T̂L(t) = T̂L(0)− kT

∫ t

0
[ω(τ)−ω∗(τ)]dτ

and the PI control inputs

usa(t) = −kP[isa(t)− i∗sa(t)]− kI

∫ t

0
[isa(τ)− i∗sa(τ)]dτ

usb(t) = −kP[isb(t)− i∗sb(t)]− kI

∫ t

0
[isb(τ)− i∗sb(τ)]dτ

to drive the stator current tracking errors (isa − i∗sa) and (isb − i∗sb) quickly to zero.
Simulate the closed-loop performance and compare with the experimental results
given in Section 2.8.

2.6. Show that exponential rotor speed and flux modulus tracking is guaranteed for
any initial condition of the full order model by the indirect field-oriented control
(2.49)–(2.51). Suggestion: follow the analysis performed for the third-order model.

2.7. Design a modified version of the indirect field-oriented control (2.49)–(2.51)
which is global (i.e. it works for any motor initial condition) and adaptive with
respect to the critical parameters TL (load torque) and Rr (rotor resistance). Sugges-
tion: use the positive definite function V = γ1(ω−ω∗)2 + γ2(ψrd −ψ∗)2 + γ2ψ2

rq +
(isd − i∗sd)

2 +(isq − i∗sq)2 + γ3(TL − T̂L)2 + γ4(α− α̂)2 with γ1, γ2, γ3, and γ4 positive
reals.

2.8. Design a modified version of the input–output feedback linearizing control
(2.85) which is adaptive with respect to the load torque TL and both rotor and stator
resistances Rr, Rs. Suggestion: follow, in the control design, steps similar to those
presented in Section 2.5.

2.9. By following the ideas presented in Section 2.6, design a dynamic feedback

linearizing control by choosing
(
ψrd ,ω− μψ

2
rdρ
αM

)
in place of (ω,ρ).

2.10. Analyze the closed-loop behavior of the full order motor model (1.39) con-
trolled by the algorithm (2.24), (2.27), (2.29), and (2.30) when ω∗ and ψ∗ are con-
stant while TL and α are constant uncertain parameters. What happens if the feed-
back terms −αMi2sq/ψrd and αMisqisd/ψrd are dropped in (2.24)?
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2.11. Rewrite the input–output feedback linearizing control (2.64) as[
usa
usb

]
=
[

cosρ −sinρ
sinρ cosρ

][
vsd
vsq

]

with cosρ =ψra/
√
ψ2

ra +ψ2
rb, sinρ =ψrb/

√
ψ2

ra +ψ2
rb and compare (vsd ,vsq) with

(usd ,usq) in (2.24), (2.54), (2.56), and (2.57).

2.12. Show that if the condition (2.84) holds, then the control (2.85) guarantees for
suitable initial conditions exponential convergence to zero of the rotor speed and the
rotor flux modulus tracking errors and of the estimation errors as well. Suggestion:
use the Persistency of Excitation Lemma A.3 in Appendix A.

2.13. Design an adaptive version of the global control with arbitrary rate of con-
vergence (2.113) when the load torque TL is unknown: replace TL with its estimate
T̂L and then design an adaptation law for T̂L using the function [recall (2.98) and
(2.109)]

VT = V +
1

2λT
(TL − T̂L)2

with λT a positive real design parameter. Compare the resulting controller with that
obtained by setting α̂ = α in (2.85).

2.14. Simulate the adaptive control[
usa
usb

]
=
[

cosρ −sinρ
sinρ cosρ

][
usd
usq

]

usd = σ
[
γi∗sd −

(
ω+

αMisq

ψrd

)
isq −αβψrd +Γd − kiĩsd −αMψ̃rd

]

usq = σ
[
γi∗sq +

(
ω+

αMisq

ψrd

)
isd +βωψrd +Γq − kiĩsq −μω̃ψ̃rd

]

i∗sd =
ψ∗

M
+
ψ̇∗

αM
− kψψ̃rd

αM

i∗sq =
1
μψrd

(
−kωω̃+

T̂L

J
+ ω̇∗
)

T̂L = ξ −λJω
ξ̇ = −λξ +λJμψrdisq +λ 2Jω− vT

vT =
(kω +λ )
Jμψrd

ĩsq +
ω̃
J

Γd =
ψ̇∗

M
+
ψ̈∗

αM
− kψ
αM

(−αψrd +αMisd − ψ̇∗)

Γq =
1
μψrd

[
−kω

(
μψrdisq − T̂L

J
− ω̇∗
)
− vT

J
+ ω̈∗
]
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− 1
μψ2

rd

(
−kωω̃+

T̂L

J
+ ω̇∗
)

(−αψrd +αMisd)

ψrd = ψra cosρ+ψrb sinρ[
isd
isq

]
=
[

cosρ sinρ
−sinρ cosρ

][
isa
isb

]

by choosing the control parameters (ki, kψ , kω , λ ); compare the results with those
obtained by (2.85) with α̂ = α and kω p = 8,100, kωd = 180, kψ p = 8,100, kψd =
180, λ = 120.

2.15. Consider the current-fed model (2.32) in an arbitrary rotating frame and the
dynamic feedback control (2.34): design (isd , isq, ω0) assuming that (ω , ψrd , ψrq)
are measured so that the closed-loop system (2.32), (2.34) becomes linear and de-
coupled (kω , kd , and kq are positive reals)

˙̃ω = −kωω̃
˙̃ψrd = −kdψ̃rd

˙̃ψrq = −kqψ̃rq

provided that ψ2
rd(t)+ψ2

rq(t) ≥ c > 0 for all t ≥ 0.

2.16. Design an adaptive version of the global control with arbitrary rate of conver-
gence (2.113) which is adaptive with respect to all model parameters and guarantees
the asymptotic tracking of both rotor speed and flux modulus references from any
motor initial conditions. Suggestion: reparameterize and use projection algorithms.

2.17. Consider the indirect field-oriented control (2.49) and replace the parameter α
by a constant estimate α̂ . Compute the error dynamics and their equilibrium points
in terms of the estimation error α̃ = α− α̂ and evaluate their stability.



Chapter 3

Flux Observers and Parameter Estimation

Abstract Under the assumption that the rotor speed, the stator currents, and the sta-
tor voltages are available from measurements, this chapter is devoted to the design
of rotor flux (or rotor current) asymptotic observers and their adaptive versions when
the rotor resistance is uncertain. Load torque estimators are also designed which can
be used in conjunction with the flux observers. The estimation algorithms which are
presented and analyzed in this chapter are intended to complement the control al-
gorithms which were obtained in Chapter 2 under the assumption that the rotor
fluxes are available for feedback and that the load torque and the rotor/stator resis-
tances are known. The rotor fluxes have been shown to be observable in Chapter 1
so that global rotor flux observers with arbitrary exponential rate of convergence
are designed in this chapter. Adaptive observers show that the rotor resistance can
be estimated online along with rotor fluxes, provided that persistency of excitation
conditions are satisfied.

3.1 Nonadaptive Observers

In this section we show how different observers can be designed assuming that the
rotor speed ω and the stator currents isa and isb are available from measurements and
that the motor parameters are known exactly. First a rotor flux observer is designed,
then a rotor current observer is analyzed, and, finally, a rotor flux observer with
arbitrary rate of convergence is discussed.

3.1.1 Open-loop Rotor Flux Observer

Recall that it was established in Section 1.5 that the rotor fluxes (ψra,ψrb) are ob-
servable from the output measurements (ω, isa, isb) since, according to (1.76), the
rotor fluxes can be uniquely expressed in terms of rotor speed, stator currents and

133
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their time derivatives, and stator voltage inputs. Consider the rotor flux dynamic
equations in (1.26):

dψra

dt
= −αψra −ωψrb +αMisa

dψrb

dt
= −αψrb +ωψra +αMisb . (3.1)

Note that if isa = isb = 0 then the rotor fluxes decay exponentially to zero since the
function

V =
1
2
(
ψ2

ra +ψ2
rb
)

has time derivative along the trajectories of (3.1)

V̇ = −α (ψ2
ra +ψ2

rb
)

= −2αV

which implies, integrating with respect to time on the time interval [0,t],

V (t) = V (0)e−2αt .

We take advantage of this property in the design of the following open-loop rotor
flux observer

dψ̂ra

dt
= −αψ̂ra −ωψ̂rb +αMisa

dψ̂rb

dt
= −αψ̂rb +ωψ̂ra +αMisb (3.2)

which is a copy of the rotor flux dynamic equations (3.1) in which the flux esti-
mate replaces the true flux. Note that (3.2) requires the measurements of (ω , isa, isb)
and the knowledge of the motor parameters α = Rr/Lr and M. Defining the flux
estimation errors as

ψ̃ra = ψra − ψ̂ra

ψ̃rb = ψrb − ψ̂rb (3.3)

the resulting estimation error dynamics are given by

dψ̃ra

dt
= −αψ̃ra −ωψ̃rb

dψ̃rb

dt
= −αψ̃rb +ωψ̃ra . (3.4)

Now, we can repeat for (3.4) the analysis developed for (3.1) with isa = isb = 0 and
consider the Lyapunov function
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V =
1
2
(
ψ̃2

ra + ψ̃2
rb
)

(3.5)

whose time derivative along the trajectories of (3.4) is given by

V̇ = −α (ψ̃2
ra + ψ̃2

rb
)

= −2αV ; (3.6)

integrating with respect to time on the time interval [0,t], we obtain

V (t) = V (0)e−2αt (3.7)

which implies that the norm of the rotor flux error vector ψ̃r(t) = [ψ̃ra(t), ψ̃rb(t)]T

decays exponentially with rate of convergence α , for any initial estimation er-
ror V (0) = 1

2 (ψ̃2
ra(0) + ψ̃2

rb(0)). Note that the exponential rate of convergence is
α = Rr/Lr: hence, the rotor flux observer (3.2) does not have an arbitrary rate of
convergence, since it depends on the motor parameters Rr and Lr.

In conclusion: the open-loop rotor flux observer

˙̂ψra = −αψ̂ra −ωψ̂rb +αMisa
˙̂ψrb = −αψ̂rb +ωψ̂ra +αMisb (3.8)

guarantees that for any initial condition (ψ̂ra(0), ψ̂rb(0)) the estimation errors
ψ̃ra(t) = ψra(t)− ψ̂ra(t) and ψ̃rb(t) = ψrb(t)− ψ̂rb(t) converge exponentially
to zero with rate of convergence α = Rr/Lr; it requires the measurements of
ω(t), isa(t), and isb(t) and depends on the motor parameters Rr, Lr, and M.

Illustrative Simulations

We tested the open-loop rotor flux observer (3.8) by simulations for the three-phase
single pole pair 0.6-kW induction motor whose parameters have been reported in
Chapter 1. The motor (with initial conditions ψra(0) = ψrb(0) = 0.1Wb) is con-
trolled by the input–output feedback linearizing control (with control parameters,
rotor speed and flux modulus references, and applied load torque as reported in Sec-
tion 2.4). The observer initial conditions are set to zero, i.e. ψ̂ra(0) = ψ̂rb(0) = 0.
The rotor flux vector (a,b) components along with the corresponding estimation
errors are reported in Figures 3.1 and 3.2: they show that exponentially converg-
ing estimation is achieved. The influence of the rotor resistance uncertainty, when
the rotor resistance value used by the observer is 50% greater than the motor rotor
resistance value, is illustrated by Figures 3.3 and 3.4 which show that steady-state
estimation errors appear.
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Fig. 3.1 Open-loop rotor flux observer: rotor flux ψra and its estimate; rotor flux ψra estimation
error

Fig. 3.2 Open-loop rotor flux observer: rotor flux ψrb and its estimate; rotor flux ψrb estimation
error

3.1.2 Open-loop Rotor Current Observer

Since the rotor fluxes are assumed to be related to the rotor and stator currents
through the linear equations

ψra = Misa +Lrira

ψrb = Misb +Lrirb , (3.9)

an estimate of the rotor fluxes can be obtained from the measurements of the sta-
tor currents and a rotor current observer. From (1.14), we obtain the rotor current
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Fig. 3.3 Open-loop rotor flux observer in the case of rotor resistance uncertainty: rotor flux ψra
and its estimate; rotor flux ψra estimation error

Fig. 3.4 Open-loop rotor flux observer in the case of rotor resistance uncertainty: rotor flux ψrb
and its estimate; rotor flux ψrb estimation error

dynamics:(
Lr − M2

Ls

)
dira

dt
= −Rrira +

MRs

Ls
isa −ωLrirb −ωMisb +

M
Ls

usa(
Lr − M2

Ls

)
dirb

dt
= −Rrirb +

MRs

Ls
isb +ωLrira +ωMisa +

M
Ls

usb . (3.10)

Note that if usa = usb = 0 and isa = isb = 0 then the rotor currents ira(t) and irb(t)
decay exponentially to zero since the function
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V =
1
2

(
Lr − M2

Ls

)(
i2ra + i2rb

)
has time derivative

V̇ = −Rr
(
i2ra + i2rb

)
= − 2RrLs

LrLs −M2 V

which implies, integrating with respect to time on [0, t],

V (t) = V (0)e
− 2RrLs

LrLs−M2 t
.

Assuming that the stator voltages are also available from measurements, we can
design the reduced order rotor current observer(

Lr − M2

Ls

)
dîra

dt
= −Rrîra +

MRs

Ls
isa −ωLrîrb −ωMisb +

M
Ls

usa(
Lr − M2

Ls

)
dîrb

dt
= −Rrîrb +

MRs

Ls
isb +ωLrîra +ωMisa +

M
Ls

usb (3.11)

whose error dynamics are given by(
Lr − M2

Ls

)
dĩra

dt
= −Rrĩra −ωLrĩrb(

Lr − M2

Ls

)
dĩrb

dt
= −Rrĩrb +ωLrĩra (3.12)

in which ĩra = ira − îra and ĩrb = irb − îrb denote the rotor current estimation errors.
Consider the quadratic positive definite function

V =
1
2

(
Lr − M2

Ls

)(
ĩ2ra + ĩ2rb

)
(3.13)

whose time derivative along the trajectories (3.12) is

V̇ = −Rr
(
ĩ2ra + ĩ2rb

)
= − 2RrLs

LrLs −M2 V ; (3.14)

integrating with respect to time on [0, t], we obtain

V (t) = V (0)e
− 2RrLs

LrLs−M2 t
(3.15)

which implies that the norm of the rotor current error vector ĩr(t) = [ĩra(t), ĩrb(t)]T

decays exponentially with rate of convergence α/[1−M2/(LrLs)], which is greater
than α since LrLs > M2. Therefore, by using the rotor current observer (3.11) along
with the relations
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ψ̂ra = Misa +Lrîra

ψ̂rb = Misb +Lrîrb (3.16)

converging estimates of the rotor fluxes which are faster than those obtained by (3.2)
can be recovered. On the other hand, if we compare the two reduced order flux ob-
servers (3.11), (3.16) and (3.2), we note that the knowledge of the additional signals
(usa,usb) and of the additional parameters (Rs,Ls) is required in (3.11), (3.16).

3.1.3 Rotor Flux Observer with Arbitrary Rate of Convergence

The rotor flux observers presented in the previous sections have a fixed rate of con-
vergence which is related to the motor parameters. We show in this section how a
rotor flux observer with arbitrary rate of convergence can be designed. This prop-
erty is of crucial importance since in Chapter 2 state feedback controls with arbitrary
tracking convergence rate are designed, assuming that rotor fluxes are available: if
these signals are replaced by estimates given by a flux observer, it is clear that the
property of arbitrary tracking convergence can be retained at least locally only if the
observer estimation errors decay to zero with arbitrary rate. We begin our design by
introducing two terms, wa and wb, in the observer equations (3.2),

˙̂ψra = −αψ̂ra −ωψ̂rb +αMisa −wa
˙̂ψrb = −αψ̂rb +ωψ̂ra +αMisb −wb (3.17)

whose choice is postponed. The estimation error dynamics are given by

˙̃ψra = −αψ̃ra −ωψ̃rb +wa

˙̃ψrb = −αψ̃rb +ωψ̃ra +wb . (3.18)

At this point, we note that if we could choose

wa = kβ
dψ̃ra

dt

wb = kβ
dψ̃rb

dt
(3.19)

the estimation error dynamics would become

˙̃ψra = − α
1− kβ

ψ̃ra − ω
1− kβ

ψ̃rb

˙̃ψrb = − α
1− kβ

ψ̃rb +
ω

1− kβ
ψ̃ra . (3.20)

The time derivative of the Lyapunov function (3.5), in the light of (3.20), is given
by
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V̇ = − α
1− kβ

(
ψ̃2

ra + ψ̃2
rb
)

= − 2α
1− kβ

V (3.21)

whose time integration leads to

V (t) = V (0)e−
2α

1−kβ t (3.22)

which implies the exponential convergence to zero of the norm of the rotor flux error
with rate of convergence α/(1−kβ ). By choosing k such that 1−kβ is positive the
smaller 1− kβ is, the larger the rate of convergence results. Now, let us reconsider
the choice of wa and wb by noting that the expressions in (3.19) are not available
from measurements and cannot be directly used in the observer equations (3.17).
Nevertheless, using

β
dψra

dt
=

1
σ

usa − Rs

σ
isa − disa

dt

β
dψrb

dt
=

1
σ

usb − Rs

σ
isb − disb

dt
(3.23)

from (3.17) and (3.19), we obtain

dψ̂ra

dt
= −αψ̂ra −ωψ̂rb +αMisa − k

(
1
σ

usa − Rs

σ
isa − disa

dt
−β dψ̂ra

dt

)
dψ̂rb

dt
= −αψ̂rb +ωψ̂ra +αMisb − k

(
1
σ

usb − Rs

σ
isb − disb

dt
−β dψ̂rb

dt

)
(3.24)

from which

d
dt

[(1− kβ )ψ̂ra − kisa] = −αψ̂ra −ωψ̂rb +
(
αM +

kRs

σ

)
isa − k

σ
usa

d
dt

[(1− kβ )ψ̂rb − kisb] = −αψ̂rb +ωψ̂ra +
(
αM +

kRs

σ

)
isb − k

σ
usb .

(3.25)

From (3.25), by introducing the variables

za = (1− kβ )ψ̂ra − kisa

zb = (1− kβ )ψ̂rb − kisb (3.26)

we have

ża = − α
1− kβ

za − ω
1− kβ

zb +
(
αM +

kRs

σ
− αk

1− kβ

)
isa

− ω
1− kβ

kisb − k
σ

usa
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żb = − α
1− kβ

zb +
ω

1− kβ
za +
(
αM +

kRs

σ
− αk

1− kβ

)
isb

+
ω

1− kβ
kisa − k

σ
usb

ψ̂ra =
1

1− kβ
za +

k
1− kβ

isa

ψ̂rb =
1

1− kβ
zb +

k
1− kβ

isb . (3.27)

The observer (3.27) only depends on the measured signals ω , isa, isb, usa and usb:
its estimation error dynamics are given by (3.20) and have an arbitrary exponential
rate of convergence. The initial conditions (ψ̂ra(0), ψ̂rb(0)) are freely chosen and
the initial conditions of (za,zb) are computed as

za(0) = (1− kβ )ψ̂ra(0)− kisa(0)
zb(0) = (1− kβ )ψ̂rb(0)− kisb(0) . (3.28)

Note that by increasing the convergence rate of (3.27), i.e. by making 1−kβ close to
zero, the sensitivity of the observer to stator currents and rotor speed measurement
errors is also increased, since ω , isa, and isb are divided by 1− kβ in (3.27).

The rotor flux observer (3.27) can also be directly obtained by restricting the flux
estimates (ψ̂ra, ψ̂rb) to be of the form

ψ̂ra = cisa +ξa

ψ̂rb = cisb +ξb (3.29)

in which the arbitrary constant c and the signals (ξa,ξb) are to be designed in or-
der to obtain exponential convergence to zero with arbitrary rate for the estimation
errors ψ̃ra = ψra − cisa −ξa and ψ̃rb = ψrb − cisb −ξb. To this end, let us compute

˙̃ψra = −αψra −ωψrb +αMisa

−c
(
−γisa +

usa

σ
+βαψra +βωψrb

)
− ξ̇a

˙̃ψrb = −αψrb +ωψra +αMisb

−c
(
−γisb +

usb

σ
+βαψrb −βωψra

)
− ξ̇b . (3.30)

If we design

ξ̇a = −α(1+ cβ )ψ̂ra −ω(1+ cβ )ψ̂rb +(αM + cγ)isa − c
σ

usa

ξ̇b = −α(1+ cβ )ψ̂rb +ω(1+ cβ )ψ̂ra +(αM + cγ)isb − c
σ

usb (3.31)

the equations (3.30) become
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˙̃ψra = −α(1+ cβ )ψ̃ra − (1+ cβ )ωψ̃rb

˙̃ψrb = −α(1+ cβ )ψ̃rb +(1+ cβ )ωψ̃ra . (3.32)

The time derivative of the positive definite function (3.5), along the trajectories of
(3.32), is given by

V̇ = −α(1+ cβ )
(
ψ̃2

ra + ψ̃2
rb
)

= −2α(1+ cβ )V .

Integrating with respect to time on [0, t], we obtain

V (t) = V (0)e−2α(1+cβ )t

so that we can conclude that the flux estimates (ψ̂ra, ψ̂rb) converge to zero exponen-
tially with arbitrary rate of convergence α(1 + cβ ), since c can be freely chosen.
The observer (3.29), (3.31) coincides with (3.27) by setting

ξa =
1

1− kβ
za

ξb =
1

1− kβ
zb

c =
k

1− kβ
.

Note also that if we set

c = M

ξa = Lrîra

ξb = Lrîrb

in (3.29) and (3.31), we reobtain the observer (3.11) and (3.16).

In conclusion: the rotor flux observer with arbitrary rate of convergence

ξ̇a = −α(1+ cβ )ξa −ω(1+ cβ )ξb +[(αM + cγ)−αc(1+ cβ )]isa

−ωc(1+ cβ )isb − c
σ

usa , ξa(0) = ψ̂ra(0)− cisa(0)

ξ̇b = −α(1+ cβ )ξb +ω(1+ cβ )ξa +[(αM + cγ)−αc(1+ cβ )]isb

+ωc(1+ cβ )isa − c
σ

usb , ξb(0) = ψ̂rb(0)− cisb(0)

ψ̂ra = cisa +ξa

ψ̂rb = cisb +ξb (3.33)

guarantees that, for any initial condition (ψ̂ra(0), ψ̂rb(0)), the estimation er-
rors ψ̃ra = ψra − ψ̂ra and ψ̃rb = ψrb − ψ̂rb are such that
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∥∥∥∥
[
ψ̃ra(t)
ψ̃rb(t)

]∥∥∥∥ ≤
∥∥∥∥
[
ψ̃ra(0)
ψ̃rb(0)

]∥∥∥∥e−α(1+cβ )t ,

i.e. they converge to zero exponentially with arbitrary rate of convergence
α(1+ cβ ), since c is an arbitrary positive real.

Illustrative Simulations

We tested the rotor flux observer with arbitrary rate of convergence (3.33) by
simulations for the three-phase single pole pair 0.6-kW induction motor whose
parameters have been reported in Chapter 1. The motor (with initial conditions
ψra(0) = ψrb(0) = 0.1Wb) is controlled by the input–output feedback linearizing
control (with control parameters, rotor speed and flux modulus references, and ap-
plied load torque as reported in Section 2.4). The design parameter c is set equal to
0.3 (the value is in SI units) while the observer initial conditions are set to zero. The
rotor flux vector (a,b) components along with the corresponding estimation errors
are reported in Figures 3.5 and 3.6: exponential estimation is achieved with a rate
of convergence which is greater than that obtained by the open-loop rotor flux ob-
server (recall Figures 3.1 and 3.2). The influence of rotor resistance uncertainty is
illustrated by Figures 3.7 and 3.8, when the rotor resistance value used by the ob-
server is 50% greater than the motor rotor resistance value: steady-state estimation
errors appear, which are however smaller than those obtained by the open-loop rotor
flux observer (compare with Figures 3.3 and 3.4).

Fig. 3.5 Rotor flux observer with arbitrary rate of convergence: rotor flux ψra and its estimate;
rotor flux ψra estimation error
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Fig. 3.6 Rotor flux observer with arbitrary rate of convergence: rotor flux ψrb and its estimate;
rotor flux ψrb estimation error

Fig. 3.7 Rotor flux observer with arbitrary rate of convergence in the case of rotor resistance
uncertainty: rotor flux ψra and its estimate; rotor flux ψra estimation error

3.2 Adaptive Flux Observer with Rotor Resistance Estimator

In this section we show how an adaptive rotor flux observer with rotor resistance
estimator can be designed on the basis of the measurements of the stator currents
isa and isb, the rotor speed ω , and the stator voltages usa and usb. Recall that, as
established in Chapter 1, in some operating conditions the rotor resistance cannot
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Fig. 3.8 Rotor flux observer with arbitrary rate of convergence in the case of rotor resistance
uncertainty: rotor flux ψrb and its estimate; rotor flux ψrb estimation error

be identified by stator currents and rotor speed measurements. In order to design the
rotor flux observer and rotor resistance estimator, we introduce the variables

za = isa +βψra

zb = isb +βψrb (3.34)

so that the motor electromagnetic equations in (1.26) become

ża = −Rs

σ
isa +

1
σ

usa

żb = −Rs

σ
isb +

1
σ

usb

disa

dt
= −Rs

σ
isa −α(1+βM)isa −ωisb +αza +ωzb +

1
σ

usa

disb

dt
= −Rs

σ
isb −α(1+βM)isb +ωisa +αzb −ωza +

1
σ

usb . (3.35)

The advantage of using (za,zb) variables is that their dynamics depend neither on
the unmeasured rotor fluxes nor on the uncertain rotor resistance. Now, we begin to
design the adaptive observer by defining the dynamics for the estimates of the stator
currents

dîsa

dt
= −Rs

σ
îsa − α̂(1+βM)isa −ω îsb + α̂η̂a +ω ẑb +

1
σ

usa + k1(isa − îsa)

dîsb

dt
= −Rs

σ
îsb − α̂(1+βM)isb +ω îsa + α̂η̂b −ω ẑa +

1
σ

usb + k1(isb − îsb)

(3.36)
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where k1 is a positive real, α̂ denotes the estimate of the unknown parameter
α = Rr/Lr, (η̂a, η̂b) and (ẑa, ẑb) denote two different estimates of the unmeasured
variables (za,zb). Defining the observation and estimation errors as ĩsa = isa − îsa,
ĩsb = isb − îsb, z̃a = za − ẑa, z̃b = zb − ẑb, η̃a = za − η̂a, η̃b = zb − η̂b, α̃ = α − α̂ ,
from (3.35) and (3.36) we obtain

dĩsa

dt
= −
(

Rs

σ
+ k1

)
ĩsa − α̃(1+βM)isa −ω ĩsb +αη̃a + α̃η̂a +ω z̃b

dĩsb

dt
= −
(

Rs

σ
+ k1

)
ĩsb − α̃(1+βM)isb +ω ĩsa +αη̃b + α̃η̂b −ω z̃a

˙̃za = −Rs

σ
isa +

1
σ

usa − ˙̂za

˙̃zb = −Rs

σ
isb +

1
σ

usb − ˙̂zb

˙̃ηa = −Rs

σ
isa +

1
σ

usa − ˙̂ηa

˙̃ηb = −Rs

σ
isb +

1
σ

usb − ˙̂ηb . (3.37)

Recalling the definition of (za,zb) in (3.34), the rotor flux estimates can be obtained
as

ψ̂ra =
1
β

(ẑa − îsa)

ψ̂rb =
1
β

(ẑb − îsb) (3.38)

which imply

ψ̃ra =
1
β

(z̃a − ĩsa)

ψ̃rb =
1
β

(z̃b − ĩsb) . (3.39)

In order to choose the dynamics of the estimates (ẑa, ẑb) and the estimation law for
the estimate α̂ , we consider the positive definite function

V =
1
2
(
ĩ2sa + ĩ2sb

)
+

1
2k2

(
z̃2

a + z̃2
b
)
+
α

2k3

(
η̃2

a + η̃2
b
)
+

1
2g
α̃2 (3.40)

in which k2, k3 and g are positive reals. The time derivative of the function V along
the trajectories of the error system is given by

V̇ = −
(

k1 +
Rs

σ

)
(ĩ2sa + ĩ2sb)+ ĩsaα̃ [η̂a − (1+βM)isa]

+α ĩsaη̃a + ĩsaω z̃b +α ĩsbη̃b − ĩsbω z̃a + ĩsbα̃[η̂b − (1+βM)isb]
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+
1
k2

(z̃a ˙̃za + z̃b ˙̃zb)+
α
k3

(η̃a ˙̃ηa + η̃b ˙̃ηb)+
1
g
α̃ ˙̃α . (3.41)

Choose

˙̂za = −Rs

σ
isa +

1
σ

usa − k2ω ĩsb

˙̂zb = −Rs

σ
isb +

1
σ

usb + k2ω ĩsa

˙̂ηa = −Rs

σ
isa +

1
σ

usa + k3 ĩsa

˙̂ηb = −Rs

σ
isb +

1
σ

usb + k3 ĩsb

˙̃α = − ˙̂α = Proj
(

g{[(1+βM)isa − η̂a]ĩsa +[(1+βM)isb − η̂b]ĩsb}, α̂
)
(3.42)

where Proj(ξ , α̂) is the smooth projection algorithm given by (A.25) in Appendix A
and defined in our case by

Proj(ξ , α̂) = ξ , if p(α̂) ≤ 0
Proj(ξ , α̂) = ξ , if p(α̂) ≥ 0 and ξ ≥ 0
Proj(ξ , α̂) = [1− p(α̂)]ξ , otherwise

in which p(α̂) = α2
m−α̂2

2δαm−δ 2 with αm = Rrm/Lr the minimum (known) value of α and
δ > 0 such that αm − δ > 0. The initial condition α̂0 in (3.42) is chosen so that
α̂0 ≥ αm. The properties of the operator Proj(ξ , α̂) imply that, substituting (3.42) in
(3.41), we have the inequality

V̇ ≤ −
(

k1 +
Rs

σ

)
(ĩ2sa + ĩ2sb) . (3.43)

From (3.40) and (3.43) it follows that ĩsa, ĩsb, z̃a, z̃b, η̃a, η̃b, and α̃ are bounded; since
(ω , ψra, ψrb, isa, isb) are assumed to be bounded, from the stator current observation
error dynamics in (3.37) it follows that ˙̃isa and ˙̃isb are also bounded and, therefore,
ĩsa and ĩsb are uniformly continuous. Since

−
∫ t

0
V̇ (τ)dτ = V (0)−V (t) ≥

(
k1 +

Rs

σ

)∫ t

0
[ĩ2sa(τ)+ ĩ2sb(τ)]dτ

it follows that

lim
t→∞

∫ t

0
[ĩ2sa(τ)+ ĩ2sb(τ)]dτ ≤

(
k1 +

Rs

σ

)
V (0)

so that Barbalat’s Lemma A.2 in Appendix A applies and we can conclude that
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lim
t→∞[ĩ

2
sa(t)+ ĩ2sb(t)] = 0

which implies asymptotic convergence to zero of the stator current estimation errors
ĩsa(t) and ĩsb(t). System (3.37), (3.42) may be written in the form

ẋ(t) = A(t)x(t)+B(t)z(t)
ż(t) = D(t)x(t) (3.44)

with x = [ĩsa, ĩsb]T, z = [z̃a, z̃b, η̃a, η̃b, α̃ ]T,

A =
[−(k1 + Rs

σ
) −ω

ω −(k1 + Rs
σ
) ]

B =
[

0 ω α 0 η̂a − (1+βM)isa
−ω 0 0 α η̂b − (1+βM)isb

]
(3.45)

and D a suitable matrix. According to the Persistency of Excitation Lemma A.3 in
Appendix A, if ω , isa, isb, ψra, ψrb, usa, and usb are bounded and there exist two
positive reals T , kT such that the persistency of excitation condition

∫ t+T

t
BT(τ)B(τ)dτ ≥ kT I, ∀t ≥ 0 (3.46)

is satisfied, then the errors ĩsa(t), ĩsb(t), z̃a(t), z̃b(t), η̃a(t), η̃b(t), and α̃(t) exponen-
tially converge to zero from any motor initial condition: the rotor flux estimation er-
rors (3.39) exponentially converge to zero while the rotor resistance estimate Lrα̂(t)
in (3.42) exponentially converges to its true value.

A different, less restrictive, persistency of excitation condition can be obtained
in the case of constant rotor speed, including zero speed. In this case it is useful to
introduce the new variables

p̃a = αη̃a +ω z̃b

p̃b = αη̃b −ω z̃a (3.47)

so that (3.37), (3.42) become

dĩsa

dt
= −
(

Rs

σ
+ k1

)
ĩsa −ω ĩsb + α̃ [η̂a − (1+βM)isa]+ p̃a

dĩsb

dt
= −
(

Rs

σ
+ k1

)
ĩsb +ω ĩsa + α̃ [η̂b − (1+βM)isb]+ p̃b

˙̃pa = −(αk3 + k2ω2)ĩsa

˙̃pb = −(αk3 + k2ω2)ĩsb

˙̃α = Proj
(

g{[(1+βM)isa − η̂a]ĩsa +[(1+βM)isb − η̂b]ĩsb}, α̂
)

.

(3.48)
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By considering the positive definite function

V =
1
2
(
ĩ2sa + ĩ2sb

)
+

1
2g
α̃2 +

1
2(αk3 + k2ω2)

(
p̃2

a + p̃2
b
)

(3.49)

we obtain along the trajectories of the error system

V̇ ≤ −
(

k1 +
Rs

σ

)
(ĩ2sa + ĩ2sb) . (3.50)

System (3.48) may be written in the compact form

ẋ(t) = Ā(t)x(t)+ B̄(t)z(t)
ż(t) = D̄(t)x(t) (3.51)

with x = [ĩsa, ĩsb]T, z = [p̃a, p̃b, α̃ ]T,

Ā =
[−(k1 + Rs

σ
) −ω

ω −(k1 + Rs
σ
) ]

B̄ =
[

1 0 η̂a − (1+βM)isa
0 1 η̂b − (1+βM)isb

]
(3.52)

and D̄ a suitable matrix. According to the Persistency of Excitation Lemma A.3 in
Appendix A, if ω , isa, isb, ψra, ψrb, usa, and usb are bounded and there exist two
positive reals T , kT such that the persistency of excitation condition

∫ t+T

t
B̄T(τ)B̄(τ)dτ ≥ kT I, ∀t ≥ 0 (3.53)

is satisfied, then the errors ĩsa(t), ĩsb(t), p̃a(t), p̃b(t), and α̃(t) tend exponentially to
zero from any initial condition. On the other hand, from (3.47), we have

(α̂+ α̃)(za − η̂a)+ω(zb − ẑb) = p̃a

(α̂+ α̃)(zb − η̂b)−ω(za − ẑa) = p̃b (3.54)

from which [
α̂ ω
−ω α̂

][
za
zb

]
=
[
α̂η̂a +ω ẑb − α̃(za − η̂a)+ p̃a
α̂η̂b −ω ẑa − α̃(zb − η̂b)+ p̃b

]

which implies that

[
isa +βψra
isb +βψrb

]
−
[
α̂ ω
−ω α̂

]−1 [ α̂η̂a +ω ẑb
α̂η̂b −ω ẑa

]
=
[
α̂ ω
−ω α̂

]−1 [−α̃(za − η̂a)+ p̃a
−α̃(zb − η̂b)+ p̃b

]
.

(3.55)
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Since we have established that p̃a(t), p̃b(t), and α̃(t) are exponentially decaying sig-
nals in (3.55), in the case of constant rotor speed we replace the rotor flux estimates
defined in (3.38) by

[
ψ̂ra
ψ̂rb

]
= − 1

β

[
isa
isb

]
+

1
β

[
α̂ ω
−ω α̂

]−1 [ α̂η̂a +ω ẑb
α̂η̂b −ω ẑa

]
(3.56)

so that from (3.55) and (3.56) we have

[
ψ̃ra
ψ̃rb

]
=

1
β

[
α̂ ω
−ω α̂

]−1 [−α̃(za − η̂a)+ p̃a
−α̃(zb − η̂b)+ p̃b

]
. (3.57)

Therefore, the estimation errors ψ̃ra(t) and ψ̃rb(t) exponentially converge to zero
from any motor initial condition.

Remarks

1. Note that from (3.54) and (3.57) we obtain

[
ψ̃ra
ψ̃rb

]
=

1
β

[
α̂ ω
−ω α̂

]−1 [ α̂η̃a +ω z̃b
α̂η̃b −ω z̃a

]
.

Hence, if (η̃a, η̃b, z̃a, z̃b) converge exponentially to zero, (ψ̃ra, ψ̃rb) also con-
verge exponentially to zero: in this case (3.56) provides converging flux estimates
which may replace (3.38) when the persistency of excitation condition (3.46) is
satisfied.

2. Note that when the rotor speed and the rotor flux modulus are constant and the
load torque is zero, so that ψra = Misa and ψrb = Misb, the persistency of excita-
tion condition (3.53) cannot be satisfied: recall that in those operating conditions
the rotor resistance cannot be identified by stator currents and rotor speed mea-
surements since in that case the motor equations

dω
dt

= 0

dψra

dt
= −ωψrb

dψrb

dt
= ωψra

disa

dt
= −ωisb

disb

dt
= ωisa
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do not depend on the rotor resistance Rr. However, the rotor fluxes can be asymp-
totically estimated even though the rotor resistance estimate does not converge
to its true value.

In conclusion: the adaptive flux observer with rotor resistance estimator

dîsa

dt
= −Rs

σ
îsa − α̂(1+βM)isa −ω îsb + α̂η̂a +ω ẑb +

1
σ

usa + k1(isa − îsa)

dîsb

dt
= −Rs

σ
îsb − α̂(1+βM)isb +ω îsa + α̂η̂b −ω ẑa +

1
σ

usb + k1(isb − îsb)

dẑa

dt
= −Rs

σ
isa +

1
σ

usa − k2ω(isb − îsb)

dẑb

dt
= −Rs

σ
isb +

1
σ

usb + k2ω(isa − îsa)

dη̂a

dt
= −Rs

σ
isa +

1
σ

usa + k3(isa − îsa)

dη̂b

dt
= −Rs

σ
isb +

1
σ

usb + k3(isb − îsb)

dα̂
dt

= −Proj
(

g{[(1+βM)isa − η̂a](isa − îsa)

+[(1+βM)isb − η̂b](isb − îsb)}, α̂
)

[
ψ̂ra
ψ̂rb

]
= − 1

β

[
isa
isb

]
+

1
β

[
α̂ ω
−ω α̂

]−1 [ α̂η̂a +ω ẑb
α̂η̂b −ω ẑa

]
(3.58)

guarantees that all the estimation variables (îsa(t), îsb(t), ẑa(t), ẑb(t), η̂a(t),
η̂b(t), α̂(t)) are bounded for all t ≥ 0 and that

lim
t→∞[isa(t)− îsa(t)] = 0

lim
t→∞[isb(t)− îsb(t)] = 0

for any initial condition, provided that (ω(t), ψra(t), ψrb(t), isa(t), isb(t)) are
bounded on [0,∞); moreover, the estimation errors

ĩsa = isa − îsa

ĩsb = isb − îsb

ψ̃ra = ψra − ψ̂ra

ψ̃rb = ψrb − ψ̂rb

α̃ = α− α̂
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converge exponentially to zero for any motor initial condition, provided that
ω(t), isa(t), isb(t), ψra(t), ψrb(t), usa(t), and usb(t) are bounded on [0,∞) and
there exist two positive reals T and kT such that

∫ t+T

t
BT(τ)B(τ)dτ ≥ kT I , ∀t ≥ 0 (3.59)

with

B(t) =
[

0 ω α 0 η̂a − (1+βM)isa
−ω 0 0 α η̂b − (1+βM)isb

]
.

If (3.59) is not satisfied but the rotor speed is constant then the estimation
errors

ĩsa = isa − îsa

ĩsb = isb − îsb

ψ̃ra = ψra − ψ̂ra

ψ̃rb = ψrb − ψ̂rb

α̃ = α− α̂

converge exponentially to zero for any motor initial condition, provided that
ω(t), isa(t), isb(t), ψra(t), ψrb(t), usa(t), and usb(t) are bounded on [0,∞) and
there exist two positive reals T and kT such that

∫ t+T

t
B̄T(τ)B̄(τ)dτ ≥ kT I , ∀t ≥ 0 (3.60)

with

B̄ =
[

1 0 η̂a − (1+βM)isa
0 1 η̂b − (1+βM)isb

]
.

The adaptive observer (3.58) relies on: (1) the measurements of the stator
currents (isa, isb), the stator voltages (usa,usb) and the rotor speed ω; (2) the
positive design parameters k1, k2, k3 and g.

Illustrative Simulations

We tested the adaptive rotor flux observer with rotor resistance estimator (3.58)
by simulations for the three-phase single pole pair 0.6-kW induction motor whose
parameters have been reported in Chapter 1. The motor (with initial conditions
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ψra(0) = ψrb(0) = 0.1Wb) is controlled by the input–output feedback linearizing
control (with control parameters, rotor speed and flux modulus references, and ap-
plied load torque as reported in Section 2.4). The design parameters are chosen
as (all values are in SI units): k1 = 120, k2 = 3, k3 = 270, g = 450. All observer
initial conditions are set to zero except for α̂(0) = 13.2s−1, which is 50% greater
than the corresponding value α = 8.8s−1 in the motor model. The rotor flux vector
(a,b) components along with the corresponding estimation errors are reported in
Figures 3.9 and 3.10, while the estimate of the critical parameter α is reported in
Figure 3.11: under persistency of excitation condition, exponentially converging es-
timates of both the rotor fluxes and the parameter α are achieved. Note that the flux
estimation errors (ψ̃ra, ψ̃rb) converge to zero only when the rotor resistance error α̃
converges to zero.

Fig. 3.9 Adaptive rotor flux observer with rotor resistance estimator: rotor fluxψra and its estimate;
rotor flux ψra estimation error

The rotor flux observer designed in this section can be made adaptive with respect
to both rotor and stator resistances so that an adaptive rotor flux observer with rotor
and stator resistance estimators is achieved. Consider the model (1.26) along with
the variables

za = isa +βψra +
Rs

σ
ξa

zb = isb +βψrb +
Rs

σ
ξb

ξ̇a = isa

ξ̇b = isb (3.61)

so that we have for the motor electromagnetic equations
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Fig. 3.10 Adaptive rotor flux observer with rotor resistance estimator: rotor flux ψrb and its esti-
mate; rotor flux ψrb estimation error

Fig. 3.11 Adaptive rotor flux observer with rotor resistance estimator: parameter α and its estimate

dza

dt
=

1
σ

usa

dzb

dt
=

1
σ

usb

disa

dt
= −Rs

σ
isa −α(1+βM)isa −ωisb +αza +ωzb

−α Rs

σ
ξa −ω Rs

σ
ξb +

1
σ

usa

disb

dt
= −Rs

σ
isb −α(1+βM)isb +ωisa +αzb −ωza
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−α Rs

σ
ξb +ω

Rs

σ
ξa +

1
σ

usb . (3.62)

Note that even though the new variables za and zb are not available from measure-
ments, their time derivatives do not depend on the unmeasured rotor fluxes and on
the uncertain rotor and stator resistances. Now, we design the dynamics of the esti-
mates of the stator currents

dîsa

dt
= − R̂s

σ
isa − α̂(1+βM)isa −ω îsb + α̂η̂a +ω ẑb

− θ̂
σ
ξa − R̂s

σ
ωξb +

1
σ

usa + k1(isa − îsa)

dîsb

dt
= − R̂s

σ
isb − α̂(1+βM)isb +ω îsa + α̂η̂b −ω ẑa

− θ̂
σ
ξb +

R̂s

σ
ωξa +

1
σ

usb + k1(isb − îsb)

(3.63)

in which: k1 is a positive design parameter; α̂ , R̂s, and θ̂ denote the estimates of
the unknown parameters α = Rr/Lr, Rs and αRs, respectively; (η̂a, η̂b) and (ẑa, ẑb)
denote two pairs of different estimates of the unmeasured variables (za,zb). Defining
the observation and estimation errors as ĩsa = isa − îsa, ĩsb = isb − îsb, z̃a = za − ẑa,
z̃b = zb − ẑb, η̃a = za − η̂a, η̃b = zb − η̂b, α̃ = α − α̂ , R̃s = Rs − R̂s, θ̃ = αRs − θ̂ ,
from (3.62) and (3.63) we have

dĩsa

dt
= − R̃s

σ
isa − α̃(1+βM)isa −ω ĩsb +αη̃a + α̃η̂a

+ω z̃b − θ̃σ ξa − R̃s

σ
ωξb − k1 ĩsa

dĩsb

dt
= − R̃s

σ
isb − α̃(1+βM)isb +ω ĩsa +αη̃b + α̃η̂b

−ω z̃a − θ̃σ ξb +
R̃s

σ
ωξa − k1 ĩsb . (3.64)

The rotor flux estimates are obtained as

ψ̂ra =
1
β

(
η̂a − îsa − R̂s

σ
ξa

)

ψ̂rb =
1
β

(
η̂b − îsb − R̂s

σ
ξb

)
(3.65)

which, recalling (3.61), imply

ψ̃ra =
1
β

(
η̃a − ĩsa − R̃s

σ
ξa

)
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ψ̃rb =
1
β

(
η̃b − ĩsb − R̃s

σ
ξb

)
. (3.66)

In order to choose the dynamics of the estimates (ẑa, ẑb), (η̂a, η̂b), and of the param-
eters estimates (α̂ , R̂s, θ̂), we consider the positive definite function (k2, k3, g1, g2,
g3 are positive design parameters)

V =
1
2
(
ĩ2sa + ĩ2sb

)
+

1
2k2

(
z̃2

a + z̃2
b
)
+
α

2k3

(
η̃2

a + η̃2
b
)
+

1
2g1
α̃2 +

1
2g2

R̃2
s +

1
2g3
θ̃ 2

(3.67)

whose time derivative is given by

V̇ = −k1
(
ĩ2sa + ĩ2sb

)
+ z̃a

(
−ω ĩsb +

1
k2

˙̃za

)
+ z̃b

(
ω ĩsa +

1
k2

˙̃zb

)

+αη̃a

(
ĩsa +

1
k3

˙̃ηa

)
+αη̃b

(
ĩsb +

1
k3

˙̃ηb

)

+α̃
{

ĩsa [η̂a − isa(1+βM)]+ ĩsb [η̂b − isb(1+βM)]+
1
g1

˙̃α
}

+R̃s

[
ĩsa

(
− isa

σ
− ωξb

σ

)
+ ĩsb

(
− isb

σ
+
ωξa

σ

)
+

1
g2

˙̃Rs

]

+θ̃
(
−ĩsa

ξa

σ
− ĩsb

ξb

σ
+

1
g3

˙̃θ
)

(3.68)

so that, by choosing

˙̂za =
1
σ

usa − k2ω ĩsb

˙̂zb =
1
σ

usb + k2ω ĩsa

˙̂ηa =
1
σ

usa + k3 ĩsa

˙̂ηb =
1
σ

usb + k3 ĩsb

˙̂α = −g1
{
[(1+βM)isa − η̂a] ĩsa +[(1+βM)isb − η̂b] ĩsb

}
˙̂Rs = −g2

σ
[
(isa +ωξb)ĩsa +(isb −ωξa)ĩsb

]
˙̂θ = −g3

σ
(ξaĩsa +ξbĩsb) , (3.69)

we obtain

V̇ = −k1
(
ĩ2sa + ĩ2sb

)
(3.70)
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which implies the boundedness of ĩsa, ĩsb, z̃a, z̃b, η̃a, η̃b, α̃ , R̃s, and θ̃ . Denoting by
x = [ĩsa, ĩsb]T and z = [z̃a, z̃b, η̃a, η̃b, α̃ , R̃s, θ̃ ]T, the error dynamics may be written in
the form

ẋ(t) = A(t)x(t)+B(t)z(t)
ż(t) = D(t)x(t) (3.71)

with

A =
[−k1 −ω
ω −k1

]

B =

[
0 ω α 0 η̂a − (1+βM)isa − 1

σ (isa +ωξb) − ξa
σ

−ω 0 0 α η̂b − (1+βM)isb − 1
σ (isb −ωξa) − ξb

σ

]

DT =
[

0 −k2ω −k3 0 g1[(1+βM)isa − η̂a]
g2
σ (isa +ωξb)

g3
σ ξa

k2ω 0 0 −k3 g1[(1+βM)isb − η̂b]
g2
σ (isb −ωξa)

g3
σ ξb

]
.

(3.72)

According to the Persistency of Excitation Lemma A.3 in Appendix A, if ω , isa, isb,
ψra, ψrb, ξa, ξb, usa, and usb are bounded and there exist two positive reals T , kT
such that the persistency of excitation condition

∫ t+T

t
BT(τ)B(τ)dτ ≥ kT I , ∀t ≥ 0 (3.73)

is satisfied, then x(t) and z(t) exponentially converge to zero from any initial condi-
tion, i.e. the rotor flux estimation errors ψ̃ra(t) and ψ̃rb(t), the rotor resistance and
stator resistance estimation errors α̃(t) and R̃s(t) exponentially converge to zero
from any initial condition.

When the rotor speed is constant, a less restrictive persistency of excitation con-
dition can be obtained on the basis of the variables

p̃a = αη̃a +ω z̃b

p̃b = αη̃b −ω z̃a (3.74)

which lead to a modification of (3.65) similar to that obtained in (3.56).

3.3 Two Load Torque Estimators

In this section we design two different load torque identifiers which can be used
along with any rotor flux observer to provide an online estimation of the load torque:
the first one is of second order and also provides an estimate of the rotor speed while
the second one is of reduced (first) order and does not rely on a rotor speed estimate.
We begin to show how a second order load torque estimator can be designed on the
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basis of the motor mechanical equation

ω̇ = μ(ψraisb −ψrbisa)− TL

J
(3.75)

assuming that: (1) the load torque TL is constant; (2) the parameters μ and J are
known; (3) the rotor speed ω and the stator currents (isa, isb) are available from
measurements; (4) exponentially converging rotor flux estimates are provided by
suitable observers. We design the following dynamics for a load torque estimator
and rotor speed observer

˙̂ω = μ(ψ̂raisb − ψ̂rbisa)− T̂L

J
+ k(ω− ω̂)

˙̂T L = −λ (ω− ω̂) (3.76)

in which k and λ are positive reals. Defining the estimation errors

ω̃ = ω− ω̂
T̃L = TL − T̂L

ψ̃ra = ψra − ψ̂ra

ψ̃rb = ψrb − ψ̂rb

we obtain for the estimation error dynamics

˙̃T L = λω̃

˙̃ω = μ(ψ̃raisb − ψ̃rbisa)− T̃L

J
− kω̃ . (3.77)

Consider the positive definite quadratic function (0 < ε < 1/
√
λJ)

V =
1

2λJ
T̃ 2

L +
1
2
ω̃2 + εω̃T̃L . (3.78)

Its time derivative along the trajectories of (3.77) is given by

V̇ = −(k− ελ )ω̃2 − ε
J

T̃ 2
L − εkT̃Lω̃

+μω̃(ψ̃raisb − ψ̃rbisa)+ εμ T̃L(ψ̃raisb − ψ̃rbisa) . (3.79)

By virtue of the inequality

ab ≤ a2

2k
+

kb2

2
(3.80)

we can write

μω̃(ψ̃raisb − ψ̃rbisa) ≤ μ
2
ω̃2ε

|isa|+ |isb|
1+ |isa|+ |isb|
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+
μ
2ε

(1+ |isa|+ |isb)(|isa|+ |isb|)(ψ̃2
ra + ψ̃2

rb)

εμ T̃L(ψ̃raisb − ψ̃rbisa) ≤ εT̃ 2
L

2J
|isa|+ |isb|

1+ |isa|+ |isb|

+
εμ2J

2
(|isa|+ |isb|)(1+ |isa|+ |isb|)(ψ̃2

ra + ψ̃2
rb) (3.81)

so that from (3.79), we have

V̇ ≤ −
(

k− ελ − με
2

)
ω̃2 − ε

2J
T̃ 2

L − εkT̃Lω̃

+
μ
2

(
1
ε

+ εμJ
)

(|isa|+ |isb|)(1+ |isa|+ |isb|)(ψ̃2
ra + ψ̃2

rb) . (3.82)

By choosing ε such that

(
k− ελ − με

2

) ε
2J

− ε
2k2

4
> 0

which implies

ε <
k

J
(
λ
J + μ

2J + k2

2

) (3.83)

and assuming that isa(t) and isb(t) are bounded on [0,∞), system (3.77) satisfies
assumption (i) in Lemma A.1 in Appendix A, viewing (3.77) as the x1-subsystem
and the observation error dynamics as the x2-subsystem. Therefore, any globally
exponentially convergent rotor flux observer allows us to apply Lemma A.1, proving
that the load torque estimation error T̃L(t) converges exponentially to zero from any
initial condition.

In conclusion: the second order load torque estimator

˙̂ω = μ(ψ̂raisb − ψ̂rbisa)− T̂L

J
+ k(ω− ω̂)

˙̂T L = −λ (ω− ω̂) , (3.84)

with k and λ positive design parameters, guarantees that the estimation errors

ω̃ = ω− ω̂
T̃L = TL − T̂L

converge exponentially to zero for any initial condition, provided that:

1. The stator currents isa(t) and isb(t) are bounded on [0,∞).
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2. ψ̂ra and ψ̂rb are such that the corresponding estimation errors [ψra(t)−
ψ̂ra(t)] and [ψrb(t)− ψ̂rb(t)], respectively, exponentially converge to zero
for any initial condition.

Illustrative Simulations

We tested the load torque estimator (3.84) by simulations for the three-phase single
pole pair 0.6-kW induction motor whose parameters have been reported in Chap-
ter 1. The motor (with initial conditions ψra(0) =ψrb(0) = 0.1Wb) is controlled by
the input–output feedback linearizing control (with control parameters, rotor speed
and flux modulus references, and applied load torque as reported in Section 2.4).
The design parameters are chosen as (all values are in SI units) k = 200, λ = 1002J.
All initial conditions for the load torque estimator are set to zero while the rotor flux
estimates are generated by the adaptive rotor flux observer (3.58) with (all values
are in SI units) k1 = 120, k2 = 3, k3 = 270, g = 450. All initial conditions for the
adaptive rotor flux observer are set to zero except for α̂(0) = 13.2s−1, which is 50%
greater than the true value α = 8.8s−1. The estimate of the load torque TL is reported
in Figure 3.12: exponentially converging load torque estimation is achieved.

Fig. 3.12 Load torque estimator: load torque TL and its estimate

We now design a reduced first order load torque estimator by avoiding the use of
an estimate for the measured variable ω . Consider the motor mechanical equations

ω̇ = μ(ψraisb −ψrbisa)− TL

J
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ṪL = 0 (3.85)

and make the change of variable (λ > 0)

z = TL +λω (3.86)

so that from (3.85) and (3.86), we have

ż = λω̇ = λμ(ψraisb −ψrbisa)− λJ z+
λ 2

J
ω . (3.87)

Let T̂L be an estimate of TL generated by

˙̂z = −λ
J

ẑ+
λ 2

J
ω+λμ(ψ̂raisb − ψ̂rbisa)

T̂L = ẑ−λω , ẑ(0) = T̂L(0)+λω(0) (3.88)

and suitable rotor flux estimates. Defining z̃ = z− ẑ, T̃L = TL − T̂L, ψ̃ra = ψra − ψ̂ra,
and ψ̃rb = ψrb − ψ̂rb, we have for the estimation error dynamics

˙̃z = −λ
J

z̃+λμ(ψ̃raisb − ψ̃rbisa)

T̃L = z̃ . (3.89)

Consider the Lyapunov function

V =
1
2

z̃2 (3.90)

whose time derivative along the solutions of (3.89) is such that

V̇ = −λ
J

z̃2 +λμ(ψ̃raisb − ψ̃rbisa)z̃

≤ − λ
2J

z̃2 +
λμ2J

2
(|isa|+ |isb|)(1+ |isa|+ |isb|)(ψ̃2

ra + ψ̃2
rb) (3.91)

so that, if isa(t) and isb(t) are bounded on [0,∞), system (3.89) satisfies the con-
ditions of the x1-subsystem in Lemma A.1 in Appendix A. Hence, any globally
exponentially convergent rotor flux observer guarantees that Lemma A.1 applies,
demonstrating that ψ̃ra(t), ψ̃rb(t), and T̃L(t) exponentially converge to zero for any
inititial condition.
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3.4 Experimental Results

The experimental dynamic behavior of the adaptive rotor flux observer (3.98) given
in Problem 3.5 (whose parameters are set equal to k = 200, γ1 = 0.3, γ2 = 1,
γ3 = 1000, and whose initial conditions except α̂ are set equal to zero) is illustrated
in Figure 3.13 in the case of α̂(0) = 0.5RrN/Lr (which corresponds to an initial error
of −50%) and in Figures 3.14 and 3.15 in the case of α̂(0) = 2RrN/Lr (which cor-
responds to 100% initial error). In both cases the experiments are carried out during
the motor start-up with a constant load torque (equal to 66% of the rated value): this
corresponds to the most critical situation from the modeling view point. The effects
of the high-order harmonics introduced by the inverter on the adaptive observer are
illustrated in Figures 3.14 and 3.15: Figure 3.14 corresponds to measured voltage
(output of the inverter) while Figure 3.15 refers to the reference voltage (input to the
inverter). No significant effects on resistance and flux estimation are noticed. From
Figures 3.13–3.15 we also note that the convergence of the rotor resistance and flux
estimates is exponential. The results reported in Figure 3.16 are obtained when the

Fig. 3.13 Rotor resistance estimation with measured voltages (−50% initial error)

motor is controlled by an indirect field-oriented control algorithm with a reference
speed of 1rad/s and when the rated load torque is applied at t = 1.2s: the param-
eters of the estimation algorithm reported in Problem 3.5 are set equal to k = 60,
γ1 = 0.006, γ2 = 0.1, and γ3 = 200. Note that a slower convergence is obtained
when this new set of parameters is used. The experiment reported in Figures 3.17
and 3.18 illustrates the influence of the stator resistance variations on the estimation
algorithm when the same set of parameters as in Figure 3.16 are used. A stator resis-
tance variation causes the appearance of additional terms in the estimation algorithm
which may be viewed as external periodic disturbances at power supply frequency.
The error due to the stator resistance variations becomes greater as the ratio Rs/Rr
increases. Note that Rs/Rr reduces when the temperature increases. When the stator
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Fig. 3.14 Rotor resistance estimation with measured voltages (+100% initial error)

Fig. 3.15 Rotor resistance estimation with reference voltages (+100% initial error)

resistance in the algorithm is 1Ω smaller than the true value, a rotor resistance error
of about 0.3Ω is noticed both at 1rad/s (Figure 3.17) and at 100rad/s (Figure 3.18).

3.5 Conclusions

Since in Chapter 2 high-performance feedback controls were obtained under the un-
realistic assumption that the rotor flux measurements were available, in this chapter
the design of online rotor flux estimators has been fully addressed. Experimental re-
sults in Chapter 2 clearly indicate that the rotor resistance is a very critical parameter
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Fig. 3.16 Rotor resistance estimation at low speed (ω = 1rad/s)

Fig. 3.17 Effect of stator resistance variation at low speed (ω = 1rad/s)

Fig. 3.18 Effect of stator resistance variation at high speed (ω = 100rad/s)

in the control of induction motors: hence, in this chapter its online estimation has
been studied which is linked to rotor flux estimation. In Section 3.1 it is shown how
to design globally exponentially converging rotor flux observers: observers with ar-
bitrary exponential rate of convergence can also be obtained. Those observers are
very sensitive with respect to rotor resistance, which may indeed vary more than
100% during operations. To overcome this difficult problem adaptive rotor flux ob-
servers are designed in Section 3.2 which provide globally converging estimates
both of the rotor fluxes and of the rotor resistance during typical operating condi-
tions, that is when the electromagnetic torque is different from zero. The estimation
errors cannot converge to zero when the load torque is zero and both the rotor speed
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and the rotor flux modulus are constant. In Section 3.2 rotor flux observers which
are adaptive with respect to both rotor and stator resistances are also presented. In
Section 3.3 exponentially convergent load torque estimators are given which are to
be used in conjunction with globally exponentially convergent rotor flux estimates.
Finally, in Section 3.4 some experimental results are reported for the adaptive rotor
flux observer illustrated in Section 3.2 (see also Problem 3.5): the rotor resistance is
correctly estimated online both at high speed and at low speed with an initial error
of 100%; some sensitivity with respect to stator resistance uncertainty is noted at
low speed.

Problems

3.1. Consider the model (1.26) and make the change of variables

za = isa +βψra

zb = isb +βψrb (3.92)

so that we have the motor electromagnetic equations in the new variables:

ża = −Rs

σ
isa +

1
σ

usa

żb = −Rs

σ
isb +

1
σ

usb

disa

dt
= −(γ+α)isa −ωisb +αza +ωzb +

1
σ

usa

disb

dt
= −(γ+α)isb +ωisa +αzb −ωza +

1
σ

usb . (3.93)

Consider the full order rotor flux observer

˙̂za = −Rs

σ
îsa +

1
σ

usa − Rs

ασ
ω(isb − îsb)

˙̂zb = −Rs

σ
îsb +

1
σ

usb +
Rs

ασ
ω(isa − îsa)

dîsa

dt
= −(γ+α)îsa −ω îsb +α ẑa +ω ẑb +

1
σ

usa + k(isa − îsa)

dîsb

dt
= −(γ+α)îsb +ω îsa +α ẑb −ω ẑa +

1
σ

usb + k(isb − îsb)

ψ̂ra =
1
β

(ẑa − îsa)

ψ̂rb =
1
β

(ẑb − îsb) . (3.94)

Using the positive definite function
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V =
1
2
(
ĩ2sa + ĩ2sb

)
+

1
2
ασ
Rs

(
z̃2

a + z̃2
b
)

(3.95)

show that the estimation errors are bounded. Assuming that ω(t) and ω̇(t) are
bounded on [0,∞), establish that the estimation errors tend exponentially to zero
for every initial condition using the Persistency of Excitation Lemma A.3 in Ap-
pendix A.

3.2. Using the notations

L =

⎡
⎢⎢⎣

Ls 0 M 0
0 Ls 0 M
M 0 Lr 0
0 M 0 Lr

⎤
⎥⎥⎦ , E1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

E2 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , E3 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎤
⎥⎥⎦

E4 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 1 0 0
−1 0 0 0

⎤
⎥⎥⎦

i =

⎡
⎢⎢⎣

isa
isb
ira
irb

⎤
⎥⎥⎦ , u =

⎡
⎢⎢⎣

usa
usb
0
0

⎤
⎥⎥⎦ , î =

⎡
⎢⎢⎣

îsa
îsb
îra
îrb

⎤
⎥⎥⎦ (3.96)

show that the rotor current observer

L
dî
dt

+RsE1i+RrE2 î+LrωE3 î+MωE4i+ k1E1(i− î) = u (3.97)

in which k1 is a positive design parameter, is such that the current estimation error
ĩ(t) = i(t)− î(t) converges exponentially to zero for any initial condition î(0). Ana-
lyze the influence of the uncertainties on the rotor and stator resistances Rr and Rs.
Suggestion: use the positive definite function V = 1

2 ĩTLĩ.

3.3. Show that the observer (3.97) can be made adaptive with respect to Rs by re-
placing Rs with R̂s in (3.97), with the adaptation dynamics (k is a positive design
parameter)

˙̂Rs = −kiTE1 ĩ .

Analyze the influence of the uncertainties on the rotor resistance Rr. Suggestion:
use the positive definite function V = 1

2 ĩTLĩ + 1
2k (Rs − R̂s)2 and the Persistency of

Excitation Lemma A.3 in Appendix A to show the convergence, provided that i(t),
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di(t)/dt, and ω(t) are bounded on [0,∞) and two positive reals T and kT exist such
that, for any t ≥ 0,

∫ t+T
t iT(τ)i(τ)dτ ≥ kT I.

3.4. Show that the third order stator resistance estimator (k is a positive design pa-
rameter)

˙̂ψra = −αψ̂ra −ωψ̂rb +αMisa
˙̂ψrb = −αψ̂rb +ωψ̂ra +αMisb

ξ̇ = −k
R̂s

σ
(i2sa + i2sb)− kαβM(i2sa + i2sb)+ kβω(ψ̂rbisa − ψ̂raisb)

+
k
σ

(usaisa +usbisb)+ kαβ (ψ̂raisa + ψ̂rbisb)

R̂s = ξ − k
2
(i2sa + i2sb)

is such that for any initial condition (ψ̂ra(0), ψ̂rb(0),ξ (0)) the estimation error
[Rs − R̂s(t)] exponentially converges to zero for any t ≥ 0, provided that: i2sa(t) +
i2sb(t) ≥ c > 0 for any t ≥ 0; ω(t), isa(t) and isb(t) are bounded on [0,∞). Sugges-
tion: compute the dynamics of the estimation error Rs − R̂s and use Lemma A.1 in
Appendix A.

3.5. Consider the fixed frame model (1.26) with

γ =
Rs

σ
+β (RrN +θ)M

α =
RrN +θ

Lr

in which RrN is the nominal value for the rotor resistance and θ is the rotor resistance
uncertainty (i.e. Rr = RrN +θ ). Consider the adaptive observer

dψ̂ra

dt
= −RrN + θ̂

Lr
ψ̂ra −ωψ̂rb +(RrN + θ̂)

M
Lr

isa

dψ̂rb

dt
= −RrN + θ̂

Lr
ψ̂rb +ωψ̂ra +(RrN + θ̂)

M
Lr

isb

dîsa

dt
= −Rs

σ
isa +

1
σ

usa −β ˙̂ψra − ξ̇a

dîsb

dt
= −Rs

σ
isb +

1
σ

usb −β ˙̂ψrb − ξ̇b

dξa

dt
= −kĩsa − RrN + θ̂

Lr
(ξa − ĩsa)−ωξb −Ĉ−ωB̂

dξb

dt
= −kĩsb +ωξa − RrN + θ̂

Lr
(ξb − ĩsb)+ωÂ− D̂

dθ̂
dt

= γ1
[

ĩsa

(
β
Lr
ψ̂ra − β

Lr
Misa +

(ξa − ĩsa)
Lr

)
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+ĩsb

(
β
Lr
ψ̂rb − β

Lr
Misb +

(ξb − ĩsb)
Lr

)]
dÂ
dt

= −γ2ω ĩsb

dB̂
dt

= γ2ω ĩsa

dĈ
dt

= γ3 ĩsa

dD̂
dt

= γ3 ĩsb (3.98)

in which ĩsa = isa − îsa, ĩsb = isb − îsb, (ψ̂ra, ψ̂rb) are estimates of the rotor fluxes
(ψra,ψrb), (îsa, îsb) are estimates of the stator currents (isa, isb), and θ̂ is the estimate
of rotor resistance uncertainty θ . Choose the positive design parameters (k, γ1, γ2,
γ3), simulate the adaptive observer (3.98), and compare with the experiments given
in Section 3.4.

3.6. Consider the load torque estimator (3.84) and assume that the rotor fluxes (ψra,
ψrb) are available from measurements: modify the estimator (3.84) so that global
exponential convergence to zero with arbitrary rate of convergence of the estimation
errors ω̃ and T̃L is obtained.

3.7. Consider the load torque estimator (3.84): if the rotor flux estimation errors ψ̃ra
and ψ̃rb converge exponentially to zero with arbitrary rate of convergence, can we
also conclude that the estimation errors ω̃ and T̃L converge exponentially to zero
with arbitrary rate of convergence? Suggestion: use Lemma A.4 in Appendix A.

3.8. Assume that the rotor speed and the rotor flux modulus are constant and that
the load torque is zero, so that ψra = Misa and ψrb = Misb; show that the stator
resistance estimator

ξ̇ = −kR̂s

σ
(i2sa + i2sb)+

k
σ

(usaisa +usbisb)

R̂s = ξ − k
2
(i2sa + i2sb)

guarantees that the stator resistance estimation error [Rs − R̂s(t)] converges expo-
nentially to zero, provided that i2sa(t)+ i2sb(t) ≥ c > 0 for any t ≥ 0.

3.9. Assume that the rotor speed and the rotor flux modulus are constant and the
load torque is zero so that

ψra = Misa

ψrb = Misb .

Show that asymptotic flux estimation is guaranteed by the adaptive observer (3.58)
even when the rotor resistance Rr is not correctly estimated. Suggestion: by using
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Barbalat’s Lemma A.2 in Appendix A show that

lim
t→∞

dĩsa(t)
dt

= 0

lim
t→∞

dĩsb(t)
dt

= 0 .

3.10. Find a reparameterization (θ1, θ2, θ3, θ4, θ5, θ6) for the motor electrical pa-
rameters, a matrix A(·) and a vector B such that the induction motor dynamics admits
the affine representation

Ẋ = A(usa,usb, isa, isb,ω)X +B
[

usa
usb

]

Y =

⎡
⎣ isa

isb
ω

⎤
⎦ �= CX

with X = [isa, isb,ψsa,ψsb, θ5ψsa, θ5ψsb, θ4ψsa, θ4ψsb,ω , θ1, θ2, θ3, θ4, θ5, θ6, TL]T.
Consider the observer for stator fluxes, load torque, and induction motor electrical
parameters via stator currents, stator voltages, and rotor speed measurements (the
rotor inertia is assumed to be known)

˙̂X = A(usa,usb, isa, isb,ω)X̂ +B
[

usa
usb

]
−S−1CT(CX̂ −Y )

Ṡ = −λS−AT(usa,usb, isa, isb,ω)S−SA(usa,usb, isa, isb,ω)+CTC (3.99)

with S(0) > 0. Choose the design parameter λ and simulate the observer (3.99) for
sufficiently exciting input and output signals.

3.11. Consider the fixed frame model (1.26) and assume that the rotor speed is con-
stant so that ω̇ = 0 replaces the first equation in (1.26). Design an observer for rotor
flux and rotor speed from stator current and voltage measurements. Analyze the
persistency of excitation conditions and compare with the results in Section 1.5.

3.12. Consider the fixed frame model (1.26) with constant rotor speed and unknown
rotor resistance Rr. Design an adaptive observer which estimates the rotor speed and
flux and identifies the rotor resistance from stator current and voltage measurements.
Analyze the persistency of excitation conditions and compare with the results in
Section 1.6.





Chapter 4

Output Feedback Control

Abstract In this chapter the state feedback controls presented in Chapter 2 and,
in particular, the control given in Section 2.7 are combined with the rotor flux ob-
servers presented in Chapter 3: the goal is to obtain global output feedback controls
which do not require flux measurements and guarantee rotor speed tracking for any
initial condition of the motor. In Section 4.1 the global control with arbitrary rate of
convergence which was presented in Section 2.7 is modified to eliminate the need of
rotor flux measurements, at the expense of the property of arbitrary exponential rate
of convergence. In order to recover this important property, in Section 4.2 the global
state feedback control with arbitrary rate of convergence, discussed in Section 2.7,
is modified so that the rotor fluxes can be replaced by the estimates provided by
the rotor flux observer with arbitrary rate of convergence given in Section 3.1: the
resulting observer-based global controller guarantees exponential convergence with
arbitrary rate of both the tracking and the estimation errors. In Section 4.3 the con-
trol algorithm presented in Section 4.2 is made adaptive with respect to an uncertain
load torque by incorporating the load torque estimator presented in Section 3.3. Fi-
nally, in Section 4.4 a global output feedback control algorithm is presented which is
adaptive with respect to both the unknown load torque and the uncertain rotor resis-
tance and achieves asymptotic rotor speed tracking. Under persistency of excitation
conditions, exponentially converging estimates of the unmeasured rotor fluxes and
of the uncertain parameters are obtained, while exponential tracking of rotor speed
and flux modulus is achieved from any motor initial condition.

4.1 Generalized Indirect Field-oriented Control

In this section we redesign the global state feedback control with arbitrary rate of
convergence presented in Section 2.7 without using the rotor flux measurements
(ψra,ψrb), which are typically not available from measurements. We shall obtain a
generalization of the indirect field-oriented control presented in Section 2.3 whose
rate of convergence, however, cannot be larger than α = Rr/Lr.

171
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Reconsider the control algorithm (2.48) and modify the reference for the stator
current vector d-component and the speed of the rotating (d,q) frame as

i∗sd =
ψ∗

M
+
ψ̇∗

αM
+
ηd

αM

ω0 = ω+
αMisq

ψ∗ − ηq

ψ∗ (4.1)

i.e. by adding the terms ηd and ηq which will be suitably designed in the following.
The reference for the stator current vector q-component is the same as in (2.48), i.e.

i∗sq =
1
μψ∗

[
−kω(ω−ω∗)+ ω̇∗ +

TL

J

]
. (4.2)

Introduce the tracking errors

ω̃ = ω−ω∗

ψ̃rd = ψrd −ψ∗

ψ̃rq = ψrq

ĩsd = isd − i∗sd

ĩsq = isq − i∗sq

for the rotor speed, rotor flux vector (d,q)-components and stator current vector
(d,q)-components, respectively. The dynamics for the tracking errors ω̃ , ψ̃rd and
ψ̃rq are given by

˙̃ω = −kωω̃+μ(ψ̃rdisq − ψ̃rqisd)+μψ∗ ĩsq

˙̃ψrd = −αψ̃rd +(ω0 −ω)ψ̃rq +αMĩsd +ηd

˙̃ψrq = −αψ̃rq − (ω0 −ω)ψ̃rd +ηq . (4.3)

In order to design the additional terms ηd and ηq, introduce the positive control
parameter λ and consider the positive definite quadratic function

W =
1
2
(
λω̃2 + ψ̃2

rd + ψ̃2
rq
)

(4.4)

whose time derivative along the trajectories of the closed-loop system is

Ẇ = −λkωω̃2 +λμ(ψ̃rdisq − ψ̃rqisd)ω̃+λμψ∗ ĩsqω̃
−α(ψ̃2

rd + ψ̃2
rq)+αMĩsdψ̃rd +ηdψ̃rd +ηqψ̃rq . (4.5)

Since isq = ĩsq + i∗sq, we define

ηd = −λμ i∗sqω̃
ηq = λμisdω̃ (4.6)
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so that (4.5) becomes

Ẇ = −λkωω̃2 −α(ψ̃2
rd + ψ̃2

rq)+λμψ̃rd ĩsqω̃+λμψ∗ ĩsqω̃
+αMĩsdψ̃rd . (4.7)

Since the rotor fluxes are not available, the feedback terms −kψ(ψrd −ψ∗) and
−kψψrq which were present in (2.48) disappear. As a consequence, we are losing
the property of arbitrary rate of convergence. The influence of the last three terms
in (4.7) will be compensated by a suitable choice of the stator voltages (usd ,usq). To
this end, let us compute

di∗sq

dt
= Γq1ψ̃rd +Γq2ψ̃rq +Γq (4.8)

in which the known functions

Γq1 = −kω isq

ψ∗

Γq2 =
kω isd

ψ∗

Γq =
1
μψ∗
[
k2
ωω̃− kωμψ∗ ĩsq + ω̈∗]− ψ̇∗

μψ∗2

[
−kωω̃+

TL

J
+ ω̇∗
]

(4.9)

appear. Similarly, let us compute

di∗sd
dt

= Γd1ψ̃rd +Γd2ψ̃rq +Γd (4.10)

in which the known functions

Γd1 = − λμ
αM

[
μisqi∗sq + ω̃Γq1

]
Γd2 =

λμ
αM

[
μisdi∗sq − ω̃Γq2

]
Γd =

ψ̇∗

M
+
ψ̈∗

αM
+
λμkωω̃i∗sq

αM
− λμ

2ψ∗ ĩsqi∗sq

αM
− λμΓqω̃

αM
(4.11)

appear. According to (4.8) and (4.10) the dynamics for the stator current tracking
errors ĩsd and ĩsq are

dĩsd

dt
= −γisd +ω0isq +αβψrd +βωψrq +

1
σ

usd −Γd1ψ̃rd

−Γd2ψ̃rq −Γd

dĩsq

dt
= −γisq −ω0isd +αβψrq −βωψrd +

1
σ

usq −Γq1ψ̃rd

−Γq2ψ̃rq −Γq . (4.12)
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Design the control inputs (usd ,usq) as

usd = σγ i∗sd −σω0isq −σαβψ∗ +σΓd −σkiĩsd +σvd

usq = σγ i∗sq +σω0isd +σβωψ∗ +σΓq −σkiĩsq +σvq (4.13)

in which the additional terms vd and vq are yet to be designed and ki is a positive
control parameter, so that (4.12) become

dĩsd

dt
= −(γ+ ki)ĩsd +αβψ̃rd +βωψ̃rq −Γd1ψ̃rd −Γd2ψ̃rq + vd

dĩsq

dt
= −(γ+ ki)ĩsq +αβψ̃rq −βωψ̃rd −Γq1ψ̃rd −Γq2ψ̃rq + vq . (4.14)

In order to design the yet undefined terms vd and vq in (4.13), consider the positive
definite function

V = W +
1
2
(
ĩ2sd + ĩ2sq

)
(4.15)

whose time derivative along the trajectories of the closed-loop system, according to
(4.7), satisfies

V̇ = −λkωω̃2 +λμψ̃rd ĩsqω̃+λμψ∗ ĩsqω̃−α(ψ̃2
rd + ψ̃2

rq)+αMĩsdψ̃rd

−(γ+ ki)(ĩ2sd + ĩ2sq)+αβψ̃rd ĩsd +βωψ̃rqĩsd −Γd1ψ̃rd ĩsd −Γd2ψ̃rqĩsd

+vd ĩsd +αβψ̃rqĩsq −βωψ̃rd ĩsq −Γq1ψ̃rd ĩsq −Γq2ψ̃rqĩsq + vqĩsq
�= −λkωω̃2 +λμψ∗ ĩsqω̃−α(ψ̃2

rd + ψ̃2
rq)− (γ+ ki)(ĩ2sd + ĩ2sq)+ vd ĩsd

+vqĩsq +Δ1 ĩsdψ̃rd +Δ2 ĩsdψ̃rq +Δ3 ĩsqψ̃rd +Δ4 ĩsqψ̃rq (4.16)

in which the known functions

Δ1 = αM +αβ −Γd1

Δ2 = βω−Γd2

Δ3 = λμω̃−βω−Γq1

Δ4 = αβ −Γq2 (4.17)

appear. Since

(√
α

2
ψ̃rd − Δ1√

α
ĩsd

)2

≥ 0

(√
α

2
ψ̃rq − Δ2√

α
ĩsd

)2

≥ 0

(√
α

2
ψ̃rd − Δ3√

α
ĩsq

)2

≥ 0
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α

2
ψ̃rq − Δ4√

α
ĩsq

)2

≥ 0 (4.18)

the following inequalities hold:

Δ1 ĩsdψ̃rd ≤ α
4
ψ̃2

rd +
Δ 2

1
α

ĩ2sd

Δ2 ĩsdψ̃rq ≤ α
4
ψ̃2

rq +
Δ 2

2
α

ĩ2sd

Δ3 ĩsqψ̃rd ≤ α
4
ψ̃2

rd +
Δ 2

3
α

ĩ2sq

Δ4 ĩsqψ̃rq ≤ α
4
ψ̃2

rq +
Δ 2

4
α

ĩ2sq (4.19)

and therefore from (4.16) we have

V̇ ≤ −λkωω̃2 +λμψ∗ ĩsqω̃− α
2

(ψ̃2
rd + ψ̃2

rq)− (γ+ ki)(ĩ2sd + ĩ2sq)+ vd ĩsd + vqĩsq

+
(
Δ 2

1
α

+
Δ 2

2
α

)
ĩ2sd +
(
Δ 2

3
α

+
Δ 2

4
α

)
ĩ2sq . (4.20)

If we design the yet undefined terms vd and vq as

vd = −
(
Δ 2

1
α

+
Δ 2

2
α

)
ĩsd

vq = −
(
Δ 2

3
α

+
Δ 2

4
α

)
ĩsq −λμψ∗ω̃ (4.21)

from (4.20) we obtain

V̇ ≤ −λkωω̃2 − α
2

(ψ̃2
rd + ψ̃2

rq)− (γ+ ki)(ĩ2sd + ĩ2sq) . (4.22)

Therefore we have

V̇ ≤ −min{2kω ,α ,2(γ+ ki)}V �= −cV . (4.23)

By integrating (4.23), we have

V (t) ≤ e−ctV (0) . (4.24)

Thus the origin of the closed-loop error system is exponentially stable with rate of
decay

c = min{2kω ,α,2(γ+ ki)} (4.25)

which, however, cannot be made larger than α and it is, therefore, not arbitrary.
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In conclusion, the generalized indirect field-oriented control[
usa
usb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
usd
usq

]
usd = σγ i∗sd −σω0isq −σαβψ∗ +σΓd −σki(isd − i∗sd)+σvd

usq = σγ i∗sq +σω0isd +σβωψ∗ +σΓq −σki(isq − i∗sq)+σvq

i∗sd =
ψ∗

M
+
ψ̇∗

αM
+
ηd

αM

i∗sq =
1
μψ∗

[
−kω(ω−ω∗)+ ω̇∗ +

TL

J

]

ε̇0 = ω0 = ω+
αMisq

ψ∗ − ηq

ψ∗

ηd = −λμi∗sq(ω−ω∗)
ηq = λμ isd(ω−ω∗)

vd = −
(
Δ 2

1
α

+
Δ 2

2
α

)
(isd − i∗sd)

vq = −
(
Δ 2

3
α

+
Δ 2

4
α

)
(isq − i∗sq)−λμψ∗(ω−ω∗)[

isd
isq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
isa
isb

]

Γd1 = − λμ
αM

[
μisqi∗sq +(ω−ω∗)Γq1

]
Γd2 =

λμ
αM

[
μisdi∗sq − (ω−ω∗)Γq2

]
Γd =

ψ̇∗

M
+
ψ̈∗

αM
+
λμkω(ω−ω∗)i∗sq

αM
− λμ

2ψ∗(isq − i∗sq)i
∗
sq

αM

−λμΓq(ω−ω∗)
αM

Γq1 = −kω isq

ψ∗

Γq2 =
kω isd

ψ∗

Γq =
1
μψ∗
[
k2
ω(ω−ω∗)− kωμψ∗(isq − i∗sq)+ ω̈∗]

− ψ̇∗

μψ∗2

[
−kω(ω−ω∗)+

TL

J
+ ω̇∗
]

Δ1 = αM +αβ −Γd1

Δ2 = βω−Γd2
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Δ3 = λμ(ω−ω∗)−βω−Γq1

Δ4 = αβ −Γq2 (4.26)

is a first order dynamic control algorithm which depends on the measurements
of the rotor speed ω and stator currents (isa, isb), on the reference signals
(ω∗,ψ∗), on the positive control parameters kω , λ , ki, on the load torque TL,
and on the machine parameters M,Rr,Lr,J,Rs,Ls: it guarantees that for any

motor initial condition the tracking errors (ω −ω∗) and (
√
ψ2

ra +ψ2
rb −ψ∗)

tend exponentially to zero with a rate of convergence no larger than α .

Illustrative Simulations

We tested the generalized indirect field-oriented control by simulations for the three-
phase single pole pair 0.6-kW induction motor whose parameters have been re-
ported in Chapter 1. All the motor initial conditions have been set to zero except for
ψra(0) = ψrb(0) = 0.1Wb. A simplified version of the controller (in which the ro-
bustifying terms have been set to zero, i.e. vd = 0, vq = −λμψ∗(ω−ω∗)) has been
simulated with zero controller initial conditions and control parameters (all the val-
ues are in SI units) λ = 0.005, kω = 450, ki = 800. The references for the rotor speed
and flux modulus along with the applied load torque are reported in Figures 4.1–4.3.
The rotor flux modulus reference signal starts from 0.01Wb at t = 0s and grows up
to the constant value 1.16Wb. The speed reference is zero until t = 0.32s and grows
up to the constant value 100rad/s; at t = 1.5s the speed is required to go up to the
value 200rad/s, while the reference for the flux modulus is reduced to 0.5Wb. A
5.8-Nm load torque is applied to the motor and is reduced to 1.8Nm. Figures 4.2
and 4.3 show the time histories of rotor speed and flux modulus along with the corre-
sponding tracking errors: the rotor speed and the flux modulus track their references
tightly. Finally, the stator current and voltage profiles (which are within physical
saturation limits) are reported in Figures 4.4 and 4.5.

4.2 Observer-based Control

We have shown in Section 3.1 that exponential estimation of rotor fluxes can be
achieved by the rotor flux observer (3.33), for any flux initial condition and with
an arbitrarily large rate of convergence, provided that the rotor speed and the stator
current measurements are available for feedback and the parameters of the elec-
tromagnetic subsystem (in particular the rotor resistance) are known. On the other
hand, the indirect field-oriented control (2.48) was modified in Section 2.7 in order
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Fig. 4.1 Generalized indirect field-oriented control: applied load torque TL

Fig. 4.2 Generalized indirect field-oriented control: rotor speed ω and its referenceω∗; rotor speed
tracking error

to guarantee, for any initial condition of the motor (1.26) and with an arbitrarily
large rate of convergence, exponential rotor speed and flux modulus tracking pro-
vided that the measurements of all the state variables are available for feedback and
the model parameters (in particular, the rotor resistance and the load torque) are
known. The question which then naturally arises and will be addressed in this sec-
tion is the following: how to design an output feedback control from rotor speed
and stator current measurements only (i.e. without feeding back the rotor flux mea-
surements), which is able to guarantee exponential rotor speed and flux modulus
tracking for any motor initial condition and with an arbitrarily large rate of con-
vergence? We provide in this section an affirmative answer to the above question
by reconsidering the global rotor flux observer (3.33) and the global state feedback
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Fig. 4.3 Generalized indirect field-oriented control: rotor flux modulus
√
ψ2

ra +ψ2
rb and its refer-

ence ψ∗; rotor flux modulus tracking error

Fig. 4.4 Generalized indirect field-oriented control: stator current vector (a,b)-components
(isa, isb)

control with arbitrary rate of convergence (2.113): the two algorithms are modified
and integrated so that an overall stability analysis can be performed. First we recall
the observer (3.33), namely

ψ̂ra = kisa +ξa

ψ̂rb = kisb +ξb (4.27)

in which k is a positive control parameter and ξa, ξb satisfy the differential equations

ξ̇a = −α(1+ kβ )(kisa +ξa)−ω(1+ kβ )(kisb +ξb)
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Fig. 4.5 Generalized indirect field-oriented control: stator voltage vector (a,b)-components
(usa,usb)

+(αM + kγ)isa − kusa

σ
ξ̇b = −α(1+ kβ )(kisb +ξb)+ω(1+ kβ )(kisa +ξa)

+(αM + kγ)isb − kusb

σ
(4.28)

with initial conditions

ξa(0) = ψ̂ra(0)− kisa(0)
ξb(0) = ψ̂rb(0)− kisb(0) .

We have shown in Section 3.1 that the rotor flux observer (4.27) and (4.28) guar-
antees exponential rotor flux estimation for any initial condition (ψra(0),ψrb(0))
and with rate of convergence α(1+ kβ ), which can be made arbitrarily large by in-
creasing the control parameter k. Now reconsider the control algorithm (2.113) and,
in particular, the references for the stator current vector (d,q)-components and the
speed of the rotating (d,q) frame in (2.113):

i∗sd =
ψ∗

M
+
ψ̇∗

αM
+
ηd

αM

i∗sq =
1
μψ∗

[
−kω(ω−ω∗)+ ω̇∗ +

TL

J

]

ω0 = ω+
αMisq

ψ∗ − ηq

ψ∗ . (4.29)

Introduce the tracking errors

ω̃ = ω−ω∗
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ψ̃rd = ψrd −ψ∗

ψ̃rq = ψrq

ĩsd = isd − i∗sd

ĩsq = isq − i∗sq

for the rotor speed, rotor flux vector (d,q)-components and stator current vector
(d,q)-components, respectively. The dynamics for ω̃ , ψ̃rd and ψ̃rq are given by

˙̃ω = −kωω̃+μ(ψ̃rdisq − ψ̃rqisd)+μψ∗ ĩsq

˙̃ψrd = −αψ̃rd +(ω0 −ω)ψ̃rq +αMĩsd +ηd

˙̃ψrq = −αψ̃rq − (ω0 −ω)ψ̃rd +ηq . (4.30)

In order to design the undetermined terms ηd and ηq, introduce the positive control
parameter λ and consider the Lyapunov function

W =
1
2
(
λω̃2 + ψ̃2

rd + ψ̃2
rq
)

(4.31)

whose time derivative along the trajectories of the closed-loop system is

Ẇ = −λkωω̃2 +λμ(ψ̃rdisq − ψ̃rqisd)ω̃+λμψ∗ ĩsqω̃
−α(ψ̃2

rd + ψ̃2
rq)+αMĩsdψ̃rd +ηdψ̃rd +ηqψ̃rq . (4.32)

Since isq = ĩsq + i∗sq, we define

ηd = −kψ(ψ̂rd −ψ∗)−λμ i∗sqω̃
ηq = −kψψ̂rq +λμ isdω̃ (4.33)

in which kψ is a positive control parameter and (ψ̂rd , ψ̂rq) are the estimates of the ro-
tor flux vector (d,q)-components (ψrd ,ψrq) computed on the basis of (4.27), namely

ψ̂rd = ψ̂ra cosε0 + ψ̂rb sinε0

ψ̂rq = −ψ̂ra sinε0 + ψ̂rb cosε0 . (4.34)

If we compare (4.33) with (2.100) designed in Section 2.7, we note that the rotor
fluxes are now replaced by their estimates (ψ̂ra, ψ̂rb). By substituting (4.33) in (4.32)
and noting that

ψ̂rd −ψ∗ = ψ̃rd − eψd

ψ̂rq = ψ̃rq − eψq

with the rotor flux estimation errors denoted by

eψd = ψrd − ψ̂rd

eψq = ψrq − ψ̂rq (4.35)
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we obtain

Ẇ = −λkωω̃2 − (α+ kψ)(ψ̃2
rd + ψ̃2

rq)+ kψψ̃rdeψd + kψψ̃rqeψq

+λμψ̃rd ĩsqω̃+λμψ∗ ĩsqω̃+αMĩsdψ̃rd . (4.36)

By adding and subtracting kψ
2 ψ̃

2
rd and kψ

2 ψ̃
2
rq and completing the squares, from (4.36)

we have

Ẇ = −λkωω̃2 −
(
α+

kψ
2

)
(ψ̃2

rd + ψ̃2
rq)+

kψ
2

(
e2
ψd + e2

ψq

)
+λμψ̃rd ĩsqω̃+λμψ∗ ĩsqω̃+αMĩsdψ̃rd . (4.37)

The influence of the last three terms in (4.37) will then be compensated by a suitable
choice of the stator voltages (usd ,usq). To this purpose, let us compute

di∗sq

dt
= Γq1ψ̃rd +Γq2ψ̃rq +Γq (4.38)

in which the known terms

Γq1 = −kω isq

ψ∗

Γq2 =
kω isd

ψ∗

Γq =
1
μψ∗
[
k2
ωω̃− kωμψ∗ ĩsq + ω̈∗]− ψ̇∗

μψ∗2

[
−kωω̃+

TL

J
+ ω̇∗
]

(4.39)

appear. Similarly, let us compute

di∗sd
dt

= Γd1ψ̃rd +Γd2ψ̃rq +Γd −
kψk
αM

[Λ1 cosε0 +Λ2 sinε0] (4.40)

in which the unavailable terms are collected in (recall that the rotor fluxes are not
available)

Λ1 = βα [ψ̃rd cosε0 − ψ̃rq sinε0]+βω [ψ̃rd sinε0 + ψ̃rq cosε0]
Λ2 = βα [ψ̃rd sinε0 + ψ̃rq cosε0]−βω [ψ̃rd cosε0 − ψ̃rq sinε0] (4.41)

while the known terms are collected in

Γd1 = − λμ
αM

[
μ isqi∗sq + ω̃Γq1

]
Γd2 =

λμ
αM

[
μ isdi∗sq − ω̃Γq2

]
Γd =

ψ̇∗

M
+
ψ̈∗

αM
− λμ

2ψ∗ ĩsqi∗sq

αM
− λμΓqω̃

αM
+
λμkωω̃ i∗sq

αM
+

kψψ̇∗

αM
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− kψ
αM

[ω0ψ̂rb cosε0 −ω0ψ̂ra sinε0 +Γa cosε0 +Γb sinε0] (4.42)

with

Γa = kβαψ∗ cosε0 + kβωψ∗ sinε0 −α(1+ kβ )ψ̂ra

−ω(1+ kβ )ψ̂rb +αMisa

Γb = kβαψ∗ sinε0 − kβωψ∗ cosε0 −α(1+ kβ )ψ̂rb

+ω(1+ kβ )ψ̂ra +αMisb .

According to (4.38) and (4.40) the dynamics for the stator current tracking errors ĩsd
and ĩsq are

dĩsd

dt
= −γisd +ω0isq +αβψrd +βωψrq +

usd

σ
−Γd1ψ̃rd

−Γd2ψ̃rq −Γd +
kψk
αM

[Λ1 cosε0 +Λ2 sinε0]

dĩsq

dt
= −γisq −ω0isd +αβψrq −βωψrd +

usq

σ
−Γq1ψ̃rd

−Γq2ψ̃rq −Γq . (4.43)

Design the control inputs (usd ,usq) as

usd = σ
[
γi∗sd −ω0isq −αβψ∗ +Γd − kiĩsd + vd

]
usq = σ

[
γi∗sq +ω0isd +βωψ∗ +Γq − kiĩsq + vq

]
(4.44)

where vd and vq are yet to be defined and ki is a positive control parameter, so that
(4.43) become

dĩsd

dt
= −(γ+ ki)ĩsd +αβψ̃rd +βωψ̃rq −Γd1ψ̃rd −Γd2ψ̃rq + vd

+
kψk
αM

[Λ1 cosε0 +Λ2 sinε0]

dĩsq

dt
= −(γ+ ki)ĩsq +αβψ̃rq −βωψ̃rd −Γq1ψ̃rd −Γq2ψ̃rq + vq . (4.45)

In order to choose the yet undefined terms vd and vq, consider the positive definite
function

V = W +
1
2
(
ĩ2sd + ĩ2sq

)
(4.46)

whose time derivative along the trajectories of the closed-loop system, according to
(4.37) and (4.41), satisfies

V̇ = −λkωω̃2 −
(
α+

kψ
2

)
(ψ̃2

rd + ψ̃2
rq)+

kψ
2

(
e2
ψd + e2

ψq

)
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+λμψ̃rd ĩsqω̃+λμψ∗ ĩsqω̃+αMĩsdψ̃rd

−(γ+ ki)(ĩ2sd + ĩ2sq)+αβψ̃rd ĩsd +βωψ̃rqĩsd −Γd1ψ̃rd ĩsd −Γd2ψ̃rqĩsd

+vd ĩsd +
kψk
αM

[Λ1 cosε0 +Λ2 sinε0] ĩsd

+αβψ̃rqĩsq −βωψ̃rd ĩsq −Γq1ψ̃rd ĩsq −Γq2ψ̃rqĩsq + vqĩsq

�= −λkωω̃2 −
(
α+

kψ
2

)
(ψ̃2

rd + ψ̃2
rq)− (γ+ ki)(ĩ2sd + ĩ2sq)+

kψ
2

(
e2
ψd + e2

ψq

)
+λμψ∗ ĩsqω̃+ vd ĩsd + vqĩsq +Δ1 ĩsdψ̃rd +Δ2 ĩsdψ̃rq +Δ3 ĩsqψ̃rd +Δ4 ĩsqψ̃rq

+
2kψkβ
αM

(α+ |ω|)(|ψ̃rd |+ |ψ̃rq|) |ĩsd | (4.47)

in which the known terms

Δ1 = αM +αβ −Γd1

Δ2 = βω−Γd2

Δ3 = λμω̃−βω−Γq1

Δ4 = αβ −Γq2 (4.48)

appear. By noting that (α+ |ω|)2 ≤ 2α2 +2ω2, by adding and subtracting the terms
α
4 ψ̃

2
rd , α4 ψ̃

2
rq, and by completing the squares, from (4.47) we obtain

V̇ ≤ −λkωω̃2 −
(
α
4

+
kψ
2

)
(ψ̃2

rd + ψ̃2
rq)− (γ+ ki)(ĩ2sd + ĩ2sq)+

kψ
2

(
e2
ψd + e2

ψq

)

+λμψ∗ ĩsqω̃+ vd ĩsd + vqĩsq +
(
Δ 2

1
α

+
Δ 2

2
α

)
ĩ2sd +
(
Δ 2

3
α

+
Δ 2

4
α

)
ĩ2sq

+
8k2
ψk2β 2

α3M2 (α2 +ω2)ĩ2sd . (4.49)

If we choose the undefined terms vd and vq as

vd = −
(
Δ 2

1
α

+
Δ 2

2
α

+
8k2
ψk2β 2

α3M2 (α2 +ω2)

)
ĩsd

vq = −
(
Δ 2

3
α

+
Δ 2

4
α

)
ĩsq −λμψ∗ω̃ (4.50)

then from (4.49) we obtain

V̇ ≤ −λkωω̃2 −
(
α
4

+
kψ
2

)
(ψ̃2

rd + ψ̃2
rq)− (γ+ ki)(ĩ2sd + ĩ2sq)

+
kψ
2

(
e2
ψd + e2

ψq

)
. (4.51)

From (4.34) and the definition of (eψd ,eψq) in (4.35), we have
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e2
ψd + e2

ψq = e2
ψa + e2

ψb = 2Vψ

so that (4.51) can be rewritten as

V̇ ≤ −λkωω̃2 −
(
α
4

+
kψ
2

)
(ψ̃2

rd + ψ̃2
rq)− (γ+ ki)(ĩ2sd + ĩ2sq)+ kψVψ (4.52)

and therefore, according to (4.31) and (4.46), we have

V̇ (t) ≤ −min

{
2kω ,

α
2

+ kψ ,2(γ+ ki)

}
V (t)+ kψVψ

Vψ(t) = e−2α(1+kβ )tVψ(0) . (4.53)

According to Lemma A.4 in Appendix A, (4.46) and (4.53) guarantee exponential
rotor speed and flux modulus tracking for any motor initial condition and with a rate
of convergence which can be made arbitrarily large by suitably choosing the control
parameters (kω ,kψ ,ki,k).

In conclusion, the third order output feedback observer-based control[
usa
usb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
usd
usq

]

ε̇0 = ω0 = ω+
αMisq

ψ∗ − ηq

ψ∗

usd = σ [γ i∗sd −ω0isq −αβψ∗ +Γd − ki(isd − i∗sd)+ vd ][
isd
isq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
isa
isb

]
usq = σ

[
γi∗sq +ω0isd +βωψ∗ +Γq − ki(isq − i∗sq)+ vq

]
i∗sd =

ψ∗

M
+
ψ̇∗

αM
+
ηd

αM

i∗sq =
1
μψ∗

[
−kω(ω−ω∗)+ ω̇∗ +

TL

J

]
ηd = −kψ(ψ̂rd −ψ∗)−λμ i∗sq(ω−ω∗)
ηq = −kψψ̂rq +λμ isd(ω−ω∗)
ψ̂rd = ψ̂ra cosε0 + ψ̂rb sinε0

ψ̂rq = −ψ̂ra sinε0 + ψ̂rb cosε0

ψ̂ra = kisa +ξa

ψ̂rb = kisb +ξb

ξ̇a = −α(1+ kβ )(kisa +ξa)−ω(1+ kβ )(kisb +ξb)+(αM + kγ)isa − kusa

σ
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ξ̇b = −α(1+ kβ )(kisb +ξb)+ω(1+ kβ )(kisa +ξa)+(αM + kγ)isb − kusb

σ
ξa(0) = ψ̂ra(0)− kisa(0)
ξb(0) = ψ̂rb(0)− kisb(0)

vd = −
(
Δ 2

1
α

+
Δ 2

2
α

+
8k2
ψk2β 2

α3M2 (α2 +ω2)

)
(isd − i∗sd)

vq = −
(
Δ 2

3
α

+
Δ 2

4
α

)
(isq − i∗sq)−λμψ∗(ω−ω∗)

Γd =
ψ̇∗

M
+
ψ̈∗

αM
− λμ

2ψ∗(isq − i∗sq)i
∗
sq

αM
− λμΓq(ω−ω∗)

αM

+
λμkω(ω−ω∗)i∗sq

αM
+

kψψ̇∗

αM

− kψ
αM

[ω0ψ̂rb cosε0 −ω0ψ̂ra sinε0 +Γa cosε0 +Γb sinε0]

Γq =
1
μψ∗
[
k2
ω(ω−ω∗)− kωμψ∗(isq − i∗sq)+ ω̈∗]

− ψ̇∗

μψ∗2

[
−kω(ω−ω∗)+

TL

J
+ ω̇∗
]

Γa = kβα cos(ε0)ψ∗ + kβω sin(ε0)ψ∗ −α(1+ kβ )ψ̂ra

−ω(1+ kβ )ψ̂rb +αMisa

Γb = kβα sin(ε0)ψ∗ − kβω cos(ε0)ψ∗ −α(1+ kβ )ψ̂rb

+ω(1+ kβ )ψ̂ra +αMisb

Δ1 = αM +αβ −Γd1

Δ2 = βω−Γd2

Γd1 = − λμ
αM

[
μisqi∗sq +(ω−ω∗)Γq1

]
Γd2 =

λμ
αM

[
μ isdi∗sq − (ω−ω∗)Γq2

]
Δ3 = λμ(ω−ω∗)−βω−Γq1

Δ4 = αβ −Γq2

Γq1 = −kω isq

ψ∗

Γq2 =
kω isd

ψ∗ (4.54)

which depends on the measurements of the rotor speed ω and stator cur-
rents (isa, isb), on the reference signals (ω∗,ψ∗), on the positive control pa-
rameters (kω ,λ ,ki,k), on the load torque TL, and on the machine parame-
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ters M,Rr,Lr,J,Rs,Ls, since μ = M
JLr

, α = Rr
Lr

, σ = Ls

(
1− M2

LsLr

)
, β = M

σLr
,

γ = Rs
σ +βαM, guarantees exponential rotor speed and flux modulus tracking

for any motor initial condition (ω(0),ψra(0),ψrb(0),isa(0),isb(0)), and with a
rate of convergence which can be made arbitrarily large by suitably choosing
the control parameters (kω ,kψ ,ki,k).

Illustrative Simulations

We tested the observer-based control by simulations for the three-phase single pole
pair 0.6-kW induction motor whose parameters have been reported in Chapter 1. All
motor initial conditions have been set to zero except for ψra(0) = ψrb(0) = 0.1Wb.
A simplified version of the control algorithm, in which the robustifying term vd has
been set to zero and vq = −λμψ∗ω̃ , has been tested with zero initial conditions
and control parameters (all values are in SI units) λ = 0.005, kω = 450, ki = 800,
kψ = 12, k = 0.3. The references for the rotor speed and flux modulus along with
the applied load torque are reported in Figures 4.6–4.8. The rotor flux modulus
reference signal starts from 0.001Wb at t = 0s and grows up to the constant value
1.16Wb. The speed reference is zero until t = 0.32s and grows up to the constant
value 100rad/s; at t = 1.5s the speed is required to go up to the value 200rad/s, while
the reference for the flux modulus is reduced to 0.5Wb. A 5.8-Nm load torque is
applied to the motor and is reduced to 1.8Nm. Figures 4.7 and 4.8 show the time
histories of rotor speed and flux modulus along with the corresponding tracking
errors: the rotor speed and flux modulus track their references tightly. Finally, the
stator current and voltage profiles (which are within physical saturation limits) are
reported in Figures 4.9 and 4.10.

4.3 Adaptive Observer-based Control with Uncertain Load

Torque

We have shown in the previous section that exponential rotor speed and flux modulus
tracking can be achieved, for any motor initial condition and with an arbitrarily large
rate of convergence, by the output feedback control (4.54) which feeds back only the
rotor speed and stator current measurements. However, it requires the knowledge
of the load torque, which is typically uncertain. On the other hand, we designed
in Section 3.3 the load torque identifier (3.76) which can be used in conjunction
with the rotor flux observer (4.27) and (4.28). The aim of this section is to provide
an adaptive version of the controller (4.54) which, by incorporating the load torque
identifier (3.76), allows for uncertainties on the load torque TL within known bounds
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Fig. 4.6 Observer-based control: applied load torque TL

Fig. 4.7 Observer-based control: rotor speed ω and its reference ω∗; rotor speed tracking error

TLm and TLM . Reconsider the control algorithm (4.54) and replace the load torque TL
in (4.54) by its saturated estimate sat(T̂L), i.e.

i∗sq =
1
μψ∗

[
−kω(ω−ω∗)+ ω̇∗ +

sat(T̂L)
J

]
. (4.55)

where sat(η) is the saturation function, i.e. a class C1 odd function on R which is
linear in the closed set [TLm,TLM] and admits a finite limit as |η | goes to infinity,
while T̂L is the load torque estimate provided by the load torque estimator (3.76),
namely (g and ko are positive control parameters)

˙̂T L = −g(ω− ω̂)
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Fig. 4.8 Observer-based control: rotor flux modulus
√
ψ2

ra +ψ2
rb and its reference ψ∗; rotor flux

modulus tracking error

Fig. 4.9 Observer-based control: stator current vector (a,b)-components (isa, isb)

˙̂ω = μ(ψ̂raisb − ψ̂rbisa)− T̂L

J
+ ko(ω− ω̂) (4.56)

in conjunction with the rotor flux observer (4.27) and (4.28), namely (k is a positive
control parameter)

ψ̂ra = kisa +ξa

ψ̂rb = kisb +ξb

ξ̇a = −α(1+ kβ )(kisa +ξa)−ω(1+ kβ )(kisb +ξb)

+(αM + kγ)isa − kusa

σ
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Fig. 4.10 Observer-based control: stator voltage vector (a,b)-components (usa,usb)

ξ̇b = −α(1+ kβ )(kisb +ξb)+ω(1+ kβ )(kisa +ξa)

+(αM + kγ)isb − kusb

σ
. (4.57)

The reference for the stator current vector d-component and the speed of the rotating
(d,q) frame (λ , kψ are positive control parameters)

i∗sd =
ψ∗

M
+
ψ̇∗

αM
+

1
αM

[−kψ(ψ̂rd −ψ∗)−λμi∗sq(ω−ω∗)
]

ω0 = ω+
αMisq

ψ∗ − 1
ψ∗
[−kψψ̂rq +λμ isd(ω−ω∗)

]
(4.58)

remain unchanged with respect to (4.29) and (4.33), with (ψ̂rd , ψ̂rq) being the esti-
mates of the rotor flux vector (d,q)-components (ψrd ,ψrq) computed on the basis
of (4.57) as

ψ̂rd = ψ̂ra cosε0 + ψ̂rb sinε0

ψ̂rq = −ψ̂ra sinε0 + ψ̂rb cosε0 . (4.59)

Introduce the tracking and the estimation errors

ω̃ = ω−ω∗

ψ̃rd = ψrd −ψ∗

ψ̃rq = ψrq

ĩsd = isd − i∗sd

ĩsq = isq − i∗sq

eψd = ψrd − ψ̂rd
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eψq = ψrq − ψ̂rq

eT = TL − sat(T̂L) .

The dynamics for ω̃ , ψ̃rd and ψ̃rq are given by

˙̃ω = −kωω̃+μ(ψ̃rdisq − ψ̃rqisd)+μψ∗ ĩsq − eT

J
˙̃ψrd = −(α+ kψ)ψ̃rd +(ω0 −ω)ψ̃rq +αMĩsd −λμi∗sqω̃+ kψeψd

˙̃ψrq = −(α+ kψ)ψ̃rq − (ω0 −ω)ψ̃rd +λμ isdω̃+ kψeψq . (4.60)

Let us compute

di∗sq

dt
= Γq1ψ̃rd +Γq2ψ̃rq +Γq3eT +Γq (4.61)

in which the known terms

Γq1 = −kω isq

ψ∗

Γq2 =
kω isd

ψ∗

Γq3 =
kω

Jμψ∗

Γq =
1
μψ∗

[
k2
ωω̃− kωμψ∗ ĩsq + ω̈∗ +

dsat(T̂L)
dT̂L

˙̂T L

J

]

− ψ̇∗

μψ∗2

[
−kωω̃+

sat(T̂L)
J

+ ω̇∗
]

(4.62)

appear. Let us compute

di∗sd
dt

= Γd1ψ̃rd +Γd2ψ̃rq +Γd3eT +Γd −
kψk
αM

[Λ1 cosε0 +Λ2 sinε0] (4.63)

in which the unavailable terms are

Λ1 = βα [ψ̃rd cosε0 − ψ̃rq sinε0]+βω [ψ̃rd sinε0 + ψ̃rq cosε0]
Λ2 = βα [ψ̃rd sinε0 + ψ̃rq cosε0]−βω [ψ̃rd cosε0 − ψ̃rq sinε0] (4.64)

while the known terms are

Γd1 = − λμ
αM

[
μ isqi∗sq + ω̃Γq1

]
Γd2 =

λμ
αM

[
μ isdi∗sq − ω̃Γq2

]
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Γd3 =
λμ
αM

[
i∗sq

J
−Γq3ω̃

]

Γd =
ψ̇∗

M
+
ψ̈∗

αM
− λμ

2ψ∗ ĩsqi∗sq

αM
− λμΓqω̃

αM
+
λμkωω̃ i∗sq

αM
+

kψψ̇∗

αM

− kψ
αM

[ω0ψ̂rb cosε0 −ω0ψ̂ra sinε0 +Γa cosε0 +Γb sinε0] (4.65)

with

Γa = kβαψ∗ cosε0 + kβωψ∗ sinε0 −α(1+ kβ )ψ̂ra

−ω(1+ kβ )ψ̂rb +αMisa

Γb = kβαψ∗ sinε0 − kβωψ∗ cosε0 −α(1+ kβ )ψ̂rb

+ω(1+ kβ )ψ̂ra +αMisb . (4.66)

According to (4.61) and (4.63) the dynamics for the stator currents tracking errors
ĩsd and ĩsq are

dĩsd

dt
= −γ isd +ω0isq +αβψrd +βωψrq +

usd

σ
−Γd1ψ̃rd

−Γd2ψ̃rq −Γd3eT −Γd +
kψk
αM

[Λ1 cosε0 +Λ2 sinε0]

dĩsq

dt
= −γ isq −ω0isd +αβψrq −βωψrd +

usq

σ
−Γq1ψ̃rd

−Γq2ψ̃rq −Γq3eT −Γq . (4.67)

Design the control inputs (usd ,usq) as

usd = σ
[
γi∗sd −ω0isq −αβψ∗ +Γd − kiĩsd + vd

]
usq = σ

[
γi∗sq +ω0isd +βωψ∗ +Γq − kiĩsq + vq

]
(4.68)

where vd and vq are yet to be designed and ki is a positive control parameter, so that
(4.67) become

dĩsd

dt
= −(γ+ ki)ĩsd +αβψ̃rd +βωψ̃rq −Γd1ψ̃rd −Γd2ψ̃rq −Γd3eT + vd

+
kψk
αM

[Λ1 cosε0 +Λ2 sinε0]

dĩsq

dt
= −(γ+ ki)ĩsq +αβψ̃rq −βωψ̃rd −Γq1ψ̃rd −Γq2ψ̃rq −Γq3eT + vq .

(4.69)

In order to choose the undefined terms vd and vq, consider the positive definite
function
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V =
1
2
(
λω̃2 + ψ̃2

rd + ψ̃2
rq
)
+

1
2
(
ĩ2sd + ĩ2sq

)
(4.70)

whose time derivative along the trajectories of the closed-loop system, according to
(4.60) and (4.69), satisfies

V̇ ≤ −λkω
2
ω̃2 −

(
α
4

+
kψ
2

)
(ψ̃2

rd + ψ̃2
rq)− (γ+ ki)(ĩ2sd + ĩ2sq)+

kψ
2

(
e2
ψd + e2

ψq

)

+λμψ∗ ĩsqω̃+ vd ĩsd + vqĩsq +
(
Δ 2

1
α

+
Δ 2

2
α

+
Γ 2

d3
2

)
ĩ2sd +

(
Δ 2

3
α

+
Δ 2

4
α

+
Γ 2

q3

2

)
ĩ2sq

+
8k2
ψk2β 2

α3M2 (α2 +ω2)ĩ2sd +
(

1+
λ

2kωJ2

)
e2

T (4.71)

in which the known terms

Δ1 = αM +αβ −Γd1

Δ2 = βω−Γd2

Δ3 = λμω̃−βω−Γq1

Δ4 = αβ −Γq2 (4.72)

appear. If we choose the yet undefined terms vd and vq as in the previous sections

vd = −
(
Δ 2

1
α

+
Δ 2

2
α

+
Γ 2

d3
2

+
8k2
ψk2β 2

α3M2 (α2 +ω2)

)
ĩsd

vq = −
(
Δ 2

3
α

+
Δ 2

4
α

+
Γ 2

q3

2

)
ĩsq −λμψ∗ω̃ (4.73)

then from (4.71) we obtain

V̇ ≤ −min

{
kω ,
α
2

+ kψ ,2(γ+ ki)

}
V (t)+

kψ
2

(e2
ψd + e2

ψq)

+
(

1+
λ

2kωJ2

)
e2

T . (4.74)

According to the analysis performed in Section 3.1, the rotor flux observer (3.33)
guarantees exponential rotor flux estimation for any initial condition (ψra(0),ψrb(0))
and with an arbitrarily large rate of convergence. Thus inequality (4.74) along with
(4.70) imply that (isd(t), isq(t)) and therefore (isa(t), isb(t)) are bounded functions
on [0,∞). On the other hand, according to the analysis performed in Section 3.3, the
load torque estimator (4.56) guarantees exponential load torque estimation for any
initial condition (ω(0),ψra(0),ψrb(0)), provided that the stator currents isa(t) and
isb(t) are bounded time functions on [0,∞). Therefore, according to (4.70), (4.74),
and Lemma A.4 in Appendix A, exponential rotor speed and flux modulus tracking
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are guaranteed for any motor initial condition and for any uncertain load torque TL
within known bounds (TLm,TLM).

In conclusion, the fifth order adaptive observer-based control with uncertain
load torque[

usa
usb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
usd
usq

]

ε̇0 = ω0 = ω+
αMisq

ψ∗ − ηq

ψ∗

usd = σ [γ i∗sd −ω0isq −αβψ∗ +Γd − ki(isd − i∗sd)+ vd ]
usq = σ

[
γi∗sq +ω0isd +βωψ∗ +Γq − ki(isq − i∗sq)+ vq

]
[

isd
isq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
isa
isb

]

i∗sd =
ψ∗

M
+
ψ̇∗

αM
+
ηd

αM

i∗sq =
1
μψ∗

[
−kω(ω−ω∗)+ ω̇∗ +

sat(T̂L)
J

]
ηd = −kψ(ψ̂rd −ψ∗)−λμ i∗sq(ω−ω∗)
ηq = −kψψ̂rq +λμisd(ω−ω∗)
ψ̂rd = ψ̂ra cosε0 + ψ̂rb sinε0

ψ̂rq = −ψ̂ra sinε0 + ψ̂rb cosε0

ψ̂ra = kisa +ξa

ψ̂rb = kisb +ξb

ξ̇a = −α(1+ kβ )(kisa +ξa)−ω(1+ kβ )(kisb +ξb)

+(αM + kγ)isa − kusa

σ
ξ̇b = −α(1+ kβ )(kisb +ξb)+ω(1+ kβ )(kisa +ξa)

+(αM + kγ)isb − kusb

σ
ξa(0) = ψ̂ra(0)− kisa(0)
ξb(0) = ψ̂rb(0)− kisb(0)

˙̂T L = −g(ω− ω̂)

˙̂ω = μ(ψ̂raisb − ψ̂rbisa)− T̂L

J
+ ko(ω− ω̂)

vd = −
(
Δ 2

1
α

+
Δ 2

2
α

+
Γ 2

d3
2

+
8k2
ψk2β 2

α3M2 (α2 +ω2)

)
(isd − i∗sd)
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vq = −
(
Δ 2

3
α

+
Δ 2

4
α

+
Γ 2

q3

2

)
(isq − i∗sq)−λμψ∗(ω−ω∗)

Γq3 =
kω

Jμψ∗

Γq =
1
μψ∗

[
k2
ω(ω−ω∗)− kωμψ∗(isq − i∗sq)+ ω̈∗ +

dsat(T̂L)
dT̂L

˙̂T L

J

]

− ψ̇∗

μψ∗2

[
−kω(ω−ω∗)+

sat(T̂L)
J

+ ω̇∗
]

Γd1 = − λμ
αM

[
μisqi∗sq +(ω−ω∗)Γq1

]
Γd2 =

λμ
αM

[
μisdi∗sq − (ω−ω∗)Γq2

]
Γd3 =

λμ
αM

[
i∗sq

J
−Γq3(ω−ω∗)

]

Γd =
ψ̇∗

M
+
ψ̈∗

αM
− λμ

2ψ∗(isq − i∗sq)i
∗
sq

αM

−λμΓq(ω−ω∗)
αM

+
λμkω(ω−ω∗)i∗sq

αM
+

kψψ̇∗

αM

− kψ
αM

[−ω0ψ̂ra sinε0 +ω0ψ̂rb cosε0 +Γa cosε0 +Γb sinε0]

Γa = kβαψ∗ cosε0 + kβωψ∗ sinε0 −α(1+ kβ )ψ̂ra

−ω(1+ kβ )ψ̂rb +αMisa

Γb = kβαψ∗ sinε0 − kβωψ∗ cosε0 −α(1+ kβ )ψ̂rb

+ω(1+ kβ )ψ̂ra +αMisb

Δ1 = αM +αβ −Γd1

Δ2 = βω−Γd2

Δ3 = λμ(ω−ω∗)−βω−Γq1

Δ4 = αβ −Γq2

Γq1 = −kω isq

ψ∗

Γq2 =
kω isd

ψ∗ (4.75)

which depends on the measurements of the rotor speed ω and stator currents
(isa, isb), on the reference signals (ω∗,ψ∗), on the positive control parameters
kω , λ , ki, k, g, ko, and on the machine parameters M,Rr,Lr,J,Rs,Ls, since
μ = M

JLr
, α = Rr

Lr
, σ = Ls

(
1− M2

LsLr

)
, β = M

σLr
, γ = Rs

σ + βαM, guarantees
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exponential rotor speed and flux modulus tracking, for any motor initial con-
dition (ω(0),ψra(0),ψrb(0),isa(0),isb(0)) and for any uncertain load torque TL
within known bounds TLm,TLM .

Remarks

1. The controller (4.75) relies on an observer for the unmeasured rotor fluxes and
on an identifier for the uncertain load torque while, as in (2.48), singularities are
avoided.

2. In the case of known load torque, by setting T̂L = TL, the controller (4.75) reduces
to the nonadaptive controller (4.54).

3. The knowledge of the critical parameter Rr is required.

Illustrative Simulations

We tested the adaptive observer-based control by simulations for the three-phase
single pole pair 0.6-kW induction motor whose parameters have been reported in
Chapter 1. All motor initial conditions have been set to zero except for ψra(0) =
ψrb(0) = 0.1Wb. A simplified version of the control algorithm, in which the ro-
bustifying term vd has been set to zero and vq = −λμψ∗ω̃ , has been tested with
zero initial conditions and control parameters (all values are in SI units) λ = 0.005,
kω = 450, ki = 800, kψ = 12, k = 0.3, g = 1002J, ko = 200. The references for
the rotor speed and flux modulus along with the applied load torque are reported
in Figures 4.11–4.13. The rotor flux modulus reference signal starts from 0.001Wb
at t = 0s and grows up to the constant value 1.16Wb. The speed reference is zero
until t = 0.32s and grows up to the constant value 100rad/s; at t = 1.5s the speed is
required to go up to the value 200rad/s, while the reference for the flux modulus is
reduced to 0.5Wb. A 5.8-Nm load torque is applied to the motor and is reduced to
1.8Nm. Figures 4.11 and 4.12 show the time histories of rotor speed and flux mod-
ulus along with the corresponding tracking errors: the rotor speed and flux modulus
track their references tightly. Finally, the stator current and voltage profiles (which
are within physical saturation limits) are reported in Figures 4.14 and 4.15.
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Fig. 4.11 Adaptive observer-based control: rotor speed ω and its reference ω∗; rotor speed track-
ing error

Fig. 4.12 Adaptive observer-based control: rotor flux modulus
√
ψ2

ra +ψ2
rb and its reference ψ∗;

rotor flux modulus tracking error

4.4 Adaptive Control with Uncertain Load Torque and Rotor

Resistance

The aim of this section is to generalize the output feedback control presented in the
previous section to the case in which, in addition to load torque, the rotor resistance
Rr is also an uncertain parameter. This is not an easy task since the parameter Rr
affects both the estimation of the rotor fluxes and directly the control signals. We
first reconsider the generalized indirect field-oriented control (4.26) and we show
that it is sufficient to replace the true values of α and TL by the estimates provided
by the adaptive observer (3.58) and by the load torque estimator (3.84), in order to
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Fig. 4.13 Adaptive observer-based control: applied load torque TL and its estimate T̂L

Fig. 4.14 Adaptive observer-based control: stator current vector (a,b)-components (isa, isb)

achieve exponential rotor speed and flux modulus tracking, despite load torque and
rotor resistance uncertainties, provided that the initial estimation and tracking errors
are sufficiently small. Then we show that global results, which hold for any initial
tracking and estimation errors, can be obtained if a dynamic output feedback control
is entirely redesigned by incorporating in the algorithm the rotor flux observer and
the estimators of both the rotor resistance and the load torque.
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Fig. 4.15 Adaptive observer-based control: stator voltage vector (a,b)-components (usa,usb)

4.4.1 Observer-based Control

Consider the generalized indirect field-oriented control (4.26) and set kψ = 0, vd = 0
and vq = −λμψ∗ω̃ . Moreover, replace TL and α by the corresponding estimates
T̂L and α̂ provided by (along with their time derivatives ˙̂T L and ˙̂α) the adaptive
observer (3.58) and by the load torque identifier (3.84) so that the following adaptive
observer-based control algorithm (kω , λ and ki are positive control parameters) is
obtained:

i∗sd =
ψ∗

M
+
ψ̇∗

α̂M
− λμi∗sqω̃

α̂M

i∗sq =
1
μψ∗

[
−kωω̃+ ω̇∗ +

T̂L

J

]

ω0 = ω+
α̂Misq

ψ∗ − λμisdω̃
ψ∗

usd = σ
[(

Rs

σ
+ α̂βM

)
i∗sd −ω0isq − α̂βψ∗ +Γd − kiĩsd

]

usq = σ
[(

Rs

σ
+ α̂βM

)
i∗sq +ω0isd +βωψ∗ +Γq − kiĩsq −λμψ∗ω̃

]
(4.76)

with ω̃ = ω−ω∗, ĩsd = isd − i∗sd , ĩsq = isq − i∗sq and

Γd =
ψ̇∗

M
+
ψ̈∗

α̂M
− λμ

2ψ∗ ĩsqi∗sq

α̂M
− λμΓqω̃

α̂M

+
λμkωω̃i∗sq

α̂M
− ψ̇

∗ ˙̂α
α̂2M

+
λμ i∗sqω̃ ˙̂α
α̂2M
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Γq =
1
μψ∗

[
k2
ωω̃− kωμψ∗ ĩsq + ω̈∗ +

˙̂T L

J

]

− ψ̇∗

μψ∗2

[
−kωω̃+

T̂L

J
+ ω̇∗
]

.

On the basis of the Lyapunov function (ψ̃rd = ψrd −ψ∗, ψ̃rq = ψrq)

V =
1
2
(
λω̃2 + ψ̃2

rd + ψ̃2
rq + ĩ2sd + ĩ2sq

)
and its time derivative along the trajectories of the closed-loop system, we can es-
tablish (see Problem 4.11) that for sufficiently small initial tracking errors (ω(0)−
ω∗(0)), (ψrd(0)−ψ∗(0)), ψrq(0), (isd(0)− i∗sd(0)), (isq(0)− i∗sq(0)) and sufficiently
small (TL − T̂L(t)) and (α − α̂(t)) (implied by sufficiently small initial estimation
errors for the adaptive observer and the load torque identifier), the tracking er-
rors (ω(t)−ω∗(t)), (ψrd(t)−ψ∗(t)), ψrq(t), (isd(t)− i∗sd(t)), (isq(t)− i∗sq(t)) are
bounded on [0,∞), provided that the control parameter ki is sufficiently large. Hence,
if persistency of excitation conditions are satisfied for the adaptive observer (3.58),
then exponential rotor speed and flux modulus tracking are achieved with a rate of
convergence which cannot be made arbitrarily large by a suitable choice of the con-
trol parameters (as in the generalized indirect field-oriented control). Note that the
result holds under persistency of excitation and for sufficiently small initial tracking
and estimation errors.

Illustrative Simulations

We tested the control (4.76), (3.58), (3.84) by simulations for the three-phase single
pole pair 0.6-kW induction motor whose parameters have been reported in Chap-
ter 1. All the motor initial conditions have been set to zero except for ψra(0) =
ψrb(0) = 0.1Wb. The initial conditions are set to zero except for α̂(0) = 13.2s−1

while the control parameters are (all the values are in SI units): λ = 0.005, kω = 450,
ki = 800, k1 = 120, k2 = 3, k3 = 270, gα = 450, k = 0.3, g = 1002J, ko = 200. The
references for the rotor speed and flux modulus along with the applied load torque
are reported in Figures 4.16–4.18. The rotor flux modulus reference signal starts
from 0.001Wb at t = 0s and grows up to the constant value 1.16Wb. The rotor
speed reference is zero until t = 0.32s and grows up to the constant value 100rad/s;
at t = 1.5s the speed is required to go up to the value 200rad/s, while the reference
for the flux modulus is reduced to 0.5Wb. A 5.8-Nm load torque is applied to the
motor and is reduced to 1.8Nm. Figures 4.16 and 4.17 show the time histories of
the rotor speed and the flux modulus along with the corresponding tracking errors:
the rotor speed and the flux modulus track their references tightly. The load torque
and parameter α estimates provided by the load torque identifier (3.84) and by the
adaptive observer (3.58), respectively, are reported in Figures 4.18 and 4.19. Finally,
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the stator current and voltage profiles (which are within physical saturation limits)
are reported in Figures 4.20 and 4.21.

Fig. 4.16 Control (4.76), (3.84), (3.58): rotor speed ω and its reference ω∗; rotor speed tracking
error

Fig. 4.17 Control (4.76), (3.84), (3.58): rotor flux modulus
√
ψ2

ra +ψ2
rb and its reference ψ∗; rotor

flux modulus tracking error
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Fig. 4.18 Control (4.76), (3.84), (3.58): applied load torque TL and its estimate T̂L

Fig. 4.19 Control (4.76), (3.84), (3.58): parameter α and its estimate α̂

4.4.2 Global Control

The aim of this section is to design a dynamic output feedback compensator on the
basis of the measured outputs (ω, isa, isb)

ε̇0 = ω0[
usa
usb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
usd
usq

]
(4.77)

by choosing (ω0,usd ,usq) so that, for any unknown TL and uncertain α and for any
initial condition (ω(0),ψra(0),ψrb(0), isa(0), isb(0),ε0(0)) we have
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Fig. 4.20 Control (4.76), (3.84), (3.58): stator current vector (a,b)-components (isa, isb)

Fig. 4.21 Control (4.76), (3.84), (3.58): stator voltage vector (a,b)-components (usa,usb)

lim
t→∞[ω(t)−ω∗(t)] = 0 (4.78)

and

lim
t→∞[ψrd(t)−ψ∗(t)] = 0

lim
t→∞ψrq(t) = 0 (4.79)

which imply that

lim
t→∞

[√
ψ2

ra(t)+ψ2
rb(t)−ψ∗(t)

]
= 0 . (4.80)
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Note that (4.79) implies that the flux vector (ψra,ψrb) asymptotically rotates at
speed ω0, i.e. field orientation is achieved: in other words, the (d,q) frame rotat-
ing at speed ω0 tends to have the d-axis coincident with the rotating flux vector as t
goes to infinity.

As an intermediate step in the design of the adaptive control, we define refer-
ence signals for the currents (isd , isq): since TL and α are unknown constants, we
introduce the estimates T̂L and α̂ . Define the reference current signals

i∗sd =
ψ∗

M
+
ψ̇∗

α̂M
+

ηd

βα̂M

i∗sq =
1
μψ∗

(
−kωω̃+

T̂L

J
+ ω̇∗
)

(4.81)

for isd and isq, and the speed of the rotating (d,q) frame

ε̇0 = ω0 = ω+
α̂Misq

ψ∗ − ηq

βψ∗ (4.82)

in which kω is a positive design parameter and (ηd ,ηq) are additional terms yet
to be designed. As we shall see, the adaptation for α̂(t) will be designed using a
projection algorithm guaranteeing α̂(t) ≥ cα > 0 for all t ≥ 0 so that (4.81) is well
defined. Introducing the current tracking errors

ĩsd = isd − i∗sd

ĩsq = isq − i∗sq (4.83)

from (1.31), (4.81), (4.82), and (4.83) we obtain

ω̇ = μψ∗isq +μ(ψ̃rdisq − ψ̃rqisd)− TL

J

= −kωω̃+ ω̇∗ +μ(ψ̃rdisq − ψ̃rqisd)− T̃L

J
+μψ∗ ĩsq

ψ̇rd = −αψrd +(ω0 −ω)ψrq + α̂ψ∗ + ψ̇∗ +
ηd

β
+α̂Mĩsd + α̃Misd

ψ̇rq = −αψrq − (ω0 −ω)ψ̃rd − α̂Misq +
ηq

β
+αMisq . (4.84)

The speed and flux tracking errors dynamics are

˙̃ω = −kωω̃+μ(ψ̃rdisq − ψ̃rqisd)− T̃L

J
+μψ∗ ĩsq

˙̃ψrd = −αψ̃rd +(ω0 −ω)ψ̃rq +
ηd

β
+ α̃(Misd −ψ∗)+ α̂Mĩsd

˙̃ψrq = −αψ̃rq − (ω0 −ω)ψ̃rd +
ηq

β
+ α̃Misq (4.85)
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where α̃ = α − α̂ and T̃L = TL − T̂L denote the parameter estimation errors. It will
be the goal of the adaptation law for the parameter estimates (T̂L, α̂) to drive T̃L and
α̃ to zero while the objective of the control inputs usd and usq will be to drive ĩsd and
ĩsq to zero along with ω̃ , ψ̃rd , and ψ̃rq. As in the adaptive observer presented in Sec-
tion 3.2, we introduce the stator current estimates (îsd , îsq) which will be auxiliary
signals for the estimation of the rotor fluxes and of the rotor resistance: the stator
current observer is designed as

dîsd

dt
= −Rs

σ
isd +ω0isq + α̂βψ∗ − α̂Mβ isd +

1
σ

usd

+kied +wd1 +wd2

dîsq

dt
= −Rs

σ
isq −ω0isd −βωψ∗ − α̂Mβ isq +

1
σ

usq

+kieq +wq1 +wq2 (4.86)

in which ki is a positive design parameter and (wd1,wd2,wq1,wq2) are additional
terms yet to be chosen. We denote by

ed = isd − îsd

eq = isq − îsq

the current estimation errors. The stator current estimation error dynamics may be
written as

ėd = −kied +αβψ̃rd +βωψ̃rq −βα̃(Misd −ψ∗)−wd1 −wd2

ėq = −kieq +αβψ̃rq −βωψ̃rd −βα̃Misq −wq1 −wq2 (4.87)

and used in the design of the adaptive law for α̂ . We replace the unknown variables
(ψ̃rd , ψ̃rq) by the new error variables

zd = ed +βψ̃rd

zq = eq +βψ̃rq (4.88)

so that the error equations (4.85) and (4.87) are expressed in new coordinates as

˙̃ω = −kωω̃+
μ
β

(zdisq − zqisd)+
μ
β

(−edisq + eqisd)− T̃L

J
+μψ∗ ĩsq

żd = −kied +ω0(zq − eq)+ηd −wd1 −wd2 +βα̂Mĩsd

żq = −kieq −ω0(zd − ed)+ηq −wq1 −wq2

ėd = −(ki +α)ed −ωeq +αzd +ωzq −βα̃(Misd −ψ∗)−wd1 −wd2

ėq = −(ki +α)eq +ωed +αzq −ωzd −βα̃Misq −wq1 −wq2

ε̇0 = ω0 = ω+
α̂Misq

ψ∗ − ηq

βψ∗ . (4.89)
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The advantage of using the unknown variables (zd ,zq) instead of (ψ̃rd , ψ̃rq) relies
on the fact that their dynamics no longer depend on α (compare (4.89) with (4.85)).
We now define some of the yet undetermined terms in (4.81), (4.82), (4.86) as (wd2
and wq2 in (4.86) are still to be chosen)

ηd = (ki − k)ed −2γ1
μ
β
ω̃ isq +(α̂− k)ẑd

ηq = (ki − k)eq +2γ1
μ
β
ω̃isd +(α̂− k)ẑq

wd1 = −γ1 μβ ω̃isq +(α̂− k)ẑd − (ω0 +ω)eq

wq1 = γ1
μ
β
ω̃ isd +(α̂− k)ẑq +(ω0 +ω)ed (4.90)

with k, γ1 positive design parameters and (ẑd , ẑq) estimates of the unknown error
variables (zd , zq) defined by (4.88). Note that the dynamics of (ẑd , ẑq) are yet to be
defined. If (ẑd , ẑq) converge to (zd ,zq), they allow us to recover the rotor flux vector
(ψrd ,ψrq) since (îsd , îsq) are known variables and β is a known parameter. Hence,
the new variables (ẑd , ẑq) may be viewed as rotor flux estimates. Substituting (4.90)
in (4.89), we obtain

˙̃ω = −kωω̃+
μ
β

(zdisq − zqisd)+
μ
β

(−edisq + eqisd)− T̃L

J
+μψ∗ ĩsq

żd = −ked +ω0zq − γ1 μβ ω̃isq +ωeq −wd2 +βα̂Mĩsd

żq = −keq −ω0zd + γ1
μ
β
ω̃isd −ωed −wq2

ėd = −(ki +α)ed −ωeq +αzd +ωzq −βα̃(Misd −ψ∗)

+γ1
μ
β
ω̃ isq − (α̂− k)ẑd +(ω0 +ω)eq −wd2

ėq = −(ki +α)eq +ωed +αzq −ωzd −βα̃Misq

−γ1 μβ ω̃ isd − (α̂− k)ẑq − (ω0 +ω)ed −wq2 . (4.91)

We compute from (1.31), (4.81), (4.89), and (4.90) the dynamics of the stator current
tracking errors (ĩsd , ĩsq):

dĩsd

dt
=

1
σ

usd +
2γ1μω̃
σβ 2α̂M

usq +φd0 + zdφd1 + zqφd2

+α z̃dφd3 +α z̃qφd4 + T̃Lφd5 + α̃φd6 +
ki − k
βα̂M

wd2

dĩsq

dt
=

1
σ

usq +φq0 + zdφq1 + zqφq2 +α z̃dφq3 +α z̃qφq4

+T̃Lφq5 + α̃φq6 (4.92)



4.4 Adaptive Control with Uncertain Load Torque and Rotor Resistance 207

with

z̃d = zd − ẑd

z̃q = zq − ẑq

and

φd0 = −Rs

σ
isd +ω0isq + α̂βψ∗ + α̂ ẑd − α̂ed −ωeq

−α̂βMisd − ψ̇
∗

M
− ψ̈∗

α̂M
+

˙̂α
α̂2M

(
ψ̇∗ +

ηd

β

)

− ki − k
βα̂M

[
−(ki + α̂)ed −ωeq + α̂ ẑd + γ1

μ
β
ω̃isq

−(α̂− k)ẑd +
(
ω0 +ω

)
eq

]

+2
γ1μ isq

β 2α̂M

[
−kωω̃+

μ
β

(−edisq + eqisd)+μψ∗ ĩsq

]

+2
γ1μω̃
β 2α̂M

[
−Rs

σ
isq −ω0isd + α̂ ẑq − α̂eq +ωed

−α̂Mβ isq −βωψ∗
]
− 1
βα̂M

[ ˙̂α ẑd +(α̂− k)˙̂zd ]

φd1 = 2

(
γ1μ2i2sq

β 3α̂M
− γ1μω̃
β 2α̂M

ω

)

φd2 = −2
γ1μ2isqisd

β 3α̂M
+ω
(

1− ki − k
βα̂M

)

φd3 = 1− ki − k
βα̂M

φd4 = 2
γ1μω̃
β 2α̂M

φd5 = −2
γ1μ isq

Jβ 2α̂M

φd6 = βψ∗ + ẑd − ed −βMisd +
ki − k
βα̂M

ed − ki − k
βα̂M

ẑd

+
ki − k
α̂M

(Misd −ψ∗)+2
γ1μ
β 2α̂M

ω̃(ẑq − eq −βMisq)

φq0 = −Rs

σ
isq −ω0isd + α̂ ẑq − α̂eq −βωψ∗ − α̂βMisq

+
ψ̇∗

μψ∗2

(
−kωω̃+

T̂L

J
+ ω̇∗
)
− 1
μψ∗

[ ˙̂T L

J
+ ω̈∗
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+k2
ωω̃− kωμ

β
(−edisq + eqisd)− kωμψ∗ ĩsq

]
+ωed

φq1 = −ω+
kω
ψ∗β

isq

φq2 = − kω
ψ∗β

isd

φq3 = 0
φq4 = 1

φq5 =
−kω
μψ∗J

φq6 = ẑq − eq −βMisq . (4.93)

In order to determine (wd2,wq2), the dynamics of the estimation variables ẑd , ẑq, α̂ ,
and T̂L and of the feedback control inputs (usd ,usq), we consider the function

V0 =
1
2
[γ1ω̃2 + e2

d + e2
q + γ2(z̃2

d + z̃2
q)+ γ3T̃ 2

L + γ4α̃2 + z2
d + z2

q] (4.94)

in which γi, 2 ≤ i ≤ 4, are positive parameters. We define γ2 = (α−k)γ0 with γ0 > 0
and, to guarantee that γ2 > 0, k is chosen so that 0 < k < αm with αm the minimum
value of α (assumed to be known). Alternatively, we may choose γ0 < 0 and k ≥ αM
with αM the maximum value of α (assumed to be known). From (4.91) and (4.94),
the time derivative of (4.94) results:

V̇0 = −γ1kωω̃2 − (ki +α)(e2
d + e2

q)− zdwd2 − zqwq2

−edwd2 − eqwq2 +(α− k)z̃d(γ0˙̃zd + ed)
+(α− k)z̃q(γ0˙̃zq + eq)+ α̃ [−βed(Misd −ψ∗)
−βeqMisq + edẑd + eqẑq + γ4 ˙̃α]

+T̃L

(
−γ1 ω̃J + γ3 ˙̃T L

)
+ γ1μψ∗ω̃ ĩsq + α̂βMzdĩsd . (4.95)

We now consider the function

V = V0 +
1
2
(ĩ2sd + ĩ2sq)

=
1
2
[γ1ω̃2 + e2

d + e2
q + γ2(z̃2

d + z̃2
q)+ γ3T̃ 2

L + γ4α̃2

+z2
d + z2

q + ĩ2sd + ĩ2sq] . (4.96)

From (4.95), (4.91), and (4.92), its time derivative is

V̇ = −γ1kωω̃2 − (ki +α)(e2
d + e2

q)− edwd2 − eqwq2

+zd [−wd2 + ĩsd(φd1 + α̂βM)+ ĩsqφq1 + k(ĩsdφd3 + ĩsqφq3)]
+zq[−wq2 + ĩsdφd2 + ĩsqφq2 + k(ĩsdφd4 + ĩsqφq4)]
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+(α− k)z̃d(γ0˙̃zd + ed + ĩsdφd3 + ĩsqφq3)
+(α− k)z̃q(γ0˙̃zq + eq + ĩsdφd4 + ĩsqφq4)

+ĩsd

(
1
σ

usd +
2γ1μω̃
σβ 2α̂M

usq +φd0 − kẑdφd3 − kẑqφd4 +
ki − k
βα̂M

wd2

)

+ĩsq

(
1
σ

usq +φq0 + γ1μψ∗ω̃− kẑdφq3 − kẑqφq4

)

+α̃
(
−βed(Misd −ψ∗)−βeqMisq + edẑd + eqẑq

+γ4 ˙̃α+ ĩsdφd6 + ĩsqφq6

)

+T̃L

(
−γ1 ω̃J + γ3 ˙̃T L + ĩsdφd5 + ĩsqφq5

)
. (4.97)

The terms (wd2,wq2), the feedback controls (usd ,usq), and the dynamics of (ẑd , ẑq,
α̂ , T̂L) are now chosen in order to force V̇ to be negative semidefinite. Choosing the
yet undetermined terms in (4.86) as

wd2 = [ĩsd(φd1 + α̂βM)+ ĩsqφq1 + k(ĩsdφd3 + ĩsqφq3)]
wq2 = [ĩsdφd2 + ĩsqφq2 + k(ĩsdφd4 + ĩsqφq4)] (4.98)

we obtain

V̇ = −γ1kωω̃2 − (ki +α)(e2
d + e2

q)

+(α− k)z̃d(γ0˙̃zd + ed + ĩsdφd3 + ĩsqφq3)
+(α− k)z̃q(γ0˙̃zq + eq + ĩsdφd4 + ĩsqφq4)

+ĩsd

(
1
σ

usd +
2γ1μω̃
σβ 2α̂M

usq +φd0 − kẑdφd3 − kẑqφd4

−ed(φd1 + α̂βM + kφd3)− eq(φd2 + kφd4)+
ki − k
βα̂M

wd2

)

+ĩsq

(
1
σ

usq +φq0 + γ1μψ∗ω̃− kẑdφq3 − kẑqφq4

−ed(φq1 + kφq3)− eq(φq2 + kφq4)
)

+α̃
(
−βed(Misd −ψ∗)−βeqMisq + edẑd + eqẑq

+ĩsdφd6 + ĩsqφq6 + γ4 ˙̃α
)

+T̃L

(
−γ1 ω̃J + ĩsdφd5 + ĩsqφq5 + γ3 ˙̃T L

)
. (4.99)

We finally design the control inputs and the adaptation dynamics as
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˙̂zd = −ked +ω0ẑq − γ1 μβ ω̃isq +ωeq

−[ĩsdφd1 + ĩsqφq1 + k(ĩsdφd3 + ĩsqφq3)]

+
1
γ0

(ed + ĩsdφd3 + ĩsqφq3)

˙̂zq = −keq −ω0ẑd + γ1
μ
β
ω̃isd −ωed

−[ĩsdφd2 + ĩsqφq2 + k(ĩsdφd4 + ĩsqφq4)]

+
1
γ0

(eq + ĩsdφd4 + ĩsqφq4)

usq = σ [−φq0 − γ1μψ∗ω̃+ kẑdφq3 + kẑqφq4

+ed(φq1 + kφq3)+ eq(φq2 + kφq4)− keĩsq]

usd = σ
[
− 2γ1μω̃
σβ 2α̂M

usq −φd0 + kẑdφd3 + kẑqφd4

+ed(φd1 + α̂βM + kφd3)+ eq(φd2 + kφd4)

−keĩsd − ki − k
βα̂M

wd2

]
˙̂T L =

1
γ3

[
−γ1

J
ω̃+ ĩsdφd5 + ĩsqφq5

]
(4.100)

and

˙̂α =
1
γ4

[−βed(Misd −ψ∗)−βeqMisq + edẑd

+eqẑq + ĩsdφd6 + ĩsqφq6] (4.101)

so that (4.99) becomes

V̇ = −γ1kωω̃2 − (ki +α)(e2
d + e2

q)− ke(ĩ2sd + ĩ2sq) . (4.102)

Equations (4.100), (4.101), (4.93), (4.86), (4.90), (4.98), (4.81), (4.82) and (4.77)
define a seventh order dynamic feedback compensator, whose state variables are
(ε0, îd , îq, ẑd , ẑq, T̂L, α̂), which generates the control signals (usa,usb) on the basis of
the measurements (ω, isa, isb), the reference signals (ω∗, ψ∗), and their time deriva-
tives (ω̇∗, ω̈∗, ψ̇∗, ψ̈∗). In order to guarantee that α̂(t) ≥ cα > 0 for every t ≥ 0 we
modify the dynamics (4.101) according to

˙̂α = Proj
(

1
γ4

[−βed(Misd −ψ∗)−βeqMisq + edẑd

+eqẑq + ĩsdφd6 + ĩsqφq6], α̂
)

, α̂(0) = α̂0 (4.103)

where Proj(ξ , α̂) is the smooth projection algorithm given by (A.25) in Appendix A
and defined in our case by
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Proj(ξ , α̂) = ξ , if p(α̂) ≤ 0
Proj(ξ , α̂) = ξ , if p(α̂) ≥ 0 and ξ ≥ 0
Proj(ξ , α̂) = [1− p(α̂)]ξ , otherwise

in which p(α̂) = α2
m−α̂2

2δαm−δ 2 with αm = Rrm/Lr the minimum (known) value of α
and δ > 0 such that αm − δ > 0. The initial condition α̂0 in (4.103) is chosen so
that α̂0 ≥ αm. The properties of the operator Proj(ξ , α̂) imply that, by substituting
(4.103) instead of (4.101) in (4.99), we obtain instead of (4.102) the inequality

V̇ ≤ −γ1kωω̃2 − (ki +α)(e2
d + e2

q)− ke(ĩ2sd + ĩ2sq) . (4.104)

From (4.96) and (4.104), it follows that (ω̃,ed ,eq,zd ,zq, z̃d , z̃q, ĩsd , ĩsq, α̃, T̃L) are
bounded: their bounds depend on the initial errors. Therefore, according to (4.100),
(usd ,usq) and, consequently, ( ˙̃ω , ėd , eq, żd , żq, ˙̃zd , ˙̃zq, ˙̃isd , ˙̃isq, ˙̃α , ˙̃T L) are bounded.
Hence, ( ¨̃ω , ëd , ëq,

¨̃isd ,
¨̃isq) are bounded and therefore ( ˙̃ω , ėd , ėq, ˙̃isd , ˙̃isq) are uniformly

continuous. On the other hand, integrating (4.104) on the time interval [0,t] we have
∫ t

0
[γ1kωω̃2(τ)+(ki +α)(e2

d(τ)+ e2
q(τ))+ ke(ĩ2sd(τ)+ ĩ2sq(τ))] dτ

≤
∫ t

0
−V̇ (τ) dτ ≤V (0)

which implies by Barbalat’s Lemma A.2 in Appendix A that

lim
t→∞‖[ω̃(t),ed(t),eq(t), ĩsd(t), ĩsq(t)]‖ = 0 .

This shows that asymptotic speed tracking is achieved from any initial condition
provided that α̂0 ≥ αm − δ in (4.103). Moreover, the current estimation errors
(ed(t),eq(t)) and the current tracking errors (ĩsd(t), ĩsq(t)) asymptotically tend to
zero.

We now analyze under which conditions z̃d(t), z̃q(t), T̃L(t), α̃(t), zd(t), and zq(t)
also tend asymptotically to zero. The error equations are

dω̃
dt

= −kωω̃+
μ
β

(zdisq − zqisd)+
μ
β

(−edisq + eqisd)

− T̃L

J
+μψ∗ ĩsq

ded

dt
= −(ki +α)ed −ωeq +ωzq + α̃[ẑd −β (Misd −ψ∗)]

+(α− k)z̃d + kzd + γ1
μ
β
ω̃ isq +(ω0 +ω)eq

−(φd1 + α̂βM + kφd3)ĩsd − (φq1 + kφq3)ĩsq

deq

dt
= −(ki +α)eq +ωed −ωzd + α̃ [ẑq −βMisq]
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+(α− k)z̃q + kzq − γ1 μβ ω̃isd − (ω0 +ω)ed

−(φd2 + kφd4)ĩsd − (φq2 + kφq4)ĩsq

dĩsd

dt
= −keĩsd + zdφd1 + zqφd2 +(α− k)φd3z̃d

+(α− k)φd4z̃q + kφd3zd + kφd4zq

+(φd1 + α̂βM + kφd3)ed

+(φd2 + kφd4)eq +φd5T̃L +φd6α̃
dĩsq

dt
= −keĩsq + zdφq1 + zqφq2 +(α− k)φq3z̃d

+(α− k)φq4z̃q + kφq3zd + kφq4zq

−γ1μψ∗ω̃+(φq1 + kφq3)ed

+(φq2 + kφq4)eq +φq5T̃L +φq6α̃
dzd

dt
= −ked +ω0zq − γ1μβ isqω̃+ωeq − (φd1 + kφd3)ĩsd

−(φq1 + kφq3)ĩsq

dzq

dt
= −keq −ω0zd +

γ1μ
β

isdω̃−ωed − (φd2 + kφd4)ĩsd

−(φq2 + kφq4)ĩsq

dz̃d

dt
= ω0z̃q − 1

γ0
(ed +φd3 ĩsd +φq3 ĩsq)

dz̃q

dt
= −ω0z̃d − 1

γ0
(eq +φd4 ĩsd +φq4 ĩsq)

dα̃
dt

= −Proj
(

1
γ4

[(βψ∗ −βMisd + ẑd)ed +(ẑq −βMisq)eq

+φd6 ĩsd +φq6 ĩsq], α̂
)

dT̃L

dt
=

1
γ3

(γ1
J
ω̃−φd5 ĩsd −φq5 ĩsq

)
. (4.105)

The equations (4.105) may be rewritten as

ẋ(t) = A(t)x(t)+B(t)z(t)
ż(t) = D(t)x(t) (4.106)

with x = [ω̃ ,ed ,eq, ĩsd , ĩsq]T, z = [za,zb, z̃a, z̃b, α̃ , T̃L]T, A(t), B(t), D(t) suitable ma-
trices and [

za
zb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
zd
zq

]
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z̃a
z̃b

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
z̃d
z̃q

]
.

The radially unbounded function (4.96) may be written as

V =
1
2
(xTPx+ zTΛ−1z)

with

Λ = diag
[

1,1,
1

(α− k)γ0
,

1
(α− k)γ0

,
1
γ4

,
1
γ3

]
P = diag[γ1,1,1,1,1] .

Its time derivative (4.104) satisfies

V̇ ≤ −xTQx

with

Q = diag[γ1kω ,ki +α,ki +α,ke,ke] .

By virtue of Lemma A.3 in Appendix A, we can establish that if persistency of
excitation conditions are satisfied, i.e. there exist two positive constants T and kT
such that ∫ t+T

t
BT(τ)B(τ)dτ ≥ kT I > 0 , ∀t ≥ 0 , (4.107)

then the state vectors x(t) and z(t) of system (4.106) exponentially converge to
zero for any initial condition. In summary, if (4.107) is satisfied then, in addition
to asymptotic speed tracking:

1. since both (zd(t),zq(t)) and (ed(t),eq(t)) exponentially tend to zero, from (4.88)
it follows that exponential rotor flux tracking is achieved and, in addition, the
rotor flux vector is exponentially oriented with respect to the (d,q) frame so that

lim
t→∞[ψrd(t)−ψ∗(t)] = 0

lim
t→∞ψrq(t) = 0 ;

2. since (α̃(t), T̃L(t)) exponentially tend to zero, both the rotor resistance Rr and the
load torque TL are exponentially estimated so that

lim
t→∞[α− α̂(t)] = 0

lim
t→∞[TL − T̂L(t)] = 0 ;
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3. since (z̃d(t), z̃q(t)) exponentially tend to zero, the rotor flux vector is exponen-
tially estimated: defining, according to (4.88),

ψ̂rd = ψ∗ +
1
β

(ẑd − ed)

ψ̂rq =
1
β

(ẑq − eq) (4.108)

we have

lim
t→∞ [ψrd(t)− ψ̂rd(t)] = 0

lim
t→∞ [ψrq(t)− ψ̂rq(t)] = 0 .

In conclusion, the seventh order dynamic adaptive output feedback control[
usa
usb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
usd
usq

]
usq = σ [−φq0 − γ1μψ∗ω̃+ kẑdφq3 + kẑqφq4

+ed(φq1 + kφq3)+ eq(φq2 + kφq4)− keĩsq]

usd = σ
[
− 2γ1μω̃
σβ 2α̂M

usq −φd0 + kẑdφd3 + kẑqφd4

+ed(φd1 + α̂βM + kφd3)+ eq(φd2 + kφd4)

−keĩsd − ki − k
βα̂M

wd2

]
dε0

dt
= ω+

α̂Misq

ψ∗ − ηq

βψ∗

dîsd

dt
= −Rs

σ
isd +ω0isq + α̂βψ∗ − α̂Mβ isd +

1
σ

usd

+kied +wd1 +wd2

dîsq

dt
= −Rs

σ
isq −ω0isd −βωψ∗ − α̂Mβ isq +

1
σ

usq

+kieq +wq1 +wq2

dẑd

dt
= −ked +ω0ẑq − γ1 μβ ω̃isq +ωeq

−[ĩsdφd1 + ĩsqφq1 + k(ĩsdφd3 + ĩsqφq3)]

+
1
γ0

(ed + ĩsdφd3 + ĩsqφq3)

dẑq

dt
= −keq −ω0ẑd + γ1

μ
β
ω̃isd −ωed
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−[ĩsdφd2 + ĩsqφq2 + k(ĩsdφd4 + ĩsqφq4)]

+
1
γ0

(eq + ĩsdφd4 + ĩsqφq4)

dT̂L

dt
=

1
γ3

[
−γ1

J
ω̃+ ĩsdφd5 + ĩsqφq5

]
dα̂
dt

= Proj
(

1
γ4

[−βed(Misd −ψ∗)−βeqMisq + edẑd

+eqẑq + ĩsdφd6 + ĩsqφq6], α̂
)

[
isd
isq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
isa
isb

]
(4.109)

with ηq, wd1, wq1, wd2, wq2 given in (4.90), (4.98), and φdi, φqi, 0 ≤ i ≤ 6,
given in (4.93), has the following properties provided that α̂(0) ≥ αm −δ :

1. The rotor speed tracking error [ω(t)−ω∗(t)] tends to zero, along with the
stator current estimation errors (ed(t),eq(t)) and the stator current tracking
errors (ĩsd , ĩsq), for any motor initial condition.

2. If the persistency of excitation condition (4.107) is satisfied, then the pa-
rameter estimation errors, the flux tracking errors and the flux estimation
errors exponentially tend to zero:

lim
t→∞[TL − T̂L(t)] = 0

lim
t→∞[ψrd(t)−ψ∗(t)] = 0

lim
t→∞ψrq(t) = 0

lim
t→∞

{
ψ∗(t)+

1
β

[ẑd(t)− isd(t)+ îsd(t)]−ψrd(t)
}

= 0

lim
t→∞

{
1
β

[ẑq(t)− isq(t)+ îsq(t)]−ψrq(t)
}

= 0 .

Remarks

1. The dynamic compensator (4.109) contains eight control parameters (kω , ki, ke, k,
γ0, γ1, γ3, γ4) whose role may be evaluated by examining both the closed-loop er-
ror equations (4.105) and the corresponding function (4.96) with time derivative
(4.104). The parameters (kω ,ki,ke) determine the rate of decay of V̇ in (4.104)
and directly affect (see (4.105)) the dynamics of speed tracking error ω̃ , current
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estimation errors (ed ,eq), and current tracking errors (ĩsd , ĩsq), respectively. The
parameter γ1 determines the influence of speed tracking errors on the other errors
and is typically chosen much smaller than one. The parameters kω and γ1 may be
separately tuned using the equations obtained from (4.85) and the first two equa-
tions in (4.90) in ideal conditions, i.e. by setting ed = eq = 0, α̃ = 0, ĩsd = ĩsq = 0,
and ẑd = zd = ẑq = zq = 0, so that ω̃ has the desired transients. The parameters
1/γ3 and 1/γ4 are the adaptation gains for T̂L and α̂ , respectively: the smaller
they are chosen, the slower the adaptations for T̂L and α̂ result. The parameter
γ2 = (α−k)γ0 > 0 is a weighting factor in the function (4.96): the choice of k de-
pends on the interval of variation of the uncertain parameter α . The parameter ke
should be the last parameter to be tuned and should be chosen sufficiently large
so that the current error dynamics are much faster than speed error dynamics
while voltages are within saturation limits. Of course, different tuning strategies
should be followed depending on sensor noise features, discretization strategies
and other implementation issues.

2. For induction motors which allow for high gain current loops, the control may be
greatly simplified as follows

usa(t) = −kP[isa(t)− i∗sa(t)]− kI

∫ t

0
(isa(τ)− i∗sa(τ))dτ

usb(t) = −kP[isb(t)− i∗sb(t)]− kI

∫ t

0
(isb(τ)− i∗sb(τ))dτ[

i∗sa
i∗sb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
i∗sd
i∗sq

]
(4.110)

with

i∗sd =
ψ∗

M
+
ψ̇∗

α̂M
+

1
βα̂M

[
(ki − k)ed

−2
γ1
βψ∗ ω̃

(
−kωω̃+

T̂L

J
+ ω̇∗
)

+(α̂− k)ẑd

]

i∗sq =
1
μψ∗

(
−kωω̃+

T̂L

J
+ ω̇∗
)

dε0

dt
= ω0 = ω+

α̂Mi∗sq

ψ∗ − 1
βψ∗

[
(ki − k)eq +2

γ1μ
β
ω̃ i∗sd +(α̂− k)ẑq

]
dẑd

dt
= −ked +ω0ẑq − γ1μβ ω̃isq +ωeq +

1
γ0

ed

dẑq

dt
= −keq −ω0ẑd +

γ1μ
β
ω̃isd −ωed +

1
γ0

eq

dîsd

dt
= −Rs

σ
isd +ω0isq + α̂βψ∗ − α̂Mβ isd +

1
σ

usd + kied

−γ1μ
β
ω̃ isq +(α̂− k)ẑd − (ω0 +ω)eq
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dîsq

dt
= −Rs

σ
isq −ω0isd −βωψ∗ − α̂Mβ isq +

1
σ

usq + kieq

+
γ1μ
β
ω̃ isd +(α̂− k)ẑq +(ω0 +ω)ed

dα̂
dt

= Proj
(

1
γ4

[−βed(Misd −ψ∗)−βeqMisq + edẑd + eqẑq], α̂
)

dT̂L

dt
= − γ1

γ3J
ω̃ (4.111)

obtained by setting ĩsd = ĩsq = 0 in (4.81), (4.82), (4.86), (4.90), (4.98), (4.100),
(4.103).

3. If rotor flux measurements are available, a simplified version of the adaptive
algorithm (4.109) may be designed since ẑd and ẑq are not needed. A global state
feedback adaptive algorithm is obtained which constitutes an adaptive version of
the algorithm (2.113).

Illustrative Simulations

We tested the adaptive output feedback control by simulations for the three-phase
single pole pair 0.6-kW induction motor whose parameters have been reported
in Chapter 1. All the motor initial conditions have been set to zero except for
ψra(0) = ψrb(0) = 0.1Wb. The control algorithm has been tested with control
parameters (all values are in SI units) ke = 800, ki = 50.1, k = 20.4, kω = 450,
γ0 =−0.00105, γ1 = 0.005, γ3 = 5.2, γ4 = 2.5. All controller initial conditions have
been set to zero except for the initial condition for the α-estimate which has been set
to α̂(0) = 13.2s−1 which is 50% greater than the true parameter value α = 8.8s−1.
The references for the rotor speed and flux modulus along with the applied load
torque are reported in Figures 4.22–4.24. The rotor flux modulus reference signal
starts from 0.05Wb at t = 0s and grows up to the constant value 1.16Wb. The
speed reference is zero until t = 0.32s and grows up to the constant value 100rad/s;
at t = 1.5s the speed is required to go up to the value 200rad/s, while the refer-
ence for the flux modulus is reduced to 0.5Wb. A 5.8-Nm load torque is applied
to the motor and is reduced to 0.5Nm. Figures 4.22 and 4.23 show the time histo-
ries of rotor speed and flux modulus along with the corresponding tracking errors.
The rotor speed tracks its reference tightly even though load torque sharply changes
since the load torque estimate quickly recovers the applied unknown load torque
(see Figure 4.24). Also the α-estimate, according to Figure 4.25, converges to the
true value. The rotor flux modulus tracks its reference: there is a coupling with rotor
speed tracking at t = 0.5s and at t = 1s when the rotor speed is perturbed by the un-
known load torque. Finally, the stator current and voltage profiles (which are within
the physical saturation limits) are reported in Figures 4.26 and 4.27.
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Fig. 4.22 Adaptive output feedback control: rotor speed ω and its reference ω∗; rotor speed track-
ing error

Fig. 4.23 Adaptive output feedback control: rotor flux modulus
√
ψ2

ra +ψ2
rb and its reference ψ∗;

rotor flux modulus tracking error

4.5 Experimental Results

The simplified control algorithm (4.110)-(4.111) was tested experimentally with the
control parameters values ki = 80, k = 40, γ1 = 0.2, β/γ4 = 1.7, γ1/(γ3J) = 187,
γ0 =−0.2, kω = 300; the gains of the PI controllers (4.110) are chosen so that a unit
step reference is tracked with a settling time of about 2.5 ms; all initial conditions
of the controller are set to zero except α̂(0). The following typical operating condi-
tions were experimentally tested: the unloaded motor is required to reach the rated
speed 100rad/s with acceleration 1000rad/s2 in 140ms starting from 0.5s; during
the initial time interval [0,0.31]s, the motor flux modulus is driven from the initial
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Fig. 4.24 Adaptive output feedback control: applied load torque TL and its estimate T̂L

Fig. 4.25 Adaptive output feedback control: uncertain parameter α and its estimate α̂

value 10−4 Wb to its rated value 1.16Wb, with flux speed 3.87Wb/s; both speed and
flux reference signals (given in Figure 4.28) are twice differentiable with bounded
second order derivatives (the bounds are 2 ·105 rad/s3 and 38.7Wb/s2, respectively);
after start-up a constant load torque, equal to the rated value (5.8Nm), is applied.
We performed two experiments: in the first one (which is illustrated by Figures 4.29
and 4.30) α̂(0) underestimates the correct value α , i.e. α̂(0)/α = 0.7, while in the
second one (which is reported in Figures 4.31 and 4.32) α is overestimated, i.e.
α̂(0)/α = 1.5. The closed-loop performance is documented in Figures 4.29–4.32,
in which the speed error ω̃(t), the current estimation errors ed(t), eq(t), the esti-

mated flux modulus
√
ψ̂2

rd(t)+ ψ̂2
rq(t) with (ψ̂rd(t), ψ̂rq(t)) given by (4.108), the

stator currents (isd(t), isq(t)), the stator voltage usq(t), and the normalized estimate
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Fig. 4.26 Adaptive output feedback control: stator current vector (a,b)-components (isa, isb)

Fig. 4.27 Adaptive output feedback control: stator voltage vector (a,b)-components (usa,usb)

α̂(t)/α are given. In both cases: the speed errors are compatible with a high per-
formance drive; the estimated flux modulus converges to the reference value and
α̂(t)/α converges to 1; the estimates of the flux modulus and of α depend on the
torque level, which may be evaluated from isq(t).

4.6 Conclusions

In this chapter we have finalized the developments in Chapter 2, in which state
feedback controls have been designed to obtain good performance from any ini-
tial condition, and the developments in Chapter 3, in which rotor flux observers
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Fig. 4.28 Reference signals in the experiments

Fig. 4.29 Experimental ω̃ ,
√
ψ̂2

rd + ψ̂2
rq, isq, and isd with initial underestimated rotor resistance

Fig. 4.30 Experimental usq, α̂/α , eq, and ed with initial underestimated rotor resistance
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Fig. 4.31 Experimental ω̃ ,
√
ψ̂2

rd + ψ̂2
rq, isq, and isd with initial overestimated rotor resistance

Fig. 4.32 Experimental usq, α̂/α , eq, and ed with initial overestimated rotor resistance

and parameter estimators have been designed. The algorithms given in Chapters 2
and 3 have been integrated and modified to generate output feedback control al-
gorithms of increasing generality. In Section 4.1 a global output feedback control
which is not based on rotor flux observers has been designed: its performance is,
however, limited by the motor parameters and it is very sensitive to rotor resistance
variations, as the experiments with the indirect field-oriented control in Section 2.8
show. To remove the first drawback, a global control which is based on the rotor
flux observers presented in Chapter 3 has been designed in Section 4.2; its adap-
tive version when the load torque is uncertain has been given in Section 4.3 on the
basis of the load torque estimator obtained in Section 3.3. The second drawback is
eliminated by incorporating the load torque and the rotor resistance estimators de-
veloped in Chapter 3 into the generalized indirect field-oriented control designed in
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Section 4.1. The most general and most complex output feedback control, which is
adaptive with respect to both unknown load torque and uncertain rotor resistance
and allows for any motor initial condition, is presented in Section 4.4. Some ex-
perimental results obtained when the simplified algorithm (4.110), (4.111) given in
Section 4.4 is implemented are finally reported in Section 4.5. While input–output
linearization and decoupling were obtained in Chapter 2, no such result has been
obtained in this chapter. Moreover, when both load torque and rotor resistance are
uncertain, rotor flux modulus tracking is achieved in this chapter under persistency
of excitation, while no persistency of excitation condition is required in Chapter 2
to achieve rotor flux modulus tracking. Hence, the lack of rotor flux measurements
leads to a reduced closed-loop performance.

Problems

4.1. Consider the current-fed model

ω̇ = μ(ψraisb −ψrbisa)− TL

J
ψ̇ra = −αψra −ωψrb +αMisa

ψ̇rb = −αψrb +ωψra +αMisb ;

show that the output feedback observer-based control (kψ , λ , and kω are positive
reals while ω∗ and ψ∗ are the reference signals)[

isa
isb

]
=

1√
ψ̂2

ra + ψ̂2
rb

[
ψ̂ra −ψ̂rb
ψ̂rb ψ̂ra

][
ξ1
ξ2

]

˙̂ψra = −Rr

Lr
ψ̂ra −ωψ̂rb +

RrM
Lr

isa +λμ isbω̃

˙̂ψrb = −Rr

Lr
ψ̂rb +ωψ̂ra +

RrM
Lr

isb −λμ isaω̃

ξ1 =
1

2αM

[
2αψ∗2 +2ψ∗ψ̇∗ − kψ(ψ̂2

ra + ψ̂2
rb −ψ∗2)

−2λ (ω−ω∗)
(

TL

J
+ ω̇∗ − kω(ω−ω∗)

)]

ξ2 =
1
μ

(
TL

J
+ ω̇∗ − kω(ω−ω∗)

)

guarantees that (ω −ω∗), (ψ̂2
ra + ψ̂2

rb −ψ∗2), (ψra − ψ̂ra), and (ψrb − ψ̂rb) tend
exponentially to zero, provided that the initial conditions of the observer are such
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that ψ̂2
ra(0) + ψ̂2

rb(0) > ψ∗2(0). Suggestion: use the function V = 1
2

[
(ω −ω∗)2 +

(ψ̂2
ra + ψ̂2

rb −ψ∗2)2 + 1
λ (ψra − ψ̂ra)2 + 1

λ (ψrb − ψ̂rb)2
]

.

4.2. Consider the adaptive version of the control algorithm given in Problem 4.1 ob-
tained by replacing TL by its estimate T̂L with adaptation dynamics (λT is a positive
design parameter)

˙̂T L = −λT

J
(ω−ω∗) ;

show that the rotor speed tracking error (ω−ω∗) converges asymptotically to zero

by using the function VT = 1
2

[
(ω −ω∗)2 +(ψ̂2

ra + ψ̂2
rb −ψ∗2)2 + 1

λ (ψra − ψ̂ra)2 +

1
λ (ψrb − ψ̂rb)2 + 1

λT
(TL − T̂L)2

]
and Barbalat’s Lemma A.2 in Appendix A.

4.3. Consider the current-fed model in (d,q) arbitrarily rotating coordinates

ω̇ = μ(ψrdisq −ψrqisd)− TL

J
ψ̇rd = −αψrd +(ω0 −ω)ψrq +αMisd

ψ̇rq = −αψrq − (ω0 −ω)ψrd +αMisq ;

show that the output feedback observer-based control (kψ and kω are positive reals)

˙̂ψrd = −αψ̂rd +αMisd

ε̇0 = ω0 = ω+
αMisq

ψ̂rd

isd =
1
M
ψ∗ +

1
αM

ψ̇∗ − 1
αM

kψ(ψ̂rd −ψ∗)

isq =
1
μψ̂rd

[
TL

J
+ ω̇∗ − kω(ω−ω∗)

]

guarantees that (ω −ω∗), (ψ̂rd −ψ∗), and (ψrd − ψ̂rd) tend exponentially to zero,
provided that ψ̂rd(0) > ψ∗(0), while (ε0 −ρ) tends to zero, with

ρ(t) = arctan
ψrb(t)
ψra(t)

.

Show that when ψ̂rd(0) =ψrd(0) and ε0(0) = ρ(0), then ψ̂rd(t) =ψrd(t) and ε0(t) =
ρ(t) for every t ≥ 0, so that the control coincides with the input–output feedback
linearizing control (2.21).

4.4. Consider the induction motor rotating frame model and the output feedback,
observer-based control (kψ , kω , kid and kiq are positive reals)
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˙̂ψrd = −αψ̂rd +αMisd

ε̇0 = ω0 = ω+
αMisq

ψ̂rd

i∗sd =
1
M
ψ∗ +

1
αM

ψ̇∗ − 1
αM

kψ(ψ̂rd −ψ∗)

i∗sq =
1
μψ̂rd

[
TL

J
+ ω̇∗ − kω(ω−ω∗)

]

usd = σ
[
γi∗sd −ωisq −

αMi2sq

ψ̂rd
−βαψ̂rd +

1
M
ψ̇∗

− 1
αM

ψ̈∗ − kid(isd − i∗sd)
]

usq = σ
[
γi∗sq +ωisd +

αMisqisd

ψ̂rd
+βωψ̂rd

+
1

μ2ψ̂2
rd

˙̂ψrd

(
TL

J
+ ω̇∗ − kω(ω−ω∗)

)
− kiq(isq − i∗sq)

− 1
μψ̂rd

(
−kωμψ̂rdisq + kω

TL

J

)]
.

Compute the closed-loop error dynamics using the error variables ω̃ = ω −ω∗,
eψd = ψrd − ψ̂rd , ˜̂ψrd = ψ̂rd −ψ∗, eψq = ψrq, ĩsd = isd − i∗sd , and ĩsq = isq − i∗sq,
and investigate the asymptotic stability of the origin. Compare this control with the
control given in Section 4.2.

4.5. Consider the input–output feedback linearizing control (2.64) with (ψra,ψrb)
replaced by (ψ̂ra, ψ̂rb) given by the reduced order rotor flux observer (3.8). Com-
pute the closed-loop error dynamics using the error variables ω −ω∗, â− ω̇∗ with
â = μ(ψ̂raisb − ψ̂rbisa)− TL

J , (ψ̂2
ra + ψ̂2

rb −ψ∗2), −2α(ψ̂2
ra + ψ̂2

rb)+ 2αM(ψ̂raisa +
ψ̂rbisb)−2ψ∗ψ̇∗, (ψra − ψ̂ra), and (ψrb − ψ̂rb), and investigate the asymptotic sta-
bility of the origin. Compare this control with the control given in Section 4.2. Show
that if the rotor flux observer is initialized at the true flux value then the control co-
incides with (2.64).

4.6. Specialize the global control algorithm given in Section 4.4 to the case in which
α̂ = α and compare with the algorithm given in Section 4.3.

4.7. Specialize the global control algorithm given in Section 4.4 to the case in which
T̂L = TL and α̂ = α , and compare with the algorithm given in Section 4.2.

4.8. Design an adaptive version of the generalized indirect field-oriented control
given in Section 4.1 when the load torque TL is an unknown parameter replacing TL

by its estimate T̂L, by using the function VT = 1
2

[
(ω−ω∗)2 +(ψ̂2

ra + ψ̂2
rb −ψ∗2)2 +

1
λ (ψra− ψ̂ra)2 + 1

λ (ψrb− ψ̂rb)2 + 1
λT

(TL− T̂L)2
]

to design the adaptation law for T̂L.



226 4 Output Feedback Control

4.9. Consider the adaptive input–output feedback linearizing control (2.85) with
(ψra,ψrb) replaced by the estimates (ψ̂ra, ψ̂rb) given by the adaptive observer (3.58).
Compare the closed-loop performance of the resulting adaptive observer-based con-
trol with those obtained using the global adaptive output feedback control given in
Section 4.4.

4.10. Consider the simplified version (4.110), (4.111) of the adaptive output feed-
back control (4.109). Simulate this algorithm with the control parameter values,
the initial conditions, the reference signals, and the load torque considered in Sec-
tion 4.5 and compare the results with those reported in Figures 4.29–4.32.

4.11. Consider the adaptive output feedback control (4.76) with T̂L and α̂ provided
by the adaptive observer (3.58) (along with their time derivatives ˙̂T L and ˙̂α) and by
the load torque identifier (3.84). Show that, for sufficiently small initial errors and
sufficiently large ki, exponential rotor speed and flux modulus tracking is guaranteed
in closed-loop provided that persistency of excitation conditions are satisfied for the
adaptive observer (3.58).

4.12. Consider the adaptive output feedback control (4.109): assuming that the rotor
fluxes (ψra, ψrb) are measured and that the parameters (TL, α) are known, modify
the control algorithm (4.109) in order to obtain the rotor flux tracking even when
the condition (4.107) fails and compare it with the global control (2.114).

4.13. Consider the adaptive control[
usa
usb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
usd
usq

]

usd = σ
[
−kid ĩsd + γi∗sd −ω0isq −αβψ∗ +

1
αM

(αψ̇∗ + ψ̈∗)
]

usq = σ
[
−kiqĩsq + γ i∗sq +ω0isd +βωψ∗

+
1
μψ∗ (k2

ωω̃− kωμψ∗ ĩsq + ˙̂T L + ω̈∗)− ψ̇
∗

ψ∗ i∗sq −
1
ψ∗ (ψ̇∗ ĩsq +ζ )

]

ε̇0 = ω0 = ω+
αMisq

ψ∗ +
βω ĩsd

ψ∗

i∗sd =
ψ∗

M
+
ψ̇∗

αM

i∗sq =
1
μψ∗ (−kωω̃+ T̂L + ω̇∗)

˙̂T L = −kω iω̃
ζ̇ = kηiψ

∗ ĩsq[
isd
isq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
isa
isb

]
.
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Choose the control parameters (kid , kiq, kω , kω i, kη i) to evaluate the performance
of the controller and compare it with the adaptive observer-based control (4.75)
(compare also with Problem 4.8).

4.14. Consider the dynamic control algorithm[
usa
usb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
usd
usq

]

usd = σ
{
−kiĩsd − η̂d − kiixd +

1
αη

[
ψ̈∗ +αψ̇∗ − γ1

γ3
μisq(−kωω̃+μψ∗ ĩsq)

−γ1
γ3
μω̃
(
η̂q − γ ĩsq +

usq

σ

)]}

usq = σ
[
−η̂q − kiĩsq − kiixq − γ1γ4 μψ

∗ω̃

+
1
μψ∗

(
˙̂T L + ω̈∗ + k2

ωω̃− kωμψ∗ ĩsq

)
− ψ̇

∗

ψ∗ i∗sq

]
η̂d = −γi∗sd +ω0isq +αβψ∗

η̂q = −γi∗sq −ω0isd −βωψ∗

ẋd = ĩsd

ẋq = ĩsq

i∗sd =
1
αM

(
αψ∗ + ψ̇∗ − γ1

γ3
μω̃ isq

)

i∗sq =
1
μψ∗ (−kωω̃+ T̂L + ω̇∗)

ε̇0 = ω0 = ω+
αMisq

ψ∗ − γ1
γ3
μisdω̃
ψ∗ +

γ4
γ3ψ∗ (vd ĩsd + vqĩsq)

˙̂T L = −γ1
γ2
ω̃− γ1γ4

γ2γ3αM
μisd ĩsq − γ4kω

γ2μψ∗ ĩsq

vd = βω− γ1μ
αMγ3

(μisdisq −αβω̃)

vq = αβ − kω
ψ∗ isd[

isd
isq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
isa
isb

]
. (4.112)

Choose the control parameters (kω , ki, kii, γ1, γ2, γ3, γ4), simulate (4.112), and com-
pare the results with those obtained with the adaptive observer-based control (4.75)
(see also Problem 4.13).

4.15. Consider the adaptive observer-based control (4.75); can we conclude using
Lemma A.4 in Appendix A that the exponential rate of convergence can be made
arbitrarily large by a proper choice of the control parameters?





Chapter 5

Speed-sensorless Feedback Control

Abstract In this chapter we address the design of feedback control algorithms for
speed-sensorless induction motors, i.e. motors in which the measurement of rotor
speed is not available due to sensor failures or on purpose to reduce costs and com-
plexity. In Section 5.1 the reference signals for stator currents are used together with
stator current measurements, which are the only measured variables, to generate a
feedback control algorithm which is a generalization of the feedforward control and
includes a PI feedback based on stator current tracking errors: it turns out that the
desired steady-state operating condition may be unstable, depending on the load
torque value and on the desired reference flux modulus. In Section 5.2 we address
the control problem by assuming that rotor flux measurements are available and that
all parameters are known: the aim is to explore at least the possibility of estimating
the rotor speed from any motor initial condition within a closed-loop control algo-
rithm and then to obtain a global control for any load torque and reference signals.
The design is made adaptive in Section 5.3 in which we explore the design of adap-
tation with respect to load torque and rotor resistance under the assumption that flux
measurements are available: it turns out that the reference flux signal must be time-
varying in order to satisfy the persistency of excitation condition which implies that
the rotor resistance estimate converges to the true value. On the basis of the results
obtained in Sections 5.2 and 5.3, in Section 5.4 the realistic situation in which rotor
flux measurements are not available is considered and an adaptive speed-sensorless
control algorithm is designed when the load torque is uncertain: it relies on rotor
speed and flux closed-loop estimators. This control design is then extended in Sec-
tion 5.5 to the case in which the rotor resistance is also uncertain: a speed-sensorless
control algorithm which is adaptive with respect to both load torque and rotor resis-
tance is finally obtained.

229
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5.1 PI Control from Stator Current Errors

In this section we explore the behavior of the simplest feedback control which can be
conceived under the assumption that only the stator currents are available for feed-
back. The starting point is the inverse system (1.74) developed in Chapter 1 which
can be used as a feedforward control in the absence of state variables measurements.
Recall that in Chapter 2 certain steady-state conditions have been shown to be un-
stable depending on the load torque values when only the feedforward control is
used. This drawback has been removed by using feedback controls in Chapters 2
and 4 in which the measurement of rotor speed plays a crucial role. The question
addressed in this preliminary section is this: what can be done if only stator currents
are measured and observers for rotor speed and rotor flux are not used?

On the basis of the steady-state stator currents

i∗sd =
ψ∗

M
+
ψ̇∗

αM

i∗sq =
ω̇∗

μψ∗ +
TL

Jμψ∗ , (5.1)

depending on the reference signals (ω∗,ψ∗), and of the measured stator currents[
isd
isq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
isa
isb

]
dε0

dt
= ω∗ +

αMω̇∗

μψ∗2 +
αMTL

Jμψ∗2 , (5.2)

the starting point of this section is to consider the simple PI feedback terms

vd(t) = −kp(isd(t)− i∗sd(t))− kI

∫ t

0
(isd(τ)− i∗sd(τ))dτ

vq(t) = −kp(isq(t)− i∗sq(t))− kI

∫ t

0
(isq(τ)− i∗sq(τ))dτ ; (5.3)

they are added to the left inverse feedforward control (1.74), so that the following
feedback control, which is based only on the stator current measurements (isa, isb),
is obtained:[

usa
usb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
usd
usq

]

usd = σ

[
ψ̇∗

M
+
ψ̈∗

αM
+
γψ∗

M
+
γψ̇∗

αM
− ω

∗ω̇∗

μψ∗ − ω∗TL

μJψ∗

−αM
ψ∗

(
ω̇∗

μψ∗ +
TL

Jμψ∗

)2

−βαψ∗ + vd

]
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usq = σ

[
ω̈∗

μψ∗ −
ω̇∗ψ̇∗

μψ∗2 − TLψ̇∗

Jμψ∗2 +
γω̇∗

μψ∗ +
γTL

Jμψ∗ +
ω∗ψ∗

M

+
ω∗ψ̇∗

αM
+
αM
ψ∗

(
ω̇∗

μψ∗ +
TL

Jμψ∗

)(
ψ∗

M
+
ψ̇∗

αM

)
+βω∗ψ∗ + vq

]

vd(t) = −kp(isd(t)− i∗sd(t))− kI

∫ t

0
(isd(τ)− i∗sd(τ))dτ

vq(t) = −kp(isq(t)− i∗sq(t))− kI

∫ t

0
(isq(τ)− i∗sq(τ))dτ[

isd
isq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
isa
isb

]

i∗sd =
ψ∗

M
+
ψ̇∗

αM

i∗sq =
ω̇∗

μψ∗ +
TL

Jμψ∗

ε̇0 = ω∗ +
αMω̇∗

μψ∗2 +
αMTL

μJψ∗2 . (5.4)

Since the purpose of the additive feedback term (5.3) is to use sufficiently high gains
(kp,kI) to drive the stator current tracking errors (isd − i∗sd) and (isq − i∗sq) quickly to
zero, we analyze the motor behavior when this aim is achieved, i.e. when the stator
current tracking errors

(
isd − i∗sd

)
and
(
isq − i∗sq

)
are kept equal to zero so that the

tracking error dynamics (2.3) are given by

d(ω−ω∗)
dt

= μ
[
(ψrd −ψ∗) i∗sq −ψrqi∗sd

]
d(ψrd −ψ∗)

dt
= −α (ψrd −ψ∗)− (ω−ω∗)ψrq +ω∗

s ψrq

dψrq

dt
= −αψrq +(ω−ω∗)(ψrd −ψ∗)

−ω∗
s (ψrd −ψ∗)+(ω−ω∗)ψ∗ (5.5)

in which

ω∗
s =

αMi∗sq

ψ∗ .

The reduced order tracking error dynamics (5.5), in the case of constant references
(ω∗,ψ∗) and TL �= 0, have an additional equilibrium point besides the origin

[(ω−ω∗) ,(ψrd −ψ∗) ,ψrq]
T = 0

which is given by
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(ω−ω∗) = −α
2

ω∗
s

+ω∗
s

=
Rr
(−ψ∗4 +T 2

L L2
r
)

L2
rψ∗2TL

(ψrd −ψ∗) = −
αψ∗(−α2

ω∗
s

+ω∗
s )

ω∗
s

[
−2α+ α

ω∗
s
(−α2

ω∗
s

+ω∗
s )
]

=
ψ∗ (−ψ∗4 +T 2

L L2
r
)

T 2
L L2

r +ψ∗4

ψrq = −
ψ∗(− α2

ω∗
s

+ωs)[
−2α+ α

ω∗
s
(−α2

ω∗
s

+ω∗
s )
]

=
LrTL
(−ψ∗4 +T 2

L L2
r
)

ψ∗ (T 2
L L2

r +ψ∗4
) (5.6)

when T 2
L �= ψ∗4

L2
r

and which collapses into the origin when T 2
L = ψ∗4

L2
r

. Consequently,
when

T 2
L �= ψ∗4

L2
r

the origin is not a globally attractive equilibrium point for the error system (5.5)
since an additional equilibrium point (5.6) exists. Furthermore, according to the
linear approximation Theorem A.7 in Appendix A:

1. if T 2
L < ψ∗4

L2
r

, then the origin is a locally (but not globally) exponentially stable
equilibrium point for the error system (5.5) (with a region of attraction and a
local transient behavior depending on motor parameters) while the additional
equilibrium point (5.6) is unstable;

2. if T 2
L > ψ∗4

L2
r

, then the origin is an unstable equilibrium point for the error system
(5.5) while the additional equilibrium point (5.6) is locally exponentially stable;

3. if T 2
L = ψ∗4

L2
r

, then we are in the critical case in which a saddle-node bifurcation
occurs and the linear approximation Theorem A.7 does not apply, since the linear
approximation has one eigenvalue with zero real part.
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Illustrative Simulations

First Simulation

We tested the feedforward control (5.1), (5.2) by simulations for the three-phase
single pole pair 0.6-kW induction motor whose parameters have been reported
in Chapter 1: stator currents dynamics have been neglected so that the stator cur-
rents (isa, isb) constitute the motor control inputs. The rotor speed initial condi-
tion has been set to zero while the rotor fluxes initial conditions have been set to
ψra(0) = ψrb(0) = 0.1Wb. The references for the speed and flux modulus along
with the applied load torque are reported in Figures 5.1–5.3. The rotor flux modulus
reference signal starts from 0.001Wb at t = 0s and grows up to the constant value
1.16Wb. The speed reference is zero until t = 0.32s and grows up to the constant
value 100rad/s; at t = 1.5s the speed is required to go up to the value 200rad/s, while
the reference for the flux modulus is reduced to 0.5Wb. A 5.8-Nm load torque is
applied to the motor and is reduced to 1.8Nm. Figures 5.2 and 5.3 show the time
histories of rotor speed and flux modulus along with the corresponding tracking
errors: the rotor speed and flux modulus track their references as long as the load
torque satisfies the inequality

TL <
ψ∗2

Lr

while rotor speed and flux modulus tracking cannot be guaranteed when the load
torque is greater than the critical value ψ∗2

Lr
. In fact, for a load torque TL = 1.8Nm

and a constant rotor flux reference ψ∗ = 0.5Wb, the origin of the error system
(5.5) turns out to be unstable while the computed additional equilibrium point for
(5.5) becomes exponentially stable: as illustrated by Figure 5.4, both the equilibrium
points for (5.5) (the origin and the additional one) correspond to limit cycles in the
state space, attractive or repulsive depending on the equilibrium nature. Finally, the
stator currents profiles (which are within physical saturation limits) are reported in
Figure 5.5.

Second Simulation

We tested the feedback control (5.4) by simulations for the three-phase single pole
pair 0.6-kW induction motor whose parameters have been reported in Chapter 1. All
the motor and controller initial conditions have been set to zero except for ψra(0) =
ψrb(0) = 0.1Wb. High gain integral-proportional actions with kp = 1200 and kI =
900 (in SI units) have been used. The references for the speed and flux modulus
along with the applied load torque are reported in Figures 5.6–5.8. The rotor flux
modulus reference signal starts from 0.001Wb at t = 0s and grows up to the constant
value 1.16Wb. The speed reference is zero until t = 0.32s and grows up to the
constant value 100rad/s; at t = 1.5s the speed is required to go up to the value
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Fig. 5.1 Feedforward control for current-fed motors: applied load torque TL

Fig. 5.2 Feedforward control for current-fed motors: rotor speed ω and its reference ω∗; rotor
speed tracking error

200rad/s, while the reference for the flux modulus is reduced to 0.5Wb. A 5.8-Nm
load torque is applied to the motor, is reduced to 0.5 Nm and then is increased to
2Nm. Figures 5.7 and 5.8 show the time histories of rotor speed and flux modulus
along with the corresponding tracking errors: the rotor speed and flux modulus track
their references when a 0.5-Nm load torque satisfying the inequality

TL <
ψ∗2

Lr

is applied, while rotor speed and flux modulus tracking are not guaranteed when a
2Nm load torque (greater than the value ψ∗2/Lr) is applied. Finally, the stator cur-
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Fig. 5.3 Feedforward control for current-fed motors: rotor flux modulus
√
ψ2

ra +ψ2
rb and its refer-

ence ψ∗; rotor flux modulus tracking error

Fig. 5.4 Feedforward control for current-fed motors: (ψra,ψrb,ω)-trajectories

in Figures 5.9 and 5.10.

In the next sections we shall explore the possibility of improving the control al-
gorithm analyzed in this section by using closed-loop rotor speed and flux observers.

rent and voltages profiles (which are within physical saturation limits) are reported
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Fig. 5.5 Feedforward control for current-fed motors: stator current vector (a,b)-components

Fig. 5.6 Feedback control (5.4): applied load torque TL

5.2 Global Control with Flux Measurements

The analysis carried out in Section 5.1 shows that the reference stator currents (5.1)
do not guarantee the asymptotic stability of the steady-state solutions for any refer-
ence signal (ω∗,ψ∗) and any load torque value since the inequality

T 2
L >

ψ∗4

L2
r

leads to instability. Hence, in this section we explore the possibility of adding feed-
back terms in the definition of the reference stator currents, on the basis of a closed-
loop rotor speed observer. We then make the unrealistic assumptions that rotor flux
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Fig. 5.7 Feedback control (5.4): rotor speed ω and its reference ω∗; rotor speed tracking error

Fig. 5.8 Feedback control (5.4): rotor flux modulus
√
ψ2

ra +ψ2
rb and its reference ψ∗; rotor flux

modulus tracking error

measurements are available and that all parameters are exactly known, to determine
whether asymptotic rotor speed and flux modulus tracking of arbitrary reference sig-
nals can be obtained from any motor initial condition in the most favorable situation
since, as we have seen, this property was not achieved by the control in the previous
section. Those unrealistic assumptions (measured fluxes and known motor parame-
ters) will then be relaxed in Sections 5.4 and 5.5 by using rotor flux observers and
parameter estimators.

We define the reference signals for isd and isq as (kω is a positive control param-
eter)
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Fig. 5.9 Feedback control (5.4): stator current vector (a,b)-components (isa, isb)

Fig. 5.10 Feedback control (5.4): stator voltage vector (a,b)-components (usa,usb)

i∗sd =
ψ∗

M
+
ψ̇∗

αM

i∗sq =
1
μψ∗

[
−kωsat(ω̂−ω∗)+

TL

J
+ ω̇∗
]

(5.7)

by inserting the feedback saturating term −kωsat(ω̂−ω∗) in (5.4) which depends on
the speed estimate ω̂ , whose dynamics are to be designed: the saturation function
sat(q) is a continuously differentiable odd function which is linear in a neighbor-
hood of the origin q = 0 and has a finite limit as |q| goes to infinity. The speed of
the rotating (d,q) frame is defined from (5.4) by replacing ω∗ by its estimate ω̂ and
i∗sq by the current measurement isq as follows:
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dε0

dt
= ω0 = ω̂+

αMisq

ψ∗ . (5.8)

The speed estimate ω̂ is provided by the rotor speed observer

˙̂ω = μ(ψrdisq −ψrqisd)− TL

J
+w (5.9)

which is based on the measurements of (ψrd ,ψrq), (isd , isq) and depends on the addi-
tional signal w which will be designed on the basis of the tracking errors. Note that
the availability of rotor fluxes (ψrd ,ψrq) is crucial in the design of the rotor speed
observer (5.9). Introducing the tracking and estimation errors

ω̃ = ω−ω∗

ψ̃rd = ψrd −ψ∗

ψ̃rq = ψrq

eω = ω̂−ω
ĩsd = isd − i∗sd

ĩsq = isq − i∗sq (5.10)

from (1.31), (5.7), (5.8), (5.9), and (5.10), we obtain the tracking and estimation
error dynamics

dω̃
dt

= −kωsat(ω̃+ eω)+μ(ψ̃rdisq − ψ̃rqisd)+μψ∗ ĩsq

dψ̃rd

dt
= −αψ̃rd +(ω0 −ω)ψ̃rq +αMĩsd

dψ̃rq

dt
= −αψ̃rq − (ω0 −ω)ψ̃rd − eωψ∗

deω
dt

= w

dĩsd

dt
=

usd

σ
+φd0 +φd1eω

dĩsq

dt
=

usq

σ
+φq0 +φq1eω (5.11)

in which the known terms

φd0 = −γ isd +ω0isq +αβψrd +βω̂ψrq − ψ̇
∗

M
− ψ̈∗

αM
φd1 = −βψrq

φq0 = −γ isq −ω0isd +αβψrq −βω̂ψrd

+
ψ̇∗

μψ∗2

[
−kωsat(ω̂−ω∗)+

TL

J
+ ω̇∗
]
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− 1
μψ∗

[
−kω

dsat(ω̂−ω∗)
d(ω̂−ω∗)

( ˙̂ω− ω̇∗)+ ω̈∗
]

φq1 = βψrd (5.12)

appear. In order to design the yet undetermined signal w in (5.9) and the feedback
control inputs (usd ,usq), consider the function (λ is a positive control parameter)

V0 =
1
2
(ψ̃2

rd + ψ̃2
rq)+

1
2
λe2
ω +

1
2
(ĩ2sd + ĩ2sq) (5.13)

whose time derivative along the trajectories of the closed-loop system (5.11) is

V̇0 = −α(ψ̃2
rd + ψ̃2

rq)+(λw−ψ∗ψ̃rq +φd1 ĩsd +φq1 ĩsq)eω

+
(usd

σ
+φd0 +αMψ̃rd

)
ĩsd +
(usq

σ
+φq0

)
ĩsq . (5.14)

If we define the feedback term w and the feedback control inputs (usd ,usq) as (ki is
a positive control parameter)

w =
ψ∗ψ̃rq

λ
− φd1 ĩsd

λ
− φq1 ĩsq

λ
usd = σ(−φd0 −αMψ̃rd − kiĩsd)
usq = σ(−φq0 − kiĩsq) (5.15)

then (5.14) becomes

V̇0 = −α(ψ̃2
rd + ψ̃2

rq)− ki(ĩ2sd + ĩ2sq) . (5.16)

From (5.9), (5.12), and (5.15) the complete rotor speed observer becomes

˙̂ω = μ(ψrdisq −ψrqisd)− TL

J
+
ψ∗ψ̃rq

λ
+
βψrqĩsd

λ
− βψrd ĩsq

λ
. (5.17)

From (5.13) and (5.16), it follows that ψ̃rd(t), ψ̃rq(t), eω(t), ĩsd(t), ĩsq(t) are bounded
time functions on [0,∞). Since ψ∗(t), i∗sd(t), i∗sq(t) are bounded time functions
on [0,∞), ψrd(t), ψrq(t), isd(t), isq(t) are bounded time functions on [0,∞). Since
ω0(t)−ω(t) = eω(t)+ αMisq(t)

ψ∗(t) is a bounded time function on [0,∞), ψ̇rd(t), ψ̇rq(t)
are bounded time functions on [0,∞). From (5.11) and (5.15), the closed-loop sys-
tem is

dω̃
dt

= −kωsat(ω̃+ eω)+μ(ψ̃rdisq − ψ̃rqisd)+μψ∗ ĩsq

dψ̃rd

dt
= −αψ̃rd +(ω0 −ω)ψ̃rq +αMĩsd

dψ̃rq

dt
= −αψ̃rq − (ω0 −ω)ψ̃rd − eωψ∗
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dĩsd

dt
= −kiĩsd −αMψ̃rd −βψrqeω

dĩsq

dt
= −kiĩsq +βψrdeω

deω
dt

=
ψ∗ψ̃rq

λ
+
βψrqĩsd

λ
− βψrd ĩsq

λ
. (5.18)

The last five equations in (5.18) may be rewritten as

ẋ(t) = A(t)x(t)+Γ T(t)y(t)

ẏ(t) = − 1
λ
Γ (t)x(t) (5.19)

with x(t) = [ψ̃rd(t), ψ̃rq(t), ĩsd(t), ĩsq(t)]T, y(t) = eω(t) and

A(t) =

⎡
⎢⎢⎣

−α (ω0(t)−ω(t)) αM 0
−(ω0(t)−ω(t)) −α 0 0

−αM 0 −ki 0
0 0 0 −ki

⎤
⎥⎥⎦

Γ T(t) =

⎡
⎢⎢⎣

0
−ψ∗(t)
−βψrq(t)
βψrd(t)

⎤
⎥⎥⎦ .

By virtue of the Persistency of Excitation Lemma A.3 in Appendix A, we can es-
tablish that, since persistency of excitation conditions are satisfied (ψ∗(t) ≥ cψ > 0
for all t ≥ 0), i.e. there exist two positive constants Tp and cp such that, for all t ≥ 0,

∫ t+Tp

t
Γ (τ)Γ T(τ)dτ =

∫ t+Tp

t

[
ψ∗2(τ)+β 2ψ2

rd(τ)+β 2ψ2
rq(τ)
]

dτ ≥ cp ,

the components of vectors x and y exponentially decay to zero for any initial condi-
tion x(0) and y(0). Recalling the first equation in (5.18), since isd(t), isq(t),ψ∗(t) are
bounded time functions on [0,∞) and ψ̃rd(t), ψ̃rq(t),eω(t), ĩsq(t) tend, due to persis-
tency of excitation, exponentially to zero, ω̃(t) tends exponentially to zero from any
initial condition ω̃(0) according to Lemma A.1 in Appendix A.

In conclusion, the global speed-sensorless control[
usa
usb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
usd
usq

]
usd = σ(−φd0 −αMψ̃rd − kiĩsd)
usq = σ(−φq0 − kiĩsq)



242 5 Speed-sensorless Feedback Control

i∗sd =
ψ∗

M
+
ψ̇∗

αM

i∗sq =
1
μψ∗

[
−kωsat(ω̂−ω∗)+

TL

J
+ ω̇∗
]

dε0

dt
= ω0 = ω̂+

αMisq

ψ∗

˙̂ω = μ(ψrdisq −ψrqisd)− TL

J
+
ψ∗ψ̃rq

λ
+
βψrqĩsd

λ
− βψrd ĩsq

λ[
ψrd
ψrq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
ψra
ψrb

]
[

isd
isq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
isa
isb

]

ĩsd = isd − i∗sd

ĩsq = isq − i∗sq

ψ̃rd = ψrd −ψ∗

ψ̃rq = ψrq

φd0 = −γisd +ω0isq +αβψrd +βω̂ψrq − ψ̇
∗

M
− ψ̈∗

αM
φq0 = −γisq −ω0isd +αβψrq −βω̂ψrd

+
ψ̇∗

μψ∗2

[
−kωsat(ω̂−ω∗)+

TL

J
+ ω̇∗
]

− 1
μψ∗

[
−kω

dsat(ω̂−ω∗)
d(ω̂−ω∗)

( ˙̂ω− ω̇∗)+ ω̈∗
]

(5.20)

is a second order dynamic control algorithm which is based on a closed-
loop rotor speed observer and on the measurements of the state variables
(ψra,ψrb, isa, isb), on the reference signals (ω∗,ψ∗), on the positive control
parameters kω , λ , ki, on the load torque TL, and on the machine parame-
ters M,Rr,Lr,J,Rs,Ls since μ = M

JLr
, α = Rr

Lr
, σ = Ls

(
1− M2

LsLr

)
, β = M

σLr
,

γ = Rs
σ +αβM; the origin (ω̃, ψ̃rd , ψ̃rq, ĩsd , ĩsq,eω) = 0 of the closed-loop sys-

tem (5.18) is globally uniformly asymptotically stable and locally exponen-
tially stable: in particular, for every motor initial condition (ω(0),ψra(0),
ψrb(0), isa(0), isb(0)) and any controller initial condition (ω̂(0),ε0(0)), ex-
ponential rotor speed and flux modulus tracking is achieved along with expo-
nential rotor speed estimation

lim
t→∞ [ω(t)−ω∗(t)] = 0
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lim
t→∞ [ω̂(t)−ω(t)] = 0 .

Remarks

1. Note that the controller contains a globally convergent closed-loop rotor speed
estimator since, in closed-loop,

lim
t→∞ [ω̂(t)−ω(t)] = 0 .

Hence (5.17) is a rotor speed observer when it operates along with the controller
in the closed-loop system.

2. The steady-state operating condition of the controller coincides with the inverse
control (1.74).

Illustrative Simulations

We tested the global speed-sensorless controller (5.20) by simulations for the three-
phase single pole pair 0.6-kW induction motor whose parameters have been re-
ported in Chapter 1. All initial conditions of the motor are set to zero. The simu-
lation test involves the following operating sequences: for 0 ≤ t < 0.36s the motor
is driven by the inverse control (1.74) (ε∗0 (0) = 0), while for t ≥ 0.36s the motor is
controlled by the proposed algorithm (ε0(0.36) = ε∗0 (0.36)) with control parameters
(the values are in SI units) kω = 20,λ = 0.001,ki = 2000. At t = 1.4s, a smooth in-
crease up to 10% in both rotor and stator resistances is simulated in the motor equa-
tions, while the controller maintains the nominal values. The references for rotor
speed and flux modulus and the applied load torque are reported in Figure 5.11. The
flux reference starts from 0.001Wb at t = 0 and grows up to the rated constant value
1.16Wb. The speed reference is zero until t = 0.32s and grows up to the constant
value 100rad/s. The closed-loop control is inserted at t = 0.36s and not at t = 0.32s,
so that there is an initial speed estimation error eω(0.36) =−2.426rad/s. A constant
load torque (5.8Nm, the rated value) is applied at t = 0.9s. Figures 5.12–5.14 show
the rotor speed, the rotor flux modulus, and the rotor speed estimate along with the
corresponding tracking and estimation errors, while Figures 5.15 and 5.16 show the
stator current and the stator voltage vectors (a,b)-components. Figures 5.12–5.14
show a fast speed estimation and a good tracking performance in nominal condi-
tions while steady-state tracking and estimation errors appear when both the stator
and the rotor resistances, for t ≥ 1.4s, are different from their nominal values.

lim
t→∞

[√
ψ2

ra(t)+ψ2
rb(t)−ψ∗(t)

]
= 0
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Fig. 5.11 Global speed-sensorless control (5.20): rotor speed and flux modulus reference signals
and applied load torque

Fig. 5.12 Global speed-sensorless control (5.20): rotor speed and rotor speed tracking error

5.3 Adaptive Control with Flux Measurements

In this section we design an adaptive version of the global control presented in the
previous section. While in the previous section all motor parameters were supposed
to be known, in this section we shall assume that both the critical parameters load
torque TL and rotor resistance Rr (which affects the parameter α = Rr/Lr) are uncer-
tain. We still maintain the assumption that the rotor fluxes are available for feedback:
this unrealistic assumption will be removed in the following sections by introducing
rotor flux observers. Note that the control algorithm designed in the previous section
depends on the parameters TL and α : in particular the speed of the rotating (d,q)
frame depends on α and the rotor speed estimation dynamics depends on TL. We
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Fig. 5.13 Global speed-sensorless control (5.20): rotor flux modulus and rotor flux modulus track-
ing error

Fig. 5.14 Global speed-sensorless control (5.20): rotor speed estimate and rotor speed estimation
error

introduce, as in (5.7), a saturation function sat(q), a continuously differentiable odd
function which is linear in a neighborhood of the origin q = 0 and has a finite limit
as |q| goes to infinity. We modify the reference current signals for isd and isq in (5.7)
as (kω is a positive control parameter)

i∗sd =
ψ∗

M
+
ψ̇∗

α̂M

i∗sq =
1
μψ∗

[
−kωsat(ω̂−ω∗)+

T̂L

J
+ ω̇∗
]

(5.21)
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Fig. 5.15 Global speed-sensorless control (5.20): stator current vector (a,b)-components

Fig. 5.16 Global speed-sensorless control (5.20): stator voltage vector (a,b)-components

and the speed of the rotating (d,q) frame in (5.8) as

ε̇0 = ω0 = ω̂+
α̂Mi∗sq

ψ∗ (5.22)

where α̂ and T̂L are the estimates of the uncertain parameters α and TL, respectively,
and ω̂ is the speed estimate provided by the rotor speed observer [a modification of
(5.9)]

˙̂ω = μ(ψrdisq −ψrqisd)− T̂L

J
+η (5.23)
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in which the additional term η will be determined later on the basis of the tracking
errors. If we compare (5.7), (5.8), (5.9) with (5.21), (5.22), (5.23) we note that they
are the same with TL and α replaced by their estimates T̂L and α̂ and with i∗sq in
(5.22) replacing isq in (5.8). As we shall see, the adaptation for α̂ will be designed
using a projection algorithm guaranteeing that α̂(t) ≥ cα > 0 for all t ≥ 0 so that
i∗sd , which is divided by α̂ , is well defined. Our goal is to design the feedback term
η in (5.23), the feedback control inputs (usd ,usq), and the adaptation laws for the
estimates T̂L and α̂ , so that the tracking and the estimation errors asymptotically
tend to zero. To this end, we introduce the tracking and the estimation errors

ω̃ = ω−ω∗

ψ̃rd = ψrd −ψ∗

ψ̃rq = ψrq

eω = ω̂−ω
ĩsd = isd − i∗sd

ĩsq = isq − i∗sq

α̃ = α− α̂
T̃L = TL − T̂L ; (5.24)

from (1.31), (5.21), (5.22), (5.23), (5.24), we can write the tracking and the estima-
tion error dynamics as

dω
dt

= −kωsat(ω̃+ eω)+μ(ψ̃rdisq − ψ̃rqisd)+μψ∗ ĩsq − T̃L

J
dψ̃rd

dt
= −αψ̃rd +(ω0 −ω)ψ̃rq +(Mi∗sd −ψ∗)α̃+αMĩsd

dψ̃rq

dt
= −αψ̃rq − (ω0 −ω)ψ̃rd − eωψ∗ +Mi∗sqα̃+αMĩsq

deω
dt

= η+
T̃L

J
dĩsd

dt
=

usd

σ
+φd0 +βαψ̃rd −β (ω0 −ω)ψ̃rq −β (Mi∗sd −ψ∗)α̃−βαMĩsd

dĩsq

dt
=

usq

σ
+φq0 +βαψ̃rq +β (ω0 −ω)ψ̃rd +βeωψ∗ −βMi∗sqα̃−βαMĩsq

(5.25)

in which

φd0 = −Rs

σ
isd +ω0isq +βα̂ψ∗ +βω0ψrq −βα̂Mi∗sd

− ψ̇
∗

M
− ψ̈∗

α̂M
+
ψ̇∗ ˙̂α
α̂2M

φq0 = −Rs

σ
isq −ω0isd −βω̂ψ∗ −βα̂Mi∗sq −βω0ψ̃rd
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+
ψ̇∗

μψ∗2

[
−kωsat(ω̂−ω∗)+

T̂L

J
+ ω̇∗
]

− 1
μψ∗

[
−kω

d[sat(ω̂−ω∗)]
d[ω̂−ω∗]

( ˙̂ω− ω̇∗)+
˙̂T L

J
+ ω̈∗
]

. (5.26)

We introduce the new error variables

zd = ĩsd +βψ̃rd

zq = ĩsq +βψ̃rq (5.27)

so that the error equations (5.25), expressed in the new coordinates, become

˙̃ω = −kωsat(ω̃+ eω)+μ(ψ̃rdisq − ψ̃rqisd)+μψ∗zq

−μψ∗βψ̃rq − T̃L

J
˙̃ψrd = −(α+αMβ )ψ̃rd +(ω0 −ω)ψ̃rq

+(Mi∗sd −ψ∗)α̃+αMzd

˙̃ψrq = −(α+αMβ )ψ̃rq − (ω0 −ω)ψ̃rd − eωψ∗

+Mi∗sqα̃+αMzq

ėω = η+
T̃L

J

żd =
usd

σ
+φd0

żq =
usq

σ
+φq0 . (5.28)

Consider the positive definite function (λ1,λ2,λ3 are positive control parameters)

V =
1
2

(
ψ̃2

rd + ψ̃2
rq + zd

2 + zq
2
)

+
λ1

2
e2
ω +

λ2
2

λ1J2 T̃ 2
L

−λ2

J
eω T̃L +

λ3

2
α̃2 (5.29)

whose time derivative along the trajectories of the closed-loop system (5.28) is

V̇ = −(α+αMβ )
(
ψ̃2

rd + ψ̃2
rq

)
+αM

(
zdψ̃rd + zqψ̃rq

)

+

[
usd

σ
+φd0

]
zd +

[
usq

σ
+φq0

]
zq

+
λ1

J
eω T̃L − λ2

J2 T̃ 2
L +
[
λ1η−ψ∗ψ̃rq

]
eω − λ2

J
eω ˙̃T L

+

(
2λ2

2

λ1J2
˙̃T L − λ2

J
η

)
T̃L



5.3 Adaptive Control with Flux Measurements 249

+
[
(Mi∗sd −ψ∗)ψ̃rd +Mi∗sqψ̃rq +λ3 ˙̃α

]
α̃ . (5.30)

We design the adaptation law for α̂ as

˙̂α = Projα

(
1
λ3

[
(Mi∗sd −ψ∗)ψ̃rd +Mi∗sqψ̃rq

]
, α̂

)
, α̂(0) = α̂0 (5.31)

where Projα(ξ , α̂) is the smooth projection algorithm given by (A.25) in Ap-
pendix A and defined in our case by

Projα(ξ , α̂) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ξ if αm ≤ α̂ ≤ αM
ξ if α̂ < αm and ξ ≥ 0
ξ if α̂ > αM and ξ ≤ 0
ξ
[
1− αm

2−α̂2

αm2−(αm−ε1)2

]
if α̂ < αm and ξ < 0

ξ
[
1− α̂2−αM

2

(αM+ε1)2−αM2

]
if α̂ > αM and ξ > 0

(5.32)

with αm = Rrm/Lr and αM = RrM/Lr the (known) lower and upper bounds of α ,
respectively, and ε1 an arbitrary positive constant such that αm − ε1 > 0. The initial
condition α̂0 in (5.31) is chosen so that αm ≤ α̂0 ≤ αM . Property (iii) of the projec-
tion algorithm (see Appendix A) implies that substituting (5.31) in (5.30) we obtain
the inequality

V̇ ≤ −(α+αMβ )
(
ψ̃2

rd + ψ̃2
rq

)
+αM

(
zdψ̃rd + zqψ̃rq

)

+

[
usd

σ
+φd0

]
zd +

[
usq

σ
+φq0

]
zq

+
λ1

J
eω T̃L − λ2

J2 T̃ 2
L +
[
λ1η−ψ∗ψ̃rq

]
eω

−λ2

J
eω ˙̃T L +

(
2λ2

2

λ1J2
˙̃T L − λ2

J
η

)
T̃L . (5.33)

We define the additive feedback term η in (5.23) and the adaptation dynamics for
T̂L as

η =

⎧⎪⎪⎨
⎪⎪⎩

2ψ∗
λ1
ψ̃rq if pη(T̂L) ≤ 0

2ψ∗
λ1
ψ̃rq if pη(T̂L) > 0 and − d pη (T̂L)

dT̂L
ψ̃rq ≤ 0

2ψ∗
λ1[1+pη (T̂L)]

ψ̃rq otherwise.

˙̂T L =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
− Jψ∗
λ2
ψ̃rq if pη(T̂L) ≤ 0

− Jψ∗
λ2
ψ̃rq if pη(T̂L) > 0 and − d pη (T̂L)

dT̂L
ψ̃rq ≤ 0

− Jψ∗[1−pη (T̂L)]
λ2[1+pη (T̂L)]

ψ̃rq otherwise
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T̂L(0) = T̂L0 (5.34)

where pη(T̂L) = T̂ 2
L −TLM

2

2ε2TLM+ε2
2

and |T̂L0| ≤ TLM , with TLM a known upper bound on |TL|
and ε2 > 0. Since

sgn(ψ̃rq) = sgn(η) (5.35)

from (5.34) we can write

˙̂T L = ProjT

(
−λ1J

2λ2
η , T̂L

)
, T̂L(0) = T̂L0 (5.36)

where ProjT (ϕ , T̂L) is the smooth projection algorithm given by (A.25) in Ap-
pendix A and defined in our case by

ProjT [ϕ, T̂L] =

⎧⎪⎨
⎪⎩
ϕ if pη(T̂L) ≤ 0

ϕ if pη(T̂L) > 0 and d pη (T̂L)
dT̂L

ϕ ≤ 0

[1− pη(T̂L)]ϕ otherwise.

Denoting by

χ = −(α+αMβ )
(
ψ̃2

rd + ψ̃2
rq

)
+αM

(
zdψ̃rd + zqψ̃rq

)

+

[
usd

σ
+φd0

]
zd +
[usq

σ
+φq0

]
zq +

λ1

J
eω T̃L − λ2

J2 T̃ 2
L

by virtue of Property (iii) of the projection algorithm (see Appendix A), from (5.33),
(5.34), (5.35), and (5.36), we can write

V̇ ≤ χ+
[
λ1η−ψ∗ψ̃rq

]
eω +

λ2

J
eω ˙̂T L

+

(
−2λ2

2

λ1J2 ProjT

[
−λ1J

2λ2
η , T̂L

]
− λ2

J
η

)
T̃L

≤ χ+
[
λ1η−ψ∗ψ̃rq

]
eω +

λ2

J
eω ˙̂T L = χ (5.37)

and, completing the squares, we finally obtain

V̇ ≤ −α
(
ψ̃2

rd + ψ̃2
rq

)
+
αM
4β

(
z2

d + z2
q

)

+

[
usd

σ
+φd0

]
zd +

[
usq

σ
+φq0

]
zq +

λ1

J
eω T̃L − λ2

J2 T̃ 2
L . (5.38)

We define the control inputs as (kz is a positive control parameter)
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usd = σ

[
−φd0 −

(
kz +

αMM
4β

)
zd

]

usq = σ

[
−φq0 −

(
kz +

αMM
4β

)
zq

]
(5.39)

so that (5.38) becomes

V̇ ≤ −α
(
ψ̃2

rd + ψ̃2
rq

)
−
[

kz +
(αM −α)M

4β

](
z2

d + z2
q

)
+
λ1

J
eω T̃L − λ2

J2 T̃ 2
L

≤ −min
{
αm,kz

}(
ψ̃2

rd + ψ̃2
rq + z2

d + z2
q

)
+
λ1

J
eω T̃L − λ2

J2 T̃ 2
L . (5.40)

The closed-loop system is

˙̃ω = −kωsat(ω̃+ eω)+μ(ψ̃rdisq − ψ̃rqisd)+μψ∗zq

−μψ∗βψ̃rq − T̃L

J
˙̃ψrd = −(α+αMβ )ψ̃rd +(ω0 −ω)ψ̃rq +(Mi∗sd −ψ∗)α̃+αMzd

˙̃ψrq = −(α+αMβ )ψ̃rq − (ω0 −ω)ψ̃rd − eωψ∗ +Mi∗sqα̃+αMzq

żd = −
(

kz +
αMM

4β

)
zd

żq = −
(

kz +
αMM

4β

)
zq

ėω =
T̃L

J
+

⎧⎪⎪⎨
⎪⎪⎩

2ψ∗
λ1
ψ̃rq if pη(T̂L) ≤ 0

2ψ∗
λ1
ψ̃rq if pη(T̂L) > 0 and − d pη (T̂L)

dT̂L
ψ̃rq ≤ 0

2ψ∗
λ1[1+pη (T̂L)]

ψ̃rq otherwise

˙̃α = −Projα

(
1
λ3

[
(Mi∗sd −ψ∗)ψ̃rd +Mi∗sqψ̃rq

]
, α̂

)

˙̃T L =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Jψ∗
λ2
ψ̃rq if pη(T̂L) ≤ 0

Jψ∗
λ2
ψ̃rq if pη(T̂L) > 0 and − d pη (T̂L)

dT̂L
ψ̃rq ≤ 0

Jψ∗[1−pη (T̂L)]
λ2[1+pη (T̂L)]

ψ̃rq otherwise.

(5.41)

The last seven equations in (5.41) may be rewritten as

ẋ(t) =
[
A(t)+S(t,y)

]
x(t)+B(t)y(t)

ẏ(t) = D(t)x(t)+Ew(t)
ẇ(t) = F(t)x(t) (5.42)
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with x = [ψ̃rd , ψ̃rq,zd ,zq]T, y = [eω , α̃]T, w = T̃L, and

A =

⎡
⎢⎢⎢⎢⎢⎣

−(α+αMβ )
α̂Mi∗sq
ψ∗ αM 0

− α̂Mi∗sq
ψ∗ −(α+αMβ ) 0 αM

0 0 −
(

kz + αMM
4β

)
0

0 0 0 −
(

kz + αMM
4β

)

⎤
⎥⎥⎥⎥⎥⎦

S =

⎡
⎢⎢⎣

0 eω 0 0
−eω 0 0 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

B =

⎡
⎢⎢⎣

0 Mi∗sd −ψ∗
−ψ∗ Mi∗sq

0 0
0 0

⎤
⎥⎥⎦

D =

[
0 g1

2ψ∗
λ1

0 0

−g2
ψ̇∗
λ3α̂

−g2
Mi∗sq
λ3

0 0

]

E =
[

1/J
0

]

F =
[

0 Jψ∗
λ2

g3 0 0
]

(5.43)

with gi(t), i = 1,2,3, being suitable time functions such that 0 ≤ gi(t) ≤ 1 for all
t ≥ 0. Consider the positive definite function

U =
1
2

(
z2

d + z2
q +ψ2

rd +ψ2
rq

)
(5.44)

whose time derivative is

U̇ = −
(

kz +
αMM

4β

)(
z2

d + z2
q

)
−α
(
ψ2

rd +ψ2
rq

)
+αMisdψrd +αMisqψrq . (5.45)

Substituting in (5.45) the expressions of (isd , isq) obtained from (5.27), we have

U̇ = −
(

kz +
αMM

4β

)(
z2

d + z2
q

)
− (α+αMβ )

(
ψ2

rd +ψ2
rq

)

+αM
[
i∗sd + zd +βψ∗

]
ψrd +αM

[
i∗sq + zq

]
ψrq

≤ −min
{

kz,αm

}(
z2

d + z2
q +ψ2

rd +ψ2
rq

)
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+αM
[
i∗sd +βψ∗

]
ψrd +αMi∗sqψrq . (5.46)

Since i∗sd(t) and i∗sq(t) in (5.21) are bounded time functions on [0,∞) [recall that the
adaptation for α̂ and T̂L has been designed using a projection algorithm], from (5.44)
and (5.46) it follows that zd(t), zq(t), ψrd(t), and ψrq(t) are bounded time functions
on [0,∞) and, consequently, η(t), ˙̂α(t), and ˙̂T L(t) are bounded time functions on
[0,∞). From (5.21), since ˙̂α(t) is a bounded time function on [0,∞), di∗sd(t)

dt is a
bounded time function on [0,∞). Sinceψrd(t) andψrq(t) are bounded time functions
on [0,∞) and since, from (5.27)

isd = i∗sd + zd −βψrd +βψ∗

isq = i∗sq + zq −βψrq

isd(t) and isq(t) are bounded time functions on [0,∞), it follows from (5.23) that
˙̂ω(t) is a bounded time function on [0,∞). Since ˙̂T L(t) and ˙̂ω(t) are bounded time

functions on [0,∞), it follows that
di∗sq(t)

dt is a bounded time function on [0,∞). There-
fore we can establish that ‖A(t)‖ ≤ AM , ‖B(t)‖ ≤ BM , ‖D(t)‖ ≤ DM , ‖Ḃ(t)‖ ≤ ḂM
for all t ≥ 0, with AM,BM,DM, ḂM known positive reals. If we define ψ̇∗(t) and the
positive reals Tα ,kα in order to satisfy

∫ t+Tα

t

[dψ∗(τ)
dτ

]2
dτ ≥ kα > 0, ∀t ≥ 0 (5.47)

so that persistency of excitation condition holds, i.e. a positive real k exists such that

∫ t+Tα

t
BT(τ)B(τ)dτ ≥ kI, ∀t ≥ 0

and if we choose the positive control parameter λ2 in order to satisfy the inequalities

λ2 >
λ 2e4T

pk2 +8pB4
M (5.48)

p <
min
{
αm,kz

}
16(B4

MD2
M +B2

MA2
M + Ḃ2

M +B2
M)+B2

M
, (5.49)

then system (5.42) complies with the hypotheses of the Persistency of Excitation
Lemma A.3 in Appendix A: the equilibrium point (ψ̃rd , ψ̃rq,zd ,zq,eω , α̃ , T̃L) = 0
is locally exponentially stable. Recalling the first equation in (5.41), since isd(t)
and isq(t) are bounded time functions on [0,∞) and ψ̃rd , ψ̃rq, zq, eω , and T̃L tend
exponentially to zero as t goes to infinity, ω̃ tends exponentially to zero for any
sufficiently small initial conditions. In summary, if λ2 is chosen so that (5.48) and
(5.49) are satisfied then, for any sufficiently small initial condition:

1. since ω̃(t) tends exponentially to zero, exponential rotor speed tracking is
achieved;
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2. since ψ̃rd(t) and ψ̃rq(t) tend exponentially to zero, exponential rotor flux tracking
is achieved and the rotor flux vector is exponentially oriented as the d-axis of the
(d,q) frame;

3. since ψ̃rd(t), ψ̃rq(t), zd(t) and zq(t) tend exponentially to zero, from (5.27) it
follows that ĩsd(t) and ĩsq(t) tend exponentially to zero, i.e. the stator currents
tend exponentially to the corresponding reference signals;

4. since eω(t) tends exponentially to zero, the rotor speed is exponentially esti-
mated;

5. since α̃(t) and T̃L(t) tend exponentially to zero, the rotor resistance Rr and the
load torque TL are exponentially estimated.

In conclusion, the adaptive speed-sensorless control[
usa
usb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
usd
usq

]

usd = σ

[
−φd0 −

(
kz +

αMM
4β

)
zd

]

usq = σ

[
−φq0 −

(
kz +

αMM
4β

)
zq

]

i∗sd =
ψ∗

M
+
ψ̇∗

α̂M

i∗sq =
1
μψ∗

[
−kωsat(ω̂−ω∗)+

T̂L

J
+ ω̇∗
]

ε̇0 = ω0 = ω̂+
α̂Mi∗sq

ψ∗

˙̂α = Projα

(
1
λ3

[
(Mi∗sd −ψ∗)ψ̃rd +Mi∗sqψ̃rq

]
, α̂

)

Projα(ξ , α̂) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ξ if αm ≤ α̂ ≤ αM
ξ if α̂ < αm and ξ ≥ 0
ξ if α̂ > αM and ξ ≤ 0
ξ
[
1− αm

2−α̂2

αm2−(αm−ε1)2

]
if α̂ < αm and ξ < 0

ξ
[
1− α̂2−αM

2

(αM+ε1)2−αM2

]
if α̂ > αM and ξ > 0

˙̂ω = μ(ψrdisq −ψrqisd)− T̂L

J
+η

η =

⎧⎪⎪⎨
⎪⎪⎩

2ψ∗
λ1
ψ̃rq if pη(T̂L) ≤ 0

2ψ∗
λ1
ψ̃rq if pη(T̂L) > 0 and − d pη (T̂L)

dT̂L
ψ̃rq ≤ 0

2ψ∗
λ1[1+pη (T̂L)]

ψ̃rq otherwise.
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˙̂T L =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
− Jψ∗
λ2
ψ̃rq if pη(T̂L) ≤ 0

− Jψ∗
λ2
ψ̃rq if pη(T̂L) > 0 and − d pη (T̂L)

dT̂L
ψ̃rq ≤ 0

− Jψ∗[1−pη (T̂L)]
λ2[1+pη (T̂L)]

ψ̃rq otherwise

pη(T̂L) =
T̂ 2

L −TLM
2

2ε2TLM + ε2
2

ψ̃rd = ψrd −ψ∗

ψ̃rq = ψrq

ĩsd = isd − i∗sd

ĩsq = isq − i∗sq

zd = ĩsd +βψ̃rd

zq = ĩsq +βψ̃rq[
ψrd
ψrq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
ψra
ψrb

]
[

isd
isq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
isa
isb

]

φd0 = −Rs

σ
isd +ω0isq +βα̂ψ∗ +βω0ψrq −βα̂Mi∗sd

− ψ̇
∗

M
− ψ̈∗

α̂M
+
ψ̇∗ ˙̂α
α̂2M

φq0 = −Rs

σ
isq −ω0isd −βω̂ψ∗ −βα̂Mi∗sq −βω0ψ̃rd

+
ψ̇∗

μψ∗2

[
−kωsat(ω̂−ω∗)+

T̂L

J
+ ω̇∗
]

− 1
μψ∗

[
−kω

d[sat(ω̂−ω∗)]
d[ω̂−ω∗]

( ˙̂ω− ω̇∗)+
˙̂T L

J
+ ω̈∗
]

(5.50)

is a fourth order dynamic control algorithm which depends on the mea-
surements of the state variables (ψra,ψrb, isa, isb), on the reference sig-
nals (ω∗,ψ∗), on the positive control parameters kω , kz, λ1, λ2, λ3, αm,
αM , TLM , and on the machine parameters M,Lr,J,Rs,Ls since μ = M

JLr
,

σ = Ls

(
1− M2

LsLr

)
, β = M

σLr
; the origin (ω̃, z̃d , z̃q, ĩsd , ĩsq, eω , α̃, T̃L) = 0 of

the closed-loop system (5.41) is globally uniformly asymptotically stable
and locally exponentially stable: in particular for every motor initial condi-
tion (ω(0),ψra(0), ψrb(0), isa(0), isb(0)) and any controller initial condition
(ω̂(0),ε0(0)), exponential rotor speed and flux modulus tracking is achieved
along with exponential estimation of rotor speed, load torque and parameter
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α , provided that the reference signal ψ∗ is chosen so that the persistency of
excitation (5.47) is satisfied and that the control parameter λ2 is chosen to
satisfy the inequality

λ2 >
λ 2e4T

pk2 +8pB4
M

with

p <
min
{
αm,kz

}
16(B4

MD2
M +B2

MA2
M + Ḃ2

M +B2
M)+B2

M
.

Remarks

1. The dynamic compensator contains five parameters (kω ,λ1,λ2,λ3,kz) whose role
may be evaluated by examining both the closed-loop error equations (5.41) and
the corresponding stability analysis. The parameters kz and kω directly affect the
dynamics of the error variables (zd ,zq) and the speed tracking error ω̃ , respec-
tively; the parameter λ1 determines the influence of the rotor flux vector quadra-
ture component tracking error ψ̃rq on the rotor speed estimation error eω ; the
parameters λ−1

2 and λ−1
3 are the adaptation gains for T̂L and α̂ , respectively, and

the smaller they are chosen, the slower the adaptations for T̂L and α̂ result.
2. From (5.43) it follows that ḂM depends on

di∗sq(t)
dt which, in turn, depends on λ−1

2

(through ˙̂T L). More precisely, ḂM either decreases or remains constant when λ2
increases, so that (5.49) may be satisfied.

3. If ‖[ψ̇∗(t), ω̈∗(t)]‖ = 0, then the persistency of excitation condition, recalling
the structure of B(t), may not be satisfied. This fact can be clearly deduced con-
sidering the closed-loop system (5.41): since, from (5.21), (Mi∗sd −ψ∗) = ψ̇∗

α̂ ,
if ‖[ψ̇∗(t),ω̈∗(t)]‖ = 0, we have that all the points (ω̃, ψ̃rd , ψ̃rq, zd , zq, eω , α̃ ,

T̃L) = (−gα̃ , 0,0, 0,0, gα̃ , α̃ , 0), with g = M
μψ∗2

(
ω̇∗+ TL

J

)
, are equilibrium points

for system (5.41). Moreover, if ‖[ω̇∗(t),TL(t)]‖=0, then g = 0 and all the points
(ω̃ , ψ̃rd , ψ̃rq, zd , zq, eω , α̃ , T̃L) = (0, 0, 0, 0, 0, 0,α̃ , 0) are equilibrium points for
system (5.41).

4. If TL is known, we may set

i∗sq =
1
μψ∗

[
−kωsat(ω̂−ω∗)+

TL

J
+ ω̇∗
]
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˙̂ω = μ(ψrdisq −ψrqisd)− TL

J
+

2ψ∗

λ1
ψ̃rq

φq0 = −Rs

σ
isq −ω0isd −βω̂ψ∗ −βα̂Mi∗sq −βω0ψ̃rd

+
ψ̇∗

μψ∗2

[
−kωsat(ω̂−ω∗)+

TL

J
+ ω̇∗
]

− 1
μψ∗

[
−kω

d[sat(ω̂−ω∗)]
d[ω̂−ω∗]

( ˙̂ω− ω̇∗)+ ω̈∗
]

.

The closed-loop system becomes

˙̃ω = −kωsat(ω̃+ eω)+μ(ψ̃rdisq − ψ̃rqisd)+μψ∗zq −μψ∗βψ̃rq

˙̃ψrd = −(α+αMβ )ψ̃rd +(ω0 −ω)ψ̃rq +(Mi∗sd −ψ∗)α̃+αMzd

˙̃ψrq = −(α+αMβ )ψ̃rq − (ω0 −ω)ψ̃rd − eωψ∗ +Mi∗sqα̃+αMzq

żd = −
(

kz +
αMM

4β

)
zd

żq = −
(

kz +
αMM

4β

)
zq

ėω =
2ψ∗

λ1
ψ̃rq

˙̃α = −Projα

(
1
λ3

[
(Mi∗sd −ψ∗)ψ̃rd +Mi∗sqψ̃rq

]
, α̂

)
. (5.51)

Consider the positive definite function

Vn =
1
2

(
ψ̃2

rd + ψ̃2
rq + zd

2 + zq
2
)

+
1
4
λ1e2

ω +
λ3

2
α̃2 (5.52)

whose time derivative along the trajectories of the closed-loop system (5.51) sat-
isfies the inequality

V̇n ≤ −min
{
αm,kz

}(
ψ̃2

rd + ψ̃2
rq + z2

d + z2
q

)
. (5.53)

From (5.52) and (5.53) it follows that ψ̃rd(t), ψ̃rq(t), zd(t), zq(t), eω(t), and α̃(t)
are bounded time functions on [0,∞). Since ψ̃rd(t), ψ̃rq(t), zd(t), zq(t), i∗sd(t),
and i∗sq(t) are bounded time functions on [0,∞), it follows that isd(t) and isq(t) are

bounded time functions on [0,∞) and, consequently, di∗sd(t)
dt and

di∗sq(t)
dt are bounded

time functions on [0,∞). The last six equations in (5.51) may be rewritten as
(x = [ψ̃rd , ψ̃rq,zd ,zq]T, y = [eω , α̃ ]T)

ẋ(t) = Ā(t)x(t)+B(t)y(t)
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ẏ(t) = D̄(t)x(t) (5.54)

with Ā(t) = A(t)+S(t,y) and

D̄ =

[
0 2ψ∗

λ1
0 0

−ḡ ψ̇∗
λ3α̂

−ḡ
Mi∗sq
λ3

0 0

]

with ḡ(t) a suitable bounded time function such that 0 ≤ ḡ(t) ≤ 1 for all t ≥ 0.
The reference signal ψ∗(t) is chosen so that there exists positive reals Tα ,kα
satisfying

∫ t+Tα

t

[dψ∗(τ)
dτ

]2
dτ ≥ kα > 0, ∀t ≥ 0

so that the persistency of excitation condition holds, i.e. a positive k exists such
that ∫ t+Tα

t
BT(τ)B(τ)dτ ≥ kI, ∀t ≥ 0 ;

then system (5.54) complies with the hypotheses of the Persistency of Excita-
tion Lemma A.3 in Appendix A: the point (ψ̃rd , ψ̃rq,zd ,zq,eω , α̃) = 0 is globally
uniformly asymptotically stable and exponentially stable for initial conditions in
any compact set. Recalling the first equation in (5.51), since isd(t) and isq(t) are
bounded time functions on [0,∞) and ψ̃rd(t), ψ̃rq(t), zq(t), and eω(t) tend expo-
nentially to zero, ω̃(t) tends exponentially to zero for any initial condition: in
particular, the origin is a globally uniformly asymptotically and locally exponen-
tially stable equilibrium point for system (5.51).

Illustrative Simulations

We tested the adaptive speed-sensorless control (5.50) by simulations for the three-
phase single pole pair 0.6-kW induction motor whose parameters have been re-
ported in Chapter 1. The control parameters are (the values are in SI units): kω = 60,
λ−1

1 = 6,000, λ−1
2 = 180/J, λ−1

3 = 75, kz + αMM
4β = 700, αm = 3.5, αM = 18,

ε1 = 0.5, TLM = 8, ε2 = 1. Due to the conservative nature of Lyapunov analysis,
the values of λ2 satisfying (5.48) and (5.49) may be larger than those achieving the
control objective: as a matter of fact, in order to improve the performance, the sim-
ulation was carried out by setting λ2

−1 = 180/J which does not satisfy (5.48) and
(5.49). All initial conditions of the motor and of the controller are set to zero except
α̂(0) = 13.2 s−1, which is 50% greater than the true parameter value α = 8.8s−1.
The references for rotor speed and flux modulus along with the applied torque are
reported in Figure 5.17. The rotor flux modulus reference starts from 0.001Wb at
t = 0s, grows up to the rated constant value 1.16Wb and, at t = 0.45s, a persis-
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tently exciting signal is added in order to avoid the identifiability problems. The
speed reference is zero until t = 0.32s and grows up to the constant value 100rad/s.
A constant load torque (5.8Nm) is applied at t = 0.9s. Figures 5.18–5.22 show the
rotor speed, the rotor flux modulus, the rotor speed estimate, the load torque es-
timate, and the α estimate, along with the corresponding tracking and estimation
errors, while Figures 5.23 and 5.24 show the stator current and the stator voltage
vectors (a,b) components. Under persistency of excitation, fast estimation and good
tracking performance are obtained.

Fig. 5.17 Adaptive speed-sensorless control (5.50): rotor speed and flux modulus reference signals
and applied load torque

Fig. 5.18 Adaptive speed-sensorless control (5.50): rotor speed and rotor speed tracking error
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Fig. 5.19 Adaptive speed-sensorless control (5.50): rotor flux modulus and rotor flux modulus
tracking error

Fig. 5.20 Adaptive speed-sensorless control (5.50): rotor speed estimate and rotor speed estima-
tion error

5.4 Adaptive Control with Uncertain Load Torque

In this section we address the problem discussed in the previous section without the
unrealistic assumption that rotor fluxes are available for feedback but assuming that
the rotor resistance is known. We will introduce closed-loop rotor flux observers
and modify the control algorithm obtained in the previous section by replacing the
rotor fluxes by the corresponding estimates given by the observers. To this end, we
design the stator current control loop as
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Fig. 5.21 Adaptive speed-sensorless control (5.50): load torque estimate and load torque estima-
tion error

Fig. 5.22 Adaptive speed-sensorless control (5.50): α estimate and α estimation error

[
usa
usb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
usd
usq

]

usd = σβ

[
−gd

β
−α(ψ̂rd −ψ∗)− ki

γ f μ
ĩsd

]

usq = σβ

[
−gq

β
−ψ∗(ω̂−ω∗)− ki

γ f μ
ĩsq

]

ĩsd = isd − i∗sd

ĩsq = isq − i∗sq
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Fig. 5.23 Adaptive speed-sensorless control (5.50): stator current vector (a,b)-components

Fig. 5.24 Adaptive speed-sensorless control (5.50): stator voltage vector (a,b)-components

[
isd
isq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
isa
isb

]
(5.55)

in which the reference signals (i∗sd , i
∗
sq) for (isd , isq) and the speed of the rotating

frame ω0 (which, as in the field-oriented control strategy, are responsible for rotor
speed and flux modulus tracking) are designed as (compare with the corresponding
signals in the control algorithm presented in Section 2.7)

i∗sd =
ψ∗

M
+
ψ̇∗

αM
+

kψ
αμγ f

(ψ∗ − ψ̂rd)

− 1
αμψ∗

(TLn

J
+

sat(θ̂)
J

+ ω̇∗
)
(ω̂−ω∗)
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i∗sq =
1
μψ∗

[
−kω(ω̂−ω∗)+

TLn

J
+

sat(θ̂)
J

+ ω̇∗
]

ε̇0 = ω0 = ω̂+
αMisq

ψ∗ +
kψMψ̂rq

γ f μψ∗

− M
ψ∗

[
ψ∗

M
+
ψ̇∗

αM

]
(ω̂−ω∗) ; (5.56)

the estimates (ω̂, ψ̂rd , ψ̂rq) for the unmeasured state variables (ω,ψrd ,ψrq) appear-
ing in (5.55) and (5.56) are given by

ω̂ = ξ1 − isqζ + isdη

ψ̂rd = ξ2 +
(

M− LrLs

M

)
isd

ψ̂rq = ξ3 +
(

M− LrLs

M

)
isq

and depend on the controller internal signals (ξ1,ξ2,ξ3) which satisfy the dynamic
equations

ξ̇1 = −kωξ1 + isqζ̇ + kω isqζ − isdη̇− kω isdη

+μψ∗isq − TLn

J
− sat(θ̂)

J
+μψ̂rqĩsd + kωω∗

+ϕ1 −ζ
[
− 1
σ

usq +
Rs

σ
isq +ω0isd −αβψ̂rq +αMβ isq

+β
(
ξ1 − isqζ + isdη

)
ψ̂rd

]

+η

[
− 1
σ

usd +
Rs

σ
isd −ω0isq −αβψ̂rd

+αMβ isd −β
(
ξ1 − isqζ + isdη

)
ψ̂rq

]

ξ̇2 = −kψ
λ
ξ2 − kψ

λ

(
M− LrLs

M

)
isd +

kψ
λ
ψ∗

+
γ f μ
λ

(
2α ĩsd − ω̂ ĩsq

)
+
ϕ2

λ
+

Lr

M
usd

−LrRs

M
isd +ω0ψ̂rq −

(
M− LrLs

M

)
ω0isq

ξ̇3 = −kψ
λ
ξ3 − kψ

λ

(
M− LrLs

M

)
isq

+
γ f μ
λ

(
α ĩsq + ω̂ ĩsd

)
+
ϕ3

λ
+

Lr

M
usq
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−LrRs

M
isq −ω0ψ̂rd +

(
M− LrLs

M

)
ω0isd (5.57)

with initial conditions

ξ1(0) = ω̂(0)+ isq(0)ζ (0)− isd(0)η(0)

ξ2(0) = ψ̂rd(0)−
(

M− LrLs

M

)
isd(0)

ξ3(0) = ψ̂rq(0)−
(

M− LrLs

M

)
isq(0) .

The terms (gd ,gq,ϕ1,ϕ2,ϕ3,ζ ,η) appearing several times in (5.55), (5.57) and con-
taining feedforward and feedback actions are given by

gd = −
(Rs

σ
+αMβ

)
isd +ω0isq +αβψ̂rd +βω̂ψ̂rq − ψ̇

∗

M
− ψ̈∗

αM
− kψ
αμγ f

ψ̇∗

+
kψ
αμγ f

{
γ f μ
λ

(
2α ĩsd − ω̂ ĩsq

)
− LrRs

M
isd +ω0ψ̂rq +

ϕ2

λ
+

kψ
λ

(
ψ∗ − ψ̂rd

)

+
(

M− LrLs

M

)(
−Rs

σ
isd +αβψ̂rd −αMβ isd +βω̂ψ̂rq

)}

+
1

αμψ∗

[
ω̈∗ +

dsat(θ̂)
dθ̂

˙̂θ
J
−
(TLn

J
+

sat(θ̂)
J

+ ω̇∗
) ψ̇∗

ψ∗

]
(ω̂−ω∗)

+
1

αμψ∗
(TLn

J
+

sat(θ̂)
J

+ ω̇∗
)[
μψ∗isq − TLn

J
− sat(θ̂)

J
+μψ̂rqĩsd

−kω
(
ω̂−ω∗

)
+ϕ1 − ω̇∗

]

gq = −
(Rs

σ
+αMβ

)
isq −ω0isd +αβψ̂rq −βω̂ψ̂rd +

ψ̇∗

μψ∗2

(
−kω(ω̂−ω∗)

+
TLn

J
+

sat(θ̂)
J

+ ω̇∗
)
− 1
μψ∗
(
ω̈∗ +

dsat(θ̂)
dθ̂

˙̂θ
J

+ kωω̇∗
)
+

kω
μψ∗

[
μψ∗isq

−TLn

J
− sat(θ̂)

J
+μψ̂rqĩsd − kω

(
ω̂−ω∗

)
+ϕ1

]

ϕ1 =
μ
β

{
kψ
αμγ f

(
M− LrLs

M

)
βψ̂rqĩsd +

β
αμψ∗

(TLn

J
+

sat(θ̂)
J

+ ω̇∗
)(
ζ ψ̂rd ĩsd

+ηψ̂rqĩsd

)
+

kωβ
μψ∗
(
ζ ψ̂rd ĩsq +ηψ̂rqĩsq

)}
+ζβ

(
ξ1 − isqζ + isdη

)
ψ̂rd

−ζαβψ̂rq +ηβ
(
ξ1 − isqζ + isdη

)
ψ̂rq −ηαβ

(
ψ∗ − ψ̂rd

)
−ζβψ∗ω∗
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ϕ2 =
γ f μ
β

{
kψ
μγ f

(
M− LrLs

M

)
β ĩsd +

β
αμψ∗

(TLn

J
+

sat(θ̂)
J

+ ω̇∗
)(
ζω̂ ĩsd

+ηα ĩsd

)
+

kωβ
μψ∗
(
ζω̂ ĩsq +ηα ĩsq

)}

ϕ3 =
γ f μ
β

{
kψ
αμγ f

(
M− LrLs

M

)
βω̂ ĩsd − β

αμψ∗
(TLn

J
+

sat(θ̂)
J

+ ω̇∗
)(
ζα ĩsd

−ηω̂ ĩsd

)
− kωβ
μψ∗
(
ζα ĩsq −ηω̂ ĩsq

)}

ζ =
2Lr

(
TLn + sat(θ̂)+ Jω̇∗

)
ω∗ +αψ∗2 +2ψ∗ψ̇∗

βJψ∗Lr

(
α2 +ω∗2

)

η =

[
βαM

(
α2 +ω∗2

)
ψ∗J

]−1[
−ψ∗2ω∗αμJ−2μJψ∗ψ̇∗ω∗

+2α2M
(
TLn + sat(θ̂)+ Jω̇∗)] .

The load torque uncertainty saturated estimate appearing in (5.56) and (5.57) is
defined as

sat(θ̂) =

⎧⎨
⎩
θ̂ if 0 ≤ θ̂ ≤ θm

∑3
i=0 liθ̂ i if θm < θ̂ < θm + ε
θm + ε if θ̂ ≥ θm + ε

l0 =
θ 2

m(θm + ε)
ε2

l1 =
−2θmε−3θ 2

m + ε2

ε2

l2 =
ε+3θm

ε2

l3 = − 1
ε2

in which sat(x) is a continuously differentiable odd function which is linear on the
closed interval [−θm,θm] and satisfies |sat(x)| ≤ θm + ε for all x ∈ R. The estimate
θ̂ is provided by the sixth order closed-loop observer

dîsq

dt
= −
(Rs

σ
+βαM

)
isq +

1
σ

usq −ω0isd −βω̂aψ∗ +(λ1 +λ2 +λ3)(isq − îsq)

− ψ̇
∗

ψ∗ (isq − îsq)−β [ω∗(ψ̂da −ψ∗)−αψ̂qa]
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dω̂a

dt
= μψ∗isq − (λ1λ3 +λ1λ2 +λ2λ3)

βψ∗ (isq − îsq)

−TLn

J
− θ̂

J
+

1
ψ∗

[
TLn

J
+

sat(θ̂)
J

+ ω̇∗
]
[ψ̂da −ψ∗]−μ

[
ψ∗

M
+
ψ̇∗

αM

]
ψ̂qa

dθ̂
dt

=
Jλ1λ2λ3

βψ∗ (isq − îsq)

dîsd

dt
= −
(Rs

σ
+αMβ

)
isd +

1
σ

usd +ω0isq +
(
α cosε0 −ω∗ sinε0

)
(ẑa − isa)

+
(
α sinε0 +ω∗ cosε0

)
(ẑb − isb)+ ke(isd − îsd)

dẑa

dt
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Φza if −z̄M ≤ ẑa ≤ z̄M
Φza if ẑa < −z̄M and Φza ≥ 0
Φza if ẑa > z̄M and Φza ≤ 0
εamΦza if ẑa < −z̄M and Φza < 0
εaMΦza if ẑa > z̄M and Φza > 0

ẑa(0) ∈ [−z̄M, z̄M
]

dẑb

dt
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Φzb if −z̄M ≤ ẑb ≤ z̄M
Φzb if ẑb < −z̄M and Φzb ≥ 0
Φzb if ẑb > z̄M and Φzb ≤ 0
εbmΦzb if ẑb < −z̄M and Φzb < 0
εbMΦzb if ẑb > z̄M and Φzb > 0

ẑb(0) ∈ [−z̄M, z̄M
]

[
ψ̂da
ψ̂qa

]
=
[

cosε0 sinε0
−sinε0 cosε0

][ (ẑa−isa)
β

(ẑb−isb)
β

]

Φza = −Rs

σ
isa +

1
σ

usa +
1
γa

[
α cosε0 −ω∗ sinε0

]
(isd − îsd)

εam = 1− z̄2
M − ẑ2

a

z̄2
M − (−z̄M − εza)

2

εaM = 1− ẑ2
a − z̄2

M

(z̄M + εza)
2 − z̄2

M

Φzb = −Rs

σ
isb +

1
σ

usb +
1
γb

[
α sinε0 +ω∗ cosε0

]
(isd − îsd)

εbm = 1− z̄2
M − ẑ2

b

z̄2
M − (−z̄M − εzb)

2

εbM = 1− ẑ2
b − z̄2

M

(z̄M + εzb)
2 − z̄2

M
z̄M = zM + γε (5.58)

which is designed, by means of a suitable Lyapunov function, for the system in
(isq,ω , isd , za,zb) coordinates
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disq

dt
= −
(Rs

σ
+βαM

)
isq +

1
σ

usq −ω0isd

+α[−sinε0(za − isa)+ cosε0(zb − isb)]
−ω [cosε0(za − isa)+ sinε0(zb − isb)]

dω
dt

= μ
[(

cosε0
(za − isa)
β

+ sinε0
(zb − isb)
β

)
isq

−
(
−sinε0

(za − isa)
β

+ cosε0
(zb − isb)
β

)
isd

]
− TLn +θ

J
disd

dt
= −
(Rs

σ
+βαM

)
isd +

1
σ

usd +ω0isq +α[cosε0(za − isa)+ sinε0(zb − isb)]

+ω [−sinε0(za − isa)+ cosε0(zb − isb)]
dza

dt
= −Rs

σ
isa +

1
σ

usa

dzb

dt
= −Rs

σ
isb +

1
σ

usb .

The advantage of using the variables za = isa +βψra and zb = isb +βψrb instead of
the rotor fluxes ψra and ψrb relies on the fact that their dynamics no longer depend
on the rotor speed ω . The control algorithm (5.55), (5.56), (5.57), (5.58), as we
shall see, guarantees bounded closed-loop signals and exponential rotor speed and
flux modulus tracking under the technical assumptions stated below. The proposed
dynamic control algorithm is of tenth order and depends on: the measurements of the
stator currents (isa, isb); the reference signals (ω∗, ψ∗); the known parameters TLn,
J, Rr, Rs, Lr, Ls, M; the known nonnegative bound θm on the load torque uncertainty
TL −TLn; the positive control parameters kω , kψ , γ f , λ , ki, λ1, λ2, λ3, ke, γa, γb, zM ,
εza, εzb, γε , ε .

Let us denote by y(t) = [y1(t)T,y2(t)T,y3(t)T]T the solution of the closed-loop
system (1.26), (5.55), (5.56), (5.57), (5.58), with

y1 = [ω−ω∗,ψrd −ψ∗,ψrq, ω̂−ω ,ψrd − ψ̂rd ,ψrq − ψ̂rq, ĩsd , ĩsq]T

y2 =
[ 1
β 2ψ∗2 (isq − îsq),

1
βψ∗ (ω̂a −ω),

1
Jβψ∗ (θ − θ̂)

]T
y3 = [isd − îsd ,za − ẑa,zb − ẑb]T

�= [ed , z̃a, z̃b]T .

Such a decomposition of the closed-loop system solution is directly related to the
Lyapunov functions which will be considered in the following. Let us define

r1 = min
{γ fβ

2
inf
t≥0

{
ζ (t)ψ∗(t)

}
,
γ f μα
2M

,ki,
kψγ f μα

2kψM + γ f μα

}
r2(θm,ε) = sup

t≥0

{
‖A(t)‖+‖B(t)‖

}
A = AT =

[
ai j

]
1≤i, j≤8
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B = BT =
[
bi j

]
1≤i, j≤8

with the nonzero elements of A and B given by

a12 = −b24 = −γ f kω
2ψ∗

a13 = −b34 =
γ f

2αψ∗
(TLn

J
+

sat(θ̂)
J

+ ω̇∗
)

a23 = −a35 = −b23 = b35 =
kψ
2α

a24 =
γ f ζβ

2

a28 = −a37 = b37 =
γ f μ

2

a34 =
γ fηβ

2

b57 = − γ f ζ
2αψ∗

(TLn

J
+

sat(θ̂)
J

+ ω̇∗
)

b58 = −γ f kωζ
2ψ∗

b67 = −b37 +
η
ζ

b57 −
(

M− LrLs

M

)
b35

b68 =
η
ζ

b58 .

Let us define

cl = min{λ1,λ2,λ3}+
ψ̇∗

ψ∗

cd =
1

2cl

[mpms

β

(
(2zM + γε + εza)2 +(2zM + γε + εzb)2

)1/2
+

mpmqr2
1√

2r2
2

]2
ms = sup

t≥0

{
‖S(t)‖

}
S =
[
si j

]
1≤i≤3,1≤ j≤2

with the nonzero elements of S given by

s11 = − ω∗

βψ∗2

s12 =
α
βψ∗2
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s21 = − 1
βψ∗2

(TLn

J
+

sat(θ̂)
J

+ ω̇∗
)

s22 =
μ
βψ∗
(ψ∗

M
+
ψ̇∗

αM

)
.

Let us define

mp = ‖P‖
np = ‖P−1‖

P−1 =
[

pi j

]
1≤i, j≤3

p11 = p12 = p13 = 1

p2k =
3

∑
l=1,l �=k

λl

p3k =
3

∏
l=1,l �=k

λl , 1 ≤ k ≤ 3

mq = sup
t≥0

{
‖Q(t)‖

}
Q =
[
qi j

]
1≤i≤3,1≤ j≤8

with the nonzero elements of Q given by

q11 = − 1
βψ∗2

q21 = q22 = −kωq11

q23 =
kψ

γ fαβψ∗
q24 = −q23

q25 = q26 = − 1
αβψ∗2

(TLn

J
+

sat(θ̂)
J

+ ω̇∗
)

q27 = −q28 = − μ
βψ∗ .

Finally, let us define

lγ1 =
βψ∗

μ
|s22|

lγ2 =
βψ∗

μ
|s21| .

We now show that the trajectories of the y1-subsystem remain bounded, provided
that the perturbation θe = θ − sat(θ̂) as well as the initial state y1(0) are sufficiently



270 5 Speed-sensorless Feedback Control

small: the boundedness of the vector y1, along with the use of projection algorithms
in the design of (ẑa, ẑb) dynamics, guarantee the boundedness of the vectors y2 and
y3 and, therefore, of the control signals (usa, usb). Let us first rewrite the rotor flux
dynamic equations in (1.31) so that the rotor speed ω does not explicitly appear.
To this end, recalling that the rotor fluxes (ψrd ,ψrq) are dynamically related to the
stator fluxes (ψsd , ψsq) in the (d,q) reference frame by the following relations

ψrd = Misd − LrLs

M
isd +

Lr

M
ψsd

ψrq = Misq − LrLs

M
isq +

Lr

M
ψsq

ψ̇sd = usd −Rsisd +ω0ψsq

ψ̇sq = usq −Rsisq −ω0ψsd ,

by direct computation we obtain

dψrd

dt
=
(

M− LrLs

M

)disd

dt
+

Lr

M
usd − LrRs

M
isd +ω0ψrq

−
(

M− LrLs

M

)
ω0isq

dψrq

dt
=
(

M− LrLs

M

)disq

dt
+

Lr

M
usq − LrRs

M
isq −ω0ψrd

+
(

M− LrLs

M

)
ω0isd . (5.59)

Denoting by ω̃ =ω−ω∗, ψ̃rd =ψrd −ψ∗, ψ̃rq =ψrq, eω = ω̂−ω∗, eψd = ψ̂rd −ψ∗,
eψq = ψ̂rq (so that y1 = [ω̃, ψ̃rd , ψ̃rq, eω − ω̃ , ψ̃rd −eψd , ψ̃rq −eψq, ĩsd , ĩsq]T) and by
eq = 1

β 2ψ∗2 (isq− îsq), ẽω = 1
βψ∗ (ω̂a−ω), θ̃ = 1

Jβψ∗ (θ− θ̂) (so that y2 = [eq, ẽω , θ̃ ]T),
from (1.26), (5.55)–(5.59) we obtain the closed-loop error dynamics. Restrict the
analysis to the time-varying smooth bounded reference signals ω∗(t) and ψ∗(t) ≥
cψ > 0 with bounded first and second order time derivatives satisfying the condition
(for all t ≥ 0)

[
2JLr
(
α2 +ω∗(t)2)]−1

h(t) ≥ 2cp > 0 (5.60)

with

h(t) = 2Lr

(
TLn + Jω̇∗(t)

)
ω∗(t)+αψ∗(t)2 +2ψ∗(t)ψ̇∗(t)

and cp any positive real. Let kψ , γ f , λ , ki, ke, γa, γb, εza, εzb, γε be any positive
control parameters and choose the positive control parameter kω such that

kω > sup
t≥0

{[
2JLr
(
α2 +ω∗(t)2)]−1[

h(t)+2Lr(θm + ε)|ω∗(t)|
]}

.

Choose λ1, λ2, λ3 such that λ1 �= λ2 �= λ3 and
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min{λ1,λ2,λ3}+ inf
t≥0

{
ψ̇∗(t)
ψ∗(t)

}
≥ cψd > 0

with cψd any positive real, and choose the positive control parameter zM such that

zM ≥ sup
t≥0

{
1+β +

kψ
αμγ f

+
lγ2(t)
α

+
kω

μψ∗(t)

}
r1

r2

+sup
t≥0

{
lγ1(t)+ lγ2(t)+β |ψ∗(t)|

}
.

Let θm,ε be sufficiently small and restrict the initial conditions y1(0) such that

(θm + ε)|ω∗(t)| ≤ J[α2 +ω∗2(t)]cp

‖y1(0)‖ ≤
[

min{γ f ,
γ f μ
M ,λ ,

γ f μ
β }r2

1

4max{γ f ,
γ f μ
M ,λ ,

γ f μ
β }r2

2

− 32γ2
f

r2
1J2 (2θm + ε)2

]1/2

where cp has been previously defined. Consider the quadratic positive definite func-
tion

V1(y1) =
1
2

yT
1 diag

[
γ f ,
γ f μ
M

,
γ f μ
M

,γ f ,λ ,λ ,
γ f μ
β

,
γ f μ
β

]
y1 . (5.61)

Compute the time derivative of the function V1 along the trajectories of the closed-
loop y1-subsystem and complete the squares so that

V̇1 ≤ −r1‖y1‖2 + r2‖y1‖3 +
2γ f

J
(2θm + ε)‖y1‖ . (5.62)

Equation (5.61) and inequality (5.62) imply the inequality

‖y1(t)‖ ≤ r1

2r2
.

By observing that |zs| ≤ zM and |ẑs| ≤ (z̄M + εzs), s = a,b, we have

|z̃a(t)| ≤ 2zM + γε + εza

|z̃b(t)| ≤ 2zM + γε + εzb .

Since

ėd = −keed +
(
α cosε0 −ω∗ sinε0

)
z̃a +
(
α sinε0 +ω∗ cosε0

)
z̃b +βω̃ψ̃rq

the inequality

|ed(t)| ≤ |ed(0)|+ 1
ke

[
(4zM +2γε + εza + εzb)

(
α+ sup

t≥0

{
|ω∗(t)|

})
+
β r2

1

4r2
2

]
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is guaranteed. Define ỹ2 = Py2 and consider the quadratic positive definite function

V2(ỹ2) =
1
2
‖ỹ2‖2 . (5.63)

By computing the time derivative of the function V2 along the trajectories of the
closed-loop ỹ2-subsystem and by completing the squares we obtain

V̇2 ≤ −cl

2
‖ỹ2‖2 + cd . (5.64)

Equation (5.63) and inequality (5.64) imply the inequality

‖y2(t)‖ ≤ np

[
m2

p‖y2(0)‖2 +
2cd

cl

]1/2

.

We now determine sufficient conditions for the exponential stability of the equilib-
rium point y = 0 of the closed-loop system (1.26), (5.55)–(5.58). Define

Γ T(t) =
[
α cosε0(t)−ω∗(t)sinε0(t)
α sinε0(t)+ω∗(t)cosε0(t)

]
.

Assume that there exist two positive reals Tp and kp such that the persistency of
excitation condition (I is the identity matrix)

∫ t+Tp

t
Γ T(τ)Γ (τ)dτ ≥ kpI, ∀t ≥ 0 (5.65)

is satisfied. Consider the candidate Lyapunov function

W (t,y) = V1(y1)+ εs0V2(Py2)+ εs1

[
1
2

(
e2

d + γaz̃2
a + γbz̃2

b

)

+p
∥∥∥Qp(t)[z̃a, z̃b]T −Γ T(t)ed

∥∥∥2
]

in which V1(·) and V2(·) have been previously defined, while the matrix Qp(t) is the
solution of the linear matrix differential equation

Q̇p(t) = −Qp(t)+Γ T(t)Γ (t) , Qp(0) = e−TpkpI .

Arguments similar to those adopted in the proof of the Persistency of Excitation
Lemma A.3 in Appendix A guarantee the existence of suitable positive reals εs0, εs1,
p (depending on Tp and kp) such that the function W has a locally negative definite
time derivative along the trajectories of the closed-loop system (1.26), (5.55)–(5.58)
so that the origin of the closed-loop system is locally exponentially stable.



5.4 Adaptive Control with Uncertain Load Torque 273

In conclusion, the adaptive control from current measurements (5.55)–(5.58)
guarantees that the following inequalities hold:

‖y1(t)‖ ≤ r1

2r2

‖y2(t)‖ ≤ np

[
m2

p‖y2(0)‖2 +
2cd

cl

]1/2

and y3(t) = [ed(t), z̃a(t), z̃b(t)]T is such that

|z̃a(t)| ≤ 2zM + γε + εza

|z̃b(t)| ≤ 2zM + γε + εzb

|ed(t)| ≤ |ed(0)|+ 1
ke

[
(4zM +2γε + εza + εzb)

(
α+ sup

t≥0

{
|ω∗(t)|

})
+
β r2

1

4r2
2

]

• for any time-varying smooth bounded reference signals ω∗(t) and ψ∗(t)≥
cψ > 0 with bounded first and second order time derivatives satisfying the
condition (for all t ≥ 0)

[
2JLr
(
α2 +ω∗(t)2)]−1

h(t) ≥ 2cp > 0

with

h(t) = 2Lr

(
TLn + Jω̇∗(t)

)
ω∗(t)+αψ∗(t)2 +2ψ∗(t)ψ̇∗(t)

and cp any positive real;
• for any positive control parameters kψ , γ f , λ , ki, ke, γa, γb, εza, εzb, γε and

for any positive control parameter kω such that

kω > sup
t≥0

{[
2JLr
(
α2 +ω∗(t)2)]−1[

h(t)+2Lr(θm + ε)|ω∗(t)|
]}

;

• for any positive control parameters λ1, λ2, λ3 such that λ1 �= λ2 �= λ3 and

min{λ1,λ2,λ3}+ inf
t≥0

{
ψ̇∗(t)
ψ∗(t)

}
≥ cψd > 0

with cψd any positive real;
• for any positive control parameter zM such that

zM ≥ sup
t≥0

{
1+β +

kψ
αμγ f

+
lγ2(t)
α

+
kω

μψ∗(t)

}
r1

r2
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+sup
t≥0

{
lγ1(t)+ lγ2(t)+β |ψ∗(t)|

}
;

• for sufficiently small θm,ε and restricted initial conditions y1(0) such that

(θm + ε)|ω∗(t)| ≤ J [α2 +ω∗2(t)]cp

‖y1(0)‖ ≤
[

min{γ f ,
γ f μ
M ,λ ,

γ f μ
β }r2

1

4max{γ f ,
γ f μ
M ,λ ,

γ f μ
β }r2

2

− 32γ2
f

r2
1J2 (2θm + ε)2

]1/2

.

If two positive reals Tp and kp exist such that the persistency of excitation
condition (I is the identity matrix)

∫ t+Tp

t
Γ T(τ)Γ (τ)dτ ≥ kpI, ∀t ≥ 0 (5.66)

is satisfied with

Γ T(t) =
[
α cosε0(t)−ω∗(t)sinε0(t)
α sinε0(t)+ω∗(t)cosε0(t)

]
,

then the equilibrium point y = [yT
1 ,yT

2 ,yT
3 ]T = [ω−ω∗,ψrd −ψ∗, ψrq, ω̂−ω ,

ψrd − ψ̂d , ψrq− ψ̂rq, ĩsd , ĩsq,
1

β 2ψ∗2 (isq− îsq), 1
βψ∗ (ω̂a−ω), 1

Jβψ∗ (θ− θ̂), isd −
îsd , za − ẑa, zb − ẑb]T = 0 of the closed-loop system (1.26), (5.55)–(5.58) is
locally exponentially stable.

Remarks

1. Condition (5.60) represents a constraint on the time-varying reference signals
ω∗(t) and ψ∗(t), which may limit the applicability of the proposed solution:
however, it is only a sufficient condition. In any case, if braking actions are not
considered, every pair of constant reference signals ω∗ and ψ∗ ≥ cψ > 0 sat-
isfies condition (5.60) so that closed-loop boundedness may be guaranteed for
any motor parameters and any constant operating condition. Note that if θ̂ = θ ,
the closed-loop observer (5.58) and the persistency of excitation condition (5.66)
are no longer needed so that the controller is no longer observer-based and the
internal variables ω̂ , ψ̂rd and ψ̂rq converge to the references ω∗, ψ∗, and zero,
respectively.

2. Under persistency of excitation, exponential rotor speed and flux modulus track-
ing may be guaranteed despite constant load torque uncertainty even in the pres-
ence of uncertain flux initial values: this improves the adaptive control algorithms
in Sections 5.2 and 5.3 which make use of flux measurements.
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3. A more useful persistency of excitation condition, which is related to motor ob-
servability (see Section 1.5), can be derived. In fact, inequality (5.65) is implied,
for sufficiently small initial conditions ‖y(0)‖ and for sufficiently small θm, ε by

∫ t+Tp

t
Γ ∗T(τ)Γ ∗(τ)dτ ≥ 4kpI, ∀t ≥ 0 (5.67)

where

Γ ∗T(t) =
[
α cosε∗0 (t)−ω∗(t)sinε∗0 (t)
α sinε∗0 (t)+ω∗(t)cosε∗0 (t)

]

ε̇∗0 (t) = ω∗(t)+
αM

μψ∗(t)2

[
TL

J
+ ω̇∗(t)

]

ε∗0 (0) = ε0(0) .

According to Schwarz’s inequality, a necessary conditions for (5.67) to be satis-
fied is (τ ∈ [t, t +Tp], t ≥ 0): ε̇∗0 (τ) �= 0 in the case of constant rotor speed refer-
ence signal ω∗(τ), which is also sufficient when the rotor flux modulus reference
signal ψ∗ is constant.

Illustrative Simulations

We tested the adaptive control from current measurements (5.55)–(5.58) by sim-
ulations for the three-phase single pole pair 0.6-kW induction motor whose pa-
rameters have been reported in Chapter 1. The control parameters are (the values
are in SI units): kω = 60, ki = 300, kψ = 12 β/M, γ f = β/μ , λ = β/M, λ1 = 3,
λ2 = 4, λ3 = 5, ke = 24, γa = γb = 0.3−1, zM = 42, εza = εzb = 0.9, γε = 3, ε = 0.1
(θm = 3.6). All initial conditions for the motor and for the controller are set to zero
except ψra(0) = 0.1Wb. The references for rotor speed and flux modulus along with
the applied torque are reported in Figure 5.25. The rotor flux reference starts from
0.001Wb at t = 0s and grows up to the rated constant value 1.16Wb; field weaken-
ing starts at t = 4.32s. The rotor speed reference is zero until t = 0.32s and grows up
to the constant value 100rad/s; at t = 4.32s the rotor speed is required to go up to the
value 200rad/s, while the reference for the rotor flux is reduced to 0.72Wb. The load
torque TL (5.104Nm) is applied at t = 0.9s and is reduced to 0.44Nm at t = 4.2s.
The uncertainty θ is −12% of the load torque nominal value TLn, i.e., TLn = TL/0.88.
Note that the inequality (5.60) is satisfied. Figures 5.26–5.28 show the rotor speed,
the rotor flux modulus, and the load torque uncertainty saturated estimate along
with the corresponding tracking and estimation errors, while Figures 5.29 and 5.30
show the stator current and the stator voltage vectors (a,b) components. Under per-
sistency of excitation, fast estimation and good tracking performance are obtained.
The initial error (about 10%) between the rotor flux vector d-component ψrd and its
reference ψ∗ is compensated by the controller.
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Fig. 5.25 Adaptive control from current measurements (5.55)–(5.58): rotor speed and flux modu-
lus reference signals and applied load torque

Fig. 5.26 Adaptive control from current measurements (5.55)–(5.58): rotor speed and rotor speed
tracking error

5.5 Adaptive Control with Uncertain Load Torque and Rotor

Resistance

The control algorithm presented in the previous section makes use of rotor resistance
in a critical way: boundedness of closed-loop signals and convergence of tracking
errors are guaranteed if the design parameters lie in a range depending on α , while
the allowed reference signals for rotor speed and flux modulus are constrained by an
inequality which also depends on α . The controller proposed in this section, which
is adaptive with respect to α as well, is substantially different from the previous one:
no constraints on the reference signals are to be imposed for tracking and estimation
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Fig. 5.27 Adaptive control from current measurements (5.55)–(5.58): rotor flux modulus and rotor
flux modulus tracking error

Fig. 5.28 Adaptive control from current measurements (5.55)–(5.58): load torque uncertainty sat-
urated estimate and load torque estimation error

errors to converge to zero as long as they are persistently exciting. We propose the
following control algorithm consisting of a stator current control loop (containing
feedforward actions and suitable stabilizing and robust feedback terms):[

usa
usb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
usd
usq

]

usd = σ
[(Rs

σ
+ α̂βM

)
isd −ω0isq −βα̂ψ̂rd −βω∗ψ̂rq − ki(isd − i∗sd)+

d
dt

i∗sd

− k
4
(isd − i∗sd)β

2
(

3+α2
M +ω∗2 +

ψ̇∗2

α̂2 +M2(isd − i∗sd)
2
)]
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Fig. 5.29 Adaptive control from current measurements (5.55)–(5.58): stator current vector (a,b)-
components

Fig. 5.30 Adaptive control from current measurements (5.55)–(5.58): stator voltage vector (a,b)-
components

usq = σ
[(Rs

σ
+ α̂βM

)
isq +ω0isd −βα̂ψ̂rq +βω̂ψ̂rd − ki(isq − i∗sq)+

d
dt

i∗sq

− k
4
(isq − i∗sq)β 2

(
M2[i∗2

sq +(isq − i∗sq)
2]+ω∗2 +5+α2

M +ψ∗2
)]

[
isd
isq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
isa
isb

]
(5.68)

in which the reference signals (i∗sd , i
∗
sq) for (isd , isq) and the speed ω0 of the (d,q)

rotating frame (which, as in field-oriented control, are responsible for rotor speed
and flux modulus tracking) are chosen as (compare with the corresponding signals
in the control algorithm presented in Section 5.3)
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i∗sd =
ψ∗

M
+
ψ̇∗

α̂M

i∗sq =
1
μψ∗
[
−kω(ω̂−ω∗)+

TLn

J
+

sat(θ̂)
J

+ ω̇∗
]

ε̇0 = ω0 = ω̂+
α̂Mi∗sq

ψ∗ ; (5.69)

the estimates (ω̂ , ψ̂rd , ψ̂rq, θ̂ , α̂) for the unmeasured states (ω,ψrd ,ψrq) and for the
uncertain constant parameters (θ ,α) appearing in (5.68) and (5.69) are provided
by the seventh order closed-loop adaptive observer which includes the auxiliary
variables (îsd , îsq, ẑd , ẑq)

ψ̂rd = − 1
β

(isd − ẑd)

ψ̂rq = − 1
β

(isq − ẑq)

dîsq

dt
= −
(Rs

σ
+βα̂M

)
isq +

1
σ

usq −ω0isd

−βω̂ψ∗ +(λ1 +λ2 +λ3)(isq − îsq)

− ψ̇
∗

ψ∗ (isq − îsq)−β [ω∗(ψ̂rd −ψ∗)− α̂ψ̂rq]

dω̂
dt

= μψ∗isq − (λ1λ3 +λ1λ2 +λ2λ3)
βψ∗ (isq − îsq)− TLn

J
− θ̂

J

+
1
ψ∗
[TLn

J
+

sat(θ̂)
J

+ ω̇∗
]
[ψ̂rd −ψ∗]−μ

[ψ∗

M
+
ψ̇∗

α̂M

]
ψ̂rq

dθ̂
dt

=
Jλ1λ2λ3

βψ∗ (isq − îsq)

dîsd

dt
= −
(Rs

σ
+βα̂M

)
isd +

1
σ

usd +ω0isq

−ω∗(isq − ẑq)− α̂(isd − ẑd)+ ke(isd − îsd)
dẑd

dt
= −Rs

σ
isd +

1
σ

usd +ω0ẑq +
α̂
γ1

(isd − îsd)

dẑq

dt
= −Rs

σ
isq +

1
σ

usq −ω0ẑd +
ω∗

γ1
(isd − îsd)

dα̂
dt

= Proj
(
−βψ̇

∗

γ2α̂
(isd − îsd), α̂

)
, α̂(0) ∈ [αm,αM], 0 < αm − εα

(5.70)

in which Proj(ζ , α̂) is the smooth projection algorithm given by (A.25) in Ap-
pendix A and defined in our case by



280 5 Speed-sensorless Feedback Control

Proj(ζ , α̂) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ζ if αm ≤ α̂ ≤ αM
ζ if α̂ < αm and ζ ≥ 0
ζ if α̂ > αM and ζ ≤ 0
ξζ1ζ if α̂ < αm and ζ < 0
ξζ2ζ if α̂ > αM and ζ > 0

ξζ1 = 1− αm
2 − α̂2

αm2 − (αm − εα)2

ξζ2 = 1− α̂2 −αM
2

(αM + εα)2 −αM2
.

The load torque uncertainty saturated estimate appearing in (5.69) and (5.70) is
defined as

sat(θ̂) =

⎧⎨
⎩
θ̂ if 0 ≤ θ̂ ≤ θm

∑3
i=0 liθ̂ i if θm < θ̂ < θm + ε
θm + ε if θ̂ ≥ θm + ε

l0 =
θ 2

m(θm + ε)
ε2

l1 =
−2θmε−3θ 2

m + ε2

ε2

l2 =
ε+3θm

ε2

l3 = − 1
ε2

in which sat(q) is a continuously differentiable odd function which is linear in the
closed set [−θm,θm] and satisfies |sat(q)| ≤ θm +ε for all q ∈R. The overall control
algorithm (5.68), (5.69), (5.70) is of eighth order and depends on: the measurements
of the stator currents (isa, isb); the reference signals (ω∗, ψ∗); the known parameters
TLn, J, Rs, Lr, Ls, M; the known nonnegative bound θm on the load torque uncertainty
TL −TLn, the known bounds αm, αM such that αm ≤ α ≤ αM; the positive control
parameters kω , ki, k, ke, λ1, λ2, λ3, γ1, γ2, εα , ε . Let us introduce the angle ε∗0
satisfying

ε̇∗0 (t) = ω∗(t)+
αM

μψ∗2(t)

[TL

J
+ ω̇∗(t)

]
ε∗0 (0) = ε0(0)

depending on the uncertain parameters (α,TL). Let us define the tracking and esti-
mation errors: ω̃ =ω−ω∗, ψ̃rd =ψrd −ψ∗, ψ̃rq =ψrq, ĩsd = isd − i∗sd , ĩsq = isq− i∗sq,
ed = isd − îsd , eq = isq − îsq, eω = ω̂ − ω , eψd = ψrd − ψ̂rd , eψq = ψrq − ψ̂rq,
θ̃ = θ − θ̂ , α̃ = α− α̂ . Let us introduce the changes of variables [λ1 �= λ2 �= λ3]:[

z̃a
z̃b

]
=
[

cosε∗0 −sinε∗0
sinε∗0 cosε∗0

][
βeψd
βeψq

]
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x̃1 =
eq

β 2ψ∗2 , x̃2 =
eω
βψ∗ , x̃3 =

θ̃
Jβψ∗

e =

⎡
⎣ 1 1 1
λ2 +λ3 λ1 +λ3 λ1 +λ2
λ2λ3 λ1λ3 λ1λ2

⎤
⎦
−1⎡
⎣ x̃1

x̃2
x̃3

⎤
⎦ .

Let us define the matrices

Ax =

⎡
⎣ −(λ1 +λ2 +λ3) 1 0
−(λ2λ3 +λ1λ3 +λ1λ2) 0 1

−λ1λ2λ3 0 0

⎤
⎦

Sx =

⎡
⎢⎣

− ω∗
βψ∗2

α
βψ∗2 − M

μβψ∗3η
− 1
βψ∗2η

μ
βψ∗ i∗sd 0

0 0 0

⎤
⎥⎦

Rx =

⎡
⎢⎣

1
βψ∗2 α̃(ψ̃rq − eψq −Mĩsq)− 1

βψ∗2 ω̃ψ̃rd + kωM
μβψ∗3 α̃(ω̃+ eω)

kω
βψ∗2 ψ̃rd(ω̃+ eω)+ μ

βψ∗ (ψ̃rqĩsd − ψ̃rd ĩsq)
0

⎤
⎥⎦

in which η =
[

TLn
J + sat(θ̂)

J + ω̇∗
]
. Let y = [ω̃ , ψ̃rd , ψ̃rq, ĩsd , ĩsq, eT, ed , z̃a, z̃b, α̃ ]T

∈ R
12. Choose the positive control parameters ki, λ1, λ2, λ3 in the control algorithm

(5.68), (5.69), (5.70) so that ki > αMM2, λ1 �= λ2 �= λ3, and

min{λ1,λ2,λ3}+ inf
t≥0

{ ψ̇∗(t)
ψ∗(t)

}
≥ c̃ψ > 0 .

Assume that there exist two positive reals tp and kp such that the persistency of
excitation condition (I is the identity matrix)

∫ t+tp

t
Γ T(τ)Γ (τ)dτ ≥ kpI, ∀t ≥ 0 (5.71)

holds with

Γ T(t) =

⎡
⎣α cosε∗0 (t)−ω∗(t)sinε∗0 (t)
α sinε∗0 (t)+ω∗(t)cosε∗0 (t)

−βψ̇∗(t)
α

⎤
⎦ .

Introduce the auxiliary variables zd = isd +βψrd , zq = isq +βψrq, which are linear
combinations of the motor state variables and whose dynamics

żd = −Rs

σ
isd +

1
σ

usd +ω0zq

żq = −Rs

σ
isq +

1
σ

usq −ω0zd
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do not depend on the unmeasured rotor speed ω and the uncertain parameter α .
Since

ėψd = ω0eψq − α̂
γ1β

ed

ėψq = −ω0eψd − ω∗

γ1β
ed

the closed-loop system can be written as

dω̃
dt

= −kω(ω̃+ eω)− 1
J

[
θ − sat(θ̂)

]
+μψ̃rdi∗sq

−μψ̃rqi∗sd +μψ∗ ĩsq +μψ̃rd ĩsq −μψ̃rqĩsd

dψ̃rd

dt
= −αψ̃rd +(ω0 −ω)ψ̃rq +αMĩsd +

ψ̇∗

α̂
α̃

dψ̃rq

dt
= −αψ̃rq − (ω0 −ω)ψ̃rd − eωψ∗ +αMĩsq + α̃Mi∗sq

dĩsd

dt
= −kiĩsd +βαeψd +βω∗eψq − α̃β ψ̇

∗

α̂
+ α̃β (ψ̃rd − eψd)− α̃βMĩsd

+βω̃ψ̃rq − k
4
β 2
(

3+α2
M +ω∗2 +

ψ̇∗2

α̂2 +M2 ĩ2sd

)
ĩsd

dĩsq

dt
= −kiĩsq +βαeψq −βω∗eψd − α̃βMi∗sq + α̃β (ψ̃rq − eψq)

−α̃βMĩsq −βω̃eψd +βeωψ∗ +βeω(ψ̃rd − eψd)

− k
4
β 2
(

M2[i∗2
sq + ĩ2sq]+ω

∗2 +5+α2
M +ψ∗2

)
ĩsq⎡

⎣ ˙̃x1
˙̃x2
˙̃x3

⎤
⎦ =
(

Ax − ψ̇
∗

ψ∗ I
)⎡⎣ x̃1

x̃2
x̃3

⎤
⎦+Sx

⎡
⎣ eψd

eψq
α̃

⎤
⎦+Rx

ded

dt
= −keed − α̃ β ψ̇

∗

α
+[α cosε∗0 −ω∗ sinε∗0 ]z̃a

+[α sinε∗0 +ω∗ cosε∗0 ]z̃b − α̃βMĩsd

+α̃β ψ̃rd +βω̃ψ̃rq − cosε∗0 z̃aα̃− sinε∗0 z̃bα̃− βψ̇
∗

αα̂
α̃2

dz̃a

dt
= ω̃0z̃b − 1

γ1
[α cosε∗0 −ω∗ sinε∗0 ]ed +

cosε∗0
γ1

α̃ed

dz̃b

dt
= −ω̃0z̃a − 1

γ1
[α sinε∗0 +ω∗ cosε∗0 ]ed +

sinε∗0
γ1

α̃ed

dα̃
dt

= −Proj
(
−βψ̇

∗

γ2α̂
ed , α̂
)

in which
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ω̃0 = ω̃+ eω − M
μψ∗2

[TL

J
+ ω̇∗
]
α̃+

M
μψ∗2 (α

−α̃)
[
−kω(ω̃+ eω)− (θ − sat(θ̂))

J

]
.

Recalling that the projection algorithm Proj(ζ , α̂) guarantees the properties in Ap-
pendix A, consider the positive definite function

W =
1
2

[
ω̃2 + sα(ψ̃2

rd + ψ̃2
rq + ĩ2sd + ĩ2sq)

+sβ‖e‖2 + sγ
(

e2
d + γ1z̃2

a + γ1z̃2
b + γ2α̃2

+2p
∥∥Qp(t)[z̃a, z̃b, α̃]T −Γ T(t)ed

∥∥2
)]

in which sα ,sβ ,sγ , p ∈ R
+, and the matrix Qp(t) is the solution of the linear matrix

differential equation

Q̇p(t) = −Qp(t)+Γ T(t)Γ (t)
Qp(0) = e−tp kpI .

According to the Persistency of Excitation Lemma A.3 in Appendix A, there exist
suitable positive reals sα , sβ , sγ , p (depending on tp and kp) for which the function
W has, along the trajectories of the closed-loop system, a locally negative definite
time derivative

Ẇ ≤ −a1‖x‖2 +a2‖x‖4 +a3‖x‖6

≤ −a1

2
‖x‖2 +

( a2
2

2a1
+a3

)
‖x‖6

where x =
[
yT, (Qp(t)[z̃a, z̃b, α̃]T −Γ T(t)ed)T

]T
and ai, 1 ≤ i ≤ 3, are positive reals

depending on tp and kp. Since ν1‖x‖2 ≤W ≤ ν2‖x‖2 with ν1 = 1
2 min{1,sα ,sβ ,sγ ,

sγ γ1,sγ γ2,2sγ p} and ν2 = 1
2 max{1,sα , sβ ,sγ ,sγ γ1, sγ γ2, 2sγ p}, and since ‖x(t)‖2 ≤

b‖y(t)‖2 with b = 1+2Γ 2
M(Γ 2

M +1), and ΓM ≥ ‖Γ (t)‖ for all t ≥ 0, we can establish
that there exists a positive real s such that

‖y(t)‖2 ≤ ν2b
ν1

‖y(0)‖2e−st , ∀t ≥ 0

for any initial condition y(0) satisfying

‖y(0)‖2 <
ν1

ν2b

√√√√ a1

2
(

a2
2

2a1
+a3

) .
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Therefore, the origin y = 0 of the closed-loop error variables system is locally ex-
ponentially stable so that exponential rotor speed and flux modulus tracking are
achieved.

In conclusion, the adaptive control from current measurements (5.68)–(5.70)
guarantees that the origin y = 0 of the closed-loop system is locally exponen-
tially stable, so that exponential rotor speed and flux modulus tracking are
achieved, under the following conditions:

1. the positive control parameters ki, λ1, λ2, λ3 are chosen so that ki > αMM2,
λ1 �= λ2 �= λ3, and

min{λ1,λ2,λ3}+ inf
t≥0

{ ψ̇∗(t)
ψ∗(t)

}
≥ c̃ψ > 0 ;

2. there exist two positive reals tp and kp such that the persistency of excita-
tion condition (I is the identity matrix)

∫ t+tp

t
Γ T(τ)Γ (τ)dτ ≥ kpI, ∀t ≥ 0

holds with

Γ T(t) =

⎡
⎣α cosε∗0 (t)−ω∗(t)sinε∗0 (t)
α sinε∗0 (t)+ω∗(t)cosε∗0 (t)

−βψ̇∗(t)
α

⎤
⎦ .

Remarks

1. According to the previous analysis, under persistency of excitation, exponential
rotor speed and flux modulus tracking may be guaranteed despite constant load
torque and rotor resistance uncertainties even in the presence of uncertain flux
initial values: this improves the adaptive speed-sensorless control designed in
Section 5.3 which makes use of measured rotor fluxes.

2. The dynamic compensator (5.68)–(5.70) contains 11 control parameters kω , ki,
k, ke, λ1, λ2, λ3, γ1, γ2, εα , ε whose role may be evaluated by examining both
the closed-loop error equations and the corresponding stability analysis. The pa-
rameters kω , ki, ke, (λ1,λ2,λ3) directly affect the dynamics of the tracking and
estimation errors ω̃ , (ĩsd , ĩsq), ed , (x̃1, x̃2, x̃3), respectively, while the parameter γ1
determines the influence of the estimation error ed on the dynamics of the error
variables (z̃a, z̃b); the parameter γ−1

2 is the adaptation gain for α̂ , while the pa-
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rameters k, εα , ε characterize the robustifying terms in (usd ,usq), the projection
algorithm Proj(·, ·), and the saturation function sat(·), respectively.

3. The key inequality (5.71) may be physically interpreted in terms of motor observ-
ability and rotor resistance identifiability (see Sections 1.5 and 1.6). In fact, nec-
essary conditions for (5.71) to be satisfied are (τ ∈ [t, t +Tp], t ≥ 0): (1) ε̇∗0 (τ) �= 0,
in the case of constant rotor speed reference signal ω∗(τ); (2) ψ̇∗(τ) �= 0. A suf-
ficient condition for inequality (5.71) to be satisfied is to choose a time-varying
rotor flux modulus reference signal ψ∗(t) and a constant rotor speed reference
value ω∗ such that

1
ψ∗2(t)

= ψ∗2
c + ε∗ cos

( t
ε∗

)
> 0

0 �= ω∗ +
αMTL

μJ
ψ∗2

c

in which ψ∗
c is a positive constant and ε∗ is a sufficiently small positive real.

4. As shown in Section 5.3, the rotor flux modulus reference signal is required to
be time-varying: if ‖[ψ̇∗(t), ω̈∗(t)]‖ = 0 for all t ≥ 0, then all the points (ω̃ ,
ψ̃rd , ψ̃rq, ĩsd , ĩsq, x̃1, x̃2, x̃3, ed , z̃a, z̃b, α̃) = (−gα̃ , 0, 0, 0, 0, 0, g

βψ∗ α̃ , 0, 0, 0, 0,

α̃), with g = Lr
ψ∗2 (TL +Jω̇∗), are equilibrium points for the closed-loop system so

that, when both rotor speed and flux modulus reference signals are constant, local
exponential rotor speed tracking may not be guaranteed by the control algorithm
(5.68)–(5.70).

Illustrative Simulations

We tested the adaptive control from current measurements (5.68)–(5.70) by simula-
tions for the three-phase single pole pair 0.6-kW induction motor whose parameters
have been reported in Chapter 1. The control parameters are (the values are in SI
units): kω = 120, ki = 900, k = 0.01, ke = 900, λ1 = 120, λ2 = 150, λ3 = 180,
γ1 = 120−1, γ2 = 900−1, αm = 4.5, αM = 13.5, θm = 3.6, ε = 0.1, εα = 0.9.
All initial conditions of the motor and of the controller are set to zero except for
ψra(0) = 0.1Wb and α̂(0) = 11.1s−1. The references for rotor speed and flux mod-
ulus along with the applied torque are reported in Figure 5.31. The load torque TL
(5.104 Nm) is applied at t = 0.9s; the uncertainty θ is −12% of the load torque
nominal value TLn. Figures 5.32–5.35 show the rotor speed, the rotor flux modulus,
the load torque uncertainty saturated estimate, and the α estimate, along with the
corresponding tracking and estimation errors, while Figures 5.36 and 5.37 show the
stator current and the stator voltage vectors (a,b) components. Under persistency of
excitation, fast estimation and good tracking performance are obtained. The initial
error (about 10%) between the rotor flux vector d-component ψrd and its reference
ψ∗ is compensated by the controller.
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Fig. 5.31 Adaptive control from current measurements (5.68)–(5.70): rotor speed and flux modu-
lus reference signals and applied load torque

Fig. 5.32 Adaptive control from current measurements (5.68)–(5.70): rotor speed and rotor speed
tracking error

5.6 Conclusions

In this chapter we have addressed the design of control algorithms for induction mo-
tors in which the rotor speed sensor is not available. The starting point is the feed-
forward control developed in Chapter 1 and analyzed in Chapter 2. In Section 5.1
a PI feedback term is added to the feedforward control which depends on the error
between the measured stator currents and their steady-state profiles corresponding
to given references for rotor speed and flux modulus. The desired steady-state oper-
ating condition may be unstable depending on the load torque value and the desired
reference flux modulus. Hence, additional feedback terms are needed to remove this



5.6 Conclusions 287

Fig. 5.33 Adaptive control from current measurements (5.68)–(5.70): rotor flux modulus and rotor
flux modulus tracking error

Fig. 5.34 Adaptive control from current measurements (5.68)–(5.70): load torque uncertainty sat-
urated estimate and load torque estimation error

drawback. Since in Chapter 2 several state feedback controls have been obtained
which have then been successfully integrated in Chapter 4 by rotor flux observers,
in this chapter we have introduced observers both for rotor speed and rotor fluxes in
the feedback control algorithm. As intermediate steps, in Sections 5.2 and 5.3 both
nonadaptive and adaptive controls have been designed under the assumption that
all state variables are available for feedback with the exception of rotor speed. This
unrealistic assumption allows us to concentrate on the design of closed-loop rotor
speed observers and to clarify the identifiability conditions which are required to es-
timate the rotor resistance in closed-loop: it turns out in fact that the rotor flux mod-
ulus reference has to be time-varying. The goal of designing observer-based controls



288 5 Speed-sensorless Feedback Control

Fig. 5.35 Adaptive control from current measurements (5.68)–(5.70): α estimate and α estimation
error

Fig. 5.36 Adaptive control from current measurements (5.68)–(5.70): stator current vector (a,b)-
components

from stator current measurements has only been accomplished in Sections 5.4 and
5.5, in which adaptation with respect to load torque and rotor resistance is also ob-
tained in closed-loop. The rotor speed tracking in the presence of critical parameters
has been obtained only when time-varying references for the rotor flux modulus are
imposed, while the rotor speed tracking with speed measurements has also been ob-
tained for any initial condition in Chapter 4 when rotor flux modulus is constant. In
other words, the rotor speed tracking has been achieved provided that the uncertain
parameters are correctly estimated, while when rotor speed is measured the conver-
gence to zero of the uncertain parameter estimation errors is not required to achieve
rotor speed tracking from any initial condition.
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Fig. 5.37 Adaptive control from current measurements (5.68)–(5.70): stator voltage vector (a,b)-
components

Problems

5.1. Consider the following control algorithm:

i∗sd =
ψ∗

M
+
ψ̇∗

αM

i∗sq =
1
μψ∗

[
−kω(ω̂−ω∗)+

TL

J
+ ω̇∗
]

ε̇0 = ω0 = ω̂+
αMisq

ψ∗ +
1
βψ∗

[
ω̂(1+ γ1)+

αMisq

ψ∗

]
(isd − i∗sd)

˙̂ω = −kω(ω̂−ω∗)+ ω̇∗ − kio(isq − i∗sq)

γ1 =
Rs

ασ
+

kid

α[
isd
isq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
isa
isb

]

usd = σ
[
γ i∗sd −ω0isq −αβψ∗ +

di∗sd
dt

− kid(isd − i∗sd)
]

usq = σ
[
γ i∗sq +ω0isd +βω̂ψ∗ +

di∗sq

dt
− kiq(isd − i∗sd)

]
[

usa
usb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
usd
usq

]
.

Choose the control parameters kω , kio, kid , kiq and simulate the closed-loop perfor-
mance. Compare with the controller given in Section 5.1 and with the controller
given in Section 5.4 with T̂L replaced by TL.
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5.2. Consider the following adaptive control algorithm:

i∗sd =
ψ∗

M
+
ψ̇∗

αM

i∗sq =
1
μψ∗

[
−kω(ω̂−ω∗)+

T̂L

J
+ ω̇∗
]

ε̇0 = ω0 = ω̂+
αMisq

ψ∗ +
1
βψ∗

[
ω̂(1+ γ1)+

αMisq

ψ∗

]
(isd − i∗sd)

˙̂ω = ω̇∗ − kio(isq − i∗sq)
˙̂T L = −kT (ω̂−ω∗)

γ1 =
Rs

ασ
+

kid

α[
isd
isq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
isa
isb

]

usd = σ
[
γ i∗sd −ω0isq −αβψ∗ +

di∗sd
dt

− kid(isd − i∗sd)
]

usq = σ
[
γ i∗sq +ω0isd +βω̂ψ∗ +

di∗sq

dt
− kiq(isd − i∗sd)

]
[

usa
usb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
usd
usq

]
.

Choose the control parameters kω , kio, kid , kiq, kT and simulate the closed-loop per-
formance. Compare with the controller given in Section 5.4.

5.3. Consider the global speed-sensorless control (5.20): assuming that the rotor
speed ω is measured, replace ω̂ by ω and compare the resulting control algorithm
with the global control algorithm with arbitrary rate of convergence (2.114).

5.4. Consider the adaptive speed-sensorless control (5.50): assuming that the rotor
speed ω is measured, modify the control algorithm so that the uncertain parameters
are estimated even in the cases in which condition (5.47) fails and compare it with
the adaptive input–output feedback linearizing control (2.85).

5.5. Consider the adaptive control from current measurements (5.68)–(5.70): mod-
ify the control algorithm assuming that the rotor speed ω is measured so that the
uncertain parameters are estimated even in the case in which the reference for the
rotor flux modulus is constant (ψ̇∗ = 0) and compare it with the control algorithms
given in Section 4.4.

5.6. Redesign the adaptive speed-sensorless control (5.50) assuming that TL is
known while Rs is uncertain.

5.7. Design an adaptive version of the feedforward control (1.74) replacing TL by
T̂L and assuming that only stator current measurements are available. Suggestion:
assume constant references ω∗ and ψ∗ and use the linear approximation.
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5.8. Design an adaptive version of the feedforward control (1.74) replacing TL by T̂L
and γ = αβM + Rs/σ by γ̂ = αβM + R̂s/σ and assuming that only stator current
measurements are available. Suggestion: assume constant referencesω∗ andψ∗ and
use the linear approximation.





Chapter 6

Conclusions

In this book the problem of designing a control for an induction motor has been
systematically studied and thoroughly discussed using tools from nonlinear system
theory, both for analysis and control purposes. Adaptive control techniques have
been used to identify online critical parameters.

The analysis has been carried out in Chapter 1 in which several nonlinear state
space models are introduced for balanced unsaturated induction motors. The dy-
namical models are multivariable and highly nonlinear: they relate two independent
stator voltage inputs to the output to be tracked, which is the rotor speed, via the
unknown load torque and the stator and rotor electric state variables. The power
balance is best understood using the energy model in which the rotor speed and
the motor currents are the state variables: the input power from a voltage source is
balanced by the power losses and by the output power which is required to match
a load torque at a desired speed. The field-oriented model, which is expressed in
a frame rotating in synchronism with the rotor flux vector, allows us to compute
the steady-state operating conditions when sinusoidal input voltages with constant
modulus and frequency are applied. The nonlinear analytical relation between the
load torque and the rotor speed, which is usually called torque–speed characteris-
tics, has been explicitly computed. It shows that, while for low load torques there
is only one stable operating condition at high rotor speed, for higher load torques
there might be two operating conditions depending on motor parameters such as
the stator resistance. The operating condition at higher speed is exponentially stable
while the operating condition at lower speed is unstable: they get closer and closer
as the load torque increases giving rise to a saddle-node nonlinear bifurcation phe-
nomenon. In particular, zero rotor speed is typically an unstable operating condition
in which the rotor flux modulus has its minimum value while the stator current mod-
ulus achieves its maximum value. The inverse system has also been computed using
the field-oriented model. It is a first order nonlinear system, whose state is the flux
vector angle, which generates the stator voltage inputs required to track the desired
time varying rotor speed reference signal; it is parameterized by a time varying ro-
tor flux modulus which may also be viewed as an additional output to be tracked.
The choice of the flux modulus reference aims at the power losses minimization

293
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or, more generally, at maintaining the motor within its physical limitations in those
stable operating conditions in which the model used to design the control is reliable.
When the desired rotor speed and rotor flux modulus are constant, limit cycles arise
in the state space, whose attractivity is in general not global and not even guaran-
teed depending on the required flux modulus, on the load torque, and on the motor
parameters. These features reveal the nonlinear nature of the induction motor dy-
namics and motivate the need of a feedback control action to improve the motor dy-
namics, particularly at low speed. The models have been experimentally validated
for a low power induction motor by comparing the characteristic curves obtained
theoretically and experimentally: a good match was obtained at higher speed while
at low speed and high torque some discrepancies appear due to measurement inac-
curacies and unmodeled effects such as magnetic saturation and power electronics
dynamics. Transient responses have also been compared: the models are suitable
for control design even though they are less reliable at low speed, low flux modulus,
and high torque.

Before discussing the design of feedback controls, which is the topic of the book,
structural properties of the induction motor, such as feedback linearizability, ro-
tor flux observability, and parameter identifiability have been studied in Chapter 1.
Several encouraging facts have been established. The induction motor can be made
input–output decoupled and linear by static state feedback and can be transformed
into a linear, controllable system by a first order dynamic state feedback control.
Hence, the highly nonlinear induction motor can be effectively controlled if all the
state space variables are available for feedback and all motor parameters are exactly
known. Unfortunately the rotor variables, either fluxes or currents, cannot be easily
measured and two critical parameters, the load torque and the rotor resistance, may
vary widely during operations and are therefore uncertain. These two parameters
play a crucial role in the induction motor dynamics. Nevertheless the rotor fluxes
are observable and the load torque is identifiable for any voltage input from stator
current and rotor speed measurements; in this case the rotor resistance is also iden-
tifiable when the electromagnetic torque generated by the motor is different from
zero. When the rotor speed is not measured the observability and the identifiability
issues are more involved: time-varying rotor flux modulus may be required in order
to identify the rotor resistance.

Once good controllability, observability, and identifiability properties have been
established, the design of feedback control algorithms has followed the classical
path: the full potentiality of state feedback design has first been explored in Chap-
ter 2; then the design of observers, parameter estimators and adaptive observers
have been studied in Chapter 3; in Chapter 4 the output feedback design based on
observers and estimators has been discussed. Finally, in Chapter 5 the control of
induction motors without rotor speed sensors has been dealt with: this is the most
difficult control task since the speed tracking error is no longer available for feed-
back.

In particular, since globally attractive operating conditions are not guaranteed
by the feedforward control strategy, which may also lead to instabilities, depending
on motor parameters and reference signals, six different feedback control schemes
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have been designed and discussed in Chapter 2, under the assumption that all the
state variables are available for feedback. Since in practice the rotor state variables
cannot be measured, the actual control algorithms that are implementable will have a
more complex structure and will achieve inferior performance. Hence, in Chapter 2
the foundations of any feedback control algorithm are laid and the best achievable
performance is explored. A very satisfactory control algorithm has been presented in
Section 2.7 which achieves speed tracking with arbitrary rate of convergence from
any initial condition and for any rotor speed reference: it represents an evolution of
the indirect field-oriented control which is commonly used in practice and is illus-
trated in Section 2.3. Classical tools from Lyapunov stability theory have been used
in the design of this controller. Superior closed-loop performance can be achieved if
singularities are accepted which imply that the motor cannot be operated from any
initial condition. In this case the controlled motor can be rendered linear as shown
in Sections 2.4–2.6. Moreover, estimators for load torque and rotor resistance can
also be designed when all state variables are measured: they allow the convergence
to zero of the rotor speed and rotor flux tracking errors even when the parameters
are not correctly estimated. However, when the electromagnetic torque is different
from zero both load torque and rotor resistance are identified online. The indirect
field-oriented control, which does not require rotor flux measurements, has been ex-
perimentally tested and its robustness with respect to rotor resistance variations has
been evaluated: the experiments confirm that the rotor resistance is a very critical
parameter in the control design, since its variations lead to poor control of the rotor
flux and, consequently, to reduced power efficiency.

Chapter 3 has been devoted to the design of rotor flux observers and of rotor
resistance estimators from rotor speed and stator current measurements. It has been
shown that the two problems are closely related and can simultaneously be solved
by an adaptive flux observer which has been presented in Section 3.2: the rotor flux
estimation errors converge to zero only when the rotor resistance estimation errors
also converge to zero; this happens in most operating conditions. Basic techniques
from adaptive control theory such as the concept of persistency of excitation have
been used. The preliminary Section 3.1 has shown that, when the rotor resistance
is known, rotor flux observers with arbitrary rate of convergence can be designed.
Exponentially convergent load torque estimators have been discussed in Section 3.3.
Rotor flux observers which are adaptive with respect to rotor resistance variations
have been experimentally tested: their robustness with respect to stator resistance
variations has been evaluated.

In Chapter 4 physically implementable feedback control algorithms have been
obtained on the basis of the results discussed in Chapters 2 and 3. The most general
and most complex output feedback controller has been presented in Section 4.4: it is
adaptive with respect to both unknown load torque and rotor resistance and allows
for any motor initial condition and any speed reference. It achieves in any case the
tracking of the rotor speed reference: the tracking of the desired rotor flux modulus,
however, is achieved if persistency of excitation conditions are met so that the pa-
rameters are correctly estimated. The persistency of excitation conditions cannot be
met when the load torque is zero and both the rotor speed and the rotor flux modulus
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are constant; in typical operating conditions, that is when the electromagnetic torque
is different from zero, they are satisfied. Hence, the lack of rotor flux measurements
only prevents us from achieving rotor flux tracking even when the rotor resistance is
uncertain and is not correctly identified. However, when the electromagnetic torque
is different from zero, the exact value of the rotor resistance is recovered online and
the flux tracking errors exponentially tend to zero. In Chapter 4 it has also been clar-
ified that even though output feedback control not based on observers can also be
designed when rotor resistance is known, as shown in Section 4.1, observers can im-
prove the closed-loop performance and motor efficiency and should be used when
the rotor resistance is uncertain. An output feedback control algorithm, which is
adaptive with respect to load torque and rotor resistance variations, has been exper-
imentally tested: experiments confirm that the rotor resistance is estimated online.

The difficult problem of controlling the induction motor without rotor speed mea-
surements has been studied in Chapter 5. Since no rotor speed tracking error is
available for feedback, the main problem is to design rotor speed observers so that
the control techniques developed in Chapter 4 can still be applied. In Section 5.1 it
has been shown that a control which is based on the stator current errors only and
does not attempt to estimate the rotor speed has severe limitations and may lead to
instability. The possibility of observing the rotor speed, at least when a feedback
control is applied and the rotor flux vector is measured, has been discussed in Sec-
tion 5.2, which opens the way to the design of adaptive speed-sensorless controls
in the realistic cases in which the rotor flux is not measured and both torque load
and rotor resistance are uncertain. In these cases the obtained results, which are pre-
sented in Sections 5.4 and 5.5, are local, i.e. they hold for sufficiently small initial
errors, while global results have been obtained in Chapter 4 when rotor speed mea-
surements are available. Moreover, in order to identify the rotor resistance which is
required for the rotor speed estimation and for the speed tracking, the rotor flux ref-
erence is required to be time-varying so that power efficiency is more problematic:
this limitation is not present in the case in which the rotor speed is measured.

This book clearly illustrates that nonlinear adaptive control techniques can be
successfully applied to the design of induction motor control. A nonlinear adaptive
control design is required for the induction motor control since its dynamics are
highly nonlinear and critical parameters should be identified online to improve mo-
tor efficiency and performance. All control and estimation algorithms presented in
this book have been simulated for the same induction motor which has been used
in the experiments, so that the corresponding performance can be compared and
validated. Experimental tests confirm the simulation results: they show that criti-
cal parameters such as torque load and rotor resistance can be estimated online and
that the presented control algorithms are implementable, achieve good performance,
and improve power efficiency when the rotor speed is measured. Even in the cases
in which only stator currents are measured while rotor speed and fluxes are not
measured, rotor speed tracking can still be achieved by complex nonlinear adaptive
feedback controls, provided that persistently exciting rotor fluxes are generated.

We may conclude that the two parameters load torque and rotor resistance have
been the main characters of this book which specifically require adaptive control
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techniques; their variations may turn a stable operating condition into an unstable
one and vice versa when the induction motor is operated by a feedforward con-
trol; they both contribute to determine the optimal flux modulus which minimizes
the power losses; they determine, for a given flux modulus, the slip speed, that is
the difference between the flux vector speed of rotation and the rotor speed. Con-
sequently, since the quadrature component of the stator current vector, which is
orthogonal to the flux vector, is responsible for the electromagnetic torque genera-
tion while the direct component of the stator current vector, which is parallel to the
flux vector, is responsible for the flux tracking, unless the rotor flux is directly mea-
sured, the exact values of those two parameters are needed by any control algorithm
to achieve high dynamic performance in speed control with high power efficiency.
Nonlinear adaptive observers are then the key tools for induction motor control,
since they can observe the rotor flux vector and, simultaneously, identify online the
rotor resistance. Nonadaptive rotor flux observers are, in fact, very sensitive to rotor
resistance variations. Even though there are operating conditions in which the rotor
flux vector is not observable and the rotor resistance is not identifiable, in typical
operating conditions, such as nonzero electromagnetic torque, the adaptive observer
errors converge exponentially to zero and this is experimentally confirmed. Once
the rotor flux estimation errors converge to zero, the online identification of the load
torque is not difficult. The incorporation of adaptive observers into an output feed-
back control algorithm presents technical difficulties and leads to complex nonlin-
ear feedback controls, which are designed on the basis of Lyapunov techniques. The
most difficult problem has been to control the induction motor without rotor speed
measurements. Adaptive observers for rotor speed and fluxes and online identifica-
tion algorithms for the load torque and the rotor resistance are to be designed on the
basis of stator current and stator voltage measurements only. This is, to a large ex-
tent, still an open problem: it is of special interest for traction applications in which
induction motor controls are required to tolerate rotor speed sensor faults, especially
at low speed, and to maintain at the same time high power efficiency at every speed.





Appendix A

Lyapunov Stability

Consider the ordinary differential equation

ẋ = f (x, t) , x(t0) = x0 , x ∈ R
n (A.1)

with f ∈ C0(Rn ×R
+,Rn). It is called autonomous when f does not depend on t,

i.e.

ẋ = f (x) , x(0) = x0 (A.2)

and nonautonomous otherwise. It is called linear if f (x, t) = A(t)x, with A(t) an n×n
time-varying matrix, and nonlinear otherwise. A solution of (A.1) over an interval
[t0, t0 +T ] is denoted by ϕ(t0 + t,t0,x0) ∈C1(R+ ×R

+ ×R
n,Rn), and satisfies

(i) ϕ(t0, t0,x0) = x0,

(ii)
dϕ(t0 + t,t0,x0)

dt
= f (ϕ(t0 + t,t0,x0),t), ∀t ∈ [0,T ].

A solution of (A.2) over an interval [0,T ] is denoted by ϕ(t,x0) with x0 = x(0).

Theorem A.1. (Local Existence and Uniqueness) Suppose that there exist positive
reals τ , ατ , and βτ such that

(i) ‖ f (x1, t)− f (x2,t)‖ ≤ ατ‖x1 − x2‖, ∀x1,x2 ∈ Br, ∀t ∈ [t0,τ ],
(ii) ‖ f (x0,t)‖ ≤ βτ , ∀t ∈ [t0,τ],

with Br(x0) = {x ∈R
n : ‖x−x0‖≤ r}; then (A.1) has only one solution over [t0, t0 +

T ] for a sufficiently small positive real T such that 0 < T ≤ τ . ��
Theorem A.2. (Global Existence and Uniqueness) Suppose that for each τ ∈ [t0,∞)
there exist positive reals ατ and βτ such that:

(i) ‖ f (x1, t)− f (x2,t)‖ ≤ ατ‖x1 − x2‖, ∀x1,x2 ∈ R
n, ∀t ∈ [t0,τ ],

(ii) ‖ f (x0,t)‖ ≤ βτ , ∀t ∈ [t0,τ];

then (A.1) has only one solution over [t0,∞). ��

299



300 A Lyapunov Stability

A point xe is called an equilibrium point of (A.1) if f (xe, t) = 0, ∀t ≥ 0. An
equilibrium point is said to be stable if for any ε > 0 and any t0 ∈ R

+ there exists
δ (t0,ε) > 0 such that ‖ϕ(t + t0,t0,x0)− xe‖ < ε , ∀t ≥ 0, for every x0 satisfying
‖x0 −xe‖ < δ (t0,ε). If δ can be chosen independently of t0 the equilibrium point xe
is said to be uniformly stable. An equilibrium point xe which is not stable is said to
be unstable.

An equilibrium point xe is said to be attractive if there exists γ(t0) > 0 such that

lim
t→∞‖ϕ(t + t0,t0,x0)− xe‖ = 0 (A.3)

for every x0 satisfying ‖x0 − xe‖ < γ(t0). If γ can be chosen independently of t0
and (A.3) holds uniformly in t0 and x0, the equilibrium point is said to be uniformly
attractive. Let xe be a uniformly attractive equilibrium point: its domain of attraction
D(xe) is defined as

D(xe) = {x ∈ R
n : lim

t→∞‖ϕ(t,0,x)− xe‖ = 0} .

An equilibrium point is said to be (uniformly) asymptotically stable if it is both
(uniformly) stable and (uniformly) attractive. The equilibrium point is said to be
exponentially stable if there exist positive constants c, α and r such that

‖ϕ(t + t0,t0,x0)− xe‖ ≤ c ‖x0 − xe‖e−α(t−t0) , ∀t ≥ t0 (A.4)

for every x0 such that ‖x0−xe‖< r; it is called globally exponentially stable if (A.4)
holds for every x0 ∈ R

n. The constant α is called the rate of convergence while
1/α is called the time constant. Exponential stability implies uniform asymptotic
stability. In the case of linear systems the two properties are equivalent.

Theorem A.3. If the origin is a uniformly asymptotically stable equilibrium point
for the linear time-varying system

ẋ = A(t)x , x ∈ R
n ,

then it is globally exponentially stable. ��
An equilibrium point is said to be globally uniformly asymptotically stable if:

(i) it is uniformly asymptotically stable,
(ii) for every arbitrarily small positive real ε and every arbitrarily large positive
real M there exists a positive T (ε ,M) such that ‖ϕ(t + t0, t0,x0)− xe‖ < ε for
every t > T (ε,M) and every x0 satisfying ‖x0 − xe‖ < M.

A function φ : R
+ → R

+ is said to be of class K if it is continuous, strictly
increasing, and φ(0) = 0.

A function V : R
+ ×R

n → R is said to be a positive definite function if it is
continuous, V (t,0) = 0, ∀t ≥ t0, and there exist a constant r > 0 and a function φ of
class K such that
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φ(‖x‖) ≤ V (t,x) , ∀t ≥ t0 , ∀x ∈ Br(0) (A.5)

with Br(0) an open ball in R
n of radius r centered at the origin. A function V

is negative definite if −V is positive definite. A function V is said to be a radi-
ally unbounded function if for some class K function ψ : R

+ → R
+ such that

limr→∞ψ(r) = ∞, we have

ψ(‖x‖) ≤ V (t,x) , ∀t ≥ t0 , ∀x ∈ R
n .

A function V is said to be decrescent if there exist a constant r > 0 and a function ψ
of class K such that

V (t,x) ≤ ψ(‖x‖) , ∀t ≥ t0 , ∀x ∈ Br(0) .

An n× n real matrix P is said to be a positive definite matrix (positive semidefi-
nite) if xTPx > 0 (xTPx ≥ 0) for every x ∈ R

n, x �= 0. Matrix P is negative definite
(semidefinite) if −P is positive definite (semidefinite).

Without loss of generality we assume that the equilibrium point xe is the origin
in the statement of the following basic result.

Theorem A.4. (Lyapunov) Let xe = 0 be an equilibrium point of (A.1). Let V (t,x)
be a C1 positive definite function whose time derivative along the solutions of (A.1)
is denoted by

V̇ (t,x) =
∂V (t,x)
∂ t

+
n

∑
i=1

∂V (t,x)
∂xi

fi(x, t) .

(i) If V̇ (t,x) ≤ 0, ∀t ≥ t0, ∀x ∈ Br for some r > 0, then xe = 0 is stable.
(ii) If V (t,x) is positive definite and decrescent and V̇ (t,x) ≤ 0, ∀t ≥ t0, ∀x ∈
Br(0) for some r > 0, then xe = 0 is uniformly stable.
(iii) If V (t,x) is positive definite and decrescent and V̇ (t,x) is negative definite
then xe = 0 is uniformly asymptotically stable.
(iv) If V (t,x) is positive definite, decrescent in R

n and radially unbounded and
V̇ (t,x) is negative definite in R

n, then xe = 0 is globally uniformly asymptotically
stable. ��

A function V (t,x) satisfying condition (i) above is called a Lyapunov function for
system (A.1).

Theorem A.5. Let xe = 0 be an equilibrium point of (A.1). Suppose there exist pos-
itive constants a, b, c, p ≥ 1 and a C1 function V : R

+ ×R
n → R

+ such that for
every x ∈ Br(0) for some positive r

(i) a‖x‖p ≤V (t,x) ≤ b‖x‖p, ∀t ≥ t0,

(ii) V̇ (t,x) =
∂V (t,x)
∂ t

+
n

∑
i=1

∂V (t,x)
∂xi

fi(x, t) ≤−c‖x‖p, ∀t ≥ t0.

Then xe = 0 is exponentially stable. If, in addition, (i) and (ii) hold for every x ∈ R
n

then xe = 0 is globally exponentially stable. ��
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Theorem A.6. Consider the linear autonomous system

ẋ = Ax, x ∈ R
n . (A.6)

The following statements are equivalent:

(i) the origin is an asymptotically stable equilibrium point;
(ii) the origin is globally exponentially stable;
(iii) A is a Hurwitz matrix, i.e. all the eigenvalues of A have negative real parts;
(iv) for each symmetric positive definite n × n matrix Q, the n × n symmetric
positive definite matrix

P =
∫ ∞

0
eATtQeAt dt

is the unique solution of the Lyapunov matrix equation

ATP+PA = −Q

and V = xTPx is a Lyapunov function for (A.6). ��
Theorem A.7. (Linear Approximation Theorem) Consider the autonomous system
(A.2) with f (x) a C2 function and f (0) = 0. The origin is an exponentially stable
equilibrium point if and only if the linear approximation about the origin

ẋ = Fx , x ∈ R
n

is asymptotically stable, with the n×n constant matrix F being the Jacobian of f (x)
evaluated at the origin. If the matrix F has at least one eigenvalue with positive real
part then the origin is an unstable equilibrium point. ��

When the matrix F has all its eigenvalues with nonpositive real parts and at least
one eigenvalue with real part equal to zero we are in a critical case since Theo-
rem A.7 does not apply.

Lemma A.1. Consider the system (x1 ∈ R
n, x2 ∈ R

m)

ẋ1 = f1(t,x1,x2), f1(t,0,0) = 0
ẋ2 = f2(t,x2), f2(t,0) = 0 (A.7)

and assume that:

(i) for the x1-subsystem there exists a function V1(t,x1) such that

c1‖x1‖2 ≤ V1(t,x1) ≤ c2‖x1‖2

∂V1

∂ t
+
∂V1

∂x1
f1(t,x1,x2) ≤ −c3‖x1‖2 + c4‖x2‖2 (A.8)

with ci > 0, 1 ≤ i ≤ 4;
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(ii) the equilibrium point x2 = 0 of the x2-subsystem is globally exponentially
stable.

Then, the equilibrium point (x1,x2) = 0 of the whole system (A.7) is globally expo-
nentially stable.

Proof. By assumption (ii), for any initial condition x2(t0), x2(t) satisfies the inequal-
ity

‖x2(t)‖ ≤ c5‖x2(t0)‖e−c6(t−t0) (A.9)

with c5 > 0 and c6 > 0. Let y(t) ∈ R be the solution of

ẏ(t) = −c6y(t) , y(t0) = ‖x2(t0)‖ . (A.10)

Since y(t) = e−c6(t−t0)y(t0), we can write

‖x2(t)‖ ≤ c5y(t) , ∀t ≥ t0 . (A.11)

Consider the function

V (t,x1,y) = V1(t,x1)+
1
2
(c4 +1)

c2
5

c6
y2 .

By virtue of (A.8), (A.10), and (A.11), we have, for every t ≥ t0,

c1‖x1‖2 +
1
2
(c4 +1)

c2
5

c6
y2 ≤ V ≤ c2‖x1‖2 +

1
2
(c4 +1)

c2
5

c6
y2

and

V̇ ≤ −c3‖x1‖2 + c4‖x2‖2 − (c4 +1)c2
5y2

≤ −c3‖x1‖2 + c4c2
5y2 − (c4 +1)c2

5y2 = −c3‖x1‖2 − c2
5y2

which imply that ∥∥∥∥
[

x1(t)
y(t)

]∥∥∥∥ ≤ c7

∥∥∥∥
[

x1(t0)
y(t0)

]∥∥∥∥e−c8(t−t0) (A.12)

for suitable c7 > 0 and c8 > 0. The inequalities (A.9) and (A.12) prove the thesis.
��

A function ϕ : R
+ → R is said to be uniformly continuous on [0,∞) if for every

ε > 0 there exists a δ (ε) > 0 such that

|ϕ(t1)−ϕ(t2)| < ε , ∀t1, t2 ∈ R
+ : |t1 − t2| < δ .

A continuous, differentiable function ϕ with bounded derivative in [0,∞) is uni-
formly continuous on [0,∞).
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Lemma A.2. (Barbalat) If ϕ(t) is a real function of the real variable t which is
defined and uniformly continuous on [t0,∞), t0 ∈ R

+, and if the limit of the integral∫ t
t0 ϕ(τ)dτ as t tends to infinity exists and is a finite number, then

lim
t→∞ϕ(t) = 0 . (A.13)

Proof. The proof proceeds by contradiction. If (A.13) is not satisfied there exists a
positive real ε > 0 such that for every positive real T > 0 one can find tT ≥ T with
|ϕ(tT )| ≥ ε . Since ϕ is uniformly continuous, there exists a positive real δε such
that, for every t ≥ t0 and every τ in the interval 0 ≤ τ ≤ δε ,

|ϕ(t)−ϕ(t + τ)| ≤ ε
2

and in particular, for t = tT ,

|ϕ(tT )−ϕ(tT + τ)| ≤ ε
2

, 0 ≤ τ ≤ δε

i.e.

|ϕ(tT )−ϕ(t)| ≤ ε
2

, tT ≤ t ≤ tT +δε .

Since |ϕ(tT )| ≥ ε , we have

|ϕ(t)| ≥ ε
2

, tT ≤ t ≤ tT +δε

and, therefore,
∫ tT +δε

tT
|ϕ(τ)|dτ ≥ εδε

2
.

Hence, we can determine an infinite unbounded sequence {ti} such that

∫ ti+δi

ti
|ϕ(τ)|dτ ≥ εiδi

2
.

It follows that the integral
∫ t

t0 ϕ(τ)dτ cannot tend to a finite limit as t → ∞. ��
Example A.1. The function

ϕ(t) = e−t sin(e3t −1)−3e2t cos(e3t −1)

is not uniformly continuous. Its integral
∫ t

0
ϕ(τ) dτ = −e−t sin(e3t −1)

tends to zero as t goes to infinity but the function itself does not tend to zero. ��
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Corollary A.1. If ψ(t) : [t0,∞) → R
n is such that

(i) limt→∞
∫ t

t0 ψ
T(τ)ψ(τ) dτ < ∞

(ii) ‖ψ(t)‖ ≤ M1, ∀t ≥ t0

(iii)
∥∥∥∥dψ(t)

dt

∥∥∥∥≤ M2, ∀t ≥ t0

with M1, M2 positive reals, then

lim
t→∞‖ψ(t)‖ = 0 .

Proof. Let ϕ(t) = ψT(t)ψ(t). Conditions (ii) and (iii) imply that ϕ(t) and ϕ̇(t)
are bounded. Therefore, ϕ is uniformly continuous and we can apply Barbalat’s
Lemma A.2 to the function ϕ(t) which guarantees that limt→∞ϕ(t) = 0 and, conse-
quently, the corollary is proved. ��
Lemma A.3. (Persistency of Excitation) Consider the system

ẋ = fx(t,x,z) = A(t)x+B(t)z , x ∈ R
n

ż = fz(t,x) = D(t)x , z ∈ R
m (A.14)

in which fx and fz are continuous and B(t) is continuously differentiable for t ≥ t0.
Assume that, for any t ≥ t0:

(i) ‖A(t)‖ ≤ AM, ‖B(t)‖ ≤ BM, ‖D(t)‖ ≤ DM and ‖Ḃ(t)‖ ≤ ḂM;
(ii) there exist two positive reals T and kT such that the persistency of excitation
condition ∫ t+T

t
BT(τ)B(τ)dτ ≥ kT I (A.15)

is satisfied;
(iii) there exists a smooth function V (x,z,t) and suitable positive reals ai, 1 ≤ i ≤
3 such that

a1(‖x‖2 +‖z‖2) ≤ V (x,z,t) ≤ a2(‖x‖2 +‖z‖2)
V̇ (x,z, t) ≤ −a3‖x‖2 . (A.16)

Then, the equilibrium point (x,z) = 0 of system (A.14) is globally exponentially
stable.

Proof. Consider the class of radially unbounded functions

W (x,z,t) = V (x,z, t)+ p‖Qz−BTx‖2

where p is a positive scalar parameter to be defined later, and Q(t) is an m×m
matrix generated by the matrix differential equation

Q̇(t) = −Q(t)+BT(t)B(t)



306 A Lyapunov Stability

with Q(t0) = e−T kT I. By virtue of assumption (ii),

Q(t +T ) ≥ e−T
∫ t+T

t
BT(τ)B(τ)dτ ≥ e−T kT I > 0 .

Since ‖B(t)‖ ≤ BM , it follows that

B2
MI ≥ Q(t) > kT e−2T I .

In view of hypothesis (iii),

W (x,z, t) ≥ a1(‖x‖2 +‖z‖2)+ p‖Qz−BTx‖2

W (x,z, t) ≤ a2(‖x‖2 +‖z‖2)+ p‖Qz−BTx‖2 . (A.17)

By virtue of assumption (iii), we have

Ẇ ≤ −a3‖x‖2 +2p(Qz−BTx)
T
(QDx−Qz−BTAx− ḂTx)

so that by adding and subtracting 2p(Qz−BTx)TBTx, we obtain

Ẇ ≤ −a3‖x‖2 −2p‖Qz−BTx‖2 +2p(Qz−BTx)
T
(QD−BTA− ḂT −BT)x .

(A.18)

By hypothesis (i), there exists a positive real a4 ∈ℜ+, such that a4 ≥ ‖QD−BTA−
ḂT −BT‖2. By completing the squares, we have

2p(Qz−BTx)
T
(QD−BTA− ḂT −BT)x ≤ p

4
‖Qz−BTx‖2 +4pa4‖x‖2

−p‖Qz−BTx‖2 ≤ p
(
‖BTx‖2 − 1

2
‖Qz‖2

)
. (A.19)

By substituting (A.19) into (A.18) and rearranging terms, we obtain

Ẇ ≤ −[a3 − p
(
4a4 +B2

M
)]‖x‖2 − p

2
k2

T e−4T‖z‖2 − 3
4

p‖Qz−BTx‖2 .(A.20)

By choosing p such that p < a3/
(
4a4 +B2

M
)
, the right-hand side of the inequality

(A.20) is negative definite and, therefore, from (A.17), it follows that the origin of
system (A.14) is globally exponentially stable. ��
Example A.2. Consider the system

˙̃x = −x̃+b1(t)θ̃1 +b2(t)θ̃2

˙̃θ 1 = −b1(t)x̃
˙̃θ 2 = −b2(t)x̃ (A.21)
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in which b1(t) and b2(t) are bounded inputs with bounded time derivatives satisfying
condition (ii) of Lemma A.3; since the positive definite function

V (x̃, θ̃1, θ̃2) =
1
2
(x̃2 + θ̃ 2

1 + θ̃ 2
2 )

has the following time derivative, along the system solutions:

V̇ (x, θ̃1, θ̃2) = −x̃2

so that condition (iii) of Lemma A.3 is satisfied, then, according to Lemma A.3, the
origin (x̃, θ̃1, θ̃2) = 0 is a globally exponentially stable equilibrium point for system
(A.21). The above example (A.21) may arise from the adaptive control of the system

ẋ = u(t)+b1(t)θ1 +b2(t)θ2

in which θ1 and θ2 are unknown constant parameters and the following adaptive
control

u = −[x− xr(t)]+ ẋr(t)−b1(t)θ̂1 −b2(t)θ̂2

˙̂θ 1 = b1(t)(x− xr)
˙̂θ 2 = b2(t)(x− xr)

is designed to track the reference signal xr(t) by adjusting the parameter estimates
θ̂1(t) and θ̂2(t). Defining the tracking error x̃ = x − xr and the estimation errors
θ̃1 = θ1 − θ̂1, θ̃2 = θ2 − θ̂2, the error dynamics are given by (A.21). On the other
hand, the example (A.21) may arise from the design of an adaptive observer for the
system

ẋ = b1(t)θ1 +b2(t)θ2

y = x

in which y is the measured variable and θ1, θ2 are unknown constant parameters. In
fact, design the adaptive observer

˙̂x = −x̂+ y+b1(t)θ̂1 +b2(t)θ̂2

˙̂θ 1 = b1(t)(y− x̂)
˙̂θ 2 = b2(t)(y− x̂)

in which x̂ is the state variable estimate and θ̂1, θ̂2 are the parameter estimates. If
we denote by x̃ = x− x̂ the observation error and by θ̃1 = θ1 − θ̂1, θ̃2 = θ2 − θ̂2
the parameter estimation errors, the error dynamics are given by (A.21). Note that,
even though the persistency of excitation condition (A.15) fails, we can still apply
Corollary A.1 to the function ψ(t) = x̃2(t) and conclude that limt→∞ x̃(t) = 0 for
any initial condition x̃(t0), θ̂1(t0), and θ̂2(t0). Furthermore, it is interesting to note
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that if b1 and b2 are constant so that the persistency of excitation condition (A.15)
fails, defining

θ̃ = b1θ̃1 +b2θ̃2

we obtain

˙̃x = −x̃+ θ̃
˙̃θ = −(b2

1 +b2
2)x̃ ; (A.22)

considering the positive definite function

V =
1
2

(
x̃2 +

θ̃ 2

b2
1 +b2

2

)

whose time derivative along the system solution is

V̇ = −x̃2

we can conclude, according to Lemma A.3, that the origin (x̃, θ̃) = 0 is a globally
exponentially stable equilibrium point for system (A.22): in particular, even though
θ̃1 and θ̃2 may not converge to zero, b1θ̃1 + b2θ̃2 exponentially converges to zero
for any initial condition. ��
Lemma A.4. Consider the differential scalar inequality

V̇ (t) = −c1V (t)+W (t) (A.23)

in which

W (t) ≤ cwe−c2t (A.24)

with c1 > 0, c2 > 0, and cw ≥ 0. Then, the solution V (t) satisfies the following
inequality:

V (t) ≤ V (0)e−c1t + cw
e−c2t − e−c1t

c1 − c2
.

Proof. By integrating (A.23) and taking (A.24) into account, we obtain

V (t) ≤ V (0)e−c1t +
∫ t

0
e−c1(t−τ)W (τ)dτ

= V (0)e−c1t + cwe−c1t

[
eτ(c1−c2)

c1 − c2

]t

0

which implies the thesis. ��
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We define in the following the projection operator Proj( f , θ̂) which is used by
the adaptation algorithm

˙̂θ = Proj( f , θ̂) , θ̂(0) = θ̂0

for the estimate θ̂ of the uncertain parameter θ ∈ [θm,θM], with known lower and
upper bounds θm and θM , respectively. The initial condition θ̂0 is such that θm ≤
θ̂0 ≤ θM . The projection operator Proj( f , θ̂) : R×R → R is defined as

Proj( f , θ̂) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f if θm ≤ θ̂ ≤ θM

f if (θ̂ < θm and f ≥ 0)
f if (θ̂ > θM and f ≤ 0)

f
[
1− θm

2−θ̂2

θm
2−(θm−ε)2

]
if (θ̂ < θm and f < 0)

f
[
1− θ̂2−θM

2

(θM+ε)2−θM
2

]
if (θ̂ > θM and f > 0)

(A.25)

with f a continuous scalar time function and ε > 0 satisfying θm(θm − ε) ≥ 0 and
θM(θM + ε) ≥ 0. The projection algorithm Proj(·, ·) has the following properties:

(i) Proj( f , θ̂) is Lipschitz continuous;
(ii) |Proj( f , θ̂)| ≤ | f |;
(iii) (θ − θ̂)Proj( f , θ̂) ≥ (θ − θ̂) f ;
(iv) θm − ε ≤ θ̂(t) ≤ θM + ε , for any t ≥ 0.





Appendix B

Nonlinear Control Theory

Let p be a point in E
n, n-dimensional Euclidean space, and U a neighborhood of p.

Let ϕ(q) = (x1(q), . . . ,xn(q)) : U → V ⊂ R
n be a homeomorphism, that is one-to-

one and onto (i.e. a bijection), with ϕ , ϕ−1 continuous and R
n = R× . . .×R, R the

real numbers. (U,ϕ) is called a coordinate neighborhood or coordinate chart and the
real numbers x1(q), . . . ,xn(q), which vary continuously, are the local coordinates of
q ∈ E

n: xi(q) is called the ith coordinate function. If both ϕ and ϕ−1 are smooth
maps, ϕ is called a diffeomorphism. If both ϕ and ϕ−1 are defined in R

n and are
smooth maps, ϕ is called a global diffeomorphism.

Given two coordinate neighborhoods (U,ϕ), (W,ψ) with U ∩W �= 0 and ϕ(q) =
(x1(q), . . . ,xn(q)), ψ(q) = (z1(q), . . . ,zn(q)), the homeomorphism

ψ ◦ϕ−1 : R
n → R

n

is a coordinate transformation in U ∩W , i.e.

z(x) = ψ ◦ϕ−1(x) .

The inverse mapping is

x(z) = ϕ ◦ψ−1(z) .

If x and z are represented by vectors with n components, namely

x =

⎡
⎢⎣

x1
...

xn

⎤
⎥⎦ , z =

⎡
⎢⎣

z1
...

zn

⎤
⎥⎦ ,

the coordinate transformations are expressed by n real valued continuous functions
defined in R

n, i.e.

311
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x(z) =

⎡
⎢⎣

x1(z1, . . . ,zn)
...

xn(z1, . . . ,zn)

⎤
⎥⎦ , z(x) =

⎡
⎢⎣

z1(x1, . . . ,xn)
...

zn(x1, . . . ,xn)

⎤
⎥⎦ .

If both homeomorphisms z(x) and x(z) are smooth maps, the coordinate transforma-
tion is a diffeomorphism. If both homeomorphisms z(x) and x(z) are smooth maps
defined in R

n, the coordinate transformation is a global diffeomorphism.
We now recall a well known result from calculus which provides sufficient con-

ditions for a map to be a diffeomorphism.

Theorem B.1. (Inverse Function) Let U be an open subset of R
n and let ϕ =

(ϕ1, . . . ,ϕn) : U → R
n be a smooth map. If the Jacobian matrix

dϕ
dx

=

⎡
⎢⎢⎢⎢⎣
∂ϕ1

∂x1
· · · ∂ϕ1

∂xn
...

. . .
...

∂ϕn

∂x1
· · · ∂ϕn

∂xn

⎤
⎥⎥⎥⎥⎦

is nonsingular at some point p ∈ U then there exists a neighborhood V ⊂ U of p
such that ϕ : V → ϕ(V ) is a diffeomorphism. ��

Let h : U ⊂ E
n → R be a real valued function defined on U . Depending on

the coordinate neighborhoods (U,ϕ) chosen, the function h is expressed in local
coordinates as

hϕ = h◦ϕ−1 : R
n → R .

The expression hϕ depends on the chosen local coordinates.
The differential of a smooth function h : U ⊂ R

n → R is defined in local coordi-
nates as

dh =
∂h
∂x1

dx1 + · · ·+ ∂h
∂xn

dxn

and may be denoted as a row gradient vector

gradh =
[
∂h
∂x1

. . .
∂h
∂xn

]
.

Given r smooth real valued functions ϕ1, . . . , ϕr in U ⊂ R
n, Rank{dϕ1, . . . ,dϕr}

= r in p ∈U (in U ⊂ R
n) is equivalent to
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Rank

⎡
⎢⎢⎢⎢⎣
∂ϕ1(x)
∂x1

. . .
∂ϕ1(x)
∂xn

...
...

...
∂ϕr(x)
∂x1

. . .
∂ϕr(x)
∂xn

⎤
⎥⎥⎥⎥⎦= r

for x = p (for every x ∈ U). The inverse function theorem may also be stated as
follows.

Theorem B.2. If Rank{dϕ1, . . . ,dϕn} = n at some point p ∈ U, an open subset of
R

n, then there exists a neighborhood V ⊂ U of p such that ϕ : V → ϕ(V ) is a
diffeomorphism. ��
Theorem B.3. Given n + 1 real valued smooth functions ψ , ϕ1, . . . , ϕn in U ⊂ R

n,
if in p ∈ U Rank{dϕi, 1 ≤ i ≤ n} = n and dψ ∈ Span{dϕi, 1 ≤ i ≤ j} for some
j ≤ n, then in local coordinates zi = ϕi(x), 1 ≤ i ≤ n, ∂ψ(z)/∂ zi = 0, j +1 ≤ i ≤ n,
i.e. ψ = ψ(z1, . . . ,z j) in a neighborhood V ⊂U of p. ��

Let C∞(p) be the set of all C∞ functions defined in U , a neighborhood of p. They
form an algebra over the field R. A tangent vector v at p has three properties:

(i) it maps C∞(p) into R
n;

(ii) it is a linear operator, that is

v(a1h1 +a2h2) = a1v(h1)+a2v(h2), ∀hi ∈C∞(p), ai ∈ R ;

(iii) it satisfies Leibniz’s rule

v(h1h2) = v(h1)h2 +h1v(h2) .

All tangent vectors v at p constitute a vector space over the field R since

(a1v1 +a2v2)(h) = a1v1(h)+a2v2(h) .

If (U,ϕ) is a coordinate neighborhood and x1(p), . . . ,xn(p) are local coordinates, a
vector may be expressed as

v = v1
∂
∂x1

+ · · ·+ vn
∂
∂xn

with vi ∈ R, 1 ≤ i ≤ n, being the components of v with respect to ∂/∂x1, . . . , ∂/∂xn
which is a basis for the vector space over R consisting of all tangent vectors v at p.

A vector field f on an open subset U ⊂ R
n is a function which assigns to each

point p ∈U a vector fp.
If (U,ϕ) is a coordinate neighborhood and x1(p), . . . , xn(p), p ∈ U , are local

coordinates, a C∞ (smooth) vector field is expressed as

f = f1(x)
∂
∂x1

+ . . .+ fn(x)
∂
∂xn
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with fi ∈C∞(p) depending on the chosen local coordinates. A vector field may also
be expressed as a column vector

f (x) =

⎡
⎢⎣

f1(x)
...

fn(x)

⎤
⎥⎦ .

If z(x) denotes a coordinate transformation whose inverse is x(z), the vector field f
is expressed in new coordinates as

f̃ = f̃1(z)
∂
∂ z1

+ · · ·+ f̃n(z)
∂
∂ zn

with

f̃ j(z) =
n

∑
i=1

∂ z j(x(z))
∂xi

fi(x(z)) , 1 ≤ j ≤ n .

Equivalently, in vector notation we can write⎡
⎢⎣

f̃1
...
f̃n

⎤
⎥⎦(z) =

dz
dx

⎡
⎢⎣

f1
...
fn

⎤
⎥⎦◦ x(z)

with

dz
dx

=

⎡
⎢⎢⎢⎢⎣
∂ z1

∂x1
· · · ∂ z1

∂xn
... · · · ...
∂ zn

∂x1
· · · ∂ zn

∂xn

⎤
⎥⎥⎥⎥⎦

denoting the Jacobian matrix of the coordinate transformation.
A dynamical system is a C1 map φt(p) : R×U →U where U is an open set in

the Euclidean space which satisfies:

(i) φ0(p) = p,
(ii) φt ◦φs = φt+s for each t,s ∈ R,

with φt(p) mapping U → U for each t. This definition implies that the map φt(p)
has a C1 inverse φ−t(p). A dynamical system defines a vector field

f (p) =
d
dt
φt(p)

∣∣∣∣
t=0

which is the tangent vector to the curve t → φt(p) at t = 0. Given a coordinate chart
(U,ϕ), the curve t → φt(p) may be expressed as t → (x1(t), . . . ,xn(t)) and
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⎡
⎢⎣

f1(x(t))
...

fn(x(t))

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎣

d
dt

x1(t)
...

d
dt

xn(t)

⎤
⎥⎥⎥⎥⎦ .

Hence x1(t), . . . ,xn(t) is the solution of the differential equation ẋ = f (x), with initial
condition x(0). If z(x) denotes a coordinate transformation with inverse x(z), the
differential equation is expressed in new coordinates as

ż =
(

dz
dx

f
)
◦ x(z) �= f̃ (z) .

Conversely, a vector field defines a unique dynamical system provided that f satis-
fies the local Lipschitz condition (see condition (i) in Theorem A.2). The converse
process to the above is: given a differential equation

ẋ = f (x) (B.1)

i.e. a vector field f , with initial condition x0, determine an integral curve t →
(x1(t), . . . ,xn(t)) which is a solution to (B.1) and such that x(0) = x0.

If f is a smooth vector field on U and h a smooth function on U then f (h) is the
smooth function on U defined by

f (h)(p) =
n

∑
i=1

fi(p)
(
∂h
∂xi

)
(p) .

A vector field may be interpreted as an operator mapping the function h into the
function f (h). The function f (h) is called the Lie derivative of the function h along
the vector field f ; it is usually denoted as L f h which is a more convenient notation
in the case of repeated operations:

L f1L f2 L f3 . . .L fih = f1( f2( f3(. . . fi(h) . . .))) .

Repeated Lie derivatives along the same vector field f are denoted as

Li
f h = L f (Li−1

f h) , L1
f h = L f h , L0

f h = h .

The Lie derivative L f h of a smooth function h along a vector field f is also denoted
by 〈dh, f 〉. The set of all C∞ vector fields on U is a vector space over R and over
C∞(p), i.e.

Lα f1+β f2 h = αL f1h+βL f2h, α,β ∈C∞(p) ;

if we define the Lie bracket

[ f ,g](h) = f (g(h))−g( f (h)) = L f Lgh−LgL f h
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they form a noncommutative Lie algebra over C∞(p). The Lie bracket [ f ,g] is a
vector field since:

(i) it satisfies Leibniz’s rule

[ f ,g](h1h2) = L f Lg(h1h2)−LgL f (h1h2)
= L f
(
(Lgh1)h2 +h1(Lgh2)

)−Lg
(
(L f h1)h2 +h1(L f h2)

)
= (L f Lgh1 −LgL f h1)h2 +h1(L f Lgh2 −LgL f h2)+(Lgh1)(L f h2)

+(L f h1)(Lgh2)− (L f h1)(Lgh2)− (Lgh1)(L f h2)
= [ f ,g](h1)h2 +h1[ f ,g](h2) ;

(ii) it is a linear operator (a1, a2 ∈ R)

[ f ,g](a1h1 +a2h2) = L f Lg(a1h1 +a2h2)−LgL f (a1h1 +a2h2)
= a1[ f ,g](h1)+a2[ f ,g](h2) .

The Lie bracket [ f ,g] of two vector fields f and g is also denoted by ad f g or by L f g.
Repeated Lie brackets are denoted as

adi
f g = ad f (adi−1

f g) , ad1
f g = ad f g , ad0

f g = g .

Given two smooth functions α , β and two smooth vector fields f , g, the following
formula holds:

[α f ,βg] = αβ [ f ,g]+α(L fβ )g−β (Lgα) f , (B.2)

which allows us to compute a Lie bracket in local coordinates (x1, . . . ,xn). Given

f =
n

∑
i=1

fi
∂
∂xi

, g =
n

∑
j=1

g j
∂
∂x j

their Lie bracket is

[ f ,g] =

[
n

∑
i=1

fi
∂
∂xi

,
n

∑
j=1

g j
∂
∂x j

]

=
n

∑
i=1

n

∑
j=1

(
fi

(
∂
∂xi

g j

)
∂
∂x j

−g j

(
∂
∂x j

fi

)
∂
∂xi

+ fig j

[
∂
∂xi

,
∂
∂x j

])
.

By definition [
∂
∂xi

,
∂
∂x j

]
(h) =

∂
∂xi

(
∂
∂x j

h
)
− ∂
∂x j

(
∂
∂xi

h
)

= 0 ,

hence
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∂
∂xi

,
∂
∂x j

]
= 0 .

In conclusion, the formula for computing a Lie bracket, given a coordinate neigh-
borhood, is

[ f ,g] =
n

∑
i=1

(
n

∑
j=1

f j

(
∂
∂x j

gi

)
−g j

(
∂
∂x j

fi

))
∂
∂xi

. (B.3)

Denoting by d f /dx or J( f ) the Jacobian matrix of a vector field f (x) = [ f1(x),
. . . , fn(x)]T, defined as

d f
dx

=

⎡
⎢⎢⎢⎢⎣
∂ f1

∂x1
· · · ∂ f1

∂xn
...

. . .
...

∂ fn

∂x1
· · · ∂ fn

∂xn

⎤
⎥⎥⎥⎥⎦ ,

formula (B.3) may be rewritten in vector notation as

[ f ,g] =
dg
dx

f − d f
dx

g .

Given two smooth vector fields f , g, and a smooth function h, the definition of Lie
bracket [ f ,g] gives Leibniz’s formula

L[ f ,g]h = L f Lgh−LgL f h .

Theorem B.4. (Implicit Function) Let U be an open subset of R
n ×R

r and let ϕ :
U → R

r be a smooth map such that ϕ(p,q) = 0 for some point (p,q) ∈U. Let (x,y)
be local coordinates in U, x ∈ R

n, y ∈ R
r. If the r× r Jacobian matrix

dϕ
dy

=

⎡
⎢⎢⎢⎢⎣
∂ϕ1

∂y1
· · · ∂ϕ1

∂yr
... · · · ...
∂ϕr

∂y1
· · · ∂ϕr

∂yr

⎤
⎥⎥⎥⎥⎦(x,y)

is nonsingular at x = p, y = q, then there exist a neighborhood V ⊂ U of (p,q),
a neighborhood W ⊂ R

n of p, and a unique smooth map ψ : W → R
r such that

ψ(p) = q, ϕ(x,ψ(x)) = 0, ∀x ∈W and

{(x,y) ∈V : ϕ(x,y) = 0} = {(x,ψ(x)) : x ∈W} .

��
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A subset M ⊂R
n is an r-dimensional submanifold (r < n) of R

n if for each x̄∈M
there exist an open set U , with x̄ ∈U , and smooth functions hr+1(x), . . . , hn(x) such
that {dhr+1(x), . . . ,dhn(x)} is a linearly independent set of row vectors for all x ∈U
and U ∩M = {x ∈ U : hi(x) = 0, r + 1 ≤ i ≤ n}. Note that the smooth functions
hr+1, . . . , hn in the above definition are not unique.

Let M be an r-dimensional submanifold of R
n. The tangent space of M at x ∈ M

is the r-dimensional subspace of R
n

T Mx = {v ∈ R
n : 〈dhi(x),v〉 = 0, r +1 ≤ i ≤ n} .

A vector field f is said to be tangent to the submanifold M of R
n at x ∈ M if f (x) ∈

T Mx.
An r-dimensional distribution D on W , an open connected subset of R

n, is a map
which assigns to each p ∈ W an r-dimensional subspace of R

n such that for each
p0 ∈ W there exist a neighborhood U of p0 and r smooth vector fields f1, . . . , fr
with the properties:

(i) f1(p), . . . , fr(p) are linearly independent for every p ∈U ;
(ii) D(p) = span{ f1(p), . . . , fr(p)}, ∀p ∈U .

Given a distribution D and a vector field f in U ⊂ R
n, we say that f belongs to D if

f (p) ∈ D(p), ∀p ∈U .

From the above definitions it follows that, given any vector field f ∈ D , there exist
r smooth functions α1(p), . . . , αr(p) in U such that

f (p) =
r

∑
i=1
αi(p) fi(p), ∀p ∈U .

A submanifold M of R
n is an integral manifold of the distribution D on R

n if for
every x ∈ M

T Mx = D(x) .

A distribution D on R
n is integrable if through any point p of R

n there passes an
integral manifold of D .

A distribution D is called involutive if, given any two vector fields f and g be-
longing to D , their Lie bracket [ f ,g] also belongs to D .

Given two distributions D1 and D2 defined in U ⊂ R
n, we say that D1 is con-

tained in D2, i.e. D1 ⊂ D2, if every vector field f belonging to D1 also belongs to
D2.

Given a distribution D , its involutive closure, denoted by D̄ or inv.cl. D , is de-
fined as the smallest involutive distribution containing D .

Theorem B.5. (Frobenius) Let D be an r-dimensional distribution on W, an open
connected subset of R

n. Around any point p ∈ W there exists a coordinate neigh-
borhood (U,x1, . . . ,xn), with U a neighborhood of p, such that for any q ∈U
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D(q) = Span
{
∂
∂x1

, . . . ,
∂
∂xr

}

if, and only if, D is involutive. ��
Consider a multi-input nonlinear system

ẋ = f (x)+
m

∑
i=1

gi(x)ui
�= f (x)+G(x)u , x ∈ R

n (B.4)

in which f , g1, . . . , gm are smooth vector fields in R
n, f (0) = 0, the n×m matrix

G(x) has maximum rank at the origin, i.e. Rank G(0) = m, and u = [u1, . . . ,um]T is
the m-dimensional input vector. Linear systems are special cases of (B.4) with f (x)
a linear vector field and constant vector fields gi. Recall the definition of controlla-
bility indices for linear controllable systems.

Definition B.1. Consider the multi-input linear systems

ẋ = Fx+
m

∑
i=1

giui = Fx+Gu (B.5)

with Rank G = m. A set of controllability indices {k1, . . . ,km} is uniquely associated
with any controllable system (B.5), i.e. such that

Rank[G,FG, . . . ,Fn−1G] = n ,

as follows:

ki = Card{m j ≥ i : j ≥ 0} , 1 ≤ i ≤ m

with

m0 = Rank G

m1 = Rank[G,FG]−Rank G
...

mk = Rank[G, . . . ,FkG]−Rank[G, . . . ,Fk−1G]
...

mn−1 = Rank[G, . . . ,Fn−1G]−Rank[G, . . . ,Fn−2G] .

By definition k1 ≥ k2 ≥ ·· · ≥ km and, since the system is controllable, ∑m
i=1 ki = n.

��
The controllability indices are invariant under linear state space change of coor-

dinates

z = T x, z ∈ R
n (B.6)
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with T nonsingular, and under nonsingular state feedback transformations

u = Kx+βv , v ∈ R
m (B.7)

where β is a nonsingular m×m matrix and K is an m×n matrix.
The following is a well known result from linear systems theory.

Theorem B.6. For any controllable system (B.5) with controllability indices {k1,
. . ., km} there exists a linear state space change of coordinates (B.6) and a nonsin-
gular state feedback (B.7) transforming (F,G) into

(T (F +GK)T−1,T Gβ ) = (Ac,Bc)

with (Ac,Bc) in Brunovsky controller form:

Ac = block diag[A1, . . . ,Am]
Bc = block diag[B1, . . . ,Bm] (B.8)

in which, for 1 ≤ i ≤ m,

Ai =

⎡
⎢⎢⎢⎣

0 1 0 . . . 0
...

...
... . . .

...
0 0 0 . . . 1
0 0 0 . . . 0

⎤
⎥⎥⎥⎦

ki×ki

, Bi =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦

1×ki

.

��
Theorem B.6 is generalized to nonlinear systems as follows.

Theorem B.7. (Multi-Input Feedback Linearization) The nonlinear system (B.4) is
locally feedback linearizable, i.e. locally transformable in V0, a neighborhood of
the origin contained in U0, into a linear controllable system in Brunovsky controller
form by means of:

(i) a nonsingular state feedback

u = K(x)+β (x)v , K(0) = 0 (B.9)

where K(x) is a smooth function from V0 into R
n, β (x) is an m×m matrix with

smooth entries, nonsingular in V0,
(ii) a local diffeomorphism in V0

z = T (x) , T (0) = 0 (B.10)

if, and only if, in U0:

(i) G� = Span{ad j
f gi : 1 ≤ i ≤ m, 0 ≤ j ≤ �}, 0 ≤ � ≤ n−2, is involutive and of

constant rank,
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(ii) Rank Gn−1 = n. ��
The controllability indices {k1, . . . ,km} associated with those systems (B.4)

which satisfy the conditions of Theorem B.7 are defined as

ki = Card{m j ≥ i : j ≥ 0} , 1 ≤ i ≤ m

with

m0 = Rank G0

m1 = Rank G1 −Rank G0
...

mn−1 = Rank Gn−1 −Rank Gn−2

and are invariant under feedback transformations. Theorem B.7 may also be stated
as follows.

Theorem B.8. The nonlinear system (B.4) is locally transformable in a neighbor-
hood of the origin, by a nonsingular state feedback transformation (which consists
of a nonsingular state feedback (B.9) and a diffeomorphism (B.10)) into a lin-
ear controllable system in Brunovsky controller form with controllability indices
k1 ≥ ·· · ≥ km if, and only if, in U0, a neighborhood of the origin:

(i) Gki−2, 1 ≤ i ≤ m, are involutive and of constant rank;
(ii) Rank Gk1−1 = n. ��
Conditions (i) and (ii) guarantee the existence of m smooth functions φ1(x), . . . ,

φm(x) such that

〈dφi,Gk j−2〉 = 0, j ≥ i

and the m×m matrix⎡
⎢⎢⎣
〈dφ1,adk1−1

f g1〉 . . . 〈dφ1,adk1−1
f gm〉

...
. . .

...
〈dφm,adkm−1

f g1〉 . . . 〈dφm,adkm−1
f gm〉

⎤
⎥⎥⎦

is nonsingular in V0. The linearizing nonsingular state feedback transformation and
diffeomorphism are, respectively,

v =

⎡
⎢⎢⎣

Lk1
f φ1
...

Lkm
f φm

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

Lg1Lk1−1
f φ1 . . . Lgm Lk1−1

f φ1
... . . .

...
Lg1 Lkm−1

f φm . . . LgmLkm−1
f φm

⎤
⎥⎥⎦u

and
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z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1
...

Lk1−1
f φ1

...
φm
...

Lkm−1
f φm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The controllability indices may be computed using the linear approximation about
the origin.

Note that even though system (B.4) is not feedback linearizable, according to
Theorem B.7, its dynamic extension

ẋ = f (x)+
m

∑
i=1

gi(x)ui , x ∈ R
n

dλi ui

dtλi
= vi , 1 ≤ i ≤ m (B.11)

may be feedback linearizable for a suitable choice of the indices (λ1, . . . , λm) from
the new inputs vi, 1 ≤ i ≤ m.

Definition B.2. System (B.4) is said to be locally dynamically state feedback lin-
earizable if there exist indices (λ1, . . . , λm) such that the extended system (B.11) is
locally state feedback linearizable. ��
Definition B.3. System (B.4) is said to be locally partially state feedback lineariz-
able with indices {k1, . . . ,km} if there exist a nonsingular state feedback transforma-
tion (B.9) and a local diffeomorphism (B.10) transforming (B.4) into

ξ̇ = ϕ(ξ ,z), ξ ∈ R
n−r

ż = Acz+Bcv, z ∈ R
r

with (Ac,Bc) in Brunovsky controller form (B.8) with indices {k1, . . . ,km} such that
∑m

i=1 ki = r < n. ��
Define the distributions

G0 = Span{g1, . . . ,gm}
G j = Span{G j−1, [ f +g,G j−1] : ∀g ∈ G0}
Q0 = G0

Q j = Span{ad j
f G0, Ḡ j−1} .

Under the assumption that all distributions G j, Q j, and the involutive closure Ḡ j of
G j, j ≥ 0, have constant rank in U0, we can define
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m0 = Rank G0

m1 = Rank Q1 −Rank Ḡ0
...

mi = Rank Qi −Rank Ḡi−1

and

k∗i = Card{m j ≥ i : j ≥ 0}, 1 ≤ i ≤ m .

By definition

k∗1 ≥ k∗2 ≥ ·· · ≥ k∗m .

It can be shown that the integers {k∗1, . . . ,k
∗
m} are invariant under nonsingular state

feedback and local diffeomorphisms.

Theorem B.9. (Multi-Input Partial Feedback Linearization) The system (B.4) is lo-
cally partially state feedback linearizable with indices {k∗1, . . . ,k

∗
m}. ��

Consider now multivariable nonlinear systems with as many inputs (m) as outputs

ẋ = f (x)+
m

∑
i=1

gi(x)ui
�= f (x)+G(x)u , x ∈ R

n

y j = h j(x) , 1 ≤ j ≤ m (B.12)

with f , g1, . . . ,gm smooth vector fields, h1, . . . ,hm smooth real valued functions,
Rank G(0) = m and Rank{dh1(0), . . . ,dhm(0)} = m.

Definition B.4. A set of m integers {ρ1, . . . ,ρm} called control characteristic indices
are associated with system (B.12) in U0, a neighborhood of the origin, as follows
(1 ≤ i ≤ m):

Lg j L
k
f hi(x) = 0 , 1 ≤ j ≤ m , 0 ≤ k ≤ ρi −2 , ∀x ∈U0

Lg j L
ρi−1
f hi(x) �= 0 , for some j , 1 ≤ j ≤ m ,∀x ∈U0 .

If

Lg j L
k
f hi(x) = 0 , ∀x ∈U0 , ∀k ≥ 0

we say that ρi = ∞. ��
The above definition is given about the origin: it may be given around any point

x̄ ∈ R
n such that Rank G(x̄) = m and Rank{dh1(x̄), . . . ,dhm(x̄)} = m. If ρi < ∞,

1 ≤ i ≤ m, then each ρi is equal to the least order of the time derivative of the output
yi which is directly affected at least by some input u j, 1 ≤ j ≤ m.
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Definition B.5. If ρi <∞, 1 ≤ i ≤ m, an m×m matrix, called the decoupling matrix,
is defined as

D(x) =

⎡
⎢⎢⎣

Lg1Lρ1−1
f h1 . . . Lgm Lρ1−1

f h1
...

...
...

Lg1 Lρm−1
f hm . . . Lgm Lρm−1

f hm

⎤
⎥⎥⎦ .

��
Note that the decoupling matrix may be nonsingular as the following example

(ρ1 = 2, ρ2 = 1) shows:

ẋ1 = x2 + x2
3

ẋ2 = x2
1 +(1+ x2

1)u1

ẋ3 = x2
2 +u2

y1 = x1

y2 = x3 .

The decoupling matrix is

D(x) =
[

1+ x2
1 2x3

0 1

]

whose determinant (1 + x2
1) is always nonzero. The decoupling matrix may be sin-

gular as the following example (ρ1 = 2, ρ2 = 1) shows:

ẋ1 = x2 + x3

ẋ2 = x2
1 +(1+ x2

1)u1 +
1
2

u2

ẋ3 = x2
2 +(1+ x2

1)u1 +
1
2

u2

y1 = x1

y2 = x3 .

The decoupling matrix is

D(x) =

[
2(1+ x2

1) 1

1+ x2
1

1
2

]

whose determinant is equal to zero.

Lemma B.1. If the decoupling matrix is nonsingular in U0 then

(i) Rank{dh j, . . . ,d(Lρ j−1
f h j), 1 ≤ j ≤ m} = ∑m

j=1ρ j = ρ ≤ n,
(ii) there exist n−ρ functions ξi(x) such that, defining
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ξ = [ξ1, . . . ,ξn−ρ ]T

z j = [h j, . . . ,L
ρ j−1
f h j]T, 1 ≤ j ≤ m

z = [z1, . . . ,zm]T ,

the coordinates (ξ ,z) form a local diffeomorphism about the origin. In local
coordinates (ξ ,z) system (B.12) is expressed in multivariable tracking form:

y j = z j1

ż ji = z j,i+1, 1 ≤ i ≤ ρ j −1

ż j,ρ j = L
ρ j
f h j(ξ ,z)+

m

∑
i=1

Lgi L
ρ j−1
f h j(ξ ,z)ui, 1 ≤ j ≤ m

ξ̇ = φ0(ξ ,z)+ΦT(ξ ,z)u .

��
If the distribution G0 = Span{g1, . . . ,gm} is involutive and of constant rank, then

we can determine n−ρ functions ξi(x) such that 〈dξi,G0〉 = 0 so that the statement
in (ii) applies with the dynamics

ξ̇ = φ0(ξ ,z)

unaffected by u, as happens in the single input case in which G0 = Span{g(x)} is
always an involutive distribution.

Theorem B.10. (Multivariable Input–Output Feedback Linearization) If the decou-
pling matrix is nonsingular in U then the system is locally decouplable and input–
output linearizable by state feedback: the state feedback

⎡
⎢⎣

Lρ1
f h1
...

Lρm
f hm

⎤
⎥⎦+D(x)u = v (B.13)

makes the closed-loop system (B.12), (B.13) decoupled and input–output linear

y j = z j1

ż ji = z j,i+1, 1 ≤ i ≤ ρ j −1
ż jρ j = v j, 1 ≤ j ≤ m

ξ̇ = φ0(ξ ,z)+ΦT(ξ ,z)v , ξ ∈ R
n−ρ .

��
Let vr = [y(ρ1)

r1 , . . . ,y(ρm)
rm ]T be the open-loop reference input which allows y j in

(B.12), (B.13) to track yr j, 1 ≤ j ≤ m, in U . The dynamics
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ξ̇r = φ0(ξr,Yr1, . . . ,Yrm)+ΦT(ξr,Yr1, . . . ,Yrm)vr

vr =

⎡
⎢⎣

yρ1
r1
...

yρm
rm

⎤
⎥⎦

with Yr j = [yr j, . . . ,y
(ρ j−1)
r j ]T, 1≤ j ≤m, are called the tracking dynamics. The inputs

to the tracking dynamics are Yr1, . . . , Yrm, vr.

Definition B.6. Consider the system (B.12) with nonsingular decoupling matrix in
U ∈ R

n; if Yr j ∈U0, 1 ≤ j ≤ m, and ξ (0) ∈U0, then

ξ̇r = φ0(ξr,Yr1, . . . ,Yrm)+ΦT(ξr,Yr1, . . . ,Yrm)vr

ur = D−1(ξr,Yr1, . . . ,Yrm)

⎡
⎢⎢⎣

yρ1
r1 −Lρ1

f h1
...

yρm
rm −Lρm

f hm

⎤
⎥⎥⎦

is the inverse system. ��
Corollary B.1. System (B.12) is simultaneously locally state feedback input–output
linearizable and locally state feedback linearizable if, and only if,

m

∑
j=1
ρ j = n .

In this case the controllability indices are equal to the control characteristic indices.
��

Consider nonlinear multi-input, multi-output systems with s outputs y = [y1, . . . ,
ys]T, m inputs u = [u1, . . . , um]T, and p constant parameters θ = [θ1, . . . , θp]T,

ẋ = f (x,θ)+q(x,θ ,u)) , x ∈ R
n , u ∈ R

m , θ ∈ R
p

y = H(x) =

⎡
⎢⎣

h1(x)
...

hs(x)

⎤
⎥⎦ , y ∈ R

s (B.14)

where h1, . . . , hs are smooth functions, dh1, . . . , dhs are linearly independent in R
n,

f is a smooth vector field, and q(x,θ ,u) is a smooth vector field with q(x,θ ,0) = 0,
∀x ∈ R

n, ∀θ ∈ R
p.

Definition B.7. Two states x1, x2 ∈ R
n are said to be indistinguishable for (B.14)

(denoted by x1Ix2) if for every admissible input function u the output function of the
system for initial state x(0) = x1, and the output function of the system for initial
state x(0) = x2, are identical on their common domain of definition. The system is
called observable if x1Ix2 implies x1 = x2. ��
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Definition B.8. The system (B.14) is called locally observable at x0 if there exists
a neighborhood W of x0 such that for every neighborhood V ⊂W of x0 the relation
x0Ix1 implies that x1 = x0. If the system is locally observable at each x0 in U0 then
it is called locally observable in U0. ��

Roughly speaking, a system is locally observable if every state x0 can be distin-
guished from its neighbors by using system trajectories remaining close to x0.

Theorem B.11. System (B.14) is locally observable at x0 if

rank{dhi(x), . . . ,d(L j
f hi) : 1 ≤ i ≤ s, j ≥ 0} = n (B.15)

for every x ∈U0 ⊂ R
n. ��

Observability indices may be defined for locally observable systems satisfying
(B.15).

Definition B.9. A set of observability indices {k1, . . . ,ks} is uniquely associated at
x to system (B.14) with u = 0 and θ = 0, that is

ẋ = f (x)
yi = hi(x) , 1 ≤ i ≤ s (B.16)

satisfying (B.15) as follows:

ki = card{s j ≥ i : j ≥ 0} , 1 ≤ i ≤ s

with

s0 = rank{dhi(x) : 1 ≤ i ≤ s}
...

sk = rank{dhi(x), . . . ,d(Lk
f hi(x)) : 1 ≤ i ≤ s}

−rank{dhi(x), . . . ,d(Lk−1
f hi(x)) : 1 ≤ i ≤ s}

...
sn−1 = rank{dhi(x), . . . ,d(Ln−1

f hi(x)) : 1 ≤ i ≤ s}
−rank{dhi(x), . . . ,d(Ln−2

f hi(x)) : 1 ≤ i ≤ s} .

��
In the case of linear systems Definition B.9 takes the following form.

Definition B.10. A set of observability indices {k1, . . . ,ks} is uniquely associated
with any observable system

ẋ = Fx

y = Hx (B.17)
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such that

rank

⎡
⎢⎢⎢⎣

H
HF

...
HFn−1

⎤
⎥⎥⎥⎦ = n

as follows:

ki = card{s j ≥ i : j ≥ 0} , 1 ≤ i ≤ s

with

s0 = rank[H]
...

sk = rank

⎡
⎢⎣

H
...

HFk

⎤
⎥⎦− rank

⎡
⎢⎣

H
...

HFk−1

⎤
⎥⎦

...

sn−1 = rank

⎡
⎢⎣

H
...

HFn−1

⎤
⎥⎦− rank

⎡
⎢⎣

H
...

HFn−2

⎤
⎥⎦ .

By definition, k1 ≥ k2 ≥ . . . ≥ ks and, since the system is observable, ∑s
i=1 ki = n.

��
The concept of local observability for nonlinear systems coincides with the well

known concept of observability for linear systems.

Lemma B.2. If, and only if, the linear system (B.17) is locally observable at x = 0
then it is observable. ��

Consider the extended system (B.14)

ẋ = f (x)+q(x,θ ,u)
θ̇ = 0
y = H(x) (B.18)

in which [xT,θT]T is the extended state vector.

Definition B.11. The system (B.14) is said to be locally observable and identifiable
at (x0,θ0) if the extended system (B.18) is locally observable at (x0,θ0). ��

Theorem B.11 may be applied to system (B.18): in this case it provides sufficient
conditions for local observability of (B.18) and, consequently, for local observability
and identifiability of system (B.14).
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Example B.1. The condition of Theorem B.11 is only sufficient: consider the scalar
system

ẋ = 0
y = x3 .

Since dh = 3x2dx and rank dh(0) = 0 Theorem B.11 does not apply, while this
system is clearly observable since x = (y)1/3. ��
Example B.2. Local observability does not imply observability: consider the system

ẋ = u

y1 = sinx

y2 = cosx .

Since rank{dh1, dh2}= rank{cosx dx, −sinx dx} is one for every x∈R, this system
is locally observable according to Theorem B.11 but it is not observable since the
points x1 and x2 with x1 and x2 multiple of 2π are indistinguishable. ��
Example B.3. Observability for nonlinear systems does not exclude that for a spe-
cific input the system is not observable: consider the system with constant input
u

ẋ1 = θx2 +ux2

ẋ2 = 0
y = x1 .

This system is not observable if u =−θ but it is observable, according to Definition
B.7, since for every constant u �= −θ the system is linear and observable. ��
Example B.4. For the class of constant inputs the system

ẋ = θ1u1 +θ2u2

θ̇1 = 0
θ̇2 = 0
y = x

is not observable, but it is observable for the specific persistently exciting inputs
u1 = sin t, u2 =−cos t: hence, this system is not observable for the class of constant
inputs but it is observable if specific time-varying inputs are applied. Note that the
inputs u1 = sin t, u2 = −cos t satisfy the persistency of excitation condition (A.15)
for any positive T ; an adaptive observer is given by

˙̂x = −x̂+ y+ θ̂1u1 + θ̂2u2
˙̂θ 1 = u1(y− x̂)
˙̂θ 2 = u2(y− x̂)
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since the persistency of excitation Lemma A.3 applies to the error dynamics (x̃ =
y− x̂, θ̃1 = θ1 − θ̂1, θ̃2 = θ2 − θ̂2)

˙̃x = −x̃+ θ̃1u1 + θ̃2u2
˙̃θ 1 = u1x̃
˙̃θ 2 = u2x̃

when u1 = sin t, u2 = −cos t, so that both the observation error x̃ and the estimation
errors θ̃1 and θ̃2 converge exponentially to zero. ��
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Due to the large number of papers on induction motor control (more than four thou-
sand at the time of writing) we list in the references only those books and journal
papers which were actually consulted and used during the preparation of this book:
the reported list is therefore by no means exhaustive and complete.

Chapter 1 and Appendices

The material in Chapter 1 and in the Appendices is, to a large extent, classical and
may be found in the books listed in the references. The following books are on the
modeling of electrical machines: [73, 130, 132, 179, 224, 225, 246, 259]. In par-
ticular [130] dedicates one chapter to the reference-frame theory and discusses the
history of rotating frame models, including Park’s transformations. The following
books are specifically dedicated to the nonlinear control of induction motors and
electric motors: [46, 51, 121, 196, 215, 242, 245, 247]. In particular [46] deals with
modeling and control of both AC and DC machines (one chapter is dedicated to
induction motor control); [51, 121] deal with nonlinear control of several types of
motors, including brushless DC and stepper motors (two chapters are dedicated to
induction motor control in [51, 121]); [196, 245] are entirely dedicated to the con-
trol of induction motors and synchronous motors using field orientation techniques
while [242] is specifically dedicated to the field-oriented control of induction mo-
tors; [215, 247] address the sensorless control problem. The following books are on
the control of electric drives including the power electronics: [29, 30, 61, 133, 147].
In particular [147] is the classical, most quoted reference on the control of elec-
tric drives while [29, 30] focus on the power electronics for electric drives; [61]
is specifically dedicated to the use of digital signal processors for electric motor
control; [133] is a comprehensive textbook on electric motor drives. The following
books are on nonlinear control theory: [4, 58, 89, 106, 116, 135, 169, 191, 204].
In particular [89, 116] contain an extensive treatment of Lyapunov stability the-
ory; [106, 191] are classical references for nonlinear systems analysis and control;
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[4, 58, 169, 204] also describe specific applications; [135, 169] are focused on those
nonlinear control algorithms which can be made adaptive. The following books are
on adaptive control: [135, 169, 189, 222]. In particular [135, 169] are focused on the
adaptive control of nonlinear systems while [189, 222] include identification tech-
niques, robustness issues and are dedicated to linear systems. Magnetic saturations
and iron losses are considered in [120, 195, 243]: the choice of the optimal flux mod-
ulus is discussed in [120, 195]. The determination of the rotor flux modulus which
minimizes the power losses may be found in [248]. A comparison of standards for
determining induction motor efficiency may be found in [218] while methods for
motor flux and torque sensing are presented in [155, 214]. The torque control prob-
lem is specifically addressed in [7, 8, 26, 31, 33, 34, 53, 63, 64, 65, 67, 78, 96,
104, 126, 127, 180, 188, 192, 198, 201, 202, 203, 208, 232, 253, 260] (see [31] for
a survey). Additional material on modeling, optimization, simulation, practical im-
plementation, and nonlinear control theory applied to induction motors and general
electric machines may be found in: [24, 27, 44, 84, 131, 146, 154, 167, 229, 237].

Chapter 2

The stability analysis of the feedforward control in Section 2.1 is taken from [170].
The direct field-oriented control was originally introduced in [20, 21]: the presen-
tation in Section 2.2 follows the interpretation given in [168]. Sections 2.4 and 2.5
are adapted from [168] (see also the references therein). The indirect field-oriented
control was introduced in [187] (see also [197] for the extension to general AC
machines): the stability proof follows the original proofs given in [207] for constant
references and in [81] for time-varying references (see also [55] for robustness anal-
ysis, [40] for a discussion on the tuning rules for the PI gains, and [206] for a dis-
crete time implementation). The dynamic feedback linearizing control given in Sec-
tion 2.6 is based on the flatness theory introduced in [74] (see also [24, 43, 45, 52]).
The material in Section 2.7 is a simplification of the control algorithm given in
[165]. The adaptation with respect to stator resistance is considered in [251] while
the adaptation with respect to rotor and stator resistances, rotor inductance, and mo-
ment of inertia is considered in [15]. The robust tracking control problem in the
presence of uncertainties in all model parameters is addressed in [102]. The exper-
imental results presented in Section 2.9 concerning the influence of uncertain rotor
resistance on the performance of the indirect field-oriented control are taken from
[165]: in [9, 10, 83] this specific robustness issue is studied in detail via a bifur-
cation analysis. The problem 2.15 is adapted from [53]. Sliding mode controls are
proposed in [140, 219]. Methods for achieving high motor efficiency may be found
in [77, 123, 128, 139, 157, 158, 177, 185, 209, 235, 257]. Field-oriented controls
are implemented in [75, 113, 119, 148] while the optimal induction motor control
problem is addressed in [16, 62, 72, 186, 220, 221]. The effects of motor parameter
variations in field orientation schemes are analyzed in [134, 193] while a stabil-
ity analysis for an induction motor in closed-loop with an input–output feedback
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linearizing control in the presence of uncertain parameters may be found in [36].
Different methods for achieving observer-based field orientation are discussed in
[111]. Speed regulation via a PI controller is achieved in [143]. Nonlinear predic-
tive control techniques are used in [159].

Chapter 3

The first nonlinear observers for induction motors were independently obtained in
[14, 59] (see also [60] for a reduced order nonlinear observer). The influence of pa-
rameter uncertainty on the performance of flux observers are investigated in [110].
Kalman-like and adaptive observers are presented in [238] and in [35], respec-
tively, to estimate online and simultaneously the unmeasured states and the param-
eters while least square techniques are used in [49, 184, 231]. Gradient techniques
are used in [68] for parameter estimation in induction motors at standstill. Sliding
mode observers which are adaptive with respect to motor uncertain parameters are
presented in [6, 93]. Discrete time observers are proposed in [5, 178, 258, 264].
Rotor resistance and mutual inductance are estimated in [233]. Rotor resistance
identification at steady-state conditions is discussed in [39, 100] using the gra-
dient technique; the rotor time constant is estimated in [239] by a simple online
identification scheme; in [176] a current perturbation signal is injected for the es-
timation of rotor and stator resistances. Offline parameter estimations are treated
in [13, 129, 241, 256]. Flux and speed observers for vehicular applications are de-
signed in [217]. A review on induction motor parameter estimation techniques is
given in [240]. The material in Section 3.1 on flux observers with arbitrary rate of
convergence is adapted from [17, 250]; the adaptive flux observer with rotor resis-
tance estimation is adapted from [161] while the simultaneous online identification
of rotor and stator resistances is taken from [166]. The experimental results reported
in Section 3.3 are taken from [161]. The problem 3.2 is taken from [175] in which
an observer is also designed using a reparameterization of time. The problem 3.10
is taken from [238].

Chapter 4

The global control which is adaptive with respect to load torque and rotor resis-
tance presented in Section 4.4 is taken from [165]. The experimental results re-
ported in Section 4.4 are also taken from [165]. Related work is presented in
[162, 163, 164, 212]. Problems 4.1 and 4.3 are taken from [163] while Problems
4.13 and 4.14 are taken from [212] and [213], respectively. In [211] the controller
proposed in [212] is experimentally compared with an indirect field-oriented con-
trol while related work may be found in [213]. Speed tracking controls which are
not based on observers are given in [11, 48, 71, 114, 248] while observer-based
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control are given in [57, 107, 122, 145, 216, 262]. A supervisory adaptive control
is proposed in [41] while nonlinear predictive control techniques are used in [94].
Speed regulation with uncertain electrical parameters is achieved in [108] while an
adaptive speed control is experimentally tested in [76]. Passivity based controls are
proposed in [8, 37, 47, 63, 64, 65, 69, 79, 80, 82, 114, 124, 190, 194, 202, 203, 205].
Sliding mode controls are designed in [141, 230] while model reference adaptive
controls may be found in [38, 150, 151, 153]. The problem of position control on the
basis of rotor position measurements is addressed in [25, 103, 181] and, when some
parameters are uncertain, in [3, 101, 249]. Magnetic saturations are considered in
[12]. Discrete time control algorithms are proposed in [18, 156, 206, 228, 236, 252].

Chapter 5

The stability analysis in Section 5.1 is taken from [170]. The control algorithm in
Section 5.2 was originally proposed in [170] while its adaptive version presented in
Section 5.3 is taken from [171]. Section 5.4 is entirely adapted from [174] which
is based on the nonadaptive version given in [172]. Section 5.5 presents the orig-
inal algorithm given in [173]. Problems 5.1 and 5.2 are taken from [183] where
experimental results are also reported. A review on sensorless control of induction
motors may be found in [97]. The problem of motor parameter estimation from
stator current measurements is dealt with in [32, 50, 54, 86, 87, 115, 226, 254,
255, 266]: in particular in [86] stator resistance, in [50] self and mutual induc-
tances, in [32, 255] the rotor time constant, in [87, 115] both stator and rotor re-
sistances, in [266] stator parameters are estimated; several parameters are estimated
in [54, 254]. The problem of designing rotor speed and flux observers is addressed
in [91, 92, 95, 118, 138, 149, 210, 223, 227, 263, 267]. The observability properties
are analyzed in [105]. Simultaneous parameter and rotor speed estimation are car-
ried out in [1, 42, 136, 137, 244, 265]. The speed-sensorless induction motor control
is specifically addressed in [56, 70, 85, 98, 99, 125, 144, 152, 182, 183, 231, 234].
A sensorless solution for low-cost induction motor applications may be found in
[28]. The performance limitations in sensorless controls for flux and speed estima-
tors which are based on model reference adaptive system techniques are analyzed
in [22, 23]. Discrete time controls are presented in [19, 160] while a sliding mode
solution may be found in [261]. Experimental results for sensorless induction motor
controls are reported in [88, 109, 112, 199] while a comparative analysis of three
flux and speed observers is performed in [200]. Instability phenomena are reported
in [90] when an estimated rotor speed is used for indirect field-oriented control.
Additional work on parameter and state estimation for speed-sensorless induction
motors may be found in [2, 111, 117, 142]. Automotive applications may be found
in [56, 66, 217].
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Systems. Birkḧauser, Boston, 2003.

59. Y. Dote. Existence of limit cycle and stabilization of induction motor via new nonlinear state
observer. IEEE Transactions on Automatic Control, AC-24(3):421–428, 1979.

60. Y. Dote. Stabilization of controlled current induction motor drive systems via new nonlinear
state observer. IEEE Transactions on Industrial Electronics and Control Instrumentation, IECI-
27(2):77–81, 1980.

61. Y. Dote. Servo Motor and Motion Control Using Digital Signal Processors. Prentice-Hall,
New York, 1990.

62. M.A. El-Sharkawi and M. Akherraz. Tracking control technique for induction motors. IEEE
Transactions on Energy Conversion, 4(1):81–87, 1989.



338 References

63. G. Espinosa and R. Ortega. State observers are unnecessary for induction motor control. Sys-
tems and Control Letters, 23(5):315–323, 1994.
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