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Preface

In 1849 G.G. Stokes published a classical paper [Sto] in which he modeled the
response of a viscous incompressible fluid by a constitutive equation that has,
ever since, been known as the Stokes law. When combined with the results in the
earlier paper of Navier [Na], the Stokes law leads to the Navier–Stokes system of
nonlinear partial differential equations; this system, subject to the incompressibility
constraint on admissible velocity fields, has served as the basic mathematical model
for studying the motions of incompressible viscous fluids for over a century and
a half. The success of the Navier–Stokes model, in both the incompressible as
well as the compressible case, has been far ranging and is unquestioned, in spite
of various fundamental problems which still actively engage the attention of fluid
dynamicists and mathematicians all around the globe; these problems include the
well-known issues of showing that turbulent flow is a consequence of the Stokes
law and discovering an adequate existence and uniqueness theory for the case of
three-dimensional flows. It is widely acknowledged that there also exists a large
variety of common substances (such as blood, motor oils, molasses, etc.) which
exhibit fluid-like behavior but can not be adequately described using the Stokes
law; such fluids are termed non-Newtonian and a significant number of constitutive
relations have been proposed to describe either individual non-Newtonian fluids or
entire classes of them.

This is not a book about the behavior of fluids which are universally recognized
as exhibiting distinctly non-Newtonian behavior. Rather, this volume addresses the
following question: what kind of model results if, in the process which leads to the
formulation of the Stokes constitutive relation, we do not, a priori, impose the dual
restrictions (1) that the relationship between the components of the reduced stress
tensor and the rate of deformation tensor is strictly linear and (2) that the reduced
stress tensor depends only on the first-order gradients of the velocity field. Thus,
unlike models of non-Newtonian fluid flow, in which some ad-hoc nonlinear relation
is assumed between the stress and rate of deformation tensors, and unlike some of
the efforts, which will be described in this book, to regularize the Navier–Stokes
model in three space dimensions by adding onto the equations terms involving
higher-order spatial derivatives of the velocity field, the incompressible, nonlinear,
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viii Preface

bipolar fluid flow model treated in this volume is simply a consequence of not
rigidly imposing, a priori, the two key assumptions which lead to the Stokes law;
the philosophy underlying this approach has been clearly spelled out in the book by
Shinbrot [Sh].

The first rigorous development of the theory of viscous, multipolar fluid flow is to
be found in the fundamental paper of Nec̆as and S̆ilhavý [NS1]; the follow-up paper
by Bellout et al. [BBN1] focused on elaborating the model in the incompressible,
nonlinear bipolar case. With respect to the work in both [NS1] and [BBN1], it is
essential to note that the development of the constitutive equations proceeds in
such a manner as to render the resulting theory entirely consistent with the basic
principles of material frame-indifference and the second law of thermodynamics
(in the form of the Clausius-Duhem inequality). Also, as concerns the higher-
order boundary conditions, which must be formulated for fluid flow problems in
which spatial derivatives of the velocity of order higher than two appear, these
are a rigorous consequence of the principle of virtual work coupled with some
fundamental results due to Heron [HB] on the traces of divergence free vector
fields; as such, these boundary conditions, which are an essential part of the theory
of incompressible, nonlinear, bipolar fluid flow, stand out in stark contrast to the
ad hoc types of higher-order boundary conditions which have been employed by
those authors who have studied the regularizing effects of adding higher-order
spatial derivatives to the Navier–Stokes equations. Since the original development
of the multipolar fluid models, for both compressible and incompressible flow, a
number of research groups, primarily in the United States, Eastern Europe, and
China, have explored the consequences of these models; their efforts, which will
be described in this book, have focused on the solution of problems in the context
of specific geometries, on the existence of weak and classical solutions, and on
such dynamical systems aspects of the theory as the existence of compact global
attractors and inertial manifolds. The present volume is devoted exclusively to the
task of elucidating some of the results which have been obtained, thus far, for the
case of incompressible, nonlinear, bipolar fluid flow.

We now offer a description of the contents of this volume in the order in which the
material is developed. Chapter 1 develops the theory of incompressible multipolar
fluid dynamics with an emphasis on the nonlinear bipolar model. We begin in
Sect. 1.1 by reviewing the hypotheses which lead to the Stokes constitutive law for
viscous fluid flow and the Navier–Stokes equations which are a direct consequence
of that law. In Sect. 1.2 we review the development of the general multipolar
fluid model as presented in the fundamental paper of Nec̆as and S̆ilhavý [NS1];
the specialization to the case of linear bipolar fluid response appears in Sect. 1.3.
Section 1.4 presents the development of the system of partial differential equations
governing flow of an incompressible, nonlinear, bipolar fluid and is based, primarily,
on the analysis presented in [BBN1]; a key feature of this section nis the derivation
of the higher-order boundary conditions from the principle of virtual work coupled
with the analysis in Heron [HB]. Elementary examples of incompressible nonlinear
bipolar flows, i.e., steady plane Poiseuille flow, steady Poiseuille flow in a circular
cylinder, and plane Couette flow are analyzed in Sect. 1.5. In Sect. 1.6 we describe
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some of the other extensions and generalizations of the standard Navier–Stokes
model for incompressible viscous fluid flow which have one or more attributes in
common with the bipolar fluid model; these include the non-Newtonian models of
Ladyzhenskaya type [La1, 2], [DuG], [Lio1], multipolar fluids of grade 3 [BNR],
dipolar fluids [BG], the extended incompressible viscous flow models of Green
and Naghdi [GN1, 2], and the nonlinear dispersive Navier–Stokes alpha (NS-˛)
model of incompressible viscous flow, also known as the viscous Camassa-Holm
equations (VCHE), treated in [CFH1, 2, 3] and [FHT1, 2]. Examples of particular
flows associated with the models introduced in Sect. 1.6 are then studied in Sect. 1.7.
Chapter 1 concludes by presenting, as further motivation for construction of the
non-Newtonian model studied in this monograph, a catalog of experimental results
which are inconsistent with the Stokes’ hypothesis.

Chapter 2 is devoted to the problem of plane Poiseuille flow of incompressible
bipolar viscous fluids between parallel plates; general results concerning existence,
uniqueness, and continuous dependence on the constitutive parameters are elab-
orated in Sect. 2.2. Then, in Sect. 2.3, we obtain sharp estimates for the velocity
field associated with the bipolar fluid in terms of the velocity fields associated with
specializations of the bipolar constitutive theory that result from setting one or more
of the key constitutive parameters equal to zero. Uniqueness of the steady Poiseuille
flow within a general class of equilibrium flows in the parallel-wall domain is
proven in Sect. 2.4. Finally, in Sect. 2.5 we consider the problems of existence and
asymptotic stability for time-dependent plane Poiseuille flow of an incompressible,
nonlinear, bipolar fluid. The work in this chapter is based, primarily, on the analysis
in [BBN1] and [BB1, 2, 3].

In Chap. 3 we turn to a study of a variety of incompressible bipolar flows in
special geometries and types of domains. Building on the work in [BH2], we
formulate the classical problem of flow between rotating concentric cylinders for
an incompressible, nonlinear, bipolar fluid in Sect. 3.2 and prove results concerning
the existence, uniqueness, and continuous dependence (on constitutive parameters)
for such flows. Section 3.3 is devoted to an analysis of bubble stability in a non-
Newtonian viscous fluid of the type that the nonlinear bipolar model reduces to
when the higher-order viscosity is set equal to zero; using the analysis presented
in [Bl6] we elaborate upon the dynamics of a spherical bubble cavity in such
a fluid employing both linearized dynamics and Lyapunov theory to analyze the
stability of the cavity. In Sect. 3.4 we examine the problem of (steady) exterior flow
of an incompressible, nonlinear, bipolar viscous fluid in the plane. Following the
approach employed by Bellout and Nec̆as [BN] we first study the exterior problem
in a truncated domain containing an obstacle and, then, proceed to obtain the
solution in the original unbounded domain by implementing a limit process; it is
also shown that the solution predicts the existence of a drag force on the obstacle in
the direction of the velocity field at infinity. Finally, in Sect. 3.4 we study, following
the analysis in [BW], the problem of flow of an incompressible, nonlinear, bipolar
fluid over a non-smooth boundary, focusing on flows in polygonal domains. More
specifically, the work in Sect. 3.4 analyzes the stability of solutions with respect to
perturbations of the boundary of the domain and examines the regularity of solutions
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for problems defined on polygonal domains providing, in particular, a description of
the asymptotic behavior of solutions near corners on the boundary of the domain. It
is shown, in contrast with similar results based on use of the Navier–Stokes system
(which are at variance with experimental data) that solutions of the bipolar initial-
boundary value problem are not stable with respect to perturbations of the boundary
of the domain by Lipschitz curves. Indeed, as we explicitly point out in Sect. 3.5, it
has been known since the work of Nikuradze in the 1930s (e.g., [ScG]) that at high
Reynolds numbers the presence of even very small protrusions on the surface of a
bounding wall for a viscous flow substantially affects the flow.

Chapter 4 is devoted to proving general existence and uniqueness theorems for
incompressible bipolar flow as well as for those non-Newtonian flows which result
from setting the higher-order viscosity equal to zero; results are established for
problems in both bounded and unbounded domains as well as for problems with
periodic boundary conditions. The analysis begins in Sect. 4.2, where a Galerkin
argument is used to prove the existence and uniqueness of weak solutions for the
initial-boundary value problem associated with incompressible, nonlinear, bipolar
flow in a bounded domain of Rn, n D 2; 3, with sufficiently smooth boundary. We
also study the regularity of the solution and prove some estimates which establish
the asymptotic stability of solutions of the initial-boundary value problem; the work
in this section is based, for the most part, on the results obtained in [BBN4].
Section 4.3 establishes the existence of weak and measure-valued solutions for
incompressible non-Newtonian fluids which are generated as a special case of
the bipolar model with vanishing higher-order viscosity. Employing an a priori
restriction to consideration of the relevant space-periodic problems, the concept of a
Young measure-valued solution is first defined. Then, for a certain range of the order
of the nonlinearity associated with the non-Newtonian model in space dimension
n D 2, the Young measures are shown to be Dirac measures, while for another
range the Young measures are proven to be Dirac and the associated weak solutions
are shown to be regular solutions; a similar set of results is generated for the case of
space dimension n D 3. The discussion in Sect. 4.3 is based, in large measure, on the
work in [BBN2], [BBN3], and [MNN]. In Sect. 4.4 we again consider the problem
of flow of an incompressible, nonlinear, bipolar fluid in an unbounded, parallel-
wall channel. To prove existence of solutions for this problem, we first establish
the existence of approximate solutions in bounded subdomains of the channel by
using a Galerkin approach; then it is shown that there exists a subsequence of such
approximate solutions whose limit is a unique weak solution of the initial-boundary
value problem; the bulk of the analysis in this section first appeared in [BH4].
Finally, in Sect. 4.5 we summarize some of the most important extant results on
existence and uniqueness for solutions of the Navier–Stokes equations and recall a
few of the unresolved problems in three space dimensions. We also discuss related
work on existence and uniqueness theorems for some of the generalizations of the
Navier–Stokes model that were described in Sect. 1.6, including the non-Newtonian
Ladyzhenskaya type models, viscous flow models with artificial viscosity, the
multipolar fluid model of grade 3, and the viscous Camassa-Holm equations.
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Chapter 5 focuses on the existence of maximal compact attractors for incom-
pressible bipolar and non-Newtonian flows in bounded domains and for space
periodic problems. Proving the existence of a maximal compact attractor involves
(1) proving the existence of absorbing sets in order to deduce the uniform compact-
ness, for large time, of the relevant solution operator, (2) establishing the uniform
differentiability of the solution operator on the attractor, and (3) proving the uniform
boundedness of an associated linearized operator; this operator, which is associated
with the linearization of the nonlinear, incompressible, bipolar equations about an
equilibrium solution, is introduced in Sect. 5.2 where we also establish the linearized
stability of solutions of the incompressible bipolar equations. The results in Sect. 5.2
are based on the analysis in [Bl4]. Section 5.3 presents the results obtained in
[BBN5] for incompressible bipolar initial-boundary value problems (and hold for
the space periodic problems, also) in dimensions n D 2; 3; in Sect. 5.3 the existence
of a maximal compact global attractor is proven and estimates are obtained for
both the Hausdorff and fractal dimensions of the attractor. For a different range
of the exponent controlling the nonlinearity in the bipolar model, it is shown in
Sect. 5.4 that a maximal compact attractor exists for the space periodic problem, in
dimn D 2, for which both the Hausdorff and fractal dimensions are independent
of the higher-order viscosity; it is also shown, independently, that the corresponding
non-Newtonian space periodic problem admits a maximal compact attractor in space
dimension n D 2; the results presented are based on the work in [Bl3]. Finally, it
is shown in Sect. 5.5 that, as a consequence of the analysis in [Bl2, 3], the attractor
for the bipolar problem, whose existence in the space periodic case when n D 2

was established in Sect. 5.4, converges in the sense of semidistance to the compact
attractor for the corresponding non-Newtonian problem as the higher-order viscosity
converges to zero.

Finally, Chap. 6 considers (1) the problem of the existence of an inertial manifold
for bipolar, incompressible, viscous flows, and the associated phenomena of orbit
squeezing, and (2) the question of whether a maximal compact global attractor
exists for the flow of an incompressible bipolar viscous fluid in an unbounded,
parallel walled channel; existence of solutions for this latter problem was proven
in Sect. 4.4. Following the analysis in [BH3] it is proven, in Sect. 6.2, that an inertial
manifold exists for the incompressible, nonlinear, bipolar viscous flow problem,
subject to space periodic conditions, in both dimensions n D 2 and 3. The work
in Sect. 6.2 also establishes a squeezing property for the orbits of the associated
solution operator; a more fundamental (L2) squeezing property is shown to hold
in Sect. 6.3 by using results in [BH1]. In Sect. 6.4 we employ the analysis which
appeared in [BH5] to prove the existence of a global compact attractor for the
equations governing nonlinear bipolar fluid flows in unbounded two-dimensional
channels. Finally, in Sect. 6.5, we survey some related recent work on the asymptotic
behavior of solutions to problems for incompressible bipolar and non-Newtonian
flows by other authors, highlighting developments connected with proving the
existence of a global attractor.

Three appendices may be found at the end of this book, the first of which,
Appendix A, sets the notation we have tried to use, consistently, throughout this
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volume. In the few instances when the same notation has been used with different
meanings in different chapters (or sections), this circumstance has been carefully
pointed out. Appendix A also reviews some important basic analysis results and
definitions, including embedding and interpolation theorems for Sobolev spaces
and some fundamental Sobolev space estimates. Appendix B establishes several
key lemmas involving the rate of deformation tensor, including two inequalities of
Korn type which are used repeatedly in Chaps. 4–6. The spectral gap condition, an
essential ingredient in the proof of the existence of an inertial manifold in Chap. 6 is
established in Appendix C. A reasonably comprehensive bibliography accompanies
this volume; however, a substantial portion of the literature on non-Newtonian flows
which is unrelated to the nonlinear bipolar model has not been detailed. In addition,
by the time this volume appears, it is somewhat likely that new work within the
realm of incompressible, nonlinear, bipolar viscous flow will have been published;
for all such unintended omissions, the authors offer an a priori apology.

DeKalb, IL H. Bellout and F. Bloom
October 2012
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Chapter 1
Incompressible Multipolar Fluid Dynamics

1.1 Introduction: The Stokes Constitutive Law
and the Navier–Stokes Equations

The study of the motions of an incompressible viscous fluid by mathematicians,
physicists, and engineers, has been an ongoing enterprise since the publication
by G.G. Stokes [Sto] of his classical memoir on the internal friction of fluids
in motion in 1849. Perhaps the closest one can come to something resembling
a reasonable bibliography, detailing the variety of work on the subject that was
initiated by Stokes’ research, is the seventy-five page list of references at the
end of the 8th revised edition of the classic volume [ScG] on boundary layer
theory. Among the noteworthy (and still valuable) texts and treatises dealing with
incompressible viscous fluid flow based on the Stokes constitutive equation are
those of Lamb [Lam], Batchelor [BaG], Landau and Lifschitz [LL], Shinbrot [Sh],
and Serrin [Se]. A concise and well-written modern text which covers many of the
most important elementary aspects of the theory is that of Chorin and Marsden
[CM]. Finally, books which are of a more distinctly mathematical flavor, and
which treat the very difficult problems of existence and uniqueness for the Navier–
Stokes equations, include those of Constantin and Foias [CF], Galdi [Ga1], Temam
[Te1], [Te3], Ladyzhenskaya [La1], Sohr [So], and P.-L. Lions [PL]. Three recent
collections of papers on contemporary problems in mathematical fluid dynamics,
including those associated with the motion of viscous incompressible fluids, are
[NeP], [GHR], [BMW], and [FS1, 2]. Numerical methods for treating the Navier–
Stokes equations are discussed in [Te1] and [Te3]. The list of volumes delineated
above does not even begin to “scratch the surface” with respect to the literature,
in book form, which deals with problems for the incompressible Navier–Stokes
equations, but it is more than sufficient in terms of offering the interested reader
a very comprehensive overview of the subject. In this book we will assume that
the reader has a basic understanding of the field of modern continuum mechanics
as well as some familiarity with elements of the subject of viscous incompressible

H. Bellout and F. Bloom, Incompressible Bipolar and Non-Newtonian Viscous Fluid
Flow, Advances in Mathematical Fluid Mechanics, DOI 10.1007/978-3-319-00891-2__1,
© Springer International Publishing Switzerland 2014
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2 1 Incompressible Multipolar Fluid Dynamics

fluid flow; in particular we assume that the reader has been exposed to a discussion
of the fundamentals of incompressible fluid flow, i.e., to the development of the
theory underlying the Navier–Stokes equations, as well as to the solution of basic
flow problems within the context of that theory, at the level of, say, the text by
Batchelor [BaG]. Of necessity, we also must assume that the reader is acquainted
with elements of the classical and modern theory of both elliptic and parabolic
partial differential equations at the level of the texts [McO], [RR], or [Ev]. Some
familiarity with aspects of the modern theory of dynamical systems would also be
helpful but is not absolutely essential. Appendix A provides a compendium of useful
notation employed in the book, as well as some basic analysis definitions and results
and a survey of embedding and interpolation theory for Sobolev spaces which is
used extensively for Chaps. 4–6.

For the remainder of this chapter, � � Rn, n D 2; 3, will denote either an
open bounded domain or an unbounded domain, such as the region between two
flat, parallel plates in R

3; whenever we deal with a specific problem in this and
subsequent chapters, we will be careful to indicate the nature of the domain in
question. In some cases (e.g., Sect. 3.4) we will have � D R

n=��, n D 2; 3,
with �� an open bounded domain in R

n so that flow in � represents flow around
the obstacle �� (the exterior flow problem). By xi , i D 1; : : : ; n, we denote a
set of (Eulerian) rectilinear Cartesian coordinates1 in �. The velocity field of an
incompressible viscous fluid, which occupies the region�, at time t , will be denoted
most often by v (although it will sometimes be useful to denote this velocity field
by u). In component form, for n D 3, we have

.v/i .x; t/ D vi.x1; x2; x3; t/; t � 0:

When required we will replace the rectilinear components v1; v2; v3 (for flow in
R3) by the cylindrical components vr ; v� ; vz of the velocity field in which case, of
course, the cylindrical coordinates r; �; z are used in lieu of Cartesian coordinates.

We now pose the following question (which most researchers in fluid dynamics
believe they already know the answer to), namely, where does the Stokes Hypothesis
(and the corresponding system of partial differential equations known as the Navier–
Stokes equations) come from? In an ideal fluid, in which there are no frictional
forces, neighboring parts of the fluid may move at different velocities, without one
exerting a force on the other, provided these regions in the fluid are separated by a
streamline. The assumption that frictional forces are not at work (in an ideal fluid)
produces troubling results such as the well-known d’Alembert “paradox”. Thus,
because frictional forces are caused by relative motions of neighboring regions in
a fluid, any model of fluid motion which incorporates such forces would have to
predict the absence of internal frictional forces whenever neighboring portions of
the fluid are not moving relative to each other; frictional forces appear, however, if
such relative motion is present. We will return to this elementary (but fundamental)

1Sometimes we will write x1 D x, x2 D y, x3 D z.



1.1 Introduction: The Stokes Constitutive Law and the Navier–Stokes Equations 3

concept after a brief pause to recall the structure of the Stokes Law and the
manner in which it leads to the Navier–Stokes equations. We restrict, a priori, our
considerations to the incompressible case; by virtue of the equation of continuity
(conservation of mass) this assumption is, of course, equivalent to the statement that
r � v D 0, everywhere in the domain currently occupied by the fluid; it is always
true if the mass density � is constant in space and time.

The starting point for the derivation of the Navier–Stokes equations, in most
standard fluid dynamics textbooks, is the differential form of the statement of
conservation of momentum in Eulerian coordinates, i.e.,

�a D r � t C �f : (1.1)

In (1.1), � is the mass density (assumed to be a constant), a is the fluid acceleration,
t is the stress tensor, and f is the body force/mass, all of which are measured at a
point .x; t/ in the domain occupied by the fluid at time t . Furthermore, a is given
by the convective time derivative of the velocity field v (the derivative following the
motion of fluid particles), i.e., a D Dv=Dt where

�
Dv

Dt

�
i

D @vi

@t
C vj

@vi

@xj
(1.2)

and

vj
@vi

@xj
D .v � rv/i ; (1.3)

it being understood that we always sum on repeated indices such as the index j in
(1.2). Finally t, in (1.1), is the Cauchy stress tensor which measures force/area in the
fluid in the sense that if S is a surface internal to the domain occupied by the fluid
at the time t , and x 2 S , then the traction T at .x; t/, i.e., the force/area exerted at
x at time t , by neighboring portions of the fluid, is given by T D tn where

.T /i D tijnj : (1.4)

The full stress tensor t is now expressed as

t D �pI C � (1.5)

where the “reduced stress tensor” � is identically set equal to the zero tensor in an
ideal fluid in which the stress tensor is generated by a hydrostatic pressure p. If we
introduce the rate of deformation tensor

e D 1

2
.rvC .rv/T / (1.6a)
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with components

eij D 1

2

�
@vi

@xj
C @vj

@xi

�
; (1.6b)

then the Stokes Law is the assumption that for some constant�0 > 0, specific to the
fluid being modeled,

�ij D 2�0eij (1.7)

where �0 is the viscosity. A fluid which conforms to the constitutive hypothesis
(1.7) is known as a Newtonian fluid. For an incompressible viscous fluid (@vi=@xi D
0), the insertion of the ansatz (1.5), (1.7) into the (vector) equation (1.1), expressing
balance of momentum, yields the Navier–Stokes system of partial differential
equations

�

�
@vi

@t
C vj

@vi

@xj

�
D � @p

@xi
C �0r2vi C �Fi (1.8)

where
@p

@xi
D .rp/i . In a bounded domain, say � � Rn, n D 2; 3, the system

(1.8) is to be solved subject to the standard non-slip boundary conditions v D 0

on @� and the specification of an initial condition of the form v.x; 0/ D v0.x/

for x 2 �. In Sect. 4.5 we will review, briefly, some of what is known about
the existence and uniqueness of both strong and weak solutions for initial and
initial-boundary value problems for the Navier–Stokes system; suffice it to say, at
this junction, that difficulties abound in R3 with respect to obtaining what would
be considered to be satisfactory results relative to, e.g., the uniqueness of weak
solutions, the existence of classical solutions, globally in time, or the finite-time
blow-up of classical solutions, although partial results, some of a very deep and
fundamental mathematical character, have been obtained. In spite of this observation
we note that (as pointed out in Sect. 3.7 of Schlichting and Gersten [ScG], where we
have replaced their reference to the Stokes Law by (1.7)),

Although Eq. (1.7) must be viewed as a pure hypothesis, or even as an educated guess,
the equations of motion arising from inserting Eq. (1.7) [into the equation describing bal-
ance of momentum] can be accepted, because they have been confirmed by an exceedingly
large number of experiments, sometimes in extreme conditions, as will be realised by the
reader on completing this book. These equations of motion are a very good description of
actual physical processes.

No researcher who is familiar with the predicative success of the system (1.8)
could possibly take exception with the above quoted statement from [ScG]. Yet,
beyond the difficulties with the establishment of acceptable existence/uniqueness
results in R

3, which those who are unequivocal proponents of (1.8) for “ordinary”
fluids (in all circumstances) would claim is just a consequence of either not having
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available the proper mathematical tools, or a skilled enough mathematician, there
are other substantive problems; some of these, which will be discussed further on in
this volume, include the Stokes paradox for flow around an obstacle in the plane, the
difficulties associated with applying the Navier–Stokes equations to study the flow
over rough surfaces, the need to implement a theory, the Prandtl boundary-layer
theory, which lacks an entirely firm mathematical grounding, to study problems
in which the Reynolds number is high (but a transition to turbulent flow has not
yet occured), and the entire question of the feasibility of using the Navier–Stokes
equations to describe strong turbulence in fluids. Indeed, it is well-known that even
Prandtl was not happy with the essential tenets of boundary-layer theory. Moreover,
all of the shortcomings associated with applying the model based on the Stokes Law
(1.7) are not simply the result of trying to implement that model for fluids which are
truly non-Newtonian in nature such as magma, plastic melts, polymer solutions, or
suspensions such as blood; in such fluids, as pointed out, e.g., in [Oe], the frictional
stresses acting on a fluid element may depend on both the instantaneous state of
motion as well as on the motion of the fluid in the past. Truly non-Newtonian fluids
may not only exhibit memory effects but may also require that the linear constitutive
relation (1.7) be replaced by one in which � is a nonlinear function of e (in all
ordinary motions) through the introduction of a viscosity function which depends
in a nonlinear fashion on jej. In this book we shall always have in mind “ordinary”
viscous fluids, those whose behavior is described very well by the Navier–Stokes
equations in most, but not all, situations. We will not be introducing a nonlinear
version of (1.7), as has been done, e.g., by Ladyzhenskaya [La1, 2], so as to
obtain a satisfactory existence theory; nor will we be introducing, in some ad hoc
fashion, higher-order derivative terms in (1.8), along with an associated ad hoc set of
boundary conditions, as has been done in, e.g., [La5], [Lio1], [BdV2, 3], or [OS1, 2]
so as to regularize the Navier–Stokes system. The approach followed in this volume
is based on a simple yet fundamental understanding of the genesis of the Stokes Law
(1.7) and follows a tradition which is firmly ingrained in the historical development
of classical physics.

While the development of the equations governing incompressible fluid flow may
begin, in most textbooks on fluid dynamics, with the ansatz (1.7), i.e., the Stokes
Law, this does not give a complete picture of the process that is actually taking place.
A good description of the basic thought process which leads to the constitutive law
(1.7) is to be found in the lecture notes by M. Shinbrot [Sh]; as Shinbrot points out
in [Sh], Chap. 7, “the argument is one often used in physics and engineering and
is well worth appreciating. It is based on a modification of Occam’s razor: do not
complicate your hypotheses unnecessarily. This means that if, under the simplest
hypotheses consistent with the phenomena we wish to describe, a model can be
derived that is already too difficult to cope with completely, then this model should
be retained unless and until paradoxes appear within it.” Shinbrot then proceeds to
“apply this (modification of Occam’s razor) to derive the form of the reduced stress
tensor, keeping in mind that there are to be no forces between portions of a fluid that
are not in relative motion. This means, first, that the reduced stress tensor � must be
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zero when the velocity v is zero.2 Moreover � must be zero when the velocity v is
constant throughout the fluid, for then there is no relative motion between different
parts of the fluid. The simplest hypothesis that assures us of this is that � is a function
of the derivatives of v only”. In our notation this last hypothesis is equivalent to the
mathematical statement that

� D �.rv;rrv; : : :/ (1.9)

with � D 0 when all of the arguments of � are 0. To this point, (1.9) holds for
every viscous fluid whether it be air, water, or some polymer solution. In the overall
argument, there now appears the two basic, restrictive, assumptions which lead
to the Stokes Hypothesis; as Shinbrot [Sh] argues “within the framework of the
hypothesis (1.9), the simplest assumption that can be made is that � depends only
on the first derivatives of v. Again, the simplest hypothesis about the form of this
dependence is that it is linear”. Under the auspices of these two stated assumptions,
each component of the reduced stress tensor � has the form

�ij D aij
@v1

@x1
Cbij

@v1

@x2
Ccij

@v1

@x3
Cdij

@v2

@x1
Ceij

@v2

@x2
Cfij

@v2

@x3
Cgij

@v3

@x1
Chij

@v3

@x2
Ckij

@v3

@x3
(1.10)

where the coefficients aij; bij; : : : ; kij are all constants. Shinbrot next shows that
(1.10) already implies a restrictive form of the Stokes hypothesis; in fact, the
argument [Sh] continues by indicating “the coefficients in (1.10) still have to be
adjusted so that � D 0 where there is no relative motion between different portions
of a fluid. Now, in a fluid rotating like a rigid body with constant angular velocity,
there is no relative motion between its various parts. Consider such a fluid, with the
x3-axis the axis of rotation. In this case, it is not hard to show that the velocity of
the fluid at the point x D .x1; x2; x3/ is

v D !.�x2; x1; 0/ (1.11)

where ! is a constant. By (1.10), then,

�ij D !.dij � bij/ (1.12)

and this must be zero, so that dij D bij. In a similar way, making the axis of rotation
the x1- and then the x2-axis, we find gij D eij, hij D fij”. Therefore, we obtain
from (1.10)

�ij D aij
@v1

@x1
Ceij

@v2

@x2
Cbij

�
@v1

@x2
C @v2

@x1

�
Ccij

�
@v1

@x3
C @v3

@x1

�
Cfij

�
@v2

@x3
C @v3

@x2

�
:

(1.13)

2The variable 	 is used to denote the reduced stress tensor in [Sh] and, the velocity in [Sh] is
denoted by s.
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The constitutive relation (1.13) is equivalent to a restrictive form of the Stokes

hypothesis; the quantities
@v1

@x1
,
@v2

@x2
,
1

2

�
@v1

@x2
C @v2

@x1

�
, etc., are just the components

of the rate of deformation tensor eij in (1.6b) so that � D �.e/ and is, in fact, linear
in the components of e which, as Shinbrot [Sh] points out “is more than is required
by the Stokes Hypothesis. The linearity of (1.13) is a consequence of our diligent
application of Occam’s razor: we took as the simplest hypothesis that � is a linear
function of rv”. Shinbrot then pointedly notes that “some mathematicians, while
accepting the other hypotheses, have been offended by the assumption of linearity,
and perhaps they are correct. That is where the last part of the razor plays a role. The
model should be retained until contradictions appear. Until they do, consistency
requires that the simplest hypotheses be made”. Of course, two basic assumptions,
not one, have been made in arriving at (1.13), namely, (1) that � depends only on
rv, and not on rrv, rrrv, etc., and (2) that � is linear in the components of rv.
It is precisely the absence of a dependence of � on higher-order spatial gradients of
v that leads to contradictory results when the Navier–Stokes equations are applied
to the study of flow of a viscous fluid over a surface with a rough boundary.

The reduction from the linear version (1.13) of the Stokes hypothesis to the
Stokes Law (1.7), for an incompressible fluid, now proceeds in a standard manner
which we will not repeat here; the basic assumption which drives this reduction is
that the equations which represent a physical phenomenon have to be independent of
the coordinate system used to describe it. The actual reduction which takes us from
(1.13) to (1.7) may be found in most elementary fluid dynamics texts, e.g., [Sh] or
[CM], with the principle which dictates the process involved very often going under
the heading of material frame indifference.

Shinbrot concludes his discussion ([Sh], Chap. 7) of the Stokes hypothesis,
and the subsequent derivation of the Navier–Stokes equations, with the following
observations about solutions in R

3:

It is not known whether solutions with large initial data are unique! This is related to the
smoothness question. The solution is initially smooth and unique. But at the first value of
t where it is not smooth (if there is one), uniqueness may also be lost. This uniqueness
question is one of the outstanding questions in theoretical hydrodynamics. Instant fame
awaits the person who answers it. (Especially if the answer is negative!)

If it should turn out that solutions are not unique, that fact would qualify as a paradox and
would justify complicating the model. There are two obvious ways in which the model can
be changed. The first is to allow the reduced stress tensor to depend on higher derivatives
of the velocity than the first. The second is to allow the reduced stress tensor to depend
nonlinearly on the derivatives of the velocity. A piquant aspect is lent to the whole problem
by the fact that in either case the solution can be shown to be unique!

It might be argued that as a practical matter the whole question may be irrelevant since
solutions are known to be unique if the data are small. It is true, after all, that for large
initial data no fluid can be looked upon as incompressible. However, the values of the initial
data for which the uniqueness question can be settled are too small. They are well below
the values for which compressibility effects in water, say, come into effect or in which our
hypotheses can be expected to fail. Thus, even from a “practical” point of view, the existence
and uniqueness theorems require strengthening.
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In any case, the uniqueness question remains an aggravating mathematical problem which
seems extremely difficult for no very good reason.

In Sect. 1.6 we will discuss various generalizations of the (incompressible)
Navier–Stokes system (1.8); some of these generalizations were constructed with
a view towards proving the kind of existence and uniqueness results in R

3 that
have eluded researchers (to date) within the context of the Navier–Stokes theory.
However, the absence of adequate existence and uniqueness results for initial-
value and initial-boundary value problems associated with (1.8) in R

3 does not of
itself represent a paradox that warrants changing the model represented by (1.7)
to allow for a nonlinear viscosity which is dependent on jej, as in the work in
[La1, 2], [DuG], or [Kan], or for the additions of terms involving higher-order
spatial derivatives of v. Rather, it is the existence of problems like the Stokes
paradox for Stokes flow of a Newtonian fluid around an obstacle in the plane, or the
predictions generated by using the Newtonian model, and the associated non-slip
boundary condition, to study flow over a surface with a rough boundary, which
warrant at least considering changes with respect to (1.7). As will be made clear in
Sect. 1.2, the changes we refer to do not amount to arbitrarily introducing nonlinear
viscosity into the model, or selecting a particular type of nonlinear behavior to
model the kind of phenomena exhibited by true “non-Newtonian” fluids (e.g., the
Weissenberg effect); nor do they involve the somewhat arbitrary addition of higher-
order derivatives of the components of the velocity vector to the system (1.8), with
the consequential addition of higher-order boundary conditions. In fact, as we will
point out further on in this chapter, in those papers where higher-order derivatives,
and associated higher-order boundary conditions, have been used to modify the
Navier–Stokes system, the boundary conditions employed are inconsistent with
the principal of virtual work and the constraint imposed by incompressibility.
As detailed in Sect. 1.2, the approach which is followed, in order to obtain the
modification of the Navier–Stokes system discussed in this book, consists of
beginning with the fundamental ansatz (1.9) for a viscous fluid, and imposing
only those constraints which are consistent with the basic principles of continuum
mechanics and thermodynamics, without a priori imposing the restriction that �, in
(1.9), be a linear function or that it depend only on rv.

It appears to be ingrained in the thought processes of much of the fluid dynamics
research community that fluids are either Newtonian, i.e., that they always conform
to the constitutive relationship (1.7), or that they are non-Newtonian; this line of
reasoning is not consistent with the historical development of much of classical
physics and is, in fact, contradicted by the behavior of many well-known fluids.
Blood flow, for example, is very well modeled by the Navier–Stokes equations
for flow in the large arteries while flow in arteries with a relatively much smaller
radius can only be modelled successfully by employing non-Newtonian constitutive
equations [AzP], [BHTV], [OOL], [QF]. It is, therefore, reasonable to believe that a
realistic constitutive relation for blood would involve a set of constitutive parameters
whose values, under appropriate flow conditions, would be such as to render that
constitutive relation (almost) indistinguishable from the Newtonian Law (1.7).
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As already noted, similar situations have repeatedly appeared in the history of
classical physics. In the early part of the twentieth century, Newton’s Laws of
motion for particles and rigid bodies were supplanted by the (special) relativistic
mechanics developed by Poincaré, Lorenz, and Einstein. For more than a century it
has been accepted that Newton’s Laws do not hold exactly for any body in motion;
rather, they are an approximation to the laws of motion which follow from Special
Relativity when a body is moving at speeds which are small compared to the speed
of light. For most intents and purposes, therefore, one may work with Newton’s
Laws without being concerned that they are only an approximation to a more
encompassing theory. A similar situation occurs in classical electromagnetic theory.
It is usually assumed in most elementary treatments of electromagnetic theory that
the relationship between the electric displacementD and the electric field vectorE
is of the form (� D �.x; t/)

D D �E (1.14)

where � is called the dielectric permittivity. For “air” � is a constant, � D �0, the
dielectric permittivity of free space. The corresponding relationship between the
magnetic intensity vectorH , and the magnetic field vectorB, in free space is

H D �0B (1.15)

where �0 is the magnetic permeability of empty space. The use of (1.14), with
� D �0, and (1.15), in conjunction with Maxwell’s equations, leads to the standard,
linear, wave equation for E and experimental results for the propogation of
electromagnetic waves in space then yields the conclusion that �0�0 D 1=c2. In the
early 1960s, however, it became clear that not all electromagnetic media conformed
to the linear dielectric relationship (1.14)3 and that the constitutive relationship
(1.14) had to be broadened to allow for nonlinear dielectric media satisfying

D D �.jjE jj/E (1.16)

where jj�jj is the standard Euclidean norm on R
3. In the nonlinear optics literature,

constitutive relations of the form (see [Bl1])

�.jjE jj/ D �0 C �1jjE jj2 (1.17)

became prevalent (as well as relations involving far more complex algebraic
expressions than (1.17), and polynomial relations which involve powers of jjE jj
higher than two). It soon became clear, however, that even for media thought to
be “nonlinear dielectrics”, (1.16), (1.17) only supplanted (1.14) in situations where

3Primarily due to the advent of the laser and the development of the subject of nonlinear optics
[Bl7], [Blo].
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jjE jj is very large (as in a high intensity laser beam) because experiments have
shown that, even in such media, �0 << �1. Thus, even those media which are known
to exhibit nonlinear dielectric behavior in some circumstances conform to the linear
dielectric relation (1.14) when not subjected to conditions involving the passage of a
high intensity electromagnetic wave. It is not unreasonable to believe that (1.17) also
applies, say, to air, albeit with a higher order permittivity �1 that is even orders of
magnitude smaller than the (already) small �1 associated with distinctly “nonlinear”
dielectric media.

The philosophical and historical approach to the development of constitutive
theory we have described above is the one which underlies the development
of the multipolar fluid dynamics equations in Sect. 1.2. The constitutive relations
for bipolar viscous fluids, which are described in Sects. 1.3 and 1.4, are entirely
consistent with the general theory constructed in Sect. 1.2 and, moreover, conform
to the requirement that in those circumstances, when certain constitutive parameters
appearing in the model are small, the results obtained are indistinguishable from
those predicted by the Navier–Stokes equations. The notion that, at some point,
even for “ordinary” fluids, the Stokes Law (1.7) may have to be considered as an
approximation to a more general constitutive law, is not new in the literature. We
note, in particular, the following observation by David Ruelle [Ru], where in the
quoted remarks we have replaced his equation numbers by their equivalents in this
section, and where 
 D �0=� is the kinematic viscosity:

Let us briefly discuss the physical meaning of the Navier–Stokes equations (1.8). It

expresses the acceleration (@i vi CX
vj @j vi ) in terms of three forces. There is a viscosity

term (
�vi ) corresponding to self-friction, then the gradient of the pressure term, and finally
the external force term (Fi ). The viscosity term is obtained by expressing the self-friction
forces in terms of the rate of deformation of the fluid in the linear approximation; this
term can therefore only be trusted for small velocity gradients. Suppose in particular that
a solution of the Navier–Stokes equation develops a singularity (infinite velocity gradient),
then it is clear that the term (
�vi ) is no longer physically correct. It is thus tempting to
consider instead of (1.8) an equation with a more general nonlinear viscosity term, but the
simplicity of (1.8) makes it well worth investigating in detail before going to something
more complicated.

In Sect. 1.6 we will describe some of the results for the generalization of the
Navier–Stokes equations that was introduced by Ladyzhenskaya [La2]; this model
is similar, in some respects, to the special case of the nonlinear bipolar model of
Sect. 1.4 when the higher order viscosity vanishes. Without going into detail, in this
section, on the precise structure of the Ladyzhenskaya generalization of the Navier–
Stokes equations, it is worth noting the following remarks of Du and Gunzburger
[DuG]:

There are various reasons why scientists abandon the Navier–Stokes model in favor of
models employing nonlinear constitutive laws. For example, for flows of polymers or of
visco-elastic or visco-plastic fluids, one generally has to use nonlinear stress-rate of strain
relations. However, the models introduced by Ladyzhenskaya address a different issue,
namely that the linear constitutive law used in the derivation of the Navier–Stokes equations
presumes that derivatives of the components of velocity are small.
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Here we consider one particular model introduced by Ladyzhenskaya. The study of this
model may be justified through a variety of physical and mathematical arguments. In the
first place, for certain values of a parameter appearing in the model, the model still conforms
with the definition of a fluid as given by Stokes. For the incompressible flow of a viscous
fluid, the laws of conservation of mass and momentum, which no one questions, provide
an underdetermined system of partial differential equations for the velocity, pressure, and
stress fields; in order to close the system a constitutive law relating the stress to the velocity
must be provided. The particular form this constitutive relation takes depends on what kind
of fluid one is dealing with. Stokes introduced a series of requirements which serve to
define an “ordinary” fluid, e.g., water or air. The Stokes hypotheses which define our fluid
lead to a specific mathematical form for the nonlinear relation between the stress and the
velocity fields. If, in addition, one requires that the relation between the stress and velocity
fields be linear, then one arrives at the Navier–Stokes equations. However, if one retains
the Stokes hypothesis defining a fluid and then retains some of the nonlinear terms in the
general constitutive relation which a Stokesian fluid must satisfy, then one arrives at the
Ladyzhenskaya model considered here. In other words, the Ladyzhenskaya model is derived
by combining the principles of conservation of mass and momentum with the rules which
define a Stokesian fluid and then retaining some of the nonlinear terms in the resulting
constitutive law. The Navier–Stokes model is derived by first invoking exactly the same
assumptions plus the assumption that the constitutive relation is a linear one. Thus, from a
modeling standpoint, the Navier–Stokes equations are a special case of the Ladyzhenskaya
equations considered here. This leads to the obvious conclusion that any flow which can be
accurately described by solution of the Navier–Stokes equations can be at least as accurately
described by solutions of the Ladyzhenskaya equations. Incidentally, Ladyzhenskaya also
gives a partial justification based on kinetic theory arguments, for why one should retain the
nonlinear terms she chooses to include in the constitutive relation.

We should add, of course, that these observations in [DuG] do not take account
of the fact that, beyond the linearization involved, the development of the Stokes
Law (1.7) also entails the a priori elimination of any dependence, whatsoever, of the
reduced stress tensor � on higher-order spatial derivatives of v; in the developments
to follow, we shall see that allowing for such a dependence requires enforcing a set
of higher-order boundary conditions for problems posed either in a bounded domain
or on the boundary of an obstacle in R

2 or R3. The higher-order boundary conditions
allow for more closely correlating the resulting flow, in the domain in question, with
curvature variations on the boundary.

1.2 Multipolar Fluid Dynamics

1.2.1 Introduction

In the preceding section we alluded to the fact that more than 150 years after the
formulation of the Stokes Law (1.7), a number of well-defined problems still exist
within the context of the associated Navier–Stokes system (1.8), even for such
ordinary viscous fluids as water and air; these problems, when viewed within the
context of the actual mathematical process which yields the constitutive law (1.7),
led Nec̆as and S̆ilhavý [NS1] to develop a thermodynamic theory of constitutive



12 1 Incompressible Multipolar Fluid Dynamics

equations for multipolar viscous fluids using the framework of the theory of Green
and Rivlin [GrR1, 2]. In [NS1], the authors formulated a theory of viscous fluid
flow which is based on the belief that a stronger mechanism of dissipation and
viscosity, namely, a dependence of the stress on higher-order gradients of velocity,
must occur in flows of viscous fluids. In fluids in which higher gradients of velocity
influence the response, the rate of work of the internal forces cannot be expected to
be only the product of the usual second-order stress tensor with the first gradient
of velocity; instead, a more general expression must be assumed containing the
sum of products of higher-order multipolar stress tensors with higher gradients of
velocity. Otherwise, such materials cannot be compatible with the Clausius-Duhem
inequality. In [GrR1, 2] the authors considered only the constitutive equations of
elastic nonviscous materials.

The purpose of this section is to develop the thermodynamic theory of consti-
tutive equations of multipolar viscous fluids within the framework of the theory
of Green and Rivlin. The postulated constitutive equations express the Helmholtz
free energy, entropy, heat flux vector, and the multipolar stress tensors as functions
of the following variables: the density and its gradients up to a fixed order,
gradients of velocity up to a fixed order, the temperature, and the gradient of
temperature. We then derive the general restrictions which the principle of material
frame-indifference and the Clausius-Duhem inequality place on the constitutive
functions of the fluid. In Sect. 1.3, we restrict our attention to bipolar fluids for
which the constitutive quantities depend linearly on the gradients of velocity and
temperature, with coefficients independent of temperature and gradients of density.
Using representation theorems for isotropic linear functions, we obtain explicit
forms for the viscous stresses. The corresponding scalar coefficients, in front of the
gradients of velocity in these expressions, generalize (and include as special cases)
the classical viscosities. As in the classical case, the Clausius-Duhem inequality
yields the nonnegativity of the viscous work which, in its strengthened form, plays
a crucial role in the existence theory presented in Chap. 4. The general theory of
viscous multipolar fluid flow as presented in Sect. 1.2 does not, a priori, restrict
itself to the incompressible case. However, after presenting the general results for
linear, viscous, multipolar fluids in Sect. 1.2, the discussion is specialized to the
incompressible linear bipolar case in Sect. 1.3; this, in turn, serves to motivate the
example of the incompressible, nonlinear bipolar fluid in Sect. 1.4. In Sect. 1.4,
following the approach in [GrR1], we use the principle of virtual work to deduce
the form of the higher-order boundary conditions associated with the bipolar model;
this is done first in the general (compressible) case and then, using some deep
results of Heron [HB], for the case in which the velocity satisfies the constraint
of incompressibility. In Sect. 1.5, we consider some elementary examples of steady
flows of isothermal, incompressible, nonlinear bipolar fluids; these include plane
Poiseuille flow, Couette flow between moving parallel plates, and proper Poiseuille
flow in a circular pipe. In Sect. 1.6, we offer an overview of the structure of some of
the other extensions and generalizations of the Navier–Stokes equations which have
appeared in the literature; results concerning specific flows, within the context of
some of these other extensions, are presented in Sect. 1.7.
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1.2.2 Balance Equations and the Clausius-Duhem Inequality

A detailed discussion of the thermo-mechanics of multipolar continua may be found
in [GrR1, 2]; in this section we will content ourselves with presenting a summary
of the basic concepts, equations, and inequalities. We use, throughout, Eulerian
coordinates so that all of the fields associated with a thermo-mechanical process are
functions of the actual positions x of fluid particles at time t ; with x we associate the
(Eulerian) coordinates xi , i D 1; 2; 3 assuming (without loss of generality) motion
in R

3. Let N � 1 be an integer. Then, we make the following definition:

Definition 1.1. A thermodynamic process of a multipolar fluid of grade N is a
collection ofN C8 functions of position and time, namely, v, � , �, e, �, b, r , q, and
t.k/, k D 0; 1; : : : ; N � 1, whose interpretation is as follows:

v; with components vi , is the velocity field

� is the field of positive absolute temperature

� is the density of the fluid

e is the specific internal energy

� is the specific entropy

b; with components bi , is the specific external body force

r is the rate at which heat is transferred to the fluid

q is the heat flux vector

t.k/ with components tij1:::jkj , is the spatial multipolar

stress tensor of order k C 2, k D 0; 1; : : : ; N � 1:

Remarks. For k D 0, t .0/ with components tij, is the usual Cauchy stress tensor.
We will assume that tij1:::jkj is symmetric in the indices j1; : : : ; jk , an assumption
which is motivated by the fact that t.k/ enters the balance equations only through its
products with spatial gradients of velocity, all of which possess the same symmetry.
We also assume that any function which appears in this section is continuously
differentiable to whatever order is required in order to render meaningful the
expressions appearing in the balance equations and the Clausius-Duhem inequality.

Each thermo-mechanical process of a viscous, multipolar fluid must satisfy the
equations expressing balance of mass, energy, linear and angular momentum, and
the second law of thermodynamics as embodied in the Clausius-Duhem inequality.
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In the order just indicated, these equations and inequalities are as follows, where we
sum on repeated indices:

@�

@t
C @

@xi
.�vi / D 0; (1.18)

�
D

Dt

�
e C 1

2
jjvjj2

�
D @

@xi

 
�qi C

N�1X
KD0

tij1:::jkj
@kC1vj

@xj1 � � � @xjk @xj

!
C �bivi C �r;

(1.19)

�
Dvi

Dt
D @

@xj
tij C �bi ; (1.20)

�
D

Dt
.�jkpxkvp/ D @

@xi
.�jkpxktip C �jkptipk/C ��jkpxkbp (1.21)

with � the usual alternating tensor, and

�
D�

Dt
� � @

@xi

�qi
�

�
C �

� r
�

�
(1.22)

where

D

Dt
D @

@t
C vj

@

@xj
(1.23)

denotes the convective (or material time) derivative. We note that the higher-order
stresses t.k/, k D 1; : : : ; N � 1, do not enter into the equation of balance of
linear momentum, while only t.0/ and t.1/ enter the equation expressing balance
of angular momentum, i.e., (1.21).

Remarks. Green and Rivlin [GrR1, 2] have shown that the equations of balance of
linear and angular momentum follow from the equation of balance of energy and
the principle of material frame-indifference.

Standard manipulations of the balance equations (see, e.g., [GrR2] or [TN])
yield the following reduced forms for the balance of energy, balance of angular
momentum, and the Clausius-Duhem inequality:

�
De

Dt
D

N�1X
kD0

.tij1:::jkj C tij1:::jk jp;p/vi;j1:::jkj � qi;i C �r; (1.190)

�ijk.tjk C tjpk;p/ D 0; (1.210)

��
D�

Dt
� �

De

Dt
�
N�1X
kD0

.tij1:::jkj C tij1:::jk jp;p/vi;j1:::jkj C qi�;i

�
(1.220)
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In (1.190), (1.210), and (1.220) a comma followed by an index (or indices) denotes
partial differentiation with respect to the coordinate (or coordinates) corresponding
to the index (or indices).

Remarks. If we introduce the Helmholtz free energy function  D e � ��, then
the following dissipation inequality is easily shown to be equivalent to the reduced
form (1.220) of the Clausius-Duhem inequality:

�
D 

Dt
�

N�1X
kD0

.tij1:::jkj C tij1:::jk jp;p/vi;j1:::jkj � ��
D�

Dt
� qi�;i

�
: (1.24)

1.2.3 The General Constitutive Equation for Multipolar
Viscous Fluids

Let M;K � 1 be prescribed positive integers and let F (respectively, F in vector
or tensor-valued cases) stand for any one of the functions e, �,  , q, or t .k/,
k D 0; 1; : : : ; N � 1. With the convention that t.k/ D 0, for k � N , we consider
constitutive relations of the following general form

F D F.�;r�; : : :rM�1�;rv; : : : ;rKv; �;r�/ (1.25)

where all of the functions .e; �;  ; etc./, on the right-hand side of (1.25), are smooth
functions of their arguments. Each of the arguments of F are evaluated at .x; t/ in
the fluid.

Remarks. The form of the constitutive relations, as postulated in (1.25), is motivated
by the general continuum mechanics definition of a “fluid” in terms of the symmetry
group of the material; in this regard, see [Noll], [Cr], [Sam], and [GVW].

We now make the following definition:

Definition 1.2. The material defined by (1.25) where F D e; �;  , F D q; t .k/,
k D 0; : : : ; N � 1 is called a multipolar viscous fluid of type .N;M;K/.

Remarks. If M > 1 or K > 1 the multipolar viscous fluid of type .N;M;K/ is a
nonsimple fluid in the sense of [TN].

Beyond the restrictions imposed by symmetry, which have already been invoked,
two general principles of continuum mechanics and thermodynamics are now used
to restrict the form of the constitutive equations, namely, the principle of material
frame indifference and the Clausius-Duhem inequality; these two basic principles
must be satisfied in every thermo-mechanical process of a multipolar viscous fluid
of type .N;M;K/. In applying the principle of frame indifference, we consider a
change of frame of the form
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Nxi D Qij.t/xj C ci .t/ (1.26)

when the Qij.t/ are the components of a (time-dependent) orthogonal matrix, i.e.,
Qij.t/Qik.t/ D ıjk, and the ci .t/ are the components of an arbitrary time-dependent
vector. For the constitutive theory to be frame-indifferent, the quantities �; �; e; �; q,
and the t.k/ must transform as follows under a change of frame (1.26):

N� D �; N� D �; Ne D e; N� D �; Nr D r; (1.27a)

Nqi D Qijqj ; (1.27b)

Ntij1:::jkj D QilQj1m1 � � �QjkmkQjmtlm1:::mkm: (1.27c)

The arguments on the left-hand side of (1.27a,b,c) are . Nx; t/ while those on the
right-hand side are .x; t/. The transformation laws for the gradients of density,
temperature, and velocity, under the change of frame (1.26), are given by

N�;i1:::ik D Qi1j1 � � �Qikjk�;j1:::jk ; (1.28a)

N�;i D Qij�;j ; (1.28b)

Nvi;j D QilQjmvl;m CWij; (1.28c)

Nvi;j1:::jk D QilQj1m1 � � �Qjkmkvl;m1:::mk .k � 2/ (1.28d)

where

Wij D PQimQjm; Wij D �Wji: (1.28e)

As a consequence of (1.28c,e), the rate of deformation tensor eij D 1

2
.vi;j C vj;i /

transforms as

Neij D QilQjmelm: (1.29)

The proof of the following theorem, which we omit, is a relatively simple exercise
which results from combining the transformation rules (1.27a–c) and (1.28a–e), i.e.,

Theorem 1.1. A multipolar viscous fluid of type .N;M;K/ satisfies the principle
of material frame-indifference if and only if

(i) the functions e; �;  ; q, and t.k/ depend on the first spatial gradient of velocity
only through its symmetric part e, i.e., F D e; �;  , F D q; t.k/ satisfy

F.�;r�; : : : ;rM�1�;rv; : : : ;rKv; �;r�/
D F.�;r�; : : : ;rM�1�; e;r2v; : : : ;rKv; �;r�/: (1.30)
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(ii) The constitutive functions e; �;  ; q; t.k/ are isotropic scalar, vector, and tensor-
valued functions of the scalar, vector, or tensor arguments �, r�, : : :, rM�1�,
e, r2v, : : :, rKv, � , and r� .

Remarks. The second part of Theorem 1.1 means, e.g., that the k-th multipolar
stress tensor t.k/ satisfies the functional equation

tij1:::jkj . N�;r N�; : : : ;rM�1 N�; Ne;r2 Nv; : : : ;rK Nv; N�;r N�/
D QilQj1m1 � � �QjkmkQjmtlm1:::mkm.�;r�; : : : ;rM�1�; e;r2v; : : : ;rKv; �;r�/:

(1.31)

1.2.4 Consequences of the Clausius-Duhem Inequality

We now demand, following Coleman and Noll [CN], that the Clausius-Duhem
inequality be satisfied in every process compatible with the constitutive equations
and the equations of balance of energy and linear momentum; these contain the
external sources r and b, respectively, and it is essential to admit that r and b can
be arbitrary functions of x, t . In view of the form of the constitutive equations
this means that all possible motions and all possible variations of the absolute
temperature are admissible.

To facilitate the statement of the restrictions which the Clausius-Duhem inequal-
ity places on the constitutive functions, we make the following definitions:

Definition 1.3. The equilibrium part of the multipolar stress tensor t.k/ is defined
to be

t
.k/

.E/.�;r�; : : : ;rM�1�; �/ 	 t.k/.�;r�; : : : ;rM�1�; 0; : : : ; 0; �; 0/ (1.32a)

for k D 0; 1; : : : ; N � 1, while the viscous part of t.k/ is given by

t
.k/

.V /.�;r�; : : : ;rM�1�;rv; : : : ;rKv; �;r�/
D t.k/.�;r�; : : : ;rM�1�;rv; : : : ;rKv; �;r�/

� t.k/.E/.�;r�; : : : ;rM�1�; �/ (1.32b)

for k D 0; 1; 2; : : : ; N � 1.

Remarks. The viscous part, t.k/.V / of the multipolar stress tensor t.k/ is often called

the residual stress tensor and is denoted from this point on by �.k/; thus,

t.k/ D t
.k/

.E/ C �.k/ (1.33)
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k D 0; 1; : : : ; N � 1, where the arguments of the tensor functions in (1.33) are as
indicated in (1.32b).

Remarks. Following Nec̆as and S̆ilhavý [NS1] we set

	 D ln � (1.34)

in which case the dependence of the constitutive functions on �, and its gradients
through orderM � 1, is replaced by a dependence on 	 and its gradients.

The next definition is central to the rest of the development in this subsection:

Definition 1.4. A multipolar viscous fluid satisfies the second law of thermody-
namics if the Clausius-Duhem inequality (1.22) holds in every process which is
compatible with the constitutive equations (1.25) and the equations of balance of
mass (1.18), energy (1.19), and linear momentum (1.20).

The major result in this section is given by Theorem 1.2, below; for the proof we
refer the interested reader to the original paper [NS1].

Theorem 1.2. A multipolar viscous fluid of type .N;M;K/ satisfies the second law
of thermodynamics if and only if, in every process, the generalized Gibbs equation

�
D 

Dt
D ���D�

Dt
C

N�1X
kD0

.t.E/ij1:::jkj C t.E/ij1:::jk jp;p/vi;j1:::jkj

�
N�1X
kD1

@

@�
t.E/ji1:::jkp�;pvj;j1:::jk (1.35)

holds, as well as the residual dissipation inequality

N�1X
kD0

.�ij1:::jkj C �ij1:::jk jp;p/vi;j1:::jkj C
N�1X
kD1

@

@�
�.E/jj1:::jkp�;pvj;j1:::jk � qi�;i =� � 0:

(1.36)

In addition, F is independent of both rv; : : : ;rKv, and r� , whenever F stands
for any one of the constitutive functions  , �, or e, i.e., for F D  , �, or e,

F.�;r�; : : : ;rM�1�;rv; : : : ;rKv; �;r�/ D F.�;r�; : : : ;rM�1�; �/
(1.37)

throughout the domain of the constitutive functions. Finally, both the entropy
relation

� D �@ 
@�

(1.38)
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and the generalized stress relations

Sym.t.E/ij1:::jkjCt.E/ij1:::jk jp;p� @

@�
t.E/ij1:::jk jp�;p/ D �� Sym

�
@ 

@	;j1:::jk
ıij

�
(1.39)

for k D 0; 1; : : : ; N � 1, hold throughout the domain of the constitutive functions,
where Sym denotes symmetrization with respect to the indices i; j1; : : : ; jk .

Remarks. In the proof of Theorem 1.2, the various constitutive functions are
expressed in terms of 	 D ln � and its gradients, e.g.,

 D  .	;r	; : : : ;rM�1	;rv; : : : ;rKv; �;r�/: (1.40)

Our final result in this subsection serves to place upper bounds on the order of
polarityN in terms of the ordersM ,K of the gradients of density and velocity, i.e.,
we have the following result, a proof of which may be found in [NS1]:

Theorem 1.3. If a multipolar viscous fluid of type .N;M;K/ satisfies the second
law of thermodynamics and k � maxfM;K C 1g then in every process

Sym.tij1:::jkj C tij1:::jk jp;p/ D 0: (1.41)

Furthermore, if tij1:::jkj is symmetric in i; j1; j2; : : : ; jk for k � maxfM;K C 1g
then N � K C 1 and N � M .

1.2.5 Linear Multipolar Viscous Fluids

For the balance of this section we will confine the discussion to the structure of
constitutive functions for linear multipolar viscous fluids. We assume that only the
density �, and not its gradients, enter the constitutive equations so that M D 1.
Our basic assumption in this subsection is that the viscous stresses and the heat flux
vector depend linearly on the gradients of the velocity field and the gradient of the
temperature field. Our first result is the following:

Theorem 1.4. If a multipolar viscous fluid of type .N; 1;K/ satisfies the second
law of thermodynamics, and the principle of material frame-indifference, then

t
.0/
E ij D �pıij (1.42)

where

p D �2
@ 

@�
: (1.43)
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Furthermore, if k is odd, then

t
.k/
E D 0 (1.44)

while if k > 0 and even

t
.k/
E D t

.k/
E .�/ (1.45)

and

Sym tE ij1:::jkj D 0: (1.46)

Proof. We observe that the transformation law (1.31) for the total multipolar stress
tensor implies analogous laws for the equilibrium and viscous parts of the stress.
Therefore,

t
.k/
E j1:::jkC2

.�; �/ D Qj1m1 � � �QjkC2mkC2
t
.k/
E m1:::mkC2

.�; �/ (1.47)

for everyQ which is orthogonal. Consequencely t.k/E is an isotropic tensor of order
kC2. If k is odd, then the only isotropic tensor of order kC2 is 0 (it is sufficient to
set Qij D �ıij in (1.47)); this establishes (1.44). Formulas (1.42), (1.43) result from

combining the generalized stress relation (1.39) with the fact that t.1/E D 0. If k is
even, and k > 0, then (1.39) with k replaced by k � 1 yields

Sym

�
t
.k�1/
E ij1:::jk�1j

C @

@�
t
.k/
E ij1:::jk jp�;p

�
D 0: (1.48)

However, as k � 1 is odd, the first term in (1.48) vanishes by virtue of (1.44);
moreover, the symmetrization is irrelevant as t .k/ij1:::jk�1 jp is symmetric in j1 : : : jk�1j .
Thus,

@

@�
t
.k/
E ij1:::jk�1 jp�;p D 0: (1.49)

This last result implies that

@

@�
t
.k/
E ij1:::jk�1jp D 0 (1.50)

from which (1.45) follows. Finally, by combining (1.39) with the fact that t.kC1/
E D

0, for k even, we obtain (1.46). ut
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We now have the following definition of a linear, viscous multipolar fluid:

Definition 1.5. A multipolar viscous fluid of type .N;M;K/ is said to be linear if
M D 1 and for every �; � the quantities

�.k/ D �.k/.�;rv; : : : ;rKv; �;r�/ (1.51a)

and

q D q.�;rv; : : : ;rKv; �;r�/ (1.51b)

depend linearly on rv; : : : ;rKv, and r� .

Our first characterization of a linear, viscous multipolar fluid is

Theorem 1.5. If a linear viscous multipolar fluid of type .N; 1;K/ satisfies the
principle of material frame-indifference, then �.k/, with k even, depends on �; � ,
and the odd-order spatial gradients of v, i.e.,

�.k/ D �.k/.�; �;rv;r3v; : : : ;rLv/; k even (1.52a)

while q and �.k/, with k odd, depend on �; � , and the even-order spatial gradients
of v, i.e.,

q D q.�; �;r2v; : : : ;rL�1v;r�/ (1.52b)

and

�.k/ D �.k/.�; �;r2v; : : : ;rL�1v;r�/; k odd (1.52c)

where L is an odd positive integer which depends on K .

Proof. We offer a sketch of the proof only. By linearity, the expressions for q and
�.k/ are sums of a number of terms depending linearly on the gradients of velocity of
different orders and of a term depending linearly on r� . The transformation laws for
the stresses and the heat flux vector under changes of frame must be satisfied by each
of these linear terms separately. Using these transformation laws, with Qij D �ıij,
and counting the number of rotations in these transformation laws for each of the
linear terms, one readily sees that only the terms with the orders of the gradients of
velocity indicated in assertions (1.52a,b,c) can be nonzero. The details are omitted.

ut
The representation theorem, below, is essential for the discussion of linear bipolar

fluids in Sect. 1.3, which, in turn, serves to motivate the form of the constitutive
theory for the incompressible bipolar fluid in Sect. 1.4.
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Theorem 1.6. In a linear, viscous multipolar fluid satisfying the principle of
material frame-indifference �.0/, �.k/, and q have the form

�ij D vk;kıij C �.vi;j C vj;i /C
N�2X
rD0

.˛.r/ıij�
rC1vk;k C ˇ

.r/
1 �

rC1vi;j

C ˇ
.r/
2 �

rC1vj;i C �.r/�rvk;kij /;

(1.53)

�ijk D
N�2X
rD0

�
c
.r/
1 ıijk�

rC1vk C c
.r/
2 ıijk�

rvn;nk C c
.r/
3 ıik�

rC1vj C c
.r/
4 ıik�

rvm;mj

C c
.r/
5 ıjk�

rC1vi C c
.r/
6 ıjk�

rvm;mi C c
.r/
7 �

rvi;jk C c
.r/
8 �

rvk;ij

C c
.r/
9 �

rvj;ki C c
.r/
10 �

r�1vm;mijk
�

C c11ıij�;k C c12ıik�;j C c13ıjk�;i
(1.54)

and

qi D
N�2X
rD0

�
d
.r/
1 �rvm;mi C d

.r/
2 �rC1vi

�
� k�;i : (1.55)

Here ;�; ˛.r/; ˇ.r/1 ; ˇ
.r/
2 ; �

.r/; c
.r/
1 ; : : : ; c13; d

.r/
1 ; d

.r/
2 and k are all scalar functions

of �; � such that c.r/10 satisfies c010 D 0. If the body satisfies the reduced equation of
balance of angular momentum, then

ˇ
.r/
1 C c

.r/
5 C c

.r/
7 D ˇ

.r/
2 C c

.r/
3 C c

.r/
9 (1.56)

for r D 0; 1; : : : ; N � 2. Similar, but more complicated expressions can be obtained
also for �.k/ with k � 2.

Proof. In view of the transformation laws for �.k/ and q under changes of frame, the
coefficients in the expressions for q and �.k/, in front of the gradients of velocity and
the gradient of temperature, must be isotropic tensors. Using the general forms for
isotropic tensors (see [Sp]) and the symmetry of the gradients of v, one eventually
arrives at (1.54)–(1.56). The details are omitted. ut

The analysis presented in [NS1] offers several other characterizations of the
constitutive theory for linear, multipolar viscous fluids; however, as none of
these characterizations are essential for our discussion of the linear, incompressible
bipolar fluid in Sect. 1.3, we will simply refer the interested reader to Sect. 5 of
[NS1] for further details. A survey of the basic concepts associated with the theory
of viscous multipolar fluids, in both the compressible and incompressible cases,
may be found in the paper of Novotný [Nov], as well as [N3, 4]. For an analysis of
the compressible bipolar problem we refer the reader to the series of papers [NeN],
[NN], [NNS1, 2, 3] and [NS2].
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1.3 The Linear Bipolar Fluid

In this section our goal is to specialize the discussion in Sect. 1.2.5 to account for
the situation in which the fluid is bipolar (i.e., N D 2) as well as isothermal and
incompressible. Consistent with the analysis in Sect. 1.2 we set tij1:::jN j 	 0 and
suppose that tE ij1:::jkj 	 0, for k � 1. We also postulate that tij D tji and that
@

@xi
tpki D @

@xi
tkpi ; these two latter conditions, together with (1.20), imply that

(1.21) is satisfied. In addition, we assume that for k D 0; 1; : : : ; N � 1,

�ij1:::jkj D �ij1:::jkj .rv; : : : ;rKv/ (1.57a)

and

q D ��r�; � > 0 (Fourier Law of Heat Conduction): (1.57b)

It then follows, as a consequence of (1.57a) and the residual dissipation inequality
(1.36), that

N�1X
kD0

.�ij1:::jkj C �ij1:::jk jp;p/
@kC1vj

@xj1 � � � @xjk @xj
� 0 (1.58)

and

tE ij 	 t
.0/
E ij D �p.�; �/ıij (1.59)

where, as in (1.43), p D �2
@ 

@�
. In Sect. 1.2.5 we showed (Theorem 1.5) that for a

linear, viscous multipolar fluid the principle of material frame-indifference implies
that the �ij1:::jkj with k even, k D 0; : : : ; N � 1, depend only on odd-order gradients
of v while the �ij1:::jkj with k odd depend only on even-order gradients of v. Also,
material frame-indifference implies the general representation for �ij displayed in
(1.53). Therefore, for a bipolar linear viscous fluid, it follows from (1.53), with
N D 2, that

�ij D vk;k C�.vi;j Cvj;i /C˛ıijrvk;k Cˇ1�vi;j Cˇ2�vj;i C �vk;kij : (1.60)

In a similar manner, with N D 2, (1.54) reduces to

�ijk D c1ıij�vk C c2ıijvm;mk C c3ıij�vj C c4ıikvm;mj

C c5ıjk�vi C c6ıjkvm;m C c7vi;jk C c8vk;ij C c9vj;ki : (1.61)
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In (1.60), (1.61) we have dropped the superscripts on the coefficients, i.e., c1 D c
.0/
1 ,

etc. We have also used the assumpion that the process is isothermal and applied the
restriction c.0/10 D 0.

Remarks. For N � 2 an example of a set of constitutive equations, for a linear
multipolar viscous fluid, which satisfies both the principle of material frame-
indifference and the Clausius-Duhem inequality (1.22) is given by the following
expression:

�ij1:::jmj D
N�1X
lDm

.�1/lCm�l�m @mglij

@xj1 � � � @xjm
(1.62)

with

glij D lvk;kıij C 2�leij.v/; �l � 0; l � �2�l
3

(1.63a)

and

�ij1:::jmj 	 0; for 1 � m � N � 1: (1.63b)

We now turn to the special case of an incompressible, linear, multipolar fluid;
this case also serves to highlight the basic viewpoint of multipolarity. In order to
be somewhat specific we will concentrate on the problem of steady flow between
parallel plates at x2 D ˙1. We suppose that p D p.x1; x2/ while

@vi

@xi
D 0; � D const.; (1.64a)

�
@vi

@xj
vj C @p

@xi
� @�ij

@xj
D 0: (1.64b)

With the classical Stokes Law

�ij D 0 div vıij C 2�0eij.v/; (1.64c)

0 � �2
3
�0, �0 > 0, we obtain the usual steady-state Navier–Stokes equations.

Assuming that the flow has the form v1 D v1.x2/, v2 D 0, v3 D 0 (plane Poiseuille
flow between fixed parallel plates), (1.64b,c), with div v D 0, reduce to

@p

@x1
� �0v

00
1 D 0;

@p

@x2
D 0 (1.65)

so that p D p0 C p1x1. Thus

p1 � �0v
00
1 D 0 (1.66)
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Fig. 1.1 Sequence of linear
bipolar viscous profiles

and as v D 0, for x2 D ˙1, we obtain the well-known result [Sh]

v1.x2/ D � p1

2�0
.1 � x22/; �1 � x2 � 1: (1.67)

If we set P D
Z 1

�1
v1.x2/ dx2, then v1 D 3P.1 � x22/=4. A major problem with

(1.67) is the fact that the form of the profile (1.67) remains parabolic as �0 ! 0C.
From experimental observations, and the Prandtl boundary-layer theory (which is in
reasonable accord with such observations) we know that as �0 ! 0C the resulting
profiles must flatten out with respect to the axis x2 D 0 and must approach the
boundaries at x2 D ˙1 in an ever increasing tangential fashion. More precisely,
experimental observations and the Prandtl boundary-layer equations lead us to
expect, for a sequence of viscosities f�n0g with �n0 ! 0, as n ! 1, a sequence
of progressively flattened profiles such as those depicted in Fig. 1.1a–c.

In order to gauge the effect of multipolarity on the velocity profile (1.67) we will
consider special cases of (1.60), (1.61); to this end we set

(
�0ij D 0ıij div vC 2�0eij .0 � 0; �0 � 0/;

�1ij D 1ıij div vC 2�1eij .1 � 0; �1 � 0/;
(1.68)

�E ij D �pıij; �E ijk D 0; (1.69)

�ij D �0ij ���1ij ; �E ijk D @�1ij

@xk
; (1.70)

then we easily find that

�ij D �pıij C 0ıij div vC 2�0eij � 1ıij� div v � 2�1�eij; (1.71)

�ijk D 0ıijvl;lk C 2�1
@eij

@xk
: (1.72)
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Clearly, (1.71), (1.72) are special cases of (1.60), (1.61); with the assumption of
incompressibility, the full set of constitutive relations for an isothermal, linear,
bipolar fluid reduce to

tij D �pıij C 2�0eij � 2�1�eij; (1.73)

�ijk D 2�1
@eij

@xk
: (1.74)

Assume, again, that the flow has the form v1 D v1.x2/, v2 D 0, v3 D 0, with
p D p.x1; x2/; substituting this information into (1.73), and then the resultant form
of �ij into (1.64b), we find that

�0v
00
1 .x2/ � �1v0000

1 .x2/ D p1.const./: (1.75)

Besides the usual non-slip boundary conditions which must be satisfied, i.e.,
v1.˙1/ D 0, it will be shown, in Sect. 1.4, that on the boundary @� of an open,
bounded domain � in Rn, n D 2; 3 (provided the boundary is sufficiently smooth)
we must also satisfy

�ijk
j 
k � �jkl
j 
k
l
i D Mi; (1.76)

i D 1; : : : ; n. In (1.76), � is the exterior unit normal to @�whileM is the prescribed
moment on the boundary. If we take M D 0, then for flow between parallel plates
at x2 D ˙1, (1.76) implies that v00

1 .˙1/ D 0. A simple calculation now shows that
the solution of the boundary-value problem for (1.75) is given by

v1.x2/ D P

4
3

� 4
�2

�
1 � 1

�

sinh �
cosh �

�
�
1 � x22 C 2

�2
cosh �x2
cosh �

� 2

�2

�
(1.77)

where � D
p
�0=�1 and, again,P D

Z 1

�1
v1.x2/ dx. As �1 ! 0C, it is not difficult

to show that the profile given by (1.77) converges to the profile predicted by the
classical Navier–Stokes relation (1.64c), with div v D 0, i.e., to (1.67). We also note
that it follows from (1.77) that for � D 1, v1.0/ D 3P=4, while for � ! 0C,
v1.0/ D 25P=32; in fact for �0 D 0, �1 > 0 we calculate that

v1.x2/ D 5

32
P
�
5� 6x22 C x42

�
: (1.78)

Thus, linear multipolarity has only a minor perturbative effect on the velocity
profile for this particular steady flow; the profiles are still distinctly parabolic in
character and do not exhibit the “flattening out” phenomenon which is predicted by
the boundary layer theory for the classical Navier–Stokes equations in the case of
vanishing kinematic viscosity. A similar situation occurs within the context of the
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linear dipolar fluid model of Bleustein and Green [BG]; this will be demonstrated in
Sect. 1.7 when we review the consequences of applying their model to the problem
of Poiseuille flow in a circular cylinder.

An excellent picture, for the case of Poiseuille flow between parallel plates, of
the actual velocity profiles at large Reynolds numbers, may be gleaned from Fig. 82
of [GO]; in this case flattened profiles are observed at the inlet to the channel (the
Reynolds number being large, not because of the small magnitude of the kinematic
viscosity, but, rather, because of the small distance traversed by the fluid); these
profiles correspond precisely to those depicted in our Fig. 1.1 for � < �30. The
remedy to the problems described above is to move away from the linearity built into
the constitutive relations (1.71), (1.72), for the bipolar fluid, and toward a slightly
nonlinear version of these constitutive relations, one which is completely admissible
within the context of the original Nec̆as-S̆ilhavý [NS1] formulation of the basic
theory.

1.4 The Nonlinear Bipolar Fluid

1.4.1 Introduction

In this section we will formulate the constitutive theory for incompressible,
nonlinear, viscous bipolar fluids that will be used throughout the remainder of the
monograph. The constitutive relation we construct here in Sect. 1.4.2 is entirely
consistent with the general development in Sect. 1.2, is in accord, therefore, with
both the principle of material frame-indifference and the second law of thermo-
dynamics for isothermal continua, and serves as a natural nonlinear extension of
the linear theory discussed in Sect. 1.3. When the constitutive parameter ˛ in the
theory vanishes we recover the linear, viscous, incompressible bipolar model of
Sect. 1.3; if only the higher-order viscosity �1 vanishes, then we recover, in essence,
the nonlinear generalization of the Navier–Stokes theory studied by Ladyzhenskaya
[La2] and [DuG] for ˛ in a certain range. For ˛ D 0 and �1 D 0 the model
reduces to the one based on Stokes Law (1.7) and, thus, yields the incompressible
Navier–Stokes equations. When �1 > 0 the system of partial differential equations
governing the velocity in the bipolar model is of fourth order and the simple non-
slip boundary condition v D 0 on @� no longer suffices to produce a well-posed
problem, where @�, assumed to be sufficiently smooth, is the boundary of an open
bounded domain in Rn, n D 2; 3. In Sects. 1.4.3 and 1.4.4, following the analysis
outlined by Toupin [To] for elastic media, we apply the principle of virtual work
to deduce the appropriate form of the higher-order boundary conditions that must
be appended to the non-slip condition on the boundary of a bounded domain; this
is worked out in Sect. 1.4.3 without imposing the constraint of incompressibility
on the virtual velocities and velocity gradients. Then, in Sect. 1.4.4, we apply
the theory developed by Heron [HB] so as to obtain the appropriate form of the
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higher-order boundary conditions for incompressible bipolar fluid flow. We note that
the conditions derived in Sects. 1.4.3 and 1.4.4 are very different from the (artificial)
assumption that the normal derivative of the velocity field vanish in @�; such an
assumption has been empoyed, e.g., in [Lio1] and [OS1, 2] where higher-order
derivatives of the velocity field were added onto the Navier–Stokes system of partial
differential equations in order to regularize the associated initial-boundary value
problem. We shall have more to say about this particular issue in Sects. 1.6 and 4.5.

1.4.2 The Constitutive Relation for a Viscous, Incompressible
Nonlinear Bipolar Fluid

The general theory of multipolar fluids, as constructed in Sect. 1.2, allows for very
broad types of nonlinearity in the relationships between the stress tensors and
velocity gradients. In early work on the phenomenological behavior of viscous
fluids, Prandtl suggested replacing the constant viscosity �0, in the classical Stokes
Law (1.64c), with div v D 0, by a viscosity function � which was defined to be
directly proportional to the first spatial velocity gradient; for the plane Poiseuille
flow problem (between parallel plates), which was considered in the last section,
this constitutive hypothesis is embodied in the relation � D �0

ˇ̌
v0
1

ˇ̌
, in which case

(1.66) becomes

p1 � �.jv0
1jv0

1/
0 D 0: (1.79)

Solving (1.79) subject to the boundary conditions v1.˙1/ D 0 we obtain

v1.x2/ D 5

6
P.1 � jx2j3=2/; (1.80)

a profile which is even further removed from the actual profile that one expects
to see in a steady flow situation, as the viscosity grows smaller than the parabolic
profile v1 D 3P.1 � x22/=4 predicted by the classical Stokes Law, or the profile
(1.77) predicted by the linear theory of the bipolar fluid. The next natural step in
this process would be to modify the Prandtl ansatz embodied in (1.79) and allow
the viscosity � to be an arbitrary function of

ˇ̌
v0
1.x2/

ˇ̌
for the case of steady plane

Poiseuille flow between parallel plates at x2 D ˙1. With �ij D 2�.jej/eij, (1.79)
now becomes

p1 � .�.jv0
1j/v0

1/
0 D 0 (1.81)

so that

p1x2 � �.jv0
1j/v0

1 D 0: (1.82)
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In principle, the constant pressure gradient p1 and the velocity profile v1 D v1.x2/

may be identified by experimental procedures; working under the auspices of that
assumption, and ignoring for now the possible presence of higher-order derivatives
of the velocity field (as (1.81) does), the functional form of � may be obtained from
(1.82) as follows: suppose that v0

1.x2/ is monotone in .�1; 1/, odd, and nonnegative
on Œ�1; 0�. Writing, in (1.82), x2 D v0�1

1 .v0
1.x2// we find that, on the range of

ˇ̌
v0
1

ˇ̌
,

p1
.v0
1/

�1.v0
1/

v0
1

D �.jv0
1j/: (1.83)

Let us suppose that our measurements give us a more realistic profile than
those produced in Sect. 1.3 (such profiles result, for example, from applications
of boundary-layer theory for the steady-state Navier–Stokes equations). More
precisely, suppose we observe a profile of the form

v1.x2/ D P

2

1C ı

ı
.1 � jx2jı/; ı � 2 (1.84)

where, again, P > 0 is given by
Z 1

�1
v1.x2/ dx2. We look for a solution � of (1.83)

of the form

�.jv0
1j/ D ˇjv0

1j.2�ı/=.ı�1/ (1.85)

with ˇ > 0 constant. Substituting (1.84) and (1.85) into (1.82) we find that the
constitutive hypothesis (1.85) is admissible provided the constant ˇ is given by

ˇ D jp1j
�

2

P.1C ı/

�1=.ı�1/
: (1.86)

For the plane Poiseuille flow governed by the classical Stokes relation we have, from
the analysis in Sect. 1.3, that the viscosity �0 satisfies

�0 D 2jp1j
3P

(1.87)

and (1.86) should be viewed in the same light. If we set ˛ D .ı� 2/=.ı� 1/, ı � 2,
then 0 < ˛ < 1.

The formal considerations described above provide the motivation to study
incompressible, isothermal, bipolar fluids in which the stress tensors tij and �ijk are
given, respectively, by the following nonlinear modification of (1.73), (1.74): For
some �1 > 0,

tij D �pıij C 2�.jej/eij � 2�1�eij; (1.88a)
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�ijk D 2�1
@eij

@xk
(1.88b)

where we have replicated (1.74) as (1.88b) and where the nonlinear, lower-order
viscosity � has the form

� D �0.� C eijeij/
�˛=2 (1.89)

with � � 0 and �0 the classical viscosity associated with the Stokes Law (1.7). The
heuristic argument presented, above, indicates that the constitutive theory specified
by (1.88a,b), (1.89) should be investigated with ˛ in the range 0 < ˛ < 1.
Throughout the course of this monograph, however, we will expand the analysis to
include situations where ˛ < 0; such an assumption, relative to ˛, will encompass
the Ladyzhenskaya modification of the Navier–Stokes system if we also set �1 D 0

in (1.88a,b). Moreover, with ˛ D 0, (1.88a,b) reduces to the constitutive theory
(1.73), (1.74) for the incompressible, isothermal, linear bipolar fluid, and with
˛ D �1 D 0 we recover the constitutive theory which leads to the incompressible
Navier–Stokes equations.

Remarks. In many places in this work we will set ˛ D 2 � p, in which case (1.89)
assumes the form

� D �0.� C eijeij/
p�2
2 : (1.90)

A non-Newtonian fluid with a nonlinear viscosity which conforms to (1.90) is called
shear-thinning if p < 2 and shear-thickening if p � 2.

Irrespective of how we express the nonlinear viscosity �, the most significant
point to be made about the constitutive theory embodied in (1.88a,b) is that it is
a nonlinear, isothermal constitutive theory that takes into account the presence
of higher-order velocity gradients and is compatible with the basic principles
of material frame-indifference and the Clausius-Duhem inequality. By inserting
(1.88a) into the differential form (1.1) of the equation expressing balance of linear
momentum, we obtain the system of partial differential equations governing the
velocity field in an isothermal, incompressible bipolar fluid, namely,

�

�
@vi

@t
C vj

@vi

@xj

�
D � @p

@xi
C 2

@

@xj
Œ�.jej/eij� � 2�1

@

@xj
.�eij/C �fi : (1.91)

The system (1.91), and the incompressibility condition r�v D 0, are to hold either in
all ofRn (n D 2; 3), in which case we consider a pure initial-value problem, or in all
of Rn with periodic boundary conditions and a base cell of the form � D Œ0; L�n,
n D 2; 3, or in the exterior of a bounded domain � � Rn, n D 2; 3, or in an
open bounded � � Rn, with smooth boundary @�. In the two latter situations
having a well-posed boundary-value problem (for the steady flow situation) or
initial-boundary value problem (for an unsteady flow) requires the specification,
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not only of the usual non-slip condition on @�, which is common in the Newtonian
case, but also of higher-order boundary conditions; this is, of course, because the
system (1.91) is of fourth order in the spatial derivatives of v. The multipolar stress
tensor �ijk specified in (1.88b) enters into the higher-order boundary conditions as
will be seen in the next two subsections. A discussion of the appropriate structure
for periodic boundary conditions appears in conjunction with the general existence
theory for incompressible bipolar fluids which is presented in Chap. 4.

1.4.3 The Structure of the Higher-Order Boundary Conditions
1: Virtual Work Without the Incompressibility Constraint

We now turn to the issue of the structure of the higher-order boundary conditions
associated with the constitutive equations (1.88a,b), (1.90) defining an incompress-
ible nonlinear bipolar fluid under isothermal conditions. Following the similar
analysis in [To] for elastic materials, we obtain an appropriate set of boundary
conditions by applying the principle of virtual work. Our analysis, in this subsection,
will be carried out without imposing the constraint of incompressibility on the
virtual velocities and velocity gradients; this constraint is imposed in Sect. 1.4.4 and
the resulting modification of the computations presented, below, will then yield the
final form of the higher-order boundary conditions associated with the multipolar
stress tensor �ijk. The analysis presented here is based on the recent work in [BB4].

We begin by rewriting the constitutive equations in the form

tij D �pıij C �
.0/
ij � @

@xk
�ijk (1.92)

where �ijk is given by (1.88b) and

�
.0/
ij D 2�0.� C eijeij/

p�2
2 eij: (1.93)

Next, we define

�.eij/ D �0

Z eijeij

0

.� C s/
p�2
2 ds; (1.94a)

ˆ

�
@eij

@xk

�
D �1

@eij

@xk

@eij

@xk
; (1.94b)

and

W

�
eij;

@eij

@xk

�
D �.eij/Cˆ

�
@eij

@xk

�
: (1.95)
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Then, clearly,

�
.0/
ij D @�

@eij
D @W

@eij
; (1.96a)

�ijk D @ˆ

@
�
@eij

@xk

� D @W

@
�
@eij

@xk

� (1.96b)

so that the complete residual stress tensor �ij D �
.0/
ij � @

@xk
�ijk is given by

�ij D @W

@eij
� @

@xk

0
@ @W

@
�
@eij

@xk

�
1
A : (1.97)

The potential energy of the fluid in a fixed, bounded domain � � Rn, n D 2; 3,
with smooth boundary @�, and exterior unit normal v at x 2 @�, is now defined by

E.�/ D
Z
�

W

�
eij;

@eij

@xk

�
dx: (1.98)

The principle of virtual work, therefore, assumes the form

ıE.�/ D
Z
�

fiıvi dx C
I
@�

.Tiıvi CMiDıvi / dSx (1.99)

for arbitrary values of the virtual velocity variations ıvi , subject only to the
constraint that the ıvi D 0 on @�, and arbitrary variations of the virtual velocity
gradients ıvi;j , where Dıvi D ıvi;j 
j are the normal derivatives of the virtual

velocity components on @�, fi D �Fi � @p

@xi
, Ti are the tractions/area on @�, and

Mi are the hypertractions (or moments)/area on @�. From (1.98) we have

ıE.�/ D
Z
�

2
4@W
@eij

ıeij C @W

@
�
@eij

@xk

�ı
�
@eij

@xk

�35 dx: (1.100)

Now,

ıeij D 1

2
.ıvi;j C ıvj;i /

so

@W

@eij
ıeij D 1

2

@W

@eij
.ıvi;j C ıvj;i / D @W

@eij
ıvi;j (1.101)



1.4 The Nonlinear Bipolar Fluid 33

by the symmetry of eij. In a similar manner,

ı

�
@eij

@xk

�
D 1

2

�
ıvi;jk C ıvj;ik

�

and

@W

@
�
@eij

@xk

�ı
�
@eij

@xk

�
D @W

@
�
@eij

@xk

� ıvi;jk: (1.102)

Employing (1.101), (1.102) in (1.100) we obtain

ıE.�/ D
Z
�

2
4@W
@eij

ıvi;j C @W

@
�
@eij

@xk

� ıvi;jk
3
5 dx: (1.103)

However, by integration by parts, and the divergence theorem, we obtain for the first
integral in (1.103)

Z
�

@W

@eij
ıvi;j dx D

Z
�

@

@xj

�
@W

@eij
ıvi

�
dx �

Z
�

@

@xj

�
@W

@eij

�
ıvi dx

D �
Z
�

@

@xj

�
@W

@eij

�
ıvi dx

(1.104)

as ıvi D 0 on @�. In an analogous fashion, two consecutive integrations by parts,
applied to the second integral in (1.100), yields

Z
�

@W

@
�
@eij

@xk

�ıvi;jk dx D
Z
�

@

@xk

0
@ @W

@
�
@eij

@xk

�ıvi;j
1
A dx

�
Z
�

@

@xk

0
@ @W

@
�
@eij

@xk

�
1
A ıvi;j dx

D
I
@�

@W

@
�
@eij

@xk

�ıvi;j 
k dSx

�
Z
�

@

@xj

2
4 @

@xk

0
@ @W

@
�
@eij

@xk

�
1
A ıvi

3
5 dx

C
Z
�

@2

@xj @xk

0
@ @W

@
�
@eij

@xk

�
1
A ıvi dx
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or Z
�

@W

@
�
@eij

@xk

�ıvi;jk dx D
I
@�

@W

@
�
@eij

@xk

�ıvi;j 
k dSx

C
Z
�

@2

@xj @xk

0
@ @W

@
�
@eij

@xk

�
1
A ıvi dx

(1.105)

where we have, again, used the fact that ıvi D 0 on @�. Employing (1.104) and
(1.105) in (1.103), and taking note of (1.96a,b), we find that

ıE.�/ D �
Z
�

@

@xj
�
.0/
ij ıvi dx C

I
@�

�ijkıvi;j 
k dSx C
Z
�

@

@xj

�
@

@xk
�ijk

�
ıvi dx

or, by combining like integrals,

ıE.�/ D
Z
�

@

@xj

�
��0ij C @

@xk
�ijk

	
ıvi dx C

I
@�

�ijkıvi;j 
k dSx: (1.106)

If we now combine (1.99) and (1.106), and recall that �ij D �
.0/
ij � @

@xk
�ijk, we obtain

the equation

Z
�

�
fi C @

@xj
�ij

�
ıvi dx C

I
@�

.Mi
j � �ijk
k/ıvi;j dSx D 0: (1.107)

By virtue of the independence of the variations of the virtual velocity components
(in �) and their gradients (on @�), and in the absence, to this point, of the
incompressibility constraint, we obtain from (1.107)

@

@xj
�ij D �fi D ��Fi C @p

@xi
; in � (1.108)

or

� @p

@xi
C @

@xj
�
.0/
ij � @

@xj

�
@

@xk
�ijk

�
C �Fi D 0; in � (1.109)

as well as

�ijk
k D Mi
j ; on @�: (1.110)

If we multiply (1.110) through by 
j , sum on j , and use the fact that 
j 
j D 1, it
follows that

�ijk
j 
k D Mi; on @� (1.111)
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for i D 1; 2; 3 (in R3), which is the form the higher-order boundary conditions
assume, at each fixed time t , if we do not impose the incompressibility constraint
on the velocity variations; in the next subsection we will modify the calculations
presented here so as to take into account this constraint.

1.4.4 Structure of the Higher-Order Boundary Conditions 2:
Virtual Work Subject to the Incompressibility Constraint

If we now restrict ourselves in (1.107) to smooth, divergence free virtual velocity
fields with compact support in �, then (1.107) reduces to

Z
�

�
fi C @

@xj
�ij

�
ıvi dx D 0 (1.112)

for all ıvi which are smooth and divergence free. It then follows (see, e.g., [GRa]
Theorem 2.3) that (1.108) holds. Using (1.108) it is then a direct consequence of
(1.107) that the boundary integrals

I
@�

�
Mi
j � �ijk
k

�
ıvi;j ds D 0 (1.113)

for all ıvi that are divergence free and zero on @�. From (1.113) it follows that for
any tensor w which is the restriction of the gradient of a divergence free, smooth,
vector function ıv which vanishes on the boundary, we have

I
@�

�
Mi
j � �ijk
k

�
wij ds D 0: (1.114)

As ıvi is zero on @� it follows that all tangential derivatives of ıvi are zero on
the boundary. Thus, in (1.113), the only non-zero part of ıvi;j is that component
which corresponds to the normal derivative of ıvi . By the normal derivative of the
vector ıv with components ıvi we mean, of course, the vector whose i th component

is
@ıvi

@xj

j and by Theorem 3.1 of [HB] all such vectors are tangential to @�.

Furthermore, for any smooth vector g tangential to @� there exists a function ıvi
such that

@ıvi

@�
D gi ; on @�;

ıvi D 0; on @�;

div ıvi D 0; in �:

(1.115)
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Remarks. Heron, in [HB], studied higher-order traces of divergence free fields. We
use only a particular form of his Theorem 3.1 and for the convenience of the reader
we state below this simplified version of Heron’s theorem.

Theorem (Heron [HB]). Let � be a connected, bounded subset of Rn, with C3

boundary @� D � . Given a vector g1 2 H 1=2.�/ there exists u 2 W 2;2.�/, with

div u D 0 in�, u D 0 on � , and
@u
@�

D g1 on � if and only if g1 is tangential to � ,

i.e., if and only if g1 � � D 0 where � is the unit normal to � .

It now follows from (1.113) that the tangential component of Mi
j � �ijk
k is zero
on @� and we may state the following

Lemma 1.1. For an incompressible, nonlinear, bipolar viscous fluid defined by the
constitutive relations (1.88a,b), (1.90), in an open bounded domain � � Rn, n D
2; 3, with smooth boundary @�, the higher-order boundary condition

�ijk
j 
k�i D Mi�i ; on @� (1.116)

must be satisfied, where for n D 2, � is the exterior unit normal to the smooth curve
@� at x 2 @� and � is the unit tangent vector, while for n D 3, � is the exterior
unit normal to the surface @� at x 2 @� and � is any unit vector in the tangent
plane to @� at x.

Remarks. Throughout most of this book we will assume thatM D 0 on @� so that
(1.116) reduces to

�ijk
j 
k�i D 0; on @�: (1.117)

An alternative form of the higher-order boundary conditions is then given by

Lemma 1.2. Let � be an open bounded domain in Rn, n D 2; 3 with smooth
boundary @� and let x 2 @�. Let � be the exterior unit normal to @� at x, and let
� denote any unit vector in the tangent space to @� at x. Then, at x,

�ijk
j 
k�i D 0 , �ijk
j 
k � �jkl 
j 
k
l
i D 0; (1.118)

where i D 1; 2 if n D 2, and i D 1; 2; 3 if n D 3.

Proof. Suppose �ijk
j 
k � �jkl
j 
k
l
i D 0, i D 1; 2; 3. Multiplying through by
�i , summing on i , and using the fact that 
i �i D 0 we get

�ijk
j 
k�i D 0; i D 1; 2; 3:

Now, let �ijk
j 
k�i D 0 and let O� be the vector at x with i -th component . O�/i D
�ijk
j 
k . Also, let ˇ� be the projection of O� onto the tangent plane to @� at x, where
� is a unit vector in the tangent space, so that (see Fig. 1.2)

O� D ˛� C ˇ� (1.119)
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αν
τ

x βτ

ˆFig. 1.2 Tangent plane to @�
at x

where ˛� is the projection of O� onto the normal direction to @� at x. Therefore,

O�i D �ijk
j 
k D ˛
i C ˇ�i (1.120)

which, as 
i �i D 0, 
i
i D 1, implies that

˛ D �ijk
j 
k
i 	 �jkl
j 
k
l : (1.121)

As �i �i D 1, by virtue of our hypothesis, and the definition of O�,

�ijk
j 
k�i D ˇ D 0 (1.122)

in which case

�ijk
j 
k D .�jkl
j 
k
l /
i ; i D 1; 2; 3 (1.123)

so that �ijk
j 
k � .�jkl
j 
k
l /
i D 0, i D 1; 2; 3 whenever �ijk
j 
k�i D 0. ut
Remarks. The proof of Lemma 1.2 has been constructed for the case n D 3; the
proof for n D 2 is a trivial modification of the proof given above.

Remarks. In Appendix B it is shown, in Lemma B.3, that the second of the
conditions in (1.118) implies that

�ijkeij
k D 0; on @�: (1.124)

By virtue of Lemma 1.2 it now follows that (1.124) is also a consequence of the
condition (1.117).

Remarks. Suppose that �ijk
j 
k�i D Mk�k ¤ 0 on @�, where we sum on all
repeated indices. Then, by virtue of (1.120) and (1.121) we have

�ijk
j 
k � .�jkl
j 
k
l /
i D ˇ�i : (1.125)

Multiplying (1.125) by �i , summing on i , and using the facts that 
i �i D 0, �i �i D 1,
we obtain

ˇ D �ijk
j 
k�i D Mk�k (1.126)
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the last result being valid on @� by virtue of the higher-order boundary condition
(1.116). Substituting (1.126) back into (1.125) we obtain

�ijk
j 
k � .�jkl
j 
k
l /
i D .Mk�k/�i ; on @� (1.127)

as the form of the higher-order boundary conditions on @� which are equivalent to
(1.116) whenever Mi�i ¤ 0 on @�. The term on the right-hand side of (1.127) is
the projection of the vector M onto the tangent plane to the surface @� at a point
x 2 @� if we are working in space dimension n D 3; if n D 2, it is the projection
ofM onto the direction of the tangent vector to the curve @� at a point x 2 @�.

1.5 Elementary Examples of Incompressible Nonlinear
Bipolar Fluid Flow

1.5.1 Introduction

In the previous section we formulated the constitutive theory for an incompressible,
viscous, bipolar fluid; this constitutive theory is completely defined by the relations
(1.88a), (1.89), for the stress tensor tij and (1.88b) for the first multipolar stress
tensor �ijk. The constitutive parameters �0, �1 are assumed to be positive, while
� � 0; in this section we will look at some of the consequences of taking 0 < ˛ < 1,
the motivation for restricting ˛ to this range having been given in Sect. 1.4.2. By
collecting all of the results in Sect. 1.4, we may write the full initial-boundary value
problem, for the components vi of the velocity field of a nonlinear, incompressible
bipolar viscous fluid, in the following form, where � is a bounded domain in Rn,
n D 2; 3with smooth boundary @�, and the xi are (Eulerian) Cartesian coordinates:
for i D 1; : : : ; n (n D 2; 3),

�

�
@vi

@t
C vj

@vj

@xj

�
D � @p

@xi
C 2�0

@

@xj



.� C eijeij/

�˛=2eij
�� 2�1 @

@xj
.�eij/C �fi

(1.128)

in�
 Œ0; T /, T > 0, with � the fluid density, p the pressure, and fi the components
of the external body force/mass,

r � v D 0; in � 
 Œ0; T / (1.129)

v D 0; �ijk
j 
k � �jkl
j 
k
l
i D .Mk�k/�i ; i D 1; 2; 3; on @� 
 Œ0; T /
(1.130)

on @� 
 Œ0; T /, where the Mi are the components of the hypertraction (moments)
on @� at time t 2 Œ0; T /, and � is the exterior unit normal at x 2 @�, and

v.x; 0/ D v0.x/; x 2 �: (1.131)
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For our work in this section we will assume that the Mi D 0 and that fi D 0

as well. We want to examine the consequences of applying the theory delineated
in (1.128)–(1.131) to three, standard, elementary examples of steady flow: plane
Poiseuille flow between fixed parallel plates, proper Poiseuille flow in a circular
pipe, and plane Couette flow over a plate which moves with constant velocity. As

all of our examples involve steady flow, for each case we have
@vi

@t
D 0; moreover,

the geometries of the three flows selected are such that, for each i , we will also have

vj
@vi

@xj
D 0. Therefore, on the left-hand side of (1.128),

Dvi

Dt
D 0 for each case

considered, in which case the steady flow equations become

2�0
@

@xj



.� C eijeij/

�˛=2eij
� � 2�1

@

@xj
.�eij/ D @p

@xi
(1.1280)

in�, for i D 1; : : : ; n, n D 2; 3. The remaining conditions are the incompressibility
constraint

r � v D 0; in � (1.1290)

and the boundary conditions

v D 0; �ijk
j 
k � �jkl
j 
k
l
i D 0; on @� (1.1300)

for i D 1; : : : ; n, n D 2; 3. In order to obtain closed form solutions for the relevant
boundary-value problem in this section, we will set � D �1 D 0 in (1.1280).
However, in Chap. 2, which is devoted entirely to steady plane Poiseuille flow
between parallel plates, we will prove that there exists a unique solution of the
boundary-value problem (1.1280), (1.1290), (1.1300) which depends continuously
on � and �1 as � ! 0C and �1 ! 0C; for �1 ! 0C, continuous dependence

will be proven to hold in the norm of C1Cı, for 0 < ı <
1

2
, so that, in particular,

the approximation corresponding to � D �1 D 0 is a reasonably accurate one, for
small � and �1, in the C0 norm. An analogous continuous dependence result for the
example of (steady) proper Poiseuille flow in a circular pipe will appear in the Ph.D.
thesis of A. Montz [Mon].

1.5.2 Steady Plane Poiseuille Flow

We assume a flow of the form

v1 D v1.x2/; v2 D 0; v3 D 0 (1.132)
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between fixed parallel plates at x2 D ˙a, for some a > 0. It is easily seen that in
this case (1.1280) reduces to the fourth-order nonlinear ordinary differential equation

�0

"�
� C 1

2
v02
1 .x2/

��˛=2
v0
1.x2/

#0
� �1v0000

1 .x2/ D p1 (1.133)

where p1 D @p

@x1
D const. The divergence free condition (1.1290) is, of course,

automatically satisfied, while the boundary conditions reduce to

v1.˙a/ D 0; v00
1 .˙a/ D 0: (1.134)

If we set �1 D 0 in (1.133), then only the first set of boundary conditions in (1.134)
is relevant and (1.133) becomes

"�
� C 1

2
v02
1 .x2/

��˛=2
v0
1.x2/

#0
D p1

�0
(1.135)

so that for some real � ,

�
� C 1

2
v02
1 .x2/

��˛=2
v0
1.x2/ D

�
p1

�0

�
x2 C � 	 g.x2/: (1.136)

If we set w� D � C v02
1 .x2/=2 then it follows from (1.136) that w� satisfies the

transcendental algebraic equation

w1�˛� � �w�˛
� D 1

2
g2I � > 0; 0 < ˛ < 1 (1.137)

whose solutions are easily seen to depend continuously on � as � ! 0C; we,
therefore, turn our attention to (1.136) with � D 0, or

2˛=2
ˇ̌
v0
1.x2/

ˇ̌�˛
v0
1.x2/ D g.x2/ (1.138)

from which it follows that sgn v0
1.x2/ D sgng.x2/. Thus, (1.138) yields

2˛=2
ˇ̌
v0
1.x2/

ˇ̌1�˛ D sgng.x2/ � g.x2/ (1.139)

or

�p
2
�˛=.1�˛/

v0
1.x2/ D ˙ Œsgng.x2/ � g.x2/�1=.1�˛/ (1.140)
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where we choose the plus sign in (1.140) for v0
1.x2/ > 0 (equivalently, g.x2/ > 0)

and the minus sign for v0
1.x2/ < 0 (equivalently, g.x2/ < 0). In view of the viscous

behavior of the fluid we know that, besides v1.˙a/ D 0, we must have v0
1.�a/ > 0

and v0
1.a/ < 0. Although (1.140) may be integrated for arbitrary ˛, 0 < ˛ < 1, it

is instructive to proceed as follows: Consider the sequence f˛ng, 0 < ˛n < 1, for
each positive integer n, given by ˛n D .n � 1/=n; then ˛n ! 1� as n ! 1 while
˛1 D 0. Setting ˛ D ˛n in (1.140), and denoting the solution of the corresponding
equation by un.x2/, we have

2.n�1/=2u0
n.x2/ D ˙.sgn g.x2//ngn.x2/ (1.141)

so that
(
2.n�1/=2u0

n.x2/ D ˙gn.x2/; n even,

2.n�1/=2u0
n.x2/ D gn.x2/; n odd

(1.142)

where we employ the convention that the plus sign in (1.141) corresponds to
g.x2/ > 0 while the minus sign corresponds to g.x2/ < 0. We will consider two
special cases of (1.142):

(a) n D 2 (˛n D 1=2). In this case our differential equation reads

p
2u0

2.x2/ D ˙
"�

p1

�0

�2
x22 C 2�p1

�0
x2 C �2

#
(1.143)

so that for some constant Q�
p
2u2.x2/ D ˙

"�
p1

�0

�2
x32
3

C �p1

�0
x22 C �2x2

#
C Q�: (1.144)

We now apply the boundary conditions u2.˙a/ D 0, choosing the plus sign in
(1.144) at x2 D �a and the minus sign at x2 D Ca; this follows from the fact
that u0

2.�a/ > 0 while u0
2.a/ < 0. We obtain

8̂̂
ˆ̂<
ˆ̂̂̂:

�1
3

�
p1

�0

�2
a3 C �p1

�0
a2 � �2a C Q� D 0;

�
 
1

3

�
p1

�0

�2
a3 C �p1

�0
a2 C �2a

!
C Q� D 0

(1.145)

from which it follows that � D 0 while Q� D .p1=�0/a
3=3. As � D 0, for

p1 < 0,

g.x2/ D
�
p1

�0

�
x2

(
> 0; x2 < 0;

< 0; x2 > 0:
(1.146)
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−a

+a

x2

γ a3

u2 = γ (−x3
2 + a3)

u2 = γ (x3
2 + a3)

u2

Fig. 1.3 Velocity profile for steady plane Poiseuille flow

Thus

u2.x2/ D 2�1=2

3

�
p1

�0

�2 (
x32 C a3; x < 0;

�x32 C a3; x2 > 0:
(1.147)

A sketch of the velocity profile is depicted in Fig. 1.3, where we have set � 0 D
2�1=2

3
.p1=�0/

2.

For the velocity profile given by (1.147) we easily compute that

P D
Z a

�a
u2.x2/ dx2 D 3

4
a4� 0 	 a4

2
p
2

�
p1

�0

�2
: (1.148)

(b) n D 3 (˛n D 2=3). In this case, by virtue of (1.142), the differential equation is

2�0
3.x2/ D

�
p1

�0

�3
x32 C 3

�
p1

�0

�2
�x22 C 3

p1

�0
�2x2 C �3 (1.149)

so that

2u3.x2/ D
�
p1

�0

�3
x42
4

C
�
p1

�0

�2
�x32 C 3

2
� p1
�0
�2x22 C �3x2 C N�: (1.150)

Applying the boundary conditions at x2 D ˙a then yields, after some algebraic
manipulation, the relations

8̂
ˆ̂̂<
ˆ̂̂̂
:

1

2

�
p1

�0

�2
a4 C 3

2
p1

�
�

�0

�2
a2 C 2 N� D 0;

�

 
2

�
p1

�0

�2
C 2�2a

!
D 0

(1.151)
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x2

γ a4

u3 = γ̃(a4 − x4
2)

u3

Fig. 1.4 Velocity profile for n D 3, ˛n D 2=3

from which it is immediate that � D 0 and N� D �.1=4/.p1=�0/3a4.
Substituting these results into (1.150), we find as the explicit expression for
the velocity profile in this case (again, with the assumption that p1 < 0):

u3.x2/ D 1

8

� jp1j
�0

�3
.a4 � x42/ (1.152)

a sketch of which is depicted in Fig. 1.4, where we have set Q� D
.1=8/.jp1j=�00/3. In this case we compute that

P D
Z a

�a
u3.x2/ dx2 D 8

5
a5 Q� 	 a5

5

� jp1j
�0

�3
: (1.153)

1.5.3 Steady (Proper) Poiseuille Flow in a Circular Cylinder

The physical problem treated in this subsection is genuinely two-dimensional in
nature, although when formulated in terms of polar coordinates it appears to be
a one-dimensional problem. We begin by looking at steady flow in a cylinder of
arbitrary cross section and take the x1-axis parallel to the generators of the cylinder
(which we will, henceforth, call a pipe). This time we ask if there exists a steady
flow of the form

v1 D v1.x2; x3/; v2 D 0; v3 D 0: (1.154)

For the flow in (1.154) all components eij of the rate of deformation tensor vanish
except for

e12 D e21 D 1

2

@v1

@x2
; e13 D e31 D 1

2

@v1

@x3
: (1.155)



44 1 Incompressible Multipolar Fluid Dynamics

Then by virtue of (1.88a), (1.89)

t11 D t22 D t33 D �p; t23 D t32 D 0 (1.156)

while

t12 D �0

 
� C 1

2

"�
@v1

@x2

�2
C
�
@v1

@x3

�2#!�˛=2
@v1

@x2
� �1

�
@3v1

@x32
C @3v1

@x23@x2

�

(1.157)

and

t13 D �0

 
� C 1

2

"�
@v1

@x2

�2
C
�
@v1

@x3

�2#!�˛=2
@v1

@x3
� �1

�
@3v1

@x3@x
2
2

C @3v1

@x33

�
:

(1.158)

The equilibrium equations (1.1280), when coupled with (1.154)–(1.158), yield

@p

@x2
D @p

@x3
D 0 (1.159)

and

� @p

@x1
C �0

8<
:
@

@x2

2
4
 
� C 1

2

"�
@v1

@x2

�2
C
�
@v1

@x3

�2#!�˛=2
@v1

@x2

3
5

C @

@x3

2
4
 
� C 1

2

"�
@v1

@x2

�2
C
�
@v1

@x3

�2#!�˛=2
@v1

@x3

3
5
9=
;

� �1

�
@4v1

@x42
C 2

@4v1

@x22@x
2
3

C @4v1

@x43

�
D 0: (1.160)

From (1.159), (1.160) it follows that p D p.x1/ with p0.x1/ D p1 D const. If, in
(1.160), we set � D ˛ D �1 D 0, we recover the Poiseuille flow predicted by the
Navier–Stokes equations and governed by the Poisson equation

@4v1

@x22
C @2v1

@x23
D p1

�0
: (1.161)

With r D
q
x22 C x23 , and v1.x2; x3/ D u.r/, the case of (proper) Poiseuille flow in

a pipe of circular cross section, (1.161) becomes

u00.r/C 1

r
u0.r/ D p1

�0
(1.162)
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and, if the radius of a cross section is R > 0, then by virtue of the viscous nature of
the fluid u.R/ D 0; the well-known solution of this problem (e.g. Shinbrot [Sh]) for
which u.0/ < 1 is given by

u.r/ D �p1
4�0

.R2 � r2/ (1.163)

so that the speed varies parabolically across the pipe with a maximum at r D 0.
We now consider (1.160) within the context of (proper) Poiseuille flow in a

circular pipe whose cross section has radius R; i.e., we assume v1.x2; x3/ D u.r/
and introduce polar coordinates x2 D r cos � , x3 D r sin � so that

�
@v1

@x2

�2
C
�
@v1

@x3

�2
D u02.r/: (1.164)

A lengthy but straightforward calculation yields

@

@x2

2
4
 
2� C

�
@v1

@x2

�2
C
�
@v1

@x3

�2!�˛=2
@v1

@x2

3
5

D ��.r/
�˛=2

�
u00.r/

x22
r2

C u0.r/
r

�
1 � x22

r2

	

� ˛��.r/�.˛=2C1/u02.r/u00.r/
�
x22
r2

�
(1.165)

with ��.r/ D 2� C u02.r/; an entirely analogous expression is obtained for

@

@x3

2
4
 
2� C

�
@v1

@x2

�2
C
�
@v1

@x3

�2!�˛=2
@v1

@x3

3
5

and addition of these expressions readily yields

2�˛=2 @
@x2

2
4
 
� C 1

2

"�
@v1

@x2

�2
C
�
@v1

@x3

�2#!�˛=2
@v1

@x2

3
5

C 2�˛=2 @
@x3

2
4
 
� C 1

2

"�
@v1

@x2

�2
C
�
@v1

@x3

�2#!�˛=2
@v1

@x3

3
5

D ��.r/
�˛=2

�
u00 C 1

r
u0.r/


� ˛��.r/�.˛=2�1/u02.r/u00.r/ (1.166)
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so that for steady flow in a circular pipe (1.160) assumes, for 0 < r � R, the form

2˛=2�0

�
��.r/

�˛=2
�

u00.r/C 1

r
u0.r/


� ˛��.r/�.˛=2C1/u02.r/u00.r/

	

� �1
�

u0000.r/C 2

r
u000.r/ � 1

r2
u00.r/C 1

r3
u0.r/

	
D p1: (1.167)

By virtue of (1.1300), (1.167) is to be analyzed subject to the boundary conditions

lim
r!0

u.r/ < 1; u.R/ D 0; u00.R/ D 0: (1.168)

A careful study of the full nonlinear boundary-value problem (1.167), (1.168),
which includes proofs of existence, uniqueness, and continuous dependence of
u.r/ on both � and �1, as � ! 0C, �1 ! 0C, may be found in the Ph.D.
thesis of A. Montz [Mon]. For the purposes of the present exposition we will
content ourselves with an examination of the profiles predicted by (1.167), with
� D �1 D 0, and the boundary condition u.R/ D 0. If we set �1 D 0 in (1.167),
and also set

z.r/ D u0.r/; c˛1 D p1

�0
� 2˛=2 (1.169)

we easily find that

z0.r/
�
1 � ˛z2.r/

2� C z2.r/


D �1

r
z.r/C c˛1 .2� C z2.r//˛=2 (1.170)

which, for � D 0, reduces to the Bernoulli equation

.1 � ˛/z0.r/ D �1
r

z.r/C c˛1 .z
2.r//˛=2: (1.171)

The solutions of (1.171) are given, for arbitrary real c2, by

z.r/ 	 u0.r/ D ˙
�
c˛1 r

2
C c2

r

�1=.1�˛/
; 0 < r � R: (1.172)

For p1 > 0 we must have u0.R/ < 0, which dictates the choice of the minus sign in
(1.172) on .0;R�; also, if lim

r!0
u.r/ < 1 then, clearly, we must also set c2 D 0 in

(1.172) so that, for 0 < ˛ < 1,

u0.r/ D �k˛r1=.1�˛/; 0 < r � R (1.173)
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with

k˛ 	
�
c˛1
2

�1=.1�˛/
D
�

p1

�02
˛
2 C1

�1=.1�˛/
: (1.174)

For ˛ D 0, integration of (1.173), subject to u.R/ D 0, yields the familiar result
(1.163). For arbitrary ˛, 0 < ˛ < 1, integration of (1.173) yields, for some real c3,

u.r/ D �k˛
�
1 � ˛

2 � ˛

�
r.2�˛/=.1�˛/ C c3 (1.175)

and then imposition of the boundary condition at r D R yields the velocity profiles

u.r/ D k˛

�
1 � ˛
2 � ˛

� 

R.2�˛/=.1�˛/ � r.2�˛/=.1�˛/

�
; 0 � r � R: (1.176)

To obtain a clearer picture of the profiles (1.176), we again consider the sequence
f˛ng, 0 < ˛n < 1, ˛n ! 1� as n ! 1, given by ˛n D .n � 1/=n. Setting ˛ D ˛n
in (1.176), and denoting the resulting profile by un.r/, we easily compute that

un.r/ D Kn



RnC1 � rnC1� ; 0 � r � R (1.177)

with

Kn D �
p1=�02

.3n�1/=2n�n � 1

nC 1
: (1.178)

For n D 2 (˛ D 1=2) we obtain

u2.r/ D 1

3 � 25=2
�
p1

�0

�2 

R3 � r3

�
; 0 � r � R (1.179)

while for n D 3 (˛ D 2=3) we get

u3.r/ D 1

4 � 24
�
p2

�0

�3 

R4 � r4� ; 0 � r � R: (1.180)

It is clear that the profiles given explicitly by (1.177) exhibit the “flattening out” one
sees in Poiseuille flow, for small values of the standard kinematic viscosity, prior
to the breakdown of laminar flow and the onset of turbulence. The persistence of
the profiles (1.176) for � ¤ 0, �1 ¤ 0 (but small) can be demonstrated by means
of appropriate continuous dependence theorems for the behavior of the solutions
of (1.167), (1.168) as � and �1 ! 0C (e.g., [Mon]); an example of just such a
continuous dependence result, as has already been indicated, is proven in Chap. 2
for the problem of plane Poiseuille flow between parallel plates.
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1.5.4 Plane Couette Flow

For our last example we consider the problem of steady flow between parallel plates
at x2 D ˙a, but now assume that the bottom plate at x2 D a is moving with constant
velocity Nu. The flow still has the form (1.132) but the boundary conditions are now

v1.�a/ D 0; v1.a/ D Nu: (1.181)

The solution of this problem, within the framekwork of the steady Navier–Stokes
equations, is well known and is given by

v1.x2/ D p1

2�0
x22 C Nu

2a
x2 C 1

2

�
Nu � p1

�0
a2
�

(1.182)

which, for Nu D 0, reduces to the solution of the plane Poiseuille flow problem
between fixed parallel plates. In order to examine an example of this flow within the
framework of the nonlinear theory for a bipolar fluid with � D �1 D 0, we consider
the differential equation (1.142) for n D 2 (˛ D 1=2), i.e.,

p
2u0

2.x2/ D ˙
�
p1

�0
x2 C �

�2
(1.183)

subject to the boundary conditions u2.�a/ D 0, u2.a/ D Nu. Integration of (1.183)
again yields (1.144), and as we must still have u0

2.�a/ > 0, u0
2.a/ < 0, imposition

of the boundary conditions and some elementary algebraic manipulations yield

� D � �0 Nup
2p1a2

; Q� D 1

3

�
p1

�0

�2
a3 C Nup

2
C 1

2

�
�0

p1

�2 Nu2
a3
: (1.184)

Inserting the constants �; Q� into (1.144) and simplifying, we find for the profile
u2.x2/ the following explicit form:

u2.x2/ D 2�1=2
(
1

3

�
p1

�0

�2
.x32 C a3/C Nup

2

�
1 � x22

a2

�

C 1

2

�
�0

p1

�2 Nu2
a4
.x2 C a/

)
; for x2 � 1p

2

�
�0

p1

�2 Nu
a2
; (1.185a)

u2.x2/ D 2�1=2
(
1

3

�
p1

�0

�2
.x32 C a3/C Nup

2

�
1 � x22

a2

�

C 1

2

�
�0

p1

�2 Nu2
a4
.�x2 C a/

)
; for x2 � 1p

2

�
�0

p1

�2 Nu
a2
: (1.185b)

A simple comparison shows that (1.185a,b) reduce to (1.147) if Nu D 0.
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1.6 Other Extensions and Generalizations
of the Navier–Stokes Model

There is, by now, a very large literature on non-Newtonian fluid dynamics as
well as a bewildering array of different models that have been proposed to study
non-Newtonian fluid behavior. We have no intention in this section of attempting
anything approaching a comprehensive survey of non-Newtonian fluid phenomena
and, indeed, such an overview of the field is available in many other excellent
sources. We recommend, in particular, the following: (1) the encyclopedic volume
by Joseph [Jo2] on visoelastic fluid behavior, (2) Chap. III, Sect. 2 of [GRRT] by
Galdi which surveys problems in non-Newtonian fluid mechanics, (3) the article by
Malek and Rajagopal [MR], (4) Rajagopal’s article [Raj] on the mechanics of non-
Newtonian fluids, (5) the comprehensive survey of the area of polar fluid dynamics
by Cowin [Cow], and (6) the forthcoming monograph by Galdi and Robertson
[GRo]; this latter volume introduces some of the most important types of non-
Newtonian fluids, including Reiner-Rivlin fluids, power law models, simple fluids,
and Oldroyd-B models, and presents a rigorous mathematical analysis of some of
the corresponding boundary-value and initial-boundary value problems. Our limited
goal, in this section, is to describe the structure of several non-Newtonian fluid
models which exhibit one or more similarities to the constitutive model (1.88a,b)
for the bipolar, viscous fluid; the properties we have in mind include, in particular,
a (lower-order) nonlinear viscosity which resembles (1.90), or the presence of
higher-order spatial derivatives of the velocity components and an associated set
of higher-order boundary conditions. For each of the models considered in this
section, which exhibit a dependence on velocity gradients of order greater than
one, we also present a survey in Sect. 1.7 of some of the specific problems, such as
plane Poiseuille flow between parallel plates, or proper Poiseuille flow in a circular
pipe, which have been solved within the framework of these theories; the reader
should then be able to compare several of these results with the solutions obtained,
in Chaps. 2 and 3, for similar types of flows of a bipolar viscous fluid.

The paper of Friedlander and Pavlović [FPa] offers an excellent survey of the
particular class of non-Newtonian fluids with a shear dependent viscosity that was
studied, rigorously, for the first time by Ladyzhenskaya [La1, 2]; the authors indicate
that the basic model was essentially introduced by Smagorinsky in connection
with his studies of meteorlogical phenomena. Smagorinsky [Sma] has discussed
the utility of employing fluid mechanics models exhibiting a nonlinear viscosity
function in the context of the theory of rapidly rotating fluids and argues that the
chosen form of the nonlinearity may be justified on the basis of the Heisenberg-
Kolmogorov similarity theory for three-dimensional isotropic theory; the particular
form chosen for the nonlinear viscosity �.jej/ in his studies was

�.jej/ D ��jej; �� > 0 (1.186)
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so that the stress tensor assumes the form

tij D �pıij C ��jejeij: (1.187)

We note, in passing, the similarity of (1.187) to the hypothesis of Prandtl, which
is embodied in (1.79), for the problem of plane Poiseuille flow. The more general
constitutive theory that was introduced by Ladyzhenskaya, in [La1, 2], is of the form
t D �pI C �.e/, where it is assumed that for some positive constants c1, N
0, N
1, N
2
and q, �.e/ satisfies the following three conditions:

ˇ̌
�ij.e/

ˇ̌ � c1.1C jej2q/jej (1.188a)

�ij.e/
@vi

@xj
� N
0jej2 C N
1jej2.1Cq/ (1.188b)

and, for arbitrary smooth divergence free vectors v, v0 which are such that vj@� D
v0j@�, @� the (smooth) boundary of an open bounded domain � in Rn, n D 2; 3

Z
�

.�ij.e/� �ij.e
0//
�
@vi

@xj
� @v0

i

@xj

�
dx � N
2

Z
�

�
@vi

@xj
� @v0

i

@xj

��
@vi

@xj
� @v0

i

@xj

�
dx:

(1.188c)

The model defined by the viscosity function (1.186) conforms to (1.188a,b,c) if we
take q D 1. Other examples of constitutive hypotheses, relative to the reduced stress
tensor �ij, which satisfy (1.188a,b,c) are as follows:

�ij.e/ D N
jej2qeij; (1.189a)

�ij.e/ D N
.1C jej2/qeij; (1.189b)

�ij.e/ D N
.1C jej/2qeij; (1.189c)

and

�ij.e/ D N
.1C jej2q/eij: (1.189d)

The nonlinear viscosity �.jej/ D N
.1C jej2/q is, of course, in full agreement with
(1.90) if we make the identification N
 D �0 and q D .p � 2/=2. In Sect. 4.5 we
will recall some of Ladyzhenskaya’s results for those non-Newtonian fluid models
which conform to the behavior delineated in (1.188a,b,c). The Ladyzhenskaya
modification of the Navier–Stokes system has also been analyzed by other authors.
In [DuG] the authors study the initial-boundary value problem for an incompressible
(r � v D 0) viscous fluid satisfying the system of partial differential equations

@vi

@t
C vj

@vi

@xj
D � @p

@xi
C @

@xj

�
A.v/ @vi

@xj

�
C fi (1.190)
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in a bounded domain � � Rn, n D 2; 3, where we have set the density � 	 1 and
where

A.v/ 	 
0 C 
1jrvj Oq; Oq > 0: (1.191)

The non-Newtonian model defined by (1.190), (1.191) is essentially equivalent to
the one defined by the reduced stress tensor (1.189d). We will have more to say about
the results of [DuG] in Sect. 4.5. In [Lio1] Lions studies several problems which are
related to the ones analyzed by Ladyzhenskaya [La1, 2] and Du and Gunzburger
[DuG]; defining

ŒA.v/�ij D @

@xj

�
jrvjp�2 @v

@xj

�
(1.192)

and assuming that the velocity field is divergence free, the equations associated with
these problems assume the following (vector) forms for some positive N
, N
0, N
1:

@v

@t
C vj

@v

@xj
D �rp C N
A.v/C f (1.193a)

@v

@t
C vj

@v

@xj
D �rp C N
0�vC N
A.v/C f (1.193b)

and

@v

@t
C vj

@v

@xj
D �rp C

�
N
0 C N
1jjvjj2

�
�vC f : (1.193c)

Some of the results associated with (1.193a,b,c) will also be summarized in
Sect. 4.5. To the class of Ladyzhenskaya type non-Newtonian problems described,
above, we can also add the Carreau model [YKRA] for a shear-thinning fluid,
namely, for some �0 > 0, �1 > 0, � > 0, and q real,

�.e/ D �1 C .�0 � �1/.1C j�ej2/q: (1.194)

The non-Newtonian model defined by (1.194) has had some success in modeling
blood flow in arteries, i.e., [YKRA], where q is taken to be q D �0:322.

The second of the two key elements present in (1.88a,b), which distinguishes the
constitutive theory from the one associated with the Stokes Law (1.7) for the reduced
stress tensor, is the presence of the higher-order velocity gradients in (1.88a) and the
concurrent appearance of the first multipolar stress tensor in (1.88b). Other authors
have introduced, albeit in an ad hoc manner, higher-order spatial derivatives of the
velocity into the fluid dynamics equations in an attempt to regularize the Navier–
Stokes system. Often, the goal of such a regularization is to be able to go to the
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limit, as the parameter controlling the additional terms goes to zero, so as to deduce
the existence of a weak solution to the original Navier–Stokes system. J.-L. Lions
[Lio1, 2] perturbed the Navier–Stokes system for incompressible flow by adding to
the Navier–Stokes equations the artificial viscosity term ��.��/ˇv with � > 0; this
yields the following equation for v if we set � D 1:

@v

@t
C v � rv D �rp C 
�v � �.��/ˇvC f : (1.195)

Friedlander and Pavlović [FPa] point out that, although the modification of Navier–
Stokes reflected in (1.195) is not well-motivated, from a physical standpoint, the
artificial (higher-order) viscosity term in (1.195) has proven useful in obtaining
numerical approximations for incompressible viscous flow problems. Other studies
which treat regularizations of Navier–Stokes that are in the same spirit as (1.195)
include the papers of Beirăo da Veiga [BdV2, 3] and Ladyzhenskaya [La5]. The
special case of (1.195) for which ˇ D 2 has been treated, in considerable detail, by
Ou and Sritharan [OS1, 2]. In the two studies [Lio1, 2], besides the usual non-slip
boundary condition, which applies for flow in a bounded domain, or in the exterior
of such a domain, additional Neumann type boundary conditions are specified. With
ˇ D 2 in (1.195), this means that the full-initial boundary-value problem considered
in [OS1, 2] assumes the form

@v

@t
C v � rv D �rp C 
�v � ��2vC f ; in � 
 Œ0; T /; (1.196a)

r � v D 0; in � 
 Œ0; T /; (1.196b)

v D 0;
@v

@n
D 0; on @� 
 Œ0; T /; (1.196c)

v.x; 0/ D v0.x/; in �: (1.196d)

As we have seen in Sect. 1.4, specifying the vanishing of @v=@n on @� 
 Œ0; T / is
not in accord with the (natural) boundary conditions that are derivable from the
principle of virtual work when the reduced stress tensor depends on third-order
spatial gradients of the velocity field; furthermore, the enforcement of the second
boundary condition in (1.196c) can lead to serious inconsistencies, as has already
been pointed out in Sect. 1.4.4, and as will be pointed out again in 3.5. Some of
the existence and uniqueness results obtained in [Lio1, 2] and [OS1, 2] will be
elaborated in Sect. 4.5.

Several other authors have considered models for incompressible, viscous fluid
flow which involve spatial derivatives of the velocity of order two or higher. Because
of the proliferation of partial derivatives that appear in the work to be described,
we will, for the remainder of this subsection, denote such derivatives by using

the standard notation vi;j D @vi

@xj
, etc. In [BNR] Bellout, Nec̆as, and Rajagopal have

studied flows of multipolar fluids of grade 3; the model in question combines the
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theory of multipolar fluids with the theory of fluids of differential type, specifically
with the subclass of such fluids that can be characterized as fluids of grade n (see,
e.g., [TN]). Using a fluid flow model of differential type allows for taking into
account the history of velocity gradients while using elements of multipolar theory
enables one to blend non-locality into the model. The fluid of grade three conforms
to the specification of a Cauchy stress tensor t of the form

t D �pI C �0A1 C ˛1A2 C ˛2A
2
1 C ˇ1A3 C ˇ2ŒA1A2 CA2A1�C ˇ3.trA

2
1/A1

(1.197)

whereA1 and A2, the first and second Rivlin-Ericksen tensors [RE], are given by

8<
:
A1 D rvC .rv/t ;
A2 D d

dt
A1 CA1.rv/C .rv/tA1:

(1.198)

Restrictions must be placed on the constants appearing in (1.197) so that the
resulting model will be compatible with the Clausius-Duhem inequality; we will
not specify those restrictions here but, rather, refer the reader to [FR]. In [BNR] the
constitutive equation (1.197) is modified so as to obtain the following constitutive
relations for a tripolar fluid of grade three: Let �0 be the classical viscosity in
the Stokes law and ˛1, ˛2, ˇ3, � , �1, and �2 (constant) material moduli. Set

Bijkm D �2.A1/ij;km; (1.199a)

Sijk D �1.A1/ij;k C �Mijk � Bijkm;m; (1.199b)

with

Mijk D d

dt
eij;k CWmiemj;k CWmj eim;k CWmkeij;m (1.199c)

whereW D 1

2
.rv � .rv/t / is the spin tensor; then,

tij D �pıijC�0.A1/ijC˛1.A2/ijC˛2.A2
1/ijCˇ3.A2

1/mm.A1/ij�Sijk;k : (1.199d)

In (1.199a,b) the �1 and �2 are higher-order viscosity coefficients. The associated
free energy function  has the form

� D 1

4
˛1.A1/ij.A1/ij C 1

8
�.A1/ij;k.A1/ij;k : (1.200)

Some of the results on existence, uniqueness, and stability of solutions for the model
proposed in [BNR] will be reviewed in Sect. 4.5. We note that in order to have a
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well-posed initial-boundary value problem, for the constitutive theory delineated
in (1.199a–d), for the tripolar fluid of grade three, one needs to formulate a set
of higher-order boundary conditions to complement the usual non-slip condition
vi D 0 on @� 
 Œ0; T /, with � an open bounded domain R

n, n D 2; 3. It is shown
in [BNR] that such boundary conditions assume the following formal pointwise
form: Let � be the exterior normal to @� at x 2 @�. The mean curvature of @� is
then given by 2� D �
i Ii where for any function f defined on @�

fIj D Qf;j � 
j 
m Qf;m
with Qf any extension of f from @� into a neighborhood of @�. Let �1 and �2 be
linearly independent tangent vectors to @� at x 2 @�. Then,

Bijkm
j 
k
m�
l
i D 0; l D 1; 2; on @� 
 Œ0; T / (1.201a)

and

ŒSijk
j 
k C 4�Bijkm
j 
k
m � .Bijkm
m/Ik
j
� .Bijkm
m
k/Ij C .Bljkm
l
j 
m
k/Ii �� li D 0;

l D 1; 2; on @� 
 Œ0; T /: (1.201b)

The derivation of (1.201a,b) may be found in Sect. 4.5.4.
Three models of incompressible viscous fluid flow, which involve higher-order

spatial derivatives of the velocity field, as well as time derivatives of velocity
gradients, may be found in the work of Bleustein and Green [BG], Green and Nagdi
[GN1, 2], Chen, et. al. [CFH1, 2, 3], and Foias, et. al. [FHT1, 2]; these models
have certain aspects in common with one another as well as with the model for
a linear viscous, incompressible bipolar fluid constructed in Sect. 1.3. A concise
summary of the equations and associated boundary conditions for these three classes
of viscous flow models can be found in [QS]. Bleustein and Green [BG] were among
the first to argue that it is “consistent to include multipolar stresses when considering
fluids for which velocity gradients of various orders are present in the constitutive
equations” due to “the problem of the formulation of boundary conditions . . . in
theories of the multipolar type, boundary conditions follow in a natural way”; this
last point has been highlighted in Sects. 1.4.3 and 1.4.4 where it was demonstrated
that the appropriate form of the higher-order boundary conditions follows directly
from the principle of virtual work. In [BG] the type of multipolar fluid for which
the constitutive theory is formulated is termed a “dipolar” fluid; these constitutive
equations assume the form (see [BG], as well as Jordan and Puri [JP5] and Akyildiz
and Bellout [AB]).

��
ij Cˆıij D 2�eij; (1.202a)

�.ij/k C‰iıjk C‰j ıik D h1ıijAkmm C h2.Aijk C Ajik/C h3Akji (1.202b)
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where ��
ij is the (total) stress tensor, the �.ij/k denote the symmetrization with respect

to the indices i and j of the dipolar stress tensor �ijk, the arbitrary functionsˆ and‰i
govern the pressure (and appear as a consequence of the fact that the velocity field
v is divergence free), eij is the usual rate of deformation tensor, and Aijk D vi;jk D
Aikj . As a consequence of the Clausius-Duhem inequality, the shear viscosity � and
the material constants hi , i D 1; 2; 3, satisfy the restrictions � � 0 and

2h1 C h3 � 0; 2h2 C h3 � 0; h3 � h2 � 0; 5h1 � h2 C 2h3 � 0: (1.203)

In (1.202a) the (total) stress tensor ��
ij is related to the (nonsymmetric) monopolar

stress tensor tij by

��
ij D tij C �kij;k C �.Fij � �ij/ D ��

ji (1.204)

where � is the density, which we assume to be constant in the incompressible case,
Fij is the dipolar (microscopic) body force/mass, and �ij is the dipolar inertia. Two
forms for the dipolar inertia have appeared in the literature, namely, the original
form due to Bleustein and Green [BG]

�ij D d2
�
D

Dt

j;i � 
j;k
k;i

�
(1.205a)

and the alternative form, given by Green and Naghdi in [GN3], as

�ij D d2
�
D

Dt

j;i � 
j;k
k;i � 
j;k
i;k C 
k;i 
k;j

�
: (1.205b)

In both (1.205a) and (1.205b), d � 0 is a constant representing the micro-
inertia coefficient, which has units of length. By employing the constitutive theory
delineated, above, in conjunction with the usual balance of momentum equation,

�
Dvi

Dt
D tji;j C �fi ;

fi being the i th component of the body force/mass, we obtain the following form
of the dipolar fluid dynamics equations which incorporate the dipolar inertia tensor
of Green and Naghdi [GN3], and in which we have set Fij 	 0:

.1�d2�/Dvi
Dt

Cd2.vi;kvk;j Cvi;kvj;k � vk;j vk;i /;j � 1

�
p;i C 
.�� l2�2/vi Cfi :

(1.206)

In (1.206) the pressure p is given by

p 	 ˆ � 2‰i;i ; (1.207)
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also, l2 	 h1 C h3

�
� 0, with 
 D �=� the kinematic viscosity. The boundary

conditions specified in [BG], for an open bounded domain�, with smooth boundary
@�, and exterior unit normal � at x 2 @�, consist of prescribing the monopolar
traction components Ti D tki
k and the components Tij D �kij 
k of the dipolar
tractions; the latter condition is shown in [BG] to be equivalent to prescribing

�.ki/j 
k
i D Tij
i 	 Mi; on @� 
 Œ0; T /: (1.208)

The higher-order boundary conditions in (1.208) are what take the place of the anal-
ogous conditions in the bipolar model introduced in Sect. 1.4. The constitutive
theory formulated in [BG], while not involving a nonlinear viscosity, is more
complex than that put forth in Sect. 1.4 for the bipolar fluid. In this regard,
it is important to note that like the Camassa-Holm equations in [CFH1, 2, 3],
[FHT1, 2], and the isothermal viscous flow model formulated in [GN1, 2], the
model constructed in [BG], unlike the bipolar model of Sect. 1.4, was envisioned
as applying to more complex fluids than those which exhibit Newtonian behavior
in ordinary circumstances; as pointed out in [QS], the dipolar flow theory in [BG]
is believed to be capable of describing fluid motion when the fluid contains long
chain molecules. Indeed, in the dipolar theory, the parameters d and l are thought
of as representing the effects of fluid microstructure. To facilitate a comparison of
the dipolar model in [BG], and the resultant evolution equations (1.206) for the
components of the velocity field, with the analogous equations in [GN1, 2] and
[CFH1, 2,3], [FHT1, 2], we follow the analysis in [QS] and rewrite those terms in
(1.206) which are multiplied by d2, but which do not involve partial derivatives with
respect to time, such as

�vj�vi;j � vj;i�vj
in which case (1.206) assumes the form

Dvi

Dt
� d2.�vi;t C vj�vi;j C vj;i�vj / D �p;i C �.� � l2�2/vi : (1.209)

In (1.209) we have set � D 1, and fi D 0, so that 
 	 �.
The nonlinearly dispersive Navier–Stokes alpha (NS-˛) model of incompressible

fluid flow, also known as the viscous Camassa-Holm equations (VCHE), were pro-
posed as a closure approximation for the Reynolds averaged equations appearing in
Navier–Stokes modeling of turbulent flow; these equations, and their consequences
for particular types of turbulent flow, have been extensively explored in [CFH1, 2, 3]
and [FHT1, 2]. Indeed, steady solutions of VCHE have been identified with the
mean flow appearing in the Reynolds equations and the results which ensue have
been compared with empirical data for turbulent flows in channels and pipes; for an
overview of the statistical approach to turbulence modeling based on the Reynolds
(averaged) equations, the reader is referred to part IV of [ScG]. With v denoting the
usual velocity field in the fluid, and
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u D ŒI � .r � h� i�v � @

@xi

�˝
	i	j

˛ @v
@xj


(1.210)

where h i denotes the usual ensemble average, and � is the velocity fluctuation
with components 	i , the VCHE are, in the absence of an external bodyforce

du
dt

C ujrvj C r� D 
r2u; (1.211a)

r � v D 0 (1.211b)

where, in (1.211a),

d

dt
D @

@t
C v � r (1.212a)

and

� D p � 1

2
jjvjj2 � 1

2

˝
	i	j

˛ @v
@xi

� @v
@xj

(1.212b)

is the usual pressure with p the modified pressure. If one assumes isotropy and
homogeneity for the fluctuations � , then h� i D 0 and

˝
	i	j

˛ D ˛2ıij, with ˛ a local
length scale; by virtue of the assumption of homogeneity ˛ is a constant. Then,
under this dual assumption of homogeneity and isotropy for the 	i , (1.211a) can be
rewritten in the form

dv

dt
D div t (1.213)

with the stress tensor t expressed as

t D �pI C 2
.I � ˛2r2/e C 2˛2 Pe (1.214)

where e D 1

2
.rv C .rv/t / and the corotational (or Jaumann) derivative of e is

given by

Pe D de

dt
C eW �W e (1.215)

with W D 1

2
.rv � .rv/t / the spin tensor introduced, previously, in (1.199c). As

observed in [CFH1], in the form delineated in (1.214), (1.215), the constitutive
theory underlying VCHE represents that modification of the constitutive theory
defining a rate dependent incompressible homogeneous fluid of grade 2 which is
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obtained by modifying the viscous dissipation term through use of the Helmholtz
operator (I � ˛2r2). Therefore, the case where the fluctuation � satisfies both
isotropy and inhomogeneity yields a model consistent with the basic continuum
mechanics principle of material frame-indifference. In this case, where both h� i D
0, and

˝
	i	j

˛ D ˛2ıij, with ˛ constant, (1.211a), when coupled with (1.212a,b), and
the fact that (1.210) reduces to

u D ŒI � ˛2r2�v (1.216)

assumes the explicit form

vi;t Cvj vi;j �˛2.�vi;t Cvj�vi;j Cvj;i�vj /�p;i C
�vi �
˛2�2vi : (1.217)

As observed in [QS], the two sets of equations (1.209) and (1.216) are essentially
the same if we make the obvious identificationsd2 D l2 D ˛2. As the parameters d2

and l2 appearing in (1.209) are independent of one another, the argument could be
made that (1.209) is more general than (1.217); this would be misleading, of course,
as the various parameters have different interpretations and the models in question
were conceived to treat differental physical flow problems. With ˛ D 0 in (1.217)
one recovers the standard form of the incompressible Navier–Stokes equations with
� D 1 and fi D 0, the same being true for the dipolar equations (1.209) with
l D d D 0. Although the system of equations (1.217) is of fourth order, unlike
the case with the Bleustein-Green model for the dipolar viscous fluid, there does
not seem to be a well-motivated set of higher-order boundary conditions associated
with VCHE. Both [CFH1] and [CFH2] use VCHE to treat the problem of turbulent
channel flow in a parallel-walled channel whose half-width is a. The usual non-slip
boundary condition, as applied to a steady flow solution of (1.217) of the form

v 	 U D .U.y/; 0; 0/ (1.218)

yields U.˙a/ D 0 in [CFH1] and [CFH2]. However, in [CFH1] the additional
condition (symmetry) U.y/ D U.�y/, �a � y � a, is used while, in [CFH2], the
solution U is subject to the additional set of boundary conditions 
U 0.˙a/ D ��0,
with �0 the boundary shear stress, as well as to the assumption that U is symmetric
across the channel. The condition that 
U 0.˙a/ D ��0 also appears in [CFH3].
We have been unable to discern, in the papers [CFH1], [CFH2], [CFH3] or [FHT1,
2], a consistent set of higher-order boundary conditions that are associated with the
viscous Camassa-Holm model.

The last of the models, which incorporate higher-order spatial velocity deriva-
tives, that we consider in this section is due to Green and Naghdi [GN1]; it is
instructive to quote from their introduction:

It is clear from extensive available experimental results, and also to some extent from
existing numerical simulations, that not only the vorticity (or spin) but also the rate of
change of vorticity (or “spin of the spin”) affect the structure of turbulent flows. Given this
premise it is natural to see if a satisfactory theory can be constructed with a vorticity vector
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w and a spin of vorticity vector u explicitly displayed in the theory, instead of just being
evaluated at the end of the solution of problems from the velocity vector v. Moreover, such
a theory, if properly based on continuum thermodynamic equations, would have interest in
its own right, apart from its possible application to turbulent flow.

In the discussion which follows, we will summarize the basic elements of only the
restricted theory of incompressible viscous flow, with vorticity and spin of vorticity,
that is found in [GN1]; the constitutive relations for this model have the form

t D �pI C 2�0e C 2�1P; (1.219a)

M 1 D �p1I C �1N ; (1.219b)

M 2 D �p2I C 2�1N C 2

�
�21
�0

�
P; (1.219c)

where p; p1; p2 are arbitrary scalar functions of x, t; �0 is the classical viscosity
coefficient, and �1 is a second (higher-order) viscosity coefficient. In (1.219a,b,c),
the tensors P and N are defined as follows: We begin by defining a spin vector w

by w D r 
 v so that withW the spin (or vorticity tensor) we haveW Oa D 1

2
w 
 Oa

for every vector Oa. Next, we define the vorticity (or “spin of spin”) vector u to be
u D r 
 w D r 
 r 
 v D r.r � v/ � r2v so that, for incompressible flow,
u D �r2v. Finally, we set

N D rw and P D ru: (1.220)

It can be shown that for every vector Oa, .N � N t / Oa D u 
 Oa. There remains the
task of defining the tensors M 1 and M 2 in (1.219b) and (1.219c), respectively. If
�t � R

n, n D 2; 3 is a bounded open domain, at time t > 0, with smooth boundary
@�t , then the term representing the external rate of (the supply of) work R.�t/, to
�t , has the following form in [GN1]:

R.�t/ D
Z
�t

�.f �vCc1 �wCc2 �u/ dxC
I
@�t

.T �vCm1 �wCm2 �u/ dSx: (1.221)

In (1.221), f (the body force/mass), c1; c2;T (the traction/area), m1, and m2 are
all vector-valued functions of x, t , either in�t or on @�t . A standard “tetrahedron”
argument (due to Euler) shows that the traction T , at x 2 @�t is related to the stress
tensor t by the usual rule, i.e., T D t�, with � the exterior unit normal to @�t at x;
similar arguments establish the existence of second-order tensor functionsM 1,M 2

such that

m1 D M 1� andm2 D M 2�; at .x; t/ 2 @�t : (1.222)
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It is shown, (Sect. 4) in [GN1], that balance of mass, momentum, and energy,

together with the admissible simplifying assumptions c2 D
�
�1

�0

�
f , ˇ2 D�

�1

�0

�
P , c1 D 0, and p1 D constant, enable one to deduce from the constitutive

theory (1.219a,b,c) the equation of motion

�

�
Dv

Dt
C
�
�1

�0

�
Du
Dt

�
D �rp C �0r2v � 2�1r4vC �f : (1.223)

In component form the vector equation has the form (see [QS])

vi;t C vj vi;j � �1

��0
.�vi;t C vj�vi;j / D �p;i C 
�vi � 2�1

�
�2vi (1.224)

with 
 D �0

�
again the usual kinematic viscosity. If standard reference values l0,

v0, and �0 of length, velocity, and density are introduced, and we define Reynolds
numbers

Re D �0l0v0

�0
and Re� D �0l

3
0 v0

�1
(1.225)

as well as the non-dimensional variables

Ox D x=l0; Ov D v=v0; Ot D v0

l0
t

O� D �=�0; Ou D l20
v0

u

9>=
>; ;

then (1.223) can be put in the form

�Re

�
Dv

Dt
C 1

2ˇ2
Du
Dt

�
D �rp C r2v � 1

ˇ2
r4vC �f (1.226)

where the circumflexes have been dropped on all the non-dimensional quantities,
f is non-dimensional, and ˇ2 D Re� =2Re. The Green and Naghdi model for
incompressible viscous fluid flow, like the other models presented in this section, is
compatible with the basic principles of continuum mechanics and thermodynamics.
For a problem posed in a bounded domain �, with smooth boundary @�t , the
complete set of boundary conditions associated with the system (1.224) assumes
the form

vi D 0; .m1/i t
.˛/
i D 0; ˛ D 1; 2I on @� 
 Œ0; T / (1.227)
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where .m1/i D .M 1/ij
j , .M 1/ij D �p1ıij C �1wi;j (by (1.222) and (1.220)) and
the t.˛/ are linearly independent vectors spanning the tangent space at x 2 @�.

1.7 Some Examples of Viscous Incompressible Flow
Described by the Dipolar, Camassa-Holm, and Green
and Naghdi Models

1.7.1 Introduction

In this final section of Chap. 1 we will review some of the explicit results obtained,
within the context of the three models described in Sect. 1.6, which incorporate
higher order gradients of the velocity field; these models are the dipolar fluid of
Bleustein and Green [BG], the Camassa-Holm (VCHE) model elaborated in [CFH1,
2, 3] and [FHT1, 2], and the extended theory for incompressible viscous fluid flow
due to Green and Naghdi [GN1]. The problem of Poiseuille flow in a circular pipe
will be considered within the context of each of the sets of model equations in this
section; steady channel flow between parallel plates will be considered using the
framework of VCHE, while non-steady flow for the same geometry will be treated
using the Green and Naghdi model. For the dipolar model of Bleustein and Green we
will also review the results obtained for the unsteady plane Couette flow, generated
by fluid motion between parallel plates, which is initiated by the sudden acceleration
of the upper plate.

1.7.2 Examples of Viscous Incompressible Flow for Dipolar
Equations

Isothermal Steady Poiseuille Flow of a Homogeneous Isotropic Dipolar
Fluid in a Cylinder

For this case, assuming � D 1 and fi D 0, the dipolar system of equations (1.209)
reduces to

vj
@vi

@xj
� d2.vj�vi;j C vj;i�vj / D �p;i C �.� � l2�2/vi : (1.228)

We begin by assuming flow in a cylinder of arbitrary cross-section, with generators
parallel to the z-axis of a rectilinear Cartesian coordinate system, and look for
solutions of (1.228), subject to vi;i D 0, of the form

v D v.r/ez; p D p.r; z/I r D
p
x2 C y2: (1.229)
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Furthermore, it is assumed in [BG] that in (1.207)

ˆ D ˆ.r; z/; ‰ D ‰.r; z/ez (1.230)

so that

p.r; z/ D ˆ.r; z/ � 2@‰.r; z/
@z

: (1.231)

For the non-zero physical components of the dipolar stress tensor �ijk in cylindrical
coordinates we compute, by setting the indeterminate stresses �.ij/k D 0 (without
loss of generality)

8̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂:

�rrz D .h1 C h3/v
00 C h1r

�1v0;
���z D h1v

00 C .h1 C h3/r
�1v0;

�zzz D �2‰ C h1.v
00 C r�1v0/;

�zrr D �rzr D �‰ C h2v
00;

�z�� D ��z� D �‰ C h2r
�1v0

(1.232)

where 0 D d

dr
. From (1.202a), (1.204) with � D 1 and Fij D 0, (1.205b) with

vj;it D 0, and (1.232) we compute that, in cylindrical coordinates, the non-zero
components of the monopolar stress tensor tij are

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

trr D t�� D �ˆC @‰

@z
;

tzz D �p;
trz D �v0 � .h1 C h3/Œv

000 C r�1v00 C r�2v0�;
tzr D �v0 C‰0 � h2Œv

000 C r�1v00 � r�2v0�:

(1.233)

By virtue of the ansatz (1.229), the incompressibility constraint vi;i D 0 is satisfied
identically, while (1.228) reduces to the system

@p

@r
D 0

.1 � l2D2
r /D

2
r v D 1

�

@p

@z

(1.234)

withD2
r 	 d2

dr2
C 1

r

d

dr
. From the first equation in (1.234) it follows that p D p.z/,

while the second equation implies that
dp

d z
D const. 	 p1; thus, from (1.234) we

obtain
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.1 � l2D2
r /D

2
r v D 1

�
p1 (1.235)

whose general solution, as given in [BG], is

v D p1r
2

4�
C c1 ln r C c2 C c3I0

�r
l

�
C c4K0

�r
l

�
(1.236)

with I0 and K0 being the modified Bessel functions of the first and second kind,
respectively, and the ci , i D 1; : : : ; 4, being arbitrary constants.

Remarks. Equation (1.235) corresponds exactly to the bipolar equation (1.167) in
Sect. 1.5 if we set ˛ D 0, identify � in (1.235) with �0, and set l D

p
�1=�0. We

now specialize, as we did in 1.5, to Poiseuille flow in a circular cylinder of radius
R whose axis is coincident with the z-axis of the cylindrical coordinate system.
From the requirement that v.0/ < 1 we obtain, from (1.236), the conclusions
c1 D c4 D 0, so that (1.236) reduces to

v D p1r
2

4�
C c2 C c3I0

�r
l

�
: (1.237)

Along the wall of the circular tube, at r D R, the boundary conditions in the dipolar
theory require that v.R/ D 0 and (see (1.208))

8̂
<̂
ˆ̂:
�rrr.R/ D Mr;

�rr� .R/ D M�;

�rrz.R/ D Mz:

(1.238)

By comparing (1.238) with (1.232) one easily sees that the assumptions (1.229),
(1.230) are compatible with (1.238) if Mr D M� D 0. Although, as pointed out
in [BG], the value of Mz depends on the interaction of the fluid with the wall of
the circular cylinder, we only consider here the case where Mz D 0. From (1.237),
the boundary conditions v.R/ D 0 and �rrz.R/ D 0, and the expression for �rrz in
(1.232), it then follows that

v.r/ D �p1R2
4�

�
1 �

� r
R

�2

C p1R
2

2�

8<
:

�
l
R

� 

I0
�
R
l

�� I0
�
r
l

��
�
R
l

� �
h1Ch3
2h1Ch3

�
ˆ0
�
R
l

� �
�

h3
2h1Ch3

�
I0
�
R
l

�
9=
; : (1.239)
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R

l
= 1

R

l
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R

l
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z

Fig. 1.5 Parabolic velocity profiles for the dipolar fluid

It is clear, that for fixed
R

l
, the velocity profile specified by (1.239) depends on the

material parameters h1 and h3 only through the ratio h1=h3. In Fig. 1.5 the velocity

profiles corresponding to (1.239) are plotted for different values of the ratio
R

l
with

h1

h3
D 0:3.

As l ! 0C the system (1.234) formally converges to the one governed by the
Stokes Law for Poiseuille flow in a circular pipe and the profiles in Fig. 1.5 converge,
as well, to the parabolic profile predicted by the Stokes law. For small viscosity �,
the profiles predicted by (1.239) deviate more significantly than those observed
in practice, and computed through use of the Prandtl boundary-layer theory, than
that of the classical parabolic profile for small viscosity. The treatment we have
presented here follows the original solution as constructed in [BG].

Unsteady Plane Couette Flow of a Dipolar Fluid

Jordan and Puri, [JP1]–[JP5], have analyzed, in considerable detail, a number of
special types of flows of a viscous incompressible fluid within the framework of
the theory of dipolar fluids as presented in [BG]; we will content ourselves here
with a summary of their solution of the problem of unsteady plane Couette flow,
between parallel plates, which is set in motion by the sudden acceleration of the
top plate. Solutions of the aforementioned problem are found in [JP4] for arbitrary,
nonnegative values of the dipolar constants d and l in (1.206); for d D l ! 0C,
the known solution of this problem for the viscous Newtonian fluid (see [ScG]) is
recovered, as will be seen below.

In [JP4], the incompressible dipolar fluid occupies the domain 0 < y < h

between two infinite (�1 < x < 1, �1 < z < 1) parallel plates at y D 0

and y D h. The fluid and the plates are initially at rest but, at time t D 0C, the fluid
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is set in motion as a consequence of the sudden acceleration of the upper plate at
y D 0, along the x-axis, to a constant velocity V1. Thus the velocity of the upper
plate can be expressed in the form v.h; t/ D .V1H.t/; 0; 0/ whereH.t/ is the usual
Heaviside function. We seek a solution of (1.206) with fi D 0 (we have already
assumed that Fij 	 0) in the form

v.y; t/ D .u.y; t/; 0; 0/I 0 < y < h; t > 0 (1.240)

in which case r �v D 0 is satisfied identically, the only surviving equation in (1.206)
is the one with i D 1, and, in addition, all the nonlinear terms in that equation vanish
as well. Furthermore, it is easily shown that the pressure p must be of the form

p D �d2u2;y C �.t/ (1.241)

where � is an arbitrary function. For i D 1 in (1.206), with f1 D 0, the ansatz
(1.240) yields the equation of motion

u;t � 
u;yy � d2u;yyt C 
l2u;yyyy D 0; 0 < y < h; t > 0: (1.242)

Associated with (1.242) are the boundary conditions

u.0; t/ D 0; u.h; t/ D V1H.t/; t > 0; (1.243a)

�l2u;yy.0; t/ D M0; �l
2u;yy.h; t/ D M1; t > 0; (1.243b)

the latter set being the form assumed by (1.208) for the given geometry and the
ansatz (1.240). The constants M0 and M1 represent the prescribed values of �221 at
y D 0; h. Finally, we prescribe the initial condition

u.y; 0/ D 0; 0 < y < h (1.244)

The complete initial-boundary value problem now consists of (1.242), (1.243a,b),
and (1.244). If, as in [JP4], we employ the non-dimensional variables

y0 D y

h
; u0 D u

V1
; t 0 D 
t

h2
; l1 D d

h
; l2 D l

h
; (1.245)

then, with the primes in (1.245) dropped, the initial-boundary value problem
(1.242), (1.243a,b), (1.244), in terms of the new variables and parameters, becomes

ut � uyy � l21uyyt C l22uyyyy D 0; .y; t/ 2 .0; 1/ 
 .0;1/; (1.246a)

u.0; t/ D 0; u.1; t/ D H.t/; uyy.0; t/ D QM0; uyy.1; t/ D QM1; t > 0; (1.246b)

u.y; 0/ D 0; 0 < y < 1 (1.246c)
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with QM0 and QM1 the non-dimensional forms of M0 and M1, respectively. Now, let
Nu be the Laplace transform of u in the temporal variable, i.e., Nu.y; s/ D LŒu.y; t/�;
applying the Laplace transform to (1.246a,b,c) produces the following boundary-
value problem for Nu:

l22
d 4 Nu
dy4

� .sl21 C 1/
d2 Nu
dy2

C s Nu D 0

Nu.0; s/ D 0; Nu.1; s/ D 1

s
;

d 2 Nu
dy2

.0; s/ D
QM0

s
;

d2 Nu
dy2

.1; s/ D
QM1

s

9>>>=
>>>;
:

(1.247)

The solution of (1.247) may be obtained, by elementary techniques for linear,
constant coefficient, ordinary differential equations; for l2 > 0 it has the explicit
form

Nu.y; s/ D
QM0

s.r22 � r21 /
�

sinh.r2.1 � y//
sinh.r2/

� sinh.r1.1 � y//

sinh.r1/

	

C
QM1

s.r22 � r21 /

�
sinh.r2y/

sinh.r2/
� sinh.r1y/

sinh.r1/

	

C r22
s.r22 � r21 /

�
sinh.r1y/

sinh.r1/

	
� r21
s.r22 � r21 /

�
sinh.r2y/

sinh.r2/

	
(1.248)

where

r1;2 D 1

l2

vuutsl21 C 1�
q
.sl21 C 1/2 � 4sl22

2
: (1.249)

The singular points of Nu.y; s/ are simple poles at

s D 0 and sn D �n
2�2.1C n2�2l22 /

1C n2�2l21
; n D 1; 2; 3; : : : : (1.250)

The expression for Nu.y; s/ in (1.248) may, therefore, be inverted by adding up the
residues at the poles delineated in (1.250); this process yields the following solution
recorded in [JP4]:

u.y; t/ D H.t/

�
u1.y; l2/

� 2l22
�

1X
nD1

.�1/n expŒ�˛2n.l1; l2/t �
n.1C n2�2l22 /

Œ QM0 sinŒn�.1 � y/�C QM1 sinŒn�y��
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C 2

�

1X
nD1

.�1/n expŒ�˛2n.l1; l2/t � sinŒn�y�

n.1C n2�2l21 /

)
(1.251)

where ˛2n.l1; l2/ D jsnj and u1.y; l2/ is the steady-state part of u, which is given by

u1.y; l2/ D � QM0l
2
2 C yfl C l22 .

QM0 � QM1/g C l22 f QM1 sinhŒy=l2�C QM0 sinhŒ.1 � y/=l2�g
sinhŒ1=l2�

:

(1.252)

As pointed out by Jordan and Puri, if one sets l1 D l2 D L > 0 in (1.251), (1.252),
and then takes the limit as L ! 0C, the solution converges to the non-dimensional
form of the velocity field for unsteady Couette flow of a viscous, incompressible
Newtonian fluid; this velocity field, which corresponds to setting l1 D l2 D 0 in
(1.246a), and solving the resulting equation subject to

u.0; t/ D 0; u.1; t/ D H.t/; t > 0

u.y; 0/ D 0; 0 < y < h

)
(1.253)

is given by

u.y; t/ D H.t/

(
y C 2

�

1X
nD1

.�1/ne�n2�2t sin.n�y/

n

)
: (1.254)

The solution (1.254) for the Newtonian fluid may be expressed in the form (see
[ScG], Chap. 5)

u.y; t/ D H.t/

1X
nD0

�
erfc

�
2nC 1 � y

2
p
t

�
� erfc

�
2nC 1C y

2
p
t

�
: (1.255)

An extensive analysis of the solution (1.251), (1.252) for this dipolar flow problem
may be found in [JP4].

1.7.3 Some Applications of the Viscous Camassa-Holm
Equations

Steady Flow in a Channel

Following the analysis in [CFH1], we consider the application of the viscous
Camassa-Holm equations (VCHE) given by (1.210), (1.211a,b), and (1.212a,b) to
the problem of turbulent flow in a channel of width 2a with walls at y D ˙a. The
velocity field is assumed to be steady and of the form

v D .U.y/; 0; 0/ (1.256)
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and we look for a solution which satisfies the boundary conditions U.˙a/ D 0 as
well as the symmetry condition U.�y/ D U.y/, for �a < y < a. With the ansatz
(1.256), the system VCHE reduces to

�
Œ.1 � ˇ0/U �00 C 
.˛2U 0/000 D �@ Q�
@x
; (1.257a)

@ Q�
@y

D @ Q�
@z

D 0 (1.257b)

where 0 D d

dy
and, employing the same basic notation as in [CFH1],

˛2 D ˝
	22
˛
; ˇ D h	2i; (1.258a)

Q� D � C
Z
ŒU.y/ � ˇ0U.y/ � .˛2U 0.y//0�U 0.y/ dy: (1.258b)

Now, in a turbulent channel flow, the mean velocity appearing in the Reynolds
averaged Navier–Stokes equations has the form hvi D . NU .y/; 0; 0/ and the mean
pressure the form hpi D NP.x; y; z/. In this situation (see, [ScG]) the Reynolds
equations reduce to the system

�
 NU 00.y/C @

@y
hwui D � @

@x
NP ; (1.259a)

@

@y
hwvi D � @

@z
NP ; @

@y

˝
w2
˛ D � @

@y
NP (1.259b)

where .u; v;w/ is the fluctuation velocity in the infinite channel given by �a � y �
a, �1 < x; z < 1. By comparing (1.257a,b) and (1.259a,b) the authors [CFH1]
deduce that NU D U , �a � y � a, and


Œ.˛2U 0/000 � .ˇ0U /00�C p0 D @

@y
hwui (1.260a)

and

r. NP C ˝
w2
˛
/ D r. Q� � p0x/;

@

@y
hwvi D 0 (1.260b)

for some constant p0. From (1.260a,b) it follows that hwvi.y/ D 0 and

� p0y � 
Œ.˛2U 0/00.y/ � .ˇ0U /0.y/� D �hwui.y/: (1.261)
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If one assumes isotropy and homogeneity throughout the channel, then with ˛
constant, and ˇ D h	2i D 0, the general solution of (1.257a), subject to U.˙a/ D 0

and U.y/ D U.�y/, �a < y < a, is given by

U.y/ D 

�
1 � cosh.y=˛/

cosh.a=˛/


C �

�
1 � y2

a2


(1.262)

for some constants ; � . The analysis in [CFH1] continues by making the assump-
tion that isotropy and homogeneity hold away from the walls at y D ˙a so that
˛.y/ D ˛0 D const. and ˇ.y/ 	 0 for jyj � a0 (for some a0, 0 < a0 < a); we
refer the interested reader to the original paper [CFH1] for details of the analysis
that follows from this assumption, as well as for a comparison of the mean-velocity
profiles in the channel predicted by the constant-˛ VCHE with experimental data for
turbulent channel flow. It is important to emphasize that, unlike the bipolar model of
Sects. 1.3 and 1.4, the Bleustein and Green dipolar fluid model [BG], or the Green
and Naghdi model [GN1] for viscous flow, the Camassa-Holm model is thought of
as applying to turbulent flow; more specifically, the ansatz has been made, for the
channel flow problem, that U in the VCHE corresponds to the average velocity NU
in the Reynolds equations. The channel flow problem for the VCHE has also been
discussed in [CFH2].

The Camassa-Holm Equations and Turbulent Flow in a Circular Pipe

The problem of turbulent flow in a circular pipe of radius a, whose axis is coincident
with the x-axis, has been studied in [CFH2] using the machinery of the Camassa-
Holm theory. We assume a steady state situation with the fluid flowing, on average,
only in the x direction; as in [CFH2], we denote by U the mean velocity of the fluid
in that direction. Because of symmetry, U and the averages of the fluctuations h	ri
depend only on r , the radial distance from the x-axis. From the stated hypothesis,
we infer from (1.210), (1.211a,b), (1.212a,b) the system of equations

V
@U

@r
D �@�

@r
; 0 D �1

r

@�

@�
; and � 
 1

r

@

@r

�
r
@V

@r

�
D �@�

@x
(1.263)

where

V D U �
��

1

r
C @

@r

�
h	r i

	
U �

�
1

r
C @

@r

��˝
	2r
˛@U
@r

	
: (1.264)

From the second of the equations in (1.263) we infer that � is dependent on � .
Integration of the last of the equations in (1.263) with respect to x then yields

� x



r

@

@r

�
r
@V

@r

�
C c.r/ D �� (1.265)
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for some arbitrary function c.r/. We now differentiate (1.265) through with respect
to r and use the first equation in (1.263) so as to obtain

� x
@

@r

�



r

@

@r

�
r
@V

@r

�	
C c0.r/ D �@�

@r
D V

@U

@r
: (1.266)

As the right-hand side of (1.266) depends only on r , so must the left-hand side; this,
however, then implies that

@

@r

�
1

r

@

@r

�
r
@V

@r

��
D 0; 0 < r < a: (1.267)

If we solve (1.267) under the assumption that V.0/ < 1 we find that

V.r/ D k1

� r
a

�2 C k2; 0 < r < a (1.268)

for some real constants k1 and k2. If, in addition to our previous hypotheses, we
now assume that the velocity fluctuations are isotropic and homogeneous (away
from the wall of the pipe) then h	ri D 0, and ˛2 D ˝

	2r
˛
is independent of r ; in these

circumstances (1.264) reduces to

V.r/ D U.r/ � ˛2 1
r

@

@r

�
r
@U

@r

�
; 0 < r < a: (1.269)

Following the analysis in [CFH2] we now introduce the following non-dimensional
quantities: �0 is the boundary shear stress, i.e., the shear stress at r D a, u2� D �0,

�.�/ D U.r/=u�, and � D R0

� r
a

�
, where R0 D u�a



is the so-called skin friction

Reynolds number; in terms of these variables and parameters (1.269), with V given
by (1.268), becomes

R20
�2

�
1 � �

R0

��1
@

@�

��
1 � �

R0

�
@�

@�

	
� � D �f0 � 2f1

�
1 � �

R0

�2

where f0 D k2=u�, f1 D k1=.2u�/, and � D a=˛. Solving this equation yields

�.�/ D CI0

�
�

�
1 � �

R0

��
C 2f1

�
1 � �

R0

�2
C 8

f1

�2
C f0 (1.270)

where

I0.�/ D
1X
nD0

1

.nŠ/2

�
r2

4

�n
(1.271)
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is the modified Bessel function of the first kind. The second term in (1.270) is the
classical Hagen-Poiseuille solution for laminar flow in a pipe which is generated by
the Navier–Stokes system for this same problem. A detailed analysis of the solution
(1.270), (1.271) may be found in [CFH2].

1.7.4 Fluid Dynamics Problems for the Extended
Green-Naghdi Viscous Flow Model

Unsteady Plane Poiseuille Flow in a Parallel-Wall Channel

We consider, within the context of the non-dimensional form (1.226) of the Green-
Naghdi theory [GN1], the problem of a time-dependent plane Poiseuille flow in
the channel �1 � y � 1, �1 < x; z < 1. In (1.226) we recall that v;u are
non-dimensional versions, respectively, of the fluid velocity and the curl of the spin
vector w D r 
 v, i.e., in the incompressible situation u D �r2v 	 r 
 r 
 v. If
we denote by ei the (orthonormal) basis vectors along the x, y, and z axes, then the
flow we are interested in has a velocity field of the form

v D v.y; t/e1 (1.272)

in which case

w D �@v
@y
e3; u D �@

2v

@y2
e1: (1.273)

If f D 0 in (1.226) and we use (1.272), (1.273) then
8̂
ˆ̂<
ˆ̂̂:

Re

�
@v

@t
� 1

2ˇ2
@3v

@t@y2

�
D �@p

@x
C @2v

@y2
� 1

ˇ4
@4v

@y4

@p

@y
D @p

@t
D 0:

(1.274)

In [GN1], solutions of (1.274) are sought which are even in y and which include the
classical steady-state Poiseuille flow at t D 0 when ˇ is large; this leads to

v.y; t/ D LC 1

2
A.1 � y2/CBet cosh.˛ˇy/

p D �Ax
(1.275)

with ˛;L;A;B constants and

Re

�
1 � 1

2
˛2
�

D ˛2ˇ2.1 � ˛2/: (1.276)
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If it is assumed that the walls at y D ˙1 are both moving with velocity V , then we
obtain from (1.275)

V D LC B cosh.˛ˇ/ (1.277)

Additionally, it is assumed in [GN1] that the component of the couple m1 at the
walls at y D ˙1, in the direction e3 normal to the channel, is zero when t D 0. As
m1 D M 1� andM 1 D �p1I C �1N , i.e., (1.219b), (1.222), it follows that

m1 � e3 D .M 1e2/ � e3 D �N32 D �
@w

@y
D 0 (1.278)

so that
@2V

@y2

ˇ̌
ˇ̌
yD˙1

D 0, in which case, by (1.275)

� AC ˛2ˇ2B cosh.˛ˇ/ D 0: (1.279)

Then

v D V C A

�
1

2
.1 � y2/C et

cosh.˛ˇy/ � cosh.˛ˇ/

˛2ˇ2 cosh.˛ˇ/

	
: (1.280)

When ˇ is large, this solution reduces to the classical Poiseuille flow

v D V C 1

2
A.1 � y2/: (1.281)

If either ˛2 > 2, or ˛2 < 1, then by (1.276)  > 0 and the solution (1.280) increases
with increasing t . However, if 1 < ˛2 < 2, then  < 0 and the solution in (1.280)
are asymptotic to that in (1.281) as t ! 1. For ˛ D 1,  D 0, and (1.280) becomes
the steady-state solution

v D V C A

�
1

2
.1 � y2/C cosh.ˇy/ � coshˇ

ˇ2 coshˇ

	
: (1.282)

From (1.282) we infer that the maximum value vmax of v occurs at the center of the
channel, i.e., at y D 0, so that

vmax D V C A

�
1

2
C 1 � coshˇ

ˇ2 coshˇ

	
: (1.283)

If we set .V=vmax/ D k then from (1.283) we deduce that

A

V

�
1

2
C 1 � coshˇ

ˇ2 coshˇ

	
D 1� k

k
(1.284)
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and

v

vmax
D k C

.1 � k/
�
1
2
.1 � y2/C cosh.ˇy/ � coshˇ

ˇ2 coshˇ

	

1

2
C 1 � coshˇ

ˇ2 coshˇ

: (1.285)

As ˇ ! 1 in (1.285),

v

vmax
! 1 � .1 � k/y2 (1.286)

which is the classical result obtainable from the Navier–Stokes equations, while for
ˇ ! 0C,

v

vmax
! k C 1 � k

5
.1 � y2/.5 � y2/: (1.287)

It is observed in [GN1] that neither of the results in (1.286) or (1.287) depend on
the Reynolds numbers Re, Re� defined in (1.225).

Poiseuille Flow of a Green-Naghdi Fluid in a Circular Pipe

For this example we take the z-axis to be the axis of a circular cylinder of radius
one and consider a steady flow solution of (1.226), in cylindrical coordinates, of the
form (r D

p
x2 C y2),

v D v.r/e3; (r D
p
x2 C y2) (1.288)

in which case it is easily computed that

w D yv0.r/
r

e1 � xv0.r/
r

e2; (1.289a)

u D �
�
v00.r/C v0.r/

r

�
e3 (1.289b)

with 0 D d

dr
. Taking f D 0 again in (1.226) we obtain the system

8̂̂
<̂
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C v00 C v0
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� 1
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�
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dr2
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r

d
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��
v00 C v0

r

�
D 0

@p

@x
D 0;

@p

@y
D 0

(1.290)
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for which a solution of the form

v D L � Ar2

4
C BI0.ˇr/ (1.291)

is easily obtained, where A;B;L are constants and I0 is, once again, the modified
Bessel function of the first kind. With v.1/ D V we obtain from (1.291)

V D L � 1

4
AC BI0.ˇ/

and (1.291) becomes

v D V C 1

4
A.1 � r2/CB.I0.ˇr//: (1.292)

It is assumed in [GN1] that the e� component of the couple m acting across
the surface r D 1 is zero; this condition is equivalent to v00.1/ D 0 which
is, of course, the constraint that follows from the higher-order boundary conditions,
for this same problem, for the bipolar fluid in Sect. 1.5.3. Applying the condition
v00.1/ D 0 to (1.292) yields

�1
2
AC ˇ2BI 00

0 .ˇ/ D 0

in which case (1.292) becomes

v D V C 1

2
A.1 � r2/C A.I0.ˇr/ � I0.ˇ//

2ˇ2I 00
0 .ˇ/

: (1.293)

From (1.293) we now obtain

lim
ˇ!1 v.r/ D V C 1

4
A.1 � r2/ (1.294)

which is the classical solution. Also

lim
ˇ!0C

v.r/ D V C Aˇ2

64
.1 � r2/.5 � r2/: (1.295)

Finally vmax occurs along the axis of the cylinder at r D 0 in which case (1.293)
yields the result

vmax D V C 1

4
AC A.1 � I0.ˇ//

2ˇ2I 00
0 .ˇ/

: (1.296)
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As in the previous example we set
V

vmax
D k so that, by virtue of (1.296),

1

k
D 1C A

V

�
1

4
C 1 � I0.ˇ/

2ˇ2I 00
0 .ˇ/

	
: (1.297)

Employing (1.296) and (1.297) in (1.293), we compute that

v

vmax
D k C

.1 � k/
�
1

4
.1 � r2/C I0.ˇr/� I0.ˇ/

2ˇ2I 00
0 .ˇ/

	

1

4
C 1 � I0.ˇ/

2ˇ2I 00
0 .ˇ/

: (1.298)

From (1.298), we obtain the classical result associated with the Navier–Stokes
model if we extract the limit as ˇ ! 1, i.e.,

lim
ˇ!1

v.r/

vmax
D 1 � .1 � k/r2: (1.299)

On the other hand, (1.298) also yields

lim
ˇ!0

v.r/

vmax
D k C .1 � k/

5
.1 � r2/.5 � r2/: (1.300)

Remarks. The three models of viscous fluid flow considered in this section, and
Sect. 1.6, involve higher-order spatial velocity gradients as well as nonlinearity;
the nonlinear aspects of these models do not come into play in any of the specific
examples looked at in this section, because of the specific types of solution sought
and the geometry of the domain; this is why explicit solutions were obtained for
these problems. The most feasible way in which to compare the predictions of the
models, involving higher order spatial velocity gradients that were introduced in
Sect. 1.6, with the bipolar model of Sect. 1.4, would be to look at a specific type
of flow for the linear bipolar fluid; this is, of course, because the presence of the
nonlinear viscosity in the general bipolar model means that the governing equations
of motion remain nonlinear even in the context of the elementary flows discussed in
this section. Thus, even though the genesis and interpretation of the various models
are different, one could, in principle, point to the similarities between the result in
(1.77) for plane Poiseuille flow, in the context of the linear bipolar theory, and the
analogous result (1.262) for the same kind of flow when treated using the viscous
Camassa-Holm equations.

We conclude this chapter by presenting, below, a brief review of some of the
better known experimental results which are at variance with predictions based on
the standard model of incompressible viscous fluid flow generated by the Stokes’
hypothesis.
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1.8 A Catalog of Experimental Results Which
Are Inconsistent with the Stokes’ Hypothesis

1.8.1 Couette Flow

Consider two long coaxial vertical cylinders. The inner cylinder, with radius r D
R1, and the external cylinder having radius r D R2. Naturally R1 < R2 and the
fluid occupies the toroidal region .r; z/I r 2 .R1;R2/; z 2 .0; L/. There is no
vertical motion of the cylinders but the cylinders are rotating around their common
axis (r D 0) with respective angular velocities !1, and !2. For the incompressible
bipolar fluid this problem is treated in Sect. 3.2.

Wall Pressure

The Navier–Stokes equations predict, in this situation, that the pressure on the
inner cylindrical wall will be lower than the pressure exerted by the fluid on the
outer cylindrical wall. This is indeed the case for many fluids. But there are well
documented experiments of fluids behaving in exactly the opposite way. Figure 1.3
on page 4 of [CMN] displays a striking example of a fluid4 which produces exactly
the opposite of the Navier–Stokes prediction, i.e., the pressure of the fluid on the
wall of the inner cylinder is higher than the pressure on the outer cylinder wall. In
this regard, see also the movie [Mar1] and the web site [Mar2].

Rod Climbing

When the two cylinders described above are at rest, the fluid occupies the region
.r; z/; R1 � r � R2; 0 � z � L. The horizontal surface z D L separates the liquid
from the ambient atmosphere. As the cylinders rotate, the surface separating the
liquid from the ambient air deforms from this planar region and is now described
by a function Z.r/I r 2 .R1;R2/. The Navier–Stokes equations predict that the
function Z.r/ will be an increasing function of r . However this is not always true
for all fluids. There are known examples (see again Fig. 1.3 on page 4 of [CMN])
where it can be clearly seen that the fluid has climbed along the inner rod; this
is commonly referred to in the literature as the Weissenberg effect. In the example
referred to here it can be easily seen that the functionZ.r/ is a monotone decreasing
function of r .

4An 8.5 % solution of polyisobutylene in decalin.
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Angular Velocity as a Function of Torque

Once again, within the context of Couette flow, suppose we now assume that the
outer cylinder is not rotating while the inner cylinder is rotating with constant
angular velocity !. Navier–Stokes predicts that the torque T per unit of height
which must be applied to the inner cylinder to maintain the constant angular velocity
is given by

T D c
R21R

2
2

R22 � R21
!

where c is a constant. The formula above states that T depends linearly on !.
Experiments going as far back as 1954 clearly show this is not always the case. The
experiment reported in [KM] shows that a fluid consisting of rubber latex containing
62.2 % of solids, with R1 D 2:357 cm and R2 D 2:508 cm, exhibits a torque T
which depends on ! in a superlinear way. In this regard see also [CMN], Fig. 1.2,
page 3.

1.8.2 Poiseuille Flow

Consider a vertical pipe with a circular cross section of constant radius Rp . The
pipe is long enough for one to assume it occupies the region 0 � r � Rp; z � 0.
At the bottom end, i.e., at z D 0, the pipe is open and fluid is coming out of the
pipe at a constant steady rate into the surrounding ambient atmosphere which is at
constant pressure A. As the fluid exits the cylinder it will now occupy the region
r 2 .0;R.z//; z � 0. The Navier–Stokes equations predict that R.z/ � Rp for
all z � 0. But this is not always so. There are fluids which exhibit swelling upon
leaving the pipe, i.e., there are fluids for which R.z/ > Rp for z � 0. In [Mar2]
it may be clearly seen that a solution of glycerine behaves as predicted by Navier–
Stokes while a 2 % solution of poly-ethylene oxide in water swells as it leaves the
orifice of the pipe. See also [CMN], Fig. .27:4/, page 72.



Chapter 2
Plane Poiseuille Flow of Incompressible Bipolar
Viscous Fluids

2.1 Introduction

In Sect. 1.4 we introduced the model of an incompressible, nonlinear, bipolar
viscous fluid; this model, which is consistent with the basic principles of continuum
mechanics and thermodynamics, as delineated in Sect. 1.4, is based on the following
constitutive hypotheses for the Cauchy stress tensor �ij and the first multipolar stress
tensor �ijk :

�ij D �pıij C 2�0.� C eij eij /
�˛=2 � 2�1�eij (2.1a)

and

�ijk D 2�1
@eij

@xk
(2.1b)

where p is the pressure, eij D 1

2

�
@vi

@xj
C @vj

@xi

�
is the rate of deformation tensor,

v is the fluid velocity field, and �0, �1, �, and ˛ are the constitutive constants, the
first three of which are positive while ˛, in this chapter, will be assumed to satisfy
0 < ˛ < 1. In a bounded domain� � R

n, n D 2; 3, with smooth boundary @�, the
constitutive hypotheses (2.1a,b) yield (see Sect. 1.4) the following initial-boundary
value problem (take the density � 	 1):

@v

@t
C v � rv D �rp C 2r � .�.jej/e/

� 2�1r � .�e/C f ;

(2.2a)

H. Bellout and F. Bloom, Incompressible Bipolar and Non-Newtonian Viscous Fluid
Flow, Advances in Mathematical Fluid Mechanics, DOI 10.1007/978-3-319-00891-2__2,
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r � v D 0; (2.2b)

v D 0; �ijk
j 
k � �jkl
j 
k
l
i D 0; (2.2c)

v.x; 0/ D v0.x/: (2.2d)

The system of partial differential equations (2.2a), (2.2b) holds in�
Œ0; T /, T > 0,
while the initial condition (2.2d) is assumed to hold in�, at t D 0, and the boundary
data (2.2c) is specified for .x; t/ 2 @� 
 Œ0; T /, with � the exterior unit normal to
@� at time t . In (2.2a), f specifies the external body force/volume in � while

�.jej/ D 2�0.� C jej2/�˛=2 (2.3)

is the nonlinear viscosity function. For ˛ D 0, �1 D 0, and in the absence of the
second set of boundary conditions in (2.2c), the system (2.2a)–(2.2d) reduces to the
specification of the standard initial-boundary value problem for the (incompressible)
Navier–Stokes equations.

In Sect. 1.5.2 we considered, for the bipolar model (2.2a)–(2.2d), the most
standard of all classical problems in fluid dynamics, namely, the problem of
Poiseuille flow between parallel plates whose location, in the Cartesian coordinate
system .x1; x2; x3/, is at x2 D ˙a, with a > 0. As is customary in considering plane
Poiseuille flow between parallel plates we assumed, in Sect. 1.6, a velocity field (for
steady flow) of the form

v1 D v1.x2/; v2 D 0; v3 D 0; (2.4)

In this case, with f D 0, the steady plane Poiseuille flow of an incompressible,
bipolar, viscous fluid satisfies (see Sect. 1.5.2) the following boundary-value prob-

lem, where p1 D @p

@x1
is a constant:

�0

"�
� C 1

2
v02
1 .x2/

��˛=2
v0
1.x2/

#0
� �1v0000

1 .x2/ D p1 (2.5a)

v1.˙a/ D 0; v00
1 .˙a/ D 0: (2.5b)

Explicit solutions for the non-Newtonian problem derived from (2.5a,b) by setting
� D 0, �1 D 0, and deleting the second set of boundary conditions in (2.5b),
were obtained in (1.5.2) and compared with the standard solution obtained for the
Navier–Stokes model (i.e., with the case ˛ D 0).

In this chapter we will treat, in depth, the behavior of both steady and time-
dependent plane Poiseuille flow solutions for the incompressible, bipolar, fluid flow
model. We begin in Sect. 2.2 by considering the problems of existence, uniqueness,
and continuous dependence for the generalization of the nonlinear boundary-value
problem (2.5a,b) in which the constant p1 is replaced by a function f 2 L2.�a; a/.
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In (2.5a), �1 > 0 and we are interested in the behavior of solutions of (2.5a,b),
not only as � ! 0C, but also as �1 ! 0C; any continuous dependence result, in
this case, can not hold in the C2 sense (as boundary-layer theory comes into effect
at that level of smoothness) but will be shown to hold in the norm of C1Cı for

0 < ı <
1

2
. More explicit results for the boundary-value problem are delineated in

Sect. 2.3. Suppose we display the dependence of the solution of (2.5a,b) on � and
�1, for a fixed ˛ 2 .0; 1/, by writing v1 D u.x2I �; �1/ and, for the same fixed ˛,
write u.x2I 0; 0/ D u0.x2/; then, it will be shown in Sect. 2.3 that with y D x2,

u.yI �; �1/ > 0; �a � y < 0I u0.yI �; �1/ < 0; 0 < y � a (2.6a)

with u00.yI �; �1/ � 0, �a < y < a, for all �; �1 � 0, Also

u000.�aI �; �1/ < 0; (2.6b)

u0.�aI �; �1/ D �u0.aI �; �1/ (2.6c)

for all �; �1 � 0 and

ˇ̌
u0.yI �; 0/ � u0

0.y/
ˇ̌
<

�
1C 1p

1 � ˛
�p

� (2.6d)

for y 2 Œ�a; a�, � > 0. It is also proven in 2.3 that 9CC, C1, C2, positive and
independent of both � and �1, such that

�
�
1C 1p

1 � ˛
�
a
p
� �

p
aC2

1 � ˛
�p
� C C1

�˛
�

�1=2
1 � u.yI �; �1/� u0.y/

�
�
1C 1p

1 � ˛

�
a
p
� C aCC

1 � ˛
�p
� C C1

�˛
��
1 (2.7)

with ��
1 D �1=�0. In Sect. 2.4 we reconsider the problem of uniqueness in relation

to the nonlinear boundary-value problem (2.5a,b). If we denote the region between
the parallel plates at y D ˙a by

�a D f.x; y; z/ j y 2 Œ�a; a�; a > 0; �1 < x; z < 1g (2.8)

and the uniquely determined vector field corresponding to the solution of (2.5a,b)
by

vP D .u.yI �; �1/; 0; 0/ (2.9)

where we again set v1 D u, x2 D y, then it will be proven in Sect. 2.4 that for
�1 sufficiently large vP is, in fact, the unique equilibrium solution v of (2.2a)–
(2.2d) in �a which satisfies v � vP 2 H 4.�a/. The existence of other equilibrium
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solutions of (2.2a)–(2.2d) in �a, beyond the Poiseuille vector field (2.9), when �1
is not sufficiently large, is an open problem. In Sect. 2.5 we take up the problem of
existence and asymptotic stability of time-dependent Poiseuille flow in the domain
�a; specifically we ask whether or not there exists, globally in time, smooth
Poiseuille solutions of (2.2a)–(2.2d) in �a 
 Œ0; T /, T > 0, of the form

vP .x; t/ D .v.y; t I �; �1/; 0; 0/: (2.10)

We show, in Sect. 2.5 that there exists a unique weak solution to the corresponding
initial-boundary value problem which is of class C4;1.y; t/ on .�a; a/ 
 Œ0; T /, for
any T > 0, in which case the weak solution is actually a classical solution of the
problem. Finally, it is also demonstrated in Sect. 2.5 that the unique steady Poiseuille
flow solution (2.9) is linearly asymptotically stable, as well as asymptotically stable,
within the class of all flows in �a 
 Œ0; T /, T > 0, of the Poiseuille type (2.10).

2.2 Existence, Uniqueness, and Continuous Dependence
for Steady Poiseuille Flow

We consider, in this section, a slight generalization of the boundary-value problem
(2.5a,b) associated with the steady flow of an incompressible, bipolar, viscous fluid
in a parallel-wall channel, namely,

�
�

u0.y/
.� C u02.y//˛=2

0
C �1u

0000.y/ D f .y/; �a < y < a; (2.11a)

u.˙a/ D u00.˙a/ D 0 (2.11b)

where we have written y D x2, u D v1, and where f 2 L2.�a; a/. Our first basic
result is the following existence and uniqueness theorem:

Theorem 2.1. Let V D H
3
2Cı
0 .�a; a/, with 0 < ı <

1

2
, let BM.0/ be the ball of

radiusM > 0 in V , and set

WM D BM.0/\H2.�a; a/: (2.12)

Then, for M sufficiently large, there exists a unique solution u 2 WM of the
boundary-value problem (2.11a,b).

Proof. By virtue of standard embedding results (Appendix A) WM is compact in V
for any ı < 1=2. For v 2 V we define

Lvu D �
�

u0

.� C v02/˛=2

0
C �1u

0000: (2.13)
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Then, for fixed v 2 V , the linear boundary-value problem

(
Lvu D f; �a < y < a; (2.14a)

u.˙a/ D u00.˙a/ D 0 (2.14b)

has, as a consequence of the Lax-Milgram Lemma (see Appendix A), a unique
solution u 2 H2.�a; a/ for which

jjujjH2.�a;a/ � cjjf jjL2.�a;a/ (2.15)

with c > 0 independent of u. Let T W v ! u where u is the unique solution of
(2.14a,b). For any given f 2 L2.�a; a/ it is a direct consequence of (2.15) that
9M > 0 sufficiently large such that T W WM ! WM . We want to show that T is a
continuous map. For v;w 2 WM , let u1 D T v, u2 D Tw; then

�
�

u0
1

.� C v02/˛=2

0
C
�

u0
2

.� C w02/˛=2

0
C �1Œu1 � u2�

0000 D 0: (2.16)

Multiplying (2.16) by u1�u2, integrating over .�a; a/, and then integrating by parts
we obtain, in view of (2.14b),

�1

Z a

�a
Œ.u1 � u2/

00.y/�2 dy C
Z a

�a
u0
1.y/.u1 � u2/0.y/
.� C v02.y//˛=2

dy

�
Z a

�a
u0
2.y/.u1 � u2/0.y/
.� C w02.y//˛=2

dy D 0 (2.17)

or

�1jju1 � u2jj2H2.�a;a/ C
Z a

�a
.u1 � u2/0.y/u0

1.y/Œ.� C w02.y//˛=2 � .� C v02.y//˛=2�
.� C v02.y//˛=2.� C w02.y//˛=2 dy

C
Z a

�a
Œ.u1 � u2/0.y/�2
.� C w02.y//˛=2 dy D 0:

(2.18)

As u1; u2 2 H2.�a; a/, and u0
1; u

0
2 2 L1.�a; a/, we may estimate the first integral

in (2.18) from above, and drop the (nonnegative) second integral, so as to obtain an
estimate of the form

jju1 � u2jjH2.�a;a/ � c1

�Z a

�a
�ˇ̌

w0.y/
ˇ̌˛ � ˇ̌

v0.y/
ˇ̌˛�2

dy

1=2
(2.19)

for some c1 > 0; in obtaining (2.19) we have also employed the mean value theorem
in the integrand of the first integral in (2.18). The continuity of T follows directly
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from the estimate (2.19). By the Schauder fixed-point theorem it now follows that
there exists, for M > 0 sufficiently large, a unique u 2 WM such that u D T u and,
thus, we have established the existence of a unique solution of (2.11a,b) for arbitrary
�1 > 0. ut

For the second of the fundamental results relative to the boundary-value problem
(2.11a,b) we assume that f .y/ is a constant, say, f .y/ D K , �a � y � a; this
clearly covers the case of the constant pressure gradientp1 in (2.5a). Also, we define
Nu D Nu.y/ to be the unique solution of (2.11a) for �1 D 0, and f .y/ D K , which
is subject to the boundary conditions Nu.˙a/ D 0. We state the following result,
which highlights the continuous dependence of the solution of (2.1a,b), established
in Theorem 2.1, on the positive constitutive parameter �1:

Theorem 2.2. For fixed � > 0, and ˛ 2 .0; 1/, denote by u�1.x/ the unique solution
of (2.11a,b) with f .x/ D K . Then, as �1 ! 0C,

u�1 ! Nu, in C1Cı (2.20)

for 0 < ı <
1

2
.

Proof. From Theorem 2.1, we infer, for M > 0 sufficiently large, the existence of
a unique solution u�1 2 WM of the boundary-value problem

�
"

u0
�1
.y/

.� C u02
�1
.y//˛=2

#0
C �1u

0000
� .y/ D K; �a < y < a; (2.21a)

u�1.˙a/ D 0; u00
�1
.˙a/ D 0: (2.21b)

We now set v�1 D u0
�1

in (2.21a) and then integrate the resulting equation over
.�a; x/, x < a, so as to obtain

� v�1.y/

.� C v2�1.y//
˛=2

C �v00
�1
.y/ D K.y C a/ �A�1 (2.22)

with

A�1 D v�1.�a/
.� C v2�1.�a//˛=2

� �1v
00
�1
.�a/: (2.23)

In view of the boundary conditions (2.21b), v0
�1
.�a/ D v0

�1
.a/ D 0 and

Z a

�a
v�1.y/ dy D u�1.0/� u�1.�a/ D 0: (2.24)
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We now multiply (2.22) by v�1.y/, integrate over .�a; a/, and then integrate by
parts to obtain

Z a

�a
v2�1 .y/

.� C v2�1.y//
˛=2

dx C �1

Z a

�a
v02
�1
.y/ dx D �K

Z a

�a
yv�1.y/ dy (2.25)

where we have used (2.24). Now, let

E� D
n
y j v2�1.y/ > �

o
: (2.26)

Then 8y 2 E� , v
2
�1
=.� C v2�1/

˛=2 > ˇ1v
2�˛
�1

, ˇ1 D 2�˛=2 > 0; similarly, as u0
�1

2
L1.�a; a/, on Ec

� D Œ�a; a�=E� , 9ˇ2; � > 0 such that v2�˛�1
� ˇ2�

�. Therefore

Z a

�a
v2�˛�1

.y/ dy D
Z
E�

v2�˛�1
dy C

Z
Ec�

v2�˛�1
dy

� 1

ˇ1

Z
E�

v2�1
.� C v2�1/

˛=2
dy C ˇ2�

� meas.Ec
� /

� 1

ˇ1

Z a

�a
v2�1

.� C v2�1/
˛=2
dy C ˇ3

(2.27)

Using the last estimate in (2.27) in (2.25) we have

Z a

�a
v2�˛�1

.y/ dy C �

ˇ1

Z a

�a
v02
�1
.y/ dy � K

ˇ1

Z a

�a
jyjˇ̌v�1.y/ˇ̌ dy C ˇ3: (2.28)

By virtue of the Hölder Inequality, (2.28) yields

Z a

�a
ˇ̌
v�1

ˇ̌2�a
dy � K

ˇ1

�Z a

�a
jyj.2�˛/=.1�˛/dy

.1�˛/=.2�˛/ �Z a

�a
ˇ̌
v�1

ˇ̌2�˛
dy

1=.2�˛/
C ˇ3:

(2.29)

For arbitrary ı > 0, we now use Young’s inequality (see appendix A)

jaj � jbj � ıjajp C ı�1=.p�1/jbjp0

;
1

p
C 1

p0 D 1

on the right-hand side of (2.29) with p D 2 � ˛; for ı chosen sufficiently small we
obtain from (2.29) an estimate of the form

Z a

�a
v2�˛�1

.y/ dy � a1

Z a

�a
jyj.2�˛/=.1�˛/dy C a2 (2.30)
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with a1; a2 > 0. To obtain our next set of estimates we multipy (2.22) by v00
�1
.y/,

integrate over .�a; a/, and integrate by parts; inasmuch as v0
�1
.�a/ D v0

�1
.a/ D 0

we easily find that

Z a

�a

"
v�1.y/

.� C v2�1.y//
˛=2

#0
v0
�1
.y/ dy C �1

Z a

�a
.v00
�1
.y//2 dy D �K

Z a

�a
v0
�1
.y/ dy

D KŒv�1.�a/ � v�1.a/�

or

Z a

�a

v02
�1
.y/

.� C v2�1 .y//
˛=2

�
"
� C .1� ˛/v2�1.y/

� C v2�1 .y/

#
dy C �1

Z a

�a
.v00
�1
.y//2dy D KŒv�1.�a/� v�1 .a/�:

(2.31)

Now, 8˛ with 0 < ˛ < 1, 9 Nc1; Nc2 > 0 such that

Nc1 � � C .1 � ˛/�

� C �
� Nc2; 8� � 0 (2.32)

where the Nci , i D 1; 2, depend on ˛ but not on �. Applying (2.32) to (2.31), with
� D v2�1 , we get the estimate

Z a

�a
v02
�1
.y/

.� C v2�1.y//
˛=2
dy C �1

Nc1
Z a

�a
.v00
�1
.y//2dy � K

Nc1 Œv�1.�a/ � v�1.a/�

� Nc3 max
Œ�a;a�

ˇ̌
v�1.y/

ˇ̌
:

(2.33)

We now set

‰.v�1/ D
Z v�1

0

ds

.� C s2/˛=4
: (2.34)

Then it follows directly from (2.34) that

Z a

�a

�
d

dx
‰.v�1.y//

�2
dx � Nc3 max

Œ�a;a�
ˇ̌
v�1.y/

ˇ̌
: (2.35)

As ‰.v�1/ is an even function, and 1=.� C s2/˛=4 � 1=.s2/˛=4, we have that

ˇ̌
‰.v�1/

ˇ̌ D ‰.
ˇ̌
v�1
ˇ̌
/ �

�
1� ˛

2

��1 ˇ̌
v�1
ˇ̌1�˛=2 � 4

ˇ̌
v�1
ˇ̌1�˛=2

: (2.36)
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Therefore, by virtue of our previous estimate (2.30), 9‰0 > 0 (const.) such that

Z a

�a
‰2.v�1.y//dx � ‰0: (2.37)

Now, 8w 2 H1Œ�a; a�, and 8ı > 0, 9cı > 0 such that

max
Œ�a;a� jwj � ı

�Z a

�a
w02.y/ dy

�1=2
C cı

�Z a

�a
w2.y/ dy

�1=2
(2.38)

(see, e.g., [Lio1] Lemma 5.1); applying (2.38) with w D ‰.v�1/, and making use of
both (2.35) and (2.37), we find that for some dı > 0,

max
Œ�a;a�

ˇ̌
‰.v�1/

ˇ̌ � ı

�
max
Œ�a;a�

ˇ̌
v�1.y/

ˇ̌1=2 C dı: (2.39)

Our goal now is to show that for some c > 0,

max
Œ�a;a�

ˇ̌
v�1.y/

ˇ̌ � c

�
max

�
1; max
Œ�a;a�

ˇ̌
‰.v�1/

ˇ̌ˇ	
(2.40)

with c independent of v�1 , and ˇ D 1=.1�˛=2/. To this end we define, for s 2 R1,

F.s/ D ‰.s/� ks1�˛=2 (2.41)

where k is chosen so that ‰.1/ > k. Thus, F.1/ � 0, while

F 0.s/ D 1

.� C s/˛=4
� k

�
1 � ˛

2

�
s�˛=2

so that, for k chosen sufficiently small, F 0.s/ � 0, 8s 2 R1. Consequently,
F.s/ � 0, 8s � 1 so that

ks1=ˇ � ‰.s/; 8s � 1 (2.42)

with ˇ D 1=.1� ˛=2/. Employing (2.42) in (2.39) we obtain

max
Œ�a;a�

ˇ̌
‰.v�1/

ˇ̌ � ı0
�

max

�
1; max
Œ�a;a�

ˇ̌
‰.v�1/

ˇ̌ˇ=2	C dı (2.43)

with ı0 D ık�ˇ=2. If max
Œ�a;a�

ˇ̌
‰.v�1/

ˇ̌ˇ=2
> 1, then

max
Œ�a;a�

ˇ̌
‰.v�1/

ˇ̌ � ı0 max
Œ�a;a�

ˇ̌
‰.v�1/

ˇ̌ˇ=2 � dı
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or, as ˇ=2 D 1=.2� ˛/ < 1, for 0 < ˛ < 1,

.1 � ı0/ max
Œ�a;a�

ˇ̌
‰.v�1/

ˇ̌ � dı: (2.44)

Therefore, for ı chosen sufficiently small, it follows that 9C > 0 such that (recall
that

ˇ̌
‰.v�1/

ˇ̌ D ‰.
ˇ̌
v�1
ˇ̌
/):

max
Œ�a;a�



‰.
ˇ̌
v�1.y/

ˇ̌
/
� � C: (2.45)

Clearly, an estimate of the form (2.45) also follows from (2.43) if max
Œ�a;a�

ˇ̌
‰.v�1/

ˇ̌ˇ=2�
1. Now, the estimate (2.40) is a direct consequence of (2.42), and the use of (2.45)
in (2.42) then produces a bound of the form

max
Œ�a;a�

ˇ̌
v�1.y/

ˇ̌ � C 0

for some C 0 > 0. Thus, by virtue of (2.33), we have, for some C > 0,

Z a

�a

�
d

dx
‰.v�1.y//

2
dx C �

Z a

�a
.v00
�1
.y//2dy � C: (2.46)

Combining (2.46) with (2.37), it follows that 9 QC , independent of �1, such that

ˇ̌ˇ̌
‰.v�1/

ˇ̌ˇ̌
H1.�a;a/ � QC: (2.47)

Therefore, 9‰0 2 H1.�a; a/ such that

‰.v�1/ ! ‰0, in H1.�a; a/, as �1 ! 0C (2.48)

and, by virtue of (2.46), we also note that

�v00
�1

! 0, in L2.�a; a/, as �1 ! 0C: (2.49)

In view of (2.48), and Theorem 2.1, for some N‰ we have

‰.v�1/ ! N‰, in C0;ı, for 0 < ı < 1=2, as �1 ! 0C: (2.50)

But ‰, being monotone, is invertible, and as ‰�1 2 C1.R1/ we find that

v�1 ! Nu, in C0;ı, for 0 < ı < 1=2, as �1 ! 0C (2.51)
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Finally, as u0
�1

D v�1 we have, for the unique solution u�1.y/ of (2.21a,b), that

v�1 ! Nu, in C1Cı, for 0 < ı < 1=2, as �1 ! 0C (2.52)

with Nu the unique solution of (2.21a), with� D 0, subject to the boundary conditions
Nu.˙a/ D 0; this concludes the demonstration of the continuous dependence of u�1
on �1, as �1 ! 0C, in the C1Cı norm, for 0 < ı < 1=2. ut
Remarks. If �1 D 0, then (2.5a) reduces to

"�
� C 1

2
v02
1 .x2/

��˛=2
v0
1.x2/

#0
D p1=�0

so that for some real constant � ,

�
� C 1

2
v02
1 .x2/

��˛=2
v0
1.x2/ D g� .x2/ (2.53)

where

g� .x2/ D
�
p1

�0

�
x2 C �:

If we now set W�.x2/ D � C 1

2
v02
1 .x2/, then it follows from (2.53) that W� satisfies

the transcendental algebraic equation

W 1�˛
� � �W ˛

� D 1

2
g2� I � > 0; 0 < ˛ < 1 (2.54)

whose solutions are easily seen to be dependent continuously on � as � ! 0C. Thus,
solutions of (2.11a), with f .y/ D p1 and �1 D 0, subject to u.˙a/ D 0, depend
continuously on �; that the same continuous dependence with respect to � holds for
the full boundary-value problem (2.11a,b), with �1 > 0 and f .y/ D p1, follows
from the detailed estimates in Sect. 2.3.

2.3 Estimates and Generalized Reynolds Numbers for Steady
Plane Poiseuille Flow

We will continue here the practice of using the notation u D v1, and y D x2, in
which case (2.5a,b) assumes the equivalent form

�0

"�
� C 1

2
u02.y/

��˛=2
u0.y/

#0
� �1u0000.y/ D p1; �a < y < a (2.55a)
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u.˙a/ D 0; u00.˙a/ D 0 (2.55b)

where we have written u.y/ in lieu of u.yI �; �1/, while for � D �1 D 0 the above
fourth-order boundary-value problem reduces to

�0

"�
1

2
u02
0 .y/

��˛=2
u0
0.y/

#0
D p1; (2.56a)

u0.˙a/ D 0 (2.56b)

where u0.y/ D u.yI 0; 0/. Whenever it is deemed important to avoid any possible
confusion, we will make explicit the dependence of the solution u of (2.55a,b) on �
and �1.

In this section we continue the study of plane equilibrium Poiseuille flows of
incompressible, isothermal, bipolar fluids initiated in Sect. 2.2. Through the use of
dimensional analysis applied to (2.55a) we isolate the natural counterparts of the
Reynolds number associated with the Navier–Stokes theory. We then investigate,
in greater detail than was done in Sect. 2.2, properties of the solutions u0.�/ of
equations (2.56a,b) and use the solutions to compute the associated mean velocity,
maximum velocity, volume flow, and pressure drop. Finally, although a continuous
dependence result for solutions of (2.55a,b), (inC1Cı, 0 < ı < 1=2) as �; �1 ! 0C,
was established in Sect. 2.2 precise estimates of the errors incurred by setting � D
�1 D 0 and using, in place of u.�I �; �1/ the solutions u0.�/ of equations (2.56a,b)
were not presented there; such estimates are derived here and are subsequently
employed to establish the related estimates for the volume flow, etc. It is hoped (and
expected) that such estimates will eventually serve as a guide for the formulation of
experiments directed at the determination of the constitutive constants in the model.

2.3.1 Generalized Reynolds Numbers for Plane Poiseuille Flow
of a Bipolar Fluid

In this subsection we indicate the appropriate form which a dimensionless version
of the evolution equation associated with (2.55a) assumes and, in the process, are
led to the definition of generalized Reynolds numbers that are connected with plane
Poiseuille flows of an incompressible bipolar fluid. Employing a standard approach
(and not taking, a priori, the density � D 1) we set

Ny D y

a
; Nt D V

a
t; Nu D u

V
; Np D p

�V 2
(2.57)

in the evolution equation for plane Poiseuille flow of an incompressible bipolar fluid,
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�
@u

@t
D �@p

@y
C �0

@

@y

8<
:
"
� C

�
@u

@y

�2#�˛=2
@u

@y

9=
; � �1 @

4u

@y4
: (2.58)

Here V is a measure of the mean- or far-field velocity associated with the flow
and u D u.y; t/, where we have supressed the dependence of u on � and �1. With
Nu. Ny; Nt/ D u.a Ny; a Nt=V /, Np. Ny/ D p.a Ny/, elementary calculations yield

@u

@t
D V 2

a

@Nu
@Nt ; (2.59a)

@p

@y
D �V 2

a

@ Np
@ Ny ; (2.59b)

@u

@y
D V

a

@Nu
@ Ny ; (2.59c)

@4u

@y4
D V

a4
@4 Nu
@ Ny4 ; (2.59d)

the substitution of which into (2.58) produces

 
�V 2

a

!
@Nu
@Nt D �

 
�V 2

a

!
@ Np
@ Ny C �0

a

@

@ Ny

8<
:
"
� C V 2

a2

�
@Nu
@ Ny
�2#� ˛

2 �
V

a

�
@Nu
@ Ny

9=
;� �1V

a4
@4 Nu
@ Ny4 :

(2.60)

After multiplying (2.60) by
a

�V 2
, and setting


0 D �0

�
; 
1 D �1

�
(2.61)

(2.60) becomes

@Nu
@Nt D �@ Np

@ Ny C 
0

aV

@

@ Ny

8<
:
"
� C V 2

a2

�
@Nu
@ Ny
�2#� ˛

2
@Nu
@ Ny

9=
;� 
1

a3V

@4 Nu
@ Ny4 : (2.62)

In as much as � must have the dimension of a velocity gradient squared,

N� D �a2=V 2 (2.63)

is dimensionless; using the definition (2.63) of N� we may now rewrite (2.62) as

@u

@t
D �@p

@y
C 
0

aV

� a
V

�˛ @

@y

8<
:
"
� C

�
@u

@y

�2#� ˛
2
@u

@y

9=
; � 
1

a3V

@4u

@y4
(2.64)
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where we have dropped the superposed bars from y, t , p, u, and �. The dimen-
sionless version (2.64) of (2.58) leads naturally to the definition of two generalized
Reynolds numbers that are associated with plane Poiseuille flow of a bipolar viscous
fluid, namely,

R
.˛/
0 D V ˛C1


0a˛�1 ; R1 D a3V


1
: (2.65)

Using the definitions (2.65), the evolution equation for u.y; t/ assumes the form

@u

@t
D �@p

@y
C 1

R
.˛/
0

@

@y

8<
:
"
� C

�
@u

@y

�2#� ˛
2
@u

@y

9=
; � 1

R1

@4u

@y4
: (2.66)

For ˛ D �1 D 0, clearly R.0/0 D Va=
0 and R�1
1 D 0, so that (2.66) reduces to

the standard dimensionless form for plane Poiseuille flow within the context of the
Navier–Stokes formulation, with R.0/0 being the usual Reynolds number.

2.3.2 The Poiseuille Flow for � D �1 D 0

In this subsection we will look, in greater detail than that which was done in
Sect. 1.7.1, at the behavior of the solution of (2.56a,b). In the next subsection our
interest will be in obtaining estimates which relate the behavior of the solution of
the boundary-value problem (2.56a,b) to that of the solution u.yI �; �1/ of (2.55a,b);
the quantities of particular interest to us will be the volume flow

Q�;�1 D
Z a

�a
u.yI �; �1/ dy (2.67a)

which for � D �1 D 0 has the form

Q0;0 	 Q0 D
Z a

�a
u0.y/ dy (2.67b)

the mean velocity

Nu�;�1 D 1

2a
Q�;�1 (2.68a)

and its counterpart for � D �1 D 0, i.e.,

Nu0 D 1

2a
Q0 (2.68b)
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and the friction factors

f�;�1 D 4�12.˙a; �; �1/
1
2
� Nu2�;�1

(2.69a)

f0 D 4�12.˙a; 0; 0/
1
2
� Nu20

(2.69b)

where �12.˙a; �; �1/ is the shear stress at the walls located at y D ˙a, i.e.,

�12.˙a; �; �1/ D �0

�
� C 1

2
u02.˙a; �; �1/

� ˛
2

u0.˙a; �; �1/� �1u
0000.˙a; �; �1/:

(2.70)

We begin by noting that if u0.y/ is a solution of the boundary-value problem
(2.56a,b) then so is u0.�y/ and, thus, by uniqueness of solutions u0.y/ D u0.�y/,
�a � y � a; from this result it follows that u0

0.y/ D �u0
0.�y/, so that u0

0.0/ D 0.
Moreover, with p1, the constant pressure gradient, negative, a first integration of
equation (2.56a) yields

�0

�
1

2
u02
0 .y/

� ˛
2

u0
0.y/ D �jp1jy (2.71)

where the constant of integration vanishes in view of the fact that 0 < a < 1 and
u0
0.0/ D 0. From (2.71) it is immediate that

u0
0.y/ > 0; y 2 .�a; 0/;

u0
0.y/ < 0; y 2 .0; a/: (2.72)

In as much as u0
0.y/ � 0, for y 2 .0; a/, we have u0

0.y/ D �ˇ̌u0
0.y/

ˇ̌
, 0 � y � a;

therefore, if we set C˛ D �02
˛=2, equation (2.71) becomes, on .0; a/,

ˇ̌
u0
0.y/

ˇ̌1�˛ D jp1j
C˛

y; 0 < y < a

or

ˇ̌
u0
0.y/

ˇ̌ D C˛y
1=.1�˛/; 0 < y < a (2.73)

with C˛ D
� jp1j
C˛

�1=.1�˛/
. We rewrite (2.73) as

u0
0.y/ D �C˛y1=.1�˛/; 0 < y < a (2.74)
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and integrate from a to y obtaining

u0.y/ D C˛

N� C 1



a N�C1 � y N�C1� I N� D 1

1 � ˛ : (2.75)

In obtaining (2.75) we have used, of course, the boundary condition u0.a/ D 0.
Substituting for N� in (2.75), and noting that u0.y/ D u0.�y/, we find that

u0.y/ D d˛

"
1 �

� jyj
a

�.2�˛/=.1�˛/#
; �a � y � a (2.76)

where

d˛ D C˛

�
1 � ˛

2 � ˛

�
a.2�˛/=.1�˛/

D
� jp1j
C˛

�1=.1�˛/
a.2�˛/=.1�˛/

�
1 � ˛
2 � ˛

�

D
�
1 � ˛

2 � ˛

�� jp1ja2�˛
�02˛=2

�1=.1�˛/
:

(2.77)

It is clear, from (2.76), that

max
Œ�a;a� u0.y/ 	 umax

0 D u0.0/ D d˛: (2.78)

By direct calculation, the mean velocity Nu0 associated with u0.y/ is

Nu0 D 1

2a

Z a

�a
u0.y/ dy

D d˛

a

Z a

0

"
1�

�


a

�ı#
dI ı D 2 � ˛

1 � ˛
:

(2.79)

Carrying out the integration in (2.79), we are led to

Nu0 �
�
2 � ˛

3 � 2˛
�
d˛ 	

�
2 � ˛
3 � 2˛

�
umax
0 (2.80)

or, in view of (2.77),

Nu0 D
�
1 � ˛

3 � 2˛

�� jp1ja2�˛
�02˛=2

�1=.1�˛/
: (2.81)
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We note that

Nu0
ˇ̌
˛D0 D 1

3

jp1ja2
�0

(2.82)

which is the classical result associated with Navier–Stokes. From (2.78) and (2.80)
it follows that

lim
˛!1�

umax
0 D lim

˛!1�
d˛ D lim

˛!1�
Nu0: (2.83)

However, in view of (2.77),

lim
˛!1�

d˛ D lim
˛!1�

"�
1 � ˛
2 � ˛

�� jp1ja2�˛
�02˛=2

	 1=.1�˛/#

from which it is clear that the critical quantity in computing lim
˛!1� umax

0 is

e˛ D jp1ja2�˛
�02˛=2

: (2.84)

Specifically, if e˛ > 1, for ˛ sufficiently close to 1, then umax
0 ! 1 as ˛ ! 1�.

Suppose that we set V D Nu0j˛D0 in (2.65), so that jp1j D �V 2=a, then

e1=.1�˛/˛ D
�
V 2


02˛=2

1=.1�˛/
>

�
V 2


0
p
2

1=.1�˛/
(2.85)

while

lim
˛!1�

R
.˛/
0 D V 2


0
:

Thus,

umax
0 ! 1, as ˛ ! 1� (2.86a)

provided

lim
˛!1�

R
.˛/
0 >

p
2: (2.86b)

To emphasize further the role of the criteria (2.86b) and its connection with the
status of the parameter ˛ in situations involving small physical viscosity (i.e., ˛
close to 1), we compute the lim

˛!1�
u0
0.a/. From (2.76) and (2.80), we have

u0.y/ D
�
3 � 2˛

2 � ˛

�
Nu0
�
1 �

�y
a

�.2�˛/=.1�˛/
; 0 � y � a (2.87)
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−a

+a

u0(−a) → +∞

u0(+a) → −∞

u
(n)
0 (0) = 0, 0 < αn ≤ α < 1

Fig. 2.1 Non-Newtonian
velocity profile, 0 < ˛ < 1

so that

u0
0.y/ D �

�
3 � 2˛
1� ˛

�
Nu0
�y
a

�1=.1�˛/
(2.88)

and, thus,

1

.3 � 2˛/
u0
0.a/ D 1

.1 � ˛/ Nu0: (2.89)

Therefore, by virtue of (2.81) and (2.84),

lim
˛!1�

u0
0.a/ D � lim

˛!1�

�
1

.1 � ˛/
Nu0


D � lim
˛!1�

�
1

.3 � 2˛/
e1=.1�˛/˛



D � lim
˛!1�

e1=.1�˛/˛ D �1

(2.90)

if lim
˛!1�

R
.˛/
0 >

p
2; under these same conditions

lim
˛!1�

u0
0.�a/ D lim

˛!1�


�u0
0.a/

� D C1 (2.91)

so that if lim
˛!1�

R
.˛/
0 >

p
2, and ˛ is close to 1, the velocity profile assumes the form

indicated in Fig. 2.1, above.
In fact, not only is u0

0.0/ D 0, but the rapid flattening of the profile, depicted
in Fig. 2.1, with respect to the axis y D 0, as ˛ ! 1�, is easily demonstrated as
follows: from (2.88), and the companion result for �a � y � 0,

u00
0 .y/ D .3 � 2˛/

.1 � ˛/2
Nu0
� jyj
a

�˛=.1�˛/
(2.92)
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so that u00
0.0/ D 0, for all ˛, 0 < ˛ < 1. Then

u000
0 .y/ D �˛ .3 � 2˛/

.1 � ˛/3
Nu0
� jyj
a

�.2˛�1/=.1�˛/
(2.93)

so that u000
0 .0/ D 0, for ˛ >

1

2
. A further computation shows that u0000

0 .0/ D 0, for

˛ >
2

3
, and it is clear that by an induction argument we may show that u.n/0 .0/ D 0,

˛ > ˛n, for some ˛n sufficiently close to 1.
From (2.81) it follows directly that the volume flow Q0, as given by (2.67b), is

Q0 D 2a

�
1 � ˛
3 � 2˛

�� jp1ja2�˛
�02˛=2

1=.1�˛/
: (2.94)

Also, from (2.81), it is a simple matter to compute that

jp1j D �02
˛=2

a2�˛

�
3 � 2˛
1 � ˛

�
Nu1�˛0 : (2.95)

Now, by (2.70), �12.�a; 0; 0/ D jp1ja, or

�12.�a; 0; 0/ D �02
˛=2

a1�˛

�
3 � 2˛
1 � ˛

�
Nu1�˛0 (2.96)

so that, by (2.69b), the friction factor is

f0 D 
02
3C.˛=2/

a1�˛

�
3 � 2˛

1 � ˛

�
Nu�.˛C1/
0 : (2.97)

Also, in view of (2.95), and the fact that a > 1,

�0 Nu1�˛0

a2
< jp1j < 3

p
2

a.1 � ˛/
�0 Nu1�˛0 (2.98)

an estimate which should be useful in experimentally approximating the values of
the constitutive parameters �0, ˛ based on careful measurements of the magnitude
of the pressure gradient p1 and the mean velocity Nu0.

2.3.3 Estimates for the Poiseuille Flow u.yI �;�1/
when �;�1 ¤ 0

In this section we provide those precise qualitative estimates, for the unique solution
u.yI �; �1/ of the nonlinear boundary-value problem (2.55a,b), which allow us to
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compare u.yI �; �1/with the solution u0.y/ of (2.56a,b) and which are missing from
the analysis in Sect. 2.2; the results obtained in this subsection render meaningful the
content of results such as (2.97), (2.98) for the flow u0.y/. We begin by introducing
the following notation: we set

w.yI �; �1/ D u0.yI �; �1/; (2.99a)

Ow.yI �/ D w.yI �; 0/; (2.99b)

z.yI �; �1/ D � C jw.yI �; �1/j2; (2.99c)

Oz.yI �/ D z.yI �; 0/ D � C j Ow.yI �/j2 (2.99d)

and

�.w/ D .� C jwj2/�˛=2w D z�˛=2w: (2.100)

When the interpretation is obvious, we will supress the explicit dependence on y
and write, e.g., Oz.�/ D Oz.yI �/. We also note that Ow.yI 0/ D u0.yI 0; 0/ 	
u0
0.y/ which is given explicitly by (2.88). Our goal is to estimate the difference

u.yI �; �1/ � u.yI 0; 0/ D u.yI �; �1/ � u0.y/, from both below and above and to
then use the resulting bounds to estimate quantities such as Q�;�1 , the volume flow
associated with the unique solution of the boundary-value problem (2.55a,b). The
bounds for u.yI �; �/ � u0.y/ on Œ�a; a� will be obtained from a series of lemmas
which culminate in Theorem 2.3; the first of these results is as follows:

Lemma 2.1. Let u.yI �; �1/ be the unique classical solution of (2.55a,b) and u0.y/
the unique solution of (2.56a,b). Then 9K˛ > 0, depending only on ˛, such that on
Œ�a; a�

ˇ̌
u0.yI �; 0/ � u0

0.y/
ˇ̌
< .1CK˛/

p
�: (2.101)

Proof. We set �1 D 0 in (2.55a,b), divide through by �0 and set p�
1 D p1=�0; then

u.yI �; 0/ is the solution of the boundary-value problem

��
� C j Ow.yI �/j2

��˛=2 Ow.yI �/
0

D p�
1 ; �a < y < a; (2.102a)

u.˙aI �; 0/ D 0 (2.102b)

where we have used the definitions in (2.99a,b). Now, if u.yI �; �1/ is a solution of
(2.55a,b), then so is u.�yI �; �1/ for any �; �1 � 0; by uniqueness of solutions to
the boundary-value problem we must have u.yI �; �1/ D u.�yI �; �1/ from which
it follows that

u0.yI �; �1/ D �u0.�yI �; �1/; �a < y < a (2.103)
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and, therefore, u0.0I �; �1/ D 0, for all �; �1 � 0. Integration of equation (2.102a)
leads, therefore, to

�
� C j Ow.yI �/j2

��˛=2 Ow.yI �/ D p�
1 y; �a < y < a (2.104)

as Ow.0I �/ D u0.0I �; 0/ D 0. It then follows from (2.104) that

Ow.yI �/ ¤ 0; 8� � 0; y ¤ 0 (2.105)

as 0 < ˛ < 1. Squaring both sides of (2.104) and using the definition (2.99d), we
obtain

Oz.yI �/�˛ Ow2.yI �/ D p�2
1 y

2; �a < y < a: (2.106)

We rewrite (2.106) in the form [recall that Oz.�/ D Oz.yI �/, �a � y � a]

Oz.�/�˛ŒOz.�/ � �� D p�2
1 y

2

or

Oz.�/1�˛ � �Oz.�/�˛ D p�2
1 y

2; �a < y < a: (2.107)

If we now differentiate (2.107) with respect to � we obtain, after a simple
calculation,

Oz.�/�˛ 
.1 � ˛/Oz� � 1C ˛�Oz.�/�1Oz�
� D 0 (2.108)

where Oz� D @

@�
Oz.yI �/. We now restrict our attention to the set of all y 2 .�a; 0/.

As

Oz.�/ D � C ˇ̌
u0.yI �; 0/ˇ̌2 ¤ 0; 8� � 0; y 2 .�a; 0/ (2.109)

it follows from (2.108) that

.1 � ˛/Oz� � 1C ˛�Oz.�/�1Oz� D 0; � � 0; y 2 .�a; 0/ (2.110)

in which case we find that

Oz� D � Oz.�/
.1 � ˛/Oz.�/C ˛�

; � � 0; y 2 .�a; 0/: (2.111)
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As a direct consequence of (2.111) we see that

0 � Oz�.yI �; 0/ � 1

1 � ˛
; � � 0; y 2 .�a; 0/: (2.112)

Now, for y 2 .�a; 0/ we may write that

Oz.yI �/ D Oz.yI 0/C
Z �

0

Oz.yI/ d: (2.113)

Combining (2.112) and (2.113), we then have

0 � Oz.yI �/ � Oz.yI 0/ � �

1 � ˛ I � � 0; y 2 Œ�a; 0/ (2.114)

where we have used the continuity of u0.yI �; �/ to extend the result to y D �a.
However,

Oz.0I 0/ D j Ow.0I 0/j2 D u02.0I 0; 0/ D 0 (2.115a)

and

Oz.0; �/ D � C j Ow.0I �/j2

D � C ˇ̌
u0.0I �; 0/ˇ̌2

D �

(2.115b)

so Oz.0I �/ � Oz.0I 0/ D � <
�

1 � ˛ , for 0 < ˛ < 1, and, thus, equation (2.114) also

holds at y D 0. Now, (2.114) is equivalent to

0 � 

� C Ow2.yI �/� � Ow2.yI 0/ � �

1 � ˛
; y 2 Œ�a; 0�

or

� � � Ow2.yI �/ � Ow2.yI 0/ � ˛�

1 � ˛
; y 2 Œ�a; 0� (2.116)

which, in turn, yields the two estimates

Ow2.yI 0/� � � Ow2.yI �/; (2.117a)

Ow2.yI �/ � Ow2.yI 0/C ˛�

1 � ˛ (2.117b)

on Œ�a; 0�. Consider the set of all y 2 Œ�a; 0� such that Ow.yI 0/ � p
� for fixed

� > 0; for y in this set it follows from (2.117b) that
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0 � Ow2.yI �/ � Ow2.yI 0/C ˛�

1 � ˛
;

(
y 2 Œ�a; 0�
Ow.yI 0/ � p

�
(2.118)

with the upper bound holding, of course, on all of Œ�a; 0�. Therefore, for all y 2
Œ�a; 0�, such that Ow.yI 0/ � p

�,

0 � Ow.yI �/ � Ow.yI 0/C
r

˛�

1 � ˛
(2.119)

and we have used the fact that (2.104), with p�
1 < 0, implies that Ow.yI �/ > 0,

8� ¤ 0, y 2 Œ�a; 0/. Now, suppose that y 2 Œ�a; 0� but Ow.yI 0/ < p
�; then by

(2.117b) we have

Ow2.yI �/ < � C ˛�

1 � ˛ D K2
˛� (2.120)

with K2
˛ D 1=.1� ˛/. Thus, if y 2 Œ�a; 0� and Ow.yI 0/ < p

� then

Ow.yI �/ < K˛

p
� (2.121)

and

j Ow.yI �/ � Ow.yI 0/j � Ow.yI �/C Ow.yI 0/
< .1CK˛/

p
�

or

Ow.yI 0/� .1CK˛/
p
� < Ow.yI �/ < Ow.yI 0/C .1CK˛/

p
� (2.122)

for all y 2 Œ�a; 0� such that Ow.yI 0/ < p
�. However,

K˛ D
r
1C ˛

1 � ˛ >
r

˛

1� ˛

so a comparison of (2.119) and (2.122) shows that (2.122) holds for all y 2 Œ�a; 0�.
Using the definitions of Ow.yI �/, Ow.yI 0/ we may rewrite (2.122) as

ˇ̌
u0.yI �; 0/� u0

0.y/
ˇ̌
< .1CK˛/

p
�; y 2 Œ�a; 0� (2.123)

whereK˛ D 1p
1 � ˛

. Replacing, y by �y, for y 2 Œ0; a�, we see that (2.123) holds

for all y, �a � y � a, as both u0.yI �; 0/ and u0
0.y/ are odd functions on Œ�a; a�;

this establishes the validity of the estimate (2.101) and concludes the proof of the
lemma. ut
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Lemma 2.1 enables us to compare u.yI �; 0/ with u0.y/ on Œ�a; a�; our next set
of lemmas are aimed at enabling us to compare u.yI �; �1/ with u.yI �; 0/, the first
of these being stated as follows:

Lemma 2.2. Let u.yI �; �1/ be the unique classical solution of (2.55a,b) and set
t.yI �; �1/ D u000.yI �; �1/. Then 9CC; C� > 0, both independent of � and �, such
that

t.yI �; �1/ � CC; y 2 Œ�a; 0�; (2.124a)

t.yI �; �1/ � �C�; y 2 Œ0; a�: (2.124b)

Proof. We will establish only (2.124a), which is all that is needed in the sequel: the
proof of (2.124b) follows in an entirely analogous fashion. We begin by recalling
that u.yI �; �/ and u.yI �; 0/ are, respectively, the solutions of the nonlinear ordinary
differential equations

n

� C w2.yI �; �1/

��˛=2
w.yI �; �1/

o0 � ��
1w000.yI �; �1/ D p�

1 ; (2.125a)

n

� C Ow2.yI �/��˛=2 Ow.yI �/

o0 D p�
1 (2.125b)

subject to u.˙aI �; �1/ D u00.˙aI �; �1/ D 0 and u.˙aI �; 0/ D 0, where ��
1 D

�1=�0. Subtracting (2.125a) from (2.125b), and integrating with respect to y, we
obtain

w.yI �; �/
Œ� C w2.yI �; �1/�˛=2

� Ow.yI �/
Œ� C Ow2.yI �/�˛=2 D ��

1w00.yI �; �1/: (2.126)

For future reference we record here the following: first of all, as

u.�yI �; �1/ D u.yI �; �1/; y 2 Œ�a; a�

not only is u0.yI �; �1/ an odd function on Œ�a; a� but so is u000.yI �; �1/, while
u00.yI �; �1/ is an even function: in particular, 8�; �1 � 0, u000.0I �; �1/ D 0. Next
we observe that the use of definition (2.100) enables us to write (2.125a) in the form

�


u0.yI �; �1/

�0 � ��
1 u0000.yI �; �1/ D p�

1 (2.127)

and that

� 0.w/ D .� C w2/�˛=2


1 � ˛w2.� C w2/�1

�
(2.128a)

� 00.w/ D �w

�
˛

.� C w2/.˛=2/C1

�
� C .1 � ˛/w2

� C w2


C 2˛�

.� C w2/2C.˛=2/

	
(2.128b)
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from which it follows, as 0 < ˛ < 1, that � 0.w/ > 0, 8� > 0, while sgn � 00.w/ D
� sgn w. Now, from (2.127) with

s.yI �; �1/ D u00.yI �; �1/ (2.129)

we have

� 0.u0.yI �; �1//s.yI �; �1/ � ��
1 s

00.yI �; �1/ D p�
1 < 0; (2.130a)

s.�aI �; �1/ D s.aI �; �1/ D 0: (2.130b)

Suppose that s.yI �; �1/ takes a positive maximum at some y0 2 .�a; a/, so that
s.y0I �; �1/ > 0. From (2.130a) we have

� 0 
u0.y0I �; �1/
�
s.y0I �; �1/C jp�

1 j D ��
1 s

00.y0I �; �1/: (2.131)

But � 0.u0.y0I �; �1// > 0, while s00.y0I �; �1/ � 0, if y0 is interior to Œ�a; a� and
s has a maximum there. Thus, s.yI �; �1/ cannot achieve a positive maximum at a
point y0 2 .�a; a/ and any positive maximum of s.yI �; �1/ must, therefore, occur
at y D ˙a. In view of the boundary conditions (2.130b), it follows that there is
no positive maximum for s.yI �; �1/ anywhere on Œ�a; a�; thus, if the maximum of
s.yI �; �1/ occurs at an interior point y0 2 .�a; a/ we must have s.y0I �; �1/ < 0

in which case

s.yI �; �1/ � s.y0I �; �1/ < 0; y 2 .�a; a/ (2.132)

and the same result holds if the maximum occurs at y D ˙a, where s vanishes.
By (2.131), s.yI �; �1/ cannot have a zero maximum at interior point y0 2 .�a; a/.
Thus,

u00.yI �; �1/ < 0I y 2 .�a; a/; �; �1 > 0 (2.133)

which shows that the graph of u.yI �; �1/ is concave (down) on .�a; a/. Now let
y 2 .�a; ı/ for any ı � a. Then

Z y

�a
u000.I �; �1/ d D u00.yI �; �1/ < 0 (2.134)

and as y may be chosen arbitrarily close to �a (and u000.yI �; �1/ is continuous in y
on .�a; a/) it follows that

u000.�aI �; �1/ < 0 (2.135a)

u000.aI �; �1/ > 0 (2.135b)
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since u000.yI �; �1/ is an odd function of y on .�a; a/. From the definitions of
s.yI �; �1/ and t.yI �; �1/,

t.yI �; �1/ D s0.yI �; �1/; y 2 .�a; a/: (2.136)

Therefore, if we differentiate (2.131) with respect to y we readily obtain

� 0Œu0.yI �; �1/�t.yI �; �1/C � 00Œu0.yI �; �1/�Œu00.yI �; �1/�2 � ��
1 t

00.yI �; �1/ D 0:

(2.137)

The calculation leading to (2.137) may be validated by the following elementary
argument: in Sect. 2.2 it was demonstrated that the boundary-value problem given
by (2.130a,b), subject to the additional constraint u.˙a; �; �1/ D 0, has a unique
classical solution, i.e. a solution in C4.�a; a/; in light of this observation, and the
definition of � ,

s00.yI �; �1/ D 1

��
1

˚jp�
1 j C � 0 
u0.yI �; �1/

�
s.yI �; �1/

�

is continuously differentiable in y on .�a; a/ and (2.137) holds. Repetition of this
argument shows that the unique classical solution of the boundary-value problem is,
in fact, in C˛.�a; a/.

We now return to (2.137) and assume that t.yI �; �/ achieves a positive maxi-
mum at y0 2 .�a; a/ so that t 00.y0I �; �1/ � 0; then, by (2.137) it must be true
that

� 0Œu0.y0I �; �1/�t.y0I �; �1/C � 00Œu0.y0I �; �1/�Œu00Œy0I �; �1/�2 � 0: (2.138)

However, by (2.128b)

sgn � 00Œu0.y0I �; �1/� D � sgn u0.y0I �; �1/: (2.139)

But u00.yI �; �1/ < 0, y 2 .�a; a/, while u0.0I �; �1/ D 0, so u0.yI �; �1/ < 0 for
y 2 .0; a/. Thus, if y0 2 .0; a/, then by (2.139) we must have � 00Œu0.y0I �; �1/� > 0,
contradicting (2.138). This means, of course, that if t.yI �; �1/ achieves a positive
maximum at y0 2 .�a; a/ then, in fact, y0 2 .�a; 0/; note that t.0I �; �/ D 0 as
u000.yI �; �1/ is odd on .�a; a/. At such a y0 2 .�a; 0/ we will have, by virtue of
(2.138),

t.y0I �; �1/ � �� 00Œu0.y0I �; �1/�Œu00.y0I �; �1/�2
� 0Œu0.y0I �; �1/� : (2.140)

Now, at y0, t
0.y0; I �; �1/ D s00.y0I �; �1/ D 0, in which case it follows from

(2.130a) that

�Œu0.y0I �; �1/�u00.y0I �; �1/ D p�
1 < 0 (2.141)
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so that

u00.y0I �; �1/ D p�
1 =�

0Œu0.y0I �; �1/�: (2.142)

Substituting from (2.144) into (2.140), we obtain

t.y0I �; �1/ � �� 00Œu0.y0I �; �1/�
� 03Œu0.y0I �; �1/� p

�2
1 : (2.143)

However, by the pointwise bound established in Sect. 2.2, which precedes (2.46),
we have – with v�1.y/ D u0.yI �; �1/ – the existence of C1 > 0 such that

max
Œ�a;a�

ˇ̌
u0.yI �; �/ˇ̌ � C1: (2.144)

It now follows from (2.143) and (2.135a) that 9CC > 0, independent of both � and
�1, such that

t.yI �; �1/ � t.y0I �; �1/ � CC; y 2 Œ�a; 0�: (2.145)

If t.yI �; �1/ � 0 on .�a; 0/, so that no positive maximum exists on Œ�a; 0�, then
certainly (2.145) holds 8CC > 0. An analogous argument, which begins with the
assumption that t.yI �; �1/ has a negative minimum on .�a; a/ can be used, as
above, to establish the existence of a C� > 0, independent of both � and �, such
that

t.yI �; �1/ � �C�; y 2 Œ0; a� (2.146)

but we omit the details. ut
The next lemma provides us with an upper bound for u.yI �; �1/� u.yI �; 0/; we

have, specifically, the following result:

Lemma 2.3. Let u.yI �; �1/ be the unique classical solution of (2.55a,b). Then for
all �; �1 > 0, and all y 2 Œ�a; a�,

u.yI �; �1/ � u.yI �; 0/ � aCC
1 � ˛

�p
� C C1

�˛
��
1 (2.147)

where CC, C1, independent of both � and �, are the positive constants appearing,
respectively, in (2.124a) and (2.144).

Proof. From (2.126) and the definitions of �.�/ and t.yI �; �/ we have

�Œw.yI �; �1/� � �Œ Ow.yI �/� D ��
1 t.yI �; �1/: (2.148)
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However,

�.w/� �. Ow/ D � 0. Nw/.w � Ow/ (2.149)

with

Ow.yI �/ � Nw.yI �; �1/ � w.yI �; �1/

for each fixed y 2 Œ�a; a�, �; �1 > 0. Thus,

w.yI �; �1/� Ow.yI �/ D ��
1 t.yI �; �1/

� 0Œ Nw.yI �; �1/� (2.150)

From (2.128a),

� 0.w/ D � C .1 � ˛/w2
.� C w2/1C.˛=2/

so

1

� 0. Nw/ D .� C Nw2/1C.˛=2/
� C .1 � ˛/ Nw2 <

.� C Nw2/1C.˛=2/
.1 � ˛/� C .1 � ˛/ Nw2 D 1

1 � ˛
.� C Nw2/˛=2

� 1

1 � ˛
�p
� C j Nwj�˛ � 1

1 � ˛

�p
� C C1

�˛

by virtue of (2.144) and (2.149). Employing this last estimate for Œ� 0. Nw/��1, as well
as (2.124a), in (2.150) we are led to the upper bound

w.yI �; �1/� Ow.yI �/ � ��
1CC
1 � ˛

�p
� C C1

�˛
; y 2 Œ�a; 0/: (2.151)

Choosing y 2 .�a; 0�, and integrating both sides of (2.151) from �a to y, we have,
in view of the definitions of w.yI �; �1/ and Ow.yI �/, and the fact that u.�aI �; �1/ D
0, for � > 0 and �1 � 0,

u.yI �; �1/ � u.yI �; 0/ � aCC
1 � ˛

�p
� C C1

�˛
��
1 ; y 2 Œ�a; 0�: (2.152)

However, u.yI �; �1/ D u.�yI �; �1/, for y 2 Œ�a; a�, so we see that the upper
bound in (2.152) is, in fact, valid for all y, �a � y � a. ut
The next to the last lemma in this sequence is

Lemma 2.4. Let u.yI �; �1/ be the unique classical solution of (2.55a,b). Then for
�a � y � a,



2.3 Estimates and Generalized Reynolds Numbers for Steady Plane Poiseuille Flow 107

ju.yI �; �1/ � u.yI �; 0/j �
p
aC2

1 � ˛
�p
� C C1

�˛
��
1
1=2 (2.153)

with C1 > 0 the constant appearing in (2.144), and C2 > 0 the constant appearing
in the estimate (2.46).

Proof. By virtue of (2.150), it follows that for y 2 Œ�a; 0�,
ˇ̌
ˇ̌Z y

�a
Œw.I �; �1/ � Ow.I �/� d

ˇ̌
ˇ̌ D ��

1

ˇ̌
ˇ̌Z y

�a
t.I �; �1/

� 0. Nw.I �; �1/� d
ˇ̌
ˇ̌ (2.154)

from which we obtain

ju.yI �; �1/� u.yI �; 0/j � ��
1

1 � ˛
�p
� C C1

�˛ Z y

�a
jt.I �; �1/j d (2.155)

by again bounding Œ� 0. Nw/��1 from above and using the definitions of w and Ow.
However,

��
1

Z y

�a
jt j d D ��

1
1=2

Z y

�a
��
1
1=2jt j d

� ��
1
1=2

�Z y

�a
d

�1=2 �Z y

�a
��
1 jt j2d

�1=2

�
q
a��

1

�Z a

�a
��
1 jt j2 d

�1=2
:

However, by virtue of the estimate (2.46) of Sect. 2.2, there exists a positive
constant, independent of both � and �1, which we will denote by C2, such that

Z a

�a
��
1 jt j2 d � C2

and we are led to the bound

��
1

Z y

�a
jt j d � .a��

1 C2/
1=2: (2.156)

Use of the bound (2.156) in the estimate (2.155) now yields the estimate (2.153)
for y 2 Œ�a; 0� and the fact that u.yI �; �1/ is an even function of y on Œ�a; a�,
for all �; �1 � 0, then establishes the validity of the estimate in (2.153) for all y,
�a � y � a. ut

Our final lemma in this section is merely a synthesis of Lemmas 2.1–2.4, namely,

Lemma 2.5. Let u.yI �; �1/ be the unique classical solution of the problem
(2.55a,b). Then, 9CC; C1; C2, all positive and independent of both � and �1, such
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that for all y, �a � y � a,

�p
aC2

1 � ˛
�p
� C C1

�˛
��
1
1=2 � u.yI �; �1/� u.yI �; 0/ � aCC

1� ˛

�p
� C C1

�˛
��
1 :

(2.157)

We are now in a position to state and prove the basic result of this section, i.e.,
we have

Theorem 2.3. If u.yI �; �1/ is the unique classical solution of the boundary-value
problem (2.55a,b), while �0.y/ is the corresponding solution of the boundary-value
problem (2.56a,b), then 9CC; C1; C2, all positive and independent of � and �1, such
that for all y, �a � y � a, we have, with K˛ D .1 � ˛/�1=2, 0 < ˛ < 1,

� .1CK˛/a
p
� �

p
aC2

1 � ˛
�p
� C C1

�˛
��
1
1=2 � u.yI �; �1/� �0.y/

� .1CK˛/a
p
� C aCC

1 � ˛

�p
� C C1

�˛
��
1 : (2.158)

Proof. By virtue of Lemma 2.1, we have

� .1CK˛/
p
� < u0.yI �; 0/ � u0

0.y/ < .1CK˛/
p
� (2.159)

for all y 2 Œ�a; a�, where K˛ D .1 � ˛/�1=2. By integrating (2.159) from �a to y,
for y 2 Œ�a; 0/, we find that

� .1CK˛/a
p
� < u.yI �; 0/� u0.y/ < .1CK˛/a

p
� (2.160)

with this last result holding for all y 2 Œ�a; a�, as u.yI �; 0/, u0.y/ are both even
functions of y. Since

u.yI �; �1/� u0.y/ D Œu.yI �; �1/ � u.yI �; 0/�C Œu.yI �; 0/ � u0.y/�

the Theorem 2.3 now follows by combining (2.157) and (2.159). ut
As a direct consequence of the estimates in Theorem 2.3, we have the following

bounds for the difference of the net volume flows Q�;�1 and Q0, and the mean
velocities Nu�;�1 and Nu0:
Theorem 2.4. Under the same conditions as those which prevail in Theorem 2.3
the difference Nu�;�1 � Nu0 of the mean velocities also satisfies the estimate (2.158),
while the differenceQ�;�1 �Q0 of the volume flows satisfies

� 2.1CK˛/a
2
p
� � 2a3=2C

1=2
2

1 � ˛
�p
� C C1

�˛
��
1
1=2 � Q�;�1 �Q0

� 2.1CK˛/a
2
p
� C 2a2CC

1 � ˛
�p
� C C1

�˛
��
1 : (2.161)



2.4 Uniqueness of Steady Poiseuille Flow in the Class of Equilibrium Flows Between : : : 109

Remarks. The proof of Theorem 2.4 is a direct consequence of the estimates in
(2.158) and the definitions of the mean velocities and volume flows. Moreover, in
view of (2.94) and (2.161) we may exhibit the explicit bounds

Q�;�1 � 2a

�
1 � ˛

3 � 2˛

�� jp1ja2�˛
�02˛=2

1=.1�˛/

� 2.1CK˛/a
2
p
� � 2a3=2C

1=2
2

1� ˛

�p
� C C1

�˛ ��1
�0

�1=2
(2.162a)

and

Q�;� � 2a

�
1 � ˛

3 � 2˛

�� jp1ja2�˛
�02˛=2

1=.1�˛/

C 2.1CK˛/a
2
p
� � 2a2CC

1 � ˛

�p
� C C1

�˛ ��1
�0

�
: (2.162b)

Similar estimates may be developed for the friction factor f�;�1 in (2.69a), by
employing the bounds for Nu�;�1 , if we observe that (2.55a) is equivalent to

@

@y
�12.yI �; �1/ D p1 (2.163)

so that for all �; �1 � 0, �12.˙aI �; �1/ D ˙jp1ja.

2.4 Uniqueness of Steady Poiseuille Flow in the Class
of Equilibrium Flows Between Parallel Plates

2.4.1 Introduction

In Sect. 2.2 we considered the problem of existence and uniqueness for steady
Poiseuille flow of an incompressible, bipolar, viscous fluid in a parallel-wall
channel. In rectangular Cartesian coordinates the flow assumes the form vp D
.u.y/; 0; 0/ and satisfies the nonlinear boundary-value problem (2.55a,b) where
the channel walls are located at y D ˙a. The existence of a unique solution u
of (2.55a,b) was established in the set WM , for M > 0 sufficiently large, WM as

given by (2.12), with BM.0/ the ball of radius M in H
3
2Cı
0 .�a; a/, 0 < ı <

1

2
. In

this section we will consider the broader problem of uniqueness for steady, bipolar,
viscous flows in the domain�a specified by (2.8). It will be more convenient in this
section to return to the subscript notation for coordinates and vector components.
Therefore, we will write for �a,

�a D f.x1; x2; x3/ j x2 2 Œ�a; a�; �1 < x1; x3 < 1g : (2.164)
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In the domain �a, a steady, bipolar, viscous flow v (without an external forcing
function) will satisfy

v � rv D �rp C r � .2�e/ � 2�1r � .�e/ (2.165a)

divv D 0 (2.165b)

where � D �.jej/ represents the nonlinear viscosity

� D �0.� C eklekl /
�˛=2: (2.165c)

In addition to (2.165a,b), v must satisfy, on @�a,

v.x1;˙a; x3/ D 0; �i22.v/
ˇ̌
x2D˙a D 0; i D 1; 2; 3 (2.166)

where the higher-order boundary conditions in (2.166) follow from the stipulation
that

�ijk
j 
k � �jkl
j 
k
l
i D 0; i D 1; 2; 3

on @�a, coupled with the fact that the exterior unit normal is given by � D
.0;˙1; 0/. For the steady Poiseuille velocity field in �a we will write

vp D .u.x2I �; �1/; 0; 0/; �a � x2 � a (2.167)

where u.x2I �; �1/ 	 u.x2/ satisfies

�0

"�
� C 1

2
u02.x2/

��˛=2
u0.x2/

#0
� �1u

0000.x2/ D p1; �a < x2 < a; (2.168a)

u.˙a/ D u00.˙a/ D 0 (2.168b)

with p1 D @p

@x2
the constant pressure gradient. At this point, we know that there

exists at least one solution of the nonlinear boundary-value problem (2.165a,b,c),
(2.166), such that

v � vp 2 H 4.�a/ (2.169)

namely, v D vp .
Our goal in this section will be to show that, under specific restrictions on the

constitutive parameters �, �0, �1, and ˛, the plate separation 2a, and the constant
pressure gradient p1 associated with the problem (2.168a,b), v D vp is the unique
solution of the boundary-value problem (2.165a,b,c), (2.166) in the domain �a
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which satisfies the regularity condition (2.169); to this end we set w D v � vp

and examine some of the consequences of the condition w 2 H 4.�a/ in the next
subsection.

2.4.2 The Condition w 2 H4.�a/

In Sect. 2.4.1 we set w D v � vp where v and vp are, respectively, (1) any solution
of (2.165a,b,c), (2.166) and (2) the vector field (2.167) which is determined by the
unique, classical, solution of (2.168a,b). In this subsection we use the conventional
notation

Dˇw D @jˇjw
@ˇ1x1@ˇ2x2@ˇ3x3

where ˇ D .ˇ1; ˇ2; ˇ3/, ˇi � 0, i D 1; 2; 3, and jˇj D ˇ1Cˇ2Cˇ3. The condition
w 2 H 4.�a/ then reads

X
jˇj�4

Z
�a

ˇ̌ˇ̌
Dˇw

ˇ̌ˇ̌2
dx < 1

which is equivalent to

3X
iD1

X
jˇj�4

Z 1

�1

Z 1

�1

�Z a

�a

ˇ̌
Dˇwi .x1; x2; x3/

ˇ̌2
dx2

�
dx1 dx3 < 1 (2.170)

Setting

W
ˇ
i .x1; x3/ D

Z a

�a

ˇ̌
Dˇwi .x1; x2; x3/

ˇ̌2
dx2 (2.171)

we may rewrite (2.170) in the form

3X
iD1

X
jˇj�4

Z 1

�1

Z 1

�1
W
ˇ
i .x1; x3/dx1 dx3 < 1: (2.172)

The finiteness of the integrals displayed in (2.172) now implies (see Fig. 2.2) that
there exists a sequence fSng of smooth surfaces in x1; x2; x3 space intersecting,
for each n, the planes at x2 D ˙a, in a sufficiently smooth fashion, along which
x21 C x23 ! 1, as n ! 1, and such that

W
ˇ
i .x1; x3/

ˇ̌
NSn ! 0; as n ! 1 (2.173)
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Γ−
n

Γ+
n

Ωn

x2 = −a

S̃n

x2 = a

Fig. 2.2 The domain �n in
Lemma 2.6

for jˇj � 4, 1 � i � 3, where NSn is the set of all points .x1; x2; x3/ lying on
Sn such that �a < x2 < a. If we define �ṅ to be the sets of points lying on the
planes x2 D ˙a which are bounded, respectively, by the curves of intersection of Sn
with the planes at x2 D ˙a, then by the terminology “sufficiently smooth”, in the
definition of Sn, we mean simply that the bounded domain�n � R3 with boundary

@�n D NSn [ �C
n [ ��

n (2.174)

admits of application of the divergence theorem. By virtue of the definition (2.171)
ofW ˇ

i , the criterion (2.173), and the Sobolev embedding lemma (see Appendix A),
it follows that for jˇj � 3,

max
Œ�a;a�

ˇ̌
Dˇwi .x1; x2; x3/

ˇ̌
NSn ! 0; as n ! 1 (2.175)

for each i D 1; 2; 3. The radiation conditions expressed by (2.175) are the principal
consequences of the restriction w 2 H 4.�a/, which will be of use to us in the
following subsections; among the results which follow from this restriction is the
following lemma of Poincaré type:

Lemma 2.6. Let w 2 H 4.�a/ with w.˙a/ D 0; then,

Z
�a

jjwjj2dx � .2a2 C �/2
Z
�a

ˇ̌ˇ̌r2w
ˇ̌ˇ̌2
dx (2.176)

for any � > 0, where jj�jj is the Euclidean norm on R
3.

Proof. We set w D .w1;w2;w3/ and let w represent any of the wi , i D 1; 2, or 3. As

w.x1; x2; x3/ D
Z x2

�a
@w

@x2
.x1; �; x3/ d�
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we have

w2.x1; x2; x3/ � 2a

Z a

�a

�
@w

@x2

�2
dx2

and, therefore,

Z 1

�1

Z 1

�1

Z a

�a
w2.x1; x2; x3/dx2 dx1 dx2 � 4a2

Z 1

�1

Z 1

�1

Z a

�a

�
@w

@x2

�2
dx2 dx1 dx3

� 4a2
Z 1

�1

Z 1

�1

Z a

�a
jjrwjj2dx2 dx1 dx3:

(2.177)

Now we consider
Z
�a

jjrwjj2 dx where �n is the bounded domain in R
3 which is

bounded by the smooth surface @�n of (2.174); we compute that

Z
�n

jjrwjj2 dx D
Z
�n

@w

@xi

@w

@xi
dx D

Z
�n

@

@xi

�
w
@w

@xi

�
dx �

Z
�n

wr2wdx

D
Z
@�n

w
@w

@xi

i.n/d	n �

Z
�n

wr2wdx

D �
Z
�

C
n

w
@w

@x1
daC C

Z
��
n

w
@w

@x1
da�

C
Z

NSn
w
@w

@xi
Q
i.n/d Q	n �

Z
�n

wr2wdx (2.178)

where �.n/ is the exterior unit normal to @�n, Q�.n/ the exterior unit normal to QSn,
da˙ the infinitesmal surface elements in the domains �ṅ , located in the planes at
x2 D ˙a, d	n the infinitesmal surface element on @�n, and d Q	n the infinitesmal
surface element on QSn. In as much as w.˙a/ D 0, w vanishes on �ṅ , for each n,
and (2.178) reduces to

Z
�n

jjrwjj2dx D
Z

QSn
w
@w

@xi
Q
i.n/d Q	n �

Z
�n

wr2wdx: (2.179)

Letting n ! 1 in (2.179), and employing the radiation condition (2.175), we obtain
Z
�a

jjrwjj2 dx D
Z
�a

.�w/r2wdx � 1

2

Z
�a

w2dx C 

2

Z
�a

.r2w/2 dx

(2.180)

for any  > 0. Combining (2.180) with (2.177) we have, therefore, the estimate

1

4a2

Z
�a

w2 dx � 1

2

Z
�a

w2 dx C 

2

Z
�

.r2w/2 dx
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or, for any  > 2a2,

Z
�a

w2 dx � 

2
�
1
4a2

� 1
2

�
Z
�a

.r2w/2 dx: (2.181)

The lemma now follows if we write down (2.181) for each of w1, w2, and w3, sum
the resulting three estimates, and take  D 2a2 C � , with � any positive constant.

ut

2.4.3 Key Lemmas for Nonlinear Viscosity and the Poiseuille
Flow in�a

Prior to stating and proving the uniqueness theorem for steady channel flow of a
bipolar, viscous fluid in Sect. 2.4.4, we will establish, in this subsection, two key
lemmas; one of these relates directly to the structure of the nonlinear viscosity
(2.165c) while the other is based on the structure of the Poiseuille flow field in
�a. The first result is the following inequality for vectors in R

n:

Lemma 2.7. Let u D .u1; : : : ; un/, v D .v1; : : : ; vn/, and suppose that � > 0 and
0 < ˛ < 1; then

nX
iD1

0
B@ ui�

� C jjujj2
�˛=2 � vi�

� C jjvjj2
�˛=2

1
CA .ui � vi/ � 0 (2.182)

Proof. We let 	 stand for the sum on the left-hand side of the inequality in (2.182);
then,

	 D jjujj2�
� C jjujj2

�˛=2 C jjvjj2�
� C jjvjj2

�˛=2 � u � v

2
64 1�

� C jjujj2
�˛=2 C 1�

� C jjvjj2
�˛=2

3
75

� jjujj2�
� C jjujj2

�˛=2 C jjvjj2�
� C jjvjj2

�˛=2 � jjujjjjvjj

2
64 1�

� C jjujj2
�˛=2 C 1�

� C jjvjj2
�˛=2

3
75

D

0
B@ jjujj�

� C jjujj2
�˛=2 � jjvjj�

� C jjvjj2
�˛=2

1
CA .jjujj � jjvjj/ : (2.183)

We now set, for s 2 R1,

�.s/ D s.� C s2/�˛=2; 0 < ˛ < 1 (2.184a)
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then

� 0.s/ D .� C s2/�.˛=2C1/.� C .1 � ˛/s2/ (2.184b)

so that � 0.s/ > 0, in which case for s1 � s2,

.�.s1/� �.s/2//.s1 � s2/ � 0

and the Lemma 2.7 follows from the last inequality in (2.183). ut
The second lemma in this subsection depends on the qualitative behavior of

solutions to the nonlinear boundary-value problem (2.168a,b) as well as on the
structure of the solutions to the associated non-Newtonian problem (2.56a,b), which
we rewrite here as

�0

"�
1

2
u0
0.x2/

��˛=2
u0
0.x2/

#0
D p1; �a < x2 < a (2.185a)

u0.˙a/ D 0: (2.185b)

Lemma 2.8. Let vp be defined by (2.167) with u.x2I �; �1/, �a � x2 � a, the

unique solution of (2.168a,b). Let ep D 1

2
.rvp C .rvp/t / be the associated rate

of deformation tensor. Then, for any vector field w.�/ 2 L2.�a/,

�
Z
�a

w � ep � wdx � �

Z
�a

jjwjj2 dx (2.186)

where

� D �.a; p1I�0; �1; ˛; �/ 	 a

� jp1ja
�02˛=2

�1=.1�˛/
C 1

2

�
1C 1p

1 � ˛

�p
�:

(2.187)

Proof. We let x 2 �a and refer the rate of deformation tensor ep to its principal
axes at x. Then at x

w � ep � w D e
p
ijwiwj � jjwjj2 � minŒep11; e

p
22; e

p
33� (2.188)

where the epi i , i D 1; 2; 3, are the eigenvalues of ep . As

div vp D tr ep D e
p
11 C e

p
22 C e

p
33 D 0 (2.189)

at least one of the eigenvalues of ep must be negative at x. We denote the largest
negative eigenvalue of ep at x 2 �a by �jep .x/j so that, at x,

w � ep � w � �jep .x/jjjwjj2; x 2 �a: (2.190)
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However, vp and, hence, ep and ep depend only on x2 (and not on either x1 or x3)
so ep .x/ D Nep .x2/, �a � x2 � a. Setting, therefore

jj D max�a�x2�a
ˇ̌ Nep .x2/ˇ̌ (2.191)

we have

w.x/ � ep.x/ � w.x/ � �jjjjw.x/jj2; x 2 �a (2.192)

in which case

�
Z
�a

w � ep � wdx � jj
Z
�a

jjw.x/jj2 dx: (2.193)

Now, consider the tensor field

rvp D
0
@0 u0.x2I �; �1/ 0
0 0 0

0 0 0

1
A

which yields the rate of deformation tensor

ep D 1

2

0
@ 0 u0.x2I �; �1/ 0

u0.x2I �; �1/ 0 0

0 0 0

1
A : (2.194)

Therefore,

det.ep � �I/ D ��
�
�2 � 1

4
u02.x2I �; �1/

�
(2.195)

so that the eigenvalues of ep at any x 2 �a are given by �1 D 0,
�2;3 D ˙u0.x2I �; �1/. We now avail ourselves of the results in Sect. 2.3.3. As
u0.x2I �; �1/ > 0, �a < x2 < 0, and u0.x2I �; �1/ < 0, 0 < x2 < a,

jj D 1

2
max
Œ�a;a�

ˇ̌
u0.x2I �; �1/

ˇ̌

D 1

2
max
Œ�a;a�

u0.x2; �; �1/:
(2.196)

But, u00.x2I �; �1/ < 0, for x2 2 .�a; a/, �; �1 > 0 so, in fact,

jj D 1

2
u0.�aI �; �1/: (2.197)
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Now, if we define, once again, �.s/, s 2 R1, by (2.184a), then (2.168a) may be
written in the form

�0�.u
0/0 � �1u

0000 D p1: (2.198)

Writing (2.198) down for the cases �1 > 0, and �1 D 0, subtracting the resulting
equations, and then integrating with respect to x2, we find that

�.u0.x2I �; �1//� �.u0.x2I �; 0// D ��
1 u000.x2I �; �1/ (2.199)

where ��
1 D .�1=�0/. Setting x2 D �a in (2.199), and using the fact that

u000.�aI �; �1/ < 0, (all derivatives at x2 D �a are, of course, the usual right-
handed derivatives) we find that

�.u0.�aI �; �1// < �.u0.�aI �; 0//I �; �1 > 0: (2.200)

In view of (2.184b), � 0.s/ > 0, 8s 2 R1, so it follows from (2.200) that

u0.�aI �; �1/ < u0.�aI �; 0/; �; �1 > 0 (2.201)

and, thus, by (2.197)

jj < 1

2
u0.�aI �; 0/; �; �1 > 0: (2.202)

But, in light of (2.123), 8x2 2 Œ�a; 0� and � > 0,

u0.x2I �; 0/ < u0
0.x2/C

�
1C 1p

1 � ˛
�p

�: (2.203)

A direct calculation based on (2.76) and (2.77), with y replaced by x2, produces

u0
0.�a/ D a

� jp1ja
u02˛=2

�1=.1�˛/
; 0 < ˛ < 1 (2.204)

so that, by virtue of (2.202)–(2.204),

jj < a

2

� jp1ja
�002

˛=2

�1=.1�˛/
C 1

2

�
1C 1p

1 � ˛

�p
�: (2.205)

The desired conclusion of Lemma 2.8, namely, the estimate (2.186), with � given
by (2.181), now follows directly from (2.193) and (2.205). ut
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2.4.4 Uniqueness of Solutions

Having established Lemmas 2.6–2.8, in the previous subsections, we are now in a
position to state and prove the main result of this section, namely,

Theorem 2.5. For �1 > 0 sufficiently large vp , as defined by (2.167), (2.168a,b),
is the unique solution of the nonlinear boundary-value problem (2.165a,b), (2.166)
satisfying (2.169).

Proof. For simplicity we will begin by replacing 2� and 2�1, respectively, in
(2.165a) by � and �1 where � D �.v/ is given by (2.165c). We already know that
vp is a solution of (2.165a,b), (2.166) which obviously, satisfies (2.169); suppose
that v.x/ is any other solution. Then

v � rv D �rp C r � .�e/� �1r � .�e/;
vp � rvp D �rpp C r � .�pep/� �1r � .�ep/ (2.206)

where ep D 1

2
.rvpC.rvp/t /, and �p D �.ep/, so that �p D �0.�Cepkl epkl /�˛=2;

also rpp D .p1; 0; 0/. Of course vp � rvp D 0, and the second equation in (2.206)
just reduces to (2.168a), but we shall find it convenient for our present purposes to
leave it in the form in which we have written it. If we subtract the second equation
in (2.206) from the first, and set

w D v � vp and P D p � pp (2.207)

then we obtain

.vpCw/�r.vpCw/�vp �rvp D �rPCr�.�e��pep/��1r��.e�ep/ (2.208)

the above result holding throughout �a. Expanding the left-hand side of (2.208),
and then integrating the resulting expression over�n (refer to Fig. 2.2), we obtain

Z
�n

vp � rw � wdxC
Z
�n

w � rw � wdxC
Z
�n

w � rvp � wdx D �
Z
�n

rp � wdx

C
Z
�n

r � .�e � �0ep/ � w dx � �1
Z
�n

r ��.e � ep/ � wdx: (2.209)

We now proceed to study each of the integrals over �n, which are displayed in
(2.209), in the limit as n ! 1. First of all,

Z
�n

vp � rw � wdx D
Z
�n

v
p
j

@wi
@xj

wi dx D 1

2

Z
�n

v
p
i

@

@xj
.wi wi / dx

D 1

2

Z
@�n

v
p
j wiwi 
j.n/d	n � 1

2

Z
�n

wiwi
@v

p
j

@xj
dx:
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But divvp D 0, while w vanishes on both �ṅ , so

Z
�n

vp � rw � wdx D 1

2

Z
QSn
v
p
j wiwi Q
j.n/ d Q	n: (2.210)

As w 2 H 4.�a/ by (2.169), it follows from (2.175) that wi
ˇ̌

QSn ! 0, as n ! 1,
uniformly for �a � x2 � a. Thus

Z
�n

vp � rw � wdx ! 0, as n ! 1: (2.211)

Next,

Z
�n

w � rw � wdx D
Z
�n

wi
@wi
@xj

wj dx D 1

2

Z
�n

wj
@

@xj
.wi wi / dx

D 1

2

Z
@�n

wiwiwj 
j.n/d	n � 1

2

Z
�n

wiwi
@wj
@xj

dx:

But r � w D 0, with w vanishing on �ṅ , so

Z
�n

w � rw � wdx D 1

2

Z
QSn

wiwiwj Q
j.n/d Q	n (2.212)

in which case, just as in (2.210),

Z
�n

w � rw � w dx ! 0, as n ! 1: (2.213)

Continuing, we have,

Z
�n

rP � wdx D
Z
�n

r � .Pw/ dx (as div w D 0)

D
Z
@�n

Pw � �.n/ d	n

D
Z

QSn
Pw � Q�.n/ d Q	n:

Thus, if P is bounded on �a, then by (2.175)

Z
�n

rP � wdx ! 0, as n ! 1 (2.214)
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We now turn our attention to those integrals over�n in (2.209) which do not vanish,
in the limit, as n ! 1. By Lemma 2.8

lim
n!1

Z
�n

w � rvp � wdx D
Z
�a

w � rvp � wdx � ��
Z
�a

jjwjj2 dx (2.215)

with � given by (2.187). Also,

Z
�n

r � .�e � �pe
p/ � wdx D

Z
�n

@

@xj
.�eij � �pepij /.vi � v

p
i / dx

D
Z
@�n

.�eij � �pepij /.vi � v
p
i /
j.n/ d	n

�
Z
�n

.�eij � �0e
p
ij /

�
@vi

@xj
� @v

p
i

@xj

�
dx

D
Z

QSn
.�eij � �0epij /wi Q
j.n/ d Q	n

�
Z
�n

.�eij � �0e
0
ij /

�
@vi

@xj
� @v

p
i

@xj

�
dx

as wi D vi � v
p
i vanishes on both �ṅ . The regularity requirement (2.169) now

implies that

�ij D �.v/eij .v/� �p.v
p/e

p
ij .v

p/ (2.216)

is, for each pair i; j , 1 � i; j � 3, bounded on �a while, as previously, wi
ˇ̌

QSn ! 0

as n ! 1. Thus, letting n ! 1 in the last of the equalities preceding (2.216) we
find that

Z
�a

r � .�e � �pe
p/ � w dx D �

Z
�a

.�eij � �0epij /
�
@vi

@xj
� @v

p
i

@xj

�
dx

D �
Z
�a

.�eij � �pepij /.eij � e
p
ij / dx

(2.217)

where the last result follows from the symmetry of eij , epij in their indices. Finally,

��1
Z
�n

r ��.e � ep/ � wdx D ��1
Z
�n

@

@xj

�
@2

@x2k
.eij � e

p
ij /


wi dx

D ��1
Z
@�n

@2

@x2k
.eij � epij /wi 
j.n/ d	n
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C �1

Z
�n

@wi
@xj

@2

@x2k
.eij � epij / dx

D ��1
Z
@�n

r2.eij � e
p
ij /wi 
j.n/ d	n

C �1

Z
@�n

@wi
@xj

@

@xk
.eij � epij /
k.n/d	n

C �1

Z
�n

@2wi
@xj @xk

@

@xk
.eij � e

p
ij / dx:

For the first boundary integral in this last set of identities, i.e., for

Z
@�n

r2.eij � e
p
ij /wi 
j.n/ d	n

we have wi
ˇ̌
�n

D 0, i D 1; 2; 3 while r2.eij � epij / is bounded on �a, 1 � i; j � 3

and wi
ˇ̌

QSn ! 0, as n ! 1, i D 1; 2; 3, so

Z
@�n

r2.eij � epij /wi 
j.n/d	n ! 0, as n ! 1: (2.218)

For the second boundary integral in the last identity following (2.217) we have

Z
@�n

@wi
@xj

@

@xk
.eij � epij /
k.n/ d	n D

Z
�

C
n

@wi
@xj

@

@xk
.eij � epij /
k.n/ daC

C
Z
��
n

@wi
@xj

@

@xk
.eij � e0ij /
k.n/ da�

C
Z

QSn
@wi
@xj

@

@xk
.eij � epij / Q
k.n/ d Q	n:

(2.219)

Although 
k.n/
ˇ̌
�n

˙ D ˙ık2 for all n, we need not avail ourselves of that fact here;
instead we note that we may write

Z
�˙
n

@wi
@xj

@

@xk
.eij � e

p
ij /
k.n/da

˙ D
Z
�˙
n

@

@xk
.eij .v/ � epij .vp//eij .w/
k.n/da˙

D
Z
�˙
n

@

@xk
.eij .w//eij .w/
k.n/da˙

D
Z
�˙
n

�ijk.w/eij .w/
k.n/da˙ D 0

(2.220)
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by virtue of Lemma B.3 and the second set of boundary conditions in (2.166). The
result of the calculation in (2.220) is to reduce the boundary integral in (2.219) to

Z
@�n

@wi
@xj

@

@xk
.eij � e

p
ij /
k.n/d	n D

Z
QSn
@wi
@xj

@

@xk
.eij � epij / Q
k.n/d Q	n: (2.221)

However,
@

@xk
.eij � epij / is bounded on�a, for 1 � i; j; k � 3, while

@wi
@xj

ˇ̌
ˇ̌

QSn
! 0,

as n ! 1, for 1 � i; j � 3 (all by virtue of the regularity condition (2.169).
Therefore,

Z
@�n

@wi
@xj

@

@xk
.eij � e

p
ij /
k.n/d	n ! 0, as n ! 1: (2.222)

Employing (2.217) and (2.218) in the last of the equations following (2.217), and
letting n ! 1, there results:

��1
Z
�a

r ��.e � ep/ � w dx D ��1
Z
�a

@2wi
@xj @xk

@

@xk
.eij � epij / dx

D ��1
Z
�a

@2wi
@xj @xk

@

@xk
eij .w/ dx

D ��1
Z
�a

@eij .w/
@xk

@eij .w/
@xk

dx:

(2.223)

If we now let n ! 1 in (2.209), and make use of the results in (2.211), (2.213),
(2.214), (2.215), (2.217) and (2.223), we obtain the estimate

��
Z
�a

jjwjj2 dxC
Z
�a

.�eij��0epij /.eij�epij / dx � ��1
Z
�a

@eij .w/
@xk

@eij .w/
@xk

dx:

(2.224)

It requires, however, only a trivial extension of Lemma 2.7 to conclude that at each
fixed x 2 �a, for 0 < ˛ < 1,

�
eij .v/

.� C ekl.v/ekl.v//˛=2
� eij .v

p/

.� C ekl .vp/ekl .vp//˛=2


� .eij .v/ � eij .vp// � 0

(2.225)

and, of course, this leads us from (2.224) to

�1

Z
�a

@eij .w/
@xk

@eij .w/
@xk

dx � �

Z
�a

jjwjj2 dx: (2.226)

However, for w 2 H 4.�a/ satisfying the boundary conditions (2.166),
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Z
�a

@eij .w/
@xk

@eij .x/

@xk
dx � 1

2

Z
�a

@2wi
@xj @xk

@2wi
@xj @xk

dx (2.227a)

while

Z
�a

@2wi
@xj @xk

@2wi
@xj @xk

dx � 1

.2a2 C �/2

Z
�a

jjwjj2 dx (2.227b)

for any � > 0, the last inequality following by the Poincaré-type estimate (2.176)
of Lemma 2.6. Combining (2.226) with (2.227a,b) now produces

�
�1

2.2a2 C �/2
� �

�Z
�a

jjwjj2 dx � 0 (2.228)

from which it is immediate that w D 0, a.e. in L2.�a/, if �1 > 2.2a2 C �/2� . ut

2.5 Existence and Asymptotic Stability of Time-Dependent
Poiseuille Flows

2.5.1 Introduction

In this section our attention will be focused on the natural counterpart to the
boundary-value problem (2.55a,b), i.e., we consider time-dependent Poiseuille flow
in the domain�a 
 Œ0; T /, T > 0, of the form

v D .u.y; t I �; �1/; 0; 0/ (2.229)

which satisfies the initial-boundary value problem

� Pu D �p0 C �0


.� C u02/�˛=2u0�0 � �1u0000; (2.230a)

u.˙a; t I �; �1/ D u00.˙a; t I �; �1/ D 0; t 2 Œ0; T /; (2.230b)

u.y; 0I �; �1/ D u0.yI �; �1/ (2.230c)

where we have once again written v1 D u and y D x2, with Pu D @u

@t
, u0 D @u

@y
, etc.

In certain places we may write ut for
@u

@t
and, without loss of generality, we will set

� D 1. The initial data function u0 is assumed to be of class C2.�a; a/ while the
pressure distribution p.y; t/ is taken as being prescribed, with p 2 C1;0.y; t/ for
y 2 .�a; a/, t > 0.
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Our goals in this section are twofold: first of all, to establish the existence of a
unique solution to the initial-boundary value problem (2.230a,b,c) which is of class
C4;1 on .�a; a/ 
 Œ0; T /, for any T > 0, and, secondly, to prove that the unique
equilibrium solution of the boundary-value problem (2.55a,b) is stable (in fact,
asymptotically stable) in a sense which will be made precise in Sect. 2.5.4.

2.5.2 Some Preliminary Estimates for an Associated Parabolic
Problem

We begin with some considerations related to the solutions of the following linear
parabolic initial-boundary value problem for w D w.y; t/ on .�a; a/ 
 Œ0; T /:

Pw D ��1w.4/ C f .y; t/; (2.231a)

w.˙a; t/ D wxx.˙a; t/ D 0; t > 0; (2.231b)

w.y; 0/ D w0.y/; y 2 Œ�a; a� (2.231c)

where w.4/ 	 w0000, w0.�/ 2 C2.�a; a/, f 2 C0;0.y; t/ for .y; t/ 2 .�a; a/ 

Œ0; T /, and �1 > 0. It is a direct consequence of standard results for linear parabolic
initial boundary-value problems (specifically, e.g., Sects. 9, 10 of part 2 in [Fr]) that
under the hypotheses delineated above, there exists a unique solution w.y; t/ of
(2.231a,b,c) on Œ�a; a�
 Œ0; T /, for any T > 0, which is of class C4;1.y; t/; in order
to carry out the analysis in Sect. 2.5.3, we are interested in deriving certain a priori
estimates which are satisfied by the unique solution w.x; t/ of (2.231a,b,c). Our first
step consists of multiplying (2.231a) through by w.y; �/, .y; �/ 2 .�a; a/ 
 Œ0; T /,
t < T , and integrating over .�a; a/ 
 Œ0; t/; we obtain

1

2

Z a

�a
w2.x; t/ dx C �1

Z t

0

Z a

�a
w.4/wdx d� D 1

2

Z a

�a
w2.x; 0/ dx C

Z t

0

Z a

�a
w � f dx d�

(2.232)

However, in view of the boundary conditions (2.231b), two successive integrations
by parts yield

Z t

0

Z a

�a
w.4/wdx d� D

Z t

0

Z a

�a
w2xx dx d� (2.233)

and, therefore,

Z a

�a
w2.x; t/ dx C 2�1

Z t

0

Z a

�a
w2xxdx d� D 2

Z t

0

Z a

�a
w � f dx d� C

Z a

�a
w2.x; 0/ dx:

(2.234)
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Next, we multiply (2.231a) by Pw.y; �/ and, again, integrate over Œ�a; a� 
 Œ0; t/
so as to obtain

Z t

0

Z a

�a
w2 dx d� D

Z t

0

Z a

�a
f � Pwdx d� � �1

Z t

0

Z a

�a
w.4/ Pwdx d�: (2.235)

Applying two successive integrations by parts to the second integral on the right-
hand side of (2.235) yields, in view of (2.231b),

Z t

0

Z a

�a
w.4/ Pwdx d� D

Z t

0

Z a

�a
wxx Pwxx dx d�

D 1

2

Z a

�a
w2xx.x; t/ dx � 1

2

Z a

�a
w2xx.x; 0/ dx

(2.236)

so that

2

Z t

0

Z a

�a
w2 dx d� C �1

Z a

�a
w2xx.x; t/ dx

D 2

Z t

0

Z a

�a
f � Pwdx d� C �1

Z a

�a
w2xx.x; 0/ dx:

(2.237)

Now, if w.y; t/ is a solution of (2.231a,b,c), then so is w.�y; t/; by uniqueness of
solutions, therefore, w.y; t/ D w.�y; t/, for y 2 .�a; a/, t > 0. It then follows
that wy.y; t/ D �wy.�y; t/ for y 2 .�a; a/, t > 0, in which case wy.0; t/ D 0 for
t > 0. In view of this observation, elementary calculations show that 9k.a/ > 0 (in
fact, is is a simple exercise to show that we may take k.a/ D a4=4) such that

Z a

�a
w2.x; t/ dx � k.a/

Z a

�a
w2xx.x; t/ dx; t > 0; (2.238a)

Z t

0

Z a

�a
w2.x; �/ dx d� � k.a/

Z t

0

Z a

�a
w2xx.x; �/ dx d�: (2.238b)

Returning to (2.234) we have, by (2.238b), for any ı > 0,

2

Z t

0

Z a

�a
f � wdx d� � ı

Z t

0

f 2dx d� C 1

ı

Z t

0

Z a

�a
w2 dx d�

� ı

Z t

0

Z a

�a
f 2 dx d� C k.a/

ı

Z t

0

Z a

�a
w2xx dx d�

(2.239)

so employing this last estimate in (2.234) yields
Z a

�a
w2.x; t/ dxC

�
2�1 � k.a/

ı

�Z t

0

Z a

�a
w2xx dx d�

� ı

Z t

0

Z a

�a
f 2 dx d� C

Z a

�a
w2.x; 0/ dx

(2.240)
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where we assume, of course, that ı has been chosen so large that ı > k.a/=2�1. In
a similar fashion

2

Z t

0

Z a

�a
f � Pw dx d� �

Z t

0

Z a

�a
f 2 dx d� C

Z t

0

Z a

�a
Pw2 dx d� (2.241)

and use of this estimate in (2.237) leads us to

Z t

0

Z a

�a
Pw2 dx d� C �1

Z a

�a
w2xx.x; t/ dx

�
Z t

0

Z a

�a
f 2 dx d� C �1

Z a

�a
w2xx.x; 0/ dx:

(2.242)

By virtue of the estimates (2.240), (2.242) we see that the unique solution of
(2.231a,b,c) satisfies

w.�; t/ 2 W 2;2.�a; a/; t > 0; (2.243a)

Pw 2 L2..�a; a/ 
 Œ0; t//; t > 0; (2.243b)

w 2 H2..�a; a/ 
 Œ0; t//; t > 0: (2.243c)

2.5.3 Existence of Weak Solutions

In this section we will employ an iteration scheme to establish the existence of an
appropriately defined weak solution to the following initial-boundary value problem
on Œ�a; a� 
 Œ0; T /, T > 0, for the function v D v.y; t/:

Pv D ��1v.4/ C N�.v0/0 C g.y; t/; .y; t/ 2 .�a; a/ 
 Œ0; T /; (2.244a)

v.˙a; t/ D vxx.˙a; t/ D 0; t > 0; (2.244b)

v.y; 0/ D v0.y/: (2.244c)

In (2.244a,b,c), for s 2 R1

N�.s/ D �0.� C s2/�˛=2s (2.245)

and we take g 2 C0;0.y; t/ for .y; t/ 2 Œ�a; a� 
 Œ0; T /. The initial-boundary value
problem (2.230a,b,c) may be directly identified with (2.244a,b,c) if we fix � > 0,

�1 > 0, take � D 1, u.y; t I �; �/ D v.y; t/, and
@p

@y
.y; t/ D g.y; t/. We make the

following definition rrelative to the problem (2.244a,b,c):
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Definition 2.1. A function v.y; t/ defined on QT D Œ�a; a� 
 Œ0; T /, is a weak
solution of the initial-boundary value problem (2.244a,b,c) provided that Pv 2
L2.QT /, v00 2 L2.QT /, while v satisfies (2.244b,c) and, for every test function
� 2 C1

0 .QT /,

“
QT

� Pv dx dt C�1

“
QT

�00v00 dx dt D
“
QT

� N� 0.w0/w00 dx dt C
“
QT

�g dx dt:

(2.246)

Prior to introducing the iteration scheme associated with (2.244a,b,c) we again
note that (as a direct consequence of Sects. 9, 10, part 2, of [Fr]) the linear parabolic
equation

Pv D ��1v.4/ C h.y; t/vyy C g.y; t/ (2.247)

subject to the initial and boundary data (2.244b,c), possesses, for h 2 C0;0.y; t/, on
Œ�a; a� 
 Œ0; T /, a unique classical solution v 2 C4;1.y; t/ on .�a; a/ 
 Œ0; T /.

Consider now the iteration scheme defined by solutions of the initial-boundary
value problem

Pwn D ��1w.4/n C N� 0.w0
n�1/w00

n C g.y; t/; (2.248a)

wn.˙a; t/ D w00
n.˙a; t/ D 0; (2.248b)

wn.y; 0/ D v0.y/ (2.248c)

for .y; t/ 2 Œ�a; a� 
 Œ0; T /, and each integer n � 1, where

w0.y; t/ D j.y; t/; .x; t/ 2 Œ�a; a� 
 Œ0; T / (2.248d)

is given, with j 2 C1;0.y; t/ for .y; t/ 2 .�a; a/ 
 Œ0; T /. Clearly, for each n �
1, hn.y; t/ 	 N� 0.w0

n�1.y; t// is continuous on Œ�a; a� 
 Œ0; T / so that (2.248a–d)
possesses a unique solution wn.y; t/ on Œ�a; a� 
 Œ0; T /, with wn 2 C4;1.y; t/ for
.y; t/ 2 .�a; a/ 
 Œ0; T /; for this solution wn.y; t/ we may state the following:

Lemma 2.9. Let wn.y; t/, for n � 1, be the unique classical solution of
(2.248a,b,c) on Œ�a; a� 
 Œ0; T /, T > 0, subject to (2.248d). Then 9k.T / > 0

such that, for t � T ,

ˇ̌ˇ̌
w00
n

ˇ̌ˇ̌
L1.Œ0;t /IL2.�a;a// � k1=2.T /; (2.249a)

jj PwnjjL2.Œ0;t /�.�a;a// � �
1=2
1 k1=2.T /; (2.249b)

ˇ̌ˇ̌
w00
n

ˇ̌ˇ̌
L2.Œ0;t /�.�a;a// � 1p

2
�
1=2
1 �˛=2k1=2.T /: (2.249c)
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Proof. If we set

fn.y; t/ D g.y; t/C N� 0.w0
n�1/w00

n (2.250)

then (2.248a) assumes the form

Pwn D ��1w.4/n C fn.y; t/; n � 1 (2.251)

and the a priori estimates associated with the parabolic initial-boundary value
problem (2.231a,b,c) apply to the unique solution wn.y; t/, n � 1 of (2.251),
(2.248b,c) subject to the choice of the initial iterate as per (2.248d). In order to
implement the aforementioned estimates we note that by virtue of (2.245), for
s 2 R1,

N� 0.s/ D � C .1 � ˛/s2
.� C s2/1C.˛=2/

> 0 (2.252)

and that N� 0 is an even function of s 2 R1. Furthermore, a straightforward calculation
yields

N� 00.s/ D �s
�

˛

.� C s2/1C.˛=2/

�
� C .1 � ˛/s2

� C s2


C 2˛�

.� C s2/2C.˛=2/

	
(2.253)

so that N� 00.s/ < 0, for s > 0. It thus follows that

max
s2R1

N� 0.s/ D N� 0.0/ D ��˛=2: (2.254)

Now, in view of (2.250) and (2.254),
Z t

0

Z a

�a
f 2
n dx d� � 2

Z t

0

Z a

�a
g2.x; �/ dx d�

C 2

Z t

0

Z a

�a
� N� 0.w0

n�1/
�2
.w00

n/
2 dx d�

� 2

Z t

0

Z a

�a
g2.x; �/ dx d� C 2��˛

Z t

0

Z a

�a
.w00

n/
2 dx d�:

(2.255)

We set, for n � 1,

bn.t/ D
Z t

0

Z a

�a
.w00

n.x; �//
2 dx d� (2.256)

so that bn.0/ D 0, while

bn.t/ D
Z a

�a
w002
n .x; t/ dx (2.257)
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and by (2.248c)

Pbn.0/ D
Z a

�a
w002
n .x; 0/ dx D

Z a

�a
v002
0 .x/ dx: (2.258)

Applying the estimate (2.242) with w ! wn and f ! fn we have

Z t

0

Z a

�a

Pw2n dx d� C �1

Z a

�a

w002
n .x; t/ dx �

Z t

0

Z a

�a

f 2n dx d� C �1

Z a

�a

w002
n .x; 0/ dx:

(2.259)

If we drop the first integral on the left-hand side of (2.259), and employ (2.255)–
(2.258), we are led to the differential inequality

� Pbn.t/ � C.T /C 2��˛bn.t/C �1 Pbn.0/ (2.260)

for t � T , where

C.T / 	 2

Z T

0

Z a

�a
g2.x; �/ dx d�: (2.261)

Setting, for n � 1,

dn.T / D 1

�1
C.T /C Pbn.0/

D 1

�1
C.T /C

Z a

�a
v002
0 .x/ dx 	 d.T /

(2.262)

we see that (2.260) can be rewritten in the form

Pbn.t/ � d.T /C
�

2

�1�˛

�
bn.t/ (2.263)

which, by use of the integrating factor exp

�
� 2

�1�˛
t

�
, yields the estimate

bn.t/ � �1�
˛

2
d.T /

�
exp

�
2t

�1�˛

�
� 1


: (2.264)

However, substitution of (2.264) back into (2.263) then produces the bound

Pbn.t/ � d.T / exp

�
2

�1�˛
t


; t � T: (2.265)
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We now return to the estimate (2.259) which, when coupled with (2.255)–(2.258)
and (2.261), we can use to deduce the inequality

Z t

0

Z a

�a
Pw2n dx d� C �1 Pbn.t/ � C.T /C 2��˛bn.t/C �1 Pbn.0/: (2.266)

Employing the estimate (2.264) for bn.t/ on the right-hand side of (2.266) we now
find, in succession, that for t � T ,

Z t

0

Z a

�a
Pw2n dx d� C �1 Pbn.t/ � C.T /C �1 Pbn.0/

C �d.T /

�
exp

�
2t

�1�˛

�
� 1



D .C.T /C � Pbn.0// exp

�
2t

�1�˛

�

D �d.T / exp

�
2t

�1�˛

�
:

(2.267)

If we set

k.T / 	 d.T / expf.2=�1�˛/T g (2.268)

then directly from (2.265) and (2.267) we have, for t � T , and n � 1,

Z a

�a
w002
n .x; t/ dx � k.T /; (2.269a)

Z t

0

Z a

�a
Pw2n.x; �/ dx d� � �1k.T / (2.269b)

while, in view of (2.264)

Z t

0

Z a

�a
w002
n .x; �/ dx d� � 1

2
�1�

˛k.T / (2.269c)

for t � T and n � 1. The statements embodied in (2.269a,b,c) are, of course,
equivalent to (2.249a,b,c). ut

We are now ready to state and prove the main result in this section, namely,

Theorem 2.6. Let wn.y; t/ be the unique classical solution, for n � 1, of
(2.248a,b,c) on Œ�a; a� 
 Œ0; T /, T > 0, which is subject to (2.248d). Then, as
n ! 1, fwng converges to a weak solution of the initial-boundary value problem
(2.244a,b,c).



2.5 Existence and Asymptotic Stability of Time-Dependent Poiseuille Flows 131

Proof. As a consequence of (2.249b,c), the boundary conditions (2.248d), and a
straightforward interpolation argument, it follows that 9C > 0 such that for t � T ,
and n � 1,

ˇ̌ˇ̌
w0
n

ˇ̌ˇ̌
H1=2.Œ0;t /�.�a;a// � C

�
jj PwjjL2.Œ0;t /�.�a;a// C ˇ̌ˇ̌

w00
n

ˇ̌ˇ̌
L2.Œ0;t /�.�a;a//

�

�
�
1C 1p

2
�˛=2

�
C�

1=2
1 k1=2.T /:

(2.270)

We now set QT D Œ�a; a� 
 Œ0; T /. As a direct result of the bounds (2.249b,c) and
(2.270) it follows that (by picking, if necessary, subsequences of previously chosen
subsequences) we may single out a subsequence of fwng, which we will also denote
by fwng, such that wn ! w weakly in L2.QT / and, hence, also in the sense of
distributions, while

w00
n ! w00; weakly in L2.QT /; (2.271a)

Pwn ! Pw; weakly in L2.QT /; (2.271b)

w0
n ! w0; weakly in H1=2.QT /: (2.271c)

However, by the compactness of the embedding H1=2.QT / ,! L2.QT / (see
Appendix A) it follows from (2.271c) that

fw0
n ! w0 strongly in L2.QT /g ) fw0

n ! w0 a.e. in QT g: (2.272)

Now, let �.y; t/ be a test function, i.e., suppose that � 2 C1
0 .QT /; we multiply

(2.248a) through by � and integrate over Œ�a; a� 
 Œ0; T / obtaining, after two
integrations by parts,

“
QT

� Pwn dx dt C �1

“
QT

�00w00
n dx dt

D
“
QT

� N� 0.w0
n�1/w00

n dx dt C
“
QT

�g dx dt:

(2.273)

As N� 0 is clearly continuous, by (2.272) we have that N� 0.w0
n�1/ ! N� 0.w0/, a.e. inQT ,

while N� 0 > 0 with N� 0.w0
n�1/ � N� 0.0/, 8n � 1. Thus,

N� 0.w0
n�1/ ! N� 0.w0/; strongly in L2.QT /: (2.274)

Therefore, by the dominated convergence theorem,

“
QT

� N� 0.w0
n�1/w00

ndx dt !
“

QT

� N� 0.w0/w00 dx dt (2.275)
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as n ! 1. Extracting the limit in (2.273) as n ! 1, we find that, as a consequence
of (2.271a,b) and (2.275), w.y; t/ satisfies

“
QT

� Pw dx dt C �1

“
QT

�00w00 dx dt

D
“
QT

� N� 0.w0/w00 dx dt C
“
QT

�g dx dt:

(2.276)

Clearly w satisfies, as well, the boundary conditions (2.244b) and the initial
condition (2.244c), which completes the proof of Theorem 2.6. ut
Remarks. The regularity of the weak solution to (2.244a,b,c) now follows by
standard arguments (e.g., see [Fr]). It is, in fact, easily established that v 2 C4.y; t/

on .�a; a/ 
 Œ0; T / for any T > 0.

2.5.4 Uniqueness and Stability of Solutions

In the last subsection we established the existence of a weak solution v.y; t/ to the
initial-boundary value problem (2.244a,b,c), indicating that, in fact, v 2 C4;1.y; t/

on .�a; a/
 Œ0; T /, T > 0, so that the weak solution is actually a classical solution
of our problem. In this section we prove that any classical solution of (2.244a,b,c) is
unique and that the (unique) equilibrium Poiseuille flow (2.9), with u.yI �; �1/ being
the solution of the boundary-value problem (2.55a,b), is linearly asympotitically
stable as well as asymptotically stable, within the class of all flows in �a 
 Œ0; T /,
T > 0, of the Poiseuille type (2.10). We begin with the following result:

Theorem 2.7. If u.y; t/, v.y; t/ are any two classical solutions of the initial
boundary-value problem (2.244a,b,c), i.e., two solutions in C4;1.y; t/, and
w.y; t/ D v.y; t/ � u.y; t/, then for any t > 0, jjw.�; t/jjL2.�a;a/ D 0.

Proof. As in the hypothesis of the theorem we set w D v � u in which case w.y; t/
clearly satisfies

Pw C �1w
.4/ D N�.w0 C u0/0 � N�.u0/0: (2.277)

Multiplying (2.277) through by w.y; t/, integrating over Œ�a; a�, and then integrat-

ing by parts, twice in succession, the resulting integral
Z a

�a
ww.4/ dx, we obtain

1

2

d

dt

Z a

�a
w2 dx C �1

Z a

�a
w2xx dx D

Z a

�a
� N�.w0 C u0/� N�.u0/

�0
wdx (2.278)
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where we have used the fact that 8t > 0, w.˙a; t/ D wxx.˙a; t/ D 0. Integrating
the integral on the right-hand side of (2.278) by parts, we are led from (2.278) to

1

2

d

dt

Z a

�a
w2 dx C �1

Z a

�a
w2xx dx D �

Z a

�a
� N�.w0 C u0/� N�.u0/

�
w0 dx

or

1

2

d

dt

Z a

�a
w2 dx C �1

Z a

�a
w2xx dx D �

Z a

�a

 N�.v0/� N�.u0/

�
.v0 � u0/ dx: (2.279)

However,

. N�.p/ � N�.q//.p � q/ � 0; 8p; q 2 R1

by virtue of the monotonicity of N� , i.e. (2.252). From (2.279), therefore, we obtain

Z a

�a
w2.x; t/ dx �

Z a

�a
w2.x; 0/ dx D 0 (2.280)

as u.y; 0/ D v.y; 0/ 	 v0.y/, 8y 2 Œ�a; a�. ut
Now, if we make use of (2.252), we see that (2.244a) has the equivalent form

Pv D ��1v.4/ C
�
� C .1 � ˛/v02

.� C v02/1C.˛=2/


v00 C g.y; t/ (2.281)

from which it is apparent that if v.y; t/ is a classical solution of (2.244a,b,c) on
Œ�a; a� 
 Œ0; T /, T > 0, then so is v.�y; t/. In view of the uniqueness theorem
proven above we then have v.y; t/ D v.�y; t/, y 2 Œ�a; a�, t > 0, from which
it follows that v0.0; t/ D 0, t > 0. The Poincaré-type estimate of (2.238a) with
k.a/ D a4=4, applies, therefore, to v as does the usual estimate

Z a

�a
v2.x; t/ dx � 4a2

Z a

�a
v2x.x; t/ dx: (2.282)

From here on we will again denote the unique solution of (2.55a,b) by u.y/.
Thus, u.y/ satisfies, for y 2 .�a; a/,

N�.u0.y//0 � �1u0000.y/ D p1 (2.283a)

with

u.˙a/ D u00.˙a/ D 0: (2.283b)
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Also, let vı.y; t/ be the unique classical solution of (2.244a,b,c) with g.y; t/ D
�@p.y; t/

@y
	 �p1, 8t > 0, and v0.y/ D u.y/ C ıf .y/, with ı > 0 and

jjf jjL1.�a;a/ � K , for some K > 0, i.e., vı.y; t/ satisfies

Pvı D ��1v.4/ı C N�.v0
ı/

0 � p1; y 2 .�a; a/; t > 0; (2.284a)

vı.˙a; t/ D v00
ı .˙a; t/ D 0; t > 0; (2.284b)

vı.y; 0/ D u.y/C ıf .y/; y 2 Œ�a; a�: (2.284c)

Now, if ı D 0, then the unique solution of (2.284a,b,c) is clearly v0.y; t/ D u.y/,
y 2 .�a; a/, 8t > 0. Our goal is to study the behavior of the unique classical
solution vı.y; t/, y 2 .�a; a/, as t ! 1. To this end we set

wı.y; t/ D vı.y; t/ � u.y/I y 2 Œ�a; a�; t > 0 (2.285)

in which case wı is easily seen to satisfy

Pwı C �1w
.4/

ı D N�.v0
ı/

0 � N�.u0/0; y 2 .�a; a/; t > 0; (2.286a)

wı.˙a; t/ D w00
ı .˙a; t/ D 0; t > 0; (2.286b)

wı.y; 0/ D ıf .y/; y 2 Œ�a; a�: (2.286c)

We first look at the problem of linear asymptotic stability of the equilibrium solution
u. We write that, to within terms of orderO.

ˇ̌ˇ̌
w0
ı

ˇ̌ˇ̌2
L1.�a;a//,

N�.v0
ı/ 	 N�.w0

ı C u0/ D N�.u0/C N� 0.u0/w0
ı (2.287)

in which case the linearized equation associated with (2.286a) is just

Pwı C �1w
.4/

ı D � N� 0.u0/w0
ı

�0
(2.288)

where

N� 0.u0/ D � C .1 � ˛/u02

.� C u02/1C.˛=2/
: (2.289)

We then have the following result concerning the linearized asymptotic stability of
the (equilibrium) plane Poiseuille solution u.y/:

Theorem 2.8. Let u be the unique solution of the boundary-value problem
(2.283a,b) and wı the unique solution of the linearized initial-boundary value
problem (2.288), (2.286b,c). Then for any ı > 0, and f 2 L2.�a; a/,
jjwı.�; t/jjL2.�a;a/ decays to zero, exponentially, as t ! 1.
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Proof. Multiplying (2.288) through by wı.y; t/, integrating over .�a; a/, and then
integrating the term involving �1 by parts, in the familiar fashion, we obtain

1

2

d

dt

Z a

�a
wı.x; t/ dx C �1

Z a

�a
.w00

ı .x; t//
2 dx D

Z a

�a
. N� 0.u0/w0

ı/
0wı dx

D �
Z a

�a
N� 0.u0/w02

ı dx:

(2.290)

From (2.289)

N� 0.u0/ D .� C u02/�˛=2
�
1 � ˛ u02

� C u02



� .1 � ˛/=.� C u02/˛=2:
(2.291)

But, from the analysis in Sect. 2.2, we know that 9C 0 > 0, independent of � and �1,
such that

ˇ̌ˇ̌
u0ˇ̌ˇ̌

L1.�a;a/ � C 0, in which case (2.291) implies that

N� 0.u0.y// � .1 � ˛/=.� C C 02/˛=2; y 2 Œ�a; a�: (2.292)

Employing the lower bound (2.292) in (2.290) now yields the estimate

1

2

d

dt

Z a

�a
w2ı.x; t/ dx � �.1 � ˛/

.� C C 02/˛=2

Z a

�a
w02
ı .x; t/ dx (2.293)

which is valid for all �1 > 0, any � > 0, and t > 0. However, by virtue of (2.282),
which holds if v.˙a/ D 0 (without regard to whether the condition u0.0/ D 0 is
satisfied),

Z a

�a
w2ı.x; t/ dx � 4a2

Z a

�a
w02
ı .x; t/ dx; 8t > 0: (2.294)

Combining (2.293) and (2.294), we see that, for t > 0,

d

dt

Z a

�a
w2ı .x; t/ dx � �.1 � ˛/

2a2.� C C 02/˛=2

Z a

�a
w2ı .x; t/ dx (2.295)

from which it follows by (2.286c) that, for t > 0,

Z a

�a
w2ı.x; t/ dx � ı2

Z a

�a
f 2.x/ dx � exp.��t/ (2.296)

where � > 0 is given by

� D .1 � ˛/=2a2.� C C 02/˛=2: (2.297)
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Irrespective of the magnitude of the perturbation ıf , therefore, jjwı.�; t/jjL2.�a;a/ !
0, as t ! 1, and the proof of Theorem 2.8 is complete. ut

Because of the monotonicity property associated with N�.�/, and the Poincaré type
inequality (2.283a), we can actually do much better than the linearized asymptotic
stability result expressed by Theorem 2.8 above; in fact we may state the following:

Theorem 2.9. Let u be the unique solution of (2.283a,b), vı the unique solution
of (2.284a,b,c), and set wı D vı � u, so that wı satisfies (2.286a,b,c). Then, for
any ı > 0, and f 2 L2.�a; a/, jjwı.�; t/jjL2.�a;a/ decays to zero, exponentially, as
t ! 1.

Proof. We multiply (2.286a) by wı , integrate over Œ�a; a�, and effectuate the
required integrations by parts employing (2.286b), so as to obtain

1

2

d

dt

Z a

�a
w2ı .x; t/ dx C �1

Z a

�a
w002
ı .x; t/ dt D �

Z a

�a

 N�.v0

ı/ � N�.u0/
�
Œv0
ı � u0� dx:

(2.298)

Using the monotonicity property of N� , i.e., 8p; q 2 R1, . N�.p/� N�.q//.p � q/ � 0,
we obtain from (2.298)

d

dt

Z a

�a
w2ı .x; t/ dx � 2�1

Z a

�a
w002
ı .x; t/ dx: (2.299)

However, vı.y; t/ D vı.�y; t/, and u.y/ D u.�y/, for t > 0, y 2 Œ�a; a�, so
wı.y; t/ D wı.�y; t/, for t > 0, y 2 Œ�a; a�. Thus, w0

ı.0; t/ D 0, 8t � 0, while
wı.˙a; t/ D 0, 8t > 0. The Poincaré type inequality (2.238a) applies, therefore,
to wı and its use in (2.299) produces

d

dt

Z a

�a
w2ı .x; t/ dx � � �1

2a4

Z a

�a
w2ı .x; t/ dx; t > 0: (2.300)

Integration of (2.300) yields

Z a

�a
w2ı .x; t/ dx � ı2

�Z a

�a
f 2.x/ dx

�
exp

���1t
2a4


; t > 0 (2.301)

and Theorem 2.9 has been established. ut



Chapter 3
Incompressible Bipolar Fluid Dynamics:
Examples of Other Flows and Geometries

3.1 Introduction

The mathematical model of a nonlinear, incompressible, bipolar viscous fluid
was introduced in Sect. 1.6 and conforms to the constitutive hypotheses for the
Cauchy stress tensor �ij and the first multipolar stress tensor �ijk which are given,

respectively, by (2.1a,b). In (2.1a,b),p is the pressure, eij D 1

2

�
@vi

@xj
C @vj

@xi

�
is the

usual rate of deformation tensor, v is the fluid velocity (which satisfies r � v D 0 in
the relevant domain), and the constitutive parameters �0, �1, and � are positive real
numbers, while ˛ (in this chapter) again satisfies 0 < ˛ < 1. When ˛ D �1 D 0, the
bipolar model reduces to the standard one associated with the Stokes constitutive
hypothesis, as delineated in Sect. 1.1, and the associated boundary-value, space-
periodic, or pure initial value problems are those associated with the Navier–Stokes
equations.

In Sect. 1.7, three standard problems for incompressible fluid flow were analyzed
within the context of the bipolar model with � D �1 D 0, namely, plane Poiseuille
flow between parallel plates, proper Poiseuille flow in a circular pipe, and Couette
flow over a plate moving with constant velocity. Then, in Chap. 2, a deeper study of
the plane Poiseuille flow of an incompressible, nonlinear, bipolar viscous fluid was
presented; existence, uniqueness, and continuous dependence (on the parameters
� and �1, as � ! 0, �1 ! 0) were established in Sect. 2.2, for this problem,
the continuous dependence with respect to �1 holding in the norm of C1Cı for
0 < ı < 1=2. Appropriate Reynolds numbers for steady Poiseuille flow were
generated in Sect. 2.3, as well as explicit estimates for the solution of the problem
with � ¤ 0,�1 ¤ 0 in terms of the solution of the associated problem corresponding
to � D �1 D 0. In Sect. 2.4, the solution vp of the boundary-value problem for
steady plane Poiseuille flow of an incompressible bipolar fluid in the parallel-walled
channel given, e.g., by (2.164) was proven to be unique within the class of all steady
flows of a viscous bipolar fluid in �a whose associated velocity fields v satisfy
v � vp 2 H 4.�a/. Finally, existence of a unique solution v of the time-dependent

H. Bellout and F. Bloom, Incompressible Bipolar and Non-Newtonian Viscous Fluid
Flow, Advances in Mathematical Fluid Mechanics, DOI 10.1007/978-3-319-00891-2__3,
© Springer International Publishing Switzerland 2014
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plane Poiseuille problem given by (2.229), (2.230a,b,c), where u D v1 and y D x2,
was established in Sect. 2.5 using an iteration scheme in conjunction with estimates
for an associated parabolic initial boundary-value problem; in addition it was shown
that the unique, steady plane Poiseuille flow vp is both linearly asymptotically
stable, as well as asymptotically stable, within the class of all flows in �a 
 Œ0; T /,
T > 0, of the Poiseuille type (2.229), (2.230a,b,c).

In this chapter, we move beyond the elementary examples given in Sect. 1.7 and
the detailed description and analysis of plane Poiseuille flow of an incompressible,
nonlinear, viscous bipolar fluid presented in Chap. 2. We consider four distinct
problems involving the motion of a nonlinear, incompressible, bipolar fluid: (1) the
classical problem of flow between concentric rotating cylinders, (2) the problem of
the stability of a bubble immersed in an incompressible bipolar fluid, albeit with
� D �1 D 0, (3) the exterior flow of a viscous, bipolar fluid around an obstacle
in the plane, and (4) the problem of flow over a non-smooth boundary, specifically
flow of an incompressible, bipolar, viscous fluid in a polygonal domain.

The steady flow of an incompressible, bipolar, viscous fluid between rotating
concentric circular cylinders, i.e., proper Couette flow, is studied in Sect. 3.2.
The boundary-value problem governing this steady, proper, Couette flow is first
formulated and then solved for degenerate values of the constitutive parameters.
For the general situation in which the constitutive parameters satisfy � > 0,
�1 > 0, existence and uniqueness of the solution to the boundary-value problem
is established. Continuous dependence of the solution, in appropriate norms, is also
established with respect to the parameters governing the nonlinearity and multipo-
larity of the model as those constitutive parameters converge to zero. In Sect. 3.3
we consider the dynamical behavior of a spherical cavity, with a fixed center,
in an unbounded, incompressible, viscous non-Newtonian fluid whose Cauchy stress
tensor � is of the form (2.1a) with � D �1 D 0. Using elementary dynamical
systems theory we delineate the locally asymptotically stable, stable, and unstable
equilibrium states of the spherical vapor bubble; stability results for the equilibrium
states of bubbles immersed in a Newtonian fluid are obtained as a special case.
The problem of steady flow of an incompressible fluid past a fixed body �0 � R

2,
as modeled by the Navier–Stokes system, has been studied extensively but is, for the
most part, unresolved. Leray in 1933 [Le1] proved the existence of a velocity field
which satisfies, in a weak sense, the relevant boundary-value problem, but it is still
unknown as to whether or not this solution also satisfies the associated radiation
condition at infinity in R

2; this particular problem was resolved in [FiS] but only
under the condition that the velocity at infinity is sufficiently small in magnitude.
However, for the problem of stationary flow of an incompressible, bipolar, viscous
fluid past a bounded domain in R

2 we are able, in Sect. 3.4, to prove the existence
of a unique solution satisfying prescribed conditions at infinity. It is also shown
in Sect. 3.4 that the bipolar model of fluid flow predicts the existence of a drag
on the immersed body and, thus, does not lead to a d’Alembert type paradox. The
last problem investigated in this chapter is that of the stability of solutions to the
incompressible bipolar equations with respect to perturbations of the boundary of
the domain; unlike the situation with respect to the Navier–Stokes equations, it is
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demonstrated in Sect. 3.5 that, in general, solutions for the bipolar model are not
stable with respect to perturbations of the boundary by Lipschitz curves. We also
study, in Sect. 3.5, the regularity of solutions to the bipolar equations in a polygonal
domain�; it is shown that near a corner in�, if the forcing function for the system,
F 2 L2.�/, then any weak solution inH 2.�/\H 1

0.�/may be written as the sum
of two vector fields, a regular field in H 4

loc.�/, and a singular field which is not in
H 4

loc.�/ and whose precise behavior depends on the interior angle of the corner.
Finally, we provide in Sect. 3.5 an explicit characterization of the local singularities
at a corner on @� in terms of the interior angle of the corner; the behavior of these
local singularities are computed using MAPLE and sharp a priori estimates are used
to show that there are no other singularities.

3.2 Flow Between Rotating Cylinders

3.2.1 Introduction

A classical problem in the study of motions of an incompressible viscous fluid is
that of steady (or equilibrium) flow between rotating concentric circular cylinders,
i.e., proper Couette flow. Under the assumption that the fluid is governed by the
classical Stokes Law, the solution of the problem of proper Couette flow may be
found in most classical texts on fluid dynamics (e.g., [CM, BaG], or [LL]). In fact,
if v.r/ denotes the tangential velocity of the fluid, which is supposed to lie between
rigid cylinders of radii r1 and r2 (> r1) that rotate with constant angular velocities
�1 and �2, r being the radial distance from the center line of the inner cylinder to
a point in the fluid, then

v.r/ D 1

r

�
�1 ��2

r�2
1 � r�2

2

�
C r

�
�1r

2
1 ��2r

2
2

r21 � r22

�
(3.1)

is the resulting steady flow determined by Stokes Law and the non-slip boundary
conditions

�.r1/ 	 v.r1/

r1
D �1; �.r2/ 	 v.r2/

r2
D �2: (3.2)

Also, the pressure distribution required to maintain the flow (3.1) is given by

��1p.r/ D 1

2
A2r2 � 1

2
B2r�2 C 2AB ln r (3.3)

where � is the (constant) fluid density and

A D r22�2 � r21�1

r22 � r21
; B D �2 ��1

r�2
2 � r�2

1

: (3.4)
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Finally, the frictional couple exerted, per unit length, across a cylindrical surface in
the fluid of radius r , r1 < r < r2, is independent of r and is given by

2�r2�r� D �r��0
�
�1 ��2

r�2
1 � r�2

2

�
(3.5)

where �r� is the tangential stress. In deriving the relations (3.1), (3.3), (3.4), and
(3.5), one writes the equilibrium Navier–Stokes equations in cylindrical coordinates
.r; �; z/ and looks for solutions, subject to (3.2), of the form

vr D Pr D 0; v� D r P�.r/; vz D Pz D 0 (3.6)

which can be supported by a pressure distribution p D p.r/; in such a situation
(3.1) reduces to

�r� D 2�0er� (3.7)

where

er� D 1

2

�
@v

@r
� v

r

�
: (3.8)

In this section we will be concerned with the existence (and structure) of equilibrium
solutions of the form (3.6) for the case in which (1) the domain � is the region
bounded by two concentric circular cylinders of radii r1 and r2 that rotate with
constant angular velocities�1 and�2 and (2) the fluid conforms to the constitutive
hypotheses (2.1a,b), with 0 � ˛ < 1 and �1 > 0; we recall that, if we set ˛ D 2�p,
then our assumption relative to ˛ implies that 1 < p � 2 in the nonlinear viscosity
(2.3), when we rewrite it as

�.jej/ D �0.� C jej2/ p�2
2 : (3.9)

In the present work we do not set ourselves the task of establishing, within the
context of the bipolar model (2.1a,b), with 0 � ˛ < 1, as broad a range of results for
the problem of proper Couette flow as has been established, to date, for the problem
of plane Poiseuille flow; rather we shall content ourselves with deriving the relevant
nonlinear boundary-value problem, with solving (in closed form) that problem for
the case in which both � and �1 are zero, and then proving the existence of a unique
solution that depends continuously on � and �1 as these constitutive parameters
tend to zero. Along the way we will compare our results to those predicted by the
classical solution, as given by (3.1), will study the limit of the tangential velocity
field as ˛ ! 1�, and will compute relevant quantities such as the frictional couple
exerted on the fluid inside a cylindrical surface of radius r by the fluid exterior to
that surface. Our results are expected to be of some utility to experimental fluid
dynamicists.
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3.2.2 The Nonlinear Boundary-Value Problem for Proper
Couette Flow of an Incompressible Bipolar Fluid

One way to proceed, in this section, would be to rewrite the viscous, incompressible,
bipolar flow problem (2.2a–d) in cylindrical coordinates and then look for solutions
of the form (3.6); indeed, the transformation of this problem into cylindrical
coordinates may be found in the Ph.D. thesis of A. Montz [Mon]. However, it is
somewhat instructive to transform the bipolar equations in Cartesian form

@ui
@t

C uj
@ui
@xj

D � @p

@xi
C 2

@

@xj
.�.jej/eij/� 2�1

@

@xj
.�eij/C fi , in � 
 Œ0; T /

(3.10)

to cylindrical coordinates by starting with the ansatz

u1 D �v.r/ sin �;

u2 D v.r/ cos �;

u3 D 0

(3.11)

or, v D .�v.r/ sin �; v.r/ cos �; 0/. Equations (3.11) result, of course, from the
relations

u1 D vr cos � � v� sin �;

u2 D vr sin � C v� cos �;

u3 D vz

(3.12)

and the hypothesis (3.6). Throughout this section we will use the notation x1 D x,
x2 D y, x3 D z.

Remarks. Since the angular velocity P� D �.r/ D v.r/

r
, we may also write

v D .��.r/y;�.r/x; 0/:

Our point of departure is the set of standard relations

@r

@x
D cos �;

@r

@y
D sin �;

@�

@x
D � sin �

r
;

@�

@y
D cos �

r
: (3.13)

Our task now is to express the quantities eij,
@

@xk
eij, and �eij in terms of r and � ;

we begin by noting that, as a consequence of (3.11), (3.13),
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@u1
@x

D �
�
v0.r/ � v.r/

r

�
sin � cos �;

@u1
@y

D �v0.r/ sin2 � � v.r/

r
cos2 �;

@u2
@x

D v0.r/ cos2 � C v.r/

r
sin2 �;

@u2
@y

D
�
v0.r/ � v.r/

r

�
sin � cos � D �@u1

@x
:

(3.14)

For the sake of convenience we set

f .r/ D v0.r/ � v.r/

r
: (3.15)

Now, for i D 1; 2, we compute for the convective derivatives appearing on the left-
hand side of (3.10):

@u1
@t

C uj
@u1
@xj

D �v
2.r/

r
cos �;

@u2
@t

C uj
@u2
@xj

D �v
2.r/

r
sin �:

(3.16)

Also,

e11 D @u1
@x

D �f .r/ sin � cos � D �1
2
f .r/ sin 2�;

e22 D @u2
@y

D f .r/ sin � cos � D 1

2
f .r/ sin 2�;

e12 D e21 D 1

2

�
@u1
@y

C @u2
@x

�
D 1

2
f .r/ cos 2�;

(3.17)

and eij D 0, otherwise. From (3.16) it follows that

jej2 D eijeij D 1

2
f 2.r/: (3.18)

We now set

h.r/ D
�
� C 1

2
f 2.r/

��˛=2
f .r/ (3.19)
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and compute that

@

@x

��
� C jej2

��˛=2
e11


D �1

2

@

@x

��
� C jej2

��˛=2
f .r/ sin 2�



D �1
2

@

@x
Œh.r/ sin 2��

D �1
2

�
h0.r/ sin 2� cos � � 2h.r/

r
cos 2� sin �

�
:

(3.20a)

An analogous computation produces

@

@y

��
� C jej2

��˛=2
e12


D 1

2

�
h0.r/ cos 2� sin � � 2h.r/

r
sin 2� cos �

�

(3.20b)

and, therefore

@

@x

��
� C jej2

��˛=2
e11


C @

@y

��
� C jej2

��˛=2
e12


D �

�
1

2
h0.r/C h.r/

r

�
sin �:

(3.21)
In a similar manner we have

@

@x

��
� C jej2

��˛=2
e21


D 1

2

�
h0.r/ cos 2� cos � C 2h.r/

r
sin 2� sin �

�

(3.22a)

and

@

@y

��
� C jej2

��˛=2
e22


D 1

2

�
h0.r/ sin 2� sin � C 2h.r/

r
cos 2� cos �

�

(3.22b)

so that

@

@x

��
� C jej2

��˛=2
e21


C @

@y

��
� C jej2

��˛=2
e22


D
�
h0.r/
2

C h.r/

r

�
cos �:

(3.23)

Our next set of computations is directed at producing the components of the tensor

�ijk D @

@xk
.eij/:
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Note that, by virtue of (2.1b), �ijk D 2�1
@eij

@xk
. We then have, as a consequence

of (3.17),

�111 D @

@x
e11 D �1

2
f 0.r/

@r

@x
sin 2� � f .r/ cos 2�

@�

@x

so that

�111 D �1
2
f 0.r/ sin 2� cos � C f .r/

r
cos 2� sin � (3.24a)

and, in a similar manner,

�112 D �1
2
f 0.r/ sin 2� sin � � f .r/

r
cos 2� cos �; (3.24b)

�221 D ��111; �222 D ��112; (3.24c)

�121 D 1

2
f 0.r/ cos 2� cos � C f .r/

r
sin 2� sin �; (3.24d)

�122 D 1

2
f 0.r/ cos 2� sin � � f .r/

r
sin 2� cos �; (3.24e)

�221 D �121; �212 D �122; (3.24f)

and �ijk D 0, otherwise. Since the fluid is assumed to be confined between rigid
cylinders of radii r1 and r2 (> r1),(

for r D r2 W 
1 D cos �; 
2 D sin �; 
3 D 0;

for r D r1 W 
1 D � cos �; 
2 D � sin �; 
3 D 0:
(3.25)

Now, the first set of boundary conditions in (2.2c) is identical with (3.2).
By combining (3.24a–f) and (3.25), a straightforward but tedious computation
shows that the second set of boundary conditions in (2.2c) is satisfied if and only if,
for �1 ¤ 0,

f 0.ri / D 0; i D 1; 2: (3.26)

If �1 D 0, the boundary conditions in (3.26) are not applicable.
Our next task is to express the terms �eij, in cylindrical coordinates, for

the special steady motion defined by (3.6). We begin by recalling a series of
trigonometric identities, namely

sin 2� cos � C cos 2� sin � D sin 3�;

sin 2� cos � � cos 2� sin � D sin �;
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d

d�
.sin 2� cos �/ D 1

2
.3 cos 3� C cos �/;

d

d�
.cos 2� sin �/ D 1

2
.3 cos 3� � cos �/;

cos 2� cos � � sin 2� sin � D cos 3�;

cos 2� cos � C sin 2� sin � D cos �;

and

d

d�
.cos 2� cos �/ D �1

2
.3 sin 3� C sin �/;

d

d�
.sin 2� sin �/ D 1

2
.3 sin 3� � sin �/:

We now compute, with the aid of these identities, that

@2

@x2
e11 D �1

2
f 00rx sin 2� cos � � 1

4
f 0.3 cos 3� C cos �/�x

C
�
f

r

�0
rx cos 2� sin � C 1

2

f

r
.3 cos3� � cos �/�x

or

@2

@x2
e11 D �1

2
f 00 sin 2� cos2 � D 1

4

f

r
.3 cos 3� C cos �/ sin �

C
�
f

r

�0
cos 2� sin � cos � � 1

2

f

r2
.3 cos 3� � cos �/ sin �

(3.27a)

and, in a like fashion,

@2

@y2
e11 D �1

2
f 00 sin 2� sin2 � � 1

4

f 0

r
.3 sin 3� � sin �/ cos �

�
�
f

r

�0
cos 2� sin � cos � C 1

2

f

r2
.3 sin 3� C sin �/ cos �

(3.27b)

so that

�e11 D
�

�1
2
f 00 � 1

2

f 0

r
C 2f

r2

�
sin 2�: (3.28a)
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As is easily verified, a series of calculations entirely analogous to those that led to
(3.28a) now yields the following results:

�e22 D ��e11; (3.28b)

�e12 D
�
1

2
f 00 C 1

2

f 0

r
� 2f

r2

�
cos �; (3.28c)

�e21 D �e12; (3.28d)

and�eij D 0, otherwise. If we set

g.r/ D �1
2
f 00 � 1

2

f 0

r
� 2f

r2
(3.29)

then (3.28a–d) can be expressed as

�e11 D g.r/ sin 2� D ��e22;
�e12 D �g.r/ cos 2� D �e21;

�eij D 0 (otherwise):

(3.30)

Progressing in a more or less methodical fashion with the computation of the

quantities
@

@xj
.�eij/ we have, by virtue of (3.30), and (3.11):

@

@x
.�e11/ D g0 sin 2� cos � � 2g

r
cos 2� sin �; (3.31a)

@

@y
.�e11/ D g0 sin 2� sin � C 2g

r
cos 2� cos �; (3.31b)

@

@x
.�e12/ D �g0 cos 2� cos � � 2g

r
sin 2� sin �; (3.31c)

and

@

@y
.�e12/ D �g0 cos 2� sin � C 2g

r
sin 2� cos �: (3.31d)

Therefore, for i D 1:

@

@xj
.�e1j / D @

@x
�e11 C @

@y
�e12

D
�
g0 C 2g

r

�
sin �

(3.32a)



3.2 Flow Between Rotating Cylinders 147

while for i D 2:

@

@xj
.�e2j / D @

@x
�e21 C @

@y
�e22

D �
�
g0 C 2g

r

�
cos �:

(3.32b)

Finally, with p D p.r; �/:

@p

@x
D @p

@r
cos � � 1

r

@p

@�
sin �;

@p

@y
D @p

@r
sin � C 1

r

@p

@�
cos �:

(3.33)

In order to synthesize the set of equations for the proper Couette flow of a bipolar
viscous fluid, we now combine (3.16), (3.33), (3.27a,b), (3.29), and (3.32a,b), where
f .r/, h.r/, and g.r/ are given, respectively, by (3.15), (3.19), and (3.29). In this
manner, we obtain the steady flow equations

@p

@r
cos � � 1

r

@p

@�
sin � � �v

2.r/

r
cos � D ��0

�
h0
2

C h

r

�
sin � C 2�1

�
g0 C 2g

r

�
sin �;

(3.34)

@p

@r
sin � C 1

r

@p

@�
cos � � �v

2.r/

r
sin � D 2�0

�
h0
2

C h

r

�
cos � � 2�1

�
g0 C 2g

r

�
cos �:

(3.35)

Multiplying (3.34) by cos � , (3.35) by sin � and adding, we find that

@p

@r
� �

v2.r/

r
D 0: (3.36)

Multiplying (3.34) by cos � , and (3.35) by sin � , and subtracting the resulting
equations, we obtain

1

r

@p

@�
D 2�0

�
h0

2
C h

r

�
C 2�1

�
g0 C 2g

r

�
(3.37)

where p D p.r; �/. Associated with (3.36), (3.37) are the boundary conditions

v.ri /

ri
	 �.ri/ D �i ; i D 1; 2 (3.38a)

and

f 0.ri / D 0; i D 1; 2: (3.38b)
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It is easily seen that (3.37) may be written in the form

r
@p

@�
D �0.r

2h/0 C 2�1.r
2g/0: (3.39)

If �1 > 0 and, as in the classical situation, we look for a solution for which
@p

@�
D 0,

then our boundary-value problem may be summarized as follows: find v D v.r/

such that

�0.r
2h/0 C 2�1.r

2g/0 D 0; 0 < r1 � r � r2; (3.40a)

v.ri / D �iri ; i D 1; 2; (3.40b)

f 0.ri / D 0; i D 1; 2; (3.40c)

where f .r/ D v0.r/� v.r/

r
, h.r/ D

�
� C 1

2
f 2.r/

��˛=2
f .r/, g.r/ D �1

2
f 00.r/�

1

2

f 0.r/
r

C 2f .r/

r2
, and 0 � ˛ < 1. Once the tangential velocity distribution v.r/ has

been determined by (3.40a,b,c), the pressure distribution p D p.r/may be deduced
by integration of (3.36). It will turn out to be useful, with respect to the analysis that
follows, to rewrite the boundary-value problem (3.40a,b,c) in terms of the angular
velocity�.r/ D v.r/=r ; to this end we note the series of identities

f .r/ D r�0.r/; (3.41a)

h.r/ D
�
� C 1

2
.r�0.r//2

��˛=2
r�0.r/; (3.41b)

g.r/ D �1
2

�
r�000.r/C 3�00.r/� 3�0.r/

r

�
; (3.41c)

from which it follows that (3.40a,b,c) is equivalent to

�
"

r3�0.r/�
� C 1

2
.r�0.r/2

�˛=2
#0

C ��
1 .r

3�000.r/C 3r2�00.r/� 3r�0.r//0 D 0;

(3.42a)

�.ri / D �i ; i D 1; 2; (3.42b)

.r�0.r//0.ri / D 0; i D 1; 2 (3.42c)

with ��
1 D �1=�0, and p.r/ determined by (3.36).
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3.2.3 The Proper Couette Flow: � D �1 D 0

In the special case in which � D �1 D 0, the boundary-value problem (3.40a,b,c)—
equivalently, (3.42a,b,c)—may be integrated in closed form; it is instructive to
compute this solution when 0 � ˛ < 1. For the mathematical analysis of existence,
uniqueness, and continuous dependence, which is presented in the next section, it is
more advantageous to work with (3.42a,b,c); in the present situation it is better to
work with (3.40a,b,c). Thus, with � D �1 D 0 in (3.40a), we have

h0̨ .r/C 2

r
h˛.r/ D 0 (3.43)

with

h˛.r/ D 2˛=2 � f˛.r/

jf˛.r/j˛ (3.44)

and f˛.r/ D v 0̨ .r/ � v˛.r/

r
. Integrating (3.43), and noting (3.44), we have for

some c˛

f˛.r/

jf˛.r/j˛ D c˛

r2
: (3.45)

We now make the assumption that for 0 < r1 < r < r2,

f˛.r/ > 0 , r�0̨ .r/ > 0 (3.46)

in which case c˛ > 0, and for 0 < ˛ < 1,

f˛.r/ D c1=.1�˛/˛ r2=.˛�1/ 	 ˛r
2=.˛�1/; ˛ > 0: (3.47)

From the definition of f .r/ it follows easily from (3.47) that, for 0 < r1 < r < r2,

�
v˛.r/

r

�0
D ˛r

.3�˛/=.˛�1/; 0 � ˛ < 1: (3.48)

Integration of (3.48) now yields (for some constant ı˛, and with �˛ D 1

2
˛.˛� 1/),

v˛.r/ D �˛r
.˛C1/=.˛�1/ C ı˛r; 0 < ˛ < 1 (3.49)

for 0 < r1 < r < r2, as the expression for the tangential velocity field, while for the
angular velocity we have, of course,

�˛.r/ D �˛r
2=.˛�1/ C ı˛; 0 � ˛ < 1: (3.50)
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Applying the boundary conditions (3.40b,c) we easily find that

�˛ D �1 ��2

r
2=.˛�1/
1 � r2=.˛�1/

2

; 0 � ˛ < 1; (3.51a)

ı˛ D �1r
2=.˛�1/
2 ��2r

2=.˛�1/
1

r
2=.˛�1/
2 � r

2=.˛�1/
1

; 0 � ˛ < 1 (3.51b)

and, therefore, for 0 � ˛ < 1,

v˛.r/ D
 
�1r

2=.˛�1/
2 ��2r

2=.˛�1/
1

r
2=.˛�1/
2 � r2=.˛�1/

1

!
r C

 
�1 ��2

r
2=.˛�1/
1 � r2=.˛�1/

2

!
r.˛C1/=.˛�1/:

(3.52)

Remarks. (i) For ˛ D 0 it is easy to check that (3.52) reduces to the classical
result as described by (3.1).

(ii) It is interesting to note the result for lim
˛!1�

v˛.r/ as given by (3.52). First of all

we may write (since ˛ � 1 D �j˛ � 1j, 0 � ˛ < 1) that

�˛r
.˛C1/=.˛�1/ D r1.�1 ��2/�

r
r1

�.˛C1/=j˛�1j �
1 �

�
r1
r2

�.˛C1/=j˛�1j
r1
r2

�

where r2 > r > r1; therefore �.˛C1/=.˛�1/
˛ ! 0, as ˛ ! 1�. Also,

ı˛ D �2

2
64
�
�1
�2

� �
r1
r2

�2=j˛�1j � 1

�
r1
r2

�2=j˛�1j � 1

3
75

so that ı˛ ! �2 as ˛ ! 1�. Thus, for �2 > �1, v˛.r/ ! �2r as ˛ ! 1�,
which is a rigid-body rotation in which the tangential stresses are everywhere
zero.

(iii) It is a relatively easy task to compute the tangential stress on an element of
the surface of a cylinder of radius r , r1 � r � r2, if the tangential velocity
distribution is prescribed by (3.52). We note that, as a consequence of (3.8)
and (3.52),

er� D 1

˛ � 1�˛r
2=.˛�1/; r1 � r � r2 (3.53)

and

jej2 D 1

2

�
v0.r/ � v.r/

r

�2
D 1

2
.2er� /

2 D 2e2r� : (3.54)
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Therefore, with � D �1 D 0, 0 � ˛ < 1,

�r� D 2�0


2e2r�

��˛=2
er�

D 21�˛=2�0
� �˛

˛ � 1

�1�˛
r�2

D 21�˛=2�0
� j�˛j
1 � ˛

�1�˛
r�2

since �˛ < 0 for �2 > �1 and r2 > r1. Substituting for �˛ in the above
expression for �r� and simplifying, we obtain, for 0 � ˛ < 1,

�r� D 21�˛=2�0

2
4 �2 ��1

.1 � ˛/
�
r
2=.˛�1/
1 � r2=.˛�1/

2

�
3
5
1�˛

r�2: (3.55)

For the frictional couple exerted on the fluid inside a cylindrical surface of
radius r by the fluid outside, r1 < r < r2, we then have

2�r2�r� D 21�˛=2��0

2
4 �2 ��1

.1 � ˛/
�
r
2=.˛�1/
1 � r2=.˛�1/

2

�
3
5
1�˛

(3.56)

which is, of course, in agreement with the classical result for ˛ D 0.

3.2.4 Existence, Uniqueness, and Continuous Dependence

In this section we will establish the existence of a unique solution to the boundary-
value problem (3.42a,b,c) in an appropriate class of functions, and then show that
the solution depends continuously on the parameters � and �1 as both � ! 0C and
�1 ! 0C; in a sense that will be made precise, below, this analysis will justify
our study of the case in which � D �1 D 0, i.e., the situation in which (3.42a,b,c)
reduces to the boundary-value problem

�
r3�0.r/
.r�0.r//˛

0
D 0; r1 < r < r2; (3.57a)

�.ri / D �i (3.57b)

whose solution is

�˛.r/ D
 

�1 ��2

r
2=.˛�1/
1 � r

2=.˛�1/
2

!
r2=.˛�1/ C

 
�1r

2=.˛�1/
2 ��2r

2=.˛�1/
1

r
2=.˛�1/
2 � r

2=.˛�1/
1

!
(3.58)
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for r1 � r � r2, 0 � ˛ < 1. When ˛ D �1 D 0, (3.42a,b,c) reduces to the
boundary-value problem based on the Stokes’ constitutive law, namely,

.r3�0.r//0 D 0; r1 < r < r2; (3.59a)

�.ri / D �i; i D 1; 2 (3.59b)

whose unique solution

�0.r/ D 1

r2

�
�1 ��2

r�2
1 � r�2

2

�
C
�
�1r

2
1 ��2r

2
2

r21 � r22

�
(3.60)

may be obtained either from (3.1) or from (3.58), upon setting ˛ D 0. We note that
�0.r/ satisfies

.r3�000
0 .r/C 3r2�00

0.r/ � 3r�0
0.r//

0 	 0 (3.61)

on .r1; r2/ but that

.r�0
0.r//

0 D 4

r3

�
�1 ��2

r�2
1 � r�2

2

�
¤ 0: (3.62)

Finally, when �1 D 0, the boundary-value problem (3.42a,b,c) reduces to

"
r3�0.r/

.� C 1
2
.r�0.r//2/˛=2

#0
D 0; r1 < r < r2; (3.63a)

�.ri / D �i; i D 1; 2 (3.63b)

whose solution (granted that one exists and is uniquely determined) will be
denoted as �˛;�.r/. In fact, if we denote the solution of the boundary-value
problem (3.42a,b,c) by �.r I �; �1; ˛/—again, granted that one exists and is
uniquely determined—then we clearly have the identifications:

�˛;�.r/ D �.r I �; 0; ˛/;
�0.r/ D �.r I �; 0; 0/;
�˛.r/ D �.r I 0; 0; ˛/ 	 �˛;0.r/:

(3.64)

Our first theorem is the existence and uniqueness result for the system (3.42a,b,c):

Theorem 3.1. For �1 > 0 the boundary-value problem (3.42a,b,c) has a unique
solution�.r I �; �; ˛/, inH2

0 .r1; r2/, for all ˛ such that 0 � ˛ < 1, and for all � � 0.
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Proof. The case ˛ D 0 is trivial; when ˛ D 0, (3.42a,b,c) reduces to the linear
boundary-value problem

�.r3�0.r//0 C ��
1 .r

3�000.r/C 3r2�00.r/ � 3r�0.r//0 D 0 (3.65a)

for r1 < r < r2, with

�.ri / D �i ; i D 1; 2; (3.65b)

.r�0.r//0.ri / D 0; i D 1; 2 (3.65c)

which has, by the standard theory for linear boundary-value problems [Ev],
a unique solution in H2.r1; r2/; actually, it is easy to show that the unique solution
of (3.65a,b,c) lies in C1.r1; r2/.

Now, consider the case where 0 < ˛ < 1. We denote by Q�.r/ the unique classical
solution of the boundary-value problem

.r3 Q�000.r/C 3r2 Q�00.r/ � 3r Q�0.r//0 D 0 (3.66a)

for r1 < r < r2, with, once again

Q�.ri / D �i ; i D 1; 2; (3.66b)

.r Q�0.r//0.ri / D 0; i D 1; 2: (3.66c)

We note that Q�.r/ 2 C1.r1; r2/ and that although, as a consequence of (3.61), the
classical solution �0.r/ of (3.59a,b), satisfies (3.66a), Q�.r/ ¤ �0.r/ by virtue of
(3.62). If we set

u.r/ D �.r I �; �1; ˛/ � Q�.r/ (3.67)

then, as a consequence of (3.42a,b,c), coupled with (3.66a,b,c), we easily find that
for r1 < r < r2, u.r/ satisfies (��

1 D �1=�0),

�
"

r3.u0.r/C Q�0.r//
.� C 1

2
.ru0.r/C r Q�0.r//2/˛=2

#0
C ��

1 .r
3u000.r/C 3r2u00.r/� 3ru0.r//0 D 0

(3.68a)

and

u.ri / D 0; i D 1; 2; (3.68b)

.ru0.r//0.ri / D 0; i D 1; 2: (3.68c)
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Thus, in order to show that (3.42a,b,c) possesses a unique solution in H2
0 .r1; r2/,

it is sufficient to prove that (3.68a,b,c) has a unique solution in H2
0 .r1; r2/.

Let H D H
3=2C	
0 .r1; r2/ with 0 < 	 < 1=2 and denote by WM the closed ball

of radius M > 0 in H2
0 .r1; r2/. As a consequence of standard embedding results

(e.g., [Ev]) we know that WM is compactly embedded in H for any 	 < 1=2. For
the sake of convenience, we define the linear map L by

.Lu/.r/ D ��
1 .r

3u000.r/C 3r2u00.r/� 3ru0.r//0 (3.69)

and for a fixed, but arbitrary, h 2 H we consider the linear boundary-value problem

.Lu/.r/ D
"

r3.h0.r/C Q�0.r//
.� C 1

2
.rh0.r/C r Q�0.r//2/˛=2

#0
; r1 < r < r2; (3.70a)

u.ri / D .ru0.r//0.ri / D 0; i D 1; 2: (3.70b)

With

a.p; q/ 	
Z r2

r1

p.r/.Lq/.r/ dr (3.71)

we have

a.u; u/ D ��
1

Z r2

r1

.r3u000.r/C 3r2u00.r/� 3ru0.r//0u.r/ dr

D ���
1

Z r2

r1

.r3u000.r/C 3r2u00.r/� 3ru0.r//u0.r/ dr

D ���
1

Z r2

r1

Œr.r.ru0/0/0 � 4ru0.r/�u0.r/ dr

D ��
1

Z r2

r1

rŒ.ru0/02 C 4u02.r/� dr

D ��
1

Z r2

r1

rŒr2u00.r/2 C 2ru00.r/u0.r/C 5u02.r/� dr

and, therefore,

a.u; u/ � 3

4
��
1

Z r2

r1

Œr3u00.r/2 C ru02.r/� dr

� ˛0jjujj2
H2
0 .r1;r2/

(3.72)
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where ˛0 D 3

4
��
1 min.r31 ; r1/. By the Lax-Milgram Lemma (Appendix A) we

may conclude that the boundary-value problem (3.70a,b) has a unique solution
u 2 H2

0 .r1; r2/ that satisfies

jjujjH2
0 .r1;r2/

� 1

˛0

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ r3.h0.r/C Q�0.r//
.� C 1

2
.rh0.r/C r Q�0.r//2/˛=2

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌
L2.r1;r2/

� 1

˛0

ˇ̌̌ˇ̌̌
2˛=2r3�˛

ˇ̌
h0.r/C Q�0.r/

ˇ̌1�˛ ˇ̌̌ˇ̌̌
L2.r1;r2/

D 1

˛0
� 2˛=2

�Z r2

r1

r2.3�˛/=˛ dr

˛=2


 ˇ̌ˇ̌h0.r/C Q�0.r/
ˇ̌ˇ̌1�˛
L2.r1;r2/

where we have used the Hölder Inequality. Thus,

jjujjH2
0 .r1;r2/

� C
ˇ̌ˇ̌
h0.r/C Q�0.r/

ˇ̌ˇ̌1�˛
L2.r1;r2/

(3.73)

with C D 1

˛0
2˛=2

�Z r2

r1

r
2.3�˛/
˛ dr

˛=2
. We now apply Young’s inequality in the form

jaj � jbj � 	 jajp C 	
� 1
p�1 jbjp0

;
1

p
C 1

p0 D 1

to (3.73), with p D 1=.1� ˛/ and 	 D 1

4
, and we obtain the estimate

jjujjH2
0 .r1;r2/

� 1

4

ˇ̌ˇ̌
h0.r/C Q�0.r/

ˇ̌ˇ̌
L2.r1;r2/

C QC

� 1

4

�
jjhjjH1

0 .r1;r2/
C ˇ̌ˇ̌ Q�ˇ̌ˇ̌

H1
0 .r1;r2/

�
C QC

(3.74)

with QC D QC.˛I r1; r2/ independent of u.
We now define the mapping T W h ! u where for each fixed h 2 H , u is the

unique solution of the boundary-value problem (3.70a,b). By virtue of the estimate
(3.74), 9M > 0, sufficiently large, such that T W WM ! WM ; we want to show that
the map T is continuous. For h1; h2 2 WM , we set u1 D Th1 and u2 D Th2. Then

��
1 .r

3.u1 � u2/
000 C 3r2.u1 � u2/

00 � 3r.u1 � u2/
0/0

D
"
r3.h0

1.r/C Q�0.r//
z1.r/

#0
�
"
r3.h0

2.r/C Q�0.r//
z2.r/

#0
(3.75)
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with

zi .r/ D
�
� C 1

2
.rh0

i .r/C r Q�0.r//2
�˛=2

; i D 1; 2: (3.76)

Multiplying (3.75) by u1�u2, integrating the result over .r1; r2/, and then integrating
by parts, we obtain

��
1

Z r2

r1

Œr3.u1 � u2/
000 C 3r2.u1 � u2/

00 � 3r.u1 � u2/
0�0.u1 � u2/ dr

D �
Z r2

r1

r3.h0
1.r/C Q�0.r//

z1.r/
.u1�u2/

0 dr C
Z r2

r1

r3.h0
2.r/C Q�0.r//

z2.r/
.u1�u2/

0 dr:

(3.77)

Now, from (3.77), the definition of the bilinear form a in (3.71), and the estimate
(3.72), we have

˛0jju1 � u2jj2H2
0 .r1;r2/

�
Z r2

r1

r3.h0
2 � h0

1/

z2.r/
.u1 � u2/

0 dr

C
Z r2

r1

r3.u1 � u2/0.h0
1 C Q�0/Œz1.r/� z2.r/�

z1.r/z2.r/
dr

(3.78)

where we have added (and subtracted) the integral
Z r2

r1

r2.h0
1 C Q�0/
z2

.u2 � u1/
0 dr.

For the case where � > 0 we have, clearly, that zi .r/ � �˛=2 for i D 1; 2 and, since
h1; h2; u1; u2 2 WM , 9N > 0 such that

jui j � N; jhi j � N;
ˇ̌
u0
i

ˇ̌ � N;
ˇ̌
h0
i

ˇ̌ � N; i D 1; 2 (3.79)

Using this information now in (3.78) we find the estimate

˛0jju1 � u2jj2H2
0 .r1;r2/

� 2N

�˛=2
r32

Z r2

r1

ˇ̌
h0
2.r/� h0

1.r/
ˇ̌
dr

C 4N 2r32
�˛

Z r2

r1

jz1.r/� z2.r/j dr:

(3.80)

Noting that with �.�/ D
�
� C 1

2
�2
�˛=2

, for � 2 R1, the derivative �0.�/ D
˛

2
�

�
� C 1

2
�2
��1C.˛=2/

is bounded on compact subsets of R1, and taking account

of (3.79), and the definition of zi .r/, i D 1; 2, i.e., (3.76), we have, for some C1 > 0,

jz1.r/� z2.r/j � C1
ˇ̌
.rh0

1.r/C r Q�0.r// � .rh0
2.r/C r Q�0.r//

ˇ̌
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or

jz1.r/ � z2.r/j � C1r
ˇ̌
h0
1.r/ � h0

2.r/
ˇ̌
: (3.81)

Combining (3.81) with (3.80) we, therefore, deduce the existence of a QC > 0,
independent of ui , i D 1; 2, such that

jju1 � u2jjH2
0 .r1;r2/

� QC jjh1 � h2jjH1
0 .r1;r2/

(3.82)

thus establishing the continuity of the map T W WM ! WM for the case in which
� > 0. On the other hand, if � D 0 then by (3.72) and (3.77) we have

˛0jju1 � u2jjH2
0 .r1;r2/

� 2˛=2
Z r2

r1

r3�˛.u0
1 � u0

2/

"
h0
2 C Q�0ˇ̌

h0
2 C Q�0ˇ̌˛ � h0

1 C Q�0ˇ̌
h0
1 C Q�0 ˇ̌˛

#
dr:

(3.83)

However, for arbitrary a; b 2 R1, and 0 � ˛ < 1, it is an easy exercise to verify the
elementary inequality

ˇ̌
ˇ̌ a
jaj˛ � b

jbj˛
ˇ̌
ˇ̌ � 2˛ja � bj1�˛: (3.84)

Combining, in this case, (3.79), (3.83), and (3.84), we find, with the help of the
Hölder Inequality, that

˛0jju1 � u2jj2H2
0 .r1;r2/

� C2

Z r2

r1

ˇ̌
h0
1 � h0

2

ˇ̌1�˛
dr

� C3

�Z r2

r1

ˇ̌
h0
1 � h0

2

ˇ̌2
dr

.1�˛/=2

for some C2; C3 > 0. Therefore, with C4 D C3=˛0

jju1 � u2jjH2
0 .r1;r2/

� C4jjh1 � h2jj.1�˛/=2H1
0 .r1;r2/

(3.85)

and the continuity of T W WM ! WM again follows, this time for the case � D 0.
As a direct consequence of the Schauder fixed-point theorem we may now

conclude that there exists, for M > 0 sufficiently large, a unique u 2 WM such
that Tu D u; this establishes, of course, the existence of a unique solution u of
the boundary-value problem (3.68a,b,c), for �1 > 0, and, hence, for the original
boundary-value problem (3.42a,b,c). ut
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We now turn our attention to the boundary-value problem (3.63a,b), which is, of
course, what the boundary-value problem (3.42a,b,c) formally reduces to if we set
�1 D 0; our basic result may be stated as follows:

Theorem 3.2. For � � 0, if a solution of the boundary-value problem (3.63a,b)
exists in H1.r1; r2/, then the solution is unique.

Proof. For � D 0 the unique solution of (3.63a,b), �˛.r/ D �˛;0.r/, is given
explicitly by (3.58); so we turn to the case in which � > 0. We will establish the
uniqueness of solutions to (3.63a,b) under the assumption that solutions do exist in
H1.r1; r2/. So, suppose that !1; !2 2 H1.r1; r2/ are solutions of (3.63a,b). Then

�
"

r3!0
1.r/�

� C 1
2
.r!0

1.r//
2
�˛=2

#0
C
"

r3!0
2.r/�

� C 1
2
.r!0

2.r//
2
�˛=2

#0
D 0: (3.86)

We note that !1.ri / D �i , !2.ri / D �i , i D 1; 2. Multiplying (3.86) by !1 � !2,
and integrating by parts, we obtain

Z r2

r1

r2.!0
1 � !0

2/

"
r!0

1.r/�
� C 1

2
.r!0

1.r//
2
�˛=2 � r!0

2.r/�
� C 1

2
.r!0

2.r//
2
�˛=2

#
dr D 0:

(3.87)

Now for any a; b 2 R1, � � 0, and 0 � ˛ < 1, we have the elementary inequality

.a � b/

 
a�

� C 1
2
a2
�˛=2 � b�

� C 1
2
b2
�˛=2

!
� 0 (3.88)

and, therefore, as a direct consequence of (3.87) we have !0
1 D !0

2 a.e. on Œr1; r2�.
However, !1.ri / D !2.ri /, i D 1; 2; so !1 D !2 a.e. on .r1; r2/ and it follows that
solutions of (3.63a,b) in H1.r1; r2/ are unique if they exist. ut

There remains the task of showing that, for � > 0, there exist solutions
of (3.63a,b) in H1.r1; r2/; to do this we will show that the unique solution
of (3.42a,b,c) converges, as �1 ! 0C, to the (unique) solution of (3.63a,b); the
convergence will be in the norm of C1C	 , for 0 < 	 < 1=2, and will also establish
the continuous dependence of the solutions of (3.42a,b,c) on �1 as �1 ! 0C. The
precise result is the following:

Theorem 3.3. As �1 ! 0C, the unique solution of the boundary-value
problem (3.42a,b,c), �.�I �; �1; ˛/, converges in C1;	 .r1; r2/, 0 < 	 < 1=2, to
the (unique) solution ��;˛.�/ of (3.63a,b) and, in fact, ��;˛.�/ D O�.�/, where O�.�/
is given by (3.130).
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Proof. As in the proof of Theorem 3.1, we set u.r/ D �.r I �; �1; ˛/ � Q�.r/ with
�.r I �; �1; ˛/ the unique solution of (3.42a,b,c), for �1 > 0, and Q�.r/ the unique
solution of (3.66a,b,c). We also set

s.r/ D u0.r/;

W0.r/ D r Q�0.r/;

W.r/ D r�0.r I �; �1; ˛/;

Z.r/ D � C 1

2
W 2.r/:

(3.89)

Clearly, both u.r/ and s.r/ depend on �1 but we will refrain, for the time being,
from writing u�1.r/ or s�1.r/. Using the notation in (3.67), (3.89), and the fact that
Q�.r/ satisfies (3.66a), we may rewrite (3.42a) in the form

�
�
r2W.r/

Z.r/˛=2

0
C ��

1 .r
3s00.r/C 3r2s0.r/� 3rs.r//0 D 0: (3.90)

Integrating (3.90) over .r1; r/, for r � r2, we find that

� r2W.r/

Z.r/˛=2
C ��

1 .r
3s00.r/C 3r2s0.r/ � 3rs.r// D A�1 (3.91)

where

A�1 D r21W.r1/

Z.r1/˛=2
C ��

1 .r
3
1 s

00.r1/C 3r21 s
0.r1/ � 3r1s.r1//: (3.92)

By virtue of (3.42b) and (3.66b),

Z r2

r1

s.r/ dr D u.r2/� u.r1/

D .�.r2/ � Q�.r2//� .�.r1/� Q�.r1//
D 0:

(3.93)

Therefore, if we multiply (3.91) by s.r/, integrate over .r1; r2/, and then integrate
by parts, we obtain

Z r2

r1

rW2.r/

Z.r/˛=2
dr �

Z r2

r1

rW.r/W0.r/

Z.r/˛=2
dr C ��

1

Z r2

r1

r


.rs.r//02 C 4s2.r/

�
dr D 0

(3.94)
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where we have used (3.93), the obvious relation rs.r/ D W.r/�W0.r/, and the fact
that as .rs.r//0.ri / D 0, for i D 1; 2, so that
Z r2

r1

.r3s00.r/C 3r2s0.r/ � 3rs.r//s.r/ dr D
Z r2

r1

Œr.r.rs.r//0/0 � 4rs.r/�s.r/ dr

D �
Z r2

r1

rŒ.rs.r//02 C 4s2.r/� dr:

(3.95)

Now, for � > 0, we set

E� D fr j W 2.r/ > 2�g: (3.96)

Then 8r 2 E� ,

rW2.r/

Z.r/˛=2
D rW2.r/�

� C 1
2
W 2.r/

�˛=2 > r1jW.r/j2�˛ (3.97)

while 8r 2 fŒr1; r2�=E�g 	 Ec
� , we have jW.r/j2�˛ � .2�/.2�˛/=2. Therefore,

Z r2

r1

jW.r/j2�˛dr D
Z
E�

jW.r/j2�˛ dr C
Z
Ec�

jW.r/j2�˛ dr

� 1

r1

Z r2

r1

rW2.r/

Z.r/˛=2
dr C .2�/.2�˛/=2 meas.Ec

� /

(3.98)

where meas.Ec
� / � r2 � r1. Combining (3.94) with (3.98) we obtain the estimate

Z r2

r1

jW.r/j2�˛dr C ��
1

r1

Z r2

r1

rŒrs.r//02C4s2.r/� dr � 1

r1

Z r2

r1

rW.r/W0.r/

Z.r/˛=2
dr C .2�/.2�˛/=2.r2� r1/:

(3.99)

By virtue of the Hölder Inequality, and the definition of Z.r/, i.e., (3.89), we have
the following estimate for the integral on the right-hand side of (3.99):

ˇ̌
ˇ̌Z r2

r1

rW.r/W0.r/

Z.r/˛=2
dr

ˇ̌
ˇ̌ � 2˛=2

Z r2

r1

r jW.r/j1�˛jW0.r/j dr

� 2˛=2
�Z r2

r1

jW.r/j2�˛ dr

.1�˛/=.2�˛/


�Z r2

r1

jrW0.r/j2�˛ dr

1=.2�˛/
: (3.100)

Applying Young’s inequality to (3.100), with p D 2� ˛

1� ˛
and 	 D r1

21C˛=2
, we now

find that

1

r1

ˇ̌
ˇ̌Z r2

r1

rW.r/W0.r/

Z.r/˛=2
dr

ˇ̌
ˇ̌ � 1

2

Z r2

r1

jW.r/j2�˛ dr C C� (3.101)
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with C� independent of both �1 and �, where we have used the fact that W0.�/ 2
L1.r1; r2/. Combining (3.99) with (3.101) we are led to the estimate

Z r2

r1

jW.r/j2�˛ dr C 2��
1

r1

Z r2

r1

rŒrs.r//02 C 4s2.r/� dr

� 2.2�/.2�˛/=2.r2 � r1/C 2C�:
(3.102)

For our next set of estimates, we multiply (3.91) by .rs.r//00, integrate over .r1; r2/,
and then integrate by parts; since

A�1

Z r2

r1

.rs.r//00 dr D A�1.rs.r//
0
ˇ̌
ˇ̌r2
r1

D 0 (3.103)

and

Z r2

r1

.r3s00.r/C 3r2s0.r/ � 3rs.r//.rs.r//00 dr

D
Z r2

r1

Œr2.rs.r//002 C 3.rs.r//02 C r2s0.r/.rs.r//00� dr (3.104)

we obtain

Z r2

r1

�
r2W.r/

Z.r/˛=2

0
.rs.r//0 dr C ��

1

Z r2

r1

r2.rs.r//002 dr

C 3��
1

Z r2

r1

.rs.r//02 dr C ��
1

Z r2

r1

r2s0.r/.rs.r//00 dr D 0: (3.105)

We now note that
Z r2

r1

�
r2W.r/

Z.r/˛=2

0
.rs.r//0 dr D

Z r2

r1

�
2rW.r/

Z.r/˛=2
C r2

�
W.r/

Z.r/˛=2

0�
.rs.r//0 dr

D
Z r2

r1

r2
�
W.r/

Z.r/˛=2

0
W 0.r/ dr �

Z r2

r1

r2
�
W.r/

Z.r/˛=2

0
W 0
0 .r/ dr

C
Z r2

r1

2rW.r/

Z.r/˛=2
.rs.r//0 dr

D
Z r2

r1

r2
�
W.r/

Z.r/˛=2

0
W 0.r/ dr C

Z r2

r1

W.r/

Z.r/˛=2
.r2W 0

0 .r//
0 dr

C
Z r2

r1

2rW.r/

Z.r/˛=2
.rs.r//0 dr (3.106)
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where we have used the fact that rs.r/ D W.r/ � W0.r/ as well as the boundary
conditions W 0

0 .ri / D .r Q�0.r//0.ri / D 0, i D 1; 2. For the first integral on the
right-hand side of the last equation in (3.106), we compute that

Z r2

r1

r2
�
W.r/

Z.r/˛=2

0
W 0.r/ dr D

Z r2

r1

r2
W 02.r/
Z.r/˛=2

(
� C 1

2
.1 � ˛/W 2.r/

� C 1
2
W 2.r/

)
dr:

(3.107)

However, 8˛ such that 0 � ˛ < 1,

1 � ˛ � � C 1
2
.1 � ˛/�

� C 1
2
�

� 1; 8� � 0: (3.108)

Therefore, combining (3.105)–(3.108) we easily obtain the estimate

.1 � ˛/
Z r2

r1

r2
W 02.r/
Z.r/˛=2

dr C ��
1

Z r2

r1

r2.rs.r//002 dr

3��
1

Z r2

r1

.rs.r//02 dr � ���
1

Z r2

r1

r2s0.r/.rs.r//00 dr

�
Z r2

r1

W.r/

Z.r/˛=2
.r2W 0

0 .r//
0 dr �

Z r2

r1

2rW.r/

Z.r/˛=2
.rs.r//0 dr: (3.109)

Using Young’s inequality, and the estimate (3.102), we now note the following
series of estimates for the first integral on the right-hand side of (3.109):
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Therefore,

ˇ̌̌
ˇ���

1

Z r2

r1

r2s0.r/.rs.r//00 dr

ˇ̌̌
ˇ � 1

2
��
1

Z r2

r1

r2.rs.r//002 drC4.r2�r1/.2�/.2�˛/=2C4C�:

(3.110)

For the second integral on the right-hand side of (3.109) we have the estimates

ˇ̌
ˇ̌Z r2

r1

W.r/

Z.r/˛=2
.r2W 0

0 .r//
0 dr

ˇ̌
ˇ̌ � 2˛=2

Z r2

r1

jW.r/j1�˛ ˇ̌r2W 0
0 .r//

0ˇ̌ dr

� 1

2

Z r2

r1

jW.r/j2�˛ dr C C1

(3.111)

where we have, once again, used the Hölder and Young inequalities, and C1 is
independent of both �1 and �. Finally, for the last integral on the right-hand side
of (3.109), we compute that
ˇ̌
ˇ̌Z r2

r1

2rW.r/

Z.r/˛=2
� .rs.r//0 dr

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌Z r2
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ˇ̌Z r2
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2rW.r/
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�W 0

0 .r/ dr

ˇ̌
ˇ̌

(3.112)

since rs.r/ D W.r/�W0.r/. However,
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jW.r/j2�˛ dr C C2

(3.113)

with C2 independent of �1 and �, while
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(3.114)
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Combining (3.109)–(3.114) with (3.102) we obtain an estimate of the form
Z r2

r1

r2W 02.r/
Z.r/˛=2

dr C ��
1

1 � ˛

Z r2

r1

r2.rs.r//002 drC 6��
1

1 � ˛

Z r2

r1

.rs.r//02 dr

� C3
�
1C .r2 � r1/.2�/

.2�˛/=2�
(3.115)

with C3 independent of both �1 and �. We now set

 .W / D
Z W

0

d��
� C 1

2
�2
�˛=4 : (3.116)

Then, as a consequence of the estimate (3.115), we obtain

Z r2

r1

r2
�
d

dr
 .W.r//

2
dr D

Z r2

r1

r2W 02.r/�
� C 1

2
W 2.r/

�˛=2 dr

� C3
�
1C .r2 � r1/.2�/.2�˛/=2

�
:

(3.117)

Since

1�
� C 1

2
�2
�˛=4 � 2˛=4j�j�˛=2; 8� 2 R1

we have, for 0 � ˛ < 1,

j .W /j �  .jW j/
� 2˛=4.1 � ˛=2/�1jW j1�˛=2

� 4jW j1�˛=2:
(3.118)

Employing the estimate (3.102), in conjunction with the bound (3.118), we see that
9 0 > 0 (const.) such that

Z r2

r1

 2.W.r// dr <  0 (3.119)

with  0 independent of �1. Now 8f .�/ 2 H1.r1; r2/, and 8	 > 0, 9C	 > 0 such
that

max
Œr1;r2�

jf .r/j � 	

�Z r2

r1

f 02.r/ dr

�1=2
C C	

�Z r2

r1

f 2.r/ dr

�1=2
(3.120)
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(see, e.g., [Lio1, Lemma 5.1]); applying (3.120) with f .r/ D  .W.r//, and
employing both (3.117) and (3.119), we determine that for some C4 > 0, C4
independent of �1, we have

max
Œr1;r2�

j .W.r//j � C4: (3.121)

In view of the definition (3.116), for j�j > .2�/1=2,

j .�/j D
Z j�j

0

d��
� C 1

2
�2
�˛=4 � .1 � ˛=2/�1

h
j�j1�˛=2 � �1�˛=2

i

or

j�j1�˛=2 � .1 � ˛=2/j .�/j C �1�˛=2, for j�j > .2�/1=2: (3.122)

Combining (3.122) with (3.121), we easily deduce the existence of a constant
C > 0, independent of �1, such that

max
Œr1;r2�

jW.r/j � C: (3.123)

If we now use (3.117) in conjunction with (3.119), and no longer suppress the
dependence of W , u, or s on �1, it follows that 9 QC > 0, independent of �1, such
that

ˇ̌ˇ̌
 .W�1.�/

ˇ̌ˇ̌
H1.r1;r2/

� QC : (3.124)

As a consequence of the uniform bound (3.124), if f�ng, �n > 0 for each integer n,
is a sequence such that�n ! 0C, as n ! 1, then there exists a subsequence f�nkg,
and a function  0 2 H1.r1; r2/, such that as nk ! 1,

 .W�nk
/ !  0; in H1.r1; r2/: (3.125)

From standard embedding results (Appendix A) we deduce from (3.125) that we
also have, as nk ! 1,

 .W�nk
/ !  0; in C0;	 ; 0 < 	 <

1

2
: (3.126)

Also, as  is monotone, is invertible; thus, by (3.126), for nk ! 1,

W�nk
!  �1. 0/; in C0;	 .r1; r2/; 0 < 	 < 1=2: (3.127)

Using the definition ofW.r/, i.e. (3.89), and (3.127), we now find that, as nk ! 1,

�0.�I �; �nk ; ˛/ ! 1

r
 �1. 0/; in C0;	 .r1; r2/ (3.128)
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and

�.�I �; �nk ; ˛/ ! O�.�/; in C1;	 .r1; r2/ (3.129)

for 0 < 	 < 1=2, where for r 2 Œr1; r2�,

O�.r/ D �1 C
Z r

r1

1

�
 �1. 0.�// d�: (3.130)

By virtue of (3.102) and (3.115), we see that for some constant C > 0, independent
of �1,

�nk

ˇ̌̌ˇ̌̌
s�nk .�/

ˇ̌̌ˇ̌̌2
H2.r1;r2/

� C (3.131)

so that 8̂̂
<
ˆ̂:
�nk s�nk ! 0;

�nk s
0
�nk

! 0;

�nk s
00
�nk

! 0

(3.132)

inL2.r1; r2/ as nk ! 1. Employing (3.129) and (3.132) it is easy to show that O�.�/
is a solution of (3.63a,b); however, we have already shown that (Theorem 3.2) the
solution of the boundary-value problem (3.63a,b) is, for � � 0, uniquely defined in
H1.r1; r2/ if it exists. The proof of the Theorem 3.3 is now complete. ut
Remarks. By examining the estimates that led us to the uniform bound (3.131), i.e.,
(3.102) and (3.105), it is an easy exercise to show that the solutions of (3.42a,b,c)
also depend continuously on �, as � ! 0C, in the norm of C2C	.r1; r2/, for 0 <
	 < 1=2.

3.3 Bubble Stability in an Incompressible Non-Newtonian
Viscous Fluid

3.3.1 Introduction

In this section we consider the dynamical behavior of a spherical cavity which
is immersed in an unbounded, incompressible, viscous, non-Newtonian fluid;
we assume that the associated Cauchy stress tensor for the fluid is of the form
(2.1a), with � D �1 D 0. This subsection will begin by briefly reviewing some
of the literature on bubble dynamics in Newtonian and non-Newtonian fluids. Then,
in Sect. 3.3.2 a non-Newtonian version of the basic Rayleigh-Plesset equation is
derived; some examples of linearized dynamics for the associated model are worked
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out in Sect. 3.3.3. Finally, a theorem concerning the nonlinear stability of the
equilibrium states of spherical vapor cavities is proven by establishing the existence
of a suitable Liapunov function.

The basic equation governing the dynamical behavior of a spherical cavity of
radius R.t/, at time t > 0, in an unbounded Newtonian fluid, under the assumption
that there is negligible mass transfer at the cavity/fluid interface, is the well-known
Rayleigh-Plesset equation, i.e.,

R RRC 3

2
PR2 D 1

�`

 
p
 � p1 � 2	

R
� 4�0

PR
R

!
(3.133)

where p
 is the (vapor) pressure acting on the inner surface of the cavity/fluid
interface, p1 is the pressure at a very large (infinite) distance from the cavity,
�0 and �` are the (assumed) constant viscosity and density of the fluid, and 	
is the interfacial tension. Although a general time-dependent boundary condition
of the form p1 D p1.t/ may be considered, for our purposes in this section,
we shall assume that p1 D const. In (3.133) the superposed dot denotes time
differentiation. There are many excellent discussions in the literature of bubble
dynamics in Newtonian fluids and, thus, we will forgo here surveying the various
consequences of (3.133); for an extensive review of the literature related to the
Rayleigh-Plesset equation one may consult the survey in [PP]. An elementary
treatment of various solutions which have been obtained for the coupled systems
consisting of (3.133) and associated energy or diffusion equations may be found
in [PP] as well as in the tutorial [Th]. The stability of spherical vapor cavities in an
unbounded viscous Newtonian fluid has been studied by Plesset and Mitchell [PM].

In the recent literature there have been several efforts directed at studying the
dynamical behavior of spherical vapor cavities in non-Newtonian or viscoelastic
fluids; most notable among these are the papers [FG,Pr], and [BK]; in what follows,
below, we will briefly summarize the derivation of the model equations which are
to be found in these papers and will attempt to indicate the relations which exist
between them, the Rayleigh-Plesset model, and the non-Newtonian model equations
that will be delineated in Sect. 3.3.2. If, following Prosperetti [Pr] we denote by
U`.t/ the radial liquid velocity at the cavity/fluid interface then, irrespective of the
fluid rheology, it follows from mass conservation (as will be shown in Sect. 3.3.2)
that

u.r; t/ D
�
R2

r2

�
U`.t/ (3.134)

where u.r; t/ is the radial liquid velocity at a distance r from the center of the cavity.
The radial component of the momentum equation may be easily shown [Pr] to have
the form

�`

�
@u

@t
C u

@u

@r

�
D �@p

@r
C 1

r2
@

@r
.r2�rr /�

�
��� C ���

r

�
(3.135)
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in spherical coordinates, where p D p.r; t/ is the pressure while �rr , ��� , and ���
are the diagonal components of the Cauchy stress tensor in the fluid. As the fluid is
assumed to be incompressible, r � � D 0, or

��� C ��� D ��rr: (3.136)

Using (3.136) in (3.135), introducing the expression (3.134) for u.r; t/, and then
integrating the resulting equation from r D R.t/ to r D 1 yields

R PU` C 2 PRU` � 1

2
U 2
` D 1

�`

�
p.R; t/ � p1 � �rr.R; t/C 3

Z 1

R

r�1�rr dr

�
:

(3.137)

As a consequence of conservation of mass and momentum across the cavity/fluid
interface, it follows from the work in [Pr] that

J 	 �`.U` � PR/ D �
.U
 � PR/; (3.138a)

J 2
�
1

�

� 1

�`

�
C p
 � p.R; t/C �rr.R; t/ D 2	

R
(3.138b)

where J is the mass flux across the interface while �
 and U
 are, respectively, the
density and velocity of the vapor at the inner surface of the cavity/fluid interface.
If J D 0 (as will be assumed in this paper) then, by virtue of (3.138a), U` D
U
 D PR in which case (3.137) becomes

R RRC 3

2
PR2 D 1

�`

�
p.R; t/ � p1 � �rr.R; t/C 3

Z 1

R

r�1�rr.r; t/ dr

�

(3.139)

while (3.138b) reduces to

p.R; t/ D p
 C �rr.R; t/ � 2	

R
: (3.140)

Now, in an incompressible Newtonian fluid

�rr D 2�0
@u

@r
(3.141)

while, as a consequence of (3.134), and the assumption that J D 0,

u.r; t/ D
PRR2
r2

: (3.142)

Combining (3.141) and (3.142) we have

�rr D �4�0 PRR2r�3 (3.143)
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for the Newtonian fluid, in which case

�rr.R; t/ D �4�0
 PR
R

!
: (3.144)

Also

3

Z 1

R

r�1�rr dr D �12�0 PRR2
Z 1

R

r�4 dr D �4�0
 PR
R

!
(3.145)

so that for the incompressible Newtonian fluid

� �rr.R; t/C 3

Z 1

R

r�1�rr dr D 0: (3.146)

Thus, (3.139) reduces to

R RRC 3

2
PR2 D 1

�`
.p.R; t/ � p1/ (3.147)

while (3.140) becomes

p.R; t/ D p
 � 2	

R
� 4�0

 PR
R

!
: (3.148)

The classical Rayleigh-Plesset equation (3.133) now follows by combining (3.147)
and (3.148).

Remarks. By combining (3.139) and (3.140) one obtains

R RRC 3

2
PR2 D 1

�`

�
p
 � p1 � 2	

R
C 3

Z 1

R

r�1�rr dr

�
(3.149)

which is, in essence, equation (8) of [FG]. In [FG], (3.149) is coupled to the linear
viscoelastic fluid constitutive relation

�rr.r; t/ D �2
Z t

0

N.t � �/err.�/ d� (3.150)

where err D @u

@r
is the (radial) strain rate while N.t/ is the memory function

(or relaxation modulus); the dynamical behavior of the vapor cavity is then governed
by the nonlinear integrodifferential equation which results by combining (3.149)
and (3.150).
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Remarks. In [Pr] no specific non-Newtonian fluid constitutive relation is
introduced; rather, the focus is on the generalization of (3.149) which results from
combining (3.137), (3.138a,b) under the assumption that J ¤ 0, i.e.,

R RU` C 3

2
U 2` � J

�`

�
2U` C J

�
1

�

� 1

�`

�
D 1

�`

�
p
 � p1 � 2	

R
C 3

Z 1

R
r�1�rr dr

�
:

(3.151)

As has been indicated in [Pr], (3.151) is particularly useful in those cases where
the mass flux can be computed independently of conditions within the bubble,
e.g., in vapor bubble growth which is heat transfer controlled, liquid vaporization
at the interface serves as a source of new vapor within the cavity (with the rate
of vapor production limited by the rate at which heat can be conducted through
the bubble wall in order to satisfy latent heat requirements). In this heat transfer

controlled situation one may use, as an approximation, J D 1


q.R; t/, where

 is the latent heat/mass and q.R; t/ is the radial heat flux in the liquid at the
cavity/liquid interface.

A recent work which considers vapor bubble growth within the context of a non-
Newtonian situation is that of [BK]; in this paper the authors take, for ˛ < 1,

� D �0

 PRR2
r3

!�˛
: (3.152)

The analysis in [BK] is limited by the assumption that PRR2=r3 >> 1, as the authors
are only interested in the final stage of the collapse of a spherical cavity. It is further
assumed in [BK] that the normal tension at the bubble surface is zero, i.e., that

�rr.R; t/ D p.R; t/; t > 0 (3.153)

so that, by virtue of (3.140), p
 D 2	

R
while (3.139) reduces to

R RRC 3

2
PR2 D 1

�`

�
�p1 C 3

Z 1

R

r�1�rr dr

�
: (3.154)

Setting

ƒ.r; t/ D
PR.t/R2.t/
r3

(3.155)

we find, as a direct consequence of (3.142) and (3.152), that

�rr D 2�0ƒ
�˛ @u

@r
D �4�0 PR1�˛R2�2˛r3˛�3 (3.156)
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so that

�rr.R; t/ D �4�0
 PR
R

!1�˛
: (3.157)

Thus, the assumption, which is made in [BK] of zero normal tension at the bubble
surface (i.e., (3.153)) is equivalent to

p.R; t/ D �4�0
 PR
R

!1�˛
: (3.158)

For the similar case of zero normal tension at the bubble surface in the Newtonian

case one would have, as a consequence of (3.148) and the fact that p
 D 2	

R
,

p.R; t/ D �4�0
 PR
R

!

which is, of course, the special case of (3.158) that corresponds to the choice ˛ D 0.
Using (3.156) one now easily computes that

3

Z 1

R

r�1�rr dr D �12�0 PR1�˛R2�2˛
Z 1

R

r3˛�4 dr: (3.159)

For most rheological models of the type (3.152) it is generally accepted that ˛ < 1,
in which case the integral on the right-hand side of (3.159) is convergent and, in fact

3

Z 1

R

r�1�rr dr D �4�0
.1 � ˛/

 PR
R

!1�˛
; ˛ < 1 (3.160)

for the model considered in [BK]. Combining (3.154) with (3.160) we find that

R RRC 3

2
PR2 D 1

�`

0
@�p1 � 4�0
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 PR
R

!1�˛1
A ; ˛ < 1: (3.161)

As has already been indicated, the analysis in [BK] is predicated upon the dual

hypotheses that
PRR2
r3

>> 1 and that p
 D 2	=R; if one does not enforce the latter

assumption in [BK] then, as a consequence of (3.157) and (3.160), for ˛ < 1,

� �rr.R; t/C 3

Z 1

R

r�1�rr dr D �4˛�0
1 � ˛

 PR
R

!1�˛
(3.162)
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and, in lieu of (3.161), we would obtain for the evolution of R.t/

R RRC 3

2
PR2 D 1

�`

0
@p.R; t/ � p1 � 4˛�0

1 � ˛

 PR
R

!1�˛1
A : (3.163)

In lieu of (3.163) we may first combine (3.140) with (3.157) so as to obtain

p.R; t/ D p
 � 2	

R
� 4�0

 PR
R

!1�˛
: (3.164)

Employing (3.164) in (3.163) then results in the evolution equation

R RRC 3

2
PR2 D 1

�`

0
@p
 � p1 � 2	

R
� 4�0

1 � ˛

 PR
R

!1�˛1
A (3.165)

which is, of course, the generalization of the Brutyan and Krapivsky model

equation (3.161) for the case ˛ < 1 when p
 ¤ 2	

R
. For ˛ D 0, (3.165) yields

the Rayleigh-Plesset equation (3.133).

3.3.2 Dynamics of a Spherical Vapor Cavity
in an Incompressible Bipolar, Viscous Fluid: � D �1 D 0

Even within the context of the restrictive hypotheses imposed in [BK], one of the
difficulties inherent in this work is the choice of a constitutive assumption, (3.152),
which reflects a dependence of the viscosity on the components of the rate of strain
tensor instead of upon their magnitudes. For the incompressible, bipolar, viscous
fluid with � D �1 D 0, the resulting non-Newtonian model conforms to the
nonlinear viscosity � D �.jej/ with

� D �0.jej2/�˛=2 (3.166)

where it is only assumed, in this section, that ˛ < 1. The model which results from
the constitutive hypothesis ((3.166) will generate a bubble dynamics which is similar
to the one considered by [BK] except with respect to one very important qualitative
difference, which will be highlighted in this section. As in previous sections, for
the incompressible bipolar viscous fluid, we will set the fluid density �` D 1. Also,
to conform to the bulk of the literature dealing with the growth of a spherical vapor
cavity in a viscous fluid, we will denote the fluid velocity vector by u (instead of v),
so that in a spherical coordinate system .r; �; �/, which is related to the Cartesian
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coordinates .x1; x2; x3/ in the standard fashion, u is given by u D .vr ; v� ; v�/.
With � given by (3.166), the equations for the motion of the fluid, in Cartesian
coordinates, have the form

@ui
@t

C uj
@ui
@xj

D � @p

@xi
C 2

@

@xj

n
�.jej2/eij

o
(3.167)

with the ui , i D 1; 2; 3, the Cartesian components of u. We will denote the radial
component of the velocity by vr D u.r; t/. In fact, as we consider only radial
motions of a spherical bubble surface, within the non-Newtonian fluid, we will
postulate a spherically symmetric fluid velocity field, i.e.,

vr D u.r; t/; v� D 0; v� D 0: (3.168)

With

v.r; t/ 	 1

r
u.r; t/ D 1

r
vr .r; t/ (3.169)

we have

8̂
ˆ̂̂̂<
ˆ̂̂̂
:̂

v1 D x1

r
u.r; t/ 	 x1v.r; t/;

v2 D x2

r
u.r; t/ 	 x2v.r; t/;

u3 D x3

r
u.r; t/ 	 x3v.r; t/:

(3.170)

From (3.170) we obtain

jej2 D r2
�
@v

@r

�2
C rv

@v

@r
: (3.171)

The incompressibility condition div u D 0 yields

r
@v

@r
C 3v D 0 (3.172)

and leads to the conclusion that

v.r; t/ D C.t/

r2
: (3.173)

As R.t/ denotes the bubble radius at time t , so that PR.t/ is the outward normal
speed of the spherical bubble surface, we have, by virtue of continuity across the
bubble/fluid interface

u.R.t/; t/ D PR.t/ (3.174)
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in which case (3.173) yields the expression (3.142) for u.r; t/. From (3.142),
(3.169), and (3.171) we obtain

jej2 D 6

r6
PR2.t/R4.t/ (3.175)

in which case (3.166) becomes

� D �06
� ˛
2

 
j PRjR2
r3

!�˛
(3.176)

thus highlighting the difference between the present non-Newtonian structure
and the model used in [BK], i.e., the one based on (3.152) for motions of the
form (3.142).

Using incompressibility, i.e., (3.172), the convective terms uj
@ui
@xj

appearing

in (3.167) are easily computed to be

8̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂:

uj
@u1
@xj

D �2x1v2.r; t/;

uj
@u2
@xj

D �2x2v2.r; t/;

uj
@u3
@xj

D �2x3v2.r; t/:

(3.177)

We now set

g.r; t/ D
�
je.r; t/j2

��˛=2
: (3.178)

From (3.169), (3.171), and (3.172) we have, in fact,

g.r; t/ D
�
6

r2
u2.r; t/

��˛=2
: (3.179)

Then (3.167) becomes

@ui
@t

C uj
@ui
@xj

D � @p

@xi
C 2�0

@

@xj
.g.r; t/eij/: (3.180)

Using (3.170) and (3.177), it is easy to show that, for i D 1, (3.180) is equivalent to

x1
@v

@t
� 2x1v2 D �x1

r

@p

@r
� 4�0x1

r

@g

@r
v (3.181)
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while the results for i D 2; 3 may be obtained from (3.181) by replacing, in turn,
x1 ! x2; x3. Thus, for i D 1; 2; 3, each of the equations of motion reduce to

@u

@t
C u

@u

@r
D �@p

@r
� 4�0

@r

@g

@r
u: (3.182)

However, a straightforward computation based on (3.142) and (3.179) produces

@g

@r
.r; t/ D 18˛

(
6 PR2.t/R4.t/

r6

) �.1C ˛
2 /

PR2.t/R4.t/r�7

or

@g

@r
D .3˛/6� ˛

2

ˇ̌ PR.t/ˇ̌�˛R�2˛.t/r3˛�1 (3.183)

while
8̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂:

@u

@r
D �2R

2.t/ PR.t/
r3

;

@u

@t
D . RR.t/R2.t/C 2R.t/ PR2.t//r�2;

u
@u

@r
D �2R4.t/ PR2.t/r�5:

(3.184)

Finally,

u
@g

@r
� .3˛/6� ˛

2

ˇ̌ PRˇ̌R2�2˛r3˛�3: (3.185)

Substituting (3.184), and (3.185), into (3.182) we obtain

. RRR2 C 2R PR2/r�2 � 2R4 PR2r�5 D �@p
@r

� 12˛�06
� ˛
2

ˇ̌ PRˇ̌�˛ PRR2�2˛r3˛�4:
(3.186)

Remarks. Let

h.˛/ D
 
6 PR2R4
r6

!� ˛
2

(3.187)

so that

h0.˛/ D �1
2
h.˛/ ln

"
6 PR2R4
r6

#
:
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Thus,

h0.0/ D �1
2

ln

"
6 PR2R4
r6

#
:

However, for j˛j � 0, h.˛/ D h.0/C h0.0/˛ C O.j˛j2/, so that

h.˛/ � 1 � 1

2

"
ln

 
6 PR2R4
r6

!#
˛: (3.188)

From (3.183) and (3.188) we have, for j˛j � 0,

@g

@r
D 3˛r�1h.˛/

� 3˛r�1
 
1 � 1

2

"
ln

 
6 PR2R4
r6

!#
˛

!

D 3˛

r
C O.j˛j2/:

Therefore, for j˛j � 0, we have to within terms of order O.j˛j2/

. RRR2 C 2R PR2/r�2 � 2R4 PR2r�5 D �@p
@r

� 12˛�0R2 PRr�4 (3.189)

which is the form of (3.186) which is appropriate for small ˛. As the fluid velocity
field has the structure

u.r; t/ D 1

r2

˚
R2.t/ PR.t/� 	 U.r IR.t// (3.190)

it is quite natural to assume an analogous form for the pressure field, i.e.,

p.r; t/ D P.r IR.t//: (3.191)

We now integrate over (3.186) with respect to r from r D R.t/ to r D 1 and use
the fact that

�@P.r IR.t//
@r

ˇ̌
ˇ̌1
R.t/

D Op.R.t//� p1 (3.192)

where Op.R.t// 	 P.R.t/IR.t// and p1 	 P.1IR.t//. In this manner, we obtain
the nonlinear ordinary differential equation which is the non-Newtonian version of
the Rayleigh-Plesset equation (3.144), with fluid density �` D 1, i.e.,
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R RRC 3

2
PR2 D . Op.R.t// � p1 � 12˛�0

6˛=2
R2.1�˛/

ˇ̌ PRˇ̌�˛ PR r3˛�3

.3˛ � 3/
ˇ̌
ˇ̌1
R.t/

:

(3.193)

The last term on the right-hand side of (3.193) is clearly convergent, as ˛ < 1,
in which case

R RRC 3

2
PR2 D Op.R/ � p1 � 4˛�0

.1 � ˛/6˛=2
R˛�1 PRˇ̌ PRˇ̌�˛: (3.194)

The evolution equation for R.t/, (3.194), will be studied in Sects. 3.3.3 and 3.3.4;
it clearly reduces to (3.147), if �` D 1 and ˛ D 0, provided we identify p.R; t/ D
Op.R.t//. The process described above, when applied to the approximate relation

(3.189) for j˛j � 0, yields

R RRC 3

2
PR2 D . Op.R/� p1/ � 4˛�0

 PR
R

!
: (3.195)

Remarks. The classical Rayleigh-Plesset equation for the dynamics of a spherical
cavity of radius R.t/ in an unbounded, incompressible, Newtonian viscous fluid
(neglecting mass transfer at the cavity/fluid interface) may be put in the form (3.133)
by combining (3.147) with (3.148). In general, as a consequence of (3.140), (3.191),
and the definitions of Op and p1, we have

Op.R.t// D p
.t/ � 2	

R.t/
C �rr.R.t//: (3.196)

However, for the non-Newtonian model defined by (3.166) we have

�rr D 2�.jej2/err; err D @u

@r

and by (3.142),

err D �2r�3 PR.t/R2.t/

in which case,

�rr.R.t// D �4�.je.R.t//j2/
PR.t/
R.t/

: (3.197)

Thus,

Op.R.t// D p
.t/ � 2	

R.t/
� 4�.je.R.t//j2/

PR.t/
R.t/

: (3.198)
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Using (3.176) we then obtain from (3.198)

Op.R.t// D p
.t/ � 2	

R.t/
� 4�0

6˛=2

ˇ̌ PRˇ̌�˛ PR
R1�˛

: (3.199)

Clearly, if we again identify p.R; t/ 	 Op.R.t//, (3.199) reduces to (3.148)
when ˛ D 0. Using (3.199) in conjunction with (3.194) we obtain

R RRC 3

2
PR2 D .p
.t/ � p1/� 2	

R
� 4�0

.1 � ˛/6˛=2
(

j PRj�˛ PR
R1�˛

)
(3.200)

and we note that (3.200) reduces to (3.133), for ˛ D 0, when �` D 1. On the other
hand, if we employ (3.199) in the approximate relation (3.195), for j˛j � 0 we
obtain

R RRC 3

2
PR2 D .p
.t/ � p1/� 2	

R
� 4�0

 PR
R

!(
˛ C 6�˛=2

 
j PRj
R

!�˛)

(3.201)

which also reduces to (3.133) when ˛ D 0 and �` D 1.

3.3.3 Linearized Dynamics for a Spherical Cavity
in a Non-Newtonian Fluid

For spherical cavity growth in an unbounded non-Newtonian fluid, which conforms
to the constitutive hypothesis (2.1) with � D �1 D 0, we have shown that the
equations governing the evolution of the cavity of radius R.t/, in the absence of
mass transfer across the cavity/fluid interface, are (3.194) for ˛ < 1 and (3.195)
for j˛j � 0.

We now set S.t/ D PR.t/; then, in terms of R and S , (3.194) may be rewritten as
the system

8<
:
R D S;

PS D . Op.R/� p1/R�1 � 3

2
R�1S2 � k.˛I�0/R˛�2S jS j�˛; (3.202)

for ˛ < 1, where

k.˛I�0/ 	 4˛�0

.1 � ˛/6˛=2 (3.203)
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while (3.195) becomes

8<
:

PR D S;

PS D . Op.R/ � p1/R�1 � 3

2
R�1S2 � 4˛�0R

�2S;
(3.204)

for j˛j � 0. Both of the systems (3.202) and (3.204) are planar nonlinear systems
of the form

( PR D F.R; S/;

PS D G.R; S/

and it is easily seen that for each of these systems .R0; S0/ is an equilibrium state,
i.e., F.R0; S0/ D G.R0; S0/ D 0, if and only if

S0 D 0 and Op.R0/ D p1: (3.205)

In this subsection we will look at some aspects of the linearized stability of the
equilibrium state .R0; 0/, Op.R0/ D p1, for j˛j � 0; the nonlinear stability of such
equilibrium states with respect to the nonlinear system (3.202), for ˛ < 1, will be
examined in Sect. 3.3.4 using Liapunov theory.

For the system (3.204) we have

8<
:
F.R; S/ D S;

G.R; S/ D . Op.R/ � p1/R�1 � 3

2
R�1S2 � 4˛�0R�2S:

(3.206)

Setting NR D R � R0, NS D S , and linearizing about .R0; 0/, we obtain a system of
the form

Pu D ƒ.u0/u (3.207)

with

u D
� NR

NS
�
; u0 D

�
R0

0

�
(3.208a)

and

ƒ.u0/ D

0
BB@
@F

@R

@F

@S

@G

@R

@G

@s

1
CCA
.R;S/D.R0;0/

: (3.208b)
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Using (3.206) and the fact that Op.R0/ D p1, one easily computes that

8̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂:

@F

@R
.R0; 0/ D 0;

@F

@S
.R0; 0/ D 1;

@G

@R
.R0; 0/ D 1

R0
. Op0.R0//;

@G

@S
.R0; 0/ D �4˛�0R�2

0 :

(3.209)

If we define

 .R/ 	 Op.R/ � p1 (3.210)

then

ƒ.u0/ D

0
B@

0 1

 0.R0/
R0

�4˛�0
R20

1
CA (3.211)

in which case det.ƒ.u0/ � I/ D 0 if and only if

2 C �.R0/ � 1

R
 0.R0/ D 0 (3.212)

with

�.R0/ D 4˛�0R
�2
0 : (3.213)

From (3.212) we obtain for the eigenvalues ofƒ.u0/

 D �2˛�0R�2
0 ˙

q
4˛2�20R

�4
0 C  0.R0/R�1

0 : (3.214)

In (3.214) ˛ � 0, but we may have ˛ > 0, ˛ < 0, or even ˛ D 0. The conclusions
which follow from the relation (3.214), concerning the linearized stability of the
equilibrium state .R0; 0/, and their consequences for the nonlinear stability of
.R0; 0/with respect to the system (3.204), for j˛j � 0, are a direct result of standard
elementary theorems for planar dynamical systems (e.g., [Pe] or [HK]) given that
the vector field .F.R; S/;G.R; S// is of class C2 in a neighborhood of R0 ¤ 0,
S0 D 0.

Case I:

˛ � 0, ˛ > 0
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(a)  0.R0/ > 0 , Op0.R0/ > 0
In this subcase it follows from (3.214) that the eigenvalues 1; 2 satisfy 1 <
0 < 2; thus .R0; 0/ is an unstable saddle point for the linearized problem
(3.208) and, also, an (unstable) saddle point for the (approximate) nonlinear
system (3.204).

(b)  0.R0/ < 0 , Op0.R0/ < 0
For this subcase (3.214) becomes

 D �2˛�0R�2
0 ˙

q
4˛2�0R

�4
0 � j 0.R0/jR�1

0 (3.215)

so that three situations are possible:

(i)
ˇ̌
 0.R0/

ˇ̌
< 4˛2�20R

�3
0 , in which case 1 < 0, 2 < 0 and .R0; 0/

is an asymptotically stable node both for the linearized problem and the
nonlinear (approximate) system

(ii)
ˇ̌
 0.R0/

ˇ̌
> 4˛2�20R

�3
0 , in which case  is of the form  D a ˙ ib, with

a < 0. In this subcase, .R0; 0/ is an asymptotically stable focus for both
the linearized problem and the nonlinear (approximate) system

(iii)
ˇ̌
 0.R0/

ˇ̌ D 4˛2�20R
�3
0 , in which case 1 D 2 D �2˛�0R�2

0 < 0

and .R0; 0/ is again an asymptotically stable node for both the linearized
problem and the nonlinear (approximate) system

Case II:

˛ � 0, ˛ < 0
For all of the subcases considered below

 D 2j˛j�0R�2
0 ˙

q
4˛2�0R

�4
0 C  0.R0/R�1

0 (3.216)

(a)  0.R0/ > 0 , Qp0.R0/ > 0
In this subcase it easily follows from (3.216) that 1 < 0 < 2 so that .R0; 0/ is
an (unstable) saddle point for both the linearized and nonlinear (approximate)
problems

(b)  0.R0/ < 0 , Op0.R0/ < 0
In this scenario,

 D 2j˛j�0R�2
0 ˙

q
4˛2�20R

�4
0 � j 0.R0/jR�1

0 (3.217)

and, as in case Ib, three situations are possible:

(i)
ˇ̌
 0.R0/

ˇ̌
< 4˛2�20R

�3
0 , in which case 1 > 0, 2 > 0 and .R0; 0/

is an unstable node both for the linearized problem and the nonlinear
(approximate) problem
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(ii)
ˇ̌
 0.R0/

ˇ̌
> 4˛2�20R

�3
0 , in which case  D a ˙ ib with a > 0 so that

.R0; 0/ is an unstable focus for both the linearized problem as well as the
nonlinear (approximate) problem

(iii)
ˇ̌
 0.R0/

ˇ̌ D 4˛2�20R
�3
0 , in which case 1 D 2 D 2j˛j�0R�2

0 > 0 so
that .R0; 0/ is an unstable node with respect to both the linearized and
nonlinear (approximate) problems

Case III:

˛ D 0

This case corresponds, of course, to the Newtonian model, i.e., � D �0 in (3.167),
for which both systems (3.202) and (3.204), reduce to

8<
:

PR D S;

PS D  .R/R�1 � 3

2
R�1S2:

(3.218)

From (3.214) we obtain

 D ˙
q
 0.R0/R�1

0 (3.219)

in which case for

(a)  0.R0/ > 0 , Op0.R0/ > 0
We have 1 < 0 < 2 and, consequently, .R0; 0/ is an unstable saddle point
both for the linearized system

8<
:

PR D S

PS D 1

R0
 0.R0/.R � R0/

(3.220)

as well as for the nonlinear system (3.218)
(b)  0.R0/ < 0 , Op0.R0/ < 0

We have  D ˙i
q

j 0.R0/jR�1
0 , in which case the linearized problem (3.220)

exhibits a stable center at .R0; 0/ but no definitive conclusions concerning the
nature of the equilibrium at .R0; 0/ for the nonlinear problem (3.218) may be
drawn from this result. A conclusion of stability, however, for the equilibrium at
.R0; 0/, with respect to the nonlinear system (3.218) will follow, in Sect. 3.3.4,
from Liapunov theory when  0.R0/ D 0 and  00.R0/ < 0, i.e., when Op0.R0/ D
0 and Op00.R0/ < 0.

Remarks. In each of the cases treated above we have avoided the possible situation
in which  0.R0/ D 0. In this case , as given by (3.214), reduces to

 D �2˛�0R�2
0 ˙

q
4˛2�20R

�4
0 (3.221)
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so

for ˛ > 0 W 1 D 0; 2 < 0;

for ˛ < 0 W 1 D 0; 2 > 0;

for ˛ D 0 W 1 D 2 D 0:

(3.222)

Therefore, if .R0; 0/ is an equilibrium state with respect to the nonlinear system
(3.204) for j˛j � 0, for the linear problem (3.207), (3.208a), (3.211), .R0; 0/
is a (degenerate) nonhyperbolic equilibrium when  0.R0/ D 0. Various results
concerning the nature of the stability of degenerate equilibria corresponding to the
possibilities exhibited in (3.222) follow from the work of Poincaré, Bendixson,
Andronov, et. al. (see, e.g., [Pe]) but we will not pursue these issues here; rather,
the stability of .R0; 0/ in this situation may be handled within the context of the
Liapunov theory introduced in the next section under the additional hypothesis that
 00.R0/ < 0, i.e., that  (equivalently, Op) has a relative maximum at R D R0.

3.3.4 Liapunov Theory and Nonlinear Stability

In this section we consider the nonlinear system (3.202) where k.˛I�0/ is given by
(3.203) and ˛ < 1. Setting, once again, NR D R�R0 and NS D S we rewrite (3.202)
in the form

8̂
<̂
ˆ̂:

PNR D NS;
PNS D N . NRIR0/. NRCR0/

�1 � 3

2
. NRCR0/

�1 NS2
C k.˛I�0/. NRCR0/

˛�2 NS j NS j�˛;
(3.223)

where

N . NRIR0/ 	  . NR CR0/ D Op. NRCR0/� p1: (3.224)

As .R0; 0/ is an equilibrium point of (3.202), N .0IR0/ D 0. The additional
assumption that will be made in this subsection is the following: 9ı > 0 such that

N .IR0/ � 0; jj < ı: (3.225)

As N .0IR0/ D 0, (3.225) is satisfied if N .IR0/ has a relative maximum at  D 0,
i.e., if

N 0.0IR0/ D 0 and N 00.0IR0/ < 0: (3.226)
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ψ̄

−δ δ

λ

⎧⎨
⎩

ψ̄(0; R0) = 0

ψ̄(λ; R0) ≤ 0, |λ| = δ

Fig. 3.1 Sketch of the
function N .IR0/; jj < ı

Clearly, (3.226) is equivalent to

Op0.R0/ D 0 and Op00.R0/ < 0: (3.227)

The situation delineated above is sketched above (note that N .0IR0/ D 0 ,
Op.R0/ D p1) in Fig. 3.1. We now consider the function

V. NR; NS/ 	 . NRCR0/
3 NS2 � 2

Z NR

0

.CR0/
2 N .IR0/ d: (3.228)

Clearly, V.0; 0/ D 0. We define a neighborhood

N .0; 0/ 	 f. NR; NS/ j NR2 C NS2 � ı2g (3.229)

of the origin in the NR; NS plane and note that for any NR such that . NR; NS/ 2 N .0; 0/,
N .IR0/ � 0 if  2 Œ0; NR�, as a consequence of (3.225) and the definition (3.229).

Thus, for . NR; NS/ 2 N .0; 0/ (as NR C R0 	 R � 0) it follows from (3.228) that
V. NR; NS/ � 0. Furthermore, V. NR; NS/ D 0 implies that . NR; NS/ D .0; 0/ as

8̂
<
:̂

V1. NR; NS/ 	 . NRCR0/
3 NS2 � 0;

V2. NR; NS/ 	 �2
Z NR

0

.CR0/
2 N .IR0/ d � 0

(3.230)

for . NR; NS/ 2 N .0; 0/. Therefore, V. NR; NS/ > 0 for . NR; NS/ 2 N .0; 0/ with . NR; NS/ ¤
.0; 0/. For N .IR0/ continuous in , V. NR; NS/ is clearly of class C2 on N .0; 0/ in
which case V. NR; NS/ constitutes a Liapunov function.

We now consider the derivative of V. NR; NS/ along the trajectories of the system
(3.223), i.e., we want to compute

LtV. NR; NS/ D rV � . PNR; PNS/

	 @V
@ NR

PNRC @V
@ NS

PNS:
(3.231)
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By virtue of the definition of V , i.e., (3.228),

8̂
<̂
ˆ̂:

@V
@ NR D 3. NRCR0/

3 NS2 � 2. NRCR0/
2 N . NRIR0/;

@V
@ NS D 2. NRCR0/

3 NS;
(3.232)

so that

LtV D f3. NRCR0/
3 NS2�2. NRCR0/

2 N . NRIR0/g PRC2. NRCR0/
3 NS PNS (3.233)

or, employing (3.223),

LtV D f3. NRCR0/
3 NS2 � 2. NRCR0/

2 N . NRIR0/gS
C 2. NRCR0/

3 NSf N . NRIR0/. NR CR0/
�1

� 3

2
. NRCR0/

�1 NS2 � k.˛I�0/. NR CR0/
˛�2 NS j NS j�˛g:

(3.234)

Upon simplifying (3.234) we obtain

LtV D �2k.˛I�0/. NRCR0/
1C˛ NS2ˇ̌ NS ˇ̌�˛ (3.235)

and, as NR C R0 D R > 0, for ˛ < 1 we obtain from (3.235) and the definition,
(3.203), of k.˛I�0/ the following conclusions

8̂̂
<
ˆ̂:
LtV < 0; ˛ > 0;

LtV D 0; ˛ D 0;

LtV > 0; ˛ < 0:

(3.236)

We may summarize our results in the following

Theorem 3.4. Consider a spherical vapor cavity (bubble), whose radius at time
t > 0 is R.t/, immersed in an unbounded non-Newtonian fluid defined by the
constitutive law (2.1a), with � D �1 D 0, and ˛ < 1. Let the fluid pressure be
of the form (3.191) and define Op.R/ D P.RIR/ where it is assumed that Op is
differentiable on R

C. Then

(i) All equilibrium states of the bubble are of the formR D R0, where the constant
R0 satisfies Op.R0/ D p1

(ii) If we define, for  2 .�1;1/,

N .IR0/ D Op.CR0/ � p1 (3.237)
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p̂

p∞ p̂(R)

R0 R

Fig. 3.2 The function
N .IR0/ in Theorem 3.4

and N satisfies (3.225), for some ı > 0, the equilibrium state .R0; 0/ is

(a) (locally) asymptotically stable for ˛ > 0
(b) stable for ˛ D 0

(c) unstable for ˛ < 0

An example which corresponds to the conditions of Theorem 3.4 is sketched above
in Fig. 3.2.

Remarks. Using the Liapunov function V. NR; NS/ in (3.228) we may reconsider the
nonlinear (approximate) system, corresponding to j˛j � 0, for the previously
indeterminate case in which  0.R0/ D 0. In terms of NR D R � R0, and NS D S ,
(3.204) becomes

8̂̂
<
ˆ̂:

PNR D NS;
PNS D . Op. NRCR0/ � p1/. NRCR0/

�1

� 3

2
. NRCR0/

�1 NS2 � 4˛�0. NRCR0/
�2 NS:

(3.238)

Under the same conditions which prevailed earlier, i.e., the definition of N .0; 0/

in (3.229), and the hypothesis relative to N .IR0/ D Op.CR0/�p1, we find that

LtV D �8˛�0. NRCR0/ NS2: (3.239)

In particular, (3.239) holds if (see (3.226))  0.R0/ D 0 and, in addition,
 00.R0/ < 0; thus for ˛ < 0 the equilibrium state .R0; 0/ is unstable while it
is stable in the Newtonian case in which ˛ D 0 and (locally) asymptotically stable
for ˛ > 0.
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3.4 Exterior Flow of a Bipolar Viscous Fluid in the Plane

3.4.1 Introduction

We continue in this section the process of looking at the motion of bipolar viscous
fluids in specific domains; in this case the problem in question is that of steady
flow of an incompressible bipolar viscous fluid past a fixed body �0 � R2. The
hypothesis of steady flow conditions for Navier–Stokes, when coupled with the
assumption that the external body force/mass f D 0, and the normalizations � D 1,
�0 D 1, yields the following exterior flow problem:

�v � v � rv � rp D 0; in R2= N�0; (3.240a)

r � v D 0; in R2= N�0; (3.240b)

v D 0; on @�0; (3.240c)

lim
jjxjj!1

v.x/ D v1: (3.240d)

In 1933, Leray [Le1] proved the existence of a function v which satisfies
(3.240a,b,c) in a weak sense. It is not, however, known yet whether or not the weak
solution constructed in [Le1] satisfies the radiation condition (3.240d). In [FiS],
Finn and Smith provided an affirmative answer to the problem under the restriction
that jjv1jj be sufficiently small; the general existence problem for (3.240a–d)
remains open. In this section we will consider the same classical problem (of steady
flow past a bounded set �0 in the plane) within the framework of the theory of
the incompressible bipolar viscous fluid; we will show that the problem which
replaces (3.240a–d), in the case of a bipolar fluid, has a solution and will use that
solution to compute the drag on the body�0.

3.4.2 Formulation of the Exterior Flow Problem for a Bipolar
Fluid

Let �0 � R2 be a simply connected bounded domain with smooth boundary @�
and set � D R2= N�0. With the nonlinear viscosity � as given by (1.89), where �0,
�1 and � are all positive constants, and 0 < ˛ < 1, our problem assumes the form

.L.v//i 	 �1
@

@xj
�eij � @

@xj
.�.jej/eij/C vj

@vi

@xj
D � @p

@xi
; in �; (3.241a)

r � v D 0; in �; (3.241b)

v D 0; on @�0; (3.241c)
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�
@

@xk
eij

�

j 
k�i D 0; on @�0; (3.241d)

lim
jjxjj!1

v.x/ D v1 	
 


0

!
; (3.241e)

lim
jjxjj!1

D2v.x/ D 0: (3.241f)

In (3.241d), � is the exterior unit normal to @�0 (and, thus, lies in the interior of the
domain �) while � is the unit tangent vector to @�0. In what follows we will use
the notation

ˇ̌ˇ̌
D2u

ˇ̌ˇ̌2
L2.�/

	
X
i;j;k

“ �
@2ui
@xj @xk

�2
dx

jjDujjsLs 	
X
i;j

“ ˇ̌
ˇ̌ @ui
@xj

ˇ̌
ˇ̌s dx

9>>>>>>>=
>>>>>>>;
: (3.242)

Elementary algebraic estimates (see (B.14) for (3.243a)) yield that there exists a
positive constant c such that for all u,

@

@xk
eij.u/

@

@xk
eij.u/ � c

X
i;j;k

�
@2ui
@xj @xk

�2
; (3.243a)

�.jej/eij.u/eij.u/ � c�0
X
i;j

ˇ̌
eij.u/

ˇ̌2�˛
: (3.243b)

Next, we introduce the function spaces

H ˛.�/ D fu j u D 0 on @�0; r � v D 0 in �; and ru 2 L2�˛.�/g; (3.244a)

V ˛.�/ D fu j u 2 H ˛.�/ andD2u 2 L2.�/g (3.244b)

and

V b
˛ D fu j u 2 V ˛.�/ such that supp u is boundedg: (3.244c)

We will need the following result from Appendix B which is proven in [HN]:

“
�

X
i;j

ˇ̌
eij.u/

ˇ̌2�˛
dx � c jjDujj2�˛

L2�˛
: (3.245)
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M1

M2

0

Ω

∂Ω

Fig. 3.3 The domain � on
which w.x/ is defined

In order to proceed, we first transform the problem (3.241a–f) into an equivalent
problem with homogeneous boundary conditions; to this end, we use some results
of Heywood (see [He1, 2]) to infer the existence of a function w.x/, which is defined
for x 2 �, and which satisfies w 2 C1.�/ and

w.x/ 	
 

�
0

!
; for jxj < M2; (3.246a)

w.x/ 	 0; for jxj > M1; (3.246b)

div w D 0; in � (3.246c)

whereM2 > 0 is such that�0 � BM2.0/ andM1 > M2 (see Fig. 3.3). Furthermore,
it can be shown (see, e.g., [Lio1]) that, for all � > 0, we can choose w such that,
with �M1 D � \ BM1.0/,

X
i;j

“
�M1

�
wj ; ui

�2
L2.�/

dx � �jjDujj2
L2.�M1 /

; 8u 2 V ˛.�M1/: (3.247)

Setting u D v � v1 � w we then have that u satisfies:

L.u C v1 C w/ D �rp; in �; (3.248a)

u D 0; on @�0; (3.248b)�
@

@xk
eij

�

j 
k�i D 0; on @�0; (3.248c)
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lim
jjxjj!1

u D 0; (3.248d)

lim
jjxjj!1

D2u D 0; (3.248e)

r � u D 0; in �: (3.248f)

Our goal in the next two subsections will be to prove the existence of a weak solution
for the problem (3.248a–f); to that end we make the following

Definition 3.1. A function u is said to be a weak solution of (3.248a–f) if u 2
V ˛.�/, u satisfies (3.248d,e,f) and, for all v 2 V b

˛.�/,

“
�

�.je.u C w/j/eij.u C w/eij.v/ dx

C �1

“
�

@

@xk
eij.u C w/

@

@xk
eij.v/ dx

C
“
�

.u C v1 C w/j
@.u C w/i
@xj

vi dx D 0: (3.249)

3.4.3 Solution of the Exterior Problem in a Truncated Domain

To prove the existence of a weak solution for (3.248a–f) we will first establish
the existence of a solution uN in the truncated domain �N D � \ BN .0/; then,
in Sect. 3.4.4, we will let N ! 1 and prove that lim

N!1 uN 	 u is a weak solution

to (3.248a–f) in the sense of Definition 3.1. Therefore, let

BN .0/ D fx 2 R2 j jjxjj < N g:

We assume thatN > 0 is so large thatN > M1 > M2 > diam�0. With�N D �\
BN .0/, we want to prove the existence of a function uN which satisfies r � uN D 0

in �N with

uN 2 W 2;2.�N /\W 1;2
0 .�N /; (3.250a)�

@

@xk
eij.uN /

�

j 
k�i D 0; on @�N (3.250b)

and for all v 2 W 2;2.�N / \W 1;2
0 .�N / such that r � v D 0 in �N ,
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“
�N

�
�ˇ̌
e.uN C w C v1/

ˇ̌�
eij.uN C w C v1/eij.v/ dx

C �1

“
�N

@

@xk
eij.uN C w C v1/

@

@xk
eij.v/ dx

C
“
�N

.uN C w C v1/j
@.uN C w/i

@xj
vi dx D 0: (3.251)

Our first step in this direction consists of proving the following a priori estimate:

Theorem 3.5. There exists a positive constant C , independent of N , such that any
solution uN of (3.251) satisfies:

“
�N

.D2uN /2 dx C
“
�

.DuN /2�˛ dx � C: (3.252)

Proof. Setting v D uN in (3.251), it follows that

“
�N

�.
ˇ̌
e.uN C w/

ˇ̌
/eij.uN C w/eij.uN C w/ dx (3.253)

C �1

“
�N

@

@xk
eij.uN C w/

@

@xk
.eij.uN C w// dx

�
ˇ̌
ˇ̌
ˇ
“

�N

�.uN C w/eij.uN C w/eij.w/ dx

ˇ̌
ˇ̌
ˇ

C �1

ˇ̌̌
ˇ̌
“
�N

@

@xk
ek.uN C w/

@

@xk
eij.w/ dx

ˇ̌̌
ˇ̌

C
ˇ̌̌
ˇ̌
“
�N

.uN C v1 C w/j
@.uN C w/i

@xj
uNi dx

ˇ̌̌
ˇ̌:

Also (with no summation over the repeated indices i; j; k) we have, for any ı > 0,

ˇ̌
ˇ̌ @
@xk

eij.uN C w/
@

@xk
eij.w/

ˇ̌
ˇ̌ � ı

2

�
@

@xk
eij.uN C w/

�2

C 1

2ı

�
@

@xk
eij.w/

�2 (3.254)
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and, for some c1 > 0,

ˇ̌
ˇ̌̌“

�N

�
�ˇ̌
e.uN C w/

ˇ̌�
eij.uN C w/eij.w/ dx

ˇ̌
ˇ̌̌

�
X

ij

�
c1ı
ˇ̌ˇ̌
eij.uN C w/

ˇ̌ˇ̌2�˛
L2�˛.�N /

C c1ı
˛�1 ˇ̌ˇ̌eij.w/

ˇ̌ˇ̌2�˛
L2�˛.�N /

�
: (3.255)

By (3.243a,b), (3.245), and (3.253), it follows that 9c1 > 0, c2 > 0 such that for
any ı > 0,

c2

“
�N

.D2.uN C w//2 dx C c2

“
�N

.D.uN C w//2�˛ dx (3.256)

� .1 � ıc1/

“
�N

�.
ˇ̌
e.uN C w/

ˇ̌
/eij.uN C w/eij.uN C w/ dx

C �1

�
1 � ı

2

�“
�N

@

@xk
eij.uN C w/

@

@xk
eij.uN C w/ dx

� �1
1

2ı

X
i;j

ˇ̌
ˇ̌
ˇ̌
ˇ̌ @
@xk

eij.w/

ˇ̌
ˇ̌
ˇ̌
ˇ̌2
L2.�N /

C c1ı
˛�1X

i;j

ˇ̌ˇ̌
eij.w/

ˇ̌ˇ̌2�˛
L2�˛.�N /

C ˇ̌
b.uN C w C v1;uN C w;uN /

ˇ̌

where for any domain� � Rn,

b.f ;g;h/ D
“
�

fj
@gi

@xj
hi dx:

Integration by parts yields b.uN C w C v1;uN ;uN / D 0, hence

b.uN C w C v1;uN C w;uN / D b.w C v1;w;uN /C b.uN ;w;uN /:

Since @wi =@xj has fixed support (independent of N ) we have that

ˇ̌
b.w C v1;w;uN /

ˇ̌ � ı
ˇ̌ˇ̌

uN
ˇ̌ˇ̌2
L1.�M2 /

C 1

ı
jjw C v1jj2L1.�M2 /

ˇ̌̌
ˇ
ˇ̌̌
ˇ@wi
@xj

ˇ̌̌
ˇ
ˇ̌̌
ˇ
2

L2.�M2 /

� c3ı
ˇ̌ˇ̌
D2uN

ˇ̌ˇ̌2
L2.�M2 /

C 1

ı
jjw C v1jj2L1.�M2 /

ˇ̌
ˇ̌
ˇ̌
ˇ̌@wi
@xj

ˇ̌
ˇ̌
ˇ̌
ˇ̌2
L2.�M2 /

(3.257)

for any ı > 0, where c3 depends on �;M2 but not on N .
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From (3.247), we deduce that

ˇ̌
b.uN ;w;uN /

ˇ̌ � �
ˇ̌ˇ̌
DuN

ˇ̌ˇ̌2
L2.�M2/

� �c7
ˇ̌ˇ̌
D2uN

ˇ̌ˇ̌2
L2.�M2 /

(3.258)

where c7 > 0 is independent of N . Choosing � and ı small enough, it then follows
from (3.253) that there exists a positive C.�; ı; �0; �1/, independent of N , uN such
that

ˇ̌ˇ̌
D2uN

ˇ̌ˇ̌2
L2.�N /

C ˇ̌ˇ̌
DuN

ˇ̌ˇ̌2�˛
L2�˛.�N /

� C: ut

Our goal now is to employ the Galerkin method to prove the existence of a
solution uN to (3.251) which satisfies (3.250a,b) and r � uN D 0 in �N . In order to
introduce the required basis we define the space

H D fu j u 2 W 2;2.�N / \W 1;2
0 .�N /I r � u D 0g: (3.259)

In H the scalar product is taken to be

..w;'// D
Z
�N

@

@xk
eij.w/

@

@xk
eij.'/ dx: (3.260)

We now have the following

Lemma 3.1. The eigenvalue problem

..w;'// D  .w;'/L2.�/ ; 8' 2 H (3.261)

has a sequence of solutions W i 2 H \ C1.�N / corresponding to a sequence of
positive eigenvalues l . Furthermore,

1. ..@=@xk/eij.W l //
j 
k�i D 0, on @�N , for all l D 1; 2; : : :.
2. The sequence W l is a basis for the closure of H under the L2 norm.
3. The sequence W l is a basis of H.
4. .W l ;Wk/ D ılk .

Proof. This is a standard consequence of the estimate (3.243a). ut
Now, for K fixed, let uN;K 2 EK D spanfW1 � � �WKg, with uN;K.x/ D

KX
lD1
AlW l .x/ the solution of
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“
�N

�.
ˇ̌
e.uN;K C w C v1/

ˇ̌
/eij.uN;K C w C v1/eij.v/ dx

C
“
�N

@

@xk
eij.uN;K C w C v1/

@

@xk
eij.v/ dx

C
“
�N

.uN;K C w C v1/j
@.uN;K C w/i

@xj
vi dx D 0 (3.262)

8w 2 EK . Then,

Lemma 3.2. The problem (3.262) has a solution uN;K .

In order to establish the validity of Lemma 3.2 we recall the following result
in [Te1]:

Lemma 3.3. Let X be a finite-dimensional Hilbert space with scalar product Œ�; ��
and norm Œ��, and let P be a continuous mapping from X into itself such that

ŒP.�/; �� > 0 for Œ�� D A > 0: (3.263)

Then there exists � 2 X , Œ�� � A, such that P.�/ D 0.

Proof (Lemma 3.2). We set X D EK and defineP by

ŒP.u/; v� D �1

“
�N

@

@xk
eij.u C w/

@

@xk
eij.v/ dx

C
“

�N

�.je.u C w/j/eij.u C w/eij.v/ dx

C b.u C w C v1;u C w; v/ (3.264)

8u; v 2 EK . The continuity of P is clear; also, proceeding as in the proof of the
a priori estimate (3.252) it can be shown that there exists a positive c (independent
of K and N ) such that if ŒP.u/;u� � 0, then jjujj � c. Therefore, if A > c,
condition (3.263) of the lemma is satisfied. Hence, there exists a solution uN;K to
the problem (3.262). ut

Since (3.262) holds for v D uN;K , the solution uN;K satisfies the a priori estimate
of Theorem 3.5. In particular, there exists a positive c independent of K such that

ˇ̌ˇ̌
D2uN;K

ˇ̌ˇ̌
L2.�N /

� c:

Hence, for fixedN the sequence uN;K is weakly compact inW 2;2.�N /\W 1;2
0 .�N /;

from this fact the following existence theorem can be deduced by letting K ! 1
in (3.262) and using standard arguments:
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Theorem 3.6. The problem (3.251) has a (weak) solution uN 2 H for all v 2
W 2;2.�N /\W 1;2

0 .�N / such that r � v D 0 in �N .

Our next theorem concerns a regularity result for the solution uN of
Theorem 3.6; it shows, in particular, that uN satisfies the higher-order boundary
condition (3.250b).

Theorem 3.7. Let uN 2 H be the weak solution of Theorem 3.6. Then uN 2
W 3;2.�N / and satisfies the boundary condition

@

@xk
eij.uN /
j 
k�i D 0:

Moreover, there exists pN 2 L2.�N / such that uN satisfies

L.uN C v1 C w/ D �rpN ; in �N : (3.265)

Proof. The fact that uN satisfies (3.265) is an immediate consequence of (3.251)
and the de Rham Theorem (see, e.g., [GRa]). Since uN 2 W 1;2

0 .�N / \W 2;2.�N /

and is divergence free, there exists a unique function ‰N.x; y/ 2 W 3;2.�N / such
that

uN D .�‰N
y ;‰

N
x /; (3.266a)

‰N
ˇ̌
@�0 D cN ; ‰N

ˇ̌
jjxjjDN D 0; (3.266b)

@‰N

@n

ˇ̌̌
ˇ
@�N

D 0: (3.266c)

Substituting .�‰N
y ;‰

N
x / for uN in the partial differential equation (3.265) and

taking the curl, we find that

��1�3‰N D @2

@x1@xj
�.
ˇ̌
e.uN C w C v1/

ˇ̌
/e2j .uN C w C v1/ (3.267)

� @2

@x2@xj
�.
ˇ̌
e.uN C w C v1/

ˇ̌
/e1j .uN C w C v1/

C @

@x1

�
.uN C w C v1/j

@.uN C w/2
@xj

�

� @

@x2

�
.uN C w C v1/j

@.uN C w/1
@xj

�

C �1
@2

@x1@xj
�e2j .w/� �1

@2

@x2@xj
�e1j .w/:
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From the regularity of uN and w the right-hand side of (3.267) is inW �2;2.�N / so
that �3‰N 2 W �2;3.�N /. Using that .‰N ;�3‰N / 2 W 3;2.�N / 
 W �2;3.�N /

we deduce via duality, in the usual fashion, that we can define @2‰N=@
3 2
W �1=2;2.@�N /. Therefore, the traces of all third-order derivatives of ‰N are
defined, and the traces of all second-order derivatives of uN are defined. As a
consequence of (3.251) and (3.265) we have that

Z
@�N

@

@xk
eij.uN /
j 
k

@vi

@

dS D 0; 8v 2 H (3.268)

from which it follows, by virtue of the analysis in Sect. 1.4.4 and Theorem 3.1

of Heron [HB], that the tangential component of

�
@

@xk

�
eij.uN /
j 
k vanishes on

@�N , i.e.,

@

@xk
eij.uN /
j 
k�i

ˇ̌̌
ˇ
@�N

D 0: (3.269)

Therefore,‰N satisfies

@

@

�‰N

ˇ̌
ˇ̌
@�N

D 0: (3.270)

From the regularity theory of elliptic partial differential equations (see, e.g., [Ev]
or [LM]), it follows that ‰N 2 W 4;2.�N /, which then yields that uN 2 W 3;2.�N /

and pN 2 L2.�N /. ut

3.4.4 Solution of the Exterior Problem in an Unbounded
Domain

We will now use the weak solutions uN for the truncated domains �N to construct
a solution of the exterior problem in� D R2= N�0. Our first result in this direction is
the following

Lemma 3.4. There exists a constant c > 0 independent of N such that

ˇ̌ˇ̌
uN
ˇ̌ˇ̌
L4=˛�2.�N /

� c: (3.271)

Proof. This is a direct consequence of estimate (3.252) and the estimate

jjujjLq.�/ � cjjrujjLp.�/ (3.272)

with 1=p � 1=2 D 1=q (see, e.g., [Te1], page 158). ut
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Remarks. From (3.271) it follows that the sequence uN has a subsequence, denoted
also by uN , which is weakly convergent in L4=˛�2.�/ to a function u. By the
estimate (3.252), and a diagonal process, there exists a subsequence, which will
again be denoted by uN , such that uN converges strongly to u in W 1;2�˛

loc .�/ and
weakly in W 2;2

loc .�/. From (3.252) it follows that

“
�

.D2u/2 dx C
“

�

jDuj2�˛ dx � c: (3.273)

and, from (3.271), that

“
�

juj4=˛�2 dx � c: (3.274)

Going to the limit in (3.251), we then find that

“
�

�.je.u C w C v1/j/eij.u C w C v1/eij.v/ dx

C �1

“
�

@

@xk
eij.u C w C v1/

@eij

@xk
.v/ dx

C
“
�

.u C w C v1/j
@.u C w C v1/i

@xj
vi dx D 0 (3.275)

8v 2 V b
˛.�/. It now follows from (3.275) that u satisfies, in �,

�1
@

@xj
�eij.u C w C v1/ � @

@xj

�
�.je.u C w C v1/j/eij.u C w C v1/

�

C .u C w C v1/j
@

@xj
.u C w C v1/i D � @p

@xi
(3.276)

where p 2 W �1;2.�/. As the right-hand side of (3.267) is uniformly bounded
in W �2;2.�/, it follows from local regularity results for elliptic equations that
‰N � cN (see (3.266b)) is uniformly bounded inW 4;2

loc .�/. Therefore, uN converges
inW 3;2

loc.�/. It also follows from (3.269) that

@

@xk
eij.u/
j 
k�i

ˇ̌
ˇ̌
@�0

D 0:

Our last lemma, which leads up to the statement of the existence theorem for the
exterior problem in � is
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Lemma 3.5. The function u which has been obtained as the limit, as N ! 1, of a
subsequence of the weak solutions uN , and which satisfies (3.276), 8v 2 V b

˛.�/,
also satisfies

(i) u 2 L1.�/,
(ii) lim

jjxjj!1
u.x/ D 0.

Proof. Since u D 0 on @�0, it follows from (3.273) that u 2 L1
loc.�/. Assume that

u … L1.�/. Then there exists xn ! 1 such that jju.xn/jj ! 1. But, since for
some c > 0,

ˇ̌ˇ̌
D2u

ˇ̌ˇ̌
L2.B1.xn//

� c; jjujjL4=˛�2.B1.xn//
� c (3.277a)

(c independent of n) it follows from the estimate

jjujjL1.B1.xn//
� c

�ˇ̌ˇ̌
D2u

ˇ̌ˇ̌
L2.B1.xn//

C jjujjL4=˛�2.B1.xn//

�
(3.277b)

that

jjujjL1.B1.xn//
� c (3.277c)

where c is independent of n; this establishes part (i) of the Lemma. To establish part
(ii) of the lemma we only have to observe that, by (3.273) and (3.274), the right-
hand side of (3.277b) goes to zero as n ! 1. ut

By combining the discussion which follows Lemma 3.4 with the results of
Lemma 3.5, we observe that we have established the following

Theorem 3.8. The problem (3.248a–f) has a weak solution in the sense of
Definition 3.1.

Remarks. The condition (3.248d) is satisfied in the sense of pointwise limit,
while (3.248c) is satisfied in the sense thatD2u 2 L2.�/.

3.4.5 Existence of a Drag Force

In this brief subsection we show that the solution of problem (3.248a–f), equiva-
lently, the solution of (3.241a–f), predicts the existence of a drag force on the body
�0 in the direction of v1. We denote by F.v1/ the force exerted on the body �0
as a consequence of the motion of the fluid so that

F.v1/ D
Z
@�0

tij
j dS (3.278)

with tij D �pıij C �.je.v/j/eij � 2�1�eij for the bipolar viscous fluid in � D
R2= N�0. We have the following result
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Theorem 3.9. The solution v of (3.241a–f) exhibits a drag force in the direction of
v1, i.e., F.v1/ � v1 > 0.

Proof. By (3.278) and (3.241c)

F.v1/ � v1 D 

Z
@�0

�1;j .v/
j dS:

Setting vN D uN C w C v1, multiplying (2.266) by .vN � v1/, integrating by
parts, and using the fact that vNj .v

N � v1/i D 0, on @�N , we find that



Z
@�N

�1;j .v
N /
j dS D

“
�N

�.vN /eij.v
N / dx

C �1

“
�N

@

@xk
eij.v

N /
@

@xk
eij.v

N / dx > 0:

(3.279)

Letting N ! 1 in (3.279) then yields



Z
@�0

�1;j .v/
j dS D
“
�

�.v/eij.v/eij.v/ dx

C �1

“
�

@

@xk
eij.v/

@

@xk
eij.v/ dx > 0:

(3.280)

ut

3.5 Flow Over Non-smooth Boundaries

3.5.1 Introduction

The initial-boundary value problem for a nonlinear bipolar fluid in a domain � �
R
n, n D 2; 3 is given by (1.128)–(1.131). In this section we will consider such

problems for� � R
2 and, to emphasize this point, we will write the velocity vector

as w D .w1.x1; x2/;w2.x1; x2//. We also assume that in the higher-order boundary
conditions (1.116) Mi D 0, i D 1; 2. With the aforementioned assumptions, the
nonlinear, bipolar, initial-boundary value problem in this section takes on the form

�
@wi
@t

D ��wj
@wi
@xj

� @p

@xi
� 2�1

@�eij.w/
@xj

C 2
@.�.w/eij.w//

@xj
C �fi ; in � 
 .0; T /;

(3.281a)

r � w D 0; in � 
 .0; T /; (3.281b)

w.x; 0/ D h.x/; in �; (3.281c)

w D 0; on @� 
 .0; T / (3.281d)
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ΩN

c d
x

y

Fig. 3.4 A sequence of domains �N ! �

and

@eij.w/
@xk


j 
k�i D 0; on @� 
 .0; T / (3.281e)

with f D .f1.x1; x2/; f2.x1; x2//, h.x1; x2/ given functions, � the exterior unit

normal to @�, � the unit tangent vector to @�, eij.w/ D 1

2

�
@wi
@xj

C @wj
@xi

�
, and

�.w/ 	 �.je.w/j/ D �0.� C eij.w/eij.w//�˛=2. As in previous sections of this
volume, the parameters in (3.281a) satisfy �; �0; �1 > 0 and 0 � ˛ < 1.

We wish to investigate the dependence of the solutions to problem (3.281a–e)
on the domain �. More specifically, we are interested in the stability of solutions
with respect to perturbations of the boundary of the domain � (i.e. If a domain
�N is close to a domain �, does it follow that the corresponding solution wN to
problem (3.281a–e) in �N is close to the solution w to problem (3.281a–e) in �?).
We also study the regularity of the solution to problem (3.281a–e) defined on a
polygonal domain.

In Sect. 3.5.2 we state the existence and uniqueness results for solutions of
problem (3.281a–e). In Sect. 3.5.3 we investigate the question of stability of the
solutions with respect to perturbations of the boundary of the domain � and prove
that instability does occur; specifically, we take � to be a rectangular region and
consider a family of domains �N which converge to �, as N ! 1, where the
sequence of domains�N are rectangular in shape except for N indentations on the
bottom side, (see Fig. 3.4).

Thus, we will let wN be the solution of problem (3.281a–e) in the domain �N ,
and show that asN ! 1, the functions wN approach the function w which satisfies,
under certain assumptions on the asymptotic behavior of the ratio of the heights and
widths of the indentations, equations (3.281a–d) and

@eij.w/
@xk


j 
k�i D 0; on .@� nƒ/ 
 .0; T /; (3.282a)

@w
@


D 0; onƒ 
 .0; T / (3.282b)
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instead of the boundary condition (3.281e), where ƒ D .c; d / 
 f0g in Fig. 3.4.
Thus, the boundary conditions are not preserved in the limit; this result illustrates
that, in general, the solutions of problem (3.281a–e) are not stable with respect to
perturbations of the boundary of � by Lipschitz curves. This type of stability ques-
tion has been considered by several authors (see, e.g., Babuška [BaI], Keldysh [Ke],
Maz’ya and Nazarov [MaN], Sapondzhyan [Sap], and the references which are
cited therein) and has yielded surprising instability results. The best known of these
results is the Sapondzhyan-Babuška paradox (or polygon to circle paradox) in the
theory of thin plates; this paradox consists in the fact that, when a thin circular
plate is approximated by regular polygons with freely supported edges, the limit
solution does not satisfy the conditions of free support on the circle. In Sect. 3.5.4
we study the regularity of the solution to the steady state problem associated with
problem (3.281a–e) in a polygonal domain �N . We show that if f 2 L2.�N /,
then any weak solution wN 2 H 2.�N / \H 1

0.�
N / satisfies wN 2 H 4

loc away from
the vertices of ƒN , where ƒN is the polygonal line joining the points .c; 0/ and
.d; 0/ in Fig. 3.4. Moreover, near the vertices of ƒN , we show that the solution
wN may be written as the sum wN D wNreg C wNsing, where wNreg 2 H 4

loc is the

regular part whose behavior is not affected by the presence of corners and wNsing

is the singular part which is not in H 4
loc and whose precise behavior depends

on the interior angle at the vertex of each corner. We also provide an explicit
characterization of the local singularities in terms of the interior angle at the vertex.
To obtain this kind of characterization, we introduce a stream function  such
that wN D curl , which reduces the problem to the study of the regularity of
the solution  to the partial differential equation �3 D f 2 H�1 near each
of the vertices. The regularity of  is obtained by using the general theory of
Kondratiev [Ko]. The corresponding problem for the Navier–Stokes equations,
as well as for second- and fourth-order equations, have been extensively studied
(see, for example, Kondratiev [Ko], Grisvard [Gr1, 2], Kellogg and Osborn [KO],
Osborn [OS], Moffatt [Mo], Blum and Rannacher [BR], and the literature therein).

Essential to the analysis presented in this section is the role of the higher-order
boundary condition �ijk
j 
k�i D 0 on @�; this boundary condition was derived for
a “smooth” boundary in Sect. 1.4.4. When used by mathematicians, the meaning
of “smooth” boundary changes with the context and, when needed, a definition
is usually provided. We will use smooth here to mean that the boundary is a C2

submanifold of R2. On the other hand, the concept of smooth is used in engineering
as an idealization for a boundary, where the imperfections of the surface (such as
machining marks, etc.) are negligible with respect to other variables. In this context,
the concept of “smooth” boundary thus represents an idealization of a surface
whenever the size of the imperfections is deemed small enough. This idealization
provides the advantage of working in a domain with a simple geometry and is
highly desirable. For example, in the case of flow between two plates, it is very
advantageous to think of the two plates as just two parallel planes rather than
attempting to incorporate the precise geometry and then thinking of flow between
two curved surfaces, each of which departs slightly and irregularly from being
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a plane. Alternately, one can think of �N as being a perturbation of the region
� and the question then arises as to whether or not the flow in �N is a stable
perturbation of the flow in �. Whenever the problem is studied in � there is a
tacit and de facto assumption that the flow is stable under such perturbations of the
domain. It has been known for a very long time that for high Reynolds numbers
even the presence of very small protrusions on the surface of the wall substantially
affects the flow. Nikuradze has already observed and reported such findings in the
1930’s (see [ScG] for example). This is consistent with our instability results for the
velocity w with respect to perturbations of the boundary and is an indication that,
at least qualitatively, the fluid flow model (3.281a–e) is sensitive to wall roughness.
Moreover, the result in (3.282b) indicates that, for large N , the gradient of the
velocity wN is small near the rough part of the boundary, which is consistent with
experimental data for fluid flow in domains with rough walls, (see the measurements
of Nikuradze in [ScG]). For other relevant experimental results see also [Wa,Ya,Ni]
and the references therein.

3.5.2 Existence and Uniqueness of Solutions

We want to study the following initial-boundary value problem for an isothermal,
incompressible, bipolar viscous fluid in a planar domain of the type depicted
in Fig. 3.4:

�
@wi
@t

D ��wj
@wi
@xj

� @p

@xi
� 2�1

@�eij.w/
@xj

C 2
@.�.w/eij.w/

@xj
C �fi ; in � 
 .0; T /;

(3.283a)

r � w D 0; in � 
 .0; T /; (3.283b)

w.x; 0/ D h.x/; in �; (3.283c)

	 lw D 0; on �l 
 .0; T /; (3.283d)

	 l
�
@eij.w/
@xk


j 
k�i


D 0; on �l 
 .0; T / (3.283e)

for i; j D 1; 2, where the domain� � R2 is rectangular in shape except on one side
where the points c and d (see Fig. 3.4) are joined together by polygonal lines which
produce rectangular and (acute and right) triangular indentations, and the boundary
is composed of a union of a finite number of linear segments, denoted by N�l .

In (3.283a–e), 	 l denotes the trace operator on each side of the polygonal
domain, f 2 L2loc.0;1IL2.�//, and h 2 H 2.�/, with

Z t

0

jjf jj2
L2.�/

ds � c1e
c1t and jjhjj2

H 2.�/
� c2 (3.284)
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where the positive constants c2 and c2 depend on the area of the domain. We set

H D fw 2 H 2.�/\H 1
0.�/ j r � w D 0; in �g (3.285)

and define a weak solution to the initial-boundary value problem (3.283a–e) to be a
function w 2 H which satisfies, a.e. on .0; T /,

Z
�t

�
@wi
@t
 i dx C 2�1

Z
�t

@eij.w/
@xk

@eij. /

@xk
dx

D �
Z
�t

�wj
@wi
@xj

 i dx � 2

Z
�t

�.w/eij.w/
@ i

@xj
dx C

Z
�t

�fi i dx (3.286)

for all  2 H . We then have the following existence and uniqueness result:

Theorem 3.10. Suppose f 2 L2loc.0;1IL2.�//, h 2 H , and (3.284) holds. Then
problem (3.283a–e) has a unique weak solution w 2 H , in the sense of (3.286),
which satisfies

sup
t2.0;T /

jjwjj2
L2.�t /

C
Z T

0

jjwjj2
H 2.�t /

dt � c (3.287)

sup
t2.0;T /

jjwjj2
H 2.�t /

C
Z T

0

jjwt jj2L2.�t / dt � c (3.288)

where c > 0 depends on T and on the domain through the Lipschitz norm of the
boundary of � and the area of the domain�.

Remarks. In the case where� is a smooth (C2) domain, this result has been proved
in [BBN4]. The proof is similar in the case where � is a polygonal domain and we
will omit it.

3.5.3 Perturbation of Domain Results

In this subsection, we study whether or not the solution wN of the bipolar fluid
flow equations (3.283a–e) in a rectangular domain �N with small rectangular or
triangular perturbations on one side of the boundary is close to the solution w of
the bipolar fluid flow equations in a domain�, where� is rectangular in shape and
has no perturbations. It will be shown, under some assumptions on the asymptotic
behavior of the ratio of the heights and the widths of the rectangular and triangular
perturbations, that the solution wN is not close to the solution w.
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Fig. 3.5 Sequence of domains with rectangular indentations

Rectangular Perturbations

We begin by considering a sequence of domains�N which are rectangular in shape
except each haveN rectangular indentations on the bottom side, (see Fig. 3.5).

A more precise definition of the domains �N is as follows: Let PN D fpNj g2NjD1
be a set of points on the x-axis such that c D pN1 < pN2 < � � � < pN2N D d . Let
the set of points .x; 0/ for x 2 .c; d / be denoted by ƒ. Construct a rectangular
indentation with height hNj between the points pN2j�1 and pN2j for j D 1; 2; : : : ; N .

Let wN2j�1 D
ˇ̌
ˇpN2j � pN2j�1

ˇ̌
ˇ for j D 1; 2; : : : ; N and wN2j D

ˇ̌
ˇpN2jC1 � pN2j

ˇ̌
ˇ for

j D 1; 2; : : : ; N �1. Thus, the j th rectangle has height hNj and width wN2j�1, where

j D 1; 2; : : : ; N , and the j th and .j C 1/st rectangles are a distance wN2j apart,

where j D 1; 2; : : : ; N � 1. Let .wNj /
� D maxfwN2j�2;wN2j�1g for j D 1; 2; : : : ; N

where wN0 D wN2 . Let

sN D max
0�j�N�1

(
..wNjC1/�/2

hNjC1

)
(3.289)

and

rN D max
0�j�N�1

(
wN2jC1
wN2j

)
: (3.290)

Using the notation just described, we can now state the main result in this
subsection.
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Theorem 3.11. Let�N forN D 1; 2; : : :, be a sequence of domains described as in
Fig. 3.5. Suppose that, asN ! 1, we have hNj ! 0, sN ! 0, and rN ! c1, where

c1 is a positive constant bounded away from zero. Let wN D .uN ; vN / be a solution
to problem (3.283a–e) on the domain �N 
 .0; T /. Then, as N ! 1, the domain
�N approaches a rectangular domain �, and the sequence of solutions fwN g
converges inL2..0; T /IH 1

0.�// to a solution w D .u; v/ 2 L2..0; T /IH 2
loc.

N�nƒ//
which satisfies equations (3.283a–d), equation (3.283e) on �l n ƒ 
 .0; T / and
@w
@�

D 0 on ƒ 
 .0; T /.

Remarks. If we consider the specific case where the domains �N have N uniform
rectangular indentations each with height hN and width wN , where the rectangular
indentations are a distance dN apart, then the conclusion of Theorem 3.10 is valid

provided that as N ! 1, we have hN ! 0,
maxfwN ; dN g

hN
! 0, and

wN

dN
! c1,

where c1 is a positive constant bounded away from zero.

Proof (Theorem 3.11). By Theorem 3.10, for each domain �N , there exists a
solution wN D .uN ; vN / which satisfies the inequality

Z T

0

ˇ̌ˇ̌
wNt
ˇ̌ˇ̌2
L2.�Nt /

dt C
Z T

0

ˇ̌ˇ̌
wN
ˇ̌ˇ̌2
H 2.�Nt /

dt � c (3.291)

where the dependence of c on the domain with a Lipschitz boundary is through
the Lipschitz norm and the area of �N . Because of the nature of the domains
�N , the Lipschitz norm can be bounded by two for every �N and we can find a
uniform bound on the area for every�N . Therefore, the sequence fwN g is bounded
in L2..0; T /IH 2.�N // independently of N . Since wN 2 L2..0; T /IH 2.�N // and
dwN

dt
2 L2..0; T /IL2.�N //, we can deduce that the sequence fwN g converges

strongly in L2..0; T /IH 1
loc.�nƒ//. Since fwN g is in L2..0; T /IH 1

0.�
N //, we can

extend fwN g by 0 to all of � to obtain a new sequence, denoted again by fwN g,
which is strongly convergent in L2..0; T /IH 1

0.�// to a function w. These results
are sufficient to pass to the limit in (3.286) and recover that the limit function w
satisfies (3.283a–d) and (3.283e) in L2..0; T /IH �1=2.�l n ƒ// by using the usual
duality argument. To finish the proof of Theorem 3.11 we will need the following
lemma, which we will prove later:

Lemma 3.6. Under the assumptions of Theorem 3.11, there exists a positive
constant c such that for all sufficiently small ı > 0,

Z T

0

Z d

c

u2y.x; ı/ dx dt � cı: (3.292)
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Fig. 3.6 Domain in the proof of Lemma 3.7

To finish the proof of Theorem 3.11, if we let ı go to 0 in (3.292), then

Z T

0

Z d

c

u2y.x; 0/ dx dt D 0: (3.293)

Therefore, uy.x; 0/ D 0 on ƒ 
 .0; T /, and the theorem is proved. ut
We now must prove Lemma 3.6. First, however, we will need to obtain estimates

on some norms of uNy . These estimates will be established with the help of the next

five lemmas. Fix a domain�N , let the solution wN on�N be denoted simply by w,
and consider two of the rectangular indentations with heights and widths as shown
in Fig. 3.6, where ı is a positive number chosen such that ı > max

1�j�NfhNj g.

Lemma 3.7. With the same notation as in Fig. 3.6, we have

Z aCw1

a

u2y.x; h/ dx � 2

�
w21
h

C h

�Z
D

Z
.u2xy C u2yy/ dx dy (3.294)

where D is the triangular region with vertices .a; h/, .a C w1; 0/, and .aC w1; h/.

Proof. Recall that a solution w D .u; v/ of the boundary-value problem (3.283a–e)
is zero on the boundary of the domain. So, uy D 0 on the vertical boundary lines.
From Fig. 3.6, a parameterization of line px0 , where .a C w1; y

0/ is at s D 0 and
.x0; h/ is at s D 1 is given by:

8<
:
x.s/ D .x0 � a � w1/s C a C w1;

y.s/ D h

w1
.a C w1 � x0/.s � 1Ch; for 0 � s � 1:

(3.295)



3.5 Flow Over Non-smooth Boundaries 207

Let F.s/ D uy.x.s/; y.s//, for 0 � s � 1. Then, using Taylor’s Formula

F.1/ D F.0/C
Z 1

0

F 0.s/ ds, we have

uy.x
0; h/ D

Z 1

0

F 0.s/ ds (3.296)

since F.0/ D uy.a C w1; y
0/ D 0. By squaring both sides of (3.296), applying the

Cauchy-Schwarz inequality, and integrating with respect to x0 from a to aC w1, we
obtain

Z aCw1

a

u2y.x
0; h/ dx0 � 2

�
1C h2

w21

�Z aCw1

a

Z 1

0

.x0 � a � w1/
2.u2xy C u2yy/ ds dx0:

(3.297)

Note that

Z aCw1

a

Z 1

0

.x0 � a � w1/
2.u2xy C u2yy/ ds dx0 � w21

h

Z
D

Z
.u2xy C u2yy/ dx dy:

(3.298)

The lemma follows from the inequalities (3.294) and (3.298). ut
Lemma 3.8. With the same notation as in Fig. 3.6, we have the inequality

Z aCw1

a

u2y.x; ı/ dx � 4max

�
w21
h

C h; ı � h
�Z

K

Z
.u2xy C u2yy/ dx dy

(3.299)

whereK is the quadrilateral with vertices .aCw1; 0/, .aCw1; ı/, .a; ı/, and .a; h/.

Proof. Since for x fixed

uy.x; ı/ D uy.x; h/C
Z ı

h

uyy.x; s/ ds;

it easily follows by the Cauchy-Schwarz inequality that

Z aCw1

a

u2y.x; ı/ dx � 2

Z aCw1

a

u2y.x; h/ dx C 2.ı � h/

Z aCw1

a

Z ı

h

u2yy dy dx:

(3.300)

Applying Lemma 3.7 to the first term on the right-hand side of (3.300), we obtain
the stated result. ut
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Lemma 3.9. With the same notation as in Fig. 3.6, we have the inequality

w1
ı � h

Z ı

h

u2y.a C w1; y/ dy

� 16max

�
w21
h

C h; ı � h; w21
ı � h C ı � h

�Z
K

Z
.u2xy C u2yy/ dx dy (3.301)

where K is the region defined in Lemma 3.8.

Proof. Using Taylor’s Formula again, we find that

uy.a C w1; y
�/ D uy.x

�; ı/C
Z 1

0

F 0.s/ ds (3.302)

where F.s/ D uy..aCw1�x�/sCx�; y�sCı/ and y� D h� ı

w1
.aCw1�x�/Cı.

Squaring both sides of the above equality, using the Cauchy-Schwarz inequality, and
integrating with respect to x� from a to aC w1, we get

w1
ı � h

Z ı

h

u2y.a C w1; y
�/ dy�

� 2

Z aCw1

a

u2y.x
�; ı/ dx� C 4

�
w21
ı � h

C ı � h
�Z

T

Z
.u2xy C u2yy/ dx dy

(3.303)

where T is the triangle with vertices .a; ı/, .a C w1; ı/, and .a C w1; h/. Using
Lemma 3.8 to estimate the first term on the right-hand side of (3.303) and noting
that T � K , we obtain the result. ut
Lemma 3.10. Using the same notation as in Fig. 3.6, we have

Z aCw1Cw2

aCw1

u2y.x
00; ı/ dx00

� 32max

�
w1w2
h

C w2h

w1
;

w2
w1
.ı � h/; w1w2

ı � h C w2
w1
.ı � h/;

w22
ı � h C ı � h

�Z
P

Z
.u2xy C u2yy/ dx dy (3.304)

where P is the region with vertices .aCw1; 0/, .aCw1; h/, .aCw1Cw2; ı/, .a; ı/,
and .a; h/.
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Proof. If we parameterize line qx00 in Fig. 3.6, apply similar techniques as in
Lemma 3.9, and use the inequality (3.301), we obtain the result. ut
Lemma 3.11. Using the same notation as in Fig. 3.6, we have the estimate

Z aCw1Cw2

a

u2y.x; ı/ dx

� 64max

�
w21
h

C h; ı � h; w1w2
h

C w2h

w1
;

w22
ı � h C ı � h;

w1w2
ı � h C w2

w1
.ı � h/;

w2
w1
.ı � h/

�Z
P

Z
.u2xy C u2yy/ dx dy (3.305)

where the region P is defined in Lemma 3.10.

Proof. The proof follows from Lemmas 3.8 and 3.10. ut
Proof (Lemma 3.6). For a fixed N , we can apply Lemma 3.11 to each of the N
rectangular regions (as in Fig. 3.5) to obtain

Z d

c

.uNy /
2.x; ı/ dx

� 128max

�
sN C aN ; ı � bN ; sN C rN aN ;

c2N
ı � aN C ı � bN ;

c2N
ı � aN

C rN .ı � bN /; rN .ı � bN /

�Z
PN
jD1 Pj

Z
.D2uN /2 dx dy (3.306)

where

aN D max
1�j�NfhNj g; bN D min

1�j�NfhNj g; and cN D max
1�j�Nf.wNj /�g:

But,

Z T

0

Z
PN
jD1 P

t
j

Z
.D2uN /2 dx dy dt �

Z T

0

Z
�Nt

Z
.D2uN /2 dx dy dt

�
Z T

0

ˇ̌ˇ̌
uN
ˇ̌ˇ̌2
H 2.�Nt /

dt � c

(3.307)

where c is independent of N . Since uN ! u in L2..0; T /IH 2
loc.

N� n ƒ/, we have
uN ! u in L2..0; T /IH 2

loc.
N� nƒ/ for � a fixed, small, positive number. Thus,

uNy .x; ı/ ! uy.x; ı/; in L2..0; T /IL2loc.
N� nƒ/ (3.308)
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Fig. 3.7 Sequence of domains with triangular indentations

asN ! 1. From (3.307), (3.308), and the assumptions of Theorem 3.11, inequality
(3.306) becomes

Z T

0

Z d

c

u2y.x; ı/ dx dt � 128cmax.ı; c1ı/ (3.309)

as N ! 1. Therefore, as N ! 1, (3.309) is true for all sufficiently small ı > 0.
ut

Triangular Indentations

Our interest in triangular protrusions stems from the fact that in experimental work,
the type of protrusions considered are often of this type, (see [LRRH, Wa], and the
references therein). In this part of Sect. 3.5.3, we consider a sequence of domains
�N which are rectangular in shape except each have N triangular indentations
on the bottom side, where the indentations are in the shape of isosceles triangles
(see Fig. 3.7).

A more precise definition of the domains�N is as follows: LetPN D fpNj g2NC1
jD1

be a set of points on the x-axis such that c D pN1 < pN2 < � � � < pN2NC1 D d . Let
the set of points .x; 0/ for x 2 .c; d / be denoted by ƒ. Construct an isosceles
triangle with height hNj between the points pN2j�1 and PN

2jC1 for j D 1; 2; : : : ; N .

Let wNj D 1

2
jpN2jC1 � pN2j�1j for j D 1; 2; : : : ; N . Thus, the j th triangle has height

hNj and width 2wNj , where j D 1; 2; : : : ; N . Let
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OtN D max
1�j�N

(
wNj
hNj

)
: (3.310)

Using the notation just described, we can now state the following theorem.

Theorem 3.12. Let �N for N D 1; 2; : : :, be a sequence of domains described as
in Fig. 3.7. Suppose that, as N ! 1, we have hNj ! 0 and OtN ! c2, where c2
is a positive constant bounded way from zero. Let wN D .uN ; vN / be a solution to
problem (3.283a–e) on the domain�N 
 .0; T /. Then, asN ! 1, the domain�N

approaches a rectangular domain�, and the sequence of solutions fwN g converges
in L2..0; T /IH 1

0.�// to a solution w D .u; v/ 2 L2..0; T /IH 2
loc.

N� n ƒ// which

satisfies (3.283a–d), equation (3.283e) on�1nƒ
.0; T /, and
@w
@�

D 0 onƒ
.0; T /.
Remarks. The condition that OtN ! c2 as N ! 1, where c2 is a positive constant
bounded away from zero, means that as N ! 1, the triangles shrink in size but do
not flatten.

The proof of Theorem 3.12 is based on the same ideas as the proof of
Theorem 3.11 and the following

Lemma 3.12. Under the assumptions of Theorem 3.12, there exists a positivecon-
stant c0 such that for all sufficiently small ı > 0,

Z T

0

Z d

c

u2y.x; ı/ dx dt � c0ı: (3.311)

Given that (3.12) is valid, the proof of Theorem 3.12 follows in the same
manner that Theorem 3.11 follows from (3.292). Thus, we can omit the proof of
Theorem 3.12. However, some of the technical details are different enough to make
it necessary to provide at least an outline of the proof of Lemma 3.12. In order
to prove Lemma 3.12, we will need to obtain estimates on some norms of uNy .

We cannot directly obtain estimates on uNy , as in the proof of Lemma 3.7, since

uNy ¤ 0 on the nonvertical boundary lines of the triangular indentations. But,

as uN D 0 on the boundary, the directional derivatives of uN in the direction of
the sides of the triangular indentations will be zero. As uNy can be written as a linear

combination of certain directional derivatives of uN , we can estimate certain norms
of uNy by calculating upper bounds for these directional derivatives of uN . These
estimates will be established with the help of the next six lemmas.

For the following lemmas, fix a domain �N , let the solution wN on �N be
denoted simply by w, and consider an isosceles triangular indentation with height h
and width 2w as shown in Fig. 3.8. Also, let ı be a positive number chosen such that
ı > max

1�j�NfhNj g.
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Fig. 3.8 Domain in the proof of Lemma 3.13

Lemma 3.13. With the same notation as in Fig. 3.8, we have

Z aCw

a

Œr˛1u.x; ı/�
2 dx � ı

Z
ND

Z
.u2xy C u2yy/ dx dy (3.312)

where r˛1 is the derivative taken in the direction of the vector .cos˛1; sin ˛1/ and
ND is the region with vertices .a; 0/, .a; ı/, .aC w; ı/, and .aC w; h/.

Proof. For x fixed in .a; a C w/, by Taylor’s Formula, we have

r˛1u.x; ı/ D r˛1u

�
x;
h

w
.x � a/

�
C
Z ı

h
w .x�a/

@

@y
.r˛1u.x; s// ds: (3.313)

Since u D 0 on the boundary of the domain, we have r˛1u

�
x;
h

w
.x � a/

�
D 0

on the line passing through the points .a; 0/ and .a C w; h/. Squaring both sides of
(3.313), applying the Cauchy-Schwarz inequality, and integrating with respect to x
from a to a C w, we obtain

Z aCw

a


r˛1u.x; ı/
�2 dx �

�
ı � h

w
.x � a/

�Z aCw

a

Z ı

h
w .x�a/

�
@

@y

�r˛1u.x; y/�
2

dy dx:

(3.314)

But,

�
@

@y
.r˛1u.x; y//

2
D
�
@

@y

�
wp

w2 C h2
ux C hp

w2 C h2
uy

�2
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� w2

w2 C h2
u2xy C h2

w2 C h2
u2yy C h2

w2 C h2
u2xy C w2

w2 C h2
u2yy

D u2xy C u2yy: (3.315)

Substituting (3.315) into the right-hand side of (3.314), and noting that

ı � h

w
.x � a/ � ı for x 2 .a; a C w/, we obtain the result. ut

Lemma 3.14. With the same notation as Fig. 3.8, we have

w

ı � h
Z ı

h


r˛1u.aC w; y/
�2 dy � 4max

 
ı;

w2

ı � h
C ı � h

!Z
ND

Z
.u2xx C2u2xy Cu2yy/ dx dy

(3.316)

where r˛1 and the region ND are defined in Lemma 3.13.

Proof. Setting

F.s/ D r˛1u

�
.a C w/s C x00.1 � s/;

��.ı � h/

w
.a C w � x00/C ı


s C ı.1 � s/

�

(3.317)

for 0 � s � 1, where x00 2 Œa; a C w� and y00 2 Œh; ı�, and using the formula

F.1/ D F.0/C
Z 1

0

F 0.s/ ds, we find that

r˛1u.aC w; y00/ D r˛1u.x
00; ı/C

Z 1

0

F 0.s/ ds (3.318)

where y00 D �.ı � h/

w
.a C w � x00/C ı. Squaring both sides of (3.318), using the

Cauchy-Schwarz inequality, and integrating with respect to x00 from a to aC w, we
obtain

Z aCw

a


r˛1u.aC w; y00/
�2

dx00 � 2

Z aCw

a


r˛1u.x00; ı/
�2

dx00 C 2

Z aCw

a

Z 1

0

.F 0.s//2 ds dx00:

(3.319)

If we let a1 D a C w � x00 and a2 D �.ı � h/
w

.a C w � x00/, then

.F 0.s//2 D
�

wp
w2 C h2

a1uxx C hp
w2 C h2

a2uyy C
�

wp
w2 C h2

a2 C hp
w2 C h2

a1

�
uxy

2

�
�

w2a21 C h2a22 C w2a22 C h2a21
w2 C h2

�
.u2xx C 2u2xy C u2yy/

D .a21 C a22/.u
2
xx C 2u2xy C u2yy/: (3.320)
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Also, it is easy to see that

Z aCw

a


r˛1u.aCw; y00/
�2

dx00 D w

ı � h
Z ı

h


r˛1u.aC w; y00/
�2

dy00 (3.321)

and

Z aCw

a

Z 1

0
.aC w � x00/2.u2xx C 2u2xy C u2yy/ ds dx00 � w2

ı � h

Z
NT

Z
.u2xx C 2u2xy C u2yy/ dx dy

(3.322)

where NT is the triangle with vertices .a; ı/, .a C w; ı/, and .a C w; h/. The lemma
follows from substituting (3.320)–(3.322) into (3.319), using Lemma 3.13, and
noting that NT � ND. ut
Lemma 3.15. With the same notation as in Fig. 3.8, we have the inequality

Z aC2w

aCw
Œr˛1u.x; ı/�

2 dx � 4max
�
ı;

w2

ı � h
C ı � h

�Z
QP

Z
.u2xx C 2u2xy C u2yy/ dx dy

(3.323)

where r˛1 is defined in Lemma 3.13 and QP is the region with vertices .a; 0/, .a; ı/,
.aC 2w; ı/, and .a C w; h/.

Proof. Lemma 3.15 can be deduced from Lemma 3.14 in the same way that
Lemma 3.10 was deduced from Lemma 3.9. ut
Lemma 3.16. Using the same notation as in Fig. 3.8, we have the inequality

Z aC2w

a

Œr˛1u.x; ı/�
2 dx � 8max

�
ı;

w2

ı � h
C ı � h

�Z
TP

Z
.u2xx C 2u2xy C u2yy/ dx dy

(3.324)

where r˛1 is defined in Lemma 3.13 and the region QP is defined in Lemma 3.15.

Proof. The proof follows from Lemmas 3.13 and 3.15. ut
Lemma 3.16 gives an upper bound for a certain norm of the directional derivative

r˛1u. An upper bound for a particular norm of r˛2u, where r˛2 is the directional
derivative in the direction of the line passing through the points .a C w; h/ and
.aC2w; 0/ in Fig. 3.8, can be derived by using techniques similar to those employed
in Lemma 3.13 to Lemma 3.16. In fact, it can be shown that we have the following
result:

Lemma 3.17. Using the same notation as in Fig. 3.8, we have the inequality
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Z aC2w

a

Œr˛2u.x; ı/�
2 dx � 8max

�
ı;

w2

ı � h
C ı � h

�Z
QA

Z
.u2xx C 2u2xy C u2yy/ dx dy

(3.325)

where r˛2 is the derivative taken in the direction of the line passing through the
points .a C w; h/ and .aC2w; 0/, and the region QA has vertices .a C 2w; 0/, .a C
2w; ı/, .a; ı/, and .a C w; h/.

Since we now have upper bounds for certain norms of the directional derivatives
r˛1u and r˛2u, we can find upper bounds for some norms of uy as follows:

Lemma 3.18. Using the same notation as in Fig. 3.8, we have the inequality

Z aC2w

a

u2y.x; ı/ dx � 8max

��
w2

h2
C 1

�
ı;

�
w2

h2
C 1

��
w2

ı � h
C ı � h

�

Z
OP

Z
.u2xx C 2u2xy C u2yy/ dx dy (3.326)

where OP is the region with vertices .a; 0/, .a; ı/, .a C 2w; ı/, .a C 2w; 0/, and
.aC w; h/.

Proof. Recall that

r˛1u D wp
w2 C h2

ux C hp
w2 C h2

uy and r˛2u D �wp
w2 C h2

ux C hp
w2 C h2

uy:

(3.327)

Adding the above two equations together, solving for uy , and then squaring both
sides of the resulting equation and applying the Cauchy-Schwarz inequality gives

u2y � w2 C h2

2h2
.r˛1u/

2 C w2 C h2

2h2
.r˛2u/

2: (3.328)

Using (3.328), we obtain the estimate

Z aC2w

a

u2y.x; ı/ dx � 1

2

�
w2

h2
C 1

�Z aC2w

a

Œr˛1u.x; ı/�
2 dx

C 1

2

�
w2

h2
C 1

�Z aC2w

a

Œr˛2u.x; ı/�
2 dx (3.329)

and the result follows from Lemmas 3.16 and 3.17. ut
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Using the results in Lemmas 3.13–3.18 we may finally construct the following

Proof (Lemma 3.12). For a fixed N , we can apply Lemma 3.18 to each of the N
triangular regions (in Fig. 3.7) to obtain

Z d

c

.uNy /
2.x; ı/ dx � 16max

�
.Qt2N C 1/ı; .Qt2N C 1/

� Oc2N
ı � ObN

C ı � OaN
�

Z
PN
jD1

OPj

Z
.D2uN /2 dx dy (3.330)

where

OaN D min
1�j�NfhNj g; ObN D max

1�j�NfhNj g; and OcN D max
1�j�NfwNj g: (3.331)

Then, by a procedure similar to that used in the proof of Lemma 3.6, and the
assumptions of Theorem 3.12, inequality (3.330) becomes

Z T

0

Z d

c

u2y.x; ı/ dx dt � 16c0.c22 C 1/ı (3.332)

as N ! 1. Thus, as N ! 1, (3.332) is true for all sufficiently small ı > 0. ut
Remarks. We note that a solution of the incompressible bipolar equations
(3.283a–e) in a rectangular domain having rectangular or triangular indentations
on one of its sides (as in Theorems 3.11 or 3.12) can not be approximated by a
solution w� D .u�; v�/ of the bipolar equations (3.283a–e) in a rectangular domain
with no indentations, since u�

yy D 0 on ƒ, while uy D 0 onƒ.

3.5.4 Regularity Results in Polygonal Domains

In this subsection, we shall study the regularity in space of the weak solution w.x; t/
for t > 0 of (3.283a–e) in a plane domain with a polygonal boundary, where the
boundary is composed of a union of a finite number of linear segments, denoted
by N�l for 1 � l � J . For this purpose, we fix t D t0 where t0 is such that
w.x; t0/ 2 H 2.�/ \ H 1

0.�/ and wt .x; t0/ 2 L2.�/. By (3.287) and (3.288), this
holds for almost every t > 0, so that the existence of such a t0 is not in question.
Thus, we consider (3.283a–e) at time t0. Since all the lower-order terms appearing
in (3.283a) are in L2.�/, we can then, without loss of generality, incorporate them
with the forcing term f and confine our study of the regularity to that of the study
of the linearized steady-state problem
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@p

@xi
C 2�1

@

@xj
�eij.w/ D �fi ; in �; i; j D 1; 2; (3.333a)

div w D 0; in �; (3.333b)

	 lw D 0; on �l ; (3.333c)

	 l
�
@eij.w/
@xk


j 
k�i


D 0; on �l (3.333d)

where f D .f1; f2/ 2 L2.�/. The regularity of p and w away from the vertices of
@� can easily be deduced from the usual regularity theory of elliptic equations and
the de Rham Theorem. It is well-known that solutions of elliptic equations fail to be
regular near corners of the boundary. We will provide a description of the asymptotic
behavior of the solution near corners. To study the regularity, we use the vorticity-
stream formulation instead of the velocity-pressure formulation. To this end, we first
introduce a stream function  such that w D .u; v/ D .� y; x/, establish the
regularity of  , and deduce from that the regularity results for w. By the use of
the stream function  , we will reduce problem (3.333a–d) to a problem of the type
�3 D f . More specifically, we have

Lemma 3.19. Let w D .u; v/ 2 H 2.�/ \ H 1
0.�/ be the solution of

problem (3.333a–d). Then there exists  2 H3.�/ \H2
0 .�/ such that

.u; v/ D .� y; x/ (3.334)

with  a solution to the problem

�3 D Of ; in �; (3.335a)

�l D �l
�
@ 

@�

�
D 0; on �l ; (3.335b)

�l
�
@� 

@�

�
D 0; on �l (3.335c)

where Of D �

�1

�
@f2

@x
� @f

@y

�
2 H�1.�/.

The last boundary condition is satisfied in the sense of H�1=2.�l / since

.�3 ; / 2 H �1.�/ 
 H 3.�/, so by a standard duality argument,
@� 

@�
D

H�1=2.�l/. In the following theorem, we assume that the �l for l D 1; 2; : : : ; J ,
are numbered in the counterclockwise direction around the domain. We denote the
terminal point of �l by Sl and denote a neighborhood of the corner Sl by Vl . Our
first regularity result is given by
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Theorem 3.13. Let w 2 H 2.�/ \ H 1
0.�/ and p 2 H�1.�/ be solutions

to (3.333a–d). Then for f 2 L2.�/, we have w 2 H 4
loc.

N� n .[J
lD1Vl // and

p 2 H1
loc.

N� n .[J
lD1Vl //.

Proof. Using techniques similar to those employed in the general regularity
results for elliptic equations in [ADN], it follows that the solution  of
problem (3.335a,b,c) is in H5

loc.
N� n .[J

lD1Vl // when the right-hand side Of is in
H�1.�/. From the definition of  , we then deduce the regularity result for w.
The result for p then follows from the partial differential equation (3.333a) and the
de Rham Theorem. ut

Next we wish to describe the regularity of w near the corners of the domain and,
also, provide an asymptotic expansion valid near the corners. Thus, let S be a vertex
of the polygonal boundary and denote by �1 and �2 the two sides of the polygonal
boundary around S . We choose polar coordinates with origin at S such that � D 0

on �1 and � D ! on �2. To give the flavor of the type of results we are seeking, let

us state our results for the particular case where the interior angle ! D 3�

2
.

Theorem 3.14. Let w 2 H 2.�/ be a weak solution of problem (3.333a–d). Assume

that at the origin there is a vertex with interior angle ! D 3�

2
; then, there exists

ı > 0 such that

w.x/ D wreg.x/C wsing.x/ (3.336)

where wreg 2 H 4.B.0; ı// and

wsing.x/ D w1.�/r1:27 C w2.�/r1:39 C w3.�/r5=3 C w4.�/r7=3 C w5.�/r2:56

C w6.�/r2:88 C w7.�/r3 Si.ln r/C w8.�/r3
sin.ln r/

ln r
(3.337)

where the wi .�/, for i D 1; 2; : : : ; 8, are infinitely differentiable functions of � .

Remarks. We will present the proof of this theorem in Sect. 3.5.5. The singular
behavior of w near a vertex depends on the interior angle !. We want to describe
that behavior for a general angle !; this will be done first for the stream function ,
and then the result for w will easily follow.

To study the regularity of  near the corners, we will localize the problem
near a corner and apply the method introduced in [Ko] to study the behavior of

the solution. For this purpose, we let � be a radial cut-off function, i.e.
@�

@�
D 0,

which is equal to one near S and has bounded support which does not intersect
any of the N�j except �1 and �2. Let G denote the infinite sector whose vertex
is at S and whose sides are the extension to infinity of the two lines �1 and �2,
so G D frei� j r > 0; 0 � � � !g. Let  � D f� where the tilde represents
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extension by zero. Then, equations (3.335a,b,c) become

�3 � D f �; in G; (3.338a)

 � D 0; on �1; �2; (3.338b)

@ �

@�
D 0; on �1; �2; (3.338c)

@� �

@�
D 0; on �1; �2 (3.338d)

where � 2 H3.G/\H2
0 .G/ has bounded support (i.e. � vanishes for r � R), and

f � 2 H�1.G/). The method of Kondratiev [Ko] consists of performing a change
of variables that replaces the problem in an infinite sector by a similar problem in
an infinite strip. Then, by using partial Fourier transforms, the problem in an infinite
strip is reduced to a two-point boundary-value problem for a sixth-order differential
equation which depends on a parameter. The singularities of the solution to this
differential equation then can be described by using the Residue Theorem from
complex analysis. Therefore, we must carefully study the analyticity of the solution,
calculate precise growth conditions for the solution, and find Laurent expansions of
the solution near singular points. By changing to polar coordinates, setting r D et ,
and letting z.t; �/ D e�t �.et cos �; et sin �/, it can be shown that z 2 H3.B/ \
H2
0 .B/, where B D R 
 Œ0; !�, (see Chap. 7 [Gr1]). Also, equations (3.338a–d) are

transformed into

@6z

@t6
� 6@

5z

@t5
C 7

@4z

@t4
C 12

@3z

@t3
� 17

@2z

@t2
� 6

@z

@t
C 9z

C 3
@6z

@�2@t4
� 12 @5z

@�2@t3
C 18

@4z

@�2@t2
� 12 @3z

@�2@t
C 19

@2z

@�2

C 3
@6z

@�4@t2
� 6 @5z

@�4@t
C 11

@4z

@�4@t
C 11

@4z

@�4
C @6z

@�6
D g; (3.339a)

z.t; 0/ D @z

@�
.t; 0/ D z.t; !/ D @z

@�
.t; !/ D @3z

@�3
.t; 0/ D @3z

@�3
.t; !/ D 0

(3.339b)

where the first equation holds in B and g.t; �/ D e5tf �.e5 cos �; e5 sin �/. Using
the fact that f � 2 H�1.G/, it can be shown that e�3tg.t; �/ 2 H�1.B/, (Chap. 7
of [Gr1]).

We will study solutions to the boundary-value problem (3.339a,b). For this
purpose, we recall that the partial Fourier transform of z with respect to t is
defined by

Oz.�; �/ D 1p
2�

Z 1

�1
e�it� z.t; �/ dt (3.340)
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where � is the dual variable of t and � can be a complex number. In the next lemma,
we collect some well-known results about the properties of the partial Fourier
transform.

Lemma 3.20. If z 2 H3.B/ \H2
0 .B/ and z.t; �/ D 0 for t � lnR, then Oz.�; �/ is

defined for Im � � 0, the mapping � 7! Oz.�; �/ from C into L2.Œ0; !�/ is analytic in
� for Im � > 0, and

3X
jD0

Z 1

�1
j�1 C i�2j6�2j jjOz.�1 C i�2; �/jj2Hj .Œ0;!�/ d�1 � cR2�2 jjzjjH3.B/

(3.341)

for every �2 � 0, where � D �1 C i�2 and c is a constant.

Proof. This is a direct consequence of Plancherel’s theorem and the definition of
the partial Fourier transform. ut
It now follows that the function � 7! Oz.�; �/ is, for �2 � 0 and almost every
�1 2 R, an element of the space H3.Œ0; !�/. Taking the partial Fourier transform
of (3.339a,b) we get

@6Oz
@�6

C .�3�2 � 6� i C 11/
@4Oz
@�4

C .3�4 C 12�3i � 18�2 � 12� i C 19/
@2Oz
@�2

C .��6 � 6�5i C 7�4 � 12�3i C 17�2 � 16� i C 0/Oz D Og; (3.342a)

Oz.�; 0/ D @Oz
@�
.�; 0/ D @3Oz

@�3
.�; 0/ D Oz.�; !/ D @Oz

@�
.�; !/ D @3Oz

@�3
.�; !/ D 0:

(3.342b)

For each � , equations (3.342a,b) define a two-point boundary-value problem for
a sixth-order differential equation in Œ0; !�. The characteristic equation for the
differential equation (3.342a) has roots ˙.� C i/, ˙.� � i/, and ˙.� C 3i/. Recall
that, for each � , problem (3.342a,b) has a unique solution for a given Og if and only
if the corresponding homogeneous problem has only the zero solution.

Lemma 3.21. The homogeneous problem (3.342a,b) has only the zero solution in
the following cases:

1. � ¤ 0;˙i;�2i;�3i and � is not a root of the equation:

Œsin!.�40�6i C 192�5 C 256�4i � 96�3 C 8�2i/

C sin 3!.20�6i � 144�5 � 392�4i C 432�3 C 20�2i C 288� C 144i/

C sin 5!.�4�6i C 48�5 C 184�4i � 240�3 � 100�2i/� cosh!�

C Œcos!.�8�6 � 96�5i C 320�4 C 288�3i C 40�2 C 96� i/
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C cos 3!.12�6 C 144�5i � 504�4 � 528�3i � 372�2 � 960� i C 432/

C cos 5!.�4�4 � 48�5i C 184�4 C 240�3i � 100�2/� sinh!�

C Œcos 3!.144�2 C 288� i � 144/� sinh 3!�

C Œsin 3!.144�2i � 288� � 144i/� cosh 3!� D 0: (3.343)

2. � D 0; 2i , if the determinant

sin!.6! cos!C 2 sin!C 5 cos! sin!C 3!/.6! cos!C 2 sin! � 5 cos! sin!� 3!/
(3.344)

is nonzero.
3. � D i;�3i , if the determinant

cos!.cos! � 1/.cos! C 1/.6! cos3 ! � 7 cos2 ! sin! � 3! cos! C 4 sin!/
(3.345)

is nonzero.
4. � D �i , if the determinant

� 128.cos! � 1/.cos! C 1/.2! cos2 ! � 3 cos! sin! C !/ (3.346)

is nonzero.

Proof. When � ¤ 0;˙i;�2i;�3i , the characteristic equation has six distinct roots
and the solution of the homogeneous problem (3.342a,b) is of the form

Oz.�/ D A cos � cosh �� C B cos � sinh �� C C sin � cosh ��

CD sin � sinh �� C E cosh.� C 3i/� C F sinh.� C 3i/�
(3.347)

where A;B;C;D;E; F are complex numbers which can depend on � . Substituting
Oz into the boundary conditions (3.342b), we obtain a homogeneous system of
six linear equations in the six unknowns A;B;C;D;E; F . By calculating the
corresponding determinant, (using the symbolic manipulator Maple), we obtain the
left-hand side of (3.343). When � D 0 or �2i , the characteristic equation has
double roots of ˙i and single roots of ˙3i . The solution of the homogeneous
problem (3.342a,b) now assumes the form

Oz.�/ D A cos � C B sin � C C� cos � CD� sin � C E cos 3� C F sin 3�

and the corresponding determinant is given by (3.344). When � D i or �3i , the
characteristic equation has 0 as a double root and ˙i;˙4i as single roots. The
solution of the homogeneous problem (3.342a,b) has the form

Oz.�/ D AC B� C C cos 2� CD sin 2� C E cos 4� C F sin 4� (3.348)
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and the corresponding determinant is (3.345). Finally, when � D �i , the charac-
teristic equation has double roots 0 and ˙2i . The solution of the homogeneous
problem (3.342a,b) is of the form

Oz.�/ D AC B� C C cos 2� CD sin 2� C E� cos 2� C F� sin 2� (3.349)

and the corresponding determinant is (3.346), which completes the proof of the
lemma. ut
Remarks. By using the symbolic manipulation software package Maple, it can
be seen that the determinant (3.344) is zero when ! D 180ı; 360ı and
! � 118:3ı; 238:6ı; 299:2ı. Likewise, the determinant (3.345) is zero when
! D 90ı; 180ı; 270ı; 360ı and ! � 136:3ı, 226:9ı, 252:8ı, 315:7ı. Also,
the determinant (3.346) is zero when ! D 180ı; 360ı.

In what follows, we let D denote the set of noncharacteristic values for
the problem (3.342a,b), (i.e. the values of � for which the homogeneous
problem (3.342a,b) has only the zero solution). Our next lemma follows from
general results about two-point boundary-value problems.

Lemma 3.22. For � 2 D, the problem (3.342a,b) has a unique solution Oz 2
H3.Œ0; !�/ \H2

0 .Œ0; !�/ provided Og 2 H�3.Œ0; !�/.

In order to study the analyticity of Oz, we must construct a fundamental system of
solutions which is analytic in � , even when � D 0;˙i;�2i;�3i . Since any solution
of the homogeneous problem (3.342a,b) is a linear combination of fundamental
solutions, (see the proof of Lemma 3.21), consider the linear combination

z D Az1 C Bz2 C Cz3 C Dz4 C Ez5 C Fz6 (3.350)

where

z1.�; �/ D cos � cosh ��;

z2.�; �/ D 3�2 � 1

2�.�2 C 1/
cos � sinh �� C ��3 C 3�

2�.�2 C 1/
sin � cosh ��; for � ¤ �i; 0; i;

z2.˙i; �/ D �;

z2.0; �/ D �1
2
� cos � C 3

2
sin �;

z3.�; �/ D 1

2.�2 C 1/
sin � cosh �� � 1

2�.�2 C 1/
cos � sinh ��; for � ¤ �i; 0; i;

z3.˙i; �/ D �1
8

sin 2� C 1

4
�;

z3.0; �/ D 1

2
sin � � 1

2
� cos �;

z4.�; �/ D sin � sinh ��

�
; for � ¤ 0;
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z4.0; �/ D � sin �;

z5.�; �/ D � cos � cosh �� C cosh.� C 3i/�;

z6.�; �/ D 1

�3 C 6�2i � 11� � 6i

���3 � 13� � 12i

�3 C �
cos � sinh ��

C �3�2i C 12� C 9i

�2 C 1
sin � cosh �� C sinh.� C 3i/�

�
; for � ¤ �3i;�2i;�i; 0; i;

z6.i; �/ D 1

2
i� � 1

3
i sin 2� C 1

24
i sin 4�;

z6.0; �/ D �2i� cos � C 3

2
i sin � C 1

6
i sin 3�;

z6.�i; �/ D �2� � � cos 2� C 3

2
sin 2�;

z6.�2i; �/ D 2� cos � � 3

2
sin � � 1

6
sin 3�;

z6.�3i; �/ D �1
2
� C 1

3
sin 2� � 1

24
sin 4�:

It is easy to show that the zi , i D 1; 2; : : : ; 6, are analytic functions of � ,

z1.�; 0/ D 1, zi .�; 0/ D 0 for i D 2; 3; 4; 5; 6,
@z2
@�
.�; 0/ D 1,

@zi
@�
.�; 0/ D 0

for i D 1; 3; 4; 5; 6,
@3z3
@�3

.�; 0/ D 1, and
@3zi
@�3

.�; 0/ D 0 for i D 1; 2; 4; 5; 6. It then

follows that the solution Oz of problem (3.342a,b) is such that d.�/Oz is an entire
analytic function of � (provided that Og is an entire analytic function of �) where

d.�/ D

ˇ̌
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ

z4.�; !/ z5.�; !/ z6.�; !/

@z4
@�
.�; !/

@z5
@�
.�; !/

@z6
@�
.�; !/

@3z4
@�3

.�; !/
@3z5
@�3

.�; !/
@3z6
@�3

.�; !/

ˇ̌
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ
: (3.351)

Therefore, Oz is analytic in � except for the values of � where d.�/ D 0. Easy
calculations show that

d.�/ D h.�/

.� � i/�2.� C i/2.� C 2i/.� C 3i/
(3.352)

where h.�/ is the left-hand side of (3.343) when � ¤ 0;˙i;�2i;�3i . Let D00
denote the values of � such that d.�/ ¤ 0; it then follows from perturbation theory
(see Lemma 13, page 592 in [DS]) that the following result holds

Lemma 3.23. If E is an open subset of the complex plane such that � 7! Og is
analytic from E into H�3.Œ0; !�/, then � 7! Oz is analytic from D00 \ E into
H3.Œ0; !�/ \H2

0 .Œ0; !�/.
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We now seek a subset E such that � 7! Og is analytic from E into H�3.Œ0; !�/. The
essential elements of the proof of the following lemma can be found in [Gr1].

Lemma 3.24. Suppose e�3t g 2 H�1.B/ and that g vanishes for t � lnR. Then Og
is defined for Im � � �3 and the mapping � 7! Og.�; �/ is analytic for Im � > �3
with values in H�1.Œ0; !�/. Furthermore, for each R0 > R, there exists Og1 and Og2
such that Og D Og1 C Og2, where Og1 and Og2 are defined for Im � � �3, the mappings
� 7! Ogi .�; �/, i D 1 and 2, are analytic for Im � > �3, Og1 has values in L2.Œ0; !�/,
and Og2 has values in H�1.Œ0; !�/. In addition, there exists a constant C such that

Z 1

�1

h
j��j�2jj Og1.�; �/jj2L2.Œ0;!�/ C jj Og2.�; �/jj2H�1.Œ0;!�/

i
d�1 � C.R0/2.�2C3/

(3.353)
for every �2 � �3, where � D �1 C i�2 and �� D �1 C i.�2 C 3/.

Since the mapping � 7! Oz.�; �/ is analytic for Im � > 0 and the mapping
� 7! Og.�; �/ is analytic for Im � > �3, we have, by Lemma 3.23, that the mapping
� 7! Oz.�; �/ has an analytic continuation to the domain fIm � > 0g [ ŒfIm � >
�3g \D00�. We proceed by deriving some growth conditions on Oz, beginning with

Lemma 3.25. Suppose that for a given function � 7! Og.�; �/ in the space
H�1.Œ0; !�/, the function � 7! Oz.�; �/ satisfies (3.342a,b), where the function
� 7! Oz.�; �/ is an element of the space H3.Œ0; !�/ \ H2

0 .Œ0; !�/ for �2 � �3 and
almost every �1 2 R. Then, there exist constants c > 0 andM > 0 such that

5X
jD0

j�1j5�j jjOz.�; �/jjHj .Œ0;!�/ � cjj Og.�; �/jjH�1.Œ0;!�/ (3.354)

for j�1j � M and �3 � �2 � 0, where � D �1 C i�2.

Proof. Multiplying (3.342a) by �N�4NOz, integrating by parts from 0 to !, and
performing algebraic manipulations, we obtain

j� j4
ˇ̌
ˇ̌
ˇ̌
ˇ̌ @3Oz
@�3

ˇ̌
ˇ̌
ˇ̌
ˇ̌2 C 3j� j6

ˇ̌
ˇ̌
ˇ̌
ˇ̌ @2Oz
@�2

ˇ̌
ˇ̌
ˇ̌
ˇ̌2 C 3j� j8

ˇ̌
ˇ̌
ˇ̌
ˇ̌ @Oz
@�

ˇ̌
ˇ̌
ˇ̌
ˇ̌2 C j� j10jjOzjj2

D j� j4A1
ˇ̌̌
ˇ
ˇ̌̌
ˇ @

3Oz
@�3

ˇ̌̌
ˇ
ˇ̌̌
ˇ
2

C j� j6A2
ˇ̌̌
ˇ
ˇ̌̌
ˇ @

2Oz
@�2

ˇ̌̌
ˇ
ˇ̌̌
ˇ
2

C j� j8A3
ˇ̌̌
ˇ
ˇ̌̌
ˇ @Oz@�

ˇ̌̌
ˇ
ˇ̌̌
ˇ
2

C j� j10A4jjOzjj2 �
Z !

0

N�4 OgNOzd� (3.355)

where jj jj D jj jjL2.Œ0;!�/, and

A1 D
�
1 � N�4

j� j4
�
; (3.356a)
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A2 D
�
3

�
1 � N�2

j� j2
�

� 6 N�3i
j� j4 C 11 N�4

j� j6

; (3.356b)

A3 D
��12 N�i

j� j2 C 18 N�2
j� j4 C 12 N�3i

j� j6 � 19 N�4
j� j8

�
; (3.356c)

A4 D
��
1 � �2

j� j2
�

� 6� i

j� j2 C 7

j� j2 � 12 N�i
j� j4 C 17 N�2

j� j6 � 6 N�3i
j� j8 C 9 N�4

j� j10

:

(3.356d)

By taking the modulus of both sides of (3.355), noting the fact that
ˇ̌̌
ˇ
Z !

0

N�4 OgNOzd�
ˇ̌̌
ˇ � 1

2
j� j8jjOzjj2

H1
0 .Œ0;!�/

C 1

2
jj Ogjj2H�1.Œ0;!�/ (3.357)

and using well-known interpolation results (as in [Gr1] or [LM], we obtain the
result. ut
We now state an important growth condition for Oz, whose proof is similar to a
corresponding result found in [Gr1].

Lemma 3.26. Under the same assumptions as in Lemma 3.25, we have

sup
�3��2�0

8<
:
Z

j�1�M j

5X
jD0

j�1j2.5�j /jjOz.�1 C i�2; �/jj2Hj .Œ0;!�/ d�1

9=
; < 1: (3.358)

Since the solution Oz to (3.342a,b) is such that the mapping � 7! Oz is analytic for
E 0 D fIm � > 0g [ ŒfIm � > �3g \ D00�, the mapping � 7! Oz may have poles at
the set of points E� D fIm � > �3g n E 0. We now elaborate the behavior of the
solution near a point in E�; to this end we have

Lemma 3.27. Let �m 2 E�. Let � 7! Og.�; �/ be any analytic function in a
neighborhood of �m, with values in H�3.Œ0; !�/. Then, the corresponding solution
of (3.342a,b) has the following Laurent expansion near �m:

1. If �m is a simple zero of (3.352), then

Oz.�; �/ D  m.�/

� � �m
C Owm.�; �/ (3.359)

where  m is a solution of the homogeneous problem (3.342a,b) with � D �m, and
� 7! Owm.�; �/ is an analytic function near �m with values in H3.Œ0; !�/.

2. If �m is a double zero of (3.352), then

Oz.�; �/ D  m.�/

.� � �m/2
C 'm.�/

� � �m C Owm.�; �/ (3.360)
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where  m and Owm are defined as in (3.359), 'm is a solution of

L.�m;D6/'m D �L0
� .�m;D�/ m (3.361)

in Œ0; !� with the boundary conditions in (3.342b), and

L.�;D� / D @6

@�6
C .�3�2 � 6�i C 11/

@4

@�4
C .3�4 C 12�3i � 18�2 � 12�i C 19/

@2

@�2

C .��6 � 6�5i C 7�4 � 12�3i C 17�2 � 6�i C 9/:

(3.362)

3. If �m is a triple zero of (3.352), then

Oz.�; �/ D  m.�/

.� � �m/3
C 'm.�/

.� � �m/2
C ˆM.�/

� � �m/ C Owm.�; �/ (3.363)

where  m; 'm, and Owm are defined as in (3.359) and (3.360), and ˆm is a
solution of

L.�m;D� /ˆm D �1
2
L00
� .�m;D� / m � L0

� .�m;D�/'m (3.364)

in Œ0; !� with the boundary conditions in (3.342b).

Proof. The ideas for the proof of (3.359) and (3.360) can be found in [Gr1]. Hence,
we will only prove (3.363). If d.�/ has a triple zero at �m, then Oz has a triple pole
at �m, and its Laurent expansion is given by

Oz.�; �/ D  m.�/

.� � �m/3 C 'm.�/

.� � �m/2
C ˆm.�/

� � �m
C Owm.�; �/ (3.365)

where � 7! Owm.�; �/ is an analytic function near �m with values in H3.Œ0; !�/.
Multiplying (3.365) by .� � �m/

3 and applying the differential operator L.�;D� /

gives L.�m;D�/ m D 0. Also, multiplying (3.365) by .� � �m/
2, applying the

differential operator L.�;D�/, and using the fact that L.�m;D�/ m D 0, we get
L.�m;D�/'m D �L0

� .�m;D� / m. It is easy to show that  m and 'm satisfy the
boundary conditions in (3.342b). Now, multiplying (3.365) by .���m/ and applying
the differential operator L.�;D�/ gives

L.�;D�/ˆm D .���m/ Og�L.�;D� / m C .� � �m/L.�;D� /'m

.� � �m/2
�.���m/L.�;D� / Owm:

(3.366)

Letting � ! �m, and applying L’Hôpital’s rule twice, we get

L.�m;D�/‰m D �1
2
L00
� .�m;D�/ m �L0

� .�m;D�/'m: (3.367)
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It is now a straightforward calculation to show that ˆm satisfies the boundary
conditions in (3.342b). ut
The existence of 'm and ˆm in Lemma 3.27 is not obvious since �m is a
characteristic value. Thus, we need to derive explicit formulas for  m; 'm, and ˆm
when the solution space to the homogeneous problem in (3.342a,b) at � D �m is
one-dimensional; for this purpose we will prove

Lemma 3.28. Suppose � D �m is a characteristic value of the homogeneous
problem (3.342a,b) and the solutions  m span a one-dimensional space. Then there
exist constants cm, dm, and fm such that

1.  m.�/ D cmB.�m; �/ when �m is a simple zero of (3.352)
2. 'm.�/ D cmB

0
� .�m; �/C dmB.�m; �/ when �m is a double zero of (3.352)

3. ˆm.�/ D fmB.�m; �/C dmB
0
� .�m; �/C 1

2
cmB

00
� .�m; �/, when �m is a triple zero

of (3.352), where

B.�; �/ D
�

z6.�; !/
@3z5
@�3

.�; !/� z5.�; !/
@3z6
@�3

.�; !/


z4.�; �/

C
�

z4.�; !/
@3z6
@�3

.�; !/� z6.�; !/
@3z4
@�3

.�; !/


z5.�; �/

C
�

z5.�; !/
@3z4
@�3

.�; !/� z4.�; !/
@3z5
@�3

.�; !/


z6.�; �/

(3.368)

and z4, z5, and z6 are defined following (3.350).

Proof. The function B is entire in � and is a solution of

L.�;D�/B.�; �/ D 0; (3.369a)

B.�; 0/ D @B

@�
.�; 0/ D @3B

@�3
.�; 0/ D B.�; !/ D @3B

@�3
.�; !/ D 0; (3.369b)

@B

@�
.�; !/ D d.�/: (3.369c)

When �m is a zero of d.�/,
@B

@�
.�m; !/ D 0, and B.�m; �/ is a solution to the

homogeneous problem (3.342a,b). Since the solution space is one-dimensional and
B.�m; �/ does not vanish everywhere, we have  m.�/ D cmB.�m; �/ for some
constant cm. Now, differentiatingL.�;D� /B.�; �/ D 0 with respect to � , we obtain

L0
� .�;D�/B.�; �/ D �L.�;D�/B

0
� .�; �/ (3.370a)
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for every � . Differentiating the boundary conditions (3.369b,c) with respect to �
gives

B 0
� .�; 0/ D @

@�
ŒB 0

� .�; 0/� D @3

@�3
ŒB 0

� .�; 0/� D B 0
� .�; !/ D @3

@�3
ŒB 0

� .�; !/� D 0

(3.370b)

and

@

@�
ŒB 0

� .�; !/� D d 0.�/ (3.370c)

for every � . When �m is a double zero of d.�/, B 0
� .�m; �/ satisfies the boundary

conditions in (3.342b). It follows that cmB 0
� .�m; �/ solves the same problem as

'm.�/ in Part 2 of Lemma 3.27 and so their differences must be a solution of the
homogeneous problem (3.342a,b) at � D �m. Therefore, 'm.�/ D cmB

0
� .�m; �/ C

dmB.�m; �/ for some constant dm. Now, let a.�/ D dm.���m/Ccm. Differentiating
L.�;D�/a.�/B.�; �/ D 0 twice with respect to � gives

L00
� .�;D�/a.�/B.�; �/C 2L0

� .�;D�/a
0.�/B.�; �/

C 2L0
� .�;D�/a.�/B

0
� .�; �/C 2L.�;D�/a

0.�/B 0
� .�; �/

C L.�;D�/a
00.�/B.�; �/CL.�;D� /a.�/B

00
� .�; �/ D 0 (3.371)

for every � . Letting � D �m in (3.371), we get

L.�m;D� /

�
dmB

0
� .�m; �/C 1

2
cmB

00
� .�m; �/


D �1

2
L00
� .�m;D� / m.�/�L0

� .�m;D� /'m.�/

(3.372)

Set C.�m; �/ D dmB
0
� .�m; �/C 1

2
cmB

00
� .�m; �/. Then, it can be shown that

C.�m; 0/ D @C

@�
.�m; 0/ D @3C

@�3
.�m; 0/ D C.�m; !/ D @3C

@�3
.�m; !/ D 0

(3.373a)

@C

@�
.�m; !/ D dmd

0.�m/C 1

2
cmd

00.�m/: (3.373b)

When �m is a triple zero of d.�/, C.�m; �/ solves the same problem as ˆm.�/ in
Part 3 of Lemma 3.27 and so their difference must be a solution of the homo-
geneous problem (3.342a,b). Therefore, ˆm.�/ D fmB.�m; �/ C dmB

0
� .�m; �/ C

1

2
cmB

00
� .�m; �/ for some constant fm.
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Remarks. When the solution space to the homogeneous problem in (3.342a,b) is
two-dimensional at � D �m, the function  m will be a linear combination of two
functions, say  1m and  2m. In most cases, when �m is a double zero of (3.352),  m
must vanish in order to satisfy the solvability condition for (3.361), and so 'm will
be a linear combination of  1m and  2m. Similar results occur for solution spaces
with dimension greater than two and for triple zeros. The basis functions for the
solution space and the solvability condition requirements for specific angles ! can
be calculated (for example, by using the symbolic manipulation software package
Maple) in order to determine the structure of 'm and ˆm.

Remarks. In order to describe the singularities of the solution z.t; �/ to
problem (3.339a,b), we will use the Residue Theorem, where the path chosen
includes the line Im � D �3. It is therefore necessary to study the zeros of (3.352)
on the line Im � D �3. On the line Im � D �3, (i) if Re � D 0, then for the zeros
of (3.345), (! D 90ı; 270ı and ! � 136:3ı; 226:9ı; 252:8ı; 315:7ı) (3.352) has a
simple zero at � D �3i ; (ii) if Re � ¤ 0, then there is no angle such that � is a zero
of (3.352). Part (i) follows from Lemma 3.21 and the remarks following (3.349).
Part (ii) follows from easy but tedious calculations.

We can now describe the singularities of the solution z.t; �/ to (3.339a,b) as follows:

Lemma 3.29. The solution z.t; �/ 2 H3.B/ \ H2
0 .B/ of (3.339a,b) with

e�3tg.t; �/ 2 H�1.B/ and g.t; �/ D e5tf �.et cos �; et sin �/ has the following
form:

1. If ! 2 .0; 2�/ and ! is not a zero of (3.345), then

z.t; �/ D e3tw.t; �/C
X

�3<Im �m<0

Sm.t; �/: (3.374)

2. If ! 2 .0; 2�/ and ! is a zero of (3.345), then

z.t; �/ D e3tw.t; �/C 2i �3i .�/p
2�

e3t Si.t/� i
r
�

2
 �3i .�/e

3t C
X

�3<Im �m<0

Sm.t; �/:

(3.375)

In (3.374), (3.375), w.t; �/ 2 H5.B/, �m denotes the sequence of characteristic
values (i.e. the zeros of (3.352)), Sm.t; �/ is the residue of � 7! i

p
2�eit� Oz.�; �/

at � D �m,  �3i .�/ is a solution of the homogeneous problem (3.342a,b) with � D
�3i , and Si.t/ D

Z t

0

sin ��

�� d��.

Proof. If ! 2 .0; 2�/ and ! is not a zero of (3.345), then (3.374) easily follows

from the Residue Theorem by integrating the function
1p
2�
eit� Oz.�; �/ around the
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Fig. 3.9 Domain in the proof of Lemma 3.29

path ACEIA, (see Fig. 3.9). It follows from Lemma 3.26 that w.t; �/ 2 H5.B/

where

w.t; �/ D 1p
2�

Z 1

�1
eit�1 Oz.�1 � 3i; �/ d�1:

Now, suppose ! 2 .0; 2�/ and ! is a zero of (3.345). Since � D �3i is a simple
zero of (3.352), by the remarks preceding Lemma 3.29 Oz.�; �/ is not well-defined
at � D �3i ; thus, we will integrate along the path ABCEFGHIA, (Fig. 3.9). But,
by Cauchy’s Theorem, it suffices to integrate along the path ABCDGJA, which we

will denote by C. The function
1p
2�
eit� Oz.�; �/ is single-valued and analytic inside

and on the closed curve C except at the singularities inside the curve (i.e. at the zeros
of (3.352) where �3C � < Im �m < 0). Applying the Residue Theorem and using
the fact that the Fourier transform of an L1 function is a continuous function with
zero limit at infinity, we obtain

1p
2�

Z 1

�1

eit�1 Oz.�1; �/ d�1 D 1p
2�

Z 1

�1

eit.�1�3iC�i/Oz.�1�3iC�i; �/ d�1C
X

�3C�<Im �m<0

Sm.t; �/

(3.376)

as R ! 1. Now, let

OR.�1 � 3i C �i; �/ D Oz.�1 � 3i C �i; �/�  �3i .�/�.�1;1/
�1 C �i

D
(

Oz.�1 � 3i C �i; �/; for �1 � 1 or �1 � 1;

Ow�3i .�1 � 3i C �i; �/; for � 1 < �1 < 1

(3.377)
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where � denotes the characteristic function on �1, and set

w.t; �/ D 1p
2�

Z 1

�1
�it�1 OR.�1 � 3i; �/ d�1 (3.378)

From Lemma 3.26, the fact that Oz is well-defined for � D �1 � 3i , where �1 � �1
or �1 � 1, and the fact Ow�3i .�; �/ is analytic for � D �1 � 3i , where �1 � �1 � 1,
we have w.t; �/ 2 H5.B/. Also,

Z 1

�1
eit.�1�3iC�i/  �3i .�/�.�1;1/

�1 C �i
d�1 D 2i �3i .�/e3t��t

Z 1

0

sin t�1
�1

�21 C �2
d�1

� 2i �3i .�/e3t��t
Z 1

0

cos t�1
�

�21 C �2
d�1:

(3.379)

The first term on the right-hand side of (3.379) approaches 2i �3i .�/e3t Si.t/
as � ! 0. Also, by the Lebesgue Convergence Theorem (see Lemma 3.30 for a
proof),

lim
�!0

Z 1

0

cos t�1
�

�21 C �2
d�1 D lim

�!0

Z 1

0

cos t�1
�

�21 C �2
d�1 D �

2
: (3.380)

Letting � ! 0 in (3.376), we obtain (3.375). ut
We will now prove (3.380).

Lemma 3.30. For any real number t ,

lim
�!0

Z 1

0

cos t�1
�

�21 C �2
d�1 D �

2
:

Proof. We first consider the expression

lim
�!0

Z 1

1

cos t�r
�

�21 C �2
d�1

If we let f�.�1/ D �

�21 C �2
, then for a fixed �1 2 Œ1;1/, f�.�1/ ! 0 as � ! 0.

Thus, for each sequence f�ng1
nD1 such that �n ! 0, as n ! 1, and �n ¤ 0 for all n,

the sequence ff�n.�1/g1
nD1 approaches 0 as n ! 1 for a fixed �1 2 Œ1;1/. Since,

for a fixed �1 2 Œ1;1/,

@f�

@�
.�1/ D �21 � �2

.�21 C �2/
> 0
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for � small (i.e., 0 < � <
1

2
), f� is an increasing function of �. So, for a fixed

�1 2 Œ1;1/,

jf�n .�1/j D
ˇ̌
ˇ̌ �n

�21 C �2n

ˇ̌
ˇ̌ �

1
2

�21 C �
1
2

�2 D 2

4�21 C 1
(3.381)

as f�n is increasing, and 0 < �n <
1

2
. Also,

Z 1

1

2

4�21 C 1
d�1 D 1

2

Z 1

1

1

�21 C �
1
2

�2 d�1 D tan�1 2�1
ˇ̌
ˇ̌1
1

D �

2
� tan�1 2 < 1

(3.382)

since
Z

du

a2 C u2
D 1

a
tan�1 u

a
C C for a > 0. Therefore, g.�1/ D 2

4�21 C 1
is

integrable over Œ1;1/, jf�n .�1/j � g.�1/ on Œ1;1/, and

lim
�!0

f�.�1/ D lim
n!1f�n.�1/ D lim

n!1
�n

�21 C �2n
D 0:

Thus, by the Lebesgue Convergence Theorem,

lim
�!0

Z 1

1

�

�21 C �2
d�1 D lim

n!1

Z 1

1

�n

�21 C �2n
d�1 D 0: (3.383)

From (3.383) and the fact that

ˇ̌
ˇ̌Z 1

1

cos t�1
�

�21 C �2
d�1

ˇ̌
ˇ̌ �

Z 1

1

�

�21 C �2
d�1

we get

lim
�!0

Z 1

1

cos t�1
�

�21 C �2
d�1 D 0: (3.384)

Also, from integration tables, we find that for positive constants a and m,

Z 1

0

cos mx

x2 C a2
dx D �

2a
e�ma: (3.385)
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So, from (3.385),

lim
�!0

Z 1

0

cos t�1
�

�21 C �2
d�1 D lim

�!0
�

Z 1

0

cos t�1
�21 C �2

d�1 D lim
�!0

�
�

2�
e�jtj� D lim

�!0

�

2
e�jtj� D �

2
:

(3.386)

The result follows from (3.384) and (3.386). ut
We can now describe the behavior of the solution � to problem (3.338a–d), i.e.,

we have

Theorem 3.15. Suppose  � 2 H3.G/ \ H2
0 .G/ is a solution, with bounded

suppport, of the system (3.338a–d). If f � 2 H�1.G/, then  � D  �
reg C  �

sing,

where  �
reg 2 H5.G/ and

 �
sing.r; �/ D X

�3<Im � 0
m<0

i
p
2�r1Ci� 0

m m.�/C X
�3<Im � 00

m<0

i
p
2�r1Ci� 00

mf'm.�/C i.ln r/ m.�/g

C X
�3<Im � 000

m <0

i
p
2�r1Ci� 000

m

�
ˆm.�/C i.ln r/'m.�/� .ln r/2

2
 m.�/

	
(3.387)

if ! 2 .0; 2�/ and ! is not a zero of (3.345), while

 �
sing.r; �/ D X

�3<Im � 0
m<0

i
p
2�r1Ci� 0

m m.�/C X
�3<Im � 00

m<0

i
p
2�r1Ci� 00

mf'm.�/C i.ln r/ m.�/g

C X
�3<Im � 000

m <0

i
p
2�r1Ci� 000

m

�
ˆm.�/C i.ln r/'m.�/� .ln r/2

2
 m.�/

	
(3.388)

C i

r
2

�
 �3i .�/r

4 Si.ln r/

if ! 2 .0; 2�/ and ! is a zero of (3.345).

Remarks. In (3.387) and (3.388), the real parts of  �
sing are considered relevant,

 �3i .�/ and Si.ln r/ are defined in Lemma 3.29, and the functions  m.�/, 'm.�/,
and ˆm.�/ are defined in Lemma 3.27. Also, � 0

m denotes the sequence of simple
zeros of (3.352), � 00

m denotes the sequence of double zeros of (3.352), and � 000
m denotes

the sequence of triple zeros of (3.352).

Proof (Theorem 3.15). By (3.376), if � D �m is a simple pole of Oz, then the residue
of � 7! i

p
2�eit� Oz.�; �/ at � D �m is given by i

p
2�eit�m m.�/, where  m.�/ is

defined in Part 1 of Lemma 3.27. if � D �m is a double pole of Oz, then the residue of
� 7! i

p
2�eit� Oz.�; �/ at � D �m is given by i

p
2�eit�mf'm.�/ C it m.�/g, where

 m.�/ and 'm.�/ are defined in Part 2 of Lemma 3.27. Similarly, if � D �m is a
triple pole of Oz, then the residue of � 7! i

p
2�eit� Oz.�; �/ at � D �m is given by

i
p
2�eit�m

�
ˆm.�/C it'm.�/ � t2

2
 m.�/

	
, where  m.�/, 'm.�/, and ˆm.�/ are
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defined in Part 3 of Lemma 3.27. If we perform the change of variable r D et in
(3.374) and (3.375), and notice that  �

reg.x; y/ D e4tw.t; �/ 2 H5.G/ (by Lemma
7.2.1.3 in [Gr1]) then the result follows. ut

As u D �@ 
@y

and v D @ 

@x
, we also obtain the following theorem:

Theorem 3.16. Suppose w D .u; v/ 2 H 2.�/\H 1
0.�/ is a solution to (3.333a–d).

If f 2 L2.�/, then in a neighborhood of the corner Sl , the solution w D .u; v/
of (3.333a–d) has the form:

u D ureg �
X

�3<Im � 0
m<0

A1;m.r; �/ �
X

�3<Im � 00
m<0

B1;m.r; �/�
X

�3<Im � 000
m <0

C1;m.r; �/

(3.389a)

and

v D vreg C
X

�3<Im � 0
m<0

A2;m.r; �/C
X

�3<Im � 00
m<0

B2;m.r; �/C
X

�3<Im � 000
m <0

C2;m.r; �/

(3.389b)

if ! 2 .0; 2�/ and ! is not a zero of (3.345), while

u D ureg � X
�3<Im � 0

m<0

A1;m.r; �/� X
�3<Im � 00

m<0

B1;m.r; �/� X
�3<Im � 000

m <0

C1;m.r; �/CD1.r; �/

(3.390a)

and

v D vreg C X
�3<Im � 0

m<0

A2;m.r; �/C X
�3<Im � 00

m<0

B2;m.r; �/C X
�3<Im � 000

m <0

C2;m.r; �/CD2.r; �/

(3.390b)

if ! 2 .0; 2�/ and ! is a zero of (3.345). In (3.389a,b), (3.390a,b),

A1;m.r; �/ D i
p
2�ri�

0
mŒ.1C i� 0

m/ sin � m.�/C cos � 0
m.�/�;

A2;m.r; �/ D i
p
2�ri�

0
mŒ.1C i� 0

m/ cos � m.�/ � sin � 0
m.�/�;

B1;m.r; �/ D i
p
2�ri�

00
m Œ.1C i� 00

m/.sin �/.'m.�/C i ln r m.�//

C i sin � m.�/C cos �' 0
m.�/C i ln r cos � 0

m.�/�;

B2;m.r; �/ D i
p
2�ri�

00
m Œ.1C i� 00

m/.cos �/.'m.�/C i ln r m.�//

C i cos � m.�/ � sin �' 0
m.�/ � i ln r sin � 0

m.�/�;



3.5 Flow Over Non-smooth Boundaries 235

C1;m.r; �/ D i
p
2�ri�

000
m Œ.1C i� 000

m /.sin �/.ˆm.�/C i ln r'm.�/

� .ln r/2

2
 m.�//C i sin �'m.�/ � ln r sin � m.�/

C cos �ˆ0
m.�/C i ln r cos �' 0

m.�/� .ln r/2

2
cos � 0

m.�/�;

C2;m.r; �/ D i
p
2�ri�

000
m Œ.1C i� 000

m /.cos �/.ˆm.�/C i ln r'm.�/

� .ln r/2

2
 m.�//C i cos �'m.�/ � ln r cos � m.�/

� sin �ˆ0
m.�/ � i ln r sin �' 0

m.�/C .ln r/2

2
sin � 0

m.�/�;

D1.r; �/ D i

r
2

�
r3Œ4 �3i .�/ sin � Si.ln r/

C  �3i .�/ sin �
sin.ln r/

ln r
C  0�3i .�/ cos � Si.ln r/�;

D2.r; �/ D i

r
2

�
r3Œ4 �3i .�/ cos � Si.ln r/

C  �3i .�/ cos �
sin.ln r/

ln r
�  0�3i .�/ sin � Si.ln r/�

and the real parts of u and v are considered relevant. Also, ureg 2 H4 and vreg 2 H4

in a neighborhood of the corner Sl , �3i .�/ and Si.ln r/ are defined in Lemma 3.29,
the functions  m.�/, 'm.�/, and ˆm.�/ are given in Lemma 3.28, and � 0

m, � 00
m, and

� 000
m are defined in Theorem 3.15.

3.5.5 Some Specific Regularity Results

In this subsection, we will calculate the local singularities of the solution to the

bipolar equations around a corner with angle measurement ! D 3�

2
and prove

Theorem 3.14; this angle is of particular importance in many research areas such as
the study of fluid flow around a corner (see [Mo]), the study of drag reduction by
using rectangular riblets (see [Wa]), and the study of the effect of rectangular riblets
on the laminar to turbulent transition of flow over a flat plate in a water tunnel
(see [LRRH]).

From Theorem 3.16, we can calculate the local singularities of the solution to
the bipolar equations for a specific interior angle measurement by determining the
zeros of (3.352), calculating the multiplicity of these zeros, finding the functions
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 m.�/, 'm.�/, and ˆm.�/ defined in Lemma 3.27, and calculating the dimension
of the solution space spanned by these functions; such computations are most easily
performed by using a symbolic manipulation package such as Maple. For example,

if we consider a domain which has a corner with an angle measurement of
3�

2
,

and localize the problem near this corner, then letting ! D 3�

2
in Lemma 3.21 we

obtain the following theorem:

Theorem 3.17. For ! D 3�

2
the homogeneous problem (3.342a,b) has only the

zero solution in the following cases: (i) � ¤ 0;˙i;�2i;�3i and � is not a root of
the equation

.64�6i � 384�5 � 832�4i C 768�3 C 112�2i C 288� C 144i/ cosh
3��

2

C .144�2i � 288� � 144i/ cosh
9��

2
D 0; (3.391)

(ii) � D 0, (iii) � D �i , and (iv) � D �2i . The roots of (3.391) are described by
the following lemma:

Lemma 3.31. In the region �3 � Im � � 0, equation (3.391) has the simple roots

� D �7
3
i;�5

3
i;�i;�1

3
i and � � �2:88i;�2:56i;�1:39i;�1:27i;�:73i;�:61i ,

and the double roots � D �3i;�2i;�i; 0; also, this equation has no root with
multiplicity larger than two.

It is now possible to calculate the values of � for which d.�/ D 0, where
d.�/ is defined in (3.352) and, thus, establish the representation (3.336), (3.337)
in Theorem 3.14. In fact, from Lemma 3.31, we obtain the following result:

Lemma 3.32. In the region �3 � Im � � 0, d.�/ has simple zeros at � D �3i ,
�7
3
i , �2i , �5

3
i , �i , �1

3
i and � � �2:88i , �2:56i , �1:39i , �1:27i , �:73i , �:61i ,

and no zeros with multiplicity larger than one.

Proof (Theorem 3.14). As a consequence of Lemmas 3.31 and 3.32, we obtain the
representation

 � D  �
reg C i

p
2�.r3:88 �2:88i .�/C r3:56 �2:56i .�/C r

10
3  � 7

3 i
.�/C r

8
3  � 5

3 i
.�/

C r2:39 �1:39i .�/C r2:27 �1:27i .�/C r1:73 �:73i .�/C r1:61 �:61i .�/

C r
4
3  � 1

3 i
.�//C i

r
2

�
 �3i .�/r

4 Si.ln r/ (3.392)



3.5 Flow Over Non-smooth Boundaries 237

where  �
reg 2 H5.G/. It can be verified that the solutions  �.�/ where � D �3i ,

�7
3
i , �5

3
i , �1

3
i , and � � �2:88i , �2:56i , �1:39i , �1:27i , �:73i , �:61i , span

a one-dimensional space. For example,  �3i .�/ D A�3i i.1 � cos � cos 3�/ and

 � 7
3 i
.�/ D A� 7

3 i

�
� cos

10�

3
C cos

2�

3

�
, where A�3i and A� 7

3 i
are real constants.

Since we are assuming that  � 2 H3.G/, we must have A� 1
3 i

D A�:61i D
A�:73i D 0. Therefore,

 � D  �
reg C i

p
2�.r3:88 �2:88i .�/C r3:56 �2:56i .�/C r

10
3  � 7

3 i
.�/C r

8
3  � 5

3 i
.�/

C r2:39 �1:39i .�/C r2:27 �1:27i .�//C i

r
2

�
 �3i .�/r

4 Si.ln r/: (3.393)

From (3.390a,b), in a neighborhood of a corner with interior angle ! D 3�

2
, the

solution w D .u; v/ of (3.333a–d) has the form

u D ureg �A1;�2:88i .r; �/ �A1;�2:56i .r; �/ �A1;� 7
3 i
.r; �/ (3.394a)

� A1;� 5
3 i
.r; �/ �A1;�1:39i .r; �/ �A1;�1:27i .r; �/CD1.r; �/;

v D vreg C A2;�2:88i .r; �/C A2;�2:56i .r; �/C A2;� 7
3 i
.r; �/ (3.394b)

C A2;� 5
3 i
.r; �/C A2;�1:39i .r; �/C A2;�1:27i .r; �/CD2.r; �/

where the notation is the same as in Theorem 3.16. The conclusions in
Theorem 3.14, i.e. (3.336), (3.337), now follow directly from (3.394a,b). ut

For a further discussion of the influence of the rough boundaries on fluid flow
see also [Sj] and the references therein.



Chapter 4
General Existence and Uniqueness Theorems
for Incompressible Bipolar and Non-Newtonian
Fluid Flow

4.1 Introduction

In Sect. 1.4 we introduced the equations which govern the motion of a nonlinear,
incompressible, bipolar fluid. For a bounded domain in R

n, n D 2; 3 the appropriate
boundary conditions were set forth in Sect. 1.4 and, for flows in all of R

n, the
relevant periodic (boundary) conditions were also delineated. In both of the two
previous chapters, various theorems pertaining to existence, uniqueness, and contin-
uous dependence on the constitutive parameters were formulated and established,
albeit for specific types of flows and geometries. Thus, in Chap. 2, we proved
(i) existence, uniqueness, and continuous dependence results for steady plane
Poiseuille flows of a viscous, incompressible, nonlinear bipolar fluid, (ii) uniqueness
of the steady Poiseuille flow within a broad class of equilibrium flows between
parallel plates, and (iii) existence, uniqueness, and asymptotic stability theorems for
time-dependent Poiseuille flows of a bipolar fluid. In Chap. 3, theorems establishing
existence and uniqueness of solutions for problems governing the motion of an
incompressible, nonlinear, bipolar fluid were established for the cases of (i) flow
between rotating cylinders, (ii) exterior flow around an obstacle in the plane with a
smooth boundary, and (iii) flow over non-smooth boundaries (in particular, flow in
polygonal domains).

In this chapter, existence and uniqueness results of a more general character will
be developed. First, in Sect. 4.2 we obtain, via a Galerkin argument, the existence of
a unique weak solution to the initial-boundary value problem for an incompressible
bipolar viscous fluid satisfying nonhomogeneous boundary conditions. The domain
in this section is a general open bounded domain � � R

n, n D 2; 3, with smooth
boundary @�. Regularity results are also established in Sect. 4.2 and the solution
is proven to be asymptotically stable when the forcing function and the initial and
boundary data decay in an appropriate sense. Section 4.3 is both the heart and soul
of this chapter. In Sect. 4.3 we reconsider the problem of existence and uniqueness
of solutions for the incompressible bipolar fluid for flows in R

n, n D 2; 3, with
associated space-periodic conditions; the appropriate space-periodic conditions are

H. Bellout and F. Bloom, Incompressible Bipolar and Non-Newtonian Viscous Fluid
Flow, Advances in Mathematical Fluid Mechanics, DOI 10.1007/978-3-319-00891-2__4,
© Springer International Publishing Switzerland 2014
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introduced at the end of Sect. 4.2. The proof is constructed in such a manner as
to allow for the conclusion that for p > 1, when n D 2, and for p > 6=5,
when n D 3, the weak limit of a sequence fvN g of unique weak solutions,
corresponding to a sequence f�N1 g of higher-order viscosities, is a measure-valued
solution of the initial-boundary value problem with �1 D 0. In the formulation
of the flow problem in Sect. 4.3 we weaken the constitutive hypothesis (2.1a),
where ˛ D 2 � p, assuming only that for �1 D 0, the viscous part of the stress
tensor satisfies a growth condition of the form

ˇ̌
�ij.e/

ˇ̌ � C.1 C jej/p�1, for some
C > 0. Then, we prove that the measure-valued solutions are weak solutions,
when �1 D 0, for 3=2 < p < 2 (in dimn D 2) and for 9=5 < p < 11=5 (in
dimn D 3). Finally, it is shown that the measure-valued solutions are, in fact,
unique regular weak solutions for p � 2 (in dimn D 2) and for p � 11=5

(in dimn D 3).
In Sect. 4.4 we return to the problem of flow of an incompressible, nonlinear,

bipolar fluid in an unbounded, parallel-wall channel, i.e., in the domain �a defined
by (2.164). Existence of solutions for this problem is established by first considering
a sequence of approximate solutions in bounded subdomains of �a; we then prove
that there exists a subsequence of such approximate solutions, whose limit is a weak
solution of the initial-boundary value problem, and that the solution is unique. In the
last section of this chapter, Sect. 4.5, we recall the results in some of the work on
existence and uniqueness for the Navier–Stokes equations that has appeared in the
literature, as well as the related work for some of the generalizations of the Navier–
Stokes model which have been described in Sect. 1.6.

4.2 Existence, Uniqueness, and Stability of Solutions
to the Initial-Boundary Value Problem for Bipolar
Viscous Fluids

4.2.1 Introduction

In this section, we consider the most general initial-boundary value problem
associated with a bipolar viscous fluid; we will study the problem of existence,
uniquenss and stability, and will allow for general boundary conditions, i.e., we
will not simply restrict our analysis to the non-slip boundary condition and will also
allow for non-zero moments of the tractions on the boundary of the domain (see also
[NR] and [Po]).

Let � � Rn, n D 2; 3, be an open bounded domain with smooth boundary @�.
We recall here the form of the initial-boundary value for the bipolar viscous fluid as
previously delineated in Sect. 1.4:

�
@vi

@t
C �vj

@vi

@xj
D � @p

@xi
� 2�1

@

@xj
�eij.v/C @

@xj
.�.v/eij.v//C �Fi , in � 
 .0; T /;

(4.1)
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div v D 0, in � 
 .0; T /; (4.2)

�ijk.v/
j 
k � �jkl .v/
j 
k
l
i D .Mk�k/�i , on @� 
 .0; T /; (4.3)

v D g, on @� 
 .0; T /; (4.4)

v.x; 0/ D v0.x/, in � (4.5)

where v is the velocity field associated with the flow of an incompressible bipolar
fluid, p is the pressure, Fi , g, Mi and v0 are given functions, the smoothness of
which will be specified later, and eij is the rate of deformation tensor, i.e.,

eij D 1

2

�
@vi

@xj
C @vj

@xi

�
(4.6)

Also, in (4.1), � is the density (which we set equal to one, without loss of generality)
and �.v/ is given by

�.v/ D 2�0.� C eij.v/eij.v//
�˛=2 D 2�.je.v/j/ (4.7)

while �0, �1, and � are positive constants and ˛ 2 .0; 1/. Finally, in (4.3) the �ijk

are the components of the first multipolar stress tensor

�ijk.v/ D 2�1
@eij.v/

@xk
: (4.8)

We will assume in our work that the field g given in (4.4) satisfies

Z
@�

g.�; t/ds D 0 (4.9)

for every t . This is a necessary and sufficient condition [HB] to ensure the existence
of a vector field Qv such that

Qv D g on @� 
 .0; T /; (4.10)

div Qv D 0 in � 
 .0; T /: (4.11)

This section is organized as follows: in Sect. 4.2.2 we define the notion of weak
solution for the initial-boundary value problem (4.1)–(4.5); we then implement
the Galerkin method to prove the existence of a weak solution. In 4.2.3 two
regularity results are proven for the weak solution whose existence was established
in Sect. 4.2.2. The uniqueness of the weak solution to (4.1)–(4.5) is proven in
Sect. 4.2.4. Finally, with appropriate assumptions relative to the data, the asymptotic
stability of the solution to the initial-boundary value problem is demonstrated in
Sect. 4.2.5.
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4.2.2 Existence of a Weak Solution

To prove the existence of a solution to the problem (4.1)–(4.5), we will start
by formulating the equations for the corresponding weak solution. The existence
of a weak solution will be established using the Galerkin method. We begin by
introducing the space

H D fu 2 W 2;2.�/\W 1;2
0 .�/ j div u D 0g (4.12)

Next, we define a weak solution to our problem to be a function v such that v� Qv 2
L1

loc.0;1IL2.�// \L2loc.0;1IH / \W �1;2
loc .0;1IW 4;2.�//, satisfies

�
Z 1

0

Z
�t

@ i

@t
vi dxdt C

Z
�
 i.x; 0/vi .x; 0/dx C 2�1

Z 1

0

Z
�t

@eij.v/

@xk

@eij. /

@xk
dxdt

D
Z 1

0

Z
�t

vj
@ i

@xj
vidxdt �

Z 1

0

Z
�t

�.v/eij.v/
@ i

@xj
dxdt

C
Z 1

0

Z
�t

Fi idxdt C
Z 1

0

Z
@�t

.Mk�k/�i
@ i

@

ds dt; (4.13)

8 2 W 1;2.0;1IH /, with compact support in Œ0;1/. The form of the boundary
integral in (4.13) follows from the discussion in Appendix A.II which leads up to
(B.33). For the remainder of our work in this section we will set QMi D .Mk�k/�i .

In order to use the Galerkin method to prove the existence of the weak solution
w, we need to introduce a suitable basis; we define in H the scalar product

..w; // D
Z
�

@

@xk
eij.w/

@

@xk
eij. /dx

and denote by .w; /L2.�/ the usual L2 scalar product. We begin with

Lemma 4.1. The eigenvalue problem

..w; // D .w; /L2.�/; 8 2 H (4.14)

has a sequence of solutions W l 2 H \ C1.�/ corresponding to a sequence of
positive eigenvalues l . Furthermore

(i) the sequence W l is a basis for the closure of H under the L2 norm;
(ii) the sequence W l is a basis of H ;

(iii)
�W l ;Wk

�
L2.�/

D ılk.

Proof. This is a standard consequence of Lemma B.2 in Appendix B and classical
results in the spectral theory of operators in Hilbert spaces (see [Bre, Yos] or [Kat]
for example). ut
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As we have indicated we will prove the existence of a weak solution using the
Galerkin technique. We start by assembling some technical results. For l fixed, let
wl 2 E l D spanfW l � � �W lg and let

wl .x; t/ D
lX

kD1
Cl;k.t/Wk.x/

be the solution of

Z
�t

@wli
@t
 idxC 2�1

Z
�t

@eij.wl /

@xk

@eij. /

@xk
dxD

Z
�t

vlj
@vli
@xj

 idx�
Z
�t

�.vl /eij.v
l /
@ i

@xj
dx

C
Z
�t

Fi idx�
Z
�t

@Qvi
@t
 idxC

Z
�t

@eij.Qv/
@xk

@eij. /

@xk
dxC

Z
@�t

QMi

@ i

@

ds; (4.15)

8 2 E l , where vl D wl C Qv.
The nonlinear system of ordinary differential equations for the coefficients

Cl;k.t/ generated by (4.15) satisfies the conditions of Picard’s theorem because of
the regularity of �.v/; hence, this system, along with the initial conditions

Cl;k.0/ D
Z
�t

.v0 � Qv/ � W ldx; 8.l; k/ (4.16)

has a unique local solution on an interval Œ0; Tl �.
We will now proceed with proving some a priori estimates for wl . In order to

state our first a priori estimate we introduce the energy El.t/ defined by

El.t/ D 1

2

ˇ̌ˇ̌
wl
ˇ̌ˇ̌2
L2.�t /

C 	

Z t

0

ˇ̌ˇ̌
wl
ˇ̌ˇ̌2
W 2;2.�t /

dt; 	 > 0: (4.17)

For the energyEl.t/ we now establish the following

Lemma 4.2. There exists c > 0, and Oc > 0, such that, for all l ,

El.t/ � Ocect; 8t � 0: (4.18)

Proof. Set  D wl in (4.15) and sum over i ; it then follows that

1

2

@

@t

Z
�t

ˇ̌ˇ̌
wl
ˇ̌ˇ̌2
dx C 2�1

Z
�t

@eij.wl /
@xk

@eij.wl /
@xk

dx D �b.vl ; vl ;wl /

�
Z
�t

�.vl /eij.v
l /eij.wl /dx C

Z
�t

F � wl dx �
Z
�t

@ Qv
@t

� wl dx

� �1

Z
�t

@eij. Qv/
@xk

@eij.wl /
@xk

dx C
Z
@�t

QMi

@wli
@

ds; (4.19)



244 4 General Existence and Uniqueness Theorems for Incompressible Bipolar and : : :

where b.u;w; v/ D
Z
�t

uj
@wi
@xj

vidx. Since vl D wl C Qv,

b.vl ; vl ;wl / D b.wl ;wl ;wl /C b. Qv;wl ;wl /C b. Qv; Qv;wl /C b.wl ; Qv;wl /:
(4.20)

However, wl is divergence free, and wl D 0 on @�t D @� 
 Œ0; t/, so an easy
calculation shows that b.wl ;wl ;wl / D 0. Similarly, b. Qv;wl ;wl / D 0. Hence,

1

2

d

dt

Z
�t

ˇ̌ˇ̌
wl
ˇ̌ˇ̌2
dx C 2�1

Z
�t

@eij.wl /
@xk

@eij.wl /
@xk

dx C
Z
�t

�.vl /eij.wl /eij.wl /dx

D �
Z
�t

�.vl /eij. Qv/eij.wl /dx C
Z
�t

F � wl dx � b. Qv; Qv;wl /� b.wl ; Qv;wl /

�
Z
�t

@ Qv
@t

� wldx � �1

Z
�t

@eij. Qv/
@xk

@eij.wl /
@xk

dx C
Z
@�t

QMi

@wli
@

ds:

(4.21)

Thus, for some generic c > 0,

1

2

d

dt

Z
�t

ˇ̌ˇ̌
wl
ˇ̌ˇ̌2
dx C 2�1

Z
�t

@eij.wl /
@xk

@eij.wl /
@xk

dx C
Z
�t

�.vl /eij.wl /eij.wl /dx

� .c jj QvjjW 1;2.�t /
C jjF jjW �1;2.�t /

C jjQvt jjW 1;2.�t /

ˇ̌ˇ̌
wl
ˇ̌ˇ̌
W 1;2.�t /

C .c jj QvjjW 2;2.�t /
C ˇ̌ˇ̌ QMi

ˇ̌ˇ̌
W�1=2;2.@�t /

/
ˇ̌ˇ̌

wl
ˇ̌ˇ̌
W 2;2.�t /

C ˇ̌
b. Qv; Qv;wl /ˇ̌C ˇ̌

b.wl ; Qv;wl /ˇ̌ : (4.22)

Using the fact that jj QvjjL1.�t /
� C jj QvjjW 2;2.�t /

, for some C > 0, we find that

ˇ̌
b. Qv; Qv;wl /ˇ̌ � C jj Qvjj2

W 2;2.�t /
� ˇ̌ˇ̌vl ˇ̌ˇ̌

W 1;2.�t /
:

Also

ˇ̌
b.wl ; Qv;wl /ˇ̌ jj QvjjL1.�t /

�Z
�t

ˇ̌
wl
ˇ̌ � ˇ̌rwl

ˇ̌
dx



� C jj QvjjW 2;2.�t /

ˇ̌ˇ̌
wl
ˇ̌ˇ̌
L2.�t /

ˇ̌ˇ̌
wl
ˇ̌ˇ̌
W 2;2.�t /

:

(4.23)
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The inequality in (4.22) then yields, for some � > 0,

1

2

d

dt

Z
�t

ˇ̌ˇ̌
wl
ˇ̌ˇ̌2
dx C 2�1

Z
�t

@eij.wl /
@xk

@eij.wl /
@xk

dx C
Z
�t

�.vl /eij.wl /eij.wl /dx

�
�
c jj QvjjW 1;2.�t /

C jjF jjW �1;2.�t /
C jjQvt jjW 1;2.�t /

C c jj QvjjW 2;2.�t /

C c jj QvjjW 2;2.�t /

ˇ̌ˇ̌ QMi

ˇ̌ˇ̌
W�1=2;2.@�t /

�2 C 2��1
�
C jj QvjjW 2;2.�t /

ˇ̌ˇ̌
wl
ˇ̌ˇ̌
L2

�2
:

(4.24)

Using the inequality jxyj � 1=2.x2=� C y2�/ on the right-hand side of (4.24),
as well as Lemma B.2 to estimate the second term on the left-hand side, and then
dropping the non-negative third term on the left-hand side, we find that (4.24) yields,
for some 	 > 0

1

2

d

dt

Z
�t

ˇ̌ˇ̌
wl
ˇ̌ˇ̌2
dx C 	

ˇ̌ˇ̌
wl
ˇ̌ˇ̌2
W 2;2.�t /

� ��1.c jj QvjjW 1;2.�t /
C jjF jjW �1;2.�t /

C jjQvt jjW 1;2.�t /
C c jj QvjjW 2;2.�t /

C jjMi jjW�1=2;2.@�t /
C C jj QvjjW 2;2.�t /

ˇ̌ˇ̌
wl
ˇ̌ˇ̌
L2
/2

� 2��1.c jj QvjjW 1;2.�t /
C jjF jjW �1;2.�t /

C jjQvt jjW 1;2.�t /

C c jj QvjjW 2;2.�t /

ˇ̌ˇ̌ QMi

ˇ̌ˇ̌
W�1=2;2.@�t /

/2 C 2��1.C jj QvjjW 2;2.�t /

ˇ̌ˇ̌
wl
ˇ̌ˇ̌
L2.�t /

/2:

(4.25)

Therefore,

dEl.t/

dt
� aEl.t/C b (4.26)

where

a D C

	
sup
t�0

�
jj Qvjj2

W 2;2.�t /

�
(4.27)

and

b D C

	
sup
t�0

�
c jj QvjjW 1;2.�t /

C jjF jjW �1;2.�t /
C jjQvt jjW 1;2.�t /

(4.28)

C c jj QvjjW 2;2.�t /
C ˇ̌ˇ̌ QMi

ˇ̌ˇ̌
W�1=2;2.@�t /

�2
:

The lemma is then a direct consequence of Gronwall’s inequality. (See [Hen].) ut
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The purpose of the next lemma is to be able to use Theorem 5.1 of [Lio1] to
obtain strong convergence of wl in a suitable space.

Lemma 4.3. The norm of
dwl

dt
in L3=2.0; T IW �2;2/ is bounded independently

of l .

Proof. Let u 2 L3.0; T IW 2;2
0 .�//, choose s > 2 (s will be specified later),

and set ul D P l .u/ where P l is the projection operator onto the space
El D spanfW l � � �W lg. We then have that

Z T

0

Z
�t

dwl

dt
� udx dt D

Z T

0

Z
�t

dwl

dt
� uldx dt

	 �
Z T

0

Z
�t

d Qv
dt

� ul dx dt C
Z T

0

Z
�t

vlj
@vli
@xj

uli dx dt

� 2�1

Z T

0

Z
�t

@eij.v
l /

@xk

@eij.ul /
@xk

dx dt �
Z T

0

Z
�t

�.v/eij.v
l /
@uli
@xj

dx dt

C
Z T

0

Z
�t

Fiu
l
idx dt 	 I1 C I2 C I3 C I4 C I5: (4.29)

Using Lemma 4.2 it is easy to see that for some NC > 0,

jI1 C I3 C I4 C I5j � NC ˇ̌ˇ̌ul ˇ̌ˇ̌
L2.0;T IW 2;2.�//

� NC ˇ̌ˇ̌ul ˇ̌ˇ̌
Lp.0;T IW 2;2

0 .�//
: (4.30)

Let p0 be the conjugate of p; then by virtue of the Hölder Inequality

jI2j D
ˇ̌
ˇ̌
ˇ�
Z T

0

Z
�t

vlj v
l
i

@uli
@xj

dx dt

ˇ̌
ˇ̌
ˇ �

Z t

0

�Z
�t

ˇ̌
ˇ
ˇ̌
ˇvl
ˇ̌
ˇ
ˇ̌
ˇ2p0

dx

� 1
2p0
�Z
�t

ˇ̌
ˇ
ˇ̌
ˇrul

ˇ̌
ˇ
ˇ̌
ˇpdx

 1
p

dt:

(4.31)

Recall that
ˇ̌ˇ̌
Dul

ˇ̌ˇ̌
Lp.�/

� Nc jjujjW 2;2.�/, for p � 2n

n � 2
, and some Nc > 0. Also

�Z
�t

ˇ̌ˇ̌
vl
ˇ̌ˇ̌2p0

dx

�
�
�Z

�t

ˇ̌ˇ̌
vl
ˇ̌ˇ̌2
dx

� 1
2p0

�
�Z

�t

ˇ̌ˇ̌
vl
ˇ̌ˇ̌4p0�2

dx

� 1
2p0

: (4.32)

By Lemma 4.2 we have that
Z
�t

ˇ̌ˇ̌
vl
ˇ̌ˇ̌2
dx is uniformly bounded in L1.0; T /;

hence, for some OC.T / > 0,

jI2j � OC
Z t

0

�Z
�t

ˇ̌
ˇˇ̌ˇ̌vl ˇ̌ˇ̌4p0�2 ˇ̌ˇdx

� 1
2p0

� jjujjW 2;2.�/ dt; 0 < t < T:
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We are now interested in estimating

Z t

0

�Z
�t

ˇ̌ˇ̌
vl
ˇ̌ˇ̌4p0�2

dx

� s0

2p0

dt: (4.33)

For this purpose we use the inequality

�Z
�t

ˇ̌ˇ̌
vl
ˇ̌ˇ̌4p0�2

dx

� 1
4p0�2 � Oc ˇ̌ˇ̌.vl /ˇ̌ˇ̌

W 2;2.�/
,

for some Oc > 0, which is valid provided p > n=2 � 1, from Lemma 4.2 it then
follows that

Z t

0

�Z
�t

ˇ̌ˇ̌
vl
ˇ̌ˇ̌4p0�2

dx

� 2
4p0�2

dt � OcecT : (4.34)

Therefore, for
s0

2p0 D 2

4p0 � 2 , we have that

Z t

0

�Z
�t

ˇ̌ˇ̌
vl
ˇ̌ˇ̌4p0�2

dx

� s0

2p0

dt � OcecT : (4.35)

For n � 3, the choice p D 3 satisfies all the restrictions cited above and yields
s0 D 3=2, s D 3. Hence, for Qc > 0, QC > 0,

Z T

0

Z
�t

dwl

dt
� u dx dt � QC jjujj

L3.0;T;W
2;3
0 .�//

(4.36)

and ˇ̌
ˇ̌
ˇ̌
ˇ̌dwl

dt

ˇ̌
ˇ̌
ˇ̌
ˇ̌
L3=2.0;T IW �2;3.�//

� Qc: (4.37)

ut
We are now in a position to state and prove the main result of this subsection,

namely,

Theorem 4.1. Assume that

(i) Qv is in L1..0;1/IW 2;2.�//,
(ii) Qvt is in L2loc.Œ0;1/IW �1;2.�//,

(iii) F is in L2loc.Œ0;1/IW 1;2.�//,
(iv) QMi is in L2loc.Œ0;1/IW �1=2;2.@�//,
(v) h is in L2.�/,

(vi) there exists c > 0 and Oc > 0 such that

Z t

0

�
jjF jjW �1;2.�t /

C jjvt jjW�1;2.�t /
C ˇ̌ˇ̌ QMi

ˇ̌ˇ̌
W�1=2;2.@�t /

�2
dt � Ocect:

(4.38)
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Then the problem (4.1)–(4.5) has a weak solution v in the sense of (4.13) which
satisfies

1

2
jjvjjL2.�t / C 	

Z t

0

jjvjj2
W 2;2.�t /

dt � Ocect: (4.39)

Proof. From Lemma 4.2 it follows that the sequence wl has a convergent subse-
quence, denoted again by wl , which is convergent in L2loc.Œ0;1/IW 2;2.�// to a
function w. Furthermore,

1

2
jjwjjL2.�t / C 	

Z t

0

jjwjj2
W 2;2.�t /

dt � Ocect: (4.40)

Using Lemmas 4.2, 4.3 and Theorem 5.1 of [Lio1] we then have that the sequence
wl is compact in L2..0; T /IW s;2.�//, 8s < 2. Hence there exists a subsequence,
denoted again by wl , which converges, strongly, to w in L2..0; T /IW s;2.�//. From
the compactness of the embedding of Sobolev spaces (see Appendix A) it then
follows that .wl C Qv/j .wl C Qv/i converges weakly in L2loc.Œ0;1/IL2.�// and
strongly in L1loc.Œ0;1/IL2.�//; thus its limit is .w C Qv/j .w C Qv/i . Similarly,
�.vl /eij.v

l / converges strongly in L2..0; T /IL2.�// to �.v/eij.v/.
Letting l go to infinity in (4.15) it then follows that 8 2 W 1;2.0;1IH /, with

compact support in Œ0;1/,

�
Z 1

0

Z
�t

@ i

@t
vi dx dt C

Z
�
 i.x; 0/hi .x/ dx C 2�1

Z 1

0

Z
�t

@eij.v/

@xk

@eij. /

@xk
dx dt

D
Z 1

0

Z
�t

vj
@ i

@xj
vi dx dt C

Z 1

0

Z
�t

�.v/eij.v/
@ i

@xj
dx dt

C
Z 1

0

Z
�t

Fi i dx dt C
Z 1

0

Z
@�t

QMi
@ i

@

ds dt

where v D w C Qv. ut
Remarks. The above result is still valid, and the proof is essentially unchanged, if
instead of assumption (4.7) one requires that � be a positive decreasing function and
that lim

s!0
s�.s/ < 1. In particular, one can set � D 0 in (4.7).

4.2.3 Regularity of the Solution

In this section we will establish two regularity results for the solution whose
existence was proven in Sect. 4.2.2; we will also make precise the sense in which the
solution of the variational problem satisfies the boundary-value problem. Our first
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result shows that if we assume additional regularity of the data, for t > 0, we do get
additional regularity of the solution for t > 0. This is made precise by the following
theorem:

Theorem 4.2. Assume that

(i) Qv is in L1..0;1/IW 2;2.�// \W �1;2..0;1/IW 4;2.�//,
(ii) Qvt is in L2loc..Œ0;1//IL2.�//,

(iii) F is in L2loc.Œ0;1/IL2.�//,
(iv) QMi is in W 1;2

loc .Œ0;1/IW �1=2;2.@�//.

Then Problem (4.1)–(4.5) has a weak solution v in the sense of (4.13) which
satisfies

(i) v 2 W 1;2
loc ..0;1/IL2.�//,

(ii) v 2 L1
loc..0;1/IH /.

Proof. Set  D wlt in (4.13). After integration by parts over .t1; T / and summing
over i , it follows that

Z T

t1

Z
�t

ˇ̌
ˇ̌
ˇ̌
ˇ̌@vl
@t

ˇ̌
ˇ̌
ˇ̌
ˇ̌2dx dt C

Z
�t

�.vl / dx C �1

Z
�t

@eij.v
l /

@xk

@eij.v
l /

@xk
dx

D �
Z T

t1

Z
�t

vlj
@vli
@xj

.vli /dx dt C
Z
�t1

N�.vl / dx C �1

Z
�t1

@eij.v
l /

@xk

@eij.v
l /

@xk
dx

C
Z T

t1

Z
�t

F �vlt dx dt�
Z T

t1

Z
@�t

@ QMi

@t

@vli
@

ds dtC

Z
@��

QMi

@vli
@


ds�
Z
@�t1

QMi

@vli
@


ds

(4.41)

where N�.v/ D 1

2 � ˛
.� C eijeij/

.2�˛/=2. Hence, for some C > 0,

Z T

t1

ˇ̌ˇ̌
vlt
ˇ̌ˇ̌2
L2.�t /

dt C ˇ̌ˇ̌
vl
ˇ̌ˇ̌2
W 2;2.�t /

� C

�ˇ̌ˇ̌
vl
ˇ̌ˇ̌2
W 2;2.�t1 /

C
Z t

t1

jjF jj2
L2.�t /

d� C
Z t

t1

ˇ̌ˇ̌
vlDvl

ˇ̌ˇ̌2
L2.�t /

d�

C
Z t

t1

ˇ̌̌
ˇ
ˇ̌̌
ˇ@Mi

@t

ˇ̌̌
ˇ
ˇ̌̌
ˇ
2

W�1=2;2.@�t /

d� C ˇ̌ˇ̌ QMi

ˇ̌ˇ̌2
W�1=2;2.@�t /

C ˇ̌ˇ̌ QMi

ˇ̌ˇ̌2
W�1=2;2.@�t1 /

!

� A.T /C C
ˇ̌ˇ̌
vl
ˇ̌ˇ̌2
W 2;2.�t1 /

C C

Z t

t1

ˇ̌ˇ̌
vlDvl

ˇ̌ˇ̌2
L2.�t /

d� (4.42)
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where

A.T / D C

0
@jjF jj2

L2..0;T /IL2.�// C
Z T

0

ˇ̌
ˇ̌
ˇ
ˇ̌
ˇ̌
ˇ
@ QMi

@t

ˇ̌
ˇ̌
ˇ
ˇ̌
ˇ̌
ˇ
W�1=2;2.@�t /

d�

C ˇ̌ˇ̌ QMi

ˇ̌ˇ̌2
W 1;2..0;T /IW�1=2;2.@�//

1
A : (4.43)

Next, we estimate the last term on the right-hand side of (4.42) as follows:

Z t

t1

ˇ̌
ˇ
ˇ̌
ˇvlDvl

ˇ̌
ˇ
ˇ̌
ˇ2
L2.�t /

d� � C

Z t

t1

ˇ̌
ˇ
ˇ̌
ˇvl
ˇ̌
ˇ
ˇ̌
ˇ2
W 2;2.�t /

ˇ̌
ˇ
ˇ̌
ˇDvl

ˇ̌
ˇ
ˇ̌
ˇ2
L2.�t /

d�

� �C

Z t

t1

ˇ̌
ˇ
ˇ̌
ˇvl
ˇ̌
ˇ
ˇ̌
ˇ4
W 2;2.�t /

d� C C

Z t

t1

ˇ̌
ˇ
ˇ̌
ˇvl
ˇ̌
ˇ
ˇ̌
ˇ2
W 2;2.�t /

ˇ̌
ˇ
ˇ̌
ˇvl
ˇ̌
ˇ
ˇ̌
ˇ2
L2.�t /

d�

where standard embedding results (see Appendix A) and the estimate

ˇ̌ˇ̌
Dvl

ˇ̌ˇ̌2
L2.�t /

� �
ˇ̌ˇ̌
vl
ˇ̌ˇ̌2
W 2;2.�t /

C C.�/
ˇ̌ˇ̌
vl
ˇ̌ˇ̌2
L2.�t /

(4.44)

were used. Hence, 8� > 0, we have

Z t

t1

ˇ̌ˇ̌
vlDvl

ˇ̌ˇ̌2
L2.�t /

d� � �

 
sup

t1�t�T
ˇ̌ˇ̌
vl
ˇ̌ˇ̌2
W 2;2.�t /

!Z t

t1

ˇ̌ˇ̌
vl
ˇ̌ˇ̌2
W 2;2.�t /

C C.�/

 
sup

t1�t�T
ˇ̌ˇ̌
vl
ˇ̌ˇ̌2
L2.�t /

!Z t

t1

ˇ̌ˇ̌
vl
ˇ̌ˇ̌2
W 2;2.�t /

d�: (4.45)

Using Lemma 4.2, (4.45) with a small enough �, and (4.42), we find that

Z T

0

ˇ̌ˇ̌
vlt
ˇ̌ˇ̌2
L2.�t /

dt C ˇ̌ˇ̌
vl
ˇ̌ˇ̌2
W 2;2.�t /

� 1

2
sup

t1�t�T
ˇ̌ˇ̌
vl
ˇ̌ˇ̌2
W 2;2.�t /

C A.T /C C
ˇ̌ˇ̌
vl
ˇ̌ˇ̌2
W 2;2.�t1 /

(4.46)

where A.T / is given by (4.43) and depends only on F , QMi , g. Taking the sup
t

in the

above inequality we then find that

Z T

t1

ˇ̌ˇ̌
vlt
ˇ̌ˇ̌2
L2.�t /

dt C sup
t1�t�T

ˇ̌ˇ̌
vl
ˇ̌ˇ̌2
W 2;2.�t /

� 2A.T /C C
ˇ̌ˇ̌
vl
ˇ̌ˇ̌2
W 2;2.�t1 /

: (4.47)
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After integration with respect to t1, over the interval .s; 2s/, we then have

Z T

2s

ˇ̌ˇ̌
vlt
ˇ̌ˇ̌2
L2.�t /

dt C sup
2s�t�T

ˇ̌ˇ̌
vl
ˇ̌ˇ̌2
W 2;2.�t /

� 2A.T /C C

s

Z T

0

ˇ̌ˇ̌
vl
ˇ̌ˇ̌2
W 2;2.�t /

dt:

(4.48)

Using Lemma 4.2, again, and letting l go to 1 completes the proof. ut
Next we show that if the additional regularity of the data extends to t D 0, so

does the regularity of the solution. The content of this second regularity result is
expressed by the following:

Theorem 4.3. Assume that

(i) Qv is in L1..0;1/IW 2;2.�// \W �1;2..0;1/IW 4;2.�//,
(ii) Qvt is in L2loc.Œ0;1/IL2.�//,

(iii) F is in L2loc.Œ0;1/IL2.�//,
(iv) QMi is in W 1;2

loc .Œ0;1/IW �1=2;2.�//,
(v) v0 is inH and v0 � Qv.x; 0/ is in W 1;2

0 .�/.

Then problem (4.1)–(4.5) has a weak solution v in the sense of (4.13) which
satisfies

(i) v 2 W 1;2
loc .Œ0;1/IL2.�//,

(ii) v 2 L1
loc.Œ0;1/IH /.

Proof. Set t1 D 0 in the proof of Theorem 4.2. ut
Finally, we can relate the solution of the variational problem to that of the

boundary-value problem. Specifically, we need to account for the fact that the test
functions used are divergence free.

Theorem 4.4. Under the assumptions of Theorem 4.3, the weak solution v of
problem (4.1)–(4.5) that was constructed in Theorem 4.1 satisfies

(i) v 2 W 1;2
loc .Œ0;1/IH 0/,

(ii) there exists p.x; t/ 2 L2loc..0;1/IW �1;2.�// such that .v; p/ is a solution of
(4.1)–(4.5).

Proof. These results are direct consequences of (4.41), Theorems 4.1 and 4.2, and
results in [Te1]. ut

4.2.4 Uniqueness of the Weak Solution

We establish in this section the uniqueness of the weak solution constructed
in Sect. 4.2.2; specifically, we will prove
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Theorem 4.5. Under the assumptions in Theorem 4.3, the weak solution of the
problem (4.1)–(4.5) is unique.

Proof. Assume that we have two distinct weak solutions v, u of our problem and let
w D v � u. Taking the difference of the equations satisfied by v and u, multiplying
the resulting equation by w and integrating by parts over�t we find that

Z
�t

@w
@t

� wdx C
Z
�t

.�.v/eij.v/� �.u/eij.u//..eij/.v/� .eij/.u// dx

C 2�1

Z
�t

@eij.w/
@xk

@eij.w/
@xk

dx D
Z
�t

�
vj
@vi

@xj
� uj

@ui
@xj

�
wi dx: (4.49)

From the monotonicity of � it follows that the second term on the left-hand side of
(4.49) is positive and can be dropped. A simple calculation shows that

Z
�t

�
vj
@vi

@xj
� uj

@ui
@xj

�
wi dx D

Z
�t

wj
@wi
@xj

vi dx: (4.50)

However, for some C > 0, and any � > 0,

ˇ̌
ˇ̌Z
�t

wj
@wi
@xj

vi dx

ˇ̌
ˇ̌ � jjvjjL1

 Z
�t

�
@wi
@xj

�2
dx

!1=2 �Z
�t

.wj /
2 dx

�1=2

� �C jjvjj2
W 2;2 jjwjjW 2;2 C 1

�
jjwjjL2

(4.51)

so choosing � small enough it then follows from (4.49), and the Korn-type inequality
of Lemma B.2, that

d

dt
jjwjjL2.�t / � jjwjjL2.�t / :

As w D 0 at t D 0, it now follows that w.x; t/ D 0, 8t > 0. ut

4.2.5 Stability of the Solution

Finally, in this last subsection, we will prove some estimates which establish the
asymptotic stability of the solution v of (4.1)–(4.5) under an appropriate set of
conditions on F , g, M , and v0. We begin with

Lemma 4.4. There exists, 8ı > 0, a function G ı such that

(i) G ı D g on @� 
 .0;1/,
(ii) jb.v;G ı; v/j � ı jjvjj2

W
1;2
0 .�/

, 8v 2 W 1;2
0 .�/,

(iii) divG ı D 0 and jjG ıjjW 2;2.�/ � C jjgjjW 2;2.�/, for some C > 0.
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Proof. The lemma is a direct consequence of the results of Hopf in [Ho1]. ut
Now, let v be the unique solution of problem (4.1)–(4.5) and set wı D v � G ı .

Taking w D  in (4.13), and for the sake of convenience, dropping the ı subscript
on G ı, we find that
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wi dx C 2�1

Z
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@xk
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@xk
dx D

Z
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Z
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Fiwi dx �
Z
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wi dx C 2�1

Z
�t
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@xk

@eij.w/

@xk
dx C

Z
@�t

QMi

@wi
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ds:

Hence, for some c > 0,

1

2

d

dt

Z
�t

jjwjj2 dx C 2�1

Z
�t

@eij.w/
@xk

@eij.w/
@xk

dx C
Z
�t

�.v/eij.w/eij.w/ dx

� .c jjG jjW 1;2.�t /
C jjF jjW �1;2.�t /

C jjG t jjW 1;2.�t /
/ jjwjjW 1;2.�t /

C .c jjG jjW 2;2.�t /
C ˇ̌ˇ̌ QMi

ˇ̌ˇ̌
W�1=2;2.@�t /

/ jjwjjW 2;2.�t /
C jb.v; v;w/j:

(4.52)

Since b.v; v;w/ D b.w;G ;w/C b.G ;G ;w/ and GiGj 2 L2.�t /, we have that

jb.v; v;w/j � jb.w;G ;w/j C jb.G ;G ;w/j
� ı jjvjj2

W
1;2
0 .�/

C c
ˇ̌ˇ̌
GiGj

ˇ̌ˇ̌
L2.�/

jjvjj
W
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(4.53)

where Lemma 4.4 has been used. It now follows from (4.52) that
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Z
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Z
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W�1=2;2.@�t /

C c
ˇ̌ˇ̌
GiGj
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/2 C 2ı jjwjj2
W 2;2.�t /

:

(4.54)

Using Lemma 4.4, and dropping the positive term
Z
�t

�.v/eij.w/eij.w/dx on the

left-hand side of (5.54), we find that, for ı small enough,

d

dt
jjwjj2

L2.�t /
C 	

2
jjwjj2

W 2;2.�t /
� cB.t/ (4.55)
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where 	 > 0 and

B.t/ D
�
jjF jjW �1;2.�t /

C jjgt jjW 1;2.�t /
C jjgjjW 2;2.�t /

C ˇ̌ˇ̌ QMi

ˇ̌ˇ̌
W�1=2;2.@�t /

�2
:

(4.56)

As an immediate consequence of (4.55) we have the following:

Theorem 4.6. Assume that B.t/ 2 L1.0;1/; then the solution v of problem
(4.1)–(4.5) is in L1..0;1/IL2.�//; furthermore, if B.t/ decays exponentially to
0, then jjvjjL2.�/ also decays exponentially to 0.

Remarks. In the next section we will consider the existence of weak and measure-
valued solutions for incompressible bipolar fluids, with �1 D 0, in the presence
of periodic boundary conditions. For the bipolar problem, posed in the domain
� D Œ0; L�n, n D 2; 3, L > 0, and satisfying space-periodic conditions, the
appropriate conditions are as follows: Let ej be the unit vector in the j th coordinate
direction. Then, if �1 D 0,

v.0; t/ D v.Lej ; t/; t � 0;Z
�

v.x; t/ dx D 0; t � 0
(4.57a)

while, for�1 > 0, we require that (4.57a) be satisfied and, in addition, for any vector
� in the tangent space to @�

�ijk.v.0; t//
j 
k�i D �ijk.v.Lej ; t//
j 
k�i : (4.57b)

4.3 Weak and Measure-Valued Solutions for Incompressible
Bipolar Fluids with �1 D 0

4.3.1 Introduction

In this section we consider the existence problem for the incompressible, bipolar
viscous fluid with higher-order viscosity�1 D 0; for ease of exposition, we focus on
the space-periodic problem in a domain � D Œ0; L�n, L > 0, n D 2; 3. Our results
are obtained by examining the limits of solutions of the corresponding bipolar fluid
problems, with�1 > 0, as�1 ! 0C. In lieu of tying the analysis to the specific form
(1.90) of the nonlinear viscosity �.jej/, and the resultant ansatz that the lower-order
residual stress tensor �v0 satisfy

.�v0/ij D 2�.jej/eij D 2�0.� C jej2/p�2eij;
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we broaden the discussion to include those �v0 which have continuous components
.�v0/ij that satisfy the polynomial growth condition

ˇ̌
.�v0/ij.e/

ˇ̌ � C.1C jej/p�1

for someC > 0, with 1 < p < 1 in dimension n D 2, and 1 < p < 6 in dimension
n D 3. A lower bound of the form .�v0/ijeij � c1 jejp�1 is also needed in order
to establish the existence of measure-valued solutions; such solutions are defined
in Sect. 4.3.2; the existence of such Young measure-valued solutions is established
in this section for p > 1 if n D 2 and for p > 6=5 if n D 3. The existence
of weak solutions is then proven for p > 3=2 if n D 2 and for p > 9=5 when
n D 3. Finally, the existence of unique regular weak solutions is established, in
space dimension n D 2 for p � 2, and in space dimension n D 3 for p � 11=5

(see, also, [BdV1]).

4.3.2 Young Measure-Valued Solutions

Measure-valued solutions are a generalization of the concept of weak solutions.
Measure-valued solutions rely on the existence of solutions associated with some
probability measure; the particular case where the associated probability measure is
the Dirac measure yields the classical concept of weak solution (see, e.g., [Ta1]).

We will begin by giving a brief heuristic introduction to the concept of Young
measures. Let � � R

n, n � 1, be an open bounded domain with smooth boundary
(or, all of Rn). Suppose we have a sequence of functions un.x/ which converge in
the weak  topology of L1.�/ to a function u 2 L1.�/, and let f be a smooth
bounded function defined on R

1 (say, f is C1 and with compact support, for
example). It is well-known that vn D f .un/ will not necessarily converge to f .u/
in any sense. However, it turns out that there is a family of probability measures

.x; /; x 2 �,  2 R

1 such that:

f .un/
*
* hf ./I 
.x; /i

for a.e. x 2 �, where h ; i denotes the duality between the space of continuous
functions C.R1/ and the space of measures. We will clarify this, below, using more
precise statements.

We now introduce the probability measure of L.C. Young [You] in the form
proposed by J. Ball [BaJ]. To this end, we consider the space C0.Rn

2

/ of continuous
functions f from R

n2 ! R1 which satisfy lim
j
j!0

f .
/ D 0. By the Riesz

representation theorem we have that .C0.R
n2//� D M.Rn

2

/, M.Rn
2

/ being the
space of Radon measures. Now, consider the Bochner space L1.QT IC0.Rn2//
whereQT D � 
 Œ0; T /. It is proven in [Ed] that

.L1.QT IC0.Rn2///� D L1
w .QT IM.Rn2//
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where g 2 L1
w .QT IM.Rn2// means that 8f 2 L1.QT IC0.Rn2// the function

hf .x; t/; g.x; t/i is measurable in QT and essentially bounded, with h ; i denoting
the duality between C0.Rn

2

/ and M.Rn
2

/. We have, in fact, the following:

Lemma 4.5. Let G 2 .L1.QT IC0.Rn2///� be a bounded, positive, linear function.
Then there exists a unique g 2 L1

w .QT IM.Rn2//, with g.x; t/ a positive Radon

measure, such that 8f 2 L1.QT IC0.Rn2//,

hG; f i D
Z
QT

hf .x; t/; g.x; t/i dx dt

and

jjGjj D ess sup
QT

jjg.x; t/jj
M.Rn

2
/
:

We now return to the weak solution of the initial-boundary value problem for the
incompressible bipolar fluid, i.e., to the weak solution of (4.1)–(4.5). In (4.1)–(4.5)
we will take � D 1 and, without loss of generality, set g D 0, Mi D 0.
For the corresponding problem for the non-Newtonian fluid, with �1 D 0, the
condition in (4.3) does not, of course, apply. Moreover, it is important to note that in
[BBN2,BBN3], existence of a weak solution for the incompressible, bipolar initial-
boundary value problem was established for a larger class of nonlinear viscosities
than that which is specified by, say, (2.3), i.e.,

�.jej/ D 2�0.� C jej2/ p�2
2 (4.58a)

for which the lower-order part of the fluid stress tensor is given by

�v0 D �.jej/e: (4.58b)

In fact, it was assumed in [BBN2,BBN3], that �v0 has continuous components .�v0/ij
that satisfy the polynomial growth condition

ˇ̌
.�v0/ij.e/

ˇ̌ � C.1C jej/p�1 (4.59)

for some C > 0, with 1 < p < 1, in space dimension n D 2, and 1 < p < 6 in
space dimension n D 3. Relative to (4.58b) it is certainly true that

.�v0/ij.e/eij � 0: (4.60)

However, in considering measure-valued solutions, in this subsection, we will
require the stronger condition

.�v0/ij.e/eij � c1 jejp (4.61)
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for some c1 > 0. To further simplify the computations which follow we assume the
existence of a potential function �.e/ for which

.�v0/ij D @�

@eij
: (4.62)

We assume that �.�/ is once continuously differentiable in Rn
2

, � > 0, �.0/ D 0

and, for some C > 0,

�.e/ � C.1C jej/p: (4.63)

Clearly, � exists if we use the constitutive hypothesis (4.58a) and, in fact,

�.e/ D �0

Z eijeij

0

.� C s/
p�2
2 ds:

The structure of the potential (4.63) will figure prominently in our work in Chaps. 5
and 6.

We intend to show that the non-Newtonian (p > 1), monopolar (�1 D 0) model
has a measure-valued solution. We will focus here on the case of the periodic
boundary conditions introduced in the remarks concluding Sect. 4.2. To obtain
solutions for the case �1 D 0, we intend to first set �1 D �N1 , prove the existence
of a corresponding solution vN , and by an appropriate limit procedure, show that
we recover a function v which is a solution to the problem with �1 D 0. For the
remainder of this section we will assume that

� D Œ0; L�n; L > 0

and denote by L2per.�/, W
k;p
per .�/ the indicated spaces of L-periodic functions

in any space variable. Now, let vN be the unique weak solution to the problem
consisting of (4.1), (4.2), (4.5) and the periodic boundary conditions

vN .0; t/ D vN .Lej ; t/; t � 0; (4.64a)

�ijk.v
N .0; t//
j 
k�i D �ijk.v

N .L; t//
j 
k�i ; t � 0; (4.64b)Z
�

v.x; t/ dx D 0; t � 0 (4.64c)

where ej is the unit vector in the j th coordinate direction, and � is any vector
in the tangent space to @�. Even though the proof of existence and uniqueness in
Sect. 4.2 was carried out for Dirichlet-type boundary conditions, the proof for the
space-periodic problem is very similar and we will not repeat it here. We will use
the following notation in this section:

V D fv 2 W 1;p
per .�/ j div v D 0 and v satisfies (4.64a,c)g:
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We note that for everyN > 0, vN .x; t/ is a weak solution of (4.1), (4.2), (4.5), and
(4.64a,b,c) if

vN .x; t/ 2 L2..0; T /IW 2;2
per.�// \L2..0; T /IV /

and 8w 2 V \W 2;2
per.�/, a.e. on .0; T /, we have

Z
�

PvNi wi dx C
Z
�

vNj
@vNi
@xj

wi dx

C 1

�

Z
�

.�v0 /ij.v
N /eij.w/ dx C 2�N1

�

Z
�

@eij.v
N /

@xk

@eij.w/
@xk

dx

�
Z
�

Fiwi dx D 0: (4.65)

We will now obtain some estimates for vN , in the process making explicit the
dependence of vN on �N1 . The first two estimates are fairly standard and so we will
only sketch the proofs.

Lemma 4.6. There exists c1; c2 > 0, independent of �N1 , such that

Z
�t

ˇ̌ˇ̌
vN
ˇ̌ˇ̌2
dx C c1

Z t

0

ˇ̌ˇ̌
vN
ˇ̌ˇ̌p
W 1;p.�/

d� C �N1

Z t

0

ˇ̌ˇ̌
vN
ˇ̌ˇ̌2
W 2;2.�/

d�

�
Z
�0

ˇ̌ˇ̌
vN
ˇ̌ˇ̌2
dx C c2

Z t

0

jjF jj2
L2.�/

d�: (4.66)

Proof. This is obtained by setting w D vN in (4.65), integrating by parts in space,
and finally integrating in time over .0; t/. ut
Lemma 4.7. There exists c > 0, independent of N , such that the weak solution vN

satisfies

ˇ̌̌
ˇ
ˇ̌̌
ˇ@v

N

@t

ˇ̌̌
ˇ
ˇ̌̌
ˇ
L2..0;T /IB0/

� c (4.67)

where B 0 is the dual of B D V \W 3;2
per.�/.

Proof. From (4.65) we have

Z
�

@vNi
@t

wi dx D �
Z
�

vNj
@vNi
@xj

wi dx C
Z
�

.�v0 /ij.v
N /eij.w/ dx

C �1

Z
�

@eij.v
N /

@xk
� @eij.w/
@xk

dx �
Z
�

Fi wi dx: (4.68)
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We start by noticing that, by virtue of Sobolev embeddings, there exists a positive
constant c such that

sup
x2�

ˇ̌̌
ˇ
ˇ̌̌
ˇ @w
@xj

.x; t/

ˇ̌̌
ˇ
ˇ̌̌
ˇ � c jjwjjW 3;2.�t /

:

Hence

ˇ̌
ˇ̌Z
�

vNj
@vNi
@xj

wi dx

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌Z vj vi

@wi
@xj

dx

ˇ̌
ˇ̌

� sup
x

ˇ̌̌
ˇ@wi
@xj

.x; t/

ˇ̌̌
ˇ
Z
�

jjvjj2 dx

� jjwjjW 3;2.�t /

Z
�

jjvjj2 dx: (4.69)

Also,

ˇ̌̌
ˇ
Z
�t

.�v0 /ij.v
N /eij.w/ dx

ˇ̌̌
ˇ � sup

x

ˇ̌̌
ˇ@wi
@xj

.x; t/

ˇ̌̌
ˇ
Z
�t

.�v0 /ij.v
N / dx

� cjjw.x; t/jjW 3;2
per.�t /

Z
�t

.�v0 /.v
N / dx

� cjjw.x; t/jjW 3;2
per.�t /

Z
�t

jjrvjjp�1 dx

� cjjw.x; t/jjW 3;2
per.�t /

�Z
�t

jjrvjjp dx
� p�1

p

: (4.70)

It then follows from (4.68), (4.69) and (4.70), after integration in time over .0; t/,
that:

ˇ̌
ˇ̌“ @vNi

@t
wi dx

ˇ̌
ˇ̌ � c jjwjjL2..0;t/IW 3;2

per.�//

 Z t

0

�Z
�

jjvjj2 dx
�2

dt

!1=2

C c jjwjjLp..0;t/IW 3;2
per.�//

Z t

0

Z ˇ̌ˇ̌rvN ˇ̌ˇ̌p dx dt

C �1 jjwjjL2..0;t/IW 2;2.�//

ˇ̌ˇ̌
vN
ˇ̌ˇ̌
L2..0;t/IW 2;2.�//

C c jjF jjL2..0;t/IL2.�// jjwjjL2..0;t/IL2.�// :
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Therefore, there exists c > 0 such that

ˇ̌
ˇ̌
ˇ̌
ˇ̌“ @vNi

@t
wi dx dt

ˇ̌
ˇ̌
ˇ̌
ˇ̌ � c

h
jjwjjL2..0;t/IW 3;2.�// C jjwjjLp..0;t/IW 3;2.�//

i

� c jjwjjLs..0;t/IW 3;2.�//

where s D max.2; p/. Thus,

ˇ̌
ˇ̌
ˇ̌
ˇ̌@vNi
@t

ˇ̌
ˇ̌
ˇ̌
ˇ̌
Ls

0
..0;T /IB0/

is bounded independently of �N1 ,

where s0 is the conjugate of s D max.2; p/. ut
For what follows in this subsection we will need two lemmas from [BBN3],

namely,

Lemma 4.8. Let B2 be a Banach space and B i , i D 0; 1, separable, reflexive
Banach spaces. Suppose B0 ,!,! B2 ,! B1 (where ,! denotes continuous
embedding and ,!,! compact embedding). Let

W D
�
v 2 Lp0 .I IB0/ j dv

dt
2 Lp1.I IB1/

	
(4.71)

with I � R1 a bounded interval, and where pi , i D 0; 1 satisfies 1 < pi < 1.
ThenW ,!,! Lp0 .I IB2/.

Proof. See [Lio1], Lemma 5.2. ut
Lemma 4.9. Suppose that, for some c > 0,

8̂
<
:̂

ˇ̌ˇ̌
vN
ˇ̌ˇ̌
L1.I IL2.�// � c < 1;

ˇ̌ˇ̌
vN
ˇ̌ˇ̌
Lp1 .I IW 1;p1 .�//

� c < 1; p1 >
2n

nC 2

(4.72a)

and
ˇ̌
ˇ̌
ˇ̌
ˇ̌ d
dt
vN
ˇ̌
ˇ̌
ˇ̌
ˇ̌
Ls

0
.I;B0/

� c (4.72b)

where s0 D min

�
2;

p

p � 1

	
. If vN * v in L2.QT /, then vN ! v in L2.QT /, i.e.,

if vN converges weakly to v in L2.QT / it also converges strongly in L2.QT /.

Proof. We will use Lemma 4.8 with B0 D W 1;p1 .�/, B1 D B 0 andB2 D L2.�/.
It then follows that vN converges strongly in Lp1.0; T IL2.�//. Here we made use

of the fact that for p1 � 2n

nC 2
,W 1;p1 ,!,! L2.�/. If p1 > 2 then it immediately

follows that vN converges strongly in L2.0; T IL2.�//. If p1 < 2 then we use
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the convergence of vN in Lp1.0; T IL2.�//, the estimate
ˇ̌ˇ̌
vN
ˇ̌ˇ̌
L1.0;T;L2.�//

� c

together, with the inequality

Z
QT

ˇ̌
vN � vˇ̌2 dx dt �

Z T

0

�Z
�

ˇ̌
vN � vˇ̌2 dx

�a
�
�Z

�

ˇ̌
vN � vˇ̌2 dx

�p1=2
dt

where a D 1 � p1=2, to deduce that vN does converge strongly in
L2.0; T;L2.�//. ut

For our purposes here, we will suppose that

Fi 2 Lp0
1 ..0; T /IL2.�//; 1

p1
C 1

p0
1

D 1: (4.73)

It follows from (4.61) and (4.13) with Mi D 0, that if we denote by vN the unique
weak solution of the initial-boundary value problem corresponding to �1 D �N1 ,

the conditions of Lemma 4.9 are satisfied1; we can, therefore, suppose that vN
*
* v

in L1.I IL2.�//, as well as vN ! v in Lp1..0; T /IW 1;p1 .�//.
Let ‰.x; t;
/ 2 L1.QT IC0.Rn2//, so that a.e., for .x; t/ 2 QT , we have that

‰.x; t; �/ 2 C0.Rn2/. We now set

Z
QT

˝
‰.x; t; �/; 
Nx;t .�/

˛
dx dt D

Z
QT

‰.x; t;rvN .x; t// dx dt: (4.74)

This serves to define the measures 
N 2 L1
w .QT IM.Rn2// and we have a.e., in

QT , that


Nx;t � 0;
ˇ̌ˇ̌

Nx;t

ˇ̌ˇ̌
M.Rn

2
/

D 1

and
ˇ̌
ˇ̌Z
QT

‰.x; t;rvN .x; t// dx dt

ˇ̌
ˇ̌ � jj‰jj

L1.QT IC0.Rn2 //:

Therefore, we can suppose that for 
N 2 L1
w .QT IM.Rn2// we have 
N

*
*


(
N a subsequence of the original sequence, if necessary) as a consequence of the
separability of the space L1.QT IC0.Rn2//. Hence, by Lemma 4.5,


x;t � 0; jj
x;t jjM.Rn2 / � 1: (4.75)

1The sequence f�N1 g is chosen so that �N1 ! 0C, as N ! 1.
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In fact, the following is true:

Theorem 4.7. The measure 
x;t satisfies jj
x;t jjM.Rn2 / D 1, a.e. in QT .

Proof. We sketch the proof (which may be found in [BaJ]). Set

#.
/ D

8̂
<̂
ˆ̂:
1; j
j � k;

1C k � j
j; k � j
j � 1C k;

0; j
j � 1C k:

Then, for any measurable E � QT ,

lim
N!1

1

measE

Z Z
E

#k.rvN .x; t// dx dt D 1

measE

Z Z
E

˝
#k; 
x;t

˛
dx dt

� 1

measE

Z Z
E

jj
x;t jjM.Rn2 / dx dt:

(4.76)

On the other hand, for some c0 > 0,

1

measE

Z
E

�
1 � ˝

#k; 
Nx;t
˛�
dx dt

� 1

measE



meas

˚
.x; t/ 2 E j ˇ̌ˇ̌rvN .x; t/ˇ̌ˇ̌ � k

��

� c0

measE
� k�1ŒmeasE�1=p

0
1 : (4.77)

Therefore,

1 � k�1ŒmeasE�
1

p0
1

�1 � c0 � 1

measE

Z
E

˝
#k; 
Nx;t

˛
dx dt (4.78)

so that

1 � k�1ŒmeasE�
1

p0
1

�1 � c0 � 1

measE

Z
E

˝
#k; 
x;t

˛
dx dt

� 1

measE

Z
E

jj
x;t jjM.Rn2 / dx dt:

(4.79)

Letting k ! 1 yields the required result. ut
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We now state:

Theorem 4.8. Let h.�/ 2 C.Rn2/ be such that jh.
/j � C.1C j
j/p�1 and choose
 2 Lq.QT / with q � p1=.p � 1/. Then the duality

Z
QT

h‰.x; t; �/; 
x;t .�/idx dt

can be continuously extended to ‰.x; t;
/ D  .x; t/h.
/ as the limit of the
functions  .x; t/bm.
/, where bm 2 C0.R

n2/ satisfies jbm.
/j � C.1 C j
j/p�1

and bm.�/ ! h.�/, locally in R
n2 , as m ! 1.

Proof. We have, for some C > 0,

jjhbm.�/; 
x;t ijj
L

p1
p�1 .QT /

� C: (4.80)

Let 1 < p2 <
p1

p � 1 ; then, we claim that 9� 2 Lp2.QT / such that

hbm.�/; 
x;t .�/i ! �.x; t/, in Lp2.QT /: (4.81)

In order to verify (4.81) we compute that

Z
QT

jhbm1.�/; 
x;t .�/i � hbm2.�/; 
x;t .�/ijp2 dx dt

D lim
N!1

Z
QT

ˇ̌
bm1.rvN .x; t// � bm2.rvN .x; t//

ˇ̌p2
dx dt

D lim
N!1

Z
QT;k;N

ˇ̌
bm1.rvN .x; t// � bm2.rvN .x; t//

ˇ̌p2
dx dt

C lim
N!1

Z
QT =QT;k;N

ˇ̌
bm1.rvN .x; t// � bm2.rvN .x; t//

ˇ̌p2
dx dt

where

QT;k;N D f.x; t/ 2 QT j ˇ̌ˇ̌rvN .x; t/ˇ̌ˇ̌ � kg: (4.82)

However,

measQT;k;N � ck�1 (4.83)
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so, by virtue of the growth assumption for jbm.�/j,
Z
QT;k;N

ˇ̌
bm1.rvN .x; t// � bm2.rvN .x; t//

ˇ̌
dx dt

� C

Z
QT;k;N

�
1C ˇ̌rvN .x; t/ˇ̌�.p�1/p2

dx dt

� C

 Z
QT;k;N

�
1C ˇ̌rvN ˇ̌�p1 dx dt

! .p�1/p2
p1

� ŒmeasQT;k;N �
1�.p�1/p2

p�1 :

(4.84)
Therefore, for any � > 0 we may choose k so large that

Z
QT;k;N

ˇ̌
bm1.rvN .x; t//� bm2.rvN .x; t//

ˇ̌
dx dt � �

2
: (4.85)

Fixing k so large that (4.85) holds, we now have for m1;m2 sufficiently large, say,
m1;m2 � m,

lim
N!1

Z
QT =QT;k;N

ˇ̌
bm1.rvN .x; t// � bm2.rvN .x; t//

ˇ̌p2
dx dt � �

2
(4.86)

and the desired result follows. ut
Once again let vN be the unique weak solution to the space-periodic problem

for the incompressible bipolar fluid corresponding to the choice of the higher-order
viscosity �1 D �N1 . As above we take 
x;t to be the Young measure constructed
from the sequence of solutions fvN g as N ! 1 (in which case, of course, we have
�N1 ! 0C). Then the results of this subsection easily imply the following theorem
on the existence of measure-valued solutions:

Theorem 4.9. Let v denote the weak limit of the sequence fvN g of unique weak
solutions to the space-periodic problem (4.1), (4.2), (4.5), and (4.64a,b,c), with
� D 1, for the incompressible bipolar fluid. Then, provided p > 1, when n D 2, and
p > 6=5, when n D 3, v satisfies (4.1), (4.2), (4.5), and (4.64a,c), with �1 D 0,
in the following sense: 8� 2 V \ W 2;2

per.�/, a.e. on .0; T /, � D Œ0; L�n, L > 0,
n D 2; 3, where

V D f� 2 W 1;p
per .�/ j r � � D 0 and � satisfies (4.64a,c)g

Z
QT

�
�vi @�i

@t
� vivj @�i

@xj
C eij.�/

Z
Rn

2
.�v0/ij.eij.
// d
x;t .
/ � Fi�i


dx dt D 0:

(4.87)
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4.3.3 Young Measures Are Dirac and the Weak Solutions
are Regular for p � 2, n D 2

In order to prove the basic results in this and succeeding subsections, we need to
establish some additional estimates for the velocity that are independent of �1 > 0.
These estimates will allow us to prove regularity results for the solution of some
problems associated with non-Newtonian monopolar fluids and are the sharpest of
their kind that are known. For this purpose we will introduce and use a specific test
function. We recall that for a space-periodic function with zero average we can use
the definition for theW 1;2.�/ norm given by

jjvjj21;2 D
Z
�

jrvj2 dx

which is easily seen to follow from Friedrich’s inequality (see Appendix A).
We need to treat separately the various cases depending on the space dimension
n and the parameter p. We begin with the case in which p � 2. By virtue of
the embedding W 2;2.�/ ,! L1.�/ and the standard (interpolation) inequality
(e.g., [Lio1]):

jjvjj2
W 1;2.�/

� ı jjvjj2
W 2;2.�/

C .ı/ jjvjj2
L2.�/

for any ı > 0, and some .ı/ > 0, we have for some c > 0,

Z
QT

jjvjj2 jrvj2 dx dt � c

Z T

0

jjvjj2
W 2;2.�t /

�
ı

Z
Qt

jjvjj2
W 2;2.�t /

C .ı/ jjvjj2
L2.�t /


dt:

The standard method of differences then yields for the weak solution v and positive
constants c, c1, and c2, dependent on � ,

sup
.0;T /

jjvjj1;2 � c.�/; (4.88a)

Z T

0

Z
�

.1C jej/p�2eij

�
@v

@xl

�
eij

�
@v

@xl

�
dx dt � c1.�/; (4.88b)

Z T

0

Z
�

X
j˛jD2

�
D˛ @v

@xl
�D˛ @v

@xl

�
dx dt � c2.�/ (4.88c)

where jj�jj1;2 	 jj�jjW 1;2.�/ (and we will continue to employ this more compact
notation in the sequel). Our goal, however, is to obtain some estimates which are
independent of � 	 2�1=�.

For the sake of simplicity of notation, we assume that the initial function, as well
as the forcing term F , have zero spatial average. From this it easily follows that the
solution also has zero spatial average and, therefore, the Poincaré inquality is valid
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(see Appendix A); these results can be easily extended to the general case. We will
also assume that

PFi 2 L2..0; T /IL2per.�//: (4.89)

Employing, once again, the difference method, or directly from the Galerkin
approximations, one can then prove that, for some positive c, c3, c4,

sup
.0;T /

jj Pvjj0;2 � c.�/; (4.90a)

Z T

0

Z
�

.1C jej/p�2eij. Pv/eij. Pv/ dx dt � c3.�/; (4.90b)

Z T

0

Z
�

X
j˛jD2

jD˛ Pvj2 dx dt � c4.�/: (4.90c)

Remarks. In the above regularity results we made use of the smoothness of the
decomposition result, Corollary 3.7 of [GRa]. In [GRa] the result is stated for
smooth (C2) bounded domains. However this result extends easily to the case under
consideration here, i.e., the space-periodic case.

Now, let us take  � 0 and denote, for any fixed subscript l , v0 D @

@xl
v. As in

Sect. 4.3.2, we again set

V D fv 2 W 1;p
per .�/ j r � v D 0 and v satisfies (4.64a,c)g

and make use of the following definition of a weak solution v of the problem (4.1),
(4.2), (4.5), (4.64a,b,c) which is embodied in (4.65):

Definition 4.1. A weak solution of the problem (4.1), (4.2), (4.5), (4.64a,b,c) is a
function

v 2 L2..0; T /IW 2;2
per.�// \ L2..0; T /IV /

which satisfies

Z
�

Pviwi dx C
Z
�

vj
@vi

@xj
wi dx C 1

�

Z
�

.�v0/ij.v/eij.w/ dx

C �

Z
�

@eij

@xk
.v/

@eij

@xk
.w/ dx �

Z
�

Fiwi dx D 0; (4.91)

8w 2 V \W 2;2
per.�/, where � D 2�1=�.
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In (4.91) we now take as the test function w 2 V \W 2;2
per.�/ with components

wi D v00
i

.1C jvj21;2/

and obtain, for  ¤ 1 and almost all t :

1

2.1� /
d

dt
.1C jjvjj21;2/1� C

Z
�

vj
@vi

@xj

v00
i

.1C jjvjj21;2/
dx

C ˇ2

�

Z
�

.1C jej/p�2eij.v
0/eij.v

0/ � .1C jjvjj21;2/� dx

C �.1C jjvjj21;2/�
Z
�

@eij.v
0/

@xk

@eij.v
0/

@xk
dx

� .1C jjvjj21;2/�
Z
�

Fiv
00
i dx � 0: (4.92)

For the case in which  D 1, the first term in (4.92) must be replaced by
d

dt
log

.1Cjjvjj21;2/. Now, via integration by parts, and our assumption of spatial periodicity,

�
Z
�

vj
@vi

@xj
v00
i dx D

Z
�

v0
j

@vi

@xj
v0
i dx

thus,

ˇ̌̌
ˇ̌
Z
�

vj
@vi

@xj

v00
i

.1C jjvjj21;2/
dx

ˇ̌̌
ˇ̌ � c.1C jjvjj21;2/� jjvjj31;3 : (4.93)

Also, using that p � 2, after summing over l we have

.1C jjvjj21;2/�
ˇ̌̌
ˇ
Z
�
biv

00
i dx

ˇ̌̌
ˇ � c

�Z
�
.1C jej/p�2eij.v

0/eij.v
0/ � .1C jjvjj21;2/� dx

�1=2



�
jjF jj20;2 .1C jjvjj21;2/�

�1=2
: (4.94)

After integration in time it then follows from (4.92) that

1

2.1� /.1C jjv.T /jj21;2/1�

C 1

2�

Z T

0

Z
�

.1C jej/p�2eij.v
0/eij.v

0/ � .1C jjvjj21;2/� dx dt
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C �

Z T

0

.1C jjvjj21;2/�
Z
�

@eij.v
0/

@xk

@eij.v
0/

@xk
dx dt:

� 1

2.1� /.1Cjjv.0/jj21;2/1�Cc
Z T

0

jjF jj20;2 dtCc
Z T

0

.1Cjjvjj21;2/� jjvjj31;3 dt:

(4.95)
Thus, we want to estimate the integral:

Z T

0

.1C jjvjj21;2/� jjvjj31;3 dt:

We will make repeated use of the usual interpolation estimate (see [Tr] p. 186, for
example)

jjvjjs;r � c jjvjj�s1;r1 � jjvjj1��s2;r2
(4.96)

where
1

r
D �

r1
C 1 � �

r2
, s D �s1C.1��/s2 and � 2 Œ0; 1�, as well as of the general

embedding estimate (see [Tr] p. 328)

jjvjjs;r � c jjvjjs1;r1

where
1

r
D 1

r1
� s1 � s

n
. Now by virtue of the embeddingW 4=3;2.�/ ,! W 1;3.�/,

for n D 2, and the interpolation estimate

jjvjj4=3;2 � c jjvjj2=31;2 � jjvjj1=32;2
we have

jjvjj1;3 � c jjvjj2=31;2 � jjvjj1=32;2 : (4.97)

Thus, it follows that

Z T

0

jjvjj31;3.1C jjvjj21;2/� dt

� c

Z T

0

.1C jjvjj21;2/1� jjvjj2;2 dt

� c

Z T

0

.1C jjvjj21;2/1�=2 jjvjj2;2 .1C jjvjj21;2/�=2 dt

� c

�Z T

0

.1C jjvjj21;2/2�dt

�1=2 �Z T

0

jjvjj22;2 .1C jjvjj21;2/� dt

�1=2
:

(4.98)
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Employing (4.98) in (4.95), with  D 1, we obtain

log.1C jjv.t/jj21;2/C Qc1
Z T

0

jjv.t/jj22;2.1C jjv.t/jj21;2/�1 dt � Qc2 (4.99)

for some positive constants Qc1; Qc2; we have, therefore, established the following: Let
QV D fv 2 W 2;2

per.�/, � D Œ0; L�2 j r � v D 0g and assume that �v0 satisfies a strong
monotonicity condition of the form

@.�v0/ij

@ekl
�ij�kl � ˇv.1C jejp�2/jj�jj2; �ij D �ji (4.100)

for some ˇv > 0; then

Lemma 4.10. The unique weak solution for the incompressible bipolar fluid2 v 2
L1..0; T /I QV /, in the case where p � 2, and satisfies, for any � > 0,

8̂
<̂
ˆ̂:

sup
.0;T /

jjv.t/jj1;2 � Nc;
Z T

0

jjv.t/jj22;2 dt � Nc
(4.101)

where Nc, 0 < Nc < 1, is independent of � .

We are now in a position to prove the following:

Theorem 4.10. For the space-periodic problem with n D 2 and p � 2, under the
assumptions (4.101), (4.59), (4.63), and Fi ; PFi 2 L1..0; T /IL2.�//, if v�k * v

in Lp..0; T /IW 1;p.�// then

v�k ! v; in L2..0; T /IW 1;q.�//; q > 1; (4.102a)

v�k ! v; in L Qp..0; T /IW 1;p.�//; Qp < p (4.102b)

where v
k is the solution of the space-periodic problem corresponding to
�k D 2�k1=� with �k1 ! 0C as k ! 1. Furthermore, the bounds (4.101) apply to
the limiting function v.

Remarks. We may conclude from (4.97), (4.98) that the Young measure 
x;t
generated by fv�k g is Dirac, i.e. 
x;t D ı.
� rv.x; t//.

2We should write v� in (4.101), and similar estimates in the sequel, but will decline from doing
so if the meaning is clear.
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Proof (Theorem 4.10). We set I D .0; T /. Then by (4.101) and Lemma 4.9 with
p1 D 2,

ˇ̌ˇ̌
v�j
ˇ̌ˇ̌
Lp.I IW 1;p.�//

� c < 1; (4.103)
ˇ̌
ˇ̌
ˇ̌
ˇ̌ d
dt
v�j

ˇ̌
ˇ̌
ˇ̌
ˇ̌
L2.I IW�2;2.�//

� c < 1; (4.104)

the conclusions of the theorem, i.e. (4.102a,b) and (4.98) now follow as a direct
consequence of (4.103), (4.104), and Lemma 4.8. ut

4.3.4 Young Measures Are Dirac for 3=2 < p < 2, n D 2

We continue here the considerations of Sect. 4.3.3 but will have to resort to more
delicate estimates than those previously employed. As was the case in Sect. 4.3.3,
the estimates (4.88a,b,c), (4.90a,b,c) remain valid here. Also, we may take  > 1

and use the same test function wi D v00
i .1C jjvjj21;2/� so as to obtain (4.92). Since

p < 2, instead of (4.94), we will use the estimate

.1C jjvjj21;2/�
ˇ̌
ˇ̌Z
�

biv
00
i dx

ˇ̌
ˇ̌ � c jjvjj2;p jjbjj0;p0 .1C jjvjj21;2/�: (4.105)

We will also need the estimate

jjvjj2;p � c

�Z
�

.1C jej/p�2eij

�
@v

@xk

�
eij

�
@v

@xk

�
dx

�1=2



�Z

�

.1C jej/p dx
� 1

p � 1
2

(4.106)

which is a direct consequence of the Hölder Inequality and the estimate (B.14).
Hence,

.1C jjvjj21;2/�
ˇ̌
ˇ̌Z
�

biv
00
i dx

ˇ̌
ˇ̌ � c jjbjj0;p0 .1C jjvjj21;2/�=2 jjvjj

2�p
2

1;p



�Z

�

.1C jej/p�2eij

�
@v

@xk

�
eij

�
@v

@xk

�
.1C jjvjj21;2/� dx

�1=2
: (4.107)

Therefore we again obtain inequality (4.95) except that the term
Z T

0

jjF jj20;2 dt

on the right-hand side is now replaced by the term sup
.0;T /

jjF jj20;p0 . We again seek
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to estimate the integral
Z T

0

.1 C jjvjj21;2/� jjvjj31;3 dt. However, with ı D 2 � 2

p
,

W 2;p.�/ ,! W 1Cı;2.�/ and, thus, asW 4=3;2.�/ ,! W 1;3.�/ we have

jjvjj1;3 � Nc1 jjvjj4=3;2
� Nc2 jjvjj1�

p
6.p�1/

1;2 jjvjj
p

6.p�1/

1Cı;2 :
(4.108)

For (4.108) to be meaningful we must have 1 � p=6.p � 1/ > 0, or p � 6=5.

Because of the embeddingW 2;p.�/ ,! W 1;q.�/,
1

q
D 1

p
� 1

2
, we also have, for

some Qc > 0,

jjvjj1;3 � Qc jjvjj
5p�6
3p

1;p jjvjj
6�2p
3p

2;p : (4.109)

Therefore, for any ˇ, 0 < ˇ < 1, it follows that,

Z T

0

jjvjj31;3 .1C jjvjj21;2/� dt

� Oc
Z T

0

 
jjvjj

�
3� p

2.p�1/

�
ˇ

1;2 jjvjj
5p�6
p .1�ˇ/

1;p jjvjj
pˇ

2.p�1/

2;p jjvjj
6�2p
p .1�ˇ/

2;p


 .1C jjvjj1;2/�
�

dt: (4.110)

Setting ˇ D 2.p � 1/.3� p/

.5p � 6/
, and  D 3 � p

p � 1 in (4.110), using the Hölder

Inequality, and the estimate (4.106), we obtain for 3=2 < p < 2, uniformly with
respect to � and p, the estimate

Z T

0

jjvjj31;3 .1C jjvjj21;2/� dt

� c

�Z T

0

�Z
�

.1C jej/p�2 @eij

@xk

@eij

@xk
dx

 �
1C jjvjj21;2

��
dt

� 3�p
2



�Z T

0

.1C jjvjj1;p/p dt

� p�1
2

: (4.111)

By virtue of (4.66), the weak solution v of (4.1), (4.2), (4.5), and (4.64a,b,c) satisfies,
for all T > 0,

sup
Œ0;T /

jjvjj2
L2.�t /

� c;

Z T

0

jjvjjp
W 1;p.�t /

dt � c
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for some c > 0 which is independent of �1. Since
3 � p

2
< 1 using the last two

estimates, above, and (4.95) we also find that

Z T

0

�Z
�

.1C jej/p�2 @eij

@xk

@eij

@xk
dx

�
.1C jjvjj21;2/� dt � c < 1 (4.112)

and, by (4.106)

Z T

0

jjvjj22;p .1C jjvjj1;p/p�2.1C jjvjj21;2/� dt � c < 1: (4.113)

Also,

jjvjj1;2 � Nc1 jjvjj2=p;p � Nc2 jjvjj2�
2
p

1;p jjvjj
2
p�1
2;p : (4.114)

It then follows from (4.113) that

Z T

0

jjvjj22;p
 
1C jjvjj2�pC2

�
2� 2

p

�
1;p

!�1  
1C jjvjj2

�
2
p�1

�
2;p

!�1
dt � c < 1:

(4.115)

Now letM D ft 2 .0; T / j jjvjj2;p > 1g and recall that  D 3 � p
p � 1

; then as a direct

consequence of (4.115) we find that

Z
M

jjvjj
4.2p�3/
p.p�1/

2;p

 
1C jjvjj

12�2p�p2

p

1;p

!�1
dt � c < 1: (4.116)

Setting P D 12 � 2p
p2

, �.p/ D 4.2p � 3/p

.12� 2p/.p � 1/ and using the Hölder Inequality

we obtain

Z
M

jjvjj�.p/2;p dt �
0
@Z

M

jjvjj
4.2p�3/
p.p�1/

2;p

 
1C jjvjj

12�2p�p2

p

1;p

!�1
dt

1
A

1
P



�Z

M

.1C jjvjj1;p/p dt

� P�1
P

so that for p 2 .3=2; 2/ we have, uniformly with respect to � > 0,

Z T

0

jjvjj�.p/2;p dt � c < 1: (4.117)
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Now, we choose q such that �.p/ < q < p. As

Z T

0

jjvjjq1C	;p dt � c�
Z T

0

jjvjj.1�	/q1;p jjvjj	q2;p dt (4.118)

with 	 D �.p/.p � q/=q.p � �.p//, by the estimates which follow (4.111) and
(4.117) we get, uniformly with respect to � > 0 and p (in .3=2; 2/), the bound

Z T

0

jjvjjq1C	;p dt � c < 1 (4.119)

and as a consequence the following theorem:

Theorem 4.11. For the space-periodic problem, in dimension n D 2 with 3=2 <
p < 2 (under the same assumptions which apply in Theorem 4.10) if v�k * v in
Lp..0; T /IW 1;p.�// then, for any Qp < p, v�k ! v in L Qp..0; T /IW 1;p.�// and
v�k ! v in Lq..0; T /IW 1CQ	;p.�//, for Q	 < 	 . Furthermore the limit function v
satisfies the bound (4.119) and the Young measure 
x;t .
/ D ı.
� rv.x; t//, a. e.
in � 
 .0; T /.

4.3.5 Young Measures Are Dirac and the Weak Solutions
Are Regular for 7=3 � p < 6, n D 3

In this subsection we will show that for 7=3 � p < 6, and space dimension n D 3,
the sequence v�k ! v (in a sense to be made precise below) and that v is, for
7=3 � p < 6, the unique weak solution of (4.1), with �1 D 0, (4.2), (4.5), and
(4.64a,c). We indicate here that the constraint p < 6 is rather artificial and results
from our use of the embedding (for n D 3)W 1;2.�/ ,! L6.�/; the constraint may,
in fact, be easily removed and our efforts are directed principally at identifying the
smallest value of p, in dimension n D 3, for which v is a unique weak solution.

We begin this time by choosing as the test function wi D v00
i .1 C jjvjj21;2/�;

following the pattern of Sects. 4.3.3 and 4.3.4 we seek to estimate

Z T

0

�Z
�

v0
j

@vi

@xj
v0
i dx

�
.1C jjvjj21;2/� dt:

In dimension n D 3, the interpolation-embedding estimates

jjvjj1;3 � Nc1 jjvjj1=21;2 jjvjj1=22;2 (4.120a)

and

jjvjj1;3 � Nc2 jjvjjp=2�1=21;p jjvjj3=2�p=21;3p (4.120b)
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hold, for some Nc1; Nc2 > 0. We now set

I D
Z
�

.1C jej/p�2 @eij

@xk

@eij

@xk
dx: (4.121)

We will need the estimates

jjvjj2;2 � Nc3I1=2 (4.122a)

and

jjvjj1;3p � Nc4I1=p: (4.122b)

Estimate (4.122a) follows from (B.14). Estimate (4.122b) follows from the
Friedrich’s inequality

ˇ̌ˇ̌
.eijeij/

p=2
ˇ̌ˇ̌
1;2

� cI1=2 (4.123)

the embedding of W 1;2 into L6, and the usual Lr (with r D 3p) Korn inequality
(as proven, e.g., in [N1]). For p � 3 the estimation of the key integral is trivial, i.e.,
9 Nc5 > 0 such that

ˇ̌̌
ˇ
Z T

0

�Z
�

v0
j

@vi

@xj
v0
i dx

��
1C jjvjj21;2

��
dt

ˇ̌̌
ˇ � Nc5

Z T

0

jjvjj31;p dt: (4.124)

Therefore, we will turn our attention to the case in which 7=3 � p < 3. By virtue
of (4.120a,b), for any ˇ such that 0 < ˇ < 1, and some Nc6 > 0,

jjvjj1;3 � Nc6 jjvjjˇ=21;2 jjvjjˇ=22;2 jjvjj.1�ˇ/
.p�1/
2

1;p jjvjj.1�ˇ/
.3�p/
2

1;3p : (4.125)

Then, with ˇ D 4.3� p/

3.4 � p/ and  D 2

�
3 � p

p � 1
�

we have

Z T

0

jjvjj31;3 .1C jjvjj21;2/� dt

� Nc7
Z T

0

�
jjvjj3ˇ=21;2 jjvjj

3.1�ˇ/.p�1/
2

1;p I. 3ˇ4 C 3.3�p/.1�ˇ/
2p /

.1C jjvjj21;2/�
	

dt

� Nc8
�Z T

0

I.1C jjvjj21;2/� dt

� 3.3�p/
2.4�p/



�Z T

0

jjvjjp1;p dt

� p�1
2.4�p/

:

(4.126)
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Combining our estimates, we are led to the following two results:

Z T

0

I.1C jjvjj21;2/� dt � c (4.127a)

.1C jjvjj21;2/1� � c (4.127b)

where c is independent of � .
The estimates (4.127a,b) hold for p � 2; however,  is clearly decreasing in p

and for p D 7=3;  D 1. We may, therefore, state

Lemma 4.11. For 7=3 � p < 6, independently of � , the unique regular weak
solution v 2 L1..0; T /I OV /, OV D V \ W 2;2

per.�/, for the incompressible bipolar
fluid satisfies, for some c > 0,

sup
.0;T /

jjvjj1;2 � c < 1; (4.128a)

Z T

0

Z
�

.1C jej/p�2 @eij

@xk

@eij

@xk
dx � c < 1: (4.128b)

As a direct consequence of Lemma 4.11 we have the following

Theorem 4.12. For p � 7=3 and n D 3, in the case of the space-periodic
problem (and under the same assumptions as apply in Theorem 4.10) if v�k * v

in Lp..0; T /IW 1;p.�// then v�k ! v in L Qp..0; T /IW 1;3 Qp.�//, for any Qp <

p, and the bounds (4.128a,b) remain valid for the limit function v. Therefore,

x;t .
/ D ı.
 � rv.x; t//, a.e. in QT and, in addition, we have for the limit
function v,

Z T

0

jjvjj22;2 dt � c0 < 1; (4.129a)

Z T

0

jjvjjp1;3p dt � c0 < 1; (4.129b)

for some c0 > 0.

We now make the following definition:

Definition 4.2. A regular weak solution to the equations (4.1), with � D
0, (4.2), (4.5), and (4.64a,c) is a function v 2 L1..0; T /IW 1;2

per.�// \
Lp..0; T /IW 1;p

per .�// \ L2..0; T /IW 2;2
per.�//, with div v D 0, which satisfies

(4.91), with � D 0, and for which Pv 2 Lp..0; T /IW �1;p.�//.

Theorem 4.13. The weak solution to (4.1), with � D 0, (4.2), (4.5), and (4.64a,c),
which is given by Theorem 4.12 for the space-periodic problem in space dimension
n D 3, is unique provided p � 7=3.
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Proof. We begin by noting that for � 2 C1
0 .�/,

Z T

0

sup
jj�jj1;p�1

ˇ̌
ˇ̌Z
�

vj
@vi

@xj
�i dx

ˇ̌
ˇ̌p dt D

Z T

0

sup
jj�jj1;p�1

ˇ̌
ˇ̌Z
�

vj vi
@�i

@xj
dx

ˇ̌
ˇ̌p dt

� c

Z T

0

�Z
�

jvj2 p
p�1 dx

�p�1
dt:

(4.130)

However,
2p

p � 1 � 6, and sup
.0;T /

jjvjj1;2 < 1, so for some Qc > 0,

Z T

0

sup
jj�jj1;p�1

ˇ̌
ˇ̌Z
�

vj
@vi

@xj
�i dx

ˇ̌
ˇ̌p dt � Qc < 1: (4.131)

Now, let v1; v2 be two solutions of (4.91), with � D 0, such that div vj D 0,
vj 2 L1..0; T /IW 1;2.�//, j D 1; 2. If we take the difference of (4.91) for v D v1

and v D v2, and integrate over .0; T /, it is clear that the troublesome term which
must be dealt with is

Z T

0

ˇ̌̌
ˇ
Z
�

.v2j � v1j /
@v1i
@xj

.v2i � v1i / dx

ˇ̌̌
ˇ dt

�
Z T

0

�Z
�

ˇ̌
v2 � v1ˇ̌4 dx

�1=2 ˇ̌ˇ̌
v1
ˇ̌ˇ̌
1;2

dt

� c1

Z T

0

�Z
�

ˇ̌
v2 � v1ˇ̌2 dx

�1=4 �Z
�

ˇ̌
v2 � v1ˇ̌6 dx

�1=4
dt

(4.132)

where we have used the Hölder Inequality and the fact that sup
.0;T /

ˇ̌ˇ̌
v1
ˇ̌ˇ̌
1;2

� c1 < 1.

Therefore, by Young’s inequality (Appendix A) and the embedding W 1;2.�/ ,!
L6.�/, we have for any ı > 0, and some .ı/ > 0,

Z T

0

ˇ̌̌
ˇ
Z
�

.v2j � v1j /
@v1i
@xj

.v2i � v1i / dx
ˇ̌̌
ˇ dt

� c1ı

Z T

0

�Z
�

ˇ̌
v2 � v1ˇ̌6 dx

�1=3
dt C c2.ı/

Z T

0

�Z
�

ˇ̌
v2 � v1ˇ̌2 dx

�
dt

� c3ı

Z T

0

ˇ̌ˇ̌
v2 � v1ˇ̌ˇ̌2

1;2
dt C c2.ı/

Z T

0

Z
�

ˇ̌
v2 � v1ˇ̌2 dxdt: (4.133)
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Thus, if we difference (4.91) for v D v1, v D v2, and integrate over .0; T /, for ı
sufficiently small the term

ı

Z T

0

ˇ̌ˇ̌
v2 � v1ˇ̌ˇ̌2

1;2
dt

in the estimate (4.133), above, can be absorbed, by virtue of (4.61), by the integral
involving the nonlinear viscosity in (4.91); the uniqueness theorem then follows by
a standard application of the usual Gronwall lemma. ut

4.3.6 Young Measures Are Dirac and the Weak Solutions
Are Regular for 11=5 � p < 7=3, n D 3

In this subsection we will show that the L1..0; T /IW 1;2/ estimate for v holds also
for p 2 .11=5; 7=3/. We first note that the following interpolation estimate holds
for some Nc2 > 0,

jjvjj1;3 � Nc2 jjvjj
2.p�1/
3p�2

1;2 jjvjj
p

3p�2

1;3p : (4.134)

By virtue of (4.120b) and (4.134), for ˇ 2 Œ0; 1�, and some Nc6 > 0,

jjvjj1;3 � Nc6 jjvjjˇ
2.p�1/
3p�2

1;2 jjvjj.1�ˇ/
.p�1/
2

1;p jjvjj.1�ˇ/
.3�p/
2 Cˇ p

3p�2

1;3p : (4.135)

Then, with ˇ D .3p � 2/.3� p/

6.p � 1/ , 1 given by

1 D .3 � p/
2

�
1C 3

2

�
(4.136)

and  as in the previous section, i.e.,  D 2

�
3 � p
p � 1

�
, we have

Z T

0

jjvjj31;3
�
1C jjvjj21;2

��1
dt

� Nc7
Z T

0

�
jjvjjˇ

6.p�1/
3p�2

1;2 jjvjj.1�ˇ/
3.p�1/

2

1;p jjvjj.1�ˇ/
3.3�p/

2 Cˇ 3p
3p�2

1;3p



�
1C jjvjj21;2

��1	
dt

� Nc8
�Z T

0

jjvjjp1;3p
�
1C jjvjj21;2

��
dt

� 3.3�p/
4



�Z T

0

jjvjjp1;p dt

� 3p�5
4

:

(4.137)
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Now, by (4.122b) and (4.122a), the term

�Z T

0

jjvjjp1;3p
�
1C jjvjj21;2

��
dt

�
is

bounded independently of � ; therefore, we have for some c > 0, independent of � ,

Z T

0

�Z
�

.1C jej/p�2 @eij

@xk

@eij

@xk
dx

��
1C jjvjj21;2

��1
dt � c (4.138a)

and

sup
.0;T /

�
1C jjv.t/jj21;2

�1�1 � c: (4.138b)

We now set

k D 3 � p

2

�
1C 3k�1

2

�
(4.139)

and assume that we have proved, for some c independent of � , that

Z T

0

�Z
�

.1C jej/p�2 @eij

@xk

@eij

@xk
dx

��
1C jjvjj21;2

��k�1

dt � c: (4.140)

By repeating the above procedure we find that

Z T

0

jjvjj31;3 .1C jjvjj21;2/�k dt

� Nc8
�Z T

0

jjvjjp1;3p .1C jjvjj21;2/�k�1 dt

� 3.3�p/
4



�Z T

0

jjvjjp1;p dt

� 3p�5
4

(4.141)

from which it then follows that, for some Ck > 0, which is independent of � ,
we have

Z T

0

�Z
�

.1C jej/p�2 @eij

@xk

@eij

@xk
dx

�
.1C jjvjj21;2/�k dt 	 Ak � Ck: (4.142a)

and

sup
.0;T /

.1C jjv.t/jj21;2/1�k 	 Bk � Ck: (4.142b)

The sequence k is decreasing and convergent, i.e.,

lim
k!1k D 1 D 2

�
3 � p

3p � 5

�
: (4.143)
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Also, we have that 1 < 1 for p > 11=5; therefore, 8p > 11=5, 9k.p/ such that
k.p/ < 1. Thus, after finitely many iterations of the above scheme we find that
Lemma 4.11 also holds for p > 11=5. The case p D 11=5 requires infinitely many
iterations and, thus, we need to look at the limit of the sequence Ak . We rewrite
(4.95) in the form

1

2�

Z T

0

Z
�

.1C jej/p�2eij.v
0/eij.v

0/
�
1C jjvjj21;2

��
dx dt

C �

Z T

0

�
1C jjvjj21;2

�� Z
�

@eij.v
0/

@xk

@eij.v
0/

@xk
dx dt

� 1

2.1 � /
�
.1C jjv.0/jj21;2/1� � .1C jjv.T /jj21;2/1�

�

C c

Z T

0

jjF jj20;2 dt C c

Z T

0

.1C jjvjj21;2/� jjvjj31;3 dt

(4.144)

and note that either
1

2.1� /

�
.1C jjv.0/jj21;2/1� � .1C jjv.T /jj21;2/1�

�
is non-

positive or else

1

2.1� /
�
.1C jjv.0/jj21;2/1� �

�
1C jjv.T /jj21;2

�1�� � 1

2
log

�
1C jjv.0/jj21;2

�
:

Using (4.141) and noting that 3.3 � p/=4 D 0:6, for p D 11=5, we then have that
for some c1; c2, independent of both k and � ,

AkC1 � c1 C c2 � A0:6k (4.145)

from which it can be easily seen that the sequence Ak is bounded independently of
� . Letting k go to infinity in (4.142a) we find that, for some c > 0, independent
of � ,

Z T

0

�Z
�

.1C jej/p�2 @eij

@xk

@eij

@xk
dx

�
.1C jjvjj21;2/�1 dt � c: (4.146)

from which we then deduce via (4.95) and (4.141) that

sup
.0;T /

�
1C jjv.t/jj21;2

�
� c: (4.147)

We can, therefore, state

Theorem 4.14. Lemma 4.11, Theorems 4.12 and 4.13 all hold for 11=5 � p < 6.
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4.3.7 Young Measures Are Dirac for 2 � p < 11=5, n D 3

In this subsection we again choose as the test function wi D v00
i

�
1C jjvjj21;2

��
;

proceeding as we did for the case p D 11

5
we get

AkC1 � c1 C c2 � A
3.3�p/

4

k (4.148)

instead of (4.145). Since
3.3 � p/

4
< 1 in this range of p, it then follows that for

 D 1 D 2
3 � p
3p � 5 there exists c > 0, independent of � , such that
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�

.1C jej/p�2 @eij

@xk

@eij

@xk
dx

�
.1C jjvjj21;2/� dt � c: (4.149)

Using the Hölder Inequality we then have that for � D p

2C p
, 0 < � < 1, and

Z T

0

I� dt D
Z T

0

I�
�
1C jjvjj21;2

��� �
1C jjvjj21;2

��
dt

�
�Z T

0

I
�
1C jjvjj21;2

��
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�Z T

0
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1C jjvjj21;2

� p
2

dt

�1��

(4.150)

where I is given by (4.121). By (4.150) and (4.122b) we have

Z T

0

jjvjj2�2;2 dt � c < 1I � D p.3p � 5/

3.p2 � 3p C 4/
: (4.151)

We now choose q > 1 so that 2� < q < p. BecauseW 2;2.�/ ,! W 1Cs;p.�/, with

s D .6� p/=2p, we get, with ‚ D qp � 2�p

qp � 2�q
, and 	 D .1 �‚/s,

Z T

0

jjvjjq1C	;p dt � c0
Z T

0

jjvjj‚q1;p jjvjj.1�‚/q1Cs;p dt

� Nc
�Z T

0

jjvjj2�2;2 dt

� .1�‚/q
2�

�Z T

0

jjvjjp1;p dt

� 2��qC‚q
2�

� c� < 1:

(4.152)
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We can, therefore, state the following:

Theorem 4.15. For 2 � p < 11=5 and n D 3, in the case of the space-periodic
problem (and under the same assumptions as apply in Theorem 4.10) the weak
convergence v�k * v in Lp..0; T /IW 1;p.�// implies the strong convergence
v�k ! v, in L Qp..0; T /IW 1;p.�// for any Qp < p, and in Lq..0; T /IW 1CQ	;p.�//
for Q	 < 	 . Thus, in this situation 
x;t .
/ D ı.
 � rv.x; t// and the bound
represented by (4.152) applies to the limit function v.

Remarks. For the particular case of the standard Navier–Stokes equations p D 2,

(2� D 2

3
), estimate (4.151) is already known. More precisely, in 1981 Foias et al.

[FGT] proved it for the space periodic case and in 1990 Duff, [Duff] established it
for a general bounded domain.

4.3.8 Young Measures Are Dirac for 9=5 < p < 2, n D 3

For 9=5 < p < 2, n D 3, we have W 2;p.�/ ,! W 1;q.�/ with
1

q
D 1

p
� 1

3
D

.3 � p/=3p; so, for some c > 0,

jjvjj1;3 � c jjvjj
2p�3
p

1;p jjvjj
3�p
p

1;q (4.153)

which is, in fact, valid for p > 3=2. Furthermore, we have W 2;p.�/ ,!
W 1C	;2.�/, for p > 6=5, with 	 D 5

2
� 3

p
and, as W 1Cı;2.�/ ,! W 1;3.�/,

with ı D 1=2 we get

jjvjj1;3 � c jjvjj
4p�6
5p�6

1;2 � jjvjj
p

5p�6

2;p : (4.154)

Thus, the relevant integral, generated by the convective term, may be estimated by

Z T

0

jjvjj31;3 .1C jjvjj21;2/� dt � c0
Z T

0

"
jjvjj3

�
4p�6
5p�6

�
ˇ

1;2 jjvjj
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�
2p�3
p

�
.1�ˇ/

1;p jjvjj3.
3�p
p /.1�ˇ/

2;p .1C jjvjj21;2/�
#

dt (4.155)

for 0 < ˇ < 1. We now set

ˇ D � .5p � 6/.3� p/

6.3 � 2p/ ;  D 2.3� p/

3p � 5 (4.156)
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and note that for p > 9=5, ˇ < 1. By employing (4.106), we see that (4.155) yields
the estimate

Z T

0

jjvjj31;3 .1C jjvjj21;2/� dt

� Nc
�Z T

0

�Z
�

.1C jej/p�2 @eij
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�
�
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��
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� 3.3�p/
4



�Z T
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.1C jjvjj1;p/p dt

� 3p�5
4

:

(4.157)
Therefore, for some Oc > 0, Oc independent of � ,

Z T
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�Z
�

.1C jej/p�2 @eij

@xk

@eij

@xk
dx

�
�
�
1C jjvjj21;2

��
dt � Oc < 1 (4.158)

in which case, we also have for c� > 0 independent of � , that

Z T

0

jjvjj22;p
�Z

�

.1C jejp dx
�1� 2

p

.1C jjvjj21;2/� dt � c� < 1: (4.159)

As

jjvjj1;2 � Qc jjvjj
5p�6
2p

1;p � jjvjj
6�3p
2p

2;p (4.160)

we find that, for c independent of � ,

Z T

0

jjvjj�12;p
h
jjvjj�22;p C jjvjj�31;p

i�1 � .1C jjvjj1;p/p�2 dt � c < 1 (4.161)

with

�1 D 2 � 2.6� 3p/.3� p/

p.3p � 5/
; (4.162a)

�2 D �2.6� 3p/.3 � p/

p.3p � 5/
; (4.162b)

and

�3 D 2.3� p/.5p � 6/

p.3p � 5/
: (4.162c)
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Integrating (4.91) over M D ft 2 .0; T / j jjvjj2;p > 1g, we then find that, for c0
independent of � ,

Z
M

jjvjj
4.5p�9/
p.3p�5/

2;p � �1C jjvjj1;p
��4 dt � c0 < 1 (4.163a)

with

�4 D �2.3� p/.5p � 6/
p.3p � 5/ C p � 2: (4.163b)

However, it is clear that with I D .0; T / we have, for some c00 independent of � ,

Z
InM

jjvjj
4.5p�9/
p.3p�5/

2;p � �1C jjvjj1;p
��4 dt � c00 < 1: (4.164)

Setting P D 4.9� 2p � p2/

p.3p � 5/
, � D 4.5p � 9/

p.3p � 5/
1

P
, �5 D �4

P
, s D p

�
1 � 1

P

�
; and

using the Hölder Inequality (Appendix A) we find

Z T

0

jjvjj�2;p � �1C jjvjj1;p
��5 �

1C jjvjj1;p
�s

dt

�
�Z T

0

jjvjj
4.5p�9/
p.3p�5/

2;p � .1C jjvjj1;p/�4 dt

�1=P



�Z T

0

�
1C jjvjj1;p

�p
dt

�1�1=P
� c0 < 1: (4.165)

Noting that

jjvjj1;p � Qc jjvjj 120;p � jjvjj 122;p � c jjvjj 122;p (4.166)

and letting � D min

�
� C 1

2
.�5 C s/I �

	
D min

�
� I p � 1

2

	
> 0 we obtain, for Nc

independent of � , the estimate

Z T

0

jjvjj�2;p dt � Nc < 1: (4.167)
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Finally, choosing q such that � < q < p we get, for 9=5 < p < 2, with 	 D
�.p � q/

q.p � �/
,

Z T

0

jjvjj21C	;p dt � c1

Z T

0

jjvjj.1�	/q1;p � jjvjj	q2;p dt � c2 < 1 (4.168)

with c1; c2 both independent of � and we have proved the following result:

Theorem 4.16. The conclusions of Theorem 4.12 hold for n D 3, when 9=5 <
p < 2, including the estimate (4.168) for the limit function v, provided we take
	 D �.p � q/=q.p � �/, and 2� < q < p.

4.4 Existence and Uniqueness for Incompressible Flow
in an Unbounded Channel

4.4.1 Introduction

In Sects. 4.2 and 4.3, existence and uniqueness theorems were established for the
bipolar flow problem (4.1), (4.2), (4.5) subject to both the boundary conditions
(4.3), (4.4), for the case of a problem posed on a bounded domain � � R

n,
n D 2; 3, as well as for the space-periodic problem posed in � D Œ0; L�n, n D 2; 3,
L > 0, for which the conditions (4.57a,b) are assumed to hold; analogous results
were also proven for both the boundary-value problem (for a bounded domain) and
the space-periodic problem, in dimn D 2; 3, for the non-Newtonian flow problem
(4.1), (4.2), (4.5) with �1 D 0. If �1 D 0 in (4.1) then, for the boundary-value
problem, only the condition (4.4) is applied while for the space-periodic case only
(4.57a) applies. In this section we again consider the problem of existence and
uniqueness for solutions of the initial-boundary value problem, this time in the
unbounded channel�a defined by (2.164), i.e.,

�a D f.x1; x2; x3/ j x2 2 Œ�a; a�; �1 < x1; x3 < 1g:

Most of the results which are presented in this section first appeared in the Ph.D.
thesis [Hao]. To establish existence and uniqueness of solutions to the initial-
boundary value problem, with � D �a, we begin by formulating the problem in a
Hilbert space setting and then prove some preliminary results about functions in the
spaces in which the solutions will be established; this is accomplished in Sect. 4.4.2.
Then in Sect. 4.4.3 we establish the existence of solutions by considering a sequence
of approximate solutions in bounded subdomains of �a; we show, in Sect. 4.4.3,
that there exists a subsequence of such approximate solutions whose limit is a weak
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solution of the initial-boundary value problem with� D �a. Finally, the uniqueness
of the solution is proven in Sect. 4.4.4. For the remainder of this section, � will
denote the exterior unit normal to @� and it will be understood that � 	 �a.

4.4.2 Formulation of the Problem in Hilbert Space and Some
Preliminary Lemmas

We begin by introducing the spaces

NV 	 the closure of J .�/ in H 2.�/ (4.169)

and

NH 	 the closure of J .�/ in L2.�/ (4.170)

where� D �a, and

J .�/ D f' 2 C1
0 .

N�/ j ' D 0 on @� & div' D 0 in �g: (4.171)

We also let NV 0
and NH 0

be the dual spaces of NV and NH respectively. It is clear that
V � H and NV is dense in NH , the injection being continuous. The scalar product
and the norm in NH are given by .u; v/L2.�/ and jjujjL2.�/ respectively. By duality, if
NH 0

is the dual of NH , then the adjoint i � of the identity is injective, i �. NH 0
/ is dense

in NV 0
, and we can identify NH 0

with a dense subspace of NV 0
. If we identify NH with

its dual NH 0
, we obtain

NV � NH 	 NH 0 � NV 0
(4.172)

where each space is dense in the following, the injection being continuous. We now
introduce the linear operator A as follows: consider the positive definite V -elliptic
symmetric bilinear form Na.�; �/ W V 
 V ! R1 given by

Na.u; v/ D
Z
�

@eij

@xj
.u/

@eij

@xj
.v/ dx: (4.173)

As a consequence of the Lax-Milgram Lemma of Appendix A, we obtain an
isometry NA 2 L. NV I NV 0

/, via

hAu; vi NV 0� NV D Na.u; v/ D hf ; vi NV 0� NV 0 ; 8v 2 NV (4.174)
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with f 2 NV 0
, where the domain of NA is

D. NA/ D fu 2 NV j Na.u; v/ D .f ; v/L2.�/; f 2 NH � NV 0
; 8v 2 NV g: (4.175)

Thus, NA 2 L.D. NA/I NH /\ L. NV ; NV 0
/.

We now have the following series of lemmas which will be used later to establish
the existence and uniqueness of solutions of the initial-boundary value problem:

Lemma 4.12. If v 2 H 1
0.�/ then

jjvjjL4.�/ � 2
1
4 jjvjj 12

L2.�/
jjrvjj 12

L2.�/
: (4.176)

Proof. (See [Te4].) ut
Lemma 4.13. If v 2 NV , then there exists a positive constant c1, depending only on
a, such that

jjrvjjL4.�/ � c1 jjvjj
1
2

H 1.�/
jjvjj

1
2

H 2.�/
: (4.177)

Proof. In view of the definition of NV , it suffices to show that if f 2 C1. N�/, and has
compact support, then

jjf jjL2.�/ � c1jjf jj
1
2

L2.�/
jjf jj

1
2

H1.�/
: (4.178)

Let h.x1; x2/ D x2 C a

2a
and g.x1; x2/ D h.x1; x2/ � f .x1; x2/, for all .x1; x2/ 2

N�, i.e., �1 < x1 < C1 and �a � x2 � a. It is obvious that g 2 C1. N�/,
g.x1;�a/ D 0, �1 < x1 < C1, and that the support of g is compact because the
support of f is compact. We write

jg.x1; x2/j2 D 2

Z x1

�1
g.�; x2/

@g

@x1
.�; x2/ d�

so that

jg.x1; x2/j2 D 2g1.x2/

where

g1.x2/ D
Z C1

�1
jg.�; x2/j

ˇ̌
ˇ̌ @g
@x1

.�; x2/

ˇ̌
ˇ̌ d�:
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Similarly, if we write

jg.x1; x2/j2 D 2

Z x2

�a
g.x1; �/

@g

@x2
.x1; �/ d�

then we have

jg.x1; x2/j2 D 2g2.x1/

where

g2.x1/ D
Z a

�a
jg.x1; �/j

ˇ̌
ˇ̌ @g
@x2

.x1; �/

ˇ̌
ˇ̌ d�:

Therefore,

Z
�

jg.x1; x2/j4 dx1 dx2 � 4

�Z a

�a
g1.x2/ dx2

�
�
�Z 1

�1
g2.x1/ dx1

�

� 4jjgjj2L2.�/
ˇ̌
ˇ̌
ˇ̌
ˇ̌ @g
@x1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
L2.�/

ˇ̌
ˇ̌
ˇ̌
ˇ̌ @g
@x2

ˇ̌
ˇ̌
ˇ̌
ˇ̌
L2.�/

:

(4.179)

Since 0 � h � 1, and
@h

@x2
D 1

2a
, we have

ˇ̌̌
ˇ @g@x1

ˇ̌̌
ˇ
2

D
ˇ̌̌
ˇh @f@x1

ˇ̌̌
ˇ
2

�
ˇ̌̌
ˇ @f@x1

ˇ̌̌
ˇ
2

(4.180)

and

ˇ̌̌
ˇ @g@x2

ˇ̌̌
ˇ
2

D
ˇ̌̌
ˇ @h@x2 f C h

@f

@x2

ˇ̌̌
ˇ
2

� 2

 ˇ̌
ˇ̌ @h
@x2

f

ˇ̌
ˇ̌2 C

ˇ̌
ˇ̌h @f
@x2

ˇ̌
ˇ̌2
!

� 2

 
1

4a2
f 2 C

ˇ̌
ˇ̌ @f
@x2

ˇ̌
ˇ̌2
!

� 2max

�
1

4a2
; 1

� 
f 2 C

ˇ̌
ˇ̌ @f
@x2

ˇ̌
ˇ̌2
!
:

(4.181)

Employing (4.179)–(4.181) yields

Z
�

jg.x1; x2/j4 dx1 dx2 � 4
p
2max

�
1

2a
; 1

�
jjf jj2L2.�/jjf jj2H1.�/ (4.182)
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where we have used the fact that jgj � jf j on �. Similarly, we can also show that

Z
�

j.1 � h/f j4 dx1dx2 � 4
p
2max

�
1

2a
; 1

�
jjf jj2L2.�/jjf jj2H1.�/: (4.183)

Combining (4.182) and (4.183), we obtain the estimate

Z
�

jf j4 dx1 dx2 �
Z
�

j.hC .1 � h//f j4 dx1 dx2

� 4

�Z
�

jhf j4 dx1 dx2 C
Z
�

j.1 � h/f j4 dx1 dx2

	

D 4

�Z
�

jgj4 dx1 dx2 C
Z
�

j.1 � h/f j4 dx1 dx2

	

� 32
p
2max

�
1

2a
; 1

�
jjf jj2L2.�/jjf jj2H1.�/

(4.184)

so that (4.177) is a direct consequence of (4.178). ut
The lower bound in the next lemma may be inferred directly from Lemma B.2

by approximating � D �a by a sequence of bounded domains f�ng � � and,
then, going to the limit as n ! 1. It is instructive, however, to give a direct (and
straightforward) proof for the two-dimensional unbounded case � D �a.

Lemma 4.14. There exist positive constants c2 and c3 such that, 8v 2 NV ,

c2jjvjjH 2.�/ �
�
@eij.v/

@xk
;
@eij.v/

@xk

�
L2.�/

� c3jjvjjH 2.�/: (4.185)

Proof. Recall that eij D 1

2
.vi;j C vj;i /, for i; j D 1; 2. Employing a direct

computation of the derivatives @eij=@xk we obtain

�
@eij.v/

@xk
;
@eij.v/

@xk

�
L2.�/

D
�
@2v1

@x21
;
@2v1

@x21

�
L2.�/

C 1

2

�
@2v1

@x1@x2
C @2v2

@x21
;
@2v1

@x1@x2
C @2v2

@x21

�
L2.�/

C
�
@2v2

@x1@x2
;
@2v2

@x1@x2

�
L2.�/

C
�
@2v1

@x1@x2
;
@2v1

@x1@x2

�
L2.�/

C 1

2

�
@2v1

@x22
C @2v2

@x1@x2
;
@2v1

@x22
C @2v2

@x1@x2

�
L2.�/

C
�
@2v2

@x22
;
@2v2

@x22

�
L2.�/
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in which case

�
@eij.v/

@xk
;
@eij.v/

@xk

�
L2.�/

�
ˇ̌̌
ˇ
ˇ̌̌
ˇ@
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@x21

ˇ̌̌
ˇ
ˇ̌̌
ˇ
2

L2.�/

C 1

2
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L2.�/
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C
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ˇ̌2
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ˇ̌
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ˇ̌@2v2
@x22

ˇ̌
ˇ̌
ˇ̌
ˇ̌2
L2.�/

� jjvjj2
H 2.�/

: (4.186)

Therefore, the second inequality in (4.185) follows with c3 D 1. To establish the
first inequality in (4.185), we note that by the virtue of the elementary lower bound

jjf C gjj2L2.�/ � �jjf jjL2.�/ � jjgjjL2.�/
�2

(4.187)

(4.184) yields

�
@eij.v/

@xk
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@eij.v/

@xk

�
L2.�/

�
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ˇ
2
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ˇ̌̌
ˇ
2

L2.�/
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C
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C
 
1

4

ˇ̌
ˇ̌
ˇ̌
ˇ̌@2v1
@x22

ˇ̌
ˇ̌
ˇ̌
ˇ̌2
L2.�/
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ˇ̌
ˇ̌
ˇ̌
ˇ̌@2v1
@x22
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ˇ̌
ˇ̌
ˇ̌
L2.�/

ˇ̌
ˇ̌
ˇ̌
ˇ̌ @2v2
@x1@x2

ˇ̌
ˇ̌
ˇ̌
ˇ̌
L2.�/

C
ˇ̌
ˇ̌
ˇ̌
ˇ̌ @2v2
@x1@x2

ˇ̌
ˇ̌
ˇ̌
ˇ̌2
L2.�/

!

� 1

4

�
@2vi

@xj @xk
;
@2vi

@xj @xk

�
L2.�/

: (4.188)

To prove the first inequality in (4.185), it suffices to establish the following
generalized Poincaré type inequalities:

8̂̂
<
ˆ̂:

Z
�

jjvjj2 dx � 4a2
Z
�

jjrvjj2 dx; 8v 2 NV ; (4.189a)

Z
�

jjrvjj2 dx � 4a2
Z
�

jj�vjj2 dx; 8v 2 NV (4.189b)

where jj�jj denotes the standard Euclidean norm on R
2. Using Hölder’s inequality,

we have

Z
�

jjvjj2 dx D
Z
�

jv1j2 dx C
Z
�

jv2j2 dx

�
Z
�

ˇ̌̌
ˇ
Z x2

�a
@v1

@x2
dx2

ˇ̌̌
ˇ
2

dx C
Z
�

ˇ̌̌
ˇ
Z x2

�a
@v2

@x2
dx2

ˇ̌̌
ˇ
2

dx

� 2a

Z
�

Z x2

�a

ˇ̌̌
ˇ@v1@x2

ˇ̌̌
ˇ
2

dx2 dx C 2a

Z
�

Z x2

�a

ˇ̌̌
ˇ@v2@x2

ˇ̌̌
ˇ
2

dx2 dx

D 4a2

"Z
�

ˇ̌
ˇ̌@v1
@x2

ˇ̌
ˇ̌2 dx C

Z
�

ˇ̌
ˇ̌@v2
@x2

ˇ̌
ˇ̌2 dx

#

� 4a2
Z
�

jjrvjj2 dx

(4.190)

which establishes (4.189a), while integration by parts yields
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Z
�

jjrvjj2 dx D �
Z
�

v ��v dx

�
�Z

�

jjvjj2 dx
� 1

2

�
�Z

�

jjvjj2 dx
� 1

2

� 2a

�Z
�

jjrvjj2 dx
� 1

2
�Z

�

jj�vjj2 dx
� 1

2

� 1

2

Z
�

jjrvjj2 dx C 2a2
Z
�

jj�vjj2 dx

(4.191)

which serves to establish (4.189b). Combining (4.189a) and (4.189b) now produces

Z
�

jjvjj2 dx � 4a2
Z
�

jjrvjj2 dx � 16a4
Z
�

jj�vjj2 dx: (4.192)

Also, by virtue of (4.189a,b) we have the estimates

jjvjj2
H 2.�/

D
Z
�

jjvjj2 dx C
Z
�

jjrvjj2 dx C
�

@2vi

@xj @xk
;
@2vi

@xj @xk

�
L2.�/

� .16a4 C 4a2/

Z
�

jj�vjj2 dx C
�

@2vi

@xj @xk
;
@2vi

@xj @xk

�
L2.�/

� .32a4 C 8a2 C 1/

�
@2vi

@xj @xk
;
@2vi

@xj @xk

�
L2.�/

� 4.32a4 C 8a2 C 1/

�
@eij

@xk
;
@eij

@xk

�
L2.�/

(4.193)

where we have used (4.188). Thus the first inequality in (4.185), i.e., the lower
bound, has been established with c2 D 1=.144a4 C 32a2 C 4/. ut
Remarks. Aside from the three lemmas proven, thus far, in this subsection the
analysis in the remainder of this section will make essential use of Lemmas A.8
and A.9 of Appendix A.

We now reformulate our problem in a Hilbert space setting. We begin by defining
onH 1

0.�/ and, thus, on NV , a trilinear continuous form b.�; �; �/ by setting

b.u; v;w/ D
Z
�

ui
@vj

@xi
wj dx; for u; v;w 2 H 1

0.�/: (4.194)
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We note that as r � u D 0,

b.u; v; v/ D 0

b.u; v;w/ D �b.u;w; v/

)
8u; v;w 2 H 1

0.�/: (4.195)

For u; v 2 NV , we denote byB.u; v/ the element of NV 0
defined by

hB.u; v/;wi D b.u; v;w/; 8w 2 NV (4.196)

and set

B.u/ D B.u;u/ 2 NV 0
; 8u 2 NV : (4.197)

For u 2 NV , we also denote byN .u/ the element of NV 0
defined by

hN .u/; vi D 2

Z
�

�.u/eij.u/eij.v/ dx; 8v 2 NV (4.198)

where�.u/ is the nonlinear viscosity given, e.g., by (2.3) with e D 1

2
.ruC.ru/T /.

We assume that .v; p/ is a classical solution of (2.2a–d) such that v.x; t/ and its
derivatives of order less than or equal to four tend to zero as jxj ! C1. If � 2
J .�/, it is easy to see that

�
@v

@t
;�

�
L2.�/

C 2�1

�
@eij.v/

@xk
;
@eij.�/

@xk

�
L2.�/

C hN .v/;�i C b.v; v;�/ D .f ;�/L2.�/: (4.199)

By continuity, (4.199) holds for each � 2 NV . This suggests the following weak
formulation of the problem (4.1)–(4.5), with Mi D 0, g D 0:

Definition 4.3. Let f and v0 be given with f 2 L2..0; T /I NH / and v0 2 NH .
Then v is a weak solution of (4.1)–(4.5) with Mi D 0, g D 0, and � D �a, if
v 2 L2..0; T /I NV /\ L1..0; T /I NH /, v.0/ D v0, and (4.199) is satisfied 8� 2 NV .

Remarks. If v only belongs to L2..0; T /I NV / \ L1..0; T /I NH /, then the initial
condition need not make sense. However, if v 2 L2..0; T /I NV / \ L1..0; T /I NH /
and also satisfies (4.199), 8� 2 NV , the following lemma guarantees that v0 2
L2..0; T /I NV 0

/; then, by virtue of Lemma A.9, we have that v is equal, a.e., to some
continuous function from Œ0; T � into NH so that the initial condition v.0/ D v0 is
meaningful.
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Lemma 4.15. Assume that v belongs to L2..0; T /I NV /\L1..0; T /I NH /. Then the
functionB.v.t// defined by

hB.v.t//;'i D b.v.t/; v.t/;'/; 8' 2 NV , a.e. for t 2 Œ0; T �

belongs to L2..0; T /I NV 0
/. Also, the functionN .v.t// given by

hN .v.t//;'i D 2

Z
�

�.e.v//eij.v/eij.'/ dx

belongs to L2..0; T /I NV 0
/.

Proof. For almost all t , B.v.t// and N .v.t// are elements of NV 0
, and the measura-

bility of the functions

t 2 Œ0; T � ! B.v.t// 2 NV 0

and

t 2 Œ0; T � ! N .v.t// 2 NV 0

is easy to check. Moreover, employing (4.195), the Hölder Inequality, the embed-
ding theorems, and Lemma 4.12, we have for some c1 > 0, c2 > 0,

jhB.v.t//;'ij D jb.v.t/; v.t/;'/j
D j�b.v.t/;'; v.t//j

D
ˇ̌̌
ˇ
Z
�

vi
@�j

@xi
vj dx

ˇ̌̌
ˇ

� c1 jjvjj2
L4.�/

jj'jjH 1
0.�/

� c2jjvjjL2.�/ jjvjjH 1
0.�/

jj'jjH 1
0.�/

:

(4.200)

Using the fact that �.v/ D �0.� C eijeij/
�˛=2 � �0�

�˛=2, we also have for some
c3 > 0, c4 > 0

jhN .v.t/;'ij D
ˇ̌̌
ˇ2
Z
�

�.e.v//eij.v/eij.'/ dx

ˇ̌̌
ˇ

� 2�0

��˛=2

Z
�

ˇ̌
eij.v/eij.'/

ˇ̌
dx

� c3 jjvjjH 1
0.�/

jj'jjH 1
0.�/

� c4 jjvjjV jj'jjV :

(4.201)
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As a consequence of (4.200) and (4.201), we obtain, therefore, the estimates

jjB.v.t//jj NV 0 � c5jjvjjL2.�/ jjvjj NV (4.202)

and

jjN .v.t//jj NV 0 � c6 jjvjj NV (4.203)

for some c5 > 0, c6 > 0. Therefore,

Z T

0

jjB.v.t//jj2NV 0 dt � c25

Z T

0

jjvjj2
L2.�/

jjvjj2NV dt

� c25 jjvjj2
L1..0;T /I NH /

Z T

0

jjvjj2NV dt < 1
(4.204)

and

Z T

0

jjN .v.t//jj2NV 0 dt � c26

Z T

0

jjvjj2NV dt (4.205)

and the Lemma 4.15 has been proved. ut
Remarks. If v satisfies (4.199), 8� 2 NV , and v.0/ D v0, then by (4.173), (4.174),
and Lemma 4.15 one can rewrite (4.199) in the form

d

dt
hv;'i D ˝

f � 2�1 NAv �N .v/�B.v/;'˛; 8' 2 NV (4.206)

Because NA is linear, and continuous from NV into NV 0
, and v 2 L2..0; T /I NV 0

/, the
function NAv 2 L2..0; T /I NV 0

/; hence f �2�1 NAv�N .v/�B.v/ 2 L2..0; T /I NV 0
/.

Therefore, (4.205) and Lemma A.8 show that v0 2 L2..0; T /I NV 0
/.

Now suppose that f 2 L2..0; T /I NH /. If v 2 L2..0; T /I NV / \ L1..0; T /I NH /
then, as shown above, v satisfies (4.205) and (4.206). By Lemma A.8, (4.199) is
equivalent to

v0 C 2�1 NAvCN .v/CB.v/ D f : (4.207)

Conversely if v 2 L2..0; T /I NV / \ L1..0; T /I NH /, and v0 2 L2..0; T /I NV 0
/, then

v satisfies (4.199), for all v 2 NV . Therefore, an alternative weak formulation of the
problem under consideration is the following:
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Given f and v0 satisfying f 2 L2..0; T /I NH / and v0 2 NH , find v satisfying

v 2 L2..0; T /I NV / \L1..0; T /I NH /; v0 2 L2..0; T /I NV 0
/; (4.208)

v0 C 2�1 NAvC NN .v/CB.v/ D f ; (4.209)

v.0/ D v0: (4.210)

Any solution of (4.208), (4.209), (4.210) with v0 2 L2..0; T /I NV 0
/ is a solution

of (4.209) satisfying v.0/ D v0 with v 2 L2..0; T /I NV / \ L1..0; T /I NH /, and
conversely. Because � is unbounded, the embeddings H 2.�/ ,! L2.�/ and
H 1.�/ ,! L2.�/ are not compact so the existence of solutions to (4.208)–(4.210)
can not be established directly by using the Galerkin method. Instead, we will first
establish the existence of approximate solutions. Then, we will show that there exists
a convergent subsequence of approximate solutions whose limit is a solution of our
problem. This procedure necessitates the introduction of some notation as follows:
using the ideas in [BB2], as delineated in Sect. 2.4, we let f�N g, N D 1; 2; : : : be
an expanding sequence of simply connected, bounded subdomains of � such that
�N ! �, as N ! 1, and @�N of class C1. We set

(
�C
N D f.x1; a/ j .x1; a/ 2 N�N g;
��
N D f.x1;�a/ j .x1;�a/ 2 N�N g; (4.211)

J .�N / D f' 2 J .�/ j ' 2 .D.�N /[ �C
N [ ��

N /g; (4.212)

( NV N D the closure of J .�N / in H 2.�N /;

NH N D the closure of J .�N / in L2.�N /;
(4.213)

and we denote by NV 0
N and NH 0

N , respectively, the dual of NV N and NH N . We also
define NAN by

˝ NANv;'
˛ D

�
@eij.v/

@xk
;
@eij.'/

@xk

�
L2.�N /

; 8v;' 2 NV N : (4.214)

Remarks. (i) It is obvious that J .�1/ � J .�2/ � � � � � J .�/.
(ii) 8v 2 NV N (v 2 NH N ), if we extend v by setting v D 0 outside �N , then

v 2 NV NCj � NV , j D 1; 2; : : : (v 2 NH NCj � NH , j D 1; 2; : : :). i.e. NV 1 �
NV 2 � � � � � NV and NH 1 � NH 2 � � � � � NH .
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4.4.3 The Existence Problem for a Sequence
of Approximations

In this subsection we will prove an existence theorem for a sequence of approximat-
ing problems which are naturally associated with (4.208)–(4.210); these problems
may be stated as follows: For f N and vN0 satisfying

(
f N 2 L2..0; T /I NH N /;

vN0 2 NH N ;
(4.215)

find vN such that

vN 2 L2..0; T /I NV N / \L1..0; T /I NH N /; .vN /0 2 L2..0; T /I NV 0
N / (4.216)

.vN /0 C 2�1 NAvN CN .vN /CB.vN / D f N (4.217)

vN .0/ D vN0 : (4.218)

Before stating and proving the relevant existence theorem for the system (4.216)–
(4.218) we will need to establish the following key lemma:

Lemma 4.16. Let fvN;Kg be a sequence of elements in L2..0; T /I NV N / \
L1..0; T /I NH N / such that, as K ! 1, vN;K ! vN weakly in L2..0; T /I NV N /,
and weak * in L1..0; T /I NH N /, as well as strongly in L2..0; T /IH 1

0.�N //. Then
for any ' 2 Y D f' 2 C..0; T /I NV N / j '0 2 L2..0; T /I NH N /g, we have the
following:

lim
K!1

Z T

0

�
vN;K ;'0.t/

�
L2.�N /

dt D
Z T

0

�
vN .t/;'0.t/

�
L2.�N /

dt; (4.219a)

lim
K!1

Z T

0

�
@eij.v

N;K/

@xk
;
@eij.'.t//

@xk

�
L2.�N /

dt D
Z T

0

�
@eij.v

N /

@xk
;
@eij.'.t//

@xk

�
L2.�N /

dt;

(4.219b)

lim
K!1

Z T

0

˝
N .vN;K/;'.t/

˛
dt D

Z T

0

˝
N .vN /;'.t/

˛
dt; (4.219c)

lim
K!1

Z T

0

b
�
vN;K ; vN;K ;'.t/

�
dt D

Z T

0

b
�
vN ; vN ;'.t/

�
dt: (4.219d)

Proof. The result in (4.219a) follows directly from the fact that vN;K ! vN strongly
in L2..0; T /IH 1

0.�N // and � 2 L2..0; T /I NH N /. As far as (4.219b) is concerned,

we note that the relation
˝
v; NA�˛ NV N� NV 0

N
D
�
@eij.v/

@xk
;
@eij.'/

@xk

�
L2.�N /

, 8v;' 2 NV N ,

and the fact that vN;K * vN , weakly in L2..0; T /I NV N /, imply that
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lim
K!1

Z T

0

�
@eij.v

N;K/

@xk
;
@eij.'.t//

@xk

�
L2.�N /

dt

D lim
K!1

Z T

0

˝
vN;K; NA'.t/˛ dt

D
Z T

0

˝
vN ; NA'.t/˛ dt

D
Z T

0

�
@eij.v

N /

@xk
;
@eij.'.t//

@xk

�
L2.�N /

dt:

(4.220)

For the result in (4.219c) we remark that a straightforward calculation exhibits the
existence of a c > 0 for which

ˇ̌˝
N .vN;K/�N .vN /;'.t/˛ˇ̌ � c

ˇ̌ˇ̌
vN;K � vN ˇ̌ˇ̌

H 1
0.�N /

jj'.t/jjH 1
0.�N /

: (4.221)

This result, the fact that vN;K ! vN strongly in L2..0; T /IH 1
0.�N //, and the

condition ' 2 C..0; T /I NV N /, imply that

lim
K!1

Z T

0

˝
N .vN;K/;'.t/

˛
dt D

Z T

0

˝
N .vN /;'.t/

˛
dt: (4.222)

Now, because for some c1 > 0, c2 > 0

ˇ̌
b
�
vN;K ; vN;K ;'.t/

� � b
�
vN ; vN ;'.t/

�ˇ̌
D ˇ̌

b
�
vN;K � vN ; vN;K ;'.t/� � b

�
vN ; vN;K � vN ;'.t/�ˇ̌

D ˇ̌�b �vN;K � vN ;'.t/; vN;K� � b
�
vN ;'.t/; vN;K � vN �ˇ̌

� c1
ˇ̌ˇ̌
vN;K � vN ˇ̌ˇ̌

L4.�N /
jj'.t/jjH 1

0.�N /

ˇ̌ˇ̌
vN;K

ˇ̌ˇ̌
L4.�N /

C c1
ˇ̌ˇ̌
vN
ˇ̌ˇ̌
L4.�N /

jj'.t/jjH 1
0.�N /

ˇ̌ˇ̌
vN;K � vN ˇ̌ˇ̌

L4.�N /

�
�
c2
ˇ̌ˇ̌
vN;K � vN ˇ̌ˇ̌ 12

L2.�N /

ˇ̌ˇ̌
vN;K � vN ˇ̌ˇ̌ 12

H 1
0.�N /

jj'.t/jjH 1
0.�N /


ˇ̌ˇ̌vN;K ˇ̌ˇ̌ 12
L2.�N /

ˇ̌ˇ̌
vN;K

ˇ̌ˇ̌ 1
2

H 1
0.�N /

�

C
�
c2
ˇ̌ˇ̌
vN
ˇ̌ˇ̌ 1
2

L2.�N /

ˇ̌ˇ̌
vN
ˇ̌ˇ̌ 1
2

H 1
0.�N /

jj'.t/jjH 1
0.�N /


ˇ̌ˇ̌vN;K � vN ˇ̌ˇ̌ 12
L2.�N /

ˇ̌ˇ̌
vN;K � vN ˇ̌ˇ̌ 12

H 1
0.�N /

�
;
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we have, for some c3 > 0,

ˇ̌̌
ˇ
Z T

0



b
�
vN;K; vN;K;'.t/

� � b �vN ; vN ;'.t/�� dt

ˇ̌̌
ˇ

�
�
c3
ˇ̌ˇ̌
vN;K � vN ˇ̌ˇ̌ 14

L2..0;T /I NHN /

ˇ̌ˇ̌
vN;K � vN ˇ̌ˇ̌ 14

L2..0;T /IH 1
0.�N //


ˇ̌ˇ̌vN ˇ̌ˇ̌ 14
L2..0;T /I NHN /

ˇ̌ˇ̌
vN;K

ˇ̌ˇ̌ 1
4

L2..0;T /IH 1
0.�N //

�

C
�
c3
ˇ̌ˇ̌
vN
ˇ̌ˇ̌ 1
4

L2..0;T /I NHN /

ˇ̌ˇ̌
vN
ˇ̌ˇ̌ 1
4

L2..0;T /IH 1
0.�N //


 ˇ̌ˇ̌
vN;K � vN ˇ̌ˇ̌ 14

L2..0;T /I NHN /

ˇ̌ˇ̌
vN;K � vN ˇ̌ˇ̌ 14

L2..0;T /IH 1
0.�N //

�
! 0

(4.223)

as vN;K ! vN , strongly in L2..0; T /IH 1
0.�N //, which serves to complete the

proof of (4.219d). ut
With Lemma 4.16 in hand, we are now in a position to state and prove the

following result for the sequence of approximating problems (4.217), (4.218):

Theorem 4.17. Let f N and vN0 satisfy (4.215). Then there exists a function vN

which satisfies (4.216), (4.217) and (4.218). Moreover, for any t 2 .0; T /, vN

satisfies the energy identity

ˇ̌ˇ̌
vN
ˇ̌ˇ̌2
L2.�N /

C 4�1

Z t

0

Z
�N

@eij.v
N /

@xk
� @eij.v

N /

@xk
dx d� C 2

Z t

0

˝
�.vN /; vN

˛
d�

D ˇ̌ˇ̌
vN0
ˇ̌ˇ̌2
L2.�N /

C 2

Z t

0

.f N .�/; vN / d�: (4.224)

Proof. To prove Theorem 4.17 we will use the Galerkin method. Since NV N is
separable and J .�N / is dense in NV N , there exists a sequence w1;w2; : : : of elements
of J .�N / which form a basis of NV N , with .wi ;wj / D 0, for i ¤ j , and�
wi ;wj

�
L2.�N /

D , for i D j . For each fixed K , we define an approximate

solution vN;K of (4.217), (4.218) as follows: set

vN;K D
KX
lD1

gkl.t/wl : (4.225)
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Then, vN;K is to satisfy

Z
�N

dvN;Ki

dt
wmi dx C 2�1

Z
�N

@eij.v
N;K/

@xk

@eij.wm/
@xk

dx

C
Z
�N

2�.vN;K/eij.v
N;K/eij.wm/ dx

C
Z
�N

vN;Kj
@vN;K i

@xj
wmi dx �

Z
�N

f N
i wmi dx D 0

(4.226)

form D 1; 2; : : : ; K and

vN;K.0/ D vN;K0 (4.227)

where vN;K.0/ is the orthogonal projection in NH N of vN0 onto the space spanned by
w1;w2; : : : ;wk .

Equations (4.225), (4.226), (4.227) yield a nonlinear differential system for the
functions g1K; g2K; : : : ; gKK , namely,

g0
lK D �

f N .t/;wl
�
L2.�N /

C �l.g1K; g2K; : : : ; gKK/ (4.228)

glK.0/ D the l-th component of vN;K0 (4.229)

where �l , l D 1; : : : ; K is a Lipschitz function of g1K; g2K; : : : ; gKK on any
bounded domain of RK because of the regularity of �.v/. Since the Fl.t/ D�
f N .t/;wl

�
L2.�N /

are square integrable, there exists a maximal solution of (4.228),

(4.229) on Œ0; tK�. If tK < T , then
ˇ̌ˇ̌
vN;K

ˇ̌ˇ̌
L2.�N /

must tend to C1 as t ! tK ;
the a priori estimates we shall prove show that this does not happen and therefore
tK D T .

In order to proceed we multiply (4.226) by glK.t/ and sum the resulting equations
for l D 1; : : : ; K . Using the fact that b.vN;K ; vN;K ; vN;K/ D 0, we obtain

Z
�N

dvN;K i

dt
vN;K i dx C 2�1

Z
�N

@eij.v
N;K/

@xk

@eij.v
N;K/

@xk
dx

C
Z
�N

2�.vN;K/eij.v
N;K/eij.v

N;K/ dx

�
Z
�N

f N
i v

N;K
i dx D 0:

(4.230)
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Dropping the positive term
Z
�N

2�.vN;K/eij.v
N;K/eij.v

N;K/ dx in (4.230), and

applying Lemma 4.14, Young’s inequality (see Appendix A), and the embedding
H 2.�N / ,! L2.�N /, we find that there exists a constant c1 > 0, depending on �1
and a, such that

1

2

d

dt

ˇ̌ˇ̌
vN;K

ˇ̌ˇ̌2
L2.�N /

Cc1
ˇ̌ˇ̌
vN;K

ˇ̌ˇ̌2
H 2.�N /

� ˇ̌ˇ̌
f N

ˇ̌ˇ̌
L2.�N /

ˇ̌ˇ̌
vN;K

ˇ̌ˇ̌
L2.�N /

� 1

2c1

ˇ̌ˇ̌
f N

ˇ̌ˇ̌
L2.�N /

C 1

2
c1
ˇ̌ˇ̌
vN;K

ˇ̌ˇ̌2
L2.�N /

� 1

2c1

ˇ̌ˇ̌
f N

ˇ̌ˇ̌2
L2.�N /

C 1

2
c1
ˇ̌ˇ̌
vN;K

ˇ̌ˇ̌2
H 2.�N /

:

(4.231)

Therefore, for some c2 > 0, depending on �1 and a, it follows that

1

2

d

dt

ˇ̌ˇ̌
vN;K

ˇ̌ˇ̌2
L2.�N /

C c1
ˇ̌ˇ̌
vN;K

ˇ̌ˇ̌
H 2.�N /

� c2
ˇ̌ˇ̌
f N

ˇ̌ˇ̌2
L2.�N /

: (4.232)

Integrating (4.232) from 0 to s � T now yields the estimate

ˇ̌ˇ̌
vN;K.s/

ˇ̌ˇ̌2
L2.�N /

Cc1
Z t

0

ˇ̌ˇ̌
vN;K.�/

ˇ̌ˇ̌2
H 2.�N /

d�

� ˇ̌ˇ̌
vN;K0.s/

ˇ̌ˇ̌
L2.�N /

C c2

Z t

0

ˇ̌ˇ̌
f N

ˇ̌ˇ̌2
L2.�N /

d�

� jjv0.s/jj2L2.�N / C c2

Z t

0

ˇ̌ˇ̌
f N

ˇ̌ˇ̌2
L2.�N /

d�:

(4.233)

As a consequence of (4.233), we have

sup
s2Œ0;T �

ˇ̌ˇ̌
vN;K.s/

ˇ̌ˇ̌2
L2.�N /

� jjv0.s/jj2L2.�N / C c2

Z t

0

ˇ̌ˇ̌
f N

ˇ̌ˇ̌2
L2.�N /

d� (4.234)

and

Z t

0

ˇ̌ˇ̌
vN;K.�/

ˇ̌ˇ̌2
H 2.�N /

d� � 1

c1
jjv0.s/jj2L2.�N / C c2

c1

Z t

0

ˇ̌ˇ̌
f N

ˇ̌ˇ̌2
L2.�N /

d�:

(4.235)

Now, let ' 2 C1.Œ0; T �; NV N / and let 'K be the projection of ', in NV N , onto the
space generated by w1;w2; : : : ;wK . By (4.226), we have
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Z
�N

dvN;K i

dt
wmi dx D �2�1

Z
�N

@eij.v
N;K/

@xk

@eij.wm/
@xk

dx

�
Z
�N

2�.vN;K/eij.v
N;K/eij.wm/ dx

�
Z
�N

vN;Kj
@vN;K i

@xj
wmi dx

C
Z
�N

f N
i wmi dx; m D 1; 2; : : : ; K:

(4.236)

Using (4.236), and the definition of 'K , we obtain

Z T

0

Z
�N

dvN;K i

dt
'K dx dt D 2�1

Z T

0

Z
�N

@eij.v
N;K/

@xk

@eij.'
K/

@xk
dx dt

�
Z T

0

Z
�N

2�.vN;K/eij.v
N;K/eij.'

K/ dx dt

�
Z T

0

Z
�N

vN;Kj
@vN;K i

@xj
'Ki dx dt

C
Z T

0

Z
�N

f N'K dx dt

D I1 C I2 C I3 C I4: (4.237)

However, by virtue of (4.235), for some C1 > 0,

jI1 C I4j � C1
ˇ̌ˇ̌
'K
ˇ̌ˇ̌
L2..0;T /I NV N /: (4.238)

Also, as

�.vN;K/ � �0�
� ˛
2

we have, for some C2 > 0,

jI2j � 2�0�
� ˛
2

Z T

0

Z
�N

ˇ̌
eij.v

N;K/eij.'
K/
ˇ̌
dx dt

� C2
ˇ̌ˇ̌
'K
ˇ̌ˇ̌
L2..0;T /I NV N /:

(4.239)
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Employing integration by parts in the integral I3, and using the fact that
div vN;K D 0, as well as Lemma 4.12 yields, for some C3 > 0,

jI3j D
ˇ̌
ˇ̌�
Z T

0

Z
�N

vN;Kj
@vN;K i

@xj
'Ki dx dt

ˇ̌
ˇ̌

�
ˇ̌
ˇ̌Z T

0

Z
�N

vN;Kj v
N;K

i

'Ki
@xj

dx dt

ˇ̌
ˇ̌

�
Z T

0

�Z
�N

ˇ̌
vN;Kj

ˇ̌4� 1
4
�Z

�N

ˇ̌
vN;K i

ˇ̌4� 1
4

 Z
�N

ˇ̌
ˇ̌@'Ki
@xj

ˇ̌
ˇ̌2
! 1

2

dt

�
Z T

0

� ˇ̌ˇ̌
vN;K

ˇ̌ˇ̌ 1
2

L2.�N /

ˇ̌ˇ̌
vN;K

ˇ̌ˇ̌ 1
2

H 1.�N /

ˇ̌ˇ̌
vN;K

ˇ̌ˇ̌ 1
2

L2.�N /



ˇ̌ˇ̌
vN;K

ˇ̌ˇ̌ 1
2

H 1.�N /

ˇ̌ˇ̌
'K
ˇ̌ˇ̌
H 1.�N /

	
dt

� C3

Z T

0

ˇ̌ˇ̌
vN;K

ˇ̌ˇ̌
L2.�N /

ˇ̌ˇ̌
vN;K

ˇ̌ˇ̌
H 1.�N /

ˇ̌ˇ̌
'K
ˇ̌ˇ̌
H 1.�N /

dt

(4.240)

and, thus, by virtue of (4.234), we obtain for some C4 > 0, C5 > 0, the bounds

jI3j � C4

Z T

0

ˇ̌ˇ̌
vN;K

ˇ̌ˇ̌
H 1.�N /

ˇ̌ˇ̌
'K
ˇ̌ˇ̌
H 1.�N /

dt

� C5
ˇ̌ˇ̌
'K
ˇ̌ˇ̌
L2..0;T /I NV N /:

(4.241)

Combining (4.237) with (4.238), (4.239) and (4.241) we may conclude that, for
some C > 0,

ˇ̌
ˇ̌Z T

0

Z
�N

dvN;K i

dt
' dx dt

ˇ̌
ˇ̌ � C

ˇ̌ˇ̌
'K
ˇ̌ˇ̌
L2..0;T /I NV N /

� C jj'jjL2..0;T /I NV N /

(4.242)

as well as

ˇ̌
ˇ̌
ˇ̌
ˇ̌dvN;K i

dt

ˇ̌
ˇ̌
ˇ̌
ˇ̌
L2..0;T /I NV 0

N /

� C: (4.243)

However, (4.234) implies that the sequence vN;K remains in a bounded set of
L1..0; T /I NH N /; therefore, (4.235) and (4.243) imply that the sequence vN;K

remains in a bounded set of the Banach space Y D fv 2 L2..0; T /I NV N / j v0 2
L2..0; T /I NV 0

N /g. By Lemma A.9, Y � L2..0; T /IH 1
0.�N // is compact; hence, we

can extract a subsequence vN;K
0

of vN;K such that
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vN;K
0 ! .vN /�; in the weak * topology of L1..0; T /I NH N /;

vN;K
0 ! vN ; in the weak topology of L2..0; T /I NV N /;

and

vN;K
0 ! vN ; in the strong topology of L2..0; T /IH 1

0.�N //:

Thus, as K 0 ! C1,

Z T

0

�
vN;K

0 � .vN /;'
�
L2.�N /

dt ! 0; 8' 2 L1..0; T /I NH N / (4.244)

and

Z T

0

D
vN;K

0 � vN ;'
E

NV � NV 0
dt ! 0; 8' 2 L2..0; T /I NV 0

N /: (4.245)

If we now use the fact that

L2..0; T /I NH N / ,! L1..0; T /I NH N /

as well as the embedding

L2..0; T /I NH N / ,! L2..0; T /I NV 0
N /

then (4.244) and (4.245) yield

lim
K0!1

Z T

0

�
vN;K

0 � .vN /�;'
�

dt ! 0; 8' 2 L2..0; T /I NH N / (4.246)

and

lim
K0!1

Z T

0

D
vN;K

0 � vN ;'
E

NV � NV 0
dt ! 0; 8' 2 L2..0; T /I NH N /: (4.247)

By subtracting (4.247) from (4.246), we find that vN D .vN /� 2 L2..0; T /I NV N /\
L1..0; T /I NH N /; thus, we can extract a subsequence vN;K

0

from vN;K such that, as
K 0 ! 1,

8̂̂
<
ˆ̂:
vN;K

0 ! vN ; in L2..0; T /I NH N /; weak *;

vN;K
0

* vN ; in L2..0; T /I NV N /; weakly;

vN;K
0 ! vN ; in L2..0; T /I NH N /; strongly:

(4.248)
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Now, let � 2 C1Œ0; T �, with �.0/ D 0. We multiply (4.226) by �, and then integrate
by parts, so as to obtain

�
Z T

0

�
vN;K

0

; �0.t/wm
�
L2.�N /

dt C 2�1

Z T

0

 
@eij.v

N;K0
/

@xk
;
@eij.�.t/wm/

@xk

!
L2.�N /

dt

C
Z T

0

D
N .vN;K

0

/; �.t/wm
E

dt

C
Z T

0
b
�
vN;K

0

; vN;K
0

; �.t/wm
�

dt

D
Z T

0

�
f N ; �.t/wm

�
L2.�N /

dt C
�
vN;K

0

0;w
m
�
L2.�N /

�.0/:

(4.249)

Using Lemma 4.16, and taking the limit as m ! 1 in (4.249), yields

�
Z T

0

�
vN;K

0

; �0.t/'
�
L2.�N /

dt C 2�1

Z T

0

 
@eij.v

N;K0

/

@xk
;
@eij.�.t/'/

@xk

!
L2.�N /

dt

C
Z T

0

D
N .vN;K

0

/; �.t/'
E

dt

C
Z T

0

b
�
vN;K

0

; vN;K
0

; �.t/'
�

dt

D
Z T

0

�
f N ; �.t/'

�
L2.�N /

dt C
�
vN;K

0

0;'
�
L2.�N /

�.0/: (4.250)

Equation (4.250) holds for any ' expressible as a linear combination of w1;w2; : : :;
also, it holds, by continuity, for any ' 2 NV N . Now let � 2 D.0; T /; then

�
Z T

0

�
vN;K

0

;'
�
�0.t/ dt

D
Z T

0

8<
:2�1

 
@eij.v

N;K0

/

@xk
;
@eij.'/

@xk

!
L2.�N /

�
D
N .vN;K

0

/;'
E

� b
�
vN;K

0

; vN;K
0

;'
�

C �
f N ;'

�
L2.�/

)
�.t/ dt: (4.251)
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Therefore, 8' 2 NV N ,

d

dt

�
vN;K

0

;'
�
L2.�N /

C 2�1

 
@eij.v

N;K0

/

@xk
;
@eij.'/

@xk

!
L2.�N /

C
D
N .vN;K

0

/;'
E

C b
�
vN;K

0

; vN;K
0

;'
�

D �
f N'

�
L2.�/

:

(4.252)

in the distribution sense. By Lemma A.8, vN satisfies (4.217) and .vN /0 2
L2..0; T /I NV 0

N /. We want to show next that vN satisfies (4.218); to do this we
multiply (4.252) by �.t/ and integrate from 0 to T so as to obtain

�
Z T

0

�
vN;K

0

;'
�
L2.�/

�0.t/ dt C
Z T

0

8<
:�2�1

 
@eij.v

N;K0
/

@xk
;
@eij.�.t/'/

@xk

!
L2.�N /

9=
; dt

C
Z T

0

D
N .vN;K

0

/; �.t/'
E

dt C
Z T

0
b
�
vN;K

0

; vN;K
0

; �.t/'
�

dt

D
Z T

0

�
f N ; �.t/'

�
L2.�N /

dt C
�
vN .0/;'

�
L2.�N /

�.0/: (4.253)

By comparison with (4.250), we may conclude that

�
vN .0/� vN0 ; v

�
L2.�N /

�.0/ D 0; 8v 2 NV N (4.254)

and, therefore, if we choose �.0/ ¤ 0, we obtain

�
vN .0/� vN0 ; v

�
L2.�N /

D 0; 8v 2 NV N (4.255)

which implies that vN .0/ D vN0 . Our last task is to establish the energy inequality
(4.224); we begin by noting that as v0 2 L2..0; T /I NV 0

N / and v 2 L2..0; T /I NV N /,
Lemma A.9 implies that v 2 C.Œ0; T �I NH N / as well as

d

dt
jjvjj2

L2.�N /
D 2

�
v0; v

�
L2.�N /

(4.256)

in the distribution sense. Taking the inner product of (4.217) with vN , and using the
fact that b.vN ; vN ; vN / D 0, as well as (4.256), we obtain

d

dt

ˇ̌ˇ̌
vN
ˇ̌ˇ̌2
L2.�N /

C 4�1

Z
�N

@eij.v
N /

@xk

@eij.v
N /

@xk
dx C 2

˝
N .vN /; vN

˛

D 2
�
f N ; vN

�
L2.�N /

:

(4.257)



306 4 General Existence and Uniqueness Theorems for Incompressible Bipolar and : : :

By integrating this last equation from 0 to t , we find that

ˇ̌ˇ̌
vN
ˇ̌ˇ̌2
L2.�N /

C 4�1

Z t

0

Z
�N

@eij.v
N /

@xk

@eij.v
N /

@xk
dx C 2

Z t

0

˝
N .vN /; vN

˛
d�

D ˇ̌ˇ̌
vN0
ˇ̌ˇ̌2
L2.�N /

C 2

Z t

0

�
f N ; vN

�
L2.�N /

d�

(4.258)

which completes the proof of Theorem 4.17. ut

4.4.4 Existence of Incompressible, Bipolar, Viscous Flow in�a

With the existence result of Theorem 4.17 for the approximation (4.216)–(4.218)
in hand, we are now in a position to establish both existence and uniqueness for
(4.208)–(4.210), given that f 2 L2..0; T /I NH / and v0 2 NH . Existence of solutions
for the problem (4.208)–(4.210) will be established below in Theorem 4.18, while
the uniqueness result will follow in Sect. 4.4.5, i.e., Theorem 4.19. The precise
existence result is the following:

Theorem 4.18. Given f 2 L2..0; T /I NH / and v0 2 NH , there exists a solution v of
(4.209), (4.210) which satisfies the regularity conditions (4.208).

Proof. Let NV and NH be defined by (4.169), (4.170) and NV N , NH N by (4.213) so that
NV 1 � NV 2 � � � � � NV and NH 1 � NH 2 � � � � � NH . For f 2 L..0; T /I NH /, let f N be

the projection of f .t/ 2 NH onto NH N , t 2 .0; T /. Similarly, for v0 2 NH let vN0 be
the projection of v0 onto NH N . Then we have f N 2 L..0; T /I NH N / and vN0 2 NH N .
Furthermore, it is obvious that

ˇ̌ˇ̌
f N

ˇ̌ˇ̌
L2..0;T /I NHN /

� jjf jjL2..0;T /I NH / ; (4.259a)
ˇ̌ˇ̌
vN0
ˇ̌ˇ̌
L2.�N /

� jjv0jjL2.�/: (4.259b)

Now, let vN be a solution of (4.216)–(4.218) corresponding to f N and vN0 ; the
existence of such a solution is guaranteed by Theorem 4.17. By Theorem 4.17, and
an application of Hölder’s inequality, (4.224) yields

ˇ̌ˇ̌
vN
ˇ̌ˇ̌2
L2.�N /

C 4�1

Z t

0

Z
�N

@eij.v
N /

@xk

@eij.v
N /

@xk
dx d�

C 2

Z t

0

˝
�.vN /; vN

˛
d�

D ˇ̌ˇ̌
vN0
ˇ̌ˇ̌2
L2.�N /

C 2

Z t

0

ˇ̌ˇ̌
f N .�/

ˇ̌ˇ̌
L2.�N /

� ˇ̌ˇ̌vN ˇ̌ˇ̌
L2.�N /

d�: (4.260)
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Thus, if we use Lemma 4.14, and Young’s inequality, we find that there exist
constants c1; c2 > 0, independent of N , such that

ˇ̌ˇ̌
vN
ˇ̌ˇ̌2
L2.�N /

C 2c1

Z t

0

ˇ̌ˇ̌
vN
ˇ̌ˇ̌2
H 2.�N /

d�

C 2

Z t

0

˝
�.vN /; vN

˛
d�

� ˇ̌ˇ̌
vN0
ˇ̌ˇ̌2
L2.�N /

C c2

Z t

0

ˇ̌ˇ̌
f N .�/

ˇ̌ˇ̌2
L2.�N /

C c1

Z t

0

ˇ̌ˇ̌
vN
ˇ̌ˇ̌2
L2.�N /

d�

� ˇ̌ˇ̌
vN0
ˇ̌ˇ̌2
L2.�N /

C c2

Z t

0

jjf .�/jj2
L2.�/

C c1

Z t

0

jjvjj2
L2.�/

d�:

(4.261)

Dropping the positive term 2

Z t

0

˝
�.vN /; vN

˛
d� in (4.261), and simplifying,

we then obtain the estimate

ˇ̌ˇ̌
vN
ˇ̌ˇ̌2
L2.�N /

C c1

Z t

0

ˇ̌ˇ̌
vN
ˇ̌ˇ̌2
H 2.�N /

d� � ˇ̌ˇ̌
vN0
ˇ̌ˇ̌2
L2.�N /

C c2

Z t

0

jjf .�/jj2
L2.�/

(4.262)

in which case

sup
s2Œ0;T �

ˇ̌ˇ̌
vN .s/

ˇ̌ˇ̌2
L2.�N /

� ˇ̌ˇ̌
vN0
ˇ̌ˇ̌2
L2.�N /

C c2

Z t

0

jjf .�/jj2
L2.�/

(4.263a)

and

Z t

0

ˇ̌ˇ̌
vN
ˇ̌ˇ̌2
H 2.�N /

d� � 1

c1

ˇ̌ˇ̌
vN0
ˇ̌ˇ̌2
L2.�N /

C c2

c1

Z t

0

jjf .�/jj2
L2.�/

: (4.263b)

We also have the a priori estimate

ˇ̌
ˇ̌
ˇ̌
ˇ̌dvN

dt

ˇ̌
ˇ̌
ˇ̌
ˇ̌
L2..0;T /I NV 0

/

� c3; N D 1; 2; : : : (4.264)

for some constant c3 > 0, independent ofN . The proof of (4.264) is similar to that of
(4.242), the only difference being that, in (4.247), we must take ' 2 L2..0; T /I NV /
and consider 'N as the projection of ' in NV onto NV N .

Now, because NV 1 � NV 2 � � � � � NV , we have NV 0
1 � NV 0

2 � � � � � NV 0
. As a

conequence of (4.264) the following estimate is, therefore, valid:

ˇ̌
ˇ̌
ˇ̌
ˇ̌dvN

dt

ˇ̌
ˇ̌
ˇ̌
ˇ̌
L2..0;T /I NV 0

M /

� c3; N D 1; 2; : : : andM D 1; 2; : : : : (4.265)
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Also, we know that

NV N ,! W 2;2.�N / ,! W 1;2.�N / ,! NV 0
N (4.266)

with W 2;2.�N / ,! W 1;2.�N / being compact. Therefore, employing (4.263a,b),
(4.264), and (4.265), and using a standard diagonal process, it is easy to show that
there exists a subsequence vN

0

which converges to v, weak * in L1..0; T /I NH /,
and weakly in L2..0; T /I NV /, as well as strongly in L2..0; T /IH 1

0.�N //, for each
N D 1; 2; : : :. We next show that v satisfies (4.208) and (4.209); we begin by noting
that for v 2 J .�/, there existsM such that the support of v is in�N 0 [�C

N 0 [��
N 0 ,

forN 0 � M . Since v 2 NV N 0 , by (4.249), forN 0 � M , we have 8� 2 C Œ0; T �, with
�.1/ D 0,

�
Z T

0

�
vN ; �0.t/'

�
dt C 2�1

Z T

0

 
@eij.v

N 0

/

@xk
;
@eij.�.t/'/

@xk

!
L2.�N /

dt

C
Z T

0

D
N .vN

0

/; �.t/'
E

dt C
Z T

0

b
�
vN

0

; vN
0

; �.t/'
�

dt

D
Z T

0

�
f N 0

; �.t/'
�
L2.�/

dt C
�
vN

0

0 ;'
�
L2.�/

�.0/: (4.267)

As vN
0 ! v strongly in L2..0; T /IH 1

0.�N //, so that v is the strong limit of a
sequence of functions with compact support in �N 0 [ �C

N 0 [ ��
N 0 , it is easy to

establish the following results:

lim
N 0!1

Z T

0

�
vN

0

; �0.t/'
�
L2.�/

dt D
Z T

0

�
v; �0.t/'

�
L2.�/

dt; (4.268a)

lim
N 0!1

Z T

0

D
N .vN

0

/; �.t/'
E

dt D
Z T

0

hN .v; �.t/'i dt; (4.268b)

and

lim
N 0!1

Z T

0

b
�
vN

0

; vN
0

; �.t/'
�

dt D
Z T

0

b.v; v; �.t/'/ dt: (4.268c)

Furthermore, the fact that vN
0

* v weakly in L2..0; T /I NV 0
/, yields

lim
N 0!1

Z T

0

 
@eij.v

N 0

/

@xk
;
@eij.�.t/'/

@xk

!
L2.�N /

dt

D
Z T

0

�
@eij.v/

@xk
;
@eij.�.t/'/

@xk

�
L2.�/

dt:

(4.269)
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Using (4.268a,b,c), and taking the limit as N 0 ! 1 in (4.267), we obtain

�
Z T

0

�
v; �0.t/'

�
L2.�/

dt C 2�1

Z T

0

�
@eij.v/

@xk
;
@eij.�.t/'/

@xk

�
L2.�/

dt

C
Z T

0

hN .v/; �.t/'i dt C
Z T

0

b.v; v; �.t/'/ dt

D
Z T

0

.f ; �.t/'/L2.�/ dt C .v0;'/L2.�/�.0/; 8' 2 J .�/: (4.270)

By continuity, (4.270) holds for all v 2 NV ; if we take � 2 D.0; T / in (4.270), we
obtain

�
Z T

0

�
v; �0.t/'

�
L2.�/

dt C 2�1

Z T

0

�
@eij.v/

@xk
;
@eij.�.t/'/

@xk

�
L2.�N /

dt

C
Z T

0

hN .v/; �.t/'i dt C
Z T

0

b.v; v; �.t/'/ dt

D
Z T

0

.f ; �.t/'/L2.�/ dt (4.271)

which implies that, in the sense of distributions,

d

dt
.v;'/L2.�/ C 2�1

�
@eij.v/

@xk
;
@eij.�.t/'/

@xk

�
L2.�N /

C hN .v/; �.t/'i C b.v; v; �.t/'/

D .f ; �.t/'/L2.�/; 8v 2 NV : (4.272)

As a direct consequence of (4.272) we have, therefore,

dv

dt
C 2�1AvCN .v/CB.v; v/ D f (4.273)

and

dv

dt
2 L2..0; T /I NV 0

/: (4.274)

The proof will be complete if we can show that v satisfies the initial condition; to
this end, we take the inner product, in L2.�/, of (4.273) with �.t/', where ' 2 NV ;
we then integrate by parts so as to obtain
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�
Z T

0

�
v; �0.t/'

�
L2.�/

dt C 2�1

Z T

0

�
@eij.v/

@xk
;
@eij.�.t/'/

@xk

�
L2.�N /

dt

C
Z T

0

hN .v/; �.t/'i dt C
Z T

0

b.v; v; �.t/'/ dt

D
Z T

0

.f ; �.t/'/L2.�/ dt C .v.0/;'/L2.�/�.0/: (4.275)

Comparing (4.270) with (4.275), we obtain

.v.0/� v0;'/L2.�/�.0/ D 0; 8� 2 C Œ0; 1� and 8' 2 NV (4.276)

which implies that v.0/ D v0. ut
Remarks. By virtue of Theorem 4.18, and Lemma A.9, it follows that the solution
of (4.209), (4.210), which satisfies (4.208), actually belongs to C.Œ0; T �I NH /.

4.4.5 Uniqueness of Bipolar Flow in �a

Theorem 4.18 of Sect. 4.4.4 established the existence of a solution of (4.209),
(4.210), satisfying (4.208); in the subsection we will prove that the solution is, in
fact, unique. Thus, suppose that u and v are two solutions of (4.209), (4.210), which
satisfy (4.208), and let T < 1 be fixed. Then,

8<
:
du
dt

C 2�1 NAu CN .u/CB.u;u/ D f ;

u.0/ D v0;

(4.277)

and

8<
:
dv

dt
C 2�1 NAvCN .v/CB.v; v/ D f ;

v.0/ D v0:

(4.278)

Let w D u � v, so that w.0/ D 0. Subtracting (4.278) from (4.277) we obtain the
equation

w0 C 2�1 NAw CN .u/�N .v/CB.u;u/�B.v; v/ D 0: (4.279)

Taking the inner product of (4.279) with w then yields
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1

2

d

dt

ˇ̌ˇ̌
w2
ˇ̌ˇ̌
L2.�/

C 2�1

�
@eij.w/
@xk

;
@eij.w/
@xk

�
L2.�/

C hN .u/ �N .v/;wi

C b.u;u;w/ � b.v; v;w/ D 0: (4.280)

From the monotonicity of �.u/ it follows that

hN .u/�N .v/;wi D 2

Z
�



�.u/eij.u/� �.v/eij.v/

�
eij.w/ dx

� 0

(4.281)

and we also have

b.u;u;w/� b.v; v;w/ D b.w;u;w/ � b.v;w;w/
D b.w;u;w/

(4.282)

so that for some ci > 0, i D 1; 2; 3,

jb.u;u;w/� b.v; v;w/j �
ˇ̌
ˇ̌Z
�

wj
@ui
@xj

wi dx

ˇ̌
ˇ̌

� c1 jjwjjL4.�/ jjwjjL4.�/ jujH 1.�/

� c2jjwjjL2.�/jjwjjH 1.�/jujH 1.�/

� c3jjwjjL2.�/jjwjjH 2.�/jjujjH 2.�/:

(4.283)

Applying Lemma 4.14, in conjunction with (4.280)–(4.283), we find that, for some
c4 > 0,

d

dt
jjwjj2

L2.�/
C 2c4 jjwjj2

H 2.�/
� 2c3jjwjjL2.�/jjwjjH 2.�/jjujjH 2.�/

� c23
2c4

jjwjj2
L2.�/

jjujj2
H 2.�/

C 2c4 jjwjj2
H 2.�/

(4.284)
or, for some c5 > 0,

d

dt
jjwjj2

L2.�/
� c5 jjujj2

H 2.�/
jjwjj2

L2.�/
< 0: (4.285)

We now multiply (4.285) by e
�c5

R t
0 jjujj2

H 2.�/
d�

so as to obtain

d

dt

�
jjwjj2

L2.�/
e

�c5
R t
0 jjujj2

H 2.�/
d�

	
� 0: (4.286)
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Finally, integrating (4.286) from 0 to t , and using the fact that jjw.0/jj2
L2.�/

D 0,
we have

jjwjj2
L2.�/

e
�c5 R t0 jjujj2

H 2.�/
d� � 0 (4.287)

so that w D 0, 0 � t � T ; this serves to establish the following result:

Theorem 4.19. Given that f 2 L2..0; T /I NH / and v0 2 NH , the solution of v
of (4.209), (4.210), which satisfies the regularity conditions (4.208), is uniquely
determined.

4.5 Related Work on Existence and Uniqueness
for Navier–Stokes and Some Generalizations

4.5.1 Introduction

In this section we take up the problems of existence, uniqueness, and stability
for some of the non-Newtonian fluid dynamics models which were introduced in
Sect. 1.6 and which are related, in various ways, to the model of the nonlinear
bipolar fluid. We also present a brief review of existence and uniqueness results for
the incompressible Navier–Stokes equations, to which the bipolar equations reduce
when ˛ D �1 D 0; this review is offered in Sect. 4.5.2, where we discuss the history
of the outstanding problems in space dimension n D 3. We also provide both general
and technical versions of these problems as they appear on the Clay Institute’s
website in connection with the formulation of the corresponding millennium prize
problem. Some of the classical results on partial regularity for the Navier–Stokes in
R3, which were obtained in [Sch,CKN], and [Lin], are also presented. Existence and
uniqueness results for solutions of the Ladyzhenskaya generalization of the Navier–
Stokes equations, which was introduced in Sect. 1.6, are presented in Sect. 4.5.3;
this model is, in many respects, similar to the one the nonlinear bipolar model
reduces to when the higher-order viscosity �1 D 0. For the problems discussed
in Sect. 4.5.3 we present, not only the conclusions obtained in the original work of
Ladyzhenskaya [La6], but also the results obtained in [Lio2] and, more recently,
those claimed by Du and Gunzburger [DuG]. In Sect. 4.5.4 we introduce the
existence and uniqueness theorems obtained by Lions [Lio1, 2], Ladyzhenskaya
[La5], and Beirăo da Veiga [BdV2, 3] for the regularization of the Navier–Stokes
equations obtained by adding artificial viscosity to the model. In somewhat greater
detail, we present the more recent results which are to be found in [OS1, 2] for
these models; they are mathematically similar to the one for the linear bipolar
fluid except for the fact that the work referenced in Sect. 4.5.4 employs Neumann
type boundary conditions in addition to the usual non-slip condition (as opposed
to the type of higher-order, physically motivated, boundary conditions derived
in Sect. 1.4.4 for the incompressible bipolar model). Also discussed, in Sect. 4.5.4
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is the issue of convergence of the solutions of the regularized problem to that of
the corresponding Navier–Stokes system as the regularization parameter tends to
zero. In Sect. 4.5.5 we outline, in some considerable detail, the results on existence,
uniqueness, and stability for multipolar fluids of grade 3 obtained in [BNR]. After
first defining the notion of weak solution, such a solution is obtained as the limit
of a suitable sequence of Galerkin approximations; the solutions obtained satisfy
specific regularity conditions and a unique weak solution is then obtained under
different assumptions relative to the initial data with the concurrent loss of some
regularity. It is then shown, in Sect. 4.5.5, how the higher-order boundary conditions
for multipolar fluids of grade 3, which were specified in Sect. 1.6, follow from
the definition of a weak solution; this subsection concludes with the presentation
of an estimate which establishes the asymptotic stability of the rest state of a
multipolar fluid of grade 3, and which is based on the introduction and properties
of a suitably defined total energy functional. Finally, in Sect. 4.5.6 we briefly review
some of the results obtained in [FHT2] concerning the global, in time, regularity
of the three-dimensional viscous Camassa-Holm equations that were introduced
in Sect. 1.6; these global regularity results are proven in [FHT2] for the case
of periodic boundary conditions. Among the results established in [FHT2], and
discussed in Sect. 4.5.5, is the convergence, as a key length scale in the model tends
to zero, of a subsequence of solutions of the VCHE to a weak solution of the three-
dimensional Navier–Stokes system.

4.5.2 Existence and Uniqueness for the Incompressible
Navier–Stokes Equations

The Navier–Stokes system consists of the nonlinear partial differential equations
(1.8) subject to the constraint of incompressibility; we rewrite the problem here as
follows: find vi .x; t/, i D 1; : : : ; n, and p.x; t/ such that

�

�
@vi

@t
C vj

@vi

@xj

�
D � @p

@xi
C �0r2vi C �Fi ; (4.288a)

@vi

@xi
D 0 (4.288b)

where n D 2; 3, we sum on repeated indices, and all the quantities in (4.288a,b) have
previously been defined. Several different types of problems can be associated with
the system (4.288a,b) in both R

2 and R
3, namely, (i) the pure initial-value problem

posed in all of Rn, n D 2; 3, for which an initial condition v.x; 0/ D v0.x/, x 2 R
n,

is appended to (4.288a,b), (ii) the initial-boundary value problem posed on an open,
bounded domain � � R

n with, say, smooth boundary @� for which (4.288a,b) is
to hold in � 
 Œ0; T /, T > 0, with v a prescribed function on @� 
 Œ0; T /, T > 0,
and v.x; 0/ D v0.x/, for x 2 �, (iii) the exterior problem, which is similar to
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(ii) except it is posed in � 
 Œ0; T / with � D R
n= N�0, �0 an open bounded set in

R
n, and we also specify a radiation condition of the form lim

jxj!1
v.x; t/ D v1, and

(iv) the space-periodic problem posed on � 
 Œ0; T /, with � D Œ0; L�n, L > 0 and
periodic conditions imposed on both v0 and F .

The most sweeping generalization that one can make about all the problems
posed, above, for (4.288a,b) is that in R

2, as concerns both the existence of unique
weak solutions and the existence and uniqueness of classical solutions starting
from sufficiently smooth initial data, almost everything is settled in the affirmative
(see, however, the discussion of the current state of affairs concerning existence of
solutions for the steady state exterior problem in two dimensions in Sect. 3.4); for
existence and uniqueness for Navier–Stokes in dimn D 2 we refer the reader to
the original works of Kiselev and Ladyzhenskaya [KL] and Lions and Prodi [LP]
as well as to the monograph [La1] and the references listed in Sect. 1.1, namely,
[CF, Ga1], [Te1, 3], and [PL]. A very good (and relatively recent) survey article
covering the state of affairs with respect to open problems for the Navier–Stokes
system in dimensions n D 2 and 3 is that of Heywood [He2]. At the other end of the
spectrum, the most sweeping generalization that one can make about existence and
uniqueness for the various problems associated with (4.288a,b) in space dimn D 3

is that almost all the problems remain unresolved; these problems have proven to
be so notoriously difficult, even though many partial results abound (e.g., [CKN]
for some of the most notable of them), that their resolution constitutes one of the
Millennium Prize Problems (see [Dek] or the Clay Mathematics Institute web site
at www.claymath.org/millennium).

It is not the purpose of this subsection to provide an account of the difficulties
that are associated with proving the existence and uniqueness of sufficiently smooth
(global in time) solutions for the various types of problems associated with the
system (4.288a,b); there would be little to be gained from the exertion of such
an effort here for the following reasons: (1) the rationale for the introduction of
the viscous, incompressible bipolar fluid model in Sect. 1.4 was not motivated,
as has been the case with some of the other modifications of Navier–Stokes that
have appeared in the literature, by a desire to resolve the outstanding existence and
uniqueness issues associated with Navier–Stokes in space dimn D 3, and (2) so
many talented mathematicians have spent a considerable portion of their careers
addressing the problems involved, including the delineation of the many technical
reasons why the outstanding issues have not been settled, that there exists a wealth
of information available which is very easy to access. For example, on the Clay
Institute website itself there is a very nice concise article by C. Fefferman [Fe];
other discussions well worth looking at include the remarks in [Tao], the survey
by Galdi [Ga2], and the brief article by Constantin [Con2]. We will, therefore,
exercise some restraint and offer a few (mostly) non-technical remarks concerning
the initial-value problem in R

3 and some (slightly more technical) details relative to
the initial-boundary value problem posed on an open bounded domain� � R

3.
The actual statement of the Navier–Stokes millennium prize problem on the Clay

Institute’s website is of a distinctly non-technical nature, as follows:

www.claymath.org/millennium
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Prove or give a counter-example of the following statement: In three space dimensions and
time, given an initial velocity field, there exists a vector velocity and a scalar pressure field,
which are both smooth and globally defined, that solve the Navier–Stokes equations.

One technical version of this problem as stated in [Fe] would be the following:
For the Navier–Stokes system (4.288a,b) in space dimn D 3, with F D 0 and an
associated initial data function v0.�/ that is smooth, divergence free, and satisfies the
growth condition at infinity

jjD˛v0.x/jj � C˛K.1C jjxjj/�K; on R3 (4.289)

for any positive integer K , and any multi-index ˛ D .˛1; ˛2; ˛3/, prove that there
exist smooth functions p.x; t/, vi .x; t/, i D 1; 2; 3 on R3 
 Œ0;1/, i.e., p; vi 2
C1.R3 
 Œ0;1//, that satisfy the initial-value problem and the energy bound,

Z
R3

jjv.x; t/jj2 dx � C; 8t � 0 (4.290)

for some C > 0. Three other versions of the millennium prize problem, as it relates
just to the pure initial-value problem in R

3, may also be found in [Fe]. It is known
that the problem posed above has an affirmative answer provided v0 is sufficiently
small and if v0 is not assumed to be “small” then the result holds but only on
some “small” time interval Œ0; t1�, with t1 depending on the size of the initial data;
the largest such t1, for given initial data, is known as the “blow-up” time. For the
Navier–Stokes system (4.288a,b), should it ever be proven that a finite “blow-up”
time t1 exists it would imply that one or more of the velocity components vi .x; t/
would become unbounded as t ! t�1 .

The earliest (serious) work on the issues of existence and uniqueness for the
Navier–Stokes system is usually credited to Leráy [Le1, 2] who showed that a weak
solution of the initial-value problem in R3, .p; v/, exists with appropriate growth
properties; to this day it is not known whether the weak solutions constructed
by Leray (see, also, Hopf [Ho2]) are uniquely defined. Weak solutions for the
initial-value problem associated with (4.288a,b) are, of course, defined in a manner
entirely analogous to the way in which weak solutions for the incompressible bipolar
model were introduced in Sect. 4.2, i.e., integrate (4.288a) against a test function
and then integrate by parts to pull all the derivatives off the vi . For the various
types of problems associated with the system (4.288a,b) there are partial regularity
results available as well as a wealth of theorems asserting that, provided certain
other quantities associated with v.x; t/ can be proven to be globally controlled,
global existence and uniqueness for the associated Navier–Stokes system in three
space dimensions follows; details may be found in the many references cited at
the beginning of this subsection. For example, for the bounded domain case, with
� � R3, the total kinetic energy of the fluid is given by

KE.t/ D 1

2

Z
�

jjv.x; t/jj2 dx
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and, if there is no external source of energy, then there we have dissipation of the
kinetic energy because it is easily shown that

1

2

Z
�

jjv.x; t/jj2 dx C 


Z t

0

Z
�

jrv.x; s/j2 dx ds � 1

2

Z
�

jjv.x; 0/jj2 dx:

As noted, e.g., in [Con2], “the dissipation of kinetic energy is the strongest
quantitative information about the Navier–Stokes equations that is presently known
for general solutions. In his classical work [Le2] Leráy used this dissipation to
construct weak solutions with finite kinetic energy that exist for all time. . . . The
solutions have partial regularity [CKN] but are not known to be smooth. . . . The
uniqueness of the Leráy weak solutions is not known.” Many sufficient conditions
have been identified that would guarantee the global (in time) existence of smooth
solutions, e.g., the condition that, for arbitrary T > 0,

Z T

0

�Z
�

jrv.x; t/j2 dx

�2
dt < 1

guarantees that the velocity fields v 2 C1.�/ for all t > 0. We note that the
best partial regularity results appear to be those attributed to [Sch, CKN], and [Lin]
which characterize the singular set of a weak solution v.x; t/, namely, the set of
all points .x; t/ 2 R3 
 R1 such that v is unbounded in every neighborhood of
.x; t/, as belonging to a set of Hausdorff dimension of measure at most equal to
one (actually, a parabolic analogue of the usual concept of Hausdorff dimension
which is defined in Sect. 5.3.5 in connection with our discussion of attractors for the
bipolar model); this partial regularity result implies, in particular, that the singular
set does not contain a smooth curve in R3 
 R1. Because of its importance in the
development of efforts to either prove (or disprove) regularity for the solutions of
the Navier–Stokes equations in space dimn D 3, we will expand a little on these
remarks. A class of weak solutions of the Navier–Stokes system is introduced in
[CKN] which the authors refer to as the class of suitable weak solutions; these
solutions are functions v which satisfy

2

Z 1

0

Z
�

jrvj2� dx dt

�
Z 1

0

Z
�

n
jjvjj2 .�;t C��/C .jjvjj2 C 2p/v � r� C 2.v � F /�

o
dx dt

for all (bump) functions �.x; t/ which have compact support in � 
 Œ0;1/.
An important step in the analysis in [CKN] is the demonstration that the term

Z 1

0

Z
�

jjvjj2 .�;t C��/ dx dt
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can be made arbitrarily small by choosing � to satisfy the backwards heat equation.
To define the parabolic Hausdorff dimension one uses parabolic cylinders S instead
of spheres in R

n. The S have the form, for  > 0,

S.x; t/ D f.y; �/ j jjy � xjj < ; t � 2 < � < tg:

It is first proven in [CKN] that, if v; p, and F are sufficiently small on S, then v
is regular on S=2; this result is then shown to imply an estimate for the minimum
rate at which the development of a singularity could occur which, in turn, yields
a sufficient condition for a point .x; t/ to be a regular point of v. Finally, using a
covering of the singular set, the authors [CKN] show that any suitable weak solution
has the property that its singular set has a one-dimensional parabolic Hausdorff
measure equal to zero.

We will close this subsection by offering a few remarks about what is known
concerning existence and uniqueness of solutions for the initial-boundary value
problem associated with (4.288a,b) on an open bounded domain � � R3, with
smooth boundary @�, initial condition v.x; 0/ D v0.x/, x 2 �, and the (usual)
non-slip boundary condition v.x; t/ D 0, for .x; t/ 2 @� 
 Œ0; T /, T > 0.
We employ the following standard (i.e., [Te1]) notation employed when dealing
with the Navier–Stokes system (4.288a,b):

H D fv 2 L2.�/ j r � v D 0; in �; and v � � D 0; on @�g; (4.291a)

V D fv 2 H 1
0.�/ j r � v D 0; in �g; (4.291b)

D.A/ D H 1
0.�/ \H 2.�/; (4.291c)

and

Av D �P�v (4.291d)

with P the orthogonal projection from L2.�/ onto H . We rewrite the Navier–
Stokes initial-boundary value problem as an initial-value problem for a nonlinear
evolution equation in the Hilbert spaceH , i.e., with

B.v/ D B.v; v/; B.u; v/ D P.u � v/; and f ! Pf

we have

dv

dt
C �0AvCB.v/ D f (4.292a)

v.0/ D v0: (4.292b)



318 4 General Existence and Uniqueness Theorems for Incompressible Bipolar and : : :

For v0 2 V and f 2 L1..0;1/IH / a strong solution of (4.292a,b) on
some interval Œ0; T /, T > 0, is defined to be a function v 2 L1.Œ0; T /IV / \
L2.Œ0; T /ID.A//, while a weak solution on Œ0; T / is a function
v 2 L1.Œ0; T /IH / \ L2.Œ0; T /IV /. For space dimension n D 2, it is known that
a strong (and, thus, a weak) solution exists, is unique, and we may take T D 1;
however, if n D 3, then a strong solution is known to exist and be unique only on
some interval Œ0; t1�, with t1 having the form

t1 D t1.jv0jL2.�// D c1

.1C jv0j2L2.�//2
; (4.293)

the constant c1 depending only on jf jL1..0;1/IH /. A weak solution of (4.292a,b),
when n D 3, exists for all T > 0 and agrees with the strong solution on the interval
Œ0; t1� but it is still not known if this weak solution is unique.

Remarks. For v0 2 H and f 2 L1..0;1/IH / it is known that there exists,
in space dimension n D 2, a unique solution v of (4.292a,b) satisfying v 2
L1.Œ0;1/IH / \ L2.Œ0;1/IV / such that v is analytic in t with values in D.A/
for t > 0; furthermore, the mapping v0 7! v.t/ is continuous from H into D.A/,
8t > 0. Such a result, for v0 2 H , enables us to define the (nonlinear semigroup
of) operators S .t/ W v0 7! v.t/ which enjoy the properties

S .t C s/ D S .t/ � S .s/; 8s; t � 0 (4.294a)

S .0/ D I (identity inH ) (4.294b)

with

S .t/ a continuous nonlinear operator fromH into itself, 8t � 0. (4.294c)

In fact, for n D 2, and v0 2 H , the S .t/ are continuous, 8t � 0 from H into
D.A/. However, for n D 3 it is not known if solutions v of (4.292a,b), with
v0 2 H , are uniquely defined in L1.Œ0; T /IH /, 8T > 0, thus making impossible
the definition of a corresponding nonlinear semigroup of continuous operatorsS .t/.
For the initial-boundary value problem for the nonlinear bipolar viscous fluid, as
we have seen in Sect. 4.2, we have an entirely different and more satisfactory
situation; this fact (something which is also valid in reference to the existence
and uniqueness theory for the other sets of fluid dynamics equations which were
introduced in Sect. 1.6) does nothing to detract from the importance of resolving the
outstanding issues related to the solutions of the Navier–Stokes equations in three
space dimensions.
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4.5.3 Existence and Uniqueness for Solutions
of the Ladyzhenskaya Model Equations

In Sect. 1.6 we pointed out that each of the forms of the reduced stress tensor
� in (1.189a–d) satisfy the three conditions (1.188a,b,c) which characterize the
Ladyzhenskaya generalization of the Stokes Law (1.7). In order to be somewhat
more specific in this subsection, we will focus either on the particular model
indicated in (1.189c), or one of several equivalent forms, i.e., we can assume, for
example, that for some N
 > 0, q > 0,

�ij.e/ D N
.1C jej2/qeij: (4.295a)

This ansatz places the resultant non-Newtonian fluid model in accord with the non-
Newtonian reduction of the bipolar viscous model of Sect. 1.4 when �1 D 0, more
precisely, the reduced stress tensor in the bipolar model with �1 D 0 takes on
the form

�ij.e/ D 2�0.� C jej2/ p�2
2 eij (4.295b)

which is equivalent to (4.295a) if we identify q with .p� 2/=2 and rescale the other
constitutive parameters. Another form of � which is equivalent to (4.295a) is the
one which appears in [DuG], namely, for 
0; 
1, and r all positive

�ij.e/ D .
0 C 
1jrvjr / @vi
@xj

(4.295c)

provided we identify r with 2q. The special case of (4.295c) with r D 2 also appears
in the monograph [La1] of Ladyzhenskaya. Another example of a reduced stress
tensor which satisfies the Ladyzhenskaya condition is (see [FPa])

�ij.e/ D N
 jej2q eij: (4.295d)

The form of � expressed in (4.295d) is but a special case of (4.295b), which holds
in the bipolar model (for �1 D 0) if we set � D 0, q D p�2, and identify N
 D 2�0.
An equivalent form of (4.295d) has also appeared in the work of Lions [Lio1], i.e.,

�ij.rv/ D 
jrvjp�2 @vi
@xj

: (4.295e)

We now present some of the highlights of the existence and uniqueness results for
these models, which generalize Navier–Stokes, involve shear dependent viscosities,
and have appeared in [La6, DuG], and [Lio1].

Under the hypothesis that q � 1=4 in (4.295a) it is proven in [La6] that there
exist globally (in time) unique weak solutions of the initial-boundary value problem
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on an open bounded domain� � R3, satisfying v D 0 on @�
Œ0; T /, and r�v D 0

in � 
 Œ0; T /, for any T > 0, if the initial data function v0 belongs to the closure
of the set of functions which are divergence free, of class C1 on �, and have
compact support in �. Ladyzhenskaya has also indicated [La2] that the boundary-
value problem for the corresponding steady state equations, with v D 0 on @� has
at least one solution for any 
0 > 0, 
1 � 0, and r > 0, irregardless of the size of
the body force term. In [DuG] the authors establish some new a priori estimates for
weak solutions of

@vi

@t
C vj

@vi

@xj
D � @p

@xi
C @

@xj
�ij.e/C Fi ; in � 
 Œ0; T /; (4.296a)

r � v D 0; in � 
 Œ0; T /; (4.296b)

v.x; t/ D 0; on @� 
 Œ0; T /; (4.296c)

v.x; 0/ D v0.x/; in �; (4.296d)

with � � R3 an open bounded domain with smooth @� and where �ij.e/ has the
form specified in (4.295c); they claim to show that (i) weak solutions of (4.296a–d)
are globally defined (in time) and unique provided r � 1=5 in (4.295c). For the
non-Newtonian reduction of the bipolar model defined by (4.295b), the restriction
r � 1=5 is equivalent to having p � 11=5; thus the result claimed in [DuG], for
the problem (4.296a–d), is equivalent to the similar result obtained in [BBN2, 3]
for the space-periodic problem which was presented in Sect. 4.3. For the initial-
boundary value problem (4.296a–d) on � � R3, with a reduced stress tensor �.e/
satisfying growth and coercivity conditions, which we specify below, and which
include the models (4.295a,b,c), Málek et al. [MNR1, 2] prove the existence of a
globally (in time) defined unique regular weak solution which, for the model defined
by (4.295b), holds for p � 9=4; for the initial-boundary value problem, this is a
result which is a little weaker than that established in Sect. 4.3 for the space-periodic
problem and, also, that claimed in [DuG] for the problem (4.296a–d). The specific
assumptions in [MNR2], which hold for each of the models (4.295a,b,c), are as
follows: Let R3�3sym D fe 2 R3�3 j eij D ejiI i; j D 1; 2; 3g. Then it is assumed that

there exists a potential � W RC ! RC, and constants c1; c2 > 0, such that for some
p > 1, all i; j; k; l D 1; 2; 3, and a; e 2 R3�3sym ,

�ij.e/ D @

@eij
�.jej/; (4.297a)

�.0/ D @

@eij
ˆjxD0 D 0; (4.297b)

@

@eij

@

@ekl
�.jej/aijakl > c1.1C jej/p�2 jej2 ; (4.297c)



4.5 Related Work on Existence and Uniqueness for Navier–Stokes : : : 321

and
ˇ̌̌
ˇ @@eij

@

@ekl
�.jej/

ˇ̌̌
ˇ � c2.1C jej/p�2: (4.297d)

We note that the work in [MNR2] and, in particular, the existence of a potential �
satisfying (4.297a–d), does not hold for (4.295d) or its equivalent (4.295e); however,
the situation in which the reduced stress tensor �.e/ is given by (4.295e), for some

 > 0, has been treated by Lions in Chap. 2 of [Lio1] as follows: Consider, for
� � Rn with smooth boundary @�, the initial-boundary value problem (4.296a–d)
and let the �ij.e/ be specified as in (4.295e). Let

V D f' j ' D f'1; : : : ; 'ng; 'i 2 C1
0 .�/ and r � ' D 0g (4.298a)

and

NV 	 the completion of V in W 1;p.�/: (4.298b)

It can be shown that

NV D fv j v 2 W 1;p
0 .�/ with r � v D 0g: (4.298c)

Finally, let

NH 	 the completion of V in L2.�/: (4.298d)

Then, it is proven in [Lio1] that, if F 2 Lp0

..0; T /I NV 0
/ and v0 2 NH, for

p � 1C 2n

nC 2
(4.299)

there exists a solution .v; p/ of (4.296a–d) such that

v 2 Lp..0; T /I NV/\ L1..0; T /I NH/: (4.300)

The problem of the uniqueness of this solution appears to be an open one (see
Remark 5.3 in [Lio1]). For n D 3 in (4.299) we recover the criterion that p �
11=5 (although, without the corresponding uniqueness of the solution established
in Sect. 4.3 for the space-periodic problem and claimed in [DuG] for the boundary-
value problem). Finally, with a view towards applications to non-Newtonian blood
flow in mind, the existence and uniqueness of weak solutions for the problem of
flow in a compliant vessel is treated in [LuZ1, 2]; in this case the domain is time-
dependent and the fluid dynamics equations are coupled to a generalized string
equation which ties the motion of the boundary of the domain to the influence of
the pressure and shear stress exerted by the fluid. Admissible forms of the reduced
stress tensor �.e/ in [LuZ2] are assumed to conform to the growth and coercivity
conditions (4.297a–d) in [MNR2].
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Remarks (On the results claimed in [DuG]:). In [DuG] it is claimed that the
existence of a weak solution proved in [La6] by Ladyzenskaya for r � 1=2 (4.295c)
is being extended to r � 1=5. However, as indicated in [BBN3], several points
in the proof of [DuG] were not clear to us. Ladyzenskaya in a footnote in [La7]
commented on the claims in [DuG] saying: But in [DuG] there are no explanation(s)
as to what is possible (i.e., needed) for the reduction of the requirement r � 1=2 to
the requirement r � 1=5.

4.5.4 Existence and Uniqueness Results for Viscous Flow
Models with Artificial Viscosity

As we have previously indicated in Sect. 1.6, dissipative modifications of the
Navier–Stokes equations which lead to systems of the type (1.195), for the velocity
components vi of a viscous fluid, subject to the incompressibility constraint
r � v D 0, appear in the work of Lions [Lio1, 2], Ladyzhenskaya [La5], and Beirăo
da Veiga [BdV2, 3]; the latter author studied this type of regularization for problems
posed in all of Rn and was able to prove convergence theorems for the situation in
which the regularization parameter � ! 0C. The regularization in [Lio1, 2] has the
form in (1.195) with ˇ D 2m and, for problems in a bounded domain � � R

n,
with smooth boundary @�, m additional boundary conditions of Neumann type are
appended to the non-slip condition v D 0 on @� 
 Œ0; T /; for such systems Lions
was able to prove the global existence of weak solutions.

In this subsection we will describe the existence and uniqueness results obtained
in [OS1], for the regularization employed by Lions, in that special case where
m D 1; in a follow-up paper [OS2] the authors establish the existence of a
compact global attractor, as well as invariant manifolds, for the same modification
of the incompressible Navier–Stokes equations. The problem in [OS1] is posed in
a bounded open domain � � R

n, with n � 6, whose boundary @� is of class C r ,
r � 4; with the velocity field v given by v D .v1; : : : ; vn/ the precise form of the
initial-boundary value problem in [OS1] is as follows:

@v

@t
C v � rv D �rp C 
�v � ��2vC F ; in � 
 Œ0; T /; (4.301a)

r � v D 0; in � 
 Œ0; T /; (4.301b)

v D 0;
@v

@�
D rv � � D 0; on @� 
 Œ0; T /; (4.301c)

v.x; 0/ D v0.x/; in � (4.301d)

where 
 D �0=� is the usual kinematic viscosity and � is the unit outward normal
on @�. Results similar to those described, below, are also established in [OS1]
for problems posed on � D Œ0; L�n with periodic boundary conditions replacing
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those in (4.301c). We emphasize here, as we did in Sect. 1.6, that the addition of
the higher-order derivatives in (4.301a) has been made on an ad hoc basis and
is not supported by a physical argument of the kind which forms the basis for the
viscous bipolar model introduced in Sect. 1.4. Moreover, the Neumann boundary
condition in (4.301c) is inconsistent with any form of the principle of virtual work
which can be associated with a constitutive theory that would lead to the (vector)
evolution equation (4.301a). In spite of this observation, results obtained for systems
of the form (4.301a–d) are of interest for several reasons. As pointed out in [OS1]
numerical approximations to solutions of the Navier–Stokes equations produce
truncation errors which depend on the chosen mesh size; the system (4.301a–d)
can be considered as a model for a modification of the Navier–Stokes equations
where the artificial viscosity depends on that mesh size. Additionally, it is of some
mathematical interest to prove, as has been done by Ladyzhenskaya [La5] that
strong (regular) solutions of a system like (4.301a–d) converge to a solution of
the Navier–Stokes initial-boundary value problem as � ! 0C. Indeed, one of the
basic results obtained in [OS1], which is highlighted in this subsection, is that weak
solutions of (4.301a–d) converge, for sufficiently small Reynolds numbers, to a
weak solution of the corresponding Navier–Stokes problem. The existence theorem
for weak solutions for the regularized system (4.301a–d) was first established by
Lions in [Lio1].

With H defined as in (5.5a) and

OV D fv 2 H 2
0.�/ j r � v D 0g; (4.302)

the weak formulation of (4.301a–d) in [OS1] is the following: Suppose that F 2
L2..0; T /; OV 0

/. Find

v 2 L2..0; T /I OV / \L1..0; T /IH /

such that v.0/ D v0 2 H and, 8u 2 OV ,

d

dt
.v;u/L2.�/ C �.�v;�u/L2.�/ C 
.ru;rv/L2.�/ C b.v; v; u/ D hF ; ui; in D0.0; T /

(4.303)

where h; i is the usual duality pairing between OV and OV 0
, D0.0; T / is the dual

of the space of test functions D.0; T / on .0; T /, and b.�; �; �/ is the standard

trilinear form, b.u; v;w/ D
Z
�

ui
@vi

@xj
wj dx. An alternative but (as shown in

[OS1]) equivalent weak formulation of (4.301a–d) may be stated as follows: given

F 2 L2..0; T /I OV 0
/, find v 2 L2..0; T /I OV / with v0 2 L2..0; T /I OV 0

/ such that

v0 C �Au C 
A1vCBv D F ; in D0..0; T /I OV 0
/ (4.304)
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with v.0/ D v0 2 H . To define the operators A, A1, and B in (4.304) we first
introduce the bilinear form a.u; v/ D .�u; �v/L2.�/, observe that the conditions of

the Lax-Milgram Lemma (Appendix A) apply, so that for F 2 OV 0
there exists

a unique v 2 OV such that a.v;u/ D hF ;ui, 8u 2 V , and then write the
correspondence F ! v as Av D F . Continuity of the bilinear form a.�; �/ implies
the continuity of A while the coercivity of a.�; �/ implies that A is injective. In fact

A 2 L. OV I OV 0
/ is an isomorphism. With P the orthogonal projection ofL2.�/ onto

H ,A1 is given by A1v D �P�v, 8v 2 H 2.�/\ V � where

V � D fv 2 H 1.�/ j vj@� D 0 and r � v D 0; in �g: (4.305)

The following results on the existence, uniqueness, and regularity of weak solutions
to the initial-boundary value problem (4.301a–d) have been established in [OS1],
with a Galerkin approximation method employed for the existence part:

Theorem 4.20. Let n � 6, let F 2 L2..0; T /I OV 0
/, and let v0 2 H . Then there

exists a unique solution v 2 L2..0; T /I OV / \ C..0; T /IH / to the regularized

Navier–Stokes system (4.301a–d) which also satisfies v0 2 L2..0; T /I OV 0
/. The solu-

tion v also satisfies, for any t 2 .0; T /, the energy identity

jjv.t/jj2 C 2�

Z t

0
jjv.�/jj2

L2.�/
d� C 2


Z t

0
jrvj2.�/ d� D jjv0jj2 C 2

Z t

0
hF ; vi d�:

(4.306)

Using Theorem 4.20, Ou and Sritharan also prove that the weak solution of (4.301a–
d) satisfies, uniformly in the artificial viscosity �, the estimates in the following
theorem:

Theorem 4.21. Let F 2 L2..0; T /IH /. Then weak solutions v of (4.301a–d)
satisfy, for some 1 > 0, 2 > 0,

jjv.t/jj2 � jjv0jj2e�.2�1C
2/t C 1


2

Z t

0

jjF .�/jj2
L2.�/

d� (4.307a)

and

Z T

0

jrvj2 dt � 1




�
jjv0jj2 C 1


2

Z T

0

jjF .t/jj2
L2.�/

dt


: (4.307b)

As is common, of course, for such problems, with more regularity for the initial data
v0.�/ comes better regularity results for the solution; in fact we may state
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Theorem 4.22. If � � R2, v0 2 OV , and F 2 L2..0; T /IH /, then the weak
solution of (4.301a–d) satisfies v 2 L2..0; T /; T /I D.A// \ C..0; T /IV / and
v0 2 L2..0; T /IH /. Moreover, these (strong) solutions also satisfy, for someK > 0,
which is independent of both � and t , jrv.t/j � K , 8t 2 Œ0; T �.
The final result in this sequence is a result which shows that weak solutions of
(4.301a–d) converge, as � ! 0, to a corresponding weak solution of the Navier–
Stokes initial-boundary value problem; in stating this result we explicitly display the
dependence of the solutions of (4.301a–d) on the artificial viscosity parameter �:

Theorem 4.23. Let � � R3, with @� of class C4, and let v� be the unique weak
solution of the modified Navier–Stokes system (4.301a–d) with F 2 L2..0; T /IH /.
Then for 
 > 0 sufficiently large, v� converges to a unique limit v�, which is a weak
solution of (4.301a–d) with � D 0 satisfying the first boundary condition (only) in
(4.301c). More precisely, it follows that, uniformly in �,

v� ! v�; in L2..0; T /IV �/; weakly as � ! 0C;

v� ! v�; in L1..0; T /IH /; weak * as � ! 0C;

and

v� ! v�; in L2..0; T /IL2.�//, strongly as � ! 0C:

Other results which are established in [OS1] for the system (4.301a–d) include a
proof of the existence of at least one time-periodic solution (with the same period)
which corresponds to the prescription of a time-periodic forcing function F and the
demonstration that a squeezing property holds for orbits of (4.301a–d) emanating
from neighboring initial values in OV . (See Sects. 6.2.4 and 6.2.5 for the analogous
property for the viscous bipolar fluid). We leave it to the interested reader to consult
the original paper [OS1] for the details as well as for the proofs of Theorems
4.20–4.23 of this subsection, each of which represents an amalgamation of a set
of results in [OS1]. Those readers interested in the subject matter of Chaps. 5 and 6
may also wish to consult [OS2].

4.5.5 Existence, Uniqueness, and Stability Theorems
for Multipolar Fluids of Grade 3

The stress tensor associated with the response of a multipolar fluid of grade 3 is
defined in [BNR] by the constitutive law (1.199d), where the first and second Rivlin-
Ericksen tensors A1 and A2 are given by (1.198) and the tensor with components
Sijk in (1.199d) is defined by (1.199a,b,c). For the balance of this subsection, the
components of the velocity gradient will be denoted as Lij (D vi;j ). Also, � � R3

will be an open bounded domain, with smooth boundary @�, I D Œ0; T /, and for
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T > 0 we set QT D � 
 Œ0; T /. We begin by defining what is meant by a weak
solution of the problem

� Pvi D tij;j C �fi ; in QT ; (4.308a)

r � v D 0; in QT ; (4.308b)

v.x; 0/ D v0.x/; in �; (4.308c)

and we note that the formulation presented, below, is broad enough to incorporate

both the usual non-slip boundary condition v D 0 on @� 
 Œ0; T /, as well as the
relevant set (1.201a,b) of higher-order boundary conditions.

Definition 4.4. Let ˛1 > 0, ˛2 2 .�1;1/, ˇ3 > 0, �0 � 0, �1 � 0, �2 > 0, and
� � 0. A function v 2 L4.I IW 1;4

0 .�// which also satisfies v 2 L2.I IW 3;2.�//

and v;t 2 L2.I IW 2;2.�// is a weak solution of (4.308a,b,c) if a.e., 8t � 0, and all
� 2 W 1;2

0 .�/ \W 3;2.�/ such that r � � D 0,

Z
�

@vi

@t
�i dx C ˛1

Z
�

@.A1/ij

@t
�i;j dx C �

Z
�

@Dij;k

@t
�i;jk dx C �0

Z
�
.A1/ij�i;j dx

C ˛1

Z
�

�
@.A1/ij

@xl
vl C Lmi.A1/mj C Lmj.A1/im


�i;j dx C ˛2

Z
�
.A21/ij�i;j dx

C ˇ3

Z
�
.A21/mm.A1/ij�i;j dx C �1

Z
�
.A1/ij;k�i;jk dx

C
Z
�
vj

vi

@xj
�i dx C �2

Z
�
.A1/ij;km�i;jkm dx

�
Z
�
fi�i dx C �

Z
�
.WmiDmj;k CWmjDim;k CWmkDij;m/�i;jk dx D 0:

(4.309)

Prior to stating our first existence theorem for the model in [BNR] two lemmas need
to be established; these lemmas, as well as the proof of the existence theorem itself,
are based on the introduction of the framework for a Galerkin argument as follows:
Consider the sequence fwlg of eigenfunctions for the Stokes problem in � with
homogeneous Dirichlet boundary conditions. It is well known that fwlg constitutes
a Schauder basis for the space

W D fw j w 2 W 3;2.�/ \W 1;2
0 .�/I r � w D 0g:

We set Em D spanfwl I l D 1; 2; : : : ; mg and let

vm D
X
l�m

cl .t/wl
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be such that if we set v D vm in (4.309), then (4.309) is satisfied for all test

functions � 2 Em provided we choose cl .0/ D
Z
�

v0 � wl dx, 8l . The existence

and uniqueness of vm follows from the Picard theorem. Our first lemma assumes
the following form:

Lemma 4.17. There exists C > 0, independent ofm, such that for each i D 1; 2; 3,

jjvmjjL1..0;T /IW 1;2.�// � C
�
jjv0jj2W 2;2.�/

C jjfi jj2L2.QT /
C 1

�
; (4.310a)

jjvmjjL2..0;T /IW 3;2.�// � C
�
jjv0jj2W 2;2.�/

C jjfi jj2L2.QT /
C 1

�
; (4.310b)

jjvmjjL4..0;T /IW 2;4.�// � C
�
jjv0jj2W 2;2.�/

C jjfi jj2L2.QT /
C 1

�
: (4.310c)

Proof. We take v D vm in (4.309) and, also, use � D vm as a test function.
With �t denoting the configuration occupied by the fluid at time t , we obtain after
integration in t the following estimate, where for the sake of not having to deal
with an overcumbersome notation we have deleted the m superscript on all relevant
quantities:

1

2

Z
�t

vivi dx C ˛1

Z
�t

DijDij dx C 1

2
�

Z
�t

Dij;kDij;k dx C �0

Z T

0

Z
�t

.A1/ij.A1/ij dx dt

C �1

Z T

0

Z
�t

.A1/ij;k.A1/ij;k dx dt C �2

Z T

0

Z
�

.A1/ij;km.A1/ij;km dx dt

C ˇ3

Z T

0

Z
�

.A2
1/mm.A1/ij.A1/ij.A1/ij dx dt (4.311)

� 1

2

Z
�

vivi dx C ˛1

Z
�

DijDij dx C 1

2
�

Z
�

Dij;kDij;k dx C
ˇ̌
ˇ̌Z T

0

Z
�

bi vi dx dt

ˇ̌
ˇ̌

C
ˇ̌
ˇ̌˛1

Z T

0

Z
�

ŒLmi.A1/mj C Lmj.A1/im�vi;j dx dt

ˇ̌
ˇ̌C

ˇ̌
ˇ̌˛2

Z T

0

.A2
1/ijvi;j dx dt

ˇ̌
ˇ̌:

In arriving at (4.311) we have made use of the identities

˛1

Z T

0

Z
�

@.A1/ij

@xl
vlvi;j dx dt D 0; (4.312a)

Z T

0

Z
�

.WmiDmj;k CWmjDim;k CWmkDij;m/vi;jk dx dt D 0; (4.312b)

Z
�

vj
@vi

@xj
vi dx D 0: (4.312c)

It then follows from (4.311), upon reinstating the m superscript in the Galerkin
approximation vm, that
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jjvmjj2
W 2;2.�T /

C jjvmjj2
L2..0;T /IW 3;2.�//

C jjvmjj4
L4..0;T /IW 2;4.�//

� c
�
jjvmjj2

W 2;2.�/
C jjvmi jjL2.QT /

jjfi jjL2.QT /
C jjDvmi jj3L3.QT /

�
(4.313)

for some c > 0. Using standard techniques it now follows from (4.313) that, for
each i D 1; 2; 3,

jjvmjjW 2;2.�T /
C jjv0jj2L2..0;T /IW 3;2.�//

C jjvmjj4
L4..0;T /IW 2;4.�//

� c
�
jjvmjj2

W 2;2.�/
C jjfi jj2L2.QT /

C 1
�

(4.314)

which completes the proof of Lemma 4.17. ut
The second lemma needed for the proof of the basic existence theorem for
multipolar fluids of grade 3 is

Lemma 4.18. For the Galerkin approximations vm, 9C > 0, independent of m,
such thatˇ̌̌

ˇ
ˇ̌̌
ˇ@v

m

@t

ˇ̌̌
ˇ
ˇ̌̌
ˇ
L2..0;T /IW 2;2.�//

� C
�
jjv0jj2W 3;2.�/

C jjfi jj2L2.QT /
C 1

�
: (4.315)

Proof. As
@vm

@t
2 Em, we may use � D @vm

@t
in (4.309). Deleting, as in the proof

of Lemma 4.17, the superscriptm we find after integration in time

Z T

0

Z
�

@vi

@t

@vi

@t
dx dt C ˛1

Z T

0

Z
�

@.A1/ij

@t

@.A1/ij

@t
dx dt (4.316)

C �

Z T

0

Z
�

@Dij;k

@t

@Dij;k

@t
dx dt C 1

2
�0

Z
�T

.A1/ij.A1/ij dx

C 1

2
�1

Z
�T

.A1/ij;k.A1/ij;k dx C 1

2
�2

Z
�T

.A1/ij;km.A1/ij;km dx

� 1

2
�0

Z
�

.A1/ij.A1/ij dx C 1

2
�1

Z
�

.A1/ij;k.A1/ij;k dx

C 1

2
�2

Z
�

.A1/ij;km.A1/ij;km dx

C
ˇ̌̌
ˇ˛1

Z T

0

Z
�

�
@.A1/ij

@xl
vl C Lmi.A1/mj C Lmj.A1/im


@vi;j

@t
dx dt

ˇ̌̌
ˇ

C
ˇ̌
ˇ̌˛2

Z T

0

Z
�

.A2
1/ij
@vi;j

@t
dx dt

ˇ̌
ˇ̌C

ˇ̌
ˇ̌ˇ3

Z T

0

Z
�

.A2
1/mm.A1/ij

@vi;j

@t
dx dt

ˇ̌
ˇ̌
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C
ˇ̌
ˇ̌Z T

0

Z
�

vj
@vi

@xj

@vi

@t
dx dt

ˇ̌
ˇ̌C

ˇ̌
ˇ̌Z T

0

Z
�

bi
@vi

@t
dx dt

ˇ̌
ˇ̌

C
ˇ̌
ˇ̌�
Z T

0

Z
�

.WmiDmj;k CWmjDim;k CWmkDij;m/
@vi;jk

@t
dx dt

ˇ̌
ˇ̌

	 I1 C I2 C I3 C I4 C I5 C I6 C I7 C I8 C I9:

Now I1 C I2 C I3 can be bounded by using the norm of the initial condition in
W 3;2.�/ while I7 can be easily estimated by using the Cauchy-Schwarz inequality,
i.e., for any a > 0,

I7 � 1

a
jjfi jj2L2.QT /

C a

ˇ̌
ˇ̌
ˇ̌
ˇ̌@vi
@t

ˇ̌
ˇ̌
ˇ̌
ˇ̌2
L2.QT /

: (4.317)

By choosing a > 0 small enough, we can absorb the term a

ˇ̌
ˇ̌
ˇ̌
ˇ̌@vi
@t

ˇ̌
ˇ̌
ˇ̌
ˇ̌2
L2.QT /

in

the left-hand side of (4.316). In a similar manner, by using embedding theorems
(see Appendix A) and the Hölder Inequality, the remaining terms on the right-hand
side of (4.316) satisfy the bound

I3CI4CI5CI6CI8 � 1

2
jjvi jj2L2..0;T /IW 3;2.�//

Ca
ˇ̌̌
ˇ@vi@t

ˇ̌̌
ˇ
2

L2..0;T /IW 3;2.�//

: (4.318)

Again, choosing a sufficiently small we may absorb the second term on the right-
hand side of (4.318) in the left-hand side of (4.316); the required result, i.e., (4.315)
now follows from Lemma 4.17 upon reinstatement of the superscriptm. ut

We can now state and prove the following existence theorem for multipolar fluids
of grade 3:

Theorem 4.24. Assume that � � R3 is an open bounded domain with @�

sufficiently smooth. Then for any fi 2 L2.QT / and any v0 2 W 3;2.�/ \W 1;2
0 .�/

such that r�v0 D 0, there exists a weak solution to the system (4.308a,b,c) satisfying
the regularity conditions specified in Definition 4.4. Furthermore, the weak solution

v satisfies
@v

@t
2 L2..0; T /IW 2;2.�//.

Proof. From Lemma 4.17 we deduce that there exists a subsequence, denoted again
by vm, which converges, as m ! 1, weakly in L2..0; T /IW 3;2.�/ \ W 1;2

0 .�//

to a function v. Using the estimate (4.315) and Aubin’s Lemma (see Appendix A)
we conclude that there exists a subsequence, again denoted by vm, which converges
in L2..0; T /IW 2;2.�/ \ W 1;2

0 .�//. Both types of convergence referenced above
are sufficient to allow for passing to the limit in each of the terms in (4.309), with
vi D vmi , as m ! 1. ut
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The main existence and uniqueness result for the model analyzed in [BNR] has
weaker assumptions relative to the initial data v0 than those in Theorem 4.24 but

yields a weak solution which does not necessarily satisfy the condition that
@v

@t
2

L2..0; T /IW 2;2.�//; we state this result as

Theorem 4.25. Let � � R3 be an open bounded domain with @� sufficiently
smooth. Then for any fi 2 L2.QT /, i D 1; 2; 3 and any v0 2 W 2;2.�/\W 1;2

0 .�/,
such that r � v0 D 0, there exists a unique weak solution of the system satisfying the
regularity condition of Definition 4.4.

Proof. The proof is based on a density argument. As � is bounded and @� is
(sufficiently) smooth the set

W D fw j w 2 W 3;2.�/\W 1;2
0 .�/I r � w D 0g

is dense in the set

NW D fw j w 2 W 2;2.�/\W 1;2
0 .�/I r � w D 0g:

An easy way to see this is to recall that the eigenfunctions of the Stokes problem in
� are smooth and constitute a basis of the space NW . Now, let vk0 be a sequence of
divergence free functions in W 3;2.�/ \ W 1;2

0 .�/ such that vk0 converges strongly
to v0 in W 2;2.�/ as k ! 1. By Theorem 4.24, for every fixed k the problem
(4.308a,b,c) with initial condition vk0 has a weak solution satisfying the regularity
criteria of Definition 4.4. As vk0 is bounded W 2;2.�/, independent of k, it follows
that 9C > 0, independent of k, such that for each i , i D 1; 2; 3,

ˇ̌ˇ̌
vk
ˇ̌ˇ̌
L1..0;T /IW 2;2.�//

� C
�
jjv0jj2W 2;2.�/

C jjfi jj2L2.QT /
C 1

�
; (4.319a)
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ˇ̌ˇ̌
L2..0;T /IW 3;2.�//

� C
�
jjv0jj2W 2;2.�/
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C 1

�
; (4.319b)
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� C
�
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C jjfi jj2L2.QT /
C 1

�
: (4.319c)

Next, for � 2 L2..0; T /IW 3;2
0 .�//, with r � � D 0, it follows from the definition

of a weak solution that for every positive integer k,
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�
Z
�
vkj
@vki
@xj

�i dx � �2

Z
�
.A1/

k
ij;lm�i;jlm dx

C
Z
�
fi�i dx � �

Z
�
.W k

miD
k
mj;l CW k

im;l CW k
mlD

k
ij;m/�i;jk dx (4.320)

so that, by virtue of (4.319a,b,c), we can conclude that for some c > 0, independent
of k,

ˇ̌̌
ˇ
Z
�

@vki
@t
.�i � ˛1�i;jj C ��i;jkjk/ dx

ˇ̌̌
ˇ � cjj�jj

W
3;2
0 .�/

: (4.321)

After an integration by parts we then obtain, for some C > 0, which is also
independent of k,

ˇ̌
ˇ̌
ˇ
ˇ̌
ˇ̌
ˇ
X
i

@

@t
.vki � ˛1vki;jj C �vki;jkjk/

ˇ̌
ˇ̌
ˇ
ˇ̌
ˇ̌
ˇ
L2..0;T /IW 3;2.�//

� C: (4.322)

Also, by virtue of (4.319a,b,c),
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌X
i

.vki � ˛1vki;jj C �vki;jkjk/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌
L2..0;T /IW �1;2.�//

: (4.323)

It now follows from Aubin’s Lemma that the sequence
X
i

.vki � ˛1vki;jj C �vki;jkjk/ is

in a compact subset, with respect to the strong topology of L2..0; T /IW �s;2.�//,
for all s > 1. Thus, as in the proof of Theorem 4.24, we may, after choosing
vi D vki in (4.309), pass to the limit to conclude that v D lim

k!1 v
k is a weak

solution. To establish uniqueness of the weak solution, assume that v.1/ and v.2/ are
distinct weak solutions; we set v D v.1/ � v.2/ and use v as a test function. As the
linear terms in the partial differential equation (4.308a) do not present any difficulty,
we need only note the following estimates, which result from taking the difference
of the equations satisfied by v.1/ and v.2/: for some C > 0,

Z
�t

.D
.1/

ij;k �D
.2/

ij;k/.D
.1/

ij;k �D.2/

ij;k/
ˇ̌ˇ̌
v.2/

ˇ̌ˇ̌2
dx � C

ˇ̌ˇ̌
v.1/ � v.2/ˇ̌ˇ̌2

W 2;2.�/
;

(4.324a)
Z
�t

.D
.1/

ij;k �D.2/

ij;k/.D
.1/

ij;k �D
.2/

ij;k/
ˇ̌̌
Dv.2/

ˇ̌̌2
dx � C

ˇ̌̌ˇ̌̌
v.1/ � v.2/

ˇ̌̌ˇ̌̌2
W 2;2.�/

ˇ̌̌ˇ̌̌
v.2/

ˇ̌̌ˇ̌̌2
W 3;2.�/

;

(4.324b)Z
�t

ˇ̌
Dv.1/ �Dv.2/ˇ̌2ˇ̌ˇD.2/

ij;k/
ˇ̌
ˇ2 dx � C

ˇ̌ˇ̌
v.1/ � v.2/ˇ̌ˇ̌2

W 2;2.�/

ˇ̌ˇ̌
v.2/

ˇ̌ˇ̌2
W 3;2.�/

:

(4.324c)
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The estimates (4.324a,b,c) now yield a Gronwall inequality (see Appendix A) for
the quantity

�.t/ D 1

2

Z
�t

ˇ̌ˇ̌
v.1/ � v.2/ ˇ̌ˇ̌2

C ˛1


eij.v

.1/ � v.2//eij.v
.1/ � v.2//� �.D.1/

ij;k �D.2/

ij;k/.D
.1/

ij;k �D
.2/

ij;k/ dx (4.325)

from which the uniqueness of the weak solution follows immediately. ut
Remarks (Higher-Order Boundary Conditions for Multipolar Fluids of Grade 3).
The conditions specified in Definition 4.4 allow, in principle, for a broad range of
higher-order conditions to be satisfied by a weak solution of (4.308a,b,c); in point of
fact, however, it is not difficult to see that these higher-order conditions must assume
the form (1.201a,b) where �l , l D 1; 2 are linearly independent tangent vectors to
@� at x 2 @�, � is the exterior unit normal to @� at x 2 @�, and Bijkm.v/, Sijk.v/

are defined by (1.199a,b,c). To begin with, it follows from the definition of a weak
solution that for every test function �.x; t/ defined on�
 Œ0; T /, and vanishing on
@� 
 Œ0; T /,

Z
@�

.Sijk.v/�i;k CBikmj.v/�i;km/
j dA D 0; t 2 Œ0; T / (4.326)

where dA denotes the surface measure on @�. The demonstration that (4.326), for
sufficiently smooth fields Sijk, Bikmj, implies (1.201a,b) depends on the following
surface divergence theorem which asserts that, for any smooth vector field w defined
on @�,

Z
@�

wi Ii dA D
Z
�

2�wi 
i dA (4.327)

where I followed by an index denotes the surface gradient (see 1.6) and � is the
mean curvature of @�, 2� D �
i Ii . The result (4.327) can be obtained by applying

Stokes formula to the vector field �ijkwj 
k. We now note that �i;j D @�i

@


j , as

�i vanishes on @�, and further denote by
@2�i

@
2
D @2�i

@
k@
l

k
l the second normal

derivative of �i . The second term in the integrand in (4.326) may be transformed as
follows:

Bijkm
m�i;jk D Bijkm
mıkp�i;jp

D Bijkm
m.ıkp � 
k
p/�i;jp C Bijkm
m
k
p�i;jp

D Bijkm
m�i;j Ik C Bijkm
m
k
pıjp�i;qp
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D Bijkm
m�i;j Ik C Bijkm
m
k
p.ıjq � 
j 
q/�i;qp

C Bijkm
m
k
p
j 
q�i;qp

D Bijkm
m�i;j Ik C Bijkm
m
k
p�i;pIj C Bijkm
j 
k
m
@2�i

@
2

D .Bijkm
m�i;j /Ik � .Bijkm
m/Ik�i;j C .Bijkm
m
k
p�i;p/Ij

� .Bijkm
m
k
p/Ij �i;p C Bijkm
j 
k
m
@2�i

@
2
dA:

Therefore, if we apply (4.327) twice in succession, we obtain

Z
@�

Bijkm�i;jk
m dA (4.328)

D
Z
@�

.Bijkm
m�i;j /Ik dA �
Z
@�

.Bijkm
m/Ik�i;j dA

C
Z
@�

.Bijkm
m
k
p�i;p/Ij �
Z
@�

.Bijkm
m
k
p/Ij �i;p dA

C
Z
@�

Bijkm
j 
k
m
@2�i

@
2
dA

D
Z
@�

2�Bijkm
m
k�i;j dA �
Z
@�

.Bijkm
m/Ik�i;j dA

C
Z
@�

2�Bijkm
m
k
p�i;p
j dA �
Z
@�

.Bijkm
m
k
p/Ij �i;p dA

C
Z
@�

Bijkm
j 
k
m
@2�i

@
2
dA:

Furthermore, we have 
p
p D 1; therefore, 
pIk
p D 0 and, thus, one can rewrite
the term .Bijkm
m
k
p/I�i;p on the right-hand side of (4.328) as

.Bijkm
m
k
p/Ij �i;p D .Bijkm
m
k
p/Ij 
p
@�i

@�

D Œ.Bijkm
m
k/Ij 
p C Bijkm
m
k
pIj �
p
@�i

@�

D .Bijkm
m
k/Ij
@�i

@�

(4.329)

because
@�i

@�
D @�i

@xp

p . By using (4.329) again in conjunction with (4.328) one

finally obtains
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Z
@�

Bijkm�i Ijk
m dA D
Z
@�

Œ2�Bijkm
m
k
j � .Bijkm
m/Ik
j C 2�Bijkm
k
k
j

� .Bijkm
m
k/Ij �
@�i

@�
dA C

Z
@�

Bijkm
j 
k
m
@2�i

@
2
dA: (4.330)

The boundary condition (4.326) now can be written in the form

Z
@�

ŒSijk
j 
k C 2�Bijkm
m
k
j � .Bijkm
m/Ik
j

C 2�Bijkm
m
k
j � .Bijkm
m
k/Ij �
@�i

@�
dA

C
Z
@�

Bijkm
j 
m
@2�i

@�2
dA D 0: (4.331)

As �i is a divergence free vector field, the functions @�i =@�, @2�i=@�2 are not
completely arbitrary and we cannot conclude that each of the integrands in (4.331) is
zero; however, for a divergence free vector field �i , which vanishes on the boundary
of�, the most general forms of the normal derivatives on the boundary are given by:

@�i

@�
D gi ; on @�; (4.332a)

@2�i

@�2
D hi � 
i divs.g/; on @� (4.332b)

where h and g are arbitrary vectors tangent to the surface @� and divs is the
surface divergence operator defined by divs.v/ WD 
i Ii . The last term in (4.331)
now becomes

Z
@�

Bijkm
j 
k
m
@2�i

@�2
dA D

Z
@�

Bijkm
j 
k
mhi dA �
Z
@�

Bijkm
j 
k
m divs .gi /
i dA:

(4.333)

Since the vector g is tangential to @� we have, by integration by parts,

�
Z
@�

Bijkm
j 
k
m
i divs.g/ dA D
Z
@�

gl .Bijkm
j 
k
m
i /I l dA: (4.334)

Equation (4.321) then yields

Z
@�

ŒSijk
j 
k C 4�Bijkm
m
k
j � .Bijkm
m/Ik
j

� .Bijkm
m
k/Ij C .Bijkm
l
j 
k/Ii �gi dA C
Z
@�

Bijkm
j 
k
mhi dA D 0: (4.335)
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Since h and g are arbitrary tangent vector fields, it follows that if �1 and �2 are
linearly independent tangent to @�, then

Bijkm
j 
k
m�
l
i D 0; l D 1; 2

and

ŒSijk
j 
k C 4�Bijkm
m
k
j � .Bijkm
m/Ik
j � .Bijkm
m
k/Ij
C .Bijkm
l
j 
m
k/Ii ��pi D 0; p D 1; 2

which are, of course, (1.201a,b), respectively.

Remarks (An Energy Inequality and Stability of the Rest State). If we integrate
the inequality �.A1/ij;k.A1/ij;k � 0 over � and use the divergence theorem in
conjunction with (4.325), after setting �i 	 vi , we obtain the identity

d

dt

Z
�

�

�
1

2
vivi C  

�
dx

C 1

2

Z
�

Œ�0.A
2
1/mm C .˛1 C ˛2/.A

3
1/mm C ˇ3.A

2
1/mm.A

2
1/mm

C �1.A1/ij;k.A1/ij;k C �2.A1/ij;km.A1/ij;km� dx D 0 (4.336)

where  is the free energy function as given by (1.200). The quantity

E.t/ D
Z
�

�

�
1

2
vivi C  

�
dx D

Z
�

�
1

2
�vivi C ˛1DijDij C 1

2
�Dij;kDij;k

�
dx

(4.337)

is the total energy of the fluid at time t . Since the second integral is non-negative
as a consequence of the second law of thermodynamics (see [BNR] for the details)
it follows that PE.t/ � 0 for every process in the fluid. We now assume that the
rest state vi 	 0 is stable in the sense that every perturbation of the rest state is
eventually damped out by the dissipative mechanisms of the fluid. It is natural to
assume that during a process the energy of the fluid tends to the zero energy of the
rest state, i.e., E.t/ ! 0 as t ! 1; from this result, coupled with PE.t/ � 0, we
obtainE.t/ � 0 and, as this must hold for every initial perturbation of the rest state,
one finds that a necessary condition for (formal) stability is

EŒv.�/� D
Z
�

�
1

2
�vivi C ˛1DijDij C 1

2
�Dij;kDij;k

�
dx � 0 (4.338)
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for every velocity field vi with vi D 0 on @� and vi;i D 0. Clearly a necessary
condition for (4.338) to hold for every velocity field is that � � 0. The following
theorem gives a sufficient condition for the validity of (4.338):

Theorem 4.26. Let � > 0 and suppose that either (i) ˛1 � 0 or (ii) ˛1 � 0 and

� >
3

�
˛21 . Then 9c > 0 such that 8v 2 W 1;2

0 .�/ \W 2;2.�/, with vi;i D 0 in �,

we have

E.v.�// � c jjvjjW 2;2.�/ : (4.339)

Proof. If ˛1 � 0 the proof is immediate from (4.338). In order to establish the
theorem under the conditions in part (ii) we need to establish a pair of lemmas, the
first of which is

Lemma 4.19. For every � 2 W 1;2
0 .�/\W 2;2.�/ one has

jjgrad�jj2L2.�/ � jj�jjL2.�/jj��jjL2.�/: (4.340)

Proof.

jjgrad�jj2L2.�/ D
Z
�

@�

@xi

@�

@xi
dx

D
Z
�

�
@

@xi

�
@�

@xi
�

�
� ���


dx

D
Z
@�

@�

@xi
�
i dA �

Z
�

��� dx

� jj�jjL2.�/jj��jjL2.�/: ut

Remarks. It is worth noting that the constant c D 1 in the inequality

jjgrad�jj2L2.�/ � cjj�jjL2.�/jj��jjL2.�/

is optimum. Indeed for eigenfunctions of the Laplacian (4.340) becomes an equality.

The second result which is needed in order to complete the proof of Theo-
rem 4.26 is

Lemma 4.20. For every vector-valued function v 2 W
1;2
0 .�/ \ W 2;2.�/, with

vi;i D 0 in �, one has

Z
�

DijDij dx � p
3jjvjjL2.�/

Z
�

Dij;kDij;k dx: (4.341)
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Proof. The proof follows from the elementary results

.�vi /
2 � 12.D2

i1;1 C � � � CD2
i3;3/; (4.342a)

DijDij D 1

2
jrvj2 C 1

2
vi;j vj;i ; (4.342b)

the boundary conditions satisfied by v, and the incompressibility constraint; details
may be found in [BNR]. ut
Proof (Continuation of Theorem 4.26). By (4.342a), as ˛1 � 0,

EŒv.�/� � 1

2
� jjvjj2

L2
C p

3˛1 jjvjj2
L2

jgradDjL2 C 1

2
� jgradDjL2 (4.343)

where jgradDj2 D Dij;kDij;k . The right-hand side of (4.343) is a quadratic form
in jjvjjL2 and jgradDjL2 and its discriminant is negative if and only if ˛1 � 0 and

� >
3

�
˛21 ; these conditions imply, therefore, that the right-hand side of (4.343) is

positive definite and, hence, for some c > 0,

EŒv.�/� � cjgradDj2
L2
: (4.344)

On the other hand, for some other constant Oc > 0, one has that

jgradDjL2 � Oc ˇ̌grad2 v
ˇ̌
L2

(4.345)

and (4.339) now follows by combining (4.344) and (4.345) with the Poincaré
inequality (see Appendix A). ut

We conclude this subsection by noting that it has also been shown in [BNR] that
for�1 � 0, �2 � 0, with �1C�2 > 0, and either ˛1 � 0, or ˛1 � 0 and � > 3˛21=�,
9c > 0, c1 > 0 such that weak solutions v which satisfy the boundary conditions
on @� 
 Œ0;1/ also satisfy

jjv.�; t/jjW 2;2.�/ � c1jjv.�; 0/jjW 2;2.�/e
�ct (4.346)

for every t � 0; this result establishes, of course, the asymptotic stability of the rest
state for the multipolar fluid of grade 3.

4.5.6 Global Regularity of Solutions to the Viscous
Camassa-Holm Equations

The Navier–Stokes alpha (NS-˛) model of incompressible fluid flow, known also as
the viscous Camassa-Holm equations (VCHE), was introduced in Sect. 1.6; some
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applications of the model were then presented in Sect. 1.7.3. In this final subsection
of Sect. 4.5 we will briefly summarize some of the results obtained in [FHT2]
concerning the global, in time, regularity of solutions of VCHE in three space
dimensions; we also discuss the relation of these equations to the Navier–Stokes
equations by delineating the result in [FHT2] which says, in essence, that as a certain
length scale in the NS-˛ model tends to zero, a subsequence of solutions of the
NS-˛ equations converges to a weak solution of the three dimensional Navier–
Stokes equations. In this subsection we assume that � is the periodic box, � D
Œ0; L�3, L > 0; the associated problem for the VCHE (1.217) with an external body
force f and constant density �0 can then be written in the form

@

@t
.˛20v � ˛21v/� 
�.˛20v � ˛21v/� v 
 .r 
 .˛20v � ˛21�v//C 1

�0
rp D f ;

(4.347a)

r � v D 0; (4.347b)

v.x; 0/ D v0.x/ (4.347c)

where isotropy and homogeneity of the velocity fluctions � has been assumed
(see Sect. 1.6). Also, by (1.212b), with the aforementioned isotropy hypothesis,
and the inclusion of the constant density �0, the modified pressure p and the usual
pressure � are related by

p

�0
D �

�0
C ˛20 jjvjj2 � ˛21.v ��v/: (4.348)

We recall, from the discussion in Sect. 1.6, that in (4.347a) 
 > 0 is the constant
viscosity while ˛0 > 0 and ˛1 � 0 are scale parameters (in (1.217), ˛0 D 1 and
˛1 D 
˛2). In the limiting case where ˛0 D 1 and ˛1 D 0, one obtains the three-
dimensional Navier–Stokes equations with periodic boundary conditions. In [FHT2]
it is assumed that f .x; t/ 	 f .x/. As a consequence of (4.347a,b), and integration
by parts,

d

dt

Z
�

.˛20v � ˛21�v/ dx D
Z
�

f dx (4.349)

while, because of the spatial periodicity of the solution of (4.347a,b,c),
Z
�

�v dx

D 0. Therefore,
d

dt

Z
�

v dx D
Z
�

f dx so that the mean of the solution is

invariant if the mean of the forcing term is zero. In [FHT2] forcing terms and

initial conditions are considered which satisfy
Z
�

v0.x/ dx D
Z
�

f .x/ dx D 0

so that
Z
�

v.x; t/ dx D 0.
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In order to delineate the results obtained in [FHT2] we need to introduce the
following notation:

(i) X is the linear subspace of integrable functions on � with PX D f' 2 X jZ
�

'.x/ dx D 0g.

(ii) V D f' j ' is a (vector-valued) trigonometric polynomial defined on �,

r � ' D 0, and
Z
�

'.x/ dx D 0g.

(iii) H and V are, respectively, the closures of V in L2.�/ andH 1.�/.
(iv) P	 W L2.�/ ! H is the Leray projector while A D �P	� is the Stokes

operator with D.A/ D H 2.�/ \ V . (In the case of periodic boundary
conditions, A D ��jD.A/ is a positive self-adjoint operator, with compact
inverseA�1, so that–in the usual manner–H has an orthonormal basis fwj g1

jD1
of eigenfunctions of A, Awj D jwj , with 0 < 1 � 2 � � � � � j ! 1;
for the nonlinear bipolar fluid, analogous considerations will be central to the
analysis in Chap. 6.)

With the same notation as commonly applied in studies of the Navier–Stokes
equations (e.g., [Te1]), and which we will employ again in Chaps. 5 and 6, we set

B.u; v/ D P	 .u � rv/ and B.v/u D B.u; v/; 8u; v 2 V ; (4.350a)

QB.u; v/ D �P	 .u 
 .r 
 v//; 8u; v 2 V ; (4.350b)

from which it follows that

.B.u; v/;w/L2.�/ D �.B.u;w/; v/L2.�/; 8u; v;w 2 V ; (4.351a)� QB.u; v/;w
�
L2.�/

D .B.u; v/;w/L2.�/ � .B.w; v/;u/L2.�/; 8u; v;w 2 V ;
(4.351b)

and

QB.u; v/ D .B.v/ �B�.v//u; 8u; v 2 V (4.351c)

whereB� denotes the adjoint operator.
It is a direct consequence of the Poincaré inequality (see Appendix A) that the

Stokes operatorA D �P	� satisfies the following estimates: for some c > 0,

cjjAwjjL2.�/ � jjwjjH 2.�/ � c�1jjAwjjL2.�/; 8w 2 D.A/ (4.352a)

and

c
ˇ̌̌ˇ̌̌
A1=2w

ˇ̌̌ˇ̌̌
L2.�/

� jjwjjH 1.�/ � c�1
ˇ̌̌ˇ̌̌
A1=2w

ˇ̌̌ˇ̌̌
L2.�/

; 8w 2 V (4.352b)
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where we have used the fact that V D D.A1=2/, e.g., see [Te1]. The inner product
and norm on V are then given, respectively, by

.u; v/V D
�
A1=2u;A1=2v

�
L2.�/

and jjujjV D
ˇ̌
ˇ
ˇ̌
ˇA1=2u

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

; 8u; v 2 V
(4.353)

and it is easily shown that the inner product .�; �/V on V is equivalent to the H 1

inner product

Œu; v�H 1 D ˛20.u; v/L2.�/ C ˛21.u; v/V ; 8u; v 2 V (4.354)

if ˛1 > 0. The technical machinery needed for the proof of the global existence and
uniqueness theorem in [FHT2] is embodied in the following lemma:

Lemma 4.21. (i) The operator A can be extended continuously so as to be
defined on V D D.A1=2/, with values in V 0 � H �1, such that

hAu; viV 0 D
�
A1=2u;A1=2v

�
L2.�/

D
Z
�

.ru W rv/ dx

for every u; v 2 V .
(ii) Similarly, the operatorA2 can be extended continuously so as to be defined on

D.A/ with values in D.A/0 such that

˝
A2u; v

˛
D.A/0

D .Au;Av/L2.�/; for every u; v 2 D.A/:

(iii) The operator QB can be extended continuously from V 
 V with values in V 0
and satisfies, for some c > 0,

ˇ̌̌D QB.u; v/;w
E
V 0

ˇ̌̌
� c jjujj1=2

L2.�/
jjujj1=2V jjvjjV jjwjjV ;ˇ̌

ˇD QB.u; v/;w
E
V 0

ˇ̌
ˇ � cjjujjV jjvjjV jjwjj1=2

L2.�/
jjwjj1=2V

for all u; v;w 2 V . Also,

D QB.u; v;w
E
V 0

D �
D QB.w; v/;u

E
V 0
; 8u; v;w 2 V

so that
D QB.u; v/;u

E
V 0

	 0; 8u; v 2 V :
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(iv) For every u 2 H , v 2 V , and w 2 D.A/,
ˇ̌
ˇ̌D QB.u; v/;w

E
D.A/0

ˇ̌
ˇ̌ � cjjujjL2.�/jjvjjV jjwjj1=2V jjAwjj1=2

L2.�/

and, by symmetry,

ˇ̌̌� QB.u; v/;w
ˇ̌̌�
L2.�/

� c jjujj1=2V jjAujj1=2
L2.�/

jjvjjV jjwjjL2.�/

for every u 2 D.A/, v 2 V , and w 2 H .
(v) For every u 2 V , v 2 H , and w 2 D.A/, we have for some c > 0,

ˇ̌
ˇ̌D QB.u; v/;w

E
D.A/0

ˇ̌
ˇ̌ � c

�
jjujj1=2

L2.�/
jjujj1=2V jjvjjL2.�/jjAwjjL2.�/

C jjvjjL2.�/jjujjV jjwjj1=2V jjAwjj1=2
L2.�/

�

and, additionally, for every u 2 D.A/, v 2 H , and w 2 V , and some c > 0,

ˇ̌
ˇD QB.u; v/;w

E
V 0

ˇ̌
ˇ � c

�
jjujj1=2V jjAujj1=2V jjvjjL2.�/jjwjjV

C jjAujjL2.�/jjvjjL2.�/ jjwjj1=2
L2.�/

jjwjj1=2V
�
:

Proof. For the proof of this technical lemma we refer the interested reader
to [FHT2]. ut

If we apply P	 to (4.347a,b,c), using the notation developed above, we obtain
the following equivalent system of equations:

d

dt
.˛20vC ˛21Av/C 
A.˛20 C ˛21A/vC QB.v; ˛20vC ˛21Av/ D P	f (4.355a)

v.0/ D v0 (4.355b)

or, if we set

u D ˛20vC ˛21Av (4.356)

du
dt

C 
Au CB.u/v �B�.u/v D P	f ; (4.357a)

v.0/ D v0: (4.357b)
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As in [FHT2], we assume thatP	f D f ; if not, then we may add the gradient part
of f to the modified pressure and relabel P	f as f . We now have the following
definition of a regular solution:

Definition 4.5. Let f 2 H and let T > 0. A function v 2 C.Œ0; T /IV / \
L2.Œ0; T /ID.A// with

dv

dt
2 L2.Œ0; T /IH / is said to be a regular solution of

(4.355a,b) in the interval Œ0; T / if it satisfies

�
d

dt
.˛20vC ˛21Av/;w

�
D.A/0

C 

˝
A.˛20vC ˛21Av/;w

˛
D.A/0

C
D QB.v; ˛20vC ˛21Av/;w

E
D.A/0

D .f ;w/L2.�/ (4.358)

for every w 2 D.A/ and almost every t 2 Œ0; T /. Also, v.0/ D v0 in V .

Remarks. Equation (4.358) is to be understood in the following sense: For every
t0; t 2 Œ0; T / we have

�
˛20v.t/C ˛21Av.t/;w

�
L2.�/

C 


Z t

t0

�
˛20v.s/C ˛21Av.s/;w

�
L2.�/

ds

C
Z t

t0

D QB �v.s/; ˛20v.s/C ˛21Av.s/
�
;w
E
D.A/0

ds D
Z t

t0

.f ;w/L2.�/ ds: (4.359)

We are now in a position to state the central result in [FHT2] concerning global
existence and uniqueness of regular solutions to (4.355a,b).

Theorem 4.27. Let f 2 H and v0 2 V . Then for any T > 0, the system (4.355a,b)
has a unique regular solution v on Œ0; T /. Moreover, this solution satisfies

(i) v 2 L1
loc..0; T �IH 3.�//

(ii) There are constants Rk , for k D 0; 1; 2; 3, which depend only on 
, ˛0, ˛1, and
f , but not on v0, such that

lim sup
t!1

�
˛20

ˇ̌̌ˇ̌̌
A

k
2 v

ˇ̌̌ˇ̌̌2
L2.�/

C ˛21

ˇ̌̌ˇ̌̌
A

kC1
2 v

ˇ̌̌ˇ̌̌
L2.�/

2
�

D R2k

for k D 0; 1; 2; 3. In particular, we have

R20 D 1


1
min

8̂̂
<
ˆ̂:

ˇ̌̌ˇ̌̌
A�1=2f

ˇ̌̌ˇ̌̌2
L2.�/


˛20
;

ˇ̌̌ˇ̌̌
A�1=2f

ˇ̌̌ˇ̌̌
L2.�/


˛21

9>>=
>>;

(4.360)

� min

( jjf jjL2.�/

221˛

2
0

;
jjf jj2

L2.�/


231˛
2
1

)
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so that

R20 � G2
2


1=2
1

min

�
1

˛20
;
1

˛211

	
D G2
2

�
1=2
1

where G D jjf jjL2.�/

2

3=4
1

is the Grashoff number and ��1 D min

�
1

˛20
;
1

˛211

	
.

Finally, for all t � 0,

lim sup
T!1




T

Z tCT

t

�
˛20 jjv.s/jj2V C ˛21 jjAv.s/jj2L2.�/

�
ds

� 
1R
2
0 � G2
3

1=2
1

�
: (4.361)

Proof. The existence proof is based on a Galerkin procedure to establish the
required (H 1,H 2, andH 3) a priori estimates and the Aubin Compactness Theorem
(see, e.g., [CF]); for the details of the rather lengthy proof of the existence part
of Theorem 4.27 we refer the reader to the original paper [FHT2]. Uniqueness
of regular solutions will follow if we establish continuous dependence of those
solutions on the initial data. To this end, let v and Nv be any two solutions of
(4.355a,b) on Œ0; T � with initial data v.0/ D v0 and Nv.0/ D Nv0, respectively. We set

u D ˛20vC ˛21Av and Nu D ˛20 NvC ˛21A Nv

and let ıv D v � Nv and ıu D u � Nu. Then by (4.355a)

d

dt
u C 
Au C QB.ıv;u/C QB. Nv; ıu/ D 0: (4.362)

Equation (4.362) holds in L2.Œ0; T �;D.A/0/; as ıv 2 L2.Œ0; T �ID.A//, which is
the dual space of L2.Œ0; T �ID.A/0/, we infer from Lemma 4.21 that

�
d

dt
u; ıv

�
D.A/0

C 

�
˛20 jjıvjj2V C ˛21 jjAıvjj2

L2.�/

�
C
D QB. Nv; ıu/; ıv

E
D.A/0

D 0:

(4.363)

As (see [Te1], Chap. III, Lemma 1.2)

�
du
dt
; ıv

�
D.A/0

D 1

2

d

dt

�
˛20 jjıvjj2

L2.�/
C ˛21 jjıvjj2V

�
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it follows from (4.363) that

1

2

d

dt

�
˛20 jjıvjj2

L2.�/
C ˛21 jjıvjj2V

�

C 

�
˛20 jjıvjj2V C ˛21 jjAıvjj2

L2.�/

�
C
D QB. Nv; ıu/; ıv

E
D.A/0

D 0: (4.364)

By the second of the two results in part (v) of Lemma 4.21,

1

2

d

dt

�
˛20 jjıvjj2

L2.�/
C ˛21 jjıvjj2V

�
C 


�
˛20 jjıvjj2V C ˛21 jjAıvjj2

L2.�/

�

� c
�
jj Nvjj1=2V jjA Nvjj1=2

L2.�/
jjıujjL2.�/jjıvjjV

C jjA NvjjL2.�/jjıujjL2.�/jjıvjj1=2
L2.�/

jjıvjj1=2V
�

(4.365)

for some c > 0 and, by Young’s inequality (Appendix A)

1

2

d

dt

�
˛20 jjıvjj2

L2.�/
C ˛21jjıvjj2V

�
C 


�
˛20 jjıvjj2V C ˛21jjAıvjj2

L2.�/

�

� c




�
jj NvjjV jjA NvjjL2.�/jjıvjj2V C jjA Nvjj2

L2.�/
jjıvjjL2.�/jjıvjjV

�

C 


2

�
˛20 jjıvjj2V C ˛21 jjAıvjj2

L2.�/

�
(4.366)

� c

2
˛21
1=2
1

jjA Nvjj2
L2.�/

�
˛20 jjıvjj2

L2.�/
C ˛21 jjıvjj2V

�

C 


2

�
˛20 jjıvjj2V C ˛21 jjAıvjj2

L2.�/

�
:

Therefore,

�
˛20 jjıv.t/jj2L2.�/ C ˛21 jjıv.t/jj2V

�

�
�
˛20 jjıv.0/jj2L2.�/ C ˛21 jjıv.0/jj2V

�
exp

"Z t

0

cjjA Nv.s/jj2
L2.�/


˛21
1=2
1

ds

#
: (4.367)

As Nv 2 L2.Œ0; T �ID.A// we conclude that solutions of (4.355a,b) depend
continuously on the initial data on any bounded interval Œ0; T �; in particular, regular
solutions of (4.355a,b) are uniquely defined. ut

We conclude this subsection by setting ˛0 D 1 and stating the following result
from [FHT2] concerning the convergence of the solutions of the system (4.355a,b)
as ˛1 ! 0C:
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Theorem 4.28. Let f 2 H , v0 2 V , and set ˛0 D 1. Also, let v˛1 denote the
unique regular solution of (4.355a,b) and set u˛1 D v˛1 C ˛21Av˛1 . Then there are
subsequences v

˛
j
1

and u
˛
j
1
, and a function v such that as ˛j1 ! 0C we have

(i) v
˛
j
1

! v, strongly in L2loc.Œ0;1/IH /,
(ii) v

˛
j
1

! v, weakly in L2loc.Œ0;1/IV /,
(iii) For every T 2 .0;1/, and every w 2 H , we have

�
v
˛
j
1
.t/;w

�
L2.�/

!
.v.t/;w/L2.�/, uniformly on Œ0; T �,

(iv) u
˛
j
1

! v, weakly in L2loc.Œ0;1/IH / and strongly in L2loc.Œ0;1/IV 0/.

Furthermore, v is a weak solution of the three-dimensional Navier–Stokes equations
with the initial data v.0/ D v0 and space-periodic boundary conditions.

Remarks. The analysis in [FHT2] also provides upper bounds for the Hausdorff and
fractal dimensions dH .A/ and dF .A/, respectively, of the global attractor A for the
NS-˛ equations of the form

dH.A/ � dF .A/ � cmax

(
G4=3

�
1

�˛211

�2=3
; G3=2

�
1

˛40�
21˛

2
1

�3=8)

(4.368)

where all the relevant parameters have been defined in the statement of Theo-
rem 4.27; the estimates in (4.368) may be compared to the analogous results in
Chap. 5 for the bipolar viscous fluid with ˛ D 0.



Chapter 5
Attractors for Incompressible Bipolar
and Non-Newtonian Flows: Bounded Domains
and Space Periodic Problems

5.1 Introduction

From the existence and uniqueness theorems established in Chap. 4, both for
the initial-boundary value problems, as well as for the space-periodic problems
associated with nonlinear, incompressible, bipolar (�1 > 0) and non-Newtonian
flow (�1 D 0), it follows that under appropriate sets of conditions one may show
that the solution operator S .t/ yields a nonlinear semigroup; in this chapter we
examine the behavior of the orbits of such semigroups as t ! 1. Our interest
here is focused on the existence of maximal compact global attractors for bounded
domains and space periodic problems.

Given a nonlinear semigroup of solution operators S .t/, t � 0, associated
with a well-posed boundary-value problem (or space-periodic problem), for some
nonlinear system of evolutionary partial differential equations, the general definition
of an attractor A is that it is a set which is invariant, i.e., S .t/A D A, 8t � 0, and
which satisfies d.S .t/v0;A/ ! 0, as t ! 1, for all v0 in some neighborhood of
A. Here d is the standard distance measure given by Definition 5.3. Establishing
the existence of a maximal compact attractor is a multi-step process which involves
proving the existence of appropriate absorbing sets (in order to deduce the uniform
compactness of the semigroup S .t/, for large t), the uniform differentiability of
S .t/ on the attractor, and the uniform boundedness of related linearized operators
L.t I u0/ for u0 2 A. Once the existence of a maximal compact attractor has been
established, it is then often possible to use the framework established, e.g., by
Constatin, Foias, and Temam (see [Te4, CFT1]) in order to deduce upper bounds
for both the Hausdorff and fractal dimensions dH .A/ and dF .A/, respectively;
these concepts will be carefully defined in this chapter. Besides the two works
cited above, the following books and papers contain extensive analyses of problems
involving the existence of attractors for dissipative partial differential equations and
systems: [BV1, 3, 4, 5], [CV1, CVW], [EZ1, 2, 3], [GT, Hal, La4, Ro], and [SY2].
Additionally, there is a well-developed literature which is focused, specifically,
on the problem of the existence of attractors for the Navier–Stokes equations;

H. Bellout and F. Bloom, Incompressible Bipolar and Non-Newtonian Viscous Fluid
Flow, Advances in Mathematical Fluid Mechanics, DOI 10.1007/978-3-319-00891-2__5,
© Springer International Publishing Switzerland 2014
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prominent among such works are the following references: [BaA, BV2, CF, CFT2,
CV2, FP, FT, Gu, La3, LWZ], and [Ru].

We now offer a synposis of the work which is described in this chapter; in order to
keep the chapter reasonably self-contained, we first review the basic equations and
Hilbert spaces associated with the modeling and analysis of viscous, incompressible,
bipolar fluid flow and then recall the various existence and uniqueness results of
Chap. 4 which are so essential to our work in this chapter. The constitutive equations
relating the stress and multipolar stress tensors to the rate of deformation tensor,
which were introduced in Chap. 1, have the form

�ij D �pıij C 2�0.� C jej2/� ˛
2 eij � 2�1�eij; (5.1a)

�ijk D 2�1
@eij

@x�
(5.1b)

with �; �0 > 0, �1 � 0. The nonlinear viscosity � is, therefore, given as

�.jej/ D �0.� C jej2/� ˛
2 (5.1c)

and the main cases of interest are either 0 � ˛ < 1 or ˛ < 0. We will, as in Chap. 4,
often set ˛ D 2 � p so that

�.jej/ D �0.� C jej2/ p�2
2 (5.1d)

in which case

0 � ˛ < 1 , 1 < p � 2;

˛ < 0 , p > 2:

The velocity vector v satisfies, for an incompressible flow,

�

�
@v

@t
C v � rv

�
D �rp C 2r � .�.jej/e/

� 2�1r � .�e/C �f

(5.2a)

r � v D 0 (5.2b)

where f is the body force/mass. Equations (5.2a,b) are to hold in�
 Œ0; T /, T > 0
where, for the boundary-value problem, � � R

n, n D 2; 3, is a bounded domain,
while for the case of the space-periodic problem � D Œ0; L�n, L > 0, n D 2; 3. If
� � R

n is a bounded domain then to (5.2a,b) we append the boundary conditions
(Sect. 1.4)

v D 0; �ijk
j 
k � �jkl
j 
k
l
i D 0; i D 1; 2; 3, on @� 
 Œ0; T / (5.3a)
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where � is the exterior unit normal to @�, while for the space-periodic problem, in
dimensions n D 2 or 3, we require that

vi .0; t/ D vi .Lej ; t/; t � 0Z
�

v.x; t/ dx D 0; t � 0

�ijk.v.0; t//
j 
k�i D �ijk.v.Lej ; t//
j 
k�i ; t � 0

9>>=
>>;

(5.3b)

with ej the unit vector in the j th coordinate direction and � any vector in the
tangent space to @�. Associated with either (5.2a,b), (5.3a) or (5.2a,b), (5.3b) is
the specification of an initial condition

v.x; 0/ D v0.x/; x 2 �: (5.4)

If ˛ D 0, �1 D 0 (or p D 2, �1 D 0) we are dealing with the Navier–Stokes
equations and the associated boundary-value or space-periodic problems where,
of course, only the first set of boundary conditions in (5.3a) are relevant for the
boundary-value problem. For ˛ ¤ 0, but �1 D 0, we are working with a shear-
thinning (p < 2 or ˛ > 0) non-Newtonian fluid or a shear-thickening (p > 2 or
˛ < 0) non-Newtonian fluid; in either case, only the first set of boundary conditions
in (5.3a) is, again, relevant for the associated boundary-value problem. Finally, the
fundamental Hilbert spaces for the two types of problems cited, above, are

H D fv 2 L2.�/ j r � v D 0, in �; v � � D 0, on @�g (5.5a)

for the case of a bounded domain,�, in dimension n D 3, and

H per D fv 2 L2.�/ jr � v D 0, in � D Œ0; L�3, with

vi .0/ D vi .Lej / and
Z
�

v.x/dx D 0g
(5.5b)

for the space-periodic problem in dimension n D 3 with �1 D 0. For the space-
periodic problem with �1 > 0 we add the last condition in (5.3b) to those present in
the definition ofH and denote this new Hilbert space asH 2

per .
We now recall the basic existence and uniqueness results that were described in

Chap. 4 for the bipolar and non-Newtonian problems.

I. [BBN4]: Suppose that �1 > 0. Then, for the boundary-value problem, with H
given by (5.5a), or for the space-periodic problem where H is replaced by H 2

per ,
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if p > 1, fi 2 L1.Œ0;1/IH per /, i D 1; 2; 3, and v0 2 H per , 9 a unique solution
of either (5.2a,b), (5.3a,b), (5.4) or (5.2a,b), (5.3b), (5.4) which satisfies, 8t0 > 0,

v 2 L1.Œ0;1/IH /\ L1..t0;1/;H 2.�//:

Moreover, the unique solution v 2 C.Œ0; T �IH/, 8T > 0, so that the solution
operator S �1.t/ W v0 ! v.t/ constitutes a nonlinear semigroup of operators.

Remarks. While the results in (I) have been cited for the spaces in (5.5a,b),
corresponding to dimension n D 3, they also hold, of course, in dimension n D 2;
as pointed out in Chap. 4, in dimension n D 3 these results contrast sharply with
what is known about existence and uniqueness for the Navier–Stokes equations,
for which there exists a unique strong solution only on some interval Œ0; t1� with
t1 D t1.jjv0jjL2 / and a weak solution 8t > 0 (which agrees with the strong solution
on Œ0; t1� but which may not be unique).

II. [BBN2, 3]: Suppose that �1 D 0. For the space-periodic problem with � D
Œ0; L�n, n D 2; 3, L > 0, and

v0 2 W 1;2
0 .�/\W 2;2

per .�/

we have the following results:

(i) 9 a (possible non-unique) weak solution for n D 2 if
3

2
< p < 2 (, 0 <

˛ <
1

2
) and for n D 3 if

9

5
< p <

11

5
(, �1

5
< ˛ <

1

5
).

(ii) 9 a unique, regular, weak solution in Lp.Œ0; T /IW 1;p
per .�// \ L1.Œ0; T /I

W 1;2
per .�// for n D 2 if p � 2 (, ˛ � 0) and for n D 3 if p � 11

5

(, ˛ � �1
5

).

(iii) 9 a unique Young measure-valued solution for n D 2 if p > 1 (, ˛ < 1)

and for n D 3 if
6

5
< p � 9

5
(, 1

5
� ˛ <

4

5
); this latter result in dimension

n D 3 holds for the boundary-value problem as well.

Related results for both the boundary-value problem, and the space-periodic
problem, when �1 D 0, appear, e.g., in [La1, 2], [MN,DuG,MNR2,GZ] and [BaH].

Having reviewed the basic equations associated with the modeling of viscous,
incompressible, bipolar fluid flow, which were introduced in Chap. 2, and summa-
rized the existence and uniqueness results presented in Chap. 4, we now offer an
overview of those results on the existence of global attractors which will be proven
in this chapter:



5.2 Linearized Stability of Viscous Incompressible Bipolar Equations 351

In Sect. 5.2 we introduce the linear operator L.t IU / associated with the lin-
earization of the nonlinear, incompressible, bipolar equations about an equilibrium
solutionU ; the operatorL will occupy a central role in the analysis presented in the
balance of the present chapter. Based on results obtained in [Bl4], we also establish
in Sect. 5.2 the linearized stability of solutions of the incompressible bipolar flow
equations.

In Sect. 5.3 we present the results obtained in [BBN5] for the initial-boundary
value problem associated with incompressible, bipolar flow, i.e., for (5.2a,b), (5.3),
(5.4) with �1 > 0 and 0 � ˛ < 1 (1 < p � 2); the results hold in dimensions n D 2

or 3 and are valid for the space-periodic problem as well. It is demonstrated that a
maximal compact global attractor A�1 � W 2;2.�/ exists and that the Hausdorf
and Fractal dimensions of A�1 satisfy dH .A�1/ � k�, dF .A�1/ � 2k� where
k� < 1C g.�1I�/jf j31 with jf j1 D jjf jjL1.Œ0;1IH / and g � ��6

1 as �1 ! 0.
For �1 > 0 it is first proven in Sect. 5.4 that, as a consequence of the results

obtained in [Bl3], a maximal compact attractor, A�1 � W 2;2.�/, exists for the
space-periodic problem when n D 2 and p > 2 (˛ < 0). More importantly,
however, is the fact that now, for p > 2, we are able to show that dH .A�1/ and
dF .A�1/ are both independent of �1. Indeed, for �1 D 0, the corresponding non-
Newtonian, space-periodic problem, for p > 2 and n D 2 is shown to admit
a maximal compact global attractor A0 � W 2;2.�/ provided v0.�/ � L2.�/,
� D Œ0; L�2, L > 0.

Finally, in Sect. 5.5 we show that, as a consequence of the analysis presented in
[Bl2] and [Bl3], the attractors A�1 , whose existence has been established for the
space-periodic problem in the case p > 2 and n D 2, converge (in the sense of
semidistance) to the global compact attractor A0 for the same case, with �1 D 0,
as �1 ! 0. The fact that convergence holds only in the sense of semidistance is, as
noted in [Bl3], a consequence of the failure, to this point, of establishing uniform
differentiability for the nonlinear semigroup S 0.t/ associated with (5.2a,b), with
�1 D 0, (5.3b), (5.4) for n D 2 and p > 2.

5.2 Linearized Stability of Viscous Incompressible Bipolar
Equations

In this section we will establish a sufficient condition for the linearized stability of
equilibrium solutions to the boundary-value problem for the bipolar viscous flow
equations in bounded subdomains of R

3; the basic tools to be employed in the
analysis are interpolation and Sobolev space estimates and embeddings, and both
H 2 and Lp , 1 < p < 2, versions of the Korn inequality. Related results for
solutions of the Navier–Stokes equations may be found in many sources with the
treatise by Joseph [Jo1] being a standard reference.
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5.2.1 Linearized Bipolar Equations

Let � � R
3 be a bounded domain with smooth C1 boundary @�. Let U be an

equilibrium solution of (5.2a,b), (5.3a), (5.4), where the nonlinear viscosity �.jej/
is given by (5.1c),1 with �0 > 0, � > 0, and where, in this section, we specify that
0 < ˛ < 1. Alternatively,�.jej/ is defined by (5.1d) and we assume that 1 < p < 2.
Also, for ease of exposition in this section we will set � D 1 and f D 0. Thus, U
is a solution of the following boundary-value problem with pressure Qp:

U � rU D �r Qp C r � .2�e.U // � 2�1r � .�e.U // (5.6)

on �,

� D �.e.U // 	 �0.� C je.U /j2/�˛=2 (5.7)

0 < ˛ < 1, with

U D 0; �ijk.U /
j 
k�i D 0; , on @�: (5.8)

If u is any solution of (5.2a,b), (5.3a), and (5.4) and we set

v.x; t/ 	 u.x; t/ �U .x/; (5.9)

then v satisfies

@vi

@t
C .Uj C vj /

�
@Ui

@xj
C @vi

@xj

�
D � @

@xi
.p � Qp/

C @

@xj
Œ�.e.U C v//.eij.U /C eij.v//�� 2�1

@

@xj
Œ�eij.U /C�eij.v/�: (5.10)

On the assumption that the “perturbation” v is small (say, in the C 1.�/ norm)
we now expand the products in (5.10), dropping all terms which are quadratic in
vi .x; t/ and its spatial derivatives. We note, first of all that, with the usual summation
convention for repeated indices, if we drop terms quadratic in the derivatives of vi ,
we obtain

�.e.U C v// D �.e.U /C e.v//

D 2�0.� C .ekl .U /C ekl .v//.ekl.U /C ekl.v//�
� ˛
2

' 2�0Œ� C ekl .U /ekl.U /C 2ekl.U /ekl .v/�
� ˛
2

1When there is no possibility of confusion we will often write �.e/ in lieu of �.jej/.
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or

1

2�0
� �.e.U C v/ ' .� C je.U /j2/�˛=2 � ˛.� C je.U /j2/�.1C ˛

2 /eij.U /eij.v/

(5.11)

so that

�.e.U C v// ' �.e.U //� 2˛�0.� C je.U /j2/�.1C ˛
2 /eij.U /eij.v/

D �.e.U //� Aij.e.U //eij.v/
(5.12)

where

Aij.e.w// 	 2˛�0.� C je.w/j2/�.1C ˛
2 /eij.w/: (5.13)

Using (5.12) in (5.10) and subsequently dropping those terms which are quadratic
in vi , and its spatial dervatives, we are led to the equation

@vi

@t
C Uj

@Ui

@xj
C Uj

@vi

@xj
C vj

@Ui

@xj
D � @

@xi
.p � Qp/

C @

@xj
Œ�.e.U //eij.U / �Akl.e.U //eij.U /ekl.v/�

C @

@xj
Œ�.e.U //eij.v/� � 2�1 @

@xj
Œ�eij.U /� � 2�1 @

@xj
Œ�eij.v/�

which, after taking into account (5.6), and setting P D p � Qp, reduces to

@vi

@t
CUj @vi

@xj
Cvj @Ui

@xj
D � @

@xi
PC @

@xj
Œ�.e.U //eij.v/�Akl.e.U //eij.U /ekl.v/�

� 2�1 @

@xj
Œ�eij.v/�: (5.14)

Noting that
@

@xj
.�eij.v// D 1

2
�2vi , as a consequence of the fact that r � v D 0,

and setting

Bijkl.w/ D 1

˛
eij.w/Akl .e.w// 	 2�0.� C je.w/j2/�.1� ˛

2 /eij.w/ekl .w/ (5.15)

we may write (5.14) in the final form

@vi

@t
CUi @vi

@xj
Cvj @Ui

@xj
D � @P

@xi
C @

@xj
Œ�.e.U //eij.v/�˛Bijkl.U /ekl.v/���1�2vi

(5.16)

and we make the following:



354 5 Attractors for Incompressible Bipolar and Non-Newtonian Flows: Bounded : : :

Definition 5.1. The system of equations (5.16), i D 1; 2; 3, on�
 Œ0; T �,� � R
3,

T > 0, represents the linearization of the system of nonlinear incompressible
bipolar equations about an equilibrium solution U .

Remarks. The existence of a unique solution v for the system (5.16), subject to
r � v D 0 in �, an initial condition v.x; 0/ D v0.x/ in �, and the boundary
conditions v D 0, �ijk
j 
k�i D 0, on @�
Œ0; T /, � being the exterior unit normal to
@� and � any tangent vector to @�, follows from the work in [BBN4] as described
in Chap. 4.

In order to proceed with the analysis we formally define operatorsA1 andA2 as
follows:

.A1v/i D ��vi 	 2
@

@xj
.�eij/; (5.17a)

.A2v/i D � @

@xj
Œ�.e.U //eij.v/� ˛Bijkl.U /ekl .v/�: (5.17b)

For v0 2 W 1;2.�/, with r � v0 D 0, we know from our work in Chap. 4 that the
solution of (5.16), subject to the condition r � v D 0 and the boundary conditions
(5.3a), satisfies

v 2 L1.Œ0;1/IW 1;2.�// \L1.Œ0;1/IW 1;p.�// \L1..t1;1/;W 2;2.�//

8t1 > 0, so that A1,A2 are well-defined. If we also set

R.U ; v/ D U � rvC v � rU (5.18)

we see that (5.16) may be rewritten in the form

@v

@t
C �1A1vCA2vCR.U ; v/ D �rP;

or, if we employ the standard device of projecting each term in this last equation
onto the subspace of L2.�/ consisting of the solenoidal vector fields, as

@v

@t
C �1A1vCA2vCR.U ; v/ D 0: (5.19)

Remarks. As is customary, e.g., in work on the Navier–Stokes equations, we have
not displayed the relevant projection operator P in (5.19), i.e., R.U ; v/ is actually
to be replaced by PR.U ; v/ 	 P.U � rv/C P.v � rU /.
Remarks. It is a simple matter to show thatA1, as defined by (5.17a) is a symmetric
operator; that A2 is also symmetric follows from the fact that, for w 2 W 1;2

0 .�/,
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Z
�

.A2v/iwi dx D �
Z
�

@

@xj
Œ�.e.U //eij.v/ � ˛Bijkl.U /ekl .v/�wi dx

D
Z
�

Œ�.e.U //eij.v/ � ˛Bijkl.U /ekl .v/�
@wi
@xj

dx

D
Z
�

Œ�.e.U //eij.v/eij.w/� ˛Bijkl.U /eij.w/ekl.v/�dx

D
Z
�

.A2w/i vidx

because of the symmetries Bijkl D Bjikl D Bijlk D Bklij. However, in analogy with
the situation for the Navier–Stokes operator, the operator

OA 	 �1A1 CA2 CR.U ; �/

is not symmetric owing to the character of the linear mapping R generated by the
convective term; in spite of this fact, we will be able to use (5.19) to establish
a sufficient condition for the linearized stability of equilibrium solutions of the
nonlinear, incompressible, bipolar equations.

5.2.2 Basic Estimates for the Rate of Deformation

In this section we will elucidate five lemmas which apply to the rate of deformation
tensor e under specific assumptions relative to the velocity field v, where e D
1

2
.rvC .rv/t /. While v and e have the specific interpretations that are germane to

the present work, these lemmas are, of course, valid for any vector field v satisfying
the hypotheses of the individual results, below, and any tensor e obtained as the
symmetric part of the gradient of a sufficiently smooth vector field. We state only
the lemmas in this subsection; a restatement of the results, with proofs, may be
found in Appendix B. Our first two results are the following Lp and H 2 versions,
respectively, of the standard Korn inequality:

Lemma 5.1. For v 2 W 1;p
0 .�/, p > 1, and � a bounded domain in R

n, n D 2; 3,
with smooth boundary, 9c1 D c1.pI�/ > 0 such that

Z
�

Œeij.v/eij.v/�
p=2dx � c1 jjvjjp

W 1;p.�/
: (5.20)

Remarks. Lemma 5.1 is a well-known result of Nec̆as [N1] which holds also in
the space periodic case where � D Œ0; L�n, L > 0, n D 2; 3; it is identical with
Lemma B.1.
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Lemma 5.2. Let v 2 W 2;2.�/ \W 1;2
0 .�/, n D 2; 3, � � R

n a bounded domain
with smooth boundary. Then 9c2 D c2.�/ > 0 such that

Z
�

@eij.v/

@xk

@eij.v/

@xk
dx � c2 jjvjj2

W 2;2.�/
: (5.21)

Remarks. This result is identical with Lemma B.2; the proof in Appendix B
establishes the existence of c3.�/ > 0 such that for v 2 W 2;2.�/ \ W

1;2
0 .�/,

� � R
n, n D 2; 3,

Z
�

@eij.v/

@xk

@eij.v/

@xk
dx � c3

nX
kD1

ˇ̌
ˇ̌
ˇ̌
ˇ̌ @v
@xk

ˇ̌
ˇ̌
ˇ̌
ˇ̌2
L2.�/

: (5.22)

If (5.22) is valid, then (5.21) is a direct consequence of standard regularity results
for elliptic equations.

Our third lemma in this section provides an alternative characterization of the
higher-order boundary conditions in (5.3a), one that is better suited to some of the
integration by parts computations in Sect. 5.2.3.

Lemma 5.3. Let S � R
3 be a smooth surface and v.�/ a divergence free C2

vector field defined on a neighborhood of S , with v D 0 on S . If �ijk.v/
j 
k �
�jkl.v/
j 
k
l
i jS D 0, for i D 1; 2; 3, where � is the exterior unit normal on S ,
then �ijk.v/eij.v/
kjS D 0.

Remarks. This lemma is the same as Lemma B.3.

Our next lemma in this section provides an elementary lower bound for the
integral

Z
�

w � e.U / � wdx; w 2 L2.�/ (5.23)

and figures prominently in the analysis presented in the next subsection; it is
identical with Lemma B.4.

Lemma 5.4. Let� � R
3 be a bounded domain with smooth boundary @�. For any

w 2 L2.�/, and U 2 W 1;2.�/, 9ƒ.U / > 0 such that

jjwjj2
L2.�/

� �
�
1

ƒ

�Z
�

w � e.U / � wdx: (5.24)

Remarks. We note that all of the results in this section retain their validity, with
obvious cosmetic modifications, if we replace the relevant real-valued Lp and
Sobolev spaces by their corresponding complex-valued spaces, i.e., if for wi ; Ui 2 C

in (5.24) we write
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8<
:

jjwjj2
L2.�/

D
Z
�

wiw
�
i dx;

w � e.U / � w D eij.U /wiw
�
j

where eij D 1

2

�
@Ui

@xj
C @U �

j

@xi

�
D e�

j i , the asterisk denoting complex conjugation.

Our last lemma in the current sequence has been restated and proven as
Lemma B.5.

Lemma 5.5. Let u.t/, v.t/ be the unique solutions of (5.2a,b), (5.3a), (5.4) which
correspond, respectively, to initial data u.0/ D u0 and v.0/ D v0. Then, for 1 <
p � 2,

Z
�



�.v/eij.v/ � �.u/eij.u/

� 

eij.v/ � eij.u/

�
dx � 0 (5.25)

where �.v/ D �.je.v/j/.

5.2.3 A Sufficient Condition for Linearized Stability

We are now in a position to establish the linearized stability of the solution U of the
boundary-value problem (5.6)–(5.8). We begin with the following

Definition 5.2. An equilibrium solution U of the bipolar initial-boundary value
problem is said to exhibit linearized stability if every solution v of the linearized
problem (5.19), (5.3a), (5.4) which has the form

v.x; t/ D Qv.x/e�	t ; 	 2 C (5.26)

satisfies
Z
�

vi .x; t/v
�
i .x; t/dx ! 0, as t ! C1.

We observe that (5.19) was obtained by projection onto the space of divergence
free vector fields so any solution of (5.19) satisfies r � v D 0.

If in (5.19) we set

OA D �1A1 CA2 CR.U ; �/ (5.27)

so that (5.19) assumes the form

@v

@t
C OAv D 0; t > 0 (5.28)
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then, in the usual manner, v (of the form (5.26)) is a solution of (5.28) if and only if
Qv is an eigenvector ofA with corresponding eigenvalue 	 . As

	 D 	r C i	c; 	r ; 	c 2 R (5.29)

it then follows that U exhibits linearized stability if and only if 	r D Re 	 > 0

for 	 any eigenvalue of OA with corresponding eigenvector Qv. Our task, therefore,
is to characterize the eigenvalues of OA, i.e., to obtain a lower bound for Re 	 , the
positivity of which will ensure the linearized stability of the equilibrium solution
U . For the remainder of this section our computations will be carried out using the
inner-product h ; i in the complex-valued Hilbert space L2c.�/, where for vi ;wi 2
C, hv;wi D

Z
�

viw
�
i dx, so that hv;wi D . Qv;w/L2c .�/ and

p
hv; vi will simply be

denoted as jjvjj. We are now in a position to state the following result concerning the
linearized stability of equilibrium solutions of the incompressible bipolar equations:

Theorem 5.1. Let U be an equilibrium solution of the incompressible bipolar
boundary-value problem on � � R

3. Then 9† D †.�0; �1; ˛I�/ such that for
† > 0 any eigenvalue 	 of OA, as given by (5.27), satisfies

Re 	 � † > 0 (5.30)

and U is a linearly stable solution.

The proof of Theorem 5.1 will be preceded by a series of lemmas delineating the
structure of the operatorsA1,A2 and R.U ; �/ in (5.27).

Lemma 5.6. A1, as given by (5.17a) satisfies

hA1 Qv; Qvi D 2

Z
�

@eij

@xk

@e�
ij

@xk
dx: (5.31)

Proof. Substituting (5.26) into (5.28), and using the definition of OA in (5.27) we
obtain

�1A1 QvCA2 QvCR.U ; Qv/ D 	 Qv: (5.32)

By taking the inner-product inH of (5.32) with Qv we find that

�1 hA1 Qv; Qvi C hA2 Qv; vi C hR.U ; Qv/; Qvi D 	 jjvjj2 : (5.33)

Therefore,

�1 hA1 Qv; vi C hA2 Qv; Qvi CRe hR.U ; Qv/; Qvi D 	r jj Qvjj2 (5.34)
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if we extract the real parts on both sides of (5.33). We now compute as follows: As
v D 0, on @�,

hA1 Qv; Qvi D 2

Z
�

@

@xj
.�eij/ Qv�

i dx

D �2
Z
�

�eij
@ Qv�

i

@xj
dx

D �2
Z
�

@

@xk

�
@eij

@xk

@ Qv�
i

@xj

�
dx C 2

Z
�

@eij

@xk

@2 Qv�
i

@xk@xj
dx

D �2
I
@�

�ijke
�
ij
kdS C 2

Z
�

@eij

@xk

@e�
ij

@xk
dx

(5.35)

from which (5.31) follows if we apply Lemma 5.3 and the second boundary
condition in (5.3a). ut
Lemma 5.7. The linear operatorA2, as given by (5.17b), satisfies

hA2 Qv; vi D
Z
�

�.e.U //eij. Qv/e�
ij . Qv/dx

� ˛
Z
�

�.e.U //eij.U /e
�
kl .U /eij. Qv/dx

(5.36)

where

�.e.U // D 2�0.� C je.U /j2/�.1C ˛
2 /: (5.37)

Proof. We compute, using (5.17b) that

hA2 Qv; vi D �
Z
�

@

@xj
Œ�.e.U //eij. Qv/ � ˛Bijkl.U /ekl . Qv/� Qv�

i dx

D
Z
�

�
�.e.U //eij. Qv/@v

�
i

@xj
� ˛Bijkl.U /ekl . Qv/@ Qv�

i

@xj


dx

(5.38)

so that

hA2 Qv; Qvi D
Z
�

Œ�.e.U //eij. Qv/e�
ij . Qv/� ˛Bijkl.U /eij. Qv/ekl. Qv/dx (5.39)

and (5.36) now follows from (5.39) by using the obvious modification of (5.15) for
the complex-valued situation. ut
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Lemma 5.8. DefineR.U ; �/ as in (5.18); then

hR.U ; Qv/; Qvi D
Z
�

Qv � rU � Qv�dx: (5.40)

Proof. Using (5.18) we compute, directly, that

hR.U ; Qv/; Qvi D
Z
�

�
Uj
@ Qvi
@xj

C Qvj @Ui
@xj

�
Qv�
i dx

D
Z
�

Qv � rU � Qv�dx C
Z
�

Uj
@ Qvi
@xj

Qv�
i dx

D
Z
�

Qv � rU � Qv�dx C 1

2

Z
�

Uj
@

@xj
jj Qvjj2 dx:

(5.41)

However,

Z
�

Uj
@

@xj
jj Qvjj2 dx D 1

2

I
@�

Uj jjvjj2 
j dS � 1

2

Z
�

jj Qvjj2 r � Udx D 0

as Qv D 0 on @� and r � U D 0 on �. ut
We are now in a position to establish (5.30).

Proof (Theorem 5.1). We set

I D
Z
�

Qvi @Ui
@xj

Qv�
j dx (5.42)

in which case

I� D
Z
�

Qv�
i

@U �
i

@xj
Qvj dx D

Z
�

Qv�
j

@U �
j

@xi
Qvidx D

Z
�

Qvi
@U �

j

@xi
Qv�
j dx

so that

Re I D 1

2
.I C I�/ 	

Z
�

eij.U / Qvi Qv�
j dx: (5.43)

By virtue of (5.40) and (5.43) we have

Re hR.U ; Qv/; Qvi D
Z
�

eij.U / Qvi Qv�
j dx: (5.44)

Combining (5.31), (5.36), and (5.44) with (5.27), we see that
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D OA Qv; Qv
E

D 2�1

Z
�

@eij

@xk

@e�
ij

@xk
dx

C
Z
�

�.e.U //eij. Qv/e�
ij . Qv/dx

� ˛

Z
�

�.e.U //eij.U /e
�
kl .U /eij. Qv/e�

kl . Qv/dx C
Z
�

eij.U / Qvi Qv�
j dx:

(5.45)

Next, we apply the obvious complex-valued modifications of (5.21), in dimn D 3,
with v D Qv, and of (5.24), with w D Qv, to (5.45) so as to conclude that

D OA Qv; Qv
E

� 2�1c2.�/ jj QvjjH 2.�/ �ƒ jj Qvjj2 C
Z
�

�.e.U //eij. Qv/e�
ij . Qv/dx

� ˛

Z
�

�.e.U //eij.U /e
�
kl .U /eij. Qv/e�

kl . Qv/dx (5.46)

with c2.�/ > 0, ƒ.U / > 0. From (5.34) and (5.46) we obtain the estimate

.	r Cƒ/ jj Qvjj2 � 2�1c2.�/ jj Qvjj2
H 2.�/

C J (5.47)

with

J D
Z
�

Œ�.e.U //eij. Qv/e�
ij . Qv/ � ˛�.e.U //eij.U /e

�
kl .U /eij. Qv/e�

kl. Qv/dx: (5.48)

The basic task now is to obtain a reasonable lower bound for J ; to this end, we first
substitute for �.e.U // and �.e.U // in (5.48) so that

J D
Z
�

�
2�0eij. Qv/e�

ij . Qv/
.� C je.U /j2/ ˛2 � 2˛�0eij.U /e

�
kl.U /eij. Qv/e�

kl . Qv/
.� C je.U /j2/1C ˛

2


dx (5.49)

where ˛ D 2 � p satisfies 0 < ˛ < 1 so that 1 < p < 2. We now note that

K D
Z
�

 
eij.U /e

�
kl
.U /eij. Qv/e�

kl
. Qv/

.� C je.U /j2/1C ˛
2

!
dx

D
Z
�

"
eij.U /e

�
kl
. Qv/

.� C je.U /j2/ 12C ˛
4

#"
eij. Qv/e�

kl
.U /

.� C je.U /j2/ 12C ˛
4

#
dx

�
 Z

�

"
eij.U /e

�
kl
. Qv/e�

ij .U /ekl . Qv/
.� C je.U /j2/1C ˛

2

#
dx

! 1
2



 Z

�

"
eij. Qv/e�

kl
.U /e�

ij . Qv/ekl .U /
.� C je.U /j2/1C ˛

2

#
dx

! 1
2

D
Z
�

"
eij.U /e

�
ij .U /ekl . Qv/e�

kl
. Qv/

.� C je.U /j2/1C ˛
2

#
dx
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or

K �
Z
�

je.U /j2je. Qv/j2
.� C je.U /j2/1C ˛

2

dx: (5.50)

Employing the estimate (5.50) in (5.49) we find that

J �
Z
�

�
2�0.� C je.U /j2/je. Qv/j2 � 2˛�0je.U /j2je. Qv/j2

.� C je.U /j2/1C ˛
2


dx

D 2��0

Z
�

je. Qv/j2
.� C je.U /j2/1C ˛

2

dx

C 2.1� ˛/�0
Z
�

je.U /j2je. Qv/j2
.� C je.U /j2/1C ˛

2

dx:

(5.51)

The use of (5.51) in (5.47) now produces the lower bound

.	r Cƒ/ jj Qvjj2 � 2�1c2.�/ jj Qvjj2
H 2.�/

C 2��0

Z
�

je. Qv/j2
.� C je.U /j2/1C ˛

2

dx

C 2.1� ˛/�0
Z
�

je.U /j2je. Qv/j2
.� C je.U /j2/1C ˛

2

dx:

(5.52)

We now add and subtract the expression

2.1� ˛/��0

Z
�

je. Qv/j2
.� C je.U /j2/1C ˛

2

dx

on the right-hand side of (5.52), rearrange terms, and obtain the estimate

.	r Cƒ/ jj Qvjj2 � 2�1c2.�/ jj Qvjj2
H 2.�/

C 2��0Œ1 � .1 � ˛/�

Z
�

je. Qv/j2
.� C je.U /j2/1C ˛

2

dx

C 2.1 � ˛/�0
Z
�

.� C je.U /j2/je. Qv/j2
.� C je.U /j2/1C ˛

2

dx

or, as 0 < ˛ < 1,

.	r Cƒ/ jj Qvjj2 � 2�1c2.�/ jj Qvjj2
H 2.�/

C 2.1� ˛/�0
Z
�

je. Qv/j2
.� C je.U /j2/˛=2 dx:

(5.53)



5.2 Linearized Stability of Viscous Incompressible Bipolar Equations 363

By Lemma 5.14 (5.3.5), with � D Qv and u D U , we obtain from (5.53) the lower
bound

.	r Cƒ/ jj Qvjj2 � 2�1c2.�/ jj Qvjj2
H 2.�/

C 2.1� ˛/�0c4.�/ jjvjj2
W 1;p.�/

: (5.54)

However, by Lemma A.6 with ı0 D 2

�
2 � ˛
4C ˛

�
, we have the existence of

dı0.�/ > 0 such that, for any � > 0,

jjvjj2
W 1;p.�/

� �1=ı
0

ı0dı0

jjvjj2
H 1.�/

� � 1
ı0.1�ı0/

�
1 � ı0

ı0

�
jjvjj2

H 2.�/

and, thus

.	r Cƒ/ jjvjj2 � 2

�
�1c2 � .1 � ˛/�0c4�

1
ı0.1�ı0/

�
1 � ı0

ı0

�
jjvjj2

H 2.�/

C
 
2.1� ˛/�0c4�

1=ı0

ı0dı0

!
jjvjj2

H 1.�/
:

Therefore, for � > 0 chosen sufficiently small,

.	r Cƒ/ jjvjj2 �
 
2.1� ˛/�0c4�1=ı0

ı0dı0

!
jjvjj2

H 1.�/
: (5.55)

We note that, in general, � D �.�1; �1˛I�/. At this point we appeal to the
equivalence of the H 1 seminorm and the W 1;2 norm, for v 2 W

1;2
0 .�/, and then

apply the Poincaré inequality so as to deduce the existence of �.�/ > 0 such that

jj Qvjj2 � �.�/ jj Qvjj2
H 1.�/

: (5.56)

From (5.55), (5.56) we have

 
	r Cƒ � 2.1� ˛/�0c4��

1=ı0

ı0dı0

!
jj Qvjj2 � 0 (5.57)

or

	r � 2.1� ˛/�0c4��
1=ı0

ı0dı0

�ƒ: (5.58)

The theorem now follows with †.�0; �1; ˛1I�/ given by

† D 2.1� ˛/�0c4��
1=ı0

ı0dı0

�ƒ; (5.59)
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i.e., if † > 0, then 	r > 0, and all solutions of the linearized bipolar equations of
the form (5.26) decay to zero, in the norm on L2c.�/, as t ! C1. ut

5.3 Bounds for the Dimensions of Attractors for Nonlinear
Bipolar Fluid Flow (0 � ˛ < 1)

In this section, we begin our study of the problem of the existence of maximal com-
pact global attractors for the dynamical systems generated by the initial-boundary
value and space-period problems associated with the motion of nonlinear bipolar
and non-Newtonian fluids; we begin with the nonlinear bipolar fluid (�1 > 0) for
which the initial-boundary value problem is given by (5.2a,b), (5.3a), (5.4) while the
space periodic problem is defined by (5.2a,b), (5.3b), (5.4). It will be seen that the

maximal global attractor has the form A�1 D
\
t�0
S �1.t/B

�0

H 2.�/
, where S�1.t/ is

the relevant nonlinear semigroup andB�0

H 2.�/
(the ball of radius �0 > 0 inH 2.�/) is,

for �0 > 0 sufficiently large, what will be defined to be an absorbing set in H 2.�/.
One of the highlights of this section will be the derivation of upper bounds for the
Hausdorff and Fractal dimensions of the attractor A�1 . Throughout this section we
will assume that 0 � ˛ < 1 so that, with p D 2 � ˛, 1 < p � 2. We also set � D 1

in the bipolar equations.

5.3.1 Some Preliminary Concepts

Throughout the remainder of this section the Hilbert spacesH andH 2
per will be as

defined in Sect. 5.1. Furthermore for � � R
n, n D 2; 3 we will set

V D fv 2 H 1
0.�/

ˇ̌r � v D 0g (5.60)

and

Av D �P�v; v 2 H 2.�/ (5.61)

where P is the orthogonal projection operator fromL2.�/ ontoH . In addition, we
have

B.u; v/ D P.u � rv/ andB.v/ D B.v; v/: (5.62)

For the initial-boundary value problem (5.2a,b), (5.3a), (5.4), we have already noted,
in Sect. 5.1, that as a consequence of the results in [BBN4] a unique solution

v 2 L1.Œ0;1IH / \L1..t0;1/IH 2.�//
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exists. Thus, the solution operators S �1.t/ W v0 ! v.t/ yield a nonlinear semigroup
of operators which enjoys the properties

S �1.t C s/ D S �1.t/ � S �1.s/; 8s; t � 0; (5.63a)

S�1.0/ D I (5.63b)

with

S �1.t/ a continuous nonlinear operator

fromH into itself, for any �1 > 0, 8t � 0:
(5.63c)

Our basic goal in this section is to study the behavior, as t ! C1, of the orbits of
the semigroups S�1.�/.

In Sect. 5.2 we studied the linearized stability of an equilibrium solution U of
the bipolar initial-boundary value problem, with zero body force, where U satisfies
(5.6)–(5.8). By letting v.x; t/ D u.x; t/ � U .x/, with u any solution of (5.2a,b),
(5.3a), (5.4), we found, as the linearized equations for the vi (5.16), where P D
p � Qp is the difference of the pressures associated with u and U , and Bijkl.U / is
given by (5.15) with w ! U .

In the present section we will let .v; p/ be a solution of the initial-boundary value
problem (5.2a,b), (5.3a), (5.4) and .v�; p�/ any other solution corresponding to the
same body force density f . Now, we set

U .x; t/ D v�.x; t/ � v.x; t/; (5.64a)

P.x; t/ D p�.x; t/ � p.x; t/: (5.64b)

Using the abbreviated notation

�.v/ D �.e.v// (5.65)

we obtain for the linearization of the system of bipolar fluid equations, about the
solution .v; p/, the system

@Ui

@t
C Uj

@vi

@xj
C vj

@Ui

@xj
D �@pU

@xi
C @

@xj
Œ�.v/eij.U /� ˛Bijkl.v/ekl.U /�

� 2�1
@

@xj
.�eij.U //

(5.66a)
on @� 
 Œ0; T /, with

r � U D 0, in � 
 Œ0; T /; (5.66b)

U .x; 0/ D v�.x; 0/� v.x; 0/ 	 U 0.x/, in � (5.66c)
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and

Ui D 0; �ijk.U /
j 
k�i D 0, on @� 
 Œ0; T /: (5.66d)

Remarks. We note that Bijkl, as defined by (5.15) results from the computation of
the Fréchet derivative of the nonlinear viscosity. Additionally, if we assume that
eij D e�

ij , then by a judicious application of the Cauchy-Schwarz inequality to the
integral

OI 	
Z
�

eij.U /ekl .U /eij.v/ekl .v/

.� C emn.v/emn.v//1C˛=2
dx (5.67)

we obtain, in a manner entirely similar to that which yielded the lower bound (5.51)
for the integral J in (5.48), the estimate

Z
�

Œ�.v/eij.U /eij.U / � ˛Bijkl.v/eij.U /ekl .U /�dx

� 2�˛�0

Z
�

eij.U /eij.U /

.� C ekl .v/ekl .v//1C˛=2
dx

C 2.1� ˛/�0
Z
�

eij.U /eij.U /

.� C ekl .v/ekl.v//˛=2
dx

(5.68)

for all �; �0 � 0, 0 � ˛ < 1. Finally, we note that, when it exists, the Fréchet
differential of the semigroup of solution operators S �1.t/ W v0 ! v.t/, generated
by (5.2a,b), (5.3a), (5.4), at v0 is the mapping

L�1.t; v0/ W � ! U .t/ (5.69)

where U is the solution of the linearized problem (5.66a–d) with U .0/ D �, and
with v in (5.66a) given by S�1.t/v0.

Concerning the existence and uniqueness of solutions for the linearized initial-
boundary value problem (5.66a–d), we have the following theorem which may be
inferred from the results in Sect. 4.2:

Theorem 5.2. Choose v0 and U 0 to be in L2.�/ and divergence free; then there
exists a unique solution U .t/ of (5.66a–d) such that, 8t1 > 0,

U 2 L1.Œt1;1/IH / \L1.Œt1;1/IH 2.�//:

In what follows, we will need to talk of solutionsU to the linearized system only
for the situation where we linearize about a solution v.t/ of (5.2a,b), (5.3a), (5.4) for
which the initial data v0 is chosen in a compact subset X � H which is invariant
with respect to the nonlinear semigroup S�1.t/, 8t � 0; in this case it is easily



5.3 Bounds for the Dimensions of Attractors for Nonlinear Bipolar Fluid Flow : : : 367

shown that the unique solution of (5.66a–d), corresponding to a choice of U 0 2 H ,
satisfies the stronger result

U .t/ 2 L1.Œ0;1/IH / \L1.Œ0;1/IH 2.�//:

We conclude this section with a few well-known definitions (see, e.g., [Te4]).

Definition 5.3. An attractor for the semigroupS �1.t/ is a set A�1 � H such that

(i) A�1 is a functionally invariant set of the semigroup S�1.t/, i.e., S �1.t/A�1 D
A�1 , 8t � 0.

(ii) A�1 has an open neighborhood � such that for every v0 2 �, S�1.t/v0
converges to A�1 as t ! C1, i.e., dist.S �1.t/v0;A�1/ ! 0 as t ! C1
where

d.x;A�1/ D inf
y2A�1

d.x;y/;

d.x;y/ being the distance from x to y inH .

Definition 5.4. We call A�1 � H the global (or universal) attractor for the
semigroup S �1.t/ if A�1 is a compact attractor that attracts the bounded sets of
H ; the basin of attraction of A�1 is then said to be all ofH .

Definition 5.5. Let B be a subset of H and � an open set containing B . Then B
is said to be absorbing in � if for every bounded set B0 � �, 9t0.B0/ such that
S�1.t/B0 � B , 8t � t0.B0/.

In order to prove the existence of the global attractor for the semigroup S �1.t/
generated by (5.66a–d) we will establish in the next section the existence of an
absorbing set B�

H in all of H and then use that result to establish the existence of

an absorbing set B�0

H 2.�/
, where B�

H is the (closed) ball in H of radius � > 0 with

a similar interpretation for B�0

H 2.�/
; the existence of the global attractor A�1 in the

form

A�1 D
\
t>0

S �1.t/B
�0

H 2.�/
(5.70)

will then follow from a theorem in [CF]. Alternatively, we could take A�1 to be the
!-limit set of the absorbing set B�

H as in [Te4]; in this latter approach we view the

existence of the absorbing set B�0

H 2.�/
as establishing the uniform compactness of

the operators S�1.t/ for t large. We remark that all of the calculations below may
be made entirely rigorous by making use of the existence and uniqueness results of
Sect. 4.2 and standard density arguments.
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5.3.2 Absorbing Sets in H andH2.�/ and Existence
of a Global Compact Attractor A�1

The existence of an absorbing set in H for solutions of (5.66a–d) is the essential
content of

Lemma 5.9. For �1 > 0, and 0 � ˛ < 1, let v.t/ be the unique solution of
the initial-boundary value problem (5.2a,b), (5.3a), (5.4) where, without loss of
generality, we set � D 1. Then, 9t 00 > 0, t 00 D t 00.jjv0jjL2.�//, ˇ > 0, and  > 0,
such that for t � t 00,

jjv.t/jjL2.�/ � 2ˇ


jjf jj1 	 O� (5.71)

where jf j1 D sup
Œ0;1/

jjf jjL2.�/ 	 jjf jjL1.Œ0;1/IL2.�//.

Proof. We write (5.2a) in component form, with � D 1, as

@vi

@t
C vj

@vi

@xj
D � @p

@xi
C @

@xj
.�.v/eij/� 2�1

@

@xj
.�eij/C fi (5.72)

where �.v/ D �.je.v/j/. Our first step is to multiply (5.72) through by vi .x; t/ and
integrate over� so as to obtain

1

2

d

dt

Z
�

vivi dxD
Z
�

vi
@

@xj
.�.v/eij/ dx� 2�1

Z
�

vi
@

@xj
.�eij/ dxC

Z
�

fivi dx:

(5.73)

In obtaining (5.73) we use the fact that

Z
�

vj
@vi

@xj
vi dx D

Z
�

vi
@p

@xi
dx D 0 (5.74)

both of which follow by integration by parts coupled with the fact that vi D 0 on
@� 
 Œ0; T /, as well as div v D 0 in � 
 Œ0; T /. Now

Z
�

vi
@

@xj
.�.v/eij/ dx D �

Z
�

�.v/eijeij dx (5.75)

while two successive integrations by parts applied to the second integral on the
right-hand side of (5.73) yields

Z
�

vi
@

@xj
.�eij/ dx D

Z
�

@eij

@xk

@eij

@xk
dx: (5.76)
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In obtaining (5.76), we actually make use of the fact that
Z
@�

�ijkeij
k dS D 0 (5.77)

which is a direct consequence of Lemma 5.3. Combining (5.72), (5.74) and (5.76)
we find that

1

2

d

dt
jjvjj2

L2.�/
C
Z
�

�.v/eijeij dx C 2�1

Z
�

@eij

@xk

@eij

@xk
dx

D
Z
�

fivi dx � jjf jjL2.�/ jjvjjL2.�/ � jf j1 jjvjjL2.�/
(5.78)

with

jf j1 D sup
Œ0;1/

jjf jjL2.�/ 	 jjf jjL1.Œ0;1/IL2.�// : (5.79)

Now for v0 2 H , our results in Sect. 4.2 guarantee the existence of a t0 D
t0.jjv0jjL2.�// such that v 2 L1.Œt0;1/IH 2.�//; for t � t0, therefore, we
may apply the extension of the Korn inequality expressed by Lemma 5.2 so as to
conclude that for t � t0.jjv0jjL2.�//

1

2

d

dt
jjvjj2

L2.�/
C 2�1k.�/ jjvjj2

H 2.�/
� jf j1 jjvjjL2.�/

in which case, for any ˇ > 0,

1

2

d

dt
jjvjj2L2.�/ C 2�1k.�/ jjvjj2

L2.�/
� ˇ

2
jf j21 C 2

ˇ
jjvjj2

L2.�/
: (5.80)

Therefore, for ˇ > 0 sufficiently large, we see that there exists .�1; k.�// > 0

such that

d

dt
jjvjj2

L2.�/
C  jjvjj2

L2.�/
� ˇjf j21 (5.81)

for t � t0.jjv0jjL2.�//. In the standard manner (5.81) leads to the estimate

jjv.t/jj2
L2.�/

� e�.t�t0/ jjv.t0/jj2L2.�/ C ˇjf j21


Œ1 � e�.t�t0/�: (5.82)

But, by virtue of the fact that v 2 L1.Œ0;1/IH /, 9C D C.jjv0jjL2.�// such that
jjv.t0/jjL2.�/ � C . Thus,

jjv.t/jj2
L2.�/

� e�.t�t0/C C ˇjf j21


(5.83)
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and it follows that 9t 00 D t 00.jjv0jjL2.�// � t0 such that

jjv.t/jjL2.�/ � 2ˇ


jf j21 	 O� (5.84)

for t � t 00.jjv0jjL2.�//; the estimate (5.84) establishes the existence of an absorbing
set inH , i.e., if v0 is in a bounded set B0 � H , then 9R0 > 0 s.t. jjv0jjL2.�/ � R0,
8v0 2 B0 and S �1.t/v0 2 B�

H , for t � t 00.R0/. ut
Now, as a consequence of (5.80) and (5.84), we also have

1

2

d

dt
jjvjj2

L2.�/
C 2�1k.�/jvj2

H 1.�/
� �jf j1 (5.85)

for t � t 00.jvjL2.�// where jvjH 1.�/ is the seminorm

jvjH 1.�/ D
�Z

�

@vi

@xj

@vi

@xj
dx

�1=2
: (5.86)

Let r > 0 and t � t 00; integrating (5.85) we find that

jjv.t C r/jj2
L2.�/

C 2�1k.�/

Z tCr

t

jvj2
H 1.�/

d� � �r jf j1 C jjv.t/jj2
L2.�/

� �r jf j1 C O�2:
(5.87)

Therefore, for t � t 00.jjv0jjL2.�//
Z tCr

t

jvj2
H 1.�/

d� � �r jf j1 C O�2
2�1k.�/

: (5.88)

By virtue of the inequality immediately preceding (5.80) it is clear that (5.88) also
holds with jvj2

H 1.�/
replaced by jjvjj2

H 2.�/
. The estimate (5.88) will be useful in

helping us to establish the existence of an absorbing set inH 2.�/. We may, in fact,
state the following result:

Lemma 5.10. For �1 > 0, and 0 � ˛ < 1, let v.t/ be the unique solution of the
initial-boundary value problem (5.2a,b), (5.3a), (5.4) with � D 1. Then, for any
r > 0, 9K.r/ > 0 such that for t 00.jjv0jjL2.�//, as given in Lemma 5.9,

jjv.t C r/jjH 2.�/ � K.r/; 8t � t 00: (5.89)

Proof. We begin by multiplying (5.72) through by @vi=@t and integrating over �,
i.e.,
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Z
�

@vi

@t

@vi

@t
dx C

Z
�

vj
@vi

@xj

@vi

@t
dx

D
Z
�

@

@xj
.�.v/eij/

@vi

@t
dx � 2�1

Z
�

@

@xj
.�eij/

@vi

@t
dx C

Z
�

fi
@vi

@t
dx (5.90)

where we have used the fact that
Z
�

@p

@xi

@vi

@t
dx D 0:

Treating the first two integrals on the right-hand side of (5.90) in a manner similar
to that employed in the proof of Lemma 5.9, we find that

ˇ̌
ˇ̌
ˇ̌
ˇ̌@v
@t

ˇ̌
ˇ̌
ˇ̌
ˇ̌2
L2.�/

C
Z
�

�.v/eij � @eij

@t
dx C �1

d

dt

Z
�

@eij

@xk

@eij

@xk
dx

D �
Z
�

vj
@vi

@xj

@vi

@t
dx C

Z
�

fi
@vi

@t
dx: (5.91)

We now introduce the potential

�.eijeij/ D
Z eijeij

0

�0.� C s/�˛=2 ds (5.92)

so that

d�

dt
D �.v/eij

@eij

@t
; (5.93)

then we obtain from (5.91)

ˇ̌
ˇ̌
ˇ̌
ˇ̌@v
@t

ˇ̌
ˇ̌
ˇ̌
ˇ̌2
L2.�/

C d

dt

�Z
�

�.eijeij/ dx C �1

Z
�

@eij

@xk

@eij

@xk
dx

	

� �
Z
�

vj
@vi

@xj

@vi

@t
dx C jf j1

ˇ̌̌
ˇ
ˇ̌̌
ˇ@v@t

ˇ̌̌
ˇ
ˇ̌̌
ˇ
L2.�/

: (5.94)

From (5.94) we have, immediately, that

1

2

ˇ̌
ˇ̌
ˇ̌
ˇ̌@v
@t

ˇ̌
ˇ̌
ˇ̌
ˇ̌2
L2.�/

C d

dt

�Z
�

�.eijeij dx C �1

Z
�

@eij

@xk

@eij

@xk
dx

	

� 1

2
jf j21 C

ˇ̌̌
ˇ
Z
�

vj
@vi

@xj

@vi

@t
dx

ˇ̌̌
ˇ : (5.95)
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Now,

ˇ̌̌
ˇ
Z
�

�
vj
@vi

@xj

�
@vi

@t
dx

ˇ̌̌
ˇ �

�Z
�

jjv � rvjj2 dx
�1=2 ˇ̌̌

ˇ
ˇ̌̌
ˇ@v@t

ˇ̌̌
ˇ
ˇ̌̌
ˇ
L2.�/

� ı

2

Z
�

jjv � rvjj2 dx C 1

2ı

ˇ̌
ˇ̌
ˇ̌
ˇ̌@v
@t

ˇ̌
ˇ̌
ˇ̌
ˇ̌2
L2.�/

(5.96)

for any ı > 0. Choosing ı > 1 in (5.96), and then combining this result with (5.95),
we are led to the estimate

d

dt

�Z
�

�.eijeij/ dx C �1

Z
�

@eij

@xk

@eij

@xk
dx

	
� 1

2
jf j21 C ı

2

Z
�

jjv � rvjj2 dx:
(5.97)

Next,

Z
�

jjv � rvjj2 dx D
Z
�

vj
@vi

@xj
vk
@vi

@xk
dx � sup

�

.vivi /

Z
�

@vi

@xj

@vi

@xj
dx

D jjvjj2
L2.�/

jjvjj2
L2.�/

� c.�/ jjvjj2
H 2.�/

jjvjj2
H 1.�/

(5.98)

for some c.�/ > 0, by virtue of the embedding ofW 2;2.�/ intoC .�/ in dimension
n D 3. Therefore, from (5.97) we now obtain

d

dt

�Z
�

�.eijeij/ dx C �1

Z
�

@eij

@xk

@eij

@xk
dx

	

�
�
ıc.�/

2�1
jvj2

H 1.�/

	
�1 jjvjj2

H 2.�/
C 1

2
jf j21

�
�
ı Qc.�/
2�1

jvj2
H 1.�/

 �Z
�

�.eijeij/ dx C �1

Z
�

@eij

@xk

@eij

@xk
dx

	
C 1

2
jf j21

(5.99)

with Qc.�/ D c.�/=k.�/ where we have again used Lemma 5.2. If we define

y.t/ D
Z
�

�.eijeij/ dx C �1

Z
�

@eij

@xk

@eij

@xk
dx (5.100)

then, by virtue of (5.99), we see that we have arrived at a differential inequality of
the form

dy

dt
� a.t/y.t/C b.t/ (5.101)
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with

a.t/ D ı Qc.�/
2�1

jv.t/j2
H 1.�/

; b.t/ D 1

2
jf j21: (5.102)

At this point we apply the Uniform Gronwall Lemma (see Appendix A or [FP,Te4]);
this result requires, for its application here that, for all t � t 00 D t 00.jjv0jjL2.�//,
9k1; k2; k3, and r , all positive constants, such that

Z tCr

t

a.s/ ds � k1;

Z tCr

t

b.s/ ds � k2;

Z tCr

t

y.s/ ds � k3: (5.103)

We now show that the conditions of (5.103) are satisfied for appropriate k1; k2; k3 >
0. First of all, from the definition of a.t/, i.e., (5.102) and (5.88), which is valid for
any r > 0, if t � t 00.jjv0jjL2.�//, we have

Z tCr

t

a.s/ ds D ı Qc.�/
2�1

Z tCr

t

jv.s/j2
H 1.�/

ds � ı Qc.�/�.r jf j1 C O�/
4�21k.�/

	 k1:

(5.104)
Also

Z tCr

t

b.s/ ds D r

2
jf j21 	 k2: (5.105)

It remains, therefore, to show that for t � t 00.jjv0jjL2.�//
Z tCr

t

Z
�

�
�.eijeij/C �1

@eij

@xk

@eij

@xk

	
dx ds � k3 (5.106)

for some k3 > 0. Now, directly from (5.78) we infer that

1

2

d

dt
jjvjj2

L2.�/
C 2�1

Z
�

@eij

@xk

@eij

@xk
dx � jf j1 jjvjjL2.�/ � O�jf j1 (5.107)

for t � t 00.jjv0jjL2.�//, where we have used (5.84), i.e., the existence of the
absorbing set inH . Integrating (5.107) from t to t C r , for t � t 00 , yields

1

2
jjv.t C r/jj2

L2.�/
C 2�1

Z tCr

t

Z
�

@eij

@xk

@eij

@xk
dx ds � O�r jf j1 C 1

2
jjv.t/jj2

L2.�/
:

(5.108)

Therefore, if we again make use of (5.84) we are led directly from (5.108) to the
estimate

Z tCr

t

Z
�

@eij

@xk

@eij

@xk
dx ds � �r jf j1 C O�2=2

2�1
(5.109)
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which is valid for t � t 00.jjv0jjL2.�//. We now consider the function �.eijeij/ which
is defined by (5.92); for s � 0 the integrand

g.s/ D �0.� C s/�˛=2 (5.110)

satisfies

g0.s/ D �˛�0
2
.� C s/�.

˛
2C1/ < 0; g.0/ D �0�

�˛=2 > 0:

Therefore,

�.eijeij/ �
Z eijeij

0

"
sup
s�0

g.s/

#
ds 	 �0

�˛=2
eijeij (5.111)

so that for t � t 00.jjv0jjL2.�// we have, by virtue of (5.88),

Z tCr

0

Z
�

�.eijeij/ dx ds � �0

�˛=2

Z tCr

t

�Z
�

eijeij dx

�
ds

� �0c
0.�/
�˛=2

Z tCr

t

jv.s/j2
H 1.�/

ds

� �0c
0.�/

2�1�˛=2k.�/
f�r jf j1 C O�2g:

(5.112)

By combining (5.109) with (5.112) we now see that (5.106) is valid, for t �
t 00.jjv0jjL2.�//, with

k3 D
�
1C �0c

0.�/
�1�˛=2k.�/

	
.�r jf j1 C O�2/: (5.113)

According to the Uniform Gronwall Lemma, for locally integrable positive func-
tions y.t/, a.t/, b.t/ on Œt 00;1/, satisfying (5.101) for t � t 00, and the conditions
(5.103), we have

y.t C r/ �
�
k3

r
C k2

�
exp.k1/; 8t � t 00: (5.114)

Defining, therefore, k1, k2, and k3 as in (5.104), (5.105), and (5.113), we find that

Z
�

�
�.eijeij/C �1

@eij

@xk

@eij

@xk

	
dx

ˇ̌̌
ˇ
tCr

�
�
k3

r
C k2

�
exp.k1/; 8t � t 00:

(5.115)
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Applying the extension of Korn’s lemma, i.e., Lemma 5.2, to (5.115) we infer the
existence of K D K.r/ such that

jjv.t C r/jjH 2.�/ � K.r/; 8t � t 00.jjv0jjL2.�//: ut

Remarks. It follows directly from (5.89) that

jjv.t/jjH 2.�/ � K.r/; 8t � t 00 C r: (5.116)

Of course,K.r/ depends, as well, on �0, �1, �, �, and jf j1 but not on jjv0jjL2.�/.
The estimate (5.116) shows that, for v0 in a bounded set, B0 � H , so that
jjv0jjL2.�/ � R0, for some R0 > 0 and all v0 2 B0, S�1.t/v0 2 B

�0

H 2 , for
t � t 00.R0/, where �0 D K.r/.

We may combine Lemmas 5.9 and 5.10 into the following

Theorem 5.3. For the nonlinear semigroup S�1.t/ defined by the solution of the
initial-boundary value problem (5.2a,b), (5.3a), (5.4), with initial data v0 2 H ,

there exist absorbing sets B O�
H , B�0

H 2.�/
, respectively, inH andH 2.�/; furthermore,

for v0 2 B0 � H , a bounded set contained in the ball in H of radius R0 centered

at the zero element in L2.�/, 9t 00 D t 00.R0/ such that S �1.t/v0 2 B O�
H \ B

�0

H 2.�/
for

t � t 00.

The existence of a (global) compact attractor A�1 , which attracts all the bounded

sets of H , can now be inferred from results in [Te4] if we take A�1 D !.B
O�
H /, the

!-limit set of B O�
H , because the existence of the absorbing set B�0

H 2.�/
in H 2.�/

enables us to conclude that

[
t�t 00

S �1.t/B0

is relatively compact in H for every bounded set B0 � H ; in other words the
operators S �1.t/ are uniformly compact for t sufficiently large. Alternatively, we
may follow the approach in [CF] so as to conclude that

A�1 D
\
t>0

S �1.t/B
�0

H 2.�/
(5.117)

in which case the properties already established for the semigroup S �1.t/ generated

by (5.2a,b), (5.3a), (5.4), and the fact that B�0

H 2.�/
is an absorbing set in H 2.�/,

permit us to follow, almost verbatim, the proof of Proposition 14.1 of [CF] so as to
conclude the following:
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Theorem 5.4. Let A�1 be defined as in (5.117) where S�1.t/ is the nonlinear
semigroup of (solution) operators generated by the bipolar initial-boundary value

problem (5.2a,b), (5.3a), (5.4), with v0 2 H , and B�0

H 2.�/
is the absorbing set whose

existence was established in the proof of Lemma 5.10. Then

(i) A�1 is compact in H .
(ii) S �1.t/A�1 D A�1 , 8t � 0.

(iii) If B � H is bounded and satisfies S�1.t/B D B , 8t � 0, then B � A�1 .
(iv) A�1 is a connected set.
(v) For every v0 2 H , lim

t!C1d.S �1.t/v0;A�1/ D 0.

Theorem 5.4 establishes A�1 , as defined by (5.117), as the desired global
attractor for the semigroup S�1.t/; our next goal is to establish upper bounds for
both the Hausdorff and Fractal dimensions of A�1 . We choose to establish the
upper bounds for the Hausdorff and Fractal dimensions of A�1 by using the general
framework in [Te4, CF], and [CFT1]; to this end we must establish two basic facts:
(i) that the operators S �1.t/ are uniformly differentiable on A�1 for t � 0 and
(ii) that the Fréchet differential L�1.t I v0/ of S �1.t/, at v0 2 A�1 , is uniformly
bounded, 8t � 0, on A�1 in the strong operator norm of L.H IH /. We begin by
considering the first of these two problems in the next section.

5.3.3 The Uniform Differentiability of S�1.t/

Let S �1.t/ be the nonlinear semigroup generated by the solution of (5.2a,b), (5.3a),
(5.4), corresponding to initial datum v0 2 H and let A�1 be the global attractor for
S�1.t/ defined by (5.117). We then have the following

Definition 5.6. Let t > 0 be given. Then S�1.t/ is uniformly differentiable on
A�1 if for every v0 2 A�1 there exists a linear operator L�1.t I u0/ 2 L.H IH /
such that, as � ! 0,

sup
v0;u02A�1

0<jv0�u0jL2.�/��

S�1.t/v0 � S �1.t/u0 �L�1.t I u0/.v0 � u0/jL2.�/
jv0 � u0jL2.�/

! 0:

Remarks.

(i) When L�1.t I u0/ exists, L�1.t I u0/.v0 � u0/ will be the solution U .t/ of the
linearized initial-boundary value problem (5.66a–d), (about u.t/ D S�1.t/u0),
with U 0.x/ D v0.x/� u0.x/ in �.

(ii) If v0 2 A�1 then v.t/ D S �1.t/v0 2 A�1 , 8t � 0. As S �1.t/B
�0

H 2.�/
�

B
�0

H 2.�/
, for t sufficiently large, we will have v.t/ 2 B

�0

H 2.�/
, 8t � 0,
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inasmuch as v.t/ 2 A�1 , 8t � 0 ) v.t/ 2
\
s>0

S �1.s/B
�0

H 2.�/
) v.t/ 2

S �1.�/B
�0

H 2.�/
� B

�0

H 2.�/
, for � sufficiently large, and all t � 0.

(iii) By virtue of (ii), above, U .t/ D L�1.t I u0/.v0 � u0/ will be the solution
of the linearized initial-boundary value problem, with the linearization about

u.t/ 2 B
�0

H 2.�/
, 8t � 0. In this case Theorem 5.2 may be easily strengthened

so as to imply the existence of a unique solution U .t/ of (5.66a–d) which is in
L1.Œ0; t/IH / \L1.Œ0; t/IH 2.�//, 8t > 0, as U .0/ 2 H 2.�/.

We now have the following result:

Theorem 5.5. The semigroup S�1.t/ defined by the solution of (5.2a,b), (5.3a),
(5.4), with v0 2 A�1 , is uniformly differentiable on the global attractor A�1 defined
by (5.117). In particular, if we set

‚.t/ D S�1.t/v0 � S �1.t/u0 �L�1.t I u0/.v0 � u0/

with

(i) v.t/ D S�1.t/v0 the unique solution of (5.2a,b), (5.3a), (5.4) with v.0/ D
v0 2 A�1 ,

(ii) u.t/ D S�1.t/u0 the unique solution of (5.2a,b), (5.3a), (5.4) with u.0/ D
u0 2 A�1 ,

(iii) U .t/ D L�1.t I u0/.v0 � u0/ the unique solution of (5.66a–d) satisfying
U .0/ D v0 � u0, then 9j.t/ < 1, for each t > 0, such that

jj‚.t/jjL2.�/
jjv0 � u0jjL2.�/

� j.t/�1=5 ! 0, as � ! 0: (5.118)

Prior to proceeding with the proof of Theorem 5.5 we will first pause to establish
the following:

Lemma 5.11. Under the conditions stated in Theorem 5.5,‚.t/ satisfies, 8t � 0,

sup
v0;u02A�1

0<jjv0�u0jjL2.�/<�
jj‚jjL2.�/ � c1e

c2t � � (5.119)

for some c1 > 0, c2 > 0 which depend (at most) on �1, �
0, and�.

Proof. By the remarks above, and the assumption that both v0;u0 2 A�1 , we have,
in fact, that v, u, and U are all in L1.Œ0;1/IH / \ L1.Œ0;1/IH 2.�//. We set
w.t/ D v.t/ � u.t/ in which case ‚.t/ D w.t/ � U .t/. It is easy to deduce that
w.t/ satisfies, in � 
 Œ0; T /,
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@wi
@t

C wj
@ui
@xj

C uj
@wi
@xj

C wj
@wi
@xj

D �@pw

@xi
C @

@xj
Œ�.v/eij.v/ � �.u/eij.u/� (5.120)

� 2�1
@

@xj
.�eij.w//

with pw the difference of the pressures corresponding to the two velocity fields v
and u, and

div w D 0; in � 
 Œ0; T /; (5.121a)

w D 0; �ijk.w/
j 
k�i D 0; on @� 
 Œ0; T /; (5.121b)

w.0/ D v0 � u0; in �: (5.121c)

We now multiply (5.120) through by wi , integrate over�, and sum over i D 1; 2; 3

so as to obtain

1

2

d

dt
jjwjj2

L2.�/
C
Z
�

wj
@ui
@xj

wi dx

C
Z
�

Œ�.v/eij.v/ � �.u/eij.u/�Œeij.v/ � eij.u/�dx

C 2�1

Z
�

@eij.w/
@xk

@eij.w/
@xk

dx D 0:

(5.122)

However, as demonstrated in Lemma B.5,

Z
�

Œ�.v/eij.v/ � �.u/eij.u/�Œeij.v/ � eij.u/�dx � 0 (5.123)

so that

1

2

d

dt
jjwjj2

L2.�/
C 2�1

Z
�

@eij.w/
@xk

@eij.w/
@xk

dx

� �
Z
�

wj
@ui
@xj

wi dx D
Z
�

ui
@wi
@xj

wj dx:

(5.124)

Moreover, for any ı > 0,
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ˇ̌
ˇ̌Z
�

ui
@wi
@xj

wj dx

ˇ̌
ˇ̌ � jjujjL1.�/ jjwjjH 1.�/ jjwjjL2.�/

� c.�/ jjujjH 2.�/ jjwjjH 1.�/ jjwjjL2.�/

� c.�/�0
�
ı

2
jjwjj2

H 2.�/
C 1

2ı
jjwjj2

L2.�/

� (5.125)

where we have, again, used the embedding ofW 2;2.�/ into C .�/, valid for n D 3,

and the fact that 8t � 0, u.t/ 2 B�0

H 2.�/
if u0 2 A�1 . Applying the Korn inequality,

Lemma 5.2, to (5.124), the estimate of Lemma 5.2 now being valid 8t � 0 since

w.t/ 2 H �0

H 2.�/
, 8t � 0, and then using (5.125), we infer the existence of constants

�1 D �1.�/ > 0 and �2.�/ > 0 such that

d

dt
jjwjj2

L2.�/
C �1 jjwjj2

H 2.�/
� �2 jjwjj2

L2.�/
; t � 0: (5.126)

From (5.126) we easily deduce that

jjv.t/ � u.t/jj2
L2.�/

� jjv0 � u0jj2L2.�/ exp.�2t/; t � 0 (5.127)

and, thus,

Z t

0

jjw.�/jj2
H 2.�/

d� �
�
�2

�1

�
jjv0 � u0jj2L2.�/ exp.�2t/: (5.128)

Next, from (5.120) and (5.66a) we compute that for‚ D w �U :

@‚i

@t
C‚j

@ui
@xj

C uj
@‚i

@xj
C wj

@wi
@xj

D �@P‚
@xi

C @

@xj
Œ�.v/eij.v/� �.u/eij.u/�

� @

@xj
Œ�.u/eij.U / � ˛Bijkl.u/ekl .U /� � 2�1 @

@xj
.�eij.‚//

(5.129)
in � 
 Œ0; T /, with

div‚ D 0; in � 
 Œ0; T /; (5.130a)

‚i D �ijk.‚/
j 
k � �jkl.‚/
j 
k
l
i D 0; on @� 
 Œ0; T /; (5.130b)

‚.0/ D 0; in �: (5.130c)

In (5.129), P‚ represents, of course, the difference of the pressures pw and pU
corresponding to the solutions of (5.120), (5.121a,b,c), and (5.66a–d), respectively,
with the linearization in (5.66a) about u.t/ D S �1.t/u0. If we multiply (5.129)
through by ‚i , integrate over �, and sum on i D 1; 2; 3, then the usual integration
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by parts scheme, coupled with (5.130a,b), leads us to

1

2

d

dt
jj‚jj2

L2.�/
C
Z
�

‚i

@ui
@xj

‚jdx C
Z
�

wj
@wi
@xj

‚idx

C 2�1

Z
�

@eij.‚/

@xk

@eij.‚/

@xk
dx

C
Z
�

Œ�.v/eij.v/� �.u/eij.u/�eij.‚/dx

�
Z
�/

Œ�.u/eij.U /� ˛Bijkl.u/ekl .U /�eij.‚/dx D 0:

(5.131)

From the definition of the potential �.eijeij/ in (5.92) we obtain

@�

@eij
.e.v// D �.v/eij.v/: (5.132)

Using (5.132) we can now estimate the sum of the last two terms on the left-hand
side of (5.131) as follows:

Z
�

Œ�.v/eij.v/� �.u/eij.u/�eij.‚/dx

�
Z
�

Œ�.u/eij.U /� ˛Bijkl.U /ekl .U /�eij.‚/dx

D
Z
�

�
@�

@eij
.e.v.t/// � @�

@eij
.e.u.t///


eij.‚/dx

�
Z
�/

@2�

@eij@ekl
.e.u.t///ekl .U /eij.‚/dx

D
Z
�

�Z 1

0

@2�

@eij@ekl
.e.u C zw//d z

�
ekl .w/eij.‚/dx

�
Z
�

�Z 1

0

@2�

@eij@ekl
.e.u//d z

�
ekl .U /eij.‚/dx

�
Z
�

�Z 1

0

@2�

@eij@ekl
.e.u C zw//d z

�
ekl .w/eij.‚/dx

Z
�

�Z 1

0

@2�

@eij@ekl
.e.u//d z

�
ekl .w/eij.‚/dx

(5.133)
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where we have dropped the term

Z
�

@2�

@eij@ekl
.e.u//eij.‚/ekl .‚/dx

D
Z
�

Œ�.u/eij.‚/ � ˛Bijkl.u/ekl .‚/�eij.‚/dx � 0

by virtue of (5.68) with v ! u and U ! ‚. Thus

Z
�

Œ�.v/eij.v/� �.u/eij.u/�eij.‚/dx �
Z
�

Œ�.u/eij.U /� ˛Bijkl.U /ekl .U /�eij.‚/dx

�
Z
�

"Z 1

0

 
@2�

@eij@ekl
.e.u C �w/� @2�

@eij@ekl
.e.u//

!
d�

#
ekl .w/eij.‚/dx (5.134)

D
Z
�

 Z 1

0

Z 1

0

@3�

@eij@ekl @emn
.eŒu C 	..u C �w/ � u/�/emn.�w/d�d	

!
ekl .w/eij.‚/dx

D
Z
�

 Z 1

0

Z 1

0

@3�

@eij@ekl @emn
.e.u C 	�w// � �d�d	

!
ekl .w/eij.‚/dx

D
Z
�
�ijklmneij.‚/ekl .w/emn.w/dx

with

�ijklmn D
Z 1

0

Z 1

0

@3�

@eij@ekl@emn
.e.u C 	�w// � �d�d	:

Combining the last estimate in (5.134) with (5.131) we now obtain the differential
inequality

1

2

d

dt
jj‚jj2

L2.�/
C 2�1

Z
�

@eij.‚/

@xk

@eij.‚/

@xk
dx

�
ˇ̌
ˇ̌Z
�

‚i

@ui
@xj

‚jdx

ˇ̌
ˇ̌C

ˇ̌
ˇ̌Z
�

wj
@wi
@xj

‚idx

ˇ̌
ˇ̌

C
ˇ̌̌
ˇ
Z
�

�ijklmneij.‚/ekl .w/emn.w/dx

ˇ̌̌
ˇ :

(5.135)

There remains the task of estimating the three terms on the right-hand side of

(5.135); for the first of these terms, we have for any � > 0, as u.t/ 2 B
�0

H 2.�/
,

8t � 0
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ˇ̌
ˇ̌Z
�

‚i

@ui
@xj

‚jdx

ˇ̌
ˇ̌ � jj‚jjL1.�/ jujH 1.�/ jj‚jjL2.�/

� c.�/ jj‚jjH 2.�/ jujH 1.�/ jj‚jjL2.�/

� c.�/�0
�
�

2
jj‚jj2

H 2.�/
C 1

2�
jj‚jj2

L2.�/

� (5.136a)

for some c.�/ > 0. Next, as w.t/ 2 B�0

H 2.�/
, 8t � 0,

ˇ̌̌
ˇ
Z
�

wj
@wi
@xj

‚idx

ˇ̌̌
ˇ � jjwjjL1.�/ jwjH 1.�/ jj‚jjL2.�/

� c.�/ jjujjH 2.�/ jwjH 1.�/ jj‚jjL2.�/

� c.�/�0

2

�
jjwjj2

H 2.�/
C jj‚jj2

L2.�/

�
:

(5.136b)

A straightforward computation, based on the definitions of � and �ijklmn, shows that
for all possible combinations of the tensor indices, and all values of the arguments,
j�ijklmnj � ��.1C˛/=2. By virtue of the Hölder Inequality we have, therefore, for some
c# D c#.�; ˛;�/ > 0,

Z
�

�ijklmneij.‚/ekl .w/emn.w/dx � c# jjwjj2W 1;3.�/ jj‚jjW 1;3.�/ :

Applying the continuous embedding ofH 2.�/ intoW 1;3.�/ (a direct consequence
of the continuous embedding ofW 1;2.�/ into L6.�/, e.g., Appendix A) we obtain
from the last estimate, for some Oc.�; ˛;�/ > 0, and any � > 0,

Z
�

�ijklmneij.‚/ekl.w/emn.w/dx

� Oc jjwjj2
H 2.�/

jj‚jjH 2.�/

� Oc�0 jjwjjH 2.�/ jj‚jjH 2.�/

� d.�0/.� jj‚jj2
H 2.�/

C 1

�
jjwjj2

H 2.�/
/

(5.136c)

where d.�0/ D 1

2
Oc�0 and we have again used the fact that w.t/ 2 B

�0

H 2.�/
, 8t � 0.

By combining (5.136a,b,c) with (5.135) we now obtain an estimate of the form

1

2

d

dt
jj‚jj2

L2.�/
C 2�1

Z
�

@eij.‚/

@xk

@eij.‚/

@xk
dx � .c.�/�0 C d.�0//

�

2
jj‚jj2

H 2.�/

C 1

2
c.�/�0

�
1C 1

�

�
jj‚jj2

L2.�/
C 1

2

�
c.�/�0 C d.�0/

�

�
jjwjj2

H 2.�/
: (5.137)
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Because ‚.t/ 2 W 2;2.�/, 8t � 0, we may apply Lemma 5.2 to (5.137) and
conclude that for � > 0 chosen sufficiently small, 9�1; �2 > 0 which depend (at
most) on �1, �

0, and �, for which

d

dt
jj‚jj2

L2.�/
� �1 jjwjj2

H 2.�/
C �2 jj‚jj2

L2.�/
; (5.138)

for all t � 0. Because ‚.0/ D 0, (5.138) implies that

jj‚jj2
L2.�/

� �1e
�2t

Z t

0

jjwjj2
H 2.�/

ds; t � 0: (5.139)

Using the bound for
Z t

0

jjwjj2
H 2.�/

d� , in (5.128), in the estimate (5.139), we are

now led to the bound

jj‚jj2
L2.�/

� �1

�
�2

�1

�
e.�2C�2/t jjv0 � u0jj2L2.�/ (5.140)

for t � 0which has, as an immediate consequence, the following estimate for t � 0:

sup
v0;u02A�1

0<jjv0�u0jjL2.�/<�

jj‚jjL2.�/ �
s
�1

�
�2

�1

�
e.�2C�2/t � �: (5.141)

We now see that (5.119) holds with c1 D
s
�1

�
�2

�1

�
and c2 D �2 C �2, thus,

establishing the validity of Lemma 5.11. ut
We are now in a position to proceed with the proof of the uniform differentiability

of S�1.t/.

Proof (Theorem 5.5). We begin by recycling (5.141) through suitably modified
versions of some of our previous estimates. The estimate (5.136a) is retained in
its current form but (5.136b) is altered to

ˇ̌
ˇ̌Z
�

wj
@wi
@xj

‚idx

ˇ̌
ˇ̌ � c.�/ jjwjjH 2.�/ jjwjjH 1.�/ jj‚jjL2.�/

� c.�/

r
�1�2

�1
e.�2C�2/t=2 � � jjwjj2

H 2.�/

(5.142)

while, by the continuous embedding of H 2.�/ into W 1;3.�/, the first estimate in
(5.136c) yields

ˇ̌
ˇ̌Z
�

�ijklmneij.‚/ekl .w/emn.w/dx

ˇ̌
ˇ̌ � c0.�/ jjwjj2

H 2.�/
jj‚jjW 1;3.�/ : (5.143)
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We now avail ourselves of the following results on embedding and interpolation
(see, e.g., [Te4] as well as Appendix A):

(i) W 3=2;2.�/ is continuously embedded in W 1;3.�/,
(ii) H mCs.�/, 0 < s < 1, m 2 N , may be interpolated between H mC1.�/ and

L2.�/.

In particular, for the case where m D 1 and s D 1=2, we have, for some c.�/ > 0,
that for 0 < ı < 1

jj‚jjW 3=2;2.�/ � c jj‚jjı
L2.�/

jj‚jj1�ı
H 2.�/

:

Thus, if we apply this last result with ı D 1=4, and use the embedding of W 3=2;2

intoW 1;3, we find that, for some c�.�/ > 0

jj‚jjW 1;3.�/ � c� jj‚jj1=4
L2.�/

jj‚jj3=4
H 2.�/

: (5.144)

However, by virtue of Young’s inequality, for any � > 0, q > 1, we have

jj‚jj1=4
L2.�/

jj‚jj3=4
H 2.�/

� 1

q
�q jj‚jj3q=4

H 2.�/
C q � 1

q�q=q�1 jj‚jjq=4.q�1/
L2.�/

: (5.145)

Choosing q D 8=3 in (5.145) we obtain, as a consequence of (5.144)

jj‚jjW 1;3.�/ � c�
�
3�8=3

8
jj‚jj2

H 2.�/
C 5

8�8=5
jj‚jj2=5

L2.�/

	
: (5.146)

By combining (5.143) and (5.146) we find that

ˇ̌
ˇ̌Z
�

�ijklmneij.‚/ekl.w/emn.w/dx

ˇ̌
ˇ̌

� Nc jjwjj2
H 2.�/

n
3�8=3 jj‚jj2

H 2.�/
C 5��8=5 jj‚jj2=5

L2.�/

o
(5.147)

which is valid for any � > 0 and all t � 0. We now collect the estimates (5.136a),
(5.142), and (5.147) and employ them in the differential inequality (5.135) so as to
obtain

1

2

d

dt
jj‚jj2

L2.�/
C 2�1

Z
�

@eij.‚/

@xk

@eij.‚/

@xk
dx

� c.�/�0

2

�
� jj‚jj2

H 2.�/
C 1

�
jj‚jj2

L2.�/

�

C
r
�1�2

�1
e.�2C�2/t=2 � � jjwjj2

H 2.�/

C Nc jjwjj2
H 2.�/

n
3�8=3 jj‚jj2

H 2.�/
C 5��8=5 jj‚jj3=5

L2.�/

o
:

(5.148)
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By choosing � , � both sufficiently small, and taking account of the fact that
jjwjj2

H 2.�/
� �02, 8t � 0, we may absorb those terms on the right-hand side of

(5.148) which involve jj‚jj2
H 2.�/

into the second term on the left-hand side of this
estimate by again using Lemma 5.2. In this manner we obtain from (5.148) the
estimate

d

dt
jj‚jj2

L2.�/
� 2

r
�1�2

�1
e.�2C�2/t=2 � � jjwjj2

H 2.�/

C 10 Nc��8=5 jj‚jj2=5
L2.�/

jjwjj2
H 2.�/

C c.�/�0

�
jj‚jj2

L2.�/
:

(5.149)

Using (5.41) to bound the term jj‚jj2=5
L2.�/

in (5.149), we obtain the differential
inequality

d

dt
jj‚jj2

L2.�/
� Œ�k1.t/C �2=5k2.t/� jjwjj2

H 2.�/
C c.�/�0

�
jj‚jj2

L2.�/
(5.150)

with

8̂̂
<
ˆ̂:
k1.t/ D 2

r
�1�2

�1
e.�2C�2/t=2;

k2.t/ D 10 Nc��8=5
�
�1�2

�1

�1=5
e.�2C�2/t=5:

(5.151)

As‚.0/ D 0 it follows from (5.150) that, 8t � 0,

jj‚jj2
L2.�/

� Œ�k1.t/C �2=5k2.t/� exp

�
c.�/�0

�
t

�Z t

0

jjwjj2
H 2.�/

d�: (5.152)

Therefore, by employing (5.128) in (5.152) we may conclude that, 8t � 0,

jj‚jj2
L2.�/

� Œ�k1.t/C �2=5k2.t/�

�1
exp

��
�2 C c.�/�0

�


t

�
jjv0 � u0jj2L2.�/

(5.153)

in which case, 8u0; v0 2 A�1 , with jjv0 � u0jjL2.�/ < � sufficiently small,
9j.t/ > 0, for each t > 0, such that (5.118) is satisfied. ut

The second of the two tasks delineated at the end of Sect. 5.3.2 was to establish
that the Fréchet differential L�1.t I u0/ of S �1.t/, at any u0 2 A�1 , is uniformly
bounded, 8t � 0, in the strong operator norm of L.H IH /; it is to this problem that
we turn in the next subsection.
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5.3.4 Uniform Boundedness of L�1.tI u0/

In this section we show that the Fréchet differential L.t I u0/, of the nonlinear
semigroup S�1.t/, at u0 2 A�1 , is uniformly bounded, in the strong operator norm
of L.H IH /, on the global attractor A�1 , for all t � 0, where H D fv 2 L2.�/ j
r � v D 0g. In more precise terms, we will demonstrate the following:

Theorem 5.6. Let J 2 H and letL�1.t;u0/: J 7! U .t/, where U .t/ is the unique
solution of (5.66a–d) in L1.Œ0;1/IH / satisfying U 0 D J , the linearization in
(5.66a) being taken about u.t/ D S �1.t/u0, with u0 2 A�1 . Then 9` > 0 such that
for all t � 0

sup
u02A�1

jL�1.t I u0/jL.H IH / � `Œt �C1: (5.154)

Proof. The linearized equations are, in this case,

@Ui

@t
C Uj

@ui
@xj

C uj
@Ui

@xj
D �@PU

@xi

C @

@xj
Œ�.u/eij.U /� ˛Bijkl.u/ekl .U /� � 2�1 @

@xj
.�eij.U // (5.155)

in � 
 Œ0; T �; the Ui also satisfy (5.66b,c,d) with U 0 D J 2 H . As a consequence

of u0 2 A�1 , u.t/ 2 B�0

H 2.�/
, 8t � 0, while for any t > 0 and u0 2 A�1 ,

ˇ̌ˇ̌
L�1.t I u0/

ˇ̌ˇ̌
L.H IH / D sup

J2H

ˇ̌ˇ̌
L�1.t I u0/J

ˇ̌ˇ̌
L2.�/

jjJ jjL2.�/
: (5.156)

In the usual manner, we multiply (5.155) through by Ui , integrate over�, and sum
over i D 1; 2; 3, obtaining,

1

2

d

dt
jjU jj2

L2.�/
C 2�1

Z
�

@eij.U /

@xk

@eij.U /

@xk
dx

�
ˇ̌
ˇ̌Z
�
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@ui
@xj

Uidx

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌Z
�

Uj
@Ui

@xj
ui dx

ˇ̌
ˇ̌ (5.157)

where, on the left-hand side of the estimate (5.157) we have dropped the non-
negative integral

Z
�



�.u/eij.U /eij.U /� ˛Bijkl.u/eij.U /ekl.U /

�
dx:
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From (5.157) we have

1

2

d

dt
jjU jj2

L2.�/
C 2�1

Z
�

@eij.U /

@xk

@eij.U /

@xk
dx

� jjU jjL2.�/ jjU jjH 1.�/ jjujjL1.�/

� jjU jjL2.�/ jjU jjH 2.�/ jjujjH 2.�/

� �0 jjU jjL2.�/ jjU jjH 2.�/

(5.158)

as jjujjH 2.�/ � �0, 8t � 0. For any ı > 0 we have, therefore,

1

2

d

dt
jjU jj2

L2.�/
C 2�1

Z
�

@eij.U /

@xk

@eij.U /

@xk
dx � �0

2ı
jjU jj2

L2.�/
C �0ı

2
jjU jj2

H 2.�/
:

(5.159)

Noting that with u.t/ 2 B
�0

H 2.�/
, 8t � 0, we also have U 2 L1..0; t/IH 2.�//,

8t > 0, an application of the Korn-type estimate of Lemma 5.2 to (5.159) produces,
for ı > 0 chosen sufficiently small,

d

dt
jjU jj2

L2.�/
C � jjU jj2

H 2.�/
�
�
�0

2ı

�
jjU jj2

L2.�/
(5.160)

for some � D �.�0; �1;�/ > 0. From (5.160) it is immediate that

jjU .t/jjL2.�/ � jjU .0/jjL2.�/ e
�0

2ı t ; 8t � 0: (5.161)

Therefore, for all t � 0, u0 2 A�1 , and J 2 H ,

ˇ̌ˇ̌
L�1.t I u0/J

ˇ̌ˇ̌
L2.�/

jjJ jjL2.�/
� e

�0

2ı t (5.162)

from which it follows, immediately, that

sup
0�t�1

sup
u02A�1

ˇ̌ˇ̌
L�1.t;u0/

ˇ̌ˇ̌
L.H IH / � e

�0

2ı 	 `: (5.163)

Following the analysis in [Te4], Chap. V, Sect. 2, we conclude from the relation

S �1.t/ D S�1.t � Œt �/S �1.t/
Œt � (5.164)

that (5.163) implies that (5.154) holds 8t � 0. ut
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5.3.5 Hausdorff and Fractal Dimensions of the Global
Attractor A�1

Having established, in Sect. 5.3.3, the uniform differentiability of S �1.5/ on A�1 ,
and in Sect. 5.3.4 the uniform boundedness of L�1.t I ;u0/, u0 2 A�1 , we are
now in a position to estimate the Hausdorff and fractal dimensions of the global
attractor A�1 . We begin by recalling some basic properties and definitions that will
be employed in the computations of dH .A�1/ and dF .A�1/. In particular, for any
L 2 L.H IH /, and each positive integer k, we set

˛k.L/ D sup
G	H

dimGDk
inf
�2G

jj�jjHD1
jjLjjL2.�/ (5.165)

and

!k.L/ D ˛1.L/ � � �˛k.L/: (5.166)

The sequence f˛k.L/g is non-increasing and for L a compact self-adjoint non-
negative linear operator onH the ˛k.L/ are just the eigenvalues of .L�L/1=2, with
˛1.L/ � ˛2.L/ � � � � � 0, where L� is the adjoint operator. For L 2 L.H IH /
and d 2 RC, d D nC s, n an integer � 1 and 0 < s < 1, we define

!d .L/ D !n.L/
1�s!nC1.L/s: (5.167)

It is easy to see (e.g., [Te4], Chp. 5, Sect. 2) that d 7! !d .L/ is a non-increasing
function from Œ1;1/ into RC. Let S �1.t/ be the nonlinear semigroup generated
by the solution of the initial-boundary value problem (5.2a,b), (5.3a), (5.4) and let
L�1.t I u0/ be the associated Fréchet differential, with u0 2 A�1 ; the numbers
!k.L�1.t I u0// may be proven to bound the largest distortion of an infinitesimal k-
dimensional volume produced by S �1.t/ around the point�0. By virtue of Theorem
5.4 which yields the uniform differentiability of S�1.t/ on A�1 , the numbers
!k.L�1.t I u0// are well-defined 8t � 0, k 2 N , and u0 2 A�1 . Now, we set

N!�1k .t/ D sup
u02A�1

.L�1.t I u0//; k 2 N; t � 0: (5.168)

By virtue of the definitions (5.167), (5.168) and the estimate (5.162), it follows that
the functions t 7! N!�1k .t/ are subexponential, i.e.,

N!�1k .t C s/ � N!�1k .t/ N!�1k .s/; 8t; s � 0: (5.169)

Thus, by results in [Te4], the limit lim
t!1f N!�1k .t/g1=t exists and is equal to

…
�1
k D inf

t>0
f N!�1k .t/g1=t : (5.170)
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Next, we define, recursively, the numbers

ƒ
�1
1 D …

�1
1 ; ƒ

�1
1 ƒ

�1
2 D …

�1
2 ; : : : ; ƒ

�1
1 � � �ƒ�1

k D …
�1
k

or

ƒ
�1
1 D …

�1
1 ; ƒ

�1
k D …

�1
k

…
�1
k�1

; k � 2: (5.171)

The ƒ�1
k are the global (or uniform) Lyapunov numbers on A�1 while the numbers


�1
k D logƒ�1

k ; k � 1; (5.172)

are the global (uniform) Lyapunov exponents. From (5.170)–(5.172) it follows that

inf
t>0
. N!�1k .t//1=t D exp.�1k C � � � C 

�1
k /: (5.173)

Employing the linearized bipolar equations (5.155) we define the linear operator
L�1.u/:

L�1.u/ W QH ! H I u D S�1.t/u0; u0 2 A�1;

where

QH D f� 2 W 1;2
0 .�/ \W 2;2.�/ j div� D 0 in �

with �ijk.�/
j 
k � �jkl.�/
j 
k
l
i D 0 on @�; i D 1; 2; 3g

by

.L�1 .u/�/i D 2�1
@

@xj
.�eij.�//� @

@xj
Œ�.u/eij.�/� ˛Bijkl.u/ekl .�/�C uj

@�i

@xj
C �j

@ui
@xj

:

(5.174)

Appealing yet one more time to the general framework in [Te4], Chap. 5, Sect. 2,
it may be shown that


�1
1 C � � � C 

�1
k � �q�1k (5.175)

where

q
�1
k D lim

t!1 sup
u02A�1

1

t

Z t

0

inf
rankQDk tr.L�1.u/ ıQ/ds (5.176)
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with tr denoting the trace operation and Q an orthogonal projection on QH of rank
k. For the purposes of computation, we note here that

tr.L�1.u/ ıQ/ D
kX

jD1
.L�1.u/�j ;�j /L2.�/ (5.177)

where f�j gj2N is any basis of QH , with the �j orthonormal in L2.�/ and such that
�1; : : : ;�k is a basis ofQ �H .

In order to connect the numbers q�1k to the computation (presented below), of the
upper bounds for the Hausdorff and fractal dimensions of the global attractor A�1 ,
we recall the precise definitions of these quantities: Let X � H , d 2 RC, and
ı > 0 and set

�.X ; d; ı/ D inf
X
j

rdj (5.178)

where the inf is taken over all coverings of X by a family of balls in H of radius
rj � ı. Then �.X ; d; ı/ is a decreasing function of ı and

�.X ; d / D lim
ı!0

�.X ; d; ı/ (5.179)

is the d -dimensional Hausdorff measure of X . It follows that 9d0 2 Œ0;1/ such
that �.X ; d / D C1 for d < d0 while �.X ; d / D 0 for d > d0; the number
d0 D dH .X/ is called the Hausdorff dimension ofX . Next, let nX .ı/ be the minimal
number of balls in H of radius ı needed to cover X ; then the fractal dimension
dF .X/ is the number defined by

dF .X/ D lim sup
ı!0

lognX .ı/

log.1=ı/
(5.180)

and it may be shown that

dF .X/ D inffd > 0 j lim sup
ı!0

ıdnX .ı/ D 0g (5.181)

from which it follows that dH.X/ � dF .X/.
We want to apply the definitions, above, of the Hausdorff and fractal dimensions

to the case whereX D A�1 , the global attractor for the semigroupS�1.t/ generated
by the solution of (5.2a,b), (5.3a), (5.4). The following result is a direct consequence
of the existence theorem of Sect. 4.2, Theorems 5.2–5.6, the fact that the initial data
u0 2 A�1 , and Theorem 3.3 in [Te4]:
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Lemma 5.12. If for some k � 1, �11 C � � � C 
�1
k < 0, then �1k < 0, .�11 C � � � C


�1
k�1/=j�1k j < 1 and

dH.A�1/ � .k � 1/C .
�1
1 C � � � C 

�1
k�1/C

j�1k j (5.182a)

dF .A�1/ � k �
(

max
1�j�k�1 1C .

�1
1 C � � � C 

�1
j /C

j�11 C � � � C 
�1
k j

)
(5.182b)

where, for any r 2 R, rC D max.r; 0/.

Our main result in this subsection can now be expressed in the following form:

Theorem 5.7. Consider the dynamical system defined by the nonlinear bipolar
initial-boundary value problem (5.2a,b), (5.3a), (5.4) with v0 2 H . Then the global
attractor A�1 defined by (5.17) has Hausdorff dimension less than or equal to k,
and fractal dimension less than or equal to 2k, where k 2 N satisfies

k � 1 <  jf j31.1ƒ/�3=2��9=2
1 < k (5.183)

for some  D  .�/, ƒ D ƒ.�0; �1; ˛I�/ where 1 is the smallest eigenvalue
of �� on � such that the corresponding eigenvector w1 is in H 1

0.�/ and satisfies
r � w1 D 0.

In order to prove Theorem 5.7 we will proceed with first establishing a series of
lemmas, beginning with

Lemma 5.13. Let Q be an orthogonal projection on QH of rank k; then for �j 2
QH , j D 1; 2; : : : ; k, such that �1; : : : ;�k forms a basis of Q ı QH , with the �j

orthonormal in L2.�/, 9c D c.�/, Qk D Qk.�/ such that for any ı > 0,

tr.L�1.u/ ıQ/ D
kX
tD1
.L�1.u/�`;�`/L2.�/

� 2�1

kX
`D1

Z
�

@eij.�`/

@xk

@eij.�`/

@xk
dx

C 2 Qk.�/.1 � ˛/�0

kX
`D1

jj�`jj2W 1;p.�/

� ıc.�/
kX
`D1

j�`j2H 1.�/
� c.�/

ı
jjujj2

H 2.�/
:

(5.184)
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Proof. For any � 2 QH we compute that

.L�1.u/�;�/L2.�/ D 2�1

Z
�

@eij.�/

@xk

@eij.�/

@xk
dx

C
Z
�

Œ�.u/eij.�/eij.�/� ˛Bijkl.u/eij.�/ekl .�/dx C
Z
�

�j
@ui
@xj

�idx

in which case

.L�1.u/�;�/L2.�/ � 2�1

Z
�

@eij.�/

@xk

@eij.�/

@xk
dx

C 2.1 � ˛/�0

Z
�

eij.�/eij.�/

.� C ekl .u/ekl .u//˛=2
dx C

Z
�

�j
@ui
@xj

�idx:

(5.185)

Now, for any � 2 H 1
0.�/ such that jj�jjL2.�/ D 1,

ˇ̌
ˇ̌Z
�

�j
@ui
@xj

�idx

ˇ̌
ˇ̌ � jj�jjL2.�/ jj�jjH 1.�/ jjujjL1.�/

� 2c.�/ jj�jjH 1.�/ jjujjH 2.�/

(5.186)

for some c.�/ > 0. Therefore, for any ı > 0,

ˇ̌
ˇ̌Z
�

�j
@ui
@xj

�idx

ˇ̌
ˇ̌ � c.�/

�
ı jj�jj2

H 1.�/
C 1

ı
jjujj2

H 2.�/


: (5.187)

We now need to estimate, from below, the integral

I D
Z
�

eij.�/eij.�/

.� C ekl .u/ekl .u//˛=2
dx: (5.188)

For convenience we set p D 2 � ˛ and je.u/j2 D eij.u/eij.u/; then we have the
following result which is of independent interest and is, thus, stated separately as

Lemma 5.14. Let � 2 QH D f 2 W
1;2
0 .�/ \ W 2;2.�/ j r �  D

0 in � with �ijk. /
j 
k � �jkl. /
j 
k
l
i D 0 on @�; i D 1; 2; 3g. Then if u is
the solution of (5.2a,b), (5.3a), (5.4) corresponding to initial data u0 2 A�1 ,

Z
�

eij.�/eij.�/

.� C je.u/j2/.2�p/=2 dx � Qk.�/ jj�jj2
W 1;p.�/

(5.189)

for some Qk.�/ > 0 and all t � 0.
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Proof. By the Hölder Inequality

Z
�

Œeij.�/eij.�/�
p=2dx D

Z
�

�
eij.�/eij.�/

.� C je.u/j2/.2�p/=2
p=2

� .�Cje.u/j2/p.2�p/=4dx

�
�Z

�

�
eij.�/eij.�/

.� C je.u/j2/.2�p/=2

dx

�p=2


�Z

�

.� C je.u/j2/p=2dx
�.2�p/=2

or

�Z
�

Œeij.�/eij.�/�
p=2dx

�2=p
�
�Z

�

eij.�/eij.�/

.� C je.u/j2/.2�p/=2 dx
�



�Z

�

.� C je.u/j2/p=2dx
�.2�p/=p

:

(5.190)

However, from the results in [BBN2, 3], as described in Sect. 4.3, we know that the
solution of (5.2a,b), (5.3a), (5.4) is inL1.Œ0;1/IW 1;p.�//; therefore, 9k D k.�/

such that

�Z
�

.� C je.u/j2/p=2dx
�1=p

� k.�/ (5.191)

8t � 0, with k.�/ independent of u0 for u0 2 A�1 . Also, by the Lp version of the
Korn inequality (Lemma 5.1) we know that

�Z
�

Œeij.�/eij.�/�
p=2dx

�2=p
� k0.�/ jj�jj2

W 1;p.�/
: (5.192)

Combining (5.190) with (5.191) and (5.192) we find that (5.189) is satisfied for
some Qk.�/ > 0 and all t � 0. ut

Returning to the proof of Lemma 5.13, and combining (5.185), (5.187), and
(5.189), we arrive at the indicated lower bound for tr.L�1.u/ ı Q/, i.e., (5.184),
which completes the proof of Lemma 5.14. ut

Now, it is well-known [CFT1] that

kX
`D1

j�`j2H 1.�/
� 1 C � � � C k

with j � Qc1j 2=3, 8j � 1, for some Qc > 0 (and independent of j ), where the j ,
j D 1; : : : ; k, are the first k eigenvalues of �� on � such that the corresponding
eigenvectors wj are inH 1

0.�/ and satisfy the constraint � � wj D 0. In view of the
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above estimate, and the lower bound cited for the j , j � 1 (this latter result being
due to Metivier [Me]) we find that for some c0 > 0,

kX
`D1

j�`j2H 1.�/
� 1c

0k5=3: (5.193)

To deal with the term
kX
lD1

jj�l jj2W 1;p.�/
in (5.184) we will make use Lemma A.6

which says that

jj�jj2
W 1;p.�/

� �1=ı
0

ı0dı0.�/
j�j2

H 1.�/

� �1=ı0.1�ı0/ � 1 � ı0

ı0 jj�jj2
H 2.�/

(5.194)

for 1 < p � 2, any � > 0, and some dı0.�/ > 0, if � 2 W 1;p.�/ \W 1;2
0 .�/ \

W 2;2.�/.
The last lemma which is needed before we can address the proof of Theorem 5.7

is the following:

Lemma 5.15. Under the conditions stated in Theorem 5.7, the uniform Lyapunov
exponents �1j on A�1 , j D 1; 2; : : : ; k, satisfy


�1
1 C � � � C 

�1
k � �1c0ƒk5=3

C k

�1
n.�/ lim

t!1 sup
u02A�1

Z t

0

jjujj2
H 2.�/

d�
(5.195a)

where

ƒ D 1

2
�1k.�/C �0.1 � ˛/

ı0 Nm.�/
�
�1ı

0

1 � ı0 k.�/
1�ı0

(5.195b)

with k.�/ as in (5.191), ı0 D 2p=6 � p, for 1 < p < 2, Nm.�/ D 2 Qk.�/=d.�/,
Qk.�/ the constant in the estimate (5.189), n.�/ D 2c2.�/=k.�/, and d.�/
the constant in the estimate (5.194), and the dependence of d.�/ on ı0 being
understood.

Proof. By the estimate (5.184) of Lemma 5.13, combined with the lower bound
(5.194) of Lemma A.6 we have

tr.L�1.u/ ıQ/ � 2�1

kX
`D1

Z
�

@eij.�`/

@xk

@eij.�`/

@xk
dx
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(5.196)

Choosing � > 0 such that

2�1k.�/ � �1=ı0.1�ı0/ .1 � ı0/
ı0 D �1k.�/

i.e.,

� D
�
�1ı

0

1 � ı0 k.�/
ı0.1�ı0/

(5.197)

and ı > 0 sufficiently small, say,

ı D �1k.�/=2c.�/ (5.198)

we obtain from (5.196) the estimate

tr.L�1.u/ ıQ/ � ƒ

kX
`D1

j�`j2H 1.�/
� 2kc2.�/

�1k.�/
jjujj2

H 2.�/
(5.199)

with ƒ given by (5.195b). Employing the definition of the q�1k , i.e., (5.176) we
obtain the lower bound

q
�1
k � ƒ

kX
`D1

j�`j2H 1.�/
� k

�1
n.�/ lim

t!1 sup
u02A�1

Z t

0

jjujj2
H 2.�/

d� (5.200)
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where n.�/ D 2c2.�/=k.�/. In view of (5.193) we are led from (5.200) to

q
�1
k � 1c

0ƒk5=3 � k

�1
n.�/ lim

t!1 sup
u02A�1

Z t

0

jjujj2
H 2.�/

d�

so that the uniform Lyapunov exponents �1j on A�1 , j D 1; 2; : : : ; k, satisfy
(5.195a). ut

We are now in a position to establish (5.183).

Proof (Theorem 5.7). By Lemma 5.12 we want to determine the first positive integer
k such that the right-hand side of (5.195a) is negative. To this end we return to (5.80)
with u.t/ in place of v.t/, i.e.,

1

2

d

dt
jjujj2

L2.�/
C 2�1k.�/ jjujj2

H 2.�/
� jf j1 jjujjL2.�/ (5.201)

where, unlike (5.80), (5.201) now holds 8t � 0; this is because u0 2 A�1 implies

that u.t/ 2 B�0

H 2.�/
� H 2.�/, 8t � 0, so the Korn-type estimate of Lemma 5.2 can

be employed in (5.78) from time t D 0. For any � > 0 we now have
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jjujj2
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(5.202)

which for � sufficiently large leads us to

1
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L2.�/
C �1k.�/ jjujj2

H 2.�/
� �

2
jf j21 : (5.203)

From (5.203) we obtain, 8t > 0,
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so that
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jjujj2
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2
jf j21 C 1

2t
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Therefore,
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u02A�1
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Z t
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jjujj2
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d� � 1

4�21k
2.�/

jf j21 (5.206)

if we choose � D 1=2�1k.�/. Using (5.206) in (5.195a) we compute that


�1
1 C � � ��1k � �1c0ƒk5=3 C kn.�/

4�31k
2.�/

jf j21 : (5.207)
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From (5.207) it is immediate that �11 C � � � C 
�1
k < 0 if k is the smallest positive

integer such that if

k2=3 >
n.�/ jf j21

.4�311c
0ƒ/k2.�/

i.e., if k 2 N satisfies

k � 1 <
n3=2.�/ jf j31

8�
9=2
1 .1c0ƒ/3=2k3.�/

< k (5.208)

whereƒ is given by (5.195b) and ı0 D 2.2� ˛/=.4C ˛/. ut
The result of Theorem 5.7 may be improved upon if it could be established that

M D sup
t>0

sup
�

(
sup

u02A�1

.eij.u/eij.u//

)
< 1: (5.209)

It is not yet known if (5.209) is valid for the bipolar fluid model; however, (5.209)
holds if it is true that A�1 � H 3.�/ as H 3.�/ � C1. N�/ by the Sobolev
embedding theorem in dimn D 3, and this result is known to be true [Gu] for
the Navier–Stokes equations when f 2 H 1.�/ and is independent of t . If (5.209)
could be established for the solution of the bipolar initial-boundary value problem
we would have the following result:

Theorem 5.8. For the dynamical system defined by the nonlinear bipolar initial-
value problem (5.2a,b), (5.3a), (5.4), if (5.209) holds then �11 C � � � C 

�1
k < 0 for

k 2 N satisfying

k � 1 < m3=2.�/ jf j31
8.1c0�/3=2�31.�1k.�/C .�=4//3=2

< k (5.210)

where m.�/ D .c.�/=k.�//2 and � D .1 � ˛/�0
.� CM/˛=2

.

Proof. If (5.209) holds then, from (5.185) and (5.187), we obtain the lower bound

.L�1.u/�;�/L2.�/ � 2�1
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ı
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(5.211)

with

� D .1 � ˛/�0=.� CM/˛=2: (5.212)
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In obtaining (5.211) we have also used the elementary result
Z
�

eij.�/eij.�/dx � 1

2
j�j2

H 1.�/
; 8� 2 H 1

0.�/: (5.213)

By (5.211) we have
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jjujj2

H 2.�/

(5.214)

with the �j , j D 1; 2; : : : ; k chosen as in the proof of Theorem 5.7. Applying
(5.193), and choosing ı D �=2c.�/, we have, by virtue of Lemma 5.2

tr.L�1.u/�;�/L2.�/ � 2�1k.�/

kX
`D1

jj�`jj2H 2.�/
C �1c

0k5=3

2
� 2kc2.�/

�
jjujj2
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in which case

tr.L�1.u/�;�/L2.�/ �
�
2�1k.�/C �
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�
1c

0k5=3 � 2kc2.�/

�
jjujj2

H 2.�/
:

(5.215)

From (5.215) and (5.206) we now obtain an estimate analogous to (5.207) when
(5.209) holds, namely,


�1
1 C � � ��1k � �

�
2�1k.�/C �

2

�
1c

0k5=3 C kc2.�/

2�21�k
2.�/

jf j21 : (5.216)

Thus, �11 C � � � C 
�1
k < 0 for k the smallest positive integer such that

k2=3 >
m.�/ jf j21

21c0��21.2�1k.�/C .�=2//
(5.217)

from which (5.210) follows immediately. ut

5.4 Attractors for the Bipolar and Non-Newtonian Problems
(�1 < ˛ < 0)

Having established, in Sect. 5.3, the existence of a maximal compact global attractor
A�1 for the bipolar initial-boundary value problem when 0 � ˛ < 1, so that
1 < p � 2 (a result which is also valid for the space-periodic problem in
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dimn D 2; 3) we now turn our attention to both the bipolar and non-Newtonian
problems for the case ˛ < 0 (p > 2). In actuality our results will only apply in
the range �1 < ˛ < 0 (2 < p < 3) with the problem still being open for p � 3.
As in Sect. 5.3 we will be able to prove the existence of maximal compact global
attractors A�1 � W 2;2.�/. For technical reasons we confine our attention in this
paper to space dimension n D 2; we intend to use the results for the situation in
which �1 > 0 in order to establish the existence of a maximal compact global
attractor A0 for the non-Newtonian subcase in which �1 D 0 and p > 2. We
note that in [MN] the authors have established, directly, the existence of a maximal
compact global attractor A0 for the space periodic version of the non-Newtonian
problem (�1 D 0), in dimn D 3, when p � 5=2 and v0 2 H per ; they were
also able to prove that the fractal dimension of A0 is bounded. Although for the
case p > 2, and �1 > 0, we may speak almost interchangeably of the space-
periodic and boundary-value problems, because of the delicacy of dealing with the
boundary-value problem for the non-Newtonian case in which �1 D 0, we will
restrict our attention throughout this section to the relevant space-periodic problems.
For the remainder of this chapter, as well as in Chap. 6, we will employ the following
protocol: when referring to the space-periodic problem for the bipolar equations
with �1 > 0 we will use the full set of hypotheses in (5.3b); however, for the case in
which �1 D 0 only the first set of conditions in (5.3b) will apply. This specification
mirrors that for the boundary-value problem where only the first condition in (5.3a)
holds when �1 D 0, while both sets of boundary conditions in (5.3a) apply to the
case where �1 > 0. Beyond establishing, for �1 � 0 and p > 2, the existence
of maximal compact global attrctors A�1 , for the incompressible bipolar viscous
fluid, we will also show that for �1 > 0, and 2 < p < 3, there exist upper
bounds for the Hausdorff and fractal dimensions of these attractors. Unlike the
situation we encountered in Sect. 5.3, where it was determined that dH .A�1/ < k,
dF .A�1/ < 2k, with k 2 N satisfying (5.183), for the case 1 < p � 2, the
upper bounds for the dH.A�1/ and dF .A�1/, when 2 < p < 3, will turn out to be
independent of �1. In Sect. 5.5, under the conditions which prevail in this section,
it will be shown that as �1 ! 0C, Od.A�1;A0/ ! 0 where Od is the semidistance
for sets, the underlying norm being that of L2.�/. Unfortunately, the fact that (for
p > 2) the upper bounds for dH .A�1/ and dF .A�1/ are independent of �1 > 0,
even when coupled with the result Od.A�1;A0/ ! 0, as �1 ! 0C, does not permit
us to obtain an upper bound for either dH .A0/ or dF .A0/. As in Sect. 5.3 we will
set the density � D 1 throughout this section.

5.4.1 Existence of Absorbing Sets and Maximal Compact
Global Attractors for S�1.t/, �1 � 0

In order to establish the existence of maximal compact global attractors for the
space-periodic problem (5.2a,b), (5.3b), (5.4), in space dimension n D 2, when
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p > 2, and �1 � 0, we assume that v0 2 L2.�/, � D Œ0; L�2 for some L > 0. As
a precursor to establishing the existence of the attractors A�1 , �1 � 0, we will (as
in Sect. 5.3) first establish the existence of suitable absorbing sets for the problems
in question; we want, in fact, to prove the following result:

Theorem 5.9. Consider the problem (5.2a,b), (5.3b), (5.4), in dimn D 2, with
p > 2; then there exist absorbing sets in H per and W 1;2.�/ for S �1.t/, �1 � 0,
which are independent of �1 > 0, as well as absorbing sets for S�1.t/, inW 2;2.�/,
when �1 > 0.

The proof of Theorem 5.9 will be broken up into a series of lemmas, the first of
which is

Lemma 5.16. Let v.t/ be the unique solution of (5.2a,b), (5.3b), (5.4) in
dimn D 2, with p > 2; then 9 Ň > 0, Nt0 > 0, such that 8t � Nt0, and all �1 � 0,

jjv.t/jj2
L2.�/

� Ňjf j21 (5.218)

in which case S �1.t/, �1 � 0, has an absorbing set inH per .

Proof. We again employ the notation �.v/ D �.je.v/j/ and begin by multiplying
(5.2a) by vi and integrating by parts. In view of the space-periodicity assumption
(5.3b) this produces the estimate
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Z
�

@eij

@xk

@eij

@xk
dx D

Z
�
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(5.219)

We note that for p > 2, � > 0, 9k1.�/ > 0 such that

Z
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Z
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.� C jej2/ p�2
2 jej2dx

�
Z
�

jejpdx � k1.�/ jjvjjp
W 1;p.�/

(5.220a)

and, also, that 9k2.�/ > 0 such that

Z
�

�.v/eijeijdx � �
p�2
2

Z
�

jej2dx � �
p�2
2 k2.�/ jjvjj2

W 1;2.�/
: (5.220b)

If we drop the expression involving �1 in (5.219), and use (5.220a), we obtain

1

2

d

dt
jjvjj2

L2.�/
C k1.�/ jjvjjp

W 1;p.�/
� jf j1 jjvjjL2.�/ (5.221)
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while dropping the expression involving �1 in (5.219) and using (5.220b) we find
that for any ˇ > 0

1

2

d

dt
jjvjj2

L2.�/
C �

p�2
2 k2.�/ jjvjj2

W 1;2.�/
� 1

2
ˇjf j21 C 1

2ˇ
jjvjj2

L2.�/
: (5.222)

Both (5.221) and (5.222) hold 8�1 � 0. From (5.222) we have, for ˇ > 0

sufficiently large, and some Nk.�; �I�/ > 0, an estimate of the form

d

dt
jjvjj2

L2.�/
C Nk.�; �I�/ jjvjj2

L2.�/
� ˇjf j21 (5.223)

from which it follows that, 8�1 � 0,

jjv.t/jj2
L2.�/

� e� Nkt jjv0jj2L2.�/ C ˇ

Nk jf j21: (5.224)

As an immediate consequence of (5.224) we obtain the existence of a Nt0 D
Nt0.jjv0jjL2.�// such that 8t � Nt0, and all �1 � 0,

jjv.t/jj2
L2.�/

� 2ˇ

Nk jf j21 (5.225)

in which case (5.218) follows with Ň D 2ˇ= Nk.
Thus, if for some bounded set B0 � L2.�/, with B0 � BR0.0/, a ball of radius

R0 centered at 0, we have v0 2 B0, then 9t0 D t0.R0/ such that (5.225) holds
8t � t0, and all �1 � 0; this serves to establish the existence of the absorbing set in
H per for S�1.t/ when �1 � 0. ut

Before moving on to the problem of the existence of absorbing sets in W 1;2.�/,
we make note here of a result that we will need later on. As a consequence of (5.221)
and (5.225), if v0 2 B0 then for t � t0.R0/, and all �1 � 0

1

2

d

dt
jjvjj2

L2.�/
C k1.�/ jjvjjp

W 1;p.�/
� �jf j21 (5.226)

where � D
s
2ˇ

Nk (and does not stand for the density of the fluid, which we have

set equal to one). Taking any r > 0 and integrating (5.226) from t to t C r , with
t � t0.R0/, we obtain the estimates

1

2
jjv.t C r/jj2

L2.�/
C k1.�/

Z tCr

t

jjvjjp
W 1;p.�/

d� � 1

2
jjv.t/jj2

L2.�/
C �r jf j21

�
�
1

2
�2 C �r

�
jf j21:

(5.227)
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Thus, if v0 2 B0, then for t � t0.R0/, any r > 0, all �1 � 0, and p > 2,

Z tCr

t

jjvjjp
W 1;p.�/

dt � 1

k1.�/

�
1

2
�2 C �r

�
jf j21: (5.228)

Lemma 5.17. Let v.t/ be the unique solution of (5.2a,b), (5.3b), (5.4) in dimn D
2, with p > 2; then for any r > 0, and all �1 � 0, 9K D K.�; p; r; jf j1I�/ such
that

jjvjj2
W 1;2.�/

.t/ � K; for t � t0.R0/C r (5.229)

from which it follows that 9B�0

W 1;2.�/
, a ball of radius �0 in W 1;2.�/, which is an

absorbing set for S�1 , �1 � 0, that is independent of �1.

Proof. We multiply (5.2a) by
@vi

@t
, integrate over�, and then integrate the resulting

equation by parts; using the definition (5.92) of the potential � , with ˛ D 2� p, so
that

@�

@t
D �.v/eij

@eij

@t
(5.230)

we obtain the estimate

1

2

ˇ̌̌
ˇ
ˇ̌̌
ˇ@v@t

ˇ̌̌
ˇ
ˇ̌̌
ˇ
2

L2.�/

C d

dt

�Z
�

�.eijeij/dx C �1

Z
�

@eij

@xk

@eij

@xk
dx

	

�
ˇ̌
ˇ̌Z
�

vj
@vi

@xj

@vi

@t
dx

ˇ̌
ˇ̌C 1

2
jf j21 (5.231)

which holds 8�1 � 0 and all t > 0. Now, for any ı > 0,

ˇ̌̌
ˇ
Z
�

vj
@vi

@xj

@vi

@t
dx

ˇ̌̌
ˇ � ı

2
jjvjj2L1.�/ jjvjj2

H 1.�/
C 1

2ı

ˇ̌̌
ˇ
ˇ̌̌
ˇ@v@t

ˇ̌̌
ˇ
ˇ̌̌
ˇ
2

L2.�/

: (5.232)

However,W 1;p.�/ ,! L1.�/, for p > n D 2, so 9k3.�/ > 0 such that

ˇ̌̌
ˇ
Z
�

vj
@vi

@xj

@vi

@t
dx

ˇ̌̌
ˇ � @ık3

2
jjvjj2

W 1;p.�/
jjvjj2

H 1.�/
C 1

2ı

ˇ̌̌
ˇ
ˇ̌̌
ˇ@v@t

ˇ̌̌
ˇ
ˇ̌̌
ˇ
2

L2.�/

: (5.233)

Choosing ı D 2 in (5.232), and employing the result in (5.231), we find that for
p > 2, t > 0, and all �1 > 0,
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d

dt

�Z
�

�.eijeij/dx C �1

Z
�

@eij

@xk

@eij

@xk
dx

	
� k3.�/ jjvjj2

W 1;p.�/
jjvjj2

H 1.�/
C 1

2
jf j21;

(5.234)

We now need to obtain, for v0 2 B0, r > 0, and t � t0.R0/, estimates for the
integrals

Z tCr

t

Z
�

�.eijeij/dxd� and
Z tCr

t

Z
�

@eij

@xk

@eij

@xk
dxd�:

To begin with, we note that, for p > 2,

�.eijeij/ D
Z eijeij

0

.� C s/
p�2
2 ds

D 2

p
f.� C jej2/ p2 � �

p
2 g � 2

p
.� C jej2/ p2

and, therefore, by the Hölder Inequality

Z
�

�.eijeij/dx � kp

�Z
�

.� C jej2/dx
� p

2

(5.235)

where kp D 2

p
.meas�/

2�p
2 . Using Hölder again we have

Z tCr

t

�Z
�

.� C jej2/dx
� p

2

d� � r
2�p
2

�Z tCr

t

Z
�

.� C jej2/dxd�
� p

2

� r
2�p
2

�
�r meas.�/C

Z tCr

t

eijeijdxd�

� p
2

(5.236)

which, when combined with (5.235), yields

Z tCr

t

Z
�

�.eijeij/dxd� � k0
p.�/r

2�p
2

�
�r meas.�/C

Z tCr

t

jjvjj2
W 1;2.�/

d�

�

(5.237)

for some k0
p.�/ > 0, when v0 2 B0, r > 0, and t � t0.R0/. Returning to (5.222),

and choosing ˇ D ˇ� > 0 sufficiently large, we infer the existence of k�.�; pI�/ >
0 such that

d

dt
jjvjj2

L2.�/
C k� jjvjj2

W 1;2.�/
� ˇ�jf j21 (5.238)
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which, upon integration from t to t C r , yields

jjv.t C r/jj2
L2.�/

C k�
Z tCr

t

jjvjj2
W 1;2.�/

d� �
�
ˇ�r C 2ˇ

Nk
�

jf j21 (5.239)

where we have again used (5.225), which is valid for v0 2 B0, 8�1 � 0, if t �
t0.R0/. From (5.239) it is immediate that for t � t0.R0/, r > 0,

Z tCr

t

jjvjj2
W 1;2.�/

d� � 1

k�

�
ˇ�r C 2ˇ

Nk
�

jf j21 (5.240)

provided v0 2 B0. Combining (5.237) with (5.240) we infer the existence of C1 D
C1.r; p; �;�; jf j1/ > 0 and independent of �1 � 0, such that for v0 2 B0 and
t � t0.R0/

Z tCr

t

Z
�

�.eijeij/dxd� � C1: (5.241)

Also, as a consequence of (5.219) and (5.225), we have for v0 2 B0, t � t0.R0/,
and all �1 � 0

1

2

d

dt
jjvjj2

L2.�/
C 2�1

Z
�

@eij

@xk

@eij

@xk
dx � �jf j21 (5.242)

with � D
s
2ˇ

Nk as in (5.226); integrating this last estimate from t to t C r , and

employing (5.225) again, we find that 8�1 � 0, r > 0,

�1

Z tCr

t

Z
�

@eij

@xk

@eij

@xk
dxd� � .�2 C 2�r/jf j21 (5.243)

provided v0 2 B0 and t � t0.R0/. We now want to deal with the differential
inequality (5.234); to this end we note that, in a manner similar to (5.211), the
standard Korn inequality [Ev] yields

Z
�

�.eijeij/dx D
Z
�

Z eijeij

0

.� C s/
p�2
2 dsdx

� �
p�2
2

Z
�

eijeijdx � �
p�2
2 k2.�/ jjvjj2

W 1;2.�/
:

(5.244)

Therefore,

jjvjj2
W 1;2.�/

� C2

�Z
�

�.eijeij/dx C �1

Z
�

@eij

@xk

@eij

@xk
dx

�
(5.245)
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for all �1 � 0, where C2.�; pI�/ D .�
p�2
2 k2.�//

�1. Employing (5.245) in (5.234)
we obtain a differential inequality of the form

dy

dt
� a.t/y.t/C b.t/; t > 0 (5.246)

where

y.t/ D
Z
�

�.eijeij/dx C �1

Z
�

@eij

@xk

@eij

@xk
dx; (5.247a)

a.t/ D k3.�/C2.�; pI�/ jjvjj2
W 1;p.�/

; (5.247b)

and

b.t/ D 1

2
jf j21: (5.247c)

The differential inequality displayed in (5.246) is valid 8p > 2 and 8�1 � 0. We
now apply the Uniform Gronwall Lemma of Foias and Prodi [Te4] to (5.246); to
begin with, we define

�.t/ D
�
� 2 Œt; t C r�

ˇ̌
ˇ̌ jjv.�/jjW 1;p.�/ � 1

	
(5.248)

for any t � 0 and any fixed r > 0. Thus, on Œt; t C r�=�.t/ we have jjvjjW 1;p.�/ > 1

so that

jjv.�/jj2
W 1;p.�/

< jjv.�/jjp
W 1;p.�/

; p > 2

for � 2 Œt; t C r�=�.t/. Therefore,
Z
�.t/

jjv.�/jj2
W 1;p.�/

d� � meas.�.t// � r (5.249)

while for v0 2 B0, t � t0.R0/, and all �1 � 0,

Z
Œt;tCr�=�.t/

jjv.�/jj2
W 1;p.�/

d� �
Z
Œt;tCr�=�.t/

jjv.�/jjp
W 1;p.�/

d�

�
Z tCr

t

jjv.�/jjp
W 1;p.�/

d� � 1

k1.�/

�
1

2
�2 C �r

�
jf j21

(5.250)

by virtue of (5.228). Combining (5.249) and (5.250), and using the definition
(5.247b) of a.t/, we obtain an estimate of the form

Z tCr

t

a.�/d� � k1.�; p; r; jf j1I�/ (5.251)
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with k1 > 0, which is valid for t � t0.R0/, if v0 2 B0, and all �1 � 0. Also, by
(5.247c)

Z tCr

t

b.�/d� � k2.r I jf j1/ 	 1

2
r jf j21 (5.252)

while, in view of (5.241), (5.243), and (5.247a) we have for v0 2 B0, t � t0.R0/,
and all �1 � 0

Z tCr

t

y.�/d� � k3.�; p; r; jf j1I�/ (5.253)

with k3 > 0. In view of (5.251)–(5.253), a direct application of the Uniform
Gronwall Lemma to (5.246) now yields the estimate

y.t C r/ �
�
k3

r
C k2

�
exp.k1/

or

Z
�

�
�.eijeij/C �1

@eij

@xk

@eij

@xk

	
dx

ˇ̌
ˇ̌
tCr

� K (5.254)

with K D K.�; �; r; jf j1I�/; the estimate (5.254) holds 8p > 2, t � t0.R0/, for
v0 2 B0, and all �1 � 0. As a direct consequence of (5.254), and the fact that (for
p > 2) (5.244) holds we see that 8p > 2, t � t0.R0/, and �1 � 0,

jjvjj2
W 1;2.�/

.t C r/ � K (5.255)

from which (5.229) follows. We now see that if v 2 B0 � BR0.0/, so that
jjv0jjL2.�/ � R0, then 9�0 > 0, �0 independent of �1 � 0, such that for any p > 2,

S �1.t/v0 2 B�0

W 1;2.�/
; for t � t 00.R0/ (5.256)

so that the ball B�0

W 1;2.�/
of radius �0 in W 1;2.�/ is an absorbing set for S�1 , which

is independent of �1 for all �1 � 0. ut
Proof (Theorem 5.9). Lemmas 5.16 and 5.17 have established the existence of
absorbing sets in H per and W 1;2.�/, for S�1.t/, with �1 � 0, which are
independent of �1 > 0. There remains the task of exhibiting, for �1 > 0, an
absorbing set for S�1.t/ inW 2;2.�/. However, by (5.254) it follows that 8�1 � 0,
all p > 2, and t � t0.R0/,

�1

Z
�

@eij

@xk

@eij

@xk
dx

ˇ̌
ˇ̌
tCr

� K: (5.257)
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Then, by virtue of the generalized Korn inequality of Lemma 5.2, for w 2
W

1;2
0 .�/\W 2;2.�/, 9 Ok.�/ > 0 such that

Z
�

@eij

@xk

@eij

@xk
dx � Ok.�/ jjvjj2

H 2.�/

so that (5.257) implies that for p > 2, t � t 00.R0/, and all �1 > 0,

jjvjj2
H 2.�/

.t/ � 1

�1
OK.�; p; r; jf j1I�/: (5.258)

From (5.258) we deduce the existence of absorbing sets for S �1 , for any �1 > 0,

of radii ��1 where, clearly, ��1 � 1

�1
as �1 ! 0C; in other words for v0 2 B0 �

BR0.0/, p > 2, and any �1 > 0,

S �1.t/v0 2 B��1

W 2;2.�/
; for t � t 00.R0/ (5.259)

thus completing the proof of the theorem. ut
Remarks. For fixed �1 > 0 the existence of the absorbing set B

��1
W 2;2.�/

yields the

uniform compactness of S �1.t/, for t large, and similar remarks apply to S �1.t/ for

�1 � 0 with respect to the existence of the absorbing sets B�0

W 1;2.�/
.

Following the analysis in [CF] we may now define the maximal compact global
attractors for S �1 , �1 � 0, as follows: for �1 > 0 we set

A�1 D
\
t>0

S �1.t/B
��1

W 2;2.�/
; �1 > 0 (5.260)

while for �1 D 0 we define

A0 D
\
t>0

S 0.t/B
�0

W 1;2.�/
: (5.261)

That A�1 , �1 > 0, and A0 are, respectively, the maximal compact global attractors
for S �1 , �1 > 0, and S 0 follows from an argument entirely analogous to the one
presented in Sect. 5.3 and will not be repeated here. Our goal in the next subsection
will be to establish (1) the uniform diferentiability of S�1.t/, �1 > 0, on A�1

and (2) the uniform boundedness of the Fréchet differential L�1.t I u0/, u0 2 A�1 ,
of S �1.t/ in the strong operator norm of L�1.H per IH per / on the global attractor
A�1 , 8t > 0; once these results have been established, the techniques employed
in Sect. 5.3 can be used to compute upper bounds for the Hausdorff and fractal
dimensions dH .A�1/ and dF .A�1/, �1 > 0, respectively; we also explain, in
Sect. 5.4.2 why similar techniques can not be used to compute upper bounds for
dH.A0/ and dF .A0/.
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5.4.2 Uniform Differentiability of S�1 on the Maximal
Compact Global Attractor A�1 , �1 > 0

As in Sect. 5.3.3, for the case 1 < p � 2, we now want to prove uniform
differentiability of the nonlinear semigroup S �1 on the maximal compact global
attractor A�1 whose existence was established in the last section; thus far, it has
only proven possible to do this for �1 > 0 and for p in the range 2 < p < 3. The
definition of uniform differentability presented in Sect. 5.3.3 must be altered slightly
to account for the fact that we are now dealing with the space-periodic problem and
not the boundary-value problem; we make the

Definition 5.7. The nonlinear semigroup S�1 , �1 > 0, is uniformly differentiable
on A�1 if, 8u0, 9L�1.t;u0/ 2 L�1.H per ;H per / such that, as � ! 0, we have
8t > 0

sup
u0;v02A�1

0<jju0�v0jj��

jS�1.t/v0 � S�1.t/u0 �L�1.t I u0/.v0 � u0/jL2.�/
jjv0 � u0jjL2.�/

! 0: (5.262)

Remarks. When L�1.t I u0/, �1 > 0, t > 0, exists L�1.t I u0/.v0 � u0/ D U .t I�1/
is a solution of the linearized problem

@Ui

@t
C Uj

@ui
@xj

C uj
@Ui

@xj
D � @ Qp

@xi
C @

@xj
Œ�.u/eij.U / � ˛Bijkl.u/ekl .U /�

� 2�1
@

@xj
.�eij.U //; in � 
 Œ0; T /:

(5.263)

In (5.263), u.t/ D S �1.t/u0, Qp is the difference of the pressures corresponding
to u.t/ D S �1.t/u0 and v.t/ D S�1.t/v0, and

Bijkl.u/ D �0.� C je.u/j2/ p�4
2 eij.u/eij.u/; p > 2: (5.264)

The solution of (5.263) is subject to an initial condition of the form

U .x; 0/ D U 0 2 H per .�/\H 2.�/ (5.265)

as well as the constraint of incompressibility and the periodicity condition (5.3b),
with v replaced by U .

Remarks. It may be easily established that there exists a unique solution of the
space-periodic problem for U .t/, when p > 2, in both space dimn D 2; 3, which
satisfies

U .�/ 2 L1.Œ0; T /IH per \H 2.�//; 8T > 0: (5.266)
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We also record here the following result which is a direct consequence of the
definitions of the potential � in (5.92) and the tensor Bijkl: for ˛ < 0,

�.u/eij.U /� ˛Bijkl.u/ekl .U / D @2�

@eij@ekl
.e.u//ekl .U /: (5.267)

To establish the uniform differentiability of S �1 on the attractor A�1 , as defined
by (5.260), we need to estimate the L2.�/ norm of

�.t I�1/ D S�1.t/v0 � S�1.t/u0 �L�1.t I u0/.v0 � u0/ (5.268)

for u0; v0 2 A�1 such that jju0 � v0jjL2.�/ � �; to this end we set

w.t I�1/ D v.t I�1/� u.t I�1/; (5.269a)

�.t I�1/ D w.t I�1/� U .t I�1/ (5.269b)

and state the following

Lemma 5.18. Let w;� be defined as in (5.269a,b). Then 9 constants Nk.�/, Qk.�/
and Ncp.�/, all positive, such that for all t > 0,

1

2

d

dt
jj� jj2

L2.�/
C �p�2 Nk.�/ jj�jj2

W 1;2.�/
C 2�1 Ok.�/ jj�jj2

H 2.�/

� Ncp
Z
�
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�i
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ˇ̌C

ˇ̌
ˇ̌Z
�

wj
@wi
@xj

�idx

ˇ̌
ˇ̌ (5.270)

if 2 < p < 3.

Proof. We begin by observing that on � 
 Œ0; T /, w.t/ satisfies (5.120) and the
associated conditions (5.3b), with v ! w, as well as

r � w D 0; in � 
 Œ0; T /; (5.271a)

w.0/ D v0 � u0; in �: (5.271b)

Multiplying (5.120) by wi , then integrating over �, integrating by parts, and
applying the periodic boundary conditions, we again obtain (5.122) which, by virtue
of the definition of the potential � in (5.92), leads to

1

2

d

dt
jjwjj2

L2.�/
C
Z
�

wj
@ui
@xj

wi dx C
Z
�

�
@�

@eij
.eij.v// � @�

@eij
.eij.u//

�
dx � 0
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for all �1 > 0; from this last inequality which it follows that

1
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d
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jjujj2
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wi dx
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Z
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�Z 1
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.e.u C �w//d�

�
eij.w/ekl .w/dx � 0: (5.272)

However, by virtue of (5.92), with ˛ D 2 � p, p > 2, for any  2 Rn2 ,  ¤ 0,
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@eij@ekl
�ij�kl D .� C jej2/ p�2
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�
jj2 C .p � 2/ j � ej2

.� C jej2/


� .� C jej2/ p�2
2 jj2 � �

p�2
2 jj2:

Thus, using once more the usual Korn inequality we have
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� e
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2 k2.�/ jjwjj2

W 1;2.�/
: (5.273)

Employing (5.273) in (5.272) we find that, for any �1 > 0,

1

2

d

dt
jjwjj2

L2.�/
C �

p�2
2 k2.�/ jjwjj2

W 1;2.�/
�
ˇ̌
ˇ̌Z
�

wj
@ui
@xj

wi dx

ˇ̌
ˇ̌ : (5.274)

From standard estimates [CFT1] for the convective term on the right-hand side of
(5.274) we haveˇ̌

ˇ̌Z
�

wj
@ui
@xj

wi dx

ˇ̌
ˇ̌ � c1.�/ jjwjjW 1;2.�/ jjujjW 1;2.�/ jjwjj1=2

L2.�/
jjwjj3=2

W 1;2.�/

(5.275)

for some c1.�/ > 0. Now, as u0; v0;w0 2 A�1 it follows from the definition of
A�1 that u.t/, v.t/, w.t/ are all contained in B

��1

W 2;2.�/
for all t � 0. Thus, for any

�1 > 0,

jju.t/jjW 1;2.�/ � ��1 ; 8t � 0 (5.276)

with similar results for jjv.t/jjW 1;2.�/ and jjw.t/jjW 1;2.�/. From (5.275) we now
have, 8t � 0,
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ˇ̌
ˇ̌Z
�

wj
@ui
@xj

wi dx

ˇ̌
ˇ̌ � c1.�/��1 jjwjj3=2

W 1;2.�/
jjwjj1=2

L2.�/
: (5.277)

Employing Young’s inequality (see Appendix A) with a D jjwjj3=2
W 1;2.�/

, b D
jjwjj1=2

L2.�/
, and q D 4=3, on the right-hand side of (5.277), we see that for some

c2 D c2.�1I�/ > 0,

ˇ̌
ˇ̌Z
�

wj
@ui
@xj

wi dx

ˇ̌
ˇ̌ � c2

�
ı4=3 jjwjj2

W 1;2.�/
C 1

ı4
jjwjj2

L2.�/

�
(5.278)

in which case the differential inequality (5.274) becomes

1

2

d

dt
jjwjj2

L2.�/
C �

p�2
2 k2.�/ jjwjj2

W 1;2.�/
� c2

�
ı4=3 jjwjj2

W 1;2.�/
C 1

ı4
jjwjj2

L2.�/

�
:

(5.279)

If we choose ı sufficiently small we obtain from (5.279) an estimate of the form

d

dt
jjwjj2

L2.�/
C �

p�2
2 k2.�/ jjwjj2

W 1;2.�/
� c3 jjwjj2

L2.�/
(5.280)

with c3 D c3.�1I�/ > 0. Direct integration of (5.280) now produces the following
estimates for t > 0,

jjv.t/ � u.t/jj2
L2.�/

� jjv0 � u0jj2L2.�/ exp.c3t/ (5.281a)

and

Z t

0

jjw.�/jj2
W 1;2.�/

d� � 2�
2�p
2

k2.�/
jjv0 � u0jj2L2.�/ exp.c3t/: (5.281b)

In order to proceed with the proof of the lemma, we now turn to the problem satisfied
by � , as defined by (5.269b). The function � satisfies the system of equations

@�i

@t
C �j

@ui
@xj

C uj
@�

@xj
C wj

@wi
@xj

D �@p�
@xi

C @

@xj
Œ�.v/eij.v/ � �.u/eij.u/�

� @

@xj
Œ�.u/eij.U /� ˛Bijkl.u/ekl .U /�

� 2�1 @

@xj
.�eij.�//; in � 
 Œ0; T /;

(5.282)
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p� being the difference of the pressures corresponding to the problems for w and
U , for � satisfying (5.3b), with v ! � , and

r � �; in � 
 Œ0; T /; (5.283a)

�.0/ D 0; in �: (5.283b)

If we multiply (5.282) through by �i , integrate over �, and then integrate by parts
we recover, for the space-periodic problem, the identity (5.129) with‚ replaced by
� . Using the definitions of � , the identity (5.267), the usual Korn inequality, and the
fact that U D w � � , we obtain

Z
�

Œ�.v/eij.v/ � �.u/eij.u/�eij.�/dx

�
Z
�

Œ�.u/eij.U / � ˛Bijkl.u/ekl .U /�eij.�/dx

D
Z
�

�Z 1

0

@2�

@eij@ekl
.e.u C �w//d�

�
eij.�/ekl .w/dx

�
Z
�

@2�

@eij@ekl
.e.u//eij.�/ekl .U /dx

D
Z
�

@2�

@eij@ekl
.e.u//eij.�/ekl.�/dx

C
Z
�

�Z 1

0

�
@2�

@eij@ekl
.e.u C �w// � @2�

@eij@ekl
.e.u//


d�

�
eij.�/ekl .w/dx

� �p�2 Nk.�/ jj�jj2
W 1;2.�/

C
Z
�

�ijklmneij.�/ekl .w/emn.w/dx

(5.284)
where, as in Sect. 5.3.3,

�ijklmn D
Z 1

0

Z 1

0

@3�

@eij@ekl@emn
.e.u C 	�w/�d�d	:

Substituting the lower bound in (5.284) into (5.129), after replacing ‚ with � , we
obtain the differential inequality

1

2

d

dt
jj� jj2

L2.�/
C
Z
�

�i
@ui
@xj

�j dx C
Z
�

wj
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@xj

�idx

C �p�2 Nk.�/ jj�jj2
W 1;2.�/

C
Z
�

�ijklmneij.�/ekl .w/emn.w/dx

C 2�1

Z
�

@eij

@xk
.�/

@eij

@xk
.�/dx � 0: (5.285)
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By a direct calculation, based on (5.92), we now easily determine that, for p > 2,

@3�

@eij@ekl@emn
D .p � 2/.� C jej2/ p�2

2



��
ıimıjnekl C ıkmılneij C ıijıklemn

.� C jej2/


C p � 4

.� C jej2/2 eijeklemn

	
:

(5.286)

Therefore, for p < 3, 9cp.�/ > 0 such that

ˇ̌
ˇ̌ @3�

@eij@ekl@emn

ˇ̌
ˇ̌ � cpI i; j; k; l;m; n D 1; 2; 3: (5.287)

By employing Lemma 5.2 and (5.287) in (5.285) we now arrive at the differential
inequality (5.270). ut
Remarks. By virtue of (5.276), u 2 B

��1

W 2;2.�/
, 8t > 0; therefore, for some Nc1 > 0,

and any ı > 0,

ˇ̌
ˇ̌Z
�

�i
@ui
@xj

�j dx

ˇ̌
ˇ̌ � Nc1

�
ı4=3 jj�jj2

W 1;2.�/
C 1

ı4
jj�jj2

L2.�/

	
(5.288a)

while
ˇ̌
ˇ̌Z
�

�i
@wi
@xj

wj dx

ˇ̌
ˇ̌ � Nc2 jj�jjW 1;2.�/ jjwjj3=2

W 1;2.�/
jjwjj1=2

L2.�/

� Nc3 jj�jjW 1;2.�/ jjwjjW 1;2.�/

� Nc4. Nı/ jj�jj2
W 1;2.�/

C 1

Nı jjwjj2
W 1;2.�/

(5.288b)

for some Nc4 > 0, and any Nı > 0, as w 2 B��1

W 1;2.�/
, 8t > 0.

Lemma 5.19. For �.t I�1/ as defined by (5.269b), 9ˇ1; ˇ2 > 0, depending (at
most) on �, �1, p, and�, such that for fixed �1 > 0, �� > 0, and all t > 0,

sup
u0;v02A�1

0�jju0�v0jj���

jj�jjL2.�/ � ˇ1e
ˇ2t ��: (5.289)

Proof. Once again we return to the identity (5.122) which now, by virtue of the
generalized Korn inequality of Lemma 5.2, the definition of the potential � , the
lower bound (5.273), and an estimate entirely analogous to (5.288a), yields a
differential inequality of the form
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1

2

d

dt
jjwjj2

L2.�/
C �

p�2
2 k2.�/ jjwjj2

W 1;2.�/
C 2�1 Ok.�/ jjwjj2

H 2.�/

� c0
1ı

04=3 jjwjj2
W 1;2.�/

C c0
2

ı04 jjwjj2
L2.�/

(5.290)

for some c0
1; c

0
2 > 0 and any ı0 > 0. Choosing ı0 sufficiently small, we easily

generate for t > 0 an estimate similar to (5.281a) as well as the new estimate

�1

Z t

0

jjw.�/jj2
W 2;2.�/

d� � k� jjw.0/jj2
L2.�/

exp.c�t/ (5.291)

where k� D k�.�; p; �1I�/ > 0 with a like dependence for c� > 0.
Returning to the differential inequality (5.270) we estimate, using the Hölder

Inequality, the first expression on the right-hand side, i.e., for some k�; Qk > 0,

Z
�

je.�/jje.w/j2dx �
�Z

�

je.�/j3
�1=3 �Z

�

je.w/j3
�2=3

� k� jj�jjW 1;3.�/ jjwjj2
W 1;3.�/

� Qk jj�jjW 2;2.�/ jjwjj2
W 2;2.�/

;

(5.292)

the last estimate following from the embedding H 2.�/ ,! W 1;3.�/. As w 2
B
��1

W 2;2.�/
, 8t > 0, we may rewrite this last estimate in (5.292) in the form

Z
�

je.�/jje.w/j2dx � Qk��1 jj�jjW 2;2.�/ jjwjjW 2;2.�/

� k#
�
ı# jj� jj2

W 2;2.�/
C 1

ı#
jjwjj2

W 2;2.�/

�
(5.293)

for some k# > 0 and any ı# > 0. Combining (5.270) with the estimates (5.288a,b)
and (5.293) we have, 8t > 0, and any fixed �1 > 0,
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�

C Nc4
�

Nı jj� jj2
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C 1

Nı jjwjj2
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�
: (5.294)
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By choosing ı, Nı, and ı# all sufficiently small in (5.294), we now deduce the
existence of �1; �2 > 0which depend (at most) on �, �1, p, and�, such that 8t � 0,

d

dt
jj�jj2

L2.�/
� �1 jjwjj2

W 2;2.�/
C �2 jj�jj2

W 2;2.�/
: (5.295)

As �.0/ D 0, it follows from (5.295) that, 8t � 0,

jj�jj2
L2.�/

� �1e
�2t

Z t

0

jjw.�/jj2
W 2;2.�/

d�: (5.296)

However, by virtue of the estimate (5.291), and the fact that jjw.0/jjL2.�/ � ��, it is
easy to see that (5.296) implies that

jj�jj2
L2.�/

� �1k
�

�1
Œexp.c� C �2/t��

�2 ; 8t > 0 (5.297)

from which (5.289) follows. ut
We are now in a position to prove the uniform differentiability of the semigroup

S�1 on the attractor A�1 ; more specifically we have the following

Theorem 5.10. For �1 > 0, and 2 < p < 3, the nonlinear semigroup S �1 is
uniformly differentiable on the maximal compact attractor A�1 given by (5.260).

Proof. Having established the estimate (5.289), we now modify the bound (5.288b)
to read

ˇ̌
ˇ̌Z
�

�i
@wi
@xj

wj dx

ˇ̌
ˇ̌ � c.�/ jjwjjW 2;2.�/ jwjH 1.�/ jj�jjL2.�/

� ˇ1c.�/e
ˇ2t �� jjwjj2

W 2;2.�/
;

(5.298)

the last bound following directly from (5.289). Also, returning to (5.292), we have

Z
�

je.�/jje.w/j2dx � k�.�/ jj�jjW 1;3.�/ jjwjj2
W 1;3.�/

� k0.�/ jj�jjW 1;3.�/ jjwjj2
W 2;2.�/

(5.299)

if we, once again, use the embedding H 2.�/ ,! W 1;3.�/. As H 3=2;2.�/ ,!
W 1;3.�/, and we may interpolate H mCs.�/, 0 < s < 1, m 2 N (the natural
numbers), betweenH mC1.�/ and L2.�/, (see Appendix A), for any  > 0,
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jj�jjW 1;3.�/ � Nc.�/ jj�jj1=4
L2.�/

jj�jj3=4
W 2;2.�/

� Nc.�/Œ8=3 jj�jj2
W 2;2.�/

C �8=5 jj� jj8=5
L2.�/

�
(5.300)

where we have used Young’s inequality. Employing (5.300) in (5.299) yields the
estimate
Z
�

je.�/jje.w/j2dx � Nk.�/ jjwjj2
W 2;2.�/

n
8=3 jj� jj2
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L2.�/

o
:

(5.301)

Making use of the estimates (5.288a), (5.299), and (5.301) in the differential
inequality (5.270) we find that
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(5.302)

for t � 0 and arbitrary ; ı > 0. Using, once again, the fact that w.t/ 2 B
��1

W 2;2.�/
,

8t � 0, and choosing ; ı sufficiently small in (5.302), we now easily obtain (in
view of (5.289)) a differential inequality of the form

d
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�2=5 � jjwjj2
W 2;2.�/

C c0.�/ jj�jj2
L2.�/

(5.303)

with the �i .t/ > 0 and monotonically increasing in t for t > 0. As �.0/ D 0 it now
follows from (5.303) and (5.291) that, for any t > 0,

jj�jj2
L2.�/

� cŒ�1.t/�
� C �2.t/�

�2=5 �ec0t
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jjwjj2
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.�/d�
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� C �2.t/�
�2=5 ���2 e.c0Cc�/t :

(5.304)

From (5.304) it is immediate that

jj�.t/jjL2.�/ =�� ! 0; as �� ! 0 (5.305)

which serves to establish the uniform differentiability of S �1.t/ on A�1 . ut
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5.4.3 Uniform Boundedness of the Fréchet Differential
L�1.tI u0/, u0 2 A�1

Having established the uniform differentiability of S �1 , �1 > 0, on the maximal
compact global attractor A�1 , we now seek to prove that the Fréchet differential
L�1.t I u0/, u0 2 A�1 , of S �1.t/ is uniformly bounded in the strong operator norm
of L.H per ;H per / for all t > 0; with this result and the result of Theorem 5.10 in
hand, we will be in a position to apply standard techniques to compute upper bounds
for dH.A�1/ and dF .A�1/, �1 > 0. We begin by recalling that the linearized
equations for U .t I�1/ D L�1.t I u0/U 0 are (5.263) with U .0I�1/ D U 0 for any
�1 > 0. Also

ˇ̌ˇ̌
L�1.t I u0/

ˇ̌ˇ̌
L.H per ;H per /

D sup
U 02H per

.
ˇ̌ˇ̌
L�1.t I u0/U 0

ˇ̌ˇ̌
L2.�/

= jjU 0jjL2.�//
(5.306)

where the linearization in (5.263) is taken about u.t/ D S �1.t/u0 with u0 2 A�1 .
Our goal in this subsection is to establish the following result:

Theorem 5.11. The Fréchet differential of S �1.t/, L�1.t;u0/ for u0 2 A�1 ,
satisfies, for some l > 0, and all t � 0,

sup
u02A�1

ˇ̌ˇ̌
L�1.t I u0/

ˇ̌ˇ̌
L.H per ;H per /

� l Œt �C1: (5.307)

Proof. We multiply (5.263) through by Ui , integrate over �, sum over i D 1; 2; 3

and integrate by parts using the spatial periodicity of U and the incompressibility
constraint r � U D 0; we are easily led to the differential inequality
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where, on the left-hand side of (5.308), we have dropped the nonnegative term
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ˇ̌ � jjujjL1.�/ jjU jjH 1.�/ jjU jjL2.�/

� c jjujjW 2;2.�/ jjU jjW 2;2.�/ jjU jjL2.�/
� c��1 jjU jjL2.�/ jjU jjW 2;2.�/
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as u.t/ 2 B��1

W 2;2.�/
, t � 0, if u0 2 A�1 and �1 > 0. Thus 9�.�1I�/ > 0 such that
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d
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jjU jj2
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C �0ı

2
jjU jj2

W 2;2.�/

(5.309)

for all ı > 0, where �0 D �0.�1I�/ > 0, and we have used the fact that
U 2 L1..0; T /IW 2;2.�//, 8T > 0, as well as the generalized Korn estimate
of Lemma 5.2. For ı sufficiently small, therefore,

d
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W 2;2.�/
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from which it follows that 8t � 0, u0 2 A�1 , �1 > 0, and U 0 2 H per

ˇ̌ˇ̌
L�1.t I u0/

ˇ̌ˇ̌
L2.�/

jjU 0jjL2.�/
� exp

 r
�0
2ı
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!
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so that

sup
0�t�1

sup
u02A�1

ˇ̌ˇ̌
L�1.t I u0/

ˇ̌ˇ̌
L.H per ;H per /

� e
p
�02ı 	 `: (5.312)

As S�1.t/ D S �1.t � Œt �/S.t/Œt �, (5.307) now follows as a direct consequence
of (5.312) (see, e.g., Teman [Te4], Sect. V.2) and the uniform boundedness of
L�1.t I u0/ on A�1 , for each �1 > 0, has been established. ut

5.4.4 Bounds for dH .A�1/ and dF .A�1/, �1 > 0

To derive upper bounds for the Hausdorff and fractal dimensions of the attractor
A�1 , we first make the obvious modifications concerning the definitions of the
Lyapunov numbers and exponents which were introduced in Sect. 5.3.5; the relevant
results basically involve replacing the Hilbert space H by H per . Thus, for any
L 2 L.H per ;H per / and any nonnegative integer k we set

˛k.L/ D sup
G	H per

dimGDk
inf
2G

jjjjHperD1
jjLjjL2.�/ (5.313)

and

!k.L/ D ˛1.L/ � � �˛k.L/: (5.314)
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Then f˛k.L/g is nonincreasing and, if L is a compact self-adjoint nonnegative
linear operator on H per , the ˛k.L/ are the eigenvalues of .L�L/1=2 with ˛1.L/ �
˛2.L/ � � � � � 0 where L� is the adjoint operator. For L 2 L.H per ;H per / and
d 2 RC, d D nC s, n � 1 an integer and s 2 .0; 1/, we define

!d .L/ D !n.L/
1�s!nC1.L/s (5.315)

so that d 7! !d.L/ is a nonincreasing function from Œ1;1/ into RC. Now, let
S�1.t/ be the nonlinear semigroup generated by the bipolar problem (�1 > 0)
and L�1.t I u0/ the associated Fréchet differential with u0 2 A�1 ; the numbers
!k.L�1.t I u0// bound the largest distortion of an infinitesmal k-dimensional volume
produced by S �1.t/ around the point u0. As we have shown in Sect. 5.4.2 that S �1 ,
�1 > 0, is uniformly differentiable on A�1 , the numbers !k.L�1.t I u0// are well-
defined 8t � 0, k 2 N , and u0 2 A�1 . Furthermore, if we set, 8t � 0,

N!�1k .t/ D sup
u02A�1

!k.L�1.t I u0//I k 2 N (5.316)

then for each �1 > 0, the functions t 7! N!�1k .t/ are subexponential, i.e.,

N!�1k .t C s/ � N!�1k .t/ N!�1k .s/I 8s; t � 0: (5.317)

As in Sect. 5.3.5, standard results (e.g., [Te4]) now imply that lim
t!1f N!�1k .t/g1=t exists

and is equal to

…
�1
k 	 inf

t>0
f N!�1k .t/g1=t : (5.318)

Defining, recursively, the numbers

(
ƒ
�1
1 D …

�1
1 ;ƒ

�1
1 ƒ

�1
2 D …

�1
2 ; : : : ;

ƒ
�1
1 � � �ƒ�1

k D …
�1
k ;

(5.319)

we have

ƒ
�1
1 D …

�1
1 ;ƒ

�1
k D …

�1
k

…
�1
k�1

; k � 2: (5.320)

The ƒ�1
k are global (uniform) Lyapunov numbers on A�1 , while the numbers


�1
k D lnƒ�1

k ; k � 1 (5.321)

are the global (uniform) Lyapunov exponents; thus, it follows that

inf
t>0

f N!�1k .t/g1=t D exp.�11 C � � � C 
�1
k /: (5.322)
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Using the linearized bipolar equations (5.263) we now define the linear operator
L�1.u/ W QH ! H per , where

QH D f� 2 W 2;2.�/\H per j r � � D 0 in �g (5.323)

as follows: for ˛ D 2 � p, 2 < p < 3,

.L�1.u/�/i D 2�1
@

@xj
.�eij.�//� @

@xj
Œ�.u/eij.�/ � ˛Bijkl.u/ekl .�/�

C uj
@�i

@xj
C �j

@ui
@xj

(5.324)

where u D S�1.t/u0, �1 > 0, �0 2 A�1 . As a consequence of standard results on
infinite dimensional dynamical systems (e.g., [Te4])


�1
1 C � � � C 

�1
k � �q�1k (5.325)

with q�1k given by (5.176), where Q is an orthogonal projection on QH of rank k
and tr, as in Sect. 5.3.5, denotes the trace operation. We note that tr.L�1.u/ ı Q/
is again computed as in (5.177) with f�j g any basis of QH such that (i) the �j
are orthonormal in L2.�/ and (ii) f�1;�2; : : : ;�kg is a basis of Q ı H per . As in
Sect. 5.3.5, the result expressed by Lemma 5.12 is a consequence of Theorem 3.3 of
[Te4]. It then follows that as a consequence of (5.182a,b), we have

dH .A�1/ � k; dF .A�1/ � 2k; �1 > 0 (5.326)

if �11 C � � � C 
�1
k < 0; this latter condition is, in view of (5.325), equivalent to

the condition that q�1k > 0 where q�1k is given by (5.176). Our task, therefore, is
to find the smallest positive integer k, for each �1 > 0, which satisfies q�1k > 0; to
accomplish this goal, we will state and prove the following

Lemma 5.20. For the semigroup S �1.t/ associated with the space-periodic prob-
lem (5.2a,b), (5.3b), (5.4), in dimn D 2, with 2 < p < 3, 9 OK D OK.�; pI�/ > 0,
c0 D c0.�/ > 0 such that, for ı > 0 chosen sufficiently small, we have for all
�1 > 0


�1
1 C � � � C 

�1
k � � OK.�; pI�/�1k5=3 C c0.�/k

ı4
lim
t!1 sup

u02A�1

1

t

Z t

0

jjujj2
W 1;2.�/

d�

(5.327)

where �1 is the first eigenvalue of �� on � corresponding to an eigenvector w1 2
H 1.�/\H per such that r � w1 D 0.
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Proof. Using the definition of (5.324) of L�1 we compute, for � 2 QH , that

.L�1.u/�;�/L2.�/ D 2�1

Z
�

@eij

@xk
.�/

@eij

@xk
.�/dx

C
Z
�

@2�

@eij@ekl
.u/eij.�/ekl .�/dx C

Z
�

�j
@ui
@xj

�idx

� 2�1

Z
�

@eij

@xk
.�/

@eij

@xk
.�/dx

C
Z
�

.� C je.u/j2/ p�2
2 eij.�/eij.�/dx C

Z
�

�j
@ui
@xj

�idx

� �
p�2
2 k2.�/ jj�jj2

W 1;2.�/
C
Z
�

�j
@ui
@xj

�idx

(5.328)

for all �1 > 0. Also, for � 2 QH such that jj�jjL2.�/ D 1, any ı > 0, and some
c0.�/ > 0,

ˇ̌
ˇ̌Z
�

�j
@ui
@xj

�idx

ˇ̌
ˇ̌ � c1.�/ jj�jj3=2

W 1;2.�/
jjujjW 1;2.�/

� c0.�/
�
ı4=3 jj�jj2

W 1;2.�/
C 1

ı4
jjujj2

W 1;2.�/

� (5.329)

where we have used (5.275) with w replaced by �. Therefore, using (5.177) we
have, for any �1 > 0,

tr.L�1.u/ ıQ/ D
kX
`D1
.L�1.u/�`;�`/L2.�/

� �
p�2
2 k2.�/

kX
`D1

jj�`jj2W 1;2.�/
� c0.�/k

ı4
jjujj2

W 1;2.�/

� c0.�/ı4=3
kX
`D1

jj�`jj2W 1;2.�/

(5.330)

so that for ı chosen positive, and sufficiently small, 9K D K.�; pI�/ such that

tr.L�1.u/ ıQ/ � K.�; pI�/
kX
`D1

j�`j2H 1.�/
� c0.�/k

ı4
jjujj2

W 1;2.�/
(5.331)
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for any �1 > 0. However, if the �j , j D 1; : : : ; k are the first k eigenvalues of ��
on � corresponding to eigenvectors wj 2 H 1.�/ \ H per such that r � wj D 0,
j D 1; : : : ; k, then

kX
`D1

j�`j2H 1.�/
� �1 C � � � C �k (5.332a)

and, furthermore [Me]

�j � Qc.�/�j j 2=3; 8j � 1 and some Qc > 0: (5.332b)

Employing (5.332a,b) in (5.331), we now find that, for any �1 > 0,

tr.L�1.u/ ıQ/ � OK.�; pI�/�1k5=3 � c0.�/k
ı4

jjujj2
W 1;2.�/

: (5.333)

By virtue of (5.176) and (5.333) we can now state that, for any �1 > 0,

q
�1
k � OK.�IpI�/�1k5=3 � c0.�/k

ı4
lim
t!1 sup

u02A�1

1

t

Z t

0

jjujj2
W 1;2.�/

d� (5.334)

and the Lemma 5.20 then follows directly from (5.325). ut
We are now in a position to state and prove the basic results of this subsection,

namely, the estimates for the upper bounds of the Hausdorff and fractal dimensions
of A�1 , �1 > 0.

Theorem 5.12. Let A�1 , for �1 > 0, be the maximal compact global attractor for
the semigroup S�1.t/ defined by the space-periodic problem (5.2a,b), (5.3b), (5.4),
in dimn D 2, with 2 < p < 3. Then 9‰.�; p; �1I�/ > 0 such that for km, the
smallest integer for which

km � 1 < ‰jf j31 < km; (5.335a)

we have

dH .A�1/ � km; dF .A�1/ � 2km: (5.335b)

Proof. From (5.222), with u in place of v, we obtain, 8�1 � 0 and all ˇ > 0,

d

dt
jjujj2

L2.�/
C 2�

p�2
2 k0.�/ jjujj2

W 1;2.�/
� ˇjf j21 C 1

ˇ
jjujj2

L2.�/
: (5.336)

By choosing ˇ sufficiently large in (5.336) we obtain, for some k�.�; pI�/ > 0, an
estimate of the form
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d

dt
jjujj2

L2.�/
C k�.�; pI�/ jjujj2

W 1;2.�/
� ˇjf j21; �1 > 0; (5.337)

from which it follows that, for any �1 > 0,

jjujj2
L2.�/

C k�.�; pI�/
Z t

0

jjujj2
W 1;2.�/

d� � ˇt jf j21 C jju0jj2L2.�/ : (5.338)

Therefore, for all �1 > 0,

1

t

Z t

0

jjujj2
W 1;2.�/

d� �
�
ˇ

k�

�
jf j21 C 1

k�t
jju0jj2L2.�/

in which case we see that

lim
t!1 sup

u02A�1

1

t

Z t

0

jjujj2
W 1;2.�/

d� �
�
ˇ

k�

�
jf j21 (5.339)

with the estimate holding for all �1 > 0. Employing (5.339) in (5.327), we now see
that for any �1 > 0 we have


�1
1 C � � � C 

�1
k � � OK.�; pI�/�1k5=3 C c0.�/

k�.�; pI�/
�
ˇ

ı4

�
kjf j21 (5.340)

so that �11 C � � � C 
�1
k < 0, for any �1 > 0, provided

k >

�
c0.�/

c�.�; pI�/
�
ˇ

ı4�1

�3=2
jf j21 (5.341)

with c� D OKk�. In other words, �11 C � � � C 
�1
k < 0, for any �1 > 0, for k the

smallest positive integer such that

k � 1 <
�

c0.�/
c�.�; pI�/

�
ˇ

ı4�1

�3=2
jf j31 < k: (5.342)

The result of the theorem now follows if we take

‰.�; p; �1I�/ D
�

c0.�/
c�.�; pI�/

�
ˇ

ı4�1

�3=2
(5.343)

with ˇ > 0 sufficiently large, and ı > 0 sufficiently small. ut
Remarks. The upper bounds in (5.335b) not only hold 8�1 > 0 but are, themselves,
independent of�1. However, we can not apply the ideas delineated in this subsection
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to conclude, e.g., that the upper bounds of Theorem 5.12 hold for �1 D 0. In other
words, it does not follow from the work presented above that

dH .A0/ � km < 1C‰.�; p; �1I�/jf j31:
The reason for this is that the application of the concepts outlined in this section
depend, in an essential way, on the uniform differentiability of the underlying
nonlinear semigroup, and this has not been established for S 0.t/.

The most interesting aspect of the result stated in Theorem 5.12 is the indepen-
dence of the upper bounds for dH.A�1/, dF .A�1/, �1 > 0, with respect to �1; this
was certainly not the case in our work in Sect. 5.3.5 on the incompressible bipolar
viscous fluid, with 1 < p � 2, where it was shown, e.g., that the upper bound for
dH.A�1/, �1 > 0, behaves like ��6

1 for small �1. The reason for the difference in
the behavior of the upper bounds for dH .A�1/, dF .A�1/, �1 > 0, in the two cases
1 < p � 2 and 2 < p < 3 can be traced directly to the estimate (5.328) and, in
particular, to the fact that for � 2 QH , u D S �1.t/u0, u0 2 A�1 ,

Z
�

.� C je.u/j2/ p�2
2 eij.�/eij.�/dx � �

p�2
2 k2.�/ jj�jj2

W 1;2.�/
(5.344a)

for some k2.�/ > 0, if p � 2; this is in contrast to the best possible estimate
available for the case 1 < p � 2, namely, for some Ok.�/ > 0 it follows from
Lemma 5.3 that

Z
�

.� C je.u/j2/ p�2
2 eij.�/eij.�/dx � Ok.�/ jj�jj2

W 1;p.�/
: (5.344b)

If we have to work with (5.344b) in (5.328), for 1 < p � 2, instead of with (5.344a),
as we may for p > 2, then the expression

2�1

Z
�

@eij

@xk
.�/

@eij

@xk
.�/dx

would have to be retained in (5.328), thus propelling the constant �1 through all the
subsequent estimates.

5.5 Lower Semicontinuity of the Attractors for Nonlinear
Bipolar Equations

5.5.1 The Convergence Problem

In Sect. 5.4 we showed that for the space-periodic problem (5.2a,b), (5.3b), (5.4),
in dimn D 2, with p > 2, there exist absorbing sets in H per and W 1;2.�/ for
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S�1.t/ when �1 � 0, which are independent of �1 > 0, as well as absorbing sets
for S �1.t/, in W 2;2.�/, when �1 > 0; this is the essential content of Theorem 5.9.

The absorbing sets in W 1;2.�/ turned out to be of the form B
�0

W 1;2.�/
, i.e., balls of

sufficiently large radius �0, independent of �1, inW 1;2.�/ while the absorbing sets
in W 2;2.�/ were of the form B

��1

W 2;2.�/
, i.e., balls of sufficiently large radius ��1

in W 2;2.�/, with ��1 satisfying ��1 ! 1 as �1 ! 0. Maximal compact global
attractors were then defined in Sect. 5.4 as follows: for

�1 > 0 W A�1 D
\
t>0

S �1.t/B
��1

W 2;2.�/
;

�1 D 0 W A0 D
\
t>0

S 0.t/B
�0

W 1;2.�/
;

and the existence, for fixed �1 > 0, of the absorbing set B
��1

W 2;2.�/
then suffices to

yield the uniform compactness of the semigroup S �1.t/ for large t .
Once the attractors A�1 , �1 > 0, and A0 were defined in Sect. 5.4 we were

then able to establish, i.e., Theorem 5.10, that for �1 > 0, and 2 < p < 3,
the nonlinear semigroup S�1 is uniformly differentiable on A�1 and, also, that the
Fréchet differentialL�1.t I u0/ of S �1.t/, for u0 2 A�1 , is uniformly bounded in the
strong operator norm of L.H per ;H per /; this latter result is the essential content of
Theorem 5.11.

Our goal in this section is to examine the relationship between the attractorsA�1 ,
�1 > 0, and A0 and, in particular, to show that in a well-defined sense the attractors
A�1 converge to A0 as �1 ! 0. In this regard, the best that has been done to this
point is to exhibit the convergence of A�1 to A0 as �1 ! 0, in the sense of the
semidistance measure for sets (as opposed to the actual distance measure). We need
the following

Definition 5.8. The semidistance measure Od.S1; S2/ in L2.�/ between the sets S1
and S2 is given by

Od.S1; S2/ D sup
x2S1

inf
y2S2

jjx � y jjL2.�/ : (5.345)

Our goal in this section is to prove that Od.A�1;A0/ ! 0, as �1 ! 0. In order
to show that d.A�1;A0/ ! 0, as �1 ! 0, with d the usual distance measure
between sets we would have to be able to reverse the roles of A�1 , A0 in terms of
semidistance convergence, i.e., to show that Od.A0;A�1/ ! 0, as �1 ! 0; such a
result has proven to be elusive to this point and, in fact, does not appear to be valid.
Indeed, if one could prove that d.A�1;A0/ ! 0, as �1 ! 0, then it would be
possible to go to the limit, in Theorem 5.12, as �1 ! 0, and extract from (5.335a,b)
upper bounds for the Hausdorff and fractal dimensions of the attractor A0.
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5.5.2 A Basic Estimate for Solutions of the Space-Periodic
Bipolar Problem

In this subsection we will derive an upper bound for the L2.Œ0; T �IH 3.�// norm of
the solution of the space-periodic problem for the bipolar fluid flow equations with
�1 > 0; the result, which is valid in both dimensions n D 2; 3, will be a crucial
element in establishing the convergence, in the sense of semidistance, of A�1 to
A0, as �1 ! 0, and will also be used in our discussion of inertial manifolds in
Sect. 6.2. The proof which is presented here follows the proof of the similar result in
[Hao]. A different proof of this same estimate will be presented in connection with
the discussion of the L2 squeezing property for nonlinear incompressible bipolar
fluids in Sect. 6.3; this result is of central importance to the analysis of bipolar flow
problems so we have deemed it worthwhile to offer an alternative proof here which,
at the same time, also serves to establish some of the mathematical framework that
will be employed in the work on inertial manifolds to be presented in Sect. 6.2.

We are interested in the problem (5.2a,b), with � D 1, (5.3b), for some L > 0,
and (5.4) and recall that (5.2a) may be written out in the form

@v

@t
Cv �rv D �r Np�2�1r � .�e/Cr � .2�0.�Cje.v/j2/ p�2

2 e/Cf : (5.346)

where Np is the pressure. Associated with (5.2a)—or (5.346)—(5.2b), (5.3b), (5.4)
we have the following fundamental linear problem: find .u; Np/ W � ! Rn 
R such
that

r � .�e/C r Np D f ; in � (5.347a)

r � u D 0; in � (5.347b)

where e D e.u/ and u satisfies the periodicity conditions (5.3b). Associated with
the problem (5.347a,b), (5.3b) is the linear operator A which is defined as follows:
Let

V per .�/ D fu W � ! Rn j u 2 W 2;2.�/; r � u D 0; and u satisfies (5.3b)g
(5.348)

and consider the positive definite V per .�/-elliptic symmetric bilinear form a.�; �/:
V per 
 V per ! R given by

a.u; v/ D 1

2
.�u; �v/L2.�/ : (5.349)

Then as a consequence of the Lax-Milgram Lemma (Appendix A) we obtain an
isometryA 2 L.V per ;V

0
per /, with V 0

per the dual space to V per , via

hAu; viV 0
per�V per D a.u; v/ D hf ; viV 0

per�V 0
per
; 8v 2 V per (5.350)
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with f 2 V 0
per . For the domain of A we have

D.A/ D fu 2 V per j a.u; v/ D .f ; v/L2.�/; f 2 H per � V 0
per ; 8v 2 V per :g

(5.351)

For ease of presentation we will, for the remainder of this subsection, denote
the L2.�/ inner product .�; �/L2.�/ simply as .�; �/. We also observe that A 2
L.D.A/IH per / \ L.V per ;V

0
per /.

As a consequence of standard embedding theorems, A�1 is compact as a
mapping in V 0

per (or in H per ). Therefore, the spectrum of A consists of real
eigenvalues j , with the multiplicity of each j finite; these eigenvalues j may
be ordered, i.e.,

0 < 1 � 2 � � � � I j ! C1; as j ! C1

and the only possible accumulation point of fj g is at infinity. The self-adjoint
operator A possesses an orthonormal set of eigenfunctions f�g1

jD1, which is
complete in V 0

per (orH per ), and which satisfies

A�j D j�j ; with �j 2 V per (orD.A/), 8j: (5.352)

Because A�1 is compact, we can define the fractional powers of A by using the
spectral resolution of A W 8˛ 2 R we define

A˛u D
1X
kD1

˛k .u;�k/L2.�/ �k; 8u 2 D.A˛/ (5.353)

where for ˛ > 0,

D.A˛/ D fu 2 H per j
1X
jD1

2˛j .u;�/
2

L2.�/
< 1g; (5.354)

while for ˛ < 0, D.A˛/ is the completion ofH per with respect to the norm

jjujj˛ D
8<
:

1X
jD1

2˛j
�
u;�j

�2
L2.�/

9=
;
1=2

(5.355)

which is induced by the scalar product

.u; v/D.A˛/ D
1X
jD1

2˛j
�
u;�j

�
L2.�/

�
v;�j

�
L2.�/

: (5.356)
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Using the Fourier transform, it is a straightforward exercise to show that there exist
constants Nk1; Nk2 > 0 such that

Nk1 jujH 4.�/ � jjAujjL2.�/ � Nk2 jujH 4.�/ ; 8u 2 D.A/; (5.357a)

Nk1 jujH 3.�/ �
ˇ̌
ˇ
ˇ̌
ˇA3=4u

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� Nk2 jujH 3.�/ ; 8u 2 D.A/; (5.357b)

Nk1 jujH 2.�/ �
ˇ̌̌ˇ̌̌
A1=2u

ˇ̌̌ˇ̌̌
L2.�/

� Nk2 jujH 2.�/ ; 8u 2 D.A1=2/; (5.357c)

and

Nk1 jujH 1.�/ �
ˇ̌
ˇ
ˇ̌
ˇA1=4u

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� Nk2 jujH 1.�/ ; 8u 2 D.A1=4/: (5.357d)

Therefore, we have the equivalences

8̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
:̂

jjAujjL2.�/ � jujH 4.�/ ;ˇ̌̌ˇ̌̌
A3=4u

ˇ̌̌ˇ̌̌
L2.�/

� jujH 3.�/ ;ˇ̌̌ˇ̌̌
A1=2u

ˇ̌̌ˇ̌̌
L2.�/

� jujH 2.�/ ;ˇ̌
ˇ
ˇ̌
ˇA1=4u

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� jujH 1.�/ :

(5.357e)

We now set, for e D e.u/,



Apu

�
i

D @

@xj

h
.� C jej2/ p�2

2 eij

i
; i D 1; : : : ; n; (5.358)

B.u; v/ D u � rv (5.359)

and

R.u/ D �2�0Ap.u/CB.u;u/ � f (5.360)

where we take f 2 H per . Then the bipolar problem (5.356), (5.2b), (5.3b), (5.4) is
equivalent to the following abstract initial-value problem posed in V per .�/:

du
dt

C 2�1Au CR.u/ D 0; (5.361a)

u.0/ D u0: (5.361b)
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With the help of the machinery we have just prepared we are now in a position to
state and prove the following: set, for v 2 V per .�/, jjvjjV D jjvjjV per where V per

is given by (5.348); then we have

Lemma 5.21. Let v.t/ be the unique solution of (5.346), (5.2b), (5.3b), (5.4) with
� D Œ0; L�n, n D 2; 3, and suppose that jjvjjV � R, t 2 Œ0; T /. Then 9k0 > 0, k0
depending only on �, �0, f , R, and T , such that

�1

Z T

0

ˇ̌̌ˇ̌̌
A3=4v

ˇ̌̌ˇ̌̌2
L2.�/

dt � k0 (5.362)

with A as defined by (5.350).

Proof. We work with the abstract formulation of the problem (5.346), (5.2b), (5.3b),
(5.4), i.e., with (5.361a,b). Thus, let v.t/ be the unique solution of (5.361a,b) with
v0 2 V 	 V per .�/ such that jjvjjV � R for some R > 0 and all t 2 Œ0; T /. Taking
the inner-product, in L2.�/, of (5.361a) with A1=2v.t/ we get

1

2

d

dt

ˇ̌̌ˇ̌̌
A1=4u

ˇ̌̌ˇ̌̌2
L2.�/

C 2�1

ˇ̌̌ˇ̌̌
A3=4u

ˇ̌̌ˇ̌̌2
L2.�/

�
�
2�0

ˇ̌ˇ̌
Ap.u/

ˇ̌ˇ̌
L2.�/

C jjB.u;u/jjL2.�/ C jjf jjL2.�/
�

�
ˇ̌
ˇ
ˇ̌
ˇA1=2u

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

:

(5.363)

Since jju.t/jjV � R, for some R > 0, and all t 2 Œ0; T /, as a consequence of the
fact that

@

@xj

h
.� C je.u/j2/ p�2

2 eij.u/
i

D .� C je.u/j2/ p�2
2

@

@xj
eij C .p � 2/.� C je.u/j2/ p�4

2 eijekl
@

@xj
ekl ; (5.364)

we easily see that there exists a positive constant c1 such that

.2�0
ˇ̌ˇ̌
Ap.u/

ˇ̌ˇ̌
L2.�/

CjjB.u;u/jjL2.�/Cjjf jjL2.�//�
ˇ̌̌ˇ̌̌
A1=2u

ˇ̌̌ˇ̌̌
L2.�/

� c1: (5.365)

By (5.363) and (5.365), we obtain

d

dt

ˇ̌
ˇ
ˇ̌
ˇA1=4u

ˇ̌
ˇ
ˇ̌
ˇ2
L2.�/

C 4�1

ˇ̌
ˇ
ˇ̌
ˇA3=4u

ˇ̌
ˇ
ˇ̌
ˇ2
L2.�/

� 2c1: (5.366)
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Integrating (5.366) from 0 to T , we have

ˇ̌
ˇ
ˇ̌
ˇA1=4u.T /

ˇ̌
ˇ
ˇ̌
ˇ2
L2.�/

C 4�1

Z T

0

ˇ̌
ˇ
ˇ̌
ˇA3=4u.t/

ˇ̌
ˇ
ˇ̌
ˇ2
L2.�/

dt �
ˇ̌
ˇ
ˇ̌
ˇA1=4u.0/

ˇ̌
ˇ
ˇ̌
ˇ2
L2.�/

C 2c1T

(5.367)
and (5.362) is now a direct consequence of (5.367). ut

An immediate consequence of Lemma 5.21 is the following result which will be
pivotal not only for the analysis in 5.5.3 but for our discussion of inertial manifolds
in Sect. 6.2 as well:

Theorem 5.13. Under the conditions stated in Lemma 5.21, the unique solution of
(5.346), (5.2b), (5.3b), (5.4) satisfies

�1

Z T

0

jv.t/j2
H 3.�/

dt � Qk (5.368)

for some Qk > 0, Qk D Qk.�0; �;f ; R; T /.
Proof. The bound (5.368) is a direct consequence of (5.362) and the lower bound
in (5.357b). ut

5.5.3 Convergence of A�1 to A0 as �1 ! 0

We now want to establish the convergence of the attractors A�1 to the attractor A0,
for the space-periodic problem in dimn D 2, as �1 ! 0; convergence will be
established in the sense of semidistance, i.e., Od.A�1;A0/ ! 0, as �1 ! 0, or

sup
v2A0

inf
v�12A�1

ˇ̌ˇ̌
v � v�1

ˇ̌ˇ̌
L2.�/

! 0; as �1 ! 0: (5.369)

By virtue of [Te4], Theorem 1.2, to prove (5.369) it suffices to show that, as�1 ! 0,

ı�1.I / D sup
v02BR0 .0/

sup
t2I

ˇ̌ˇ̌
S �1.t/v0 � S 0.t/v0

ˇ̌ˇ̌
L2.�/

! 0 (5.370)

for every compact interval I � .0;1/, withBR0.0/ a ball of radiusR0 (independent
of �1) in L2.�/. To this end we first establish the following:

Lemma 5.22. Let v�1.t/ and v.t/ be, respectively, the unique solutions of (5.346),
(5.2b), (5.3b), (5.4) for �1 > 0 and �1 D 0 (with the same initial data v0). Let

w.t I�1/ D v�1.t/ � v.t/; �1 > 0: (5.371)
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Then 9 Qk.�; pI�/, c.�/, Nc.�/, all positive constants, such that, for p > 2,

1

2

d

dt
jjwjj2

L2.�/
C Qk.�; pI�/ jjwjj2

W 1;2.�/
� c.�/ jjwjj2

L2.�/
C �1 Nc.�/ jvjH 3.�/ :

(5.372)

Proof. The system of equations satisfied by w is

@wi
@t

C wj
@vi

@xj
C vj

@wi
@xj

C wj
@wi
@xj

D �@pw

@xi

C @

@xj



�.v�1/eij.v�1/� �.v/eij.v/

� � 2�1
@

@xj
.�eij.v�1// (5.373)

where pw is the difference of the pressure fields corresponding to v�1 and v.
Multiplying (5.373) by wi .t I�1/, integrating over �, summing on i , i D 1; 2; 3,
and integrating once by parts we obtain

1

2

d

dt
jjw.t I�1/jj2L2.�/ C

Z
�

wj
@vi

@xj
wi dx

D �
Z
�

�Z 1

0

@2�

@eij@ekl
.vC �w/d�

�
eij.w/ekl.w/dxC2�1

Z
�

�eij.u�1/eij.w/dx

(5.374)

where �.eijeij/ is the potential defined by (5.92) with ˛ D 2 � p. From (5.374) we
obtain, directly, the estimate

1

2

d

dt
jjw.t I�1/jj2L2.�/ C �

p�2
2

Z
�

eij.w/eij.w/dx �
ˇ̌
ˇ̌Z
�

wj
@vi

@xj
wi dx

ˇ̌
ˇ̌

C 2�1

Z
�

�eij.v�1/eij.v�1/dx � 2�1

Z
�

�eij.v�1/eij.v/dx: (5.375)

As the expression
Z
�

�eij.v�1/eij.v�1/dx may be integrated once more, by parts,

we find that

1

2

d

dt
jjw.t I�1/jj2L2.�/ C �

p�2
2 k2.�/ jjwjj2

W 1;2.�/
C 2�1

Z
�

@eij

@xk
.v�1/

@eij

@xk
.v�1/dx

�
ˇ̌̌
ˇ
Z
�

wj
@vi

@xj
wi dx

ˇ̌̌
ˇ � 2�1

Z
�

�eij.v�1/eij.v/dx (5.376)



432 5 Attractors for Incompressible Bipolar and Non-Newtonian Flows: Bounded : : :

so that by dropping the third expression on the left-hand side of this last inequality
we have the estimate

1

2

d

dt
jjw.t I�1/jj2L2.�/ C �

p�2
2 k2.�/ jjwjj2

W 1;2.�/

�
ˇ̌
ˇ̌Z
�

wj
@vi

@xj
wi dx

ˇ̌
ˇ̌� 2�1

Z
�

�eij.v�1/eij.v/dx: (5.377)

However,

ˇ̌̌
ˇ
Z
�

wj
@vi

@xj
wi dx

ˇ̌̌
ˇ � c1.�/ jjvjjW 1;2.�/ jjwjj3=2

W 1;2.�/
jjwjj1=2

L2.�/
: (5.378)

As v 2 L1..0; T /IW 1;2.�//, 8T > 0, by virtue of the existence of the absorbing
set B�0

W 1;2.�/
, (with �0 independent of �1), for �1 D 0 we have, for t 2 I � .0;1/,

jjvjjW 1;2.�/ � �0; t 2 I (5.379)

for some �0 > 0. Combining (5.378) with (5.379), and using Young’s inequality,
we deduce, for some c0.�/ > 0, and any ı > 0, the estimate

ˇ̌̌
ˇ
Z
�

wj
@vi

@xj
wi dx

ˇ̌̌
ˇ � c0.�/

�
ı3=4 jjwjj2

W 1;2.�/
C 1

ı4
jjwjj2

L2.�/



whose use in (5.377), for ı chosen sufficiently small, results in a differential
inequality of the form

1

2

d

dt
jjwjj2

L2.�/
C Qk.�; pI�/ jjwjj2

W 1;2.�/
� c.�/ jjwjj2

L2.�/
� 2�1

Z
�
�eij.v�1/eij.v/dx:

(5.380)

However,

ˇ̌
ˇ̌Z
�

�eij.v�1/eij.v/dx

ˇ̌
ˇ̌ �

�Z
�

�eij.v�1/�eij.v�1/dx

�1=2



�Z

�

eij.v/eij.v/dx

�1=2

� c0.�/ jvjH 3.�/ jjvjjW 1;2.�/ � c0.�/�0 jvjH 3.�/

(5.381)

where we have again used (5.379) for t 2 I � .0;1/. Combining (5.380) with
(5.381) now yields the estimate (5.372). ut
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Using the results delineated in Theorem 5.13 and Lemma 5.22 we can now state
and prove the main result of this section, namely,

Theorem 5.14. For �1 > 0 and �1 D 0, respectively, let A�1 and A0 be the
maximal compact global attractors associated with the problem (5.2a,b), (5.3b),
(5.4), in dimn D 2, with p > 2; then Od.A�1;A0/ ! 0, as �1 ! 0, with Od the
semidistance measure given by (5.345).

Proof. Dropping the term proportional to jjwjj2
W 1;2.�/

in (5.372), we may rewrite the
resulting differential inequality in the form

d

dt

�
e�2ct jjwjj2

L2.�/

�
� 2�1 Nc.�/e�2ct ˇ̌v�1 ˇ̌H 3.�/

(5.382)

which when integrated over Œ0; t/ yields, in view of the fact that jjw.0/jjL2.�/ D 0,
the estimate

e�2ct jjwjj2
L2.�/

� 2�1 Nc.�/
Z t

0

e�2c� ˇ̌v�1 ˇ̌H 3.�/
d�: (5.383)

Now, for any t > 0, by using (5.368) we may estimate the integral on the right-hand
side of (5.383) as follows:

Z t

0

e�2c� ˇ̌ˇ̌v�1 ˇ̌ˇ̌H 3.�/
d� �

�Z t

0

e�4c� d�
�1=2 �Z t

0

ˇ̌
v�1

ˇ̌2
H 3.�/

d�

�1=2

� 1

2
p
c

�Z t

0

ˇ̌
v�1

ˇ̌2
H 3.�/

d�

�1=2
� 1

2

�
�1.t/

c�1

�1=2

(5.384)

and (see (5.368)) we have abbreviated Qk.�0; �;f ; R; t/ 	 �1.t/. Inserting (5.384)
in (5.383) we find that for t 2 I � .0;1/

jjw.t I�1/jj2L2.�/ � �1 Nc.�/e2ct
�
�.t/

c�1

�1=2
	 K�.t/�

1=2
1 : (5.385)

As a direct consequence of (5.385) we now find that

sup
u02BR0 .0/

sup
t2I

jjw.t I�1/jjL2.�/ D sup
u02BR0 .0/

sup
t2I

d.S�1.t/u0;S 0.t/u0/

� K
1=2
� .t/�

1=4
1

(5.386)

where d.�; �/ is the distance function in L2.�/. In view of (5.370), the result stated
in the theorem now follows as a direct consequence of (5.386). ut



Chapter 6
Inertial Manifolds, Orbit Squeezing,
and Attractors for Bipolar Flow
in Unbounded Channels

6.1 Introduction

In Chap. 5 we discussed, in considerable detail, the existence of maximal compact
global attractors for bipolar and non-Newtonian flows associated with either
(5.2a,b), (5.3a), (5.4), � � Rn, n D 2; 3, a bounded domain, or (5.2a,b),
(5.3b), (5.4) where � D Œ0; L�n, n D 2; 3, L > 0. In this chapter we will
extend our consideration of the long-time behavior of the solutions of the bipolar,
incompressible, viscous flow problem in two basic directions; we will examine
(1) the problem of the existence of an inertial manifold, and the associated question
of squeezing of orbits, and (2) the problem of establishing the existence of a
maximal compact attractor for the flow in an unbounded, parallel-walled, channel
whose existence was considered in Sect. 4.4.

The concept of an inertial manifold for dissipative evolutionary equations appears
to have been introduced in [FoS]. Formally, an inertial manifold is a finite-
dimensional attractor which attracts, exponentially, all orbits of the evolutionary
problem in question. Since the initial work in [FoS] the subject of inertial man-
ifolds for dissipative evolutionary equations has attracted considerable interest;
among the work of a general character; in this area, we may cite [CFNT1, 2],
[Con1, EFNT, FST], [LS1, 2], [Ma1, 2], [Smi], [SM], [Te2], and [SY1]. Work in
the literature which is specifically geared towards establishing the existence of
an inertial manifold (or, an approximate inertial manifold) for the Navier–Stokes
equations in both two and three dimensions includes [CF,CFMT,HR,Kw], and [Ti].
Additionally, the existence of an inertial manifold for the extension of the Navier–
Stokes model usually attributed to Ladyzhenskya [La2] was established in [OS2];
the Ladyzhenskya equations have been discussed in Sect. 1.2. The existence of an
inertial manifold for the nonlinear system of equations describing the motion of a
bipolar incompressible viscous fluid is taken up in Sect. 6.2; we show, following the
analysis in [BH3] that, unlike the current situation with regard to the Navier–Stokes
equations, an inertial manifold does exist for the case of the space-periodic problem,
in both dimensions n D 2 and n D 3, provided 0 � ˛ < 1 (1 < p � 2). In the

H. Bellout and F. Bloom, Incompressible Bipolar and Non-Newtonian Viscous Fluid
Flow, Advances in Mathematical Fluid Mechanics, DOI 10.1007/978-3-319-00891-2__6,
© Springer International Publishing Switzerland 2014
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course of establishing the existence of an inertial manifold a squeezing property
is proven for the orbits of the semigroup S�1.t/; while this particular squeezing
property is naturally adopted to establishing the existence of the inertial manifold for
incompressible bipolar fluid flow, a more basic L2 form of the squeezing property is
shown to hold in Sect. 6.3. The L2 squeezing property is proven by using the more
delicate analysis of the nonlinear viscosity term which was presented in [BH1].

In Sect. 6.4 we follow the analysis in [BH5] and prove the existence of a global
compact attractor for the equations governing nonlinear bipolar fluid flows in
unbounded two-dimensional channels; this work depends, in an essential manner,
on the corresponding existence theory for such problems which was presented in
[BH4] and detailed in Chap. 4. The analysis in Sect. 6.4 is based on the consideration
of a sequence of approximating problems, defined on simply connected bounded
subdomains of an unbounded two-dimensional channel, which “converge” to the
channel in an appropriate sense.

Finally, in Sect. 6.5, we outline some of the related recent work of other authors
who have looked at the issue of asymptotic behavior of solutions to problems
involving incompressible bipolar and non-Newtonian flow and the existence of
global attractors; such work includes, in particular, the analysis in [BaH], [DC1, 2],
[DL], [Do1, 2], [Ju, LWW], [LZ1, 2, 3], [LZZ1, 2, 3], [MP1, 2], [NP1, 2, 3],
[ZZ1, 2], and [ZZL1, 2, 3].

6.2 Inertial Manifolds for Incompressible Bipolar
Viscous Flow

6.2.1 Introduction

In Sect. 5.3 we established the existence of a maximal compact global attractor A�1

of the form

A�1 D
\
t>0

S�1.t/B
�0

H 2.�/
I �1 > 0

for the solution operator S �1.t/ associated with the bipolar initial-boundary value

problem (5.2a,b), (5.3a), (5.4), where B�0

H 2.�/
is a ball of radius �0 in H 2.�/ with

�0 dependent on �1; this result holds in both dimensions n D 2 and n D 3 with
1 < p � 2. We also computed, in Sect. 5.3.5, upper bounds for both the Hausdorff
and fractal dimension of A�1 . Results similar to those proven in Sect. 5.3 can be
shown to hold for the related space-periodic problem (5.2a,b), (5.3b), (5.4) with
�1 > 0; in particular, it is easily established that for the space-periodic problem,
in dimensions n D 2 or 3, the maximal compact global attractor has the form

A�1 D
\
t>0

S �1.t/B
N�
H 2

per.�/
I �1 > 0
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with B N�
H 2

per.�/
a ball of (�1-dependent) radius N� in H 2

per.�/, � D Œ0; L�n, L > 0,

n D 2 or 3.
In this section we continue our development of the dynamical systems approach

to the asymptotic (large time) behavior of the solutions of the incompressible
nonlinear bipolar flow equations; our focus will be on the problem of the existence
of an inertial manifold. As already indicated, an inertial manifold for a dissipative
nonlinear evolutionary equation is a finite-dimensional attractor which attracts,
exponentially, all orbits of the relevant equation. For �1 > 0, and 0 � ˛ < 1

(so that 1 < p � 2), let us denote, again, by S�1.t/ the solution operator for the
bipolar problem (5.2a,b), (5.4), satisfying the spatial periodicity conditions (5.3b)
on � D Œ0; L�n, L > 0, n D 2; 3. We make the following

Definition 6.1. A set M is an inertial manifold for the bipolar problem on � 

Œ0; T /, T > 0, with solution operator S �1.t/, if

(i) M is a finite-dimensional Lipschitz manifold,
(ii) M is invariant in the sense that 8t � 0, S�1.t/M � M, and

(iii) M attracts exponentially all orbits of S �1.�/, i.e.,

d.S�1.t/v0;M/ ! 0 as t ! 1: (6.1)

Remarks. The convergence in (6.1) holds 8v0 2 D.A3=4/, A being the linear
positive self-adjoint operator defined by (5.350), (5.351) with a.�; �/ W V per 

V per ! R the positive definite V per.�/-elliptic symmetric bilinear form given
by (5.348); in fact, we have A 2 L.D.A/IH per/ \ L.V per;V

0
per/. Included in

part (iii) of Definition 6.1 is the understanding that the rate of decay in (6.1) is
uniformly exponential for v0 in bounded sets of D.A1=4/ with M � D.A1=4/.

For the analysis in this section we will again express the incompressible bipolar
equations, with � D 1, in the form (5.346), i.e., with the pressure given by Np

@v

@t
C v � rv D �r Np � 2�1r � .�e/

C r � .2�0.� C je.v/j2/.p�2/=2e/C f :

We also recall the following fundamental linear problem associated with (5.2a,b),
(5.3b), (5.4) which was introduced in Sect. 5.5.2 as (5.347a,b):

r � .�e/C r Np D f ; in �;

r � u D 0; in �;

where e D e.u/ and u satisfies the spatial periodicity conditions in (5.3b).
All of the properties of the operatorA that were made explicit in Sect. 5.5.2 will,

of course, apply to our work in this section, e.g., the results of (5.352)–(5.357a–e).
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Moreover, it is shown in appendix C that for the space-periodic problem the
eigenvalues of A have the form

k D 8�4

L4
jkj4 ; k D .k1; k2; : : : ; kn/ (6.2)

for n D 2; 3.
We now defineAp ,B.u; v/, andR.u/ precisely as was done in (5.358), (5.359),

and (5.360), respectively, i.e.,

ŒApu�i D @

@xj
Œ.� C jej2/.p�2/=2eij�; i D 1; : : : ; n;

B.u; v/ D u � rv;

and

R.u/ D 2�0Ap.u/CB.u;u/� f ;

where f 2 H per. Then, just as we did in Sect. 5.5.2, the bipolar problem (5.2a,b),
(5.3b), (5.4) is now viewed as the abstract initial-value problem (5.361a,b) posed in
V per.�/, i.e.,

du
dt

C 2�1Au CR.u/ D 0; t > 0;

u.0/ D u0 2 H per:

6.2.2 An Outline of the Methodology for Proving the Existence
of an Inertial Manifold

We sketch, below, the steps that will be followed, in the succeeding subsections,
in order to establish the existence of an inertial manifold for the problem (5.2a,b),
(5.3b), (5.4) for the bipolar fluid dynamics equations in dimensions n D 2; 3, with
�1 > 0.

A. We first prove, in Sect. 6.2.3, a Lipschitz property for the nonlinear map R.�/;
in fact, we will show that R.u/ is Lipschitz on bounded sets of D.A1=4/ with
values in D.A�1=4/, i.e., for M > 0, 9CM > 0 such that

ˇ̌
ˇ
ˇ̌
ˇA�1=4R.u/�A�1=4R.v/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� CM

ˇ̌
ˇ
ˇ̌
ˇA1=4.u � v/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

; (6.3)
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8u; v 2 D.A1=4/ such that
ˇ̌
ˇ
ˇ̌
ˇA1=4.u/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� M and
ˇ̌
ˇ
ˇ̌
ˇA1=4.v/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� M .

The result expressed by (6.3) will be stated as a formal theorem and proven in
Sect. 6.2.3; it clearly implies thatR is bounded on bounded subsets ofD.A1=4/,
i.e., that 9C 0

M > 0 such that
ˇ̌
ˇ
ˇ̌
ˇA�1=4R.u/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� C 0
M ; 8u 2 D.A1=4/ with

ˇ̌
ˇ
ˇ̌
ˇA1=4u

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� M:

(6.4)

B. Using the Lipschitz property (6.3) we will establish, in Sect. 6.2.4, a squeezing
property for orbits of the semigroup generated by (5.361a,b) of the following
form. Let w1; : : : ;wN be the first N eigenfunctions of the operator A. Let
PN W H per ! spanfw; : : : ;wN g be the usual projection operator and set
QN D I �PN . Let � > 0. Then we will prove that if, for t 2 Œ0; T �, T > 0,

ˇ̌̌ˇ̌̌
A1=4.u.t//

ˇ̌̌ˇ̌̌
L2.�/

� M and
ˇ̌̌ˇ̌̌
A1=4.v.t//

ˇ̌̌ˇ̌̌
L2.�/

� M; (6.5)

M > 0 as in the statement of the Lipschitz property (6.3), then 9ci > 0, i D 1; 2,
depending only on � ,M , T , f , �0, �1, �, and� such that for everyN and every
t 2 Œ0; T � either

ˇ̌
ˇ
ˇ̌
ˇQNA

�1=4.u.t/ � v.t//
ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� �
ˇ̌
ˇ
ˇ̌
ˇPNA

�1=4.u.t/ � v.t//
ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

(6.6)

or else

ˇ̌
ˇ
ˇ̌
ˇA�1=4.u.t/ � v.t//

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� c1 exp.�c2�1�NC1t/
ˇ̌
ˇ
ˇ̌
ˇA�1=4.u.0/ � v.0//

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

:

(6.7)

We remark, in passing, that an L2 version of the squeezing property expressed
by (6.6), (6.7) also holds relative to the orbits of the semigroup generated by
(5.361a,b) but is not well-adapted to the proof of the existence of an inertial
manifold; the L2 version of the squeezing property for the (space-periodic)
bipolar problem has been established in [BH1] and will be discussed in Sect. 6.3.

C. From the analysis in Sect. 5.3 it follows that there exist absorbing balls inH per,
D.A1=4/, and V per which attract all the orbits of (5.361a,b). We will want,
however, in the subsequent discussion to restrict our attention to the dynamics
inside an absorbing ball Br1 � D.A1=4/; to this end we shall introduce in
Sect. 6.2.5 the smooth cut-off function‚ W RC ! Œ0; 1� given by

8̂
<̂
ˆ̂:
‚.�/ D 1; 0 � � � 1;

‚.�/ D 0; � � 2;ˇ̌
‚0.�/

ˇ̌ � 2; � � 0;

(6.8)
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and then set ‚r1.r/ D ‚.r=r1/. We then modify (5.361a) and consider, in its
place, the evolution equation

du
dt

C 2�1Au C‚r1

�ˇ̌
ˇ
ˇ̌
ˇA1=4u

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

�
R.u/ D 0: (6.9)

It is not difficult to prove the existence and uniqueness of solutions to (6.9),
(5.361b) with u0 2 H per; in addition, we will show, in Sect. 6.2.5, that the
ball Br2 , r2 D 2r1, is an absorbing set (for the orbits of (6.9), (5.361b)) in
D.A1=4/; it is also proven, in Sect. 6.2.5, that after a sufficiently large time t�,
the dynamics of the original equation (5.361a) are exactly represented by the
dynamics of the modified equation (6.9).

D. In Sect. 6.2.5 we also introduce the space Hb;l of the Lipschitz maps (b > 0,
l > 0)

� W PND.A
1=4/ ! QND.A

1=4/

satisfying

supp� �
�
p 2 PND.A

1=4/ j
ˇ̌
ˇ
ˇ̌
ˇA1=4p

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� r2

	
; (6.10a)

ˇ̌
ˇ
ˇ̌
ˇA1=4�.p/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� b; 8p 2 PND.A
1=4/; (6.10b)

and 8p1;p2 2 PND.A
1=4/

ˇ̌
ˇ
ˇ̌
ˇA1=4�.p1/ �A1=4�.p2/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� l
ˇ̌
ˇ
ˇ̌
ˇA1=4.p1 � p2/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

: (6.11)

It is not difficult to prove that Hb;l is complete with respect to the metric
induced by the norm

jj�1 � �2jj� D sup
p2PND.A1=4/

ˇ̌
ˇ
ˇ̌
ˇA1=4�1.p/�A1=4�2.p/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

(6.12)

�i 2 Hb;l , i D 1; 2.
E. We next specify a mapping T which associates with each � 2 Hb;l a function
T � defined on PND.A

1=4/; the mapping T arises in the following manner:

(i) We apply the projections PN , QN to the modified equation (6.9) to obtain
evolution equations for p D PNu and q D QNu of the form
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8̂
<̂
ˆ̂:

dp

dt
C 2�1ApCPNF .u/ D 0; (6.13a)

dq

dt
C 2�1Aq CQNF .u/ D 0; (6.13b)

where F .u/ D ‚r1

�ˇ̌̌ˇ̌̌
A1=4u

ˇ̌̌ˇ̌̌
L2.�/

�
R.u/.

(ii) Next, we choose � 2 Hb;l and p0 2 PND.A
1=4/ and consider p D p.t/ as

determined by the initial value problem

8<
:
dp

dt
C 2�1ApCPNF .p C �.p// D 0;

p.0/ D p0;

(6.14)

i.e., p.t/ D p.t I�;p0/.
(iii) We employ for our operator A the following lemma, a proof of which may

be found in [Te4]: for any ˛ 2 R1, if 	 2 L1.R1ID.A˛�1=2// then 9Š
function �, continuous and bounded from R1 into D.A˛/, which satisfies

d�

dt
CA� D � : (6.15)

Remarks. In establishing the lemma cited above one looks at the initial value
problem

8<
:
d�

dt
CA� D 0;

�.0/ D �0;

(6.16)

whose (unique) solution e�tA W �0 ! �.t/ is continuous as a mapping from
D.A˛�1=2/ into D.A˛/, 8t > 0; the unique solution of (6.15) then has the
form

�.t/ D e�.t�t0/A�.t0/C
Z t

t0

e�.t��/A� .�/d� (6.17)

and as
ˇ̌ˇ̌
e�tA ˇ̌ˇ̌

L.D.A˛// � exp.�t/, for some  > 0, all ˛ 2 R1, and all
t � 0, as t0 ! �1, we obtain

�.t/ D
Z t

�1
e�.t��/A� .�/d�: (6.18)
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(iv) We consider, for p D p.t I�;p0/ defined by (6.17) an analog of the equation
for p.t/, namely,

dq

dt
C 2�1Aq CQNF .p C �.p// D 0: (6.19)

In (6.19), � 	 �QNF .p C �.p// 2 L1.R1ID.A�1=4//, i.e., (6.19) is
of the form (6.15); thus by the lemma referenced in (iii), 9Š solution q D
q.t I�;p0/ of (6.19) which is continuous and bounded as a mapping fromR1

intoQND.A
1=4/. In particular,

q.0/ D q.0I�;p0/ 2 QND.A
1=4/: (6.20)

(v) Finally, we consider the function that maps

p0 2 PND.A
1=4/ ! q.0I�;p0/ 2 QND.A

1=4/: (6.21)

This function, which depends on the choice of � 2 Hb;l , will be denoted by
T �; by virtue of (6.19), (6.20), and (6.21), coupled with the representation
(6.18), T � W p0 ! q.0I�;p0/ has the specific form

T�.p0/ D �
Z 0

�1
e2�1A�QNF .p.�/C �.p.�//d� 	 q.0I�;p0/:

(6.22)

F. Once the mapping T has been specified, the task at hand is

(i) to prove that for 1=2N and 1=2NC1 � 1=2N both sufficiently large

T W Hb;l

into�! Hb;l ;

with T a strict contraction onHb;l , and then
(ii) to prove that the manifold M defined by the graph of the (resulting) fixed

point �0 of T is an inertial manifold for the bipolar problem.

The manifold, M, as defined above, will be a finite-dimensional Lipschitz
manifold by virtue of the definition of Hb;l .

G. Finally, in Sect. 6.2.6 we will show that

d.S �1.t/u0;M/ ! 0

exponentially in t , as t ! 1.
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6.2.3 The Lipschitz Property

The purpose of this section is to establish the fact thatR.u/, as defined by (5.360), is
Lipschitz on bounded sets of D.A1=4/ with values in D.A�1=4/, i.e., givenM > 0,

9CM > 0 such that (6.3) holds 8u; v 2 D.A1=4/ such that
ˇ̌̌ˇ̌̌
A1=4.u/

ˇ̌̌ˇ̌̌
L2.�/

� M

and
ˇ̌̌ˇ̌̌
A1=4.v/

ˇ̌̌ˇ̌̌
L2.�/

� M . Our first result in that direction is

Lemma 6.1. For Ap defined by (5.358), and u; v in D.A1=4/, it follows that, for
some C1 D C1.�/ > 0,

ˇ̌
ˇ.Ap.u/ �Ap.v/;w/L2.�/

ˇ̌
ˇ �

�
2 � p
2

C 1

�
�
p�2
2 ju � vjH 1.�/jwjH 1.�/: (6.23)

Proof. Let u; v 2 D.A1=4/ and set w D u � v. With Ap defined as in (5.358) we
have

�
Ap.u/�Ap.v/;w

�
L2.�/

D
Z
�

ŒAp.u/i �Ap.v/i �wi dx

D
Z
�

�
@

@xj
Œ.� C je.u/j2/ p�2

2 eij.u/�

� @

@xj
Œ.� C je.v/j2/ p�2

2 eij.v/�

	
wi dx:

(6.24)

Integrating (6.24) by parts, and using the fact that, as a consequence of the space
periodicity satisfied by u and v,

Z
@�

Œ.� C je.u/j2/ p�2
2 eij.u/� .� C je.u/j2/ p�2

2 eij.v/�wi 
j dS D 0; (6.25)

we easily find that

�
Ap.u/ �Ap.v/;w

�
L2.�/

D �
Z
�

Œ.� C je.u/j2/ p�2
2 eij.u/� .� C je.v/j2/ p�2

2 eij.v/�
@wi
@xj

dx: (6.26)

We now set

rp.e/ D 1

p
.� C jej2/p=2; (6.27a)

Neij.t/ D eij.u/C t.eij.v/� eij.v//; 0 � t � 1: (6.27b)
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Then

@rp

@eij
D .� C jej2/ p�2

2 eij; (6.28)

so that

Œ.� C je.u/j2/ p�2
2 eij.u/ � .� C je.v/j2/ p�2

2 eij.v/� D
Z 1

0

@

@t

�
@rp

@eij
. Neij.t//

�
dt:

(6.29)

Employing (6.29) in (6.26) yields

�
Ap.u/ �Ap.v/;w

�
L2.�/

D
ˇ̌
ˇ̌Z
�

�Z 1

0

@

@t

�
@rp

@eij
. Neij.t//

�
dt

	
@wi
@xj

dx

ˇ̌
ˇ̌

�
Z
�

Z 1

0

ˇ̌
ˇ̌ @
@t

�
@rp

@eij
. Neij.t//

�
@wi
@xj

ˇ̌
ˇ̌ dt dx:

(6.30)

However, by virtue of (6.27a,b), (6.28),

@2rp

@t@eij
. Neij.t// D @2rp

@eij@ekl
. Neij.t//

@ Nekl
@t

D @2rp

@eij@ekl
. Neij.t//.ekl .v/ � ekl .u//;

(6.31a)

while

@2rp

@eij@ekl
D p � 2

2
.� C jej2/ p�2

2 eijekl C .� C jej2/ p�2
2 ıijıjl : (6.31b)

Therefore, for any � ¤ 0, � ¤ 0,

ˇ̌
ˇ̌ @2rp

@eij@ekl
�ij�kl

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌p � 2

2
.� C jej2/ p�4

2 eijekl�ij�kl C .� C jej2/ p�2
2 �kj �kj

ˇ̌
ˇ̌

�
ˇ̌
ˇ̌p � 2

2

ˇ̌
ˇ̌.� C jej2/ p�4

2

ˇ̌
eij�ij

ˇ̌jekl�kl j C .� C jej2/ p�2
2

ˇ̌
�kj �kj

ˇ̌

�
ˇ̌̌
ˇp � 2

2

ˇ̌̌
ˇ.� C jej2/ p�4

2 jej2 j�jj�j C .� C jej2/ p�2
2 j�jj�j

�
�
2 � p
2

C 1

�
�
p�2
2 j�jj�j; (6.32)
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as 1 < p � 2. Combining (6.30)–(6.32) we obtain

�
Ap.u/�Ap.v/;w

�
L2.�/

�
Z
�

Z 1

0

ˇ̌
ˇ̌ @2rp
@eij@ekl

. Neij.t//.ekl.v/ � ekl.u// � @wi
@xj

ˇ̌
ˇ̌ dt dx

�
�
2 � p

2
C 1

�
�
p�2
2

Z
�

Z 1

0

0
@X

k;l

jekl.v � u/j2
1
A
1=20
@X

i;j

ˇ̌̌
ˇ@wi
@xj

ˇ̌̌
ˇ
2

1
A
1=2

dt dx

�
�
2 � p

2
C 1

�
�
p�2
2

Z
�

0
@X

k;l

jekl.v � u/j2
1
A
1=20
@X

i;j

ˇ̌
ˇ̌@wi
@xj

ˇ̌
ˇ̌2
1
A
1=2

dx

(6.33)

from which (6.23) now follows. ut
Our next result concerns the bilinear form B, i.e.,

Lemma 6.2. For B.u; v/ defined by (5.359), with u; v 2 D.A1=4/, 9C2 D
C2.�/ > 0 such that

ˇ̌̌
.B.u;u/�B.v; v/;w/L2.�/

ˇ̌̌
� C2.jujH 1.�/ C jvjH 1.�//ju � vjH 1.�/jwjH 1.�/:

(6.34)

Proof.

ˇ̌
ˇ.B.u;u/ �B.v; v/;w/L2.�/

ˇ̌
ˇ

D
ˇ̌̌
ˇ
Z
�

�
uj
@ui
@xj

� vj
@vi

@xj
� vj

@vi

@xj

�
wi dx

ˇ̌̌
ˇ

�
ˇ̌
ˇ̌Z
�

.uj � vj / @ui
@xj

wi dx

ˇ̌
ˇ̌C

ˇ̌
ˇ̌Z
�

vi
@

@xj
.ui � vi /wi dx

ˇ̌
ˇ̌

�
�Z

�

.uj � vj /.uj � vj /wiwi dx

�1=2 �Z
�

@ui
@xj

@ui
@xj

dx

�1=2

C
�Z

�

vj vjwiwi dx

�1=20@Z
�

X
i;j

ˇ̌̌
ˇ@.ui � vi /

@xj

ˇ̌̌
ˇ
2

dx

1
A
1=2

:

(6.35)

Using the Sobolev embedding H 1.�/ ,! L4.�/, which is valid for � D Œ0; L�n,
n D 2; 3, we obtain from this last estimate
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ˇ̌
ˇ.B.u;u/ �B.v; v/;w/L2.�/

ˇ̌
ˇ

�
0
@Z

�

X
j

.uj � vj /4dx
1
A
1=40
@Z

�

X
i;j

ˇ̌̌
ˇ @ui
@xj

ˇ̌̌
ˇ
2

dx

1
A
1=2  Z

�

X
i

jwi j4dx
!1=4

C
0
@Z

�

X
j

ˇ̌
vj
ˇ̌4
dx

1
A
1=40
@Z

�

X
i;j

ˇ̌
ˇ̌@.ui � vi /

@xj

ˇ̌
ˇ̌2dx

1
A
1=2  Z

�

X
i

jwi j4dx
!1=4

(6.36)

which serves to establish (6.34). ut
We are now in a position to prove the following Lipschitz property for R:

Theorem 6.1. If R is defined on D.A1=4/ by (5.360), then R is Lipschitz
on bounded sets of D.A1=4/ with values in D.A�1=4/, i.e., given M > 0,

9CM > 0 such that 8u; v 2 D.A1=4/ for which
ˇ̌̌ˇ̌̌
A1=4.u/

ˇ̌̌ˇ̌̌
L2.�/

� M andˇ̌̌ˇ̌̌
A1=4.v/

ˇ̌̌ˇ̌̌
L2.�/

� M ,

ˇ̌
ˇ
ˇ̌
ˇA�1=4R.u/ �A�1=4R.v/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� CM

ˇ̌
ˇ
ˇ̌
ˇA1=4.u � v/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

: (6.37)

Proof. By virtue of (5.360) we have

R.u/�R.v/ D 2�0.Ap.u/ �Ap.v//C .B.u;u/�B.v; v// (6.38)

so combining (6.38) with (6.23) and (6.35) we find that

ˇ̌̌
.R.u/�R.v/;w/L2.�/

ˇ̌̌

� 2�0

ˇ̌
ˇ�Ap.u/ �Ap.v/;w

�
L2.�/

ˇ̌
ˇC

ˇ̌
ˇ.B.u;u/ �B.v; v/;w/L2.�/

ˇ̌
ˇ

�
�
2�0C1

�
2 � p

2
C 1

�
�
p�2
2 C C2.jujH 1.�/ C jvjH 1.�//


ju � vjH 1.�/jwjH 1.�/:

(6.39)

Employing (5.357d), i.e., the equivalence between the norms jujH 1.�/ andˇ̌̌ˇ̌̌
A1=4u

ˇ̌̌ˇ̌̌
L2.�/

, for u 2 D.A1=4/, (6.39) yields the following estimate, for some

C3 D C3.�/ > 0:
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ˇ̌
ˇ.R.u/�R.v/;w/L2.�/

ˇ̌
ˇ

� C3

�
2�0C1

�
2 � p

2
C 1

�
�
p�2
2 C C2

�ˇ̌̌ˇ̌̌
A1=4u

ˇ̌̌ˇ̌̌
L2.�/

C
ˇ̌̌ˇ̌̌
A1=4v

ˇ̌̌ˇ̌̌
L2.�/

�



ˇ̌
ˇ
ˇ̌
ˇA1=4.u � v/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

ˇ̌
ˇ
ˇ̌
ˇA1=4w

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

: (6.40)

Thus, for u; v 2 D.A1=4/ satisfying
ˇ̌
ˇ
ˇ̌
ˇA1=4w

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� M ,
ˇ̌
ˇ
ˇ̌
ˇA1=4v

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� M , for

some M > 0,

ˇ̌
ˇ.R.u/�R.v/;w/L2.�/

ˇ̌
ˇ � CM

ˇ̌
ˇ
ˇ̌
ˇA1=4.u � v/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

ˇ̌
ˇ
ˇ̌
ˇA1=4w

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

(6.41)

with

CM D C3

�
2�0C1

�
2 � p

2
C 1

�
�
p�2
2 C C2M


: (6.42)

The required estimate, i.e., (6.37) is now a direct consequence of (6.41). ut

6.2.4 The Squeezing Property for the Orbits of S�1

In Sect. 6.2.2 we presented a statement of the squeezing property for the orbits
of the semigroup S �1 which will be used in the proof of the existence of an
inertial manifold for the bipolar problem (5.2a,b), (5.3a), (5.4); we summarize that
statement here. If w1; : : : ;wN are the first N eigenfunctions of A, PN W H per !
spanfw1; : : : ;wng is the projection operator, andQN D I �PN , then given � > 0,
and solutions u.t/, v.t/ of (5.2a,b), (5.3a), (5.4) satisfying the bounds (6.5), for
0 � t � T , T > 0, there exists for i D 1; 2, ci D ci .�;M;f ; �0; �1; �I�/ > 0

such that either (6.6) or (6.7) holds for every N and each t 2 Œ0; T �. An L2 version
of this squeezing property, which is of independent interest, but is not well-adapted
to the proof of the existence of an inertial manifold, will be established in Sect. 6.3.
We begin the analysis with the following key

Lemma 6.3. Let u; v 2 D.A1=4/ be the unique solutions of the initial-value
problems

8<
:
du
dt

C 2�1Au CR.u/ D 0;

u.0/ D u0;
(6.43a)
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8<
:
dv

dt
C 2�1AvCR.v/ D 0;

v.0/ D v0:

(6.43b)

Let M > 0 and suppose that 8t 2 Œ0; T �,
ˇ̌
ˇ
ˇ̌
ˇA1=4u.t/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� M ,ˇ̌̌ˇ̌̌
A1=4v.t/

ˇ̌̌ˇ̌̌
L2.�/

� M . Then 9c3 > 0 such that w.t/ D u.t/ � v.t/ satisfies,

for 0 < t < � < T ,

ˇ̌
ˇ
ˇ̌
ˇA1=4w.�/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2

ˇ̌̌ˇ̌̌
A�1=4w.t/

ˇ̌̌ˇ̌̌
L2.�/

2
�

ˇ̌
ˇ
ˇ̌
ˇA1=4w.t/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2

ˇ̌̌ˇ̌̌
A�1=4w.t/

ˇ̌̌ˇ̌̌
L2.�/

2
exp.c3.� � t//: (6.44)

Proof. For t 2 Œ0; T � we define the quotient q.t/ by

q.t/ D

�
A1=4w;A1=4w

�
L2.�/�

A�1=4w;A�1=4w
�
L2.�/

: (6.45)

Differentiating q.t/, we obtain (0 D d=dt)

dq

dt
D 2�

A�1=4w;A�1=4w
�
L2.�/

2

��
A�1=4w;A�1=4w

�
L2.�/

�
A1=4w0;A1=4w

�
L2.�/

�
�
A�1=4w0;A�1=4w

�
L2.�/

�
A1=4w;A1=4w

�
L2.�/



or

dq

dt
D 2ˇ̌̌ˇ̌̌

A�1=4w.t/
ˇ̌̌ˇ̌̌
L2.�/

2

��
w0;A1=4w

�
L2.�/

� q.t/
�

w;A�1=4w
�
L2.�/


:

(6.46)
However,

dw
dt

C 2�1A.w/CR.u/�R.v/ D 0 (6.47)

so

dq

dt
D �2ˇ̌
ˇ
ˇ̌
ˇA�1=4w

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2

�
2�1Aw CR.u/;A1=4w � q.t/A�1=4w

�
L2.�/
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from which it follows that

dq

dt
D �2ˇ̌ˇ̌

A�1=4w
ˇ̌ˇ̌
L2.�/

2

�
2�1A

3=4w CA�1=4.R.u/�R.v//;A3=4w � q.t/A�1=4w
�
L2.�/

:

(6.48)

If we now make note of the fact that

�
qA�1=4w;A3=4w � qA�1=4w

�
L2.�/

D q
�
A�1=4w;A3=4w

�
L2.�/

� q2
�
A�1=4w;A�1=4w

�
L2.�/

D q
�
A1=4w;A1=4w

�
L2.�/

� q2
�
A�1=4w;A�1=4w

�
L2.�/

	 0;

then by virtue of the definition of q.t/, i.e., (6.45),

�
A3=4w;A3=4w � qA�1=4w

�
L2.�/

D
�
A3=4w � qA�1=4w;A3=4w � qA�1=4w

�
L2.�/

D
ˇ̌
ˇ
ˇ̌
ˇA3=4w � qA�1=4w

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2

:

(6.49)

Employing (6.49) in (6.48), and using the Cauchy-Schwarz inequality, we find that

dq

dt
C 4�1ˇ̌ˇ̌

A�1=4w
ˇ̌ˇ̌
L2.�/

2

ˇ̌ˇ̌
A3=4w � qA�1=4w

ˇ̌ˇ̌
L2.�/

2

D �2ˇ̌ˇ̌
A�1=4w

ˇ̌ˇ̌
L2.�/

2

�
A�1=4.R.u/�R.v//;A3=4w � qA�1=4w

�
L2.�/

� 2ˇ̌ˇ̌
A�1=4w

ˇ̌ˇ̌
L2.�/

2

ˇ̌ˇ̌
A�1=4.R.u/�R.v//

ˇ̌ˇ̌
L2.�/

� ˇ̌ˇ̌A3=4w � qA�1=4w
ˇ̌ˇ̌
L2.�/

� 4�1ˇ̌ˇ̌
A�1=4w

ˇ̌ˇ̌
L2.�/

2

ˇ̌ˇ̌
A3=4w � qA�1=4

ˇ̌ˇ̌
L2.�/

2 C 1

�1

ˇ̌ˇ̌
A�1=4.R.u/�R.v//ˇ̌ˇ̌

L2.�/

2

ˇ̌ˇ̌
A�1=4w

ˇ̌ˇ̌
L2.�/

2
;

(6.50)

where for the last estimate we have used the arithmetic-geometric mean inequality.
We now avail ourselves of the Lipschitz property (6.3), which is valid for u; v 2
D.A1=4/ satisfying

ˇ̌̌ˇ̌̌
A1=4u

ˇ̌̌ˇ̌̌
L2.�/

� M ,
ˇ̌̌ˇ̌̌
A1=4v

ˇ̌̌ˇ̌̌
L2.�/

� M , for M > 0;
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employing (6.3) in the last estimate in (6.50), and making use of the definition of
q.t/, we find that

dq

dt
� 1

�1
� C2

Mq; (6.51)

where CM is given by (6.42). Integration of (6.51) from � to t yields (6.44), with

c3 D 1

�1
C 2
M , which serves to establish the lemma. ut

With the aid of Lemma 6.3 we are now able to prove the following

Theorem 6.2 (The Squeezing Property). Let w1; : : : ;wn be the firstN eigenfunc-
tions of the operatorA andPN W H per ! spanfw1; : : : ;wg the projection operator;
set QN D I � PN with I the identity map on H per. Let � > 0 be given. Then for
u; v 2 D.A1=4/, solutions of (6.43a,b) satisfying (6.5) for t 2 Œ0; T �, with M > 0

as in the statement of the Lipschitz property (6.3), 9ci , i D 1; 2, depending only on
� , M , T , f , �0, �1, �, and �, such that for every N , and each t 2 Œ0; T �, either
(6.6) or (6.7) holds. In addition, with CM defined as in (6.42),

ˇ̌
ˇ
ˇ̌
ˇA�1=4.u.t/ � v.t//

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� exp

�
C2
M

�1
t

� ˇ̌
ˇ
ˇ̌
ˇA�1=4.u.0/� v.0//

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

:

(6.52)

Proof. We begin by taking the scalar product in L2 of (6.47) with A�1=4w; using
the Cauchy-Schwarz inequality and the Lipschitz property (6.3), we obtain

1

2

d

dt

ˇ̌̌ˇ̌̌
A�1=4w

ˇ̌̌ˇ̌̌
L2.�/

2 C 2�1

ˇ̌̌ˇ̌̌
A1=4w

ˇ̌̌ˇ̌̌
L2.�/

2

D �
�
A�1=4.R.u/�R.v//;A�1=4w

�
L2.�/

�
ˇ̌
ˇ
ˇ̌
ˇA�1=4.R.u/ �R.v//

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

�
ˇ̌
ˇ
ˇ̌
ˇA�1=4w

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� CM

ˇ̌
ˇ
ˇ̌
ˇA1=4w

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

ˇ̌
ˇ
ˇ̌
ˇA�1=4w

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

(6.53)

with CM given by (6.42). Employing the arithmetic-geometric mean inequality, we
are led from (6.53) to the estimate

d

dt

ˇ̌̌ˇ̌̌
A�1=4w

ˇ̌̌ˇ̌̌
L2.�/

2 C 4�1

ˇ̌̌ˇ̌̌
A1=4w

ˇ̌̌ˇ̌̌
L2.�/

2

� 3�1

ˇ̌̌ˇ̌̌
A1=4w

ˇ̌̌ˇ̌̌
L2.�/

2 C 4C 2
M

3�1

ˇ̌̌ˇ̌̌
A�1=4w

ˇ̌̌ˇ̌̌
L2.�/

2

(6.54)
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from which it follows that

d

dt

ˇ̌
ˇ
ˇ̌
ˇA�1=4w

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2 C
ˇ̌
ˇ
ˇ̌
ˇA�1=4w

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2

0
BB@
�1

ˇ̌̌ˇ̌̌
A1=4w

ˇ̌̌ˇ̌̌
L2.�/

2

ˇ̌
ˇ
ˇ̌
ˇA�1=4w

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2
� 4C 2

M

3�1

1
CCA � 0:

(6.55)

By virtue of Lemma 6.3, however, for 0 < t < t0 < T we have

ˇ̌
ˇ
ˇ̌
ˇA1=4w.t/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2

ˇ̌
ˇ
ˇ̌
ˇA�1=4w.t/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2
�

ˇ̌
ˇ
ˇ̌
ˇA1=4w.t0/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2

ˇ̌
ˇ
ˇ̌
ˇA�1=4w.t0/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2
exp.�c3.t0 � t/ � � exp.�c3t0/

(6.56)
with

� D
ˇ̌
ˇ
ˇ̌
ˇA1=4w.t0/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2ıˇ̌ˇ
ˇ̌
ˇA�1=4w.t0/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2

: (6.57)

Combining (6.55) and (6.56), we find that

d

dt

ˇ̌̌ˇ̌̌
A�1=4w.t/

ˇ̌̌ˇ̌̌
L2.�/

2 C
ˇ̌̌ˇ̌̌
A�1=4w.t/

ˇ̌̌ˇ̌̌
L2.�/

2
�
�1� exp.�c3t0/ � 4C 2

M

3�1

�
� 0

(6.58)

so that upon integrating from zero to t0 we obtain

ˇ̌
ˇ
ˇ̌
ˇA�1=4w.t0/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2 �
ˇ̌
ˇ
ˇ̌
ˇA�1=4w.0/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2

exp

�
��1�t0 exp.�c3t0/C 4C 2

M

3�1
t0

	
:

(6.59)

We now consider the cases
ˇ̌̌ˇ̌̌
QNA

�1=4w.t0/
ˇ̌̌ˇ̌̌
L2.�/

> �
ˇ̌̌ˇ̌̌
PNA

�1=4w.t0/
ˇ̌̌ˇ̌̌
L2.�/

(6.60a)

and

ˇ̌
ˇ
ˇ̌
ˇQNA

�1=4w.t0/
ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� �
ˇ̌
ˇ
ˇ̌
ˇPNA

�1=4w.t0/
ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

: (6.60b)

In view of the statement of Theorem 6.2, i.e., either (6.6) holds or (6.7) does, it is
only necessary to consider what happens if (6.60a) applies; in this case
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� D

ˇ̌̌ˇ̌̌
A1=4w.t0/

ˇ̌̌ˇ̌̌
L2.�/

2

ˇ̌
ˇ
ˇ̌
ˇA�1=4w.t0/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2

D

ˇ̌̌ˇ̌̌
PNA

1=4w.t0/
ˇ̌̌ˇ̌̌
L2.�/

2 C
ˇ̌̌ˇ̌̌
QNA

1=4w.t0/
ˇ̌̌ˇ̌̌
L2.�/

2

ˇ̌
ˇ
ˇ̌
ˇPNA

�1=4w.t0/
ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2 C
ˇ̌
ˇ
ˇ̌
ˇQNA

�1=4w.t0/
ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2

�

ˇ̌̌ˇ̌̌
QNA

1=4w.t0/
ˇ̌̌ˇ̌̌
L2.�/

2

�
1C 1

�

� ˇ̌ˇ
ˇ̌
ˇQNA

�1=4w.t0/
ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2

� �

1C �
� 

1=2
NC1


�1=2
NC1

	 �

1C �
NC1;

(6.61)

NC1 being the .N C 1/st eigenvalue of A. Employing this last lower bound for �
in (6.59), we are led to the estimate

ˇ̌ˇ̌
A�1=4w.t0/

ˇ̌ˇ̌
L2.�/

2 � ˇ̌ˇ̌
A�1=4w.0/

ˇ̌ˇ̌
L2.�/

2
exp

�
� �

1C �
�1NC1t0 exp.�c3T /C 4C2

M

3�1
T

	

(6.62)

as t0 < T . Replacing t0 by t < T in (6.62), we obtain (6.7) with

c1 D exp

�
4C 2

M

3�1
T

�
and c2 D �

� C 1
exp.�c3T /: (6.63)

To complete the proof of Theorem 6.2 it remains only to establish (6.52). However,
by (6.53),

d

dt

ˇ̌
ˇ
ˇ̌
ˇA�1=4w

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2 C 4�1

ˇ̌
ˇ
ˇ̌
ˇA1=4w

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2 � 2CM

ˇ̌
ˇ
ˇ̌
ˇA1=4w

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

ˇ̌
ˇ
ˇ̌
ˇA�1=4w

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� 4�1

ˇ̌̌ˇ̌̌
A1=4w

ˇ̌̌ˇ̌̌
L2.�/

2 C C2
M

�1

ˇ̌̌ˇ̌̌
A�1=4w

ˇ̌̌ˇ̌̌
L2.�/

2

;

so that

d

dt

ˇ̌
ˇ
ˇ̌
ˇA�1=4w

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2 � C2
M

�1

ˇ̌
ˇ
ˇ̌
ˇA�1=4w

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2

: (6.64)

The estimate (6.52) now follows by integrating (6.64) and using the definition
of w.t/. ut
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6.2.5 A Fixed Point Theorem

In this subsection we will examine both the structure of the space of Lipschitz maps
Hb;l (b > 0, l > 0) consisting of those � W PND.A

1=4/ ! QND.A
1=4/ that

satisfy (6.10a,b), as well as the properties of the mapping T that associates with
each � 2 Hb;l the function T �, defined on PND.A

1=4/, which is given by the
mapping (6.21). The specific structure of the map T � W p0 ! q0.0I�;p0/ is

delineated in (6.22), where F .u/ D ‚r1

�ˇ̌
ˇ
ˇ̌
ˇA1=4u

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

�
R.u/.

As was already indicated in Sect. 6.2.2, it is a straightforward matter to prove the
existence and uniqueness of solutions for the modified initial-value problem (6.9),
(5.361b), with u0 2 H per. Also, the absorbing property of the modified problem
may be easily demonstrated by taking the inner-product of (6.9) with A1=4u; forˇ̌
ˇ
ˇ̌
ˇA1=4u

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� 2r1, r1 > 0, we obtain, with ‚r1.r/ D ‚.r=r1/ and ‚ W RC !
Œ0; 1� the smooth cut-off function given by (6.8),

1

2

d

dt

�
A1=4u;A1=4u

�
L2.�/

C 2�1

�
A3=4u;A3=4u

�
L2.�/

D 0 (6.65)

because ‚r1

�ˇ̌
ˇ
ˇ̌
ˇA1=4u

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

�
D 0 for

ˇ̌
ˇ
ˇ̌
ˇA1=4u

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� 2r1. Inasmuch as�
A3=4u;A3=4u

�
L2.�/

� 1

�
A1=4u;A1=4u

�
L2.�/

, with 1 > 0 the smallest

eigenvalue of A, we have

1

2

d

dt

ˇ̌
ˇ
ˇ̌
ˇA1=4u

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2 C 2�11

ˇ̌
ˇ
ˇ̌
ˇA1=4u

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2 � 0: (6.66)

Thus,

ˇ̌̌ˇ̌̌
A1=4u.t/

ˇ̌̌ˇ̌̌
L2.�/

2 �
ˇ̌̌ˇ̌̌
A1=4u.0/

ˇ̌̌ˇ̌̌
L2.�/

2

e�4�11t ; t > 0: (6.67)

Therefore, if
ˇ̌
ˇ
ˇ̌
ˇA1=4u0

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

> r2, where r2 � 2r1, the orbit of u.t/ will converge

exponentially in D.A1=4/ to the ball Br2 , while if
ˇ̌
ˇ
ˇ̌
ˇA1=4u0

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� r2, then u.t/

will stay inside the ball Br2 for all t > 0. However, ‚r1

�ˇ̌̌ˇ̌̌
A1=4u

ˇ̌̌ˇ̌̌
L2.�/

�
D 1, forˇ̌̌ˇ̌̌

A1=4u
ˇ̌̌ˇ̌̌
L2.�/

� r1; thus, the original equation (5.361a) and the modified equation

(6.9) are identical in a neighborhood of the global attractor and the dynamics of
(5.368) are exactly represented by those of (6.9) after a sufficiently large time.

We now state and prove a series of five technical lemmas leading to the proof of
the main result in this subsection, namely, Theorem 6.3; this result asserts that, under
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certain conditions on the eigenvalues j of A (including the spectral gap condition

of Appendix C), T W Hb;l

into�! Hb;l and is, in fact, a strict contraction on Hb;l .

Lemma 6.4. For � 2 Hb;l we have

suppT � � fp 2 PND.A
1=4/ j

ˇ̌
ˇ
ˇ̌
ˇA1=4p2

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� 2r1g: (6.68)

Proof. the proof follows that of Lemma 3.1, Sect. 3.2 of [Te4], Chap. VIII, almost
without change. ut
Lemma 6.5. Let� 2 Hb;l andp1;p2 2 PND.A

1=4/. If ui D piC�.pi /, i D 1; 2,
then 9M1;M2 > 0 such that

ˇ̌
ˇ
ˇ̌
ˇA�1=4F .u1/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� M1; (6.69a)

ˇ̌
ˇ
ˇ̌
ˇA�1=4.F .u1/� F .u2//

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� M2.1C l/
ˇ̌
ˇ
ˇ̌
ˇA1=4.p1 � p2/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

: (6.69b)

Proof. The stated results are a direct consequence of the Lipschitz property (6.3)
and standard lemmas in [Te4] as follows: we want to establish (6.69a,b), where
ui D pi�.pi /, i D 1; 2 with � 2 Hb;l and p1;p2 2 PND.A

1=4/. However, as a
consequence of Lemmas 2.1 and 2.2 of [Te4], Chap. VIII, and the Lipschitz property
(6.3) it follows that 9Mi > 0, i D 1; 2 such that

ˇ̌̌ˇ̌̌
A�1=4F .u1/

ˇ̌̌ˇ̌̌
L2.�/

� M1; (6.70a)

ˇ̌̌ˇ̌̌
A�1=4.F .u1/ � F .u2//

ˇ̌̌ˇ̌̌
L2.�/

� M2

ˇ̌̌ˇ̌̌
A1=4.u1 � u2/

ˇ̌̌ˇ̌̌
L2.�/

; (6.70b)

so that (6.69a) follows. For (6.69b) we use (6.70b), and the definition ofHb;l , which
implies that

ˇ̌
ˇ
ˇ̌
ˇA1=4.u1 � u2/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

�
ˇ̌
ˇ
ˇ̌
ˇA1=4.p1 � p2/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

C
ˇ̌
ˇ
ˇ̌
ˇA1=4.�.p1/ � �.p2//

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� .1C l/
ˇ̌
ˇ
ˇ̌
ˇA1=4.p1 � p2/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

:

(6.71)
ut

Lemma 6.6. If p0 2 PND.A
1=4/, then

T �.p0/ 2 QND.A
1=4/ and

ˇ̌
ˇ
ˇ̌
ˇA1=4ŒT �.p0/�

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� b0 (6.72)

with b0 D e�1=2��1
1 

�1=2
NC1 < b (for 1=2NC1 sufficiently large).
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Proof. Suppose that p0 2 PND.A
1=4/. From the definition of the mapping T it is

clear that T �.p0/ 2 QND.A
1=4/. Also, as a consequence of (6.22) and (6.69a),

ˇ̌̌ˇ̌̌
A1=4.T �/.p0/

ˇ̌̌ˇ̌̌
L2.�/

�
Z 0

�1

ˇ̌̌ˇ̌̌
A1=4e2�1A�QNF .p.�/C �.p.�///

ˇ̌̌ˇ̌̌
L2.�/

d�

� .2�1/
1=2

Z 0

�1
fˇ̌.2�1AQN /

1=2e2�1A�
ˇ̌
L.QN ;H per/



ˇ̌
ˇ
ˇ̌
ˇA�1=4F .p.�/C �.�//

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

gd�

� .2�1/
1=2M1

Z 0

�1

ˇ̌
.2�1AQN /

1=2e2�1A�
ˇ̌
L.QN ;H per/

d�:

(6.73)

However, as a direct consequence of [Te4], Lemma 3.2, Chap. VIII, we have the
following result: Let ı 2 R1, and � < 0, and set k2.ı/ D ııe�ı and

k3.ı/ D
8<
:
1; if ı < 0;

e�ı C k2.ı/

1 � ı
� ı1�ı; if 0 � ı < 1:

Then
ˇ̌ˇ̌
.AQN /

ıe�AQN
ˇ̌ˇ̌

in L.QN ;H per/ is bounded by

(
k2.ı/j� j�ı; if � ı=NC1 � � < 0;

ıNC1e�NC1 ; if � < �ı=.N C 1/;
(6.74a)

and, moreover, if ı < 1,

Z 0

�1

ˇ̌ˇ̌
.AQN /

ıe�AQN
ˇ̌ˇ̌
L.QN ;H per/

d� � k3.ı/
ı�1
NC1: (6.74b)

Applying (6.74b) with ı D 1

2
to the last estimate in (6.73), we have, by virtue of the

definitions of k2.ı/, k3.ı/,

ˇ̌̌ˇ̌̌
A1=4.T �.p0//

ˇ̌̌ˇ̌̌
L2.�/

� .2�1/
�1=2k3

�
1

2

�
.2�1NC1/�1=2M1

� e�1=2��1
1 M1

�1=2
NC1;

(6.75)

which completes the proof of (6.72) with b0 D e�1=2��1
1 

�1=2
NC1; note that b0 < b for

NC1 sufficiently large. ut
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Lemma 6.7. Assume that

	N D 2�1.NC1 � N / �M2.1C l/
1=2
N > 0: (6.76)

Then for � 2 Hb;l and p01;p02 2 PND.A
1=4/, we have

ˇ̌̌ˇ̌̌
A1=4.T �.p01/ � T �.p02//

ˇ̌̌ˇ̌̌
L2.�/

� l 0
ˇ̌̌ˇ̌̌
A1=4.p01 � p02/

ˇ̌̌ˇ̌̌
L2.�/

; (6.77)

where

l 0 D M2.1C l/
�1=2
NC1Œ.2�1/

�1 C .2�1 � rN �N /
�1�e�1=2 exp

�
rN �N

4�1

�
; (6.78a)

rn D N=NC1; (6.78b)

�N D 2�1 CM2.1C l/
�1=2
N : (6.78c)

Proof. Let � be a fixed but arbitrary element in Hb;l and p1 D p1.t/, p2 D p2.t/

solutions of the initial-value problems

8<
:
dp1

dt
C 2�1Ap1 CPNF .u1/ D 0;

p1.0/ D p01;
(6.79a)

8<
:
dp2

dt
C 2�1Ap2 CPNF .u2/ D 0;

p2.0/ D p02;

(6.79b)

where ui D pi C �.pi /, i D 1; 2. Setting Op.t/ D p1.t/ � p2.t/, we have

8<
:
d Op2
dt

C 2�1A Op CPN .F .u1/ � F .u2// D 0;

Op.0/ D p01 � p02:
(6.80)

Taking the inner product of the equation for Op.t/, above, with A1=2 Op, and applying
Lemma 6.5 (specifically, (6.69b)), we obtain

1

2

d

dt

ˇ̌ˇ̌
A1=4 Opˇ̌ˇ̌

L2.�/

2C 2�1
ˇ̌ˇ̌
A3=4 Opˇ̌ˇ̌

L2.�/

2 � �ˇ̌ˇ̌A�1=4.F .u1/� F .u2//
ˇ̌ˇ̌
L2.�/�

ˇ̌ˇ̌
A3=4 Opˇ̌ˇ̌

L2.�/

� �M2.1C l/
ˇ̌ˇ̌
A1=4 Opˇ̌ˇ̌

L2.�/ � ˇ̌ˇ̌A3=4 Opˇ̌ˇ̌
L2.�/:

(6.81)

However,

ˇ̌
ˇ
ˇ̌
ˇA3=4 Op

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

D
ˇ̌
ˇ
ˇ̌
ˇA1=2A1=4 Op

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� 
1=2
N

ˇ̌
ˇ
ˇ̌
ˇA1=4 Op

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/
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so

ˇ̌ˇ̌
A1=4 Opˇ̌ˇ̌

L2.�/

d

dt

ˇ̌ˇ̌
A1=4 Opˇ̌ˇ̌

L2.�/ C 2�1N
ˇ̌ˇ̌
A1=4 OpN

ˇ̌ˇ̌
L2.�/

2 � �M2.1C l/
1=2
N

ˇ̌ˇ̌
A1=4 Opˇ̌ˇ̌

L2.�/

2

(6.82)

or

d

dt

ˇ̌̌ˇ̌̌
A1=4 Op

ˇ̌̌ˇ̌̌
L2.�/

C .2�1N CM2.1C l/
1=2
N /

ˇ̌̌ˇ̌̌
A1=4 Op

ˇ̌̌ˇ̌̌
L2.�/

� 0: (6.83)

From (6.83) we easily deduce that, for � � 0,

ˇ̌
ˇ
ˇ̌
ˇA1=4 Op.�/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

�
ˇ̌
ˇ
ˇ̌
ˇA1=4 Op.0/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

exp.��Œ2�1N CM2.1C l/
1=2
N �/:

(6.84)

Next, using the Lipschitz condition relative to F .u/, which is given by (6.3), we
estimate as follows:
ˇ̌̌ˇ̌̌
A1=4.T �.p01/ � T �.p02//

ˇ̌̌ˇ̌̌
L2.�/

�
Z 0

�1

ˇ̌
ˇ
ˇ̌
ˇA1=4e2�1A�QN .F .u1/ � F .u2//

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

d�

� .2�1/
�1=2

Z 0

�1

ˇ̌ˇ̌
.2�1AQN /

1=2e2�1A�
ˇ̌ˇ̌ �
ˇ̌
ˇ
ˇ̌
ˇA�1=4.F .u1/ � F .u2//

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

d�

� M2.1C l/.2�1/
�1=2

Z 0

�1

ˇ̌ˇ̌
.2�1AQN /

1=2e2�1A�
ˇ̌ˇ̌ �
ˇ̌
ˇ
ˇ̌
ˇA1=4 Op.�/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

d�

� M2.1C l/.2�1/
�1=2

ˇ̌
ˇ
ˇ̌
ˇA1=4 Op.0/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

Z 0

�1

ˇ̌ˇ̌
.2�1AQN /

1=2e2�1A�
ˇ̌ˇ̌
e�N �N dt;

(6.85)

where �N D 2�1 C M2.1 C l/
�1=2
N ; for simplicity we have writtenˇ̌ˇ̌

2�1AQN /
1=2e2�1A�

ˇ̌ˇ̌
instead of

ˇ̌
.2�1AQN /

1=2e2�1A�
ˇ̌
L.QN ;H per/

, and we have
used (6.84), which is valid for � � 0. We now focus our attention on the integral

Z 0

�1

ˇ̌ˇ̌
.2�1AQN /

1=2e2�1A�
ˇ̌ˇ̌
e��N �N d�

in the last estimate of (6.85). By virtue of the bounds for
ˇ̌ˇ̌
.AQN /

ıe�AQN
ˇ̌ˇ̌

which
are given by (6.74a) we have, first of all, that
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Z �1=.4�1NC1/

�1

ˇ̌ˇ̌
.2�1AQN /

1=2e2�1A�
ˇ̌ˇ̌
e��N �N d�

�
Z �1=.4�1NC1/

�1
.2�1NC1/1=2e2�1�NC1e��N �N d�

�
Z �1=.4�1NC1/

�1
.2�1NC1/1=2e��	N d�

� .2�1NC1/1=2
1

	N
exp

�
� 	N

4�1NC1


;

(6.86)

where 	N is given by (6.76), which is, in fact, equivalent to

	N D NC1.2�1 � rN �N /; rN D N=NC1: (6.87)

Therefore,

Z �1=.4�1NC1/

�1

ˇ̌ˇ̌
2�1AQN /

1=2e2�1A�
ˇ̌ˇ̌
e��N �N d�

� .2�1/
1=2

�1=2
NC1e

�1=2.2�1 � rN �N /�1 exp

�
rN �N

4�1

�
:

(6.88)

In a like fashion, we have, by again using the bounds for
ˇ̌ˇ̌
.AQN /

ıe�AQN
ˇ̌ˇ̌

implied
by (6.74a), the series of estimates

Z 0

�1=.4�1NC1/

ˇ̌ˇ̌
.2�1AQN /

1=2e2�1A�
ˇ̌ˇ̌
e��N �N d�

�
Z 0

�1=.4�1NC1/

k2

�
1

2

�
j� j�1=2e��N �N d�

� .2e/�1=2 exp

�
N �N

4�1NC1

�Z 0

�1=.4�1NC1/

j� j�1=2d�

D .2�1/
�1=2e�1=2�1=2

NC1 exp

�
rN �N

4�1

�
:

(6.89)

Combining (6.88) with the last estimate in (6.89), we are led to the bound

Z 0

�1

ˇ̌ˇ̌
.2�1AQN /

1=2e2�1A�
ˇ̌ˇ̌
e��N �N d�

� Œ.2�1/
1=2.2�1 � rN �N /�1 C .2�1/

�1=2��1=2
NC1e

�1=2 exp

�
rN �N

4�1

� (6.90)
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which, in conjunction with the last estimate in (6.85), i.e.,

ˇ̌̌ˇ̌̌
A1=4.T �.p01/ � T �.p02/

ˇ̌̌ˇ̌̌
L2.�/

� M2.1Cl/.2�1/�1=2
ˇ̌
ˇ
ˇ̌
ˇA1=4 Op.0/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

Z 0

�1

ˇ̌ˇ̌
.2�1AQN /

1=2e2�1A�
ˇ̌ˇ̌
e��N �N d�

serves to establish (6.77) with l 0 given in (6.78a,b,c). ut
Remarks. As a direct consequence of Lemma 6.7 it follows that T �, as defined by
(6.22), belongs to the space Hb;l 0 .

Our last result in the current sequence is

Lemma 6.8. Suppose that 	N > 0, with 	N defined by (6.76). Then for �1;�2 2
Hb;l and p0 2 PN .D.A

1=4// we have
ˇ̌
ˇ
ˇ̌
ˇA1=4.T �1.p0/� T�2.p0//

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� Ljj�1 � �2jj� (6.91)

with L D M2

2�1
.2e�1=2�1=2

NC1 � 
�1=2
N l 0/ and jj�1 � �2jj� given by (6.12).

Proof. We begin by setting

pi D p.t;�i ;p0/; ui D pi C �i .pi / (6.92)

for i D 1; 2 and Op D p1 � p2. For Op.t/ the initial-value problem (6.80) is again
applicable and, thus, so is the first estimate in (6.81). However, if we once again
make use of Lemma 6.5, i.e., of (6.70b), as well as (6.71), we have

ˇ̌̌ˇ̌̌
A1=4.F .u1/� F .u2//

ˇ̌̌ˇ̌̌
L2.�/

� M2

ˇ̌̌ˇ̌̌
A1=4u1 �A1=4u2

ˇ̌̌ˇ̌̌
L2.�/

� M2

�ˇ̌̌ˇ̌̌
A1=4.p1 � p2/

ˇ̌̌ˇ̌̌
L2.�/

C
ˇ̌̌ˇ̌̌
A1=4�1.p1/ �A1=4�2.p2/

ˇ̌̌ˇ̌̌
L2.�/

�

� M2

�ˇ̌̌ˇ̌̌
A1=4.p1 � p2/

ˇ̌̌ˇ̌̌
L2.�/

C
ˇ̌̌ˇ̌̌
A1=4�1.p1/ �A1=4�1.p1/

ˇ̌̌ˇ̌̌
L2.�/

C
ˇ̌̌ˇ̌̌
A1=4�1.p2/ �A1=4�2.p2/

ˇ̌̌ˇ̌̌
L2.�/

�

� M2

�
.1C l/

ˇ̌̌ˇ̌̌
A1=4.p1 � p2/

ˇ̌̌ˇ̌̌
L2.�/

C jj�1 � �2jj�


D M2

�
.1C l/

ˇ̌
ˇ
ˇ̌
ˇA1=4 Op

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

C jj�1 � �2jj�


(6.93)

where jj�1 � �2jj� is given by (6.12).
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Using, once more, the elementary estimate

ˇ̌
ˇ
ˇ̌
ˇA3=4 Op

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

D
ˇ̌
ˇ
ˇ̌
ˇA1=2A1=4 Op

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� 
1=2
N

ˇ̌
ˇ
ˇ̌
ˇA1=4 Op

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

we can now combine the first estimate in (6.81) and the last estimate in (6.93) to
produce the differential inequality

1

2

d

dt

ˇ̌̌ˇ̌̌
A1=4 Op

ˇ̌̌ˇ̌̌
L2.�/

2 C 2�1N

ˇ̌̌ˇ̌̌
A1=4 Op

ˇ̌̌ˇ̌̌
L2.�/

2

� �M2.1C l/
1=2
N

ˇ̌
ˇ
ˇ̌
ˇA1=4 Op

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

2 �M2
1=2
N jj�1 � �2jj�

ˇ̌
ˇ
ˇ̌
ˇA1=4 Op

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

:

(6.94)

From (6.94) we easily obtain

d

dt

ˇ̌
ˇ
ˇ̌
ˇA1=4 Op

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

C .2�1N CM2.1C l/
1=2
N /

ˇ̌
ˇ
ˇ̌
ˇA1=4 Op

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� �M2
1=2
N jj�1 � �2jj�:

(6.95)

However, Op.0/ D 0; so integration of (6.95) from zero to � < 0 yields the estimate

ˇ̌
ˇ
ˇ̌
ˇA1=4 Op.�/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� M2
1=2
N .�N N /

�1.exp.��N N �/ � 1/jj�1 � �2jj� (6.96)

where �N D 2�1 C M2.1 C l/
�1=2
N . From (6.93) and (6.95) we now deduce the

following sequence of estimates (using, once more, the explicit representation of T
given by (6.22)):

ˇ̌
ˇ
ˇ̌
ˇA1=4.T �1.p0/� T �.p0//

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

�
Z 0

�1

ˇ̌
ˇ
ˇ̌
ˇA1=4e2�1A�QN .F .u1/ � F .u2//

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

d�

� .2�1/
�1=2

Z 0

�1

ˇ̌ˇ̌
2�1AQN /

1=2e2�1A�
ˇ̌ˇ̌ �
ˇ̌
ˇ
ˇ̌
ˇA�1=4.F .u1/� F .u2//

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

d�

� .2�1/
�1=2M2

Z 0

�1

� ˇ̌ˇ̌
.2�1AQN /

1=2e2�1A�
ˇ̌ˇ̌



�
.1C l/

ˇ̌̌ˇ̌̌
A1=4 Op.t/

ˇ̌̌ˇ̌̌
L2.�/

C jj�1 � �2jj�
	
d�

� .2�1/
�1=2M2jj�1 � �2jj�



Z 0

�1

ˇ̌ˇ̌
.2�1AQN /

1=2e2�1A�
ˇ̌ˇ̌ �
1C .1C l/

M2

2�1


�1=2
N e��N �N


d�
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� .2�1/
�1=2M2jj�1 � �2jj�



�Z 0

�1

ˇ̌ˇ̌
.2�1AQN /

1=2e2�1A�
ˇ̌ˇ̌
d�

C
Z 0

�1

ˇ̌ˇ̌
.2�1AQN /

1=2e2�1A�
ˇ̌ˇ̌
.1C l/

M2

2�1


�1=2
N e��N �N d�


:

Applying (6.90) and the bounds for
ˇ̌ˇ̌
.AQN /

ıe�AQN
ˇ̌ˇ̌

expressed by (6.74a), to the
last estimate above, we deduce that

ˇ̌
ˇ
ˇ̌
ˇA1=4.T �1.p0/� T �2.p0//

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� .2�1/
�1=2M2jj�1 � �2jj�



h
2e�1=2.2�1/�1=2�1=2

NC1 C �
.2�1/

1=2.2�1 � N �N /�1

C .2�
�1=2
1 /

�
e�1=2�1=2

NC1e
rN �N =.4�1/

i
(6.97)

or

ˇ̌
ˇ
ˇ̌
ˇA1=4.T�1.p0/ � T �2.p0//

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� M2

2�1
.2e�1=2�1=2

NC1 C N l
0/jj�1 � �2jj�

D Ljj�1 � �2jj�

(6.98)

where

L D M2

2�1
.2e�1=2�1=2

NC1 C 
�1=2
N l 0/

and l 0 is given by (6.78a). ut
With Lemmas 6.4–6.8 in hand, we are now ready to state and prove the main

result of this subsection, namely, that the map T , as defined by (6.22), satisfies

T W Hb;l

into�! Hb;l and is, in fact, a strict contraction on Hb;l .

Theorem 6.3. Let Hb;l be the space of Lipschitz maps � W PND.A
1=4/ !

QND.A
1=4/ that satisfy (6.10a,b) and (6.11), where b > 0, l > 0. Define the

mapping T by (6.22) with � 2 Hb;l , p0 2 PND.A
1=4/ and where q.0I�;p0/ 2

QND.A
1=4/ is the value at t D 0 of the unique continuous solution of (6.19) and

p.t/ is the unique solution of the initial-value problem (6.14). Then 9 constants
k1 > 0, k2 > 0 such that if
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(i) 1=2NC1 � 
1=2
N � k1=2�1 (Spectral Gap Condition),

(ii) 1=2N � k2=2�1,

then T W Hb;l

into�! Hb;l and is a strict contraction onHb;l .

Proof. Choose l so that 0 < l < 1. We will show that if conditions (i) and (ii) of
the theorem are satisfied with

k1 D 2M2.1C l/l�1; k2 D 2M2.2e
�1=2 C l/ (6.99)

(M2 > 0 the constant in (6.70b)) then 	N > 0 (	N given by (6.76)), l 0 as defined

by (6.78a,b,c) satisfies l 0 < l , and L � 1

2
(L > 0 the constant appearing in (6.91)).

It will then follow directly from (6.91) that T is a strict contraction onHb;l . We note
that the positivity of 	N will enable us to deduce that the estimate (6.98) is valid
while l 0 < l , coupled with (6.77), yields the fact that T � 2 Hb;l if � 2 Hb;l .
We begin with the sign of 	N and note the inequality

	N D 2�1.NC1 � N / �M2.1C l/
1=2
N > 0

is equivalent to the statement that

2�1 � rN �N > 0 (6.100)

where rN and �N are given, respectively, by (6.78a,b,c). If (6.100) holds, however,
then

l 0 D M2.1C l/
�1=2
NC1



.2��1

1 C .2�1 � rN �N /
�1� e�1=2erN �N =.4�1/

� M2.1C l/
�1=2
NC1



.2�1/

�1 C .2�1 � rN �N /�1
�
;

(6.101)

in which case, to deduce that l 0 < l , it suffices to show that

.2�1/
�1M2.1C l/

�1=2
NC1 < l=2 (6.102a)

and

M2.1C l/
�1=2
NC1 � 1

2
l.2�1 � rN �N /: (6.102b)

Now, (6.102a) can be written in the form

.2�1/
�1k1 � 

1=2
NC1; k1 D 2M2.1C l/l�1; (6.103)

and if (6.103) holds then (6.102b) can be written as

k1
�1=2
NC1 � 2�1 � rN �N
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or, equivalently, as

k1
�1=2
NC1 � 2�1 C 2�1rN CM2.1C l/

�1=2
NC1r

1=2
N � 0: (6.104)

Assuming that condition (i) of the theorem holds or, equivalently, that

2�1r
1=2
N C k1

�1=2
NC1 � 2�1; (6.105)

we find that (6.104) is valid, i.e.,

k1
�1=2
NC1 � 2�1 C 2�1rN CM2.1C l/

�1=2
NC1r

1=2
N

� k1
�1=2
NC1 � 2�1 C 2�1rN C k1

�1=2
NC1r

1=2
N

� k1
�1=2
NC1 � 2�1 C 2�1r

1=2
N � 0:

(6.106)

However, it is easily seen that both (6.100) and (6.103) are direct consequences
of the spectral gap condition as expressed by hypothesis (i) of the Theorem 6.3;
thus, if this condition holds then both 	N > 0 and l 0 < l . Denoting the spectral gap
condition expressed by condition (i) of the theorem as SGC, the precise consequence
of the steps delineated above may be ordered as follows:

(a) SGC ) (6.100) ) l 0 < l if (6.102a,b) hold,
(b) SGC ) (6.103) , (6.102a),
(c) SGC , (6.105) ) (6.104) , (6.102b).

Finally, in order to show thatL < 1, so that T is, by virtue of the estimate (6.98),
a contraction map on the complete metric space Hb;l , it suffices to demonstrate that

L D M2

2�1
.2e�1=2�1=2

NC1 C 
�1=2
N l 0/ <

1

2
: (6.107)

Since l 0 < l , however, and 1=2NC1 � 
1=2
N ,

L <
M2

2�1
.2e�1=2 C l/

�1=2
N <

1

2
(6.108)

by virtue of the hypothesis (ii) of the theorem and the explicit form of k2 as given
in (6.99). ut
Remarks. The validity of the spectral gap condition (SGC) with respect to the
operator A, as defined by (5.349)–(5.351), where � D Œ0; L�n, L > 0, n D 2; 3,
and V per.�/ is given by (5.348), is considered in Appendix C. It is, in fact, proven
in C that condition (i) of Theorem 6.3 (the SGC) is satisfied for the bipolar problem
in dimn D 2, for arbitrary�1 > 0, ifN is sufficiently large; in dimn D 3, however,
SGC is satisfied only for �1 sufficiently large.
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As a direct consequence of Theorem 6.3, namely, that the mapping T is a
contraction map of the complete metric space Hb;l into itself, it follows that T
has a fixed point �� 2 Hb;l . From the analysis in Sect. 6.2.5 it follows that
M D graph�� is a finite-dimensional Lipschitz manifold and it is a simple exercise
to show directly that M is invariant under the action of the solution operator S �1 ,
i.e., S �1.t/M � M. In the following subsection, therefore, we need only prove
that M attracts, exponentially, all orbits of the modified initial-value problem (6.9),
(5.361b).

6.2.6 Existence of the Inertial Manifold M

To complete the proof of the existence of an inertial manifold M, for the bipolar
viscous fluid flow problem governed by (5.2a,b), (5.3a), (5.4), we set M D
graph��, �� the unique fixed point of T in Hb;l , and show that 9t0 > 0 such that,
for t � t0 and u0 2 D.A1=4/, all orbits of the intial-value problem (6.9), (5.361b)
are attracted exponentially by M. We have, in fact, the following specific result:

Theorem 6.4. Let M D graph��, where �� 2 Hb;l is the unique fixed point of T
in Hb;l whose existence is guaranteed by Theorem 6.3 and the completeness of the
space Hb;l with respect to the norm specified in (6.12). Then 9t0 > 0 such that for
u0 2 D.A1=4/ and t � t0

d.S�1.t/u0;M/ � exp

��t
2t0

ln 2

�
d.u0;M/: (6.109)

Proof. We begin by noting that it is a straightforward matter to establish a squeezing
property for orbits of the modified problem (6.9), (5.361b) which is entirely
analogous to the one proven in Theorem 6.3 for the initial-value problem (5.361a,b);
more specifically, for solutions u.t/, v.t/ of (6.9), (5.361b) satisfying (6.5), for some
M > 0, if we are given � > 0, then for any t 2 Œ0; T � and every N , 9 Nci , i D 1; 2

such that either (6.6) holds or (6.7) does (with Nci replacing ci , i D 1; 2). For the
orbits of (6.9), (5.361b) satisfying (6.5), for some M > 0, (6.52) will also hold,
with CM replaced by some NCM > 0 for t 2 Œ0; T �; thus, setting

t0 D min

 
�1 ln 2

NC2
M

;
T

2

!
(6.110)

we obtain, from this modified version of (6.52), the estimate

ˇ̌̌ˇ̌̌
A1=4.u.t/ � v.t//

ˇ̌̌ˇ̌̌
L2.�/

� 2
ˇ̌̌ˇ̌̌
A�1=4.u.0/� v.0//

ˇ̌̌ˇ̌̌
L2.�/

; t < 2t0:

(6.111)
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If we set � D 1

8
and choose N > N0, where N0 satisfies

N0C1 � . Nc1�1t0/�1 ln.2 Nc2/; (6.112)

then from the modified forms of (6.6), (6.7) we will have either

ˇ̌̌ˇ̌̌
QNA

�1=4.u.t/ � v.t//
ˇ̌̌ˇ̌̌
L2.�/

� 1

8

ˇ̌̌ˇ̌̌
PNA

�1=4.u.t/ � v.t//
ˇ̌̌ˇ̌̌
L2.�/

(6.113)

or

ˇ̌̌ˇ̌̌
A�1=4.u.t/ � v.t//

ˇ̌̌ˇ̌̌
L2.�/

� 1

2

ˇ̌̌ˇ̌̌
A�1=4.u.0/� v.0//

ˇ̌̌ˇ̌̌
L2.�/

(6.114)

where u0; v0 2 D.A1=4/,
ˇ̌
ˇ
ˇ̌
ˇA1=4u.0/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� M ,
ˇ̌
ˇ
ˇ̌
ˇA1=4v.0/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� M , and

t0 � t � 2t0.
We now denote the distance between any point w in the absorbing ball Br2 in

D.A1=4/ and the manifold M by

d.w;M/ D inf
v2M

� ˇ̌̌ˇ̌̌
A�1=4.w � v

ˇ̌̌ˇ̌̌
L2.�/

	
: (6.115)

To show that M attracts all orbits of the modified intial-value problem (6.9),
(5.361b) exponentially, it suffices to prove that M attracts, exponentially, all orbits

contained in the absorbing ballBr2 , i.e., all orbits u.t/ such that
ˇ̌
ˇ
ˇ̌
ˇA1=4u.t/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

�
r2, t 2 Œ0;1/. Therefore, let v.0/ D v0 2 M, v0 D PNv0 C �.PNv0/, be such
that

dist.u.0/;M/ D
ˇ̌
ˇ
ˇ̌
ˇA�1=4u.0/� v.0//

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

: (6.116)

Obviously,

ˇ̌̌ˇ̌̌
PNA

1=4v.0/
ˇ̌̌ˇ̌̌
L2.�/

� r2; (6.117)

so that, with b > 0,

ˇ̌
ˇ
ˇ̌
ˇA1=4v.0/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� r2 C b; (6.118)

in which case, for t � 0,

ˇ̌̌ˇ̌̌
A1=4v.t/

ˇ̌̌ˇ̌̌
L2.�/

D
ˇ̌̌ˇ̌̌
A1=4S�1.t/v.0/

ˇ̌̌ˇ̌̌
L2.�/

� r2 C b; 8t � 0: (6.119)
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Choosing M (in the statement of the squeezing property for the orbits of (6.9),
(5.361b)) to be M D r2 C b, we apply the estimates recorded in (6.113), (6.114) to
S�1.t1/u0 and S�1.t1/v0, with t0 � t1 � 2t0: if (6.114) applies, then

d.S�1.t1/u0;M/ �
ˇ̌̌ˇ̌̌
A�1=4.S�1.t1/u0 � S �1.t1/v0/

ˇ̌̌ˇ̌̌
L2.�/

� 1

2

ˇ̌
ˇ
ˇ̌
ˇA�1=4.u0 � v0/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

D 1

2
d.u0;M/:

(6.120)

On the other hand, if (6.113) holds, then we have the following sequence of
estimates:

d.S�1.t1/u0;M/

�
ˇ̌̌ˇ̌̌
A�1=4.S �1.t1/u0 � .PNS�1.t1/v0 C �.PNS �1.t1/v0///

ˇ̌̌ˇ̌̌
L2.�/

�
ˇ̌̌ˇ̌̌
A�1=4.QNS�1.t1/u0 � �.PNS�1.t1/v0//

ˇ̌̌ˇ̌̌
L2.�/

�
ˇ̌
ˇ
ˇ̌
ˇA�1=4.QNS�1.t1/u0 �QNS�1.t1/v0/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

�
ˇ̌
ˇ
ˇ̌
ˇA�1=4.�.PNS�1.t1/u0 � �.PNS�1.t1/v0///

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

�
�
l C 1

8

� ˇ̌
ˇ
ˇ̌
ˇA�1=4.PNS�1.t1/u0 �PNS �1.t1/v0/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

:

(6.121)

Taking l D 1

8
in the last estimate, we find that

d.S�1.t1/u0;M/ � 1

4

ˇ̌̌ˇ̌̌
A�1=4.S�1.t1/u0 � S �1.t1/v0/

ˇ̌̌ˇ̌̌
L2.�/

� 1

4
� 2
ˇ̌
ˇ
ˇ̌
ˇA�1=4.u0 � v0/

ˇ̌
ˇ
ˇ̌
ˇ
L2.�/

� 1

2
d.u0;M/

(6.122)

for t0 � t1 � 2t0. Iterating upon the procedure delineated above we have, therefore,
for t0 � t1 � 2t0,

d.S�1.nt1/u0;M/ �
�
1

2

�n
d.u0;M/ ! 0 (6.123)

as n ! 1. For arbitrary t � t0 we may write t D nt1 for some t1; t0 � t1 � 2t0, in
which case
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d.S �1.t/u0;M/ �
�
1

2

�n
d.u0;M/

� exp

�
� t

t1
ln 2

�
d.u0;M/

� exp

�
� t

2t0
ln 2

�
d.u0;M/;

(6.124)

thus establishing the required exponential convergence of orbits of the modified
initial-value problem (6.9), (5.361b) and, hence, of the original problem (5.361a,b),
to the manifold M that is generated as the graph of the unique fixed point of T .
The proof of the existence of an inertial manifold for the space-periodic version of
the nonlinear, incompressible, bipolar viscous model is now complete. ut

6.3 The L2 Squeezing Property for Bipolar Viscous Fluids

6.3.1 Introduction

In Sect. 6.2 we established, in conjunction with the proof of the existence of an
inertial manifold for the incompressible bipolar viscous fluid satisfying periodic
boundary conditions, i.e., for (5.2a,b), (5.3b), (5.4), a squeezing property for orbits;
the abstract formulation of the problem assumes the form (5.361a,b), where A is
the linear, positive self-adjoint operator defined by (5.350), (5.351), with a.u; v/
given by (5.349), while R.u/ is defined by (5.360), with Apu and B.u; v/ given,
respectively, by (5.358), (5.359). The precise statement of this squeezing property
for the orbits of the problem (5.361a,b) is, essentially, the content of Theorem 6.2;
this result holds in both dimensions n D 2; 3, when 1 < p � 2, and says
that provided two solutions u.t/, v.t/ of (5.361a,b), satisfying initial conditions
u.0/ D u0, v.0/ D v0, obey (5.39) for some M > 0, either (6.6) or (6.7) must
hold.

Although it is the squeezing property represented by (6.6), (6.7) which is
naturally adopted to establishing the existence of the inertial manifold M in 6.2,
it is of interest to inquire as to whether or not a more basic, i.e., L2 form of the
squeezing property holds with respect to the orbits of the incompressible bipolar
problem (5.2a,b), (5.3b), (5.4); this question will be answered in the affirmative in
this section. In particular, if for u 2 D.A/ we set

jjujjV D .Au;u/L2.�/
1=2 (6.125)
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then it will be shown that for solutions u.t/, v.t/ of (5.361a,b) such that jjujjV � M ,
jjvjjV � M , for some M > 0, 9 Nci > 0, i D 1; 2, depending only on M , T , f , �0,
�1, �, and � such that for every N , and all t 2 Œ0; T �, either

jjQN .u.t/ � v.t//jjL2.�/ � jjPN .u.t/ � v.t//jjL2.�/ (6.126)

or

jju.t/ � v.t/jjL2.�/2 � Nc1e�Nc2�1NC1t jju.0/� v.0/jjL2.�/2 (6.127)

where PN is the projection operator defined in Sect. 6.2.2 andQN D I �PN . The
proof of this L2 squeezing property hinges on a more careful study of the nonlinear
viscosity term, embodied in the nonlinear operatorAp defined by (5.358), than that
which was required in Sect. 6.2 and will proceed via a series of lemmas.

6.3.2 An Estimate for Nonlinear Viscosity

Our goal in this subsection is to derive (what will turn out to be) a suitable estimate
for the L2.�/ norm of the difference Ap.u/ � Ap.v/, where Ap is the nonlinear
operator given by (5.358), u, v satisfy u 2 H 2.�/, v 2 H 3.�/, respectively, and
1 < p � 2.

Lemma 6.9. For u 2 H 2.�/, v 2 H 3.�/, and 1 < p � 2,
ˇ̌
ˇ̌
ˇ̌̌
0
@� C

X
k;l

e2kl.u/

1
A

p�2
2

@

@xj
eij.u/�

0
@� C

X
k;l

e2kl.v/

1
A

p�2
2

@

@xj
eij.v/

ˇ̌
ˇ̌
ˇ̌̌

� �
p�2
2

ˇ̌
ˇ̌ @
@xj

eij.u � v/
ˇ̌
ˇ̌

C
ˇ̌̌
ˇp � 2
2

ˇ̌̌
ˇ� p�4

2

0
@X

k;l

jekl.u C v/jjekl.u � v/j
1
A
ˇ̌̌
ˇ @@xj eij.v/

ˇ̌̌
ˇ:

(6.128)

Proof. As 1 < p � 2, for fixed i; j (no sum on j )
ˇ̌
ˇ̌
ˇ̌̌
0
@� C

X
k;l

e2kl.u/

1
A

p�2
2

@

@xj
eij.u/ �

0
@� C

X
k;l

e2kl.v/

1
A

p�2
2

@

@xj
eij.v/

ˇ̌
ˇ̌
ˇ̌̌

D

ˇ̌
ˇ̌̌
ˇ̌
0
@� C

X
k;l

e2kl.u/

1
A

p�2
2 �

@

@xj
eij.u/� @

@xj
eij.v/

�
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C

2
64
0
@� C

X
k;l

e2kl.u/

1
A

p�2
2

�
0
@� C

X
k;l

e2kl.v/

1
A

p�2
2

3
75 @

@xj
eij.v/

ˇ̌
ˇ̌̌
ˇ̌ (6.129)

� �
p�2
2

ˇ̌̌
ˇ @@xj eij.u � v/

ˇ̌̌
ˇ

C

ˇ̌
ˇ̌
ˇ̌̌
2
64
0
@� C

X
k;l

e2kl.u/

1
A

p�2
2

�
0
@� C

X
k;l

e2kl.v/

1
A

p�2
2

3
75 @

@xj
eij.v/

ˇ̌
ˇ̌
ˇ̌̌:

By the mean-value theorem in the form

.� C a/
p�2
2 � .� C b/

p�2
2 D

�
p � 2
2

�
.� C s/

p�2
4 .a � b/ (6.130)

for some s, a < s < b, we infer the existence of s�,

X
k;l

e2kl.u/ < s
� <

X
k;l

e2kl.v/ (6.131)

such that, in the second term on the right-hand side of the last estimate in (6.129),
ˇ̌
ˇ̌̌
ˇ̌
0
@� C

X
k;l

e2kl.u/

1
A

p�2
2

�
0
@� C

X
k;l

e2kl.v/

1
A

p�2
2

ˇ̌
ˇ̌̌
ˇ̌

�
ˇ̌̌
ˇp � 2
2

ˇ̌̌
ˇ.� C s�/

p�4
2

ˇ̌̌
ˇ̌
ˇ
X
k;l

e2kl.u/�
X
k;l

e2kl.v/

ˇ̌̌
ˇ̌
ˇ

�
ˇ̌̌
ˇp � 2
2

ˇ̌̌
ˇ� p�4

2

X
k;l

jekl.u C v/jjekl.u � v/j:

(6.132)

In (6.132) we have used the fact that
X
k;l

e2kl.u/�
X
k;l

e2kl.v/ D
X
k;l

e2kl.u/� e2kl.v/

D
X
k;l

.ekl.u/C ekl.v//.ekl.u/� ekl.v//

D
X
k;l

ekl.u C v/ekl.u � v/:

Combining (6.129) with (6.132) then yields (6.128). ut
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The second basic estimate that we need in this subsection, before we can state and
prove the required bound for

ˇ̌ˇ̌
Ap.u/ �Ap.v/

ˇ̌ˇ̌
L2.�/

, is embodied in the following

Lemma 6.10. For u 2 H 2.�/, v 2 H 3.�/, and 1 < p � 2, it follows that for
fixed i; j (no sum on j ) we have the estimate

ˇ̌
ˇ̌̌
ˇ̌
0
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X
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2
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0
@X

k;l

ekl.v/
@

@xj
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� �
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2

X
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ˇ̌̌
ˇ @@xj ekl.u � v/
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ˇ

C
ˇ̌̌
ˇp � 4
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2

X
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X
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ˇ

C �
p�4
2

X
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�ˇ̌
eij.u/
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@xj

ekl.v/

ˇ̌
ˇ̌:

(6.133)

Proof. We begin with the set of elementary estimates
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eij.v/

0
@X
k;l

ekl.v/
@

@xj
ekl.v/

1
A
ˇ̌
ˇ̌
ˇ̌̌

D
ˇ̌
ˇ̌
ˇ̌
X
k;l

"�
� C je.u/j2
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@xj
ekl.u/ (6.134)

�
�
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eij.v/ekl.v/

@

@xj
ekl.v/

#ˇ̌ˇ̌
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�
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C
X
k;l
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ˇ̌̌�
� C je.u/j2

� p�4
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2
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ˇ̌̌ˇ̌ˇ̌ @
@xj

ekl.v/

ˇ̌
ˇ̌

where in going from the first to the second expression on the right-hand side of
(6.134) we have added and subtracted the term

X
k;l

�
� C je.u/j2

� p�4
2
eij.u/ekl.u/

@

@xj
ekl.v/:

We now work on the expression
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eij.u/ekl.u/ �

�
� C je.v/j2

� p�4
2
eij.v/ekl.v/

ˇ̌
ˇ̌
ˇ

which appears in the second term on the right-hand side of the last estimate in
(6.134). We begin by noting that, for fixed i; j; k; l ,
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eij.u/ekl.u/
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e2ij.u/C 1

2
e2kl.u/

� 1

2
je.u/j2 C 1

2
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(6.135)

Now, suppose that je.u/j2 � je.v/j2; then
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(6.136)

where we have added and subtracted the expression

�
� C je.v/j2

� p�4
2
eij.u/ekl.u/:

By the mean-value theorem, 9��, with

je.u/j2 � �� � je.v/j2 (as je.u/j2 � je.v/j2)
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such that
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� p�4
2 �
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2
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�
ˇ̌
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ˇ̌ �� C je.u/j2

� p�6
2
ˇ̌
ˇje.u/j2 � je.v/j2

ˇ̌
ˇ

(6.137)

by virtue of the fact that �� � je.u/j2 and 1 < p � 2. Combining (6.135)–(6.137)
we find that, for fixed i; j; k; l ,
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2
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2
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m;n

e2mn.u/ �
X
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C �
p�4
2

�ˇ̌
eij.u/

ˇ̌jekl.u � v/j C ˇ̌
eij.u � v/ˇ̌jekl.v/j

�
:

(6.138)

In a similar manner, it is easily demonstrated that the last estimate in (6.138) also
holds in the case where je.u/j2 � je.v/j2. In view of (6.134) and (6.138) we now
have, for fixed i; j ,

ˇ̌̌
ˇ̌
ˇ̌
0
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X
k;l

e2kl.u/

1
A

p�4
2

eij.u/
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A
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eij.v/

0
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1
A
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ˇ̌
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�
X
k;l

�
� C je.u/j2

� p�4
2 je.u/j2

ˇ̌
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@xj
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ˇ̌
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X
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@xj
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C �
p�4
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X
k;l

�ˇ̌
eij.u/

ˇ̌ � jekl.u � v/j C ˇ̌
eij.u � v/ˇ̌ � jekl.v/j

� ˇ̌ˇ̌ @
@xj

ekl.v/

ˇ̌
ˇ̌

(6.139)

from which the required conclusion, i.e., (6.133) follows immediately. ut
Finally, we may state the estimate for the norm of Ap.u/ � Ap.v/ which has

been hinted at, above; we formulate this result as

Theorem 6.5. Let u 2 H 2.�/, v 2 H 3.�/, and assume that p satisfies 1 <
p � 2. Then for Ap defined by (5.358), 9ki > 0, i D 1; 2, independent of u; v,
such that

ˇ̌ˇ̌
Ap.u/ �Ap.v/

ˇ̌ˇ̌
L2.�/

� k1jju � vjjH 2.�/

C k2

�
jjujjH 2.�/ C jjvjjH 2.�/

�
jvjH 3.�/jju � vjjH 2.�/

(6.140)

Proof. We begin by fixing i; j and noting that (with 1 � p < 2) we have, directly,
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1
A (6.141)

(no sum on j ). In a similar fashion,

@
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2 eij.v/
i

D
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X
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C .p � 2/
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(no sum on j ). Subtracting (6.142) from (6.141) we have (with no sum on j ):
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Therefore, if we hold i; j fixed, and combine (6.128) and (6.133) with (6.143), we
obtain
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(6.144)
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If we now apply Lemma C.3 to the estimate (6.144) we may infer the existence of a
constant c1.�/ > 0 such that the following estimate holds, again for fixed i; j :
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Thus, for some constant c2.�/ > 0,

2
4Z

�

ˇ̌̌
ˇ̌ @
@xj

"�
� C je.u/j2

� p�2
2
eij.u/

#
� @

@xj

"�
� C je.v/j2

� p�2
2
eij.v/

#ˇ̌̌
ˇ̌
2

dx

3
5
1=2

� c2�
p�2
2 jju � vjjH 2.�/

C c2

ˇ̌̌
ˇp � 2

2

ˇ̌̌
ˇ� p�4

2 jju C vjjH 2.�/jju � vjjH 2.�/jvjH 3.�/

C c2jp � 2j� p�2
2 jju � vjjH 2.�/

C c2jp � 2j
ˇ̌
ˇ̌p � 4
2

ˇ̌
ˇ̌� p�4

2 jju C vjjH 2.�/jju C vjjH 2.�/jvjH 3.�/

C c2jp � 2j� p�4
2 jjujjH 2.�/jju � vjjH 2.�/jvjH 3.�/

C c2jp � 2j� p�4
2 jjvjjH 2.�/jju � vjjH 2.�/jvjH 3.�/

� c2.1C jp � 2j/� p�2
2 jju � vjjH 2.�/

C c2jp � 2j� p�4
2

�
3

2
C
ˇ̌
ˇ̌p � 4

2

ˇ̌
ˇ̌� �jjujjH 2.�/ C jjvjjH 2.�/

�



�
jju � vjjH 2.�/jvjH 3.�/

�
: (6.145)

From (6.145), therefore, we infer the existence of constants c3.�/ > 0, c4.�/ > 0,
such that
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where

8<
:
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Now, by virtue of the definition of Ap , i.e., (5.358), we obtain from (6.146), by
summing over i and j ,
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� c3n
2jju � vjjH 2.�/ C c4n

2
�
jjujjH 2.�/ C jjvjjH 2.�/

�
jju � vjjH 2.�/jvjH 3.�/

� k1jju � vjjH 2.�/ C k2
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jjujjH 2.�/ C jjvjjH 2.�/
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jju � vjjH 2.�/jvjH 3.�/ (6.148)

thus establishing the estimate (6.140) with k1 D n2c3 and k2 D n2c4. ut

6.3.3 An Estimate for the Quotient jju � vjjV =jju � vjjL2.�/
Let u; v be, respectively, solutions of the initial-value problem (5.361a,b) corre-
sponding to the initial data u.0/ D u0 and v.0/ D v0. Using the definitions
(5.358)–(5.360) we rewrite these two problems in the form

du
dt

C 2�1Au � 2�0Ap.u/CB.u;u/ D f ; (6.149a)

u.0/ D u0; (6.149b)

dv

dt
C 2�1Av � 2�0Ap.v/CB.v; v/ D f ; (6.150a)

v.0/ D v0; (6.150b)

where u0; v0 2 V D V per.�/. For u 2 V , jjujjV is given by (6.125). Also, in
(6.149a,b), (6.150a,b), f 2 L2.QT / with QT D � 
 Œ0; T /, T > 0. We set,
for 0 < t < T , w.t/ D u.t/ � v.t/. In this section our task will be to derive an
estimate for the evolution of the quotient of norms
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q.t/ D jjw.t/jjV 2=jjw.t/jjL2.�/2: (6.151)

The resulting estimate will occupy a central position in the proof of theL2 squeezing
property; the precise result is the following:

Theorem 6.6. Let u; v 2 V per.�/ be the unique solutions of (6.149a,b), (6.150a,b)
on Œ0; T /, T > 0, and suppose 9M > 0 such that

jjujjV � M; jjvjjV � M; t 2 Œ0; T /: (6.152)

Then 9 Oc2 > 0, i D 1; 2, such that w D u � v satisfies

q.�/ � q.t/ exp

�
Oc1.� � t/C Oc2

Z �

t

jv.�/jH 3.�/
2d�

�
(6.153)

for 0 < t < � < T , where q.t/ is given by (6.151).

Proof. A direct calculation, which follows, e.g., the pattern of the analogous
calculation in [Te4] yields the relation

dq

dt
D 2

jjwjjL2.�/2
h�

w0;Aw
�
L2.�/

� �
w0; qw

�
L2.�/

i
(6.154)

where 0 D d

dt
. Subtracting (6.150a) from (6.149a) we obtain

dw
dt

C 2�1Aw � 2�0.Ap.u/�Ap.v//

CB.u;w/CB.w; v/ D 0:

(6.155)

Combining (6.155) with (6.154) we find that

dq

dt
D � 2

jjwjjL2.�/2
�
2�1Aw � 2�0.Ap.u/ �Ap.v//;Aw � qw

�
L2.�/

� 2

jjwjjL2.�/2
.B.u;w/CB.w; v/;Aw � qw/L2.�/:

(6.156)

However, by virtue of the definition of q.t/, i.e., (6.151),

.qw;Aw � qw/L2.�/ D .qw;Aw/L2.�/ � .qw; qw/L2.�/

D q.w;Aw/L2.�/ � q2.w;w/L2.�/

	 0
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so

.Aw;Aw � qw/L2.�/ D jjAw � qwjjL2.�/2: (6.157)

Using (6.157) in (6.156), and applying the Cauchy-Schwarz inequality, we obtain
the estimate
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C 4�1

jjwjjL2.�/2
jjAw � qwjjL2.�/2
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�
:

(6.158)

By virtue of the definition (5.359) of B.u; v/, Sobolev embedding, and the
equivalence relation

ˇ̌
ˇ
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ˇA1=2u

ˇ̌
ˇ
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we have for some constants NC.�/ > 0, C 0.�/ > 0,
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� C 0.�/jjujjV jjwjjV
� C 0.�/M jjwjjV

(6.159)

where we have also used the hypothesis (6.152). In a similar fashion

jjB.w; v/jjL2.�/ � C 0.�/M jjwjjV (6.160)

Also, if we use (6.140), then for t 2 Œ0; T / we have, again by virtue of (6.152),
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� k3jjwjjV C k4M jjwjjV jvjH 3.�/ (6.161)
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for some ki .�/ > 0, i D 3; 4. Combining (6.158) with (6.159)–(6.161) we find that
q.t/ satisfies the following differential inequality:

dq

dt
C 4�1

jjwjjL2.�/2
jjAw � qwjjL2.�/2

� 2jjAw � qwjjL2.�/
jjwjjL2.�/

�
2�0k3 C 2�0k4M jvjH 3.�/ C 2C 0.�/M

�
q1=2.t/:

(6.162)

Applying the elementary inequality ab � �a2

2
C b2

2�
to (6.162), with � D 2�1,

yields

dq

dt
C 4�1

jjwjjL2.�/2
jjAw � qwjjL2.�/2 � 4�1jjAw � qwjjL2.�/2

jjwjjL2.�/2

C 1

�1

�
�0k3 C �0k4M jvjH 3.�/ C C 0.�/M

�2
q.t/:

(6.163)

Therefore, with

.t/ D 1

�1

�
�0k3 C �0k4M jvjH 3.�/ C C 0.�/M

�2
(6.164)

we have, for 0 � t < T ,

dq

dt
� q: (6.165)

Integration of (6.165) from t to � , 0 < t < � < T , produces

q.�/ � q.t/ exp

�Z �

t

.s/ds



or

jjw.�/jjV 2
jjw.�/jjL2.�/2

� jjw.t/jjV 2
jjw.t/jjL2.�/2

exp

�Z �

t

.s/ds


: (6.166)

However, by (6.164),
Z �

t

.s/ds � 2

�1

�
�0k3 C C 0.�/M

�2
.� � t/

C
�
2

�1

�
�20k

2
4M

2

Z �

t

jv.s/jH 3.�/
2ds:

(6.167)
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Combining (6.166) with (6.167) we see that (6.153) holds, for 0 < t < � < T , with

8̂
<
:̂

Oc1 D 2

�1
.�0k3 C C 0.�/M/2;

Oc2 D 2

�1
�20k

2
4M

2;
(6.168)

thus completing the proof of Theorem 6.6. ut
In order to derive the statedL2 squeezing property for the solutions of (5.361a,b)

we will need to deal with the term
Z �

t

jv.�/jH 3.�/
2d� in the estimate (6.153); in

essence, we are in a position to do this now as a direct consequence of Lemma 5.21
in Sect. 5.5.2. However, because this pivotal result is of independent interest, we
will pause, in the following subsection, to give an alternative proof of the bound
reflected in (5.362); this proof is based directly on the original formulation of our
problem, i.e., (5.2a,b), (5.3b), (5.4) as opposed to its abstract reformulation as the
initial value problem (5.361a,b).

6.3.4 The L2.Œ0; T �IH3.�// Norm of u: An Alternate
Derivation of the Estimate

We reconsider Lemma 5.21, positing it now in the following form:

Lemma 6.11. Let u.t/ be the unique solution of (5.2a,b), (5.3b), (5.4) with � D
Œ0; L�n, L > 0, n D 2; 3 and suppose that jjujjV � R for some R > 0 and
t 2 Œ0; T /. Then 9 Ok > 0, depending at most on �, �0, �1, f , R, and T , such that

Z T

0

Z
�

@2eij

@xk@xl

@2eij

@xk@xl
dx dt � Ok (6.169)

where e D e.u/ and we sum on all repeated indices.

Proof. We begin by rewriting (5.2a) in coordinate form for the velocity field u
(instead of v) and replace the pressure field p by Qp (so as to avoid any possible
confusion with the index p, 1 < p � 2, in the nonlinear viscosity term). Fixing

the index l , we set wi D @2ui
@x2l

, multiply the bipolar evolution equation by wi , sum

over i , and then integrate the resulting equation over � so as to obtain (for density
� D 1) the following identity:



482 6 Inertial Manifolds, Orbit Squeezing, and Attractors for Bipolar Flow : : :

Z
�

@ui
@t

@2ui
@x2l

dx C 2�1

Z
�

@

@xj
.�eij/

@2ui
@x2l

dx

� 2�0
Z
�

@

@xj

h
.� C je.u/j2/ p�2

2

i @2ui
@x2l

dx

C
Z
�

uj
@ui
@xj

@2ui
@x2l

dx C
Z
�

@ Qp
@xl

@2ui
@x2l

dx D
Z
�

fi
@2ui
@x2l

dx:

(6.170)

In (6.170) we hold l fixed and sum over the repeated indices i; j . We now want
to integrate, by parts, in the first, second, and fifth terms on the left-hand side of
(6.170); we note that

Z
�

@ui
@t

@2ui
@x2l

dx D �1
2

@

@t

�
@ui
@xl

;
@ui
@xl

�
L2.�/

(6.171a)

with a sum on i but no sum on l ,

Z
�

@ Qp
@xi

@2ui
@x2l

dx D 0 (6.171b)

by virtue of the spatial-periodicity condition (5.3b) and let the fact that r � u D 0,
and

Z
�

@

@xj
.�eij/

@2ui
@x2l

dx D
Z
�

@

@xj

 X
k

@2

@x2k
eij
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dx
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Z
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X
k

�
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@x2k
eij

�
@

@xj
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@x2l

�
dx

D
Z
�

@

@xl

 X
k

@2

@x2k
eij

!
@

@xj

�
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dx
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�

@

@xl

 X
k

@2

@x2k
eij

!
@

@xl

�
@ui
@xj

�
dx

D
Z
�

@

@xl

 X
k

@2

@x2k
eij

!
@

@xl
eijdx

D �
Z
�

@

@xk

�
@eij

@xl

�
@

@xk

�
@eij

@xl

�
dx

(6.171c)



6.3 The L2 Squeezing Property for Bipolar Viscous Fluids 483

where in the last line on the right-hand side of (6.171c) we sum on the repeated
indices i; j; k but not on l . Thus, if we carry out the indicated integrations by parts
in (6.170), and employ (6.171a,b,c), we obtain

� 1

2

@

@t

�
@ui
@xl

;
@ui
@xl

�
L2.�/

� 2�1

Z
�

@

@xk

�
@eij

@xl

�
@

@xk

�
@eij

@xl

�
dx

� 2�0
Z
�

@

@xj

"�
� C je.u/j2

� p�2
2
eij

#
@2ui
@x2
l

dxC
Z
�

uj
@ui
@xj

@2ui
@x2
l

dx D
Z
�
fi
@2ui
@x2
l

dx:

(6.172)

From (6.172) we now have the series of estimates

1

2
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@t

�
@ui
@xl

;
@ui
@xl

�
L2.�/

C 2�1

Z
�

@

@xk

�
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�
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@eij
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dx

� �2�0
Z
�
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@xj

h
.� C je.u/j2/ p�2

2 eij

i @2ui
@x2l

dx

C
Z
�
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dx �
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�

fi
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dx
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ˇ̌
ˇ̌ @
@xj

h
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ˇ̌̌
ˇ
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ˇ̌ @
@xj

h
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�

X
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#1=2 "Z

�

X
i

ˇ̌̌
ˇ@
2ui
@x2l

ˇ̌̌
ˇ
2
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#1=2

C
"Z

�

X
i

jfi j2dx
#1=2 "Z

�

X
i

ˇ̌̌
ˇ@
2ui
@x2l

ˇ̌̌
ˇ
2

dx

#1=2
: (6.173)

If we set

g.jej/ D .� C jej2/ p�2
2 (6.174)
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so that �.jej/ D �0g.jej/, then

Z
�

X
i

ˇ̌
ˇ̌ @
@xj

h
.� C je.u/j2/ p�2

2 eij

iˇ̌ˇ̌2dx D
Z
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 �
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dx

� 2

Z
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dx C 2

Z
�
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eijeikdx

� 2�p�2
Z
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@eij
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dx C 2

Z
�
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@xj

@g

@xk
eijeikdx (6.175)

where we sum on all repeated indices. Therefore,

Z
�

X
i

ˇ̌
ˇ̌ @
@xj

h
.� C je.u/j2/ p�2

2 eij

iˇ̌ˇ̌2dx

� 2�
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Z
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@xj

@eij

@xj
dx C 2

Z
�

X
i

ˇ̌̌
ˇ @g@xj eij

ˇ̌̌
ˇ
2

dx: (6.176)

However, for fixed i ,

X
j

ˇ̌
ˇ̌ @g
@xj

eij

ˇ̌
ˇ̌2 � 2

X
j

@g

@xj
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@xj
C 2

X
j

eijeij (6.177a)

and

@g

@xj
D p � 2

2
.� C jej2/ p�4

2 ems
@

@xj
ems (sum on m; s) (6.177b)

so
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(6.178)
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Combining (6.178) with (6.177a) yields, for fixed i ,

X
j

ˇ̌̌
ˇ @g@xj eij

ˇ̌̌
ˇ
2

� 2
X
j

eijeij C
�
p � 2
2

�2
�p�2X

j

@ems

@xj

@ems

@xj
(6.179)

where, in the last term of (6.179), we also sum onm; n. Inserting (6.179) into (6.176)
now produces the estimate
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X
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@xj
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.� C je.u/j2/ p�2
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@xj
� @ems

@xj
dx

(6.180)

where n, the dimension of the physical space, is either 2 or 3 and we sum, in (6.180),
over all repeated indices i; j;m; s. Therefore, for some constant QC depending on �,
p, n and�, we have

"Z
�

X
i

ˇ̌
ˇ̌ @
@xj

h
.� C je.u/j2/ p�2

2 eij

iˇ̌ˇ̌2dx
#1=2

� QC jjujjV : (6.181)

Employing (6.181) in the last estimate of (6.173) we now find that for fixed l , but
with summation on all other repeated indices,
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(6.182)

for some QC1.�/ > 0. However, jjujjV � R, for t 2 Œ0; T /, so

@

@t

�
@ui
@xl

;
@ui
@xl

�
L2.�/

C 2�1

Z
�

@

@xk

�
@eij

@xl

�
@

@xk

�
@eij

@xl

�
dx

�
�
2�0 QCRC QC1R2 C �jjf jjL2.�/

�"Z
�

X
i

ˇ̌
ˇ̌@2ui
@x2l

ˇ̌
ˇ̌2dx

#1=2
:

(6.183)
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Summing over l now in (6.183) produces the estimate:
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2 CR3 C jjf jjL2.�/ �R
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(6.184)

where QC2.�/; QC3.�/ > 0. In (6.184) we now sum on all repeated indices i; j; k; l .
Integration of (6.184) over Œ0; T / then produces the estimate
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for some QC4.�/ > 0. However, as a direct consequence of (6.185), it follows that
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(6.186)

which serves to establish (6.169) with Ok.�0; �1;�;f ; R; T / as given by the right-
hand side of (6.186). ut
In view of the bound expressed by (6.186), and the equivalence

jujH 3.�/
2 �

Z
�

@

@xk

�
@eij.u/
@xl

�
@

@xk

�
@eij.u/
@xl

�
dx

we may state the following

Theorem 6.7. Under the same hypotheses as those which apply in the statement of
Lemma 6.11, 9k� > 0, k� depending only on�, �0, �1, f , R, and T , such that

Z T

0

jujH 3.�/
2.t/ dt � k�: (6.187)
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Remarks. From the manner in which Ok was defined at the conclusion of the proof
of Lemma 6.11, it is clear that the result expressed by Theorem 6.7 is entirely
equivalent to that expressed by Theorem 5.13.

6.3.5 The L2 Squeezing Property for the Orbits of S�1

We are now in a position to prove the validity of the L2 squeezing property for
solutions of the incomrpessible bipolar equations, under the condition of spatial
periodicity of the velocity field, when 1 < p � 2; the crucial result in this direction
is the following lemma:

Lemma 6.12. With 1 < p � 2, let u.t/, v.t/ be two solutions of (5.2a,b), (5.3b),
(5.4), corresponding to initial data u0; v0, such that for some M > 0, jju.t/jjV �
M , jjv.t/jjV � M , for 0 � t < T . Then for any t0 < T , 9k0

1 > 0, k0
2 > 0, and


0 > 0 such that

jjw.t0/jjL2.�/2 � jjw0jjL2.�/2 exp.��1
0t0k0
1 C k0

2/: (6.188)

where w.t/ D u.t/ � v.t/.
Proof. We work with the abstract formulation of (5.2a,b), (5.3b), (5.4), i.e., u.t/,
v.t/, respectively, are assumed to satisfy (6.149a,b) and (6.150a,b), with u0; v0 2 V
and jjujjV � M , jjvjjV � M for some M > 0 and all t 2 Œ0; T /. The difference
w.t/ D u.t/ � v.t/ then satisfies (6.155) and w.0/ D u0 � v0 	 w0. If we take the
inner-product, in L2.�/, of (6.155) with w.t/ we obtain

1

2

d

dt
jjwjjL2.�/2 C 2�1jjwjjV 2
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�

jjwjjL2.�/:
(6.189)

Employing the estimates (6.159)–(6.161) in (6.189) we then obtain
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d
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(6.190)

so that
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or
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If we now set
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we find that
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However, by Theorem 6.6 and Theorem 6.7 (with R 	 M ) we have, for 0 < t <

t0 < T ,
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with 
0 D jjw.t0/jjV 2=jjw.t0/jjL2.�/2. Employing (6.194) in (6.193) we obtain

d
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We now integrate (6.195) from 0 to t0 and find that
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(6.196)

with k0
1 D exp.�Oc1T � Oc2k�/. Also, by virtue of (6.192) and (6.187)
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C 16�20k
2
4M

2

3�1

Z T

0

jv.�/jH 3.�/
2d�

� 16

3�1
.�20k

2
3 C C 02.�/M2/T C 16�20k

2
4M

2

3�1
k�

	 k0
2

(6.197)

and the lemma, i.e., (6.188) now follows by combining (6.196) and (6.197). ut
The L2 squeezing property for the orbits of S �1 follows (almost) immediately

from Lemma 6.12; we state it as follows:

Theorem 6.8. Let u.t/, v.t/ be solutions of (6.149a,b), (6.150a,b) (alternatively,
(5.2a,b), (5.3b) and (5.4), corresponding to initial data u.0/ D u0 and v.0/ D v0,
respectively) such that jju.t/jjV � M , jjv.t/jjV � M , for some M > 0 and all
t 2 Œ0; T /. Assume that 1 < p � 2 and that u0; v0 are in V . Let �1; : : : ;�N be
the first N eigenfunctions of A, PN W H per ! spanf�1; : : : ;�N g the projection
operator, and QN D I � PN . Then 9 Nci > 0, i D 1; 2, depending only on M , T ,
f , �0, �1, �, and �, such that for every N , and all t 2 Œ0; T /, either (6.126) holds
or (6.127) does.

Proof. Suppose that jjQNw.t0/jjL2.�/ > jjPNw.t0/jjL2.�/, which corresponds to
the assumption that (6.126) does not hold; then


0 	 jjw.t0/jjV 2
jjw.t0/jjL2.�/2

D jjPNw.t0/jjV 2 C jjQNw.t0/jjV 2
jjPNw.t0/jjL2.�/2 C jjQNw.t0/jjL2.�/2

� jjQNw.t0/jjV 2
2jjQNw.t0/jjL2.�/2

� 1

2
NC1

(6.198)
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as

NC1 D min
w2M?

N

 
jjwjjV 2

jjwjjL2.�/2
!

(6.199)

withMN D spanf�1; : : : ;�N g. Using (6.198) in the estimate (6.188) we have

jjw.t0/jjL2.�/2 � jjw0jjL2.�/2 exp

�
�k

0
1

2
�1NC1t0 C k0

2

�
(6.200)

thus serving to demonstrate that (6.127) holds at an arbitrary t D t0 < T with

Nc1 D exp.k0
2/ and Nc2 D 1

2
k0
1; the proof of the L2 squeezing property for the bipolar

(incompressible) fluid model, in the spatially periodic case, is now complete. ut

6.4 Existence of Maximal Compact Attractors
for Incompressible Viscous Bipolar Fluids
in Unbounded Channels

6.4.1 Introduction

In Chap. 5 we looked at the problem of the existence of maximal compact global
attractors for the incompressible, nonlinear, bipolar fluid within the context of two
distinct scenarios: (1) in bounded domains, with a smooth boundary, where the
boundary conditions (5.3a) apply if �1 > 0 (and only the non-slip condition v D 0

holds for �1 D 0) and (2) in the domain � D Œ0; L�n, n D 2; 3, L > 0 with
periodic boundary conditions. In this section we turn to the problem of existence of
a maximal compact global attractor for the bipolar (�1 > 0) fluid in an unbounded
channel; an existence theorem for this problem was established in Sect. 4.4. In order
to keep the analysis in this section as self-contained as possible, in this section
we review, briefly, the existence and uniqueness results established in Sect. 4.4 for
the system (5.2a,b), (5.4) in an unbounded two-dimensional channel � � R2 of
the form � D R 
 .�a; a/, a > 0; with � the exterior unit normal to @�; the
boundary conditions are once again assumed to be of the form (5.3a). As in Sect. 4.4,
we introduce the spaces

NV 	 the closure of J .�/ in H 2.�/ (6.201a)

and

NH 	 the closure of J .�/ in L2.�/ (6.201b)
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where

J .�/ D f' 2 C1
0 .

N�/ j ' D 0 on @� & div' D 0 in �g: (6.201c)

Also, as in Sect. 4.4 we let NV 0
and NH 0

be the dual spaces, respectively of NV
and NH . The inner product and the norm in NH are those inherited from L2, i.e.,
.�; /L2.�/ and jj�jjL2.�/. By duality, if NH 0

is the dual of NH , then the adjoint i � of

the identity is injective, i �. NH 0
/ is dense in NV 0

, and we can identify NH 0
with a dense

subspace of NV 0
. By identifying NH with its dual NH 0

we obtain

NV � NH 	 NH 0 � NV 0
(6.202)

where each space is dense in the following, the injection being continuous.
We also introduce the linear operator NA by considering the positive definite

NV -elliptic symmetric bilinear form Na.�; �/ W NV 
 NV ! R given by

Na.u; v/ D
Z
�

@eij

@xj

@eij

@xj
dx: (6.203)

As a consequence of the Lax-Milgram Lemma we obtain an isometry NA 2
L. NV I NV 0

/, via

˝ NAu; v
˛

NV 0� NV D Na.u; v/ D hf ; vi NV 0� NV 0 ; 8v 2 NV (6.204)

with f 2 NV 0
, where the domain of NA is

D. NA/ D fu 2 V j Na.u; v/ D .f ; v/L2.�/;f 2 NH � NV 0
; 8v 2 NV g: (6.205)

Thus NA 2 L.D.A/I NH /\ L. NV ; NV 0
/.

To reformulate our problem in a Hilbert space setting, we define onH 1
0.�/ and,

thus, on NV , the trilinear continuous form b.�; �; �/ by setting

b.u; v;w/ D
Z
�

ui
@vj

@xi
wj dx; for u; v;w 2 H 1

0.�/: (6.206)

and recall that, 8u; v;w 2 H 1
0.�/,

b.u; v; v/ D 0 and b.u; v;w/ D �b.u;w; v/: (6.207)

For u; v 2 NV , we denote by NB.u; v/ the element of NV 0
defined by

˝ NB.u; v/;w˛ D b.u; v;w/; 8w 2 NV (6.208a)
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and set

NB.u/ D NB.u;u/ 2 NV 0
; 8u 2 NV : (6.208b)

For u 2 NV , we let NN .u/ be the element of NV 0
defined by

˝ NN .u/; v˛ D 2

Z
�

�.u/eij.u/eij.v/dx; 8v 2 NV : (6.209)

We recall the weak formulation of the problem considered in Sect. 4.4, namely,
given f and v0 satisfying f 2 L2.Œ0; T /I NH / and v0 2 NH , find v satisfying

v 2 L2.Œ0; T /I NV / \L1.Œ0; T /I NH /; v0 2 L2.Œ0; T /I NV 0
/; (6.210)

v0 C 2�1 NAvC NN .v/C NB.v/ D f (6.211)

v.0/ D v0: (6.212)

Also, it was shown in Sect. 4.4 that any v satisfying (6.210)–(6.212), for which
V 0 2 L2.Œ0; T /I NV 0

/, also satisfies
�
@v

@t
;�

�
L2.�/

C 2�1

�
@eij.v/

@xk
;
@eij.�/

@xk

�
L2.�/

C ˝ NN .v/;�˛C b.v; v;�/ D .f ;�/:

(6.213)

8' 2 NV , with v 2 L2.Œ0; T /I NV /\ L1.Œ0; T /I NH / and v.0/ D v0. For the abstract
version of our problem, i.e., (6.210)–(6.212) the following result on existence and
uniqueness was established in Sect. 4.4 (see Theorems 4.18 and 4.19): For f 2
L2.Œ0; T /I NH / and v0 2 NH there exists a unique solution v of (6.211), (6.212) for
which (6.210) is satisfied.

As a consequence of the analysis in Sect. 4.4.4 it follows that the unique solution
of (6.211), (6.212), satisfying (6.210), also satisfies v 2 C.Œ0; T �I NH /. As indicated
in Sect. 4.4, because � is unbounded, the embeddings H 2.�/ ,! L2.�/ and
H 1.�/ ,! L2.�/ are not compact and, thus, the existence of solutions of (6.211),
(6.212) can not be established directly by using the Galerkin method. Instead, by
following the approach in [BB1, 2] and letting f�N g,N D 1; 2; : : : be an expanding
sequence of simply connected bounded subdomains of � such that �N ! �,
as N ! 1, with @�N of class C1, it was shown that there exists a convergent
subsequence of approximate solutions whose limit is a solution of (6.211), (6.212).

In this section we will establish the existence of a maximal compact attractor
for (6.211), (6.212); in order to accomplish this task we need to introduce the
sequence of approximate problems employed in the existence and uniqueness proof
in Sect. 4.4. Thus, with D.�N / D C1

0 .�N /, we set
(
�C
N D f.x1; a/ j .x1; a/ 2 N�N g;
��
N D f.x1;�a/ j .x1;�a/ 2 N�N g; (6.214)
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J .�N / D f' 2 J .�/ \ .D.�N /[ �C
N [ ��

N /g; (6.215)( NV N D the closure of J .�N / in H 2.�N /;

NH N D the closure of J .�N / in L2.�N /:
(6.216)

and denote by NV 0
N and NH 0

N , respectively, the dual of NV N and NH N . We also define
NAN by

˝ NANv;'
˛ D

�
@eij.v/

@xk
;
@eij.'/

@xk

�
L2.�/

; 8v;' 2 NV N : (6.217)

We recall from Sect. 4.4 that

(i) J .�1/ � J .�2/ � � � � � J .�/.
(ii) 8v 2 NV N (v 2 NH N ), if we extend v by setting v D 0 outside �N , then

v 2 NV NCj � NV , j D 0; 1; : : : (v 2 NH NCj � NH , j D 1; 2; : : :), i.e., NV 1 �
NV 2 � � � � � NV (and NH 1 � NH 2 � � � � � NH ).

and that the N th member of the sequence of approximating problems which
corresponds to (6.210), (6.211), (6.212) consists of the following: for f N 2
L2.Œ0; T /I NH N /, v

N
0 2 NH N find vN such that

vN 2 L2.Œ0; T /I NV N / \L1.Œ0; T /I NH N /; .vN /0 2 L2.Œ0; T /I NV 0
N / (6.218a)

.vN /0 C 2�1 NAvN C NN .vN /C NB.vN / D f N (6.218b)

vN .0/ D vN0 : (6.218c)

The existence of a solution vN of (6.218a,b,c) was established in Sect. 4.4;
moreover, it was shown there that for any t 2 .0; T /, vN satisfies the energy identity

ˇ̌ˇ̌
vN
ˇ̌ˇ̌
L2.�N /

2 C 4�1

Z t

0

Z
�N

@eij.v
N /

@xk
� @eij.v

N /

@xk
dx d� C 2

Z t

0

˝
�.vN /; vN

˛
d�

D ˇ̌ˇ̌
vN0
ˇ̌ˇ̌
L2.�N /

2 C 2

Z t

0

�
f N .�/; vN

�
L2.�N /

d�: (6.219)

By virtue of Theorems 4.18 and 4.19, and the remark which follows the restatement
of those theorems, above, it follows that there exists a unique solution v 2
L2.Œ0; T /I NV / \ C.Œ0; T /I NH / when v0 2 NH and f 2 L2.Œ0; T /I NH /. We may
then conclude that the associated solution operator S �1.t/ is a continuous nonlinear
map from NH into itself for each t 2 Œ0; T / and it is natural to ask whether
there exists a global attractor in this case. It is easy to prove the existence of an
absorbing set in NV , i.e., a bounded set reached by every trajectory in a finite time;
unfortunately, the injection of NV into NH is not compact, so one can not apply general
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results (e.g. [Te4]) in this situation. However, following some ideas in [Ab1, 2] we
are able to prove time-dependent weighted estimates for the solution v so as to
establish the existence of the global attractor when the function f satisfies some
suitable assumption relative to decay at infinity. In this section we start by proving
the existence of absorbing sets in NH and H 2 in Sect. 6.4.2. Then in Sect. 6.4.3
we introduce a weighted function space and prove the time-dependent weighted
estimates for the solution v which serve to establish the existence of the global
attractor.

6.4.2 The Absorbing Sets in NH andH2

Let v0 2 NH and f 2 L1.Œ0;1/I NH /. Also, let vN0 ;f
N be, respectively, the

projections of v0 and f on NH and let vN be the unique solution of (6.218b,c)
which satisfies (6.218a). Our first task is to establish the existence of an absorbing
set in NH . We begin with

Lemma 6.13. If v satisfying (6.210) is the unique solution of the initial-value
problem (6.211), (6.212), with v0 2 NH and f 2 L1.Œ0; T /I NH /, respectively, then
9ˇ D ˇ.�1I�/ > 0 and t0 D t0.�1; v0/ > 0 such that 8t � t0,

jjvjjL2.�/2 � 2ˇ2jjf jj12 	 � (6.220)

where

jjf jj1 D sup
Œ0;1/

jjf jjL2.�/ 	 jjf jjL1.Œ0;1/I NH /: (6.221)

Proof. We begin by taking the inner-product of (6.218b) with vN so as to obtain

1

2

d

dt

ˇ̌ˇ̌
vN
ˇ̌ˇ̌
L2.�N /

2 C 2�1

�
@eij.v

N /

@xk
;
@eij.v

N /

@xk

�
L2.�N /

C ˝ NN .vN /; vN ˛

D �
f N ; vN

�
L2.�N /

(6.222)

where we have used the fact that b.vN ; vN ; vN / D 0. Dropping the positive term˝ NN .vN /; vN ˛ in (6.222) we obtain

1

2

d

dt

ˇ̌ˇ̌
vN
ˇ̌ˇ̌
L2.�N /

2 C 2�1

�
@eij.v

N /

@xk
;
@eij.v

N /

@xk

�
L2.�N /

� �
f N ; vN

�
L2.�N /

� ˇ̌ˇ̌
f N

ˇ̌ˇ̌
1
ˇ̌ˇ̌
vN
ˇ̌ˇ̌
L2.�N /

� jjf jj1
ˇ̌ˇ̌
vN
ˇ̌ˇ̌
L2.�N /

:

(6.223)
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Applying Lemma B.2 with � D �N , and letting N ! 1 in the terms representing
the upper and lower bounds, after extending vN to all of � by taking vN 	 0 in
�=�N , it follows that 9k D k.�/ > 0 such that

1

2

d

dt

ˇ̌ˇ̌
vN
ˇ̌ˇ̌
L2.�/

2 C 2�1k.�/
ˇ̌ˇ̌
vN
ˇ̌ˇ̌
H 2.�/

2 � jjf jj1
ˇ̌ˇ̌
vN
ˇ̌ˇ̌
L2.�/

(6.224)

so that for any ˇ > 0,

1

2

d

dt

ˇ̌ˇ̌
vN
ˇ̌ˇ̌
L2.�/

2 C 2�1k.�/
ˇ̌ˇ̌
vN
ˇ̌ˇ̌
H 2.�/

2 � ˇ

2
jjf jj1 C 1

2ˇ

ˇ̌ˇ̌
vN
ˇ̌ˇ̌
L2.�/

:

(6.225)

If we set ˇ D 1

2�1k.�/
in (6.225), then we find that

1

2

d

dt

ˇ̌ˇ̌
vN
ˇ̌ˇ̌
L2.�/

2 C 2�1k.�/
ˇ̌ˇ̌
vN
ˇ̌ˇ̌
H 2.�/

2 � ˇjjf jj1: (6.226)

We now multiply (6.226) by e2�1k.�/t , and integrate from 0 to t , so as to obtain the
estimates

ˇ̌ˇ̌
vN
ˇ̌ˇ̌
L2.�/

2 � e�2�1k.�/t
�ˇ̌ˇ̌
vN .0/

ˇ̌ˇ̌
L2.�/

2 C ˇ

Z t

0

e2�1k.�/sjjf jj12ds



� e�2�1k.�/t
(

jjv.0/jjL2.�/2 C ˇjjf jj12

2�1k.�/t



1 � e�2�1k.�/t�

)

� e�2�1k.�/t
h
jjv.0/jjL2.�/2 C ˇ2jjf jj12

i
: (6.227)

It follows that there exists t0 D t0.�1I jjv0jjL2.�// > 0 such that 8t � t0,

ˇ̌ˇ̌
vN
ˇ̌ˇ̌
L2.�/

2 � 2ˇ2jjf jj12: (6.228)

However, ˇ is independent of N , so the required result, i.e., (6.220) follows from
(6.228) by letting N ! 1. ut
Theorem 6.9. There exists an absorbing set in NH for the nonlinear semigroup
S�1.t/ generated by the solution of the initial-value problem (6.211), (6.212) if
v0 2 NH and f 2 L1.Œ0; T /I NH /.
Proof. The estimate (6.220) suffices to establish the existence of an absorbing set
in NH because, if v0 is in a bounded set B0 � NH , with jjv0jjL2.�/ � R0, for some

R0 > 0, S�1.t/v0 2 B�

NH , for t � t0.�1IR0/, where � D 2ˇ2jjf jj12. ut
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Having established the existence of an absorbing set in NH for the solutions of
(6.211), (6.212), we now want to prove the existence of an absorbing set inH 2.�/.
To this end we first prove

Lemma 6.14. Let vN , satisfying (6.218a), be the unique solution of (6.218b,c) with
vN0 ;f

N , respectively, the projections of v0 and f on NH N . Set

yN .t/ D �1

Z
�N

@eij.v
N /

@xk

@eij.v
N /

@xk
dx C

Z
�N

�.eijeij/dx: (6.229)

Then 9 Qc D Qc.�/ > 0, and independent of N , such that yN satisfies the differential
inequality

dyN
dt

� a.t/yN .t/C b.t/; (6.230)

with

a.t/ D Qc.�/
�1

ˇ̌ˇ̌
vN
ˇ̌ˇ̌
H 2.�/

2
and b.t/ D 1

2
jjf jj12: (6.231)

Proof. We take the inner-product in L2.�N / of (6.218b) with
dvN

dt
, and again

extend vN to all of � by taking vN D 0 in �=�N , so as to obtain the energy
identity

ˇ̌
ˇ̌
ˇ̌
ˇ̌dvN

dt

ˇ̌
ˇ̌
ˇ̌
ˇ̌
L2.�/

2

C2�1

0
BB@@eij.v

N /

@xk
;

@eij

�
dvN

dt

�

@xk

1
CCA
L2.�/

C
�
N.vN /;

dvN

dt

�
Cb

�
vN ; vN ;

dvN

dt

�

D
�
f N ;

dvN

dt

�
L2.�/

: (6.232)

If we introduce the usual potential (eij D eij.v
N /),

�.eijeij/ D
Z eijeij

0

�0.� C s/� ˛
2 ds

so that

d�

dt
D 2�.vN /eij

@eij

@t
; (6.233)
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then we have �
N.vN /;

dvN

dt

�
D 2

Z
�

�.vN /eij
@eij

@t
dx

D d

dt

�Z
�

�.eijeij/dx

	
:

(6.234)

From (6.232), (6.233) we obtain

ˇ̌
ˇ̌
ˇ̌
ˇ̌dvN

dt

ˇ̌
ˇ̌
ˇ̌
ˇ̌2
L2.�/

C d

dt

�
�1

Z
�

@eij.v
N /

@xk

@eij.v
N /

@xk
dx C

Z
�

�.eijeij/dx

	

D �b
�
vN ; vN ;

dvN

dt

�
C
�
f N ;

dvN

dt

�
L2.�/

�
ˇ̌
ˇ̌Z
�

vNj
@vNi
@xj

dvNi
dt

dx

ˇ̌
ˇ̌C jjf jj1

ˇ̌
ˇ̌
ˇ̌
ˇ̌dvN

dt

ˇ̌
ˇ̌
ˇ̌
ˇ̌
L2.�/

�
ˇ̌
ˇ
ˇ̌
ˇvNj

ˇ̌
ˇ
ˇ̌
ˇ
L4.�/

ˇ̌
ˇ̌
ˇ̌
ˇ̌@vNi
@xj

ˇ̌
ˇ̌
ˇ̌
ˇ̌
L4.�/

ˇ̌
ˇ̌
ˇ̌
ˇ̌dvNi

dt

ˇ̌
ˇ̌
ˇ̌
ˇ̌
L2.�/

C jjf jj1
ˇ̌
ˇ̌
ˇ̌
ˇ̌dvN

dt

ˇ̌
ˇ̌
ˇ̌
ˇ̌
L2.�/

:

(6.235)

By Lemmas 4.8 and 4.9, there exist Oc.�/ and Qc.�/, both positive and independent
of N , such that

ˇ̌
ˇ
ˇ̌
ˇvNj

ˇ̌
ˇ
ˇ̌
ˇ
L4.�/

ˇ̌
ˇ̌
ˇ̌
ˇ̌@vNi
@xj

ˇ̌
ˇ̌
ˇ̌
ˇ̌
L4.�/

ˇ̌
ˇ̌
ˇ̌
ˇ̌dvNi

dt

ˇ̌
ˇ̌
ˇ̌
ˇ̌
L2.�/

� Oc.�/ˇ̌ˇ̌vN ˇ̌ˇ̌
L2.�/

1
2
ˇ̌ˇ̌
vN
ˇ̌ˇ̌
H 1.�/

ˇ̌ˇ̌
vN
ˇ̌ˇ̌
H 2.�/

1
2

ˇ̌
ˇ̌
ˇ̌
ˇ̌dvNi

dt

ˇ̌
ˇ̌
ˇ̌
ˇ̌
L2.�/

� Nc.�/ˇ̌ˇ̌vN ˇ̌ˇ̌
H 2.�/

2

ˇ̌
ˇ̌
ˇ̌
ˇ̌dvNi

dt

ˇ̌
ˇ̌
ˇ̌
ˇ̌
L2.�/

:

(6.236)

Combining (6.235) and (6.236), and applying Young’s inequality in conjunction
with Lemma B.2 we obtain the estimates

1

2

ˇ̌
ˇ̌
ˇ̌
ˇ̌dvN

dt

ˇ̌
ˇ̌
ˇ̌
ˇ̌
L2.�/

2

C d

dt

�
�1

Z
�N

@eij.v
N /

@xk

@eij.v
N /

@xk
dx C

Z
�N

�.eijeij/dx

	

� c2.�/
ˇ̌ˇ̌
vN
ˇ̌ˇ̌
H 2.�/

4 C jjf jj1

� Qc.�/
�1

ˇ̌ˇ̌
vN
ˇ̌ˇ̌
H 2.�/

2
�
�1

Z
�N

@eij.v
N /

@xk

@eij.v
N /

@xk
dx

	
C 1

2
jjf jj12

(6.237)
from which (6.230), (6.231) follows. ut
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Having established the differential inequality (6.230) we now are in a position to
apply the Uniform Gronwall Lemma (Appendix A) once we prove the following:

Lemma 6.15. For the coefficients a.t/, b.t/ defined by (6.231), there exists r and
ki .r/, i D 1; 2; 3, all positive constants, independent of N , such that for all t �
t0.�1I jjv0jjL2.�//

Z tCr

t

a.s/ ds � k1.r/;

Z tCr

t

b.s/ ds � k2.r/;

Z tCr

t

yN .s/ ds � k3.r/:

(6.238)

Proof. We start by choosing r > 0 arbitrary and then integrate (6.224) from t to
t C r so as to obtain

1

2

ˇ̌ˇ̌
vN .t C r/

ˇ̌ˇ̌
L2.�/

2 � 1

2

ˇ̌ˇ̌
vN .t/

ˇ̌ˇ̌
L2.�/

2

C
Z tCr

t

2�1k.�/
ˇ̌ˇ̌
vN
ˇ̌ˇ̌
H 2.�/

2
ds �

Z tCr

t

jjf jj1
ˇ̌ˇ̌
vN
ˇ̌ˇ̌
L2.�/

: (6.239)

An immediate consequence of (6.239) is the estimate

Z tCr

t

2�1k.�/
ˇ̌ˇ̌
vN
ˇ̌ˇ̌
H 2.�/

2
ds �

Z tCr

t

jjf jj1
ˇ̌ˇ̌
vN
ˇ̌ˇ̌
L2.�/

ds C 1

2

ˇ̌ˇ̌
vN .t/

ˇ̌ˇ̌
L2.�/

2
:

(6.240)

However, by virtue of the definition of a.t/, i.e., (6.231),

Z tCr

t

a.s/ ds D Qc.�/
�1

Z tCr

t

ˇ̌ˇ̌
vN
ˇ̌ˇ̌
H 2.�/

2
ds

	 Qc.�/
2�21k.�/

Z tCr

t

2�1k.�/
ˇ̌ˇ̌
vN
ˇ̌ˇ̌
H 2.�/

2
ds

so an application of (6.240) yields

Z tCr

t

a.s/ ds � Qc.�/
2�21k.�/

�Z tCr

t

jjf jj1
ˇ̌ˇ̌
vN
ˇ̌ˇ̌
L2.�/

ds C 1

2

ˇ̌ˇ̌
vN .t/

ˇ̌ˇ̌
L2.�/

2


� Qc.�/
2�21k.�/

�
jjf jj1�r C 1

2
�2


	 k1.r/ (6.241)
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where we have made use of (6.228) and, as in (6.220), set � D 2ˇ2jjf jj1. Also
from the definition of b.t/, we have

Z tCr

t

b.s/ ds D
Z tCr

t

jjf jj1ds D r jjf jj1 	 k2.r/: (6.242)

It remains, therefore, to show that for t � t0.�1I jjv0jjL2.�//,
Z tCr

t

y.s/ ds�1

Z tCr

t

Z
�

@eij.v
N /

@xk

@eij.v
N /

@xk
dx d�

C
Z tCr

t

Z
�

�.eij.v
N /eij.v

N //dx d� � k3.r/

(6.243)

for some k3.r/ � 0; to this end, we integrate the last estimate in (6.223) from t to
t C r , apply (6.228), and thereby obtain

1

2

ˇ̌ˇ̌
vN .t C r/

ˇ̌ˇ̌
L2.�/

2 C 2�1

Z tCr

t

Z
�

@eij.v
N /

@xk

@eij.v
N /

@xk
dx d�

� jjf jj1
Z tCr

t

ˇ̌ˇ̌
vN .s/

ˇ̌ˇ̌2
ds C 1

2

ˇ̌ˇ̌
vN .t/

ˇ̌ˇ̌
L2.�/

2

� jjf jj1�r C 1

2
�2; 8t � t0.�1I jjv0jjL2.�//:

(6.244)

By dropping the nonnegative term
1

2

ˇ̌ˇ̌
vN .t C r/

ˇ̌ˇ̌
L2.�/

2
in (6.244), we obtain the

bound

�1

Z tCr

t

Z
�

@eij.v
N /

@xk

@eij.v
N /

@xk
dx � 1

2
jjf jj1�r C 1

4
�2: (6.245)

As we are assuming that 1 < p � 2, so that ˛ D 2 � p satisfies 0 � ˛ < 1,
.� C s/�˛=2 � ��˛=2, 8s � 0, and

�.eijeij/ D
Z eijeij

0

�0.� C s/�˛=2ds � �0�
�˛=2eijeij:

Therefore, for t � t0.�1I jjv0jjL2.�//, 9c0.�/ > 0 such that
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Z tCr

t

Z
�

�.eijeij/dx ds � �0

�
˛
2

Z tCr

t

�Z
�

eijeij dx

�
ds

� �0c
0.�/
�
˛
2

Z tCr

t

ˇ̌
vN
ˇ̌
H 1.�/

2
ds

� �0c
0.�/
�
˛
2

Z tCr

t

ˇ̌ˇ̌
vN
ˇ̌ˇ̌
H 2.�/

2
ds

� �1�0c
0.�/

Qc.�/� ˛2
Z tCr

t

a.s/ ds

� �1�0c
0.�/

Qc.�/� ˛2 k1.r/

(6.246)

where we have used (6.241). Combining (6.245) and (6.244) we now see that (6.243)
holds for t � t0.�1I jjv0jjL2.�// with

k3.r/ D 1

2
jjf jj1�r C 1

4
�2 C �1�0c

0.�/
Qc.�/� ˛2 k1.r/: (6.247)

ut
With the bounds displayed in (6.238) in hand, we may apply the Uniform

Gronwall Lemma to (6.230) so as to conclude that, for t � t0.�1I jjv0jjL2.�//,

yN .t C r/ �
�
k3.r/

r
C k2.r/

�
exp.k1.r//

in which case, 8t � t0.�1I jjvjjL2.�//C r ,

yN .t/ �
�
k3.r/

r
C k2.r/

�
exp.k1.r//: (6.248)

By the definition of yN .t/, Lemma B.2, and (6.248), there exists a constant k.r/ > 0
such that

ˇ̌ˇ̌
vN .t/

ˇ̌ˇ̌
H 2.�/

� k.r/; 8t � t0.�1I jjv0jjL2.�//C r: (6.249)

But the ki .r/, i D 1; 2; 3 are independent of N and so, therefore, is k.r/. Thus, we
may let N ! 1 in (6.249) so as to obtain the following result:

Theorem 6.10. There exists an absorbing set in H 2.�/ for the nonlinear semi-
group S�1.t/ generated by the solution of the initial-value problem (6.211), (6.212),
if v0 2 NH and f 2 L1.Œ0; T /I NH /.
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Proof. The estimate (6.249) shows that for v0 in a bounded set B 0
0 � NH , with

jjv0jjL2.�/ � R0
0, for some R0

0 > 0, S�1.t/v0 2 B
�0

H 2.�/
for t � t0.�1IR0

0/ where

�0 D k.r/. ut

6.4.3 Existence of a Global Attractor for Flow
in an Unbounded Channel

Although we have established, in Sect. 6.4.2, the existence of absorbing sets in B�

NH
andB�0

H 2.�/
, because� is not bounded the embeddingH 2.�/ ,! NH is not compact;

thus, at this point, we can not deduce the existence of an attractor. In order to prove
the existence of a maximal compact global attractor, for the orbits of the semigroup
S�1.t/ generated by the solutions of (6.211), (6.212), we will appeal to a result
which has been proven in [Ab2], namely,

Lemma 6.16. Let h.x1; t/ be a smooth (weight) function satisfying

(i) h.x1; t/ � 0, 8t � 0, �1 < x1 < C1, and h.x; 0/ D 0, �1 < x1 < C1,
(ii) each derivative of order � 1 of h is a bounded function,

(iii) h.x1; t/ ! C1 as jx1j ! 1.

Then there exists a positive constant C , such that if the velocity field v in (6.211),
(6.212) satisfies

sup
t�Nt0

Z
�

jjv.x1; x2; t/jjL2.�/2h.x1; t/dx1 dx2 � C (6.250)

for some Nt0 > 0 and all v0 2 B
�0

H 2.�/
, the dynamical system defined by (6.211),

(6.212) possesses a global attractor A�1 , i.e., a compact invariant set in NH which
attracts every bounded set of NH , and is maximal with respect to these properties.

By Lemma 6.16 it follows that to prove the existence of a maximal compact
global attractorA�1 , for the problem at hand, it suffices to establish (6.250). We will
prove (6.250) with a specific choice of h.x1; t/ under some assumptions on the
function f D f .t/. We begin by setting

'.x1/ D ln.2C x21/ (6.251a)

and

h.x1; t/ D '.x1/

�
1 � exp

��.t � Nt0/
'.x1/

�
(6.251b)
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where Nt0, independent of N , will be determined, below; it is a straightforward
exercise to verify that (i) and (iii) of Lemma 6.16 hold for this choice of h. To prove
(ii), we take derivatives of ' and h so as to get

' 0.x1/ D 2x1

2C x21
; ' 00 D 4 � 2x21

.2C x21/
2

(6.252)

and

@h

@t
D '.x1/

�
� exp

��.t � Nt0/
'.x1/

��
� 1

'.x1/

�

D exp

��.t � Nt0/
'.x1/

�
� 1;

(6.253)

8t � Nt0, �1 � x1 � C1. Also

@h

@x1
D ' 0.x1/

�
1 � exp

��.t � Nt0/
'.x1/

�
C .t � Nt0/
'2.x1/

exp

��.t � Nt0/
'.x1/

�
(6.254)

and

@2h

@x21
D ' 00.x1/

�
1 � exp

��.t � Nt0/
'.x1/

�
C .t � Nt0/
'2.x1/

exp

��.t � Nt0/
'.x1/

�

� .t � Nt0/.' 0.x1//2

'3.x1/
exp

��.t � Nt0/
'.x1/

�
:

(6.255)

From (6.253)–(6.255), we see that there is a constant c1 > 0 such that

ˇ̌̌
ˇ@h@t

ˇ̌̌
ˇ;

ˇ̌̌
ˇ @h@x1

ˇ̌̌
ˇ;

ˇ̌̌
ˇ̌ @2h
@x21

2

ˇ̌̌
ˇ̌ � c1; 8t � Nt0; �1 < x1 < C1: (6.256)

In order to prove (6.250), we will need the following Poincaré type inequality:

Lemma 6.17. Let g 2 C2
0 .�/ and Nh 2 C.R1/ with Nh.x1/ � 0, �1 < x1 < 1.

Then 9c2 > 0 such that

Z
�

jg.x1; x2/j2 Nh.x1/dx1 dx2 � c2

Z
�

ˇ̌̌
ˇ@
2g

@x22
.x1; x2/

ˇ̌̌
ˇ
2

Nh.x1/dx1 dx2: (6.257)
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Proof. We write g.x1; x2/ D
Z x2

�a
@g

@�
.x1; �/d�. Then

jg.x1; x2/j2 D
ˇ̌
ˇ̌Z x2

�a
@g

@�
.x1; �/d�

ˇ̌
ˇ̌2

� 2a

 Z a

�a

ˇ̌
ˇ̌@g
@�
.x1; �/

ˇ̌
ˇ̌2d�

! (6.258)

and

Z a

�a

ˇ̌
ˇ̌@g
@�
.x1; �/

ˇ̌
ˇ̌2d� D �

Z a

�a
g.x1; �/

@2g

@�2
.x1; �/d�

�
�Z a

�a
jg.x1; �/j2d�

� 1
2

 Z a

�a

ˇ̌
ˇ̌@2g
@�2

.x1; �/

ˇ̌
ˇ̌2d�

! 1
2

� �

2

Z a

�a
jg.x1; �/j2d�C 1

2�

Z a

�a

ˇ̌
ˇ̌@2g
@�2

.x1; �/

ˇ̌
ˇ̌2d�; 8� > 0:

(6.259)

From (6.258) and (6.259), we obtain, for any � > 0,

Z
�

jg.x1; x2/j2 Nh.x1/dx1 dx2 � 2a

Z
�

"Z a

�a

ˇ̌̌
ˇ@g@� .x1; �/

ˇ̌̌
ˇ
2

d�

#
Nh.x1/dx1 dx2

� a�

Z
�

�Z a

�a
jg.x1; �/j2d�


Nh.x1/dx1 dx2

C a

�

Z
�

"Z a

�a

ˇ̌̌
ˇ@
2g

@�2
.x1; �/

ˇ̌̌
ˇ
2

d�

#
Nh.x1/dx1 dx2

D 2a2�

Z
�

jg.x1; x2/j2 Nh.x1/dx1 dx2

C 2a2

�

Z
�

ˇ̌
ˇ̌@2g
@x22

.x1; x2/

ˇ̌
ˇ̌2 Nh.x1/dx1 dx2:

(6.260)

If we now set � D 1

4a2
in (6.260), we obtain the estimate

Z
�

jg.x1; x2/j2 Nh.x1/dx1 dx2 � c2

Z
�

ˇ̌̌
ˇ@
2g

@x22
.x1; x2/

ˇ̌̌
ˇ
2

Nh.x1/dx1 dx2; (6.261)

with c2 D 16a4. ut



504 6 Inertial Manifolds, Orbit Squeezing, and Attractors for Bipolar Flow : : :

Lemma 6.17 can now be used to produce the following result:

Lemma 6.18. There exists a positive constant c3 such that

Z
�

jv.x1; x2/j2 Nh.x1/dx1dx2 � c3

Z
�

@eij.v/

@xk

@eij.v/

@xk
Nh.x1/dx1dx2; (6.262)

8v 2 NV with Nh.x1/ � 0.

Proof. As
@e11

@x1
D @2v1

@x21
,
@e22

@x1
D @2v2

@x21
, and

@v1

@x1
C @v2

@x2
D 0, we also have

@e12

@x2
D 1

2

�
@2v1

@x22
� @2v1

@x21

�
:

Therefore,

@eij.v/

@xk

@eij.v/

@xk
�
ˇ̌
ˇ̌@e11
@x1

ˇ̌
ˇ̌2 C

ˇ̌
ˇ̌@e12
@x2

ˇ̌
ˇ̌2 C

ˇ̌
ˇ̌@e22
@x1

ˇ̌
ˇ̌2

�
ˇ̌
ˇ̌@2v1
@x21

ˇ̌
ˇ̌2 C 1

4

ˇ̌
ˇ̌@2v1
@x22

� @2v2

@x21

ˇ̌
ˇ̌2 C

ˇ̌
ˇ̌@2v2
@x21

ˇ̌
ˇ̌2

� 3

16

ˇ̌
ˇ̌@2v1
@x21

ˇ̌
ˇ̌2 C

ˇ̌
ˇ̌@2v2
@x21

ˇ̌
ˇ̌2 � 3

16

"ˇ̌
ˇ̌@2v1
@x21

ˇ̌
ˇ̌2 C

ˇ̌
ˇ̌@2v2
@x21

ˇ̌
ˇ̌2
#
:

(6.263)

The estimate (6.262) is now a direct consequence of (6.263) and Lemma 6.17. ut
We are now in a position to establish (6.250). We will start by studying the

approximate solutions vN .

Lemma 6.19. Let vN satisfy (6.218a,b,c) where f N 2 L2.Œ0; T /I NH N / and vN0 2
NH N . Then 9C > 0, and Nt0 > 0, both of which are independent of N , such that, for
t � Nt0,

Z
�N

ˇ̌ˇ̌
vN .x1; x2; t/

ˇ̌ˇ̌
L2.�N /

2
h.x1; t/dx1dx2 � C (6.264)

where h.x1; t/ is given by (6.251b), with Nt0 as indicated below.

Proof. The divergence free condition with respect to vN indicates the existence of
a stream function '.x1; x2; t/ such that

vN D
�
@'N

@x2
;�@'

N

@x1

�
(6.265)
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and a unique 'N can be obtained by solving the boundary-value problem

8<
:
�'N D �@v

N
2

@x1
C @vN1
@x2

; in �N ;

'N D 0; on @�N :

(6.266)

By (6.249), 8vN0 2 B�0

H 2.�N /
, there exists Nt0 > 0, independent of N , such that

ˇ̌ˇ̌
vN
ˇ̌ˇ̌
H 2.�N /

� �0; 8t � Nt0; with N D 1; 2; : : : : (6.267)

In fact, by virtue of (6.249), Nt0 D t0.�1I jjv0jjL2.�// C r , with jjv0jjL2.�/ D
lim
N!1

ˇ̌ˇ̌
vN0
ˇ̌ˇ̌
L2.�/

, if we again choose vN0 to be the projection of v0 on NH N .

Therefore, as a consequence of (6.265) and (6.267), 9c4 > 0, independent of N ,
such that

ˇ̌
'N
ˇ̌
H3.�N /

� c4; 8t � Nt0: (6.268)

Now, let

w D .w1;w2/ D
�
@.'h/

@x2
;�@.'h/

@x1

�
: (6.269)

Noting that w 2 NV N and taking the inner product of (6.218b) with w, we obtain

�
@

@t
vNi ;wi

�
L2.�/

C 2�1

�
@eij.v

N /

@xk
;
@eij.v

N /

@xk

�
L2.�/

C ˝ NN .vN /;w˛

C B.vN ; vN ;w/ D �
f N ;w

�
L2.�/

: (6.270)

By (6.265) and the fact that
@h

@x2
D 0, we have

w1 D vN1 h (6.271a)

and

w2 D vN2 h� '
@h

@x1
: (6.271b)

A direct calculation, employing (6.256) in conjunction with (6.271a,b) yields the
following estimate for the first term on the left-hand side of (6.270) for some ki > 0,
i D 1; 2:
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�
@vNi
@t

;wi

�
L2.�/

D @vN1
@t

w1 C @vN2
@t

w2

D
�
@vNi
@t

; vNi h

�
L2.�/

� @vN2
@t

@h

@x1
'

D 1

2

Z
�N

ˇ̌ˇ̌
vN
ˇ̌ˇ̌
L2.�/

2
h dx1dx2

� 1

2

Z
�N

ˇ̌ˇ̌
vN
ˇ̌ˇ̌
L2.�/

2 @h

@t
dx1dx2 � @vN2

@t

@h

@x1
'

� 1

2

Z
�N

ˇ̌ˇ̌
vN
ˇ̌ˇ̌
L2.�/

2
h dx1dx2 � k1

ˇ̌
ˇ̌
ˇ̌
ˇ̌dvN

dt

ˇ̌
ˇ̌
ˇ̌
ˇ̌
L2.�N /

2

� k2:
(6.272)

However,

@eij.w/
@xk

D h
@eij.v

N /

@xk
CRijk; (6.273)

Rijk being a sum of terms which involve products of the derivatives of h and ';
therefore, there exists a positive constant k3 such that

ˇ̌ˇ̌
Rijk.w/

ˇ̌ˇ̌
L2.�N /

� k3: (6.274)

We also have

2�1

�
@eij.v

N /

@xk
;
@eij.w/
@xk

�
L2.�N /

D 2�1

�
@eij.v

N /

@xk
; h
@eij.v

N /

@xk

�
L2.�N /

C 2�1

�
@eij.v

N /

@xk
;Rijk.w/

�
L2.�N /

� 2�1

�
@eij.v

N /

@xk
; h
@eij.v

N /

@xk

�
L2.�N /

� 2�1
ˇ̌
ˇ̌
ˇ̌
ˇ̌@eij.v

N /

@xk

ˇ̌
ˇ̌
ˇ̌
ˇ̌
L2.�N /

ˇ̌ˇ̌
Rijk.w/

ˇ̌ˇ̌
L2.�N /

so that

2�1

�
@eij

@xk
.vN /;

@eij.w/
@xk

�
L2.�N /

� 2�1

�
@eij.v

N /

@xk
; h
@eij.v

N /

@xk

�
L2.�N /

� k4
(6.275)

for some positive constant k4. In a similar fashion, for some k5 > 0,
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˝ NN .vN /;w˛ D 2

Z
�N

�.e/eij.v
N /eij.w/dx1dx2

� 2

Z
�N

�.e/eij.v
N /eij.v

N /h dx1dx2 � k5:
(6.276)

Employing the fact that
@vNj

@xj
D 0, we compute that

b.vN ; vN ;w/ D
Z
�N

vNj
@vNi
@xj

vNi h dx1dx2 �
Z
�N

vNj
@vN2
@xj

'
@h

@x1
dx1dx2

D 1

2

Z
�N

vNj h
@.vNi v

N
i /

@xj
dx1dx2 �

Z
�N

vNj
@vN2
@xj

'
@h
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(6.277)
so that, for some k6 > 0,
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ˇ
Z
�N

vNj
@vN2
@xj

'
@h

@x1
dx1dx2

ˇ̌̌
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� k6
(6.278)

Finally, we have, for any � > 0, and some k7 > 0,
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h.x1; t/dx1dx2

C 1

2�

Z
�N

ˇ̌ˇ̌
vN .x1; x2; t/

ˇ̌ˇ̌
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(6.279)
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Returning to (6.270) and combining the above estimates, we obtain, 8� > 0 and
some k8 > 0,

1

2

d

dt
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vN
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2
h.x1; t/ dx1dx2: (6.280)

If we now employ Lemma 6.18, taking Nh.x1/ D h.x1; t/ at a fixed but arbitrary
t � Nt0, set � D 2�1c3, and then drop the term

2

Z
�N

�.e/eij.v
N /eij.v

N /h dx1dx2

in (6.280), we obtain the inequality
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for some k9 > 0. Therefore, 8t � Nt0,
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with ˇ1 D 2�1=c3, ˇ2 D 2k1, and ˇ3 D k9, all independent ofN . Next we multiply
(6.282) by eˇ1t and integrate from t0 to s so as to get, 8s � Nt0,
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Since h.x1; t0/ D 0, if we multiply both sides of (6.283) by e�ˇ1s , we find that,
8s � Nt0,
Z
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ˇ̌ˇ̌
vN
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2
h.x1; s/dx1dx2
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�
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We now note that there exists a constant ˇ4 > 0 such that
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ˇ1

�
eˇ1s � eˇ1

Nt0
�
e�ˇ1s � ˇ4; 8s � Nt0: (6.285)

To prove (6.250), it will suffice to show that there is a constant ˇ5 > 0 such that
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We begin by noting that, as a consequence of our previous estimates, 8t � 0, and
some ˇ6 > 0,
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Therefore,
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Multiplying (6.288) by eˇ1t , and adding the term ˇ1e
ˇ1t z.t/ to both sides of the

resulting inequality, we find that
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Integrating (6.290) from Nt0 to s, and multiplying the resulting inequality by e�ˇ1s ,
we then obtain, 8s � Nt0, the estimate
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which serves to establish (6.286). If we now employ the upper bound (6.286) in

(6.284) we arrive at (6.264) with C D ˇ5 C ˇ3

ˇ1
. ut

With Lemma 6.19 established it is now a simple matter to prove the following
result:

Theorem 6.11. There exists a maximal compact global attractor A�1 for the orbits
of the semigroup S�1.t/ generated by the solutions of (6.211), (6.212).

Proof. As C > 0 in (6.264) is independent of N , if we let N ! 1 in Lemma 6.19

we obtain the bound (6.250) with Nt0 D t0.�1; jjv0jjL2.�//C r , where v0 2 B�0

H 2.�/
;

the theorem now follows from Lemma 6.16. ut

6.5 Some Related Work on Attractors and Inertial Manifolds
for Incompressible Bipolar and Non-Newtonian Flow

In the concluding section of this chapter, we want to survey some of the related
work that has been done, to date, on analyzing the large time behavior of solutions
for problems governed either by the bipolar model (5.1a,b) or the non-Newtonian
specialization thereof which corresponds to taking �1 D 0; before doing so,
however, it is appropriate to indicate the correlation between the various subsections
of Chap. 5 and published work by the authors and their colleagues. Much of the
work in Sect. 5.2, dealing with the linearized stability of the incompressible bipolar
equations, may be found in [Bl4]. The essential content of Sect. 5.3, including the
estimates for the Hausdorff and fractal dimensions of the global attractor A�1 ,
�1 > 0, and 0 � ˛ < 1, was established in [BBN5]. The papers [Bl3, Bl5]
cover much of the same material as that presented in Sect. 5.4 for the bipolar
and non-Newtonian problems when �1 < ˛ < 0. The lower semicontinuity of
the attractors for the bipolar problem, which was proven in Sect. 5.5, has been
presented in [Bl2] and was also discussed in [Bl5]. Almost all the material presented
in Sect. 6.2 dealing with the existence of an inertial manifold for incompressible,
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viscous, bipolar fluid flow is based on the Ph.D. thesis [Hao] and may also be found
in [BH3]. The work in Sect. 6.3, concerning the L2 squeezing property, is based
on the paper [BH1]. Finally, much of what was presented in Sect. 6.4, concerning
the existence of a maximal compact global attractor for bipolar fluid flow in an
unbounded parallel-wall channel, appears in [BH5].

The bulk of the work, to date, on the existence of attractors for either the bipolar,
incompressible, fluid model governed by (5.2a,b), (5.3a) or (5.3b), and (5.4)—or
the special non-Newtonian case obtained by taking �1 D 0 and, in the case of the
boundary-value problem, retaining only the condition v D 0 in (5.3a)—has been
carried out by researchers in either eastern Europe or China. We now offer a brief
synposis of this work as well as some related work on similar modifications of the
Navier–Stokes equations.

In [BaH] the existence and regularity of Young measured-valued solutions for
the non-Newtonian equations (5.2a,b), with �1 D 0 and �.jej/ given by (5.1d), was
studied and some results on the asymptotic behavior of solutions were obtained. In a
bounded domain of Rn, n D 2; 3, Málek and Nec̆as [MN] obtained the existence of
a global finite-dimensional attractor for the non-Newtonian model using a method
of short ı-trajectories with initial values in the attractor. In [NP3] the authors study
the asymptotic behavior of solutions for the non-Newtonian model in the whole
space with zero external force; with initial data in L1 \L2 it is shown that solutions
exhibit L2 decay in time like t�1=4. Málek and Prazák [MP1] prove, for the non-
Newtonian model, with space-periodic boundary conditions, the existence of a
global attractor with finite fractal dimension for the case n D 2 when p � 2 and
for the case n D 3 when p � 11=5. The same authors [MP2] apply the so-called
method of l-trajectories to study the large time behavior of solutions to a class of
abstract nonlinear dissipative evolution equations of the first order; their results are
then extended so as to establish the existence of a finite-dimensional (exponential)
attractor for a class of equations in nonlinear fluid mechanics which includes
the non-Newtonian model (5.2a,b) with �1 D 0. For the Ladyzhenskaya [La2]
modification of the Navier–Stokes equations, the existence of a global attractor in
the three-dimensional case was proven for a bounded domain; these results were
then extended to the case of unbounded channel-like domains.

In [LWW] the authors study the large time behavior of solutions of the
non-Newtonian model in R

3 and obtain estimates in L2.R3/ for the decay of
solutions as t ! 1. The large time behavior of weak solutions for the incom-
pressible, non-Newtonian problem in R2 is analyzed in [DL]; it is proven that weak
solutions decay in the L2 norm like .1 C t/�1=2 and that the decay rate is sharp in
the sense that it coincides with the decay rate of a solution to the heat equation.
In [LZ3] the authors consider the regularity of the global attractor for the non-
Newtonian system in two-dimensional unbounded domains; it is shown that the
L2 compact attractor and the H 2 compact attractor of the system are the same.
In a related work, Liu and Zhao [LZ2] study the long time behavior of the non-
Newtonian system in two-dimensional unbounded domains and prove the existence
of an H 2 compact attractor for the system by showing that the corresponding
semigroup is asymptotically compact. In [Do2] time decay rates are established for
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weak solutions to the incompressible non-Newtonian problem in R
n; using spectral

decomposition methods, applied to the Stokes operator, optimal decay estimates of
weak solutions in the L2 norm are derived under different conditions on the initial
velocity; also error estimates for the difference between the non-Newtonian flow
and the corresponding Navier–Stokes flow are obtained. In a related work [Do2] the
same author uses a Fourier splitting method to show that weak solutions for the non-
Newtonian problem in R

n decay at the rate .1C t/�n=2, in theL2 norm, as t ! 1.
In [DC2], the asymptotic stability of weak solutions for the non-Newtonian system
in R

2 is studied; even if jju0 � v0jjL2.R2/ is not small, as long as a perturbed flow
v.t/, corresponding to the initial data v0, satisfies an appropriate energy inequality,
it is proven that jju.t/ � v.t/jjL2.R2/ ! 0 as t ! 1. The time decay rates of non-
Newtonian flows, which conform to the model (5.1a,b) with �1 D 0, are studied in
R
nC in [DC1] for n � 3; using the spectral decomposition of the Stokes operator,

and Lp � Lq estimates, it is shown that weak solutions decay in the L2 norm like

t�n=2.
1
r � 1

2 /, when the initial velocity u0 2 L2 \Lr , for 1 � r < 2 and better decay
rates are obtained when u0 satisfies an additional moment condition of the formZ
Rn

C

jxnu0.x/jrdx < 1, 1 < r � 2.

In somewhat more recent work, Zhao, Zhou, and Liao [ZZL1] discuss the
long time behavior of solutions for two-dimensional flow of an incompressible
non-Newtonian fluid in a bounded domain subjected to a (locally) uniformly
integrable external force; they obtain results on the existence and structure of
uniform attractors in the general case without restrictions on the size of the
external force and then specialize to cover the case where the L2 norm of the
external force is small. In [NP2] the authors study the asymptotic time behavior
of incompressible non-Newtonian fluids in the whole space assuming initial data
in L1; the analysis is focused on the behavior of weak solutions for the problem

governed by (5.1a,b), with �1 D 0, when n D 3 and p � 11

5
. In [LZZ1]

trajectory attractors and global attractors are constructed for an autonomous two-
dimensional non-Newtonian fluid while the same authors, in [LZZ3], discuss results
for incompressible non-Newtonian flow subject to external forces which are rapidly
oscillating in time but have a smooth average. Furthermore, LLi et al. [LZZ2]
have recently studied the long time behavior of solutions for two-dimensional,
nonautonomous, incompressible non-Newtonian flows in bounded domains when
the external force is translation compact; when the L2 norm of the forcing function
is appropriately small it is shown that there exists a unique, bounded, asymptotically
stable solution to the initial-boundary value problem. In [ZZ1] the authors study
the so-called pullback asymptotic behavior of solutions for a non-autonomous,
incompressible, non-Newtonian fluid in two-dimensional bounded domains after
first proving the existence of pullback attractors; they establish regularity for the
pullback attractors which, in turn, implies the (pullback) asymptotic smoothing
effect of the fluid in the sense that solutions become eventually more regular than
the initial data. Similar results are established in [ZZL3], this time with respect
to the existence and regularity of pullback attractors for a non-Newtonian fluid
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with delays. Finally, in [ZZL3], upper semicontinuity of the global attractor for
an incompressible, non-Newtonian fluid, in the two-dimensional domain � D
R1
 .�L;L/, is proven by considering an expanding sequence f�mg1

mD1 of simply
connected, bounded, smooth subdomains of � such that �M ! � as m ! 1;
in particular, it is shown that if A and Am are the global attractors of the fluid
corresponding to � and �m, respectively, and O.A/ is a neighborhood of A, then
the global attractor Am � O.A/ form sufficiently large.



Appendix A
Notation, Definitions, and Results from Analysis

A.1 Notation and Definitions

For xi 2 R1, i D 1; : : : ; n, we denote points in Rn, n > 1, by x D .x1; : : : ; xn/.
When coordinates are, e.g., polar, cylindrical, etc., instead of Cartesian, this is noted
explicitly in the text. Similarly, vectors will be denoted by v D .v1; : : : ; vn/ and
operators (mappings), whether linear or nonlinear, are also denoted by boldface
letters, e.g., L, S ,A, etc. All inner products are explicitly defined the first time they
appear and are expressed in what is now a standard formulation, e.g., for u; v 2 Rn,

u � v D
nX
iD1

ui vi .

For functions u.x/, v.x/ defined on a domain� � Rn, the L2.�/ inner-product
is given by

.u; v/L2.�/ D
Z
�

u.x/v.x/ dx

but for vector-valued functions u.x/, v.x/ defined on � we employ a bold-face
L2, i.e.,

.u; v/L2.�/ D
Z
�

u.x/v.x/ dx:

For the L2 inner-product we assume, of course, that
Z
�

u2.x/ dx < 1,Z
�

v2.x/ dx < 1 with the corresponding assumption in the vector-valued case

being that
Z
�

jju.x/jj2 dx < 1,
Z
�

jjv.x/jj2 dx < 1, where jjujj2 D u � u.
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For a tensor-valued function, such as the rate of deformation tensor e, we write
jej2 D

X
i;j

eijeij, where i; j D 1; : : : ; n.

Standard notation is used throughout the book for the space Ck.�/ of continu-
ously differentiable functions, namely,

C.�/ D fu W � ! R1 j u is continuousg;
C. N�/ D fu 2 C.�/ j u is continuous up to @�g;
C k.�/ D fu 2 C.�/ j u is k-times continuously differentiableg

and

Ck. N�/ D fu 2 Ck.�/ j D˛u is uniformly continuous on bounded

subsets of �, 8˛ such that j˛j � kg

where the multi-index ˛ D .˛1; : : : ; ˛n/, j˛j D ˛1 C � � � C ˛n, the ˛i , i D 1; : : : ; n

are non-negative integers, and

D˛u D @j˛ju.x/
@x

˛1
1 � � � @x˛nn

with D D
�
@

@x1
; : : : ;

@

@xn

�
. These definitions easily generalize to vector-valued

functions u.x/ D .u1.x/; : : : ; un.x// defined on � � Rn, e.g., u 2 C k.�/ iff ui 2
Ck.�/, i D 1; : : : ; n. Also, C1.�/ D

1\
kD0

C k.�/, with the obvious extensions to

the cases C1. N�/, C1.�/ and C1. N�/.
The Lp spaces are also defined in the usual manner, i.e., for 1 � p < 1,

Lp.�/ D fu W U ! R1 j u is Lebesque measurable and jjujjLp.�/ < 1g

where

jjujjLp.�/ D
�Z

�

ju.x/jp dx
�1=p

:

The generalization to the vector-valued case is denoted as Lp.�/ where

jjujjLp.�/ D
�Z

�

jju.x/jjp dx
�1=p
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for 1 � p < 1; these definitions include the L2.�/ and L2.�/ cases covered,
separately, above. By Lploc.�/ we denote the set of all u W � ! R1 such that u 2
Lp. Q�/ for each compact subset Q� of � with an analogous definition for Lploc.�/.
For p D 1 we have

L1 D fu W � ! R1 j u is Lebesque measurable and jjujjL1.�/ < 1g

with

jjujjL1.�/ D ess sup
�

juj:

In the vector-valued case, denoted by L1.�/, we have for u W � ! Rn,

jjujjL1.�/ D ess sup
�

jjujj:

For vector-valued functions u W � ! Rn we have, for each multi-index ˛,

D˛u D .D˛u1; : : : ;D
˛un/

so that

Dku D fD˛u j j˛j D kg:

Also, for k D 1, the gradient of the vector-valued function u W � ! Rn in Cartesian
coordinates xi is the tensor-valued function with components

.Du/ij 	 .ru/ij D @ui
@xj

; i; j D 1; : : : ; n

and

div u D r � u D tr.ru/ D
nX
iD1

@ui
@xi

:

When non-Cartesian coordinates are used in the book, the components of expres-
sions such as ru, r � u, etc., are always made explicit.

To define the standard Sobolev spaces we first recall the definition of weak
derivative; for u; v W � ! R1, with u; v 2 L1loc.�/, and ˛ D .˛1; : : : ; ˛n/ a multi-
index, v is the ˛th weak partial derivative of u, i.e., v D D˛u if

Z
�

uD˛� dx D .�1/j˛j
Z
�

v� dx
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for all � W � ! R1 such that � 2 C1
0 .�/ 	 D.�/, where C1

0 .�/ is the space
of all infinitely differentiable functions on� with compact support. For u; v W � !
Rn, with u; v 2 L1loc.�/, we have an analogous definition for v D D˛u. If 1 � p <

1, and m is a non-negative integer, then the Sobolev space W m;p.�/ is defined to
be the set of all u W � ! R1 such that u 2 L1loc.�/ and, for each multi-index ˛
with j˛j < m, the weak derivativeD˛u exists and is in Lp.�/. For u W � ! R1 in
W m;p.�/ we define, for 1 � p < 1,

jjujjW m;p.�/ D
0
@X

j˛j�m

Z
�

jD˛ujp dx
1
A
1=p

while for p D 1,

jjujjW m;p.�/ D
X

j˛j�m
ess sup

�

jD˛uj:

We will sometimes use the notation jj jjm;p for jj jjW m;p.�/ if there is no chance
of confusion. For u W � ! Rn, with n > 1, we will use the notation jjujjW m;p.�/

with the obvious modifications to the definitions given above. When p D 2 it is a
common practice to write, for u W � ! R1, thatW m;2.�/ D Hm.�/, with Hm.�/

a Hilbert space with inner-product

.u; v/Hm.�/ D
X

j˛j�m

Z
�

D˛u.x/D˛v.x/ dx

for u; v W � ! R1. Again, the obvious modifications to H m.�/ and .u; v/Hm.�/

apply when u; v W � ! Rn and n > 1. By the Sobolev space W m;p
0 .�/ we indicate

the closure of C1
0 .�/ in W m;p.�/, so that u W � ! R1 is in W m;p

0 .�/ iff there
exists fukg � C1

0 .�/ such that uk ! u in W m;p.�/, as k ! 1. A careful
discussion of the trace theorem (see, e.g., [Ev] and Sect. A.2.7) shows that, loosely
speaking, W m;p

0 .�/ consists of all those u 2 W m;p.�/ such that D˛u D 0 on @�,
for all ˛ such that j˛j � m � 1. With p D 2 we usually write W m;2

0 .�/ D Hm
0 .�/.

For u W � ! Rn, n > 1, we use the obvious modifications of the above definitions
and write W m;p

0 .�/ and H m
0 .�/, respectively. By jujHm.�/, for u W � ! R1, we

denote the semi-norm given by

juj2Hm.�/ D
0
@X

j˛jDm

Z
�

jD˛u.x/j2 dx
1
A
1=2

with an obvious modification in order to obtain jujHm.�/ for u W � ! Rn with
n > 1.
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For k 2 N , the Sobolev spaces with negative index, W �k;p.�/, are defined to

be the dual spaces to W k;p
0 .�/, where q is conjugate to p, i.e.,

1

p
C 1

q
D 1. The

elements of W �k;p.�/ are distributions. Another definition of the Sobolev spaces
with negative index is

W �k;p.�/ D fu 2 D0.�/ j u D
X

j˛j�k
D˛u˛; for some u˛ 2 Lp.�/g

with theD˛u˛ computed in the sense of distributions in D0.�/. The two definitions
of W �k;p.�/, for k 2 N , are equivalent. We note that u 2 W �k;p.�/, k 2 N ,

defines a linear operator onW k;q
0 .�/, if

1

p
C 1

q
D 1, i.e., for v 2 W k;q

0 .�/

hu; vi D
X

j˛j�k
hD˛u˛; vi

D
X

j˛j�k
.�1/j˛jhu˛;D˛vi D

X
j˛j�k

.�1/j˛j
Z
�

u˛D
˛v dx:

Also, W �k;p.�/ is a Banach space when equipped with the followng norm: for
u 2 W �k;p.�/,

jjujjW�k;p.�/ D sup
v2W k;q .�/

jjvjj
Wk;q .�/

¤0

jhu; vij
jjvjjW k;q .�/

where
1

p
C 1

q
D 1.

Remarks. We leave for Sect. A.3 the definition of the fractional Sobolev spaces,
W s;p.�/, where s 2 R1 is not necessarily an integer. The spaces W s;p.�/ may be
defined either by using the Fourier transform (in the sense of distributions) or by
introducing the Slobodeckij seminorm defined for functions f 2 Lp.�/, 1 � p <

1; it is the latter approach which is followed in Sect. A.3.

A.2 Basic Analysis Results

This subsection reviews the statement of a number of standard results, the proofs of
which can be found in many texts covering analysis, partial differential equations,
or functional analysis, e.g., [Ev, Yos, Te1], or [N2].
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A.2.1 The Hölder Inequality

Let p > 1 and let, as in Sect. A.1, the space Lp.�/ be the Banach space consisting
of all measurable functions on � (a bounded domain in Rn) whose p-powers are

integrable with jjujjLp.�/ 	 jjujjp D
�Z

�

jujp
�1=p

, p > 1. Suppose that q is

conjugate to p, i.e.,
1

p
C 1

q
D 1; then, for u 2 Lp.�/, and v 2 Lq.�/, the Hölder

Inequality is

Z
�

uvdx � jjujjLp.�/jjvjjLq.�/:

For p D 1, q D 1 and jjvjjL1.�/ D ess sup
�

jvj. Hölder’s inequality is a direct

consequence of Young’s inequality which we state next. As a consequence of the
Hölder Inequality we have the following interpolation inequality for the Lp spaces:

For u 2 Lr.�/, with p � q � r and
1

q
D 

p
C 1 � 

r
,

jjujjLq.�/ � jjujjLp.�/jjujj1�Lr .�/:

A.2.2 Cauchy’s and Young’s Inequalities

Cauchy’s inequality with � > 0, a; b > 0 is the statement that

ab � �a2 C 1

4�
b2:

The standard case consists of taking � D 1

2
. For a; b > 0 and 1 < p; q < 1, with

1

p
C 1

q
D 1, Young’s inequality says that

ab � ap

p
C bq

q
:

If a; b > 0, � > 0, and C.�/ D .�p/�q=pq�1, then we have Young’s inequality
with �,

ab � �ap C C.�/bq:
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Young’s inequality is a consequence of the fact that f .x/ D ex is a convex function
(see, e.g., [Ev]) while Young’s inequality with � follows from Young’s inequality if

we write ab D �
.�p/1=pa

� � b

.�p/1=p

�
.

A.2.3 The Lax-Milgram Lemma

The Lax-Milgram Lemma is a generalization of the Riesz Representation Theorem
[Yos] to bilinear forms which do not need to be symmetric; its full statement is as
follows: Let H be a Hilbert space with norm jj�jjH and B W H 
H ! R a bilinear
map. If there exist c1 > 0 and c2 > 0 such that

jB.u; v/j � c1jjujjH jjvjjH ; 8u; v 2 H

and

B.u; u/ � c2jjujj2H ; 8u 2 H

then, for each f 2 H�, 9v 2 H (unique) such that B.u; v/ D f .u/, 8u 2 H .

A.2.4 The Poincaré Inequality

There are various versions of the Poincaré inequality; we state three of the most
common versions here:

(i) Let � � Rn be an open bounded subset and u 2 W 1;p
0 .�/, 1 � p < n. Then

for each q 2 Œ1; p��, p� D np=n� p,

jjujjLq.�/ � C jjDujjLp.�/
with C D C.p; q; nI�/ > 0. If 1 � p � 1, then

jjujjLp.�/ � C jjDujjLp.�/:

(ii) Let � � Rn be an open bounded domain with C1 boundary @�. Then for any
u 2 W 1;p.�/, with 1 � p < 1, and some c > 0,

Z
�

ˇ̌̌
ˇu.x/ � 1

j�j
Z
�

u.y/ dy

ˇ̌̌
ˇ
p

dx � c

Z
�

nX
iD1

ˇ̌̌
ˇ @u

@xi

ˇ̌̌
ˇ
p

dx:
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(iii) Let a > 0 and

� � f.x1; x2; : : : ; xn/ j jx1j � a < 1; �1 < xi < 1; i D 2; : : : ; ng

then 9c > 0, c D c.k; n/, such that for every u 2 Hk
0 .�/,

jjujj2W k;2.�/ � c
X

j˛jDk
jjD˛ujjL2.�/2:

A.2.5 Friedrich’s Inequality

Suppose that � is a bounded subset of Rn with diameter d and 1 � p < 1. Then
8u 2 W k;p

0 .�/,

jjujjLp.�/ � dk

0
@X

j˛jDk
jjD˛ujjpLp.�/

1
A
1=p

where ˛ D .˛; : : : ; ˛n/.

A.2.6 Fréchet Derivative

LetX , Y be real Banach spaces and F a nonlinear operator mappingD.F / � X to
R.F / � Y with D.F / open in X . Then F is Fréchet differentiable at x0 2 D.F /
if there exists a bounded linear operator F 0.x0/ such that

F .x0 C h/� F .x0/ D F 0.x0/hC w.x0;h/

for all h with jjhjj < �, for some � > 0, where jjw.x0; h/jj=jjhjj ! 0 as jjhjj ! 0.
We call F 0.x0/ the Fréchet derivative of F .x/ at x0 while dF .x0; h/ D F 0.x0/h
is the corresponding Fréchet differential.

A.2.7 !-Limit Sets

Let S.t/ be a semigroup defined on some subset X � H , H a real-Hilbert space.
The !-limit set of X consists of all the limit points of orbits through points in X ,
i.e.,
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!.X / D fy 2 H j 9ftng � R1; with tn ! 1 as n ! 1;

and fxng � H such that S .tn/xn ! y ;

as n ! 1g:

A.2.8 The Trace Theorem

Let � � Rn be an open bounded domain with Lipschitz boundary @�. Then, the
trace theorem says that there exists a bounded linear operator T W W 1;p.�/ !
Lp.@�/, 1 � p < 1, such that

Tu D uj@�; 8u 2 W 1;p.�/\ C. N�/

and

jjT ujjLp.@�/ � C.p;�/jjujjW 1;p.�/; 8u 2 W 1;p.�/:

Tu is called the trace of u. The functions in W 1;p.�/ with zero trace constitute
W

1;p
0 .�/, i.e., W 1;p

0 .�/ D fu 2 W 1;p.�/ j Tu D 0g and, in fact, W 1;p
0 .�/ D fu 2

W 1;p.�/ j 9fung � C1
0 .�/ such that um ! u in W 1;p.�/g; thus, for bounded �

with Lipschitz @�, trace-zero functions inW 1;p.�/ can be approximated by smooth
functions with compact support.

A.2.9 Aubin’s Lemma

Aubin’s Lemma (sometimes termed the Aubin-Lions Lemma) is a result in the
theory of Banach space-valued functions; it is a compactness criterion which
is useful in studying nonlinear evolutionary differential equations. The precise
statement of the lemma is as follows (the precise definitions of continuous and
compactly embedded are given in Sect. A.3): Let X 0 � X � X 1 be three Banach
spaces with X 0 compactly embedded in X and X continuously embedded in X 1;
suppose, also, that X 0 and X 1 are reflexive. For 1 < p; q < 1 let

W D fu 2 Lp.Œ0; T �IX 0 j Pu 2 Lq.Œ0; T �IX 1/g:

Then the embedding of W into Lp.Œ0; T �IX / is also compact (see, also,
Lemma A.9).
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A.2.10 Estimates for b.u; v;w/

The trilinear form

b.u; v;w/ D
Z
�

ui
@vi

@xj
wj dx

arises in studies of the Navier–Stokes equations as well as in studies of all related
fluid dynamics models (e.g., the bipolar fluid) whenever the convective nonlinearity
is present in the acceleration term. A wealth of estimates exist for jb.u; v;w/j
which depend on the assumptions relative to u; v;w; good references, in this
regard, are [CFT1] and [Te1]; we have, for example the following result from
Sect. 1.2 of [Te1]: The trilinear form b is defined and (trilinear) continuous on
H 1

0.�/ 
 H 1
0.�/ 
 .H 1

0.�/ \ Ln.�//, � a bounded or unbounded domain in
Rn, and for some c.n/ > 0,

jb.u; v;w/j � c.n/jjujjH 1
0.�/

jjvjjH 1
0.�/

jjwjjH 1
0.�/\Ln.�/:

Other results which have been used in this book are (see [CFT1]), e.g.,

(i)

ˇ̌̌
ˇ
Z
�

ui
@vi

@xj
vj dx

ˇ̌̌
ˇ � jjujjL1.�/jwjH 1.�/jjwjjL2.�/,

(ii)

ˇ̌
ˇ̌Z
�

ui
@vi

@xj
uj dx

ˇ̌
ˇ̌ � c1.�/jjvjjW 1;2.�/jjujj2

W 1;2.�/
jjujjL2.�/1=2, for some

c1.�/ > 0

where the u; v;w lie in the indicated spaces. Other results are generated by using
interpolation and embedding theorems for Sobolev spaces.

A.2.11 The Uniform Gronwall Lemma

The Gronwall inequality can be written in integral as well as differential form as
follows:

(i) Let K � 0 and let f and g be continuous nonnegative functions for a � t � b

which satisfy

f .t/ � K C
Z b

a

f .s/ g.s/ ds; a � t � b:

Then

f .t/ � Ke
R t
a g.s/ ds; a � t � b:

An alternative form of the integral version of Gronwall is: suppose g.t/ is a
continuous nonnegative function for t > 0 and
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g.t/ � K C C

Z t

0

g.s/ ds; 0 � t � b

with C;K > 0. Then, for all t 2 Œ0; b�
g.t/ � KeCt; 0 � t � b:

This second version follows from the first by interchanging f and g in the first
version, assuming jf .t/j � C , and setting a D 0.

(ii) Let f .t/ be a nonnegative, absolutely continuous function on Œ0; b� which
satisfies, a.e. on Œ0; b�, the differential inequality

f 0.t/ � �.t/f .t/C  .t/; 0 < t < b

with �.t/,  .t/ nonnegative, summable functions on Œ0; b�. Then,

f .t/ �
�
f .0/C

Z t

0

 .�/ d�


e
R t
0 �.�/ d� ; 0 < t < b:

A.3 Some Sobolev Space Embeddings, Estimates,
and Interpolation Results

In this subsection of Appendix A we present some of the more standard results
concerning continuous and compact embeddings of Sobolev spaces, the estimates
implied by these embeddings, and a basic interpolation result for Sobolev spaces;
various forms of the results delineated here have been used throughout this
book, especially in Chaps. 4–6. Two standard, comprehensive treatises covering
the material reviewed in this subsection are [Ad] and [Tr]. In all the results stated
below, unless specifically indicated, � � Rn will be a bounded, open subset with
a smooth (C1) boundary @�. Many of the results stated hold under somewhat
weaker conditions, e.g., that @� satisfy the uniform cone property (see, e.g., [McO],
Sect. 6.5); a bounded domain � with Lipschitz continuous boundary satisfies this
condition and such a weakning of the assumptions, relative to many of the results
stated, below, is needed, e.g., in Sect. 3.5 where we have considered perturbations
of the boundary of � by Lipschitz curves.

We begin by recalling that both the Sobolev spaces W k;p.�/ and the Hölder
spaces Ck;�. N�/ are Banach spaces when equipped with their respective norms (the
norm on Ck;�. N�/ will be reviewed below). We begin with the following definitions.

Definition A.1. Let B1 and B2 be two Banach spaces. Then B1 is continuously
embedded into B2 (and we write B1 ,! B2) if 8u 2 B1 we have u 2 B2 and, for
some c > 0, jjujjB2 � cjjujjB1 where c does not depend on u 2 B1. The embedding
operator J W B1 ! B2 takes u 2 B1 into the same element u considered as an
element of B2.



526 A Notation, Definitions, and Results from Analysis

Definition A.2. If B1 ,! B2, and the embedding operator J W B1 ! B2 is a
compact operator, we say that B1 is compactly embedded into B2; often this is
denoted by B1 ,!,! B2.

Our results in this subsection will be stated in the form of a series of lemmas; we
first note the obvious continuous embeddings for 1 � p < 1,

W
m;p
0 .�/ ,! W m;p.�/ ,! Lp.�/:

Lemma A.1 (Sobolev Embedding Theorem). Suppose that k > l , 1 � p < q �
1, .k � l/p < n and

1

q
D 1

p
� .k � l/

n
; then

W k;p.�/ ,! W l;q.�/:

As a special case (take l D 0) we have the following result: if k <
n

p
and

1

q
D

1

p
� k

n
, then

W k;p.�/ ,! Lq.�/:

In particular, 9C D C.k; p; nI�/ > 0 such that

jjujjLq.�/ � C jjujjW k;p.�/:

Remarks. A variation on this last lemma is the following result: if p � q � np=n�
mp, then

W jCm;p.�/ ,! W j;p.�/:

Remarks. An important special case of Lemma A.1, with l D 0, arises by taking

k D 1; then, for 1 � p < n, and
1

q
D 1

p
� 1

n
,

W 1;p.�/ ,! Lq.�/

so that for some C D C.p; nI�/ > 0,

jjujjLq.�/ � C jjujjW 1;p.�/:

This latter result is often established as a consequence of the following estimate

(the Gagliardo-Nirenberg-Sobolev Inequality): If
1

q
D 1

p
� 1

n
, 1 � p < n, then

8u 2 C1
0 .R

n/,
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jjujjLq.Rn/ � C jjDujjLp.Rn/
where C D C.p; n/ > 0. It may also be shown (see [Ev], Sect. 5.6) that for u 2
W

1;p
0 .�/ with

1

q
D 1

p
� 1

n
, and 1 � p < n, that

jjujjLq0
.�/ � C 0jjDujjLp.�/

for each q0 2 Œ1; q�, where C 0 D C 0.p; q; nI�/ > 0. Finally, if we take q0 D p in
this last estimate we find that for u 2 W 1;p

0 .�/ and 1 � p � 1,

jjujjLp.�/ � NC jjDujjLp.�/

with NC D NC.p; nI�/ > 0 (which is, of course, one form of the Poincaré
Inequality).

Lemma A.2 (Morrey’s Inequality). If � D 1 � n=p with p > n, then

W 1;p.�/ ,! C0;�

whereCk;�. N�/ � Ck.�/ consists of all those functions inCk.�/ whose kth partial
derivatives are �-Hölder continuous. The norm on Ck;�. N�/ is given by

jjujjCk;�. N�/ D jjujjCk.�/ C
X

j˛jDk
sup
x¤y

jjD˛u.x/�D˛u.y/jj
jjx � yjj� :

Thus, for some C D C.n; pI�/ > 0,

jjujjC0;�. N�/ � C jjujjW 1;p.�/:

Remarks. As C0;�. N�/ ,! C0.�/ we observe the chain of continuous embeddings

W
1;p
0 .�/ ,! W 1;p.�/ ,! C0;�. N�/ ,! C0. N�/:

Remarks. Lemma A.2 is extended by either of the following two results:

(i) If 0 <  < m � n

p
, and p > n, then

W jCm;p.�/ ,! Cj;. N�/:

(ii) If ˛ 2 .0; 1/ and k � r � ˛ D n

p
, p > n

W k;p.�/ ,! C r;˛. N�/:
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We now delineate a series of results concerning compact embeddings, the first of
which is

Lemma A.3 (Kondrachov Embedding Theorem). Suppose that � � Rn is a

compact subset with C1 boundary @�. Then, if k > 0, and k � n

p
> l � n

q
,

W k;p.�/ ,!,! W l;q.�/:

Remarks. If we weaken the conditions on� in Lemma A.3 slightly it is possible to
establish the following two results: Let � � Rn be a bounded open subset with @�
of class C1; then,

(i) If 0 < n � mp, and j Cm� n

p
� j � n

q
,

W jCm;p.�/ ,!,! W j;q.�/:

(ii) If mp > n, then

W jCm;p.�/ ,!,! Cj . N�/:

A more specialized version of Lemma A.3 is the following result:

Lemma A.4 (Rellich-Kondrachov Compactness Theorem). Assume that � is a
bounded open subset of Rn with @� of class C1 and 1 � p < n. Then for each q0

such that 1 � q0 < q,
1

q
D 1

p
� 1

n
,

W 1;p.�/ ,!,! Lq
0

.�/:

In particular, if we take q0 D p we haveW 1;p.�/ ,!,! Lp.�/. Finally, as p ! n,
q ! 1 so, in fact, W 1;p.�/ ,!,! Lp.�/ for all p such that 1 � p � 1.

Fractional Sobolev spaces have figured in the analysis in Chaps. 4 and 5; they can
be defined by making use of the Fourier transform or, equivalently, by introducing
the Slobodeckij seminorm, which is roughly analogous to the Hölder seminorm.
Fractional order Sobolev spaces have also been referenced in the literature as
Aronszajn spaces, Gagliardo spaces, and Slobodeckij spaces (see, e.g., [Ar, Gag],
or [Slo]). For� � Rn an open bounded subset, with C1 boundary @�, f 2 Lp.�/,
1 � p < 1, and 0 � � < 1, the Slobodeckij seminorm of f is defined by

Œf ��;p;� D
Z
�

Z
�

jf .x/� f .y/jp
jjx � y jj�pCn dx dy:

Now, let s > 0 (not an integer) and set � D s � Œs�, so that � 2 .0; 1/; then the
Sobolev-Slobodeckij space W s;p.�/ is defined as
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W s;p D ff 2 W Œs�;p.�/ j sup
j˛jDŒs�

ŒD˛f ��;p;� < 1g:

W s;p.�/ is a Banach space for the norm

jjf jjW s;p.�/ D jjf jjW Œs�;p C sup
j˛jDŒs�

ŒD˛f ��;p;�:

The Sobolev-Slobodeckij spaces provide a continuous scale between the Sobolev
spaces, i.e., one has the embeddings

W kC1;p.�/ ,! W s0;p.�/ ,! W s;p.�/ ,! W k;p.�/

for k � s � s0 � k C 1.

Remarks. The spaces W s;p.�/ coincide with the real interpolation spaces of
Sobolev spaces, i.e., in the sense of equivalent norms

W s;p.�/ D �
W k;p.�/;W kC1;p.�/

�
�;p

if k 2 N , s 2 .k; k C 1/, � D s � Œs� (see [Tr] or [Ta2] for the notation and
definitions).

We close this subsection by stating the following fundamental interpolation result
which has been used repeatedly in this volume, especially in Chaps. 4 and 5:

Lemma A.5. If 0 � � � 1,
1

r
D �

r1
C .1C �/

r2
, and s D �s1 C .1� �/s2, then for

some C > 0,

jjujjW s;r .�/ � C jjujj�W s1;r1 .�/jjujj1��W s2;r2 .�/:

Remarks. WithHm.�/ 	 W m;2.�/ it follows, in particular, from Lemma A.5 that
for m 2 N and 0 < s < 1, we may interpolate HmCs.�/ between HmC1.�/ and
L2.�/.

A.4 Some Useful Lemmas in Functional Analysis

Lemma A.6. Suppose that 1 < p < 2 and � 2 W 1;p.�/ \W 1;2
0 .�/ \W 2;2.�/,

with � � R3 a bounded domain with smooth boundary. Then 9ı0 > 0 such that for
any � > 0, and some dı0.�/ > 0,

jj�jj2
W 1;p.�/

� �
1
ı0

ı0dı0

j�jH 1.�/
2 � �

1
ı0.1�ı0/

�
1 � ı0

ı0

�
jj�jjH 2.�/

2: (A.1)
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Proof. For 1 < p < 2 interpolation estimates (see [Tr]) yield, for some
NcD Nc.ı0/ > 0,

jj�jjW 1;2.�/ � Nc.ı0/jj�jjı0

W 1;p.�/
jj�jj1�ı0

W 1;6.�/
(A.2)

with

ı0 D 2p

6 � p D 2

�
2 � ˛
4C ˛

�
I p D 2� ˛: (A.3)

From (A.3), if 1 < p < 2, then 2=5 < ı0 < 1. By virtue of the embedding
W 1;2.�/ ,! L6.�/, in dimn D 3, W 2;2.�/ ,! W 1;6.�/; using this and this
equivalence of the W 1;2.�/ and H 1.�/ norms, for � 2 W 1;2

0 .�/, we obtain from
(A.2) the estimate

jj�jjH 1.�/ � Ocı0.�/jj�jjı0

W 1;p.�/
jj�jjH 2.�/

1�ı0

(A.4)

for some Ocı0 > 0. We now apply Young’s inequality to (A.4); setting dı0.�/ D
Oc2ı0.�/, we find that for any � > 0 and q > 1,

1

dı0.�/
j�jH 1.�/

2 � jj�jj2ı0

W 1;p.�/
� jj�jjH 2.�/

2.1�ı0/

� �q

q
jj�jjH 2.�/

2.1�ı0/ C
�
q � 1
q�q=q�1


jj�jj2ı0q=q�1

W 1;p.�/
:

(A.5)

The stated result now follows by choosing q D 1=1� ı0 in (A.5), (as ı0 > 2=5 and
q > 5=3), so that ı0q=.q � 1/ D 1. ut
Lemma A.7. Let � � Rn, n D 2; 3, be a Lipschitz domain and suppose that
u; v;w 2 H1.�/. Then there exists a constant C > 0, independent of u; v;w, such
that

�Z
�

u2v2w2 dx

1=2
� C jujH1.�/jvjH1.�/jwjH1.�/: (A.6)

Proof. Employing standard results from Sobolev embedding theory (see [Ev] or
Sect. A.3) we infer the existence of c1.�/ > 0 such that

8̂
<̂
ˆ̂:

jjujjL6.�/ � c1.�/jjujjH1.�/;

jjvjjL6.�/ � c1.�/jjvjjH1.�/;

jjwjjL6.�/ � c1.�/jjwjjH1.�/:

(A.7)
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A first application of the Hölder Inequality yields

�Z
�

u2v2w2 dx

1=2
�
�Z

�

juvj3 dx
1=3 �Z

�

jwj6 dx
1=6

(A.8)

and a second application then produces

�Z
�

u2v2w2 dx

1=2
�
�Z

�

juj2 dx
�1=6 �Z

�

jvj2 dx
�1=6 �Z

�

jwj2 dx
�1=6

� c31.�/jujH1.�/jvjH1.�/jwjH1.�/

(A.9)

by virtue of (A.7); this establishes (A.6) with C D c31.�/. ut
Lemma A.8. Let X be a given Banach space with dualX 0 and let u and g be two
functions belong to L1..a; b/;X/. The following three conditions are equivalent:

(i) u is a.e. equal to a primitive function of g, i.e.,

u.t/ D � C
Z t

a

g.s/ ds; � 2 X , for almost every t 2 Œa; b�: (A.10)

(ii) For each test function � 2 D.a; b/,
Z b

a

u.t/�0.t/ dt D �
Z b

a

g.t/�.t/ dt;

�
�0 D d�

dt

�
: (A.11)

(iii) For each � 2 X 0,

d

dt
hu;�i D hg;�i (A.12)

in the scalar distribution sense, on .a; b/.

If (A.10)–(A.12) are satisfied u is, in particular, a.e. equal to a continuous function
from Œa; b� into X .

Proof. (See [Te4].) ut
Lemma A.9. Let X 0, X , X 1 be three Banach spaces such that

X 0 � X � X 1

where the injections are continuous and

X i is reflexive, i D 0; 1;

the injectionX 0 ! X is compact:
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Let T > 0 be a fixed finite number, and let ˛i > 1, i D 0; 1. If

Y D fv 2 L˛0..0; T /IX 0/ j v0 D dv

dt
2 L˛1 ..0; T /IX 1/g (A.13)

then Y is a Banach space with the norm

jjvjjY D jjvjjL˛1 ..0;T /IX0/
C jjvjjL˛1 ..0;T /IX1/

: (A.14)

Furthermore

Y � L˛0..0; T /IX/ is compact:

Remarks. Lemma A.9 is the explicit version of Aubin’s Lemma, A.2.9, which has
been used in this volume.



Appendix B
Estimates Involving the Rate of Deformation
Tensor

In this appendix we will state and prove several of the lemmas involving the rate
of deformation tensor which have been used in both Chaps. 4 and 5 and which are
cross-listed with the identical lemmas stated in this appendix. The first lemma is an
Lp version of the Korn inequality; for the cases of interest, 1 < p < 1, proofs
may be found in [Go1, 2], [Fu, N1], and [Te5]. Here we follow the general scheme
of the proof presented in the monograph [MNRR] and we state the result only for
a domain � which is open and bounded in R

n, n D 2; 3, with smooth boundary
@� (i.e., @� 2 C0;1); the result also holds for v 2 W 1;p

per .�/, with � D Œ0; L�n,
n D 2; 3, and v satisfying the conditions in (5.3b).

Lemma B.1. Let v 2 W 1;p
0 .�/, 1 < p < 1, where � is a bounded domain in R

n,
n D 2; 3, with smooth boundary @� 2 C0;1. Then 9c1 D c1.pI�/, c1 > 0, such
that

Z
�



eij.v/eij.v/

�p=2
dx � c1jjvjjW 1;p.�/

p: (B.1)

Proof. We note that (B.1) may be written in the equivalent form

jje.v/jjp � c1jjvjj1;p (B.2)

where we have used the abbreviated notation jj�jjp D jj�jjLp.�/ and jj�jj1;p D
jj�jjW 1;p.�/. The proof of (B.2) depends upon the following general result which
has been established, e.g., in [N1]: Let D.�/ D C1

0 .�/ be the usual space of
test functions and D0.�/ the space of distributions. Let � � Rn be an open

bounded subset with @� 2 C0;1 and T 2 D0.�/. If T;
@T

@xi
2 .W 1;q

0 .�//
0, for some

q 2 .1;1/ and all i D 1; 2; : : : ; n, then 9u 2 Lq0

.�/, q0 D q=q � 1, such that

hT;'i D
Z
�

u � 'dx; 8' 2 D.�/: (B.3)
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Moreover, 9C > 0 such that

jjujjq0

Lq
0
.�/

� C

 
jjT jjq0

�1;q0 C
nX
iD1

ˇ̌
ˇ̌
ˇ̌
ˇ̌ @T
@xi

ˇ̌
ˇ̌
ˇ̌
ˇ̌q0

�1;q0

!
: (B.4)

Using the above stated result from [N1], we now proceed as follows: First, we
define the space

E.�/ 	 ˚
u 2 Lp.�/ j e.u/ 2 .Lp.�//2� (B.5)

where e 2 .Lp.�//2 means eij 2 Lp.�/, i; j D 1; : : : ; n. We also define, on
E.�/, the norm

jjujjE.�/ 	 jjujjp C jje.u/jjp: (B.6)

Then, E.�/ is a Banach space. Let

I W W 1;p.�/ ! E.�/ (B.7)

be the identity mapping; this is clearly a continuous map and we want to show that
I is, in fact, surjective. If we take v 2 E.�/ then, in the sense of distributions, for
all i; j; k D 1; 2; : : : ; n,

@2vi

@xj @xk
D @eik.v/

@xj
C @eij.v/

@xk
� @ejk.v/

@xi
: (B.8)

As e.v/ 2 .Lp.�//2, (B.8) implies that

@2vi

@xj @xk
2 .W 1;p0

0 .�//0 (B.9)

with p0 D p=p � 1. Furthermore, as v 2 Lp.�/, it follows that

@vi

@xj
2 .W 1;p0

0 .�//0: (B.10)

By virtue of (B.3), (B.4),
@vi

@xj
2 Lp.�/ for i; j D 1; 2; : : : ; n and, therefore,

v 2 W 1;p.�/ and I is surjective. Thus, W 1;p.�/ coincides with E.�/ and the
Open Mapping Theorem then implies that 9c.pI�/ > 0 such that

jjvjj1;p � c.pI�/.jjvjjp C jje.v/jjp/: (B.11)

To prove the validity of (B.2) it is necessary only to show that 8v 2 W
1;p
0 .�/,

9 Qc.pI�/ > 0 such that
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jjvjjp � Qc.pI�/jje.v/jjp (B.12)

in which case (B.2) will follow with

c1.pI�/ D 1=c.pI�/. Qc.pI�/C 1/: (B.13)

We argue by contradiction, i.e., we assume that 9fvng1
nD1 � W

1;p
0 .�/ such that

jjvnjjp D 1 and njje.vn/jjp < 1. Then, e.vn/ ! 0 in .Lp.�//2 as n ! 1.
Using (B.11), we infer the existence of a subsequence of fvng, still labeled as fvng,
such that vn * v in W 1;p.�/ and vn ! v in Lp.�/. Therefore, jjvjjp D 1,
vj@� D 0, and e.v/ D 0. However, it is known [NH] that a vector field v satisfying
e.v/ D 0 may be written in the form v D a C b 
 x for some vectors a, b.
However, v satisfies the homogeneous boundary condition, in which case v 	 0;
this contradicts jjvjjp D 1 and serves to establish the lemma. ut

The next result is another (more elementary) inequality of the Korn variety;
although a standard proof may be known, because we could not find a specific
reference in which it is established, we will provide the simple proof here.

Lemma B.2. If v 2 W 2;2.�/ \W 1;2
0 .�/, � � R

n, n D 2; 3, a bounded domain
with smooth boundary, then 9c2 D c2.�/ > 0 such that

Z
�

@eij.v/

@xk

@eij.v/

@xk
dx � c2jjvjj2

W 2;2.�/
: (B.14)

Proof. Following the procedure used to establish (6.263) in the two-dimensional
case, a direct calculation yields, for some Oc2 > 0,

@eij.v/

@xk

@eij.v/

@xk
� Oc2

X
i

X
k

�
@2vi

@x2k

�
(B.15)

where we sum, on the left-hand side of (B.15) over i; j; k and where the value of Oc2
depends on whether n D 2 or 3. However, for each i ,

X
k

�
@2vi

@x2k

�2
� 1

2
.�vi /

2 (B.16)

so that, for some Nc2 > 0,

Z
�

@eij.v/

@xk

@eij.v/

@xk
dx � Nc2

Z
�

X
i

.�vi /
2dx (B.17)

and (B.14) now follows from standard regularity results for elliptic equations, e.g.,
[Ev]. ut
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The result stated in the next lemma is absolutely critical for the analysis of the
initial-boundary value problem (5.2a,b), (5.3a), (5.4) because in doing integrations
by parts, involving the higher-order derivatives in (5.1a), when �1 ¤ 0, we need to
make use of the fact that the higher-order boundary conditions in (5.3a) imply the
vanishing of �ijkeij
k on @� 
 Œ0; T /; the specific statement of this important result
is the following lemma which is also valid for a bounded domain in R

2:

Lemma B.3. Let S � R
3 be a smooth surface and v.�/ a divergence free C2

vector field defined on a neighborhood of S , with v D 0 on S . If �ijk.v/
j 
k �
�jkl
j 
k
l
i jS D 0, for i D 1; 2; 3, where � is the exterior unit normal on S , then
�ijk.v/eij.v/
kjS D 0.

Proof. As �ijk and eij are both symmetric in i and j :

�ijkeij
k D �ijk
@vi

@xj

k: (B.18)

Let p 2 S and let .t;�/ be a pair of orthonormal vectors at p which lie in the
tangent plane to S at p; thus, .t;�; �/ form an orthonormal triplet at p. Define the
vectors 
.i/, i D 1; 2; 3, by


.i/
j 	 @vi

@xj
D ˛.i/
j C ˇ.i/tj C �.i/�j : (B.19)

However, by virtue of (B.18), (B.19) it follows that

�ijk.v/eij
kjp D �ijk.v/
.i/
j 
kjp

D ˛.i/�ijk.v/
j 
kjp
C ˇ.i/�ijk.v/tj 
kjp C �.i/�ijk.v/�j 
kjp:

(B.20)

We now choose curves �1.�/ � S , �2.�/ � S , j�j � N� , such that �1.0/ D �2.0/ D
p and �1.0/ D t, �2.0/ D �. As vjS D 0, vi .�1.�// D vi .�2.�// D 0, j�j � �, for
i D 1; 2; 3; thus

8̂
<̂
ˆ̂:

dvi
d �

j�i 	 @vi

@xj
.�1.�//

dxj
d�

D 0;

dvi
d �

j�2 	 @vi

@xj
.�2.�//

dxj
d�

D 0;

.i D 1; 2; 3/: (B.21)

Setting � D 0 in (B.21) we have

@vi

@xj

ˇ̌
ˇ̌
p

� tj D @vi

@xj

ˇ̌
ˇ̌
p

� �j D 0; i D 1; 2; 3: (B.22)
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However, by virtue of (B.19), ˇ.i/ D @vi

@xj
tj and �.i/ D @vi

@xj
�j , for i D 1; 2; 3.

Thus, at p, �.i/ D ˇ.i/ D 0, for i D 1; 2; 3, so that by (B.20), and the higher-order
boundary conditions in (5.3a)

�ijk.v/eij
kjp D ˛.i/
i �ljk.v/
l
j 
kjp: (B.23)

But, as ˇ.i/ D �.i/ D 0, i D 1; 2; 3, (B.19) reduces to


.i/
j D @vi

@xj
D ˛.i/
j : (B.24)

Therefore, setting i D j in (B.24), summing on i , and using the fact that v is a
solenoidal vector field, we obtain

@vi

@xi
	 r � v D ˛.i/
i D 0 (B.25)

in which case (B.23) yields the required result, i.e., �ijk.v/eij
kjp D 0. ut
Remarks. Lemma B.3 has been used, repeatedly, in the text to effectuate the follow-
ing integration by parts computation: for v sufficiently smooth and satisfying (5.3a)

Z
�

@

@xj
.�eij/vidx D

Z
�

�
@

@xj
.�eijvi /��eij

@vi

@xj


dx

D
I
@�

�eijvi
jdS �
Z
�

@

@xk

�
@eij

@xk

�
@vi

@xj
dx

D �
Z
�

�
@

@xk

�
@eij

@xk

@vi

@xj

�
� @eij

@xk

@vi

@xj @xk


dx (as vj@� D 0)

D �
I
@�

@eij

@xk

@vi

@xj

kdS C

Z
�

@eij

@xk

@eij

@xk
dx (B.26)

so

2�1

Z
�

@

@xj
.�eij/vidx D �

I
@�

�ijkeij
kdS C 2�1

Z
�

@eij

@xk

@eij

@xk
dx

D 2�1

Z
�

@eij

@xk

@eij

@xk
dx (as �ijk.v/eij
kj@� D 0):

(B.27)

Remarks. In (B.27), �ijkeij
kj@� D 0 is a consequence of the boundary conditions
(5.3a) which, by (1.127), apply whenever Mk�k D 0 on @�; in particular,
�ijkeij
kj@� D 0 if Mi D 0, on @�, i D 1; 2; 3.
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Suppose, however, that Mk�k ¤ 0 on @�. Then by virtue of (B.20) with ˇ.i/ D

.i/ D 0, at any p 2 @�

�ijk.v/eij
kjp D ˛.i/�ijk
j 
kjp: (B.28)

However, if Mk�k ¤ 0, then by (1.127),

�ijk.v/
j 
k � .�ljk.v/
l
j 
k/
i D .Mk�k/�i

at each p 2 @�, and (B.28) becomes

�ijk.v/eij
kjp D ˛.i/


.�ljk
l
j 
k/
i � .Mk�k/�i

�
p
: (B.29)

From (B.24) we obtain

˛.i/ D @vi

@xj

j D @vi

@�
; on @�: (B.30)

Also

˛.i/
i D r � v D 0: (B.31)

Combining (B.29), (B.30), and (B.31) we obtain, at each p 2 @�,

�ijk.v/eij
k D .Mk�k/˛
.i/�i

D .Mk�k/�i
@vi

@�

(B.32)

in which case the last result in (B.27) becomes

2�1

Z
�

@

@xj
.�eij/vidx D 2�1

Z
�

@eij

@xk

@eij

@xk
dx �

I
@�

.Mk�k/�i
@vi

@�
dS: (B.33)

In this calculation, eij is based on the velocity field v. In Sect. 4.2 we have multiplied
the bipolar equations (4.1) through by the i th component  i of a test function  2
W 1;2..0;1/IH / and summed on i , where H is given by (4.12); in this case, it is
easily seen that (B.33) is to be replaced by

2�1

Z
�

@

@xj
.�eij.v// idx D 2�1

Z
�

@eij

@xk
.v/

@eij

@xk
. /dx �

I
@�

.Mk�k/�i
@ i

@�
dS:

(B.34)
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Our next result provides a simple lower bound for the integral
Z
�

w � e.U / � wdx

whenever � � R
3 is a bounded domain, with smooth boundary @�, w 2 L2.�/,

and U 2 W 1;2.�/; the specific result is

Lemma B.4. Let � � R
3 be a bounded domain with smooth boundary @�. Then

for any w 2 L2.�/, and U 2 W 1;2.�/, 9ƒ.U / > 0 such that

jjwjjL2.�/2 � �
�
1

ƒ

�Z
�

w � e.U / � wdx: (B.35)

Proof. Let x 2 � and refer the (symmetric) rate of deformation tensor eij.U / to its
principal axes at x. Then, at x,

w � e.U / � w D eij.U /wiwj � jjwjj2 min
1�j�3Œejj.U /� (B.36)

where jjwjj D .wiwi /
1
2 is the Euclidean norm on R

3 and the eii.U /, i D 1; 2; 3, are
the (real) eigenvalues of e.U / at x. As

divU D tr e.U / 	
3X

jD1
ejj .U / D 0 (B.37)

at least one of the eii.U /, i D 1; 2; 3 must be negative at x. We denote the largest
(in magnitude) negative eigenvalue of e.U / at x 2 � by ƒ.x;U / D �jƒ.x;U /j.
However,ƒ.�;U / is continuous on N�, which is compact on R

3; thus, if we set

ƒ.U / D max
x2 N�

jƒ.x;U /j (B.38)

then, as a direct consequence of (B.36),

Z
�

w � e.U / � w dx � �ƒ.U / (B.39)

which is equivalent to (B.35). ut
Remarks. Lemma B.4 has an analogous statement in space dimn D 2. Also, as
pointed out in Sect. 5.2.2, this result retains its validity, with obvious modifications,
if wi ; Ui 2 C, L2.�/ is replaced by its complex counterpartL2c.�/, etc., and

jjwjj2
L2c .�/

D
Z
�

wiw
�
i dx; (B.40a)

w � e.U / � w D eij.U /wiw
�
j (B.40b)
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where eij D 1

2

�
@Ui

@xj
C @U �

j

@xi

�
D e�

ji , the asterisk denoting complex conjugation.

Our final result in this appendix is the following:

Lemma B.5. Suppose that u.t/, v.t/ are the unique solutions of (5.2a,b), (5.3a),
(5.4) which correspond, respectively, to initial data u.0/ D u0 and v.0/ D v0. Then,
for 1 < p � 2,

Z
�



�.v/eij.v/ � �.u/eij.u/

� 

eij.v/ � eij.u/

�
dx � 0 (B.41)

where �.v/ D �.je.v/j/.
Proof. With ˛ D 2 � p we have introduced the potential (see, e.g., (5.92))

�.eijeij/ D
Z eijeij

0

�0.� C s/�˛=2ds

so that

@�

@eij
D �.e/eij: (B.42)

Therefore,



�.v/eij.v/ � �.u/eij.u/

� 

eij.v/ � eij.u/

�

D
Z 1

0

d

d

�
@�.eij.u/C .eij.v/� eij.u//

@eij

�
d 
 Œeij.v/� eij.u/�

D
Z 1

0

�
@2�

@eij@ekl
.eij.u/C .eij.v/� eij.u//Œeij.v/� eij.u/�


 Œekl.v/� ekl.u/�
	
d:

(B.43)

However, it is easily seen that the potential � (e.g., see [MNRR], Chap. 5, estimate
(1.8)) satisfies

@2�.e/

@eij@ekl
�ij�kl � c1.1C jej/p�2j�j2 (B.44)

for p > 1 and some c1 > 0. Combining (B.43) and (B.44) one obtains
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�.v/eij.v/� �.u/eij.u/

� 

eij.v/� eij.u/

�

� c1je.v/� e.u/j2
Z 1

0

.1C je.u/C .e.v/ � e.u//j/p�2 d (B.45)

with jej D p
eijeij, and (B.41) follows as an immediate consequence. ut

Lemma B.6 (Korn inequality for the Exterior Problem in the Plane). For some
c > 0,

“ X
i;j

ˇ̌
eij.u/

ˇ̌2�˛
dx � cjjDujj2�˛

L2�˛
:

Proof. For a proof see the volume [HN]. ut
Lemma B.7.

Z
�

eij.v/eij.v/ dx � 1

2
jjvjjH 1.�/

2; 8v 2 H 1
0.�/:

Proof. The proof is an elementary exercise based on the definition of eij.v/ and the
H 1.�/ norm, as well as the “vanishing” of elements ofH 1

0.�/ on @�. ut



Appendix C
The Spectral Gap Condition

We examine, here, the validity of the spectral gap condition (SGC) with respect to
the operator A defined by (5.349)–(5.351), where � D Œ0; L�n, L > 0, n D 2; 3

and V per.�/ is given by (5.348). We consider, in V per.�/, the eigenvalue problem

��u C rp D u;

r � u D 0:
(C.1)

Definition C.1. The number  is an eigenvalue ofA if 9u 2 V per.�/, u ¤ 0, such
that

Z
�

�u ��vdx D 

Z
�

u � vdx; 8v 2 V per .�/: (C.2)

As is standard, u is then called an eigenfunction of A corresponding to the
eigenvalue .

We begin with the case n D 3.

Lemma C.1. If n D 3, then the numbers

�
16�4

L4
.n21 C n22 C n23/ ¤ 0 j ni ; i D 1; 2; 3 nonnegative integers

	

are eigenvalues ofA.

Proof. Let n1; n2; n3 be three nonnegative integers with n21 C n22 C n23 ¤ 0. We first
show that  D .16�4=L4/.n21 C n22 C n23/ is an eigenvalue ofA with corresponding
eigenfunction u of the form

ui D
8X

jD1
Cijfj .x1; x2; x3/; i D 1; 2; 3; (C.3)
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where

8̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂:

f1.x1; x2; x3 D cos
2�n1

L
x1 cos

2�n2

L
x2 cos

2�n3

L
x3;

f2.x1; x2; x3 D cos
2�n1

L
x1 cos

2�n2

L
x2 sin

2�n3

L
x3;

f3.x1; x2; x3 D cos
2�n1

L
x1 sin

2�n2

L
x2 cos

2�n3

L
x3;

f4.x1; x2; x3 D cos
2�n1

L
x1 sin

2�n2

L
x2 sin

2�n3

L
x3;

f5.x1; x2; x3 D sin
2�n1

L
x1 cos

2�n2

L
x2 cos

2�n3

L
x3;

f6.x1; x2; x3 D sin
2�n1

L
x1 cos

2�n2

L
x2 sin

2�n3

L
x3;

f7.x1; x2; x3 D sin
2�n1

L
x1 sin

2�n2

L
x2 cos

2�n3

L
x3;

f8.x1; x2; x3 D sin
2�n1

L
x1 sin

2�n2

L
x2 sin

2�n3

L
x3:

(C.4)

By direct calculation, (C.3) and (C.4) lead to

@ui
@x1

D 2�n1

L
f � Ci1f5 � Ci2f6 � Ci3f7 � Ci4f8

C Ci5f1 C Ci6f2 C Ci7f3 C Ci8f4g;
(C.5)

@ui
@x2

D 2�n2

L
f � Ci1f3 � Ci2f4 C Ci3f1 C Ci4f2

� Ci5f7 � Ci6f8 C Ci7f5 C Ci8f6g;
(C.6)

@ui
@x3

D 2�n3

L
f � Ci1f2 C Ci2f1 � Ci3f4 � Ci4f3
Ci5f6 C Ci6f5 � Ci7f8 C Ci8f7g;

(C.7)

so that for i; j D 1; 2; 3 it is easily verified that

@2ui
@x2j

D �
�
2�nj

L

�2
ui : (C.8)

Therefore,

��ui D
�
2�

L

�4
.n21 C n22 C n23/

2ui ; i D 1; 2; 3: (C.9)
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Now, employing (C.5)–(C.7), we have

r � u 	
3X
iD1

@ui
@xi

D 2�

L
.n1C15 C n2C23 C n3C32/f1

C 2�

L
.n1C16 C n2C24 � n3C31/f2

C 2�

L
.n1C17 � n2C21 C n3C34/f3

C 2�

L
.n1C18 � n2C22 � n3C33/f4

C 2�

L
.�n1C11 C n2C27 C n3C36/f5

C 2�

L
.�n1C12 C n2C28 � n3C35/f6

C 2�

L
.�n1C13 � n2C25 C n3C38/f7

C 2�

L
.�n1C14 � n2C26 C n3C37/f8:

(C.10)

For n21 C n22 C n23 ¤ 0 the condition r � u D 0 yields the algebraic system

8̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂:

n1C15 C n2C23 C n3C32 D 0;

n1C16 C n2C24 � n3C31 D 0;

n1C17 � n2C21 C n3C34 D 0;

n1C18 � n2C22 � n3C33 D 0;

�n1C11 C n2C27 C n3C36 D 0;

�n1C12 C n2C28 � n3C35 D 0;

�n1C13 � n2C25 C n3C38 D 0;

�n1C14 � n2C26 C n3C37 D 0:

(C.11)

Since (C.11) is a homogeneous system of eight equations in twenty-four unknowns,
it follows that .16�4=L4/.n21 C n22 C n23/ is an eigenvalue of A with sixteen
corresponding independent eigenfunctions of the form given by (C.3)–(C.4). Next,
if n1 D 0 but n22 C n23 ¤ 0, then by virtue of (C.10) we will have f5 D f6 D f7 D
f8 D 0. By virtue of (C.9), r � u D 0 now implies that
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8̂̂
ˆ̂<
ˆ̂̂̂:

n2C23 C n3C32 D 0;

n2C24 � n3C31 D 0;

�n2C21 C n3C34 D 0;

�n2C22 � n3C33 D 0:

(C.12)

Therefore, as a consequence of (C.9) and (C.12) it follows that, with n1 D 0

and n22 C n23 ¤ 0, .16�4=L4/.n21 C n22 C n23/ is an eigenvalue of A with
eight corresponding independent eigenfunctions of the form (C.3). In an entirely
analogous manner we can show that if n2 D 0, n21 C n23 ¤ 0, or n3 D 0, n21; n

2
2 ¤ 0,

then .16�4=L4/.n21 C n22 C n23/ is still an eigenvalue ofA with eight corresponding
independent eigenfunctions of the form (C.3). Finally, if n1 D n2 D 0, n3 ¤ 0, then
f3 D f1 D f5 D f7 D f8 D 0, while r � u D 0 implies that

n3C32 D 0: � n3C31 D 0 , C32 D C31 D 0: (C.13)

Thus, for n1 D n2 D 0 and n3 ¤ 0, .16�4=L4/.n21 C n22 C n23/ is an eigenvalue
of A with four corresponding, independent, eigenfunctions of the form (C.3); the
analogous result holds for the remaining two cases, i.e., n1 D n3 D 0, n2 ¤ 0, or
n2 D n3 D 0, n1 ¤ 0, and the proof of the lemma is complete. ut
Lemma C.2. The set of numbers

�
16�4

L4
.n21 C n22 C n23/ ¤ 0 j ni ; i D 1; 2; 3 nonnegative integers

	

exhaust all of the eigenvalues ofA.

Proof. Suppose that  is an eigenvalue of A and u ¤ 0 is a corresponding
eigenfunction (in V per .�/). Then u possesses the Fourier expansion

u D
X

n1;n2;n3
nonnegative integers

u.n1;n2;n3/ (C.14)

with each u.n1;n2;n3/ of the form (C.3), (C.4). If u 2 V per .�/, then

Z
�

udx D 0 (C.15)

and 8n ¤ 0, n D .n1; n2; n3/, we also have

Z
�

u.n1;n2;n3/dx D 0; n ¤ 0: (C.16)

Therefore, by virtue of (C.14) and (C.15),
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Z
�

u.0;0;0/dx D
Z
�

udx �
Z
�

X
n¤0

u.n1;n2;n3/dx; (C.17)

so that
Z
�

u.0;0;0/dx D 0: (C.18)

Since u.0;0;0/ is a constant vector, it follows from (C.18) that u.0;0;0/ D 0. Also, since
we require that r � u D 0, 8n D .n1; n2; n3/, with the nj nonnegative integers,
r � u.n1;n2;n3/ D 0; that this last statement is true follows from the fact that

r � u D 0 )
Z
�

.r � u/2dx D 0

)
X

nD.n1;n2;n3/

Z
�

.r � u.n1;n2;n3//
2dx D 0

(C.19)

as well as the fact that, by virtue of (C.3) and (C.4), for n ¤ n0,
Z
�

.r � n.n1;n2;n3// � .r � u.n0
1;n

0
2;n

0
3/
/dx D 0: (C.20)

Since r �u.n1;n2;n3/ D 0, a.e. in�, we have u.n1;n2;n3/ 2 V per .�/, 8n ¤ 0. However,
u ¤ 0 implies that there exists .n0

1; n
0
2; n

0
3/ ¤ 0 such that u.n1;n2;n3/ ¤ 0. We now

claim that  must be of the form

 D 16�4

L4
.n02
1 C n02

2 C n02
3 /:

To see this we note that, by virtue of the definition given above,

Z
�

�u ��vdx D 

Z
�

u � vdx; 8v 2 V per .�/I

so, taking v D u.n0
1;n

0
2;n

0
3/

, we obtain

Z
�

�u ��u.n0
1;n

0
2;n

0
3/
dx D 

Z
�

u � u.n0
1;n

0
2;n

0
3/
dx: (C.21)

Integrating the first term on the left-hand side of (C.21) by parts, and using the fact
that u.n0

1;n
0
2;n

0
3/

satisfies (C.9), we have
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Z
�

�u ��u.n0
1;n

0
2;n

0
3/
dx D

Z
�

u ���u.n0
1;n

0
2;n

0
3/
dx

D 16�4

L4
.n02
1 C n02

2 C n02
3 /

Z
�

u � u.n0
1;n

0
2;n

0
3/
dxI

(C.22)

so, by (C.21), (C.22)

�
16�4

L4
.n02
1 C n02

2 C n02
3 /� 

 Z
�

u � u.n02
1 ;n

02
2 ;n

02
3 /
dx D 0: (C.23)

However, using (C.14) in conjunction with (C.3), (C.4), we get

Z
�

u � u.n0
1;n

0
2;n

0
3/
dx D

Z
�

ˇ̌
ˇu.n0

1;n
0
2;n

0
3/

ˇ̌
ˇ2dx ¤ 0; (C.24)

and the required result follows directly from (C.24). ut
Remarks. The case N D 2 may be handled in a manner similar to the case n D 3.
We consider functions of the form

ui D
4X
iD1

Cijfj .x1; x2/; i D 1; 2; (C.25)

with
8̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂:

f1.x1; x2/ D cos
2�n1

L
x1 cos

2�n2

L
x2;

f2.x1; x2/ D cos
2�n1

L
x1 sin

2�n2

L
x2;

f3.x1; x2/ D sin
2�n1

L
x1 cos

2�n2

L
x2;

f4.x1; x2/ D sin
2�n1

L
x1 sin

2�n2

L
x2:

(C.26)

The result for n D 2, which corresponds to Lemmas C.1 and C.2 for n D 3, is

Lemma C.3. For n D 2, the set of numbers

�
16�4

L4
.n21 C n22/ ¤ 0 j n1; n2 nonnegative integers

	

contains all the eigenvalues ofA.

Remarks. Once we have shown that for nonnegative integers ni (i D 1; 2; 3) the
eigenvalues of A consist of the numbers
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 D 16�4

L4
.n21 C n22 C n23/ ¤ 0 .n D 3/;

 D 16�4

L4
.n21 C n22/ ¤ 0 .n D 2/;

the validity of the spectral gap condition is a consequence of standard known results
on the difference of consecutive numbers which can be expressed as the sum of
squares of nonnegative integers, e.g. [Ric]; in fact, as a consequence of such results
it follows that, for the bipolar problem, condition (i) of Theorem 6.3 is satisfied, in
dimn D 2, for arbitrary �1 > 0, if N is sufficiently large, but in dimn D 3 only
when �1 is sufficiently large (see, also, [Me]).
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[BdV3] Beirăo da Veiga, H.: On the suitable weak solutions to the Navier–Stokes equations in
the whole space. J. Math. Pures Appl. 64, 77–86 (1985)

[BB1] Bellout, H., Bloom, F.: Steady plane Poiseuille flows of incompressible multipolar fluids.
Int. J. Nonlinear Mech. 28, 503–518 (1993)

[BB2] Bellout, H., Bloom, F.: On the uniqueness of plane Poiseuille solutions of the equations
of incompressible bipolar fluids. Int. J. Eng. Sci. 31, 1535–1549 (1993)

H. Bellout and F. Bloom, Incompressible Bipolar and Non-Newtonian Viscous Fluid
Flow, Advances in Mathematical Fluid Mechanics, DOI 10.1007/978-3-319-00891-2,
© Springer International Publishing Switzerland 2014

551



552 References

[BB3] Bellout, H., Bloom, F.: Existence and asymptotic stability of time-dependent Poiseuille
flows of isothermal bipolar fluids. Appl. Anal. 15, 1–15 (1993)

[BB4] Bellout, H., Bloom, F.: On the higher-order boundary conditions for incompressible
nonlinear bipolar fluid flow. Quart. Appl. Math. 2013, 12 (in press)

[BBN1] Bellout, H., Bloom, F., Nec̆as, J.: Phenomenological behavior of multipolar viscous
fluids. Quart. Appl. Math. L, 559–583 (1992)

[BBN2] Bellout, H., Bloom, F., Nec̆as, J.: Weak and measure-valued solutions for incompressible
non-Newtonian fluids. C.R. Acad. Sci. Paris 317, 795–800 (1993)

[BBN3] Bellout, H., Bloom, F., Nec̆as, J.: Young measure solutions for non-Newtonian incom-
pressible viscous fluids. Comm. P.D.E. 19, 1763–1803 (1994)

[BBN4] Bellout, H., Bloom, F., Nec̆as, J.: Existence, uniqueness, and stability of solutions to
the initial-boundary value problem for bipolar viscous fluids. Differ. Integr. Equat. 8,
453–464 (1995)

[BBN5] Bellout, H., Bloom, F., Nec̆as, J.: Bounds for the dimensions of the attractors of nonlinear
bipolar viscous fluids. Asymptotic Anal. 11, 1–37 (1995)

[BG] Bleustein, J.L., Green, A.E.: Dipolar fluids. Int. J. Eng. Sci. 5, 323–340 (1967)
[BH1] Bloom, F., Hao, W.: The L2 squeezing property for nonlinear bipolar viscous fluids.

Differ. Equat. Dynam. Syst. 6, 513–542 (1994)
[BH2] Bloom, F., Hao, W.: Steady flows of nonlinear bipolar viscous fluids between rotating

cylinders. Quart. Appl. Math. LIII, 143–171 (1995)
[BH3] Bloom, F., Hao, W.: Inertial manifolds of incompressible nonlinear bipolar viscous

fluids. Quart. Appl. Math. LIV, 501–539 (1996)
[BH4] Bloom, F., Hao, W.: Regularization of a non-Newtonian fluid in an unbounded channel:

existence and uniqueness of solutions. Nonlinear Anal. TMA 44, 281–309 (2001)
[BH5] Bloom, F., Hao, W.: Regularization of a non-Newtonian system in an unbounded

channel: existence of a maximal compact attractor. Nonlinear Anal. TMA 43, 743–766
(2001)

[BHTV] Barnard, A., Hunt, W., Timlake, W., Varley, E.: A theory of fluid flow in compliant tubes.
Biophys. J. 6, 717–724 (1966)

[BK] Brutyan, M.A., Krapivsky, P.L.: Collapse of spherical bubbles in fluids with nonlinear
viscosity. Quart. J. Appl. Math. LI, 745–749 (1993)

[Blo] Bloemberger, N.: Nonlinear Optics. W.A. Benjamin, New York (1965)
[Bl1] Bloom, F.: Mathematical Problems of Classical Nonlinear Electromagnetic Theory.

Monographs and Surveys in Pure and Applied Mathematics, vol. 63. Longman
Scientific & Technical, Essex (1993)

[Bl2] Bloom, F.: Lower semicontinuity of the attractors of non-Newtonian fluids. Dynam. Syst.
Appl. 4, 567–580 (1995)

[Bl3] Bloom, F.: Attractors of non-Newtonian fluids. J. Dynam. Differ. Equat. 7, 109–140
(1995)

[Bl4] Bloom, F.: Linearized stability of the viscous incompressible bipolar equations. Nonlin-
ear Anal. TMA 27, 1013–1030 (1996)

[Bl5] Bloom, F.: Attractors of bipolar and non-Newtonian viscous fluids. In:
Lakshmikantham, V. (ed.) Proceedings of the First World Congress of Nonlinear
Analysts, vol. 1, pp. 583–596. Walter de Gruyter, New York (1996)

[Bl6] Bloom, F.: Bubble stability in a class of non-Newtonian fluids with shear dependent
viscosities. Int. J. Nonlinear Mech. 37, 527–539 (2002)

[Bl7] Bloom, F.: Mathematics Problems of Classical Nonlinear Electromagnetic Theory.
Longman Group, London (1993)

[BMW] Batchelor, G., Moffat, H., Worster, M.: Perspectives in Fluid Mechanics, A Collective
Introduction to Current Research. Cambridge University Press, Cambridge (2003)

[BN] Bellout, H., Nec̆as, J.: The exterior problem in the plane for a non-Newtonian incom-
pressible bipolar fluid. Rocky Mt. J. Math. 26, 1245–1260 (1996)

[BNR] Bellout, H., Nec̆as, J., Rajagopal, K.R.: On the existence and uniqueness of flows of
multipolar fluids of Grade 3 and their stability. Int. J. Eng. Sci. 37, 75–96 (1999)



References 553

[BR] Blum, H., Rannacher, R.: On the boundary value problem of the Biharmonic operator on
domains with angular corners. Math. Meth. Appl. Sci. 2, 556–581 (1980)

[Bre] Brezis, H.: Analyse Functionnelle. Dunrod, Paris (1999)
[BV1] Babin, A.V., Vishik, M.I.: Attractors of Partial Differential Evolution Equations and

Estimates of Their Dimension. Russ. Math. Surv. 38(4), 151–213 (1983)
[BV2] Babin, A.V., Vishik, M.I.: Attractors for the Navier–Stokes system and for parabolic

equations and estimates of their dimension. J. Sov. Math. 28, 619–627 (1983)
[BV3] Babin, A.V., Vishik, M.I.: Regular attractors of semigroups and evolution equations.

J. Math. Pures Appl. 62, 441–491 (1983)
[BV4] Babin, A.V., Vishik, M.I.: Attractors of partial differential evolution equations in an

unbounded domain. Proc. Roy. Soc. Edinb. Sect. A 116, 221–243 (1990)
[BV5] Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations. North-Holland, Amsterdam

(1992)
[BW] Bellout, H., Wills, S.: Perturbation of the domain and regularity of the solutions of

the bipolar fluid equations in polygonal domains. Int. J. Nonlinear Mech. 30, 235–262
(1995)

[CF] Constantin, P., Foias, C.: Navier–Stokes Equations. The University of Chicago Press,
Chicago (1988)

[CFH1] Chen, S., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S.: Camassa-Holm
equations as a closure model for turbulent channel and pipe flow. Phys. Rev. Lett. 81,
5338–5341 (1998)

[CFH2] Chen, S., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S.: The Camassa-Holm
equations and turbulence. Physica D 133, 49–65 (1999)

[CFH3] Chen, S., Foias, C., Holm, D.D., Titi, E.S., Wynne, S.: A connection between the
Camassa-Holm equations and turbulent flow in channels and pipes. Phys. Fluids 8, 2343–
2353 (1999)

[CFMT] Constantin, P., Foias, C., Manly, O., Temam, R.: Determining modes and fractal
dimension of turbulent flows. J. Fluid Mech. 150, 427–440 (1985)

[CFNT1] Constantin, P., Foias, C., Nicolaenko, B., Temam, R.: Integral Manifolds and Inertial
Manifolds for Dissipative Partial Differential Equations. Springer, New York (1989)

[CFNT2] Constantin, P., Foias, C., Nicolaenko, B., Temam, R.: Spectral barriers and inertial
manifolds for dissipative partial differential equations. J. Dynam. Differ. Equat. 1, 45–73
(1989)

[CFT1] Constantin, P., Foias, C., Temam, R.: Attractors Representing Turbulent Flows. Ameri-
can Mathematical Society, Providence (1985)

[CFT2] Constantin, P., Foias, C., Temam, R.: On the dimension of the attractors in two-
dimensional turbulence. Physica D 30, 284–296 (1988)

[CKN] Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of
the Navier–Stokes equations. Comm. Pure Appl. Math. 35, 771–831 (1982)

[CM] Chorin, A.J., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics, 3rd edn.
Springer, New York (2000)

[CMN] Coleman, B.D., Markovitz, H., Noll, W.: Viscometric Flows of Non-Newtonian Fluids.
Springer Tracks in Natural Philosophy, vol. 5. Springer, Berlin (1966)

[CN] Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction
and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

[Con1] Constantin, P.: A construction of inertial manifolds. In: The Connection Between
Infinite-Dimensional and Finite-Dimensional Dynamical Systems. Contemp. Math.,
vol. 99, pp. 27–62. American Mathematical Society, Providence (1989)

[Con2] Constantin, P.: Some open problems and research directions in the mathematical study
of fluid dynamics. In: Engquist, B., Schmid, W. (eds.) Mathematics Unlimited–2001 and
Beyond, pp. 353–360. Springer, New York (2001)

[Cow] Cowin, S.C.: The theory of polar fluids. Adv. Appl. Mech. 14, 279–347 (1974)
[Cr] Cross, J.J.: Mixtures of fluids and isotropic solids. Arch. Mech. 25, 1025–1039 (1973)



554 References

[CV1] Chepyzhov, V.V., Vishik, M.I.: Attractors for Equations of mathematical Physics. Amer.
Math. Soc. Colloq. Pub. AMS, Providence (2002)

[CV2] Chepyzhov, V.V., Vishik, M.I.: Non-autonomous Navier–Stokes system with a simple
global attractor and some averaging problems. E.I.J. ESAIM 8, 467–487 (2002)

[CVW] Chepyzhov, V.V., Vishik, M.I., Wendland, W.L.: On non-autonomous Sine-Gordon type
equations with a simple global attractor and some averaging. Discrete Cont. Dynam.
Syst. 12, 27–38 (2005)

[DC1] Dong, B., Chen, Z.: Time decay rates of non-Newtonian flows in RnC. J. Math. Anal.
Appl. 324, 820–833 (2006)

[DC2] Dong, B., Chen, Z.: Asymptotic stability of non-Newtonian flows with large perturbation
in R

2. Appl. Math. Comput. 173, 243–250 (2006)
[Dek] Devlin, K.: The Millennium Problems. Basic Books, New York (2002)
[DL] Dong, B., Li, Y.: Large time behavior to the system of fluids in R

2. J. Math. Anal. Appl.
298, 667–676 (2004)

[Do1] Dong, B.: Decay of solutions to equations modelling incompressible bipolar non-
Newtonian fluids. Electron. J. Differ. Equat. 2005, 1–13 (2005)

[Do2] Dong, B.: Time decay rates of the isotropic non-Newtonian flows in R
n. Acta Math.

Appl. Sinica 23, 99–106 (2005)
[DS] Dunford, N., Schwartz, J.: Linear Operators: Part I: General Theory. Wiley, New York

(1988)
[Duff] Duff, G.F.D.: Derivative estimates for the Navier–Stokes equations in a three dimen-

sional region. Acta Math. 164, 145–210 (1990)
[DuG] Du, Q., Gunzburger, M.D.: Analysis of a Ladyzhenskaya model for incompressible

viscous flow. J. Math. Anal. Appl. 155, 21–45 (1991)
[Ed] Edwards, R.I.: Functional Analysis. Holt, Rinehart, and Winston, New York (1965)

[EFNT] Eden, A., Foias, C., Nicolaenko, B., Temam, R.: Inertial Sets for Dissipative Evolution
Equations. Preprint, University of Minnesota, Minneapolis (1990): cf. Ensembles iner-
tials pour des équations d’évolution dissipatives. C.R. Acad. Sci. Paris Sér 1 Math. 310,
559–562 (1990)

[Ev] Evans, L.C.: Partial Differential Equations. AMS, Providence (1998)
[EZ1] Efendiev, M., Zelik, S.V.: The attractor for a nonlinear reaction-diffusion system in an

unbounded domain. Comm. Pure Appl. Math. LIV, 625–688 (2001)
[EZ2] Efendiev, M., Zelik, S.V.: Attractor of the reaction-diffusion systems with rapidly

oscillating coefficients and their homogenization. Ann. Instit. H. Poincaré 19, 961–989
(2002)

[EZ3] Efendiev, M., Zelik, S.V.: The regular attractor for the reaction-diffusion systems rapidly
oscillating in time and its averaging. Adv. Differ. Equat. 8, 673–732 (2003)

[Fe] Fefferman, C.L.: Existence and smoothness of the Navier Stokes equation. http://www.
claymath.org/millenium/Navier-Stokes_Equations/ (2001)

[FiS] Finn, R., Smith, D.R.: On the stationary solutions of the Navier–Stokes equations in two
dimensions. Arch. Rat. Mech. Anal. 25, 26–39 (1967)

[FG] Fogler, H.S., Goddard, J.D.: Collapse of spherical cavities in viscoelastic fluids. Phys.
Fluids 13, 1135–1141 (1970)

[FHT1] Foias, C., Holm, D.D., Titi, E.S.: The Navier–Stokes -alpha model of fluid turbulence.
Physica D 152, 505–519 (2001)

[FHT2] Foias, C., Holm, D.D., Titi, E.S.: The three dimensional viscous Camassa-Holm equa-
tions and their relation to the Navier–Stokes equations and turbulence theory. J. Dynam.
Differ. Equat. 14, 1–35 (2002)

[FoS] Foias, C., Sell, G.R.: Inertial manifolds for nonlinear evolutionary equations. J. Differ.
Equat. 73, 309–353 (1988)

[FP] Foias, C., Prodi, G.: Sur le comportement global des solutions non stationnaires des
équations de Navier–Stokes en dimension 2. Rend. Sem. Math. Univ. Padova 39, 1–34
(1967)

http://www.claymath.org/millenium/ Navier-Stokes_Equations/
http://www.claymath.org/millenium/ Navier-Stokes_Equations/


References 555
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